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Abstract

We investigate which higher rank simple Lie groups admit profinitely but not abstractly
commensurable lattices. We show that no such examples exist for the complex forms of type
Eg, F4, and G3. In contrast, there are arbitrarily many such examples in all other higher rank
Lie groups, except possibly SLy,+1(R), SL2,,+1(C), SL,(H), or groups of type Eg.

2020 Mathematics Subject Classification: 22E40, 20E18 (Primary)

1. Introduction

If two residually finite groups are commensurable, so are the profinite completions. Thus
for any class C of residually finite groups, the converse rigidity question arises: if two groups
from C are profinitely commensurable, are they abstractly commensurable? It is known that
arithmetic groups with the congruence subgroup property can be used to construct lattices in
higher rank Lie groups which are profinitely isomorphic but not abstractly isomorphic; see
[1, 2, 11, 17]. Aka showed [2] that the profinite isomorphism class of a higher rank lattice
contains only finitely many abstract commensurability types of lattices. Here we address the
question whether every simple Lie group G of higher rank actually admits profinitely iso-
morphic but non-commensurable lattices. The flexibility of the familiar construction might
be taken as evidence, that the answer should be affirmative. However, it turns out that the
question is more delicate, and the answer depends on G.

THEOREM 1-1. Let G be a connected simple higher rank Lie group with finite center
which is:
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2 HOLGER KAMMEYER AND STEFFEN KIONKE
(1) neither a complex form of type Eg, F4, or Gy;
(i) nor a real or complex form of type Eg;
(iii) nor locally isomorphic to SLy;41(R), SLay+1(C), or SL,,,(H).

Then for each n> 2, there exist cocompact lattices T'1,...,'y C G which are pairwise
profinitely isomorphic but pairwise not commensurable.

So in most cases rigidity fails in a strong sense but the first three groups form a surprising
exception.

THEOREM 1-2. Let G be a connected simple complex Lie group of type Es, Fa, or G
and let T'1, Ty C G be lattices such that Ty is profinitely commensurable with T'>. Then 'y is
commensurable with T'».

Going through the census, the complete list of higher rank simple Lie groups currently
not covered by either Theorem 1-1 or Theorem 1-2 is given by SLj,;,—1(R) and SL,,,,—{(C),
and SL,,(H) for m > 2, as well as all the Eg-forms: Eg), E¢(2), E6(—14), E6(—26), and Eg(C).
If the congruence subgroup property was known to hold true for higher rank groups of type
A, and Eg, all these groups would likewise fall under the conclusion of Theorem 1-1. For
instance, the non-isomorphic but locally isomorphic algebraic groups of types A, D2y41
and Eg in [25, theorem 9-12] would give rise to examples. Let us stress however that our
result is unconditional. Though the congruence subgroup problem is generally open in type
A, and D4, we were able to exploit the partial progress made in the literature to the extent
that the type A, groups SL;,,,(R) and SL;,,(C), as well as SU(p, q) for p, g > 2, and all the
type Dy groups SO%(6, 2), SO°(5, 3), SOY(4, 4), and SO*(8) are included in Theorem 1-1.

The lattices constructed here are intrinsically cocompact, since our approach is based
on arithmetic groups defined over number fields of large degree. The construction of
profinitely isomorphic non-cocompact lattices requires different methods; e.g., similar to
the construction in [25, theorem 9-12]. In Proposition 3-1 we illustrate this by showing
that SL,,(R), SL,,,(C) and SL,,(IH), where m > 6 is composite, admit profinitely isomorphic,
non-commensurable, non-cocompact lattices.

For the various types of G, we employ varying methods to construct the families
I'y,..., T, C G of profinitely isomorphic but non-commensurable lattices in Theorem 1-1.
There does not seem to be a uniform approach that would work in all cases. This is however
different for the question that is more commonly addressed under the term profinite rigidity
in the literature: if two groups have isomorphic profinite completions, are they isomorphic?
Here the congruence subgroup property, whenever it is known to hold for G, can be used
to construct profinitely isomorphic but non-isomorphic congruence subgroups in a uniform
way.

THEOREM 1-3. Let G be a higher rank connected simple Lie group with trivial center and
not isomorphic to PSL,,(H) or to a complex or real form of type Eg. Then there exist arbi-
trarily many cocompact lattices in G which are pairwise profinitely isomorphic but pairwise
not isomorphic.

Again, the exceptions can likely be omitted. They only owe to the incomplete status of
the congruence subgroup problem. We see that profinite rigidity in the usual sense also
fails for E3(C), F4(C), and G»(C), and most likey fails for lattices in all higher rank simple

https://doi.org/10.1017/S0305004122000305 Published online by Cambridge University Press


https://doi.org/10.1017/S0305004122000305

Profinite rigidity of lattices 3

Lie groups. However, the lattices we construct in the proof of Theorem 1-3 are arithmetic

subgroups of different congruence levels. While they are not isomorphic, they are commen-

surable which is why they should not really be considered as distinct lattices. This is why

we find it more on point to ask for profinitely commensurable lattices in G of higher rank
which are not commensurable.

Let us remark that profinite rigidity questions are typically only posed for residually finite

groups to avoid trivial examples like Tx AT x AT for any group I" and any infinite
simple group A. Most simple Lie groups with finite center are linear and hence lattices are
residually finite. However, there are simple Lie groups with finite center which admit lattices
that are not residually finite. An example is given by the four-fold covering of Sp,(R) [7].
In these cases it is nevertheless reasonable to consider the profinite completion because the
kernel of the completion homomorphism I' — Tis merely a finite central subgroup.

