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We investigate theoretically, on the basis of the steady Stokes equations for a viscous
incompressible fluid, the flow induced by a stokeslet located on the centre axis of two
coaxially positioned rigid disks. The stokeslet is directed along the centre axis. No-slip
boundary conditions are assumed to hold at the surfaces of the disks. We perform the
calculation of the associated Green’s function in large parts analytically, reducing the
spatial evaluation of the flow field to one-dimensional integrations amenable to numerical
treatment. To this end, we formulate the solution of the hydrodynamic problem for the
viscous flow surrounding the two disks as a mixed boundary-value problem, which we
then reduce to a system of four dual integral equations. We show the existence of viscous
toroidal eddies arising in the fluid domain bounded by the two disks, manifested in the
plane containing the centre axis through adjacent counter-rotating eddies. Additionally,
we probe the effect of the confining disks on the slow dynamics of a point-like particle by
evaluating the hydrodynamic mobility function associated with axial motion. Thereupon,
we assess the appropriateness of the commonly employed superposition approximation
and discuss its validity and applicability as a function of the geometrical properties of
the system. Additionally, we complement our semi-analytical approach by finite-element
computer simulations, which reveals a good agreement. Our results may find applications
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in guiding the design of microparticle-based sensing devices and electrokinetic transport
in small-scale capacitors.

Key words: colloids, Navier–Stokes equations

1. Introduction

Manipulating colloidal particles suspended in viscous media is a challenging task and is
of paramount importance in various fields of engineering and natural sciences. Frequently,
taking into account the fluid-mediated hydrodynamic interactions between particles
moving through a liquid is essential to predict the behaviour of colloidal suspensions and
polymer solutions (Probstein 2005; Mewis & Wagner 2012). Recent advances in micro-
and nanofluidic technologies have permitted the fabrication and manufacturing of channels
with well-defined geometries and characteristic dimensions ranging from the micro- to the
nanoscale. A deep understanding of the nature of the mutual interactions between particles
and their confining interfaces is of crucial importance in guiding the design of devices and
tools for an optimal nanoscale control of biological macromolecules. Notable examples
include single-molecule manipulation (Turner et al. 1998; Campbell et al. 2004), DNA
mapping for genomic applications (Reisner et al. 2005; Riehn et al. 2005; Persson &
Tegenfeldt 2010), DNA separation and sorting (Doyle et al. 2002; Cross, Strychalski &
Craighead 2007; Xia, Yan & Hou 2012), and rheological probing of complex structures
using atomic force microscopy cantilevers (François et al. 2008, 2009; Dufour et al. 2012;
Darwiche et al. 2013).

At these small scales, fluid flows are governed by low-Reynolds-number hydrodynamics,
where viscous effects dominate over inertial effects (Kim & Karrila 2013). Solutions for
fluid flows due to point forces, or stokeslets, acting close to confining boundaries have
been tabulated for various types of geometries, as summarised in the classic textbook by
Happel & Brenner (1983). The study of the fluid-mediated hydrodynamic interactions in
a channel confinement has received significant attention from many researchers over the
past couple of years. In the following, we provide a survey of the current state of the art
and summarise the relevant literature on this subject.

The first attempt to address the motion of a spherical particle confined between two
infinitely extended no-slip walls dates back to Faxén (1921), who calculated in his
PhD dissertation the hydrodynamic mobility parallel to the walls. These calculations
were performed when the particle is located in the quarter-plane or mid-plane between
the two confining walls (Happel & Brenner 1983). Later, Oseen (1928) suggested that
the hydrodynamic mobility between two walls could approximately be obtained by
superposition of the contributions resulting from each single wall. A modified coherent
superposition approximation was further suggested by Benesch, Yiacoumi & Tsouris
(2003), providing the diffusion coefficients of a Brownian sphere in confining channels.
These predictions were found to match more accurately the existing experimental data
reported in the literature.

Exact solutions for a point-force singularity acting at an arbitrary position between
two walls were first obtained using the image technique in a seminal article by Liron &
Mochon (1976). It was noted that the effect of the second wall becomes important when
the distance separating the particle from the closest wall is larger than approximately
one-tenth of the channel width (Brenner 1999). Using this solution, Liron (1978)
further investigated the fluid transport problem of cilia between two parallel plates.
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Axisymmetric stokeslet between two disks 904 A34-3

A joint analytical–numerical approach (Ganatos, Pfeffer & Weinbaum 1980a; Ganatos,
Weinbaum & Pfeffer 1980b) as well as a multipole expansion technique (Swan & Brady
2010) were presented to address the motion of an extended particle confined between two
hard walls. Bhattacharya & Bławzdziewicz (2002) constructed the image system for the
flow field produced by a force multipole in a space bounded by two parallel walls using the
image representation for Stokes flow. In addition, compressibility effects were examined by
Felderhof (2006, 2010a,b). In this context, Hackborn (1990) investigated the asymmetric
Stokes flow between two parallel planes due to a rotlet singularity, the axis of which
is parallel to the boundary planes. Further, Ozarkar & Sangani (2008) prescribed an
analytical approach using the image-system technique for determining the Stokes flow
around particles in a thin film bounded by a wall and a gas–liquid interface. More recently,
Daddi-Moussa-Ider, Guckenberger & Gekle (2016) provided the frequency-dependent
hydrodynamic mobility functions between two planar elastic interfaces endowed with
resistance towards shear and bending deformation modes.

Experimentally, Dufresne, Altman & Grier (2001) reported direct imaging
measurements of a colloidal particle diffusing between two parallel surfaces, finding a
good agreement with the superposition approximation suggested by Oseen. In addition,
video microscopy (Faucheux & Libchaber 1994) combined with optical tweezers (Lin, Yu
& Rice 2000; Tränkle, Ruh & Rohrbach 2016) as well as dynamic light scattering (Lobry
& Ostrowsky 1996) have also allowed for good agreement with available theoretical
predictions. Further experimental investigations have focused on DNA conformation and
diffusion in slit-like confinements (Balducci et al. 2006; Stein et al. 2006; Strychalski,
Levy & Craighead 2008; Tang et al. 2010; Graham 2011; Dai et al. 2013; Jones, van der
Maarel & Doyle 2013).

Concerning collective properties, the behaviour of suspensions in a channel bounded by
two planar walls has received a lot of attention. For instance, Bhattacharya, Bławzdziewicz
& Wajnryb (2005) examined the fluid-mediated hydrodynamic interactions in a suspension
of spherical particles confined between two parallel planar walls under creeping-flow
conditions. In addition, Bhattacharya (2008) considered the collective motion of a
two-dimensional periodic array of colloidal particles in a slit pore. Using a novel
accelerated Stokesian-dynamics algorithm, Baron, Bławzdziewicz & Wajnryb (2008)
performed fully resolved computer simulations to investigate the collective motion of
linear trains and regular square arrays of particles suspended in a viscous fluid bounded
by two parallel plates. Further, Bławzdziewicz & Wajnryb (2008) analysed the far-field
response to external forcing of a suspension of particles in a channel. Swan & Brady (2011)
presented a numerical method for computing the hydrodynamic forces exerted on particles
in a suspension confined between two parallel walls. Furthermore, Saintillan, Shaqfeh
& Darve (2006) employed Brownian dynamics simulations to investigate the effect of
chain flexibility on the cross-streamline migration of short polymers in a pressure-driven
flow between two flat plates. The latter numerical study confirmed the existence of a
shear-induced migration towards the channel centreline away from the confining solid
boundaries.

