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Abstract

Both logic programming in general and Prolog in particular have a long and fascinating history,
intermingled with that of many disciplines they inherited from or catalyzed. A large body of
research has been gathered over the last 50 years, supported by many Prolog implementations.
Many implementations are still actively developed, while new ones keep appearing. Often, the
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features added by different systems were motivated by the interdisciplinary needs of program-
mers and implementors, yielding systems that, while sharing the “classic” core language, in
particular, the main aspects of the ISO-Prolog standard, also depart from each other in other
aspects. This obviously poses challenges for code portability. The field has also inspired many
related, but quite different languages that have created their own communities. This article
aims at integrating and applying the main lessons learned in the process of evolution of Pro-
log. It is structured into three major parts. First, we overview the evolution of Prolog systems
and the community approximately up to the ISO standard, considering both the main historic
developments and the motivations behind several Prolog implementations, as well as other logic
programming languages influenced by Prolog. Then, we discuss the Prolog implementations that
are most active after the appearance of the standard: their visions, goals, commonalities, and
incompatibilities. Finally, we perform a SWOT analysis in order to better identify the potential
of Prolog and propose future directions along with which Prolog might continue to add useful
features, interfaces, libraries, and tools, while at the same time improving compatibility between
implementations.

KEYWORDS: Prolog, logic programming systems, portability, rationale, evolution, vision

1 Introduction

Logic programming languages in general, and Prolog in particular, have a long and fas-
cinating history, having catapulted computing sciences from its old number-crunching,
algorithm-focused and mostly imperative paradigm into the new, unique paradigm of
inferential engines. Rather than measuring performance through the number of calcula-
tions per second, we can now do so through inferences per second — a qualitative leap,
with import well beyond the natural language processing uses for which Prolog had been
first conceived.

Logic programming’s truly novel characteristics distinguish it not only from traditional
imperative programming but also from functional programming, some of whose aims and
techniques it shares. The year TPLP celebrates its 20-year anniversary also marks the
milestone of 50 years of evolution since the first steps toward Prolog, the first version of
which was completed in 1972. Logic programming and Prolog have progressed over the
years deeply intermingled with the evolution of the different areas they both resulted
from, as well as those that they enabled.

The Prolog language in particular has attracted sustained academic and practical inter-
est since its origins, yielding a large body of research. The language has been supported
by numerous Prolog implementations, many of which are still in active development,
while new ones keep appearing all the time. The large number of features added by
different systems during this evolution were often motivated by the diverging needs of
respective implementors. As a result, while sharing a core language including the main

for proofreading. The authors are particularly grateful for the effort made by the group of people (more
than 120 individuals) that drafted the ISO-Prolog Standard and piloted its later evolution, and specially
to Jonathan Hodgson, Roger Scowen, Tony Dodd, Pierre Deransart, Ali Ed-Dbali, Paulo Moura, and
Ulrich Neumerkel, the current editor. The authors would also like to thank the anonymous reviewers
for their thoughtful criticism and suggestions, which gradually helped improve this paper. Apologies
to the many that are not mentioned. The authors also endorse Paul McJones’ efforts to maintain a
historical archive on Prolog, at http://www.softwarepreservation.org/projects/prolog/, and thank
all contributors.
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aspects of the ISO-Prolog standard, most Prolog systems also depart from each other in
significant ways. This fertile evolution has also spawned many other new languages and
paradigms that have created their own communities.

This article is structured in three major parts. In the first part, in Section 2, we outline
the evolution of Prolog systems and the community approximately up to the development
of the ISO standard in 1995, focusing on historic developments and scientific milestones.
This provides a condensed description of the history of Prolog including the steps that
got us to the first standard, along with the main motivations behind each step.

In the second part, in Section 3, we discuss the need for the ISO standard and analyze,
with this standard in mind, how the Prolog implementations and community have evolved
since. The section aims at documenting the vision, research, and development focus
for each implementation. Since most systems have incorporated significant functionality
beyond the Prolog ISO-standard, we survey these nonstandard features, with a special
emphasis on portability. That section gathers very diffused information in one place;
tables and small paragraphs allow for convenient comparison of implementations. We
also consider logic programming languages that have considerably departed from Prolog,
but were obviously strongly influenced by it.

In the third and last part, Section 4, we gaze into the crystal ball and answer a few
questions such as: How might Prolog and its community evolve in the future? Can we
better unify the new aspects that are offered by different implementations? How should
efforts for increased portability be organized? Does it make sense to aim for a unified
language? And, what tools could be provided to ease development? Furthermore, we
propose a plan for future steps that need to be taken to evolve Prolog as a language.
The plan is founded on needs expressed by the community in a consultation and on a
comparison with successful evolution of other languages. Our goal is to achieve further
standardization and easier portability of code among implementations. We argue for why
this is important and discuss why previous similar attempts have failed.

2 Part I: The early steps of Prolog

This first part of the paper provides two major contributions. First, it provides a general
definition of what “Prolog” is and what a current Prolog implementation generally looks
like. This allows us to focus in the paper on this class of systems, although we also
mention briefly other related ones. The second contribution of this section is a description
of the evolution of Prolog systems approximately up to and including the appearance
and gradual adoption the ISO standard.

Given the high variability of features and technologies which characterized prestandard
Prolog systems, some early systems may not perfectly fit a modern definition of Prolog.
Nevertheless, we choose to include these also in our historical discussion — and consider
them in any case Prolog systems — because of their importance in shaping Prolog as we
know it today. More concretely, we consider Prolog systems essentially all those discussed
in this paper, except of course the “systems influenced by Prolog” of Section 3.5.2.

Note that it is beyond the scope of our article to reconstruct all the initial steps and
theoretical developments that led to Prolog. Fortunately, good recollections can be found
for example by Kowalski* (1988, 2013), Cohen* (1988), Van Roy (1994), Colmerauer*
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Fig. 1. Approximate timeline of some early Prolog systems (up to the ISO Standard).

(1996) and van Emden* (2006).! Here, we discuss those first steps that are useful for
understanding the origin and evolution of the Prolog systems that have survived to the
present day.

We also note that this paper is not aimed at providing a completely exhaustive list of
Prolog systems: the list is very large and constantly changing, and many other implemen-
tations, such as Waterloo Prolog (Roberts 1977), UNSW Prolog (Sammut and Sammut
1983), or the recently discontinued Jekejeke Prolog, to name just a few, have helped to
spread Prolog throughout the world, but we simply cannot cover them all. Instead, we
have tried to concentrate on implementations that constitute a milestone in the evolution
of the language or offer some specially interesting characteristics. We redirect interested
readers to the historical sources archive maintained by McJones (2021) to learn about
many of the earlier systems.

Figure 1 provides a timeline overview of some of the most impactful of the early Prolog
systems treated in this section, that is, approximately up to the development of the ISO
standard.

Throughout the paper we attempt to assign meaningful dates to the different Prolog
systems covered. This is not always straightforward, and the dates should not be given
too much significance. The strategy that we have followed is as follows: we first looked for
some authoritative source explicitly stating the date the Prolog system was developed or
made publicly available. We consider as “authoritative source” any paper from any logic
programming-related conference or journal, as well as the Prolog system’s home page, or
any technical report or manual of the system. In absence of these sources, we looked for
resources on the web mentioning the Prolog system along with a date, and we selected
the earliest date among all resources.

2.1 Defining Prolog
Prolog is arguably the most prominent language under the logic programming (LP)

umbrella. However, as we elaborate in the remainder of this paper, the evolution of Prolog

IThe asterisk by the name indicates people who are recognized for their impactful research as
Founders of Logic Programming by the Association of Logic Programming (ALP): http://www.cs.
nmsu.edu/ALP/the-association-for-logic-programming/alp-awards/.
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did not follow a linear path. Many contributions have been presented in the history of
LP as implementations, extensions, variants, or subsets of Prolog. Interestingly, while in
some other programming paradigms the custom is to create new language names when
making modifications or extensions to a given language, the Prolog tradition has been
instead to keep the name Prolog across this long history of very substantial evolution.

In the following, we attempt to draw a line between what can be considered a Prolog
implementation and what not. We do so by defining Prolog from several perspectives. We
first provide a conceptual and minimalist definition of the essential features of Prolog (in
a post-ISO-standard world). We then overview a number of important (yet non-essential)
features that any full-fledged implementation of Prolog should include. Finally, we present
a technical test users may perform to verify whether a technology can be considered as
Prolog or not.

The objective of our definition is in any case inclusive, in the sense that we aim at
encompassing all systems that preserve the essence that is generally recognized as Prolog,
while allowing the many extensions that have taken place and hopefully those that may
be adopted in the future.

Conceptual Definition Any Prolog implementation must at least support:

1. Horn clauses with variables in the terms and arbitrarily nested function symbols
as the basic knowledge representation means for both programs (a.k.a. knowledge
bases) and queries;

2. the ability to manipulate predicates and clauses as terms, so that meta-predicates
can be written as ordinary predicates;

3. SLD-resolution (Kowalski 1974) based on Robinson’s* principle (1965) and Kowal-
ski’s procedural semantics (Kowalski 1974) as the basic execution mechanism;

4. unification of arbitrary terms which may contain logic variables at any position,
both during SLD-resolution steps and as an explicit mechanism (e.g., via the built-
in =/2);

5. the automatic depth-first exploration of the proof tree for each logic query.

Notably, item 1 aims at excluding strict subsets of Prolog which do not support func-

tion symbols or require knowledge bases to be ground. Item 2 rules out custom rule
engines for Horn clauses which do not support meta-programming, while requiring Pro-
log implementations to support meta-predicates. In other words, real Prolog systems
must at least support an efficient mechanism such as call/1, enabling programmers to
write predicates accepting terms as arguments, to be interpreted as goals. ISO-compliant
implementations, for instance, employ meta-predicates to support negation, disjunction,
implication, and other aspects which are not naturally supported by Horn clauses. Item
4 requires implementations to expose the unification mechanism to the users, and it cuts
off subsets of Prolog employing weaker forms of pattern matching (e.g., where variables
can only appear once and only at the top-level). Items 3 and 5 constrain Prolog solvers
to a backward (goal-oriented) resolution strategy where a proof tree is explored via some
traversal strategy. ISO-compliant implementations support a sequential, depth-first, de-
terministic exploration of the proof tree, via backtracking. This is commonly achieved
by selecting clauses in a top-down and subgoals in a left-to-right fashion. Other imple-
mentations may support further strategies: for instance, tabled Prologs can deviate from
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pure depth-first traversal for tabled predicates. Other Prologs may implement alternative
search strategies in addition to depth-first, possibly for certain predicates. The important
issue here is to have at least a (default) mode in which the system is a true programming
language, predictable in terms of cost in steps and memory.

Common Relevant Features Any Prolog implementation may also support:

6. some control mechanism aimed at letting programmers manage the aforementioned
exploration;
7. negation as failure (Clark 1978), and other logic aspects such as disjunction or
implication;
8. the possibility to alter the execution context during resolution, via ad hoc primi-
tives;
9. an efficient way of indexing clauses in the knowledge base, for both the read-only
and read-write use cases;
10. the possibility to express definite clause grammars (DCG) and parse strings using
them;
11. constraint logic programming (Jaffar and Lassez 1987) via ad hoc predicates or
specialized rules (Frithwirth 2009);
12. the possibility to define custom infix, prefix, or postfix operators, with arbitrary
priority and associativity.

There, item 6 dictates that users should be provided with some mechanism to con-
trol the proof tree exploration. ISO-compliant implementations provide the cut for this
purpose, while other Prologs may expose further mechanisms. For instance, in tabled
Prologs users must explicitly specify which rules are subject to tabling, and in this way
they retain some degree of control about the proof tree exploration. Similarly, delay
declarations like when/2 allow one to influence the selection rule employed for SLD-
resolution. Item 7 provides a practical way to realize negation on top of Horn clauses
and SLD, which Keith Clark* gave a nonprocedural semantics to — namely, completion
semantics — showing that negation as failure is theoretically sound (Clark 1978). Further-
more, negation as well as other logic operators contribute to the perception of Prolog
as a practical programming language. Item 8 requires implementations to support, via
side effects, the dynamic modification of fundamental aspects that affect the resolution
process, possibly as the resolution is going on. These aspects may include the knowledge
base (a.k.a. the dynamic clause database), the flags, or the pool of currently open files,
and their modification should be exposed to the user via ad hoc meta-predicates. For
instance, ISO-compliant implementations rely upon built-in predicates like assert/1,
retract/1, set_prolog_flag/1, etc. to serve this purpose. In particular, to make both
the access and modification of clauses efficient, item 9 plays a very important role: the
satisfaction of this optional requirement is what distinguishes toy implementations from
full-fledged Prolog systems. Finally, while not strictly essential, items 10 and 11 are two
very successful features many modern Prolog system support. Item 12 is a nice-to-have
feature which allows a more natural notation when extending Prolog systems with custom
functionalities, without requiring a bare new language to be designed from scratch.

In particular, probabilistic extensions of Prolog such as ProbLog (de Raedt et al. 2007),
and cplint (Riguzzi 2007) benefit from custom operator definitions.
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Of course, many other features may enrich (or be lacking from) a Prolog implementa-
tion. Consider for instance, full ISO library support, presence/lack of a module system,
and so on. While these are technical aspects that greatly affect the efficiency, effectiveness,
and usability of Prolog implementations, we do not consider them as fundamental.

Technical Test As a rule of thumb, one can check if a logic solver can be considered
as a Prolog system or not via the following test. The test requires that the well-known
append/3 predicate can be written exactly as follows:

append([], X, X).
append([H | X], Y, [H | Z]) :- append(X, Y, Z).

and can be queried in variety of ways, e.g., to append two lists: append ([1, 2], [c, 4],
R), deconstruct a list as in: append(A, B, [1, 2]), or with any arbitrary instantiation
of the arguments, such as append([X | T], [cl, [Z, Z, Z]).

Note that the above test excludes some logic programming languages, such as Datalog
(Maier et al. 2018), as it does not support functors (just constants); traditional ASP
(Answer Set Programming) (Brewka et al. 2011), as it does not cater for fully recur-
sive first-order terms with no bound; or Mercury (Somogyi et al. 1996), as it is based
on pattern-matching and not on unification and only caters for linear terms. CORAL
(Ramakrishnan et al. 1994), on the other hand, is an interesting edge case: while its de-
fault proof tree exploration strategy does not meet our definition, it can be instantiated
to behave like Prolog. Thus, we would consider the entire system not to be a Prolog (but
it would qualify as an extension). Other systems we choose not to consider as Prolog
systems (but rather as systems derived from Prolog) are Goédel (Hill and Lloyd 1994),
Curry (Hanus et al. 1995), and Picat (Zhou et al. 2015). Nevertheless, we do discuss these
systems in some detail in Section 3.5, where we discuss Prolog derivatives. However, as
mentioned before, we consider all other systems that are discussed in the paper to be
Prologs.

2.2 Ancestors of Prolog

Prolog descends from three main branches of research: Al programming, automatic the-
orem proving, and language processing.

The field of AT was born around 1956 and quickly gave rise to the functional program-
ming language LISP (McCarthy 1962). A host of other AT languages followed, sometimes
grouped under the denomination of Very High Level Languages. These languages had
features such as symbolic processing and abstraction that set them apart from more
mundane languages.

Automatic theorem proving made a big step forward in a seminal paper by Alan
Robinson introducing the resolution inference rule (Robinson 1965). Resolution extends
modus ponens and modus tollens and includes unification. Resolution can be used to
obtain a semi-decision procedure for predicate logic and is at the heart of most inference
procedures in logic programming.

In the wake of these advances, an early visionary in the development of the logic pro-
gramming field was Cordell Green, who already in the late 60s envisioned how to extend
resolution to automatically construct problem solutions, and implemented this vision in
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particular for automatically answering questions based on first-order logic, illustrating it
as well for plan formation, program synthesis, and program simulation, thus presaging
the possibility of moving symbolic programming beyond functions and into logic (Green
1969a;b). This represented perhaps the first zenith of logic in AT (Kowalski 1988). Also
notable is Ted Elcock, whose 1967 Aberdeen System, Absys, developed with Michael
Foster, while not having directly influenced the development of Prolog, was a declarative
programming language that anticipated some of Prolog’s features such as invertability,
negation as failure, aggregation operators, and the central role of backtracking (Elcock
1990).

Meanwhile, Alain Colmerauer was seeking to automate human—machine conversation,
which led him to develop Q-systems (Colmerauer 1970a; Colmerauer and Roussel 1996;
Colmerauer 1970b), a tree rewriting system that for many years served for English-to-
French translation of Canadian meteorological reports. His aim of modifying Q-systems
so that a complete question-answering system (rather than just the analyzer part of it)
could be written in logic inspired him, among others, to create Prolog.

Floyd’s work on nondeterministic algorithms (Floyd 1967) (cf. the survey by Cohen
1979) was another important influence, as was Kowalski and Kuehner’s SL resolution
(1971). SL resolution is a refinement of resolution which is still both sound and refuta-
tion complete for the full clausal form of first order logic, and underlies the procedural
interpretation of Horn clauses (Kowalski 1974).

A further simplification for the case of Horn clauses — SLD resolution (Kowalski 1974)
— resulted from Kowalski’s efforts to reconcile the declarative nature of logic based rep-
resentations of knowledge with PLANNER’s procedural approach (Hewitt 1969). The
semantics of Horn clauses was explored by Kowalski and van Emden (1976).

2.3 The birth of Prolog

Colmerauer’s aim of creating a human—machine communication system in logic had led
him to further research French language analysis with Pasero (1973), and to numer-
ous experiments with Philippe Roussel and Jean Trudel on automated theorem proving
methods. Having learned about SL resolution, he invited Kowalski to visit Marseille in
the summer of 1971. The visit led to Roussel’s use of SL resolution in his thesis on formal
equality in automated theorem proving (1972). In addition to its attractions as a theorem
prover, SL resolution had the additional attraction that its stack-type operating mode
was similar to the management of procedure calls in a standard programming language,
making it particularly well suited for implementation by backtracking a la Floyd, which
Colmerauer adopted for efficiency, so as to avoid having to copy and save the resolvents.
Yet, for language processing, Q-systems still seemed indispensable. During Kowalski’s
1971 visit to Marseille, Kowalski and Colmerauer discovered that a certain way of rep-
resenting formal grammars in clausal logic enables certain general-purpose proof proce-
dures for first-order logic to behave as special-purpose parsing methods: SL-resolution as
top-down parsing, hyper-resolution as bottom-up parsing, similar to Q-systems.

Then, Colmerauer defined a way to encode grammar rules in clauses, known today
as the difference-list technique, and introduced extra parameters into the nonterminals
to propagate and compute information, through which the analyzer could extract, as in
Q-systems, a formula representing the information contained in a sentence.
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Colmerauer and Kowalski’s collaboration led in 1972 to a discovery analogous, for
programs, to that made previously for grammars: that a certain style for representing
programs in the clausal form of logic enables SL resolution to behave as a computational
procedure for executing computer programs.

For this to happen, though, a simplification for efficiency of Kowalski’s SL-resolution
was implemented at the cost of incompleteness: linear resolution was constrained to
unify only between the head literals of ordered clauses with ordered literals.? This made
Colmerauer’s aim of creating a human-machine communication system possible. The re-
sult was not only the first Natural Language (NL) application of what we now know
as Prolog, but most importantly, the basis of Prolog itself: a linear resolution system
restricted to Horn clauses that could answer questions (i.e., solve problems) nondeter-
ministically in the problem domain described by the clauses input (Colmerauer et al.
1973).

However, the Marseille group was unaware of Horn clauses at the time. But Kowalski
recognized that Marseille’s principal "heresy” (in Colmerauer’ words), a strategy of lin-
ear demonstration with unifications only at the heads of clauses, was justified for Horn
clauses. Kowalski also clarified further simplifications that so far were only implicit: the
elimination of ”ancestor resolution” (which only works with non-Horn clauses) and the
elimination of the ”factoring” rule. Together with Maarten van Emden, he went on to
define the modern semantics of Horn-clause programming (van Emden and Kowalski
1976).

2.4 The early Prolog systems

Prolog implementations evolved in interaction with ad hoc, initially meta-programmed
extensions of the language itself, created for the often interdisciplinary needs of applica-
tions. In time, these extensions became, or evolved into, standard features of the language.
In this section, we chronicle such early developments.

2.4.1 Prolog 0, Prolog I (1972-1973)

Basic Features: As reported by Cohen (1988) and later by Colmerauer and Roussel
(1996), the first system (“Prolog 0”) was written in Algol-W by Roussel in 1972. Practical
experience with this system lead to a much more refined second implementation (“Prolog
I”) at the end of 1973 by Battani, Meloni, and Bazzoli, in Fortran. This system already
had the same operational semantics and most of the built-ins that later became part of
the ISO standard, such as the search space pruning operator (the “cut”), relevant for
Prolog to become a practical Al language. Efficiency was greatly improved by adopting
the structure-sharing technique by Boyer and Moore (1972) to represent the clauses
generated during a deduction.

