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ABSTRACT

Objective Due to the limited number of modifiable risk
factors, secondary prevention strategies based on early
diagnosis represent the preferred route to improve the
prognosis of pancreatic ductal adenocarcinoma (PDAC).
Here, we provide a comparative morphogenetic analysis
of PDAC precursors aiming at dissecting the process

of carcinogenesis and tackling the heterogeneity of
preinvasive lesions.

Design Targeted and whole-genome low-coverage
sequencing, genome-wide methylation and
transcriptome analyses were applied on a final collective
of 122 morphologically well-characterised low-grade and
high-grade PDAC precursors, including intestinal and
gastric intraductal papillary mucinous neoplasms (IPMN)
and pancreatic intraepithelial neoplasias (PanIN).
Results Epigenetic regulation of mucin genes
determines the phenotype of PDAC precursors. PanIN
and gastric IPMN display a ductal molecular profile and
numerous similarly regulated pathways, including the
Notch pathway, but can be distinguished by recurrent
deletions and differential methylation and, in part, by
the expression of mucin-like 3. Intestinal IPMN are
clearly distinct lesions at the molecular level with a more
instable genotype and are possibly related to a different
ductal cell compartment.

Conclusions PDAC precursors with gastric and
intestinal phenotype are heterogeneous in terms

of morphology, genetic and epigenetic profile. This
heterogeneity is related to a different cell identity and,
possibly, to a different aetiology.

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) is
one of the most aggressive human neoplasms
and represents the fourth most common cause of
cancer-related deaths in Western countries.' A
curative surgical approach is feasible only in about
20% of the patients.” Despite numerous progresses
in the last years, the number of PDAC patients
surviving longer than 5 years is disappointingly low
and most patients will succumb to their disease.®>”
Current treatment strategies focus on fighting the
advanced disease, present in about half of the cases

 Rita Vesce,® Wolfgang Goering,? Friederike V Opitz @,
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WHAT IS ALREADY KNOWN ON THIS TOPIC

= Intraductal papillary mucinous neoplasms
(IPMN) and pancreatic intraepithelial
neoplasias (PanIN) are well-known pancreatic
ductal adenocarcinoma (PDAC) precursors
and have been characterised concerning their
morphology and their immunohistochemical
and genetic profile.

PanIN and gastric IPMN are mostly localised
in the peripheral duct system and are mainly
distinguished based on their size.

Intestinal IPMN are mostly main duct lesions
with high frequency of GNAS mutations.

WHAT THIS STUDY ADDS

= PanIN and gastric IPMN have a very similar
genetic and epigenetic profile traceable to the
ductal cell compartment.
= Differential epigenetic regulation and
expression of mucin-like 3 (MUCL3) and the
presence of recurrent copy number variation
(mainly deletions) in gastric IPMN may indicate
a higher potential for progression in these
lesions.
Intestinal IPMN display a distinct genetic
landscape and higher level of genomic
instability with higher proliferation rates
already in low-grade lesions, suggesting a
higher susceptibility for progression compared
with PanIN and gastric IPMN.
Intestinal IPMN show an upregulation of
genetic signatures related to mucin secretion
and a clearly distinct epigenetic profile based
on DNA methylation patterns compared with
PanIN and gastric IPMN, relating them to
a different adult cell type within the ductal
compartment.

at diagnosis, by combining standard chemotherapy
with targeted and immune-based therapies with
limited benefit so far.®”

In contrast to other solid tumours like lung,
breast or colon cancer, there are only a few known
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HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE OR
POLICY

= Immunophenotypical and, when necessary, molecular
subtyping is fundamental in correctly classifying PDAC
precursors with different risk of progression and its use in
pathology reports should be enforced.

= Despite their similarities, distinction between PanIN and
gastric IPMN is relevant and should be pursued with available
(eg, GNAS mutations) and, possibly, newly established
markers, such as MUCL3.

= PDAC precursor subtype-directed lineage and aetiological
factor-based studies will allow identification and evaluation
of lesion-specific prevention strategies.

factors that increase the risk of developing PDAC.®® Among at
least partly modifiable factors, cigarette smoking, obesity, long-
standing diabetes and non-hereditary chronic pancreatitis are
associated with a threefold to sixfold increased lifetime risk for
PDAC. Other factors include hereditary causes with identified
or still unknown gene alterations, for which effective screening
strategies are still missing.” '° It seems therefore that the only
effective strategy to substantially change the prognosis of this
dismal disease is to detect and treat it in a very early stage,
possibly at the stage of its precursor lesions."!

Intraductal and cystic lesions belong to the currently
recognised precursors of PDAC and include pancreatic intraep-
ithelial neoplasias (PanIN), intraductal papillary mucinous
neoplasms (IPMN), intraductal oncocytic papillary neoplasms,
intraductal tubulo-papillary neoplasms and mucinous cystic
neoplasms.'> > Among them, PanIN and IPMN are the most
relevant due to their frequency (PanIN) and the clinical chal-
lenge related to their treatment (IPMN). PanIN represent the
longest-known and best-characterised precursors of classical
PDAC, although they progress with low frequency.’* ** IPMN
encompass three histopathological subtypes, namely intes-
tinal, gastric and pancreatobiliary, with different morphology,
immunophenotype and, partly, biological behaviour.” Despite
these differences, numerous overlapping features exist, and
distinction is not always clear-cut. For example, although intes-
tinal IPMN are usually localised in the main pancreatic duct,
they may extend, or seldom even occur, in peripheral branch
ducts. The same holds true for branch-duct gastric IPMN, which
can extend to or occur in the main pancreatic duct. In addi-
tion, mixed immune phenotypes are detected in about 5% of
the cases and recently, a possible origin of intestinal IPMN from
gastric IPMN has been proposed as well.'* 17 In addition, the
distinction between PanIN and gastric IPMN is mainly based on
their size (<0.5 cm and >1 cm, respectively) and on the different
frequency of GNAS mutations. However, they share a common
localisation and an identical morphology and immune profile
(figure 1A), rendering distinction not always straightforward in
cases of small (incipient’) IPMN.!® This distinction may be of
clinical relevance, for example, in the setting of intraoperative
examination of the pancreatic neck margin: whereas leaving
behind a PanIN will not have any consequences in most cases, a
residual gastric IPMN might bear a higher risk of recurrence." 2

