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ABSTRACT

Background Vaccination has proven to be effective
in preventing SARS-CoV-2 transmission and severe
disease courses. However, immunocompromised
patients have not been included in clinical trials and
real-world clinical data point to an attenuated immune
response to SARS-CoV-2 vaccines among patients with
multiple sclerosis (MS) receiving immunomodulatory
therapies.

Methods We performed a retrospective study
including 59 ocrelizumab (OCR)-treated patients with
MS who received SARS-CoV-2 vaccination. Anti-SARS-
CoV-2-antibody titres, routine blood parameters and
peripheral immune cell profiles were measured prior
to the first (baseline) and at a median of 4 weeks after
the second vaccine dose (follow-up). Moreover, the
SARS-CoV-2-specific T cell response and peripheral

B cell subsets were analysed at follow-up. Finally,
vaccination-related adverse events were assessed.
Results After vaccination, we found anti-SARS-CoV-
2(S) antibodies in 27.1% and a SARS-CoV-2-specific
T cell response in 92.7% of MS cases. T cell-mediated
interferon (IFN)-y release was more pronounced in
patients without anti-SARS-CoV-2(S) antibodies.
Antibody titres positively correlated with peripheral

B cell counts, time since last infusion and total IgM
levels. They negatively correlated with the number of
previous infusion cycles. Peripheral plasma cells were
increased in antibody-positive patients. A positive
correlation between T cell response and peripheral
lymphocyte counts was observed. Moreover, IFN-y
release was negatively correlated with the time since
the last infusion.

Conclusion In OCR-treated patients with MS, the
humoral immune response to SARS-CoV-2 vaccination
is attenuated while the T cell response is preserved.
However, it is still unclear whether T or B cell-mediated
immunity is required for effective clinical protection.
Nonetheless, given the long-lasting clinical effects

of OCR, monitoring of peripheral B cell counts could
facilitate individualised treatment regimens and might
be used to identify the optimal time to vaccinate.

,“* Hans-Peter Hartung,"*®’ Orhan Aktas,’
"'Bodo Levkau,? Nico Melzer," Tobias Ruck,' Sven G Meuth,’

INTRODUCTION

COVID-19 is a highly infectious disease caused by
the SARS-CoV-2. Rapid spread of SARS-CoV-2
has resulted in a global pandemic, with nega-
tive implications for people’s individual lives,
healthcare systems and the economy. Vaccination
against SARS-CoV-2 is a promising approach to
reduce incidence and mortality of COVID-19,
potentially curbing the global pandemic. Vaccines
first became commercially available at the end of
2020, after clinical trials had shown high efficacy
in preventing COVID-19 transmission and severe
disease courses.! > Mechanistically, the antigenic
target for COVID-19 vaccines is the spike (S)
protein of SARS-CoV-2, which binds to the ACE
2 receptor on host cells mediating virus-cell
fusion.® Currently, different vaccine approaches
are available including mRNA, replication-
incompetent vector, recombinant protein and
inactivated vaccines.* Vaccines are administered
in one or two intramuscular doses and elicit both
a B cell response resulting in the production of
binding and neutralising antibodies (abs) and a T
cell response.” However, clinical trials assessing
the safety and efficacy of COVID-19 vaccines
only included immunocompetent people while
excluding patients receiving immunomodula-
tory therapies.' * Ocrelizumab (OCR), a selective
monoclonal ab targeting CD20, is approved as a
disease-modifying therapy (DMT) for relapsing-
remitting and primary progressive multiple scle-
rosis (RRMS and PPMS, respectively).® More
than 200000 patients have been treated with
OCR globally.” Mechanistically, OCR selectively
depletes CD20-expressing cells by complement-
mediated cytolysis and cell-mediated phagocy-
tosis and cytotoxicity.® While the majority of
B cells express CD20, only 3%-5% of T cells
are CD20-positive.® > B cells are an important
component of the adaptive immune response
providing protection against pathogens. Through
production of various cytokines they shape
and promote the T cell response and facilitate
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Multiple sclerosis

