

Introducing Construction Semantics (CxS): a frame-semantic extension of Construction Grammar and constructicography

Alexander Willich

Article - Version of Record

Suggested Citation:

Willich, A. (2022). Introducing Construction Semantics (CxS): a frame-semantic extension of Construction Grammar and constructicography. Linguistics Vanguard, 8(1), 139–149. https://doi.org/10.1515/lingvan-2022-0082

Wissen, wo das Wissen ist.

This version is available at:

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20251124-104528-2

Terms of Use:

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Alexander Willich*

Introducing Construction Semantics (CxS): a frame-semantic extension of Construction Grammar and constructicography

https://doi.org/10.1515/lingvan-2022-0082 Received February 4, 2022; accepted October 4, 2022; published online December 13, 2022

Abstract: Construction Semantics (CxS) uses FrameNet frames to capture the semantic properties of grammatical constructions. It closes a gap between Frame Semantics and usage-based Construction Grammar as well as providing a uniform format to implement frames into constructicographic work. This article provides an overview of three core features of CxS. Starting point is (i) the modeling of semantic properties associated with constructions in terms of three types of frames. This makes possible (ii) the analysis of structural parallels between constructions and frames, in particular the semantic motivation of elements of a construct by frame elements. Lastly, (iii) an inventory of semantic parameters of constructions serves as a toolkit for generalizing over semantic properties of single constructs. A driving force behind CxS is the concept of frame proximity: a network of frames which allows one to distinguish lexically evoked frames that are related or unrelated to a frame associated with a construction.

Keywords: constructicography; Construction Grammar; Construction Semantics; Frame Semantics; German reflexive constructions

1 Background

Frame Semantics and Construction Grammar are two major theories in cognitive linguistics. They are often considered "sister theories" (Boas and Dux 2017: 1), the former being the "semantic complement" (Östman and Fried 2005: 4) to the latter. The same holds for constructicography, the practical application of Construction Grammar for lexicographic purposes, and its close relationship to applied Frame Semantics in the form of FrameNet projects in a variety of languages (cf. Boas et al. 2019). For example, Goldberg (1995, 2002, 2010) claims that frames, the descriptive format in Frame Semantics, are integral to the semantic description of grammatical constructions, and they even can be included into formal representations (e.g., Michaelis 2010).

However, many questions still remain unanswered, among those the following, which are to be discussed in this article:

- (1) How can the semantic impact of a grammatical construction (in the broad sense of Goldberg 2006: 5) be modeled using frames, both at type and token level?
- (2) How is it possible to generalize over analyses of single instances of a construction (constructs) in order to achieve frame-semantic descriptions to be used in a constructicographic repository?

Existing work in this regard (e.g., Fillmore et al. 2012; Lee-Goldman and Petruck 2018; Ohara 2018) lacks important conceptual foundations and a broad sense of which semantic aspects of a construction can be captured using frames. Construction Semantics (CxS) aims to tackle this issue. This article provides an overview over basic concepts of CxS that qualify it as a frame-semantic extension of Construction Grammar and constructicography.

CxS uses frames at the lexical level, at the level of an (abstract) construction, as well as at the level of constructs of that construction. For the structural representation of a construction, it is segmented into

^{*}Corresponding author: Alexander Willich, Heinrich Heine University Düsseldorf, Institute for German Studies, Düsseldorf, Germany, E-mail: alexander.willich@hhu.de. https://orcid.org/0000-0003-3227-1676

construction elements (CEs), which are slots to be productively filled with lexical material, and construction evoking elements (CEEs), which are lexically fixed elements that often uniquely characterize the construction (Fillmore et al. 2012; Lee-Goldman and Petruck 2018). In CxS, it becomes possible to align the instances of those elements with corresponding frame elements (FEs) – at constructional level (cf. also Laviola et al. 2017: 194; Ziem 2020a: 26) as well as at the lexical level. These analyses help uncover semantic parameters of constructions, which then may form the backbone of construction entries as the results of constructiographic work.¹

The outline of this article is as follows. Section 2 is concerned with the first research question and introduces the basic CxS model that postulates three types of frames: lexical frames, constructional frames and construct frames. Section 3 discusses the notion of *frame proximity*, a driving force behind CxS, that makes it possible to identify lexical frames that are closely related to a constructional frame and distinguish them from those which are unrelated to it. Section 4, referring to the second research question, deals with the interplay between the structures of constructions and frames, distinguishing three types of ways that a given instance of a CE or CEE corresponds to FEs of a lexical and/or constructional frame. Subsequently, Section 5 briefly touches on the need for semantic parameters of constructions that can be derived from and analyzed based on the findings of the previous features of CxS. Section 6 raises further issues and perspectives to be dealt with in future research.

To illustrate the empirical potential of CxS, corpus data for the *reflexive motion construction* (Mortelmans and Smirnova 2020; Oya 1999; Smirnova 2018), the German equivalent to the English *way*-construction (Goldberg 1995: Ch. 9), drawn from the *Kernkorpus 21* of the *Digitales Wörterbuch der deutschen Sprache* (DWDS),² will be used throughout this article. Annotation of a sample of 1,011 example sentences (true positives) for the construction forms the basis for the analyses presented here, retrieved out of 13,416 hits for a string of a finite verb and a reflexive pronoun, followed by a preposition within a maximum distance of 10 words. The reflexive motion construction is particularly well suited for CxS because, as an argument structure construction that is centered around a verbal predicate, it is easy to find frames evoked within its constructs through FrameNet's lexical unit index.³ CxS, in its current state, therefore works best with argument structure constructions, but to apply (and even modify) it to fit other types of constructions is a task for future research.⁴

