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Zusammenfassung

Mit einer altersadjustierten Inzidenz von 0,16 pro 100 000 bilden die Glioblastome eine seltene
Krankheit. Trotz maximaler Therapie haben sie mit 15-18 Monaten Gesamtiiberleben eine
infauste Prognose. Der Mutationsstatus kann dabei relevant sein fiir die Optimierung der
Behandlung. Der heutige Standard zur préoperativen Diagnose ist die
Magnetresonanztomographie (MRT) Bildgebung mit Speicherung der Bilder im klinikeigenen
Picture Archive and Communication System (PACS). Eine Moglichkeit zur strukturierten
Befundung bietet das Visually AcceSAble Rembrandt Images (VASARI) Set. Die VASARI
Terminologie beschreibt dabei reproduzierbare MRT-Merkmale der Gliome.

In der vorliegenden Arbeit sollen mithilfe eines integrierten Befundungssystems, anhand des
strukturierten VASARI Sets, Bildmarker identifiziert werden, die sich als Surrogat Parameter
zur Vorhersage des CDKN2AB Mutationsstatus von Glioblastomen eignen. Ferner soll die
Zeitersparnis dieses in der natiirlichen PACS Umgebung implementierten Befundungssystems
untersucht werden. Zur Identifizierung neuer bildmorphologischer Merkmale in Bezug auf
eine CDKN2AB Mutation oder einen CDKN2AB Wildtyp fiihrten wir eine univariante
statistische Analyse der einzelnen VASARI Merkmale durch. Um den pradiktiven Wert
bildmorphologischer Kriterien fiir die Vorhersage genetischer Mutationen zu bestimmen,
integrierten wir die zuvor identifizierten Merkmale in multiple logistische
Regressionsmodelle. Um die Analyse des Workflows zu objektivieren, verglichen wir die
Anzahl an Mausklicks pro analysierter Studie und die jeweilig bendtigte Zeit in einer
Subgruppe von Fillen. Als Bildmarker konnte eine Invasion der Pia mater die homozygote
Deletion in CDKN2A am besten vorhersagen. Auflerdem wiesen Tumore mit einem
Durchmesser von iiber 8cm viermal hiufiger einen CDKN2A Wildtyp auf als eine Mutation.
Die Integration des Befundungssystems in die PACS Umgebung durch den Fast Healthcare
Interoperability Resources (FHIR) Standard fiihrte im Durchschnitt zu einem Zeitgewinn von
3,15min pro Studie. Die von uns identifizierten Bildmarker, wie die Invasion der Pia mater
und die TumorgroBe, konnen als Surrogat Parameter fiir den CDKN2AB Mutationsstatus bei
Glioblastomen die klinische Entscheidungsfindung untersiitzen.

Durch den Zeitgewinn in der Befundung der Studien kann der Ablauf in der klinischen Praxis
beschleunigt und in Zukunft auch die Zeit zur Erstellung multiinstitutioneller Datensétze fiir

die KI-Forschung reduziert werden.



Summary

With an age-adjusted incidence of 0.16 per 100,000, glioblastomas are a rare disease. Despite
maximum therapy, they have a poor prognosis with an overall survival of 15-18 months. The
mutation status can be relevant for optimizing treatment. The current standard for preoperative
diagnosis is magnetic resonance imaging (MRI) with storage of the images in the hospital's
own Picture Archive and Communication System (PACS). One option for structured reporting
is the Visually AcceSAble Rembrandt Images (VASARI) set, which describes reproducible
MRI features of gliomas.

In this study, an integrated reporting system based on the structured VASARI set was used to
identify imaging markers suitable as surrogate parameters for predicting the CDKN2AB
mutation status in glioblastomas. In addition, the time savings provided by the implementation
of this reporting system in the native PACS environment were evaluated. To identify novel
imaging morphological features associated with a CDKN2AB mutation or wildtype, a
univariate statistical analysis of individual VASARI features was performed. To assess the
predictive value of imaging features for genetic mutations, the previously identified markers
were included in a multiple logistic regression model. To objectify the workflow efficiency,
the number of mouse clicks per analyzed study and the time required were compared in a

subset of cases.

As an image marker, invasion of the pia mater best predicted homozygous deletion in
CDKNZ2A. In addition, tumors larger than 8cm in diameter were four times more likely to have
a CDKN2A wild type than a mutation. The integration of the diagnostic system into the PACS
environment using the Fast Healthcare Interoperability Resources (FHIR) standard resulted in
an average time gain of 3.15 min per study.

The identified imaging markers we identified, such as pia mater invasion and tumor size, can
support clinical decision-making as surrogate parameters for CDKN2AB mutation status in
glioblastoma.

The observed time savings in reporting may help accelerate clinical workflows and, in the

future, facilitate the development of multi-institutional datasets for Al research.
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1 Einleitung

1.1 Gliome

1.1.1 Hinleitung

Gliome sind eine heterogene Gruppe von Hirntumoren neuroepithelialen Ursprungs. Sie
werden gemél der neuen World Health Organization (WHO)-Klassifikation von 2021 anhand
verschiedener molekulargenetischer Marker klassifiziert.! Ausgehend von den WHO Graden
1 bis 4 lassen sich die Gliome in ihrer Aggressivitit und Prognose abschitzen. Die in dieser
Arbeit analysierte Gruppe des Glioblastoms Isocitrat Dehydrogenase (IDH) Wildtyp (WHO
Grad 4) weist unter maximaler Therapie bestehend aus chirurgischer Resektion und adjuvanter
Radiochemotherapie nur ein mittleres Uberleben von 15 bis 18 Monaten auf. Hiufige
Erstsymptome eines hirneigenen Tumors sind dabei abhdngig von der Lokalisation des
Tumors und konnen sich als fokal neurologisches Defizit, erstmaliger Krampfanfall,
Personlichkeitsverdnderung oder durch anhaltenden Kopfschmerz prisentieren.>* Die
Verdachtsdiagnose eines Glioms wird anhand einer Magnet Resonanz Tomographie (MRT)
Untersuchung mit den Standardsequenzen T1 mit und ohne Kontrastmittel, sowie T2 und fluid
attenuated inversion recovery (FLAIR) Wichtungen gestellt.>¢ Oft dient die MRT als
Grundlage der Behandlung von Hirntumorpatienten®, da ausgehend von dieser Untersuchung
die weiteren Schritte wie etwa eine OP oder neoadjuvante Chemotherapie geplant werden.
AuBlerdem weist die MRT neben diesem Stellenwert in der Diagnostik auch noch eine deutlich
detailliertere Darstellung des Hirngewebes im Vergleich zu anderen Bildgebungsentitéten auf.
Somit sind MRT Bilder eine geeignete Grundlage um anhand des Erscheinungsbildes eines
Glioblastoms préadiktive Modelle, etwa zu den molekularen Eigenschaften des Tumors, zu

entwickeln und fiir molekulare Subtypen spezifische Biomarker zu identifizieren.

* In dieser Arbeit wird das generische Maskulinum verwendet, spricht aber alle Geschlechteridentititen
gleichermaflen an. Weitere Hinweise zur Verwendung einer gendergerechten Sprache kann man unter folgendem
Link einsehen: https://www.hhu.de/geschlechtergerechtesprache.



1.1.2 Atiologie und Epidemiologie

Um die Bedeutung einer Krankheit zu veranschaulichen, eignen sich epidemiologische Daten.
Standardisierte Daten zur Epidemiologie der Gliome sind jedoch rar. Fiir die USA gibt es das
Central Brain Tumor registry of the United states (CBTRUS), welches die durchschnittliche
jéhrliche altersbereinigte Inzidenzrate aller bdsartigen Hirn- und anderen Zentralen
Nervensystem (ZNS)-Tumoren mit 24,83 pro 100 000 angibt. Hierbei bildeten die Gliome
mit 26,3% die groBte Gruppe. In der Gruppe der Gliome wiederum bildet das Glioblastom mit
50,9% aller Gliome und (14,2% aller ZNS Tumoren) die hdufigste Entitdt. Somit stellt das
Glioblastom mit einer Inzidenz von 0,16 von 100 000 Menschen eine seltene Erkrankung dar,
welche bevorzugt im hoheren Alter auftritt. Zudem tritt das Glioblastom hiufiger bei Médnnern
als bei Frauen auf.”®

Bis heute sind keine &dtiologischen Faktoren bekannt, welche zur Entwicklung eines Glioms
fiihren. Diskutiert werden der Einfluss von Strahlung und genetische Faktoren. Ionisierende
Strahlung im Bereich des Schddels, im Rahmen von medizinischen Eingriffen oder
Uberlebenden eines Atombombenangriffs erweisen sich als die am besten untersuchten
Risikofaktoren. Wobei die schiddliche Wirkung bei Kindern ausgeprégter als bei Erwachsenen
war, was durch die durchschnittlich lingere Uberlebenszeit nach solchen Ereignissen zu
erkléren ist.>! Andere Strahlung wie etwa elektromagnetische Strahlung durch die Nutzung
von Mobiltelefonen erwies sich jedoch in der Mehrheit der Studien als kein signifikanter
Risikofaktor fiir das Auftreten von Hirntumoren.®!? Lifestyle Faktoren, die bei anderen
onkologischen Erkrankungen als etablierte Risikofaktoren gelten, wie etwa Tabakrauch,
Alkohol oder andere Noxen, ergaben in Hinblick auf die Gliome bislang keine eindeutigen
Ergebnisse.!> Die hereditiren Ursachen eines Glioms sind demnach héufig die
Neurofibromatose Typ 1 oder beispielsweise das Li-Fraumeni Syndrom, welches jedoch

lediglich 5% der Glioblastome ausmacht.!!14



1.1.3 Diagnostik - Allgemein

Als primér fiihrende diagnostische Entitdt in der Bildgebung der Hirntumore hat sich die MRT
etabliert.>® Aufgrund der besseren Darstellung des Hirnparenchyms und des besseren Nutzen-
Risiko Profils hat sich die MRT besonders gegeniiber der Computertomographie (CT) fiir die
Bildgebung der hirneigenen Tumoren durchgesetzt. Aullerdem kann man im MRT
Bluthirnschrankenstorungen, welche héufig bei hohergradigen Gliomen wie dem Glioblastom
auftreten, durch die Applikation von Gadolinium basierten Kontrastmittel (KM) in der T1
Sequenz mit KM sichtbar machen. Etablierte bildmorphologische Marker fiir das Glioblastom
im MRT sind eine ringférmige - oder Girlanden féormige Kontrastmittelaufnahme in der T1
Sequenz mit KM (vgl. Abb. 3B). Ein weiteres etabliertes bildmorphologisches Kriterium ist
das sogenannte 72-Flair Mismatch sign. Das T2-Flair Mismatch sign beschreibt ein helles T2
Signal eines soliden Tumors bei gleichzeitig schwach ausgeprdgtem FLAIR Signal. Haufig
kommt es dabei in der FLAIR Sequenz zu einer verbleibenden ringférmigen Signalanhebung
bei zentraler Hypointensitit (vgl. Abb. 1). Dieses Kriterium kann als prognostischer Marker
fiir IDH mutierte und 1p/19q nicht co-deletierte Astrozytome genutzt werden und zeigt in
Studien eine gute Spezifitit.!>!® Dies zeigt, dass es bereits mehrere etablierte qualitative
Bildmarker gibt, die sich auch zur Vorhersage eines histologischen Subtypen eignen. Dennoch
ist weitere Forschung auf diesem Gebiet ndtig, um ein besseres Verstindnis von dem

Erscheinungsbild von Hirntumoren in der MRT zu erlangen.



Abb. 1: Beispiele fiir T2 FLAIR mismatch sign als Bildmarker in Gliomen

Axiale MRT-Aufnahmen des Gehirns in T2-gewichteter Sequenz (links: A und C) und den jeweils
korrespondierenden FLAIR-Sequenzen (rechts: B und D). In A und B ist eine ausgedehnte Lasion im
rechten Temporallappen zu erkennen, vereinbar mit einem Gliom. (Modifiziert nach Patel et. al.
(2017))16

Fortgeschrittenere Bildgebungen wie etwa die Aminosidure Positronen-Emissions-
Tomographie (PET) haben in der Diagnostik der Gliome ebenfalls einen etablierten
Stellenwert. Durch das Aminosdure PET lassen sich besonders gut metabolisch aktive Teile
der Tumore darstellen. Aufgrund dieser Eigenschaft ist sie zum Beispiel in der Planung von
stereotaktischen Biopsien, gezielten Operationen, fokussierten Bestrahlungen, sowie der
Unterscheidung zwischen Pseudoprogression und Rezidiv etabliert und wurde von der

RANO-Gruppe zur Diagnostik der Gliome bei Erwachsenen und Kindern empfohlen.!”-2!