Higher-order logic extensions: Basic facilities for meta-programming higher-order logic
extensions were present in Prolog systems from the very beginning, and many later

2“head literals” are not to be confused with what we now call the “head” of a clause: at the time,
conditions and conclusions were distinguished by a “+” or “-” sign preceding the literal in question, not
by which side of Prolog’s “if”” symbol they were in- there was no such symbol in their clauses.
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systems include extended higher-order capabilities beyond the basic call/1 predicate —
for example, AProlog (Nadathur and Miller 1988), BinProlog (Tarau 1992; 2012), Hypro-
log (Christiansen and Dahl 2005). Some of the most influential early extensions are
discussed into the following subparagraphs.

Constraints: Interestingly, Prolog 0 already included the dif/2 (#) predicate, as a result
of Roussel’s thesis (1972). The predicate sets up a constraint that succeeds if both of
its arguments are different terms, but delays the execution of the goal if they are not
sufficiently instantiated.

Coroutining: Although dif/2 was neither retained in Prolog I nor became part of the
ISO standard, it meant a first step towards the extension of unification to handle con-
straints: while it introduced the negation of unification, it also allowed an early form of
coroutining. Building on this work, Verdénica Dahl* introduced a delay meta-predicate
serving to dynamically reorder the execution of a query’s elements by delaying a pred-
icate’s execution until statically defined conditions on it become true, and used it to
extend Prolog with full coroutining — that is, the ability to execute either a list of goals
or a first-order logic formula representing a goal, by proving them in efficient rather than
sequential order. With Roland Sambuc, she developed the first Prolog automatic con-
figuration system, which exploited coroutining, for the SOLAR 16 series of computers
(Dahl and Sambuc 1976).

Safe Negation as Failure: Dahl also used delay/2 to make negation-as-failure (NaF) (the
efficient but generally unsafe built-in predicate of Prolog I which consists of assuming
not(p) if every proof of p fails) safe, simply by delaying the execution of a negated
goal until all its variables have been grounded. This approach to safe negation and to
coroutining made its way into many NL consultable systems, the best known being
perhaps Chat 80 (Warren and Pereira 1982), and more importantly, into later Prologs,
as we discuss later.

Deductive Databases: Dahl then ushered in the deductive database field by developing
the first relational database system written in Prolog (Dahl 1977; 1982). Other higher-
order extensions to Prolog included in this system or in the one by Dahl and Sambuc
(1976), such as 1ist/3 (now called setof/3), have become standard in Prolog.

Metamorphosis Grammars: Metamorphosis Grammars (MGs) (Colmerauer 1975) were
Colmerauer’s language processing formalism for Prolog. They constituted at the time
a linguist’s dream, since they elegantly circumvented the single-head restriction of Pro-
log’s Horn clauses, thus achieving the expressive power of transformational grammars in
linguistics, which, as type-0 formal grammars, allow more than one symbol in their left-
hand side. This allowed for fairly direct, while also executable, renditions of the linguistic
constraints then in vogue: a single rule could capture a complete parsing state through
unification with its left-hand (multi-head) side, in order to enforce linguistic constraints
through specifying, in its right-hand side, how to re-write it.

The first applications of MGs were compilation (Colmerauer 1975); French consulta-
tion of automatic configuration systems (Dahl and Sambuc 1976), where a full first-order
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logic interlingua was evaluated through coroutining; and Spanish consultation of database
systems (Dahl 1977; 1979), where a set-oriented, three valued logic interlingua (Colmer-
auer 1979; Dahl 1979) was evaluated, allowing among other things for the detection of
failed presuppositions (Dahl 1977; 1982). Coroutining was used in the system by Dahl
and Sambuc (1976) not only for feasibility and efficiency, as earlier described, but also to
permit different paraphrases of a same NL request to be reordered into a single, optimal
execution sequence.

A simplification of MGs, Definite Clause Grammars (DCGs), was then developed by
Fernando Pereira* and David H.D. Warren*,® in which rules must be single-headed like in
Prolog, while syntactic movement is achieved through threading syntactic gap arguments
explicitly. DCGs were popularized in 1980 (Pereira and Warren 1980) and became a
standard feature of Prolog. It is worth highlighting that the “DCG” name does not refer
to the fact that they can translate to definite clauses (since all four subsets of MGs can,
just as a side effect of being included in MGs), but to their restriction to single heads,
which makes them similar in shape to definite clauses.

More specialized Prolog-based grammars started to emerge. Their uses to accommo-
date linguistic theories, in particular Chomskyan, were studied as early as 1984 (Dahl
1986), leading to the new research area of “logic grammars” (Abramson and Dahl 1989).

Further Theoretical Underpinnings: In 1978, Keith Clark published a paper that showed
NaF to be correct with respect to the logic program’s completion (Clark 1978). Simul-
taneously, Ray Reiter* provided a logical formalization of the related “Closed World
Assumption” (Reiter 1978), which underlies NaF’s sanctioning as false of anything that
cannot be proved to be true: since in a closed world, every statement that is true is
also known to be true, it is safe — in such worlds — to assume that what is not known
to be true is false. This then led to substantial research on nonmonotonic reasoning in
logic programming, and to inspiring foundational work on deductive databases by Reiter
himself, as well as Herve Gallaire*, Jack Minker*, and Jean-Marie Nicolas (1984). The
work of Cohen (1979) on nondeterminism in programming languages was also influential
in these early stages.

2.4.2 CDL-Prolog (1975)

As discussed by Peter Szeredi* (2004), a group at NIM IGUSZI in Hungary was trying
to port the Marseille system to the locally available machine in 1975. At the same time,
Szeredi, who was part of another group at NIM IGUSZI, completed his first (unnamed)
Prolog implementation using the Compiler Definition Language (CDL) developed by
Cornelis Koster, one of the authors of the Algol 68 report, marking the beginning of a
series of substantial contributions to Prolog.

2.4.8 DEC-10 Prolog (1975)

In 1974, David H.D. Warren visited Marseille and developed a plan generation system
in Prolog, called Warplan (Warren 1974). He then took Prolog with him as a big deck

3Not to be confused with David S. Warren, see later.
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of punched cards and installed it on a DEC-10 in Edinburgh, where he enhanced it
with an alternative “front-end” (or “superviser”) written in Prolog, to better tailor it
to the Edinburgh computing environment and the wider character set available (the
Marseille group had been restricted by a primitive, upper-case-only, teletype connection
to a mainframe in Grenoble). He distributed this version to many groups around the
world.

He then set out to address what he perceived as a limitation of the implementations
of Prolog up to that point in time: they were comparatively slower and more memory
hungry than other high-level Al-languages of the time and, in particular, than LISP. In
what would eventually become his PhD thesis work (Warren 1977), David H.D. War-
ren pieced away on one side the elements of Prolog that could be implemented in the
same way as the most efficient symbolic programming languages (activation records, ar-
gument passing, stack- and heap-based memory management, etc.), and applied to them
well-established compilation techniques. Then, for those elements of Prolog that were
more novel, such as unification and backtracking, he developed or applied specific com-
pilation and run-time techniques such as optimization of unification by clause head pre-
compilation, fast recovery of space on backtracking, trailing, or structure sharing-based
term representation (Boyer and Moore 1972) (the latter already present in Marseille
Prolog). He used as target again the DEC-10 with the TOPS-10 operating system, and
exploited architectural features of the DEC-10 such as arbitrary-depth indirect memory
access, particularly suited for the structure-sharing technique. The product of this ef-
fort was the first compiler from Prolog to machine code. This resulted in a large leap
in performance for Prolog, both in terms of speed and memory efficiency, rivaling that
of Lisp systems. This was documented in Warren et al. (1977), in what was to be a
landmark publication on Prolog in a mainstream Computer Science venue. A version of
this compiler dated 1975 is part of the archive maintained by McJones (2021).

Fernando Pereira and Luis Moniz Pereira*, both at LNEC in Lisbon, also made major
contributions to the development of the complete DEC-10 Prolog system, which also
included now “classic” built-ins such as setof/3 and bagof/3. A significant element in
DEC-10 Prolog’s popularity was the availability of an example-rich user guide (Warren
1975; Pereira et al. 1978). All these features, coupled with the improved syntax and
performance, and the fact that the DEC-10 (and later DEC-20) were the machines of
choice at the top AT departments worldwide, made DEC-10 Prolog available to (and used
by) all these departments, and in general by the Al research community. This led to DEC-
10 Prolog becoming very popular and it spread widely from about 1976 onward. By 1980,
the system also featured a garbage collector and last-call optimization (Warren 1980).
Also in 1980, David H.D. Warren and Fernando Pereira adapted it to TENEX/TOPS-20,
which had then become the operating system(s) and machines most widely used for Al
research.

The contributions made by the authors of DEC-10 Prolog were fundamental for the
coming of age of Prolog: they proved that Prolog could not only be elegant and powerful
but it could also come with the usability, speed, and efficiency of a conventional program-
ming language. As a result, DEC-10 Prolog had a large influence on most Prologs after
it, and its syntax, now known also as the “Edinburgh syntax,” and many of its features
constitute a fundamental component of the current Prolog ISO standard.
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However, for all its merits, the one drawback of DEC-10 Prolog was that it was deeply
tied to its computer architecture and thereby inherently not portable to new machines,
in particular to the then-emerging 32-bit computer architectures with virtual memory.
This prompted the development of other, more portable Prologs, described below, and
eventually the Warren Abstract Machine (see Section 2.5).

2.4.4 Unixz Prolog (1979)

As discussed by Mellish (1979), there were a number of Prolog interpreters at the time
that used the DEC-10 syntax but were internally quite different.

The objective of these other systems was to develop a portable, yet still reasonably-
performing Prolog system, written in a mainstream source language, and that could be
compiled on more mainstream, 32-bit machines (including later Unix systems such as,
for example, the DEC VAX family, which became ubiquitous).

The first system to achieve portability was Unix Prolog by Mellish (1979), written
for PDP-11 computers running Unix, which was also ported to the RT-11 operating
system. Unlike Marseille Prolog and DEC-10 Prolog, it used structure-copying rather
than structure-sharing. It led to Clocksin and Mellish writing an influential textbook
(1981) which describes a standard “core” Prolog, compatible with both DEC-10 Prolog
and Unix Prolog.

2.4.5 LPA Prolog (1980)

Logic Programming Associates (LPA) was founded in 1980 out of the group of Kowalski
at the Department of Computing and Control at Imperial College London, including,
among others, Clive Spenser, Keith Clark, and Frank McCabe (LPA Ltd 2021). LPA
distributed micro-PROLOG which ran on popular 8-bit home computers of the time
such as the Sinclair Spectrum and the Apple IT and evolved to be one of the first Prolog
implementations for MS-DOS. LPA Prolog evolved to support the Edinburgh syntax
around 1991 and is still delivered today as a compiler and development system for the
Microsoft Windows platform.

2.4.6 MU-Prolog (1982)

In 1982, another implementation named MU-Prolog (Naish 1982; 1986) was developed
by Lee Naish at Melbourne University. It was initially a simple interpreter to understand
the workings of Prolog, as the author could not find a Prolog system for his hardware.

The system offered efficient coroutining facilities and a delay mechanism similar to
those discussed in Section 2.4.1 to automatically delay calls to negation and if-then-
else constructs, as well as meta-logical (e.g., functor/3) and arithmetic predicates. Its
rendition of the delay predicate, here called wait, allows for declarations to be provided
manually but also generated automatically.

MU-Prolog was one of the first shipping database connections, module systems, and
dynamic loading of shared C libraries, as well as sound negation (through delay/2,
as in Section 2.4.1) and a logically pure findall/3 predicate, a consequence of its
variable binding-controlled delayed goal execution. MU-Prolog was later succeeded by
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NU-Prolog (Thom and Zobel 1987), bringing MU-Prolog’s features to the Warren Ab-
stract Machine (see Section 2.5).

2.4.7 C-Prolog (1982)

As a first foray into getting Edinburgh Prolog on 32-bit address machines, Luis Damas
created an Edinburgh-syntax Prolog interpreter for an ICL mainframe with Edinburgh-
specific time sharing system (EMAS) and systems programming language (IMP). This
interpreter used the structure sharing approach by Boyer and Moore (1972) and copied
as far as possible the built-in predicates of DEC-10 Prolog. When Fernando Pereira got
access to a 32-bit DEC VAX 11/750 at EACAAD in Edinburgh in 1981, he rewrote EMAS
Prolog in C for BSD 4.1 Unix. This required many adaptations from the untyped IMP
into the typed C, and he also made it even closer to DEC-10 Prolog in syntax and built-in
predicates. The whole project became known as C-Prolog later on (Pereira 1983). The
archive maintained by McJones (2021) contains a readme file from 1982.

Although implemented as an interpreter, C-Prolog was reasonably efficient, portable
and overall a very usable system. Thus it quickly became influential among the Edinburgh
implementations, helping to establish “Edinburgh Prolog” as the standard. It contributed
greatly to creating a wider Prolog community and remained extensively used for many
years.

2.5 From Prolog compilation to the WAM

Following David H.D. Warren’s first Prolog compiler, described in Section 2.4.3, there
were a number of other compiled systems up until 1983, including Prolog-X (Bowen et al.
1983) and later NIP, the “New Implementation of Prolog” (for details, cf. the survey by
Van Roy 1994).

In 1983, funded by DEC in SRI, who wanted to have the Prolog performance of the
DEC-10/20 implementation ported to the VAX line, David H.D. Warren devised an
abstract machine, i.e., a memory architecture and an instruction set that greatly clarified
the process of implementing a high-performance Prolog system (Warren 1983). This
machine became widely known as the Warren Abstract Machine, the WAM. The proposal
was basically a reformulation of the ideas of the DEC-10 compiler, which translated
Prolog source to a set of abstract operations which were then expanded to machine code
(Warren 1977), but expressed in a more accessible way. In particular, it was described in
legible pseudo-code, as opposed to DEC-10 machine code. Warren made some changes
with respect to the DEC-10 system, such as passing parameters through registers instead
of the stack. Also, instead of the structure sharing approach used in the DEC-10 work,
the WAM used the structure copying approach by Bruynooghe* (1976). The WAM also
included the idea of compiling to intermediate code (bytecode), as introduced by the
programming language Pascal and its p-code (Nori et al. 1974), which made compiled
code very compact and portable, an approach that is still advantageous today with
respect to native code in some contexts. The first software implementation of the WAM
was for the Motorola 68000 implemented for Quintus by David H.D. Warren, which
he also adapted to the VAX line. Evan Tick, later designed a pipelined microprocessor
organization for Prolog machines based on the WAM (Tick 1984).
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Copies of the SRI technical report describing the WAM were passed around widely
among those who had an interest in Prolog implementations, and the WAM became the
standard blueprint for Prolog compilers and continues to be today. The WAM was made
even more widely accessible and easier to understand with the publication of Ait-Kaci’s
Tutorial Reconstruction (1991), building on earlier tutorials by Hermenegildo (1989) and
Nasr.

Much work was done after that on further optimization techniques for WAM-based
Prologs, achieving very high levels of sequential performance. This very interesting topic
is outside the scope of this paper, but is covered in detail in the excellent survey by Van
Roy (1994), and much of this work is by Van Roy himself. Further work, beyond the
survey, includes, for example, dynamic compilation (da Silva and Santos Costa 2007),
instruction merging (Néssén et al. 2001) (pioneered by Quintus), advanced indexing
(Santos Costa et al. 2007; Vaz et al. 2009), optimized compilation (Van Roy and De-
spain 1992; Morales et al. 2004; Carro et al. 2006), optimized tagging (Morales et al.
2008), etc. Also, the compilation of Prolog programs to WAM code was proven mathe-
matically correct by Borger and Rosenzweig (1995), and the proof was machine verified
by Schellhorn and Ahrendt (1998), Schellhorn (1999).

2.6 The FGCS initiative

In 1982 Japan’s Ministry of International Trade and Industry (MITI) started the Fifth
Generation Computer Systems (FGCS) initiative in order to boost Japan’s computer
industry. The technical objective was to build large parallel computers and apply them
in artificial intelligence tasks, with logic programming as the basis, and in particular
Prolog. The research was conducted across Japanese computer industries and at a specific
research center, ICOT. Among the first results were hardware sequential Prolog machines
called PSI (for Personal Sequential Inference), similar to those developed for Lisp at the
time by companies such as Lambda Machines, Thinking Machines, Xerox, and Borroughs.
A series of parallel machines were also developed in the project.

However, at the point of combining parallelism and logic programming, a language
shift occurred. During a visit to ICOT, Ehud Shapiro developed what he defined as
a subset of concurrent Prolog (Shapiro 1983; 1987). This referred to the fact that, in
order to reduce the implementation complexity stemming from the interactions between
concurrency and Prolog’s backtracking, the latter was left out in this initial design. As
in other concurrent logic programming languages at the time, such as Parlog (Clark and
Gregory 1986), committed choice was supported instead, where only the first clause whose
guard succeeds is executed. This guard part consists of a marked set of literals (normally
built-ins) at the beginning of the clause. This inspired the Guarded Horn Clauses (GHC)
language of Ueda (1985), as the Kernel Language 1 (KL1) (Ueda and Chikayama 1990),
which became the core language of the FGCS project.

While the “kernel” denomination of KL1 indicated a desire to eventually recover
the declarative search capabilities of Prolog, the basic characteristics of KL1 remained
throughout the FGCS project. With the departure from Prolog, an essential part of the
language’s elegance and functionality was lost, and this arguably detracted from the
potential impact of the FGCS.
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It can be argued that the fifth generation project was successful in a number of ways.
From the technical point of view, in addition to the programming language work, it
produced many results in parallel machines, scheduling, parallel databases, parallel au-
tomated theorem proving, or parallel reasoning systems. Perhaps most importantly, it
accelerated much work elsewhere. This included a significant line of research into con-
current (constraint) logic languages (see Section 3.5.1). But, more relevant herein, all the
work on parallel implementation of Prolog, which in the end was done at other centers
throughout the world rather than in Japan (we return to this briefly in Section 2.7).

Beyond the technical part, the FGCS project developed very valuable expertise in com-
puter architecture, parallelism, languages, software, etc. and nurtured a whole generation
of researchers in areas that were hitherto not so well covered in Japan. Furthermore, the
FGCS project spurred a number of similar initiatives around the world that led to im-
portant legislative changes and funding schemes that last until today. For example laws
were developed that allowed companies to collaborate on “pre-competitive” research.
This gave rise to the Microelectronics Computer and Technology Corporation (MCC)
in the US and to the European Computer Research Center (ERC) in Europe, where
hardware Prolog machines were also developed, and, most importantly, the EU ESPRIT
program that has continued to the present day in the form of the current framework
programs. An account of the outcomes of the FGCS project was presented by Shapiro
et al. (1993).

2.7 Parallelism

In parallel to the FGCS project, logic programming and Prolog were soon recognized
widely as providing good opportunities for parallel execution, largely because of their
clean semantics and potentially flexible control. This spurred a fertile specialized research
and development topic, and several parallel implementations of Prolog or derivatives
thereof were developed, targeting both shared-memory multiprocessors and distributed
systems. As mentioned before, many concurrent Prolog derivatives were also developed.
Going over this very large and fruitful field of research is beyond the scope of this paper;
good accounts may be found in the articles by Gupta et al. (2001), de Kergommeaux
and Codognet (1994) and Kacsuk and Wise (1992). There is also a survey on this topic
in this same special issue of the TPLP journal (Dovier et al. 2022). However, it is worth
mentioning that two of the current Prolog systems, SICStus and Ciao, have their origins
in this body of work on parallelism.

Or-Parallelism: SICStus, Aurora, MUSE (1985) Around 1985, the Swedish Institute of
Computer Science (SICS) was founded and Mats Carlsson joined SICS to develop a
Prolog engine that would be a platform for research in or-parallelization of Prolog, that
is, the parallel exploration of alternative paths in the execution. This work was performed
in the context of the informal “Gigalips” project, involving David H.D. Warren at SRI
and researchers from Manchester and Argonne National Laboratory, as well as and-
parallel efforts (described below). This resulted in quite mature or-parallel Prologs, such
as Aurora (Lusk et al. 1990) and MUSE (Ali and Karlsson 1990). The objective of these
Prologs was to achieve effective speedups through or-parallel execution transparently
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for the programmer and supporting full Prolog. This led to SICS distributing SICStus
Prolog, which quickly became popular in the academic environment.