2 A Construction Semantics model: lexical frames, constructional frames, construct frames

CxS uses Frame Semantics in the sense of FrameNet (Boas 2021; Fillmore et al. 2003; Fillmore and Baker 2010; Ruppenhofer et al. 2016) to analyze the meanings of grammatical constructions. Frames can be seen as scaffolds for the meanings of words and other linguistic units: linguistic units that have similar meanings usually evoke the same frame. Frames are structured through frame elements (FEs), which are semantic roles defined specific for each frame. FEs are divided into two groups: Core FEs are seen to be conceptually necessary for the event depicted by the frame, whereas Non-Core FEs specify more general circumstances such as Manner, Means, Place and Time. Frame Semantics, as it is applied in FrameNet, is primarily a lexical approach, i.e., the primary target units eligible to evoke a frame are words and multi-word expressions (cf. Ruppenhofer et al. 2016: 7–10). Hence, those are called *lexical units* (LUs) in the sense of Cruse (1986: 49). Consider (1), a construct of the reflexive motion construction.

¹ A more detailed account of CxS (in German), including further aspects that cannot be discussed in this article, can be found in Willich (2022), on which this article is based.

² https://www.dwds.de/d/korpora/korpus21 (last access: 3 February 2022).

³ https://framenet.icsi.berkeley.edu/fndrupal/luIndex (last access: 28 June 2022).

⁴ These would include word-formation constructions, idioms, conditional constructions and passive constructions, among many others (for some examples, see Goldberg 2006: 5).

⁵ Following the conventions of the FrameNet literature, frame names are typset in a monospaced font, whereas FE names are typeset in small caps.

(1) Erkämpfte Dickicht. sich durch das he fight.psr.3sg SELF through DET.ACC thicket 'He fought his way through the thicket.' (Glavinic, Thomas: Die Arbeit der Nacht, München & Wien: Carl Hanser Verlag, p. 273)

The relevant LU is the verb *kämpfen* ('fight'). It evokes the Hostile_encounter frame. This frame consists of five Core FEs (Issue, Purpose, Side 1, Side 2, Sides) as well as 12 Non-Core FEs. In CxS, a frame evoked by a LU is called a lexical frame. In argument structure constructions like the reflexive motion construction, which are combinations of a verbal predicate with a series of grammatical functions (Goldberg 1995, 2002, 2006), lexical frames are typically evoked by the verbal predicate around which the construction is centered. Therefore, lexical frames generalize over the semantic valencies of those verbs (cf. Fillmore et al. 2003: 237).

However, for most constructs, lexical frames are not the only source of their semantic properties. Since constructions are form-meaning pairings (Goldberg 1995: 4; Lakoff 1987: 467), they can also be considered to evoke frames. In fact, a lexical frame like Hostile_encounter is not sufficient to capture all semantic properties of a construct like (1). Since a construction has a meaning in its own right, a lexical frame has to be accompanied by a constructional frame, which is not evoked by a LU but by the construction as a whole. For the reflexive motion construction, this frame is most likely Motion, because "[i]nstances of this construction imply that the subject referent moves along the path designated by the prepositional phrase" (Goldberg 1995: 199). Motion consists of seven Core FEs: Area, Direction, Distance, Goal, Path, Source and Theme, along with 14 Non-Core FEs.

Whereas lexical frames vary depending on the verb that is instantiated in the construct, constructional frames might stay the same throughout the constructs of a construction (or at least, in case of a polysemous construction, throughout one of its senses), through their nature of being associated with the construction itself.

The need for a constructional frame becomes apparent when looking at (1). The reflexive motion construction consists of three CEs (the subject, a slot for the verbal predicate, and an oblique PP) and one CEE (the reflexive pronoun). The CE instantiated by the PP durch das Dickicht ('through the thicket') cannot be interpreted as an instance of any FE of the lexical frame Hostile_encounter. The constructional frame Motion, however, does feature a relevant FE: PATH. The same holds for the CEE, the reflexive pronoun (in this case: sich), which appears in all constructs and characterizes the construction as a reflexive construction. The verb kämpfen ('fight') usually does not qualify as reflexive – the reflexive pronoun therefore is only licensed by the reflexive motion construction. Because of that, it cannot be semantically traced back to the lexical frame but to the constructional frame. It is an instance of the FE THEME of Motion. The only CE whose instance corresponds to an FE of the lexical frame is the subject, in the case of (1), Er ('He'), which serves as an instance of the FE Side_1 of Hostile_encounter.8

As a result, both lexical and constructional frames are involved in (1). At the level of this single token, they together form a third type of frame, a construct frame, following Kay and Fillmore (1999: 2-3) in calling the instance of a construction a construct. Construct frames therefore represent "novel events that do not evoke any pre-existing semantic frame" (Goldberg 2010: 58). The process of building up construct frames from both lexical and constructional frames can be understood as conceptual integration (Fauconnier and Turner 1996, 1998, 2002), the blending of two input concepts to a new token-level concept (the blend). A typical example in Construction Grammar is the blending between an argument structure construction (including its meaning) and an event denoted by a valency-bearing predicate to form an utterance that qualifies as a construct of that construction (Mandelblit 1997: Ch. 2). Focusing on frames, in CxS, a lexical frame serves as input 1, whereas the constructional frame serves as input 2. The construct frame, then, is a blend of these two inputs, selecting FEs from both frames to form a new frame only existing for a given construct.

⁶ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Hostile_encounter (last access: 3 February 2022).