The hydrodynamic problem of particles freely moving between plane-parallel walls in
the presence of an incident flow has been further considered in still more details. Under an
external flow, Uspal, Eral & Doyle (2013) showed how shape and geometric confinement
of rigid microparticles can conveniently be tailored for self-steering. Jones (2004) made
use of a two-dimensional Fourier-transform technique to obtain an analytic expression of
the Green tensor for the Stokes equations with an incident Poiseuille flow. In addition,
he provided the elements of the resistance and mobility tensors in this slit-like geometry.
Bhattacharya, Bławzdziewicz & Wajnryb (2006) introduced a novel numerical algorithm
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904 A34-4 A. Daddi-Moussa-Ider and others

based on transformations between Cartesian and spherical representations of Stokes flow
to account for an incident Poiseuille flow. Staben, Zinchenko & Davis (2003) presented
a novel boundary-integral algorithm for the motion of a particle between two parallel
planar walls in Poiseuille flow. The boundary-integral method formulated in their work
allowed the effects of the confining walls to be directly incorporated into the stress tensor,
without requiring discretisation of the two walls. In this context, Griggs, Zinchenko &
Davis (2007) and Janssen & Anderson (2007, 2008) employed boundary-integral methods
to examine the motion of a deformable drop between two parallel walls in Poiseuille flow,
where lateral migration towards the channel centre is observed.

Geometric confinement significantly alters the behaviour of swimming micro-organisms
and can affect the motility of self-propelling active particles in a pronounced way (Lauga
& Powers 2009; Menzel 2013, 2015; Bechinger et al. 2016; Lauga 2016; Zöttl & Stark 2016;
Ostapenko et al. 2018; Gompper et al. 2020; Shaebani et al. 2020). Surface-related effects
on microswimmers can lead to crucial implications for biofilm formation and microbial
activity. In a channel bounded by two walls, Bilbao et al. (2013) studied the locomotion of
a model nematode, finding that the swimming organism tends to swim faster and navigate
more effectively under confinement. Furthermore, Wu et al. (2015, 2016) investigated the
effect of confinement on the swimming behaviour of a model eukaryotic cell undergoing
amoeboid motion. There, the swimmer has been modelled as an inextensible membrane
deploying local active force. It has been found that confinement can strongly alter the
swimming gait. In addition, Brotto et al. (2013) described theoretically the dynamics of
self-propelling active particles in rigidly confined thin liquid films. They demonstrated
that, due to hydrodynamic friction with the nearby rigid walls, confined microswimmers
not only reorient themselves in response to flow gradients but also can show reorientation
in uniform flows. In this context, Mathijssen et al. (2016) investigated theoretically the
hydrodynamics of self-propelling microswimmers in a thin film. Daddi-Moussa-Ider et al.
(2018) examined the behaviour of a three-sphere microswimmer in a channel bounded by
two walls, where different swimming states have been observed. More recently, amoeboid
swimming in a compliant channel was numerically investigated (Dalal, Farutin & Misbah
2020).

In all of the above-mentioned studies, the confining channel was assumed to be of
infinite extent or periodically replicated along the lateral directions. Instead, here we
consider the hydrodynamic problem for a point force acting near two coaxially positioned
disks of finite radius. In many biologically and industrially relevant applications, finite-size
effects become crucial for an accurate and reliable description of transport processes
ranging from the microscale to the nanoscale. Prime examples include the ionic transport
and electrokinetics in small-scale capacitors (Marini Bettolo Marconi & Melchionna
2012; Thakore & Hickman 2015; Babel, Eikerling & Löwen 2018; Asta et al. 2019),
electrochemomechanical energy conversion in microfluidic channels (Daiguji et al. 2004),
and the rheology of droplets, capsules or cells in constricted/structured microchannels
(Park & Dimitrakopoulos 2013; Le Goff et al. 2017; Trégouët et al. 2018, 2019), where
boundary effects may play a pivotal role.

In this paper, we take a step towards addressing this context by presenting an analytical
theory for the viscous flow resulting from a stokeslet singularity acting along the centre
axis of two coaxially positioned disks of no-slip surfaces. We formulate the hydrodynamic
problem as a mixed boundary-value problem, which we then transform into a system of
dual integral equations. Along this path, we show that the solution of the flow field in
the fluid region bounded by the two disks exhibits viscous toroidal eddies. In addition
to that, we derive expressions for the hydrodynamics mobility functions and discuss the
applicability and limitations of the superposition approximation. Moreover, we support
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FIGURE 1. Schematic of the system. The surrounding viscous Newtonian fluid is set into motion
through the action of a point-force singularity located on the symmetry axis of two coaxially
positioned disks.

our semi-analytical results by numerical simulations using a finite-element method (FEM),
which leads to a good agreement.

The remainder of this paper is organised as follows. In § 2, we formulate the problem
mathematically and derive the corresponding system of dual integral equations, from
which the solution for the hydrodynamic flow fields can be obtained. We then make use of
this solution in § 3 to yield an integral expression of the mobility function of a point-like
particle slowly translating along the axis of the disks. Concluding remarks and outlooks are
contained in § 4. In appendix A, we detail the analytical derivation of the kernel functions
arising in the resulting integral equations.

2. Mathematical formulation

We examine the axisymmetric flow induced by a stokeslet singularity acting on the
axis of symmetry of two coaxially positioned circular disks of equal radius R. Moreover,
we suppose that the disks are located within the planes z = −H/2 and z = H/2, with H
denoting the separation distance between the disks. Their centres are positioned on the z
axis. In addition, we assume that the surrounding viscous fluid is Newtonian, of constant
dynamic viscosity η, and that the flow is incompressible.