Profinite rigidity of groups and related problems receive considerable attention in current
research activities; see [26] for a survey. Fundamental groups of 3-manifolds, see [5] and
references therein, and lattices in Lie groups [12, 30] are the main objects of interest.

We briefly sketch the proofs of Theorems 1-1 and 1-2. As we just commented, the proof
of Theorem 1-1 splits up into various cases. At this point, we shall only present the most
common line of arguments that works for most real forms G. We may assume G = G(R) for
an absolutely simple, simply connected algebraic R-group G. We construct linear algebraic
groups Gy, ..., G, over a suitable totally real number field & such that G; is isomorphic to
G at exactly one real place of k and is compact at all other real places. The lattices arise as
arithmetic subgroups I'; € G;(k), ensuring that the congruence subgroup property holds for
the groups G; (special attention is needed in type A,, and D4). The core of the argument is
a local-global principle which almost allows us to achieve that the groups Gy, ..., G, are
isomorphic at all finite places of k. If the groups G; were isomorphic at all finite places of
k, then the congruence subgroup property implies that the groups are profinitely commensu-
rable (by Theorem 2-5 and Lemma 2-6). If the field &k has no non-trivial automorphisms, then
Margulis superrigidity can be used to deduce that the arithmetic lattices are not commen-
surable (Theorem 2-7). There is however a caveat: The local-global principle only allows
to control the isomorphism type except for one finite place. But since there exists only a
finite number of possible p-adic types for the groups G;, we can infer from Dirichlet’s box
principle that for arbitrary large n, arbitrarily many of the groups G; are isomorphic at every
finite place.

To prove Theorem 1-2, we apply Margulis arithmeticity to conclude that for i=1,2, I';
is commensurable with an arithmetic subgroup in a k;-group Gj over some number field k;
with precisely one complex place such that Gj is anisotropic at all real places of k;. The con-
gruence subgroup property, which is known in the exceptional types under consideration,
effects that f‘: is commensurable with the finite adele points Gj (AJ,;) of Gj. Hence G (AJ,;)
is commensurable with G (A{Q) from which we conclude that the number fields k; and k;
are arithmetically equivalent, meaning they have equal Dedekind zeta function. There exists
a myriad of arithmetically equivalent number fields, also among totally real ones, which
are not isomorphic. However, a theorem due to Chinburg—Hamilton—Long—Reid says that
arithmetically equivalent number fields with precisely one complex place are isomorphic [6,
corollary 1-4]. We conclude that G, is a k; -twist of Gy. These are classified by the noncom-
mutative Galois cohomology set H 1(k1, G1) because Gq has trivial center and trivial outer
automorphism group. The Hasse principle for simply connected groups in combination with
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M. Kneser’s vanishing result for Galois cohomology over p-adic fields therefore implies that
G is actually k-isomorphic to Gy, hence I'| is commensurable with I';.

Structure of the article

We discuss some preliminaries in Section 2. Sections 3, 4 and 5 are dedicated to the proofs
of Theorems 1-1, 1-2, and 1-3, respectively.

2. Preliminaries
2-1. Notation

Let k be an algebraic number field. The set of places of k is denoted by V(k) = Vo (k) U
Vy(k); it is the union of the set of archimedean places Vi (k) and the set of finite places Vy(k).
The completion of k at v € V(k) is denoted by k,. The ring of adeles (respectively of finite
adeles) of k is Ag (resp. Ai)

2-2. Number fields without automorphisms

The following result is well-known; e.g., [19, proposition 2-3].

LEMMA 2-1. There are totally real number fields of arbitrarily large degree over Q with
trivial automorphism group.

Proof. For (arbitrarily large) n > 3, let K/Q be a totally real Galois extension with Galois
group Gal(K/Q)=S,,. Let H < Gal(K/Q) be a subgroup isomorphic to S,—;. The fixed
field k = K™ is totally real, [k: Q] =n and k has a trivial automorphism group. Indeed, an
automorphism of k extended to K/Q normalizes H but S,_1 is self-normalising in S,,.

Similarly, there is the following result for “almost” totally real fields.

LEMMA 2-2. There are number fields of arbitrarily large degree over Q with precisely
one complex place and with trivial automorphism group.

Proof. Fix a prime number p > 2 and an irreducible rational polynomial P of degree p
with exactly two non-real roots. Let K be the splitting field of P with Galois group G C S,,.
Given a € K with P(a) =0, the subgroup H < G corresponding to k = Q(a) has index p. So
the group G C S, contains an element of order p which must be a full p-cycle because p
is prime. Moreover, the non-real roots of P are complex conjugates of one another, hence
complex conjugation exhibits a nontrivial transposition in G. A symmetric group of prime
order is generated by any full cycle and any transposition, so G =S,. We observe (as in
Lemma 2-1) that the stabilizer H of a is actually self-normalising. Hence k = Q(a) has trivial
automorphism group.

2-3. Finite coverings of Lie groups
The following lemma will be applied to reduce the proof to the case where the Lie group
G is given by the R- or C-points of a linear algebraic group.