⁷ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Motion (last access: 3 February 2022). For a full account on why Motion is the constructional frame for the reflexive motion construction, see Willich (2022: Ch. 8).

⁸ Since almost every verb in German (as well as in English) needs a subject, most lexical frames feature a FE that instantiates as that subject. Therefore, it is likely that the subject is already contributed by the valency of the LU and qualifies as an instance of a FE of the lexical frame.

3 Frame proximity

Frames are related to each other via frame-to-frame relations. FrameNet distinguishes nine types of frame-to-frame-relations (Ruppenhofer et al. 2016: 79–85). CxS can make use of these relations to capture the closeness of a lexical frame to a given constructional frame. Building on the notion of *frame distance* (Čulo 2013), a system of lexical frames that hold a certain *frame proximity* to a constructional frame may be identified.

Take, as an example, the Inheritance relation. Motion, the constructional frame for the reflexive motion construction, is inherited by five frames, meaning that those frames are more specific than Motion while inheriting all of its FEs and narrowing their definitions (cf. Ruppenhofer et al. 2016: 80). Among those five frames is Self_motion. Self_motion is attested as a lexical frame for the reflexive motion construction, evoked by LUs like *schleichen* ('sneak'), as in (2):

(2) Katharina schlich sich oben durch den Flur und kletterte Katharina sneak.pst.3sg upstairs through hallway and climb.pst.3sg SELF DET.ACC hinauf Dachboden die Leiter zum ladder DET.ACC to=art attic to.up 'Katharina sneaked her way through the hallway upstairs and climbed up the ladder to the attic.' (Dölling, Beate: Hör auf zu trommeln, Herz, Weinheim: Beltz & Gelberg 2003, p. 28)

The amount of frame proximity of a lexical frame can now be counted based on the frame-to-frame relations in FrameNet. Because Self_motion directly inherits from Motion, we can assign Self_motion a frame proximity of +1, meaning that it is located one step downward in the frame hierarchy below the constructional frame Motion. To distinguish frame proximity for downward and upward relations, the former are marked with a plus sign, whereas the latter are marked with a minus sign.

Self_motion in turn is inherited by four frames. One of those is Fleeing. ¹⁰ This frame is also attested as a lexical frame for the reflexive motion construction, cf. (3), where it is evoked by the LU *flüchten* ('flee').

(3) Die flüchtet sich eine Affäre mit ihrem Maklervorbild dem noch in she flee.prs.3sg her.dat role.model.of.a.broker SELF in DET.ACC affair with DET.DAT even größeren Fassadenkünstler Buddy Kane (Peter Gallagher) Gallagher bigger.dat facade.artist Buddy Kane Peter 'She flees her way into an affair with her role model of a broker, even bigger facade artist Buddy Kane (Peter Gallagher).' (Die Zeit, 20.01.2000, No. 4)

From the perspective of Motion, Fleeing can be assigned a frame proximity of +2, because it is located two steps downward in the frame hierarchy below Motion.

Of course, the notion of frame proximity does not only apply to frames below the constructional frame, but also to frames above it. FrameNet documents one frame that Motion inherits from: Event. Therefore, Event holds a frame proximity of -1 with respect to Motion, since it is located one step above Motion. However, in the corpus data for the reflexive motion construction, Event is not attested as a lexical frame.

Frames that hold a certain frame proximity (of any degree) to a given constructional frame are called *related frames*. Hence, a related frame that might occur as a lexical frame for the construction in question is a *related lexical frame*. Taking all types of frame-to-frame relations together, a network of 51 related frames can be identified for Motion. Related lexical frames closer to Motion appear to be more prototypical than those that are more distantly related. Unsurprisingly, the majority of example sentences in the sample (600 out of 1,011: 59.35%) contains lexical frames with a frame proximity of +1 or -1. Consequently, there are only seven example sentences

⁹ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Self_motion (last access: 3 February 2022).

¹⁰ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Fleeing (last access: 3 February 2022).

¹¹ Some frames appear within multiple frame-to-frame relation types. Those frames are only counted once.

(0.69%) containing lexical frames with a frame proximity of +2 or +3. There are no related lexical frames with a frame proximity of -2 or -3 (or lower), +3 being the lowest frame proximity in the network for Motion.

But the network of related frames is not the only source for potential lexical frames. Frames that do not hold a frame-to-frame relation to the constructional frame and hence do not have frame proximity are also possible lexical frames. I call these unrelated frames. If they are attested for the construction, they are unrelated lexical frames. A prime example for an unrelated lexical frame with respect to Motion was already seen in (1): Hostile_encounter is a frequently attested unrelated lexical frame for the reflexive motion construction. However, not every lexical frame that qualifies as an unrelated frame is eligible to occur in a construct – in other words: it is not arbitrary which unrelated lexical frames occur with a construction.

4 Structural parallels between constructions and frames: semantic motivation of constructs

A CxS analysis does not stop at identifying a constructional frame and related as well as unrelated lexical frames. A next step is the analysis of construct frames, i.e. the semantic motivation of the instances of CEs and CEEs of a construction by way of combination of FEs of both lexical and constructional frames. This motivation is based on morphological and syntactic iconicity (Haiman 1980, 1983, 1985): additional morphemes or phrases point to additional semantic content. Here, the appearance of a reflexive pronoun in collocation with a verb that usually does not classify as reflexive is an indicator for an additional constructional frame that together with a lexical frame constitutes a construct frame. In other words, the appearance of the reflexive pronoun in the reflexive motion construction is semantically motivated by the constructional frame, because it overtly expresses one of its FEs.

