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The SEC14-GOLD family of phosphatidylinositol (Pl) transfer proteins, known as
PATELLIN (PATL) proteins in plants, are key regulators of plasma membrane
(PM)-related signaling processes. They function through multifaceted interac-
tions involving a SEC14 lipid-binding domain, GOLD domain, and their N-
terminal region. Protein phosphorylation is crucial for modulating protein and
phospholipid interactions, but phosphorylation of SEC14 proteins remains
understudied. Phosphoproteomics data from Arabidopsis thaliana indicates
two major phosphorylation hubs within the N-terminal and the conserved
SEC14-GOLD regions in the PATLs. These phosphorylation patterns vary in re-
sponse to environmental and hormonal stress-related factors. Understanding
how PATL proteins are phosphorylated can offer insights into PATL-membrane
interactions and their functional roles in cell physiology, providing new strategies
for plant adaptation and stress resilience in crops.

SEC14-GOLD PI transfer proteins act in cellular signaling at the PM

Cells rely on rapid and precise signaling at their plasma membrane (PM) (see Glossary) to
perceive and respond to environmental cues. This process requires tailored cellular-level sig-
naling mechanisms for proper perception and signal transmission. Central to this are post-
translational modifications (PTMs), such as protein phosphorylation, which modify trans-
membrane and peripheral membrane proteins. These modifications control how proteins in-
teract with each other and with the membrane, playing vital roles for cell physiological
processes such as secretion, endocytosis, and maintaining the complex organization of
the PM.

A critical aspect of membrane signaling involves proteins that regulate the composition of Pl-
phosphates (PIPs), a group of lipids essential for cellular communication [1-7]. Such proteins
are phosphatidyl inositol transfer proteins (PITPs), including SEC14-like PITPs (Box 1). Their ca-
nonical SEC14 domain can associate with membranes while also constituting a lipid-binding
site (LBS), facilitating the transfer and regulation of lipids within the membrane. Notably,
PATELLINs (PATLs) are a unique family of multi-domain PIPTs [8,9] (Figure 1A). PATLs play es-
sential roles in cell plate formation during cell division [8,10-13]. Specific members like PATL1,
PATL2 and, PATL4 are implicated in stress responses [14-17].

SEC14-GOLD PI transfer proteins are phosphorylated in plants

Protein phosphorylation within the SEC14 protein family remains largely unexplored. The
PhosPhAt server provides hints on SEC14 protein phosphorylation [18,19] (Table S1 in the sup-
plemental information online). An analysis of the PhosPhAt database uncovers previously uncon-
sidered phosphorylation events of certain PATLs, some also in response to environment and
hormone signals [16,20-24]. This opens up a fascinating possibility that PATLs can be controlled
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The SEC14-GOLD family of phos-
phatidylinositol (Pl) transfer proteins,
known as PATELLIN (PATL) proteins in
plants, play essential roles in regulating
plasma  membrane  (PM)-related
processes through their SEC14 lipid-
binding and GOLD domains.

PATLs are implicated in membrane
signaling processes, yet the phos-
phorylation of SEC14 proteins has
not been thoroughly studied, despite
its importance in modulating protein
and phospholipid interactions during
developmental and environmental
signaling.

Phosphoproteomics data from
Arabidopsis thaliana reveal phosphoryla-
tion regions of PATLs, influenced by
environmental and hormonal stress fac-
tors. Investigating the phosphorylation
pattems of PATLs can enhance our un-
derstanding of their interactions with
membranes and their functions in plant
physiology, potentially leading to new
strategies for improving crop resilience
to stress.
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Box 1. Multidomain SEC14 proteins in land plants — diversification and functional specificities

SEC14 proteins can bind lipophilic ligands, such as Pl or PIPs or other lipid substrates [37,66,67]. The SEC14 domain also
binds and presents PI for phosphorylation, or transfers and exchanges Pl against other lipids in the membrane or between
membranes. Thereby, SEC14 proteins effectively can change the PIP landscape at a membrane [28,37,67-69].

