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Structural variation in 1,019 diverse humans 
based on long-read sequencing

Siegfried Schloissnig1,19, Samarendra Pani2,3,19, Jana Ebler2,3, Carsten Hain4, Vasiliki Tsapalou4, 
Arda Söylev2,3, Patrick Hüther1,5, Hufsah Ashraf2,3, Timofey Prodanov2,3, Mila Asparuhova1,6, 
Hugo Magalhães2,3, Wolfram Höps7, Jesus Emiliano Sotelo-Fonseca8,9, Tomas Fitzgerald10, 
Walter Santana-Garcia10, Ricardo Moreira-Pinhal11,12, Sarah Hunt10, Francy J. Pérez-Llanos13,14, 
Tassilo Erik Wollenweber13, Sugirthan Sivalingam15, Dagmar Wieczorek15, Mario Cáceres11,12,16, 
Christian Gilissen7, Ewan Birney10, Zhihao Ding17, Jan Nygaard Jensen17, Nikhil Podduturi17, 
Jan Stutzki18, Bernardo Rodriguez-Martin4,8,9 ✉, Tobias Rausch4 ✉, Tobias Marschall2,3 ✉ & 
Jan O. Korbel4,10 ✉

Genomic structural variants (SVs) contribute substantially to genetic diversity  
and human diseases1–4, yet remain under-characterized in population-scale  
cohorts5. Here we conducted long-read sequencing6 in 1,019 humans to construct  
an intermediate-coverage resource covering 26 populations from the 1000 Genomes 
Project. Integrating linear and graph genome-based analyses, we uncover over 100,000 
sequence-resolved biallelic SVs and we genotype 300,000 multiallelic variable number 
of tandem repeats7, advancing SV characterization over short-read-based population-
scale surveys3,4. We characterize deletions, duplications, insertions and inversions in 
distinct populations. Long interspersed nuclear element-1 (L1) and SINE-VNTR-Alu (SVA) 
retrotransposition activities mediate the transduction8,9 of unique sequence stretches 
in 5′ or 3′, depending on source mobile element class and locus. SV breakpoint analyses 
point to a spectrum of homology-mediated processes contributing to SV formation 
and recurrent deletion events. Our open-access resource underscores the value of 
long-read sequencing in advancing SV characterization and enables guiding variant 
prioritization in patient genomes.

SVs make up most polymorphic base pairs in the genome4, and are 
causally implicated in numerous common and rare diseases1,2. A sub-
set of SVs exhibit strong population stratification10,11. Recently, the 
Human Pangenome Reference Consortium (HPRC) released a draft 
pangenome from 44 diploid long-read sequencing (LRS) assemblies 
generated from multiple genomic platforms, and demonstrated 
how this graph-based reference enhances SV discovery12. Although 
LRS is increasingly used in disease research and diagnostics13–16, 
population-scale datasets with comprehensive global representa-
tion remain limited5. Addressing this gap would be critical to facili-
tate widespread community access to rare and ancestry-specific 
genetic variation, especially for variants such as insertions, which 
are typically underrepresented in short-read sequencing datasets17. 
These data are expected to be instrumental to facilitate human diver-
sity and disease research, including variant prioritization in genomic  
medicine.

Here we applied Oxford Nanopore Technologies (ONT) LRS to ana-
lyse SVs from the 1000 Genomes Project (1kGP) sample collection18, 
which allows open and unrestricted public data access, data sharing 
and reuse. To allow inclusion of a wide diversity of haplotypes, we per-
formed ONT-based genomic sequencing of over a thousand human 
samples to intermediate coverage. To benefit from recent advances 
in interpreting genetic variation in a pangenome12, we established 
methods that leverage linear and graph-based pangenomic refer-
ences for LRS-based SV discovery, and engineered a computational 
framework using graph augmentation for SV genotyping. Our result-
ing pangenomic dataset constitutes a comprehensive collection of 
DNA sequence-resolved SV alleles, encompassing a variant frequency 
spectrum from common to rare across 26 diverse human popula-
tions. This resource provides a global reference of genetic variation 
using LRS technology—facilitating studies of SV biology and human 
disease, and yielding insight into allelic architecture, mechanistic 
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origin, mutational recurrence and population distribution of SV  
classes.

LRS and graph-based SV discovery
We selected samples from the 1kGP collection, subjecting size-selected 
more than or equal to 25-kilobase pair (kb) DNA fragments to LRS 
(Supplementary Fig. 1 and Supplementary Table 1). After quality fil-
tering (Methods), our study cohort comprises 1,019 genomes (Fig. 1a), 
sequenced to a median coverage of 16.9× with a median N50 read length 
of 20.3 kb (Fig. 1b and Supplementary Fig. 2). These samples are from 
26 self-reported population groups and span five continental areas, 
including 189 from European (EUR) donors, 192 from East Asia (EAS), 
199 from South Asia (SAS), 275 from Africa (AFR) and 164 from the 
Americas (AMR).

To allow for graph-aware SV discovery and genotyping in these data, 
we devised the SV analysis by graph augmentation (SAGA) framework 
(Fig. 1c). Outlined below, SAGA integrates read mapping to both linear 
and graph references, followed by graph-aware SV discovery and geno-
typing at population scale.

Long-read alignment
In the initial step of SAGA, we performed read alignment against both 
linear (GRCh38, and the Telomere-to-Telomere (T2T) reference, denoted 
CHM13) and graph (the minigraph HPRC reference graph, denoted 
HPRC_mg) genomic references (Methods). Comparative analyses of the 
alignments show that HPRC_mg and CHM13 outperform GRCh38 (with 
average mapping identities increased by more than 0.5%), whereas the 
size distribution of alignment gaps indicates that HPRC_mg comprises 
a more comprehensive collection of mobile element insertions (MEIs) 
and deletions (Supplementary Fig. 3). Using CHM13, we find that on 

average 93.6% of the genome exhibits a coverage of 5× or more per sam-
ple (Supplementary Fig. 4). Furthermore, using WhatsHap (Methods) 
we haplotype-phased single nucleotide polymorphisms (SNPs) using 
our ONT dataset, and find that these show excellent concordance with 
phased SNPs from a short-read-based 1kGP study3, as evidenced by 
median switch error rates of only 0.69% in children from the six parent– 
offspring trios included in our dataset, and 1.32% for unrelated (and 
parental) samples (Supplementary Fig. 5 and Supplementary Note 1).

SV discovery
To allow for comprehensive SV discovery, we used LRS-based SV call-
ers tailored to linear reference genomes. We used Sniffles and DELLY 
(Methods), applying both to GRCh38 and CHM13. Callset integration 
across both linear references yielded an average number of 15,301 and 
21,529 SVs per sample for Sniffles and DELLY, respectively.

To complement these classical SV discovery methods, we addition-
ally harnessed the graph-aware SVarp algorithm (Methods), which 
allows SV discovery in haplotype contexts represented in HPRC_mg 
yet absent from a linear reference. SVarp searches for SV patterns from 
graph-aligned reads, and then performs local long-read assembly to 
reconstruct ‘SV sequence contigs’ (svtigs). To maximize the accuracy of 
svtig assembly, we applied SVarp to a subset of our sample set (n = 967 
genomes) previously sequenced at high coverage with short reads3. 
This allowed efficient haplotype assignment (‘haplo-tagging’) of 69.9% 
of the ONT reads using phased SNPs. Using this haplo-tagged read 
information, SVarp constructed on average 1,145 svtigs per genome not 
previously contained in the HPRC_mg graph (Supplementary Fig. 6).

Graph augmentation
To enable non-redundant SV callset integration across all SV callers, 
we augmented the HPRC_mg graph by incorporating further bubbles12 
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representing new SV allelic sequences. To achieve this, SAGA encom-
passes a pseudo-haplotype construction and a graph augmentation step 
(Fig. 1c). Pseudo-haplotype construction produces chromosome-wide, 
haplotype-like sequences that incorporate the discovered SV alleles in 
a non-overlapping manner (Methods). Graph augmentation then uses 
the minigraph tool (Methods) to integrate these pseudo-haplotypes 
into the graph. Our study augments the HPRC_mg graph (originally rep-
resenting 44 samples) with SVs from all 967 LRS samples considered for 
comprehensive SV discovery. This process yields ‘HPRC_mg_44+966’, a 
pangenome representing SVs from 1,010 individuals (considering one 
sample in our resource (HG01258) is part of the HPRC_mg graph already; 
Extended Data Fig. 1 and Supplementary Fig. 7). HPRC_mg_44+966 
comprises 220,168 bubbles altogether, compared with 102,371 bubbles 
present in HPRC_mg (Supplementary Figs. 8 and 9).

Of the 117,797 new bubbles represented in HPRC_mg_44+966, 105,744 
(90%) are at least 1 kb away from the nearest bubble in the original 
HPRC_mg graph. These are presumed to reflect SVs not previously 
represented in HPRC_mg (Supplementary Fig. 10). To evaluate the 
quality of HPRC_mg_44+966, we mapped ONT reads from the HG00513 
sample onto this graph. We observe improved alignment metrics, with 
a gain of 33,208 aligned reads and a further 152.5 megabases (Mb) of 
aligned bases compared with alignment onto HPRC_mg (Supplemen-
tary Table 3), suggesting the augmented graph provides enhanced SV 
analysis capabilities.

SV genotyping and phasing
Unified SV genotypes are a prerequisite for relevant downstream 
analyses with population-scale variant datasets, including population 
genetic and disease studies. As the final step of SAGA, we therefore use 
Giggles, a genotyping tool that harnesses graph-aligned long reads 
for SV genotyping (Methods). We genotyped the set of 967 samples 
of HPRC_mg_44+966 with available LRS data, yielding genotypes for 
167,291 primary SV sites.

Consistent haplotype phasing elevates the value of SV resources, 
facilitating allele-specific analyses and investigation of haplotype 
structures. We used a recently generated CHM13 haplotype reference 
panel19 constructed from short-read SNP calls to carry out statistical SV 
phasing using SHAPEIT5 (Methods). We find that 164,571 (98.4%) of the 
genotyped SV sites are successfully phased. These comprise our final 
SAGA-based SV callset, and include 65,075 deletions, 74,125 insertions 
and 25,371 ‘putatively complex’ sites, for which both the reference 
and alternative allele are larger than 1 base pair (bp) (Supplementary 
Note 2). On the basis of analysing the respective graph bubble struc-
tures (Methods), 107,005 SVs in the phased SV callset are classified as 
biallelic, and the remaining (n = 57,566) multiallelic.