2.1. Governing equations
In low-Reynolds-number hydrodynamics, the fluid dynamics is governed by the Stokes
equations (Happel & Brenner 1983)

∇ · v = 0, (2.1a)

∇ · σ + Fδ(r − r0) êz = 0, (2.1b)

where v and σ denote, respectively, the fluid velocity field and the hydrodynamic stress
tensor. For a Newtonian fluid, the latter is given by σ = −pI + 2ηE , where p is the
pressure field and E = (∇v + (∇v)T)/2 is the rate-of-strain tensor, with the superscript
T denoting a transpose. In addition, δ stands for the Dirac delta function, and F is the
amplitude of a stationary point force acting on the fluid at position r0 = hêz, where
−H/2 < h < H/2, with êz denoting the unit vector along the z direction. See figure 1
for an illustration of the system set-up. In the remainder of this paper, we scale all the
lengths involved in the problem by the separation H of the two disks.
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904 A34-6 A. Daddi-Moussa-Ider and others

We designate by the subscript 1 the variables and parameters in the fluid region
underneath the plane containing the lower disk, for which z ≤ −1/2, by the subscript 2
the fluid domain bounded by the planes z = −1/2 and z = 1/2, and by the subscript 3 the
region above the plane containing the upper disk, for which z ≥ 1/2. Since the system is
axisymmetric, all field variables are thus functions of the radial and axial coordinates only.
Accordingly, the Stokes equations (2.1) can be projected onto the cylindrical coordinate
system as

vr

r
+ ∂vr

∂r
+ ∂vz

∂z
= 0, (2.2a)

−∂p
∂r

+ η
(
�vr − vr

r2

)
= 0, (2.2b)

−∂p
∂z

+ η�vz + Fδ(r − r0) = 0, (2.2c)

wherein vr and vz denote the radial and axial fluid velocities, respectively, and � is the
Laplace operator given by

� := ∂2

∂r2
+ 1

r
∂

∂r
+ ∂2

∂z2
. (2.3)

We note that the three-dimensional Dirac delta function is expressed in axisymmetric
cylindrical coordinates as δ(r − r0) = (πr)−1δ(r)δ(z − h) (Bracewell 1999).

In an unbounded viscous fluid, i.e. in the absence of the disks, the solution of equations
(2.2) is given by the Oseen tensor, commonly denominated as the free-space Green
function (Kim & Karrila 2013)

vS
r = F

8πη

r (z − h)
ρ3

, vS
z = F

8πη

(
2
ρ

− r2

ρ3

)
, (2.4a,b)

with the distance from the position of the point force ρ = (r2 + (z − h)2)1/2. The
corresponding pressure field reads

pS = F
4π

z − h
ρ3

. (2.5)

In the presence of the confining disks, the solution of the flow problem can be expressed
as a superposition of the solution in an unbounded fluid, given above by (2.4a,b) and (2.5),
and a complementary solution, the sum of the two solutions being required to satisfy the
underlying regularity and boundary conditions. Then

v = vS + v∗, p = pS + p∗, (2.6a,b)

wherein v∗ and p∗ stand for the complementary solutions (also referred to as the image
solution (Blake 1971)) for the velocity and pressure fields, respectively.

For an axisymmetric Stokes flow, the general solution can be expressed in terms of two
harmonic functions φ and ψ as (Imai 1973; Kim 1983)

v∗
r = z

∂φ

∂r
+ ∂ψ

∂r
, v∗

z = z
∂φ

∂z
− φ + ∂ψ

∂z
, p∗ = 2η

∂φ

∂z
, (2.7a–c)

with
�φ = 0, �ψ = 0. (2.8a,b)
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In each of the three fluid domains introduced above, the solution of Laplace’s equations
(2.8a,b) can be expressed in terms of Fourier–Bessel integrals as

φi = F
8πη

∫ ∞

0

(
A+

i (λ)e
λz + A−

i (λ)e
−λz) J0(λr) dλ, (2.9a)

ψi = F
8πη

∫ ∞

0

(
B+

i (λ)e
λz + B−

i (λ)e
−λz) J0(λr) dλ, (2.9b)

for i ∈ {1, 2, 3}, with λ denoting the wavenumber and Jk the kth-order Bessel
function of the first kind (Abramowitz & Stegun 1972). In addition, A±

i and B±
i are

wavenumber-dependent unknown coefficients, to be determined from the regularity and
boundary conditions. Then, the components of the image velocity and pressure fields are
given by

v∗
r i = − F

8πη

∫ ∞

0
λ
(
(zA+

i + B+
i )e

λz + (zA−
i + B−

i )e
−λz) J1(λr) dλ, (2.10a)

v∗
z i = − F

8πη

∫ ∞

0

(
E+

i eλz + E−
i e−λz) J0(λr) dλ, (2.10b)

p∗
i = F

4π

∫ ∞

0
λ
(
A+

i eλz − A−
i e−λz) J0(λr) dλ, (2.10c)

for i ∈ {1, 2, 3}, where we have defined the abbreviations E±
i = (1 ∓ λz)A±

i ∓ λB±
i .

2.2. Boundary conditions and dual integral equations
As regularity conditions, for the image field we require the velocity and pressure far away
from the singularity location to vanish as ρ → ∞. This implies that A−

1 = B−
1 = A+

3 =
B+

3 = 0. In what follows, to simplify notation, we drop the plus sign in the fluid domain
underneath the lower disk to denote A1 = A+

1 and B1 = B+
1 , and we drop the minus sign in

the fluid domain above the upper disk to denote A3 = A−
3 and B3 = B−

3 .
The boundary conditions consist of requiring (a) the natural continuity of the total

fluid velocity field at the interfaces between the fluid domains, (b) vanishing total
velocities at the surfaces of the disks (the no-slip and no-permeability boundary condition
Lauga, Brenner & Stone 2007), and (c) continuity of the total viscous-stress vectors
at the interfaces between the fluid domains outside the regions occupied by the disks.
Mathematically, these conditions can be expressed as

(v1 − v2)|z=−1/2 = (v2 − v3)|z=1/2 = 0 (r > 0), (2.11a)

v1|z=−1/2 = v2|z=±1/2 = v3|z=1/2 = 0 (r < R), (2.11b)

(σ 2 − σ 1) · êz|z=−1/2 = (σ 3 − σ 2) · êz|z=1/2 = 0 (r > R), (2.11c)

where the components of the stress vector are expressed in cylindrical coordinates for an
axisymmetric flow field by

σ i · êz = η

(
∂vri

∂z
+ ∂vzi

∂r

)
êr +

(
−pi + 2η

∂vzi

∂z

)
êz, i ∈ {1, 2, 3}. (2.12)

Applying the continuity of the radial components of the fluid velocity at the
surfaces occupied by the two disks yields the expressions of the wavenumber-dependent
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904 A34-8 A. Daddi-Moussa-Ider and others

coefficients associated with the intermediate fluid domain bounded by the two disks as
functions of those in the lower and upper fluid domains. Defining X 2 = (A−

2 ,B−
2 ,A+

2 ,B+
2 )

T

and X 13 = (A1,B1,A3,B3)
T, we obtain

X 2 = Q · X 13, (2.13)

where the matrix Q is given by

Q = (
s2 − λ2)−1

⎛
⎜⎜⎜⎜⎜⎝

1
2 (s + λc) −λs − 1

2 φ
+ −λ2

1
4λs

1
2 (s − λc) − 1

4λ
2 − 1

2 φ
−

− 1
2 φ

+ λ2 1
2 (s + λc) λs

1
4λ

2 − 1
2 φ

− − 1
4λs

1
2 (s − λc)

⎞
⎟⎟⎟⎟⎟⎠ . (2.14)

Here, we have defined for convenience the abbreviations s = sinh(λ) and c = cosh(λ). In
addition, φ± = λ(λ± 1)+ se−λ.