It is important to note that not only are CEs and CEEs motivated through FEs, but also (at least for argument structure constructions) their instances, i.e. the constituent parts of a construct. To reflect this terminologically, instances of CEs are called construct elements (CtEs) in CxS. Since CEEs are (more or less) lexically specific anyway, no further distinction is necessary to account for them.

For the reflexive motion construction, three types of semantic motivation of CtEs and the CEE can be identified:12

- (1) The motivation of all CtEs and the CEE by FEs of a lexical frame.
- (2) The motivation of a CtE and/or the CEE by FEs of the constructional frame.
- (3) The motivation of a CtE and/or the CEE by FEs of both a lexical and the constructional frame.

These three types are now discussed in turn.

4.1 Motivation of all CtEs and the CEE by FEs of a lexical frame

In cases where all CtEs and the CEE are motivated by FEs of a lexical frame, the construct frame only consists of FEs of that lexical frame. Hence, no additional FEs from a distinct constructional frame come into play. In fact, no additional FEs are necessary since all lexical frames that are capable of motivating all CtEs and the CEE are inherently tied to the constructional frame: they are related lexical frames. Conversely, the constructional frame itself might appear as a lexical frame if it is evoked by a respective verb in the construct. In essence, the motivation

¹² This approach differs from the observations made by Goldberg (2002: 344–346), who distinguishes four types of possible alignments between the arguments of a construction and that of a verb. CxS utilizes frames, not just individual verbs, to account for generalizations that hold for all verbs within a frame. Also, for the case that certain arguments of the construction and a verb match, Goldberg does not account for the differences between an elaboration of the construction's arguments (Section 4.1 in this article) and an enrichment by a semantically distinct but relatable argument of the verb (Section 4.3).

of all CtEs and the CEE by FEs of a lexical frame appears to be a case of *elaboration* in the sense of Goldberg (1997: 386): a related lexical frame elaborates the constructional frame.

As an example, recall the related lexical frame Self_motion. An annotation of its FEs for the two CtEs *Ich* (T) and *zu dem Gewürzregal* ('to the spice rack') is provided in (4).

(4) Ich1 schlich mich vorsichtig an ihm vorbei zu dem SELF_MOVER [GOAL]sneak.pst.1sg self carefully on him.dat past DET.DAT to Gewürzregal,] ließ ihn aber nicht aus den Augen. spice.rack let him.acc but not out.of DET.DAT eves I carefully sneaked my way past him to the spice rack, but did not take my eyes off of him. (Düffel, John von: Vom Wasser, München: dtv, 2006, p. 260)

Both CtEs are motivated by FEs from Self_motion with no need for an additional frame. Note that the CEE, the reflexive pronoun *sich*, is not annotated for a FE of Self_motion. This is only because the verb *schleichen* ('sneak') does not classify as reflexive in English, so no respective FE for a reflexive pronoun is included in the English frame, but may well be in a German version of Self_motion.

Out of the 1,011 example sentences for the construction in the sample, 712 (70.43%) are attested for a motivation of all CtEs and the CEE by FEs of a lexical frame.

These immediate structural parallels between a related lexical frame (Self_motion in this case) and the constructional frame (Motion) show the importance of the notion of frame proximity. If a lexical frame is related to the constructional frame, all CtEs as well as the CEE are motivated by FEs of this very lexical frame. Conversely, it is only possible for a lexical frame to motivate all CtEs and the CEE if it is a related lexical frame. Even though there is no separate constructional frame at work, the relatedness of the lexical frame to a constructional frame qualifies cases like (4) as instances of the construction and not just a realization of the valency of a verb like *schleichen*.

4.2 Motivation of a CtE and/or the CEE through FEs of the constructional frame

When a CtE cannot be motivated by a FE of the lexical frame, the constructional frame comes into play. This is only relevant for unrelated lexical frames, since annotation of the data for the reflexive motion construction shows that related lexical frames are almost always able to motivate all CtEs. With unrelated lexical frames, annotation makes clear that the construct frame has to consist of FEs of both frames, hence its constitution might be modeled as a process of conceptual integration in the sense of Fauconnier and Turner (1996, 1998, 2002).

Motivation via FEs of the constructional frame can be attested for CtEs as well as for instances of the CEE. For example, in (5), with the unrelated lexical frame Cause_to_experience, ¹³ the CtE *durch ein briefbogengroßes*, *verdrecktes Fenster* ('through a letterhead-sized, dirty window') must be interpreted as being motivated only by the FE Path of the constructional frame Motion. ¹⁴

(5) briefbogengroßes, Eine Ahnung von Licht quält sich [durch ein hint of light torment.prs.3sg self through DET.ACC letterhead-sized.ACC DET.NOM Path₁. verdrecktes Fenster dirty.acc window 'A hint of light torments its way through a letterhead-sized, dirty window.' (Die Zeit, 24.02.2000, No. 9)

This type of motivation is found in 91 sentences (9%) in the sample.

¹³ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Cause_to_experience (last access: 3 February 2022).

¹⁴ In all remaining examples, subscript annotation marks FEs of the lexical frame, while superscript annotation marks FEs of the constructional frame.