Resource quality assessment
Comparison of this SV callset with SVs discovered from multi-platform 
genome assemblies recently constructed by the Human Genome Struc-
tural Variation Consortium (HGSVC)20 suggests a genome-wide false 
discovery rate (FDR) of 15.55% for deletions and 15.89% for insertions. 
The FDR varies by SV size: SVs ≥ 250 bp show considerably lower FDR 
(deletions: 6.91%, insertions: 8.12%) than SVs < 250 bp (deletions: 19.14%, 
insertions: 19.57%; Extended Data Fig. 2 and Supplementary Figs. 11 
and 12). The smallest SVs largely comprise tandem repeat variation, 
whose divergent representation between graph- and assembly-based 
callsets can complicate both SV discovery and comparative analysis21. 
MEIs—an SV class exhibiting well-defined allele architectures—exhibit 
a particularly low FDR (0.85–6.75%; Supplementary Fig. 13), whereas 
mobile element deletions show 1.94% FDR (Supplementary Note 3). 
Comparison with multi-platform assemblies20 also yielded autosomal 
sensitivity estimates, which vary by SV class, allele frequency and size 
(Extended Data Fig. 2 and Supplementary Figs. 14 and 15). Sensitiv-
ity is particularly high for MEIs (ranging from 84.3% to 90.6%). The 
genome-wide true positive rate is 64.36% for deletions and 67.33% 

for insertions after genotyping (Extended Data Fig. 2 and Methods). 
Reflecting our intermediate-coverage study design, more common 
SVs exhibit an improved true positive rate over rarer SVs, with 79.59% 
for deletions and 83.24% for insertions seen for minor allele frequency 
(MAF) ≥ 0.1.

We additionally examined the primary SV genotypes. SV allele fre-
quencies after phasing are in excellent agreement with the primary SV 
genotypes (Supplementary Figs. 16 and 17). We used data from the six 
parent–offspring trios to identify ‘Mendelian inconsistencies’, which 
could derive from de novo SV formation events or genotyping errors. 
The average rate of such inconsistencies for biallelic SVs is 3.87% for 
deletions, 4.44% for insertions and 4.10% for putatively complex sites, 
implying high genotype accuracy (Supplementary Tables 4–12). For 
multiallelic sites the average Mendelian inconsistency is 15.1%, reflect-
ing previously reported challenges in genotyping such variant sites4,18. 
Our estimates align with strong performance against Hardy–Weinberg 
equilibrium checks (Extended Data Fig. 3 and Supplementary Figs. 18 
and 19) and genotypes are largely robust to coverage and read length 
variations (Supplementary Note 4). Moreover, our SV sites intersect 
69.5% of insertions and 64.9% of deletions called from short-read 
sequencing in the same samples3 (Supplementary Fig. 20). At these 
intersecting sites, the genotype concordance is 98.7% for deletions 
(non-reference genotype concordance: 77.6%) and 96.8% for insertions 
(non-reference concordance: 79.0%) compared with Illumina-based 
genotypes3, in support of high genotype accuracy.

The SV landscape across 26 ancestries
We analysed the degree to which this SV dataset grows cumulatively 
after each new genome is added (Fig. 2a and Supplementary Fig. 9). We 
observe pronounced saturation effects22 for common SVs when adding 
new samples to the pangenome graph, with AFR samples dispropor-
tionally increasing SV yield consistent with higher levels of genetic 
variation in these populations18,22.

When compared with previous population-scale genome sequencing 
studies in 1kGP samples3,4, our resource captures more variants across 
the SV size spectrum, with SVs ranging from 50 to several hundred base 
pairs poorly captured using short reads17. The median SV count per 
sample is 23,969 for AFR samples (19,297 for other ancestries, non-AFR; 
Supplementary Note 4), compared with 9,963 and 8,540 for AFR and 
non-AFR, respectively, detected through short reads when subsetting 
to the same samples3. The proportionally largest gain is seen for inser-
tions, which our resource captures with increased sensitivity across 
insertion sizes (Fig. 2b and Supplementary Fig. 21). By comparison, 
large deletions are detected with increased abundance using short 
reads17 (Fig. 2b). Furthermore, facilitated by the read length in our 
resource, we observe a more than tenfold increase in insertion sites 
with sequenced-resolved SV alleles (Fig. 2b). For deletions, a consider-
able fraction of which can be resolved through split-read analysis using 
short reads3,4,23, our resource increases the nucleotide-resolved SV 
count by 40% (from 46,895 to 65,812). These analysis results are con-
sistent with the improved characteristics of LRS in resolving SVs17,22,24.

Rare SVs from diverse ancestries
Analysing the allele frequency spectrum from our augmented 
pangenome shows a broad spectrum of SV alleles, from common to 
rare (Fig. 2c, Extended Data Fig. 3 and Supplementary Fig. 22). We 
observe a considerable enhancement in capturing SVs with an allele 
frequency ≤ 2% over HPRC_mg, with the vast majority of rare SVs stem-
ming from samples newly incorporated into HPRC_mg_44+966 (Sup-
plementary Fig. 23). Across our resource, most SVs are rare (59.3% have 
an MAF < 1%), and, with the current sample size, are typically detected 
in a single continental cohort (AFR, AMR, EAS, EUR or SAS). By com-
parison, at an allele frequency ≥ 2.5%, most SVs are seen in at least two 
continental groups (Extended Data Fig. 3). Multiallelic SV loci generally 
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have a higher propensity to be shared across continents than biallelic 
SVs, with most multiallelic SVs with allele frequency ≥ 1.5% being shared 
(Supplementary Fig. 24), which is potentially explained by recurrent 
rearrangements at these loci. Furthermore, the relative increase in 
SVs in AFR samples is more pronounced for heterozygous than for 
homozygous SVs, reflecting the greater genetic diversity in AFR sam-
ples22 (Fig. 2a,d,e and Supplementary Fig. 25).

Population characteristics by SV class
Unlike previous 1kGP studies that have placed a focus on character-
izing sequence-resolved deletions3,4, we find comparable population 

characteristics between SVs primarily identified as deletions and inser-
tions (Supplementary Fig. 19). Measuring the degree to which SVs are in 
linkage disequilibrium with nearby SNPs, we find that 62.6% of deletions 
and 62.9% of insertions with at least 1% MAF are in linkage disequilibrium 
with nearby SNPs (r2 ≥ 0.5) (Extended Data Fig. 3 and Supplementary 
Fig. 26). These metrics increase to 89.8% (deletions) and 91.7% (inser-
tions), respectively, in Genome-in-a-Bottle (GiaB) ‘high-confidence 
regions’ (Methods), which are more depleted of repeats and thus less 
likely subject to recurrent SV or gene conversion events25. Both larger 
insertions and deletions are rarer in the population than smaller SVs 
(Supplementary Fig. 27), possibly explained by stronger negative 
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selection against variants affecting functional sequence. Consistent 
with this notion, SVs affecting functional elements show significantly 
reduced MAF (P < 7.4 × 10−235; Kolmogorov–Smirnov test; Fig. 2f).

Geographical stratification of SVs
A principal component analysis of SV calls, as well as an SV-based admix-
ture analysis, show groupings of samples corresponding well with donor 
ancestry4 (Extended Data Fig. 3). Using fixation indices (Fst) to quantify 
SV differentiation by continent, the allelic diversity of AFR (followed by 
EAS) is clearly observable (Fig. 2g and Supplementary Fig. 28). We find 
evidence for differentiation (Fst > 0.2) for 8,597 SVs (Supplementary 
Table 13), of which 105 encompass a GiaB-classified medically relevant 
gene26, and thus are of potential interest for disease studies (Supple-
mentary Table 14). Examples are a deletion and duplication affecting the 
intragenic regions of A4GALT (MAF 14%) and SNTG2 (MAF 18%), enriched 
in AFR and EAS, respectively (Fig. 2h). We further note a complex SV near 
LAMB1 exhibiting enrichment in AMR, and particularly among samples 
with self-identified ancestry of Peruvians in Lima (PEL) (Supplemen-
tary Fig. 29). Additionally, we observe a strong correlation between 
1-Mb-window averaged SV-based and SNP-based Fst values (Pearsonʼs 
P < 4.0 × 10−16), deviations of which potentially serve as indicators for 
genomic areas with SV-driven differentiation. Requiring a confidence 
level of more than 5 s.d. (P < 0.6 × 10−6), we find 11 regions in which the 
differentiation is likely to be SV-driven (Supplementary Table 15), includ-
ing a deleted region near gene ARHGAP24 with the highest MAF of 27.3% 
(Fst = 0.31) seen in the Mende in Sierra Leone (MSL).

Resolved spectrum of SV classes
We devised the SV annotator (SVAN), an algorithm that leverages allelic 
representations and genomic annotations to classify SVs into distinct 
classes (Methods). SVAN classifies 72,346 insertions (96.0%) of our 
pangenomic resource (Fig. 3a and Extended Data Fig. 3), offering a 
detailed perspective of this variant class. SVAN additionally classifies 
21,301 (32.2%) deletions, and 14,681 (57.1%) of all putatively complex 
sites (Fig. 3a), the latter of which resolve into 11,030 further insertions 
and 3,651 further deletions.

Duplications and variable number tandem repeats
In total, 17,029 (19.5%) of the insertions in our pangenomic resource 
are duplications, of which most (15,295, 89.8%) represent tandem 
duplications (Fig. 3). Additionally, 34,006 (39.0%) insertions and 
19,418 (26.2%) deletions are classified as variable number tandem 
repeats (VNTRs), an SV class relevant to human diversity and dis-
ease27 (Fig. 3a). Unlike for other SV classes, most VNTRs (50.4%) in our 
SAGA-based SV callset represent multiallelic SV sites, which poses a 
challenge to graph construction tools, as finding the correct align-
ment can be difficult if several SV alleles at the same locus differ in 
their representation by only a few base pairs21. Therefore, to allow us 
to systematically capture VNTR complexity, we additionally geno-
typed VNTR sites across our resource using the vamos tool (Methods).  
A detailed analysis of these genotypes shows 739 biallelic and 369,685 
multiallelic VNTRs, considerably surpassing estimates derived from 
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graph-based analysis, and thus providing a refined estimate of 
allelic VNTR diversity. In-depth comparison against multi-platform 
whole-genome assemblies20 shows a strong concordance in polymor-
phic repeat unit counts, supporting the robustness of the vamos-based 
VNTR genotypes (Supplementary Fig. 30). Unlike genome assem-
blies at present limited to small sample sizes, our resource enables 
population-scale analysis of extreme repeat unit counts, illustrated by 
the 1% and 99% percentiles of the repeat unit distribution (Extended 
Data Fig. 4). The utility of these genotypes is exemplified by our analy-
sis of repeat unit variation at the PLIN4 and ABCA7 loci implicated in 
late-onset diseases (Extended Data Fig. 4, Supplementary Table 16 and  
Supplementary Note 5).