Neben der Bildgebung stellt die Biopsie den Goldstandard in der Diagnostik der Hirntumore
da. Bei einer Biopsie wird eine diinne Hohlnadel navigiert in den Tumor eingebracht um durch
sie eine Gewebeprobe zu gewinnen. Die Vorteile der Biopsie, wie etwa die Gewinnung von
biologischem Material zur histologischen Untersuchung miissen hierbei jedoch gegeniiber den
Risikofaktoren dieses invasiven Eingriffs abgewogen werden. AuBBerdem besteht der Nachteil
einer Biopsie darin, dass immer nur ein begrenzter Teil des Tumors erfasst wird und somit die
intratumorale Heterogenitdt nicht vollstdndig abgebildet werden kann. Aufgrund dessen wird
die neurochirurgische Biopsie hédufig erst nach einer uneindeutigen priméren Bildgebung oder
im Rahmen einer definitiven Resektion des Tumors genutzt. Die Biopsie kann hierbei als
stereotaktische Biopsie, oder offene Biopsie im Rahmen einer Resektion des Tumors
stattfinden. Die stereotaktische Biopsie kommt meist bei Patienten zur Anwendung, welche
einen Tumor in einer eloquenten Lage haben und sich somit aufgrund der OP-Risiken nicht
fiir eine offene Resektion eignen.??23

Im Hinblick auf die neue WHO-Klassifikation von 2021 und ihrem Fokus auf die molekulare
Charakterisierung der Tumoren ist eine Gewinnung von biologischem Material zur
Diagnosestellung unabdingbar und sollte moglichst standardisiert stattfinden, um der
intratumoralen Heterogenitit gerecht zu werden.!?* Die intratumorale Heterogenitét, sowie
die Risiken einer Operation machen Forschung auf dem Gebiet der Vorhersage molekularer
Marker umso wichtiger. Vielversprechende Ansitze, die eine histologische Einschitzung
schon vor der Operation im MRT untersuchen sind Studien zu Radiomics. Radiomics steht
hierbei fiir die strukturierte Analyse und Interpretation einer Vielzahl von Bilddaten und ist
zunehmend in der Literatur zu finden.?> Radiomics lassen sich grob in zwei Klassen
unterteilen, die technischen und die handgefertigten Merkmale. Ungeachtet welcher Klasse
die einzelnen Merkmale zugehdrig sind, ist fiir die Generierung eine lange maschinelle
Vorbereitung der Bilder notwendig um am Ende durch machine learning die eigentlichen
Radiomics aus den Bilddaten zu extrahieren.?® Eine praoperative Vorhersage zur Histologie
des Tumors, kann abgesehen von diesen rechenintensiven Ansédtzen wie den Radiomics auch
anhand einfacher bildmorphologischer Marker wie etwa dem T2-FLAIR mismatch sign
getitigt werden.!®?28 Auch wenn diese Ansitze in Threr Genauigkeit den Radiomics
unterlegen sind, bieten Sie dennoch eine Zukunftsperspektive. Denn die Analyse von
Radiomics ist durch unterschiedliche Vorverarbeitungsschritte noch nicht standardisiert und

somit nur zu einem gewissen MaBe reproduzierbar.?’ Qualitative Bildmarker wie etwa die



VASARI Merkmale lassen sich im Gegensatz dazu von nahezu jedem Kliniker auch ohne KI
bestimmen.

Liquid Biomarkers, wie etwa zellfreie Tumor DNA im Blut oder Liquor, zirkulierende
Proteine oder Exosome versprechen ein grof3es Potential in der prédoperativen Diagnose und
dem Monitoring von Gliomen. Allerdings haben sie bisher einen forschungsorientierten
Charakter und sind noch nicht in den aktuellen Leitlinien etabliert.’® Ein Nutzen dieser
Technologie wird momentan fiir Patienten diskutiert, bei denen eine Biopsie nicht mdglich ist
oder als Verlaufsmonitoring im Hinblick auf Progress der Erkrankung nach einer Operation
(OP).3! Bis solche diagnostischen Entititen Einzug in den klinischen Alltag erhalten, gibt es

einen Bedarf zur nicht invasiven Diagnostik, sowohl mit KI, als auch ohne.

1.1.4 Histologie

Als letzter Schritt der Diagnostik folgt die Histologie, die fiir den weiteren Verlauf der
Erkrankung des Patienten von entscheidender Bedeutung ist. Diese entscheidet nicht nur iiber
die Therapie welche ein Patient erhilt, sondern auch iiber die Vorhersage der zu erwartender
Lebenszeit. Die Histologie beschreibt die Diagnostik des Gewebes und bei Hirntumoren auch
die Diagnostik der zugrundeliegenden biologischen Mutationen.

Die Gliome sind eine histologische Gruppe von hirneigenen Tumoren und werden
entsprechend der WHO-Klassifikation anhand histologischer Marker eingeteilt. Mit der
neusten WHO-Klassifikation von 2021 werden diese histologischen Marker durch
weitreichende molekular genetische Marker ergéinzt, um eine integrierte Diagnose zu schaffen.
132

Bei der aktuellen WHO-Klassifikation spielen folgende molekulare Alterationen die
wichtigste Rolle: der IDH-Mutationsstatus, 1p19q-Co-Deletionsstatus, EGFR-Amplifikation,
TERT-Amplifikation und die CDKN2A/B Deletion, ebenso wie die H3 K27M-Mutation. Die
Methylierung des MGMT-Promotors hat in der diagnostischen Entscheidungsfindung einen
niedrigeren Stellenwert, stellt jedoch einen pridiktiven Marker fiir das Ansprechen auf
alkylierende Chemotherapie dar.®* Ein dhnlicher prognostischer Faktor ist die homozygote
Deletion von CDKN2A/B in IDH mutierten Astrozytomen WHO Grad 4. Der Cyclin-
abhingige Kinase-Inhibitor (CDKN) ist ein Gen, das sich auf dem Chromosom 9 befindet.>*
36 CDKN hat zwei verschiedene Subtypen, CDKN2A und CDKN2B, welche fiir Proteine



kodieren, die den Ubergang von der G1-Phase zur S-Phase im Zellzyklus hemmen, nimlich
p14ARF und p16INK4A. CDKN2A kodiert fiir das Protein pl16INK4A, welches abnormales
Zellwachstum blockiert, indem es an die Cyclin-abhiangige Kinase (CDK) 4 und 6 bindet und
schlieBlich den Zellzyklus durch Proteine der Retinoblastom-Gruppe arretiert. pl4ARF
aktiviert aulerdem das Protein p53, was zu einer Hemmung des Zellwachstums fiihrt.
Dadurch dienen diese Proteine als Tumorsuppressoren im normalen Gewebe und sorgen nach
ihrer Mutation fiir ein Tumorwachstum.34-3¢

Diese Mutation spricht in der Gruppe der IDH mutierten Astrozytome WHO Grad 4 fiir ein
geringeres Gesamtiiberleben. Einzelne Arbeiten weisen auf einen dhnlichen Zusammenhang
von CDKN2A/B im IDH-Wildtyp-Glioblastom hin, haben bisher keinen Platz in der aktuellen

WHO-Klassifikation gefunden, sind jedoch von zentralem Interesse fiir die vorliegende
Arbeit. 1374

Nach der aktuellen WHO-Klassifikation lassen sich anhand der oben beschriebenen
molekularen Marker neben der Gruppe der Glioblastome noch verschiedene Tumorentititen
identifizieren. Hierzu gehdren die Oligodendrogliome, Astrozytome und diffusen Gliome.
Mit der neuen WHO-Klassifikation von 2021 ist die Diagnose des bdsartigsten Tumors des
Glioblastoms zu stellen, wenn das folgende genetische Profil im Tumorgewebe nachgewiesen
werden kann. Der Tumor muss eine nicht mutierte Isocitrat Dehydrogenase (IDH Wildtyp) bei
gleichzeitig vorhandenem nukledrer Transkriptionsfaktor ATRX aufweisen.!

Das Glioblastom entspricht demnach einem WHO-Grad 4 und stellt den aggressivsten Tumor
der Gliome dar.***** Die Gruppe der Oligodendrogliome entspricht einem WHO Grad 2 mit
entsprechend geringerer Aggressivitét. Seit 2021 gibt es die neue Gruppe des Astrozytoms
WHO-Grad 4 mit entsprechender Malignitdt. Hierfiir muss eine homozygote Deletion der
CDKN2A/B vorliegen.*? Die homozygote CDKN2A/B Deletion ist entsprechend der WHO
Klassifikation von 2021 ausschlaggebend fiir die Malignitét in der Gruppe der Astrozytome
WHO Grad 4. Um ein besseres Verstindnis iiber das Erscheinungsbild von Tumoren mit
CDKN2A/B Mutation zu bekommen, haben wir diese Mutation in der vorliegenden Arbeit bei

der aggressivsten Gruppe von Tumoren, dem Glioblastom analysiert.
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Abb. 2: Ubersicht iiber molekulare Marker und die dazugehérige integrierte Diagnose nach
WHO 2021

In grin gefarbt ist der diagnostische Pfad fiir die Glioblastome bei denen wir das unterschiedliche
Erscheinungsbild von CDKN2A Mutationen untersucht haben. Die CDKN2A/B Mutation ist laut WHO
relevant fir die Gruppe der Astrozytome, neue Studien weisen jedoch auf einen &ahnlichen
Zusammenhang in der Gruppe der Glioblastome hin. IDH: Isocitrat Dehydrogenase, ATRX:
Transkriptionsfaktor ATRX, CDKNA2A/B: Cyclin Dependent Kinase 2 AB, H3 K27M: Trimethylierung
des Lysin 27 im Histon H3, WHO: World Health Organization (Modifiziert nach Weller et. al. (2021)")

1.1.5 Therapie

Die Histologie bildet nicht nur den zentralen Schritt in der Diagnosestellung, sondern auch
den Beginn der Therapie. Eine prdoperative Aussage iiber den Mutationsstatus, besonders im
Hinblick auf prognosebestimmende Mutationen, kann somit therapiebestimmend und
verlaufsentscheidend sein. Je friither eine Einschidtzung zur Histologie des Tumors gegeben

werden kann, desto eher kann die entsprechende Therapie eingeleitet werden.



Im Allgemeinen besteht die Therapie der Gliome iiber alle Klassen hinweg aus einer, wenn
moglich, supramaximalen sicheren Resektion des Tumors, gefolgt von adjuvanter
Radiochemotherapie. Das Ausmal} der Resektion des Tumors hat dabei einen Einfluss auf das
Uberleben der Patienten.**** Der Grad der Resektion in der Gruppe der Glioblastome kann
dabei durch Scores wie ,,RANO Categories for EOR in Glioblastoma* eingeteilt werden. Ein
positiv prognostischer Faktor auf das progressionsfreie - und Gesamtiiberleben wird hier durch
eine supramaximale Resektion erreicht. Diese ist definiert als Resttumorgewebe von Ocm? des
kontrastmittelanreichernden Teils und <5¢m? des nicht kontrastmittelanreichernden Teils nach
der Operation.>® Deshalb ist es wichtig dem Operateur praoperativ eine Einschitzung zur
Histologie des Tumors zu geben, da dies eventuell die Resektionsstrategie beeinflussen kann.
Dennoch werden Gliome aufgrund ihres infiltrativen Wachstums nicht durch die alleinige
Resektion geheilt und bediirfen immer einer adjuvanten Therapie.