A motivation of the CEE, the reflexive pronoun sich, via the FE THEME of the constructional frame can be seen in (6). The lexical frame Ingestion 15 is unrelated to the constructional frame Motion.

wenn ich als Kind die (6)Auch Inhalte der Angst nicht kapierte, even.though when I child DET.ACC contents DET.GEN fear not understand.pst.1sg as fraß **[sich** das Gefühl der Angst in den Kopf. eat.psr.3sg SELF DET.NOM feeling DET.GEN fear in DET.ACC head Even though I did not understand the fear's topic as a child, the feeling of fear ate its way into the head.' (Müller, Herta: Der König verneigt sich und tötet, München: Carl Hanser Verlag 2003, p. 161)

This motivation of an instance of the CEE licenses the occurrence of the reflexive pronoun sich with a verb like fressen ('eat'), which usually does not categorize as a reflexive verb. The reflexive pronoun is recruited to overtly express the FE Theme of Motion, since the subject CtE das Gefühl der Angst ('the feeling of fear') is already an instance of a different FE, i.e. Ingestor of the lexical frame Ingestion. Motivation of the CEE via the FE Theme of the constructional frame is attested for 104 sentences (10.29%) in the sample.

Of course, the motivation of both a CtE and the CEE can also be attested in the same construct, as shown in (7) with the unrelated lexical frame Make_noise: 16 Path and Theme from the constructional frame Motion motivate the PP CtE and the CEE respectively. For the reflexive motion construction, this is the highest possible contribution of the constructional frame to a construct frame.

[sich THEME] Portale PATH 1. (7) klickten Sie [durch orientierten sich an Sitemaps, click.pst.3pl through by they portals orient.pst.3pl SELF sitemaps SELF nach immer auf der Suche der besten Adresse. address always on DET.DAT search after DET.DAT best.dat They clicked their way through portals, oriented themselves by sitemaps, always looking for the best address.' (Die Zeit, 03.02.2000, No. 6)

4.3 Motivation of a CtE and/or the CEE through FEs of both a lexical and the constructional frame

Not only is it possible for CtEs or instances of a CEE to be motivated by either a FE of the lexical or the constructional frame, FEs of both frame are able to motivate one single CtE or instance of a CEE together. In terms of conceptual integration, this can be seen as a fusion of the two FEs within the construct frame.¹⁷ In CxS, it is called double motivation. Consider (8) as an example for the double motivation of the CtE durch ein kompliziertes Kreuzworträtsel ('through a complicated crossword puzzle') with the lexical frame Work, 18 contributing the FE Salient_Entity, whereas the constructional frame Motion contributes the FE PATH.

```
(8)
Er
         arbeitete
                             [SALIENT_ENTITY durch
                                                                  kompliziertes Kreuzworträtsel,
                      sich
                                                    ein
he
         work.pst.3sg self
                                         through
                                                                  complicated.Acc crossword.puzzle
                                                    DET.ACC
         hatte
                      ein
                              Bier
                                     aufgemacht
                                                    und
                                                               sich
                                                                      auf
                                                                             einen
                                                                                        beschaulichen
                                                                                        contemplative.Acc
         have.pst.3sg det.acc beer
                                     open.up.ptcp
                                                    and
                                                                      for
                                                               SELF
                                                                             DET.ACC
Abend eingestellt,
                      als
                              das
                                         Telefon
                                                       läutete.
 evening set.up.ptcp
                                         telephone
                                                       ring.pst.3sg
                      when DET.NOM
```

¹⁵ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Ingestion (last access: 3 February 2022).

¹⁶ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Make noise (last access: 3 February 2022).

¹⁷ This is not to be confused with the mechanism of fusion discussed by Goldberg (1995: 50-52). In her account, both FEs would need to be semantically compatible, but it is questionable whether this compatibility is required.

¹⁸ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Work (last access: 3 February 2022).

'He worked his way through a complicated crossword puzzle, had opened up a beer and and set up for a contemplative evening, when the telephone rang.'

(Glavinic, Thomas: Die Arbeit der Nacht, München & Wien: Carl Hanser Verlag, p. 381)

Double motivation of a respective CtE is found in 91 sentences (9%) in the sample.

An example of double motivation for the instance of a CEE (again, *sich*) can be seen in (9). The unrelated lexical frame is Rescuing, ¹⁹ contributing the FE Patient. As with all unrelated lexical frames, the constructional frame Motion contributes the FE Theme.

```
(9)
                                                                        der
                                                                                 Tatsachen
                                                                                             in
Mommsen rettete
                                    sich
                                                                Welt
                             PATIENT
                                                                                facts
                                                                                             into
Mommsen rescue.pst.3sg
                                    SELF
                                                  out
                                                       DET.DAT
                                                                world
                                                                        DET.GEN
die
                  Gefühle.
        der
that
        DET.GEN
                  feelings
'Mommsen rescued his way out of the world of facts into that of feelings.'
(de Bruyn, Günter: Preußens Luise, Siedler 2001, p. 87)
```

Double motivation of an instance of the CEE is attested for 74 sentences (7.32%) in the sample.

Just as with the single motivation of both a CtE and the instance of a CEE in the same construct (Section 4.2), double motivation of both elements is also attested. See (10), which features the unrelated lexical frame Grinding, contributing the FEs GOAL for the CtE and PATIENT for the CEE (along with GOAL and THEME from the constructional Motion, respectively).

```
(10)
 Ein
          Motor
                     dröhnt
                                               Straße herüber, und diese dröhnende
                                 von
                                       der
 DET.NOM engine
                    roar.prs.3sg from det.dat street
                                                       over
                                                                 and this
                                                                             roaring.nom street
                            Тнеме 1
 fräst
                                                                 Gedächtnis
                    sich
                                               in
                                                       mein
                                                                                     ein.
             PATIENT
                                       [GOAL
 mill.prs.3sg
                                               into
                                                       my
                                                                 memory
 'An engine roars over from the street, and this roaring street mills its way into my memory.'
 (Riedel, Susanne: Eine Frau aus Amerika, Berlin: Berlin Verlag 2003, p. 95)
```

5 Some semantic parameters of constructions

With the identification of the network of frame proximity and the analysis of structural parallels between the construction at hand and its constructional frame as well as all attested lexical frames, it becomes possible to abstract away from single constructs and even single lexical frames to come up with a description of the semantic properties of the construction as a type unit. For this purpose, CxS distinguishes between seven semantic parameters of constructions. As such, semantic parameters might be an important part of a construction entry in a constructiographic repository (Ziem et al. 2019: Ch. 4), along with other information on the construction, such as its formal structure or relations to other constructions. The three most important parameters are discussed briefly in the remainder of this section (see Willich 2022: Ch. 5 for a full account on all seven parameters).