Mobile elements and nuclear mitochondrial DNA segments
We next focused on the distinct classes of insertions classified by 
SVAN, most of which are the product of the activity of mobile ele-
ments (Fig. 3a). These include 31,302 non-reference MEIs, including 
23,212 Alu, 4,851 L1 and 3,239 SVA insertions (Extended Data Fig. 5 and  
Supplementary Table 18), which reflects an increase of 20% (for Alu), 
166% (L1) and 179% (SVA), respectively, over short-read-based analysis 
in the same samples3. We further identify 3,813 reference MEIs primarily 
called as deletions (classified into 3,122 Alu, 460 L1 and 231 SVA events, 
respectively). Using SVAN, we classify MEIs as canonical (84.3%; 29,592) 
and non-canonical (15.73%; 5,523). Thereby, canonical MEIs show a 
conformation consistent with target-primed reverse transcription28 
or twin priming29, whereas non-canonical ones are 3′ truncated (34.4%; 
1,901), lack poly(A) tails (66.4%; 3,665) or have internal rearrangements 
(52.8%; 2,916). Non-canonical MEIs may have arisen through alterna-
tive integration mechanisms30–32, or be the product of SVs occurring 
after the integration event. Canonical MEIs typically show distinctive 
hallmarks of retrotransposition33, including target site duplications 
(TSDs, median: 21 bp) and poly(A) tracts (median: 30 bp) seen for 98.7% 
and 100% of the events (Extended Data Fig. 5), respectively. Consistent 
with previous studies22,34–36, most (72.5%; 3,288) of the canonical L1 
insertions represent ‘dead-on-arrival’ copies owing to either trunca-
tion or inversion at their 5′ ends (Extended Data Fig. 5). This contrasts 
with canonical Alu and SVA for which 74.4% and 72.9% of the inser-
tions, respectively, are full-length. We find that full-length SVAs show 
a broad size distribution, ranging from 1 to 6 kb, largely owing to the 
extensive variability observed in their hexameric repeat and VNTR 
regions (Extended Data Fig. 5).

We also identify 203 non-reference processed pseudogenes, as well as 
89 reference polymorphic processed pseudogenes37,38 (Extended Data 
Fig. 5). Most of these (73.9%; 216) are monoexonic, with the remaining 
pseudogenes comprising between 2 and 21 exons. We further identify 
evidence for human endogenous retrovirus (HERV) activity, with 10 
insertions classified as HERVK and 28 solo-long terminal repeats (LTRs) 
(Extended Data Fig. 6). Manual inspection of these events shows that 
82% (23 of 28) of solo-LTRs correspond to complete LTR5_Hs events. 
With respect to HERVK, five of the insertions encompass the pro-
viral sequence flanked by two LTRs, four have a single LTR with the 
second residing on the human reference (CHM13) and one is heav-
ily 5′-truncated. Comparisons with previous reports35,39 show that 
although only around 22% (5 of 23) of the solo-LTRs in our study were 
not previously reported, most (70%; 7 of 10) of the HERVK insertions 
were not described previously.

Finally, SVAN classifies 180 insertions as nuclear mitochondrial 
DNA segments (NUMTs)40. The median length of these insertions is 
126 bp, with 15 NUMTs larger than 1 kb, including a 14.8-kb insertion 
comprising 90% of the mitochondrial length identified in one carrier 
(Supplementary Fig. 31d).

Inversions
Inversions pose considerable challenges for detection by sequenc-
ing owing to their balanced copy-number state, which limits their 

indirect identification through coverage depth analysis. Additionally, 
difficulties in sequence alignment, particularly arising from repetitive 
sequences flanking inversion breakpoints, further complicate their 
accurate ascertainment36. The notable N50 read length of this ONT 
dataset led us to explore its potential for inversion discovery, for which 
we noted that performing read re-alignment at regions exhibiting clus-
tered mismatches enhances inversion detection accuracy (Supplemen-
tary Note 6 and Supplementary Figs. 32 and 33). We devised an inversion 
discovery workflow leveraging these insights (Methods), identifying 
491 inversions which were confirmed by semi-manual (dotplot-based) 
analysis (Supplementary Fig. 34). We added to these inversions further 
SVs that were primarily defined as insertions, yet reclassified by SVAN—
including 311 inverted duplications and 1,047 inversions at the 5′-ends 
of L1 insertions probably resulting from twin priming29 (Extended Data 
Fig. 5)—yielding 1,849 inversion calls overall (Fig. 3b). After omitting SVs 
previously genotyped with Giggles as well as SVs annotated as inverted 
duplications, the GeONTIpe tool (Methods) successfully determined 
genotypes for 78% of the inversions.

We next conducted detailed analyses of the set of 733 inversions 
outside MEI events, focusing on their size distribution, allelic structure 
and complexity (Methods). Inverted duplications represent the most 
common class, with 277 events detected showing a median length 
of 284 bp (Fig. 3b and Supplementary Fig. 35). Additionally, we find 
257 balanced (or ‘simple’) inversions with a median length of 1,565 bp, 
which are further broken down into 45 inversions bordered by various 
repeat classes in inverted orientation, implying formation through 
homology-directed repair (HDR) processes or non-allelic homologous 
recombination (NAHR)41.

We further find an abundance of complex inversions with multiple 
breakpoints4,36 (Fig. 3b). These include 159 inversions with an adjacent 
deletion, and 40 more complex structures, comprising five SVs char-
acterized by two serial inversions; two instances of ‘cut-and-paste’ 
inversions with the locus structure characterized by an excised, 
inverted and inserted segment into a nearby location; 12 inversion 
sites exhibiting two flanking deletions; and 21 particularly complex 
inversions with a large number of breakpoints and in part incompletely 
resolved allelic structure. These events are likely to originate from a 
DNA replication-associated process, such as microhomology-mediated 
break-induced replication42.

Polymorphic L1 and SVA transductions
MEI transductions represent an SV generation process in which a 
full-length mobile element, denoted as source or progenitor locus, 
mobilizes flanking DNA sequences during retrotransposition43. This 
process can result in the integration of a mobile element and a com-
panion non-repetitive sequence situated in 5′ or 3′ relative to the pro-
genitor copy8,9. Harnessing our pangenomic resource, we analysed 
polymorphic transduction events among all sequence-resolved MEI 
sequences. We annotate 878 transductions, with 466 (8.8%) of the 5,311 
L1 insertions and 412 (11.9%) of the 3,470 SVA insertions exhibiting a 
transduction (Supplementary Tables 19 and 20). In addition to these 
transduction events containing a companion mobile element segment 
(denoted ‘partnered transductions’), a further set of 48 transductions 
are truncated resulting in the integration of the transduced sequence 
alone (‘orphan transductions’).

Consistent with previous studies8,9,22, we find that the relative pro-
portion of 5′ or 3′ partnered transductions differs between MEI fami-
lies. Most (82.2%; 350) L1-mediated transductions are in 3′, whereas 
SVAs generate 5′ and 3′ transductions at similar ratios, with 218 (53.7%) 
detected in 5′ and 188 (46.3%) in 3′ (Supplementary Table 20). Although 
SVA-mediated 3′ transductions are significantly longer in size than 
5′ transductions (P = 7.2 × 10−6; two-tailed Mann–Whitney U test), we 
observe no significant length difference for L1s (Extended Data Fig. 5). 
Furthermore, SVA-mediated 3′ transductions are significantly longer 
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compared with L1 (P = 0.005; Extended Data Fig. 5). This suggests the 
existence of family-specific determinants for 5′ and 3′ transductions.

We leveraged the transduced sequences as barcodes to identify their 
progenitor loci, showing that L1 transductions originate from a limited 
set of 208 L1 source elements. Among these, 20 highly active source 
L1s are responsible for 43.9% (205) of all L1 transductions identified 
(Fig. 4a), with most (14 of 20) of them belonging to the youngest Ta-1 
subfamily. By comparison, we detect 176 source SVA elements, with 
20 loci alone mediating 36.9% (152) of all SVA transductions (Fig. 4b). 
All these highly active SVAs belong to the recent human-specific SVA-E 
and SVA-F subfamilies, with the exception of the source element at 
20q11.23-1, which contains an exonic sequence from the MAST2 gene—a 
signature of the SVA-F1 subfamily44. Only a small subset—24% and 17% of 

the source L1s and SVAs, respectively—were previously reported to be 
active on the basis of genomic or in vitro studies (Fig. 4ab and Methods).

Of the 208 L1 progenitors, 156 exhibit only 3′ transductions. This 
includes the most active source L1 locus, a Ta-1 element residing at 
Xp22.2 on the reference that mediates 38 transductions, all in 3′ (Sup-
plementary Tables 19 and 20). By comparison, the third most active L1 
element at 8q21.11 exhibits 22 transductions, with all of them in its 5′ 
resulting in a 5′ transduction bias (adjusted P value (Padj) = 3.9 × 10−15, 
FDR-adjusted two-tailed binomial test; Fig. 4a,c). A previous report 
indicates the presence of a strong promoter located upstream of this 
source L1 (ref. 45), which has been associated with aberrant splicing 
leading to a somatic 5′ transduction in the embryonic brain46. Our analy-
ses of 22 independent germline 5′ transduction events arising from this 
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Fig. 4 | Polymorphic landscape of L1 and SVA transductions. a,b, Contribution 
relative to the total number of transductions (5′, 3′ and orphan) for the 20 most 
active L1 (a) and SVA (b) progenitors. Source elements are annotated by their 
presence/absence in the reference, orientation and subfamily. Source element 
novelty, hot activity status and previously reported activity estimates are based 
on in vitro assays and transduction tracing (Methods) and are shown as heat 
maps. Transduction 5′ and 3′ bias was assessed using a two-sided exact binomial 
test followed by multiple testing correction with Benjamini–Hochberg. Xp22.2 
(Padj = 0.04) and 8q21.11 (Padj = 3.9 × 10−15) source L1s exhibit a significant 3′  
and 5′ bias, respectively. All significant SVAs are 3′ biased, namely 12q24.23 
(Padj = 0.01), 6p12.1 (Padj = 0.02), 2q33.1-3 (Padj = 0.02) and 14q11.2-2 (Padj = 0.04). 
Adjusted P values for significantly biased loci are represented adjacent to each 

bar as follows: *Padj < 0.05; **Padj < 0.005. c, Circos plot showing the integration 
positions for the 22 instances of 5′ transductions mediated by the 8q21.11 
element. d, Alignment of inserts containing 5′ transductions at the source L1 
region, including a single somatic transduction event reported in ref. 46 in the 
brain. Inserts are coloured according to whether they align in forward (black) 
or reverse (blue). Splicing between the full-length L1 and an upstream exon 
leading to 5′ transductions, highlighted in yellow. e, Magnification showing 
that the 5′ transductions initiate at a strong promoter located upstream, followed 
by canonical splicing between the first and second exon of ENSG00000253784, 
in addition to a second acceptor splice site within the L1 body. Transcription 
initiation is supported by an annotated transcription start site (hg_93584.1) 
and CAGE read counts60.



Nature  |  Vol 644  |  14 August 2025  |  449

source locus suggest that all probably originate from the same mecha-
nism, involving splicing of the first exon of the ENSG00000253784 
long non-coding RNA gene with two alternative acceptor splice sites 
located within the source L1 (Fig. 4d,e). This provides a mechanistic 
explanation for the 5′ transduction bias seen for this source element, 
and indicates that L1 progenitors can hijack flanking regulatory ele-
ments leading to transduction bias in the germline.

By contrast, SVA progenitors show a pronounced locus-specific 
pattern of transduction activity, with 14 among the 20 most active 
source SVAs showing solely 5′ or 3′ transductions (Fig. 4b), respectively. 
Of these, four SVA source elements exhibit significant bias towards  
3′ transductions (5% FDR; Methods)—including progenitors at 12q24.23,  
2q33.1-3, 6p12.1 and 14q11.2-2. In summary, detailed analyses of 
our resource show family- and locus-specific patterns for L1- and 
SVA-mediated transductions in the germline.