Recent studies have tried to shed light on the progression of
precursor lesions to invasive cancer. Accordingly, the genetic
evolution of PanIN has been quantified, revealing a period of
about 7 years necessary for an initiating cell to develop into
metastatic cancer.”’ However, this model is often contradicted
by the clinical observation of rapidly progressive disease with

systemic dissemination preceding clinical appearance, thus
suggesting the possibility of additional, not yet fully elucidated
more rapid progression models such as chromothripsis rather
than or in addition to linear stepwise genetic evolution.”? % A
stepwise progression model is thought to play a role in [IPMN as
well, but the natural history of these lesions especially taking into
consideration the different subtypes, remains largely unknown.**

It is therefore apparent that numerous questions regarding the
development of pancreatic precursors from their cell of origin to
high-grade and invasive lesions and their relation to each other
remain open. In this work, we provide the first extensive genetic
and epigenetic characterisation of PDAC precursors focusing on
the molecular comparison between intestinal and gastric [PMN
and PanIN.

MATERIALS AND METHODS
Additional protocols and complete procedures are described in
the online supplemental material and methods section.

Study cohort

A tissue collection of precursor lesions of PDAC obtained from
154 patients operated on in the years 2008-2021 was established.
The study cohort consists of 132 different precursor lesions and
includes PanIN (n=55) and IPMN (n=77); 59 lesions (44.6%)
occurred in the context of PDAC (table 1, online supplemental
figure 1). All lesions were re-classified by reviewing all slides
according to current criteria and nomenclature.'** Only PanIN
in pre-existent ducts were included. Representative slides from
all lesions were stained with antibodies for mucin 1 (MUC1),
mucin 2 (MUC2), mucin 5§ (MUCSAC) and caudal type
homeobox 2 (CDX2) for histopathological subtyping.'* Only
morphology and immunohistochemistry were considered for
the distinction between PanIN and gastric IPMN and for IPMN
subtyping. Diagnoses were performed by a pathologist with over
20 years’ experience in pancreatic pathology (IE); difficult cases
were discussed with another pathologist with over 50 years’
experience in pancreatic pathology (GK). In cases with [PMN
and PDAC, PDAC was defined as ‘associated’ if there was clear
morphological evidence of its origin from the IPMN (ie, the
invasive component originated from the intraductal lesion). If
the IPMN was not spatially related to the PDAC, this was consid-
ered a ‘concomitant’ PDAC. A collective of 79 precursor lesions
(66 of them being used in this study also for molecular analyses)
and of 24 PDAC specimens was analysed by whole-slide immu-
nohistochemistry to test the expression of trefoil factor 3 (TFF3)
and mucin-like 3 (MUCL3) proteins (online supplemental table
1a,b).

Estimation of DNA copy number variation by low-coverage
whole-genome sequencing and methylation data

For this analysis, 36 PanIN (28 low-grade and 8 high-grade), 38
gastric IPMN (29 low-grade and 9 high-grade) and 21 intestinal
IPMN (8 low-grade and 13 high-grade) were used. Twenty-eight
lesions (11 PanIN, 13 gastric IPMN and 4 intestinal IPMN) were
analysed by low-coverage whole-genome sequencing (WGS).
Briefly, isolated genomic DNA from formalin-fixed, paraffin-
embedded (FFPE) samples was amplified with the Amplil WGA
kit (Menarini Silicon Biosystems, Bologna, Italy) according to
the manufacturer’s instructions. Ten microlitres of the Amplil
WGA product were used to clean up with 1.8 x SPRIselect beads
(Beckman Coulter, Lahntal, Germany). After that, low-coverage
whole-genome libraries were prepared with the Amplil low-pass
kit (Menarini Silicon Biosystems) according to the manufacturer’s
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Figure 1 Intraductal precursors of pancreatic cancer: morphology and genetics. (A) Morphology and immunohistochemistry: PanIN and gastric
IPMN are distinguished according to morphology and size and display an identical immunohistochemical profile with diffuse positivity for MUC5AC
and no expression of MUC1 and MUC2. Intestinal IPMN are clearly distinct lesions, both on the morphological and immunohistochemical level,
characterised by positivity for MUC2 and MUC5AC. H&E and immunohistochemistry (see ‘Materials and methods' section; scale bar=200 pm).

(B) Targeted-next-generation sequencing analysis: low-grade and high-grade PanIN, gastric IPMN and intestinal IPMN were included in the analysis.
Cases with a concomitant PDAC are indicated with a black square and those with associated PDACs are marked in addition with a white X. Labelled
mutations represent pathogenic mutations according to the ClinVar database and/or the American College of Medical Genetics and Genomics
guidelines with an allele frequency of =3%. Red squares represent missense mutations, grey squares are nonsense mutations and blue squares are
frameshift mutations. Empty squares indicate absence of pathogenic mutations. Analysis was performed using a 21-gene custom panel on the S5
lon Torrent platform (Phred score =30, coverage =500). IPMN, intraductal papillary mucinous neoplasms; MUC1, mucin 1; MUC2, mucin 2; MUC5AC,
mucin 5; PanIN, pancreatic intraepithelial neoplasias; PDAC, pancreatic ductal adenocarcinoma.
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Table 1  Study cohort

