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Zusammenfassung 

Mit einer altersadjustierten Inzidenz von 0,16 pro 100 000 bilden die Glioblastome eine seltene 

Krankheit. Trotz maximaler Therapie haben sie mit 15-18 Monaten Gesamtüberleben eine 

infauste Prognose. Der Mutationsstatus kann dabei relevant sein für die Optimierung der 

Behandlung. Der heutige Standard zur präoperativen Diagnose ist die 

Magnetresonanztomographie (MRT) Bildgebung mit Speicherung der Bilder im klinikeigenen 

Picture Archive and Communication System (PACS). Eine Möglichkeit zur strukturierten 

Befundung bietet das Visually AcceSAble Rembrandt Images (VASARI) Set. Die VASARI 

Terminologie beschreibt dabei reproduzierbare MRT-Merkmale der Gliome. 

In der vorliegenden Arbeit sollen mithilfe eines integrierten Befundungssystems, anhand des 

strukturierten VASARI Sets, Bildmarker identifiziert werden, die sich als Surrogat Parameter 

zur Vorhersage des CDKN2AB Mutationsstatus von Glioblastomen eignen. Ferner soll die 

Zeitersparnis dieses in der natürlichen PACS Umgebung implementierten Befundungssystems 

untersucht werden. Zur Identifizierung neuer bildmorphologischer Merkmale in Bezug auf 

eine CDKN2AB Mutation oder einen CDKN2AB Wildtyp führten wir eine univariante 

statistische Analyse der einzelnen VASARI Merkmale durch. Um den prädiktiven Wert 

bildmorphologischer Kriterien für die Vorhersage genetischer Mutationen zu bestimmen, 

integrierten wir die zuvor identifizierten Merkmale in multiple logistische 

Regressionsmodelle. Um die Analyse des Workflows zu objektivieren, verglichen wir die 

Anzahl an Mausklicks pro analysierter Studie und die jeweilig benötigte Zeit in einer 

Subgruppe von Fällen. Als Bildmarker konnte eine Invasion der Pia mater die homozygote 

Deletion in CDKN2A am besten vorhersagen. Außerdem wiesen Tumore mit einem 

Durchmesser von über 8cm viermal häufiger einen CDKN2A Wildtyp auf als eine Mutation. 

Die Integration des Befundungssystems in die PACS Umgebung durch den Fast Healthcare 

Interoperability Resources (FHIR) Standard führte im Durchschnitt zu einem Zeitgewinn von 

3,15min pro Studie. Die von uns identifizierten Bildmarker, wie die Invasion der Pia mater 

und die Tumorgröße, können als Surrogat Parameter für den CDKN2AB Mutationsstatus bei 

Glioblastomen die klinische Entscheidungsfindung untersützen.  

Durch den Zeitgewinn in der Befundung der Studien kann der Ablauf in der klinischen Praxis 

beschleunigt und in Zukunft auch die Zeit zur Erstellung multiinstitutioneller Datensätze für 

die KI-Forschung reduziert werden.  
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Summary 

With an age-adjusted incidence of 0.16 per 100,000, glioblastomas are a rare disease. Despite 

maximum therapy, they have a poor prognosis with an overall survival of 15-18 months. The 

mutation status can be relevant for optimizing treatment. The current standard for preoperative 

diagnosis is magnetic resonance imaging (MRI) with storage of the images in the hospital's 

own Picture Archive and Communication System (PACS). One option for structured reporting 

is the Visually AcceSAble Rembrandt Images (VASARI) set, which describes reproducible 

MRI features of gliomas. 

 

In this study, an integrated reporting system based on the structured VASARI set was used to 

identify imaging markers suitable as surrogate parameters for predicting the CDKN2AB 

mutation status in glioblastomas. In addition, the time savings provided by the implementation 

of this reporting system in the native PACS environment were evaluated. To identify novel 

imaging morphological features associated with a CDKN2AB mutation or wildtype, a 

univariate statistical analysis of individual VASARI features was performed. To assess the 

predictive value of imaging features for genetic mutations, the previously identified markers 

were included in a multiple logistic regression model. To objectify the workflow efficiency, 

the number of mouse clicks per analyzed study and the time required were compared in a 

subset of cases. 

 

As an image marker, invasion of the pia mater best predicted homozygous deletion in 

CDKN2A. In addition, tumors larger than 8cm in diameter were four times more likely to have 

a CDKN2A wild type than a mutation. The integration of the diagnostic system into the PACS 

environment using the Fast Healthcare Interoperability Resources (FHIR) standard resulted in 

an average time gain of 3.15 min per study. 

The identified imaging markers we identified, such as pia mater invasion and tumor size, can 

support clinical decision-making as surrogate parameters for CDKN2AB mutation status in 

glioblastoma. 

The observed time savings in reporting may help accelerate clinical workflows and, in the 

future, facilitate the development of multi-institutional datasets for AI research.  
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Abkürzungsverzeichnis 

 
AI Artificial intelligence 

ATRX Transkriptionsfaktor ATRX (genetische Variation) 

CBTRUS Central Brain Tumor Registry of the United states 

CDKN2AB Cyclin Dependent Kinase 2 AB (genetische Variation) 

CET Contrast enhancing tumor 

CT Computertomographie 

DICE Statistischer Ansatz zur Messung der Ähnlichkeit von zwei Objekten 

DICOM Digital Imaging and Communication in Medicine 

DNA Desoxyribonucleinacid 

EGFR Epithelial growth factor receptor (genetische Variation) 

FDA Food and Drug Administration (amerikanische Zulassungsbeghörde) 

FHIR Fast healthcare interoperable resource (Informatikstandard in der 

Medizin) 

FLAIR Fluid attenuated inversion recovery (MRT Sequenz) 

H3K27M Trimethylierung des Lysin 27 im Histon H3 (genetische Variation) 

IDH Isocitrat Dehydrogenase (genetische Variation) 

IRB Institutional Review Board 

KI Künstliche Intelligenz 

KM Kontrastmittel 

MRT Magnetresonanztomographie 

nCET Non contrast enhacning tumor 

OP Operation 

PACS Picture archive and communication system 

PET Positronen-Emissions-Tomographie 

RANO Response assessment in neurooncology 

TCIA The Cancer Imaging Archive 

TERT Telomerase reverse transcriptase (genetische Variation) 



 IV 

TTFs Tumor treating fields 

VASARI Visually AcceSAble Rembrandt Images (Leitfaden zur Beschreibung 

von Hirntumoren)  

WHO World Health Organization 

ZNS Zentrales Nervensystem 

1p19q Co-

Deletion 

Verlust der Allele auf dem kurzen Arm des Chromosom 1 und dem 

langen Arm des Chromosomen 19 (genetische Variation) 

.json Java Script Object Notation (Textdatei) 
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1 Einleitung 

1.1 Gliome 

1.1.1 Hinleitung 

Gliome sind eine heterogene Gruppe von Hirntumoren neuroepithelialen Ursprungs. Sie 

werden gemäß der neuen World Health Organization (WHO)-Klassifikation von 2021 anhand 

verschiedener molekulargenetischer Marker klassifiziert.1 Ausgehend von den WHO Graden 

1 bis 4 lassen sich die Gliome in ihrer Aggressivität und Prognose abschätzen. Die in dieser 

Arbeit analysierte Gruppe des Glioblastoms Isocitrat Dehydrogenase (IDH) Wildtyp (WHO 

Grad 4) weist unter maximaler Therapie bestehend aus chirurgischer Resektion und adjuvanter 

Radiochemotherapie nur ein mittleres Überleben von 15 bis 18 Monaten auf. Häufige 

Erstsymptome eines hirneigenen Tumors sind dabei abhängig von der Lokalisation des 

Tumors und können sich als fokal neurologisches Defizit, erstmaliger Krampfanfall, 

Persönlichkeitsveränderung oder durch anhaltenden Kopfschmerz präsentieren.2-4 Die 

Verdachtsdiagnose eines Glioms wird anhand einer Magnet Resonanz Tomographie (MRT) 

Untersuchung mit den Standardsequenzen T1 mit und ohne Kontrastmittel, sowie T2 und fluid 

attenuated inversion recovery (FLAIR) Wichtungen gestellt.5,6 Oft dient die MRT als 

Grundlage der Behandlung von Hirntumorpatienten*, da ausgehend von dieser Untersuchung 

die weiteren Schritte wie etwa eine OP oder neoadjuvante Chemotherapie geplant werden. 

Außerdem weist die MRT neben diesem Stellenwert in der Diagnostik auch noch eine deutlich 

detailliertere Darstellung des Hirngewebes im Vergleich zu anderen Bildgebungsentitäten auf. 

Somit sind MRT Bilder eine geeignete Grundlage um anhand des Erscheinungsbildes eines 

Glioblastoms prädiktive Modelle, etwa zu den molekularen Eigenschaften des Tumors, zu 

entwickeln und für molekulare Subtypen spezifische Biomarker zu identifizieren. 

 

 
* In dieser Arbeit wird das generische Maskulinum verwendet, spricht aber alle Geschlechteridentitäten 
gleichermaßen an. Weitere Hinweise zur Verwendung einer gendergerechten Sprache kann man unter folgendem 
Link einsehen: https://www.hhu.de/geschlechtergerechtesprache.  
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1.1.2 Ätiologie und Epidemiologie 

Um die Bedeutung einer Krankheit zu veranschaulichen, eignen sich epidemiologische Daten. 

Standardisierte Daten zur Epidemiologie der Gliome sind jedoch rar. Für die USA gibt es das 

Central Brain Tumor registry of the United states (CBTRUS), welches die durchschnittliche 

jährliche altersbereinigte Inzidenzrate aller bösartigen Hirn- und anderen Zentralen 

Nervensystem (ZNS)-Tumoren mit  24,83 pro 100 000 angibt. Hierbei bildeten die Gliome 

mit 26,3% die größte Gruppe. In der Gruppe der Gliome wiederum bildet das Glioblastom mit 

50,9% aller Gliome und (14,2% aller ZNS Tumoren) die häufigste Entität. Somit stellt das 

Glioblastom mit einer Inzidenz von 0,16 von 100 000 Menschen eine seltene Erkrankung dar, 

welche bevorzugt im höheren Alter auftritt. Zudem tritt das Glioblastom häufiger bei Männern 

als bei Frauen auf.7,8 

Bis heute sind keine ätiologischen Faktoren bekannt, welche zur Entwicklung eines Glioms 

führen. Diskutiert werden der Einfluss von Strahlung und genetische Faktoren. Ionisierende 

Strahlung im Bereich des Schädels, im Rahmen von medizinischen Eingriffen oder 

Überlebenden eines Atombombenangriffs erweisen sich als die am besten untersuchten 

Risikofaktoren. Wobei die schädliche Wirkung bei Kindern ausgeprägter als bei Erwachsenen 

war, was durch die durchschnittlich längere Überlebenszeit nach solchen Ereignissen zu 

erklären ist.9,10 Andere Strahlung wie etwa elektromagnetische Strahlung durch die Nutzung 

von Mobiltelefonen erwies sich jedoch in der Mehrheit der Studien als kein signifikanter 

Risikofaktor für das Auftreten von Hirntumoren.8-12 Lifestyle Faktoren, die bei anderen 

onkologischen Erkrankungen als etablierte Risikofaktoren gelten, wie etwa Tabakrauch, 

Alkohol oder andere Noxen, ergaben in Hinblick auf die Gliome bislang keine eindeutigen 

Ergebnisse.13 Die hereditären Ursachen eines Glioms sind demnach häufig die 

Neurofibromatose Typ 1 oder beispielsweise das Li-Fraumeni Syndrom, welches jedoch 

lediglich 5% der Glioblastome ausmacht.11,14 
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1.1.3 Diagnostik - Allgemein 

Als primär führende diagnostische Entität in der Bildgebung der Hirntumore hat sich die MRT 

etabliert.5,6 Aufgrund der besseren Darstellung des Hirnparenchyms und des besseren Nutzen-

Risiko Profils hat sich die MRT besonders gegenüber der Computertomographie (CT) für die 

Bildgebung der hirneigenen Tumoren durchgesetzt. Außerdem kann man im MRT 

Bluthirnschrankenstörungen, welche häufig bei höhergradigen Gliomen wie dem Glioblastom 

auftreten, durch die Applikation von Gadolinium basierten Kontrastmittel (KM) in der T1 

Sequenz mit KM sichtbar machen. Etablierte bildmorphologische Marker für das Glioblastom 

im MRT sind eine ringförmige - oder Girlanden förmige Kontrastmittelaufnahme in der T1 

Sequenz mit KM (vgl. Abb. 3B). Ein weiteres etabliertes bildmorphologisches Kriterium ist 

das sogenannte T2-Flair Mismatch sign. Das T2-Flair Mismatch sign beschreibt ein helles T2 

Signal eines soliden Tumors bei gleichzeitig schwach ausgeprägtem FLAIR Signal. Häufig 

kommt es dabei in der FLAIR Sequenz zu einer verbleibenden ringförmigen Signalanhebung 

bei zentraler Hypointensität (vgl. Abb. 1). Dieses Kriterium kann als prognostischer Marker 

für IDH mutierte und 1p/19q nicht co-deletierte Astrozytome genutzt werden und zeigt in 