Genomic breakpoint homology landscape
Prompted by the comprehensive set of nucleotide-resolved SVs, we 
comprehensively investigated SV breakpoint junctions, examining 
66,198 deletions and 75,238 insertions from our SAGA resource (Fig. 5a 
and Methods). In examining insertions by class, we find that VNTRs and 
tandem duplications present extensive breakpoint homology (49.7% 
and 89.8%, respectively), with the homologous sequences flanking 
the SV frequently mirroring the inserted element in length (Extended 
Data Fig. 7 and Supplementary Fig. 36). VNTRs typically form by pro-
cesses such as replication slippage, HDR and NAHR, which involve 
DNA sequence homology47. But similar to simple tandem duplications, 
the allelic structure of VNTRs generates homologies at the SV flanks 
independently of the mechanism of formation, thus necessitating 
separate consideration of these two SV classes when analysing break-
point junctions

Leveraging the annotations provided by SVAN, our analysis of break-
point junctions verifies that most MEIs exhibit TSDs of 10–20 bp at the 
respective insertion site (Fig. 5b,c). When analysing SVs not annotated 
as VNTR, tandem duplication or MEI, 35.0% of deletions and 28.7% 
of insertions exhibit homologous flanks exceeding 50 bp, indica-
tive of SV formation through HDR processes. A considerable subset 
thereof—10.8% of the deletions and 6.7% of the insertions—are flanked 
by more than or equal to 200 bp of homology, and are probably medi-
ated by NAHR48.

We further identify several clusters of SVs flanked by Alu, L1 and LTR 
elements annotated in the reference genome (Fig. 5b,c,e), the formation 
of which is likely to be mediated by HDR- and NAHR-driven transpos-
able element-mediated rearrangement (TEMR)49. Among these, we find 
Alu-flanked SVs to be much more common in deletions (n = 3,260) than 
in insertions (n = 80). This group of SVs predominantly harbours pairs 
of full-length Alu elements at their flanks (89.3%), visible as a breakpoint 
homology length peak of 295 bp (Fig. 5b). Notably, these presumably 
Alu element-mediated SVs show a wide distribution of SV lengths, rang-
ing from about 300 bp up to 20.4 kb for deletions and 9.5 kb for inser-
tions. AluY and AluSx elements in all combinations constitute 23.5% 
of all SV-flanking Alu pairs. The use of the different Alu subfamilies at 
breakpoint junctions highly correlates with their counts in the reference 
genome (Supplementary Fig. 37)—with the exception of the AluJ family, 
one of the oldest Alu families, whose members appear several times 
less frequently at the flanks of SVs than expected by their reference 
genome count (for example, with a 24-fold reduction seen for AluJb).

We also find some L1-flanked SVs, which similar to Alu-flanked SVs 
are much more common in deletions (n = 219) than in insertions (n = 1). 
These L1–L1 pairs mediate relatively large SVs up to 62.9 kb in size 
(Fig. 5c). Pairs of L1PA family members are most often represented, 
partaking in 76.4% of L1–L1-mediated SVs. L1 elements at deletion 
flanks are typically truncated (median length: 1.7 kb), with only 5.0% 
of L1 sequence homology-mediated deletions flanked by full-length L1 

elements. We additionally observe three distinct clusters correspond-
ing to LTR-flanked deletions and insertions, reflecting SVs involving 
members of the HERVK (deletion: 39, insertion: 3), HERVH (deletion: 111, 
insertion: 9) and mammalian apparent LTR retrotransposon (deletion: 
46, insertion: 4) families. Apart from 30 events subjected to truncation, 
the homology lengths correspond to the length of the LTRs flanking the 
respective integration site, with the SV length corresponding to the size 
of the viral integration plus one LTR, indicating LTR recombination50. 
Determination of the ancestral state of SV alleles through sequence 
alignment to the chimpanzee genome confirms that the vast majority 
of TEMRs indeed represent deletions (Supplementary Note 7).

Moreover, we find 59 segmental duplication (SD)-mediated dele-
tions (Fig. 5f), which are up to 31.8 kb in size and exhibit a homology 
length of up to 14.9 kb. We note that our approach is expected to exhibit 
decreased sensitivity in identifying SVs flanked by SDs of a similar length 
or larger than the N50 read length, suggesting that larger SD-mediated 
SVs are underrepresented.

We next analysed 30,449 deletions not categorized into a particular 
subclass by SVAN and lacking homology of at least 50 bp at their break-
points. Of these, 2,812 (9.2%) exhibit blunt-ended breakpoint junc-
tions whereas 25,311 (83.1%) exhibit microhomology of 1–15 bp in size, 
indicative of SV formation by non-homologous end-joining, alternative 
end-joining or microhomology-mediated break-induced replication51. 
The remaining 2,326 (7.6%) events show microhomology of 16–49 bp 
in size, and are likely to have formed through homology-independent 
processes as well. We further find that inverted duplications rarely show 
homology at their breakpoints (8.8%), with most exhibiting microho-
mology of 1–15 bp at their respective breakpoint junction, suggesting 
a replicative formation origin51 of this SV class.

Last, we analysed the distribution of SV breakpoint homologies with 
increasing SV allelic length. Notably, this distribution lacks appreci-
able inflection points, notwithstanding peaks in homology length 
corresponding to the sizes of mobile elements at the deletion flanks 
(Fig. 5c,d). This implies that homology-mediated SV formation pro-
cesses use a wide variety of flanking repeat lengths, rather than reflect-
ing distinctive peaks as might be expected from a minimal processing 
length for homologous recombination52.

Recurrence of TEMR-mediated deletions
Given the abundance of mobile element sequences in the genome 
sharing sequence homology, we postulated that occasionally SVs may 
have formed recurrently in humans, facilitated by the same flanking 
element pair. Although precise mutation rate estimates will require 
larger cohorts sequenced by LRS, we systematically screened for short- 
to intermediate-length homology-mediated deletions, for which the 
flanking homology length (200–9,000 bp) would be compatible with 
flanking mobile elements (that is, TEMR) or small- to intermediate-sized 
SDs, shortlisting 42 potentially recurrent candidates (Methods). We 
searched for SNPs for which haplotypes with all four combinations of 
both SNP alleles with the deletion being absent/present are observed 
(termed recurrence-indicating SNPs). On the basis of the presence of 
such SNPs on both sides of the deletion for further quality control, 
we selected six sites with robust evidence for recurrence, all of which 
represent TEMRs. One of these involves L2/LINE sequences, whereas 
the remaining five involve paired Alu elements (Fig. 5g, Extended Data 
Fig. 8 and Supplementary Figs. 38–43).

We illustrate this phenomenon for an 806-bp deletion at 12p13.3 medi-
ated by an AluSx–AluY pair (Fig. 5g). After clustering haplotypes using 
SNPs in a 100-kb window centred around the deletion (Methods and 
Extended Data Fig. 8), the four major emerging groups recapitulate the 
geographical ancestries—with Group 1 mostly comprising EAS samples, 
Groups 2 and 4 mostly AFR samples and Group 3 mostly SAS samples. 
The SV allele is present in different haplotype backgrounds of Groups 2 
and 3, as well as in an outlier haplotype that clusters with Group 4 which 
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is otherwise composed of haplotypes not carrying the deletion. We find 
nine recurrence-indicating SNPs (Fig. 5g, vertical red bars) characteristic 
of either recurrent deletions or extensive local recombination near the 
deletion. Given their proximity and association with specific haplotype 

groups, the most plausible explanation is locally recurrent TEMRs, with 
scenarios based on homologous recombination on either side of the 
event seeming less likely. These data imply a relevant contribution of 
TEMRs to recurrent SV formation in the human genome.
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Discussion
We show that intermediate-coverage LRS enables the generation of 
comprehensive population-scale SV catalogues comprising common 
and rare alleles. We predict our resource to serve as benchmarking 
data for tool development, supporting the continued development of 
graph-based genetic variant characterization methods53–55.

Mobile elements are accountable for 1.32–3.14 Mb (median: 2.26 Mb) 
of the sequence variation detected per individual genome, with MEIs, 
TEMRs, transductions and processed pseudogenes contributing. 
This represents a considerable portion of the 4.78–9.88 Mb (median: 
7.35 Mb) of sequence variation per genome attributed to SVs on the 
basis of the SAGA framework (Supplementary Table 21 and Supplemen-
tary Figs. 44 and 45). We show a subset of these have arisen recurrently 
in humans, opening up possibilities to study linkage disequilibrium pat-
terns surrounding these events, and SV recurrence rates, in the future.

With respect to L1 and SVA transductions, whether the transduc-
tion occurs at the 5′ or 3′ end is influenced by mobile element class 
and locus. For instance, although L1s primarily mediate 3′ transduc-
tions9, the L1 progenitor at 8q21.11 exclusively produces 5′ transduc-
tions in our population-scale dataset and in the embryonic brain46—a 
phenomenon probably driven by promoter hijacking45. Similarly, the 
13q12.3 source L1, previously reported to mediate 3′ transductions in 
brain tissue45, shows consistent behaviour in germline genomes, which 
implies shared mechanisms across cell types. A recent report suggests 
that strong polyadenylation sites downstream to source L1 loci can 
mediate 3′ transduction in cancer56. Altogether, these observations 
support the notion that transduction is influenced by locus-specific 
sequence determinants, such as regulatory elements.

Looking forward, we anticipate that our resource will support 
research on the phenotypic implications of SVs. A comparison with the 
Genome Aggregation Database (gnomAD)57, a genetic variation reposi-
tory with population-level allele frequencies, shows that most (50.9%) 
of the insertions from our resource were not previously represented in 
gnomAD. These include 8,077 Alu (34.8%), 2,586 L1 (52.9%) and 1,269 
SVA element (47.1%) insertions. For deletions, 14.5% were not previously 
reported, reflecting the capabilities of short reads in deletion discov-
ery3,4,23 (Supplementary Note 3). To explore the potential utility of our 
resource for variant prioritization, we analysed deep PacBio HiFi LRS 
data generated from four patients with rare diseases (Supplementary 
Note 8). Initial filtering using multi-platform whole-genome assem-
blies20 left an average of 386 candidate SVs per patient. Incorporating 
our SAGA resource reduces these candidate SV lists by 54.7–56.4%, 
resulting in 159–187 candidate SVs remaining per patient (Extended 
Data Fig. 9 and Supplementary Figs. 46–48). We also evaluated the 
extent by which previously validated disease-causing SVs are filtered 
out through our resource, by analysing 31 published PacBio-sequenced 
rare disease genomes, comprising 35 validated causal SVs14. Of these 
validated causal SVs, only two were filtered out using our resource 
(Supplementary Note 9). These analyses show effective filtering of 
candidate SVs in patients, with causal SVs sensitively retained, using 
our LRS population-scale resource.