And-Parallelism: RAP-WAM and &-Prolog (1986), a.k.a. Ciao Prolog Since 1983, the
University of Texas at Austin conducted research on and-parallelization of Prolog, that
is, executing in parallel steps within an execution path, complementary to or-parallelism.
The appearance of the WAM led to &-Prolog’s abstract machine, the RAP-WAM
(Hermenegildo 1986), which extended the WAM with parallel instructions, lightweight
workers, multiple stack sets, task stealing, etc. Richard Warren, Kalyan Muthukumar,
and Roger Nasr joined the project, which continued now also at MCC (also funded
by DEC). The RAP-WAM was recoded using early versions of SICStus, also becom-
ing part of the “Gigalips” effort. &-Prolog extended Prolog with constructs for par-
allelism and concurrency, and incorporated a parallelizing compiler (Muthukumar and
Hermenegildo 1990; Muthukumar et al. 1999) which performed global analysis using the
ProLog Abstract Interpreter, PLAI (Warren et al. 1988; Muthukumar and Hermenegildo
1989), based on abstract interpretation (Cousot and Cousot 1977). This allowed the ex-
ploitation of parallelism transparently to the user, while supporting full Prolog, and,
on shared-memory multiprocessors, was the first proposed WAM extension to achieve
effective parallel speedups (Bueno et al. 1999). This infrastructure was later extended
to support constraint logic programs (Garcia de la Banda et al. 1996; 2000). &-Prolog
evolved into Ciao Prolog (cf. Section 2.10.2).

2.8 Constraints

As discussed by Colmerauer (1984), in 1982, a new version of Prolog, Prolog II (Colmer-
auer 1982a; van Emden and Lloyd 1984), was developed in Marseille by Alain Colmer-
auer, Henri Kanoui, and Michel van Caneghem, for which they shared in 1982 the award
Pomme d’Or du Logiciel Frangais. This release brought two major contributions to the
future paradigm of Constraint Logic Programming (CLP) (Jaffar and Lassez 1987; Jaffar
and Maher 1994; Marriott and Stuckey 1998): moving from unification to equations and
inequations over rational trees, and innovative extensions to constraint solving and its
semantic underpinnings driving into richer domains.

2.8.1 The CLP scheme and its early instantiations

CLP was presented by Jaffar and Lassez (1987) in their landmark paper as a language
framework, parameterized by the constraint domain. The fundamental insight behind
the CLP scheme is that new classes of languages can be defined by replacing the unifica-
tion procedure in the resolution steps by a more general process for solving constraints
over specific domains. Jaffar and Lassez proved that, provided certain conditions are met
by the constraint domain, the fundamental results regarding correctness and (refuta-
tion) completeness of resolution are preserved. Traditional LP languages and Prolog are
particular cases of the scheme in which the constraints are equalities over the domain of
Herbrand terms and can be represented as CLP(#). The CLP framework was first instan-
tiated as the CLP(R) system (Jaffar et al. 1992), which implemented linear equations and
inequations over real numbers, using incremental versions of Gaussian elimination and
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the Simplex algorithm. CLP(R) was widely distributed, becoming a popular system. In
the meantime, the research group at ECRC (the European Computer Research Centre)*
developed CHIP (Dincbas et al. 1988) (for Constraint Handling in Prolog) over the late
1980s, which interfaced Prolog to domain-specific solvers stemming from operations re-
search and successfully introduced constraints over finite domains, CLP(FD). CHIP also
introduced the concept of global constraints (Beldiceanu and Contejean 1994), which is
arguably a defining feature of CLP and Constraint Programming. Other instances of the
CLP scheme supported constraints over intervals, as implemented by BNR-Prolog (Older
and Benhamou 1993), and constraints over booleans, which are usually implemented as a
specialization of finite domains and are useful to express disjunctive constraints, whereby
a set of constraints may be placed which encode multiple alternatives, without resorting
to Prolog-level backtracking.

2.8.2 Later Marseille Prologs

Prolog IIT (1990) Colmerauer (1990) focused on improving some limitations of Prolog
II. It now included the operations of addition, multiplication, and subtraction as well
as the relations <, <, >, and >. It also improved on the manipulation of trees, together
with a specific treatment of lists, a complete treatment of two-valued Boolean algebras,
and the general processing of the relation #. By doing so, the concept of unification was
replaced by the concept of constraint solving in a chosen mathematical structure. By
mathematical structure, we mean here a domain equipped with operations and relations,
the operations being not necessarily defined everywhere.

Prolog IV (1996) Colmerauer (1996) generalized to discrete and continuous domains
the technique of constraint solving by enclosure methods. The solving of an elementary
constraint, often qualified local, consists in narrowing the domain ranges of its variables,
which generally are intervals. In a system where numerous constraints interact, interval
narrowing and propagation is performed iteratively, until a fixed point is reached. It also
moved closer to the ISO standard syntax.

2.8.3 Opening the box

While the early instantiations on the CLP scheme, such as CLP(R), the CLP scheme pre-
decessor Prolog II, BNR Prolog, Prolog III and IV, etc. were all specialized systems, new
technology incorporated into Prolog engines for supporting extensions to unification, such
as meta-structures (Neumerkel 1990) and attributed variables (Holzbaur 1992), enabled
a library-based approach to supporting embedded constraint satisfaction in standard Pro-
log systems. This approach was first materialized in Holzbaur’s libraries for supporting
CLP over reals, as in CLP(R), as well as the rationals, CLP(Q) (Holzbaur 1995). On
the CLP(FD) side, work progressed to replace the segregated “black box” architecture of
CHIP by a transparent one (Hentenryck et al. 1994), in which the underpinnings of the
constraint solver are described in user-accessible form (indexicals): such is the proposal
discussed and implemented by Diaz and Codognet (1993), Carlson et al. (1994), and

4The European counterpart of MCC, see Section 2.7.
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Codognet and Diaz (1996). Having elementary constraints to compile to is an approach
which has largely been adopted by the attributed variable-based Prolog implementations
of CLP(FD), present in most Prolog systems. SICStus and GNU Prolog incorporate high-
performance native implementations, which nevertheless follow this conceptual scheme.

Constraint Handling Rules (1991, cf. Frihwirth 2009, p. zzi) On the trail of provid-
ing finer-grained control over the implementation of constraints, Frithwirth (1992; 2009)
introduced Constraint Handling Rules (CHR), in which syntactically enhanced Prolog
clauses are used to describe and implement the progress of the constraint satisfaction
process. CHR is both a theoretical formalism related to first-order and linear logic, and
a rule-based constraint programming language that can either stand alone or blend with
the syntax of a host language. When the host language is Prolog, CHR extends it with
rule-based concurrency and constraint solving capabilities. Its multi-headed rules allow
expressing complex interactions succinctly, through rule applications that transform com-
ponents of a shared data structure: the “constraint store”. A solid body of theoretical
results guarantee best known time and space complexity, show that confluence of rule
application and operational equivalence of programs are decidable for terminating CHR
programs, and show that a terminating and confluent CHR program can be run in paral-
lel without any modification and without harming correctness. Applications are multiple,
since CHR, rather than constituting a single constraint solver for a specific domain, allows
programmers to develop constraint solvers in any given domain.

It should be noted that CLP has spurred the emergence of a very active research field
and community, focusing on Constraints, with or without the Logic Programming part.

2.9 Tabling

Tabling is a technique first developed for natural language processing, where it was called
Earley parsing (Kay 1967; Earley 1970). It consists of storing in a table (a.k.a. chart in
the context of parsing) partial successful analyses that might come in handy for future
reuse

Its adaptation into a logic programming proof procedure, under the name of Earley
deduction, dates from an unpublished note from 1975 by David H.D. Warren, as docu-
mented by Pereira and Shieber (1987). An interpretation method based on tabling was
later developed by Tamaki and Sato (1986), modeled as a refinement of SLD-resolution.

David S. Warren® and his students adopted this technique with the motivation of
changing Prolog’s semantics from the completion semantics to the minimal model se-
mantics.

Indeed, the completion semantics cannot faithfully capture important concepts such
as the transitive closure of a graph or relation. The minimal model semantics is able to
capture such concepts. Moreover, tabled execution terminates for corresponding programs
such as for the transitive closure of a cyclic graph. This makes Prolog more declarative.

Tabling consists of maintaining a table of goals that are called during execution,
along with their answers, and then using the answers directly when the same goal is

5Not to be confused with David H.D. Warren.
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Fig. 2. Prolog Heritage. Systems with a dark gray background are not supported any more.
Arrows denote influences and inspiration of systems. The bottom section of each block includes
just some highlight(s); see the text for more details. Quick legend: JIT = “Just in Time
[Compiler]”, JVM = “Java Virtual Machine”, TOAM = “Tree-Oriented Abstract Machine”.

subsequently called. Tabling gives a guarantee of total correctness for any (pure) Prolog
program without function symbols, which was one of the goals of that work.

XSB Prolog (1994) The concept of tabled Prolog was introduced in XSB Prolog (Sagonas
et al. 1994). This resulted in a complete implementation (Rao et al. 1997) of the well-
founded semantics (Van Gelder et al. 1991), a three-valued semantics that represents
values for true, false and unknown.

2.10 Prolog implementations after the WAM

As mentioned before, the WAM became the standard for Prolog compilers and continues
to be today. In this section, we review how the main Prolog systems developed more or
less until the appearance of the ISO standard. An overview of the most influential Prolog
systems and their influence is given in Figure 2.

2.10.1 Early proprietary Prologs

The WAM aroused much interest and many Prolog implementations started out as an
exercise to properly understand it while others were aimed directly at commercialization.
Three of the early commercial Prolog systems were Quintus Prolog, BIM-Prolog, and
VM/Prolog by IBM.

Quintus Prolog (1984) Shortly after the WAM was proposed, Quintus Computer Systems
was founded by David H.D. Warren, William Kornfeld, Lawrence Byrd, Fernando Pereira
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and Cuthbert Hurd, with the goal of selling a high-performance Prolog system for the
emerging 32-bit processors. One of the earliest documents available about Quintus is a
specifications note (Warren et al. 1984). Quintus used the DEC-10 Prolog syntax and
built-ins and was based on the WAM. Currently, Quintus is distributed by SICS (2021).
Quintus quickly became the de facto standard at the time, influencing most Prolog
systems that were created afterwards. For many years, it offered the highest-performance
implementation and was the standard in terms of syntax, built-ins, libraries, and language
extensions. Its success inspired many more Prolog systems to emerge, including the ones
we discuss below.

BIM-Prolog (1984) In 1984, BIM (a Belgian software house) in cooperation with the
Katholieke Universiteit Leuven, and under the guidance of Maurice Bruynooghe, started
a project aiming at implementing a commercial Prolog system: BIM-Prolog. A collection
of documents is still available on the internet (Bruynooghe 2021) and notable contribu-
tions were made among others by Bart Demoen, Gerda Janssens, André Marién, Alain
Callebaut, and Raf Venken. BIM Prolog was funded by the Belgian Ministry of Science
Policy and was based on the WAM. One of the earliest resources available is an internal
report (Janssens 1984). BIM-Prolog developed into a system with the first WAM-based
compiler to native code (as opposed to, e.g., threaded code by Quintus), with interfaces
to several database systems (Ingres, Unify, etc.), a graphical debugger in the style of dbx-
tool, a bidirectional interface to C, decompilation even of static code, and multiargument
indexing of clauses — which overcame the common practice of indexing Prolog clauses via
their head’s first argument alone. Its first release was on SUN machines, and later it was
ported to Intel processors. BIM was involved in the later ISO standardization effort for
Prolog. BIM went out of business in 1996.

IBM Prolog (1985) Several Prolog systems that ran on specific IBM hardware remained
unnamed and were referred to as IBM Prolog. Here, we focus on Prolog systems dis-
tributed by IBM. In 1985, IBM announced a tool named VM Programming in Logic or
VM/Prolog (Symonds 1986), which was its Prolog implementation for the 370, focus-
ing on Al research and development. Its development started in 1983 by Marc Gillet
at IBM Paris according to Van Roy (1994). In 1990, a 16-bit Prolog system for OS/2
was announced, including a database and dialog manager. It was able to call programs
written in other IBM languages, such as macro assembler, C/2 and REXX scripts. While
its syntax was based on its predecessor, it also provided support for the Edinburgh syn-
tax considering the ongoing ISO standard development. It was maintained until 1992,
at which time it was succeeded to by the 32-bit implementation IBM SAA AD/Cycle
Prolog/2 (Benichou et al. 1992). IBM withdrew from the market in 1994.

SICStus Prolog (1986) A preliminary specification of SICStus existed in 1986
(Carlsson 1986), drawing inspiration from DEC-10 Prolog as well as from Quintus. As
already mentioned, SICStus was at first an open-source project aimed at supporting
or-parallelism research, and became the basis of much other research, turning into an in-
valuable tool for other research groups as well as for commercial applications. In addition
to the open-source nature, powerful reasons for this popularity were the compatibility
with the DEC-10 and Quintus Prolog de-facto standards, very good performance, and
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compact generated code. Execution profiling and native code compilation were also added
later.

At the end of the 80s, the Swedish Funding Agency and several companies funded
the industrialization of SICStus, which eventually became a commercial product. In
1998, SICS acquired Quintus Prolog and a number of its features made their way into
newer SICStus Prolog versions. SICStus is ISO-conforming and provides support for
web-based applications. It also supports several constraint domains, including a powerful
finite domain solver. Notably, SICStus is still alive and well as a commercial product,
and its codebase is still actively maintained.

2.10.2 Open-source and research-driven Prolog systems based on the WAM

Further, generally open-source Prologs were developed featuring extensions and alterna-
tives arising from the needs of specific application areas or from experimentation with
issues such as control, efficiency, portability, global analysis and verification, and, more
recently, interoperability and multparadigm support and interaction. This section exam-
ines some of these.

YAP Prolog (1985) As further discussed by Costa et al. (2012), the YAP Prolog project
started in 1985. In contrast to other systems discussed here, early versions of it were
cast as a proprietary system which was later released as open source software. Luis
Damas, the main developer, wrote a Prolog compiler and parser in C (still used today).
Since the emulator was originally written in m68k assembly, the result was a system
that was and felt fast. As the 68k faded away, Damas developed a macro language that
could be translated into VAX-11, MIPS, Sparc, and HP-RISC. Unfortunately, porting the
emulator to the x86 was impossible, so a new one was designed in C, making it also easier
for some excellent students to contribute. Rocha implemented the first parallel tabling
engine (Rocha et al. 2005) and Lopes the first Extended Andorra Model emulator (Lopes
et al. 2012). This work was well received by the community, but proved difficult to use
in scaling up real applications. The problem seemed to be that many YAP applications
used Prolog as a declarative database manager. In order to support them, the team
developed JITT (Costa et al. 2007), a just-in-time multiargument indexer that uses any
instantiated arguments to choose matching clauses, hoping to avoid shallow backtracking
through thousands or millions of facts. JITT's trade-off is extra space — the mega clause
idea reduces overhead by compacting clauses of the same type into an array (Costa 2007),
and the exo-emulation saves space by having a single “smarter” instruction to represent
a column of a table (Costa and Vaz 2013).

Ciao Prolog (1993) a.k.a. &-Prolog (1986) As mentioned before, &-Prolog started in
1986, based initially on early versions of SICStus. The early 90s brought much evolution,
leading to its re-branding as Ciao Prolog (Hermenegildo and CLIP Group 1993). One of
the main new aims was to point out future directions for Prolog, and to show how features
that previously required a departure from Prolog (such as those in, e.g., Mercury, Godel,
or AKL, and from other paradigms), could be brought to Prolog without losing Pro-
log’s essence. A new module system and code transformation facilities were added that
allowed defining many language extensions (such as constraints, higher-order, objects,
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functional notation, other search and computation rules, etc.) as libraries in a modu-
lar way (Hermenegildo et al. 1994; Hermenegildo et al. 1996; Cabeza and Hermenegildo
2000), and also facilitated global analysis. Also, the progressively richer information in-
ferred by the PLAI analyzers was applied to enhancing program development, leading
to the Ciao assertion language and pre-processor, CiaoPP (Hermenegildo et al. 1999;
Puebla et al. 2000a; Hermenegildo et al. 2005), which allowed optionally specifying and
checking many properties such as types, modes, determinacy, nonfailure, or cost, as well
as auto-documentation. A native, optimizing compiler was also developed, and the ab-
stract machine was rewritten in a restricted dialect of Prolog, ImProlog (Morales et al.
2005; 2016).

SB-Prolog (1987) SB-Prolog was a Prolog system that, according to the CMU Artificial
Intelligence Repository (1995) became available in 1987, and had been started as an
exercise to understand the WAM. It was made freely available in the hope that its
source code would be of interest to other Prolog researchers for understanding, use,
and extension. Indeed, it became the foundation of two other Prolog systems, XSB (cf.
Section 2.9) and B-Prolog (cf. Section 2.11). The goal of XSB Prolog (Sagonas et al.
1994) at its release in 1993 was to allow new application areas of Prolog. As an example,
a recent survey of its applications to NLP is given by Christiansen and Dahl (2018).

Andorra I (1991) Sometimes also referred as Andorra Prolog, Andorra I is a Prolog
system developed by Costa et al. (1991). This system exploited both (deterministic)
AND-parallelism and OR-parallelism, while also providing a form of implicit coroutin-
ing, and ran on the shared-memory multiprocessors of the time, the Sequent Symmetry.
OR-parallelism was supported by using binding arrays to access common variables and
the Aurora scheduler (Lusk et al. 1990). The implementation of AND-parallelism, that
(dynamically) identified which goals in a clause are determinate and can be evaluated
independently in parallel, came to be known as the Andorra Principle and is akin to the
concept of sidetracking (Pereira and Porto 1979), itself a form of coroutining. Adherence
to Prolog operational semantics meant that subgoal order sometimes needs to remain
fixed and, also, that a cut may impact parallel execution. Implementing an efficient Pro-
log system which could exploit both forms of parallelism led to difficulties, for which
solutions would follow in the guise of different computational models, namely the Ex-
tended Andorra Model (Warren 1990) and the Andorra Kernel Language (AKL) (Janson
and Haridi 1991).

GNU Prolog (1999) a.k.a. Calypso (1996), and wamcc (1992) As stated on the GNU
Prolog home page (GNU Prolog 2021), the development of GNU Prolog started in Jan-
uary 1996 under the name Calypso. A few years later, in 1999, the first official release of
GNU Prolog saw the light (Diaz et al. 2012).

GNU Prolog is derived from wamcc (Codognet and Diaz 1995), a system developed in
1992-1993 as a foundational framework for experiments on extensions to Prolog, such as
intelligent backtracking techniques, coroutining, concurrency, and constraints. The wamcc
Prolog system was designed to be easily maintainable, lightweight, portable, and freely
available, while still reasonably fast. Its approach consisted in using the WAM as an inter-
mediate representation in a multipass compilation process, producing C code which was
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subsequently compiled by GCC, to yield native code which was then linked to produce
an executable. wamcc was used as the basis for the development of CLP(FD) (Codognet
and Diaz 1996), which introduced transparent user-defined propagators for finite domain
(FD) constraint solving (CLP). In a later stage, when the ISO standard was being intro-
duced in 1995, the CLP(FD) system was redesigned to become more standards-compliant
and to increase its compile-time performance to compete with that of interpreted Pro-
log systems. As C was used as the intermediate language, compiled Prolog programs
would map to considerably larger C programs which were very slow to compile using
GCC, with little benefit as the code had very explicit and low-level control flow (e.g.,
labels and gotos.) This situation led to the replacement of C by a much simpler special-
ized miniassembly language (Diaz and Codognet 2000) as the intermediate language for
compiling Prolog. After it was approved by the Free Software Foundation, this system
became GNU Prolog.

ECL'PS® (1993) The earliest resource about the ECL! PS¢ logic programming system
(Schimpf and Shen 2012) is the technical paper by Wallace and Veron (1993). Originally,
it was an integration of ECRC’s SEPIA, an extensible Prolog system, Mega-Log, an
integration of Prolog and a database, and (parts of the) CHIP systems. It was then
further developed into a Constraint Logic Programming system with a focus on hybrid
problem solving and solver integration. It is data driven, allowing for array syntax and
structures with field names. The system also contains a logical iteration construct that
eliminates the need for most of the basic recursion patterns. Since September 2006,
ECLPS¢ is an open-source project owned by Cisco.

2.11 Alternatives to the WAM

While most Prolog systems are based on the WAM, some alternatives were explored and
are also used to date. In the following, we briefly describe some impactful implementa-
tions.

SWI-Prolog (1986) As stated on the project home page (SWI-Prolog 2021), SWI-Prolog
(Wielemaker et al. 2008) started in 1986 as a recreational project, though the main reason
for its development was the lack of recursive calls between Prolog and C in Quintus.
Hence, it soon gained a significant user community (which may be the largest user base
for a Prolog system today), partially because it spread over the academic ecosystem as
it could be used by universities for teaching.

At its very core, SWI-Prolog is based on an extended version of the ZIP virtual machine
by Bowen et al. (1983), that is, a minimal virtual machine for Prolog implementing a
simple language consisting of only seven instructions. SWI-Prolog-specific extensions aim
at improving performance in several ways: ad hoc instructions are introduced to support
unification, predicate invocation, some frequently used built-in predicates, arithmetic,
control flow, and negation-as-failure. Prolog can easily be compiled into this language,
and the abstract machine code is easily decompiled back into Prolog. This feature is often
exploited to interleave compiled and interpreted code execution — which may be needed,
for example, in debug mode.
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In the past, SWI-Prolog has incorporated technologies first implemented in other sys-
tems, for example, delimited continuations following the design by Schrijvers et al. (2013),
BinProlog-like continuation passing style as designed by Tarau (1992), or tabling based
on XSB.