LEMMA 2-3. Letf: G — Gand g: G — Go be homomorphisms of Lie groups with finite
kernels. Assume that G is linear. If G possesses n cocompact lattices which are pairwise

profinitely commensurable but pairwise not commensurable, then the same holds true for
G and Gy.
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Proof. The linearity will only be used to ensure that all lattices in G are residually finite.
It suffices to treat the case n=2. Let I'1, ['; € G be two non-commensurable, profinitely
commensurable lattices. Then A; =f Iy isa cocompact lattice in G1. Let K; C A; be the
kernel of the completion A; — 2,-. Since I'; is residually finite, K; € ker(f). Since ker(f) is
finite, there is a finite index normal subgroup A} C A; which intersects ker(f) exactly in K;
and thus the profinite completion of A’ is isomorphic to the profinite completion of f (A;)
which is a finite index normal subgroup of T';. Therefore A/, A/ are profinitely commen-
surable. However, these groups are not commensurable, since every isomorphism between
finite index subgroups maps the completion kernel K to the kernel K3, i.e., it induces an
isomorphism of finite index subgroups of I'; and I's.
Since I'{, I'y are residually finite and ker(g) is finite, there are finite index subgroups
I'(, I'5 which do not intersect ker(g) so that they are isomorphic to lattices in Go. As finite
index subgroups of I'1, I'; they are still profinitely commensurable but not commensurable.

2-4. The congruence subgroup property and its consequences

A key ingredient in the proof is the congruence subgroup property (CSP): the statement
that the kernel C(k, G) of the canonical homomorphism 6@) — G(k) from the arithmetic
completion to the congruence completion of the k-rational points of certain k-groups G is
finite. We will apply various special cases in which the congruence subgroup property is
known to hold true.

THEOREM 2-4. Let G be a simply connected absolutely almost simple linear algebraic
k-group which either is k-isotropic or has type:

(1) B (1=2);
(i) G (1=2)
(iii) Dy (I=5)
(iv) E7,E3, F4, Gy,
or let G be the type *Ap—1 group G =SUn(K,h) where h is a nondegenerate m-
dimensional Hermitian form over a quadratic extension K /k with m > 3. Assume moreover
that ZveVoo(k) rank; G > 2 and that k is not totally imaginary. Then the congruence kernel

C(k, G) has order at most two. If G is not topologically simply connected at some real place
of k, then C(k, G) is trivial.

The theorem is the essence of decades of research on the congruence subgroup prob-
lem. References are [8; 21, theorem 9-1, p. 512, theorem 9-5, p. 513, corollary 9-7, p. 515,
theorems 9-23 and 9-24; 22, main theorem]. A survey article providing extensive information
on CSP can be found in [23]. The following result is another main tool for us.

THEOREM 2-5. Let k be an algebraic number field and let G be a simply connected
simple linear algebraic group over k. Let I' C G(k) be an arithmetic subgroup. Assume that
Goo = [lyev., ) G(kv) is not compact.

(a) T C Gy is a lattice. If G(ky) is compact for some v € Vo (k), then T is cocompact.

(b) Assume that G has CSP. Then the profinite completion T is commensurable with the

open compact subgroups of G(Ai).
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Proof. Part (a) is a famous result of Borel and Harish-Chandra [3]. To prove part (b),

note that by CSP, the kernel of the map ¢: > G(Ai) is finite. Passing to a finite index

subgroup of I', we can assume that ¢ is injective. The strong approximation theorem holds
since G is simply connected [21, theorem 7-12] and implies that the image of ¢ is open (and
compact since I" is compact).

Finally, we will need to know that a collection of local isomorphisms of algebraic groups
assembles to an adelic isomorphism.

LEMMA 2-6. Let k be an algebraic number field and let G, H be two semi-simple linear
algebraic groups over k. If G, H are isomorphic at all finite places, i.e., G X k, =H xy k,

Sforall v e Vy(k), then
G(4}) =H(4})

as topological groups.

Proof. By assumption the topological groups G(k,) and H(k,) are isomorphic at all finite
places v of k. We pick models of G, H over the ring of integers Oy of k. Then for all but
finitely many places v € V¢(k), the compact subgroups G(Oy,,), H(Ok,,) are hyperspecial
[32, 3-9-1] and hence isomorphic [32, 2-5]. We deduce that

G(4}) =tim [T Gk x [T 60w

S veS VES
=lim [ TH®&) x [THO) =H(4])
S veS vesS

where the direct limit runs over all finite sets S of finite places of k.

2-5. Margulis superrigidity

Margulis superrigidity will be used to show that certain arithmetic lattices are not
abstractly commensurable.

THEOREM 2.7 (Margulis). Let ki, ko be number fields and let G1, Gz be simply con-
nected, absolutely almost simple linear algebraic groups over k1 and ks respectively. Assume
that ZVEVOO(/CJ‘) rkkj (Gj(kjv)) =2 for all j € {1, 2}. The arithmetic subgroups I'y C G1(ky) and
'y C Ga(kp) are commensurable if and only if there is an isomorphism of fields o : ki — ky
and a ky-isomorphism of algebraic groups n: ° G1 — Ga.

Proof. After passing to finite index subgroups, we can assume that there exists an isomor-

phism §: 'y = I',. Then by Margulis superrigidity [18, theorem (C), p. 259], there exists
o : k1 = ky and an epimorphism 7: Gy — G2 such that § agrees with 7 on a finite index
subgroup of T'j. Without loss of generality § = n|r,. The same argument applied to 6~
implies that o is an isomorphism and further (since G is simply connected) that 5 is an
isomorphism.