To further illustrate practical applications of our resource, we addi-
tionally explored the genotyping of medically relevant genes in com-
plex loci of the genome. This was facilitated by the use of Locityper, 
a tool designed to address the challenges of accurately genotyping 
regions difficult to ascertain. We analysed 270 genes thought to repre-
sent challenging loci yet crucial for understanding genetic underpin-
nings of disease (Methods and Supplementary Table 22). Leveraging 
our resource, we find a high level of genotyping accuracy in the 1,019 
samples of our study, particularly in regions fraught with structural 
complexity, considerably surpassing genotyping with short reads 
(Extended Data Fig. 10 and Supplementary Note 10).

The haplotype data derived from our ONT resource are also 
anticipated to facilitate long-read-based DNA methylation analyses 

(Supplementary Fig. 45 and Supplementary Note 11), as well as to 
enhance variant imputation efforts, including in genomic areas pre-
viously difficult to analyse. To explore the latter aspect, a companion 
paper to this study demonstrates the usage of our ONT data resource 
for imputation and genome-wide association studies58. In summary, 
these observations suggest broader value of our dataset for ascertain-
ing disease-relevant genetic variation.

Although the data and computational methods developed in our 
study mark a step forward in cost-effective population-scale SV char-
acterization, remaining challenges include increasing discovery power 
and sequence consensus quality for extremely rare SVs. Large inver-
sions, centromeric regions, high sequence identity SDs and multiallelic 
VNTRs represent a particular challenge to graph-based approaches21 
(Supplementary Fig. 12 and Supplementary Note 3). Resolving these 
complex regions comprehensively at population scale will necessitate 
expanding multi-platform assembly approaches20 to more samples. 
Future improvements in graph algorithms should address needs for 
scalable analyses while considering all polymorphisms, including 
SNPs, indels and short tandem repeats.

As SAGA facilitates the integration of intermediate-coverage 
sequence data, we foresee broader adoption of our approach in large 
cohorts, which could accelerate advancements in population and dis-
ease research. Thereby, a coupled approach enhancing sample size at 
intermediate coverage and increasing sequencing depth on sample 
subsets seems particularly promising. With this in mind, our group 
has coordinated sample set design, as well as our public data release, 
with efforts piloting genome sequence assembly in smaller 1kGP 
sample subsets12,22,59. This approach to open data sharing is guided by 
the principles of the 1kGP and is inspired by the potential to combine 
intermediate- and high-coverage techniques to advance the comple-
tion of the catalogue of human genomic variation encompassing the 
entire 1kGP cohort in the near future. Moving forward, it will be crucial 
to embed these findings into efforts aimed at understanding the genetic 
underpinnings of diseases, promoting equitable and global progress 
in precision medicine.
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Methods

Samples and DNA extraction
We initially selected 1,064 samples from the 1kGP collection, sourc-
ing genomic DNA from Coriell and discarding low-quality DNA. The 
study complied with all relevant regulations for work with human 
participants. DNA was extracted from lymphoblastoid cell lines and 
resuspended in TE buffer (10 mM Tris, pH 8.0, 1 mM EDTA).

Quality control before sequencing
DNA concentrations were determined with the Quant-iT dsDNA 
Broad-Range assay Kit (Q33130), using Varioskan LUX multimode 
microplate reader (VL0000D0). The purity evaluation of genomic 
DNA was performed on a DeNovix DS-11 Series Spectrophotometer. 
Optical density 260/280 and 260/230 ratio of 1.8 and 2 was maintained, 
respectively, for sequencing. Fragment length was measured on the 
Femto Pulse system (Agilent, M5330AA) using the Genomic DNA 165 kb 
Ladder Fast Separation assay with a separation time of 70 min (Agilent, 
FP-1002-0275).

Size selection
All DNA samples were size selected using the Circulomics Short Read 
Eliminator Kit (Circulomics, SS-100-101-01). According to supplier 
information, the kit uses size-selective precipitation to reduce the 
amount of DNA fragments below 25 kb in length. The kit was used 
according to the manufacturer’s recommendations (handbook v.2.0, 
07/2019). Briefly, 60 μl of Buffer SRE was added to the sample tube 
(60-μl volume), gently mixed and the tube centrifuged at 10,000g for 
30 min at room temperature. After supernatant removal, two washing 
steps were performed with 200 μl of 70% ethanol and a centrifugation 
at 10,000g for 2 min at room temperature. Finally, 50 μl Buffer EB was 
added and the tube was incubated at 50 °C for 30 min, followed by over-
night incubation at room temperature to ensure efficient DNA elution.

LRS
Sequencing library preparation was carried out following the general 
guidelines from ONT, with modifications proposed by New England 
Biolabs (NEB) to ensure high-yield data generation and long-fragment 
sequencing. For library preparation, the following reagents were used: 
Ligation Sequencing Kit (ONT, SQK-LSK110), NEBNext Companion Mod-
ule for ONT Ligation Sequencing (NEB, E7180S) and AMPure XP beads 
(made in-house by the Molecular Biology Service, Research Institute 
of Molecular Pathology). A DNA amount of 3 μg as input material was 
transferred into a 0.2-ml thin-walled PCR tube and the total volume was 
adjusted to 48 μl with nuclease-free water (Thermo Fisher, AM9937). 
DNA fragments were repaired and end-prepped as follows: 3.5 μl of 
NEBNext FFPE DNA Repair Buffer, 2 μl of NEBNext FFPE DNA Repair Mix, 
3.5 μl of NEBNext Ultra II End Prep Reaction Buffer and 3 μl NEBNext  
Ultra II End Prep Enzyme Mix were added to each tube. After mixing and 
spinning down, the samples were incubated at 20 °C for 30 min, followed 
by a second incubation at 65 °C for 5 min. The prolonged incubation time 
allowed recovery of longer fragments. The solution from each tube was 
then transferred to a clean 1.5-ml Eppendorf DNA LoBind tube (Eppen-
dorf) for clean-up. First, 60 μl of AMPure XP Beads was added to each 
tube. The samples were then incubated on a HulaMixer sample mixer 
(Thermo Fisher Scientific, 15920D) for 5 min at room temperature. Bead 
clean-up was performed with two washing steps on a magnetic rack, each 
time pipetting off the supernatant and adding 200 μl of freshly prepared 
70% ethanol. The pellet was resuspended in 61 μl of nuclease-free water 
and incubated for 5 min at room temperature. Tubes were placed on 
a magnetic rack to collect the final eluate (1 μl was then taken out for 
quantification). For adaptor ligation and clean-up, 60 μl of DNA from 
the previous step was combined with 25 μl of Ligation Buffer, 10 μl of 
NEBNext Quick T4 DNA Ligase and 5 μl of Adapter Mix in a 1.5-ml Eppen-
dorf DNA LoBind tube. The reaction was then incubated for 20 min at 

room temperature. A second AMPure bead clean-up step was carried out 
by adding 40 μl of bead solution to each tube, followed by incubation 
on a HulaMixer for 5 min at room temperature. After pipetting off the 
supernatant on a magnet rack, the beads were washed twice with 250 μl 
of Long Fragment Buffer. Finally, the supernatant was discarded, and the 
pellet was resuspended in 25 μl of Elution Buffer EB and incubated for 
10 min at 37°C to collect the final library. Samples were quantified using 
a Qubit fluorimeter and diluted appropriately before loading onto the 
flow cells. The final mass loaded on the flow cells was determined on the 
basis of the molarity, dependent on average fragment size. Sequencing 
was carried out using FLO-PRO002 (R9.4.1) flow cells from ONT on the 
PromethION 48. The sequencing run was stopped after 24 h, the flow 
cell was washed using the Flow cell wash kit XL (ONT, EXP_WSH004-XL) 
and then the library was reloaded.

Base calling and adaptor trimming
Guppy v.6.2.1 was used for base calling the Fast5 input files in ‘sup’ 
accuracy mode with adaptor trimming and read splitting disabled 
and the output was converted to FASTA. For adaptor trimming and 
read splitting, we subsequently used Porechop61 v.0.2.4 on the gener-
ated FASTA files in chunks of 300,000 reads with default parameters.

Reference genome alignments
Reads were aligned to the GRCh38 (ref. 62) and CHM13 (ref. 63) lin-
ear reference genomes as well as the prebuilt human genome graph, 
denoted HPRC_mg, which was previously constructed by the HPRC12 
(from HPRC year-1 samples; https://doi.org/10.5281/zenodo.6983934). 
We selected HPRC_mg as the pangenomic reference as it represents 
SVs while omitting SNPs and less than 50-bp indels12, thus comprising 
a compact graph structure facilitating analyses at the scale of a thou-
sand long-read genomes. For the GRCh38 and CHM13, we used mini-
map2 (ref. 64) to map the ONT reads using the options ‘-a -x map-ont 
--rmq=yes --MD --cs -L’. Samtools65 was used to sort the alignments and 
convert to CRAM. Multiple ONT runs for the same sample were tagged 
using different read-groups. Minigraph21 v.0.20-r559 was used to map 
the ONT reads against the HPRC_mg graph genome using the options 
‘--vc -cx lr’. During alignment, the ‘--vc’ flag enables the output of the 
alignments in vertex coordinates and the ‘lr’ option enables long-read 
mapping. The resulting graph alignments in GAF format21 were sorted 
using gaftools66 and compressed using bgzip.

Sample and alignment quality control
Using SNP calls of the high-coverage short-read data from the 1kGP 
cohort3, we implemented rigorous quality control measures to effec-
tively eliminate sample swaps and cross-contaminations. We first geno-
typed all SNPs from the short-read haplotype reference panel with an 
allele count greater than or equal to 6 in all samples using bcftools67. 
Individual VCF files were merged using bcftools67 into a multi-sample 
VCF file that was then combined with the short-read haplotype refer-
ence panel. We then used VCFtools68 to calculate a relatedness statistic 
of the long-read sequenced samples compared with the short-read 
sequenced samples using the ‘--relatedness2’ option. This analysis 
identified a sample swap between HG01951 and HG01983, which we 
relabelled afterwards. We excluded all samples that seemed to be 
cross-contaminated during library preparation, namely HG00138, 
HG02807, HG02813, HG02870, HG02888, HG02890, HG03804 and 
HG03778. Alignments were analysed using NanoPack69 to determine 
median and N50 read length and genome coverage (Supplementary 
Figs. 2, 4 and 49). To compare linear and graph genome alignments 
in terms of percentage identity, number of aligned reads (bases) and 
largest Cigar I and D event, we used lorax70 (Supplementary Fig. 3).

SV discovery using linear references
We used Sniffles71 v.2.0.7 and an LRS-optimized version of DELLY72 
(v.1.1.7) to discover SVs using linear reference genomes. For Sniffles, 
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we converted CRAM files to BAM format using samtools and then 
calculated for each sample candidate SVs and the associated SNF file 
using Sniffles. We then used Sniffles population-calling mode on all 
SNF files to generate two multi-sample VCF files, one for GRCh38 and 
one for CHM13.