lymphoid tissue formation.'” Moreover, by terminal differen-
tiation into plasma cells they are the source of antigen-specific
immunoglobulin production." Accordingly, previous studies
reported an attenuated humoral immune response after vacci-
nation of patients receiving B cell-modulating therapies.'?"*
However, particularly for these patients, an adequate immune
response to vaccination is of great importance since they
might be subject to an increased risk for infection, severe
disease course and virus evolution.'®" Despite their atten-
uated B cell response after COVID-19 infection or vaccina-
tion, the SARS-CoV-2 antigen-specific T cell response seems
to be preserved.' '* These results are consistent with the low
expression levels of CD20 on T cells.® ” However, studies
assessing the humoral together with the cellular immune
response after COVID-19 vaccination in relation to clinical
parameters and peripheral immune cell profiles in patients
with multiple sclerosis (MS) receiving OCR are scarce.'” ?!
In addition, differences in the peripheral B cell compart-
ment and their impact on the SARS-CoV-2-specific immune
response have previously not been studied. Here, we provide
a comprehensive retrospective study aiming to investigate the
humoral and T cell-mediated immune response to mRNA-
based or vector-based COVID-19 vaccines in relation to the
peripheral B cell profiles and clinical characteristics in 59
patients with MS treated with OCR.

METHODS

Study population

Adult patients diagnosed with RRMS (ICD-10 (International
Classification of Diseases Version 10) G35.1; n=39 (66.1%))
and PPMS (ICD-10 G35.2; n=20 (33.9%)), according to the
2017 revised McDonald criteria,”* who underwent treatment
with OCR at the Department of Neurology of the University
Hospital Diisseldorf, Germany, between 1 January 2020 and
30 April 2021 were retrospectively identified from the local
database. Administration of OCR was performed according
to national and international guidelines as well as to the
most recent summary of product characteristics.® The inclu-
sion and exclusion criteria are summarised in table 1.

The study was performed according to the Declaration of
Helsinki and was approved by the local Ethics Committee of
the Board of Physicians of the Region Nordrhein and of the
Heinrich Heine University Diisseldorf, Germany (reference
number: 5951R). All patients gave written informed consent
to participate in the study.

Routine blood test

Differential blood count was assessed by automatic cell
counting. Leucocyte subsets were assessed in a central labo-
ratory (CD19% B cells, CD3" T cells, CD37CD4* T helper
cells, CD3*CD8" cytotoxic T cells and CDS6*CD16"
NK cells) using flow cytometry (FC). Blood samples were
prepared using the BD Multitest 6-Colour TBNK Reagent
(BD Biosciences) according to the manufacturer’s instruc-
tions. A BD Canto (BD Biosciences) was used to acquire
and analyse data. Serum IgA, IgM and IgG levels were
measured by turbidimetry using a Cobas 8000 (C701, Roche
Diagnostics).

Characterisation of B cell subsets

Blood samples were taken during clinical routine workup.
Peripheral blood mononuclear cells (PBMCs) were isolated
from whole blood by Ficoll gradient with SepMate isola-
tion tubes (StemCell Technologies) and were cryopre-
served in liquid nitrogen. For FC, PBMCs were thawed
and resuspended in FC buffer (Phosphate Buffered Saline
(PBS)/Bovine Serum Albumin (BSA)/EDTA). Samples were
centrifuged for Smin at 1500 rpm and 4°C and superna-
tant was discarded. FC buffer was added and cells were
transferred to a 96-well plate. Centrifugation was repeated
and cells were resuspended in FC buffer containing a FcR
Blocking Reagent (Miltenyi Biotec). Cells were incubated
for 5 min at room temperature. Next, the following staining
antibodies, diluted in FC buffer, were added: anti-CD19
(HIB19), anti-IgD (IA6-2), anti-CD24 (MLS), anti-CD38
(HB-7), anti-CD20 (2H7), anti-CD14 (MSE2), anti-CD3
(SK7), anti-CD56 (HCDS36), anti-CD138 (DL-101), anti-
CD27 (M-T271), anti-CD21 (Bu32), all from BioLegend.
Zombie Aqua Fixable Viability Kit (BioLegend) was used as
a viability marker. Incubation was performed for 30 min at
4°C. Afterwards, cells were washed, centrifuged and resus-
pended in FC buffer. A CytoFLEX LX (Beckman Coulter)
was used to acquire data. Analysis was performed with the
software ‘Kaluza Flow Cytometry Analysis’ V.2.1 (Beckman
Coulter) as illustrated in online supplemental figure 1A.