On the one hand, by addressing the no-slip velocity boundary conditions at the surfaces
of the disks prescribed by (2.11b) and projecting the resulting equations onto the radial
and tangential directions, four integral equations on the inner domain are obtained:

∫ ∞

0
λ
(

1
2 A1 − B1

)
e−(λ/2)J1(λr) dλ = ψ+

1 (r) (r < R), (2.15a)

∫ ∞

0
λ
(

1
2 A3 + B3

)
e−(λ/2)J1(λr) dλ = ψ−

1 (r) (r < R), (2.15b)

∫ ∞

0

(
A1 + λ ( 1

2 A1 − B1
))

e−(λ/2)J0(λr) dλ = ψ+
2 (r) (r < R), (2.15c)

∫ ∞

0

(
A3 + λ ( 1

2 A3 + B3
))

e−(λ/2)J0(λr) dλ = ψ−
2 (r) (r < R). (2.15d)

Here the terms appearing on the right-hand sides in these equations are radial functions
resulting from the evaluation of the terms associated with the flow velocity field induced by
the free-space stokeslet at the surfaces of the coaxially positioned disks. They are explicitly
given by

ψ±
1 (r) = ±r

(
h ± 1

2

)
(

r2 + (
h ± 1

2

)2
)3/2 , ψ±

2 (r) = r2 + 2
(
h ± 1

2

)2

(
r2 + (

h ± 1
2

)2
)3/2 . (2.16a,b)

On the other hand, four integral equations on the outer domain are obtained by
addressing the continuity of the hydrodynamic stress vector at z = ±1/2 prescribed by
(2.11c). They can be cast in the form∫ ∞

0
gi(λ)J1(λr) dλ = 0 (r > R), i ∈ {1, 3}, (2.17a)

∫ ∞

0
gi(λ)J0(λr) dλ = 0 (r > R), i ∈ {2, 4}, (2.17b)
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Axisymmetric stokeslet between two disks 904 A34-9

where we have defined the wavenumber-dependent quantities

g1(λ) = λ2 (( 1
2 A−

2 − B−
2

)
eλ/2 + (

1
2

(
A1 − A+

2

)+ B+
2 − B1

)
e−(λ/2)) , (2.18a)

g3(λ) = λ2 (( 1
2 A+

2 + B+
2

)
eλ/2 + (

1
2

(
A3 − A−

2

)+ B3 − B−
2

)
e−(λ/2)) , (2.18b)

g2(λ) = C−eλ/2 + λ ((1 + 1
2λ
) (

A1 − A+
2

)+ λ (B+
2 − B1

))
e−(λ/2), (2.18c)

g4(λ) = C+eλ/2 + λ ((1 + 1
2λ
) (

A3 − A−
2

)+ λ (B3 − B−
2

))
e−(λ/2), (2.18d)

wherein C± = λ((1 − λ/2)A±
2 ∓ λB±

2 ).
Inserting (2.13) and (2.14), equations (2.15)–(2.18) form a system of four dual integral

equations (Tricomi 1985) for the unknown wavenumber-dependent coefficients regrouped
in X 13. A solution of such types of dual integral equations with Bessel kernels can
be obtained by the methods prescribed by Sneddon (1960, 1966) and Copson (1961).
A similar procedure has recently been employed by some of us to address the axisymmetric
flow induced by a stokeslet near a circular elastic membrane (Daddi-Moussa-Ider,
Kaoui & Löwen 2019), and the asymmetric flow field near a finite-sized rigid disk
(Daddi-Moussa-Ider et al. 2020). Once X 13 is determined from solving the dual integral
equations derived above, the remaining wavenumber-dependent coefficients expressed by
X 2 follow forthwith from (2.13) and (2.14).

The core idea of our solution approach consists of expressing the solution of (2.17) as
definite integrals of the forms

gi(λ) = 2λ1/2
∫ R

0
fi(t)J3/2(λt) dt, i ∈ {1, 3}, (2.19a)

and

gi(λ) = 2λ1/2
∫ R

0
fi(t)J1/2(λt) dt, i ∈ {2, 4}, (2.19b)

where fi : [0,R] → R, for i ∈ {1, 2, 3, 4}, are unknown functions to be determined.
Accordingly, the integral equations in the outer domain boundaries are automatically
satisfied upon making use of the following identity, which holds for any positive integer p
(Abramowitz & Stegun 1972),∫ ∞

0
λ1/2Jp(λr)Jp+1/2(λt) dλ = 0 (0 < t < r). (2.20)

By solving (2.18) for the coefficients A1, B1, A3 and B3 upon making use of (2.13) and
(2.14), equation (2.15) can be rewritten as∫ ∞

0
(2λ)−1 (g1(λ)+ (λ− 1) e−λg3(λ)+ λe−λg4(λ)

)
J1(λr) dλ = ψ+

1 (r), (2.21a)

∫ ∞

0
(2λ)−1 ((λ− 1) e−λg1(λ)+ λe−λg2(λ)+ g3(λ)

)
J1(λr) dλ = ψ−

1 (r), (2.21b)

∫ ∞

0
(2λ)−1 (g2(λ)+ λe−λg3(λ)+ (λ+ 1) e−λg4(λ)

)
J0(λr) dλ = ψ+

2 (r), (2.21c)

∫ ∞

0
(2λ)−1 (λe−λg1(λ)+ (λ+ 1) e−λg2(λ)+ g4(λ)

)
J0(λr) dλ = ψ−

2 (r). (2.21d)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

70
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.706


904 A34-10 A. Daddi-Moussa-Ider and others

Next, by substituting (2.19) into (2.21) and interchanging the order of the integrations
with respect to the variables t and λ, the equations associated with the inner problem can
be expressed in the following final forms:

∫ R

0
(L5(r, t)f1(t)+ L4(r, t)f3(t)+ L1(r, t)f4(t)) dt = ψ+

1 (r), (2.22a)

∫ R

0
(L4(r, t)f1(t)+ L1(r, t)f2(t)+ L5(r, t)f3(t)) dt = ψ−

1 (r), (2.22b)

∫ R

0
(L6(r, t)f2(t)+ L3(r, t)f3(t)+ L2(r, t)f4(t)) dt = ψ+

2 (r), (2.22c)

∫ R

0
(L3(r, t)f1(t)+ L2(r, t)f2(t)+ L6(r, t)f4(t)) dt = ψ−

2 (r), (2.22d)

where the kernels Li : [0,R]2 → R, for i ∈ {1, 2, 3, 4}, are complex mathematical
functions that are defined and provided in appendix A.

Equations (2.22) form a system of four Fredholm integral equations of the first
kind (Smithies 1958; Polyanin & Manzhirov 1998) for the unknown functions fi(t),
i ∈ {1, 2, 3, 4}. Owing to the complicated nature of the kernel functions, we make recourse
to numerical solutions.