5.1 Constructional polysemy

In some Construction Grammar approaches, constructions are treated as being polysemous, i.e. as having different senses that can be observed in their constructs (e.g., Goldberg 1995: 75–77).²¹ In CxS, the polysemy of a

¹⁹ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Rescuing (last access: 3 February 2022).

²⁰ https://framenet2.icsi.berkeley.edu/fnReports/data/frameIndex.xml?frame=Grinding (last access: 3 February 2022). Note that both Motion and Grinding feature a FE Goal, with no intention of having a similar definition (cf. Baker et al. 2003: 283–284). In this case, however, both FEs refer to different but still relatable matters, making it possible for them to be fused to motivate a single CtE.

²¹ Whether constructions should be treated as polysemous or divided into separate lower-level constructions is controversial. For a critique on the concept of constructional polysemy, cf. Nemoto (2005) and Iwata (2008), among others. The task for CxS is not to argue for or against constructional polysemy but to offer ways to model (potential) constructional polysemy in different ways.

construction can be captured in two ways, either (i) through multiple constructional frames associated with the same construction, or, (ii) if there is only one plausible constructional frame, with subtler meaning differences throughout the constructs, primarily differences in lexical frames and lexical meanings of LUs. 22 The latter is the case for the reflexive motion construction if we assume that it is indeed a polysemous construction, which previous research suggests.

Based on research on the English way-construction, four different senses might be identified for the reflexive motion construction: 'manner', 'means' and 'incidental activity' (see Goldberg 1995: 202; Israel 1996: 218; McColm 2019: 39; Perek 2018: 68-69) as well as a 'neutral' sense, as is documented in the FrameNet construction and which implies none of the other interpretations.²³ Those senses correlate for the most part with certain lexical frames: examples for the 'neutral' sense include related lexical frames like Body_movement with LUs like beugen ('flex') or Placing with LUs like legen ('lay'). These LUs do not imply any 'manner' or 'means' interpretation and because they evoke related lexical frames, there is no separate constructional frame at work that might be 'incidentally' blended with a lexical frame. The 'manner' sense occurs with those lexical frames as well, but is triggered by verbs denoting a manner of motion, like rollen ('roll') or schlingen ('wrap') respectively, which specify the manner in which the action is carried out.

The 'means' sense, which expresses the means under which the motion takes place, is attested primarily with unrelated lexical frames, including Grinding (evoked by LUs like fräsen 'mill') and Manipulation (quetschen 'squeeze'). In comparison to the 'incidental activity' sense, which requires an unrelated lexical frame that imposes no obvious similarity with the constructional frame (hence 'incidental activity'), fewer frames overlap between the two senses, the latter being attested for unrelated lexical frames such as Chatting (reden 'talk') or Hunting (jagen 'hunt').

5.2 Productivity

Based on the annotation of lexical frames for a given argument structure construction, CxS provides a way to measure the productivity of this construction in semantic terms. According to Barðdal (2008), the productivity of a construction can be measured through two components: its type frequency and its semantic coherence. CxS employs this method by examining the ratio between the frequencies of related and unrelated lexical frames for a given construction. While all constructs with related lexical frames can be considered semantically coherent, a high number (type frequency) of attested unrelated lexical frames indicates a high productivity.

For the reflexive motion construction, 16 of all attested lexical frames are related, whereas 34 are unrelated, which gives a ratio of 1:2.13. Since there are more than twice as many unrelated lexical frames as related lexical frames, the construction can be considered fairly productive.

5.3 Emergent structure

The term emergent structure is adopted from conceptual integration theory (Fauconnier and Turner 1996, 1998, 2002), where it is used for semantic aspects that arise in the blend but are not present in the inputs. Accordingly, in CxS, this parameter is necessary to capture semantic aspects that are characteristic for certain constructs of a construction but are not to be found in the individual lexical and constructional frames.

For the reflexive motion construction, as well as for its English counterpart, the way-construction, such meaning aspects concern a certain degree of 'difficulty' under which the motion of a theme proceeds (cf. Goldberg 1995: 203–204; Smirnova 2018: 36). For example, if one is to 'work his/her way through a complicated crossword puzzle' (cf. example 8 above), this implies that the metaphorical motion through the crossword puzzle is not possible without overcoming certain obstacles. This aspect, however, is neither part of the lexical frame Work nor

²² Here, it is important to note that the frame a LU evokes is not the same as its lexical meaning, the frame only providing the background for a further distinction between semantically adjacent, but not synonymous LUs (cf. Ziem 2020b).

²³ http://sato.fm.senshu-u.ac.jp/frameSQL/cxn/CxNeng/cxn00/21colorTag/index.html (last access: 3 February 2022).

the constructional frame Motion. Even though the interpretation of 'difficulty' emerges in the constructs, it can be seen as a characteristic of the construction as a whole (for similar arguments see Bybee 2010: 109; Finkbeiner 2019: 182–183; Schmid 2020: 269).