LIFE (1991) LIFE (Logic, Inheritance, Functions, and Equations) was an experimental
language developed by Hassan Ait-Kaci and his group, first at MCC and later at the DEC
Paris Research Lab (A1t-Kaci and Podelski 1991; Ait-Kaci 1993). It extended Prolog with
type inheritance and functions. Functions were implemented using residuation, where
they are delayed until their arguments are sufficiently instantiated. Also, extensions to
the WAM were developed for implementing unification of feature terms in order-sorted
theories.

BinProlog (1992) Paul Tarau started work on BinProlog in 1991, researching alternatives
to the then relatively mature WAM. The first trace of BinProlog in the literature is
the paper from Tarau (1992). In particular, Tarau was interested in a simpler WAM
and in exploring what could be removed without too harsh performance losses. He was
also specializing the WAM for the efficient execution of binary programs by compiling a
program’s clauses into binary clauses, passing continuations explicitly as extra arguments.
This approach has advantages for implementing concurrency and distributed execution
and related mechanisms such as engines. However, it also has a cost, since it conflicts with
tail- and last-call optimization. It is thus a veritable WAM alternative trading efficiency
for flexibility.

BinProlog supports multithreading and networking. With human language process-
ing needs in mind, hypothetical reasoning was built-in as well. This took the form of
intuitionistic and linear (affine) implication plus a novel form of implication (timeless
assumptions, designed and first meta-programmed by Verénica Dahl for dealing with
backward anaphora) (Dahl and Tarau 1998), later incorporated as well into Constraint
Handling Rule Grammars (CHRG) and into Hyprolog (which will be discussed in Sec-
tion 3.5.1).

B-Prolog (1994) The first version of B-Prolog (Zhou 2012) was released in 1994, as the
reader may verify by scrolling the version history publicly available on the B Prolog
Updates Note (2021). It uses a modified version of the WAM named TOAM (Tree-
Oriented Abstract Machine). The TOAM differs from the WAM in three key aspects:
first, arguments are passed through the stack rather than registers. Second, it uses a
single stack frame for a predicate call rather than two (Zhou 1996). Lastly, the first-
argument indexing of the WAM is improved by using matching trees inspired by Forgy’s
Rete algorithm (Forgy 1989).

tuProlog (2001) and 2P-KT (2021) Denti et al. (2001) proposed tuProlog, another suc-
cessful attempt at supporting Prolog without compiling to the WAM. It consists of a
lightweight Prolog implementation targeting the Java Virtual Machine (JVM). In partic-
ular, tuProlog relies on an original state-machine-based implementation of the SLDNF
resolution mechanism for Horn Clauses, aimed at interpreting Prolog programs on the
fly (Piancastelli et al. 2008), without requiring any compilation step.
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More recently, the whole project has been re-written by Ciatto et al. (2021a) as a Kotlin
multiplatform project (codename 2P-KT) targeting both the JVM and JS platforms. The
Prolog state machine has been slightly extended as well to support the lazy enumeration
of data streams via backtracking, as discussed by Ciatto et al. (2021D).

2.12 FEarly steps in building the community

After the first successes in Marseille, the availability of Prolog systems such as DEC-10
Prolog and, especially, the explosion of widely available Prolog systems that followed the
appearance of the WAM, an international community grew around Prolog and LP.

The First International Logic Programming Conference (ICLP) was held in Marseille,
in September 1982 and the second in Uppsala, Sweden in July 1984. There have also been
editions of the Symposium on Logic Programming and the North American Conference
of Logic Programming.

In 1984, the first issue of the Journal of Logic Programming (JLP) with Alan Robinson
as founding Editor-in-Chief was published, marking the solidification of the field of logic
programming within computer science.

The Association for Logic Programming (ALP) was founded at the 3rd ICLP con-
ference in 1986 and JLP became its official journal. The ALP is the main coordination
body within the community, sponsoring conferences and workshops related to logic pro-
gramming, granting prizes and honors, providing support for attendance at meetings
by participants in financial need, etc. The ALP was followed by other country-specific
associations.

In 2001, the first issue of Theory and Practice of Logic Programming (TPLP) was
published. TPLP is a successor to JLP established in response to considerable price
increases by Elsevier and to provide the logic programming community with a more
open-access journal (Apt 2001), and took over from JLP as the official journal of the
ALP. In 2010 ICLP started publishing its proceedings directly as special issues of TPLP,
pioneering (together with VLDB and SIGGRAPH) a tendency that is now followed by
top conferences in many areas (Hermenegildo 2012).

3 Part II: The current state of Prolog

Currently, there are many Prolog implementations — the comp.lang.Prolog FAQ (2021)
lists 35 different free systems at the time of writing (last modified May 2021). While many
of those are not maintained anymore or have even become unavailable, many others are
actively maintained and extended regularly. Thanks to the ISO-standardized core of Pro-
log, significant core functionality is shared among the different Prolog systems. However,
implementations also diverge from the standard in some details. For the nonstandardized
interfaces and the additional libraries, differences become more marked, which leads to
incompatibilities between different Prologs. In addition, most systems have incorporated
functionality that goes well beyond the Prolog ISO-standard.

In the following, the background, benefits, and shortcomings of the ISO standard, as
well as contributions based on it, are discussed (Section 3.1). Section 3.2 then discusses
the more active current Prolog implementations and what renders them unique, docu-
menting their visions for Prolog and their main development or research focus. Section 3.3
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analyzes which nonstandard features are available throughout the many current Prolog
systems, and what the state of these features is with a special emphasis on the differences.
Section 3.4 gives preliminary conclusions on the current state of Prolog features, whether
they are important for portability, and if these differences can be easily reconciled. Fi-
nally, Section 3.5 takes a look over the horizon to discuss which nonstandard features
have inspired other successful languages, as well as other interesting concepts that may
be or become relevant for the Prolog community.

3.1 The ISO standard and portability of Prolog code

As discussed in Section 2, the success of the WAM gave rise to many Prolog systems
in the 80s and early 90s. Yet, at this point, the Prolog language was evolving without
central stewardship. While originally the two traditional camps in Marseille and Ed-
inburgh steered their developments at their respective location, many Prolog systems
around the world aimed for extensions and new uses of the language. However, the
Edinburgh/DEC-10 syntax and functionality became progressively accepted as the de-
facto standard, helped by the wide dissemination of systems such as C-Prolog and later
the very influential Quintus system. Many popular systems, such as SICStus, YAP, Ciao,
SWI, and XSB tried to maintain compatibility with this standard.

The Core 1SO Standard: Work on a Prolog standard started in 1984 and was organized
formally in 1987 (Neumerkel 2013). Its major milestone was the ISO Prolog standard in
1995 (ISO/IEC 13211-1 1995) that we will refer to as Part 1 or core standard (Deransart
et al. 1996). It solidified the Edinburgh/Quintus de-facto standard, and greatly helped
establish a common kernel. Furthermore, it greatly increased the confidence of users in the
portability of code between Prolog systems (especially important among industrial users),
and the hope of having libraries that would be able to build on top of rich functionality
and be shared as well. This was achieved to some extent, and indeed many libraries (for
example, the excellent code contributed to the community by Richard O’Keefe Johnson
and Rae 1983; Ireson-Paine 2010) are present today in almost identical form in many
systems.

However, adoption of the ISO standard was not a painless process. It was a compromise
among many parties that did not describe any particular single system and, thus, com-
pliance did force the different Prolog systems to make changes that, even if often minor,
were not always backwards compatible. This made many Prolog vendors face the difficult
decision of choosing between fully adopting the standard and breaking existing user code,
or allowing slight deviations that made user code remain compatible. Therefore, it took
understandably some time for the standard to be adopted. At some point, the community
even became concerned that the ISO standard might not be taken seriously, and some
voices asked whether it should not be taken seriously. In a post in the ALP newsletter,
Bagnara (1999) pointed out that many implementations differed from the standard in at
least some way, and that those differences were poorly documented. Other shortcomings
were pointed out by several Prolog system main contributors, such as, for example, by
Carlsson and Mildner (2012), Diaz et al. (2012), and Wielemaker and Costa (2011). How-
ever, both aspects, adoption of the core standard and precise documentation of where
each system departs from the standard, have improved progressively. In practice, most
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systems tend to follow the kernel part of the standard, and many systems continue to
evolve even today to complete aspects in which they are not compliant.

In addition to the battery of tests provided by Deransart et al. (1996), a useful tool
to analyze compliance with the core standard was developed in by Szabd and Szeredi
(2006), where a test suite of about 1000 tests was developed and run on several Pro-
log systems, offering detailed test results. This suite is widely used for detecting areas
of noncompliance in Prolog systems and was useful to improve compliance. It has also
been useful as a means for detecting areas in which the ISO standard can be improved,
based on failing tests, ambiguities, typos, and inconsistencies that have been found in
the standard document. These tests and others were coded as assertions and unit tests
in the Ciao assertion language by Mera et al. (2009); encoding and testing compliance
(both statically and dynamically) was one of the design objectives of the Ciao assertion
language. Ulrich Neumerkel has greatly contributed by testing and analyzing a compre-
hensive set of features and programs over many systems (Neumerkel 1992; 1994; Hoarau
and Mesnard 1998; Mesnard et al. 2002; Triska et al. 2009). His attention to detail has
been essential in bringing ISO standard compatibility to many implementations.%

The fact that some aspects of the core standard still require additional work has been
pointed out also by several authors. For example, Moura (2005), in another issue of the
ALP newsletter, points out that revisions of the standard are necessary to close gaps in
the built-in predicates (as well as other issues like exceptions, scopes of declared operators,
or meta-predicates). He demands a strong standard and also requests mature libraries.
In later reflections during a special session at ICLP 2008, Moura (2009b) reported on
his interesting experiences when implementing Logtalk, which, as mentioned before, is
portable between many Prolog compilers. Over the course of a decade, Moura was able to
locate hundreds of bugs and incompatibilities between all the targeted Prologs. However,
Moura also asserts that Prolog developers” have generally addressed these issues, and
there has been considerable improvement in portability. Another very valuable result of
these efforts by Moura is a very comprehensive set of compatibility tests and libraries
covering the target Prolog systems.

Beyond the Core Standard: The Module System Despite leaving room for improvement,
the adoption of the core standard can be considered a reasonable success. However, an
important remaining shortcoming is that it does not address many features that modern
Prolog systems offer, such as modules. The Prolog module system was addressed by
the ISO standardization group in the second part of the standard (ISO/IEC 13211-
2 2000) which appeared five years later. However, while the core standard was wise
enough to reflect the de-facto standards of the time, this second part proposed a module
system that was a radical departure from any module system used by any Prolog at
the time. Instead, by the time this part came out, the Prolog developer community had
already settled for the de-facto module standard, which was the Quintus module system.
Thus, this second part of the standard was largely ignored. Fortunately, the Quintus-like

60n this topic, Neumerkel maintains the site https://www.complang.tuwien.ac.at/ulrich/
iso-prolog/.

"We will use the term Prolog developers to refer to developers of Prolog. Developers in Prolog will
be refered to as Prolog programmers.
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module system is still widely supported currently. Some systems include extensions to
this de-facto standard that while sometimes incompatible, generally preserve backward
compatibility. This has allowed the development of some libraries that rely only on the
Prolog ISO core, which are present in almost identical form in many systems. Only
a few systems have module systems with radically differing semantics or no module
system at all.

Beyond the Core Standard: Libraries and Extensions Other aspects that are outside the
core standard are libraries and many extensions such as coroutining, tabling, parallel
execution, exceptions, and constraints.

While, as mentioned before, many libraries are present in most systems, unfortunately
the adoption of the de-facto module standard did not result in the establishment of a full
set of common libraries across systems. Often, nonstandard Prolog features are required
by more involved libraries, and in other cases, similar yet independent developments were
not reconciled.

Schrijvers and Demoen (2008) published an article aptly named Uniting the Prolog
Community discussing issues related to portability and incompatibility, specially in the
structure and content of libraries. This prompted two Prolog implementations, SWI-
Prolog and YAP, to work together more closely on the issue. A basic compatibility was
established, that allowed writing Prolog programs in a portable manner by abstraction,
emulation, and a small amount of conditional, dialect-specific code (Wielemaker and
Costa 2011). The overall approach works fairly well and, as demonstrated in two case
studies (reported in the same paper), large libraries can be ported between both Prologs
with manageable effort.

Some time later, in 2009, the Prolog Commons Working Group (2021) was established,
with the objective of developing a common, public domain set of libraries for systems that
support the Prolog language. The group met a number of times in Leuven (Swift 2009),
with attendance from developers of most major Prolog systems, and some useful progress
was made during this period. Leading Prolog system developers worked toward a set
of common libraries, a common mechanism for conditional code compilation, and closer
documentation syntax. During early discussions other interesting topics were raised, such
as the necessity of a portable bidirectional foreign language interface for C. The work of
the group also resulted in 17 libraries and 8 more in development.

While the standard initiatives like the Prolog Commons Working Group have been tak-
ing major steps forward in the coordination of the Prolog developer community, there has
been unfortunately less activity lately on standardization. Clearly, a higher involvement
of the Prolog developer community in the evolution of the standard and/or alternative
standardization efforts such as the Prolog Commons seems to be a necessity.

3.2 Rationales and unique features of Prolog implementations

Naturally, there are different interests between the Prolog systems that are maintained
for commercial usage and those maintained for research: while the former generally seek
maturity and stability, the latter generally concentrate on advancing the capabilities and
uses of the language. This divergence of interests raises the question of what features do
work similarly between Prologs, what can be adapted, and what can be considered as
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Table 1. Unique features and Foci of Prolog systems

System Uniqueness

B-Prolog action rules, efficient CLP supporting many data structures

Ciao multi-paradigm, module-level feature toggle, extensible language,
statict+dynamic verification of assertions (types, modes), performance/
scalabilty, language interfaces, parallelism

ECL‘PS® focus on CLP, integration of MiniZinc and solvers, backward-compatible
language evolution of Prolog

GNU Prolog extensible CLP(FD) solver, lightweight compiled programs

JIProlog semantic intelligence/NLP applications

Scryer new Prolog in development, aims at full ISO conformance

SICStus commercial Prolog, focus on performance and stability, sophisticated con-
straint system, advanced libraries, JIT compilation

SWI-Prolog general-purpose, focus on multi-threaded programming and support of pro-
tocols (e.g., HT'TP) and data formats (e.g., RDF, XML, JSON, etc.), slight
divergence from ISO, compatibility with YAP, ECL‘PS® and XSB

tuProlog bi-directional multi-platform interoperability (JVM, .NET, Android, iOS),
logic programming as a library

XSB commercial interests, tabled resolution, additional concepts (e.g., SLG res-
olution, HiLog programming)

YAP focus on scalability, advanced indexing, language integrations (Python, R),

integration of databases

a “de-facto” standard that is valid today. Along this line, we argue that two interesting
questions deserving attention are the following:

e can maintainers of Prolog systems agree on additional features and common inter-
faces?
e can the Prolog Commons endeavor or similar efforts be continued?

Accordingly, this section takes another look at currently active Prolog implementations.
In contrast to Section 2, it ignores their initial motivation and historic development,
concentrating on their current development foci and unique features. A brief summary
is presented in Table 1 and expanded in the following.

B-Prolog (Zhou 2012; BProlog Homepage 2021) is a high-performance implementation
of ISO-Prolog. It extends the language with several interesting concepts, such as action
rules (Zhou 2006), which allow delayable subgoals to be activated later. B-Prolog also
offers an efficient system for constraint logic programming that supports many data
structures.

Ciao Prolog (Hermenegildo et al. 2012; Ciao Prolog Homepage 2021) is a general-
purpose, open source, high-performance Prolog system which supports the ISO-Prolog
and other de-facto standards, while at the same time including many extensions. A char-
acteristic feature is its set of program development tools, which include static and dy-
namic verification of program assertions (see Section 3.3.3), testing, auto-documentation,
source debuggers, execution visualization, partial evaluation, or automatic parallelization.
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Another characteristic feature is extensibility, which has allowed the development of many
LP and multiparadigm language extensions which can be turned on and off at will for
each program module, while maintaining full Prolog compatibility. Other important foci
are robustness, scalability, performance, and efficiency, with an incremental, highly op-
timizing compiler, that produces fast and small executables. Ciao also has numerous
libraries and interfaces to many programming languages and data formats.

ECL!PS® (Wallace and Schimpf 1999; Apt and Wallace 2007; ECLiPSe Prolog Homepage
2021) is a system that aims for backward compatibility with ISO Prolog (and, to some
extent, compatibility with the dialects of Quintus, SICStus and SWI-Prolog), but also
tries to evolve the language. Its research focus is constraint logic programming. The
system integrates the popular MiniZinc constraint modeling language (Nethercote et al.
2007), by means of a library that allows users to run MiniZinc models, as well as third-
party solvers. While ECL‘PS® is open-source software, commercial support is available.

GNU Prolog (Diaz et al. 2012; GNU Prolog 2021) is an open-source Prolog compiler and
extensible constraint solver over finite domains (FD). It compiles to native executable
code in several architectures, by means of an intermediate platform-independent language
which reduces compilation time. GNU Prolog strives to be ISO-compliant and compiled
programs are lightweight and efficient, as they do not require a run-time interpreter.
The system’s design eases the development of experimental extensions and attains good
performance, despite being built on a simple WAM architecture with few optimizations
and a straightforward compiler.

JIProlog (Chirico 2021) was the first Prolog interpreter for a Java platform and, some
years later, it was the first Prolog interpreter for a mobile platform with its implementa-
tion for J2ME. Its strengths include bidirectional Prolog-Java interoperability (meaning
that Java programs can call Prolog and vice-versa), the possibility to let Prolog programs
interoperate with JDBC-compliant data base management systems, and the possibility
to run the Prolog interpreter on Android. Along the years, JIProlog has been exploited in
the construction of expert systems, as well as semantic web or data mining applications.

Seryer Prolog (2021) is a quite recent Prolog implementation effort whose WAM-based
abstract machine is written in the Rust language. Scryer is open source and aims for
full ISO compliance. Since Scryer Prolog is a new, from scratch implementation, it has
the opportunity to select different trade-offs and implementation choices. Scryer is still
heavily in development at the time of writing, and thus its features are in relative flux.
We have thus not included it in the feature overview table (Table 2). Nevertheless, it
does already have at least preliminary support for features such as modules, tabling,
constraint domains, indexing, attributed variables, and coroutines. The reader is directed
to the evolving Scryer Prolog documentation to follow-up on this system.

SICStus Prolog (Carlsson 1986; Carlsson and Mildner 2012; SICStus Prolog Homepage
2021) is now a commercial Prolog system. It adheres to the ISO standard and has a strong
focus on performance and stability. An additional trait of the system is its sophisticated
constraint system, with advanced libraries and many essentials for constraint solvers,
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such as coroutines, attributed variables, and unbounded integers. The block coroutining
declaration is particularly efficient. It also incorporates many of the characteristics, fea-
tures, and library modules of Quintus Prolog. Since release 4.3, SICStus also contains a
JIT (just-in-time) compiler to native code, but currently has no multithreading or tabling
support. SICStus is used in many commercial applications — cf. Carlsson and Mildner
(2012, Section 6).

SWI-Prolog (Wielemaker et al. 2012; SWI Prolog Homepage 2021) is a general-purpose
Prolog system, intended for real-world applications. For this, it has to be able to in-
terface with other (sub-)systems. Thus, the development focus lies on multithreaded
programming, implementations of communication network protocols such as HT'TP, and
on libraries that can read and write commonly used data formats such as RDF, HTML,
XML, JSON, and YAML. Notably, for the last two formats, specific data structures need
to be supported, which has motivated the divergence from the ISO standard in favor of
real strings, dictionaries, distinguishing the atom ‘ []’ from the empty list []1, and non-
normal floating-point numbers (Inf, NaN). Strings, extended floating-point numbers, and
support for rational numbers have been synchronized with ECL‘PS®. Its top priorities
are robustness, scalability and compatibility with both older versions of SWI-Prolog and
the ISO standard, as well as with YAP, ECL‘PS¢ (data types), and XSB (tabling).

tuProlog (Denti et al. 2001; tuProlog Home 2021) is a relatively recent, research-oriented
system which is the technological basis of several impactful works at the edge of the mul-
tiagent systems and logic programming areas, such as TuCSoN (Omicini and Zambonelli
1998), ReSpecT (Omicini and Denti 2001), and LPaaS (Calegari et al. 2018). The main
purpose of tuProlog is to make Prolog and LP ubiquitous (Denti et al. 2013). It pro-
vides basic mechanisms such as knowledge representation, unification, clause storage, and
SLDNF resolution as a library via multiplatform interoperability (e.g., to JVM, .NET,
Android, and i0S) and multi-paradigm integration. Further, tuProlog also supports the
direct manipulation of objects from within Prolog. Recent research efforts are focused on
widening the pool of (i) logics and inferential procedures such as argumentation support
(Pisano et al. 2020) and probabilistic LP, (%) platforms it currently runs upon, for exam-
ple, JavaScript (tuProlog Home 2021), and (44) programming paradigms and languages
it is interoperable with, cf. Ciatto et al. (2020).