2.3. Numerical solution of the integral equations and comparison with FEM simulations
We now summarise the main steps involved in the numerical computations of the flow
field. First, the integration over the intervals [0,R] in (2.22) are partitioned into N
subintervals and each integral is approximated by the standard middle Riemann sum
(Davis & Rabinowitz 2007). The four resulting equations are evaluated at N values of
tj that are uniformly distributed over the interval [0,R] such that tj = (j − 1/2)(R/N),
with j = 1, . . . ,N. Secondly, the discrete values of fi(tj), with i ∈ {1, 2, 3, 4}, are obtained
by solving the resulting linear system of 4N equations. Thirdly, the four integrals in
(2.19) are converted into well-behaved definite integrals over [0,π/2] by using the
change of variable λ = tan u and thus dλ = du/cos2 u. Thereupon, the resulting integrals
are also approximated by the middle Riemann sum, and the wavenumber-dependent
functions gi(λk = tan uk), k = 1, . . . ,M, are evaluated at discrete values of uk such that
uk = (k − 1/2)(π/2)/M. Fourthly, the values of X 2 at each discrete point λk are readily
obtained by inverting the linear system of four equations given by (2.18). In addition, it
follows from (2.13) that X 13 = Q−1 · X 2. Finally, the image flow fields are obtained from
(2.10) by approximating, again, the integrals by the middle Riemann sum.

Even though the approach employed here may seem cumbersome at first glance, it
has the advantage of being amenable to straightforward implementation. Unlike many
direct numerical simulation techniques, which generally require discretisation of the entire
three-dimensional fluid domain, or of at least an effectively two-dimensional domain when
the axial symmetry is exploited, the integral formulation presented in this work reduces
the solution of the flow problem to a set of one-dimensional integrals. Besides, the present
semi-analytical approach might serve as a motivation for various theoretical investigations
of related problems that could possibly pave the way towards real engineering applications.

In figure 2, we present a log–log plot of the variations of the discretisation error (Roy
2010) associated with the numerical computation of the amplitude of the image velocity
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FIGURE 2. Log–log plot of the relative discretisation error occurring in the computation of the
amplitude of the image velocity field versus the number of discretisation points, evaluated at
various positions within the fluid domain. Here, we set R = H, h/H = 0.3 and M = 10N. The
errors are estimated relative to the corresponding values computed using a finer grid spacing
with N = 15 000 and M = 150 000.

field versus the number of discrete points used in the numerical integration of (2.22)
while keeping M = 10N in the discretisation of (2.19) and (2.10). The error is estimated
relative to the numerical solution on a finer gird size for N = 15 000 and M = 150 000 at
three different points of the fluid domain. We observe that the error decays approximately
algebraically as N−3/2 over the whole range of considered values of N and lies well below
10−3 % for N ≥ 5000. We have checked that a similar behaviour is also found when
varying the position of the stokeslet or the evaluation point within the fluid domain.

To validate our semi-analytical solution, we perform direct numerical simulations for
the same geometry as well. We use a piecewise-quadratic finite-element discretisation of
the Stokes problem stated by (2.2) in cylindrical coordinates. Since such an equal-order
discretisation does not satisfy the inf-sup condition, we add stabilisation terms of local
projection type (Becker & Braack 2001). The numerical domain is artificially limited to
(0,R)× (−Z,Z) with R,Z ∈ R being sufficiently large numbers so as to avoid spurious
feedback to the region of interest close to the plates. In addition, the Dirac delta function
forcing the flow is represented exactly in the variational formulation by means of∫ R

0

∫ Z

−Z
rδ(r − r0)φz(r) dr dz = φz(r0), (2.23)

where φz is the test function corresponding to the vertical direction. Numerically, the
singularity calls for very fine mesh resolution close to r0 and in proximity to the coaxially
positioned plates, which we accomplish by local mesh adaptivity (Braack & Richter 2006).
Further details on the discretisation method and the solution of the resulting linear systems
of equations can be found in Richter (2017).

In figure 3, we represent the graphs of the resulting streamlines as well as contour plots
of the total velocity field resulting from a stokeslet singularity axisymmetrically acting
at various positions along the axis of two coaxially disposed disks of unit radius. Here,
we set the numbers of discrete points to N = 15 000 and M = 150 000 in our numerical
evaluation of the analytical description. The magnitude of the scaled velocity field is
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904 A34-12 A. Daddi-Moussa-Ider and others

shown on a logarithmic scale in order to better appreciate the difference in magnitude
between the different fluid regions. In each panel, we depict on the left-hand side the
results obtained via our semi-analytical approach derived in the present work. On the
right-hand side in each panel, we include the corresponding flow fields determined
via the FEM simulations. Good agreement between the two solution procedures is
obtained over the whole fluid domain, demonstrating the robustness and applicability
of our semi-analytical approach. Most noticeably, we observe the existence of adjacent
counter-rotating eddies, the axis of rotation of which is directed along the azimuthal
direction. Accordingly, the resulting flow field in the inner region consists of toroidal
eddies on account of the axisymmetric nature of the flow (Moffatt 1964). In contrast
to that, descending streamlines are obtained in the outer region. For infinitely large
disks, analogous toroidal structures have previously been identified and proven to decay
exponentially with distance from the singularity position (Liron & Blake 1981). Moreover,
we remark that the overall magnitude of the flow field becomes less important as the point
force gets closer to a confining plate. This behaviour is accompanied by a notable increase
of the asymmetry of the counter-rotating eddies.

Having derived the solution of the flow problem due to an axisymmetric stokeslet acting
near two finite-sized coaxially positioned disks, we next employ our formalism to recover
the solution earlier obtained by Liron & Mochon (1976) for a stokeslet acting between two
parallel planar walls of infinite extent along the transverse direction.

2.4. Solution for R → ∞
For infinitely large disks, the integral equations (2.21) in the inner domain become defined
for the whole axis of positive real numbers. Accordingly, the solution for the unknown
functions gi(λ), for i ∈ {1, 2, 3, 4}, can be obtained using inverse Hankel transforms. By
making use of the orthogonality property of Bessel functions (Abramowitz & Stegun 1972)∫ ∞

0
rJν(λr)Jν(λ′r) dr = λ−1δ(λ− λ′), (2.24)

we readily obtain

H · g = ψ̂, (2.25)

where we have defined the unknown vector g = (g1, g2, g3, g4)
T, the wavenumber-dependent

matrix

H =

⎛
⎜⎜⎜⎜⎝

eλ 0 λ− 1 λ

λ− 1 λ eλ 0

0 eλ λ λ+ 1

λ λ+ 1 0 eλ

⎞
⎟⎟⎟⎟⎠ , (2.26)

and where ψ̂ = (ψ̂+
1 , ψ̂

−
1 , ψ̂

+
2 , ψ̂

−
2 )

T gathers the inverse Hankel transforms of the
previously introduced auxiliary functions defined by (2.16a,b). Specifically, we have