The SEC14 domain has undergone substantial evolutionary diversification in land plants. While just six SEC14-like proteins
are present in Chlamydomonas reinhardtii, there are over 35 such proteins in Arabidopsis thaliana or other angiosperms.
Moreover, the Chlamydomonas SEC14 proteins are of a very simple type, consisting merely of the SEC14 domain itself. In
contrast, the SEC14 protein family expansion in the green lineage is largely attributed to fusions with multiple functional
domains, providing higher land plants with new functional contexts for SEC14 proteins, enabling them to engage in
higher-order protein complexes and to perform specialized physiological roles at distinct membrane sites in cells [9].
Examples for multi-domain SEC14 proteins are A. thaliana SFH1 and PATELLINs (PATLs). SFH1 belongs to the
SEC14-Nodulin domain family [9,28,65,67,70] and harbors a nodulin-like domain, which contributes to PI(4,5)P2
targeting and regulates oligomerization of the protein (e.g., in pollen tube development) [67,70,71]. PATLs are distin-
guished by their jelly roll-like GOLD domain, which directs them to PI(4,5),-specific PM sites and enables interaction
with proteins for vesicle trafficking [8—-13]. The six PATL proteins share relatively conserved CTN-SEC14-GOLD do-
mains but diversify in their N-terminal regions (here called N-regions) specifying each PATL protein form [8,9]. How-
ever, the PATLs act in a redundant manner as only sextuple pat/ knockout phenotypes were reported as embryo-
lethal [12]. With the exception of PATLS, the N-regions are acidic, harboring glutamate repeats neighbored by lysins,
providing a certain electrostatic character within intrinsically disordered regions (IDRs) [8,9,16].

through protein phosphorylation to link extracellular signals to changes in PM protein function and
localization.

Very interestingly, phosphopeptides were identified in only seven out of 35 SEC14-like PITP
proteins and notably in the SEC14-GOLD PATL family. A total of 933 phosphopeptides repre-
sented 54 experimentally proven phosphorylation sites. An additional 18 phosphorylation sites
are there in the SEC14 family, but their exact positions cannot be deduced from the
phosphopeptides (hence termed ‘putative’, Table S1 in the supplemental information online).
Among these proteins, SFH1 stands out as an exception [25] (Box 1): it has a phosphorylation
site in the linker region between the SEC14 domain and the C-terminal nodulin-like domain. Inter-
estingly, this site’s phosphorylation status can be influenced by treatment with sucrose and rap-
amycin, indicating a possible regulatory role under specific conditions [25].

The N-regions of PATL proteins (Box 1) serve as major hubs for phosphorylation. For example,
PATL1 contains 12 confirmed phosphoserines (pS) and eight phosphothreonines (pT), along
with two additional putative pS and four putative pT sites (Figure 1B and Table S1 in the supple-
mental information online). Most of these modifications are located in the N-region, with eight pS
and seven pT confirmed there, as well as two putative pS and four putative pT (Figure 1B). Sim-
ilarly, PATL2 has six confirmed pS, three pT, and one phosphotyrosine (pY), as well as four more
putative pS, three putative pT, and another putative pY. All confirmed pT and pY as well as three
confirmed pS are located in the N-region (Figure 1B). The N-region of PATL2 has phosphorylation
at S77 and S79 under iron deficiency and during salt stress, in response to oligogalacturonides
and brassinosteroid signaling [16,20-24]. Because of the involvement of the N-regions in binding
salt and iron transporters, protein phosphorylation in the N-regions may indeed interfere with
protein—protein interactions in response to environmental stress or hormones. Notably, for
PATL3, PATL4, PATL5, and PATLS6, there are much less phosphopeptides as compared with
PATL1 and PATL2, indicating less regulation by protein phosphorylation (Figure S1 in the supple-
mental information online).

Phosphopeptides in the SEC14 and neighboring regions outside of the N-region were mainly
detected for PATL1 and PATL2, especially in four different regions, namely at the very begin-
ning of the SEC14 (S4083 and S409 of PATL2), in the central portion of the SEC14 sequence
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Glossary

Lipid/ligand-binding site (LBS):
protein site favoring the binding of a
ligand through a specific shape but also
electrostatic, hydrophobic, Van der
Waals interactions, or by formation of
hydrogen bonds. Binding sites can
reside on the protein surface, or be
located in grooves or pockets. The
SEC14 domain harbors a lipophilic
ligand (lipid) binding site in a pocket form.
PATELLIN (PATL): SEC14-Golgi
dynamics (GOLD) domain-containing
protein, named after ‘patella’, due to
localization to PI(4,5)P, patches on the
cell plate during plant cell division in
plants.