Studien eine gute Spezifität.15,16 Dies zeigt, dass es bereits mehrere etablierte qualitative 

Bildmarker gibt, die sich auch zur Vorhersage eines histologischen Subtypen eignen. Dennoch 

ist weitere Forschung auf diesem Gebiet nötig, um ein besseres Verständnis von dem 

Erscheinungsbild von Hirntumoren in der MRT zu erlangen. 
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Abb. 1: Beispiele für T2 FLAIR mismatch sign als Bildmarker in Gliomen 

Axiale MRT-Aufnahmen des Gehirns in T2-gewichteter Sequenz (links: A und C) und den jeweils 

korrespondierenden FLAIR-Sequenzen (rechts: B und D). In A und B ist eine ausgedehnte Läsion im 

rechten Temporallappen zu erkennen, vereinbar mit einem Gliom. (Modifiziert nach Patel et. al. 
(2017))16 

 

Fortgeschrittenere Bildgebungen wie etwa die Aminosäure Positronen-Emissions-

Tomographie (PET) haben in der Diagnostik der Gliome ebenfalls einen etablierten 

Stellenwert. Durch das Aminosäure PET lassen sich besonders gut metabolisch aktive Teile 

der Tumore darstellen. Aufgrund dieser Eigenschaft ist sie zum Beispiel in der Planung von 

stereotaktischen Biopsien, gezielten Operationen, fokussierten Bestrahlungen, sowie der 

Unterscheidung zwischen Pseudoprogression und Rezidiv etabliert und wurde von der 

RANO-Gruppe zur Diagnostik der Gliome bei Erwachsenen und Kindern empfohlen.17-21 
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Neben der Bildgebung stellt die Biopsie den Goldstandard in der Diagnostik der Hirntumore 

da. Bei einer Biopsie wird eine dünne Hohlnadel navigiert in den Tumor eingebracht um durch 

sie eine Gewebeprobe zu gewinnen. Die Vorteile der Biopsie, wie etwa die Gewinnung von 

biologischem Material zur histologischen Untersuchung müssen hierbei jedoch gegenüber den 

Risikofaktoren dieses invasiven Eingriffs abgewogen werden. Außerdem besteht der Nachteil 

einer Biopsie darin, dass immer nur ein begrenzter Teil des Tumors erfasst wird und somit die 

intratumorale Heterogenität nicht vollständig abgebildet werden kann. Aufgrund dessen wird 

die neurochirurgische Biopsie häufig erst nach einer uneindeutigen primären Bildgebung oder 

im Rahmen einer definitiven Resektion des Tumors genutzt. Die Biopsie kann hierbei als 

stereotaktische Biopsie, oder offene Biopsie im Rahmen einer Resektion des Tumors 

stattfinden. Die stereotaktische Biopsie kommt meist bei Patienten zur Anwendung, welche 

einen Tumor in einer eloquenten Lage haben und sich somit aufgrund der OP-Risiken nicht 

für eine offene Resektion eignen.22,23 

Im Hinblick auf die neue WHO-Klassifikation von 2021 und ihrem Fokus auf die molekulare 

Charakterisierung der Tumoren ist eine Gewinnung von biologischem Material zur 

Diagnosestellung unabdingbar und sollte möglichst standardisiert stattfinden, um der 

intratumoralen Heterogenität gerecht zu werden.1,24 Die intratumorale Heterogenität, sowie 

die Risiken einer Operation machen Forschung auf dem Gebiet der Vorhersage molekularer 

Marker umso wichtiger. Vielversprechende Ansätze, die eine histologische Einschätzung 

schon vor der Operation im MRT untersuchen sind Studien zu Radiomics. Radiomics steht 

hierbei für die strukturierte Analyse und Interpretation einer Vielzahl von Bilddaten und ist 

zunehmend in der Literatur zu finden.25 Radiomics lassen sich grob in zwei Klassen 

unterteilen, die technischen und die handgefertigten Merkmale. Ungeachtet welcher Klasse 

die einzelnen Merkmale zugehörig sind, ist für die Generierung eine lange maschinelle 

Vorbereitung der Bilder notwendig um am Ende durch machine learning die eigentlichen 

Radiomics aus den Bilddaten zu extrahieren.26 Eine präoperative Vorhersage zur Histologie 

des Tumors, kann abgesehen von diesen rechenintensiven Ansätzen wie den Radiomics auch 

anhand einfacher bildmorphologischer Marker wie etwa dem T2-FLAIR mismatch sign 

getätigt werden.16,27,28 Auch wenn diese Ansätze in Ihrer Genauigkeit den Radiomics 

unterlegen sind, bieten Sie dennoch eine Zukunftsperspektive. Denn die Analyse von 

Radiomics ist durch unterschiedliche Vorverarbeitungsschritte noch nicht standardisiert und 

somit nur zu einem gewissen Maße reproduzierbar.29 Qualitative Bildmarker wie etwa die 
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VASARI Merkmale lassen sich im Gegensatz dazu von nahezu jedem Kliniker auch ohne KI 

bestimmen. 

Liquid Biomarkers, wie etwa zellfreie Tumor DNA im Blut oder Liquor, zirkulierende 

Proteine oder Exosome versprechen ein großes Potential in der präoperativen Diagnose und 

dem Monitoring von Gliomen. Allerdings haben sie bisher einen forschungsorientierten 

Charakter und sind noch nicht in den aktuellen Leitlinien etabliert.30 Ein Nutzen dieser 

Technologie wird momentan für Patienten diskutiert, bei denen eine Biopsie nicht möglich ist 

oder als Verlaufsmonitoring im Hinblick auf Progress der Erkrankung nach einer Operation 

(OP).31 Bis solche diagnostischen Entitäten Einzug in den klinischen Alltag erhalten, gibt es 

einen Bedarf zur nicht invasiven Diagnostik, sowohl mit KI, als auch ohne. 

 

1.1.4 Histologie 

Als letzter Schritt der Diagnostik folgt die Histologie, die für den weiteren Verlauf der 

Erkrankung des Patienten von entscheidender Bedeutung ist.	Diese entscheidet nicht nur über 

die Therapie welche ein Patient erhält, sondern auch über die Vorhersage der zu erwartender 

Lebenszeit. Die Histologie beschreibt die Diagnostik des Gewebes und bei Hirntumoren auch 

die Diagnostik der zugrundeliegenden biologischen Mutationen. 

Die Gliome sind eine histologische Gruppe von hirneigenen Tumoren und werden 

entsprechend der WHO-Klassifikation anhand histologischer Marker eingeteilt. Mit der 

neusten WHO-Klassifikation von 2021 werden diese histologischen Marker durch 

weitreichende molekular genetische Marker ergänzt, um eine integrierte Diagnose zu schaffen. 
1,32 

Bei der aktuellen WHO-Klassifikation spielen folgende molekulare Alterationen die 

wichtigste Rolle: der IDH-Mutationsstatus, 1p19q-Co-Deletionsstatus, EGFR-Amplifikation, 

TERT-Amplifikation und die CDKN2A/B Deletion, ebenso wie die H3 K27M-Mutation. Die 

Methylierung des MGMT-Promotors hat in der diagnostischen Entscheidungsfindung einen 

niedrigeren Stellenwert, stellt jedoch einen prädiktiven Marker für das Ansprechen auf 

alkylierende Chemotherapie dar.33 Ein ähnlicher prognostischer Faktor ist die homozygote 

Deletion von CDKN2A/B in IDH mutierten Astrozytomen WHO Grad 4. Der Cyclin-

abhängige Kinase-Inhibitor (CDKN) ist ein Gen, das sich auf dem Chromosom 9 befindet.34-

36 CDKN hat zwei verschiedene Subtypen, CDKN2A und CDKN2B, welche für Proteine 
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kodieren, die den Übergang von der G1-Phase zur S-Phase im Zellzyklus hemmen, nämlich 

p14ARF und p16INK4A. CDKN2A kodiert für das Protein p16INK4A, welches abnormales 

Zellwachstum blockiert, indem es an die Cyclin-abhängige Kinase (CDK) 4 und 6 bindet und 

schließlich den Zellzyklus durch Proteine der Retinoblastom-Gruppe arretiert. p14ARF 

aktiviert außerdem das Protein p53, was zu einer Hemmung des Zellwachstums führt.  

Dadurch dienen diese Proteine als Tumorsuppressoren im normalen Gewebe und sorgen nach 

ihrer Mutation für ein Tumorwachstum.34-36 

Diese Mutation spricht in der Gruppe der IDH mutierten Astrozytome WHO Grad 4 für ein 

geringeres Gesamtüberleben. Einzelne Arbeiten weisen auf einen ähnlichen Zusammenhang 

von CDKN2A/B im IDH-Wildtyp-Glioblastom hin, haben bisher keinen Platz in der aktuellen 

WHO-Klassifikation gefunden, sind jedoch von zentralem Interesse für die vorliegende 

Arbeit.1,37-41 

 

Nach der aktuellen WHO-Klassifikation lassen sich anhand der oben beschriebenen 

molekularen Marker neben der Gruppe der Glioblastome noch verschiedene Tumorentitäten 

identifizieren. Hierzu gehören die Oligodendrogliome, Astrozytome und diffusen Gliome. 

Mit der neuen WHO-Klassifikation von 2021 ist die Diagnose des bösartigsten Tumors des 

Glioblastoms zu stellen, wenn das folgende genetische Profil im Tumorgewebe nachgewiesen 

werden kann. Der Tumor muss eine nicht mutierte Isocitrat Dehydrogenase (IDH Wildtyp) bei  

gleichzeitig vorhandenem nukleärer Transkriptionsfaktor ATRX aufweisen.1 

Das Glioblastom entspricht demnach einem WHO-Grad 4 und stellt den aggressivsten Tumor 

der Gliome dar.42-44 Die Gruppe der Oligodendrogliome entspricht einem WHO Grad 2 mit 

entsprechend geringerer Aggressivität. Seit 2021 gibt es die neue Gruppe des Astrozytoms 

WHO-Grad 4 mit entsprechender Malignität. Hierfür muss eine homozygote Deletion der 

CDKN2A/B vorliegen.42 Die homozygote CDKN2A/B Deletion ist entsprechend der WHO 

Klassifikation von 2021 ausschlaggebend für die Malignität in der Gruppe der Astrozytome 

WHO Grad 4. Um ein besseres Verständnis über das Erscheinungsbild von Tumoren mit 

CDKN2A/B Mutation zu bekommen, haben wir diese Mutation in der vorliegenden Arbeit bei 

der aggressivsten Gruppe von Tumoren, dem Glioblastom analysiert. 
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Abb. 2: Übersicht über molekulare Marker und die dazugehörige integrierte Diagnose nach 
WHO 2021 

In grün gefärbt ist der diagnostische Pfad für die Glioblastome bei denen wir das unterschiedliche 

Erscheinungsbild von CDKN2A Mutationen untersucht haben. Die CDKN2A/B  Mutation ist laut WHO 

relevant für die Gruppe der Astrozytome, neue Studien weisen jedoch auf einen ähnlichen 

Zusammenhang in der Gruppe der Glioblastome hin. IDH: Isocitrat Dehydrogenase, ATRX: 

Transkriptionsfaktor ATRX, CDKNA2A/B: Cyclin Dependent Kinase 2 AB, H3 K27M: Trimethylierung 

des Lysin 27 im Histon H3, WHO: World Health Organization (Modifiziert nach Weller et. al. (2021)1)  

 

1.1.5 Therapie 

Die Histologie bildet nicht nur den zentralen Schritt in der Diagnosestellung, sondern auch 

den Beginn der Therapie. Eine präoperative Aussage über den Mutationsstatus, besonders im 

Hinblick auf prognosebestimmende Mutationen, kann somit therapiebestimmend und 

verlaufsentscheidend sein. Je früher eine Einschätzung zur Histologie des Tumors gegeben 

werden kann, desto eher kann die entsprechende Therapie eingeleitet werden. 
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Im Allgemeinen besteht die Therapie der Gliome über alle Klassen hinweg aus einer, wenn 

möglich, supramaximalen sicheren Resektion des Tumors, gefolgt von adjuvanter 

Radiochemotherapie. Das Ausmaß der Resektion des Tumors hat dabei einen Einfluss auf das 

Überleben der Patienten.45-49 Der Grad der Resektion in der Gruppe der Glioblastome kann 

dabei durch Scores wie „RANO Categories for EOR in Glioblastoma“ eingeteilt werden. Ein 

positiv prognostischer Faktor auf das progressionsfreie - und Gesamtüberleben wird hier durch 

eine supramaximale Resektion erreicht. Diese ist definiert als Resttumorgewebe von 0cm3 des 

kontrastmittelanreichernden Teils und <5cm3 des nicht kontrastmittelanreichernden Teils nach 

der Operation.50 Deshalb ist es wichtig dem Operateur präoperativ eine Einschätzung zur 

Histologie des Tumors zu geben, da dies eventuell die Resektionsstrategie beeinflussen kann. 