ψ̂±
1 (λ) =

∫ ∞

0
rψ±

1 (r)J1(λr) dr = ( 1
2 ± h) exp(−λ( 1

2 ± h)), (2.27a)

ψ̂±
2 (λ) =

∫ ∞

0
rψ±

2 (r)J0(λr) dr =
(

1
λ

+ 1
2

± h
)

exp
(

−λ
(

1
2

± h
))

, (2.27b)
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FIGURE 3. Streamlines and contour plots of the flow field induced by a point-force singularity
acting inside two coaxially positioned disks of no-slip surfaces and of rescaled unit radius for
various values of the vertical distance h/H. In each panel, the flow velocity field obtained
using the present semi-analytical approach is displayed in the left domain corresponding to
x ≤ 0, while the solution obtained using FEM simulations is presented in the right domain
corresponding to x ≥ 0 for the same set of parameters. Here, we have defined the scaled flow
velocity as V = v/(F/(8πη)). (a) h/H = 0, (b) h/H = 0.1, (c) h/H = 0.2, (d) h/H = 0.25,
(e) h/H = 0.3, ( f ) h/H = 0.4.

for |h| < 1/2. Solving the linear system of equations given by (2.25) and (2.26) for the
unknown vector function g upon making use of (2.13), (2.14) and (2.18) leads to

X 13 = (e−λh,−he−λh, eλh,−heλh)T. (2.28)
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904 A34-14 A. Daddi-Moussa-Ider and others

Accordingly, the total velocity and pressure fields in the lower and upper regions vanish
in the limit R → ∞. The corresponding solution in the intermediate fluid domain can
readily be obtained by invoking (2.13) and (2.14).

3. Hydrodynamic mobility

Our calculation of the flow field presented in the previous section can be employed
in order to probe the effect of the two hard disks on the hydrodynamic drag acting on
an enclosed point-like particle axially moving along the coaxially positioned axis. This
effect is commonly quantified by the hydrodynamic mobility function, which relates the
velocity of a particle to the net force exerted on its surface (Leal 1980; Swan & Brady
2007; Daddi-Moussa-Ider & Gekle 2016, 2017, 2018; Driscoll & Delmotte 2019). In a bulk
Newtonian fluid of constant dynamic viscosity η, the mobility function μ of a spherical
particle of radius a is given by the familiar Stokes law (Stokes 1851), which states that
in this case the mobility is μ0 = 1/(6πηa). In the presence of the confining disks, the
leading-order correction to the particle mobility for an axisymmetric motion along the
axis is obtained by evaluating the image flow field at the particle position as

�μ = F−1 lim
(r,z)→(0,h)

v∗
z 2(r, z). (3.1)

Evaluating the limit in the latter equation and scaling by the bulk mobility, the scaled
correction to the particle mobility is obtained as

�μ

μ0
= −ka, (3.2)

where

k = 3
4

∫ ∞

0

((
(1 − λh)A+

2 − λB+
2

)
eλh + (

(1 + λh)A−
2 + λB−

2

)
e−λh) dλ (3.3)

is a positive dimensionless number commonly denominated as the correction factor of the
Stokes steady mobility (Happel & Brenner 1983). Unfortunately, an analytical evaluation
of this infinite integral is not auspicious. Therefore, we make recourse to a numerical
evaluation.

For infinitely large disks, i.e. as R → ∞, the correction factor k in (3.2) can conveniently
be cast into the simple integral form

k∞ = 3
8

∫ ∞

0
W(λ)

(
sinh2 λ− λ2)−1

dλ, (3.4)

where we have defined the wavenumber-dependent function

W(λ) = Γ+ + Γ− + γ+ + γ− + e−2λ − β+β−λ3 − 2λ2 − 2λ− 1, (3.5)

with

β± = 1 ± 2h, Γ± = (1 + 1
2 λ

2β2
±) sinh(λβ∓), γ± = λβ± cosh(λβ∓). (3.6a–c)

This result is found to be in full agreement with the expression obtained by Swan & Brady
(2010), who used a two-dimensional Fourier transform technique.
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FIGURE 4. Variations of the correction factor of the hydrodynamic mobility as defined by (3.3)
versus R/H for various values of h/H. Horizontal dashed lines correspond to the correction factor
near two infinitely large disks as given by (3.4). Inset: Evolution of R99/H versus h/H, where
R99 is defined such that k(R99/H) = 0.99k∞, for which the correction factor near infinitely large
disks is almost recovered.

In figure 4, we present a linear–logarithmic plot of the correction factor of the mobility
function versus the radius of the disks for various values of the singularity position.
Results are obtained by integrating (3.3) numerically. We observe that the curves follow
a sigmoid-logistic-like phenomenology, implying that the correction factor increases
significantly in the range of small radii before it reaches a saturation value. The latter
corresponds to the correction factor predicted near two infinitely large disks given by (3.4).

Next, in order to quantify the effect of finite disk size on the correction to the
hydrodynamic mobility, we customarily define the radius R99 for which the mobility near
infinitely large disks is essentially reached, such that k(R99) = 0.99k∞. In the inset of
figure 4, we display the variations of R99 versus h based on the data presented in the main
plot. We observe that R99 reaches a maximum value of approximately 0.62 at the mid-plane
of the channel before it monotonically decreases with h. This observation suggests that,
to a good approximation, the mobility near two infinitely large disks can adequately be
used to estimate the mobility at an arbitrary position along the axis provided that the ratio
of radius to channel height is above 0.62. Hence, accounting for the finite-size effect here
becomes crucial only for values below this threshold.

Finally, we comment on the applicability of the often-used approximation originally
suggested by Oseen (1928) to predict the particle mobility between two boundaries by
superimposing separately the leading-order effects of each boundary. Accordingly,

�μSup

μ0
= −kSupa, kSup = −a−1

(
�μDisk

μ0

∣∣∣∣
b=1/2−h

+ �μDisk

μ0

∣∣∣∣
b=1/2+h

)
, (3.7a,b)

where the leading-order correction to the mobility function for axisymmetric motion
normal to one rigid circular disk has previously been obtained by Kim (1983) and is
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FIGURE 5. Percentage relative error between the correction factor of the Stokes steady mobility
as obtained from the superposition approximation given by (3.7a,b) and the exact expression
given by (3.3).

expressed by

�μDisk

μ0
= − 3

4π

(
3 + 5ξ 2

(1 + ξ 2)2
+ 3
ξ

arctan
(

1
ξ

))
a
R
, (3.8)

wherein ξ = b/R is a dimensionless parameter with b denoting the distance between the
particle and the centre of the disk. This solution was obtained by formulating the flow
problem in terms of a mixed boundary-value problem and solving the resulting dual
integral equations using an approach analogous to that employed in the present work.
Notably, for ξ → 0 we recover the familiar correction to the hydrodynamic mobility near
an infinitely extended plane solid wall of no-slip boundary condition at its surface, namely
�μDisk/μ0 = −9a/(8b), as originally obtained by Lorentz using the reciprocal theorem
more than a century ago (Lorentz 1907; Lee, Chadwick & Leal 1979).