TProlog (2021), also referred to as Tau Prolog, is another noteworthy implementation
of Prolog focusing on easing the use of logic programming in the Web. In particular, it
provides a JavaScript-native library that facilitates the use of Prolog in web applications,
both from the browser- and the server side. In other words, 7Prolog pursues a similar
intent with respect to tuProlog and JIProlog: bringing Prolog interpreters to high-level
platforms and languages, except it focuses on another platform, JavaScript. Accordingly,
TProlog makes it very easy to run a Prolog interpreter in a web page, even without a
server behind the scenes.

XSB (Sagonas et al. 1993; 1994; Warren 1998; XSB Prolog Homepage 2021) is a research-

oriented system, but its development is also influenced by continued use in commercial
applications. Its most distinctive research contribution is tabled resolution (Swift and
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Warren 2012) which has, since, been adopted in other systems. In the XSB manual, the
developers explicitly refrain from calling it a Prolog system, as it extends the latter with
concepts such as SLG-resolution and HiLog programming. We return to tabling below in
Section 3.3.3.

YAP (Costa et al. 2012) is a general-purpose Prolog system focused on scalability, mostly
based on advanced clause indexing, and on integration with other languages, specifically
Python and R. There is a strong interest in trying to make Prolog as declarative as
possible, looking at ways of specifying control (such as types), and in program scalability
by considering modules. There is also a long term goal of integrating databases into
Prolog by having a driver that allows YAP to use a database as a Prolog predicate. In
the future, YAP’s strength lies in the ability to write and maintain large applications. Its
team has worked on three key points toward this goal: interfacing with other languages
(Angelopoulos et al. 2013), interfaces to enable collaboration between Prolog dialects,
and tools for declaring and inferring program properties, such as types (Costa 1999).

3.3 Overview of features

In this section, we survey the availability of features that are often appreciated by Prolog
programmers. The goal is to find out whether there are commonalities and even a “de
facto standard” with respect to features among most Prolog systems. An overview of
which features are available in what Prolog system is given in Table 2. We give our
conclusions regarding portability in Section 3.4. Due to the sheer number of existing
Prolog systems, we consider only the more actively developed and mainstream ones.
In the following, we will briefly discuss each surveyed feature, classifying them in four
different groups: core features that usually cannot be reasonably emulated on top of
simpler features; extensions to the language semantics and the execution model; libraries
written on top of the core and (optionally, one or more) extensions; tools and facilities
to debug, test, document, and perform static analysis.

A Note on Portability: The above classification sheds some light onto the challenges of
attaining portability of sophisticated Prolog code. Compatibility at the core features (1)
is relatively easy, and this enables the sharing of a substantial number of libraries (2).
Extensions (3) represent a more complicated evolving landscape, where some of them
require deep changes in the system architecture. It stands to reason that the existence of
multiple Prolog implementations (or alternative cores) might be a necessary good step,
that should be regarded as a healthy sign rather than an inconvenience. Nevertheless, this
requires a periodic revisit, dropping what did not work and promoting cross-fertilization
of ideas. On the other hand, tools (4), despite being more complex, have also the ad-
vantage of being more flexible: sometimes they can run on one system while still being
usable with others (e.g., IDEs, documentation, analysis, or refactoring tools).

3.3.1 Core features

Module System As mentioned before, while most Prolog systems support structuring the
code into modules, virtually no implementation adheres to the modules part of the ISO
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Table 2. Feature Overview of Several Maintained Prolog(-like) Systems. Constraint Logic
Programming (CLP) abbreviations: FD = finite-domain, Q = rational numbers, R = real
numbers, B = boolean variables. Indexring Strategy abbreviations: FA = first argument,
N-FA = non-first argument, MA = multiple-argument, JIT = just-in-time, all = all
aforementioned strategies

System Open source Modules Non-standard data types Foreign language interfaces
B-Prolog arrays, sets, hashtables  C, Java

Ciao v v C, Java, Python, JavaScript
ECLiPSe v v arrays, strings C, Java, Python, PHP
GNU Prolog v arrays C, Java, PHP

JIProlog v v Java

SICStus v C, Java, .NET, Tcl/Tk
SWI v v dicts, strings C, C++, Java

TProlog v v JavaScript

tuProlog v arrays Java, .NET, Android, iOS
XSB v v C, Java, PERL

YAP v v C, Python, R

System CLP CHR Tabling Parallelism Indexing Type / Mode
B-Prolog FD, B, Set v v N-FA

Ciao FD, O, R v v v FA, MA v
ECLiPSe FD, Q, R, Set v most suitable

GNU Prolog FD, B FA

JIProlog undocumented

SICStus FD, B, Q, R v FA

SWI FD, B, Q, R v v v MA, deep, JIT

TProlog undocumented

tuProlog v FA

XSB R v v v all, trie

YAP FD, 9, R v v FA, MA, JIT

System Coroutines Testing Debugger Global Variables Mutable Terms
B-Prolog v trace v

Ciao 4 v trace / source v v
ECLiPSe v v trace v

GNU Prolog trace v v
JIProlog trace

SICStus v v/ trace / source v

SWI 4 v trace / graphical v v
7Prolog

tuProlog Spy

XSB v trace

YAP trace v

standard. Instead, most systems have decided to support as de-facto module standard
the Quintus/SICStus module system. However, further convenience predicates concerning
modules are provided by some implementations only and often have subtle differences in
their semantics.
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Interesting cases include GNU Prolog which initially chose not to implement a module
system at all, although a similar functionality was later brought in by means of con-
texts and dynamic native unit code loading (Abreu and Nogueira 2005); Logtalk which
demonstrates that code reuse and isolation can be implemented on top of ISO Prolog us-
ing source-to-source transformation (Moura 2003); Ciao which designed a strict module
system that, while being basically compatible with the de-facto standard used by other
Prolog systems, is amenable to precise static analysis, supports term hiding, and facil-
itates programming in the large (Cabeza and Hermenegildo 2000; Stulova et al. 2018);
and XSB, which offers an atom-based module system (Sagonas et al. 1994). The latter
two systems allow controlling the visibility of terms in addition to that of predicates.

Built-in Data Types The ISO Prolog standard requires support for atoms, integers,
floating-point numbers, and compound terms with only little specification on the repre-
sentation limits, usually available as Prolog flags.

In practice, most limits evolve with the hardware (word length, floating-point units,
available memory, and raw performance), open software libraries (e.g., multiple preci-
sion arithmetic), and system maturity. Since the standard does not specify minimum
requirements for limits, special care must be taken in the following cases:

e Integers may differ between Prolog systems. E.g., a given system may not support
arbitrary precision arithmetic. Furthermore, the minimum and maximum values
representable in standard precision may be smaller than implied by word length
(due to tagging).

o Mazimum arity of compound terms may be limited (max_arity Prolog flag). De-
spite the arity of user terms usually falling within the limits, this is an issue with
automatic program manipulation (e.g., analyzers) or libraries representing arrays
as terms.

e Atoms have many implementation-defined aspects, such as their maximum length,
number of character codes (such as ASCII, 8-bit or Unicode), text encoding (UTF-8
or other), whether the code-point 0 can be represented, etc.

e Strings are traditionally represented as list of codes or characters (depending on
the value of double_quotes flag), or as dedicated data types. Although this can be
regarderd as very minor issue, combining different pieces of code expecting different
encodings is painful and error prone.

e Garbage collection of atoms may not be available. This may lead to nonportability
due to resource exhaustion in programs that create an arbitrary number of atoms.

e Floating point numbers are not specified to be represented in a specific way. The
IEEE double standard is most prevalent across all Prolog systems. However, sup-
port for constants such as NaN, -0.0, Inf as well as rounding behavior may differ.
ECLPS®, for example, does interval arithmetic on the bounds.

For convenience, systems may offer other data types by means of (nonstandard) ex-
tension of the built-in data types, for example, rational numbers (useful for the imple-
mentation of CLP(Q)), key-value dictionaries, and compact representations of strings.
There is no consensus on those extensions or portable implementation mechanisms, thus
more work is needed in this area.
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Foreign (Host) Language Interface Like any programming language, Prolog is more
suited for some problems than for others. With a foreign language interface, it becomes
easier to embed it into a software system, where it can be used to solve part of a problem
or access legacy software and libraries written in another language. Since this is also a
nonstandard feature, the interfaces themselves, as well as the targeted languages, differ
quite a lot among different systems. An important case is interfacing Prolog with the
host implementation language of the system (e.g., C, Java, JavaScript). The main issues
revolve around the external representation for Prolog terms (usually in C or Java) and
whether nondeterminism is visible to the host language or should be handled at the Pro-
log level. The latter aspect is usually resolved by hiding backtracking from the foreign
language program, except in where there is a natural counterpart: such is the case when
the language has consensual built-in support for features like iterators. A more detailed
survey describing and comparing different features is given by Bagnara and Carro (2002).

3.3.2 Libraries

Constraint Satisfaction As mentioned in Section 2.8, advances such as finite domain
implementation based on indexicals and, specially, progress in the underlying tech-
nology in Prolog engines for supporting extensions to unification, such as meta-
structures (Neumerkel 1990) and attributed variables (Holzbaur 1992), enabled the
library-based approach to supporting embedded constraint satisfaction that is now present
in most Prolog systems. Since many constraint domains have been implemented as li-
braries, such as R and Q (linear equations and inequations over real or rational numbers),
FD (finite domains), B (booleans), etc.

Systems vary in how the constraint satisfaction process gets implemented. In SICStus
and ECL’PS®, the constraint library is partly implemented in C, in the case of GNU
Prolog in a dedicated DSL designed to specify propagators. Several other systems, such as
Ciao, SWI-Prolog, XSB, and YAP, use Prolog implementations built on top of attributed
variables (as mentioned above), such as those of Holzbaur (1992) or Triska (2012), or
local ones. While the C-based implementations provide a performance edge, the Prolog
implementations are small, portable, and may use unbounded integer arithmetic when
provided by the host system.

CHR (Frithwirth 2009), described also in Section 2.8.3, is available in several Prolog
systems as a library which, rather than working on a single, specific domain, enables the
writing of rule-based constraint solvers in arbitrary domains. CHR provides a higher-level
way of specifying propagation and simplification rules for a constraint solver, although
possibly at some performance cost.

Data Structures Different Prolog systems also ship varying numbers of included libraries
such as code for AVL trees, ordered sets, etc. Because they are usually written purely in
standard Prolog, those implementations can usually be dropped in place without larger
modifications.

3.3.83 Extensions

Tabling As discussed in Section 2.9, tabling can be used to improve the efficiency of Pro-
log programs by reusing results of predicate calls that have already been made, at the
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cost of additional memory. It improves the termination properties of Prolog programs by
delaying self-recursive calls. Tabling was first implemented in XSB and currently a good
number of other Prolog implementations support it (e.g., B-Prolog, Ciao, SWI, YAP).
XSB and recent SWI-Prolog versions improve support for negation using stratified nega-
tion and well-founded semantics. Both systems also provide incremental tabling which
automatically updates tables that depend on the dynamic database, when the latter is
modified. Some systems (YAP, SWI-Prolog) support shared tabling which allows a thread
to reuse answers that are already computed by another thread. Ciao supports a related
concept of concurrent facts for communication between threads (Carro and Hermenegildo
1999), combines tabling and constraints (Arias and Carro 2016), and supports negation
based on stable model semantics (Arias et al. 2018).

Parallelism Today, new hardware generations do not generally bring large improvements
in sequential performance, but they do often bring increases in the number of CPU
cores. However, ISO-Prolog only specifies semantics for single-threaded code and does
not specify built-ins for parallelism. As already discussed in Section 2.7, several parallel
implementations of Prolog or derivatives thereof have been developed, targeting both
shared-memory multiprocessors and distributed systems. Support for or-parallelism is
not ubiquitous nowadays, although systems like SICStus were designed to support it
and this feature can possibly be easily recovered. Ciao still has some native support
for and-parallelism and concurrency, and its preprocessor CiaoPP still includes auto-
parallelization. A different, more coarse-grained form of parallelism is multithreading
(this is what the parallelism column in Table 2 gathers).

Indexing Indexing strategies of Prolog facts and rules are vital for Prolog development
as they immediately influence how Prolog predicates are written with performance in
mind. The availability of different indexing strategies is an important issue that affects
portability of Prolog programs: if a performance-critical predicate cannot be indexed ef-
ficiently, run-time performance may be significantly affected. There are several strategies
for indexing:

e First-argument (FA) indexing is the most common strategy where the first argu-
ment is used as index. It distinguishes atomic values and the principal functor of
compound terms.

e Nonfirst argument indexing is a variation of first-argument indexing that uses the
same or similar techniques as FA on one or more alternative arguments. E.g., if a
predicate call uses variables for the first argument, the system may choose to use
the second argument as the index instead.

e Multiargument (MA) indexing creates a combined index over multiple instantiated
arguments if there is not a sufficiently selective single argument index.

e Deep indexing is used when multiple clauses use the same principal functor for
some argument. It recursively uses the same or similar indexing techniques on the
arguments of the compound terms.

e Trie indexing uses a prefix tree to find applicable clauses.

In addition to the above indexing techniques, one can also distinguish systems that
use directives to specify the desired indexes and systems that build the necessary indexes
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just-in-time based on actual calls. One should note that the first form of indexing (FA)
is the only one which may be effectively relied upon when designing portable programs,
for it is close to universal adoption.

Type and Mode Annotations As Prolog is a dynamic language, it can be hard to maintain
larger code bases without well-defined (and checkable) interfaces. Several approaches
have been proposed to achieve or enforce sound typing in Prolog programs (Mycroft and
O’Keefe 1984; Dietrich and Hagl 1988; Gallagher and Henriksen 2004; Schrijvers et al.
2008). While these approaches are closer to strong typing, they have not caught on with
mainstream Prolog.

Many Prolog systems offer support, for example, for mode annotations, yet the direc-
tives usually have no effects except their usage for documentation. The few Prolog or
Prolog-like systems that really address these issues and incorporate a type and mode
system include Mercury (Somogyi et al. 1996) and Ciao (Hermenegildo et al. 1999). The
former is rooted in the Prolog tradition, but departs from it in several significant ways
(see Sections 2.1 and 3.5). The latter aims to bridge the static and dynamic language
approaches, while preserving full compatibility with traditional nonannotated Prolog. A
fundamental component is its assertion language (Puebla et al. 2000b) that is processed
by CiaoPP (cf. Section 2.10.2). CiaoPP then is capable of finding nontrivial bugs statically
or dynamically and can statically verify that the program complies with the specifica-
tions, even interactively (Sanchez-Ordaz et al. 2021). The Ciao model can be considered
an antecedent of the now-popular gradual- and hybrid-typing approaches (Flanagan 2006;
Siek and Taha 2006; Rastogi et al. 2015) in other programming languages.

Coroutining As discussed in Section 2.4.1, coroutining was first introduced into Prolog in
order to influence its default left-to-right selection rule. From a logical perspective, logic
programs are independent of the selection rule. However, from a practical, programming
language perspective, procedural factors might influence efficiency, termination, and even
faithfulness to the intended results. Consider for instance a program that tries to calculate
the price of an as yet unknown object X (this could result from, say, some natural
language interface’s ordering of different paraphrases). Coroutining can ensure that the
program behaves as intended by reordering these goals so that objects are instantiated
before attempting to calculate their prices.

Coroutining is an important feature of modern Prolog systems, allowing programmers
to write truly reversible predicates and improve their performance. It represents a step
forward towards embodying the equation of “Algorithm = Logic + Control” by Kowalski
(1979). Early mechanisms for coroutining focused on variations of the delay primitive
by Dahl and Sambuc (1976), which dynamically reorders the execution of predicates
according to statically, user-defined conditions on them. The freeze variation was present
in Prolog IT (Colmerauer 1982b; Boizumault 1986), which delays the execution of its
second argument (understood to be a goal) until its first argument, a single variable
occuring in the second argument, is bound. A more flexible variation is the wait primitive
present in MU-Prolog (Naish 1985), which was subsequently generalized to when. This
concern evolved into the block declaration found in modern Prologs, which supports
the annotation of an entire predicate (rather than of each individual call), resembling a
mode declaration. This approach thus leads to more readable programs and more efficient
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code. It can be argued that the coupling of goal evaluation to the binding of variables
ultimately led to the development of Constraint Logic Programming (CLP) (3.3.2).

3.83.4 Tools

Unit Testing Structures One of the most important tools in software development is
a proper testing facility. Some Prolog systems ship a framework for unit testing, and
while the basic functionality is shared, usually they do not adhere to the same interface.
SWI-Prolog ships a library named plunit, while SICStus uses a modified version of it.
Both versions are entirely written in Prolog, yet they rely on system-specific code to
function properly. Ciao relies on the test assertions of its assertion language, which also
include test case generation. ECL'PS® offers a library named test_unit with several
test primitives that assert whether calls should succeed, raise errors, etc. Other systems
seem to rely on the fact that a small ad hoc testing facility is rather easy to implement.

Debugging A good debugger is vital to understand and fix undesired behaviors of pro-
grams. Prolog control flow is different from that of most other programming languages
because it has backtracking. To address this, most Prolog systems provide some form of
tracing debugger based on the 4-port debugger introduced for DEC-10 Prolog by Byrd
(1980), which allows for the tracing of individual goals at their call, exit, redo, and fail-
ure ports (states). Most systems allow setting of spy points (similar to breakpoints) and
some provide a very Prolog-specific and powerful debugging tool: the retry command
which allows one to “travel back in time” to the entry point of a call that, for some
reason, misbehaved. The latter feature assumes Prolog programs without side effects. A
few systems, such as SWI, SICStus, and Ciao, additionally offer source-level debugging
that allows following the steps of execution directly on the program text, thus providing
a more conventional view.

3.4 Takeaways

When considering Table 2, one can see that, despite undeniable differences among Prolog
systems, many Prolog systems offer similar features.

Available and Mostly Compatible Features

Mostly compatible module systems have been widely adopted, even if they virtually all
diverge from the ISO document. The existence of a de-facto module standard makes
it possible to write production-quality libraries that are portable across most Prolog
systems.

Facilities for multithreaded programming are also common: A number of systems of-
fer predicates based on the corresponding technical recommendation document (Moura
2007), sometimes with some differences in semantics or syntax.

Most systems also offer libraries for constraint programming, though they differ in
performance and expressiveness. Yet, no standard interface or even a proposal for one
exists.

Almost all Prolog systems embrace dynamic typing, and type and mode annotations
are used for documentation or optimization, yet are not enforced or verified at all. Ciao,
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with its combination of the dynamic and static approaches, is the significant exception
here.

While support for tabling is present in various systems, the features and interfaces
can differ. Programs that rely on it (beyond simple answer memoization that can be
implemented fairly simply using the dynamic database), specially if they use special
features, can be hard to port. Thus, progress needs to be made toward better portability
in this area.

Discrepancies

One gets a mixed result when considering support for other features: some systems, such
as ECL/PS® offer extensive library support of data structures, whereas others remain
rather basic, without a large standard library.

Coroutining is not available on all systems, and the various primitives (when, block,
freeze, dif) sometimes have some variations among those systems that do support
it. A similar situation occurs for global variables and mutable terms. Similarly, testing
frameworks are missing in several systems, but usually can be provided in form of a
portable library.

Almost all Prolog systems support at least one foreign language interface, in order to
leverage existing libraries and to widen the domains where logic programming can be
applied. Yet, there are different strategies on how the interfaces interact with Prolog,
and, thus, the interfaces often differ between implementations.

An issue that can also hinder portability is the large discrepancy in indexing strategies.
Solutions so far are of a very technical nature, rather than aimed toward a common
interface, so work is needed if this issue is to be resolved.

Conclusions

Overall, most Prolog systems are not too different in what they offer. Many differences
could be bridged by agreeing on certain interfaces, or, for example, sharing library pred-
icates for testing, or data structures. Differences in constraint solving capabilities are
harder to reconcile, as some solvers are of commercial nature. However, CHR’s embod-
iment of constraints is fairly ubiquitous and permits the implementation of constraint
solvers in arbitrary domains of interest. Missing technical features, such as tabling or in-
dexing strategies, may hinder portability or performance, but the relevance of this issue
can greatly depend on the application. It is also possible to integrate tabling with con-
straints & la CHR (Schrijvers and Warren 2004). As differences with ISO-Prolog usually
are very small now, the Prolog implementations’ cores are very similar today.