Degree of dysplasia
Diagnosis Number of cases (%) Low-grade High-grade Cases with PDAC
PanIN 55/132 (41.7%) 43/55 (78.2%) 12/55 (21.8%) 34/55 (61.8%)
IPMN gastric 46/132 (34.8%) 35/46 (76%) 11/46 (23.9%) 15/46 (32.6%)
IPMN intestinal 21/132 (15.9%) 8/21 (38%) 13/21 (62%) 7121 (33.3%)
IPMN pancreatobiliary 3/132 (2.3%) 0 3/3 (100%) 2/3 (66.6%)
IPMN mixed 71132 (5.3%) 717 (100%) 0 1/7 (14.3%)

IPMN, intraductal papillary mucinous neoplasms; PanIN, pancreatic intraepithelial neoplasias; PDAC, pancreatic ductal adenocarcinoma.
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instructions. The final library concentration was determined on
the fragment analyser (Advanced Analytical Technologies, Ames,
Towa, USA) with the Agilent high-sensitivity genomic DNA
50kb kit (Agilent Technologies, Ratingen, Germany). An addi-
tional size selection was not done. A 100 pM equimolar library
pool was created and sequenced with the Ion S5 system (Ther-
moFisher Scientific, Dreieich, Germany) as described in online
supplemental methods.

The Ion Browser Suite mapped the sequence to the GRChr37/
hg19 genome. The Ion Reporter software (V.5.12.0.0)
was used for copy number determination of the low-pass
sequencing. The log, (tumour/normal) value was calculated
for each region. As a control group, six normal tissue samples
consisting of acinar tissue were isolated and sequenced with
the same method. Copy number regions with a log, ratio
greater than +0.2and less than —0.2 were considered. The
median of the absolute values of all pairwise differences value
was set as <0.35.

Additional 67 lesions (24 PanIN, 26 gastric IPMN and 17
intestinal IPMN) were analysed using the data from the DNA
methylation profiles obtained with the Infinium Methylation
EPIC BeadChip (see below, "Differential methylation analysis").
Here, the copy number variation (CNV) was estimated with
the conumee package (V.1.3)* using default settings. As normal
control served the combined intensities from the bulk acini
samples (n=11); changes of 0.2 and —0.2 in the mean segment
value were set as thresholds to define copy number gains and
losses. To detect common regions between EPIC and low-pass
samples, bed files were generated and compared with BEDTools
(V2.3).7 A ‘common’ region was defined if three or more
samples within the analysed precursor lesion shared the same
loci. For those hits, the annotated curated NCBI RefSeq genes
were retrieved from the UCSC Genome Browser (GRCh37/
hg19).

Differential methylation analysis

DNA methylation profiles were measured with the Infinium
Methylation EPIC BeadChip (Illumina, San Diego, USA) at the
Genomics and Proteomics Core Facility of the German Cancer
Research Center Heidelberg. Methylation analysis was carried
out using the R Bioconductor package ChAMP (V.2.14.0).%
Briefly, IDAT files were loaded into ChAMP and preprocessed.
In the first step, all probes with a detection p value >0.01 were
excluded. Followed by the exclusion of probes with a bead
count >3 in at least 5% of the samples, non-cg probes, single
nucleotide polymorphism (SNP)-containing probes and sex
probes were also filtered. Filtered datasets were normalised using
the Beta Mixture Quantile dilation (BMIQ) method and batch
corrected before differential analysis. Differentially methylated
probes were defined by a delta of 0.2 and an adjusted p value
(Benjamini-Hochberg method) of <0.05. The phylogenetic tree
was plotted using the R-package ape (V.5.3).

RESULTS

Morphology

The sample cohort consisted of 55 PanIN (41.7%), 46 gastric
IPMN (34.8%) and 21 intestinal IPMN (15.99%) (table 1).
Pancreatobiliary and mixed-type IPMN were excluded from
further analyses due to small sample size. PanIN and gastric
IPMN displayed the same immunophenotype (figure 1A) and
were distinguished according to established criteria.'> %

Gene mutations, fusion transcript analysis and chromosome
copy number aberrations of PDAC precursors

Targeted next-generation sequencing was performed in 59
samples, including 7 control samples of normal acinar tissue. In
detail, 23 PanIN (17 low-grade and 6 high-grade; 12 in cases
without PDAC), 23 gastric IPMN (17 low-grade and 6 high-
grade) and 6 intestinal IPMN (2 low-grade and 4 high-grade)
were sequenced using a custom 21-gene panel (figure 1B; online
supplemental table 2).

KRAS G12 mutations on exon 2 were present in 16/23
PanIN (69.5%), 19/23 gastric IPMN (82.6%) and 2/6 (33%)
intestinal IPMN. KRAS Q61 mutations on exon 3 were found
in one PanIN and one gastric IPMN, making up 5.1% of all
KRAS mutated cases (online supplemental table 3). The patho-
genic R201 GNAS mutation was present in 17/29 (58.6%)
IPMN and in 2/23 PanIN (8.6%), whereas 1/29 IPMN (3.4%)
displayed a GNAS Q227 mutation. Pathogenic TP53 mutations
were detected in four high-grade lesions (2 IPMN (2.2%) and
2 PanIN (8.7%)). In addition, ARID1A, PIK3CA, STK11, PTEN
and CDKN2A nonsense and frameshift mutations were observed
in few individual lesions (figure 1B; online supplemental table
3). The overall frequency of mutations in PanIN in specimens
without PDAC was not significantly different from that of
PanIN in specimens with PDAC (not shown). IPMN had a signif-
icant higher variant allele frequency (VAF) of KRAS and GNAS
than PanIN (online supplemental figure 2A-B), possibly due to
contamination by normal tissue in dissected PanIN lesions. Pear-
son’s correlation analysis of double mutated (KRAS and GNAS)
gastric IPMN samples confirmed a positive correlation between
the VAFs of the two mutations (r=0.9795, p<0.0001, online
supplemental figure 2C), indicating that these most probably
occurred in the same cell.