Similarly, we also used DELLY’s population-calling mode which first 
calls SVs by sample using the new long-read (lr) subcommand. We then 
merged all candidate SV sites using DELLY merge with the options  
‘-p -a 0.05 -v 3 -c’ to select PASS sites that are precise at single-nucleotide 
resolution with a minimum variant allele frequency of 5% and a mini-
mum coverage of 3×. We then genotyped this SV site list in all sam-
ples using delly lr and merged the results by id with bcftools merge 
using the option ‘-m id’. We then applied sansa (https://github.com/
dellytools/sansa), a newly developed, multi-sample SV annotation 
method that detects SV duplicates on the basis of SV allele and geno-
type concordance, to remove redundant SV sites. The parameters for 
the sansa markdup subcommand were ‘-y 0 -b 500 -s 0.5 -d 0.3 -c 0.1’ 
to mark SV duplicates for sites that show an SV size ratio greater than 
0.5, a maximum SV allele divergence of 30%, a maximum SV breakpoint 
offset of 500 bp and a minimum fraction of shared SV carriers of 10%. 
After removing duplicates, we generated the final multi-sample VCFs 
for GRCh38 and CHM13.

To ensure specificity and facilitate genome graph augmentation, we 
further generated for Sniffles and DELLY separately a consensus callset 
of SVs shared between the GRCh38 and CHM13 reference genomes. We 
therefore lifted the GRCh38 callsets to CHM13 using bedtools73 and the 
liftOver tool74 with the GRCh38 to CHM13 chain file. We then compared 
the lifted VCF with the original CHM13 VCF file to identify shared SVs 
using sansa’s compvcf subcommand with the options ‘-m 0 -b 50 -s 0.8 
-d 0.1’ to identify SVs that have a size ratio greater than or equal to 0.8, a 
maximum SV breakpoint offset of 50 bp and an SV allele divergence of 
at most 10%. As the SV allele divergence filter requires a local assembly 
(for example, DELLY’s consensus SV allele sequence), we did not apply 
this filter to Sniffles. For genome graph augmentation, we subset the 
final VCFs to deletions and insertions only. All inversion-type SVs called 
by DELLY and Sniffles using the minimap2 alignments were integrated 
separately in the inversion analysis.

Inversion analysis
We developed a multi-tiered analytical pipeline to comprehensively 
ascertain inversions on the basis of LRS data. By inspecting previously 
known inversions in our dataset, along with simulating a range of small 
inversions (less than 1 kb) with a coverage closely mirroring our dataset 
(median 17×), we discovered that minimap2 frequently misaligned 
reads in small inversion regions, leading to increasing error rates in 
those genomic locations. To allow capturing of these inversions, we 
examined strategies for inversion discovery by simulating inversions 
of varied sizes (Supplementary Note 6). We generated simulated ONT 
reads from these augmented genomes, using SURVIVOR75, mimicking 
the sequencing coverage in our resource. Using pysamstats (https://
github.com/alimanfoo/pysamstats), we first calculated the mismatch 
rate per base pair in 50-bp intervals, initially in the simulated datasets 
to tune parameters and subsequently in the real data to identify candi-
date inverted regions for re-alignment. This analytical process showed 
that most genomic regions maintained a mismatch rate below 20%; 
regions surpassing this rate were identified as having an unexpect-
edly high mismatch rate and selected for re-alignment with NGMLR71 
(Supplementary Fig. 50). Post-exclusion of telomeric and centromeric 
regions, as well as of misaligned regions exceeding 1 kb in size, was then 
conducted to restrict the number of regions requiring remapping, 
thereby enhancing computational efficiency. The selected genomic 
segments underwent re-alignment using NGMLR and we then interro-
gated all realigned regions with DELLY72 to discover previously missed 
inversions. The final inversion calls in the remapped regions from all 
samples were consolidated using SURVIVOR merge75. For the rest of the 

regions not requiring re-alignment, inversion calling was conducted 
using both Sniffles and DELLY. Manual verification of true versus false 
positive calls was performed by examining dot plots and Integrative 
Genomics Viewer (IGV)-like plots generated with wally70 for each can-
didate inversion location for the largest ten reads per candidate region, 
ensuring the accuracy of our findings. Ultimately, we generated a final 
comprehensive inversion callset by merging all unique instances from 
each dataset with ‘bedtools merge’ (v.2.31.1)73. As the inversion analysis 
was conducted on the GRCh38 reference genome, regions were subse-
quently lifted over to the T2T-CHM13+Y genome, applying a 90% base 
remapping threshold to retain a region.

To evaluate our inversion dataset against two previous studies on 
1kGP samples3,36, we used ‘bedtools intersect’ (v.2.31.1)73, defining inver-
sions as ‘known’ if they exhibited a minimum of 50% reciprocal overlap 
with inversions from either previous dataset. Analysis against a previ-
ous study delineating inversions through whole-genome assembly36 
shows the efficacy of our methodology in detecting a diverse range 
of inversions, both repeat-mediated and non-repeat-mediated: our 
results showed that 65% of non-repeat-associated inversions and 41% 
of SD-mediated inversions were successfully identified. Furthermore, 
we refined our comparison to a 1kGP-derived short-read inversion data-
set3, for which we included only those inversions from the comparison 
dataset with quality scores of 30 or higher, to ensure the accuracy of 
our comparative analysis. This approach showed an overlap of 289 
inversions, or 36.5% concordance (median size of 530 bp).

Regarding the flanking repeats in repeat-rich inverted regions, 
we conducted a detailed analysis by manually inspecting the repeat 
types and their orientations at inversion breakpoints. Repeat data were 
acquired from the RepeatMasker track and the SD annotations of the 
CHM13 reference (obtained from https://github.com/marbl/CHM13); 
an inversion was classified as repeat-mediated if it was bracketed by 
repeats in reverse orientation relative to each other, detected through 
dotplot analysis.

Inversion genotyping was conducted using the GeONTIpe pipe-
line (commit: 1b5db07) (https://github.com/RMoreiraP/GeONTIpe), 
which identifies reads spanning inversion breakpoints and determines 
sequence order and orientation using probes positioned on both sides 
of the breakpoints. We focused on those inversions not genotyped by 
Giggles, by excluding inverted duplications and twin priming events. 
Multiple probe sets were tested, and for each inversion, a validated set 
of probes was generated and verified on dotplot-confirmed inversion 
carrier samples. Once the expected orientation was confirmed, the 
validated set of probes was applied to genotype the rest of the samples. 
All regions classified as ‘inverted duplications’ were excluded because 
of pipeline limitations, yielding a final dataset of 520 inversions. Of 
these, 407 inversions (78.3%) were successfully genotyped, with both 
haplotypes identified in 393 cases.

Notably, five inversions exclusively exhibited the inverted haplotype 
in all samples, suggesting either an inversion in the reference genome 
or a potential assembly error. In four cases, samples expected to have 
the inverted haplotype were classified as low confidence, with no other 
samples exhibiting the inversion. For a further five cases, manual analy-
sis showed either a misclassification as an inverted duplication or the 
presence of complex structural rearrangements in the putative reads 
with the inversion.

Phasing with the ONT reads
To conduct phasing, we first pursued phasing experiments with the 
ONT reads to check how well they compare to the statistical phasing 
done previously in high-coverage 1kGP short-read data generated by 
the New York Genome Center (NYGC)3. The NYGC phased VCFs and the 
NYGC raw genotypes were used. Using the NYGC raw genotypes, the 
phasing was done by WhatsHap76 (v.2.0) in three different ways: phasing 
with only the ONT reads (from hereon referred to as long-read phasing), 
trio phasing and trio phasing with the ONT reads (from hereon referred 
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to as long-read–trio phasing). The trio phasing and long-read–trio 
phasing was conducted for the six complete family trios (family IDs: 
2418, CLM16, SH006, Y077, 1463 (paternal side), 1463 (maternal side)) 
for which our resource has long-read data. The long-read phasing was 
conducted for all of the 967 samples in the intersection of our 1,019 
sample set and the NYGC sample set of 3,202 (Supplementary Fig. 7 
and Supplementary Table 23). The phasing was pursued for all auto-
somes, and each chromosome was phased separately to allow parallel 
processing. The commands used are as follows:
•	 Long-read phasing: whatshap phase -o <output phased vcf> 

--chromosome <chromosome ID> --sample <sample name> -r <ref-
erence fasta> <NYGC raw genotypes for sample> <ONT CRAM for 
sample>

•	 Trio phasing: whatshap phase -o <output phased vcf> --chromosome 
<chromosome ID> -r <reference fasta> --ped <pedigree data for the 
NYGC samples> <NYGC raw genotypes for samples in a family>

•	 Long-read–trio phasing: whatshap phase -o <output phased vcf> 
--chromosome <chromosome ID> -r <reference fasta> --ped <pedigree 
data for the NYGC samples> <NYGC raw genotypes for samples in a 
family> <ONT CRAM for samples in a family>.

Comparison of the WhatsHap phased VCFs against NYGC 
statistical phasing
The phased VCFs produced by WhatsHap were compared against the 
NYGC statistical phasing using WhatsHap’s compare function. The 
commands are as follows:
•	 For the samples without trio data: whatshap compare --sample <sam-

ple name> --names longread,nygc --tsv-pairwise <pairwise tsv file> 
--tsv-multiway <multiway tsv name> <input longread phased vcf> 
<input nygc statistical phasing vcf>

•	 For the samples with trio data: compare --sample <sample name> 
--names trio,longread,trio-longread,nygc --tsv-pairwise <pairwise 
tsv file> --tsv-multiway <multiway tsv name> <input trio phased vcf> 
<input longread phased vcf> <input longread trio phased vcf> <input 
nygc statistical phasing vcf>.

Haplotype tagging of ONT reads
The ONT reads were haplotype-tagged (or haplo-tagged) using What-
sHap76 (v.2.0). The NYCG phased VCF3 was used as the reference for 
tagging the reads. The command used to tag the reads was: whatshap 
haplotag --skip-missing-contigs --reference <reference fasta> --sample 
<sample name> --output-haplotag-list <output file> --output /dev/null 
<NYGC phased VCF> <ONT CRAM>.

Although the main output of whatshap haplotag is a tagged align-
ment file, downstream tools used in this study required only a file con-
taining the tag for each read which is given in --output-haplotag-list. 
Owing to the presence of pseudo-autosomal regions (PARs) in the 
phased VCF, the command was altered for the male samples. Instead 
of providing the entire NYGC phased VCF, the non-PAR records were 
removed and the haplo-tagging was performed. After haplo-tagging, 
the list of reads aligning to the non-PAR on chr. X were extracted, 
assigned manually as the maternal haplotype and added to the haplotag  
list.

SV discovery from the graph
The aim of SVarp77 is to discover SVs on graph genomes, including for 
haplotypes missing in a linear reference. SVarp (commit: 0acba75) calls 
novel phased variant sequences, called svtigs, rather than a variant 
callset, which we later use in the graph augmentation step. To discover 
phased SV assemblies (svtigs) on top of the pangenome graph, we used 
haplotag read information and the alignment file (that is, GAF align-
ments) as input to the SVarp algorithm using <svarp -a GAF-FILE -s 5 -d 
500 -g GFA-FILE --fasta READS-FASTA-FILE -i SAMPLE_NAME --phase 
HAPLOTAG-FILE> command. With 967 samples, we found a total of 
1,108,850 variants (approximately 1,145 per sample).