Conversely, if o and 7 exist, then I'y and I'; are (isomorphic to) arithmetic subgroups of
the same algebraic group and are thus commensurable.
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3. Proof of Theorem 1-1

In this section, k denotes a number field with n := [k : Q] > 2 and with trivial automor-
phism group. We will say k has type I if it is totally real; see Lemma 2-1. In this case
ki,...,k, denote the completions of k at the archimedean places. We will say k has type
IT if it has exactly one complex place; see Lemma 2-2. In this case ki, . . ., k,—1 denote the
completions at the archimedean places of k with k; = C.

3.1. Reduction to G = G(R) or G = G(C)

As a first step of the proof of Theorem 1-1, we observe that we may assume that the Lie
group G is the group of real or complex points of a simply connected simple algebraic group.
To this end, let G be a connected simple Lie group with finite center. Let g be the Lie algebra
of G. Since the center Z(G) of G is finite and the adjoint group G/Z(G), being a subgroup of
Aut(g), is linear, we may assume by Lemma 2-3 that G has trivial center.

If g @R C is simple, then the linear algebraic R-group G,q = Autr(g) is absolutely simple
and satisfies Gaq(R)? = G. Let G be the simply connected covering of G,q. By Lemma 2-3
it is sufficient to show for every n that G(R) has n profinitely isomorphic lattices which are
not commensurable.

If g ®r C is not simple, then g possesses a complex structure which turns it into a simple
Lie algebra over C. For any such structure, the C-group G,q = Autc(g) is (absolutely) simple
and satisfies Goq4(C) = G. Again G will denote the simply connected covering group of Gyq
and it is enough to find n non-commensurable profinitely isomorphic lattices in G(C).

With these remarks, we associated to each local isomorphism class of Lie groups G as
in Theorem 1-1 a connected simply connected absolutely almost simple linear algebraic
K-group G with K =R or C which is unique up to K-isomorphism. Our task now is to find
n profinitely commensurable lattices in G(K) which are not commensurable. The common
intersection of the profinite completions then corresponds to non-commensurable lattices
which are profinitely isomorphic, see [27, proposition 3-2-2, p. 80] and, for instance, [10,
proposition 6-39, p. 159].

3.2. Overview of the proof

Let us first assume that K = R, in which case we take k of type I. The general idea of the
proof in this case was already outlined in the introduction. At this point we have to point
out, however, that the argument only goes through provided the following two requirements
are met.

(1) We need to assume that G and the R-anisotropic real form G* with G xg C =¢
G" xR C are inner forms of each other. This is automatic unless the Dynkin dia-
gram has symmetries, meaning G has type A,,, Dy, or Eg. In these cases, one can
read off from the Tits indices [31, table II], whether the condition is satisfied: In type
Ay, the condition fails for SL,,41(R) and SL,,+1(H), while the groups SU(r, s) with
r+s=m+ 1 satisfy this requirement. In type D,,, the groups SO*(2m) = SO(m, H)
are inner twists of the compact form SO(2m). For the groups SOO(r, s) with r +s =
2m, the condition is satisfied if r and s are even and fails if » and s are odd. Finally, in
type Es, the condition is satisfied for Eg(2) and Eg(—14) and fails for Ege) and Eg(—26)-

(i) We need that k-anisotropic forms of G defined over £ satisfy the congruence subgroup
property. This is still generally open in type A,,, D4 and Es.
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Property (ii) forces us to exclude type Eg altogether. In type A,,, however, CSP is known
for special unitary groups SU(K/k, i) of hermitian forms 4 over a quadratic field extension
K/k as we stated in Theorem 2-4. This allows us to prove Theorem 1-1 for the groups
SU(r, s) in Section 3-3. There we also present a workaround that allows us to include the
groups SLy,,(R) in spite of the failure of property (i).

Similarly, Kneser [14] has shown that CSP holds for spinor groups. Using this, we can
construct the required non-commensurable but profinitely isomorphic lattices in all the real
forms S0%(6, 2), SO°(5, 3), SO°(4, 4), and SO*(8) of type Dy as arithmetic spinor groups.
So it is no issue for us that CSP is still open for anisotropic type °Dy4 forms (whose unique
inner quasi-split twist has a splitting field extension of degree 3 or 6, so called triality forms).
Note also that property (i) fails in some D,, cases with m > 4. Therefore, we will sort out the
type D, groups with m > 4 separately in Section 3-4.

With the special cases taken care of, we treat the remaining R-groups of type By, Cpy, E7,
Eg, F4, and G7 in Section 3-5. For all these, the general strategy applies because (i) and (ii)
are satisfied.

Finally, we give the proof of Theorem 1-1 for K= C and G of type By,, Cy,, D), with
m > 5, and E7 in Section 3-6. Also in the complex case, type A;, and D4 need special atten-
tion because of the incomplete status of CSP. The type D4 group SOg(C) can again be
covered by Kneser’s result so that it was more convenient to include it in Section 3-4. A
similar trick as for SLj,,(R) also allows us to cover the type As;,—1 group SLy,,(C). This
argument is included in Section 3-3.

3.3. Type Ao: SU(r, 5), SLo,(R) and SLy,,(C)

As a first instance we consider the case when G is either of the groups SU(r, s) with
r,s > 2, SLy;,u(R) and SLy,,(C) with m > 2. In these concrete examples it is instructive how
local-global principles are key to our investigation.

It is wellknown that hermitian forms for the extension C/R are classified by dimen-
sion and signature. We also recall that hermitian forms for a quadratic extension E/F of
p-adic fields are classified by dimension and discriminant d € {£1} (i.e, d = 1 exactly if the
determinant lies in the image of the norm Ng/r: E* — F*); see e.g. [9, theorem 3-1].