3.5 Influence on other languages

The concepts and ideas that have been explored during the long history of evolution
of Prolog systems have influenced and given rise to other languages and systems, both
within the LP paradigm and out to other programming paradigms. In the following (Sec-
tion 3.5.1), we describe languages within the LP paradigm that are heavily inspired by or
emerged from Prolog. These systems generally fail our definition of Prolog in Section 2.1.
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However, sometimes they bear witness to useful features or extensions that have not (yet)
made their way into Prolog itself. Still others, such as, for example, s(ASP) /s (CASP) or
Co-Inductive LP, are really extensions of Prolog whose support in Prolog systems could
be generalized in the future, as has happened already with constraints or tabling. They
could thus also have been listed in Section 3.3.3. Regarding the impact that Prolog and
Prolog systems have had beyond LP, it is outside the scope of this paper to do a full
analysis of this very interesting topic, but we briefly review in any case in Section 3.5.2
a few examples of other such influences outside the LP paradigm.

8.5.1 Influences on other languages in the LP paradigm

Datalog is a subset of Prolog, which does not allow compound terms as arguments of
predicates. This topic has been worked on since the late 70s, although the term was
coined later by David Maier and David S. Warren in the 80s. Datalog can be viewed as an
extension of relational databases, allowing recursion within predicates. Datalog plays an
important role in the research field of deductive databases (Ramakrishnan and Ullman
1993). Datalog has found new applications in many areas (Huang et al. 2011), such
as information extraction (Shen et al. 2007), program analysis and synthesis (Whaley
et al. 2005; Alpuente et al. 2010; Jordan et al. 2016; Madsen and Lhoték 2020), security
(Bonatti 2010), graph processing (Seo et al. 2015), reasoning over ontologies (Baumeister
and Seipel 2010), or natural language processing (Dahl et al. 1995).

AProlog was developed in the late 80s, by Miller and Nadathur (1988). It was defined
as a language for programming in higher-order logic based on an intuitionistic fragment
of Church’s theory of types. It spawned several modern refinements and implementa-
tions (AProlog Home Page 2021). Higher-order extensions have also made their way into
less specialized Prologs, as we discuss in Section 2.10.2. Miller and Nadathur (2012) dis-
cuss uses of higher-order logic in logic programming to provide declarative specifications
for a range of applications. AProlog applications are still surfacing, with the main focus
being on meta-programming (Nadathur 2001), program analysis (Wang and Nadathur
2016), and theorem proving (Miller 2021).

Committed-choice Languages As mentioned in Section 2.6, the implementation complex-
ity of combining Prolog’s backtracking with concurrency and/or parallelism led to the
development of logic languages supporting “committed choice” where only the first clause
whose guard succeeds is executed, instead of the multiple execution paths supported
by Prolog. This includes GHC (Guarded Horn Clauses) (Ueda 1985), KL1 (Ueda and
Chikayama 1990), Parlog (Clark and Gregory 1986), and Concurrent Prolog (Shapiro
1983; 1987). Erlang (Armstrong 2007) (see later) also has its origins in this line of work.
This line of work also yielded concurrent constraint languages, such as cc(£fd) (Hen-
tenryck et al. 1994), and distributed constraint languages, such as AKL (Janson and
Haridi 1991) and Oz/Mozart (Roy et al. 2020) (see later). The concepts brought about
by the committed-choice languages, such as guards and data-flow synchronization based
on one-way unification and constraint entailment (Maher 1987), have in turn made their
way back into Prolog systems as part of extensions for concurrency and distributed

https://doi.org/10.1017/51471068422000102 Published online by Cambridge University Press


https://doi.org/10.1017/S1471068422000102

Fifty Years of Prolog and Beyond 817

execution (e.g., in &-Prolog/Ciao Cabeza and Hermenegildo 1996; Hermenegildo et al.
1996 or ACE Gupta and Pontelli 1999).

Turbo-Prolog (Hankley 1987) can be considered a precursor of other strongly typed logic
programming languages. It was released as a full development environment in 1986 for
PC/MS-DOS. It was strongly typed, had support for object-oriented programming, and
it compiled directly to machine code. At that time, this pragmatic approach provided a
safe and efficient language, but lacked important dynamic features of Prolog required in
many applications. It has been continued as PCD Prolog and Visual Prolog, focusing on
supporting good integration with Microsoft Windows APIs.

Godel (Hill and Lloyd 1994) is a logic programming language that first appeared around
1992. It is strongly typed, with a type system based on many-sorted logic, allowing for
parametric polymorphism. It implemented a sound negation, delaying negated calls until
they were ground. Goédel also supports meta-programming, using ground representation
for meta-programs, which has the advantage of having a declarative semantics. This
enabled the development of a self-applicable partial evaluator called SAGE by Gurr (1994).
The Godel system was built on top of SICStus Prolog, employing a different syntax style.
The development of the language came to a halt in the 1990s.

Curry (Hanus et al. 1995) was developed in 1995. It is a functional logic programming
language that is mostly based on Haskell, but includes some features from logic program-
ming languages such as nondeterminism and constraint solving. Curry is based on the
technique of narrowing, which is also the basis of other functional logic programming
work (Antoy and Hanus 2010). The language has recently been used for typesafe SQL
queries (Hanus and Krone 2017), for research and for teaching both the logic and the
functional paradigm (Hanus 1997).

Oz Another multiparadigm language is Oz (Henz et al. 1993), incorporating concurrent
logic programming, functional programming, constraints, and objects. The design of the
language started in 1991 and its logic programming aspects were greatly influenced by
AKL, the Andorra Kernel Language (cf. Section 2.10.2). A recent synopsis of Oz’s history
is available in the article by Roy et al. (2020). The current incarnation of Oz is available
as an open source implementation called Mozart.

Mercury (Somogyi et al. 1996) was created in 1995 as a functional logic programming
language, with characteristics from both Prolog and Haskell. The main reasons for its
development were threefold. First, idiomatic Prolog code at the time had short predicate
and variable names, and also lacked type annotations and comments. This often rendered
it hard for the reader to infer the meaning, types, and modes of a program. Second, mul-
timode predicates and those without static-type information could not be compiled to
the most efficient WAM code. Third, a lot of LP research was concerned with logic pro-
grams without any impure operations, and thus were not applicable to general Prolog
programs (e.g., executing read(X), call(X)). Thus, Mercury features a strong, static,
polymorphic type system, and a strong mode and determinism system. It has a sepa-
rate compilation step, which allows for a larger variety of errors to be detected before
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actually running a program, and for generation of faster code. By removing nonlogical
features, such as assert/1 and retract/1, a pure language was obtained, I/O could be
implemented declaratively, and existing research could be implemented unaltered. Some
interesting research has been done in the areas of program analysis and optimization
(Becket and Somogyi 2008), as well as parallelism (Bone et al. 2012).

Assumption Grammars and Assumptive Logic Programming (Dahl et al. 1997; Dahl
and Tarau 1998; 2004) extend Prolog with hypothetical reasoning, needed in particular
for natural language processing applications (Dahl et al. 1997). They include specialized
linear logic implications, called assumptions (Dahl and Tarau 1998; 2004), that range over
the computation’s continuation, can be backtracked upon, and can either be consumed
exactly once (linear), at most once (affine linear), any number of times (intuitionistic),
or independently of when they have been made: before or after consumption (timeless).
The latter is a novel form of implication designed and first meta-programmed by Dahl
for dealing with backward anaphora. Their uses for abduction were also researched by
Dahl and Tarau (2004).

Answer Set Programming (ASP) is arguably one of the largest successes of logic program-
ming. It is a logic programming paradigm that focuses on solving (hard) search problems,
by reducing them to computing stable models. Note that ASP is not a Turing-complete
programming language, but rather a language to represent aforementioned problems. It
is based on the stable models semantics and uses answer set solvers to provide truth as-
signments as models for programs. The usual approach for ASP is to ground all clauses so
that propositional logic techniques like SAT-solving can be applied to find stable models
for the program. Unlike Prolog’s query evaluation, ASP’s computational process always
terminates. The denomination “answer set” was first coined by Lifschitz (1999). Its early
exponents were Niemeld (1999) and Marek and Truszczynski (1999); more recent devel-
opments include Smodels (Syrjanen and Niemeld 2001), DLV (Leone et al. 2006), the
Potassco toolset (Gebser et al. 2014; 2008), and WASP Alviano et al. (2013). The inter-
ested reader may rely on the survey by Brewka et al. (2011) and on the special issue of
the AT Magazine dedicated to ASP (Brewka et al. 2016).

s(ASP) and s(CASP) s(ASP) (Marple et al. 2017) is a goal-directed, top-down execution
model which computes stable models of normal logic programs with arbitrary terms,
supporting the use of lists and complex data structures, and, in general, programs which
may not have a finite grounding. It supports both deduction and abduction. s(ASP)
uses a non-Herbrand universe, coinduction, constructive negation, and a number of other
novel techniques. Unlike in ASP languages, variables are (as in (C)LP) kept during exe-
cution and in the answer sets. s (CASP) (Arias et al. 2018) is the extension of s(ASP) to
constraint domains, while also including additional optimizations in the implementation.
s (ASP) and s(CASP) can be seen as Prolog extended with negation as failure where this
negation follows the stable model semantics. If negation is not used, the behavior is as
in Prolog. Both s(ASP) and s(CASP) have been implemented in Prolog, originally in
Ciao and also ported to SWI. For some applications, this approach leads to improved
performance and expressivity compared to existing ASP systems. Another advantage
is that it naturally provides explanations. At the same time, for some other classical
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ASP applications, the grounding to propositional logic remains currently the technology
of choice. Goal-directed evaluation of ASP was also addressed in the work of Bonatti
et al. (2001, 2008). In comparison, the s(ASP) and s(CASP) work handles unrestricted
predicates and queries, with constraints. Other early work on query-driven computa-
tion of stable models includes that of Chen and Warren (1996) and the XNMR system
within XSB.

Constraint Handling Rule Grammars (CHRG) by Christiansen (2002), extend Prolog
with sophisticated language processing capabilities because, just like Prolog does, they
allow writing grammar rules that become executable. They differ from the previous gram-
matical default of Prolog (DCGSs) in that they work bottom up, are robust (i.e., in case
of errors the recognized phrases so far are returned, rather than silently failing by de-
fault), can inherently treat ambiguity without backtracking, and, just as Hyprolog (see
below), can produce and consume arbitrary hypotheses. This makes it straightforward to
deal with abduction, which is useful for diagnostics, integrity constraints, operators a la
Assumption Grammars. They can also incorporate other constraint solvers. Applications
go beyond traditional NLP, including e.g., biological sequence analysis (Bavarian and
Dahl 2006).

Hyprolog (Christiansen and Dahl 2005) is an extension to Prolog and Constraint Han-
dling Rules (CHR) which includes all types of hypothetical reasoning in Assumption
Grammars, enhances it with integrity constraints, and offers abduction as well. It com-
piles into Prolog and CHR through an implementation by Henning Christiansen available
for SICStus, Prolog III and IV, and for SWI-Prolog. It can access all additional built-
in predicates and constraint solvers that may be available through CHR, whose syntax
can be used to implement integrity constraints associated to assumptions or abducibles.
Due to the compiled approach, which employs also the underlying optimizing compil-
ers for Prolog and CHR, the Hyprolog system is among the fastest implementations of
abduction.

Co-Inductive logic programming (Simon et al. 2006) was proposed in order to allow
logic programming to work with infinite terms and infinite proofs based on greatest
fixed-point semantics. The co-logic programming paradigm by Gupta et al. (2007) is
presented as an extension of traditional logic programs with both inductive and co-
inductive predicates. This can be used, for example, for model checking, verification, and
nonmonotonic reasoning (Gupta et al. 2011). These concepts were implemented based
on modifying YAP’s Prolog engine and are also related to s(ASP) /s (CASP).

Probabilistic Logic Programming (PLP) is a research field that investigates the com-
bination of LP with the probability theory. A comprehensive overview on this topic is
provided by Riguzzi (2018). In PLP, theories are logic programs with LPAD, that is, logic
programs with annotated disjunctions (Vennekens et al. 2004), hence they may contain
facts or rules enriched with probabilities. These may, in turn, be queried by the users
to investigate not only which statements are true or not but also under which probabil-
ity. To support this behavior, probabilistic solvers employ ad hoc resolution strategies
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explicitly taking probabilities into account. This makes them ideal to deal with uncer-
tainty and the complex phenomena of the physical world.

From a theoretical perspective, the distribution semantics by Sato (1995) is one of the
most prominent approaches for the combination of logic programming and probability
theory. Sato, in particular, was among the first authors exploiting Prolog for PLP, by
building on the ideas of Poole (1993). The very first programming language laying un-
der the PLP umbrella was PRISM, by Sato and Kameya (1997), which supported not
only probabilistic inference but learning as well. Since then, many PLP solutions have
been developed supporting this semantics, such as ProbLog by de Raedt et al. (2007)
and cplint by Riguzzi (2007). These were often implemented on top of existing Prolog
implementations. For instance, ProbLog consists of a Python package using YAP behind
the scenes, while cplint is based on SWI-Prolog. They reached a considerable level of
maturity and efficiency by exploiting binary decision diagrams (Akers 1978) or variants
of them to speed up probabilistic inference.

Logtalk (Moura 2011) can be considered to be an object-oriented logic programming
language as well as an extension to Prolog. Its development started in 1998 with the
goal of supporting programming in the large. Because it is object-oriented, Logtalk sup-
ports classes, prototypes, parametric objects, as well as definite clause grammars, term-
expansion mechanisms, and conditional compilation. It addresses several issues of Prolog
that have not been met with a standardized solution, including portability of libraries
and tools (e.g., for unit testing, documentation, package management and linting), by
compiling the code to a very wide range of Prolog systems.

Picat (Zhou et al. 2015) is a logic-based multiparadigm language. Its development started
in 2012, stemming from B-Prolog (Zhou 2012) and having its first alpha release in 2013
(Zhou and Fruhman 2021). It aims to combine the efficiency of imperative languages
with the power of declarative languages. It is dynamically typed and uses rules in which
predicates, functions, and actors are defined with pattern-matching. It also incorporates
some features of imperative languages, such as arrays, assignments, and loops. Its main
focus of research is constraint solving (Zhou 2021).

Womb Grammars (WG) (Dahl and Miralles 2012), endow Prolog + CHRG with con-
straint solving capabilities for grammar induction, within a novel paradigm: they auto-
matically map a language’s known grammar (the source) into the grammar of a different
(typically under-resourced) language. This is useful for increasing the survival chances
for endangered languages, with obvious positive socioeconomic potential impact (over
7000 languages are spoken in the world, of which, according to Ethnologue (2021), 2895
are endangered). They do so by feeding the source grammar a set of correct and rep-
resentative input phrases of the target language plus its lexicon and using the detected
“errors” to modify the source grammar until it accepts the entire corpus. WG have been
successfully used for generating the grammars of noun phrase subsets of the African
language Yorubd (Adebara and Dahl 2016) (for which a grammar that validated the
system’s findings does exist) and the Mexican indigenous language Ch’ol (Dahl et al. to
appear) (for which no grammar had been yet described).
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3.5.2 Some influences on languages and systems beyond LP

Theorem proving Some aspects of the WAM, such as the compilation of clause heads, were
adopted by different theorem provers, such as the Boyer-Moore theorem prover (Kauf-
mann and Boyer 1995), as a result of the prover team and Prolog teams working together
at MCC in the mid to late 80s. Another example of influence of these Prolog systems
is the use of Prolog technology in theorem provers, for instance, by Stickel (1984) or
provers directly implemented in Prolog (Manthey and Bry 1988; Stickel 1992; Beckert
and Posegga 1995).

Java The design of the WAM and various other aspects of Prolog implementation in-
fluenced the design of the Java abstract machine, since some of the designers of this
machine had formerly worked at Quintus and were Prolog implementation experts. For
instance, the semantics of type checking for Java’s class files is provided as a Prolog script
by Lindholm et al. (2021).

Erlang The quite successful programming language Erlang (Armstrong 2007) has its
roots in Prolog and the concurrent constraint languages that derived from Prolog and
was developed with the goal of improving the development of telephony applications.
The first version of the Erlang interpreter was written in Prolog, which is the reason for
syntactic similarities. Erlang is still used nowadays by many companies, including Cisco,
Ericsson, IBM, and WhatsApp (Paxton 2021).

Language Embeddings Some languages outside LP nowadays include a Prolog or logic
programming library or mode. Classical examples are the different embeddings of Prolog
in Scheme, such as Schelog (Schelog Homepage 2018) and Racket’s RackLog sublan-
guage (RackLog Homepage 2021), which are generally based on the work of Felleisen
(1985) and Haynes (1986) (the former also done in part at MCC) and Carlsson (1984).
These can provide useful Prolog-like functionality, although the performance is generally
not comparable with, for example, native WAM-based systems.

Further influence outside the logic programming paradigm is apparent in languages
with inferred types and polymorphic type systems, which sometimes include a rule system
to specify and constrain the types. For example, the concepts of C++ 2020 (ISO/IEC
14882 2020) provide predicates that form rules to statically determine which of a set of
implementations of a polymorphic function ought to be used, according to context.

4 Part III: The future of Prolog

While Section 3 establishes that some incompatibilities between Prolog systems are not
too difficult to overcome, this section explores a different perspective: what are the per-
ceived issues and potential future directions for Prolog to grow. In order to provide
insights on the future of Prolog, we conducted a SWOT analysis. Its results can be found
in Table 3. In the following, we discuss strengths (Section 4.1) and opportunities (Sec-
tion 4.2), followed by weaknesses of the language (Section 4.3) currently, and external
factors that may be threats to the adoption of Prolog, its future development, or to
the compatibility of Prolog systems (Section 4.4). In Section 4.5, we aim at providing
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Table 3. SWOT analysis

Strengths (Section 4.1)

e clean, simple language syntax and semantics

e immutable persistent data structures, with
“declarative” pointers (logic variables)

e arbitrary precision arithmetic

e safety (garbage collection, no NullPointer
exceptions, ...)

e tail-recursion and last-call optimization

e efficient inference, pattern matching, and
unification, DCGs

e meta-programming, programs as data

e constraint solving (Section 3.3.2), indepen-
dence of the selection rule (coroutines (Sec-
tion 3.3.3))

e indexing (Section 3.3.3), efficient tabling
(Section 3.3.3)

e fast development, REPL (Read, Execute,
Print, Loop), debugging (Section 3.3.4)

e commercial (Section 2.10.1) and open-
source systems

e active developer community with constant
new implementations, features, etc.

e sophisticated tools: analyzers, partial eval-
uators, parallelizers, ...

e successful applications
— program analysis,
— domain-specific languages
— heterogeneous data integration
— natural language processing
— efficient inference (expert systems, the-

orem provers), symbolic Al

many books, courses and learning materials

Weaknesses (Section 4.3)

e syntactically different from “tradi-
tional” programming languages, not a
mainstream language

e learning curve, beginners can easily
write programs that loop or consume
a huge amount of resources

e static typing (see, however, Section
3.3.3)

e data hiding (see, however, Section
3.3.1)

e object orientation (see, however, Sec-
tion 4.5.4)

e limited portability (see Section 4.5.1)

e packages: availability and manage-
ment

e [DEs and development tools: limited
capabilities in some areas (e.g., refac-
toring; Section 4.5.2)

e Ul development (usually conducted in
a foreign language via FLI (Section
3.3.1))

e limited support for embedded or app
development

Opportunities (Section 4.2)

e new application areas, addressing so-
cietal challenges 4.2:

— neuro-Symbolic Al
— explainable AI, verifiable AT
— Big Data

e new features and developments

— probabilistic reasoning (3.5.1)

— embedding ASP (3.5.1) and SAT
or SMT solving

— parallelism (2.7, 3.3.3) (resurrect-
ing 80s, 90s research)

— full-fledged JIT compiler

Threats (Section 4.4)

e comparatively small user base

e fragmented community with limited
interactions (e.g., on StackOverflow,
reddit), see 4.4.1

e active developer community with con-
stant new implementations, features,
etc.

e further fragmentation of Prolog im-
plementations, see 4.4.1

e new programming languages

e post-desktop world of JavaScript web-
applications

e the perception that it is an “old” lan-
guage

e wrong image due to “shallow” teach-
ing of the language
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a foundation for community discussion and stimulus toward future development of the
language. To this end, we make proposals and raise questions on which features could
be useful future extensions for Prolog. Finally, in Section 4.6, we summarize and briefly
discuss some possible next steps.

4.1 SWOT: Strengths of Prolog
FEase of Expression

Prolog is a language with a small core and a minimal, yet extremely flexible syntax.
Even though some features can only be understood procedurally, such as the cut, the
semantics remains very simple. Combined with automatic memory management and the
absence of pointers or uninitialized terms makes Prolog a particularly safe language.
Flexible dynamic typing completes the picture by placing Prolog among the most high-
level programming languages available to date — a feature that makes it very close to
how humans think and reason, and therefore ideal for Artificial Intelligence (AI).

The inspection and manipulation of programs at run-time also leads to faster program-
mer feedback and enables powerful debugging, in particular when coupled with Prolog’s
interactive toplevel (a.k.a. REPL or Read-Eval-Print-Loop, although in the case of Prolog
the print part is richer because of multiple solutions).