Die adjuvante Therapie besteht derzeit aus Chemotherapie und Radiotherapie, wobei neue
immunologische Therapien in den letzten Jahren stark in den Fokus der priklinischen und
klinischen Forschung geriickt sind, bisher jedoch mit divergierenden Ergebnissen.’!~>* Eine
weitere Therapiestrategie durch Vakzinierung verspricht in ersten Studien gute Ergebnisse, im
Hinblick auf ein lidngeres Gesamtiiberleben der Patienten.>* All diese Trends der
personalisierten Therapie machen die genaue Kenntnis der Histologie des Tumors zu
Therapiebeginn unabdingbar und verstirken die Bedeutung einer ganzheitlichen Beurteilung
des Tumors im MRT, in Erginzung zur selektiven Biopsie.

Dariiber hinaus gibt es in der Literatur einige Unterschiede in Bezug auf die Therapie der
jeweiligen histologischen Entititen. So stellt die alkylierende Chemotherapie mit
Temozolomid bei MGMT methyliert Tumoren jeder Gradierung eine feste Sdule der Therapie,
neben der Radiochemotherapie, dar.>*>° Auch ist die Radiotherapie neben den chirurgischen
und medikamentdsen Behandlungen eine weitere feste Therapie fiir Gliome. Dabei wird die
Strahlenintensitit durch die Tumorentitit und den klinischen Status des Patienten
mitbestimmt.!

In einer neuen Studie wurde die Wirksamkeit von Vorasidenib in Bezug auf ein hoheres
Progressionsfreies Uberleben bei niedrig gradigen Gliomen beschrieben. Dies verspricht einen
neuen Ansatzpunkt in der medikamentdsen Therapie der niedrig gradigen Gliome, hat aber bis
jetzt noch keinen Einzug in die klinische Praxis erhalten.’® AuBerdem fehlen bei dieser

medikamentdsen Therapie Studien zur Wirksambkeit bei Patienten mit Glioblastom. Die zuvor



genannten Studien und Leitlinien unterstreichen jedoch die Bedeutung des molekularen
Profils des Tumors und die dafiir notige individualisierte Diagnostik um neue Therapien zu
finden.

Speziell fiir das Glioblastom konnten in den letzten Jahren keine neuen Therapien zugelassen
werden, die ein signifikant lingeres Gesamtiiberleben der Patienten ermdglichen. Lediglich
die Therapie mit Tumor treating fields (TTFs) nach Versagen der Standardtherapie bestehend
aus einer Radiochemotherapie wurde von der Food and Drug Administration (FDA) neu
zugelassen.>>%’

Somit ist die Prognose fiir das Glioblastom trotz vielversprechenden neuen Ansétzen weiterhin
schlecht. Daher sind Studien die eine Patientenstratifikation in womdoglich noch unbekannte

biologische Subgruppen erlauben, welche aktuell noch nicht abgebildet sind, von umso

groflerer Bedeutung.

1.1.6 Prognose

Die Einteilung von Patienten in Risikogruppen entsprechend der Histologie zu einem frithen
Zeitpunkt der Therapie kann in der Ara der personalisierten Medizin Uberlebensvorteile
bringen. Bis heute hat die Gruppe der Gliome eine infauste Prognose, wobei sich die zu
erwartende Lebenszeit nach der initialen Diagnosestellung stark durch den vorliegenden
WHO-Typ unterscheidet. Die schlechteste Prognose hat das Glioblastom mit einem 5-Jahres
Uberleben von lediglich 6,8%, welches zwischen Alter und Geschlecht noch leicht variiert.®5
Zudem konnte bis jetzt lediglich ein medianes Gesamtiiberleben von etwa 15-18 Monaten in
der Gruppe der Glioblastome erreicht werden.>8-6°

Im Vergleich dazu liegt das 5-Jahres Uberleben bei anderen Gliomen der WHO-Gruppe 2 oder
3 zwischen 84,6 Monaten und 205 Monaten (ca. 7 Jahren - 17 Jahren).”

Diese Daten haben sich in den letzten 10 Jahren nicht wesentlich verdndert und somit ist das
Gesamtiiberleben sowie das progressionsfreie Uberleben in der Gruppe der Glioblastome

weiterhin unbefriedigend. Neue Studien, die einen signifikant verlingertes Uberleben des

Glioblastoms beschreiben sind trotz vielversprechender Ansitze weiterhin nicht vorhanden.>®
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1.2 Methodische Ansitze

1.2.1 Machine Learning-Ansitze in der Neuro Onkologie

Der Einsatz von KI in der Medizin verspricht grofle Fortschritte und ist aktuell Gegenstand
vieler Forschungsprojekte. Besonders im Hinblick auf die Verwertung und Weiterentwicklung
von MRT-Daten.®’ Somit stellt das Verstindnis der grundlegenden Begriffe und
Funktionsweisen auf dem Bereich der KI eine Voraussetzung zur Bewertung dieser Techniken
dar.

Ein Teilgebiet der K1 ist das sogenannte machine learning, wovon wiederum das deep learning
einen Unterpunkt bildet. Das machine learning ist eine Art der KI welche Algorithmen nutzt,
um groBBe Datenmengen zu analysieren auf welche sie nicht explizit programmiert ist.%?

Das deep learning wiederrum ist eine machine learning Technik, welche Algorithmen zu
kiinstlichen neuronalen Netzen, dhnlich wie die Neurone eines menschlichen Gehirns
schichtet und so Daten analysiert.

Deep learning wird derzeit in der Medizin unter anderem fiir Segmentierung von Strukturen
auf Bilddaten und somit auch Hirntumoren verwendet.’'% Segmentierung meint dabei die
Markierung von relevanten Strukturen. In vielen Fillen ist diese Struktur eine Pathologie, wie
etwa ein Hirntumor mit seinen verschiedenen Anteile (vgl. Abb.3), es konnen aber auch
entsprechend der Fragestellung physiologische Strukturen segmentiert werden. Diese
Segmentierung von Strukturen in MRTs konnen dann fiir die weitere Therapie und
Verlaufskontrolle des individuellen Patienten genutzt werden, oder als ground truth fir die
weitere Entwicklung von Algorithmen. Das Konzept der ground truth beschreibt den Fakt,
dass fiir die Entwicklung von KI-Modellen Daten genutzt werden, die im Vorfeld als ,,richtig*
oder ,,falsch* klassifiziert wurden. Hier kann eine Segmentierung von Hirntumoren als ground
truth der KI zeigen wo sich der Tumor im Bild befindet. Denn fiir die entsprechende
Entwicklung von KI ist eine moglichst grole Zahl an Rohdaten notwendig.

Die Aussagekraft solcher Algorithmen ist derzeit unter anderem durch den Mangel an
verfiigbaren Rohdaten fiir das Training begrenzt. Ein weiteres Problem stellt zudem auch die
Qualitdt der ground truth dar. Ist die initiale Segmentierung mit der ein Algorithmus trainiert
wird fehlerhaft, dann reproduziert der Algorithmus dementsprechend auch falsche Ergebnisse.
Somit hat die Qualitét der ground truth einen groB3en Einfluss auf die spétere Akzeptanz eines

Segmentierungsalgorithmus. Eine breite klinische Implementierung dieser Techniken wird
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durch diese Faktoren bis heute verzogert. Die kritische Menge an Rohdaten kann hierbei durch
machine learning Ansétze bereits wihrend der Erzeugung solcher Datensitze generiert
werden. In der Segmentierung von Bilddaten kann KI durch eine schnelle und reproduzierbare
Technik Menschen dabei unterstiitzen, indem sie eine erste Segmentierung vorschligt, die am
Ende von einem Experten validiert wird. Somit wird die Zeit zur Erstellung solcher
multiinstitutionellen Datenbasen verkiirzt.5!

Die weitere Erlduterung von KI und der einzelnen Anwendungsbereiche in der Medizin

iiberschreitet jedoch den Umfang dieser Arbeit.

1.2.2 MRT und die automatische Segmentierung

Wie oben beschrieben stellt die MRT die Grundlage zur Diagnostik von Hirntumoren dar.!>8
Dank ihrer hohen Auflosung und der Fahigkeit, unterschiedliche Gewebearten detailliert
darzustellen, ermoglicht die MRT eine prizise Visualisierung von Tumorstrukturen und
umliegendem Gewebe. Die Routinediagnostik bei Verdacht auf einen Hirntumor umfasst
dabei typischerweise die T1-Sequenz, mit oder ohne KM und T2- sowie die FLAIR-Sequenz,
die verschiedene Aspekte der Gewebebeschaffenheit abbilden.® So kann man durch die
FLAIR-Sequenz beispielsweise gut zwischen freier und intrazelluldrer Fliissigkeit
differenzieren.>6463

Diese Standardsequenzen sind Bestandteil der meisten MRT Protokolle und sind damit bei
den meisten Patienten mit Hirntumor verfligbar.> Diese Standardsequenzen sind somit nicht
nur wichtig in der klinischen Versorgung und Entscheidungsfindung, sondern kdnnen auch als
Ausgangssequenzen fiir KI zur Tumorsegmentierung dienen. Der von uns genutzte
Algorithmus zur Tumorsegmentierung bendtigt nur die oben genannten Standardsequenzen
um den Tumor automatisch zu segmentieren. Der Algorithmus produziert eine Segmentierung
des gesamten Tumors, definiert als FLAIR Hyperintensitidt, auf der FLAIR-Sequenz.
AufBlerdem segmentiert dieser den Kern des Tumors, definiert als KM aufnehmender Teil,
ebenso wie die Nekrose des Tumors auf der T1+KM-Sequenz.>

Aufgrund ihrer detaillierten Parenchymarstellung und ihrem Stand in der Diagnostik der
Hirntumore, bietet sich die MRT als ideale Basis zur Anwendung von Algorithmen und zur

standardisierten Bildbeurteilung an.
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Whole_FLAIR
\

Abb. 3: Beispiel einer Segmentierung des von uns genutzten U-NET R Algorithmus

Auf der linken Seite (A) ist die FLAIR Sequenz mit der von dem Algorithmus produzierten
Segmentierung des gesamten Tumors zu sehen (,Whole_FLAIR"). Rechts (B) zeigt die automatische
Segmentierung des KM aufnehmenden Teil des Tumors (,Core_ PGSE"), sowie der zentralen Nekrose
(,Necrotic_PGSE*) (Modifiziert nach Aboian et. al. (2022)%).
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1.2.3 VASARI Bewertungssystem

Fiir die Analyse von MRT-Bildern durch KI-Programme haben sich verschiedene Ansétze
etabliert. Es gibt viele Studien die versuchen anhand von Radiomics, welche
Metainformationen der MRT-Bilder abbilden, Vorhersagen iiber das molekulare Profil von
Hirntumoren zu titigen.%®®” Neben diesen quantitativen KI gestiitzten Ansitzen gibt es auch
Bestrebungen qualitative Bildmarker zu etablieren, fiir deren Identifikation und Prognose
keine KI notwendig ist. Diese Bild— bezichungsweise Biomarker sind im weiteren Sinne nach
WHO definiert als ,,Wechselwirkung zwischen einem biologischen System und einer
potenziellen Gefahr [...] die biologisch sein kann. [...] Bei der Risikobewertung kénnen
Biomarker [...] (somit) zur Verkniipfung einer Reaktion mit der Wahrscheinlichkeit eines
Krankheitsausgangs verwendet werden“.®® Fiir diese qualitative Analyse gibt es einige
vorgefertigte Leitfdden, die zur Beschreibung des Aussehens von Gliomen genutzt werden
konnen um mogliche Biomarker zu identifizieren.

VASARI ist ein Leitfaden fiir die qualitative, visuelle und reproduzierbare MRT
Bildbewertung bei Hirntumoren und steht fiir Visually AcceSAble Rembrandt Images.
VASARI ist ein Projekt von The Cancer Imaging Archive (TCIA) und dient dazu die
Morphologie von Gliomen auf MRT-Bildern einheitlich zu beschreiben und zu benennen.®
Hierfiir wurden 24 etablierte bildmorphologische und fiir Gliome typische Marker erarbeitet
und durch mehrere Radiologen verifiziert (vgl. Abb. 4). Die Mehrheit dieser Marker zeigte ein
gutes Interreader Agreement, wodurch sich dieses System fiir die standardisierte
Bildbewertung eignet.”® Die 24 VASARI Eigenschaften sind unter anderem einfache
Merkmale, wie Tumorlokalisation, der Befall von eloquentem Hirngewebe und das Vorliegen
von Zysten. Die Merkmale umfassen auflerdem anspruchsvollere Eigenschaften, wie den
Durchmesser des Tumors und beispielsweise den Anteil der Nekrose oder KM-Aufnahme vom
gesamten Tumor.