Six cases without mutations (four PanIN, one gastric IPMN
and one intestinal IPMN) were subjected to fusion transcript
analysis to check for possible alternative drivers. Five samples
revealed no detectable fusion transcripts (not shown); in one
case (low-grade PanIN), the analysis was not possible due to
insufficient RNA quality. Morphology was not predictive of the
genetic status; representative examples of lesions with identical
morphology and different genetic changes are shown in online
supplemental figure 3.

Next, we assessed CNV by two orthogonal methods: DNA
methylation array data and whole-genome low-coverage
sequencing. Among the three precursor lesions, PanIN displayed
the lowest number of samples affected by genomic losses and
gains (n=22, 61%) followed by gastric IPMN (n=29, 76%) and
intestinal IPMN (21, 100%) (table 2A). There was no relation-
ship between the degree of dysplasia and the presence/absence of
CNV (online supplemental table 4). Although intestinal IPMN
showed in general higher numbers of deletions and amplifica-
tions per sample, there was a remarkable difference in the median
size of deletions for gastric IPMN (4.5 Mb) compared with
PanIN (0.7 Mb) and intestinal IPMN (2.3 Mb). CNV values are
shown in online supplemental table 5. Furthermore, only gastric
IPMN showed a loss of TP53 (chr.:17) and CDKN2A (chr.:9)
in multiple samples (table 2B). Deletions on chromosome 11
were solely detected in intestinal IPMN affecting the putative
tumour suppressor genes CTNND1, MEN1, ATM and KMT2A.
Beside this locus, intestinal IPMN where generally affected
by amplifications (figure 2B and C). This finding was under-
pinned by the median size of 5.1 Mb/amplification compared
with 1.2 Mb/amplification and 2 Mb/amplification for PanIN
and gastric IPMN, respectively (table 2a). In addition, recurrent
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Table 2 (A) Overview of DNA copy number variations (CNV) of pancreatic precursor lesions, (B) detailed overview of genomic regions affected by
CNV
PanIN gIPMN iIPMN
(n=36) (n=38) (n=21)
Samples with CNV 22 (61%) 29 (76%) 21 (100%)
Samples with only deletions 8 (22%) 5 (13%) 1 (5%)
Samples with only amplifications 7 (19%) 12 (32%) 4 (19%)
Samples with deletions and amplifications 7 (19%) 12 (32%) 16 (76%)
Median no. of deletions/sample 2 (1t03) 2 (210 6) 4 (2t012)
(95% Cl)
Median size of deletions/sample 0.7 (0.5t01.9) 45 (2.3t010.3) 2.3 (1.6 t0 4.0)
((95% Cl) Mb)
Median no. of amplifications/sample 3 (2 to 6) 2 (2 to 4) 6.5 (210 19)
(95% Cl)
Median size of amplifications/sample 1.2 (0.8t0 1.9) 2 (1.1t0 3.5) 5.1 (3.9t0 8.0)
((95% Cl) Mb)
Recurrent chromosomal regions (n=3) 5 44 229
Affected putative tumour suppressor genes 0 7 26
Affected putative oncogenes 0 0 26
PanIN gIPMN ilPMN
Genomic location (n=36) (n=38) (n=21) Gene symbols
Deleted regions
chr01:010875000-013052998 3 (14%) MTOR
chr01:015375000-016825000 3 (14%) EPHA2
¢chr06:074175000-074375000 3 (8%) 2 (10%) EEF1A1
chr06:133664400-143100000 2 (5%) 3 (14%) TNFAIP3
chr06:143620678-151100000 1 (3%) 3 (8%) 3 (14%) LATS1
chr09:005958053-023802212 1 (3%) 4 (11%) PSIP1 | CDKN2A
chr10:071075000-120925000 2 (5%) 4 (19%) PTEN | TCF7L2
chr10:120925000-125869472 1 (3%) 4 (19%) FGFR2
chr11:057325000-058807232 4 (19%) CTNND1
chr11:058807232-069089801 5 (24%) MEN1 | SF1
chr11:096437584-114325000 5 (24%) ATM
chr11:114325000-134898258 4 (19%) KMT2A
chr17:006225000-009675000 3 (8%) 1 (5%) GPS2 | TP53
chr17:009675000-012500000 3 (8%) 2 (10%) MAP2K4
chr17:015792977-021566608 3 (8%) 3 (14%) NCOR1
Amplified regions
chr01:035225000-037325000 3 (14%) THRAP3
chr03:176225000-188875000 1 (3%) 2 (5%) 3 (14%) PIK3CA
chr05:028950000-044925000 5 (24%) NIPBL
chr06:024125000-033575000 2 (5%) 3 (14%) HLA-A | HLA-B
chr06:033575000-042725000 1 (3%) 3 (14%) CDKN1A | PIM1
chr07:000282484-007150000 5 (24%) RAC1
chr07:054725000-055775000 5 (24%) EGFR
chr07:061967157-074715724 4 (19%) GTF2I
chr07:112425436-130154523 5 (24%) MET
chr07:139404377-142048195 5 (24%) BRAF
chr07:143397897-154270634 5 (24%) KMT2C |CUL1
chr08:086726451-089550000 3 (14%) CNBD1
chr08:127450000-129175000 1 (3%) 6 (29%) MYC
chr09:001992685-035698318 3 (14%) PSIP1 | CDKN2A
chr09:070835468-092343416 4 (19%) GNAQ
chr09:096718222-097575000 4 (19%) PTPDC1
¢chr09:097775000-114750000 4 (19%) PTCH1
chr09:124994207-133073060 3 (14%) SPTAN1 | PPP6C
¢chr12:006475000-007169938 1 (3%) 7 (33%) CHD4
chr12:024993545-028938805 1 (3%) 3 (14%) KRAS
¢chr14:020700000-022050000 3 (14%) CHD8
Continued
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Table 2 Continued