Anti-SARS-CoV-2-antibody testing

Anti-SARS-CoV-2-abs in peripheral blood (PB) were anal-
ysed as part of the clinical routine workup. Immunoassays
for the quantitative determination of abs to the SARS-CoV-2

Table 1 Inclusion and exclusion criteria

Inclusion criteria

Exclusion criteria

1. Signed informed consent form (ICF)

2. Age 18-65 years old (inclusive) as of the date the ICF was signed

3. Two documented COVID-19 vaccinations (Pfizer—BioNTech, Moderna or
AstraZeneca)

4. Documented anti-SARS-CoV-2-ab screening prior to and after COVID-19
vaccination

1.

2.

Previous treatment with other B cell-modulating therapies (eg, rituximab, atacicept,
belimumab or ofatumumab)

Any previous treatment with alemtuzumab, cladribine, cyclophosphamide,
mitoxantrone, azathioprine, mycophenolate mofetil, ciclosporin, methotrexate, total
body irradiation or bone marrow transplantation

Medical, psychiatric, cognitive or other conditions that compromise the patient’s ability
to understand the patient information and to give informed consent

Patients who received immunosuppressants for diseases other than MS or who
received long-term corticosteroid treatment

Patients who received systemic high-dose corticosteroid therapy or apheresis
procedures within 4 weeks prior to vaccination or in-between vaccination

Patients with verified infection by HIV or hepatitis C virus

Patients with medical history of COVID-19 infection or positive abs to the SARS-CoV-2
spike protein and/or nucleocapsid protein at baseline

ab, antibody; COVID-19, Coronavirus disease 2019; MS, multiple sclerosis; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2.
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Long-lasting effects of ocrelizumab treatment. (A) Study design. (B) CD19 B cells in relation to time since the last infusion. Correlation analysis

was performed with the Spearman correlation coefficient. The area in between the dotted lines shows the 95% Cl. B cells<1% are depicted on the x-axis.
BL, baseline; F/U, follow-up; IFN, interferon; Ig, immunoglobulin; Inj, injection; MS, multiple sclerosis; OCR, ocrelizumab; PPMS, primary progressive multiple

sclerosis; RRMS, relapsing-remitting multiple sclerosis; V, visit.

spike (S) protein and nucleocapsid (N) protein (Elecsys
Anti-SARS-CoV-2, Roche Diagnostics) were used. Assays
were performed according to the manufacturer’s instruc-
tions. A titre=0.8 (anti-SARS-CoV-2(S)-abs) and =1.0 (anti-
SARS-CoV-2(N)-abs) was considered positive. Analysis was
performed prior to and at a median of (~) 4 (range 2.7-8.1)
weeks after the last COVID-19 vaccination (figure 1A).

Quantification of T cell response to SARS-CoV-2

The SARS-CoV-2 interferon-gamma release assay (IGRA;
Euroimmun) was used to assess the T cell response to SARS-
CoV-2 in PB ~4 weeks after the second dose of COVID-19
vaccination. Blood samples were prepared using the SARS-
CoV-2-IGRA stimulation kit (Euroimmun) according to
manufacturer’s instructions. Briefly, 500puL of lithium
heparin blood was transferred to the reaction tubes: CoV-2
IGRA BLANK (negative control), CoV-2 IGRA TUBE
(containing the recombinant S1 subunit of the SARS-CoV-2
spike protein) and CoV-2 IGRA STIM (mitogen-coated
tubes). The tubes were inverted six times and incubated
for 24 hours at 37°C. Samples were then centrifuged at
12000 X g for 10 min, plasma was removed and transferred to
fresh polypropylene reaction tubes. The SARS-CoV-2-IGRA
was performed at the Clinical Immunological Laboratory
Professor Dr Med. Winfried Stocker (Liibeck). A SARS-CoV-
2-specific T cell response was assumed when an interferon-
gamma concentration of >200 mIU/mL was detected.

Data analysis

Data analysis and visualisation was performed with
‘GraphPad Prism’ (V.9.0.0). Data are presented as median
with range. D'Agostino & Pearson test was used to test for
normality. Correlation analysis was performed with the
Spearman correlation coefficient. Differences between two
groups were determined using the Mann-Whitney U test. A p
value of <0.05 was considered significant.