Dennoch werden Gliome aufgrund ihres infiltrativen Wachstums nicht durch die alleinige 

Resektion geheilt und bedürfen immer einer adjuvanten Therapie. 

Die adjuvante Therapie besteht derzeit aus Chemotherapie und Radiotherapie, wobei neue 

immunologische Therapien in den letzten Jahren stark in den Fokus der präklinischen und 

klinischen Forschung gerückt sind, bisher jedoch mit divergierenden Ergebnissen.51-53 Eine 

weitere Therapiestrategie durch Vakzinierung verspricht in ersten Studien gute Ergebnisse, im 

Hinblick auf ein längeres Gesamtüberleben der Patienten.54 All diese Trends der 

personalisierten Therapie machen die genaue Kenntnis der Histologie des Tumors zu 

Therapiebeginn unabdingbar und verstärken die Bedeutung einer ganzheitlichen Beurteilung 

des Tumors im MRT, in Ergänzung zur selektiven Biopsie.  

Darüber hinaus gibt es in der Literatur einige Unterschiede in Bezug auf die Therapie der 

jeweiligen histologischen Entitäten. So stellt die alkylierende Chemotherapie mit 

Temozolomid bei MGMT methyliert Tumoren jeder Gradierung eine feste Säule der Therapie, 

neben der Radiochemotherapie, dar.33,55 Auch ist die Radiotherapie neben den chirurgischen 

und medikamentösen Behandlungen eine weitere feste Therapie für Gliome. Dabei wird die 

Strahlenintensität durch die Tumorentität und den klinischen Status des Patienten 

mitbestimmt.1 

In einer neuen Studie wurde die Wirksamkeit von Vorasidenib in Bezug auf ein höheres 

Progressionsfreies Überleben bei niedrig gradigen Gliomen beschrieben. Dies verspricht einen 

neuen Ansatzpunkt in der medikamentösen Therapie der niedrig gradigen Gliome, hat aber bis 

jetzt noch keinen Einzug in die klinische Praxis erhalten.56 Außerdem fehlen bei dieser 

medikamentösen Therapie Studien zur Wirksamkeit bei Patienten mit Glioblastom. Die zuvor 
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genannten Studien und Leitlinien unterstreichen jedoch die Bedeutung des molekularen 

Profils des Tumors und die dafür nötige individualisierte Diagnostik um neue Therapien zu 

finden. 

Speziell für das Glioblastom konnten in den letzten Jahren keine neuen Therapien zugelassen 

werden, die ein signifikant längeres Gesamtüberleben der Patienten ermöglichen. Lediglich 

die Therapie mit Tumor treating fields (TTFs) nach Versagen der Standardtherapie bestehend 

aus einer Radiochemotherapie wurde von der Food and Drug Administration (FDA) neu 

zugelassen.52,57 

Somit ist die Prognose für das Glioblastom trotz vielversprechenden neuen Ansätzen weiterhin 

schlecht. Daher sind Studien die eine Patientenstratifikation in womöglich noch unbekannte 

biologische Subgruppen erlauben, welche aktuell noch nicht abgebildet sind, von umso 

größerer Bedeutung. 

 

1.1.6 Prognose 

Die Einteilung von Patienten in Risikogruppen entsprechend der Histologie zu einem frühen 

Zeitpunkt der Therapie kann in der Ära der personalisierten Medizin Überlebensvorteile 

bringen. Bis heute hat die Gruppe der Gliome eine infauste Prognose, wobei sich die zu 

erwartende Lebenszeit nach der initialen Diagnosestellung stark durch den vorliegenden 

WHO-Typ unterscheidet. Die schlechteste Prognose hat das Glioblastom mit einem 5-Jahres 

Überleben von lediglich 6,8%, welches zwischen Alter und Geschlecht noch leicht variiert.8,58 

Zudem konnte bis jetzt lediglich ein medianes Gesamtüberleben von etwa 15-18 Monaten in 

der Gruppe der Glioblastome erreicht werden.58-60 

Im Vergleich dazu liegt das 5-Jahres Überleben bei anderen Gliomen der WHO-Gruppe 2 oder 

3 zwischen 84,6 Monaten und 205 Monaten (ca. 7 Jahren - 17 Jahren).7  

Diese Daten haben sich in den letzten 10 Jahren nicht wesentlich verändert und somit ist das 

Gesamtüberleben sowie das progressionsfreie Überleben in der Gruppe der Glioblastome 

weiterhin unbefriedigend. Neue Studien, die einen signifikant verlängertes Überleben des 

Glioblastoms beschreiben sind trotz vielversprechender Ansätze weiterhin nicht vorhanden.58 
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1.2 Methodische Ansätze 

1.2.1 Machine Learning-Ansätze in der Neuro Onkologie 

Der Einsatz von KI in der Medizin verspricht große Fortschritte und ist aktuell Gegenstand 

vieler Forschungsprojekte. Besonders im Hinblick auf die Verwertung und Weiterentwicklung 

von MRT-Daten.61 Somit stellt das Verständnis der grundlegenden Begriffe und 

Funktionsweisen auf dem Bereich der KI eine Voraussetzung zur Bewertung dieser Techniken 

dar.  

Ein Teilgebiet der KI ist das sogenannte machine learning, wovon wiederum das deep learning 

einen Unterpunkt bildet. Das machine learning ist eine Art der KI welche Algorithmen nutzt, 

um große Datenmengen zu analysieren auf welche sie nicht explizit programmiert ist.62 

Das deep learning wiederrum ist eine machine learning Technik, welche Algorithmen zu 

künstlichen neuronalen Netzen, ähnlich wie die Neurone eines menschlichen Gehirns 

schichtet und so Daten analysiert. 

Deep learning wird derzeit in der Medizin unter anderem für Segmentierung von Strukturen 

auf Bilddaten und somit auch Hirntumoren verwendet.61,63 Segmentierung meint dabei die 

Markierung von relevanten Strukturen. In vielen Fällen ist diese Struktur eine Pathologie, wie 

etwa ein Hirntumor mit seinen verschiedenen Anteile (vgl. Abb.3), es können aber auch 

entsprechend der Fragestellung physiologische Strukturen segmentiert werden. Diese 

Segmentierung von Strukturen in MRTs können dann für die weitere Therapie und 

Verlaufskontrolle des individuellen Patienten genutzt werden, oder als ground truth für die 

weitere Entwicklung von Algorithmen. Das Konzept der ground truth beschreibt den Fakt, 

dass für die Entwicklung von KI-Modellen Daten genutzt werden, die im Vorfeld als „richtig“ 

oder „falsch“ klassifiziert wurden. Hier kann eine Segmentierung von Hirntumoren als ground 

truth der KI zeigen wo sich der Tumor im Bild befindet. Denn für die entsprechende 

Entwicklung von KI ist eine möglichst große Zahl an Rohdaten notwendig. 

Die Aussagekraft solcher Algorithmen ist derzeit unter anderem durch den Mangel an 

verfügbaren Rohdaten für das Training begrenzt. Ein weiteres Problem stellt zudem auch die 

Qualität der ground truth dar. Ist die initiale Segmentierung mit der ein Algorithmus trainiert 

wird fehlerhaft, dann reproduziert der Algorithmus dementsprechend auch falsche Ergebnisse. 

Somit hat die Qualität der ground truth einen großen Einfluss auf die spätere Akzeptanz eines 

Segmentierungsalgorithmus. Eine breite klinische Implementierung dieser Techniken wird 
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durch diese Faktoren bis heute verzögert. Die kritische Menge an Rohdaten kann hierbei durch 

machine learning Ansätze bereits während der Erzeugung solcher Datensätze generiert 

werden. In der Segmentierung von Bilddaten kann KI durch eine schnelle und reproduzierbare 

Technik Menschen dabei unterstützen, indem sie eine erste Segmentierung vorschlägt, die am 

Ende von einem Experten validiert wird. Somit wird die Zeit zur Erstellung solcher 

multiinstitutionellen Datenbasen verkürzt.61 

Die weitere Erläuterung von KI und der einzelnen Anwendungsbereiche in der Medizin 

überschreitet jedoch den Umfang dieser Arbeit. 

 

1.2.2 MRT und die automatische Segmentierung 

Wie oben beschrieben stellt die MRT die Grundlage zur Diagnostik von Hirntumoren dar.1,58 

Dank ihrer hohen Auflösung und der Fähigkeit, unterschiedliche Gewebearten detailliert 

darzustellen, ermöglicht die MRT eine präzise Visualisierung von Tumorstrukturen und 

umliegendem Gewebe. Die Routinediagnostik bei Verdacht auf einen Hirntumor umfasst 

dabei typischerweise die T1-Sequenz, mit oder ohne KM und T2- sowie die FLAIR-Sequenz, 

die verschiedene Aspekte der Gewebebeschaffenheit abbilden.5 So kann man durch die 

FLAIR-Sequenz beispielsweise gut zwischen freier und intrazellulärer Flüssigkeit 

differenzieren.5,64,65 

Diese Standardsequenzen sind Bestandteil der meisten MRT Protokolle und sind damit bei 

den meisten Patienten mit Hirntumor verfügbar.5 Diese Standardsequenzen sind somit nicht 

nur wichtig in der klinischen Versorgung und Entscheidungsfindung, sondern können auch als 

Ausgangssequenzen für KI zur Tumorsegmentierung dienen. Der von uns genutzte 

Algorithmus zur Tumorsegmentierung benötigt nur die oben genannten Standardsequenzen 

um den Tumor automatisch zu segmentieren. Der Algorithmus produziert eine Segmentierung 

des gesamten Tumors, definiert als FLAIR Hyperintensität, auf der FLAIR-Sequenz. 

Außerdem segmentiert dieser den Kern des Tumors, definiert als KM aufnehmender Teil, 

ebenso wie die Nekrose des Tumors auf der T1+KM-Sequenz.55  

Aufgrund ihrer detaillierten Parenchymarstellung und ihrem Stand in der Diagnostik der 

Hirntumore, bietet sich die MRT als ideale Basis zur Anwendung von Algorithmen und zur 

standardisierten Bildbeurteilung an. 



 13 

 
Abb. 3: Beispiel einer Segmentierung des von uns genutzten U-NET R Algorithmus 

Auf der linken Seite (A) ist die FLAIR Sequenz mit der von dem Algorithmus produzierten 
Segmentierung des gesamten Tumors zu sehen („Whole_FLAIR“). Rechts (B) zeigt die automatische 

Segmentierung des KM aufnehmenden Teil des Tumors („Core_PGSE“), sowie der zentralen Nekrose 

(„Necrotic_PGSE“) (Modifiziert nach Aboian et. al. (2022)55). 
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1.2.3 VASARI Bewertungssystem 

Für die Analyse von MRT-Bildern durch KI-Programme haben sich verschiedene Ansätze 

etabliert. Es gibt viele Studien die versuchen anhand von Radiomics, welche 

Metainformationen der MRT-Bilder abbilden, Vorhersagen über das molekulare Profil von 

Hirntumoren zu tätigen.66,67 Neben diesen quantitativen KI gestützten Ansätzen gibt es auch 

Bestrebungen qualitative Bildmarker zu etablieren, für deren Identifikation und Prognose 

keine KI notwendig ist. Diese Bild– beziehungsweise Biomarker sind im weiteren Sinne nach 

WHO definiert als „Wechselwirkung zwischen einem biologischen System und einer 

potenziellen Gefahr [...] die biologisch sein kann. [...] Bei der Risikobewertung können 

Biomarker [...] (somit) zur Verknüpfung einer Reaktion mit der Wahrscheinlichkeit eines 

Krankheitsausgangs verwendet werden“.68 Für diese qualitative Analyse gibt es einige 

vorgefertigte Leitfäden, die zur Beschreibung des Aussehens von Gliomen genutzt werden 

können um mögliche Biomarker zu identifizieren. 

VASARI ist ein Leitfaden für die qualitative, visuelle und reproduzierbare MRT 

Bildbewertung bei Hirntumoren und steht für Visually AcceSAble Rembrandt Images. 

VASARI ist ein Projekt von The Cancer Imaging Archive (TCIA) und dient dazu die 

Morphologie von Gliomen auf MRT-Bildern einheitlich zu beschreiben und zu benennen.69 

Hierfür wurden 24 etablierte bildmorphologische und für Gliome typische Marker erarbeitet 

und durch mehrere Radiologen verifiziert (vgl. Abb. 4). Die Mehrheit dieser Marker zeigte ein 

gutes Interreader Agreement, wodurch sich dieses System für die standardisierte 

Bildbewertung eignet.70 Die 24 VASARI Eigenschaften sind unter anderem einfache 

Merkmale, wie Tumorlokalisation, der Befall von eloquentem Hirngewebe und das Vorliegen 

von Zysten. Die Merkmale umfassen außerdem anspruchsvollere Eigenschaften, wie den 

Durchmesser des Tumors und beispielsweise den Anteil der Nekrose oder KM-Aufnahme vom 

gesamten Tumor. 