Diese standardisierte Bildbewertung ist in der Beurteilung von MRTs im Rahmen klinischer
Studien wichtig, um so eine Vergleichbarkeit {iber verschiedene Institutionen zu schaffen,
kann jedoch auch Anwendung in der alltdglichen klinischen Praxis finden. Des Weiteren
wurde VASARI in vergleichbaren Arbeiten genutzt um IDH, 1p19q und EGFR-Mutationen

anhand von pridoperativen MRTs vorherzusagen.?”.7%:7!
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Bildmarker nach VASARI

Lokalisation

Seite des Zentrums der Lasion

Eloquent

Qualitit der Anreicherung

Anteil der CET

Anteil der nCET

Anteil der Nekrosen

Zysten

Multifokalitat/Multizentrizitat
T1/FLAIR Verhéltnis

Dicke des KM aufnehmenden Rands

Definition des KM aufnehmenden Rands

Definition des nicht KM aufnehmenden Rands

Anteil des Odems

Héamorrhagie

Diffusionsmerkmale

Piale Invasion

Ependymale Ausdehnung

Kortikale Beteiligung

Tiefe Invasion der weissen Substanz

nCET tiberquert Mittellinie

CET iiberquert Mittellinie

Satelliten

Kalvarielle Umgestaltung

Abb. 4: Bewertungskriterien nach VASARI

Ubersicht tber die 24 verwendeten VASARI Merkmale zur Beschreibung der Tumore. VASARI:
Visually AcceSAble Rembrandt Images, CET:. contrast enhancing tumor, nCET. non contrast
enhancing tumor, FLAIR: Fluid attenuated inversion recovery (MRT Sequenz), KM: Kontrastmittel.
(Modifiziert nach Ahn (2021)?")
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1.2.4 PACS Integration und Datenbasis

Als Grundlage der klinischen Bildgebung und Arbeit in der Radiologie in Kliniken und Praxen
dient das Picture archive and communication system (PACS) mit der Darstellung von
medizinischen Bildern in jeglichen Formaten. Das PACS bildet somit den Speicher und die
graphische Schnittflaiche zwischen den Geriten, an denen die Bilder erzeugt werden, wie etwa
einem MRT und dem Rechner, auf dem sie angezeigt werden. Der am hdufigsten verwendete
Bildstandard in der Bildgebung generell und damit auch in der Bildgebung von Hirntumoren
ist der Digital Imaging and Communication in medicine (DICOM) Standard. In den DICOM
Daten sind nicht nur die reinen Bilddaten gespeichert, sondern auch viele Metadaten iiber den
jeweiligen Patienten. Demnach werden die meisten Bilddaten im DICOM Format iiber PACS
angezeigt. Dadurch bildet PACS die zentrale Arbeits- und Kommunikationseinheit in der
Radiologie.”

Durch diese zentrale Stellung innerhalb der Radiologie eignet sich das PACS als
Datengrundlage zur Bildbewertung mit den oben beschriebenen VASARI Merkmalen am
besten (vgl. Abb. 5). Herkommlich wurden solche Bildbewertungen meist in externen
Anwendungen durchgefiihrt und waren dadurch schlechter maschinell verwertbar, was das
Training einer KI mit diesen Daten erschwert. Aulerdem entstand dadurch eine getrennte
Datenbasis, in der die DICOM Daten nicht direkt mit den Bildmarkern verkniipft sind. Dieser
Ansatz der integrierten Datenbasisarchitektur und Implementierung von machine learning

Funktionen wurde auch schon fiir andere Tumorentititen erfolgreich erprobt.>>7374

1.2.5 FHIR — fast healthcare interoperable resource

Um ein externes Tool wie VASARI in das PACS-System zu integrieren haben wir den HL7
Standard FHIR genutzt (vgl. Abb. 5). FHIR ist ein Standard in der medizinischen Informatik
und steht fiir Fast Healthcare Interoperablel Resource. FHIR ist ein Standard der dafiir sorgt,
dass medizinische Informationen, hier Ressourcen genannt, zwischen verschiedenen Geréten
ausgetauscht werden konnen. FHIR arbeitet dabei unter anderem mit .json Dateien, die auf
einem Fragen und Antwort System aufgebaut werden konnen.” Diese .json Dateien sind ein
Standardtextformat und stehen fiir Java Script Object Notation. Das besondere an .json
Dateien ist, dass sie mit nahezu jeder modernen Programmiersprache verwendet werden

konnen, was eine hohe Nutzbarkeit mit verschiedenen Systemen mdglich macht.”®’” FHIR
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stellt aufgrund seiner .json Basis ein idealen Ansatz dar, um generierte medizinische Daten,
wie in diesem Fall die visuellen Eigenschaften von Glioblastomen, zu speichern und fiir

Maschinen lesbar zu machen.
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Abb. 5: PACS integrierter Workflow

Visualisierung des PACS integrierten Auswertungsprozess von Hirntumoren. Durch die Integration
eines FHIR-basierten Formulars in das PACS kdnnen sowohl standardisierte VASARI-Merkmale als
auch erweiterte radiologische und klinische Features strukturiert erfasst und weiterverarbeitet
werden. PACS: Picture archive and communication system, VASARI: Visually AcceSAble Rembrandt

Images.
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1.3 Ziele der Arbeit

Fiir die hier aufgefiihrte Arbeit wurde ein positives Ethikvotum (2000029055) des Institutional
Review Boards (IRB) der Yale University, New Haven, Connecticut, USA eingeholt.

Ziel dieser Arbeit war es bei einer Gruppe von Glioblastomen aus einer multiinstitutionellen
Datenbasis mit molekularen Informationen, spezifische bildmorphologische Marker zu
identifizieren, die mit der jeweiligen Histologie korrelieren. Somit sollten bildmorphologische
Marker identifiziert werden, die durch die Korrelation mit der jeweiligen Histologie des
Tumors eine prioperative Aussage zur Biologie des Tumors zulassen. Auflerdem sollte die
Analyse der Bildmarker durch eine direkte Kommunikation des PACS System mit den
VASARI Kriterien in Hinblick auf die Zeitersparnis gegeniiber dem bisherigen Standard ohne
direkte Kommunikation verglichen werden.

Dafiir wurde ein eigens fiir diese Analyse programmiertes FHIR form mit den Inhalten des
VASARI Systems in das bestehende Forschungs PACS integriert und die darin vorgenommene
Analyse anschliefend mit einer externen Bewertung verglichen. Die Datenbasis mit den MRT-
Bildern der Patienten wurde aus einem multiinstitutionellen Patientenregister mithilfe eines
deep learning Segmentierungs Algorithmus aufgebaut. Zur Uberpriifung der Aussagekraft der
einzelnen bildmorphologischen Marker wurden multiple logistische Regressionsmodelle zur

Vorhersage der histologischen Marker entwickelt.

Folgende Fragestellungen sollen im Rahmen dieser Arbeit bearbeitet werden:
1. Was sind mogliche qualitative und quantitative bildgebende Marker, welche spezifisch
fiir CDKN2A-Variationen bei Glioblastomen sind?
2. Kann ein in Vorarbeiten publizierter Algorithmus zur automatischen Segmentierung
von Hirntumoren in der Praxis volumetrische Bildmarker identifizieren?
3. Ist ein in PACS integriertes Bildbewertungstool zur Identifikation der genannten
Biomarker der herkdmmlichen externen Bewertung im Hinblick auf die benétigte Zeit

pro Studie tiberlegen?
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2 Application of novel PACS-based informatics platform to identify
imaging based predictors of CDKN2A allelic status in glioblastomas,
Tillmanns, N., Lost, J., Tabor, J. et al. Sci Rep 13, 22942 (2023).
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Application of novel PACS-based
informatics platform to identify
Imaging based predictors

of CDKN2A allelic status

in glioblastomas
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Gliomas with CDKN2A mutations are known to have worse prognosis but imaging features of these
gliomas are unknown. Our goal is to identify CDKN2A specific qualitative imaging biomarkers in
glioblastomas using a new informatics workflow that enables rapid analysis of qualitative imaging
features with Visually AcceSAble Rembrandtr Images (VASARI) for large datasets in PACS. Sixty nine
patients undergoing GBM resection with CDKN2A status determined by whole-exome sequencing
were included. GBMs on magnetic resonance images were automatically 3D segmented using

deep learning algorithms incorporated within PACS. VASARI features were assessed using FHIR
forms integrated within PACS. GBMs without CDKN2A alterations were significantly larger (64 vs.
30%, p=0.007) compared to tumors with homozygous deletion (HOMDEL) and heterozygous loss
(HETLOSS). Lesions larger than 8 cm were four times more likely to have no CDKNZ2A alteration
(OR: 4.3; 95% C11.5-12.1; p<0.001). We developed a novel integrated PACS informatics platform
for the assessment of GBM molecular subtypes and show that tumors with HOMDEL are more likely
to have radiographic evidence of pial invasion and less likely to have deep white matter invasion or
subependymal invasion. These imaging features may allow noninvasive identification of COKN2A
allele status.

Glioblastoma (GBM) is the most common primary brain tumor in adults and accounts for 15% of all brain
tumors. It occurs with an incidence of 3.22 per 100.000 cases in the United States annually’. The current stand-
ard of care treatment for glioblastoma (GBM, IDH-wild type, WHO Grade 4) is maximum surgical resection,
followed by chemo- and radiotherapy?. Gliomas are classified according to the WHO classification of central
nervous system tumors with a recently published version in 2021° differentiating adult-type diffuse gliomas into
three entities: astrocytoma (IDH mutant, 1p19q intact), oligodendroglioma (IDH mutant, 1p19q codeletion),
and glioblastoma (IDH wildtype)*. This new classification diagnoses gliomas not solely based on histology, but
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complemented by more sophisticated molecular markers such as CDKN2A which is important for IDH-mutant
gliomas.

Patients with IDH-mutant gliomas that present with either homozygous or heterozygous CDKN2A deletion
have decreased progression-free and overall survival*®.

Cyclin-dependent kinase inhibitor (CDKN) is a gene located on chromosome 9p21*7. CDKN has two sub-
types, CDKN2A and CDKN2B (locus (INK4a/ARF), that encode for tumor suppressor proteins (p144fF and
p16™%44) inhibiting the transition from G1-phase to S-phase in the cell cycle. p144*F activates p53, which results
in the inhibition of cell growth*®7.

Conversely, CDKN2A homozygous deletion in GBM has a less established role, and is not included in the
WHO 2021 criteria. However, studies support the hypothesis of CDKN2A homozygous deletion determining a
worse prognosis in GBM®, and suggest that GBM with CDKN2A homozygous deletion may benefit from higher
dose radiation®. This presents a critical need for predicting this molecular subtype of glioblastomas.

In order to make these urgent information available as soon as possible, development of standardized imag-
ing biomarkers is necessary. In comparison to biopsy, MRI is a routine and noninvasive procedure, in which it
can not only help decreasing the risk of biopsies”'’. But also in helping to establish a diagnosis in tumors that
are not feasible to biopsy. In addition, it can help clinicians make treatment decisions given the heterogeneity
of the tumor and the known limitations of biopsies in this regard by evaluating the whole tumor'"'%. As a single
biopsies may lead to underestimation of the genetic variance in the tumor and therefore to an incomplete therapy.

Standard of care pre-operative imaging of glioblastomas on MRI includes multiple sequences: T2, FLAIR, and
T1 with and without gadolinium-based contrast agent sequences'®. Therefore, the determination of biomarkers
from widely-used imaging sequences will be most applicable to routine clinical practices and circumvent the
lack of widespread availability of advanced imaging modalities (such as tumor perfusion-weighted imaging).