RESULTS

Retrospective identification of patients and baseline cohort
characteristics

In total, 39 RRMS (66.1%) and 20 PPMS (33.9%) patients
treated with OCR who received anti-SARS-CoV-2-ab testing
prior to (baseline, BL) and ~4 weeks after COVID-19 vacci-
nation (follow-up, F/U) were included (figure 1A). Median
age was 45 (23-62) years for the RRMS and 56 (43-635) years
for the PPMS cohort. Around half of the patients (45.8%)
were female. Median disease duration was 14.0 (2.0-35.0)
years (RRMS) and 10.0 (3.0-37.0) years (PPMS), median
Expanded Disability Status Scale score (EDSS) at BL was 3.5
(0.0-6.5) (RRMS) and 6.0 (2.0-7.5) (PPMS). Median dura-
tion of OCR treatment was 2.5 (0.4-8.3) years for patients
with RRMS and 2.4 (0.3-3.6) years for patients with PPMS
(table 2). Of these patients, 66.1% received one or more
DMT(s) prior to OCR. For 61.0% of patients, comorbidi-
ties were noted (online supplemental table 1). Median time
between the last OCR infusion and first vaccination was
3.9 (0.1-12.2) months (table 2). Of these patients, 92.7%
reported side effects of vaccination, with ‘pain at injection
site’, ‘fatigue’, ‘headache’ and ‘muscle and joint pain’ being
the most common ones.

Long-lasting effects of OCR treatment and low probability of

adverse events

Long-lasting B cell depletion and stable disease courses among
OCR-treated patients with MS were previously reported.”
Recommended intervals between vaccination and OCR infusion
should be considered. As a result, extension of dosing intervals
may be necessary for some patients with MS receiving OCR.
We thus assessed the time from the last treatment cycle, EDSS
before the last treatment cycle, EDSS at BL and F/U, relapses
since the last infusion and side effects. Median time between BL
and last OCR treatment was 4.6 (0.2—-12.2) months. Median
time between F/U and last OCR treatment was 6.4 (2.5-13.8)
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Table 2 Demographics and basic disease characteristics of patients
with MS

RRMS PPMS
Patients (n (%)) 39.0 (66.1) 20.0 (33.9)
Age (years) (median (range)) 45 (23-62) 56(43-65)
Sex (% female) 45.8 46.2
Disease duration (years) (median (range)) 14.0 (2.0-35.0) 10.0 (3.0-37.0)
Time since first diagnosis (years) (median (range)) 12.0 (1.0-30.0) 4.5 (2.0-18.0)
Duration of OCR treatment (years) (median 2.5(0.4-8.3) 2.4(0.3-3.6)
(range))
Previous OCR cycles 5.0 (1.0-15.0) 5.0 (1.0-9.0)
EDSS at BL (median (range)) 3.5 (0.0-6.5) 6.0 (2.0-7.5)
Relapses since start of OCR 0 -
EDSS worsening since last infusion (n (%)) - 5/13 (38.5%)
Number of previous therapies (median (range)) 2.0 (0.0-4.0) 0.0 (0.0-2.0)
Last infusion to vaccination (months) (median 4.0 (1.7-7.1) 3.7 (0.1-12.2)

(range))

BL, baseline; EDSS, Expanded Disability Status Scale; F/U, follow-up; MS, multiple
sclerosis; OCR, ocrelizumab; PPMS, primary progressive multiple sclerosis; RRMS,
relapsing-remitting multiple sclerosis.

months. Regarding the clinical course, none of the patients with
RRMS had experienced relapses since the first OCR treatment
cycle. Moreover, in 5 out of 13 patients with PPMS (38.5%) with
available EDSS prior to the last infusion and at F/U, worsening
of EDSS since the last infusion was noted. Two out of 19 patients
with PPMS (10.5%) with available EDSS at BL and F/U experi-
enced EDSS worsening during the course of the study (online
supplemental table 1). Peripheral B cells were <1% in all but
three patients (94.8%) at BL and 72.9% of patients at F/U. The
amount of peripheral B cells at BL and F/U positively correlated
with the time from the last treatment cycle (figure 1B). 18.5%
of patients reported mild adverse events of OCR treatment
(online supplemental table 1). Abnormalities in routine labora-
tory studies were noted in some cases, decreased IgM level being
the most common one (40.7% of patients) (online supplemental
figure 2). Overall, these data suggest long-lasting suppression
of peripheral B cells in patients with MS receiving OCR and
a stable clinical disease course even exceeding the duration of
maximal B cell depletion. Adverse events rarely occurred and
were mild in all cases.