PanIN gIPMN ilPMN

Genomic location (n=36) (n=38) (n=21) Gene symbols
chr14:022800000-050175000 3 (14%) | FOXA1
chr14:097258910-107289540 3 (14%) | AKT1
chr17:061125000-062410760 3 (14%) CD79B
chr17:062775000-063525000 3 (14%) GNA13
chr17:068117898-077546461 3 (14%)
chr20:008050000-016400000 1 (3%) 6 (29%) PLCB4
chr20:016625000-021300000 1 (3%) 6 (29%) ZNF133
chr20:030025000-034897085 1 (3%) 6 (29%)
chr20:036958189-042991501 1 (3%) 5 (24%)
chr20:052650000-061091437 1 (3%) 6 (29%)
chr21:032825000-034475000 3 (14%)

CNV alterations were detected by low-coverage sequencing (n=28) and DNA methylation data (n=67), respectively. Values are n (%) unless otherwise indicated.
Gain and loss of genomic regions were detected by low-coverage sequencing (n=28) and DNA methylation data (n=67), respectively. Values are n (%), putative tumour

suppressors (green) and putative oncogenes (red).

gIPMN, gastric IPMN; ilPMN, intestinal IPMN; IPMN, intraductal papillary mucinous neoplasms; PanIN, pancreatic intraepithelial neoplasias.

regions containing a putative oncogene were detected only in
intestinal IPMN. Among the intestinal IPMN precursors, there
was a higher prevalence of amplification for the chromosomes
7 (EGFR, MET, BRAF), 8 (MYC), 12 (CDH4) and 20 (GNAS),
which were amplified in five or more cases (table 2b). The
significantly higher Ki-67 proliferations rates in intestinal [PMN
(online supplemental figure 5) could further support the pres-
ence of a higher level of genomic instability in intestinal [IPMN.

Genome-wide DNA methylation analysis of PDAC precursors
DNA methylation data were generated in 79 different FFPE samples
of precursor lesions, including 27 PanIN (20 low-grade and 7 high-
grade), 32 gastric IPMN (24 low-grade and 8 high-grade) and 20
intestinal IPMN (8 low-grade and 12 high-grade). For comparison,
we generated DNA methylome profiles from normal acinar, ductal
and neuroendocrine cell compartments. Thus, acinar bulk tissue
(n=11), main duct (n=11) and branch duct (n=8) cell preparations
as well as FACS (fluorescence activated cell sorting)-sorted B-cells
(n=3) from healthy pancreatic tissue were included in the analysis.
Additionally, we added publicly available samples of FACS-sorted
ductal cells (n=4) and FACS-sorted acinus cells (n=4) for internal
control.*’ %

After the data processing, 702656 probes were used to analyse
the cell type and precursor lesion-specific DNA methylation profiles.
Despite differences in sample preparation between in-house and
publicly available samples (ie, FFPE vs fresh frozen), multidimen-
sional scaling revealed a coherent population of acinar bulk tissue
samples and sorted acini, while spreading of ductal cells was larger
(online supplemental figure 4A). A hierarchical clustering based on
probes associated with known ductal and acinar markers clearly
separated the normal cell populations (online supplemental figure
4B). The methylation level of CpGs located in acinar marker genes
was higher in ductal cells, whereas ductal markers were hypermeth-
ylated in acinar cells. Pairwise comparison of the control groups
revealed a similar amount of differentially methylated probes in
acinar versus ductal cells (12.4%) and ductal versus B-cells (11.3%).
However, based on multidimensional scaling, the distance between
B-cells and the other two normal pancreatic cell types was larger than
between acinar and ductal cells (figure 3A). The highest degree of
significant differential methylation was detected between intestinal
IPMN and B-cells (26.8%), whereas no significantly differentially
methylated CpG was observed between branch and main ducts and
between gastric IPMN and PanIN lesions, respectively (figure 3B).
To address potential functional effects of the detected differentially

Lt

[

\@w‘m’mm‘

%
3

Figure 2 Copy number variation (CNV) in PanIN, gastric and intestinal IPMN. CNVs were detected in PanIN and IPMN over the whole-genome by
low-coverage sequencing. Regions in red show copy number gains and regions in blue represent copy number losses. (A) PanIN (n=11, 9 low-grade
and 2 high-grade) do not possess repeated or larger regions of CNV; (B) gastric IPMN (n=13, 9 low-grade and 4 high-grade lesions) reveal three
distinct repeated regions of copy number loss at chromosome 6, 9 and 18; (C) intestinal IPMN (n=4, 2 low-grade and 2 high-grade) had the highest
frequency of chromosomal alterations. The broad genomic alterations generally involve entire chromosomes and are mostly located on chromosome
7,8,12, 18 and 20 (dark grey background=high-grade lesions, light grey background=low-grade lesions; log, value, threshold+0.2). IPMN, intraductal

papillary mucinous neoplasms; PanIN, pancreatic intraepithelial neoplasias.
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Figure 3 DNA methylation profiling of normal pancreas cells and PDAC precursor lesions. (A) Multidimensional scaling based on the 5000

most variable CpG probes. (B) Scatter plots showing pairwise comparisons of methylated probes between indicated precursor lesions and cell
types. Significantly hypermethylated probes (delta beta =0.2; adjusted p value <0.05) are coloured in red and hypomethylated (delta beta <—0.2;
adjusted p value <0.05) in blue, respectively. (C) KEGG pathway enrichment analysis of differentially methylated probes between IPMN and PaniN.
(D) Phylogenetic tree displaying the relationship between precursor lesions and pancreatic cell types based on DNA methylation data. ABC, ATP-
binding cassette; ECM, extracellular matrix; gIPMN, gastric IPMN; iIPMN, intestinal IPMN; IPMN, intraductal papillary mucinous neoplasms; PanlN,
pancreatic intraepithelial neoplasias; PDAC, pancreatic ductal adenocarcinoma; TRP, transient receptor potential.

methylated probes (DMPs) between the different precursor lesions,
we looked for enriched KEGG (Kyoto Encyclopedia of Genes and
Genomes) gene sets. This analysis revealed numerous differentially
enriched gene sets between PanIN and intestinal IPMN, which
involved signalling pathways as well as pathways regulating cell-
cell and cell-extracellular matrix interactions (figure 3C). When
comparing gastric and intestinal IPMN, only three enriched gene
sets were identified, including a differential regulation of the mucin
type O-glycan biosynthesis and of the Hedgehog signalling pathway,
among others. Notably, due to the low number of DMPs between
PanIN and gastric IPMN, no significantly enriched gene set was
detected, arguing for a high similarity between the two lesions, as
also suggested by the phylogenetic tree analysis (figure 3D).