Fix a dimension m > 2. Suppose that K = k(y/a) is a quadratic extension of k. Let Vfo(k)
denote the set of non-split archimedean places of k, i.e., the set of real places v where a is
negative with respect to the embedding k — k,. We will use the following result of Landherr
[16] on the existence of hermitian forms with prescribed local properties: Choosing a pair
of nonnegative integers (r;, s;) with r; +s; = m for each v; € Vfo(k) and choosing d, € {£1}
for each v € Vy(k), there exists a K /k-hermitian form of dimension m with signature (r;, s;)
at v; € VE (k) and discriminant d,, € {£1} at v € V(k) if and only if:

(i) dy, =1 for almost all v € Vy(k);
(i) d, =1 whenever v splits in K; and
(i) [Tyevka DY Thevyp dv=1.

The hermitian form is uniquely determined by this data.

3.3-1. SU(r, s) with r,s > 2
We take k of type I and fix some w° € Vy(k). By weak approximation, there is an element
a € k* which is negative at all real places and is a non-square in k, 0. Define K = k(/a)
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and observe that by construction all archimedean places are non-split. In addition, the finite

place w° does not split in K. Using the result of Landherr, there is a unique hermitian form
hj such that:

(i) the signature at the jth real place is (r, s);
(i1) the signature at all other real places is ( + s, 0);
(iii) the discriminant at w° is d,o=(—1)%; and

(iv) the discriminant is d, = 1 for every v € V¢(k) \ (w9}.

These hermitian forms define linear algebraic groups SU(%;) over k and by Theorem 2.5 (a)
arithmetic subgroups I'; C SU(%;)(k) which are cocompact lattices in SU(h;)(k;) = SU(7, ).
These lattices have a congruence kernel of order at most two by Theorem 2-4 (Since the com-
pact Lie group SU(r + s) is topologically simply connected, the congruence kernel might
however be nontrivial.) In any case, hermitian forms over p-adic fields are classified by
dimension and discriminant [9, theorem 3-1], so the forms /; are isometric at each finite
place. By Lemma 2-6 the groups SU(k;) (Ai) are all isomorphic. It follows immediately
from Theorem 2.5 (b) that I'; and T'; are pairwise profinitely commensurable. Finally, we
observe that the groups SU(h;) are not isomorphic. By construction k has no non-trivial
automorphisms and therefore superrigidity via Theorem 2.7 (we recall that r, s > 2) implies
that I'; and I'; are not commensurable for i # j.

3.3.2. SLyu(R) and SLo,,(C) for m > 2

Let K denote either R or C and let G = SL,,,(K). If K=R we take k of type I and
otherwise of type II. Pick a rational prime number p which splits completely in £ and let
wi, ..., wy denote the places of k dividing p, i.e., k,,; = Q,. We fix an additional finite place
wo e Vy(k) which is distinct from wy, ..., w,. By weak approximation, there is an element
a € k* which satisfies: a is negative in k; for all i > 2, represents a prescribed non-square
element.x € Q modulo squares at the places wi, . . ., w, and is a non-square at W) fFK=R
we can arrange that, in addition, a is positive in ki. Define K = k(+/a). Then Vfo (k) contains
all but the first archimedean places. By construction, the places wy, ..., wy, w? are not split
in K and the quadratic extensions K, /k,, are isomorphic to Q,(,/x)/Q,. Using the result
of Landherr, there is a unique hermitian form /; such that:

(i) the signature at kp, . . ., k;, is (2m, 0);
(i) the discriminant at w and wj equals —1; and
(iii) the discriminant is d, = 1 for every v € V¢(k) \ {w;, w0},
By construction, SU(h;)(k;) = SU(2m) for all i > 2. We observe that SU(h;)(k;) = SLo,,(K)
due to the choices of k and a. The groups SU(%;) are pairwise non-isomorphic, since they
are non-isomorphic at one of the finite places wi, ..., w,. Here it is essential that 2m is

even; only under this assumption the classification [32, 4-4] entails that non-isomorphic
hermitian forms have non-isomorphic special unitary groups. We claim that the topological

groups SU(%)) (A],Z) =SU(k) (A{() are isomorphic for all 7, j. Indeed, the groups SU(k;)
are isomorphic at all finite places except for wy, ..., wy; here a permutation of the places
Wi, . .., wy, yields an isomorphism

[ [SUG) k) = [ SUG K, ).
=1 =1
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The argument used in the proof of Lemma 2-6 implies SU(k;) (Ai) =SU) (Ai) and
we can proceed as above to obtain the lattices I'y,..., I, as arithmetic subgroups of
I'; € SU(h)(k).

3-4. Type Dy: SOO(r, s)with r+ s even and r + s > 8 and SOg(C)

Fix an odd prime number p which completely splits in k£ and let wy, ..., w, denote the
finite places of k dividing p. We fix an additional finite place w° e Vy(k) which is distinct
from wy, ..., w,.

3-4-1. SO°(r, s) with r + s even and r +s > 8
The argument here is similar to the argument above for SU(r, s), now using the corre-
sponding local-global principle for quadratic forms. Recall that quadratic forms over R are
classified by their dimension and signature; quadratic forms over p-adic fields are classified
by dimension, determinant (modulo squares) and the Hasse invariant (see [28, section 6-4]).
Let k be of type I. We will use [28, chapter 6, theorem 6-10] to construct quadratic forms
q1, - - - »qn of dimension r + s over k such that:

(i) g; has signature (7, s) at the first real place but is positive definite over all other real
places;

@ii) q1,-..,qn are isometric at every finite place outside wy, . . ., wy;

(iii) g; is non-split at the place w;, but split at w; for all j # i.