PhosPhAt: protein phosphorylation site
database. Summarizes the outcome of
studies on the phosphorylation of

A. thaliana proteins.
Phosphatidylinositol-phosphates
(PIPs): phospholipids derived from
phosphorylation of phosphatidylinositol
(PI); they are part of cell membranes.
They play roles in dynamic signaling
processes at membranes and recruit
specific proteins. They can confer
processes such as membrane
curvature, vesicle trafficking, cytoskeletal
rearrangement, and protein complex
assembly.

Phosphopeptide: a peptide harboring
one or more phosphorylated serine,
threonine or tyrosine residues. Here,
phosphopeptides are generated and
identified in phosphoproteomics studies
and detected by mass spectrometry
techniques.

Plasma membrane (PM): cell
membrane separating the inside cell
from the extracellular environment,
composed of membrane lipids of
different kinds and transmembrane and
peripheral membrane proteins.
Post-translational modifications
(PTMs): protein modifications at
specific amino acid residues, altering
charges, conformation, function, and
protein interaction platforms. A
frequently found type is protein
phosphorylation at serine, threonine, or
tyrosine residues.

SEC14 domain: globular domain as in
human CRAL/TRIO and yeast SEC14p.
The SEC14 domain of PATLs is
preceded by CRAL/TRIO-N (CTN), a
small domain portion of three alpha
helices governing the entrance to the
lipid-binding pocket of the large SEC14
domain.
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Figure 1. SEC14 PATELLIN (PATL) proteins in Arabidopsis thaliana and representative identified
phosphorylation sites. (A) Generalized model of the PATL protein structure with conserved domain architecture. Cyan,
CRAL/TRIO N-terminal (CTN) domain; red, SEC14 lipid-binding domain; yellow, Golgi dynamics (GOLD) domain. Below
are depicted the different interactions and functional roles of the domains. (B) Protein structures of PATL1 (AT1G72150)
and PATL2 (AT3G22530) with identified phosphorylation sites. Phosphorylation (phospho-, p) sites are indicated by
colored arrowheads. Black, serine (pS); purple, threonine (pT); blue, tyrosine (pY); filled, experimentally verified through
detection of phosphopeptides in phosphoproteomics, mapped based on data from the PhosPhAt server (https://
phosphat.uni-hohenheim.de/phosphat.html, accessed on 19.09.2024); hollow, putative, exact sites in the
phosphopeptides not determined. A full list of phosphopeptides is provided in Table S1 (see the supplemental information
online). Variations in phosphorylation patterns between different PATL paralogs suggest functional divergence or
regulation under different physiological conditions (compare with Figure S1 in the supplemental information online). See
Peterman et al. [8], Montag et al. [9], Suzuki et al. [10], Wu et al. [11], Chu et al. [14], Zhou et al. [15], Hornbergs et al. [16],
Schaaf et al. [37], Mohr et al. [64], Saito et al. [65]. Abbreviations: LBS, lipid-binding site; MPK4, Map kinase 4; PI,
phosphatidylinositol; PM, plasma membrane; Toc, alpha-tocopherol.

[peptide sequence (s)(s)FVFVSDFR] residues 365-374 in PATL1 and residues 473-482 in
PATL2, at serines 428/536 in PATL1 and PATL2, respectively, as well as in the C-terminal re-
gion of the SEC14, either right after the S428 in PATLT, or in the region that links the SEC14
and GOLD domains as in PATL2 (Figure 1B). For PATL4, but not PATLS3, PATL5, and
PATLS6, a single phosphosite was identified in the GOLD domain (Figures S1 and S2 in the sup-
plemental information online).
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PATL protein phosphorylation occurs in response to nutrient deficiency,
stresses, and developmental conditions

The identified phosphopeptides can be sorted according to their proportions based on detection in
response to plant treatments and cellular fractionation (100% corresponding to the sum of all de-
tected PATL phosphopeptides, Figure 2A). The largest proportion of the detected phosphopeptides
was identified under particular experimental control growth conditions, indicating that PATL phos-
phorylation is playing a major role in these growth conditions (Figure 2A), also depending on genetic
composition [26,27]. A large proportion of phosphopeptides was detected in nutrient treatments
(nitrate starvation/nitrate resupply, sucrose treatment, or iron deficiency, 19.8%) and hormone treat-
ment [abscisic acid (ABA), ethylene (ET), 18.6%)] (Figure 2A). Biotic stress was reflected by flageliin 22
(flg22) treatment and also resulted in a considerable proportion of phosphopeptides (9.6 %)
(Figure 2A). Further, a large proportion of phosphopeptides was detected after treatment with ionizing
radiation (16.4%) and changes in the circadian rhythm (14.1%) (Figure 2A). These observations agree
with functional connections of PATLs with environment signaling responses and the cell cycle
[8,10,12,15,16,28]. This is interesting because the environment signaling pathways are interlocked
(e.g., iron deficiency and light signaling) [29-33]. Germination and seedling development involve
breakdown of storage molecules and hormone signaling [34-36]. These processes are connected
with the highest counts of PATL phosphorylation sites (seeding or seedlings; Figure 2B), which is ex-
pected because PATLs partake in cell plate assembly and cell division [8,10,12]. Although cell culture
is no natural state of plants, a high proportion of phosphorylation sites in cell culture condition may
reflect a role in cell division (cell culture; Figure 2B).