To find specific SV breakpoint loci with respect to a linear reference 
genome, we used the PAV tool22 to call SV breakpoints, using svtigs that 
SVarp generated as input. This yielded 1,258,880 and 1,241,252 SVs 
relative to the CHM13 and GRCh38 linear genomes, respectively, that 
are more than 50 bp. However, we realized that some svtigs give rise to 
multiple SVs in the output of PAV. To ensure that variants called from 
the same svtig end up on the same pseudo-haplotypes in the graph 
augmentation step, we generated a script to combine records arising 
from the same svtig into a single VCF record. This is achieved by con-
necting multiple smaller such SVs into a single SV record through add-
ing reference sequence in-between. This yielded 564,661 and 562,311 
SVs relative to CHM13 and GRCh38, respectively.

The single-sample VCFs (relative to GRCh38) generated with PAV 
from the SVarp svtigs were merged into a multi-sample VCF using 
bcftools merge67 (v.1.18) and then post-processed using truvari col-
lapse78 (v.4.1.0). The latter step merges SV records probably repre-
senting the same event into a single record, removing redundancy. 
This reduced the number of SVs from 451,942 to 215,209. Finally, we 
filtered the resulting VCF by keeping only records present in at least 
two samples. This filtered set contained 70,932 SVs.

Graph augmentation
We developed a pipeline to add extra variants found by DELLY, Snif-
fles and SVarp across the 1kGP ONT samples to the minigraph graph 
so that they can be genotyped by Giggles (v.1.0)79. The main idea is 
to construct so-called ‘pseudo-haplotypes’ by implanting sets of 
non-overlapping variant calls into a reference genome and then add-
ing them to the graph using minigraph21 (Extended Data Fig. 1). Our 
pipeline consists of the following steps. At first, we remove variant 
calls that fall into the centromere regions and mark the respective 
region in the reference genome by masking the sequence by Ns using 
the tool bcftools maskfasta (v.1.18). We used the GRCh38 reference 
genome and centromere annotations obtained from the UCSC genome 
browser. In the next step, we generate the pseudo-haplotypes as fol-
lows. Each of the SV discovery callsets (DELLY, Sniffles, SVarp) contains 
variants overlapping across samples. Thus, inserting all of them into 
one reference genome will fail. Therefore, we first group variants of 
each callset into sets of non-overlapping variants, and then gener-
ate a consensus sequence for each of these sets by implanting the 
variants into the reference genome using bcftools consensus (v.1.18). 
As a result, we obtain a whole-genome consensus sequence for each 
of these sets, which we call the pseudo-haplotypes. For the DELLY 
calls, we obtained 26 such pseudo-haplotypes, for Sniffles we got 69 
and for SVarp we generated 117 pseudo-haplotypes. In total, these 
pseudo-haplotypes carry 154,319 DELLY SVs, 128,688 Sniffles SVs and 
70,813 SVs detected by SVarp. In the last step, we insert all of these newly 
constructed genome sequences into the graph using the minigraph 
tool (v.0.20). Thereby, the minigraph algorithm incorporates a new SV 
allele only if it is sufficiently different (that is, shifted by more than or 
equal to 50 bp) from SV alleles already represented in the graph21. We 
first inserted all SVarp haplotypes, then all DELLY haplotypes and finally 
all Sniffles haplotypes into the graph using the command: minigraph 
-cxggs -t32 <minigraph> <SVarp Pseudo-Haplotype FASTAs> <DELLY 
Pseudo-Haplotype FASTAs> <Sniffles Pseudo-Haplotype FASTAs> > 
augmented-graph.gfa.

In the augmented graph, the number of bubbles (Supplementary 
Fig. 8) increases to 220,168 (102,371 in the original graph) and the 
total sequence represented in the graph increases from 3,297,884,175 
bases to 3,477,266,061 bases. To identify bubbles in the augmented 
graph representing variation that was previously not represented in 
the original graph, we created BED files with coordinates of bubbles 
present in both graphs using gfatools bubble. Then we used bedtools 
closest to compute the distance between each bubble in the augmented 
graph and their respective closest bubble in the original graph (Sup-
plementary Fig. 10). We defined all bubbles in the augmented graph 
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whose distance to the closest bubble in the original graph is at least 
1 kb as ‘new’ bubbles, representing novel SV sites.

To evaluate our augmented graph, we aligned ONT reads of human 
sample HG00513 (a sample not part of HPRC_mg) to HPRC_mg_44+966 
using the command: minigraph -cx lr -t24 augmented-graph.gfa 
HG00513-reads.fa --vc 2 > alignments.gaf. For comparison, we aligned 
the same set of reads to the original graph (HPRC_mg) using the same 
command. We then computed alignment statistics using gaftools stat 
(Supplementary Table 3). We observed better alignment statistics 
when aligning reads to the augmented instead of the original graph. 
The number of aligned reads increased by 33,208, and the number of 
aligned bases by 152,454,715 bp.

Preparing phased VCF panel
We developed a pipeline that can reconstruct the alleles of the samples 
in the graph using the graph and the assemblies for the samples. First, 
the bubbles in the graphs are identified using gaftools66 (commit ID: 
feaf7f4). The function order_gfa tags the nodes of the graph to identify 
whether the nodes are bubble nodes (nodes inside a bubble) or scaf-
fold nodes (nodes outside a bubble). The phased panel is created by 
aligning the HPRC assemblies back to the tagged HPRC graph using 
minigraph21 (v.0.20-r559). The resulting alignments are processed to 
identify the alleles using the node paths between scaffold nodes. The 
allele information from the haplotype assemblies is then converted 
to a phased panel VCF. For the augmented graph, the same pipeline 
discussed above works where the pseudo-haplotypes are considered 
as assemblies and aligned to the augmented graph. On the basis of the 
tagging of the augmented graph, the alleles on the pseudo-haplotypes 
are identified and separate columns are created in the phased panel VCF 
corresponding to the alleles of the pseudo-haplotypes. This pipeline 
creates a multi-sample phased VCF, containing multiple alternative 
alleles for each record of the VCF.

The phased panel VCF is processed for its inclusion during Giggles79 
genotyping. Internal filter tags are set during the VCF creation step 
which allows for filtering of the bubbles for which allele information 
is not present for at least 80% of the samples. Additionally, bubbles 
are filtered out that do not have any alternative alleles in any of the 
haplotypes. From the phased panel VCF, a ‘Giggles-ready’ version is 
generated for which the reference alleles in the pseudo-haplotypes are 
masked with dots, because internally Giggles accounts for the allele 
frequency in the panels and the pseudo-haplotypes heavily bias the 
genotyping towards the reference used in the bcftools consensus step. 
The VCF records describe bubble structures in the graph. These bub-
bles often contain many nested and overlapping variant alleles, that 
is, a bubble does not necessarily represent a single variation event. To 
identify variant alleles represented in these bubbles, we applied the 
same bubble decomposition approach as previously described by the 
HPRC12. In short, the idea is to compare node traversals of the reference 
and alternative paths through bubbles to identify nested alleles. As in 
the previous HPRC study12, we then annotate the bubbles in our VCF to 
encode nested variants, so that we can translate genotypes computed 
for bubbles to genotypes for the variants represented in the graph.

Graph-aware genotyping
Graph-aware genotyping was conducted using Giggles79 (v.1.0), a 
pangenome-based genome inference tool that leverages LRS data. 
Giggles serves as a long-read alternative to PanGenie’s short-read-based 
approach80. It works with a Hidden Markov Model framework for which 
each variant position contains states corresponding to all possible 
genotypes at that position. The transition probabilities are based on 
the Li–Stephens model81 and the emission probabilities are based on the 
alignment of reads around an interval window of the variant position. 
Forward–backward computation of the Hidden Markov Model gives 
the posterior likelihoods of each state at each variant position which 
can be used to compute the likelihood of genotypes across the genome.

Giggles requires a phased VCF panel, sorted graph alignments, 
the input long reads, tagged graph and the haplotype tagging of the 
reads. We use the command: giggles genotype --read-fasta <input 
reads> --sample <sample name> -o <output vcf> --rgfa <tagged gfa> 
--haplotag-tsv <haplotype tags> <phased panel VCF> <sorted align-
ments>. This outputs an unphased VCF with the genotypes for the 
given sample.

The VCFs were further filtered using bcftools67 to create a high-quality 
genotype set. This was achieved by masking genotypes of samples hav-
ing a genotyping quality of less than 10 and dropping variant positions 
for which more than 5% of genotypes are missing. The commands are: 
bcftools view --min-ac 1 -m2 -M2 <vcf> | bcftools +setGT - -- -t q -n. -i ‘FMT/
GQ<10’ | bcftools +fill-tags - -- -t all | bcftools filter -O z -o <filtered-vcf> 
-i ‘INFO/AC >= 1 && INFO/F_MISSING <= 0.05’.

We stratify the SVs as biallelic or multiallelic on the basis of the bub-
ble these SVs originate from. If the bubble has more than two alleles 
defined in the phased VCF panel given to Giggles as an input, then the 
SV is defined to be multiallelic. Otherwise, if only one alternative allele 
is defined, the SV is defined to be biallelic.

Mendelian inconsistency statistics
For the six complete family trios in our dataset, we calculated Mende-
lian inconsistency statistics (Supplementary Fig. 51). We provide the 
confusion matrices and various statistics for each family, genotyped 
against HPRC_mg and HPRC_mg_44+966, and also report for various 
variant types depending on whether the variant came from a biallelic 
or multiallelic bubble (Supplementary Tables 5–12). The definitions 
for each statistic can be found in Supplementary Table 4.

Statistical phasing using high-coverage short-read data of 1kGP 
samples
Using SHAPEIT5 (ref. 82), we statistically phased the multi-sample 
VCF file outputted by Giggles using a recently constructed CHM13 
haplotype reference panel19. This panel uses SNP and InDel calls gener-
ated from 1kGP short-read data3,83 for CHM13. We first subsetted the 
unphased input VCF from Giggles with 167,291 SVs to the 908 unre-
lated samples present in the haplotype reference panel, set genotypes 
with a quality less than 10 to ‘missing’ and subsequently dropped all 
SV sites with allele count zero. We then used the SHAPEIT5 common 
variant phasing mode to incorporate the new SV alleles into the SNP 
and InDel haplotype scaffold, yielding a phased VCF with 164,571 SVs. 
Before the phasing we split multiallelic variants into biallelic variants 
using bcftools norm67 with the option ‘-m -any’. After phasing, we joined 
multiallelic variants back into the original state using bcftools norm 
with the option ‘-m +any’.

Using plink84, we assessed linkage disequilibrium to nearby SNPs in 
a window of 1 Mb. We first converted the VCF to plink input files and 
then used plink to calculate r2 values of all SVs to nearby SNPs. For the 
linkage disequilibrium analysis, we further subdivided the CHM13 
genome into GiaB ‘difficult’ regions and ‘high-confidence’ regions85 
(using the CHM13_notinalldifficultregions.bed.gz file; Extended Data 
Fig. 3 and Supplementary Figs. 26 and 52).