In addition, we can achieve that Spin(g;)(k,,;) = Spin(g;)(k,;) as topological groups for all
i, j, which entails

w423

using the argument of Lemma 2-6. By a result of Kneser, the groups Spin(g;) have CSP; see
[14, 11-1]. As before, it follows from Theorems 2-5 and 2-7 that arithmetic subgroups of
the algebraic groups Spin(g;) give rise to profinitely commensurable cocompact lattices in
SOO(r, s) which are not commensurable.

By weak approximation, there is an element a € k* such that (—1)°a is positive at the first
real place, a is positive at all other real places and such that (—1)"*+9/2g is a square in k,,, for
allie(1,2,...,n}. We define g; to be the unique form of determinant a which has signature
(r, s) at the first real place, is positive definite at all other real places, has Hasse invariant —1
at wj, and has Hasse invariant 1 at the finite places not equal to w9, w;. The Hasse invariant
at w' is then determined by the product formula. It depends on r, s, and 7, but not on j.

We observe that g; is split at w; for all i #j, since g; has r + s variables, and the deter-
minant (—1)"+9/2 (ie., a modulo squares) and the Hasse invariant 1 are equal to the
determinant and Hasse invariant of the (r 4 s)/2-fold orthogonal sum of hyperbolic planes
(1, —1). On the other hand, g; is non-split at w;, because the Hasse invariant of g; and the
split form differ. We observe that modulo the canonical isomorphism &, = Q), =k,,; the
forms are isometric and hence the groups Spin(g;)(k,,) and Spin(qj)(kwj) are isomorphic as
topological groups. However, for i #j the Witt indices of g; and g; at w; differ, hence the
kyy;-rank of the groups Spin(g;) and Spin(g;) are different. So these algebraic groups are
not isomorphic over k. Note that our discussion also covers the group G = SO*(8) which
happens to be locally isomorphic to S0%, 2).
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3.4.2. SOg(C)
Let k be of type II. Recall that wy, . . ., w, denote the finite places of k dividing p and w9
denotes a finite place away from p. Fori =1, . . ., n, there exists a non-degenerate quadratic

k-form g; of rank eight, with trivial determinant, such that ¢g; is anisotropic at all real places
of k, such that it has Hasse invariant —1 at w; and w", and such that it has Hasse invariant 1
elsewhere. Over Q,, every nondegenerate quadratic form in at least four variables represents
1.Forj=1,...,n, we thus have a decomposition g; ®x kwj =(1,1,1,1) ® hy; for some rank
four quadratic Q,-form A;; with trivial discriminant and the same Hasse invariant as ¢; ®x
ky;. By our choice of Hasse invariants, h;; is y-anisotropic if and only if i = j [29, theorem
6 (iii), p. 36]. Since the form (1, 1, 1, 1) is metabolic over @, (we assumed p is odd), the
form ¢; has Witt index two at w; and Witt index four at w; for j # i. This shows that the
group G; = Spin(g;) has Q,-rank two at w; and Q,-rank four at w; for j # i. The groups G;
have moreover CSP by [14, 11-1], so that as above we can conclude that G;(C) = Sping(C)
has n profinitely commensurable cocompact lattices which are not commensurable.

3-5. The remaining real forms

Suppose G is locally isomorphic to G(R), where G is a connected, simply connected
absolutely almost simple algebraic R-group. Assume that G is neither of type A,,, E¢, nor
isomorphic to Spin(r, s). Let G" be the compact real form of G. Under these assumptions
G" is an inner form of G as we saw in Section 3-2. Let G4 denote the unique quasi-split
inner form of G and G".

Let k be of type 1. By [4, proposition 1-10], we can choose a quasi-split, absolutely
simple, simply connected algebraic group Ggs over k such that Ggs Xk ki = Ggs for every
ie{l,2,...,n}. Fix a nonarchimedean place wde Vy¢(k). Then by [24, theorem 1], for
i=1,...,n, there exists an inner k-twist G; of Ggs such that

(1) Gj Xy k; is isomorphic to G while
(ii) Gij x k; is isomorphic to G* for j 7 i and
(iii) G; is isomorphic to Ggs at every finite place w # wl.

Here, it is essential that G and G* are inner twists of each other. Over p-adic fields,
there only exist a finite number of inner twists of a given absolutely simple group.
More precisely, in our context the non-abelian Galois cohomology H l(kwo,Ad(Gi))%’
Hz(kwo,Z(Gi)) has cardinality at most four [13, Satz 2 and table on p. 254] because we
assume G, hence G, is not of type A,,. Hence if n > 4(n’ — 1), the pigeon hole principle guar-
antees that at least n’ of the groups Gr, . . ., Gy are isomorphic at all finite places. Without
loss of generality, let us assume that the first n’ groups Gy, . .., Gy have this property; in
particular, by Lemma 2.6,

Gi(4}) =Ga(a]) = = Gu(4)). 31

Pick arithmetic subgroups I'; € Gj(k). The k-group G;j is neither of type A,,, nor Eg, nor
D4 (in which case it would be a spinor group) and we have ranky, Gij = rankG > 2. Hence the
congruence kernel C(k, G;) has order at most two by Theorem 2-4.