To determine meaningful and reliable MRI features, a comprehensive and standardized feature set is needed to
ensure reproducibility. Performing imaging phenotype analysis of brain tumors can be very time consuming and
requires handling of multiple software packages, which limits the ability to evaluate phenotypes in rapidly avail-
able timeframe. Development of informatics tools that allow phenotype assessment within the same platform,
can dramatically expedite the phenotypic classification and allow generation of valuable descriptive information
in the rapidly progressing field of brain tumor classification. We used VASARI features to determine qualitative
imaging features unique for GBMs with CDKN2A alterations, which are currently not well understood and may
be of interest to be subclassified in future cIMPACT guidelines or WHO criteria®'*. VASARI stands for Visually
AcceSAble Rembrandt Images, and is a comprehensive MRI feature set scheme for reproducible measurement of
brain tumors'. The feature set consists of 29 scoring items with a defined lexicon to ensure a standardized and
consistent assessment of non-contrast and contrast-enhanced MR images (Supplementary Data 1)'°. VASARI was
developed by a working group of multiple neuroradiologists from different institutions to ensure maximal appli-
cability to brain tumor imaging, and made freely available by several radiological organizations'”. The features
were validated in a consensus group of 8 radiologists'®. In recent works, proportional VASARI features including
the percentage of total abnormal tissue classified as contrast- enhanced tumor, nonenhanced tumor, necrosis, and
edema were shown to predict IDH mutation status in GBM preoperatively and served as the reference standard
for comparing visual assessment of volume to manually or automatically segmented volumes'>'®!519, VASARI
was also used for reproducible molecular profiling in IDH, 1p19q, and EGFR from pre-operative MRI, as well
as predicting molecular profiles in glioblastoma based on VASARI'>%.

To our knowledge, VASARI has not yet been successfully used to assess CDKN2A homozygous deletion
(HOMDEL) status in GBM according to WHO 2021. The practical implementation of VASARI is laborious
therefore we evaluated the feasibility of clinical incorporation of VASARI forms in a streamlined workflow
using Fast Health Interoperability Resources (FHIR) forms. FHIR is a medical information processing and
communication standard that works on a questionnaire and response system and provides easy a user friendly
interface through the NIH website?!. Incorporation of FHIR into PACS allows direct linking electronic medical
data and qualitative data analysis with DICOM format of images. This incorporation of informatics tools into
one software package is the basis for a relational database approach for brain tumor analysis and was critical for
our phenotypic characterization of glioblastomas based on CDKN2A HOMDEL status.

Objective

We aim to identify qualitative imaging biomarkers specific for CDKN2A deletion in GBMs using a novel infor-
matics workflow that allows fast analysis of qualitative imaging features using VASARI for large datasets from
an integrated database that incorporates DICOM images with FHIR format information.

Methods

The dataset contains 69 newly diagnosed patients from our institution. All patients underwent primary surgery
in 2021 for glioblastoma characterized by WHO 2021 criteria and consented for whole exome sequencing to
be performed on available tissue. The study was approved by the Yale University IRB and need for consent was
waived. All methods were carried out in accordance with relevant guidelines and regulations.

IRB waiver of informed consent was obtained for all patients who underwent resection for glioblastoma
from January 2020 to December 2021 at Yale-New Haven Health and retrospectively reviewed. We included
all patients with known CDKN2A deletion status, determined by whole exome sequencing, and grouped these
according to the number of CDKN2A copies. Further inclusion criteria were the availability of pre-operative
MRI with either FLAIR + T1 post-gadolinium spin echo (PGSE) or FLAIR + T1 post-gadolinium gradient echo
(PGGE) sequences. IDH-mutant gliomas were excluded.
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Magnetic resonance images were transferred from the clinical PACS to the research PACS (AI Accelerator,
Visage Imaging, Inc. San Diego, CA). Deep learning-based automatic segmentation built within PACS was used
for tumor segmentation?. Specifically,a UNETR deep learning algorithm used FLAIR and T1 post gadolinium
sequences to segment the Whole, Core, and Necrotic portions of the tumor according to BraTS$ criteria®. For
further information on the algorithm pipeline we refer to one of our prior publication®’. Two medical student
research fellows (NT, JL) revised the segmentations, which were then validated and revised as needed by a board-
certified neuroradiologist (MSA). Extracted features included: percent edema, percent contrast enhancement, and
percent necrosis, which were calculated based on volumetrics described above and reported into the respective
VASARI categories. As done in prior studies, visual-based estimations of these percentages were not performed
due to the known potential for the inaccuracy of the results'®. The VASARI form was scored by a board-certified
neuroradiologist (MSA) in PACS through a custom built-in Health Level 7° Fast Healthcare Interoperability
Resource® (HL7 FHIR) webform. The workflow was streamlined as the neuroradiologist opened a study in our
research PACS. Within the interface, there is a button called “VASARI” which can be clicked. This opens the
FHIR form with the VASARI questionnaire in it. The FHIR form is opened right next to the PACS viewer in a
separate window through a link within PACS, the MRI study can be scrolled and the VASARI questions can be
answered. The VASARI feature set consists of 29 scoring items with a defined lexicon to ensure a standardized
and consistent assessment'®. Checkbox fields were used as input field type for VASARI scoring. At the end of the
questionnaire there was a freeform text field for additional information (Supplementary Fig. 1). After all patients
were scored, the completed fields within the FHIR forms were then exported into Excel (Microsoft, Redmond,
WA) for statistical analysis.

Fifteen cases that were randomly selected were evaluated to compare the efficiency for scoring VASARI
features from opening the study to the completion of scoring using the traditional manual assessment and data
entry vs. automatic assisted assessment and FHIR form data entry. For the automated analysis, the studies were
opened in PACS and scored by a board-certified neuroradiologist (MSA) while the time and clicks per case were
assessed manually (NT,JL). For the manual scoring, the studies were opened in PACS and manually scored in a
separate Excel document by a board-certified neuroradiologist (MSA) while the time and clicks per case were
assessed manually (NT,JL). The evaluation included the number of clicks per case and time per case.

Statistical analysis

Descriptive statistics of radiogenomic features were summarized by the 3 subgroups of CDKN2A. Based on the
distributions of these features, we classified CDKN2A subgroups, and conducted statistical testing to investigate
the differences in the features between the reclassified subgroups. For the correlations between subgroups and
features, Fisher’s Exact Test was used for categorical variables, while Student’s t test or Mann-Whitney U test was
used for continuous variables based on the distribution (Supplementary Table 2). For features that proved to be
statistically significant in a first univariate analysis and showed to discriminate certain subgroup from others,
we developed two logistic regression models to predict CDKN2A homozygous deletion (coded as 1) against
heterozygous loss and no alteration (coded as 0) while adjusting for possible confounders. The first logistic
regression model included pial invasion, ependymal invasion and deep white matter invasion as variables. The
second model included all above mentioned variables including lesion size. To assess goodness-of-fit analysis,
we performed the Hosmer-Lemeshow test. Analysis was done in GraphPad Prism 9.

Genomic analysis

To detect somatic single-nucleotide variations (SNVs), insertions/deletions (INDELs), and Copy Number Aberra-
tions (CNAs), Whole Exome Sequencing was performed on the tumor samples acquired from the OR along with
their matching blood samples to be used as normal. Sequencing was performed at the Yale Center for Genome
Analysis using the Illumina NovaSeq 6000 system with 2 x 101-bp reads following the capture of the regions
using IDT xGen, IDT GOAL or Roche_MedExome panels. Average mean coverages of 109.2 x and 214.0 x were
achieved for blood and tumor tissues, respectively. Somatic variant calling for SNVs/INDELs along with variant
annotation was performed as previously described in reports from our institution®*. Copy number aberrations
were determined using an in-house script using the ratio of tumor/normal coverage, normalized by total cover-
age variation and segmentation, performed using DNAcopy R package?. Copy-neutral loss of heterozygosity
(LOH) was determined by using the deviation of Variant Allele Frequency (VAF) for germline heterozygous
mutations in tumor compared to blood.

Results

Patient characteristics

Among the 69 patients included in the final analysis, there were 25 tumors (36%) that had CDKN2A heterozygous
deletion (HETLOSS), 17 tumors (25%) had biallelic loss (HOMDEL), and the remainder, 37 (39%) had intact
copy numbers (Fig. 1). The cohort contained 44 males (64%) and 25 females (36%). 25 patients had heterozygous
loss of CDKN2A (36%). 17 patients had homozygous deletion (25%), while the rest presented with no alteration
of CDKN2A status (27, 39%). EGFR amplification was found in 42 (61%) patients (Table 1).

Quialitative imaging features analysis

Patients with HOMDEL of CDKN2A exhibited lower levels of deep white matter invasion (47.1%), defined as
“Enhancing or nCET tumor extending into the internal capsule, corpus callosum or brainstem” compared to
those with HETLOSS or no alteration (75%) (p =0.041).
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Figure 1. Flowchart of patients in our analysis.

Characteristic All patients | CDKN2A HETLOSS | CDKN2A HOMDEL | CDKN2A intact
n 69 (100%) 25 (36%) 17 (25%) 27 (39%)
Age at surgery (years) 62 (£15) 62(+18) 60(+10) 66(+14)
Sex

Male 44 (64%) 19 (76%) 9 (53%) 16 (59%)
Female 25 (36%) 6 (24%) 8 (47%) 11 (41%)
Ethnicity

Asian 1(1%) 0 (0%) 0 (0%) 1 (4%)
Black 4 (6%) 2 (8%) 1(6%) 1 (4%)
Hispanic 2 (3%) 1 (4%) 1(6%) 0 (0%)
Other 1(1%) 0 (0%) 0 (0%) 1 (4%)
White 61 (88%) 22 (88%) 15 (88%) 24 (88%)
Genetic profile

CDKN2A HETLOSS 25 (36%)

CDKN2A HOMDEL 17 (25%)

CDKN2A intact 27 (39%)

EGFR amplified 42 (61%) 9 (36%) 11 (65%) 6(22%)
EGER not amplified | 26 (38%) 16 (64%) 5(29%) 21 (78%)
EGFR unknown 1(1%) 0 (0%) 1 (6%) 0 (0%)

Table 1. Description of patient characteristics.

HETLOSS and no alteration groups also had higher subependymal invasion (87 vs. 59%, p=0.032) defined
as “Invasion of any adjacent ependymal surface in continuity with enhancing or non-enhancing tumor matrix”

than HOMDEL.

A lower percentage of pial invasion was found in the HETLOSS, and no alteration groups (52 vs. 82%,
p=0.045) compared to HOMDEL. The pial invasion was predictive of HOMDEL in Model 1 (OR: 8.1, 95% CI
1.8-53.2; p<0.012) as tumors with pial invasion were eight times more likely to be HOMDEL, even after adjusting
for deep white matter and subependymal invasion as covariables in the first logistic regression model (Figs. 2 and
3). The overall model performance remained steady when incorporating lesion size (>8 cm) in a second model,

while increasing the OR for pial invasion marginally (Table 2).
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Figure 2. (A) Logistic regression models for prediction of homozygous deletion (HOMDEL) of CDKN2A. The
area under the ROC curve for Model 1 was 0.78 (std. error: 0.07, 95% CI 0.66-0.91, p value: 0.0005). The are
under the ROC curve for Model 2 was 0.8 (std. error: 0.06, 95% CI 0.68-0.92, p value: 0.0003). (B) Mean values
of Whole-, Core- and Necrotic volumes in cubic millimeters based on automated segmentation, differentiated
by no alteration, homozygous deletion (HOMDEL) and heterozygous loss (HETLOSS) in CDKN2A.

GBMs without CDKN2A alterations were significantly larger in size when compared to tumors with HOMDEL
and HETLOSS (64 vs. 30%, p=0.007). The direct comparison of whole tumor volume that includes a non-enhanc-
ing portion of the tumor defined by FLAIR among the wildtype, HOMDEL, and HETLOSS is shown in Fig. 2.
Lesions greater than 8 cm were four times more likely to be found in patients without alteration of CDKN2A
(OR: 4.3;95% CI 1.5-12.1; p<0.001) compared to HOMDEL or HETLOSS. 8 cm were defined as the largest
(x-y) cross-sectional diameter of T2 signal abnormality measured on a single axial image according to VASARL

Manual VASARI scoring vs. built-in FHIR form

Fifteen cases were evaluated to compare the time for scoring VASARI features from opening the study to comple-
tion of scoring. The time for automated measurements was 2.76 min (SD +0.47), and for manual measurements,
5.91 min (SD +0.87). The difference between automatic and manual measurements was statistically significant
(p<0.0001) using an unpaired t-test (Fig. 4). This highlights the workflow inefficiencies of manual assessment of
VASARI forms using separate scoring modalities compared to native, built-in FHIR (Fast Healthcare Interoper-
ability Resources) forms within PACS. This is supported by the amount of clicks needed per case from opening
the study to completion of scoring between built in analysis and the manual group. The mean amount of clicks
for automated measurements was 43.80 (SD +6.268), and for manual measurements, 76 (SD +6.245). The dif-
ference between built-in and manual measurements was statistically significant (p <0.0001) using an unpaired
t-test (Fig. 4).