6 Further issues and perspectives

Construction Semantics (CxS) aims to extend Construction Grammar and constructicography by implementing a powerful frame-semantic methodology that captures the semantic properties of constructions and their constructs with recourse to FrameNet frames. It provides methods to investigate the semantic motivation of constructs through frame elements (FEs) of both lexical and constructional frames, which in turn makes it possible to generalize these fine-grained analyses to semantic parameters of constructions.

Of course, the principles discussed in this article and the current version of CxS in general only scrape the very tip of the iceberg. It is up to future research to apply CxS to a much wider range of grammatical constructions, not only argument structure constructions like the reflexive motion construction, but also constructions different enough to reveal further gaps to be closed in the theoretical, methodological and empirical scope of CxS.

An important issue to be addressed in future research is the relationship between constructions and frames. Specifically, the mechanisms with which constructions evoke their constructional frames (which may be different from those of LUs) as well as the methods for identifying constructional frames need further exploration (see Willich 2022: Ch. 8 for first findings). A single construction like the reflexive motion construction only serves as a starting point for further analyses on many different types of other constructions yet to be investigated.

Acknowledgments: I am grateful to two anonymous reviewers as well as Rebecca Lee for many helpful comments that greatly improved this article.

References

Baker, Collin F., Charles J. Fillmore & Beau Cronin. 2003. The structure of the FrameNet database. *International Journal of Lexicography* 16(3). 281–296.

Barðdal, Jóhanna. 2008. *Productivity: Evidence from case and argument structure in Icelandic* (Constructional Approaches to Language 8). Amsterdam & Philadelphia: Benjamins.

Boas, Hans C. 2021. Construction grammar and frame semantics. In Xu Wen & John R. Taylor (eds.), *The Routledge handbook of cognitive linguistics*, 43–77. New York & London: Routledge.

Boas, Hans C. & Ryan Dux. 2017. From the past into the present: From case frames to semantic frames. Linguistics Vanguard 3(1). 1–14.

Boas, Hans C., Benjamin Lyngfelt & Tiago Timponi Torrent. 2019. Framing constructicography. Lexicographica 35(1). 15–39.

Bybee, Joan. 2010. Language, usage and cognition. Cambridge: Cambridge University Press.

Cruse, David Alan. 1986. Lexical semantics. Cambridge: Cambridge University Press.

Čulo, Oliver. 2013. Constructions-and-frames analysis of translations: The interplay of syntax and semantics in translations between English and German. *Constructions and Frames* 5(2). 143–167.

Fauconnier, Gilles & Mark Turner. 1996. Blending as a central process of grammar. In Adele Goldberg (ed.), *Conceptual structure, discourse and language*, 113–130. Stanford: CSLI Publications.

Fauconnier, Gilles & Mark Turner. 1998. Conceptual integration networks. *Cognitive Science* 22(2). 133–187.

Fauconnier, Gilles & Mark Turner. 2002. The way we think: Conceptual blending and the mind's hidden complexities. New York: Basic Books.

Fillmore, Charles J. & Collin F. Baker. 2010. A frames approach to semantic analysis. In Bernd Heine & Heiko Narrog (eds.), *The Oxford handbook of linguistic analysis*, 313–339. Oxford: Oxford University Press.

Fillmore, Charles J., Christopher R. Johnson & Miriam R. L. Petruck. 2003. Background to FrameNet. *International Journal of Lexicography* 16(3). 235–250.

Fillmore, Charles J., Russell Lee-Goldman & Russell Rhomieux. 2012. The FrameNet construction. In Hans C. Boas & Ivan A. Sag (eds.), Sign-based construction grammar (CSLI Lecture Notes 193), 309–372. Stanford: CSLI Publications.

Finkbeiner, Rita. 2019. Reflections on the role of pragmatics in construction grammar. Constructions and Frames 11(2). 171–192.

Goldberg, Adele E. 1995. Constructions: A construction grammar Approach to argument structure. Chicago & London: University of Chicago Press.