Patients with MS treated with OCR show attenuated antibody
response to COVID-19 vaccination

Attenuated humoral immune response after vaccination,
including COVID-19, has been reported among patients
receiving B cell-modulating therapies.'* We analysed anti-
SARS-CoV-2(S)-abs ~4 weeks after the second dose of
COVID-19 vaccine as well as peripheral B cell counts at BL
and F/U. The majority of patients were vaccinated with the
BioNTech vaccine (BioNTech: 55 (94.8%), Astra-Zeneca: 2
(3.4%), BioNTech/Astra-Zeneca: 1 (1.7%)) (online supple-
mental table 1). Anti-SARS-CoV-2(S)-abs were positive in
27.1% of patients at F/U with titres ranging from 1.0 to 954 U/
mL (figure 2A). Anti-SARS-CoV-2(N)-abs were negative in all
patients at BL and F/U (figure 2A). Anti-SARS-CoV-2(S)-ab
titres positively correlated with peripheral B cell counts at
BL and F/U (figure 2B), with the time since the last infusion
cycle, and with total IgM levels at BL and F/U (figure 2C,D).
In addition, a negative correlation between anti-SARS-CoV-
2(S)-abs and the number of previous treatment cycles was
noted (figure 2E). No correlations could be detected between

ab titres and overall IgG and IgA levels at BL and F/U and
the age (online supplemental file 3A-C). In five patients,
anti-SARS-CoV-2(S)-abs were detectable despite depleted
peripheral B cells. In contrast, four patients with detectable
peripheral B cells did not develop anti-SARS-CoV-2(S)-abs. To
further elucidate these observations, we performed differential
B cell phenotyping in 32 patients at F/U (online supplemental
figure 1A). As expected, patients with anti-SARS-CoV-2(S)-abs
showed higher amounts of B cells compared with patients
without abs (figure 2F). Additionally, the proportion of plasma
cells was significantly higher in patients with abs compared
with those without (figure 2F). When we compared the five
patients with abs despite depleted peripheral B cells with
patients without abs and depleted B cells, we detected signifi-
cantly elevated amounts of plasmablasts in PB (figure 2G).
No significant differences in B cell subpopulations were seen
between the four patients with detectable peripheral B cells
without abs in comparison to patients with detectable periph-
eral B cells and abs (online supplemental figure 1D). In addi-
tion, anti-SARS-CoV-2(S)-abs did not differ between patients
with RRMS and PPMS (online supplemental figure 3D). Four
patients with negative anti-SARS-CoV-2(S)-abs after two doses
received a third vaccination dose. However, an increase in
the ab titre from <0.4to 25.4 U/mL and from <0.4to 44.4 U/
mL, respectively, could only be observed in the patients who
had a detectable peripheral B cell count (14/uL and 47/uL,
respectively) prior to third vaccination. In summary, OCR-
treated patients with MS have an attenuated humoral immune
response to COVID-19 vaccination and ab titres positively
correlated with peripheral B cell counts, time since last infu-
sion, and total IgM levels and negatively correlated with the
number of previous OCR cycles.

Preserved T cell response to SARS-CoV-2 antigens in patients
with MS receiving OCR after vaccination