Discussion

The 2021 WHO classification identified novel molecular subtypes, including CDKN2A homozygous deletion
status in gliomas. But recent literature suggests that CDKN2A homozygous deletion status can also predict worse
outcomes in patients with GBM which are IDH-wildtype>>#1426-27,

These findings are not yet incorporated in clinical patient care, since most patient with WHO grade 4 tumors
are treated with the same therapy. Nonetheless early identification of CDKN2A status might lead to a more
aggressive approach in surgery or higher dose radiotherapy® and might allow for inclusion in clinical trials. It
will be even more valuable by the time targeted therapies for this specific subtype are incorporated in patient

Scientific Reports |

(2023) 13:22942 | https://doi.org/10.1038/s41598-023-48918-4 nature portfolio



www.nature.com/scientificreports/

NoPial
or Ependymal Invasion

Pial Invasion

Ependymal Invasion

T1

Figure 3. Visualization of MRI shows no pial or subependymal invasion, pial invasion, and subependymal
invasion. FLAIR = Fluid attenuated inversion recovery, DWI=diffusion-weighted imaging

Multiple logistic

gression model | Included variables (OR) Area under ROC curve (CI)
Pial invasion (8.1)

Model 1* Ependymal invasion (0.23) 0.78 (0.65-0.91)

Deep white matter invasion (0.3)

Pial invasion (0.1)

Ependymal invasion (3.86)
Model 2** 0.79 (0.67-0.92)
Deep white matter invasion (2.36)

Lesion size (>8 cm) (0.6)

Table 2. Description of logistic regression models to discriminate homozygous deletion. The goodness-of-fit
evaluation was performed by a Hosmer-Lemeshow test. For the first logistic regression model the Hosmer—
Lemeshow statistic was 0.979 (p value: 0.9864). Where a p value below 0.05 is believed to reflect a bad fit of the
model and a higher p value reflects a good fit of the model. The Hosmer-Lemeshow statistic for Model 2 was
2.011 (p value: 0.9592). *Pial invasion (OR: 8.1, 95% CI 1.87-53.17, p value 0.0120), ependymal invasion (OR:
0.23,95% CI 0.04-1.16, p value 0.08), Deep white matter invasion (OR: 0.3, 95% CI 0.08-1.49, p value 0.15).
**Pial invasion (OR: 8.8, 95% CI 1.99-57.68, p value 0.0096), ependymal invasion (OR: 0.26, 95% CI 0.04-1.35,
p value 0.1), Deep white matter invasion (OR: 0.42, 95% CI 0.08-2.21, p value 0.3) and lesion size (OR: 0.6,
95% CI 0.13-2.92, p value 0.5). OR odds ratio, ROC receiver operating curve, CI 95% confidence interval.

management”. Because of the shift towards molecular profiling in glioma diagnosis, and the integration of
molecular subtypes in the most recent WHO criteria gathering these information is critical.

We aim to establish correlation of radiological findings and specific genetic alterations to support further clini-
cal decision making. Our study investigated whether qualitative imaging biomarkers for CDKN2A can be identi-
fied in glioblastomas on pre-operative MR images using standard imaging protocol, as this sub-classification
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Figure 4. Comparison of manual VASARI scoring with built-in forms within PACS. Shown are the median
and respective quartiles. The difference between built-in and manual measurements was statistically significant
regarding the time per case (p <0.0001) and clicks per case (p <0.0001). This highlights the workflow
inefficiencies of manual assessment of VASARI forms using separate scoring modalities compared to native,
built-in FHIR forms within PACS.

of glioblastomas is currently not available. To our knowledge, this is the first study to attempt to identify such
imaging biomarkers in a cohort of glioblastomas with CDKN2A alterations.

We found GBMs with homozygous CDKN2A loss are more likely to exhibit radiographic evidence of pial
invasion and less likely to have deep white matter or subependymal invasion. In addition, tumor volume is also
predictive, with tumors greater than 8 cm being less likely to harbor an underlying CDKN2A copy loss. Although
incorporation of lesion size increased the OR for pial invasion, the effect was marginally. Foremost this finding
supports the stability of pial invasion as a stable predictor for homozygous deletion of CDKN2A. Taking all the
above mentioned findings into account, clinicians will benefit by incorporating these imaging characteristics
in their assessment, as they provide the potential to serve as a non-invasive pre-operative method to measure
CDKN2A allelic status..

Our findings corroborate with other studies which showed that the prediction of IDH and 1p/19q mutation
based on lesion size VASARI features can yield an AUC of 0.73 +0.02 and 0.78 +0.01, respectively'. While these
results are promising, the lack of a large volume of literature on this method could be due to the time-intensive
nature of performing VASARI scoring. To improve the workflow of VASARI scoring, we leveraged a novel infor-
matics approach using FHIR within PACS to input data more efficiently and quickly into a relational database.
Our method includes incorporating ML algorithms into the research version of our clinical PACS, which allows
auto-segmentation of tumors using a deep learning algorithm (UNETR). This quantitative method provides
higher accuracy of volumetric assessment than the standard VASARI assessment based on qualitative estimation
of tumor percent edema, contrast enhancement, and necrosis. As described in prior research, scoring of VASARI
is a robust assessment for qualitative assessment of imaging features in gliomas and shows little interobserver
variability’>!*?%, Our PACS embedded software creates an important time and workflow efficacy gain for clini-
cians and researchers?. VASARI integration within PACS provides a streamlined approach for qualitative image
assessment that can be integrated into clinical practice”

To date, two-dimensional measurements have been used in routine clinical practice. However, the RANO
group has proposed two-dimensional and volumetric measurement protocols for clinical trials'®. In our study,
we performed the most comprehensive evaluation of glioblastoma by including both two-dimensional and volu-
metric measurements. Nevertheless, volumetric tumor size alone is not sufficient to predict CDKN2A mutation
status, as shown by the largely overlapping boxplots (Fig. 2B) and investigation of more complex imaging features
like radiomics might be of interest in further studies™®.

Nonetheless, the results shown above can provide guidance to clinicians so that they are not misled by tumor
size, since CDKN2A-mutated tumors with associated poor survival prognosis are often smaller than CDKN2A-
intact tumors®!.

Our study highlights the benefits of incorporation of advanced informatics tools to create the relational
datasets linked to DICOM images using FHIR standards. FHIR is an emerging and rapidly evolving medical
information processing and communication standard, which works on a questionnaire and response system. It
can easily exchange and standardize protected health information (PHI) in EMR systems such as EPIC. It is based
on Health Level 7 (HL7), a framework of standards for electronic health information exchange, and works with
different standardized categories called “Resources™'. FHIR uses standardized semantics and thus can be easily
queried, unifying the way personal health information (PHI) gets acquired and exchanged between different
instances in the medical sector. Up to now, incorporating FHIR with DICOM images has not been done, and
FHIR is predominantly used in non-imaging workflows. FHIR is expected to be the emerging standard in the
coming years to make medical information more accessible for Al applications in the medical sector®.
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In our approach, we implemented the VASARI scoring through an embedded FHIR form in PACS and were
able to decrease the amount of time and clicks per case significantly. Usually, VASARI scoring is done in mul-
tiple applications. The radiologist needs to open the study on the PACS station and score VASARI in a separate
application like Excel. This not only takes more time and more switching between applications but also hinders
the natural workflow and is susceptible to typographical errors. As a result, we created a relational database by
the implementation of FHIR forms, which links the patient imaging to the related imaging features and thereby
allows for easy organization of larger datasets and the ability to data mine.

Our approach of combining novel informatics methods to build relational databases, machine learning auto-
segmentation tools within clinical PACS, and advanced genomic analysis of glioblastomas for a novel biomarker
of tumor aggressiveness is a significant advance for the field of neuro-oncology***. These methods allow the
generation of large datasets of annotated images with metadata information on patient outcomes, genetic test-
ing, pathologic results, and detailed qualitative imaging analysis in a streamlined workflow. This workflow has
the potential for rapid evaluation of image biomarkers that correlate to several different genetic variants within
intracranial malignancies and will overcome the current limitation of extensive human hours required to do this
research outside of this workflow. This workflow can also serve as a new and accurate standard for volumetric
assessments and will decrease the effort for time-intensive response assessments like RANO and RECIST in
routine clinical practice and clinical trials.

Limitations of the study are the small sample size of CDKN2A tested GBMs, although this is the largest study
assessing standardized imaging features of this molecular subtype in glioblastomas to date**. Also the possibility
of EGFR status or MGMT status influencing pial-, white matter—or subependymal invasion limits the results,
even though it showed to be no significant confounder in our analysis. Future studies with larger sample sizes
are needed. The clinician did not score their experience using a questionnaire using a standardized method.
Future study investigating the physician perception of using FHIR forms for image annotation is needed. Lim-
ited availability of whole exome sequencing results is one of the major contributors to the lack of literature on
this topic. Our integrated approach to genomic assessment and imaging correlation represents a strength that
allowed the generation of this dataset.

In conclusion, we use a multimodal and multidisciplinary collaborative approach to combine advanced
genetic analysis of GBMs and correlate it with image-based analysis accelerated by informatics and machine
learning tools to identify imaging biomarkers for CDKN2A co-deletion. These imaging biomarkers include tumor
size greater than 8 cm and evidence of pial invasion.

Data availability

The datasets analysed during the current study are not publicly available yet, but will be made available in the
near future. Currently the dataset is available from the corresponding author on reasonable request. The FHIR
forms underlying .json file, which was used is publicly available on our GitHub page under: https://github.com/
ImagineQuant/VASARI_FHIR.
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3 Diskussion

3.1 Bildmarker beim Glioblastom

In unserer Studie konnten wir zeigen, dass Glioblastome mit CDKN2A/B Mutation oft kleiner
sind als Glioblastome ohne CDKN2A/B Mutation. Auflerdem weisen Tumore mit
homozygoter CDKN2A/B Mutation in unserer Studie acht mal haufiger eine Invasion der Pia
Mater auf, als Tumore ohne Mutation. Ein Durchmesser von mehr als 8cm kam viermal
héufiger bei CDKN2A/B Wildtyp Tumoren vor. Somit ldsst sich sagen, dass die von uns
herausgearbeiteten Bildmarker sich dazu eignen, den Status von CDKN2A/B im Glioblastom
vorherzusagen. In Bezug auf die Effizienz einer PACS basierten Analyse im Vergleich zu einer
externen Bewertung konnten wir zeigen, dass eine Bewertung der VASARI Kriterien mit Hilfe
einer an das PACS gekoppelten Analyse-Software gegeniiber nicht gekoppelten Systemen

einen Zeitgewinn von 3,5 min pro Fall ergibt.

In der Literatur sind viele bildmorphologische Marker bei niedriggradigeren Gliomen
beschrieben, wie etwa das T2-FLAIR Mismatch-Sign fiir IDH mutierte 1p-19q-codeletierte
Oligodendrogliome.!¢ Fiir das Glioblastom gibt es weniger etablierte Bildmarker. Jedoch
konnten Lai et. al. bereits 2011 zeigen, dass IDH mutierte Glioblastome zumeist im
Frontallappen auftreten und eine geringere KM Aufnahme, sowie geringere Nekrose besitzen
als IDH-Wildtyp Glioblastome die eher verteilt auftreten.”® Dies steht im Einklang mit unseren
Ergebnissen, bei denen die Tumore dhnlich hdufig im Frontal-, Temporal- und Parietallappen
auftraten (siche Anhang), auch wenn wir keine Vergleichsgruppe zur Analyse wie Lai et. al.
aufweisen konnten.