We now assess the accuracy of the superposition approximation stated by (3.7a,b)
by direct comparison with the exact prediction given by (3.3). In figure 5, we plot the
variations of the percentage relative error between the correction factors kSup and k versus
the radius of the disks R for various values of the particle position h. In the range of
small values of R, the relative error amounts to small values, typically smaller than 10 %
for R < 0.1. Upon increasing R, the relative error gradually increases in a logistic-like
manner, before it saturates on a plateau value as R gets larger. The maximum error is
obtained for the particle located on the mid-plane between the two disks for h = 0 and
is found to be approximately 55 % in the limit of infinite disk radius. Therefore, the
superposition approximation cannot be applied properly in this case. Nonetheless, as the
particle position gets closer to either disk, the maximum error notably decreases to amount
to only approximately 12 % for h = 0.4. Consequently, the superposition approximation
can frequently be utilised in this range of values to predict the hydrodynamic mobility for
axisymmetric motion along the axis of the disks.
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4. Conclusions

To summarise, we have examined the axisymmetric Stokes flow resulting from a
stokeslet singularity acting on the axis of two coaxially positioned circular disks of equal
radius. We have formulated the solution for the viscous incompressible flow field as a
mixed boundary-value problem, which we have then reduced to a system of dual integral
equations for four unknown wavenumber-dependent functions. Most importantly, we have
shown the existence of viscous toroidal eddies in the fluid region bounded by the two
plates. In the limit of infinitely large disks, we have successfully recovered the classic
solution by Liron & Mochon (1976) for a stokeslet acting normal to two parallel planar
walls.

Additionally, we have provided an integral expression of the hydrodynamic mobility
function quantifying the effect of the confining plates on the motion of a point-like
particle moving along the axis of the coaxially positioned disks. Furthermore, we have
demonstrated that accounting for the finite-size effect of the disks becomes essential
only below a threshold value of the ratio of radius to channel height. Beyond this
value, the mobility near two infinitely large disks can appropriately be employed. Finally,
we have tested the validity and robustness of Oseen’s approximation that postulates
that the particle mobility between two boundaries could approximately be predicted by
superimposing the contributions from each boundary independently. We have found that
this simplistic approximation works quite well as the particle gets closer to either boundary
but severely breaks down when the particle is located in the mid-plane between the two
disks.

The analytical approach in the present paper is based on the assumption of flow
axisymmetry. The Stokes flow induced by a stokeslet directed along an arbitrary direction
in the presence of two coaxially positioned disks would be worth investigating in a
future study. We conjecture that this solution might be obtained by making use of
the Green and Neumann functions supplemented by the edge function, following the
approach by Miyazaki (1984). This solution can then be employed to evaluate the
translational and rotational mobility functions of particles located at arbitrary positions
between the two disks. Alternatively, the problem can possibly be approached differently
by means of multipole expansion methods involving the expression of the relevant
hydrodynamic fields using oblate spheroidal coordinates (Lee & Leal 1980). This approach
has been widely employed in the context of micromechanics of heterogeneous composite
materials and fracture analysis (Kushch & Sangani 2000; Kushch 2013). In principle,
our calculations can be extended to account for higher-order correction factors in the
aspect ratio between the radius of the disks and the distance between the particle and
the bounding plates (Swan & Brady 2010), but this would require a very challenging
effort.

For applications requiring the precise manipulation of single molecules at the nanoscale
level, the no-slip boundary condition may need to be lifted. In this context, the effect of
partial slip at the surfaces of the disks is commonly characterised by assuming that the
velocity components of the fluid tangent to the surfaces of the disks is proportional to
the rate of strain at the surfaces (Lauga & Squires 2005; Lasne et al. 2008). This is an
interesting aspect that could be included in our formalism and represents a worthwhile
extension of the problem for future studies. We hope that our study will prove useful to
researchers as well as practitioners working on particulate flow problems involving finitely
sized boundaries, and pave the way towards better design and control of various processes
in micro- and nanofluidic systems.
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Appendix A. Analytical expressions for the kernel functions

In this appendix, we provide technical details regarding the analytical derivation of the
kernel functions appearing in the system of Fredholm integral equations of the first kind
given by (2.22) of the main body of the paper.

The kernel functions can be expressed as infinite integrals over the wavenumber λ as

L1(r, t) =
∫ ∞

0
λ1/2e−λJ1(λr)J1/2(λt) dλ, (A 1a)

L2(r, t) =
∫ ∞

0

(
λ1/2 + λ−1/2) e−λJ0(λr)J1/2(λt) dλ, (A 1b)

L3(r, t) =
∫ ∞

0
λ1/2e−λJ0(λr)J3/2(λt) dλ, (A 1c)

L4(r, t) =
∫ ∞

0

(
λ1/2 − λ−1/2) e−λJ1(λr)J3/2(λt) dλ, (A 1d)

L5(r, t) =
∫ ∞

0
λ−1/2J1(λr)J3/2(λt) dλ, (A 1e)

L6(r, t) =
∫ ∞

0
λ−1/2J0(λr)J1/2(λt) dλ, (A 1f )

where (r, t) ∈ [0,R]2. It can be shown that the first four integrals can conveniently be
expressed in closed mathematical forms as

L1(r, t) =
(

2
πt

)1/2 1
r

Im(ξ+δ+), (A 2a)

L2(r, t) =
(

2
πt

)1/2

(Re(Λ)+ Im(δ−)) , (A 2b)

L3(r, t) =
(

2
πt

)1/2

Re(Λt−1 − δ−), (A 2c)

L4(r, t) =
(

2
πt

)1/2

(Re(χ1)+ Im(χ2)) , (A 2d)
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where we have defined the abbreviations

ξ± = 1 ± it, δ± = (
r2 + ξ 2

±
)−1/2

, Λ = arcsin
(

t + i
r

)
, σ = r

ξ− + δ−1
−
, (A 3a)

α = t
r
, χ1 = δ−

(
r
2

(
1 + σ 2)+ ξ−

r

)
− Λ

2α
, χ2 = 1

rtδ−
+ δ−

8α

(
ξ− − rσ 3) . (A 3b)

In addition, the integrals L5 and L6 have analytical forms and can be calculated
directly from standard integration tables or software algebra systems such as Mathematica
(Wolfram 1999) as

L5(r, t) = 1
2

(π

2t

)1/2
α−1H(t − r)+

(
1

2πt

)1/2 (
α−1 arcsin(α)− (1 − α2)1/2

)
H(r − t),

(A 4a)

L6(r, t) =
(π

2t

)1/2
H(t − r)+

(
2
πt

)1/2

arcsin(α)H(r − t), (A 4b)

where H(·) denotes the Heaviside step function.
In the following, we will show how the integrals given by (A 1) can be evaluated

analytically. The core idea of our approach consists of expressing these integrals in the
form of Laplace transforms of Bessel functions of the first kind (Spiegel 1965; Widder
2015),