Declarativity is yet another important feature of Prolog: most programs just state
what the computer should do and let the Prolog engine figure out the how. For pure
logic programs, the resolution strategy may also be altered, and possibly optimized,
without requiring the source code of those programs to be changed. Program analysis
and transformation tools, partial evaluators, and automatic parallelizers can be used
for Prolog programs and can be particularly effective for purely declarative parts. For
partial evaluation, however, the techniques have still not yet been integrated into Prolog
compilers (the discussion by Leuschel and Bruynooghe 2002, Section 7 is mostly still valid
today), with the exception of Ciao Prolog’s preprocessor (Hermenegildo et al. 2005) and
abstract machine generator (Morales et al. 2005; 2016). However, they have found their
way into just-in-time compilers for other languages (Bolz et al. 2011).

Prolog’s data structure creation, access, matching, and manipulation are performed via
the powerful and efficiently implemented unification operation. The logical terms used
by Prolog as data structures are managed dynamically and efficiently. Logical variables
within logical terms can encode “holes,” which can then be passed around arbitrarily
and filled at other places by a running program. Furthermore, logical variables can be
bound (aliased) together, closing or extending pointer chains. This gives rise to many
interesting programming idioms such as difference lists and difference structures, and
in general to all kinds of pointer-style programming, where logical variables serve as
“declarative pointers” (since they can be bound only once). This view of logical variables
as declarative pointers and related issues have been discussed by Hermenegildo (2000).
Furthermore, Prolog’s automatic memory management ensures the absence of nuisances
such as NullPointer exceptions or invalid pointer manipulations. Many Prolog systems
also come with arbitrary precision integers, which are used transparently without requir-
ing user guidance.

Prolog compilers and the many program analysis and transformation tools mentioned
above are almost always written in Prolog itself, which is an excellent language for
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writing program processors. Interestingly, since the semantics of programming languages
can be easily encoded as (Constraint) Horn Clauses (CHCs), Prolog tools can often be
applied directly to the analysis of other languages (Méndez-Lojo et al. 2007). The sur-
vey by De Angelis et al. (2021) in this same special issue of the TPLP journal provides
a comprehensive overview of work using analysis and transformation of (constrained)
Horn clauses and techniques stemming from logic programming for program verification,
including those techniques most related to Prolog.

Efficiency

In addition, Prolog is a surprisingly efficient language. Beginners will often write very in-
efficient Prolog programs. Yet, carefully written Prolog programs can build on many
of the features provided by modern implementations, such as last call optimization
(which generalizes tail recursion optimization), efficient indexing and matching, and
fine-tuned memory management with efficient backtracking. For applications which are
well-suited to Prolog, such as program analysis (Méndez-Lojo et al. 2007), program veri-
fication (Leuschel 2008), or theorem proving (see Section 3.5.2), this can lead to programs
which are both more flexible and better-performing than counterparts written in tradi-
tional languages (Leuschel 2020).

Successful Applications

Thanks to its simple foundation, the language makes it straightforward to read Prolog
programs as data objects and it is almost trivial to implement meta-interpreters, as
well as custom or domain-specific languages (such as Erlang Armstrong 2007, which
was initially implemented in Prolog). Therefore, it can be (and has been) used as a
means to represent knowledge bases or bootstrap declarative languages in knowledge-
intensive environments. Prolog has also been used for several successful formal methods
tool developments, such as, for example, Leuschel and Butler (2008), Lopez-Garcia et al.
(2018). Moreover, Prolog supports the implementation of novel sorts of expert systems
or logic solvers, relying for instance on probabilistic, abductive, or inductive inference,
which can be simply realized as meta-interpreters. This is another reason why Prolog is
well suited for symbolic Al applications. It can also be used to integrate and reason over
heterogeneous data (Wielemaker et al. 2008).

Prolog has also been successfully used for parsing, both for computer languages and
for natural languages (see also Section 2.4.1). A relatively recent success story is IBM’s
Watson system (Lally et al. 2012) which used Prolog for natural language processing,
adapting techniques developed in logic grammars over the years for solving difficult com-
putational linguistics problems, such as coordination (McCord 2006; Dahl and McCord
1983). Regarding parsing algorithms, Prolog’s renditions of tabling admit especially suc-
cinct while elegant and efficient formulations, as demonstrated for the CYK algorithm on
p. 37 of Frithwirth’s book on CHR (Frithwirth 2009). Indeed, Prolog lends itself particu-
larly well for grammar development and grammatical theory testing, which has potential
both for compilers and for spoken and other human languages. The simplest grammati-
cal Prolog version, DCGs, extends context-free grammars with symbol arguments, while
the first grammatical version, MGs, extends type-0 grammars with symbol arguments.
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Variants that are adequate to different linguistic theories can, and have been, devel-
oped (Dahl 1992; Dahl et al. 1993; Dahl 1990; 1986). Most crucially, semantics can be
straightforwardly accommodated and examined through symbol arguments, which allows
for the increasingly important features of transparency and explainability to materialize
naturally. Coupled with Prolog’s meta-programming abilities, grammar transformation
schemes can help automate the generation of linguistic resources that most languages in
the world typically lack, as shown by Dahl and Miralles (2012). Finally, tabling can be
used for efficient parsing (Simpkins and Hancox 1990) of a wide range of grammars, even
context-sensitive ones.

Many more examples of practical applications can be found in the literature, in par-
ticular in the conference series PADL (Practical Applications of Declarative Languages,
running since 1999) and INAP (International Conference on Applications of Declarative
Programming and Knowledge Management, since 1998). ICLP, the premier conference
in logic programming, regularly includes papers and sessions on applications and some
editions have a special applications track.

Active Community

As we have seen throughout this paper, there are many implementations of the Prolog
language, many of them quite mature and still being actively developed, with new features
and libraries added continuously, while new implementations keep appearing, with new
aims or targeting different niches.

There are many books and tutorials on the Prolog language. Good examples are texts
by Clocksin and Mellish (1981), Sterling and Shapiro (1994), O'Keefe (1990), Clocksin
(1997), Blackburn et al. (2006), Bratko (2012), or Triska (2021). There is also significant
teaching material publicly available in the form of slides, exercises, examples, contest
problems, etc., as well as plenty of topical discussions in on-line fora. There are also some
interactive learning environments and playgrounds, for example, GUPU (Neumerkel and
Kral 2002), or those of SWI, Ciao, or LogTalk, although this is certainly an area that
would be well worth improving.

A Prolog programming contest (which has now expanded to include other LP and CLP
dialects) is held every year in the context of ICLP.

Even with Prolog being somewhat outside the mainstream of programming languages,
it is taught at many universities for a simple reason: it introduces new concepts and
features that are quite different from those of object-oriented as well as functional pro-
gramming languages. Accordingly, it provides computer scientists with not only a simple
yet powerful tool to understand and write elegant algorithms but also a new way of think-
ing about programming. Getting to know the ropes of Prolog expands one’s horizons and
allows programmers to significantly improve their way of solving problems. One could
easily argue that a computer scientist is not really complete without being familiar with
First-Order Logic, Resolution, Logic Programming, and Prolog.

4.2 SWOT: Opportunities

There are several opportunities to considerably improve the performance of Prolog by
resurrecting earlier research on parallelism (Sections 2.7, 3.3.3). A JIT compiler can
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also be beneficial and is provided, for example, by SICStus Prolog. There are certainly
opportunities for combining just-in time compilation with specialization to achieve even
better performance.

It is very natural to integrate into Prolog features like probabilistic reasoning (Section
3.5.1), ASP (Section 3.5.1), or other logic-based technologies like SAT solving and SMT
solving. Making these features routinely available would make Prolog more appealing for
a wider class of applications.

Artificial Intelligence

Symbolic Al: Prolog is undoubtedly among the most impactful ideas in symbolic Al.
However, subsymbolic or data-driven Al is nowadays attracting most of the attention
and resources, mostly because of the recent progress that has been achieved in machine
and deep learning.

Despite these advances, state-of-the-art data-driven Al techniques are far from perfect.
A common problem that shows up in critical fields such as Healthcare (Panch et al. 2019),
Finance (Johnson et al. 2019), or Law (Tolan et al. 2019) is that learning-based solutions
tend to acquire the inherent biases of the contexts they are trained into. This often
results in decision support systems exposing sexist, racist, or discriminatory behaviors,
thus unwittingly permeating the digital infrastructure of our societies (Noble 2018).

Similarly, subsymbolic techniques have been criticized for their inherent opacity
(Guidotti et al. 2019). In fact, while most techniques in this field (neural networks,
support vector machines, etc.) are very good at learning from data, they easily fall short
when it comes to explicitly representing what they have learned. For this reason, such
techniques are often described as black boxes in the literature (Lipton 2018).

Explainable AI: While all such issues are being tackled by the eXplainable AT community
(XAI) (Gunning 2016) by using a plethora of subsymbolic tricks (Guidotti et al. 2019),
an increasing number of works recognize the potential impact of symbolic AI models and
technologies in facing these issues, such as the works by Calegari et al. (2018, 2020) or
Cyras et al. (2021). It seems clear that symbolic inferential capabilities will be crucial
for transitioning into the sustainable and humanity-serving Al that is urgently needed
(Calegari et al. 2020).

Accordingly, we highlight two possible research directions where Prolog and LP may
contribute further to the current Al picture. One direction concerns the exploitation of
LP either (i) for making machine and deep learning techniques more interpretable or (ii)
for constraining their behavior, reducing biases. There, Prolog and LP may be exploited
as a lingua franca for symbolic rules extracted from subsymbolic predictors (Calegari
et al. 2019; Ciatto et al. 2020), or as a means to impose constraints on what a sub-
symbolic predictor may (or may not) learn (Serafini et al. 2017). The other direction
concerns the exploitation of subsymbolic Al as a means to speed up or improve some ba-
sic mechanism of LP and Prolog. For example, in the field of inductive logic programming
(Muggleton and de Raedt 1994) neural networks have been exploited to make the induc-
tive capabilities of induction algorithms more efficient or effective (d’Avila Garcez and
Zaverucha 1999; Basilio et al. 2001). For instance, in the work of Franca et al. (2014),
the induction task is translated into an attribute-value learning task by representing
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subsets of relations as numerical features, and CILP++ neuro-symbolic system is ex-
ploited to make the process faster.

Along this path, more general approaches attempt to unify, integrate, or combine
the symbolic and subsymbolic branches of Al, for the sake of advancing the state of
the art. This is the case for instance of the neuro-symbolic initiatives (de Raedt et al.
2020; Lamb et al. 2020; Pisano et al. 2020; Tarau 2021) where LP and neural networks
are combined or integrated in several ways following the purpose of engineering more
generally intelligent systems capable of coupling the inferential capabilities of LP with
the flexible pattern-matching capabilities of neural networks.

Inductive Logic Programming: Inductive Logic Programming (ILP), first coined by
Muggleton and de Raedt (1994) is a subfield of machine learning that studies how to
learn computer programs from data, where both the programs and the data are logic
programs. Prolog in particular is typically used for representing background knowledge,
examples, and induced theories. This uniformity of representation gives ILP the advan-
tage, compared to other machine learning techniques, that it is easy to include additional
information in the learning problem, thus enhancing comprehensibility and intelligibility.
Muggleton first implemented ILP in the PROGOL system.

ILP has shown promise in addressing common limitations of the state-of-the-art in
machine learning, such as poor generalization, a lack of interpretability, and a need for
large amounts of training data. The first two affect quality and usability of results, and the
latter affects accessibility and sustainability: the requirements of storing and processing
exponentially growing amounts of data already make its processing prohibitive. In this
context, ILP shows especial promise as a tool enabling a shift from using hand-crafted
background knowledge to learning background knowledge, including learning recursive
programs that generalize from few examples. These issues, as well as future promising
directions, have been recently surveyed by Cropper et al. (2020).

Further developing the ideas of ILP to encompass the automated learning of proba-
bilistic logic programs is key to Statistical Relational AT (StaRAI), a successful hybrid
field of AT (de Raedt et al. 2016), for which regular workshops have been held since 2010.
Tools based on this paradigm aim to handle complex and large-scale problems involving
elaborate relational structures and uncertainty.

Bridges to Established Research Areas

Novel opportunities may then arise by bridging Prolog with other well-established re-
search areas. This is, for instance, what happened with the Multi-Agent System com-
munity, where Prolog and LP have been extensively exploited in the last decades as the
technological or conceptual basis for tens of agent-oriented technologies (Calegari et al.
2021). Similarly, the Prolog language has been proposed within the scope of Distributed
Ledger Technologies (a.k.a. Blockchains), by Ciatto et al. (2018), or as a means to pro-
vide more declarative sorts of smart contracts, as suggested by Ciatto et al. (2019) and
Ciatto et al. (2020). There, LP pursues the goal of making smart contracts declarative,
hence easing their adoption, and increasing their expressiveness. More generally, begin-
ing with the Prolog implementation of the British Nationality Act, Prolog has been used
extensively for applications to computational law and is proabably still the dominant
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approach. For example, the logic programming language in Oracle Policy Automation®
was originally implemented in Prolog.

In data science, several data sources need to be cleaned and combined before apply-
ing statistical analysis and machine learning. This preprocessing step is often the most
labor intensive phase of a data science project. Prolog, particularly when extended with
tabling support, is a suitable tool for data preprocessing. It can transparently access data
from different sources without needing to repeatedly import all the data, for example,
from a relational database management systems. Subsequently, a view on the data can
be established from small composable predicates that can be debugged separately and
interactively. These ideas have been explored in SWISH datalab (Bogaard et al. 2016)
which provides a web front end for cooperative development of both Prolog data pre-
processing steps and subsequent statistical analysis using R, and used in applications in
Biology using large data (Angelopoulos and Wielemaker 2019). Other Prologs, such as
Yap, include support for dealing with large data sets (Costa 2007; Costa and Vaz 2013).

Summarizing, it might prove very useful for the community to anticipate what features
may attract programmers for ends such as improving AI, the Internet, programming
languages, or knowledge intensive systems in general.

4.8 SWOT: Weaknesses

Prolog is syntactically quite different from traditional mainstream programming lan-
guages. One could argue that this is a necessary side effect of many of its strengths, and
that it is possibly a reason why Prolog has a place in many computer science curricula.
However, it also means that Prolog can appear strange or unfamiliar to many beginners
or even seasoned programmers. Mastering Prolog also implies a considerable learning
curve and it certainly takes a while for a beginner to become truly productive in what is
often a radically new language and paradigm.

While Prolog’s dynamic typing can be an advantage for rapid prototyping and meta-
programming, it is also often considered a weakness. Optional static typing (see Section
3.3.3) would definitely help in catching many bugs early on.

Data hiding is also more difficult in Prolog. In the de-facto standard module system
used by most Prologs one can decide which predicates are exported, but not which data
types (i.e., functors and Constants) are exported. One can typically not prevent another
module from manipulating internal data structures (see, however, Section 3.3.1). This
issue goes hand-in-hand with the limited support for object orientation (see, however,
Section 4.5.4).

Another issue is the limited support for user interface (UI) development within Prolog.
There was more attention to this issue in the past (e.g., BIM-Prolog had the Carmen
library for this purpose), and there were interesting approaches in which declarativeness
and/or constraints were exploited for this purpose, but nowadays Uls are usually devel-
oped in a foreign language via FLI (Section 3.3.1). Similarly, there is limited support for
developing mobile applications or embedded software with Prolog, even if a number of

Shttps://documentation.custhelp.com/euf/assets/devdocs/cloud19b/PolicyAutomation/en/
Default.htm#Guides/Welcome/Welcome.htm.
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Prologs can run on small devices and Prolog program optimization techniques have been
shown to be up to the task (Carro et al. 2006).

Portability of Prolog code can also be nontrivial, despite the ISO standard (see Section
4.5.1). Also, the Prolog community does not have a standard package manager, making
it more difficult to distribute libraries or modules. (On the upside, Prolog also does not
have all the version management hell and security issues prevalent in other languages.)

Finally, the support for Prolog in some integrated development environments can be
less mature than for mainstream languages like Java (see Section 4.5.2). In particular,
the available support for refactoring is often quite limited.

4.4 SWOT: Threats

Some threats to Prolog come from competing programming languages. Indeed, Prolog
may be perceived as an “old” language, and new programming languages such as pre-
viously Java, or now Rust or Go, may be more appealing to new generations of pro-
grammers. Also, for some application domains, like web-based applications, which have
obviously become increasingly important in recent years, other languages like JavaScript
are much more popular and easier to deploy than Prolog, although this is being addressed
by current Prolog implementations.

Another threat to the perception of Prolog comes from the fact that, when teaching it,
if the presentation does not go deep enough to convey the real power and elegance of the
language and the programming paradigm, it may instead leave the incorrect impression
of being a shallow or just academic tool.

On the other hand, as mentioned before, Prolog systems are still very actively devel-
oped, with new features and new implementations appearing continuously. While this is
obviously positive, some threats we see for Prolog stem precisely from a resulting diver-
gence of implementations (which tends to fragment the community into several, changing
user camps) and a lack of strong stewardship (which, in turn, may fuel further divergence
of systems).

We discuss the aforementioned issues in more detail in the following two sections.

4.4.1 Fragmentation of the community

A large threat to the future of Prolog as an accessible programming language is further
fragmentation of the community. This manifests itself in two dimensions:

User Bases Today, the Prolog language lacks a strong, united presence on the Web,
especially when compared to other languages, such as the Python Homepage (2021), Rust
Homepage (2021), R Homepage (2021), Clojure Homepage (2021) or Julia Homepage
(2021). Hence, there is limited exchange between users of Prolog, in particular of different
Prolog systems. Only a few shared platforms exist, such as the venerable comp.lang.prolog
newsgroup, the Prolog subreddit, or StackOverflow. They have in common that they are
not very active and are mostly used for announcements or beginner questions. There are
some exceptions, such as the SWI-Prolog discourse forum, hosting active discussions on
the implementation, but, again, it is a barrier since it is essentially local to this system.
The lack of an overarching presence, thus, lowers Prolog’s visibility, hinders development
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of shared libraries, and might be an entry barrier for new Prolog users. It may even deter
programmers from adapting LP technology due to outdated or wrong information on
Wikipedia pages on Prolog or Logic Programming in general, or due to missing FAQs,
API documentation, and tutorials.

The current fragmentation of the Prolog community may be seen as a threat to the
language standardization effort and, thus, the advancement of Prolog. Compilation of
standardization documents takes a very long time and is currently driven by a few vol-
unteers. While only experts can evaluate the impact of changes in the standard on existing
Prolog systems, the community may assist such efforts by pinpointing differences between
systems, prioritizing features that should be considered next, or by providing test cases.
However, the community is hard to reach in a unified way and such contributions are
often limited to motivated individuals and remain scarce.

Implementors While implementors of Prolog systems meet at the CICLOPS workshops
and other conferences, they do not have a good shared infrastructure to revise syntax,
discuss libraries, tools and technical questions, or to offer existing code or tests. Without
such workflows and regular discussion of future directions, Prolog systems may further
diverge in features, libraries, and possibly even from the ISO standard if no concerted ef-
fort is made to find common best solutions. New developers need a forum to ask questions
and benefit from lessons learned. Otherwise, implementation work may be duplicated,
no common Prolog tooling will be developed, etc.

4.4.2 Lack of strong stewardship

The largest single threat we see for the future compatibility of Prolog systems and at-
tractiveness of the language in the long term is the lack of a strong stewardship. All
implementors we were able to reach for comments agree with the need for compatibility,
are willing to discuss issues and work on their systems to address them. However, the
most lacking resource is time, as compatibility work diverts efforts from research and
development.

A dedicated entity, which acts as a steward, calls meetings on a regular basis to ensure
progress, and oversees open issues is missing and necessary, but establishing it is not
without challenges. Sufficient financial and/or institutional backing to motivate imple-
mentors and to fund at least one steward position would be an asset. Additional human
resource positions may be needed to address specific aspects, such as interoperability,
source code compatibility, and website maintenance.

Two major collective efforts, the ISO process and the Prolog Commons group, have
already been established that can be regarded as such entities and persist with varying
success:

The ISO Process The ISO working group has the strong mission to provide a robust and
concise standard that makes Prolog attractive for the industry, giving it a competitive
advantage. The core standard was a huge leap in the right direction, providing a strong
basis for compatibility. However, further progress has been rather slow, which may be
due to the nature of ISO as well as the voluntary nature of the work of the participants
and their aspirations for stability and high-quality work. Unfortunately, only a few of the
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actual system implementors are currently active in the ISO standardization efforts. Also,
the process is complex and may be too slow despite steady progress, since even more and
more features and libraries are developed independently.

Prolog Commons The Prolog Commons project started as a series of informal implemen-
tor meetings to improve the portability of Prolog code, in a more agile and interactive
setting than the ISO process. This impetus pushed many participating systems in con-
verging directions, producing changes in their documentation systems, improved compat-
ibility /emulation layers, and plans for further integrations. The reason that the project
has not fully materialized into a common code base is, again, the lack of stewardship,
meeting schedules, and deadlines, combined with the available time of the implementors.