Diese standardisierte Bildbewertung ist in der Beurteilung von MRTs im Rahmen klinischer 

Studien wichtig, um so eine Vergleichbarkeit über verschiedene Institutionen zu schaffen, 

kann jedoch auch Anwendung in der alltäglichen klinischen Praxis finden. Des Weiteren 

wurde VASARI in vergleichbaren Arbeiten genutzt um IDH, 1p19q und EGFR-Mutationen 

anhand von präoperativen MRTs vorherzusagen.27,70,71 
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Bildmarker nach VASARI 

Lokalisation 

Seite des Zentrums der Läsion 

Eloquent 

Qualität der Anreicherung 

Anteil der CET 

Anteil der nCET 

Anteil der Nekrosen 

Zysten 

Multifokalität/Multizentrizität 

T1/FLAIR Verhältnis 

Dicke des KM aufnehmenden Rands 

Definition des KM aufnehmenden Rands 

Definition des nicht KM aufnehmenden Rands 

Anteil des Ödems 

Hämorrhagie 

Diffusionsmerkmale 

Piale Invasion 

Ependymale Ausdehnung 

Kortikale Beteiligung 

Tiefe Invasion der weissen Substanz 

nCET überquert Mittellinie 

CET überquert Mittellinie 

Satelliten 

Kalvarielle Umgestaltung 

 

Abb. 4: Bewertungskriterien nach VASARI 

Übersicht über die 24 verwendeten VASARI Merkmale zur Beschreibung der Tumore. VASARI: 
Visually AcceSAble Rembrandt Images, CET: contrast enhancing tumor, nCET: non contrast 

enhancing tumor, FLAIR: Fluid attenuated inversion recovery (MRT Sequenz), KM: Kontrastmittel. 

(Modifiziert nach Ahn (2021)27) 
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1.2.4 PACS Integration und Datenbasis 

Als Grundlage der klinischen Bildgebung und Arbeit in der Radiologie in Kliniken und Praxen 

dient das Picture archive and communication system (PACS) mit der Darstellung von 

medizinischen Bildern in jeglichen Formaten. Das PACS bildet somit den Speicher und die 

graphische Schnittfläche zwischen den Geräten, an denen die Bilder erzeugt werden, wie etwa 

einem MRT und dem Rechner, auf dem sie angezeigt werden. Der am häufigsten verwendete 

Bildstandard in der Bildgebung generell und damit auch in der Bildgebung von Hirntumoren 

ist der Digital Imaging and Communication in medicine (DICOM) Standard. In den DICOM 

Daten sind nicht nur die reinen Bilddaten gespeichert, sondern auch viele Metadaten über den 

jeweiligen Patienten. Demnach werden die meisten Bilddaten im DICOM Format über PACS 

angezeigt. Dadurch bildet PACS die zentrale Arbeits- und Kommunikationseinheit in der 

Radiologie.72 

Durch diese zentrale Stellung innerhalb der Radiologie eignet sich das PACS als 

Datengrundlage zur Bildbewertung mit den oben beschriebenen VASARI Merkmalen am 

besten (vgl. Abb. 5). Herkömmlich wurden solche Bildbewertungen meist in externen 

Anwendungen durchgeführt und waren dadurch schlechter maschinell verwertbar, was das 

Training einer KI mit diesen Daten erschwert. Außerdem entstand dadurch eine getrennte 

Datenbasis, in der die DICOM Daten nicht direkt mit den Bildmarkern verknüpft sind. Dieser 

Ansatz der integrierten Datenbasisarchitektur und Implementierung von machine learning 

Funktionen wurde auch schon für andere Tumorentitäten erfolgreich erprobt.55,73,74 

 

1.2.5 FHIR – fast healthcare interoperable resource  

Um ein externes Tool wie VASARI in das PACS-System zu integrieren haben wir den HL7 

Standard FHIR genutzt (vgl. Abb. 5). FHIR ist ein Standard in der medizinischen Informatik 

und steht für Fast Healthcare Interoperablel Resource. FHIR ist ein Standard der dafür sorgt, 

dass medizinische Informationen, hier Ressourcen genannt, zwischen verschiedenen Geräten 

ausgetauscht werden können. FHIR arbeitet dabei unter anderem mit .json Dateien, die auf 

einem Fragen und Antwort System aufgebaut werden können.75 Diese .json Dateien sind ein 

Standardtextformat und stehen für Java Script Object Notation. Das besondere an .json 

Dateien ist, dass sie mit nahezu jeder modernen Programmiersprache verwendet werden 

können, was eine hohe Nutzbarkeit mit verschiedenen Systemen möglich macht.76,77 FHIR 
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stellt aufgrund seiner .json Basis ein idealen Ansatz dar, um generierte medizinische Daten, 

wie in diesem Fall die visuellen Eigenschaften von Glioblastomen, zu speichern und für 

Maschinen lesbar zu machen. 

 

 
Abb. 5: PACS integrierter Workflow 
Visualisierung des PACS integrierten Auswertungsprozess von Hirntumoren. Durch die Integration 

eines FHIR-basierten Formulars in das PACS können sowohl standardisierte VASARI-Merkmale als 

auch erweiterte radiologische und klinische Features strukturiert erfasst und weiterverarbeitet 

werden. PACS: Picture archive and communication system, VASARI: Visually AcceSAble Rembrandt 

Images. 
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1.3 Ziele der Arbeit  

Für die hier aufgeführte Arbeit wurde ein positives Ethikvotum (2000029055) des Institutional 

Review Boards (IRB) der Yale University, New Haven, Connecticut, USA eingeholt. 

 

Ziel dieser Arbeit war es bei einer Gruppe von Glioblastomen aus einer multiinstitutionellen 

Datenbasis mit molekularen Informationen, spezifische bildmorphologische Marker zu 

identifizieren, die mit der jeweiligen Histologie korrelieren. Somit sollten bildmorphologische 

Marker identifiziert werden, die durch die Korrelation mit der jeweiligen Histologie des 

Tumors eine präoperative Aussage zur Biologie des Tumors zulassen. Außerdem sollte die 

Analyse der Bildmarker durch eine direkte Kommunikation des PACS System mit den 

VASARI Kriterien in Hinblick auf die Zeitersparnis gegenüber dem bisherigen Standard ohne 

direkte Kommunikation verglichen werden. 

Dafür wurde ein eigens für diese Analyse programmiertes FHIR form mit den Inhalten des 

VASARI Systems in das bestehende Forschungs PACS integriert und die darin vorgenommene 

Analyse anschließend mit einer externen Bewertung verglichen. Die Datenbasis mit den MRT-

Bildern der Patienten wurde aus einem multiinstitutionellen Patientenregister mithilfe eines 

deep learning Segmentierungs Algorithmus aufgebaut. Zur Überprüfung der Aussagekraft der 

einzelnen bildmorphologischen Marker wurden multiple logistische Regressionsmodelle zur 

Vorhersage der histologischen Marker entwickelt. 

 

Folgende Fragestellungen sollen im Rahmen dieser Arbeit bearbeitet werden: 

1. Was sind mögliche qualitative und quantitative bildgebende Marker, welche spezifisch 

für CDKN2A-Variationen bei Glioblastomen sind? 

2. Kann ein in Vorarbeiten publizierter Algorithmus zur automatischen Segmentierung 

von Hirntumoren in der Praxis volumetrische Bildmarker identifizieren? 

3. Ist ein in PACS integriertes Bildbewertungstool zur Identifikation der genannten 

Biomarker der herkömmlichen externen Bewertung im Hinblick auf die benötigte Zeit 

pro Studie überlegen?  



 19 

2 Application of novel PACS-based informatics platform to identify 

imaging based predictors of CDKN2A allelic status in glioblastomas, 

Tillmanns, N., Lost, J., Tabor, J. et al. Sci Rep 13, 22942 (2023). 



 

 
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22942   | https://doi.org/10.1038/s41598-023-48918-4

www.nature.com/scientificreports

Application of novel PACS‑based 
informatics platform to identify 
imaging based predictors 
of CDKN2A allelic status 
in glioblastomas
Niklas Tillmanns 1,2, Jan Lost 1, Joanna Tabor 3, Sagar Vasandani 3, Shaurey Vetsa 3, 
Neelan Marianayagam 3, Kanat Yalcin 3, E. Zeynep Erson‑Omay 3, Marc von Reppert 1, 
Leon Jekel 1, Sara Merkaj 1, Divya Ramakrishnan 1, Arman Avesta 4, 
Irene Dixe de Oliveira Santo 1, Lan Jin 5, Anita Huttner 6, Khaled Bousabarah 7, 
Ichiro Ikuta 8, MingDe Lin 1,9, Sanjay Aneja 3, Bernd Turowski 2, Mariam Aboian 1,10,11* & 
Jennifer Moliterno 3,11

Gliomas with CDKN2A mutations are known to have worse prognosis but imaging features of these 
gliomas are unknown. Our goal is to identify CDKN2A specific qualitative imaging biomarkers in 
glioblastomas using a new informatics workflow that enables rapid analysis of qualitative imaging 
features with Visually AcceSAble Rembrandtr Images (VASARI) for large datasets in PACS. Sixty nine 
patients undergoing GBM resection with CDKN2A status determined by whole‑exome sequencing 
were included. GBMs on magnetic resonance images were automatically 3D segmented using 
deep learning algorithms incorporated within PACS. VASARI features were assessed using FHIR 
forms integrated within PACS. GBMs without CDKN2A alterations were significantly larger (64 vs. 
30%, p = 0.007) compared to tumors with homozygous deletion (HOMDEL) and heterozygous loss 
(HETLOSS). Lesions larger than 8 cm were four times more likely to have no CDKN2A alteration 
(OR: 4.3; 95% CI 1.5–12.1; p < 0.001). We developed a novel integrated PACS informatics platform 
for the assessment of GBM molecular subtypes and show that tumors with HOMDEL are more likely 
to have radiographic evidence of pial invasion and less likely to have deep white matter invasion or 
subependymal invasion. These imaging features may allow noninvasive identification of CDKN2A 
allele status.

Glioblastoma (GBM) is the most common primary brain tumor in adults and accounts for 15% of all brain 
tumors. It occurs with an incidence of 3.22 per 100.000 cases in the United States  annually1. !e current stand-
ard of care treatment for glioblastoma (GBM, IDH-wild type, WHO Grade 4) is maximum surgical resection, 
followed by chemo- and  radiotherapy2. Gliomas are classi"ed according to the WHO classi"cation of central 
nervous system tumors with a recently published version in  20213 di#erentiating adult-type di#use gliomas into 
three entities: astrocytoma (IDH mutant, 1p19q intact), oligodendroglioma (IDH mutant, 1p19q codeletion), 
and glioblastoma (IDH wildtype)3. !is new classi"cation diagnoses gliomas not solely based on histology, but 

OPEN

1Brain  Tumor  Research  Group,  Department  of  Radiology  and  Biomedical  Imaging,  Yale  School  of  Medicine, 
333 Cedar Street, PO Box 208042, New Haven, CT 06520, USA. 2Department of Diagnostic and Interventional 
Radiology, Medical Faculty, University Dusseldorf, 40225 Dusseldorf, Germany. 3Department of Neurosurgery, Yale 
School of Medicine, New Haven, CT, USA. 4Department of Radiation Oncology, Yale School of Medicine, 333 Cedar 
Street, PO Box 208042, New Haven, CT 06520, USA. 5R&D, Sema4, 333 Ludlow Street, North Tower, 8th Floor, 
Stamford, CT 06902, USA. 6Department of Pathology, Yale School of Medicine, New Haven, CT, USA. 7Visage 
Imaging, GmbH., Lepsiusstraße 70, 12163 Berlin, Germany. 8Department of Radiology, Mayo Clinic Arizona, 
5711 E Mayo Blvd, Phoenix, AZ 85054, USA. 9Visage Imaging, Inc., 12625 High Bluff Dr, Suite 205, San Diego, 
CA 92130, USA. 10New Haven, USA. 11These authors jointly supervised this work: Mariam Aboian and Jennifer 
Moliterno. *email: mariam.aboian@yale.edu



 

 
2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:22942  |  https://doi.org/10.1038/s41598-023-48918-4

www.nature.com/scientificreports/

complemented by more sophisticated molecular markers such as CDKN2A which is important for IDH-mutant 
gliomas.

Patients with IDH-mutant gliomas that present with either homozygous or heterozygous CDKN2A deletion 
have decreased progression-free and overall  survival4,5.

Cyclin-dependent kinase inhibitor (CDKN) is a gene located on chromosome  9p214,6,7. CDKN has two sub-
types, CDKN2A and CDKN2B (locus (INK4a/ARF), that encode for tumor suppressor proteins (p14ARF and 
p16INK4A) inhibiting the transition from G1-phase to S-phase in the cell cycle. p14ARF activates p53, which results 
in the inhibition of cell  growth4,6,7.

Conversely, CDKN2A homozygous deletion in GBM has a less established role, and is not included in the 
WHO 2021 criteria. However, studies support the hypothesis of CDKN2A homozygous deletion determining a 
worse prognosis in  GBM8, and suggest that GBM with CDKN2A homozygous deletion may bene!t from higher 
dose  radiation8. "is presents a critical need for predicting this molecular subtype of glioblastomas.