We next evaluated potential differences in methylation patterns
between low-grade and high-grade preneoplastic precursor lesions.

Notably, we found no significant DMP between low-grade and high-
grade intestinal versus gastric IPMN or between intestinal IPMN
versus gastric [IPMN and PanlN, respectively. When comparing low-
grade and high-grade PanIN lesions, 86 significant DMPs associated
with 59 genes were found between PanIN low-grade and high-grade
samples, however, no candidate gene or gene network became
apparent as promising candidate driver of progression (online
supplemental table 6A,B).

Transcriptome analysis of PDAC precursors

To get further insights into the distinguishing features of PanIN and
IPMN, transcriptome data were generated from 41 different FFPE
samples obtained from 10 PanIN (6 low-grade and 4 high-grade), 12
gastric IPMN (6 low-grade and 6 high-grade), 12 intestinal [IPMN
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Figure 4 Transcriptomics-based comparative analysis of precursor lesions. (A) Principal component analysis with the 500 most variable genes
displaying a precursor-specific clustering. (B) Upset plot summarised the differentially expressed genes between the three precursors. (C) The
precursor-specific activation of transcription factors detected by VIPER analysis based on group-wise comparisons. (D) Single sample gene set
enrichments analysis indicates precursor-specific activation of hallmark of cancer gene sets from the MSigDB collection. gIPMN, gastric [PMN; ilPMN,
intestinal IPMN; IPMN, intraductal papillary mucinous neoplasms; NES, normalised enrichment score; PanIN, pancreatic intraepithelial neoplasias.
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Figure 5 Identification of different precursor subtype-specific markers. (A) Hierarchical clustering of RNA sequencing data based on published

marker genes for distinct normal pancreas cell populations.?®

(B) Mean CpG methylation of all TFF3 annotated probes. CpGs located in the coding

region are coloured in red (unmethylated: mean B-value <0.4; intermediate: mean B-value >0.4 and <0.6; methylated: mean B-value >0.6).

(C) Hierarchical clustering displaying the expression of genes involved in the Mucin type O-glycan biosynthesis and mucins expressed in precursor
lesions. (D, E) Mean CpG methylation of the first 20 MUC2 (D) and MUCL3 (E) annotated probes. CpGs located in the coding region are coloured
in red (unmethylated: mean B-value <0.4; intermediate: mean B-value >0.4and <0.6; methylated: mean (-value >0.6). gIPMN, gastric IPMN;
iIPMN, intestinal IPMN; IPMN, intraductal papillary mucinous neoplasms; PanIN, pancreatic intraepithelial neoplasias; PDAC, pancreatic ductal
adenocarcinoma; TFF3, trefoil factor 3.
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(6 low-grade and 6 high-grade), 4 PDAC (unrelated to IPMN) and
3 samples of acinar bulk tissue. The principal component analysis
showed a clear separation between intestinal IPMN, and other
precursors (figure 4A). The observed pattern was comparable with
the results of the DNA methylation data, further underlining the
close relationship between PanIN and gastric IPMN also on the
transcriptional level. Consistently, only very few genes were differ-
entially expressed between gastric IPMN and PanIN (figure 4B).
The Visualization Pipeline for RNAseq) (VIPER) analysis showed a
similarity in pathway activation when gastric IPMN and PanIN were
compared with intestinal IPMN. This comparison displayed that in
both precursor lesions (ie, gastric IPMN and PanIN) genes of the
Notch signalling (namely HEYL—Hes-Related Family BHLH Tran-
scription Factor With YRPW Motif Like, JAGI—Jagged Canonical
Notch Ligand 1, TGFA—transforming growth factor alpha) are
activated compared with intestinal IPMN (figure 4C). The activa-
tion of Notch signalling was also observed in single sample gene
set enrichments (ssGSEA) based on the hallmark of cancer gene sets
(figure 4D), arguing for distinct Notch signalling activity in gastric
but not intestinal IPMN.

Identification and validation of precursor subtype-specific
markers

We further validated our data by comparing them with a recently
published comprehensive transcriptomic characterisation of
pancreatic cells obtained from healthy organ donors.’! Here,
higher expression levels of digestive enzymes, including CPA1
(carbopeptydase A1), PRSS1 (protease serine 1) and of relevant

. .
KRAS
[®lejejelels] nNOTCH

E%)k

3 ct
ma\“ du I—I

7
_#

transcription factors, like FOXP2 (forkhead box P2) and RBPJL
(Recombination Signal Binding Protein for Immunoglobulin
Kappa ] Region Like), were found in samples obtained from
the normal pancreas (figure SA). Interestingly, progressively
decreasing expression levels were identified in some of the
markers (CPA1, RBPJL), when moving from precursors usually
located in the peripheral ductal system, such as PanIN and gastric
IPMN, to typical main duct lesions, such as intestinal IPMN.
Most interestingly, intestinal IPMN displayed an association
with genes related to the subgroup of MUCSB-positive ductal
cells, which has been identified as ‘minor’ ductal cell population
in the normal pancreas.®' This subtype is characterised by higher
expression levels of genes related to mucous secretion. Accord-
ingly, significantly higher levels of the trefoil factor TFF3, whose
promoter region was selectively unmethylated, were found in
intestinal IPMN compared with all other precursor lesions, both
at the messenger RNA and at the protein expression level, respec-
tively (figure SA-B, online supplemental figure 5). Furthermore,
intestinal IPMN displayed highly differentially methylated genes,
such as FOXP2, DCLK1 (doublecortin-like kinase 1) and BICC2
(bicaudal C homolog 2) (online supplemental figure 6), which
can be ascribed to progenitor markers, possibly suggesting the
presence of a still unidentified progenitor-like cell population in
the pancreatic ductal system.