Fewer PATL phosphopeptides are detectable in roots compared with leaves. This observation can-
not be explained by the lack of investigation of root tissue in the studies, as aimost all studies inves-
tigated roots. Hence, root tissue may require less diversity in PATL PTM than photosynthetically active
tissue or, alternatively, only few phosphorylation sites may steer the PATL activities in roots.

Fractionation studies provide information on the cellular localization of PATLs from which the
phosphopeptides are derived, such as membrane-associated and soluble fractions as compared
with total protein fractions (Figure S3A in the supplemental information online). Not surprisingly,
total protein fractions display most phosphorylation sites and membrane-associated fractions
also detect many phosphorylation sites (Figure S3B). Eighteen phosphorylation sites are unique
for the total protein fraction which shares an additional eight sites exclusively with the soluble frac-
tion. Four sites are shared exclusively with the membrane-associated fraction and 25 with both of
them (Figure S3B). The flexibility of the PATLs to localize either to the soluble or the membrane-
associated fractions indicates their nature as peripheral membrane proteins that are present in
cytoplasm and at membranes. Remarkably, our investigation finds nine and six sites linked with
either soluble protein or membrane fractions (Figure S3B). Potentially, the ability of PATL proteins
to associate with membranes is controlled by protein phosphorylation.

Most phosphopeptide annotations corresponded to PATL1 and PATL2 maybe because of their
high protein abundancies, compared with PATL3, PATL4, PATL5, and PATL6 (Figure S4 in the
supplemental information online). The presence of PATL1 and PATL2 proteins in specific cellular
protein fractions may be associated with their phosphorylation status. Roughly two-thirds of the
PATL1 phosphorylation sites are found in either the total or soluble protein fractions. The remain-
ing ones are either present in soluble and total protein fractions or in the soluble, total, and
membrane protein fractions (Figure 2C, Cell fraction). No phosphorylation site occurred only in
the membrane-associated fraction (Figure 2C, Cell fraction). Phosphorylation sites unique to
the ‘total protein’ fraction may come from studies that used specific treatments but did not distin-
guish the cellular fractions. When compared with the treatments, it appears that phosphorylation
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Figure 2. Occurrence of PATELLIN (PATL) phosphopeptides and phosphorylation sites according to
treatment, tissue, and cell fractions in Arabidopsis thaliana. (A,B) Pie charts representing the % proportion of
detected PATL phosphopeptides (listed in Table S1 in the supplemental information online) according to (A) treatment;

(Figure legend continued at the bottom of the next page.)

1326  Trends in Plant Science, December 2025, Vol. 30, No. 12


Image of &INS id=

Trends in Plant Science

sites from the intersection of the three fractions occur in response to flg22, hormone, and nutrient
treatment (Figure 2C, Treatment). These phosphorylation sites are located in the first quarter of
the PATL1 N-region (Figure 2C, bottom). However, the soluble fraction contains phosphorylated
PATL1 upon hormone treatment (Figure 2C, Treatment). Interestingly, these phosphorylation
sites are present in the SEC14 domain (Figure 2C, bottom). These findings indicate that the phos-
phorylation sites are affected by different triggers.