In order to make these urgent information available as soon as possible, development of standardized imag-
ing biomarkers is necessary. In comparison to biopsy, MRI is a routine and noninvasive procedure, in which it 
can not only help decreasing the risk of  biopsies9,10. But also in helping to establish a diagnosis in tumors that 
are not feasible to biopsy. In addition, it can help clinicians make treatment decisions given the heterogeneity 
of the tumor and the known limitations of biopsies in this regard by evaluating the whole  tumor11,12. As a single 
biopsies may lead to underestimation of the genetic variance in the tumor and therefore to an incomplete therapy.

Standard of care pre-operative imaging of glioblastomas on MRI includes multiple sequences: T2, FLAIR, and 
T1 with and without gadolinium-based contrast agent  sequences13. "erefore, the determination of biomarkers 
from widely-used imaging sequences will be most applicable to routine clinical practices and circumvent the 
lack of widespread availability of advanced imaging modalities (such as tumor perfusion-weighted imaging).

To determine meaningful and reliable MRI features, a comprehensive and standardized feature set is needed to 
ensure reproducibility. Performing imaging phenotype analysis of brain tumors can be very time consuming and 
requires handling of multiple so#ware packages, which limits the ability to evaluate phenotypes in rapidly avail-
able timeframe. Development of informatics tools that allow phenotype assessment within the same platform, 
can dramatically expedite the phenotypic classi!cation and allow generation of valuable descriptive information 
in the rapidly progressing !eld of brain tumor classi!cation. We used VASARI features to determine qualitative 
imaging features unique for GBMs with CDKN2A alterations, which are currently not well understood and may 
be of interest to be subclassi!ed in future cIMPACT guidelines or WHO  criteria8,14. VASARI stands for Visually 
AcceSAble Rembrandt Images, and is a comprehensive MRI feature set scheme for reproducible measurement of 
brain  tumors15. "e feature set consists of 29 scoring items with a de!ned lexicon to ensure a standardized and 
consistent assessment of non-contrast and contrast-enhanced MR images (Supplementary Data 1)16. VASARI was 
developed by a working group of multiple neuroradiologists from di$erent institutions to ensure maximal appli-
cability to brain tumor imaging, and made freely available by several radiological  organizations17. "e features 
were validated in a consensus group of 8  radiologists15. In recent works, proportional VASARI features including 
the percentage of total abnormal tissue classi!ed as contrast- enhanced tumor, nonenhanced tumor, necrosis, and 
edema were shown to predict IDH mutation status in GBM preoperatively and served as the reference standard 
for comparing visual assessment of volume to manually or automatically segmented  volumes15,16,18,19. VASARI 
was also used for reproducible molecular pro!ling in IDH, 1p19q, and EGFR from pre-operative MRI, as well 
as predicting molecular pro!les in glioblastoma based on  VASARI15,20.

To our knowledge, VASARI has not yet been successfully used to assess CDKN2A homozygous deletion 
(HOMDEL) status in GBM according to WHO 2021. "e practical implementation of VASARI is laborious 
therefore we evaluated the feasibility of clinical incorporation of VASARI forms in a streamlined work%ow 
using Fast Health Interoperability Resources (FHIR) forms. FHIR is a medical information processing and 
communication standard that works on a questionnaire and response system and provides easy a user friendly 
interface through the NIH  website21. Incorporation of FHIR into PACS allows direct linking electronic medical 
data and qualitative data analysis with DICOM format of images. "is incorporation of informatics tools into 
one so#ware package is the basis for a relational database approach for brain tumor analysis and was critical for 
our phenotypic characterization of glioblastomas based on CDKN2A HOMDEL status.

Objective
We aim to identify qualitative imaging biomarkers speci!c for CDKN2A deletion in GBMs using a novel infor-
matics work%ow that allows fast analysis of qualitative imaging features using VASARI for large datasets from 
an integrated database that incorporates DICOM images with FHIR format information.

Methods
"e dataset contains 69 newly diagnosed patients from our institution. All patients underwent primary surgery 
in 2021 for glioblastoma characterized by WHO 2021 criteria and consented for whole exome sequencing to 
be performed on available tissue. "e study was approved by the Yale University IRB and need for consent was 
waived. All methods were carried out in accordance with relevant guidelines and regulations.

IRB waiver of informed consent was obtained for all patients who underwent resection for glioblastoma 
from January 2020 to December 2021 at Yale-New Haven Health and retrospectively reviewed. We included 
all patients with known CDKN2A deletion status, determined by whole exome sequencing, and grouped these 
according to the number of CDKN2A copies. Further inclusion criteria were the availability of pre-operative 
MRI with either FLAIR + T1 post-gadolinium spin echo (PGSE) or FLAIR + T1 post-gadolinium gradient echo 
(PGGE) sequences. IDH-mutant gliomas were excluded.



 

 
3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22942  |  https://doi.org/10.1038/s41598-023-48918-4

www.nature.com/scientificreports/

Magnetic resonance images were transferred from the clinical PACS to the research PACS (AI Accelerator, 
Visage Imaging, Inc. San Diego, CA). Deep learning-based automatic segmentation built within PACS was used 
for tumor  segmentation22. Speci!cally, a UNETR deep learning algorithm used FLAIR and T1 post gadolinium 
sequences to segment the Whole, Core, and Necrotic portions of the tumor according to BraTS  criteria23. For 
further information on the algorithm pipeline we refer to one of our prior  publication22. Two medical student 
research fellows (NT, JL) revised the segmentations, which were then validated and revised as needed by a board-
certi!ed neuroradiologist (MSA). Extracted features included: percent edema, percent contrast enhancement, and 
percent necrosis, which were calculated based on volumetrics described above and reported into the respective 
VASARI categories. As done in prior studies, visual-based estimations of these percentages were not performed 
due to the known potential for the inaccuracy of the  results15. "e VASARI form was scored by a board-certi!ed 
neuroradiologist (MSA) in PACS through a custom built-in Health Level 7® Fast Healthcare Interoperability 
Resource® (HL7 FHIR) webform. "e work#ow was streamlined as the neuroradiologist opened a study in our 
research PACS. Within the interface, there is a button called “VASARI” which can be clicked. "is opens the 
FHIR form with the VASARI questionnaire in it. "e FHIR form is opened right next to the PACS viewer in a 
separate window through a link within PACS, the MRI study can be scrolled and the VASARI questions can be 
answered. "e VASARI feature set consists of 29 scoring items with a de!ned lexicon to ensure a standardized 
and consistent  assessment16. Checkbox !elds were used as input !eld type for VASARI scoring. At the end of the 
questionnaire there was a freeform text !eld for additional information (Supplementary Fig. 1). A%er all patients 
were scored, the completed !elds within the FHIR forms were then exported into Excel (Microso%, Redmond, 
WA) for statistical analysis.

Fi%een cases that were randomly selected were evaluated to compare the e&ciency for scoring VASARI 
features from opening the study to the completion of scoring using the traditional manual assessment and data 
entry vs. automatic assisted assessment and FHIR form data entry. For the automated analysis, the studies were 
opened in PACS and scored by a board-certi!ed neuroradiologist (MSA) while the time and clicks per case were 
assessed manually (NT,JL). For the manual scoring, the studies were opened in PACS and manually scored in a 
separate Excel document by a board-certi!ed neuroradiologist (MSA) while the time and clicks per case were 
assessed manually (NT,JL). "e evaluation included the number of clicks per case and time per case.

Statistical analysis
Descriptive statistics of radiogenomic features were summarized by the 3 subgroups of CDKN2A. Based on the 
distributions of these features, we classi!ed CDKN2A subgroups, and conducted statistical testing to investigate 
the di'erences in the features between the reclassi!ed subgroups. For the correlations between subgroups and 
features, Fisher’s Exact Test was used for categorical variables, while Student’s t test or Mann–Whitney U test was 
used for continuous variables based on the distribution (Supplementary Table 2). For features that proved to be 
statistically signi!cant in a !rst univariate analysis and showed to discriminate certain subgroup from others, 
we developed two logistic regression models to predict CDKN2A homozygous deletion (coded as 1) against 
heterozygous loss and no alteration (coded as 0) while adjusting for possible confounders. "e !rst logistic 
regression model included pial invasion, ependymal invasion and deep white matter invasion as variables. "e 
second model included all above mentioned variables including lesion size. To assess goodness-of-!t analysis, 
we performed the Hosmer–Lemeshow test. Analysis was done in GraphPad Prism 9.

Genomic analysis
To detect somatic single-nucleotide variations (SNVs), insertions/deletions (INDELs), and Copy Number Aberra-
tions (CNAs), Whole Exome Sequencing was performed on the tumor samples acquired from the OR along with 
their matching blood samples to be used as normal. Sequencing was performed at the Yale Center for Genome 
Analysis using the Illumina NovaSeq 6000 system with 2 × 101–bp reads following the capture of the regions 
using IDT xGen, IDT GOAL or Roche_MedExome panels. Average mean coverages of 109.2 × and 214.0 × were 
achieved for blood and tumor tissues, respectively. Somatic variant calling for SNVs/INDELs along with variant 
annotation was performed as previously described in reports from our  institution24. Copy number aberrations 
were determined using an in-house script using the ratio of tumor/normal coverage, normalized by total cover-
age variation and segmentation, performed using DNAcopy R  package25. Copy-neutral loss of heterozygosity 
(LOH) was determined by using the deviation of Variant Allele Frequency (VAF) for germline heterozygous 
mutations in tumor compared to blood.

Results
Patient characteristics
Among the 69 patients included in the !nal analysis, there were 25 tumors (36%) that had CDKN2A heterozygous 
deletion (HETLOSS), 17 tumors (25%) had biallelic loss (HOMDEL), and the remainder, 37 (39%) had intact 
copy numbers (Fig. 1). "e cohort contained 44 males (64%) and 25 females (36%). 25 patients had heterozygous 
loss of CDKN2A (36%). 17 patients had homozygous deletion (25%), while the rest presented with no alteration 
of CDKN2A status (27, 39%). EGFR ampli!cation was found in 42 (61%) patients (Table 1).

Qualitative imaging features analysis
Patients with HOMDEL of CDKN2A exhibited lower levels of deep white matter invasion (47.1%), de!ned as 
“Enhancing or nCET tumor extending into the internal capsule, corpus callosum or brainstem” compared to 
those with HETLOSS or no alteration (75%) (p = 0.041).
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HETLOSS and no alteration groups also had higher subependymal invasion (87 vs. 59%, p = 0.032) de!ned 
as “Invasion of any adjacent ependymal surface in continuity with enhancing or non-enhancing tumor matrix” 
than HOMDEL.

A lower percentage of pial invasion was found in the HETLOSS, and no alteration groups (52 vs. 82%, 
p = 0.045) compared to HOMDEL. "e pial invasion was predictive of HOMDEL in Model 1 (OR: 8.1, 95% CI 
1.8–53.2; p < 0.012) as tumors with pial invasion were eight times more likely to be HOMDEL, even a#er adjusting 
for deep white matter and subependymal invasion as covariables in the !rst logistic regression model (Figs. 2 and 
3). "e overall model performance remained steady when incorporating lesion size (> 8 cm) in a second model, 
while increasing the OR for pial invasion marginally (Table 2).

Figure 1.  Flowchart of patients in our analysis.

Table 1.  Description of patient characteristics.

Characteristic All patients CDKN2A HETLOSS CDKN2A HOMDEL CDKN2A intact
n 69 (100%) 25 (36%) 17 (25%) 27 (39%)
Age at surgery (years) 62 (± 15) 62(± 18) 60(± 10) 66(± 14)
Sex
 Male 44 (64%) 19 (76%) 9 (53%) 16 (59%)
 Female 25 (36%) 6 (24%) 8 (47%) 11 (41%)
Ethnicity
 Asian 1 (1%) 0 (0%) 0 (0%) 1 (4%)
 Black 4 (6%) 2 (8%) 1 (6%) 1 (4%)
 Hispanic 2 (3%) 1 (4%) 1 (6%) 0 (0%)
 Other 1 (1%) 0 (0%) 0 (0%) 1 (4%)
 White 61 (88%) 22 (88%) 15 (88%) 24 (88%)
Genetic pro!le
 CDKN2A HETLOSS 25 (36%)
 CDKN2A HOMDEL 17 (25%)
 CDKN2A intact 27 (39%)
 EGFR ampli!ed 42 (61%) 9 (36%) 11 (65%) 6 (22%)
 EGFR not ampli!ed 26 (38%) 16 (64%) 5 (29%) 21 (78%)
 EGFR unknown 1 (1%) 0 (0%) 1 (6%) 0 (0%)
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GBMs without CDKN2A alterations were signi!cantly larger in size when compared to tumors with HOMDEL 
and HETLOSS (64 vs. 30%, p = 0.007). "e direct comparison of whole tumor volume that includes a non-enhanc-
ing portion of the tumor de!ned by FLAIR among the wildtype, HOMDEL, and HETLOSS is shown in Fig. 2. 
Lesions greater than 8 cm were four times more likely to be found in patients without alteration of CDKN2A 
(OR: 4.3; 95% CI 1.5–12.1; p < 0.001) compared to HOMDEL or HETLOSS. 8 cm were de!ned as the largest 
(x–y) cross-sectional diameter of T2 signal abnormality measured on a single axial image according to VASARI.