While the majority of B cells express CD20, the amount of T cells
expressing CD20 is low.®? Accordingly, preserved T cell responses
after COVID-19 infection and vaccination have been reported
in patient with MSs receiving OCR.'?* To further corroborate
these observations, we assessed the SARS-CoV-2 antigen-specific
T cell response of 55 patients with MS receiving OCR at F/U.
To this end, we measured the release of interferon (IFN)-y by
T cells following stimulation with the SARS-CoV-2(S) protein.
We found a T cell response in 92.7% of patients (figure 3A). No
differences could be detected between patients with RRMS and
PPMS (online supplemental figure 3E). In four patients, there
was no SARS-CoV-2-specific T cell response. Regarding basic
clinical characteristics, those patients did not markedly differ
from the patients who developed a pronounced T cell response
after vaccinations. Positive anti-SARS-CoV-2(S)-abs at F/U were
found in two out of four patients (50%). However, total numbers
of peripheral lymphocytes (CD3) and lymphocyte subsets (CD4
and CD8) tended to be lower in the patients with negative T
cell response but did not reach significance (data not shown).
We further divided our MS cohort into two groups depending
on the development of anti-SARS-CoV-2(S)-abs. IFN-vy release
by SARS-CoV-2-specific T cells was higher in patients with
MS without detectable abs (figure 3A). IFN-y release positively
correlated with CD3 and CD4 lymphocyte counts and negatively
correlated with the time since last infusion (figure 3B-D). No
significant correlations were observed between T cell response
and anti-SARS-CoV-2(S)-abs, CD8 lymphocytes and the number
of previous treatment cycles (online supplemental figure 3F-H).
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CoV-2(N)-abs and anti-SARS-CoV-2(S)-abs at BL and F/U: Lower quartile, median and upper quartile are illustrated by boxes. Whiskers show the min and
max values. Individual values are depicted by black dots. Values<0.1 U/mL (anti-SARS-CoV-2(N)) and <0.4 U/mL (anti-SARS-CoV-2(S)) are depicted on the x-
axis. Cut-off values are illustrated by dashed red lines. (B—E) Correlation of anti-SARS-CoV-2(S)-abs with peripheral B cell counts (B), time since last infusion
(Q), total IgM levels in PB (D), and number of previous treatment cycles (E). Correlation analysis was performed with the Spearman correlation coefficient.
The area in between the dotted lines shows the 95% Cl. B cell counts <10/pL are depicted on the y-axis and anti-SARS-CoV-2(S)-abs<0.4 U/mL are shown
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ocrelizumab; PB, peripheral blood; pos., positive; S, spike.

In summary, we detected a robust T cell-mediated response to
SARS-CoV-2 antigens after two doses of vaccination, which
was even more pronounced in patients without detectable anti-
SARS-CoV-2(S)-abs. T cell response positively correlated with
CD3 and CD4 lymphocyte counts and negatively correlated with
the time since the last infusion.

DISCUSSION

Pivotal clinical trials have shown high efficacy of COVID-19
vaccines in preventing virus transmission and severe disease
courses.' * Accordingly, non-immunocompromised people seem to
develop a robust antibody and T cell response after two doses of
COVID-19 vaccination.! * 2* % However, immunocompromised
patients, who can be at increased risk for infections,'**” have been
excluded from those trials. Studies assessing the risk of infections
in patients with MS receiving OCR vyielded contrasting results.
While some reported an increased susceptibility to COVID-19 or
a more severe disease course,?*® others could not link treatment
with B cell-depleting therapies to higher infection rates.”’! Post-
approval studies reported an attenuated humoral immune response
to COVID-19 vaccination among patients receiving B cell-
modulating therapies, while T cell response seemed to be
preserved.'*™* Accordingly, we assessed the anti-SARS-CoV-2-abs

in a sizeable cohort of 59 patients with MS receiving OCR and
could only detect positive anti-SARS-CoV-2(S)-abs in 27.1% of
patients. In contrast, anti-SARS-CoV-2-ab response was previously
found in the majority of patients with MS on other DMTs (eg,
fingolimod 85.7%, IFN-B 96.4% and cladribine 100%).*> As
expected, anti-SARS-CoV-2(S)-abs correlated with the amount of
peripheral B cells in OCR-treated patients with MS. This is in line
with previous observations in patients receiving B cell-modulating
therapies.'* > ¥ B cells can be divided into subpopulations with
unique phenotypes and functions.'' ** Correspondingly, expres-
sion of CD20 varies within the B cell compartment. On antigen
stimulation, B cells proliferate and differentiate into plasmablasts
and plasma cells."" These cells, which typically do not express
CD20 on their surface, produce antigen-specific immunoglobu-
lins." % Thus, impaired generation of plasma cells from CD20-
positive B cell progenitors most likely accounts for the attenuated
humoral immune response in patients receiving anti-CD20 thera-
pies. This is underscored by our observation that patients with
positive anti-SARS-CoV-2(S)-abs have higher amounts of plasma
cells in PB compared with patients without abs. Nevertheless,
some patients were able to mount an adequate humoral immune
response despite depleted peripheral B cells, as previously
reported.'” Differential B cell phenotyping revealed higher
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Figure 3  Preserved T cell response to SARS-CoV-2 vaccination in patients with MS receiving ocrelizumab. (A) Box plot analysis of SARS-CoV-2-specific