One more time, by Theorem 2-5 and Theorem 2-7, we obtain n’ profinitely commensu-
rable but non-commensurable cocompact lattices I'(, . .., I,y in G(R).
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3-6. The remaining complex forms

Finally, let G be a simply connected simple C-group of type B, (m > 2), Cy, (m > 2), Dy,
(m > 5) or E7. In the following, all uniqueness statements for algebraic groups are meant up
to isomorphism over the field of definition of the group. Let G be the unique R-anisotropic
R-group with G* xg C = G. Let the R-group Ggs be the unique quasi split inner twist of
G“. Finally, let G° be the unique Q-split Q-group with G° xg C=G.

Let k be of type II. Fix an odd prime p that splits in k£ and let wy, ..., w, be the places
of k over p. By [4, proposition 1-10], we find a quasi-split, absolutely simple, simply con-
nected algebraic group Ggs over k which is isomorphic to Ggs at all real places of k and
is isomorphic to GO x Qp at wy, ..., w,. According to Kneser [13, Satz 2 and table on p.
254], our assumption on the type of G implies that there exists a non-trivial inner QQ,-twist
G? of G° x @ Qp. Fix another non-archimedian place w® which does not lie over p. By [24,
theorem 1], foreachi=1,. .., n, there exists an inner k-twist Gj of Ggs such that:

(i) Gi is isomorphic to G* at every real place of k;
(ii) Gi X ky, is isomorphic to G?,
(iii) Gi X ky; is isomorphic to G’ xq Qp forj #1i;
(iv) Gi is isomorphic to Ggs at every finite place w ¢ {wo, Wiyt wn}.

By the same pigeon hole argument as above, we may assume that the first n’ groups
G1, ..., Gy are also isomorphic at w®. Since p splits in k, swapping any two places over p
defines an automorphism of Ai. It follows from the argument in Lemma 2-6 that the groups
G (AJ,:) e G (A{) are pairwise isomorphic as topological groups. Since CSP is known
for Gj by Theorem 2-4, any arithmetic subgroups I'1, ...,y of Gy,..., G, are pairwise
profinitely commensurable cocompact lattices in G(C) (Theorem 2-5) which are pairwise

non-commensurable because k has no automorphism which could interchange the places
wi, ..., w, (Theorem 2-7).

3.7. Non-cocompact lattices in special linear groups

Our methods above exclusively produce cocompact lattices. To complement this, we
sketch a mechanism to come up with profinitely isomorphic, non-commensurable, non-
cocompact lattices in special linear groups.

PROPOSITION 3-1. Let G be either SL,,(R), SL,,,(C), or SL,,(H) where m > 6 is a com-
posite number. Then there are non-cocompact lattices I'1, o € G which are profinitely
isomorphic but not commensurable.

Proof. Assume that G =SL,,(R) where m > 6 is composite. We write m = dk with
d>3and k>2. Let C, D be two finite dimensional central division (Q-algebras of degree
d, ie., dimg C =dimg D = d*. We assume that for every prime number p, at least one of
the algebras C, = Q, ®q C and D, = Q), ®q D splits, this means, is isomorphic to M(Q)).
In addition, we assume that R ®g C and R ®q D are split. It follows from the theorem of
Albert-Brauer—Hasse—Noether and the resulting description of the Brauer group Br(Q) (see
e.g. [20, section 18-5]), that there are infinitely many such pairs of division algebras (it would
be interesting to have concrete examples though).
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By construction, the central simple algebras C ®g D and C ®g DP have index d (see [20,
section 18-6, corollary]), i.e.,

C®oD=My(Er), C®qgD®=MyE>)
for two division Q-algebras E, E5 of degree d. We define two central simple Q-algebras
A=M(E1), B=M(E).

Since d > 3 is the order of [C] and [D] in Br(Q) (see [20, section 18-6]), we deduce that the
algebras C and D are not isomorphic to their opposite algebras, that is C 2 C°P and D Z D°P.
It follows (using [A] = [E1] = [C][D] and [B] = [E2] = [C1ID]~} in Br(Q)) that A is neither
isomorphic to B nor to B°P. Therefore, the associated reduced norm-one groups G = SL;(A)
and H = SL(B) are not isomorphic. In fact, reduced norm-one groups are isomorphic if and
only if the underlying algebras are isomorphic or opposite isomorphic (see [15, (26-9) and
(26-11)]). For every prime number p we have G(Q,) = H(Q). Indeed, suppose C splits at p,
then Ey, =D, and Ep , = DY and consequently A, = My(D),) = ng. If on the other hand
D splits at p, then A, = M (Cp) = B,,.

Since C and D split over the real numbers, we have G(R) = H(R) = SL,,,(R). The groups
G, H are isotropic (because k > 2) and thus have the congruence subgroup property; see
Theorem 2-4. As above, one can show that arithmetic subgroups of G and H are lattices in
SL,,(R) which are profinitely commensurable but not commensurable.

If we replace Q by an imaginary quadratic number field, the same construction yields
profinitely isomorphic lattices in SL,,(C). In order to obtain lattices in SL,,(H), we vary the
argument and write 2m = dk as a product of k > 2 and an even number d > 4. We choose
C, D of degree d as before, now assuming that C is ramified over R and D splits over R.

4. Proof of Theorem 1-2

In this section we show that profinitely commensurable lattices in a connected simple
complex Lie group G of type Eg, F4, or G are abstractly commensurable. Three features of
G are used to conclude Theorem 1-2: G is simply connected, has trivial center, and has no
Dynkin diagram symmetries. In particular, G is uniquely determined by its Lie algebra g:
we have G = G(C) for the linear algebraic C-group G = Autc(g).