Similarly, PATL2 has three phosphorylation sites near the start of its N-region. They are found in all
the analyzed subcellular fractions and treatment categories (Figure 2D, Cell fraction and Treat-
ment). Hormones act upon specific phosphorylation sites that are found in the soluble protein
fraction and located towards the SEC14 domain (Figure 2D). Phosphorylation in the SEC14 re-
gion may affect the molecular dynamics of membrane association. Remarkably, some
phospho-sites are situated in the cleft between CTN and SEC14 domain (Figure 2D, bottom),
which mediates Pl and PC headgroup binding in yeast Sec14p and Sth1, especially overlapping
with the position of the PI headgroup [37] (Figure S5A in the supplemental information online).
Thus, phosphorylation in this specific area may result in changes of the affinity of the LBS for
the ligand, possibly altering the protein lipid-binding function. Indeed, changes in S536 targeted
by MAP kinase 4 (MPK4) resulted in changes of Pl affinity in protein—lipid overlay assays which
gives an example for the impact of phosphorylation in the SEC14 domain [10]. Interestingly,
there are membrane-associated phosphorylation sites responsive to nutrient treatment in be-
tween the SEC14 and GOLD domains (Figure 2D, Treatment). It may be that the phosphorylation
in this region alters the three-dimensional mobility of the GOLD domain, as it was found to be flex-
ible towards the CTN-SEC14 domain in molecular dynamics simulation [16] (Figure S5B). In ad-
dition, the GOLD domain negatively affected a-tocopherol binding. Thus, control of the GOLD
domain may be a necessary step to adjust membrane dynamics to certain nutrient stresses, in-
cluding iron deficiency [16,20]. Alternatively, localization at the PM versus the endomembrane
system might be controlled by such phosphorylation [9].

PATL phosphorylation can be integrated in various ways in cell signaling
pathways

Surface charges, including the ones conferred by phosphates due to protein phosphorylation,
are highly relevant to facilitate or block interactions between proteins and membranes. This is rel-
evant in the context where SEC14 proteins act to alter membrane identity and dynamics. The
multiple phosphorylation sites in SEC14 proteins imply different functional aspects (summarized
in Figure 3, Key figure), pointing to three remarkable findings. First, PhosPhAt mining showed ev-
idence for few SEC14 proteins to be phosphorylated in plants, primarily the PATLs. Further ex-
perimental studies are yet needed since low protein abundance might have hampered the
detection of other phosphorylated SEC14 fragments. Second, the phosphorylated SEC14 pro-
teins had phosphorylation marks in multiple functional sites, such as the N-region for protein in-
teraction with transporters and components of vesicular trafficking, and the SEC14 domain
nearby the lipid-binding and membrane association regions. Phosphorylation in the region

reddish, nutrient treatments; green, hormone treatments; dark blue, biotic stress and flg22 treatments; yellow, ionizing
radiation treatments; light blue, light/dark treatments; grey, no indicated treatments; and (B) tissue types as indicated in
the figure. (C,D) Venn diagrams showing which phosphorylation sites in A. thaliana PATL1 and PATL2 were detected
according to cellular fraction (left) and plant treatment (right). Schematic structures of PATL proteins are shown below the
Venn diagrams; with arrowheads pointing to phosphorylation sites represented in the colors as used for highlighting in the
Venn diagrams. Further information: PATL1, AT1G72150; PATL2, AT1G22530; with conserved domain architecture:
cyan, CRAL/TRIO N-terminal (CTN) domain; red, SEC14 lipid-binding domain; yellow, Golgi dynamics (GOLD) domain.
Abbreviations: ABA, abscisic acid; ET, ethylene; fig22, flagellin 22. Venn diagrams were prepared using https://
bioinformatics.psb.ugent.be/webtools/Venn/.
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Summarizing model of protein phosphorylation in the PATELLIN (PATL)
protein family and possible functional roles
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Figure 3. The figure illustrates a generalized model of a PATL, interacting with phospholipids and lipophilic substrates in the
plasma membrane and in the lipid-binding site, which is facilitated or inhibited depending on the phosphorylation status.
Exemplified phosphorylation is represented in the N-region affecting protein—protein interaction and in the SEC14 domain,
affecting interactions with lipophilic surfaces and ligands. PATL protein phosphorylation (represented by black circles with
(P) is triggered by hormone and nutrient cues. Schematic representations of the structures of a PATL with conserved
domain architecture: cyan, CRAL/TRIO N-terminal (CTN) domain; red, SEC14 lipid-binding domain; yellow, Golgi
dynamics (GOLD) domain. Phospholipids and lipophilic substrates are explained at the bottom.