L {Jk(z)} ( p) = (1 + p2)−1/2 (p + (1 + p2)1/2
)−k

, (A 5)

and using the recurrence relation (Abramowitz & Stegun 1972)

2k
z

Jk(z) = Jk−1(z)+ Jk+1(z). (A 6)

In addition, we will employ the following identities providing closed-form expressions
for the Bessel functions of the first kind of half-integer order in terms of the standard
trigonometric functions,

J1/2(z) =
(

2
πz

)1/2

sin(z), (A 7a)

J−1/2(z) =
(

2
πz

)1/2

cos(z). (A 7b)

A.1. Evaluation of the integral L1

By making use of the identity given by (A 7a), the integral L1 stated by (A 1a) can be
expressed as

L1(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ1(λr) sin(λt) dλ. (A 8)

Using the change of variable x = λr and Euler’s representation of the sine function, the
latter integral can be expressed as

L1(r, t) =
(

2
πt

)1/2 1
r

Im
(∫ ∞

0
exp

(
− x

r
(1 − it)

)
J1(x) dx

)
. (A 9)
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This leads to (A 2a) after making use of the Laplace transform given by (A 5) for k = 1
and p = (1 − it)/r. We note that Im(z) = − Im(z̄) for z ∈ C, where z̄ denotes the complex
conjugate of z.

A.2. Evaluation of the integral L2

We next consider the integral defined by (A 1b), which can conveniently be decomposed
into two parts as

L2(r, t) = L2,1(r, t)+ L2,2(r, t), (A 10)

where

L2,1(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ0(λr) sin(λt) dλ, (A 11a)

L2,2(r, t) =
(

2
πt

)1/2 ∫ t

0
du
∫ ∞

0
e−λJ0(λr) cos(λu) dλ. (A 11b)

Here, we have made use of (A 7a) together with the integral representation

sin(λt) = λ
∫ t

0
cos(λu) du. (A 12)

Using Euler’s relation together with (A 5) for k = 0, (A 11) can be evaluated as

L2,1(r, t) =
(

2
πt

)1/2

Im
((

r2 + (1 − it)2
)−1/2

)
, (A 13a)

L2,2(r, t) =
(

2
πt

)1/2

Re
(∫ t

0

(
r2 + (1 − iu)2

)−1/2
du
)
. (A 13b)

The definite integral in (A 13b) can be evaluated as

L2,2(r, t) =
(

2
πt

)1/2

Re
(

arcsin
(

t + i
r

))
. (A 14)

Equation (A 2b) follows forthwith after collecting terms.
It is worth mentioning that, for a given complex number z = x + iy, the arcsine function

is defined when ±x /∈ (1,∞) as (Abramowitz & Stegun 1972)

arcsin(z) = arcsin(α−)+ i sign( y) ln
(
α+ + (

α2
+ − 1

)1/2
)
, (A 15)

where

α± = 1
2((x + 1)2 + y2)1/2 ± 1

2((x − 1)2 + y2)1/2. (A 16)
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A.3. Evaluation of the integral L3

Analogously, the integral L3 defined by (A 1c) can be decomposed into two parts as

L3(r, t) = L3,1(r, t)− L3,2(r, t), (A 17)

upon using the recurrence relation stated by (A 6) and setting k = 1/2 together with the
identities given by (A 7). Here, we have defined L3,1(r, t) = t−1L2,2(r, t) and

L3,2(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ0(λr) cos(λt) dλ, (A 18)

which can readily be evaluated as (A 11a) but this time by taking the real part. This leads
to (A 2c) upon collecting terms.

A.4. Evaluation of the integral L4

Finally, upon using (A 6) for k = 1/2 and the identities given by (A 7), the integral L4 can
be decomposed into four parts:

L4(r, t) = L4,1 + L4,2 − (L4,3 + L4,4), (A 19)

where we have defined

L4,1(r, t) =
(

2
πt

)1/2

t−1
∫ ∞

0
λ−1e−λJ1(λr) sin(λt) dλ, (A 20a)

L4,2(r, t) =
(

2
πt

)1/2 ∫ ∞

0
λ−1e−λJ1(λr) cos(λt) dλ, (A 20b)

L4,3(r, t) =
(

2
πt

)1/2 ∫ ∞

0
e−λJ1(λr) cos(λt) dλ, (A 20c)

L4,4(r, t) =
(

2
πt

)1/2

t−1
∫ ∞

0
λ−2e−λJ1(λr) sin(λt) dλ. (A 20d)

In the following, we will make use when appropriate of the shorthand notation defined
in (A 3a). By using the integral representation of the sine function given by (A 12), the
first integral can be expressed as

L4,1(r, t) =
(

2
πt

)1/2

t−1
∫ t

0
du
∫ ∞

0
e−λJ1(λr) cos(λu) dλ. (A 21)

Similarly, the evaluation of the indefinite integral over λ can be performed using the
Laplace transform of the Bessel function given by (A 5) to obtain

L4,1(r, t) =
(

2
πt

)1/2

(tr)−1 Re
(∫ t

0

(
1 − (1 − iu)

(
r2 + (1 − iu)2

)−1/2
)

du
)
. (A 22)

The definite integral in the latter equation can then be evaluated and cast in the final
simplified form

L4,1(r, t) =
(

2
πt

)1/2

r−1 (1 + t−1 Im(δ−1
− )
)
. (A 23)

Next, the evaluation of the second integral is straightforward after expressing the
first-order Bessel function as a function of the zeroth- and second-order Bessel functions
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using the recurrence relation given by (A 6) for k = 1 to obtain

L4,2(r, t) = r(2πt)−1/2
∫ ∞

0
e−λ (J0(λr)+ J2(λr)) cos(λt) dλ, (A 24)

which can readily be evaluated as

L4,2(r, t) = r(2πt)−1/2 Re
(
δ−
(
1 + σ 2)) . (A 25)

The third integral can be deduced from the calculation of L1(r, t) given by (A 9), this
time by taking the real part to obtain

L4,3 =
(

2
πt

)1/2

r−1 Re(1 − ξ−δ−). (A 26)

Lastly, the fourth integral can be decomposed into two parts as

L4,4(r, t) = L4,4,1(r, t)+ L4,4,2(r, t), (A 27)

where L4,4,1(r, t) = (2α)−1L2,2(r, t) and

L4,4,2(r, t) = (2πt)−1/2 r
t

∫ ∞

0
λ−1e−λJ2(λr) sin(λt) dλ. (A 28)

This integral can be handled using the recurrence formula given by (A 6) to obtain

L4,4,2(r, t) = (2πt)−1/2 r2

4t

∫ ∞

0
e−λ (J1(λr)+ J3(λr)) sin(λt) dλ. (A 29)

The latter integral can be calculated and cast in the final simplified form

L4,4,2(r, t) = (2πt)−1/2(4α)−1 (r Im(δ−σ 3)− Im(ξ−δ−)
)
. (A 30)

By collecting terms, (A 2d) is readily obtained.
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