- Goldberg, Adele E. 1997. The relationships between verbs and constructions. In Marjolyn Verspoor, Kee Dong Lee & Eve Sweetser (eds.), Lexical and syntactical constructions and the construction of meaning: Proceedings of the Bi-Annual ICLA meeting in Albuquerque, July 1995 (Amsterdam Studies in the Theory and History of Linguistic Science 150), 383-398. Amsterdam & Philadelphia: Benjamins.
- Goldberg, Adele E. 2002. Surface generalizations: An alternative to alternations. Cognitive Linguistics 13(4). 327–356.
- Goldberg, Adele E. 2006. Constructions at work: The nature of generalization in language. Oxford & New York: Oxford University Press.
- Goldberg, Adele E. 2010. Verbs, constructions, and semantics frames. In Malka Rappaport Hovav, Edit Doron & Ivy Sichel (eds.), Lexical semantics, syntax, and event structure, 39-58. Oxford: Oxford University Press.
- Haiman, John. 1980. The iconicity of grammar: Isomorphism and motivation. Language 56(3). 515-540.
- Haiman, John. 1983. Iconic and economic motivation. Language 59(4). 781–819.
- Haiman, John. 1985. Natural syntax: Iconicity and erosion (Cambridge studies in linguistics 44). Cambridge: Cambridge University Press.
- Israel, Michael. 1996. The way constructions grow. In Adele Goldberg (ed.), Conceptual structure, discourse and language, 217-230. Stanford: CSLI Publications.
- Iwata, Seizi. 2008. Locative alternation: A lexical-constructional approach (Constructional Approaches to Language 6). Amsterdam & Philadelphia: Benjamins.
- Kay, Paul & Charles I. Fillmore, 1999, Grammatical constructions and linguistic generalizations: The What's X doing Y? Construction, Language 75(1), 1-33.
- Lakoff, George. 1987. Women, fire, and dangerous things: What categories reveal about the mind. Chicago & London: University of Chicago Press. Laviola, Adrieli, Ludmila Mereiles Lage, Natália Duarte Marção, da Silva TatianeTavares, Vânia Gomes de Almeida, Ely Edison da Silva Matos & Tiago Timponi Torrent. 2017. The Brazilian Portuguese construction: Modeling constructional inheritance, frame evocation and constraints in FrameNet Brasil. In Proceedings of the AAAI 2017 Spring Symposium on Computational Construction Grammar and Natural language Understanding: Technical Report SS-17-02, 193-196. Palo Alto: AAAI Publications.
- Lee-Goldman, Russell & Miriam R. L. Petruck, 2018. The FrameNet construction in action. In Benjamin Lyngfelt, Lars Borin, Kyoko Ohara & Tiago Timponi Torrent (eds.), Constructicography: Constructicon development across languages (Constructional Approaches to Language 22), 19-39. Amsterdam & Philadelphia: Benjamins.
- Mandelblit, Nili. 1997. Grammatical blending: Creative and schematic Aspects in sentence processing and translation. San Diego: University of California, San Diego dissertation.
- McColm, Dan. 2019. A cross-linguistic investigation of the way-construction in English, Dutch, and German. Edinburgh: The University of Edinburgh
- Michaelis, Laura A. 2010. Sign-based construction grammar. In Bernd Heine & Heiko Narrog (eds.), The Oxford handbook of linguistic analysis, 139-158. Oxford: Oxford University Press.
- Mortelmans, Tanja & Elena Smirnova. 2020. Analogues of the way-construction in German and Dutch: Another Germanic sandwich? In Gunther De Vogelaer, Dietha Koster & Torsten Leuschner (eds.), German and Dutch in contrast: Synchronic, diachronic and psycholinquistic perspectives (Konvergenz und Divergenz 11), 47-76. Berlin & Boston: De Gruyter.
- Nemoto, Noriko. 2005. Verbal polysemy and frame semantics in construction grammar. In Mirjam Fried & Hans C. Boas (eds.), Grammatical constructions: Back to the roots (Constructional Approaches to Language 4), 119–136. Amsterdam & Philadelphia: Benjamins.
- Ohara, Kyoko Hirose, 2018, Relations between frames and constructions; A proposal from the Japanese FrameNet construction, In Benjamin Lyngfelt, Lars Borin, Kyoko Ohara & Tiago Timponi Torrent (eds.), Constructicography: Constructicon development across languages (Constructional Approaches to Language 22), 141–163. Amsterdam & Philadelphia: Benjamins.
- Östman, Jan-Ola & Mirjam Fried. 2005. The cognitive grounding of Construction Grammar. In Jan-Ola Östman & Mirjam Fried (eds.), Construction Grammars: Cognitive grounding and theoretical extensions (Constructional Approaches to Language 3), 1–13. Amsterdam & Philadelphia: Benjamins.
- Oya, Toshiaki. 1999. Er bettelt sich durchs land eine one's way-konstruktion im deutschen? Deutsche Sprache 27(4). 356-369.
- Perek, Florent. 2018. Recent change in the productivity and schematicity of the way-construction: A distributional semantic analysis. Corpus Linguistics and Linguistic Theory 14(1). 65-97.
- Ruppenhofer, Josef, Michael Ellsworth, Miriam R. L. Petruck, Christopher R. Johnson, Collin F. Baker & Jan Scheffczyk. 2016. FrameNet II: Extended theory and practice. Berkeley: International Computer Science Institute.
- Schmid, Hans-jörg. 2020. The dynamics of the linguistic system: Usage, conventionalization, and entrenchment. Oxford: Oxford University Press. Smirnova, Elena. 2018. Reflexivkonstruktionen im Deutschen. Germanistik in der Schweiz 15. 19-41.
- Willich, Alexander. 2022. Konstruktionssemantik: Frames in gebrauchsbasierter Konstruktionsgrammatik und Konstruktikographie (Linquistik Impulse & Tendenzen 98). Berlin & Boston: De Gruyter.
- Ziem, Alexander. 2020a. Wenn sich FrameNet und Konstruktikon begegnen: Erste Annäherungsversuche zwischen zwei Repositorien zum Deutschen. In Michel Lefèvre & Katharina Mucha (eds.), Konstruktionen, Kollokationen, Muster: Akten des Workshops an der Université Paul Valéry Montpellier 3, November 2017 (Eurogermanistik 39), 13-38. Tübingen: Stauffenburg.
- Ziem, Alexander. 2020b. Wortbedeutungen als Frames: ein Rahmenmodell zur Analyse lexikalischer Bedeutungen. In Jörg Hagemann & Sven Staffeldt (eds.), Semantiktheorien II: Analysen von Wort-und Satzbedeutungen im Vergleich (Stauffenburg Einführungen 36), 27–56. Tübingen: Stauffenburg.
- Ziem, Alexander, Johanna Flick & Phillip Sandkühler. 2019. The German construction project: Framework, methodology, resources. Lexicographica 35(1). 61-86.