Ein neuer und rechenintensiver Ansatz zur Identifikation von bildgebenden Markern bei
Hirntumoren sind die Radiomics. Hier gibt es Studien, die mit groen Patientenkohorten und
KI Modellen eine Vorhersage zur Mutation treffen kdnnen und dabei gute AUC Werte von bis
zu 0,84 fiir bestimmte molekulare Subtypen erreichen.’” Im Vergleich zu den von uns
verwendeten VASARI Bildmarkern, stellt dieses Verfahren jedoch einen rechenaufwendigen

Ansatz dar. Die Aussagekraft der Radiomics ist bis dato jedoch noch nicht klar zu beurteilen.
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Auch wenn diese KI Ansédtze in Zukunft dabei helfen werden, eine Patientenklassifikation
frithzeitiger durchfiihren zu kdnnen, sind unsere Bildmarker hilfreich im klinischen Alltag, da
sie keine aufwendige Bildgebung bendtigen und jeder Kliniker diese Kriterien anwenden

kann.

3.2 Rolle von CDKN2A/B Mutation in Glioblastomen

In der aktuellen WHO Klassifikation der Hirntumore von 2021 ist der CDKN2A/B Status als
Diagnosekriterium lediglich fir IDH mutierte Astrozytome und nicht das IDH Wildtyp
Glioblastom aufgefiihrt. Es gibt jedoch Studien, die darauf hinweisen, dass CDKN2A/B
Mutationen ebenfalls in IDH Wildtyp Glioblastomen ein wichtiger prognostischer Faktor
sind.’®” CDKN2A/B Mutationen zeichnen sich durch ein niedrigeres Gesamtiiberleben in der
Gruppe der IDH mutierten Gliome aus. Fiir die Gruppe der Glioblastome deutet eine Arbeit
von Ma et. al. darauf hin, dass CDKN2A/B ebenfalls einen unabhidngigen prognostischen
Biomarker darstellt. Dieser geht mit schlechterem progressionsfreien- und Gesamtiiberleben
einher.” Diese Studie war eine retrospektive Analyse eines Zentrums und ist im Vergleich zu
den Studien, welche die Rolle der CDKN2A/B Mutation bei IDH mutierten Astrozytomen
definieren, in der Patientenzahl vergleichbar.?’ Es gibt eine deutlich groBere Studie von Appay
et. al., welche diesen Zusammenhang lediglich bei Astrozytomen beschreibt.?!

Obwohl die Mutation von CDKN2A/B in der aktuellen WHO-Klassifikation keine
entscheidende Rolle spielt, existieren Hinweise auf einen biologischen Zusammenhang bei

IDH-Wildtyp-Glioblastomen, die weiterer Untersuchungen bediirfen.

3.3 VASARI Bildmarker als Pradiktoren fiir Mutationen

Um die von uns erarbeiteten Bildmarker der pialen Infiltration und der Gré8e der Tumore zu
definieren haben wir die VASARI Kriterien genutzt. Diese Kriterien haben sich in
vorangegangenen Studien zur Analyse bewéhrt und konnten gute interreader agreement
scores erreichen. Hervorzuheben sind vor allem die Messung der Grof8e des Tumors und die
Lokalisation.?”7°

In der Arbeit von Gutman et. al. wurde neben der guten Vergleichbarkeit der VASARI

Merkmale auch eine Korrelation zwischen den einzelnen Mutationen und Bildmarkern
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herausgearbeitet.”” Dabei wurden im Gegensatz zu unserer Studie jedoch keine signifikanten
Zusammenhidnge gefunden. Dies mag zum einen an der geringeren Anzahl an untersuchten
Bildmarkern liegen (5 im Vergleich zu 24), zum anderen aber auch an den relativ kleinen
Patientengruppen pro Mutation in der Analyse. Nichtsdestotrotz zeigt die Arbeit von Gutman
et. al. dhnlich wie unsere, dass es vermutlich einen Zusammenhang zwischen radiologischem
Erscheinungsbild von Tumoren und ihrem histologischen Phénotyp gibt, der neben der
Vorhersage von Mutationen eventuell auch zur Pridiktion des Uberlebens genutzt werden
kann.”

Im Einklang mit unseren Ergebnissen wiederrum konnte die Arbeit von Ahn et. al.?? zeigen,
dass es moglich ist molekulare Marker anhand der Bildmorphologie vorherzusagen. Diese
Arbeit erlaubte aufgrund fehlender Patienten in ihrer externen Validierungskohorte keine
Aussage zu bildmorphologischen Markern und CDKN2AB. Jedoch erreichten sie eine AUC
von 0,605 in der Vorhersage von CDKN2AB Mutationen durch eine random forest Analyse in
der internen Kohorte.?” Diese AUC ist verglichen mit unserer AUC von 0,78 in der Vorhersage
von CDKN2A Mutationen zwar etwas geringer, ldsst sich aber wahrscheinlich durch die
unterschiedlichen genutzten Analysemethoden erkldren. In der Analyse von Bildmarkern die
spezifisch fiir bestimmte Mutationen sind, hat diese Arbeit die Dicke der KM Aufnahme als
spezifisch fiir CDKN2AB Mutation herausgearbeitet. Diese Untersuchung bezieht sich auch
auf IDH mutierte Astrozytome und wiederspricht somit nicht unseren Ergebnissen, sondern
unterstreicht vielmehr die Moglichkeit der Korrelation von VASARI Bildmarkern mit
histologischen Subtypen.

3.4 KI-gestiitzte Segmentierungsverfahren

Zur Erstellung unserer Datenbasis in PACS haben wir einen U-NET R Algorithmus zur
Segmentierung der Tumorstrukturen genutzt.>> Mithilfe dieses KI Segmentierungsverfahrens
konnten wir automatisch die Volumina der einzelnen Tumorstrukturen bestimmen und
vergleichen (Siehe Abb. 2B Publikation). Die Volumetrie stiitzt dabei unserer Ergebnisse der
VASARI Analyse, dass CDKN2A/B Wildtyp Tumore gréfer sind als Tumore mit einer
Mutation, auch wenn es in Bezug auf die einzelnen volumetrisch gemessenen Tumoranteile
keinen statistisch signifikanten Unterschied gibt. Nichtsdestotrotz ist die automatische

Segmentierung mit gleichzeitiger Integrierung in PACS ein methodisch neuer Ansatz, der bei
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der Generierung grof3er Datensitze hilfreich sein kann. Auflerdem besteht bis heute eine grof3e
Diskrepanz zwischen den in der priklinischen Forschung beschriebenen und den in der Praxis
nutzbaren KI Segmentierungsverfahren, wie wir in einer systematischen Ubersichtsarbeit
zeigen konnten.®! Deshalb ist die PACS Integration einer KI gestiitzten Segmentierung nicht
nur interessant in Hinblick auf die Identifizierung mdglicher Biomarker, sondern auch
beziiglich einer klinischen Implementierung dieser Technik.

Im Hinblick auf die technische Umsetzung der klinischen Implementierung gibt es jedoch
verschiedene Ansitze. Lotan et al. beschreiben die klinische Implementierung eines deep
learning basierten Algorithmus zur Segmentierung von pré- und post OP Gliomen.®? In ihrer
Pipeline miissen die Bilder fiir die Segmentierung jedoch auf einen externen Server geladen
werden und koénnen nicht wie bei uns direkt im klinischen PACS segmentiert werden. Einen
dhnlichen Ansatz beschreiben van Garderen et al.. In Threr Studie présentieren sie die klinische
Implementierung eines Algorithmus zur Segmentierung von niedriggradigen Gliomen,
welcher einen automatischen volumetrischen Report generiert.®* Vergleichbar mit der Studie
von Lotan et al. bendtigt auch dieser Ansatz exzessive Vorverarbeitungsschritte um die Bilder
zu segmentieren und arbeitet nicht im Rahmen des klinischen PACS, auch wenn die
generierten Reports in diesem angezeigt werden konnen.®? Ein zu benennender Vorteil dieser
beiden Studien ist, dass sie sich sowohl auf prioperative, als auch postoperative
Tumorsegmentierungen fokussieren, was eine breitere klinische Anwendbarkeit dieser
Algorithmen garantiert. Als Nachteil im Hinblick auf die klinischen Anwendbarkeit ist bei van
Garderen et al. die Fokussierung auf niedrig gradige Gliome zu nennen.®?

Insgesamt  ldsst sich sagen, dass die klinische Implementierung  von
Segmentierungsalgorithmen noch weit hinter den in der Literatur beschriebenen
Maoglichkeiten bleibt.®! Trotzdem gibt es vielversprechende Ansitze in der Literatur, die
jedoch im Vergleich zu unserem Ansatz nicht auf eine PACS Integration der Algorithmen,
sondern vielmehr auf eine PACS Erweiterung durch andere Softwarepakete setzen.’>%

Im Hinblick auf die automatische Segmentierung beschreiben die beiden oben genannten
Studien gute Ergebnisse, die jedoch durch unterschiedliche Parameter objektiviert wurden.

In der Regel wird dabei die durch KI erzeugte Segmentierung mit einem zuvor definierten
Goldstandard verglichen. Diesen Goldstandard bildet meistens die manuelle Segmentierung
eines Neuroradiologen. Lotan et al. messen die Qualitit der erzeugten Segmentierungen

anhand des DICE Wertes. Der DICE Wert gilt als Standard fiir die Evaluation von
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Segmentierung, indem sie die Ubereinstimmung von zwei Objekten messen. Dabei bedeutet
ein DICE von 1 beispielsweise eine Uberlappung von 100%.°" Bei den berichteten DICE
Werten zeigen sich dhnliche Ergebnisse wie bei dem von uns genutzten Algorithmus (0.91 vs.
0.86 fiir die Segmentierung der T2 Hyperintensitit).>>%? Die DICE Ergebnisse unseres
Algorithmus stehen demnach im Einklang mit dem aus der Literatur bekannten Standard.>-¢!
In der Studie von van Garderen et al. wird eine volumetrische Messung aus der automatischen
Segmentierung erzeugt und die Segmentierung anhand der Zufriedenheit der Kliniker durch

einen Fragebogen bewertet.®?

Hier sind diese Studien, welche sich auf eine postoperative
Tumorsegmentierung fokussieren jedoch von unserer Studie zu unterscheiden. Wenn man sich
aber die klinische Akzeptanz der Segmentierungen ansieht, konnte die Arbeit von van
Garderen et al. zeigen, dass die Kliniker mit 77% der Segmentierungen zufrieden waren.
Obwohl es sich hierbei um postoperative Segmentierungen handelte, welche aufgrund ihrer
Heterogenitét und Resektionshohle meist schwieriger fiir einen Algorithmus zu segmentieren
sind.®3 Auch wenn die Erhebung solcher Daten nicht Bestandteil unserer Arbeit waren, zeigen
diese Ergebnisse, dass automatische Segmentierungen im klinischen Alltag und eventuell auch
in der Erzeugung grofer multiinstitutioneller Datenbasen hilfreich sein kénnen. Trotzdem
muss man die Qualitdt der automatischen Segmentierungen gerade im Hinblick auf die
Erzeugung multiinstitutioneller Datensétze kritisch bewerten. Denn durch fehlerhafte
Segmentierungen die zum Training einer KI genutzt werden, kann sich ein selbst
reproduzierendes fehlerhaftes System etablieren, da es von einer falschen ground truth
ausgeht. Das gleiche Problem ergibt sich fiir die Analyse von Mutationen in Tumoren durch
KI. Die histologische Analyse ist hierbei die ground truth. Sie analysiert dabei jedoch selten
den kompletten Anteil eines Tumors, oder setzt durch verschiedene Analysemethoden
unterschiedliche Werte als Goldstandard.®

Abgesehen von diesen Limitationen lédsst sich feststellen, dass die Implementierung einer
automatischen Segmentierung mit volumetrischer Messung in klinische Abldufe moglich ist

und klinisch akzeptable Ergebnisse liefert.
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3.5 PACS intergierte Bewertung

Fiir die Korrelation der MRT Bildmarker mit genetischen Variationen haben wir die Analyse
in die PACS Umgebung integriert. Wir konnten zeigen, dass die integrierte Analyse einer
externen Analyse anhand der Klicks pro Studie und des Zeitaufwandes iiberlegen ist. Diese
PACS Integration ist ein wichtiger Schritt zur Erstellung multiinstitutioneller Datenbasen, die
der Entwicklung von Algorithmen fiir die klinische Praxis dienen konnen. Unsere
Arbeitsgruppe hat auf diesem Gebiet wichtige Vorarbeiten geleistet, die die Verbreitung
solcher Systeme vorantreiben konnte. >34