Manual VASARI scoring vs. built‑in FHIR form
Fi$een cases were evaluated to compare the time for scoring VASARI features from opening the study to comple-
tion of scoring. "e time for automated measurements was 2.76 min (SD ± 0.47), and for manual measurements, 
5.91 min (SD ± 0.87). "e di%erence between automatic and manual measurements was statistically signi!cant 
(p < 0.0001) using an unpaired t-test (Fig. 4). "is highlights the work&ow ine'ciencies of manual assessment of 
VASARI forms using separate scoring modalities compared to native, built-in FHIR (Fast Healthcare Interoper-
ability Resources) forms within PACS. "is is supported by the amount of clicks needed per case from opening 
the study to completion of scoring between built in analysis and the manual group. "e mean amount of clicks 
for automated measurements was 43.80 (SD ± 6.268), and for manual measurements, 76 (SD ± 6.245). "e dif-
ference between built-in and manual measurements was statistically signi!cant (p < 0.0001) using an unpaired 
t-test (Fig. 4).

Discussion
"e 2021 WHO classi!cation identi!ed novel molecular subtypes, including CDKN2A homozygous deletion 
status in gliomas. But recent literature suggests that CDKN2A homozygous deletion status can also predict worse 
outcomes in patients with GBM which are IDH-wildtype2,5,8,14,26,27.

"ese !ndings are not yet incorporated in clinical patient care, since most patient with WHO grade 4 tumors 
are treated with the same therapy. Nonetheless early identi!cation of CDKN2A status might lead to a more 
aggressive approach in surgery or higher dose  radiotherapy8 and might allow for inclusion in clinical trials. It 
will be even more valuable by the time targeted therapies for this speci!c subtype are incorporated in patient 

Figure 2.  (A) Logistic regression models for prediction of homozygous deletion (HOMDEL) of CDKN2A. "e 
area under the ROC curve for Model 1 was 0.78 (std. error: 0.07, 95% CI 0.66–0.91, p value: 0.0005). "e are 
under the ROC curve for Model 2 was 0.8 (std. error: 0.06, 95% CI 0.68–0.92, p value: 0.0003). (B) Mean values 
of Whole-, Core- and Necrotic volumes in cubic millimeters based on automated segmentation, di%erentiated 
by no alteration, homozygous deletion (HOMDEL) and heterozygous loss (HETLOSS) in CDKN2A.
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 management27. Because of the shi! towards molecular pro"ling in glioma diagnosis, and the integration of 
molecular subtypes in the most recent WHO criteria gathering these information is critical.

We aim to establish correlation of radiological "ndings and speci"c genetic alterations to support further clini-
cal decision making. Our study investigated whether qualitative imaging biomarkers for CDKN2A can be identi-
"ed in glioblastomas on pre-operative MR images using standard imaging protocol, as this sub-classi"cation 

Figure 3.  Visualization of MRI shows no pial or subependymal invasion, pial invasion, and subependymal 
invasion. FLAIR = Fluid attenuated inversion recovery, DWI = di#usion-weighted imaging

Table 2.  Description of logistic regression models to discriminate homozygous deletion. $e goodness-of-"t 
evaluation was performed by a Hosmer–Lemeshow test. For the "rst logistic regression model the Hosmer–
Lemeshow statistic was 0.979 (p value: 0.9864). Where a p value below 0.05 is believed to re%ect a bad "t of the 
model and a higher p value re%ects a good "t of the model. $e Hosmer–Lemeshow statistic for Model 2 was 
2.011 (p value: 0.9592). *Pial invasion (OR: 8.1, 95% CI 1.87–53.17, p value 0.0120), ependymal invasion (OR: 
0.23, 95% CI 0.04–1.16, p value 0.08), Deep white matter invasion (OR: 0.3, 95% CI 0.08–1.49, p value 0.15). 
**Pial invasion (OR: 8.8, 95% CI 1.99–57.68, p value 0.0096), ependymal invasion (OR: 0.26, 95% CI 0.04–1.35, 
p value 0.1), Deep white matter invasion (OR: 0.42, 95% CI 0.08–2.21, p value 0.3) and lesion size (OR: 0.6, 
95% CI 0.13–2.92, p value 0.5). OR odds ratio, ROC receiver operating curve, CI 95% con"dence interval.

Multiple logistic regression model Included variables (OR) Area under ROC curve (CI)

Model 1*
Pial invasion (8.1)

0.78 (0.65–0.91)Ependymal invasion (0.23)
Deep white matter invasion (0.3)

Model 2**

Pial invasion (0.1)

0.79 (0.67–0.92)
Ependymal invasion (3.86)
Deep white matter invasion (2.36)
Lesion size (> 8 cm) (0.6)



 

 
7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:22942  |  https://doi.org/10.1038/s41598-023-48918-4

www.nature.com/scientificreports/

of glioblastomas is currently not available. To our knowledge, this is the !rst study to attempt to identify such 
imaging biomarkers in a cohort of glioblastomas with CDKN2A alterations.

We found GBMs with homozygous CDKN2A loss are more likely to exhibit radiographic evidence of pial 
invasion and less likely to have deep white matter or subependymal invasion. In addition, tumor volume is also 
predictive, with tumors greater than 8 cm being less likely to harbor an underlying CDKN2A copy loss. Although 
incorporation of lesion size increased the OR for pial invasion, the e#ect was marginally. Foremost this !nding 
supports the stability of pial invasion as a stable predictor for homozygous deletion of CDKN2A. Taking all the 
above mentioned !ndings into account, clinicians will bene!t by incorporating these imaging characteristics 
in their assessment, as they provide the potential to serve as a non-invasive pre-operative method to measure 
CDKN2A allelic status..

Our !ndings corroborate with other studies which showed that the prediction of IDH and 1p/19q mutation 
based on lesion size VASARI features can yield an AUC of 0.73 ± 0.02 and 0.78 ± 0.01,  respectively19. While these 
results are promising, the lack of a large volume of literature on this method could be due to the time-intensive 
nature of performing VASARI scoring. To improve the work$ow of VASARI scoring, we leveraged a novel infor-
matics approach using FHIR within PACS to input data more e%ciently and quickly into a relational database. 
Our method includes incorporating ML algorithms into the research version of our clinical PACS, which allows 
auto-segmentation of tumors using a deep learning algorithm (UNETR). &is quantitative method provides 
higher accuracy of volumetric assessment than the standard VASARI assessment based on qualitative estimation 
of tumor percent edema, contrast enhancement, and necrosis. As described in prior research, scoring of VASARI 
is a robust assessment for qualitative assessment of imaging features in gliomas and shows little interobserver 
 variability15,19,28. Our PACS embedded so'ware creates an important time and work$ow e%cacy gain for clini-
cians and  researchers29. VASARI integration within PACS provides a streamlined approach for qualitative image 
assessment that can be integrated into clinical practice.”

To date, two-dimensional measurements have been used in routine clinical practice. However, the RANO 
group has proposed two-dimensional and volumetric measurement protocols for clinical  trials13. In our study, 
we performed the most comprehensive evaluation of glioblastoma by including both two-dimensional and volu-
metric measurements. Nevertheless, volumetric tumor size alone is not su%cient to predict CDKN2A mutation 
status, as shown by the largely overlapping boxplots (Fig. 2B) and investigation of more complex imaging features 
like radiomics might be of interest in further  studies30.

Nonetheless, the results shown above can provide guidance to clinicians so that they are not misled by tumor 
size, since CDKN2A-mutated tumors with associated poor survival prognosis are o'en smaller than CDKN2A-
intact  tumors8,14.

Our study highlights the bene!ts of incorporation of advanced informatics tools to create the relational 
datasets linked to DICOM images using FHIR standards. FHIR is an emerging and rapidly evolving medical 
information processing and communication standard, which works on a questionnaire and response system. It 
can easily exchange and standardize protected health information (PHI) in EMR systems such as EPIC. It is based 
on Health Level 7 (HL7), a framework of standards for electronic health information exchange, and works with 
di#erent standardized categories called “Resources”31. FHIR uses standardized semantics and thus can be easily 
queried, unifying the way personal health information (PHI) gets acquired and exchanged between di#erent 
instances in the medical sector. Up to now, incorporating FHIR with DICOM images has not been done, and 
FHIR is predominantly used in non-imaging work$ows. FHIR is expected to be the emerging standard in the 
coming years to make medical information more accessible for AI applications in the medical  sector32.

Figure 4.  Comparison of manual VASARI scoring with built-in forms within PACS. Shown are the median 
and respective quartiles. &e di#erence between built-in and manual measurements was statistically signi!cant 
regarding the time per case (p < 0.0001) and clicks per case (p < 0.0001). &is highlights the work$ow 
ine%ciencies of manual assessment of VASARI forms using separate scoring modalities compared to native, 
built-in FHIR forms within PACS.
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In our approach, we implemented the VASARI scoring through an embedded FHIR form in PACS and were 
able to decrease the amount of time and clicks per case signi!cantly. Usually, VASARI scoring is done in mul-
tiple applications. "e radiologist needs to open the study on the PACS station and score VASARI in a separate 
application like Excel. "is not only takes more time and more switching between applications but also hinders 
the natural work#ow and is susceptible to typographical errors. As a result, we created a relational database by 
the implementation of FHIR forms, which links the patient imaging to the related imaging features and thereby 
allows for easy organization of larger datasets and the ability to data mine.

Our approach of combining novel informatics methods to build relational databases, machine learning auto-
segmentation tools within clinical PACS, and advanced genomic analysis of glioblastomas for a novel biomarker 
of tumor aggressiveness is a signi!cant advance for the !eld of neuro-oncology29,33. "ese methods allow the 
generation of large datasets of annotated images with metadata information on patient outcomes, genetic test-
ing, pathologic results, and detailed qualitative imaging analysis in a streamlined work#ow. "is work#ow has 
the potential for rapid evaluation of image biomarkers that correlate to several di$erent genetic variants within 
intracranial malignancies and will overcome the current limitation of extensive human hours required to do this 
research outside of this work#ow. "is work#ow can also serve as a new and accurate standard for volumetric 
assessments and will decrease the e$ort for time-intensive response assessments like RANO and RECIST in 
routine clinical practice and clinical trials.

Limitations of the study are the small sample size of CDKN2A tested GBMs, although this is the largest study 
assessing standardized imaging features of this molecular subtype in glioblastomas to  date34. Also the possibility 
of EGFR status or MGMT status in#uencing pial-, white matter—or subependymal invasion limits the results, 
even though it showed to be no signi!cant confounder in our analysis. Future studies with larger sample sizes 
are needed. "e clinician did not score their experience using a questionnaire using a standardized method. 
Future study investigating the physician perception of using FHIR forms for image annotation is needed. Lim-
ited availability of whole exome sequencing results is one of the major contributors to the lack of literature on 
this topic. Our integrated approach to genomic assessment and imaging correlation represents a strength that 
allowed the generation of this dataset.

In conclusion, we use a multimodal and multidisciplinary collaborative approach to combine advanced 
genetic analysis of GBMs and correlate it with image-based analysis accelerated by informatics and machine 
learning tools to identify imaging biomarkers for CDKN2A co-deletion. "ese imaging biomarkers include tumor 
size greater than 8 cm and evidence of pial invasion.

Data availability
"e datasets analysed during the current study are not publicly available yet, but will be made available in the 
near future. Currently the dataset is available from the corresponding author on reasonable request. "e FHIR 
forms underlying .json !le, which was used is publicly available on our GitHub page under: https:// github. com/ 
Imagi neQua nt/ VASARI_ FHIR.
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3 Diskussion 

3.1 Bildmarker beim Glioblastom 

In unserer Studie konnten wir zeigen, dass Glioblastome mit CDKN2A/B Mutation oft kleiner 

sind als Glioblastome ohne CDKN2A/B Mutation. Außerdem weisen Tumore mit 

homozygoter CDKN2A/B Mutation in unserer Studie acht mal häufiger eine Invasion der Pia 

Mater auf, als Tumore ohne Mutation. Ein Durchmesser von mehr als 8cm kam viermal 

häufiger bei CDKN2A/B Wildtyp Tumoren vor. Somit lässt sich sagen, dass die von uns 

herausgearbeiteten Bildmarker sich dazu eignen, den Status von CDKN2A/B im Glioblastom 

vorherzusagen. In Bezug auf die Effizienz einer PACS basierten Analyse im Vergleich zu einer 

externen Bewertung konnten wir zeigen, dass eine Bewertung der VASARI Kriterien mit Hilfe 

einer an das PACS gekoppelten Analyse-Software gegenüber nicht gekoppelten Systemen 

einen Zeitgewinn von 3,5 min pro Fall ergibt. 