Further focusing on the mucin metabolism, we found an
enrichment of the O-linked glycosylation signature enriched
in both IPMN subtypes by applying ssGSEA (online supple-
mental figure 7). As this gene set was already observed at the
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Figure 6 Model of development of pancreatic cancer precursors. KRAS mutations induce a gastric phenotype characteristic of mostly peripherally
located lesions, such as PanIN and gastric IPMN, which are additionally Notch-dependent. Recurrent deletions occur only in gastric IPMN. These share
a very similar mucin profile with PanIN, but they can be distinguished to some extent by different MUCL3 expression, with lack of expression arguing
against gastric IPMN. Further stimuli, such as exogenous factors related to a different microenvironment and possibly acting on a minor MUC5B-
positive ductal cell population, induce an intestinal phenotype, driven by KRAS and/or GNAS mutations, with differential regulation of the mucin type
0-glycan biosynthesis, expression of MUC2, CDX2 and TFF3 and recurrent amplifications. Mixed phenotypes and/or a transition from a gastric to an
intestinal phenotype may also occur. CNV, copy number variation; IPMN, intraductal papillary mucinous neoplasms; MUC1, mucin 1; MUC2, mucin 2;
MUC5AC, mucin 5; PanlIN, pancreatic intraepithelial neoplasias; TFF3, trefoil factor 3.
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methylation level (figure 3C), we further analysed the individual
gene expression and evaluated their impact in distinguishing
PanIN, gastric and intestinal IPMN from each other. Beside the
known precursor-specific expression of MUC2 (figure 5C-D),
MUCSAC and MUCE6 (figure 5C), this analysis identified for the
first time MUCL3 as a potential candidate to distinguish PanIN
from gastric IPMN both at the transcriptional and methylation
(figure SE) level. Immunohistochemical analysis confirmed
a more frequent MUCL3 expression in gastric [IPMN than in
PanIN (p=0.02) (online supplemental figure 5).

DISCUSSION

In this study, pancreatic cancer precursors with gastric and intes-
tinal phenotype were analysed using genomic, epigenomic and
transcriptomic approaches to address their molecular profile and
assess their cell identity and possible similarity to adult pancre-
atic cell compartments. A major result of our integrated genome-
based approach is the evidence of distinct genomic structural
patterns and of an epigenetic regulation of mucin genes under-
lying the different phenotype of PDAC precursors.

Gastric IPMN and PanIN show a significant overlap in their
gene expression and DNA methylation profile, with numerous
commonly regulated pathways, including Notch signalling,
which is supported by previous functional studies on Notch
signalling in PanIN-driven pancreatic carcinogenesis.*** So far,
most functional data have focused on acinar-ductal metaplasia
and PanIN formation and progression. While several mouse
models have been reported to elicit different subtypes of IPMN
by combining the KC or KPC mouse®® *® with genetic targeting
of additional pathways, such as the G-protein coupled receptor
(GPCR) (guanine nucleotide binding protein, alpha stimulating
(GNAS)), tranforming growth factor-alpha (TGFa), SWltch/
Sucrose Non-Fermentable (SWI/SNF), Wingless/Integrated
(WNT) Wand phosphoinosotide-3 kinase (PI3K) pathways,’” the
functional role of Notch signalling in the development of gastric
and intestinal IPMN is not well-defined. Our finding suggests
that Notch signalling is selectively involved in gastric but not in
intestinal precursor development. It is tempting to speculate that
PanIN and gastric IPMN have distinct precursor cells (compared
with intestinal IPMN) being responsive to or requiring Notch
signalling activity. In addition, they display very similar methyla-
tion profiles compared with ductal cells both from the main and
the branch-duct compartment (figure 3B,D). This may appear
in contrast with previous studies ascribing an essential role to
Kras and Notch signalling for acinar-ductal reprogramming and
development of PDAC precursors.’® However, by comparing
our results with those obtained from single cell RNA-expression
analysis of normal pancreatic tissues,’’ we observed a retained
expression of acinar markers in PanIN and gastric IPMN, which
may still point towards a contribution of the acinar cell compart-
ment to these two lesions, although minor contamination by
acinar cells during the process of microdissection cannot be
completely ruled out.

Interestingly, WGS and DNA methylation profiles revealed
slightly more frequent (76% vs 61%) CNV in gastric IPMN
than in PanIN lesions, with chromosomal regions affected by
recurrent deletions only found in gastric IPMN, thus suggesting
a higher impact of mutagenic factors in gastric IPMN, which
potentially affect their progression.’” * The significant differ-
ential expression of MUCL3 in gastric IPMN further consoli-
dates the hypothesis of a higher potential for progression of
these lesions compared with PanIN, since this molecule has
been previously described to be overexpressed in PDAC and to

promote its progression by affecting the nuclear factor-kappa
B signalling pathway,*! but more data are necessary to confirm
these observations. In addition, the diagnostic value MUCL3 in
distinguishing PanIN from gastric IPMN might be only relevant
in case of lack of expression, which would then exclude gastric
IPMN. The degree of dysplasia does not appear to be related
to the presence of recurrent CNV, since the proportion of low-
grade and high-grade lesions was not substantially different in
the two groups. This is in contrast with previous studies, which
showed infrequent and mostly non-recurrent CNV both in low-
grade PanIN and IPMN** and identified a correlation between
more frequent CNV and higher histological grade in IPMN.*
On the other hand, CNV analysis in IPMN of mostly mixed
phenotypes revealed recurrent gains in chromosome 3, 7, 8 and
12, in line with our results.**