Der Stellenwert einer PACS Integration von Tools zur Erstellung von Datensitzen mithilfe KI
wurde bereits vor einigen Jahren benannt. So definierte eine Studie aus Radiology aus dem
Jahre 2019 die Implementierung von machine learning tools in die PACS Umgebung, mit der
gleichzeitigen Erstellung von Reports aus den Ergebnissen, als den ,heiligen Gral* der KI in
der Neuroradiologie.®® Dass eine solche Integration moglich und gleichzeitig effektiver ist,
zeigen die Ergebnisse dieser Studie und Vorarbeiten unserer Arbeitsgruppe beispielsweise auf
dem Gebiet der Hirnmetastasen. Gemessen an der Anzahl der Klicks die es zur Bearbeitung
einer Studie brauchte, bendtigte in beiden Arbeiten die PACS integrierte Verarbeitung
signifikant weniger Klicks und weniger Zeit.34

Andere Studien, die eine solche Implementierung von KI gestiitzten Tools in PACS
beschreiben, analysieren nach der klinischen Implementierung solcher Systeme die Anzahl
der evaluierten Studien im klinischen Alltag und konnten einen stetigen Anstieg nach der
Implementierung verzeichnen.®® Weitere Studien wiederrum messen die Effektivitit dieses
Ansatzes nicht durch Klicks pro Patient, sondern anhand des Zeitaufwandes pro Studie und
kommen dabei ebenfalls zu dem Schluss, dass ein integrierter Ansatz weniger Zeit benotigt
als die vorherigen Modalititen.?” Dies steht somit im Einklang mit unseren Ergebnissen, da
auch wir eine signifikant schnellere Analyse von Patienten durch die PACS integrierte
Software nachweisen konnten.

Abschlielend ldsst sich herausstellen, dass eine Integration von KI gestiitzten Tools in PACS
nicht nur eine gute Moglichkeit ist Bildmarker fiir Tumore zu identifizieren und heterogene
Datensitze fiir die Forschung und klinische Praxis aufzubauen, sondern dies auch effektiv

moglich ist und eine Zeitersparnis flir Kliniker bringt.
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3.6 Limitationen

Eine der Limitationen unserer Studie war die geringe Anzahl an Patienten (n=69) die wir
integrieren konnten. Hieraus folgten nach der Stratifizierung entsprechend des
Mutationsstatus kleine Testgruppen. Unsere Studiengrofie ist bezogen auf die Analyse von
Bildmarkern anhand des VASARI Systems jedoch vergleichbar mit anderen Studien.”® Eine
weitere Limitation unserer Ergebnisse besteht in der alleinigen Analyse der Beziehung von
Bildmarkern und einer CDKN2AB Mutation. Es besteht somit die Moglichkeit, dass die von
uns beschrieben Bildmarker des Glioblastoms durch andere genetische Variationen wie etwa
eine EGFR oder MGMT Mutation mitbeeinflusst werden. In unseren multiplen logistischen
Regressionsmodellen stellten diese Mutationen jedoch keinen signifikanten Storfaktor dar.
Um eine stirkere Vorhersagekraft der Bildmarker zu erreichen und die Validitit dieser zu
iiberpriifen, sowie die moglichen zugrunde liegenden biologischen Ursachen zu identifizieren
sind jedoch weitere Studien notig.

AuBerdem kdnnen wir keine weiteren Daten zur klinischen Akzeptanz des PACS integrierten
VASARI Fragebogens liefern, da die bewertende Neuroradiologin ihre Erfahrungen nicht etwa
anhand eines vorgefertigten Schemas wie etwa eines Fragebogens bewertete. In Hinblick auf
andere Studien welche die klinische Implementierung solcher Systeme beschreiben, haben wir

jedoch vergleichbare Methoden genutzt.36-87

3.7 Perspektiven

Das Ziel unserer Arbeit war es, die bildmorphologischen Marker des Glioblastoms anhand
einfacher Merkmale zu beschreiben und so fiir Kliniker nutzbar zu machen. Die vorliegende
Arbeit hat gezeigt, dass distinkte qualitative Bildmarker im MRT zur Vorhersage des
Mutationsstatus bei Patienten mit Glioblastom geeignet sind und dass die Integration dieser
Analyse in die PACS-Umgebung eine signifikante Zeitersparnis ermdglicht. Diese
Erkenntnisse bieten eine solide Grundlage fiir zukiinftige Forschungsarbeiten und klinische
Anwendungen. Die Ergebnisse unserer Arbeit konnen somit dazu dienen, die bildgebenden
Merkmale bei Glioblastomen besser zu verstehen und diese Tumore nicht nur anhand ihrer
histologischen Marker, sondern auch anhand ihrer Charakteristik in der MRT Bildgebung

einzuteilen. So konnen etwa die Invasion der Pia Mater oder der Durchmesser des Tumors im
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MRT als nicht invasive Biomarker dabei helfen, prioperative Strategien anhand einfacher
Bildbeurteilung zu beeinflussen. Ein vielversprechender Ausblick besteht in der
Weiterentwicklung und Validierung der identifizierten Bildmarker. Insbesondere sollte
untersucht werden, ob diese Marker in groBeren, multizentrischen Studien reproduzierbar sind
und ob weitere Bildmarker identifiziert werden konnen, die zusitzliche genetische oder
molekulare Eigenschaften der Tumoren widerspiegeln.

AuBerdem sollte die Integration der Bild Analyse in der PACS-Umgebung weiter optimiert
werden, um die Effizienz und Benutzerfreundlichkeit zu erhdhen. Dartiber hinaus kénnte die
Entwicklung von KI-Modellen zur automatischen Erkennung und Bewertung dieser
Bildmarker den diagnostischen Prozess weiter beschleunigen und standardisieren. Solche
Modelle konnten durch die Nutzung umfangreicher multiinstitutioneller Datenbanken trainiert
und verfeinert werden. Die Zeit zur Erstellung solcher multiinstitutionellen Datenbanken,
kann durch den von uns beschriebenen Arbeitsablauf mit einer KI gestiitzten Segmentierung
und Integration von Bildbewertungswerkzeugen in die PACS Umgebung verkiirzt und somit
effizienter gestaltet werden. In Zukunft wird die Entwicklung von In-vivo-Markern fiir die
rdumliche und molekulare Heterogenitét durch Kl-gestiitzte radiologische Instrumente das
Potenzial bieten, Patienten in préizisere diagnostische und therapeutische Arme einzuteilen und
eine bessere dynamische Behandlungsiiberwachung in einer Ara der personalisierten Medizin
zu ermoglichen. Obwohl zahlreiche Herausforderungen bestehen, wird sich die radiologische
Praxis mit der Weiterentwicklung und Validierung der KI-Technologie fiir den klinischen
Einsatz erheblich verdndern und weiterentwickeln. Bis dahin kann die Identifikation von
einfachen Bildmarkern, welche simpel in ihrer Anwendung sind, Klinikern dabei helfen

préoperativ eine informiertere Entscheidung liber das Vorgehen mit dem Patienten zu treffen.
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3.8 Schlussfolgerung

In dieser Arbeit wurden alle vorangehenden Fragestellungen erfolgreich beantwortet. Es
konnte nachgewiesen werden, dass es quantitative und qualitative bildmorpholgische Marker
auf MRT Bildern fiir Mutationen bei Patienten mit Glioblastom gibt, die sich zur Vorhersage
des Mutationsstatus eignen. Eine KI gestiitzte Segmentierung half beim Aufbau dieses
Datensatzes, konnte jedoch keine spezifischen volumetrischen Unterschiede in den jeweiligen
Mutationsgruppen bestimmen. Weiterhin zeigte sich, dass die Integration dieser
Bildbewertung in die PACS-Umgebung eine signifikante Zeitersparnis gegeniiber einer

externen Bewertung ermdglicht.

Unsere Untersuchung ergab, dass Tumore mit homozygoter Mutation von CDKN2A/B
achtmal haufiger eine piale Invasion aufweisen als Tumore mit einem CDKN2A/B Wildtyp.
Als zweiten Bildmarker identifizierten wir eine TumorgroBe von mehr als 8cm, die in unserer
Studie viermal héufiger in Glioblastomen mit CDKN2A/B Wildtyp vorkam als bei Tumoren
mit Mutation. Die Integration der Bewertung dieser Bildmarker in die PACS-Umgebung

fithrte zu einem signifikanten Zeitvorteil gegeniiber einer externen Bewertung.

Diese Ergebnisse konnten in der klinischen Praxis zu einem schnelleren und effizienteren
Aufbau multiinstitutioneller Datenbanken beitragen, welche die Entwicklung weiterer
Bildmarker durch KI-Modelle fordern kénnen. Die von uns beschriebenen Bildmarker sind
zudem einfach im klinischen Alltag anwendbar und kdnnen préoperativ eine Einschétzung der

Tumorhistologie unterstiitzen, wodurch sie moglicherweise die weitere Therapie beeinflussen.

Zusammenfassend bietet diese Arbeit einen vielversprechenden Ansatz fiir die Integration
fortschrittlicher Bildverarbeitungsverfahren zur Identifikation von Biomarkern mittels KI-
gestiitzter Analysen in die neuroonkologische Diagnostik und Therapie, die weiter erforscht

und ausgebaut werden sollte.
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6 Anhang

VASARI Item Answers Score
Hemorrhage Yes 45
No 24
Calvarial remodeling Yes 1
No 68
Cysts Yes 1
No 68
Tumor Location Frontal 21
Temporal 25
Insular -
Parietal 17
Occipital 4
Brainstem 1
Cerebellum 1
Side of Tumor Epicenter Right 36
Center/Bilateral 2
Left 31
Eloguent Brain None 27
Speech motor 14
Speech receptive 19
Motor 4
Vision 4
Multifocal or Multicentric n/a 65
Multifocal 2
Multicentric 1
Gliomatosis 1
T1/FLAIR RATIO Tumor Expansive 69
Mixed 0
Infiltrative 0
Pial Invasion Yes 41
No 28
Ependymal Invasion Yes 55
No 14
Cortical Involvement Yes 60
No 9
Deep WM Invasion Yes 47
No 22
Satellites Yes 10
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Lesion Size

Proportion of Edema

Edema Crosses Midline

Enhancement Quality

Proportion Enhancing

No
<0.5cm
0.5cm
1.0cm
1.5cm
2.0cm
2.5cm
3.0cm
3.5cm
4.0cm
4.5cm
5.0cm
5.5cm
6.0cm
6.5cm
7.0cm
7.5cm
8.0cm
>8.0cm
n/a
None (0%)
<5%
6-33%
34-67%
68-95%
>95%
All (100%)
Indeterminate
n/a
Yes
No
None
Mild/Minimal
Marked/Avid
n/a
None (0%)
<5%
6-33%
34-67%
68-95%
>95%
All (100%)
Indeterminate

59

=
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Thickness of Enhancing n/a -
Margin None 1

Thin 1
Thick/solid 67

Definition of the Enhancing n/a 1
Margin Well-defined 64
Poorly-defined 4

Enhancing Tumor Crosses n/a 4
Midline Yes 2
No 63

Proportion non Contrast n/a -
Enhancing None (0%) 69

<5% -

6-33% -

34-67% -

68-95% -

>95% -

All (100%) -

Indeterminate -

Proportion Necrosis n/a -
None (0%) 3

<5% 8

6-33% 32

34-67% 23

68-95% 1

>95% -

All (100%)

Indeterminate 2

Definition of the non- n/a 2
enhancing margin (e.g. Smooth 11
Grade Il) Irregular 56
Diffusion No Image 8
Facilitated 5

Restricted 55

Neither/equivocal 1

nCET Tumor Crosses Midline n/a (nonCET) 2
Yes 6

No 61

Tabelle 1) Alle bewertbaren VASARI-Items unserer Analyse mit ihren jeweiligen
Punktzahlen

Zu sehen ist das Layout des von uns verwendete und in das PACS integrierte FHIR form mit
den entsprechenden Ergebnissen pro Kategorie.
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