 

In der Literatur sind viele bildmorphologische Marker bei niedriggradigeren Gliomen 

beschrieben, wie etwa das T2-FLAIR Mismatch-Sign für IDH mutierte 1p-19q-codeletierte 

Oligodendrogliome.16 Für das Glioblastom gibt es weniger etablierte Bildmarker. Jedoch 

konnten Lai et. al. bereits 2011 zeigen, dass IDH mutierte Glioblastome zumeist im 

Frontallappen auftreten und eine geringere KM Aufnahme, sowie geringere Nekrose besitzen 

als IDH-Wildtyp Glioblastome die eher verteilt auftreten.78 Dies steht im Einklang mit unseren 

Ergebnissen, bei denen die Tumore ähnlich häufig im Frontal-, Temporal- und Parietallappen 

auftraten (siehe Anhang), auch wenn wir keine Vergleichsgruppe zur Analyse wie Lai et. al. 

aufweisen konnten. 

Ein neuer und rechenintensiver Ansatz zur Identifikation von bildgebenden Markern bei 

Hirntumoren sind die Radiomics. Hier gibt es Studien, die mit großen Patientenkohorten und 

KI Modellen eine Vorhersage zur Mutation treffen können und dabei gute AUC Werte von bis 

zu 0,84 für bestimmte molekulare Subtypen erreichen.67 Im Vergleich zu den von uns 

verwendeten VASARI Bildmarkern, stellt dieses Verfahren jedoch einen rechenaufwendigen 

Ansatz dar. Die Aussagekraft der Radiomics ist bis dato jedoch noch nicht klar zu beurteilen. 
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Auch wenn diese KI Ansätze in Zukunft dabei helfen werden, eine Patientenklassifikation 

frühzeitiger durchführen zu können, sind unsere Bildmarker hilfreich im klinischen Alltag, da 

sie keine aufwendige Bildgebung benötigen und jeder Kliniker diese Kriterien anwenden 

kann. 

 

3.2 Rolle von CDKN2A/B Mutation in Glioblastomen 

In der aktuellen WHO Klassifikation der Hirntumore von 2021 ist der CDKN2A/B Status als 

Diagnosekriterium lediglich für IDH mutierte Astrozytome und nicht das IDH Wildtyp 

Glioblastom aufgeführt. Es gibt jedoch Studien, die darauf hinweisen, dass CDKN2A/B 

Mutationen ebenfalls in IDH Wildtyp Glioblastomen ein wichtiger prognostischer Faktor 

sind.38,79 CDKN2A/B Mutationen zeichnen sich durch ein niedrigeres Gesamtüberleben in der 

Gruppe der IDH mutierten Gliome aus. Für die Gruppe der Glioblastome deutet eine Arbeit 

von Ma et. al. darauf hin, dass CDKN2A/B ebenfalls einen unabhängigen prognostischen 

Biomarker darstellt. Dieser geht mit schlechterem progressionsfreien- und Gesamtüberleben 

einher.79 Diese Studie war eine retrospektive Analyse eines Zentrums und ist im Vergleich zu 

den Studien, welche die Rolle der CDKN2A/B Mutation bei IDH mutierten Astrozytomen 

definieren, in der Patientenzahl vergleichbar.80 Es gibt eine deutlich größere Studie von Appay 

et. al., welche diesen Zusammenhang lediglich bei Astrozytomen beschreibt.81 

Obwohl die Mutation von CDKN2A/B in der aktuellen WHO-Klassifikation keine 

entscheidende Rolle spielt, existieren Hinweise auf einen biologischen Zusammenhang bei 

IDH-Wildtyp-Glioblastomen, die weiterer Untersuchungen bedürfen. 

 

3.3 VASARI Bildmarker als Prädiktoren für Mutationen 

Um die von uns erarbeiteten Bildmarker der pialen Infiltration und der Größe der Tumore zu 

definieren haben wir die VASARI Kriterien genutzt. Diese Kriterien haben sich in 

vorangegangenen Studien zur Analyse bewährt und konnten gute interreader agreement 

scores erreichen. Hervorzuheben sind vor allem die Messung der Größe des Tumors und die 

Lokalisation.27,70 

In der Arbeit von Gutman et. al. wurde neben der guten Vergleichbarkeit der VASARI 

Merkmale auch eine Korrelation zwischen den einzelnen Mutationen und Bildmarkern 
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herausgearbeitet.70 Dabei wurden im Gegensatz zu unserer Studie jedoch keine signifikanten 

Zusammenhänge gefunden. Dies mag zum einen an der geringeren Anzahl an untersuchten 

Bildmarkern liegen (5 im Vergleich zu 24), zum anderen aber auch an den relativ kleinen 

Patientengruppen pro Mutation in der Analyse. Nichtsdestotrotz zeigt die Arbeit von Gutman 

et. al. ähnlich wie unsere, dass es vermutlich einen Zusammenhang zwischen radiologischem 

Erscheinungsbild von Tumoren und ihrem histologischen Phänotyp gibt, der neben der 

Vorhersage von Mutationen eventuell auch zur Prädiktion des Überlebens genutzt werden 

kann.70 

Im Einklang mit unseren Ergebnissen wiederrum konnte die Arbeit von Ahn et. al.27 zeigen, 

dass es möglich ist molekulare Marker anhand der Bildmorphologie vorherzusagen. Diese 

Arbeit erlaubte aufgrund fehlender Patienten in ihrer externen Validierungskohorte keine 

Aussage zu bildmorphologischen Markern und CDKN2AB. Jedoch erreichten sie eine AUC 

von 0,605 in der Vorhersage von CDKN2AB Mutationen durch eine random forest Analyse in 

der internen Kohorte.27 Diese AUC ist verglichen mit unserer AUC von 0,78 in der Vorhersage 

von CDKN2A Mutationen zwar etwas geringer, lässt sich aber wahrscheinlich durch die 

unterschiedlichen genutzten Analysemethoden erklären. In der Analyse von Bildmarkern die 

spezifisch für bestimmte Mutationen sind, hat diese Arbeit die Dicke der KM Aufnahme als 

spezifisch für CDKN2AB Mutation herausgearbeitet. Diese Untersuchung bezieht sich auch 

auf IDH mutierte Astrozytome und wiederspricht somit nicht unseren Ergebnissen, sondern 

unterstreicht vielmehr die Möglichkeit der Korrelation von VASARI Bildmarkern mit 

histologischen Subtypen. 

 

3.4 KI-gestützte Segmentierungsverfahren 

Zur Erstellung unserer Datenbasis in PACS haben wir einen U-NET R Algorithmus zur 

Segmentierung der Tumorstrukturen genutzt.55 Mithilfe dieses KI Segmentierungsverfahrens 

konnten wir automatisch die Volumina der einzelnen Tumorstrukturen bestimmen und 

vergleichen (Siehe Abb. 2B Publikation). Die Volumetrie stützt dabei unserer Ergebnisse der 

VASARI Analyse, dass CDKN2A/B Wildtyp Tumore größer sind als Tumore mit einer 

Mutation, auch wenn es in Bezug auf die einzelnen volumetrisch gemessenen Tumoranteile 

keinen statistisch signifikanten Unterschied gibt. Nichtsdestotrotz ist die automatische 

Segmentierung mit gleichzeitiger Integrierung in PACS ein methodisch neuer Ansatz, der bei 
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der Generierung großer Datensätze hilfreich sein kann. Außerdem besteht bis heute eine große 

Diskrepanz zwischen den in der präklinischen Forschung beschriebenen und den in der Praxis 

nutzbaren KI Segmentierungsverfahren, wie wir in einer systematischen Übersichtsarbeit 

zeigen konnten.61 Deshalb ist die PACS Integration einer KI gestützten Segmentierung nicht 

nur interessant in Hinblick auf die Identifizierung möglicher Biomarker, sondern auch 

bezüglich einer klinischen Implementierung dieser Technik. 

Im Hinblick auf die technische Umsetzung der klinischen Implementierung gibt es jedoch 

verschiedene Ansätze. Lotan et al. beschreiben die klinische Implementierung eines deep 

learning basierten Algorithmus zur Segmentierung von prä- und post OP Gliomen.82 In ihrer 

Pipeline müssen die Bilder für die Segmentierung jedoch auf einen externen Server geladen 

werden und können nicht wie bei uns direkt im klinischen PACS segmentiert werden. Einen 

ähnlichen Ansatz beschreiben van Garderen et al.. In Ihrer Studie präsentieren sie die klinische 

Implementierung eines Algorithmus zur Segmentierung von niedriggradigen Gliomen, 

welcher einen automatischen volumetrischen Report generiert.83 Vergleichbar mit der Studie 

von Lotan et al. benötigt auch dieser Ansatz exzessive Vorverarbeitungsschritte um die Bilder 

zu segmentieren und arbeitet nicht im Rahmen des klinischen PACS, auch wenn die 

generierten Reports in diesem angezeigt werden können.82 Ein zu benennender Vorteil dieser 

beiden Studien ist, dass sie sich sowohl auf präoperative, als auch postoperative 

Tumorsegmentierungen fokussieren, was eine breitere klinische Anwendbarkeit dieser 

Algorithmen garantiert. Als Nachteil im Hinblick auf die klinischen Anwendbarkeit ist bei van 

Garderen et al. die Fokussierung auf niedrig gradige Gliome zu nennen.83 

Insgesamt lässt sich sagen, dass die klinische Implementierung von 

Segmentierungsalgorithmen noch weit hinter den in der Literatur beschriebenen 

Möglichkeiten bleibt.61 Trotzdem gibt es vielversprechende Ansätze in der Literatur, die 

jedoch im Vergleich zu unserem Ansatz nicht auf eine PACS Integration der Algorithmen, 

sondern vielmehr auf eine PACS Erweiterung durch andere Softwarepakete setzen.82,83 

Im Hinblick auf die automatische Segmentierung beschreiben die beiden oben genannten 

Studien gute Ergebnisse, die jedoch durch unterschiedliche Parameter objektiviert wurden. 

In der Regel wird dabei die durch KI erzeugte Segmentierung mit einem zuvor definierten 

Goldstandard verglichen. Diesen Goldstandard bildet meistens die manuelle Segmentierung 

eines Neuroradiologen. Lotan et al. messen die Qualität der erzeugten Segmentierungen 

anhand des DICE Wertes. Der DICE Wert gilt als Standard für die Evaluation von 
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Segmentierung, indem sie die Übereinstimmung von zwei Objekten messen. Dabei bedeutet 

ein DICE von 1 beispielsweise eine Überlappung von 100%.61 Bei den berichteten DICE 

Werten zeigen sich ähnliche Ergebnisse wie bei dem von uns genutzten Algorithmus (0.91 vs. 

0.86 für die Segmentierung der T2 Hyperintensität).55,82 Die DICE Ergebnisse unseres 

Algorithmus  stehen demnach im Einklang mit dem aus der Literatur bekannten Standard.55,61 

In der Studie von van Garderen et al. wird eine volumetrische Messung aus der automatischen 

Segmentierung erzeugt und die Segmentierung anhand der Zufriedenheit der Kliniker durch 

einen Fragebogen bewertet.83 Hier sind diese Studien, welche sich auf eine postoperative 

Tumorsegmentierung fokussieren jedoch von unserer Studie zu unterscheiden. Wenn man sich 

aber die klinische Akzeptanz der Segmentierungen ansieht, konnte die Arbeit von van 

Garderen et al. zeigen, dass die Kliniker mit 77% der Segmentierungen zufrieden waren. 

Obwohl es sich hierbei um postoperative Segmentierungen handelte, welche aufgrund ihrer 

Heterogenität und Resektionshöhle meist schwieriger für einen Algorithmus zu segmentieren 

sind.83 Auch wenn die Erhebung solcher Daten nicht Bestandteil unserer Arbeit waren, zeigen 

diese Ergebnisse, dass automatische Segmentierungen im klinischen Alltag und eventuell auch 

in der Erzeugung großer multiinstitutioneller Datenbasen hilfreich sein können. Trotzdem 

muss man die Qualität der automatischen Segmentierungen gerade im Hinblick auf die 

Erzeugung multiinstitutioneller Datensätze kritisch bewerten. Denn durch fehlerhafte 

Segmentierungen die zum Training einer KI genutzt werden, kann sich ein selbst 

reproduzierendes fehlerhaftes System etablieren, da es von einer falschen ground truth 

ausgeht. Das gleiche Problem ergibt sich für die Analyse von Mutationen in Tumoren durch 

KI. Die histologische Analyse ist hierbei die ground truth. Sie analysiert dabei jedoch selten 

den kompletten Anteil eines Tumors, oder setzt durch verschiedene Analysemethoden 

unterschiedliche Werte als Goldstandard.67 

Abgesehen von diesen Limitationen lässt sich feststellen, dass die Implementierung einer 

automatischen Segmentierung mit volumetrischer Messung in klinische Abläufe möglich ist 

und klinisch akzeptable Ergebnisse liefert. 