To our knowledge, this study is the first to show that intestinal
IPMN have profoundly divergent methylation profiles compared
with both PanIN and gastric IPMN (figure 3A-C), suggesting a
distinct cell identity. Indeed, single cell sequencing studies have
revealed a certain degree of heterogeneity in the cell populations
of the healthy adult pancreas.”® * A minor ductal cell popula-
tion (defined as MUCSB-positive ductal cells), characterised by
higher expression levels of genes related to mucin secretion, such
as TFF3, has been described, which, according to our gene and
protein expression data (figure SA-B, online supplemental figure
5), could be related to intestinal IPMN. It is tempting to speculate
that exposure of the ductal cell compartment to environmental
carcinogens, for example, due to bile reflux as a consequence of
an anatomic variation at the pancreato-biliary junction*®*” or to
an altered oral, gastric and intestinal microbiome,*® could induce
an intestinal phenotype switch as first adaptive response of a
‘susceptible’ cell type, followed by dysplasia and cancer. Since the
ductal cell compartment is the only one that can achieve long-
term expansion in organoids obtained from adult healthy mice,*
such a ‘susceptible’ cell type might represent an adult progenitor-
like cell residing in the pancreatic ducts. This model is supported
by the clinical observation that intestinal IPMN are usually
localised in the main pancreatic duct, where the contact with
environmental carcinogens is more direct than in the periphery
of the duct system. In addition, the intestinal differentiation-
dysplasia-carcinoma model, possibly involving progenitor-like
cells, has been already validated in other tumour types, such as
Barrett adenocarcinoma of the oesophagus and gastric cancer.*°
Although the existence of progenitor cells in the human pancreas
is still debated,’" the differential methylation pattern of progen-
itor genes in intestinal IPMN compared with other lesion types
found in this study argues for different adult duct cell types
involved in these lesions and includes the activation of mucin-
secretion signatures with intestinal reprogramming.

Notably, the comparison between the methylation profiles of
low-grade and high-grade precursor lesions showed no apparent
difference in methylated regions in the various comparison of
lesion subtypes. This analysis was limited by the overall compar-
atively small numbers of high-grade lesions, which are rarely
found in the clinical samples, and the unbalanced group sizes.
However, despite these limitations, our results provide no clear
evidence for a major role of differentially methylated regions
between low-grade and high-grade pancreatic precursor lesions.

Based on these results and on recently published data, a
model of development of gastric and intestinal pancreatic
precursors can be proposed (figure 6). According to this model,
KRAS mutations, which are very frequent genetic events both
in PanIN and in primary and recurrent IPMN,’* ** induce
gastric reprogramming in pancreatic ductal cells independently
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from their localisation. In the peripheral compartment, where
PanIN and gastric IPMN are usually localised, progression and
malignant transformation are rare events, probably related to
Notch signalling activation, to the observed recurrent deletions
in gastric IPMN and to the acquisition of additional, possibly
subclonal, mutational events not detectable with ‘whole lesion’
approaches, like the one of the present study. Single cell
sequencing has indeed revealed intralesional genetic heteroge-
neity in gastric IPMN, with subclonal mutations involving the
ARID1A and RNF43 genes.>* These could provide a selective
advantage of single cell groups within a definite lesion and
explain the ‘missing’ genetic driver events in a subset of the
precursor lesions investigated in the present study. Similarly, a
single cell transcriptomics study performed on a small collective
of IPMN of different subtypes identified cell clusters in low-
grade IPMN with changes in gene expression similar to those
found in high-grade lesions.”® In the main duct compartment
on the other hand, exposure to environmental carcinogens and
to chronic inflammation induces intestinal differentiation. This
can occur de novo or in a previously KRAS-mutated and gastric
differentiated cell and is associated with higher frequency of
recurrent amplifications, as shown in the CNV analysis, and
with higher proliferating activity even in low-grade lesions®® *°
(figure 2, online supplemental figure 5). Accordingly, we found
that the mucin O-glycan biosynthesis pathway, which has
been shown to affect relevant processes of progression and
metastasis in human cancer, including pancreatic cancer* *¢
is among the highest differentially regulated pathway between
intestinal and gastric IPMN and between intestinal [PMN
and PanIN (figure 3C). As shown in figure 6, the occurrence
of mixed phenotypes, and also the evolution from gastric to
intestinal IPMN, as suggested by some,'® could be explained by
this model. Overall, the observed distinct epigenomic patterns
support further exploration of different adult cell compart-
ments in the human pancreas, as well as aetiological and envi-
ronmental factor analysis as an exciting research area.

This study has some limitations, mainly of methodological type
and related to the difficulty of performing multiple, genome-
wide analyses on archived paraffin material, which restricted
the number of analysed samples on one side and influenced
the choice of the type of analysis, for example, targeted versus
whole-exome sequencing, on the other. In addition, for similar
reasons, intralesional heterogeneity, which has been previously
reported,** was not addressed in this study and some precursor
lesions, such as pancreatobiliary IPMN; had to be excluded due
to low case number.

Nevertheless, by applying multiple targeted and genome-
wide analyses, we were able to provide the first comprehensive,
large-scale molecular analysis of pancreatic cancer precursors
with gastric and intestinal phenotype, showing their molecular
heterogeneity, which is possibly related to a different cell iden-
tity and to a different aetiology. Furthermore, regardless of the
above-mentioned technical limitations, we noted several over-
laps in targets at the methylation and transcriptome level, as
exemplified by TFF3, MUC2 and MUCL3, even though these
analyses were not all always performed in the same tissue spec-
imens. We therefore strongly believe that studies concerning
precursor lesions of PDAC should differentiate between
the different entities and subtypes and not consider them as
a group. Further studies are needed to better characterise
susceptible cell types in the pancreatic ductal compartment as
well as to identify potentially removable causes of intestinal
reprogramming.
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