T cell response measured by IFN-y release at F/U and comparison of SARS-CoV-2-specific T cell response between patients with and without detectable
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proportions of peripheral plasmablasts in those patients. Plasmab-
lasts are rapidly generated from B cell progenitors on antigen stim-
ulation; however, their longevity is limited compared with plasma
cells.”" Thus, it is tempting to speculate that in patients with
depleted B cells, the production of anti-SARS-CoV-2(S)-abs mainly
occurs in the short-lived plasmablast compartment in the process
of early B cell repopulation after OCR infusion. However, further
studies will be needed to phenotype B cell populations at different
time points after OCR treatment. This will help to further clarify
differences in the humoral immune response in relation to B cell
repopulation kinetics among patients treated with OCR. Regarding
pharmacokinetics, OCR rapidly depletes B cell numbers and medi-
ates long-lasting B cell depletion. Repopulation of B cells begins
about 6 months after the last infusion and B cell counts return to
normal numbers at a median of 72 (27-175) weeks.® ¢ However,
clinical efficacy seems to outlast B cell depletion, which is a still
unclarified phenomenon. Our results indicate a variability in B cell
repopulation after OCR infusion. In a subgroup of patients, B cells
were still fully depleted more than 6 months after the last treat-
ment cycle. Accordingly, no relapses occurred in that subgroup.
Interestingly, however, there were no relapses in patients with
detectable peripheral B cells, either. This points to a prolonged
clinical effect of OCR exceeding actual B cell depletion, in the
sense of a long-lasting immunomodulation, which is consistent
with previous studies.”> This concept is further corroborated by
our observation that anti-SARS-CoV-2(S)-abs negatively correlate
with the number of OCR treatment cycles. Given the high vari-
ability in the dynamics of B cell repopulation and the long-lasting
clinical effects of OCR treatment, B cell monitoring and individual
treatment regimens adapted to the peripheral B cell count might
be a promising approach warranting further investigations.
Patients with delayed B cell-repopulation kinetics might be ‘over-
treated’ by receiving OCR every 6 months. Thus, individualised
treatment regimens could minimise the time spent in inpatient or
outpatient clinics associated with lower healthcare cost and might
reduce the risk of infections in a subgroup of patients. Addition-
ally, monitoring the CD19 B cells might be a promising tool to