between the CTN and SEC14 domains (e.g., pS428 in PATL1 and pS403/pS536 in PATL2,
Figure S5 in the supplemental information online) could directly affect ligand exchange by altering
ligand affinity or accessibility to the LBS (Figures 3 and S5). A change in the electrostatic potential
in this region can support orientation towards the membrane [38,39]. This could explain the al-
tered membrane affinity observed for PATL2 upon phosphorylation at S536 by kinase MPK4
[10]. Interestingly, also other MPKs may be suitable for phosphorylation of S536 in PATL2, or
S428 in PATL1, as they share overlapping phosphorylation sites but may vary in phosphorylation
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efficiency [40]. Third, phosphorylation can be triggered by environment cues, indicating that
SEC14 protein phosphorylation is part of regulatory cell signaling with regard to hormone re-
sponse, nutrient deficiency, and abiotic stress. Phosphorylation in the N-regions of PATL1 and
PATL2 may guide interactions with transporters. However, phosphorylation at the SEC14 do-
main is facilitated by hormones and nutrients, suggesting that the basic SEC14 lipid binding
and transfer or membrane association can be controlled through such signals (Figure 3).

An Interesting aspect is that the highlighted treatments are interconnected, as both nutrient availability
and flg22 treatment engage hormone signaling pathways. For instance, PATL2 is phosphorylated at
S77, S79, and Y85 across all three treatments, and CYTOSOLIC ABA RECEPTOR KINASE 7
(CARKY) has been identified as an interactor of PATL2 under iron-sufficient conditions in previous
studies [16], potentially linking ABA perception with tyrosine phosphorylation. Furthermore, biotic
stress through caterpillar elicitors depends on PATL2-mediated endocytosis and is agonized by
jasmonate [41]. A conserved (pS)F/VKEE motif was identified in multiple PATL proteins — PATL1
(S71), PATL2 (S79), PATL3 (5108), PATL4 (S53), and PATL5 (S290) - in response to treatments
such as flg22, iron deficiency, nitrate starvation/resupply, ABA, ET, and sucrose/rapamycin
treatment [25,42-54] (Table S1 and Figure S2 in the supplemental information online). This
shared motif indicates a potentially conserved mechanism by which PATLs modulate their
responses to environmental and hormonal signals, involving kinases such as CASEIN KiI-
NASE Il (CK2), SUCROSE NON-FERMENTING RELATED KINASEs (SnrKs), or CALCIUM-
DEPENDENT PROTEIN KINASES (CDPKs) [55,56]. Moreover, PATLs may adjust cell divi-
sion, depending on their phosphorylation [8,10,12]. Thus, PATL phosphorylation is intricately
linked to developmental processes, particularly during seedling growth and early plant devel-
opment, which aligns with the observed embryo lethality in PATL knockout mutants [12].

Concluding remarks and future perspectives

Phosphorylation emerges as a pivotal regulatory mechanism in the PATL family, particularly
through the diverse N-terminal regions as well as the SEC14 domains, which could be
phosphorylation-dependent protein interaction hubs. Further, the observed variability in
PATL localization between soluble and membrane-associated fractions highlights a potential
role as peripheral membrane proteins, capable of shuttling between compartments based on
phosphorylation status. A recent study on intrinsically disordered regions (IDR) in membrane
proteins implies membrane curvature induction using the entropy of IDRs [57], which can be
a mechanism for the PATL N-region. Yet, targeted studies and physiological and genetic
proofs for the relevance of PATL phosphorylation is lacking. Such studies can answer the
open questions outlined (see Outstanding questions) and lead to far-reaching practical appli-
cations in crop improvement. Recent studies identified SEC74 genes to be related with quan-
titative trait loci of drought resistance and development cues [58-60]. SEC14 proteins are also
involved in chloroplast metabolism [61-63]. Engineering plants with modified PATL phosphor-
ylation sites has potential to enhance stress tolerance, nutrient uptake efficiency, or develop-
mental adaptability.
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Outstanding questions

Can PATL protein phosphorylation in
response to nutrient, stress, and hor-
mone cues be validated in targeted
studies?

Is protein phosphorylation of
PATL proteins functionally relevant
and do phosphomicking and
phosphodefective  mutants  of
PATLs have functional conse-
quences in plants?

Does protein phosphorylation in the N-
region modulate PATL protein interac-
tions with other proteins?

Does phosphorylation of the N-region
alter its disordered state and, if so,
does it affect membrane curvature?

Does protein phosphorylation in the
SEC14-GOLD domains lead to differ-
ent abilities for ligand binding and
membrane association?

Which protein kinase pathways act

upon the different PATL phosphoryla-
tion sites in plants?
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