  



 

 25 

3.5 PACS intergierte Bewertung 

Für die Korrelation der MRT Bildmarker mit genetischen Variationen haben wir die Analyse 

in die PACS Umgebung integriert. Wir konnten zeigen, dass die integrierte Analyse einer 

externen Analyse anhand der Klicks pro Studie und des Zeitaufwandes überlegen ist. Diese 

PACS Integration ist ein wichtiger Schritt zur Erstellung multiinstitutioneller Datenbasen, die 

der Entwicklung von Algorithmen für die klinische Praxis dienen können. Unsere 

Arbeitsgruppe hat auf diesem Gebiet wichtige Vorarbeiten geleistet, die die Verbreitung 

solcher Systeme vorantreiben könnte.55,84 

Der Stellenwert einer PACS Integration von Tools zur Erstellung von Datensätzen mithilfe KI 

wurde bereits vor einigen Jahren benannt. So definierte eine Studie aus Radiology aus dem 

Jahre 2019 die Implementierung von machine learning tools in die PACS Umgebung, mit der 

gleichzeitigen Erstellung von Reports aus den Ergebnissen, als den „heiligen Gral“ der KI in 

der Neuroradiologie.85 Dass eine solche Integration möglich und gleichzeitig effektiver ist, 

zeigen die Ergebnisse dieser Studie und Vorarbeiten unserer Arbeitsgruppe beispielsweise auf 

dem Gebiet der Hirnmetastasen. Gemessen an der Anzahl der Klicks die es zur Bearbeitung 

einer Studie brauchte, benötigte in beiden Arbeiten die PACS integrierte Verarbeitung 

signifikant weniger Klicks und weniger Zeit.84 

Andere Studien, die eine solche Implementierung von KI gestützten Tools in PACS 

beschreiben, analysieren nach der klinischen Implementierung solcher Systeme die Anzahl 

der evaluierten Studien im klinischen Alltag und konnten einen stetigen Anstieg nach der 

Implementierung verzeichnen.86 Weitere Studien wiederrum messen die Effektivität dieses 

Ansatzes nicht durch Klicks pro Patient, sondern anhand des Zeitaufwandes pro Studie und 

kommen dabei ebenfalls zu dem Schluss, dass ein integrierter Ansatz weniger Zeit benötigt 

als die vorherigen Modalitäten.87 Dies steht somit im Einklang mit unseren Ergebnissen, da 

auch wir eine signifikant schnellere Analyse von Patienten durch die PACS integrierte 

Software nachweisen konnten.  

Abschließend lässt sich herausstellen, dass eine Integration von KI gestützten Tools in PACS 

nicht nur eine gute Möglichkeit ist Bildmarker für Tumore zu identifizieren und heterogene 

Datensätze für die Forschung und klinische Praxis aufzubauen, sondern dies auch effektiv 

möglich ist und eine Zeitersparnis für Kliniker bringt. 
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3.6 Limitationen 

Eine der Limitationen unserer Studie war die geringe Anzahl an Patienten (n=69) die wir 

integrieren konnten. Hieraus folgten nach der Stratifizierung entsprechend des 

Mutationsstatus kleine Testgruppen. Unsere Studiengröße ist bezogen auf die Analyse von 

Bildmarkern anhand des VASARI Systems jedoch vergleichbar mit anderen Studien.70 Eine 

weitere Limitation unserer Ergebnisse besteht in der alleinigen Analyse der Beziehung von 

Bildmarkern und einer CDKN2AB Mutation. Es besteht somit die Möglichkeit, dass die von 

uns beschrieben Bildmarker des Glioblastoms durch andere genetische Variationen wie etwa 

eine EGFR oder MGMT Mutation mitbeeinflusst werden. In unseren multiplen logistischen 

Regressionsmodellen stellten diese Mutationen jedoch keinen signifikanten Störfaktor dar. 

Um eine stärkere Vorhersagekraft der Bildmarker zu erreichen und die Validität dieser zu 

überprüfen, sowie die möglichen zugrunde liegenden biologischen Ursachen zu identifizieren 

sind jedoch weitere Studien nötig. 

Außerdem können wir keine weiteren Daten zur klinischen Akzeptanz des PACS integrierten 

VASARI Fragebogens liefern, da die bewertende Neuroradiologin ihre Erfahrungen nicht etwa 

anhand eines vorgefertigten Schemas wie etwa eines Fragebogens bewertete. In Hinblick auf 

andere Studien welche die klinische Implementierung solcher Systeme beschreiben, haben wir 

jedoch vergleichbare Methoden genutzt.86,87 

 

3.7 Perspektiven 

Das Ziel unserer Arbeit war es, die bildmorphologischen Marker des Glioblastoms anhand 

einfacher Merkmale zu beschreiben und so für Kliniker nutzbar zu machen. Die vorliegende 

Arbeit hat gezeigt, dass distinkte qualitative Bildmarker im MRT zur Vorhersage des 

Mutationsstatus bei Patienten mit Glioblastom geeignet sind und dass die Integration dieser 

Analyse in die PACS-Umgebung eine signifikante Zeitersparnis ermöglicht. Diese 

Erkenntnisse bieten eine solide Grundlage für zukünftige Forschungsarbeiten und klinische 

Anwendungen. Die Ergebnisse unserer Arbeit können somit dazu dienen, die bildgebenden 

Merkmale bei Glioblastomen besser zu verstehen und diese Tumore nicht nur anhand ihrer 

histologischen Marker, sondern auch anhand ihrer Charakteristik in der MRT Bildgebung 

einzuteilen. So können etwa die Invasion der Pia Mater oder der Durchmesser des Tumors im 
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MRT als nicht invasive Biomarker dabei helfen, präoperative Strategien anhand einfacher 

Bildbeurteilung zu beeinflussen. Ein vielversprechender Ausblick besteht in der 

Weiterentwicklung und Validierung der identifizierten Bildmarker. Insbesondere sollte 

untersucht werden, ob diese Marker in größeren, multizentrischen Studien reproduzierbar sind 

und ob weitere Bildmarker identifiziert werden können, die zusätzliche genetische oder 

molekulare Eigenschaften der Tumoren widerspiegeln. 

Außerdem sollte die Integration der Bild Analyse in der PACS-Umgebung weiter optimiert 

werden, um die Effizienz und Benutzerfreundlichkeit zu erhöhen. Darüber hinaus könnte die 

Entwicklung von KI-Modellen zur automatischen Erkennung und Bewertung dieser 

Bildmarker den diagnostischen Prozess weiter beschleunigen und standardisieren. Solche 

Modelle könnten durch die Nutzung umfangreicher multiinstitutioneller Datenbanken trainiert 

und verfeinert werden. Die Zeit zur Erstellung solcher multiinstitutionellen Datenbanken, 

kann durch den von uns beschriebenen Arbeitsablauf mit einer KI gestützten Segmentierung 

und Integration von Bildbewertungswerkzeugen in die PACS Umgebung verkürzt und somit 

effizienter gestaltet werden. In Zukunft wird die Entwicklung von In-vivo-Markern für die 

räumliche und molekulare Heterogenität durch KI-gestützte radiologische Instrumente das 

Potenzial bieten, Patienten in präzisere diagnostische und therapeutische Arme einzuteilen und 

eine bessere dynamische Behandlungsüberwachung in einer Ära der personalisierten Medizin 

zu ermöglichen. Obwohl zahlreiche Herausforderungen bestehen, wird sich die radiologische 

Praxis mit der Weiterentwicklung und Validierung der KI-Technologie für den klinischen 

Einsatz erheblich verändern und weiterentwickeln. Bis dahin kann die Identifikation von  

einfachen Bildmarkern, welche simpel in ihrer Anwendung sind, Klinikern dabei helfen 

präoperativ eine informiertere Entscheidung über das Vorgehen mit dem Patienten zu treffen. 
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3.8 Schlussfolgerung 

In dieser Arbeit wurden alle vorangehenden Fragestellungen erfolgreich beantwortet. Es 

konnte nachgewiesen werden, dass es quantitative und qualitative bildmorpholgische Marker 

auf MRT Bildern für Mutationen bei Patienten mit Glioblastom gibt, die sich zur Vorhersage 

des Mutationsstatus eignen. Eine KI gestützte Segmentierung half beim Aufbau dieses 

Datensatzes, konnte jedoch keine spezifischen volumetrischen Unterschiede in den jeweiligen 

Mutationsgruppen bestimmen. Weiterhin zeigte sich, dass die Integration dieser 

Bildbewertung in die PACS-Umgebung eine signifikante Zeitersparnis gegenüber einer 

externen Bewertung ermöglicht. 

Unsere Untersuchung ergab, dass Tumore mit homozygoter Mutation von CDKN2A/B 

achtmal häufiger eine piale Invasion aufweisen als Tumore mit einem CDKN2A/B Wildtyp. 

Als zweiten Bildmarker identifizierten wir eine Tumorgröße von mehr als 8cm, die in unserer 

Studie viermal häufiger in Glioblastomen mit CDKN2A/B Wildtyp vorkam als bei Tumoren 

mit Mutation. Die Integration der Bewertung dieser Bildmarker in die PACS-Umgebung 

führte zu einem signifikanten Zeitvorteil gegenüber einer externen Bewertung.  

Diese Ergebnisse könnten in der klinischen Praxis zu einem schnelleren und effizienteren 

Aufbau multiinstitutioneller Datenbanken beitragen, welche die Entwicklung weiterer 

Bildmarker durch KI-Modelle fördern können. Die von uns beschriebenen Bildmarker sind 

zudem einfach im klinischen Alltag anwendbar und können präoperativ eine Einschätzung der 

Tumorhistologie unterstützen, wodurch sie möglicherweise die weitere Therapie beeinflussen. 

Zusammenfassend bietet diese Arbeit einen vielversprechenden Ansatz für die Integration 

fortschrittlicher Bildverarbeitungsverfahren zur Identifikation von Biomarkern mittels KI-

gestützter Analysen in die neuroonkologische Diagnostik und Therapie, die weiter erforscht 

und ausgebaut werden sollte.  
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6 Anhang 

 
VASARI Item Answers Score 
Hemorrhage Yes 

No 
45 
24 

Calvarial remodeling Yes 
No 

1 
68 

Cysts Yes 
No 

1 
68 

Tumor Loca=on Frontal 
Temporal 

Insular 
Parietal 
Occipital 

Brainstem 
Cerebellum 

21 
25 
- 

17 
4 
1 
1 

Side of Tumor Epicenter Right 
Center/Bilateral 

LeJ 

36 
2 

31 
Eloquent Brain None 

Speech motor 
Speech recepLve 

Motor 
Vision 

27 
14 
19 
4 
4 

Mul=focal or Mul=centric n/a 
MulLfocal 

MulLcentric 
Gliomatosis 

65 
2 
1 
1 

T1/FLAIR RATIO Tumor Expansive 
Mixed 

InfiltraLve 

69 
0 
0 

Pial Invasion Yes 
No 

41 
28 

Ependymal Invasion Yes 
No 

55 
14 

Cor=cal Involvement Yes 
No 

60 
9 

Deep WM Invasion Yes 
No 

47 
22 

Satellites Yes 10 



 

 39 

No 59 
Lesion Size <0.5 cm 

0.5 cm 
1.0 cm 
1.5 cm 
2.0 cm 
2.5 cm 
3.0 cm 
3.5 cm 
4.0 cm 
4.5 cm 
5.0 cm 
5.5 cm 
6.0 cm 
6.5 cm 
7.0 cm 
7.5 cm 
8.0 cm 

> 8.0 cm 

- 
- 
- 
1 
- 
2 
1 
3 
3 
4 
4 
4 
3 
2 
3 
2 
3 

34 
Propor=on of Edema n/a 

None (0%) 
<5% 

6-33% 
34-67% 
68-95% 
>95% 

All (100%) 
Indeterminate 

- 
2 
1 
7 

30 
29 
- 
- 
- 

Edema Crosses Midline n/a 
Yes 
No 

1 
3 

65 
Enhancement Quality None 

Mild/Minimal 
Marked/Avid 

1 
3 

65 
Propor=on Enhancing n/a 

None (0%) 
<5% 

6-33% 
34-67% 
68-95% 
>95% 

All (100%) 
Indeterminate 

- 
1 
- 
1 

25 
32 
6 
3 
1 
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Thickness of Enhancing 
Margin 

n/a 
None 
Thin 

Thick/solid 

- 
1 
1 

67 
Defini=on of the Enhancing 

Margin 
n/a 

Well-defined 
Poorly-defined 

1 
64 
4 

Enhancing Tumor Crosses 
Midline 

n/a 
Yes 
No 

4 
2 

63 
Propor=on non Contrast 

Enhancing 
n/a 

None (0%) 
<5% 

6-33% 
34-67% 
68-95% 
>95% 

All (100%) 
Indeterminate 

- 
69 
- 
- 
- 
- 
- 
- 
- 

Propor=on Necrosis n/a 
None (0%) 

<5% 
6-33% 

34-67% 
68-95% 
>95% 

All (100%) 
Indeterminate 

- 
3 
8 

32 
23 
1 
- 
- 
2 

Defini=on of the non-
enhancing margin (e.g. 

Grade III) 

n/a 
Smooth 
Irregular 

2 
11 
56 

Diffusion No Image 
Facilitated 
Restricted 

Neither/equivocal 

8 
5 

55 
1 

nCET Tumor Crosses Midline n/a (nonCET) 
Yes 
No 

2 
6 

61 
 
Tabelle 1) Alle bewertbaren VASARI-Items unserer Analyse mit ihren jeweiligen 

Punktzahlen 

Zu sehen ist das Layout des von uns verwendete und in das PACS integrierte FHIR form mit 
den entsprechenden Ergebnissen pro Kategorie. 
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