identify the optimal time to vaccinate. This is underscored by our
and previous'? observations that peripheral B cell counts, and thus
the potential to mount a humoral immune response, correlate
with anti-SARS-CoV-2(S)-abs. Based on our results, measuring
peripheral plasma cells and plasmablasts could add value to CD19
B cell monitoring. We further analysed anti-SARS-CoV-2(S)-abs in
two patients who received a third vaccination dose after partial
repopulation of peripheral B cells and found an increase in the
anti-SARS-CoV-2(S)-ab titre. This further illustrates the general
potential of this vaccination strategy. In this context, it might be a
reasonable time to vaccinate when at least 1% of B cells can be
detected in PB. However, further longitudinal studies will be
necessary to assess the actual benefit of this approach and to deter-
mine the appropriate B cell levels to ensure an optimal risk/benefit
ratio. In addition to the humoral immune system, adaptive immu-
nity, especially T cells, are essential for the antiviral immune
response.’” Besides the well-described acute response in which T
cells kill virus-infected cells, memory T cells mediate long-lasting
immune competence against viral infections such as SARS-CoV. In
contrast, SARS-CoV-specific abs rapidly declined after 4 months
post infection.*® > The importance of T cell-mediated mechanisms
in COVID-19 is emphasised by the reduction of peripheral
lymphocyte counts (CD4 and CD8 T cells) accompanied by an
increase in activation markers and IFN-y-production in severe
cases.*® These cases also frequently featured T cell exhaustion.*!
We detected a preserved T cell-mediated immune response against
SARS-CoV-2 in OCR-treated patients with MS which is consistent
with previous data reporting an increase in T cell response after
COVID-19 infection and vaccination.'? '* As opposed to the low
percentage of patients who developed anti-SARS-CoV-2-abs after
vaccination, the SARS-CoV-2-specific T cell response seems to be
higher in OCR-treated patients with MS compared with patients
receiving other DMTs (eg, IFN-B 89.3%, cladribine 70% and
fingolimod 14.3% of patients).** Of note, IFN-y release by SARS-
CoV-specific T cells was even more pronounced in OCR-treated
patients with MS without anti-SARS-CoV-2-abs which might
point towards a compensatory effect for the insufficient humoral
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immune response. IFN-y release correlated with peripheral CD3
and CD4 lymphocyte counts, but no correlation with CD8
lymphocytes was observed. It is conceivable that a more promi-
nent IFN-y response of CD4 compared with CD8 lymphocytes, as
previously described,** might contribute to this observation. IFN-y
release by activated CD4 lymphocytes is crucial for CD8 T cell
priming.** In turn, CD8 T cells are able to eliminate virus-infected
cells through T cell receptor-mediated recognition of viral anti-
gens.* Moreover, a negative correlation between T cell-mediated
IFN-yrelease and time since last infusion was observed. This might
be connected to the fact that B cell-depleting effects of OCR are
strongest within the first months after OCR infusion and B cells
begin to repopulate over time. In this regard, the negative correla-
tion between T cell response and time since last infusion further
supports the concept of T cell compensation for the attenuated B
cell response. In four patients, no SARS-CoV-2-specific T cell
response could be detected. Lower numbers of peripheral lympho-
cytes (CD3) and lymphocyte subsets (CD4 and CDS8) might
contribute to this observation. However, further studies with
larger patient cohorts will be necessary to corroborate those find-
ings. Taken together, our results indicate that the T cell arm of the
adaptive immunity is able to mount an adequate immune response
against SARS-CoV-2. Measuring the SARS-CoV-2-specific T
cellular immune response after COVID-19 vaccination might be
suitable to assess immunity against SARS-CoV-2 in patients treated
with B cell-depleting therapies. However, further studies will be
needed to evaluate whether a compromised anti-SARS-CoV-2-ab
production impairs immunity against SARS-CoV-2 despite the
robust T cell response. Apart from the efficacy of vaccination, the
safety profile is another crucial aspect. Analysis of adverse events
after SARS-CoV-2 vaccination showed that they were mild in all
cases. Furthermore, none of the patients with RRMS reported
relapses after vaccination. EDSS worsening between BL and F/U
was noted in 2 out of 19 patient with PPMSs, most likely due to
the natural progressive clinical disease course. Our data therefore
suggest that short-term safety profiles of COVID-19 vaccines seem
to be favourable among patients with MS receiving B cell-depleting
therapies. This is in line with data from MS centres in Israel and
Italy.** * However, the long-term safety profile of COVID-19
vaccination in patients with MS will have to be investigated in
future studies.

We are aware that our study is limited by its retrospective design.
As a result of this design, not all data were available for every patient
and BL anti-SARS-CoV-2(S)-ab titres were assessed more than 2
weeks prior to first vaccination in some cases. However, none of
the patients reported a history of SARS-CoV-2, and anti-SARS-CoV-
2(N)-abs were negative at F/U in all patients. Besides, we did not
subclassify anti-SARS-CoV-2(S)-abs into IgM, IgA and IgG. More-
over, time between vaccinations and from second vaccination to F/U
was variable, and long-term effects of vaccination as well as long-
term safety profiles were not assessed.

In conclusion, our results indicate that patients with MS
receiving OCR can mount an adequate T cellular immune
response to SARS-CoV-2 vaccination while anti-SARS-CoV-
2(S)-abs production seems to be compromised. Measuring T cell
effector mechanisms could therefore be suitable to assess vaccine
response in immunocompromised patients. Given the long-lasting
and heterogeneous effects of OCR, monitoring of peripheral B
cells could facilitate individualised treatment regimens and might
be a tool to identify the optimal time to vaccinate.
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