So let I'; and T"; be two profinitely commensurable lattices in G(C). We need to show
that T'; is commensurable with I';. By Margulis arithmeticity [18, theorem IX-1-11 and
p. 293/294], for i = 1, 2, there exists a dense number subfield k; C C whose remaining infi-
nite places are real and there exists a simply connected absolutely almost simple k;-group
G which is anisotropic at all real places of k; such that for any k;-embedding Gj C GL; the
group of k;-integral points G;j(Oy;,) is commensurable with I';. Since commensurable groups
are also profintely commensurable, it follows that G1(Oy,) is profinitely commensurable
with G2(O,). Consequently by [11, theorem 4], k; is arithmetically equivalent to k. From
[6, corollary 1-4], we conclude that actually & is abstractly isomorphic to k>, hence the two
subfields of C are either equal or complex conjugates of one another. Replacing k; and G»
with the complex conjugate field and group if need be, we may assume k| =k, = k.

Again owing to the exceptional type at hand, the groups Gj have trivial center and no
Dynkin diagram symmetries. We thus have Aut(Gj) = Gj, so the k-isomorphism type of G;
is classified by a class « € H'(k, G1) in non-commutative Galois cohomology with values
in Gj. Since Gj is isomorphic to G; at all infinite places of k, we see that o reduces to
the distinguished point in H L(k,, Gy) for all v € Voo (k). But by the main theorem of Galois
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cohomology of simply connected groups [21, Theorem 6.6, p. 289], we have a bijection of
pointed sets

0:H'kG)— [] H'k,Gy.
ve Vo (k)

So « is the trivial twist, hence Gj is k-isomorphic to Gz. In particular, G1(Of) is
commensurable with G2(Oy), and so is Iy with I',.

5. Proof of Theorem 1-3

Finally, in this section we give the proof of Theorem 1-3. Let g be the Lie algebra
of G. The simple linear algebraic R-group Gyq = Autgr(g), satisfies Gu(R) =G. Let G
be the simply connected covering of G,q. We will construct profinitely isomorphic, non-
isomorphic cocompact lattices I'y, ..., [, € é(R) which do not intersect the center and are
thus isomorphic to lattices in G.

If G is absolutely simple, then we take k of type I and set G = G. If G is not absolutely
simple, then G= Resc/r(G) for a simply connected simple algebraic C-group G. In this
case we choose k of type II. Let p be a rational prime number which splits completely in k

with finite places wy, ..., w, dividing p and k,,, = Q,, for all i.
By Theorem B in [4] there is a simply connected, absolutely simple algebraic k-group H
such that:

(1) H Xk k] = G;
(ii) H(k;) is compact for all j > 2; and
(iii) H(kw,) =H(k,,) foralli,je{1,...,n}.
If G is of type A, (using G # PSL,,(H)) we can take H to be a special unitary group. If G

is of type D4, we can take H to be a spinor group. By construction the group H then has the
congruence subgroup property and we can find an arithmetic subgroup I' € H(k) which does

not intersect the congruence kernel, so that T=T - H(AJ,Z); here T denotes the closure of

I"in H(AJ,;) Passing to a finite index subgroup if need be, we may assume that I" intersects
the center of H trivially, too.

We decompose the ring of finite adeles as A= [T kw; % A{’p / into the p- and p’-part.
We can find open compact subgroups Ky ; € H(k,,) such that Ko ; = Ky for all 7, j and such
that

n
H Ko, x Kj‘f CT,
i=1

where K]’Z/ is some open compact subgroup of H (A{’p />. We choose open compact sub-

groups K ; € Ko again such that K ; = K for all 7, j of sufficiently large index satisfying
|Ko,i : K1,i| > |Z(H)(k)|. Now we define the arithmetic groups

n
p/
rj=T mHkgm,i x KJ,
i=1

where §;; is the Kronecker—Delta. By construction 1/'\‘] =115, Ks, i % K}' , hence the groups
I'y,..., T, are profinitely isomorphic. Being subgroups of I", they do not intersect the center.
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It remains to prove that the arithmetic groups I'y, . . ., [, are pairwise non-isomorphic. We

explain this for I'y and I",. Suppose for a contradiction that ¢p: I'y — I'; is an isomorphism.

As I'; is a subgroup of H(k), it follows from Margulis superrigidity [18, theorem (5), p.5]

(using that k£ has no automorphisms) that there is an automorphism n of H defined over k
and a homomorphism v: I'y — Z(H)(k) such that

o) =v(yny)

for all y € I'y. Fix a Haar measure on H(k,,, ). Using the inclusion of I'; into H(k,,, ), we see
that the closure ¢(I'1) of ¢(I'1) in H(k,,,) is Ko,1. On the other hand, ¢(T')) is contained in
Z(H)(k)n(K1,1). This can be used to derive a contradiction, since the Haar measure of the
latter is strictly smaller than the Haar measure of Ko . Recall that H(k;) is unimodular [18,
I(2-2-3)] and that the inner automorphism group of H has finite index in the automorphism
group of H. We deduce that 5 preserves the Haar measure and therefore

vol(Kp,1) = vol(¢(I'1)) < |ZH)(k)|vol(n(K71, 1))
= |Z(H)(k)|vol(Ko,1)|Ko,1 : K1,1|™" < vol(Ko,1)

which is a contradiction.
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