4.5 Improving Prolog

In preparation of this article, we reached out to researchers from different application
areas of Prolog in order to gauge the most pressing topics, as well as to Prolog imple-
mentors in order to assess the potential for convergence of Prolog systems. Based on the
results of this survey and on the SWOT analysis in Sections 4.1-4.4, we now discuss the
issues and areas of improvements which we feel are most pressing.

4.5.1 Portability of existing features

The differences between the various Prolog implementations, either in the set of features
provided (cf. Table 2) or in the way the features work, lead to a code portability problem
between Prolog implementations. Circumventing this problem rather than solving it re-
sults in fragmenting the community into smaller, noncompatible subgroups. This makes
it hard for users to find support and stay interested.

Strong and universally accepted standards for available features may raise interest from
programmers and industry. Yet, if some combination of them are missing in many Pro-
log systems, it will negatively impact the perception of Prolog. One of the nonstandard
offers of Prolog is constraint logic programming. Yet, choosing a Prolog system requires
certain trade-offs concerning the available features. Many of these features concern per-
formance, such as tabling, efficient coroutining via block annotations, and multiargument
indexing. Some programmers may not want to give up what they are used to from other
programming languages, like multithreaded, concurrent and distributed programming,
standard libraries for formatting and pretty printing, efficient hash map data structures,
and universally available data structures such as AVL trees or sets. Finally, some features
are needed to embed Prolog as a component in a larger software system, for example,
nonblocking IO, interfaces to other programming languages or (de-)serialization support,
such as fastwrite/fastread, XML, JSON, YAML.

4.5.2 Improved development tools

An important area of future improvement is in the development tools available for the
language. The dynamic nature and complex control of Prolog raises new challenges in
the implementation of some of these features, but its clear logical foundations provide
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an advantage for others. We see a potential and a need for the following improvements
to the Prolog tooling ecosystem:

e Increased capabilities in debuggers (e.g., constraint debugging or graphical inter-
action), performance profiling tools, and testing frameworks. The combination of
static and dynamic verification, debugging, and testing of Ciao is relevant here
(Hermenegildo et al. 2005; Sanchez-Ordaz et al. 2021).

e Better experience using interactive shells: Prolog could also profit from being inte-
grated within notebooks such as Jupyter, as has been done in SWISH (Wielemaker
et al. 2019).

e More regular, user-friendly, and standardized ways of interfacing with other lan-
guages. Features that should be accounted for include nondeterminism, convenient
and safe data types, and memory management coexistence.

e More capable IDEs, in particular with good refactoring tools, which help the pro-
grammer to safely reorder or change the arguments of predicates, rename, or move
predicates to other modules, etc., in the line of SICStus’ SPIDER (Carlsson and
Mildner 2012). Prolog itself may be used as the GUI programming language in
developing the IDE.

e Linters that enforce community-sourced coding guidelines based on, for example,
the proposals by Covington et al. (2012) and Nogatz et al. (2019).

e Improved code location facilities, such as Ciao’s Semantic Search (Garcia-Contreras
et al. 2016).

e Other static program analysis tools, enabling for instance the inspection of de-
pendencies among modules, and the existence of call hierarchies among predicates.
Also, dynamic process inspection tools aimed at visualizing call stacks, choice points
queues, proof trees, etc. (see also Section 4.5.3, State Inspection).

4.5.83 Application- and domain-specific needs

In this section, we consider a few domains that we think may influence Prolog in the
future and try to anticipate future developments that are needed to satisfy their needs.

Parsing The parsing domain has implications both for computing sciences, in that it
can be applied to compilers or other program transformations, and for sciences and the
arts, in that many kinds of human languages (e.g., written, spoken, or those of molecular
biology or music) can be computationally processed for various ends through parsing.
As far as pure parsing is concerned, one can of course easily write top-down recursive
descent parsers in Prolog using DCGs. However, encoding deterministic parsing with
lookahead requires the careful use of the cut, which is tedious and error-prone. Ideally,
the cuts could be automatically generated by standard compiler construction algorithms
(Nullable, First, Follow) and a Prolog-specific parser generator. Bottom-up parsers are
also easy to write using, for instance, CHR. Another way to improve Prolog’s parsing
capabilities is through memoing, which avoids the infinite loops that left-recursive gram-
mars are prone to, thus needing to resort less to the cut, and avoids recomputations of
unfinished constituents in the case of alternative analyses where one analysis is subsumed
by another. This is done by storing them in a table so they need not be recomputed upon
backtrack (e.g., in “Marie Curie discovered Polonium in 1898,” the partial analyses of the
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verb phrase as just a verb or as a verb plus an object are stored in a table for reuse rather
than disappearing upon failure and backtrack). Memoing can be easily implemented in
Prolog, for example, through assumptions, as discussed by Christiansen and Dahl (2018),
or through CHR, as discussed by Frithwirth (2009), or using tabling as in XSB Prolog.

NLP and Neural Networks Neural-network approaches to NLP use word embedding
strategies to generalize from known facts to plausible ones (e.g., BERT Devlin et al.
2019, GPT-3 Floridi and Chiriatti 2020). They typically train only on form, in that
they retrieve those responses that are statistically pertinent, with no regard to meaning.
Their results are unstable, since they rely on ever larger and changing internet-mined
data. While this approach has achieved noteworthy performance milestones in machine
translation, sentence completion, and other standard benchmarking tasks, it offers a pri-
ori no way to learn meaning (Bender and Koller 2020) and relies on undocumented,
un-retraceable, or otherwise partial (and therefore unaccountable) data, which tends to
perpetuate harm without recourse (Birhane 2021). It is also resource-intensive, both com-
putationally and energetically, and prone to spectacular failure (Marcus and Davis 2020).
It seems that overcoming such drawbacks will need inferential programming capabilities,
which integrations with deductive reasoning might help achieve. We anticipate that ef-
forts in that direction, which are already happening (Sun et al. 2020), will be increasingly
needed.

Another NLP area which we anticipate will require much attention and that Prolog
can be ideal for is that of under-resourced human languages. Very few of the over 7000
languages in existence have at their disposal the computational tools that are needed for
their adequate processing. Since texts on the Web are also overwhelmingly in mainstream
languages, and the machine learning approaches that are in vogue typically rely on mining
massive volumes of text, when these do not exist (or as soon as the existing ones become
more protected) we need more logical approaches, such as grammatical inference by
grammar transformation.

Problem Solving, Solvers Constraint programming blends nicely within Prolog (see Sec-
tion 3.3.2), in the form of CLP(FD), CLP(B), CLP(R), or CLP(Q), and also in the CHR
form, which lets users define constraint solvers for their own domain of interest. How-
ever, the binding to SAT, SMT, or ASP solvers is often still quite awkward. In particular,
ASP with its Prolog syntax could be made available as a seamless extension to Prolog.
Similarly, SAT and SMT solving could also be linked in a seamless way to Prolog facts
or clauses. In an ideal world, one could even link various solvers via shared variables and
coroutines.

Visualization and GUIs Visualization is nowadays most often performed via the foreign
language interface or by exporting data to external tools (e.g., dot text files for GraphViz).
While BIM-Prolog (cf. Section 2.10.1) had a declarative graphical toolkit, unfortunately
Prolog systems have moved away from this approach. Other communities, however, are
discovering the advantages of a “declarative approach” to visualization and user-interface
design (e.g., React Gackenheimer and Paul 2015 in the JavaScript world). Maybe it is
time again to implement visualizations or user interfaces within Prolog itself.
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State Inspection Prolog 0 already included primitives to programmatically inspect the
computation state. These can be useful for example in debugging or in parsing, in order to
implement context-sensitive grammars. Current Prologs allow different degrees of state
inspection, including for example the classic facilities that enable meta-programming.
Such primitives could acquire new relevance under the increasing needs for further trans-
parency and inspectability in Al applications.

4.5.4 Prolog aspects that need joint, public, and earnest discussion

There are a number of issues that would need early discussion in the process of giving
a new impetus to Prolog standardization. While we raise questions here, we cannot
speak on behalf of the entire community. Thus, we think that a visible (in the sense
of commonly-known) platform for public discussion between implementors and users is
required. The Prolog language should eventually evolve on results of discussions and
needs of (potential) programmers. For some issues we discuss below, several solutions
have been offered by the research community. However, the Prolog community has to
discuss what features shall be adapted as standard. Further, one might also consider
whether purely declarative implementations are preferable or even feasible, since some
features, such as assert and retract, do not even have a declarative, logical semantics.
The following points are some examples:

Types, Modes, and Other Properties Often, during development, a Prolog program may
terminate without finding a solution, get stuck in an infinite loop, backtrack unexpectedly,
etc. Often, this sort of situation is due to type errors in the code. Should a type (and
mode, etc.) system be part of an improved Prolog, allowing for more powerful static
analysis? If so, what should it look like? What would have to be changed for a useful
gradual static type system that allows one to progressively add types to existing code?
Should more general properties than classical types and modes be supported? Should
static types be combined with dynamic checks? With testing? The logic programming
community has been pioneering in these areas with research, solutions, and systems well
ahead of other languages, but it has not yet seen widespread use. Ciao’s comprehensive
approach to this overall topic could shed some light here.

Reactivity A rule in Prolog can be viewed as a part of a definition that defines the
predicate in the head of that rule in terms of the predicates in the body of the rule. In
contrast, most rules in imperative languages are reactive rules that perform actions to
change state, as in the case of condition-action rules in production systems and event-
condition-action rules in active database systems. Extensions of logic programming to
include reactive rules have been developed in CHR (see Chapter 6 in Frithwirth 2009)
and in the Logic-based Production System Language LPS (Kowalski and Sadri 2015;
Wielemaker et al. 2019).

Module System As mentioned before, the second part of the ISO standard regarding mod-
ules was universally ignored and most Prolog systems settled for a Quintus-inspired mod-
ule system. However, the implementations incorporate some deviations to support new
features. Rules regarding visibility of operators, predicates, and perhaps atoms should be
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reconsidered. This is addressed to some extent, for example, in the Ciao and SWI module
systems but, again, with some differences, which should however not be too difficult to
bridge. Systems support some of the legacy code loading methods such as consult/1 and
ensure_loaded/1 for backwards compatibility, but use_module/{1,2} is recommended,
specially for large-scale applications. New solutions must address errors and inconsis-
tencies that have already been uncovered by Haemmerlé and Fages (2006) and later by
Moura (2009a).

Objects An aspect which is closely tied to the module system is that of integrating
logic programming with object-oriented features. This has been an elusive goal but,
nevertheless, several effective proposals have been put forward which achieve ways of
doing whole-program composition more in line with the Logic Programming paradigm.
Monteiro and Porto (1989) present the basic concepts of Contextual Logic Programming
while Bugliesi et al. (1994) offers an extensive discussion on this topic. A more advanced
design, in which modules (called units) may take parameters and where the context itself
becomes a first-class object is provided by GNU Prolog/CX (Abreu and Diaz 2003),
which appears as both an object-oriented extension and a dynamic program-structuring
mechanism. An application of this system is described by Abreu and Nogueira (2005).

Another example is the O’Ciao model, which implements a source-to-source approach
to objects as a conservative extension of the Prolog module system (Pineda and Bueno
2002). Logtalk offers a different approach, also based on source-to-source transformations,
that adds a separate object-oriented layer on top of many Prolog systems. Thus, it regards
objects as a replacement for a module system.

Interfaces Beyond modules, programming in the large can be supported by mechanisms
that allow describing and enforcing separation between interfaces and implementations.
Such interfaces are typically sets of signatures, specifying types and other properties, to
be matched by all implementations, and thus allow stating what a given implementa-
tion must meet, and making implementations interchangeable in principle. They should
include at least constructs to express the external connections of a module, not only in
terms of the predicates it should expose but also the types, modes, and other characteris-
tics of their arguments, and a compiler/interpreter capable of enforcing those interfaces
at compile- or loading time. Ciao’s assertion language, preprocessor, and interface defi-
nitions offer a possible solution in this area.

Syntactical Support for Data Structures One of Prolog’s strengths is a minimalistic syn-
tax. SWI-Prolog’s syntactic support for strings and dictionaries responds to a demand
for interfacing with prevalent protocols and exchange formats, for example, XML and
YAML. Other systems have other extensions such as feature terms (Ait-Kaci 1993;
Att-Kaci et al. 1994).

Many questions need to be answered: Should syntactical support for data types such
as associative data structures (feature terms) or strings be standardized? Would the cur-
rent syntax be affected (e.g., a prevalent syntax for maps, {"key": "value"}, might
break DCGs)? What are trade-offs the community is willing to take? Should other con-
tainers, such as linear access arrays, sets, and character types, be included? How should
unification of variable elements work?
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Library Infrastructure and Conditional Code As Moura’s efforts concerning Logtalk
(cf. Section 3.1) showed, it is possible to support large portable applications across al-
most all Prolog systems. Yet, a nontrivial amount of conditional code for abstraction
libraries is needed to provide support for each new Prolog system. Is the community
willing to develop libraries supporting more than a couple of systems? Is a stronger stan-
dardized core library required to attract programmer? Is the language that emerges from
the portability layer still Prolog?

Macro System Many Prolog systems support the source-to-source transformation of
terms and goals, via the so-called term expanders. It is a powerful feature that is not
part of the standard and in some cases can be clunky to use and error-prone since term
expanders are often not local to a module, they are order dependent and every term or
goal, relevant or not, is fed into the transformation predicate. Ciao shows how module
locality and priorities can be used in this context. Or should a more lightweight macro
system be made available for code transformation?

Functional Programming Influences Curry and Mercury (cf. Section 3.5) are well known
for combining the functional and logic programming paradigms. Some Prolog systems
such as Ciao have strong support for functional syntax and higher-order. Most Prolog
systems provide support for meta-predicates such as call and some derivatives such as
maplist, filter, and reduce. Should a notation for lambda expressions be introduced
as done in, for example, Ciao’s predicate abstractions?

Standard Test Programs Beyond ISO While test suites for ISO Prolog exist, many fea-
tures outside the core language are prevalent in a lot of Prolog systems. Unstandardized
features, such as modules, constraint programming, or DCGs, are provided by almost all
modern Prolog systems, yet implementors rarely share test programs. Obviously, creation
of and agreement on tests is challenging, especially since some systems might want to
maintain their features as they are. Availability of such shared tests can guarantee that
systems behave similarly, allow implementors to test compatibility with other systems,
and foster standardization of these features. As a positive example in this line, Logtalk’s
Prolog test suite is quite comprehensive, covering not only ISO- and de-facto standard fea-
tures, but many other tests of predicates and notable features such as modules, threads,
constraints, coroutining, Unicode support or unbounded integer arithmetic.

4.6 Summary and next steps

Despite differences and incompatibilities between Prolog systems and thus user code, the
ensuing divergences are not fundamental. It is our belief that the best initiatives that
were put in place in the past, with some tweaks that we hope to have covered, can be
re-applied to make much stronger progress in the future.

The necessary implementor involvement seems attainable: most surveyed implementors
and users agree that efforts for a common ground should be made, namely by meetings
and the sharing of ideas, implementations and even common infrastructure. It is impor-
tant that the entire community be involved in creating and maintaining the existing core
standard as well as debating desired features, in order that upcoming standards take hold
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and be respected. Since support tools are a must for all modern programming languages,
it is important to pool resources. In particular, mature debuggers, as well as developing
and testing environments, are often required by Prolog programmers.

The diversity that is unique to Prolog’s ecosystem is a strength which should be taken
advantage of. In short, Prolog systems need to be useful and usable so they can be more
universally employed.

Accordingly, to coordinate converging efforts, an organization, perhaps a Foundation,
could be established, either independently or as an initiative within, for instance, the
ALP. With converging systems and tool infrastructures, possibilities in community par-
ticipation and user documentation can vastly improve, rendering Prolog much more at-
tractive to new users both in academia and industry, thereby building a more unified
community.

Standard procedures already exist for Prolog improvement, such as the ISO standard-
ization. We feel these would benefit from being complemented by less formal ones, such
as the Prolog Commons.

A time- and cost-efficient first step could be to create a web platform to publicly
share feature extensions and modifications and propose new ones. It could also provide
the community with a forum for public debate and gather pointers to previous and
complementary efforts. It could be linked to from the ALP website.

Another productive step would be to define a structured workflow aimed at tracking,
supporting, and coordinating the evolution of proposals, efforts, and further initiatives.

Teaching Prolog to children could be most influential: they would be learning logic and
computing at the same time, and Prolog literacy would spread much more rapidly through
them. There was much activity in this area in the 1980s with the Prolog Education
Group (PEG) with its annual workshops. More recently, “Logical English” (Kowalski
2020), although focused primarily on legal applications, including smart contracts, is
simply sugared syntax for “pure” Prolog, making it suitable for teaching to children
(and others).

Finally, it could be useful for the community to analyze all the relevant Wikipedia
pages and other web content in search of misinformation, outdated information, or in
general inaccurate content on Prolog or logic programming, in the aim of correcting it.

5 Conclusions

We have provided an analysis of the Prolog language and community from the historical,
technical, and organizational perspectives.

The first contribution of the paper (Section 2) has been a historical discussion tracking
the early evolution of the Prolog language and the genealogy of the many implementations
available nowadays. This discussion stemmed from a general definition of what constitutes
a “Prolog system” and covered the most notable implementations and milestones in
chronological order.

We have seen how Prolog implementations, and even the language itself, have expe-
rienced significant evolution and extensions over the years. Despite the common roots,
the maintenance of the Prolog name throughout these transformations, and the rich ex-
change of ideas among system implementers, inevitably some parts of each system have
progressed somewhat independently. This has naturally led to some divergence.
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In order to assess the current situation, the second contribution of the paper (Sec-
tion 3) has consisted in a technical survey of the current status of the main Prolog
systems available today, comparing them on a per-feature basis with the objective of
identifying commonalities and divergences. In addition, we have also tried to identify the
core characterizing aspect(s) of each Prolog system, that is, what makes each system
unique.

We have observed that there is widespread adherence to the ISO standard and its
extensions. More differences understandably appear in the added features that lie beyond
ISO. At the same time we have seen that many of these extensions are common to many
Prolog systems, even if there are often differences in the interfaces. We have also observed
that some Prologs offer unique characteristics which would be very useful to have in
other systems. Such differences in general affect portability and make it harder for a
programmer to write Prolog programs that work and behave consistently across systems.

However, we have observed that the divergences between Prolog systems are not fun-
damental. It seems that a good number of the differences could be easily bridged by
agreeing on interfaces and/or standard implementations that can be easily ported to all
systems.

Wenger et al. (2002) suggest that communities reach one or more crucial points where
they either fade away, or, alternatively, they find new impetus to start further cycles.
We believe that our community has reached such crucial points several times to date, at
junctures such as the loss of interest in parallelism in the early 90s (only to come back
in full swing, over a decade later), the end of the Fifth Generation project, the advent
of Constraints, the long AI winter (also with a mighty comeback), the appearance of
the Semantic Web, the advent of ASP, etc. In all previous occasions the community has
been able to adapt to these environmental changes and incorporate new scientific and
technological advances as extensions to the language and the different implementations,
and has continued to produce truly state-of-the-art programming systems, with advanced
characteristics that often appeared ahead of many other paradigms.

We believe we are now at one of these crucial points where action is needed. The present
Prolog systems, and Prolog as a whole, continue being important and unique within the
programming languages landscape, and it is encouraging to see that after all this time
new Prolog implementations, new features, and new uses of Prolog appear continuously.

However, at the same time there is some risk of losing unity and strength in the
community. This is partly due to its very success (in that it has spawned new communities
or successfully complemented existing ones) and partly to community fragmentation and
divergences in systems due to new functionalities.

Thus, the last contribution of the paper (Section 4) has been to provide an analysis,
including strengths, weaknesses, opportunities and threats, as well as some proposals for
the LP community aimed at addressing the most relevant issues concerning the Prolog
ecosystem, in a coordinated way. We argue that a joint, inclusive, and coordinated effort
involving Prolog implementers and users is necessary. The great initiatives consisting
of a small group of experts, such as the ISO working group or the Prolog Commons
project, with some tweaks that we hope to have covered, can be re-invigorated to make
stronger progress in the future. However, they may not be enough to bring together a
user community that contributes to the language and its growth. Accordingly, to apply
the lessons learned from the past, we stress the need for both community involvement
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and stewardship, including perhaps the ALP, for ensuring that the effort is kept moving
forward consistently.

Good initiatives are already being undertaken with the declaration of 2022 as the
“Year of Prolog”?: its celebrations will include an Alain Colmerauer Prize awarded by
an international jury for recent application-oriented work of Prolog-inspired technology
and its potential for more human-oriented computing in the future, and a “Prolog School
Bus” that will travel to reintroduce declarative programming concepts to the younger
generation. It is expected that both initiatives will continue into the future, with a yearly
prize also forseen for the “nicest” Prolog program written by a student participating in
the school caravan.
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