Comparison with previous SV callsets
For the comparison with SV calls derived from high-quality genome 
assemblies from the HGSVC we used Truvari78, using the CHM13 refer-
ence genome (Supplementary Note 3). To enable further analyses with 
previous callsets, we additionally lifted our SV calls to GRCh38 using 
liftOver74 with the CHM13 to GRCh38 chain file. As extra baseline callsets 
(GRCh38-based), we included the callsets produced in ref. 3, ref. 22 and 
ref. 4, labelled as nygc, pangenie and phase3, respectively (Supplemen-
tary Fig. 20). The comparison of SVs was restricted to autosomes and 
chromosome X for deletions and insertions separately. We used sansa 
compvcf to compare the SV VCF files using default parameters. We 
altered the base and comparison VCFs to identify SVs that are distinct 



for one or the other callset and to identify potential 1:many SV overlaps 
among the shared SVs. We used the presence of INSSEQ and the absence 
of IMPRECISE in the INFO field as criteria for sequence-resolved inser-
tions in previous short-read SV callsets3 (Fig. 1).

Population differentiation
We used ADMIXTURE v.1.3.0 (https://github.com/NovembreLab/admix-
ture) to compute admixture for K = 5. For performing SV-based principal 
component analysis we used EIGENSOFT 8.0.0 (https://github.com/
DReichLab/EIG). Fst values were calculated using VCFtools for each 
continental population (against the remaining samples) and each popu-
lation (against the remaining samples) per site and for 1-Mb windows.

SV impact estimation on genomic features
We used Ensembl VEP with annotation from the CHM13 rapid release 
of Ensembl (107) to estimate the impact of the SVs on genomic fea-
tures. Processing was performed using the command: vep --assembly 
T2T-CHM13v2.0 --regulatory --offline -i final-vcf.unphased.vcf.

We observe a large difference in the mean allele frequencies of SVs 
affecting coding (mean MAF 0.009) and non-coding (mean MAF 0.061) 
regions. This observation and the P value of 0.0 reported by both t-test 
and Kolmogorov–Smirnov test thereby support the hypothesis that 
the two underlying distributions are different.

Targeted genotyping of challenging loci
Locityper86 (v.0.13.3) is a targeted whole-genome sequencing-based 
genotyper designed for challenging loci. Our initial set of target genes 
was preprocessed using locityper add -e 300k. Our analysis based on 
Locityper focused on 270 loci identified by GiaB as challenging, yet 
crucial for understanding genetic underpinnings of various diseases26, 
along with 20 polymorphic MUC family genes and the LPA gene, which 
are of particular interest because of their association with various 
structural haplotypes and health conditions87,88. ONT datasets were 
preprocessed and genotyped with locityper preprocess --tech ONT 
and locityper genotype, respectively. A database of locus haplotypes 
was constructed on the basis of the GRCh38 and CHM13 reference 
genomes, as well as on the basis of the 44 diploid HPRC whole-genome 
assemblies. To evaluate genotyping accuracy, we aligned haplotypes to 
each other using the Wavefront alignment algorithm89, and calculated 
sequence divergence as a ratio between edit distance and alignment 
size. Local haplotypes were extracted from the NYGC callset using 
bcftools consensus.

SV annotation with SVAN
SV calls generated with our SAGA framework were processed with the 
SVAN tool (commit: 7b97325, v.1.3) (https://github.com/REPBIO-LAB/
SVAN) to classify them in distinct classes on the basis of distinctive 
sequence features:

Retrotranspositions. Canonical retrotransposition events were identi-
fied by searching for poly(A) and poly(T) tails at the 5′ end 3′ ends of 
the deleted and inserted sequences. Poly(A/T) tracts were required 
to be at least 10 bp in size, have a minimum purity of 90% and be at a 
maximum of 50 bp from the insert end or beginning, for poly(A) and 
poly(T), respectively. The sequence corresponding to the TSD was  
detected and trimmed from either the 5′ or 3′ end of the L1 insert 
through the identification of exact matches with the genomic sequence 
at the integration position. To have all candidate retrotransposed  
inserts in forward orientation, the reverse complement sequence for 
every trimmed insert occurring in the minus strand was obtained.

Candidate 3′ partnered transductions were detected by searching for 
a second poly(A) stretch at the 3′ end of the trimmed sequences using 
the same criteria outlined above. Integrants with a secondary tail were 
annotated as ‘3′ transduction’ candidates with the sequence in-between 
the poly(A) stretches corresponding to the transduced bit of DNA, 

whereas those with a single tail were classified as ‘solo’ candidates. To 
trace transductions to their source loci, transduced sequences were 
aligned onto CHM13 using BWA-MEM90. To maximize sensitivity for 
particularly short transduction events, a minimum seed length (-k) 
of 8 bp and a minimum score (-T) of 0 were used. Alignment hits were 
filtered by requiring a minimum mapping quality of 10. Transduction 
candidates with less than 80% of the transduced sequences aligning 
on the reference were further filtered out.

The retrotransposition candidates were further trimmed by remov-
ing the poly(A) tails and transduced sequences. To identify processed 
pseudogenes, orphan transductions, 5′ partnered transductions and 
retroelement sequences, the resulting trimmed inserts were aligned 
onto CHM13 using minimap 2.1, as well as BWA-MEM 0.7.17-r1188, by 
using the parameters described above and with the alignment con-
ducted onto a database of consensus L1, Alu and SVA repeats. The SVA 
repeats database contains separate sequences for each SVA component, 
including the Alu-like region, VNTR, SINE-R and exon 1 of the MAST2 
gene, which is characteristic of the SVA-F1 subfamily.

Alignment hits were filtered by requiring a minimum mapping qual-
ity of 10, and chained on the basis of complementarity to identify the 
minimum set of non-overlapping alignments that span the maximum 
percentage of the trimmed insert. On the basis of the alignment chains, 
retrotranspositions are classified as processed pseudogenes (more 
than or equal to 75% aligns on the reference over single or multiple 
Gencode 35 annotated exons91), orphan transductions (more than 
or equal to 75% aligns on the reference outside exons), 5′ transduc-
tions (more than or equal to 75% aligns both into the reference on its 
5′ and into the consensus of a retrotransposon) and solo (more than 
or equal to 75% aligns into a single consensus retrotransposable ele-
ment). Alignment chains are further analysed to decompose each MEI 
into its sequence components, including inversions at the 5′ end of L1 
and processed pseudogene insertions or the set of individual repeats 
composing SVA inserts.

Non-canonical MEIs. Insertions and deletions without a poly(A) tail 
detected were aligned into a database of consensus L1, Alu and SVA 
repeats as described above to identify non-canonical MEIs. Alignment 
hits were filtered and chained and non-canonical MEI calls made if 
more than or equal to 75% of the sequence aligned into one or multiple 
repeat classes.

Endogenous retroviruses. Inserted and deleted sequences were 
aligned with BWA-MEM 0.7.17-r1188 into a database containing con-
sensus ERV and LTR sequences. Alignment hits were filtered and chained 
as described above. SVs with hits spanning more than or equal to 75% of 
their sequence on the retrovirus database were classified as Solo-LTR 
and ERVK, on the basis of the presence of an LTR alone or LTR plus ret-
roviral sequence, respectively.

VNTRs. Expansions and contractions of VNTR loci were annotated 
by processing inserted and deleted sequences with TRF (Tandem  
Repeats Finder) v.4.04 (ref. 92). TRF hits were processed and chained 
on the basis of complementarity to determine the minimum set of 
non-overlapping hits that span the maximum fraction of the sequence. 
On the basis of the hit chains, SVAN classified VNTRs as simple (more 
than or equal to 75% of the sequence corresponds to a single repeated 
motif) and complex (more than or equal to 75% corresponds to more 
than one repeated motif).

Duplications. Diverse classes of duplications, including tandem, invert-
ed and complex duplication events, were annotated by realigning the 
inserted sequences onto the reference using minimap 2.1. Alignments 
were filtered to select only those located within a 2-kb window around 
the insertion breakpoint. These were further chained on the basis of 
complementarity to determine the minimum set of non-overlapping 
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hits spanning the maximum percentage of the sequence. On the basis 
of the alignment chains, duplications are classified as tandem (more 
than or equal to 75% of the sequence aligns at the insertion breakpoint 
in forward orientation), inverted (more than or equal to 75% of the 
sequence aligns at the insertion breakpoint in reverse orientation) 
and complex (more than or equal to 75% of the sequence aligns at the 
insertion breakpoint both in forward and reverse orientation).

NUMTs. Insertions with more than or equal to 75% of their sequence 
having one or multiple minimap 2.1 alignments on the mitochondrial 
reference are classified as NUMT.

Transduction analysis
L1 and SVA transductions were clustered on the basis of the alignment 
position on the reference of their corresponding transduced sequences 
to identify their source regions. A buffer of 10 kb was applied to their 
start and end alignment positions before clustering. Source regions 
were further intersected with a database of full-length loci to determine 
the progenitor repeat. This database was generated by aggregating 
all the full-length L1s (more than 5.9 kb in size) and SVAs (more than 
1 kb) in CHM13 detected as non-reference insertions in our SV callset. 
Progenitor repeats were further annotated by determining their inser-
tion orientation and subfamily. For L1 events, subfamily assignment 
was performed through the identification of subfamily diagnostic 
nucleotide positions on their 3′ end. L1 progenitors bearing the diag-
nostic ‘ACG’ or ‘ACA’ triplet at the 5,929–5,931 position were classified as 
‘pre-Ta’ and ‘Ta’, respectively. Ta elements were subclassified into ‘Ta-0’ 
or ‘Ta-1’ according to diagnostic bases at the 5,535 and 5,538 positions 
(Ta-0: G and C; Ta-1: T and G). Elements that did not show any of these 
diagnostic profiles could not be assigned to a particular category, and 
their subfamily status remained undetermined. For SVAs, the inserts 
were processed with RepeatMasker v.4.0.7 to determine the subfamily. 
If multiple RepeatMasker hits were obtained, the one with the highest 
Smith–Waterman score was selected as representative. To assess a bias 
in source elements to generate 5′ or 3′ transduction events, respectively, 
we conducted two-tailed binomial tests followed by controlling for the 
FDR according to Benjamini and Hochberg93. We included all source 
elements with at least five non-orphan transductions when conducting 
statistical testing for 5′ versus 3′ bias.

To investigate source element novelty, we compared active source 
L1s and SVAs identified in this study with source elements previously 
reported to be active on the basis of transduction traces seen in ger-
mline22,94 as well as cancer genomes95,96, and additionally compared our 
dataset with previously reported in vitro activity measurements97,98.

SV breakpoint junction analysis
The detection of homologous sequences and microhomologies flank-
ing deletions and insertions was conducted on the primary callset, 
after removing calls less than 50 bp in length, using two approaches: 
Microhomology was quantified using the available homology output 
from SV calls generated by DELLY72 (v.1.2.6). We systematically gen-
erated DELLY calls for each SV by building synthetic reads carrying 
the respective SV allele, mapping those synthetic reads with mini-
map2 (ref. 64) (v.2.2.26) onto the genomic reference of the SV with 
4-kb padding and calling the respective SV with DELLY. The synthetic 
reads consist of a 2-kb reference sequence upstream of the SV start, 
the inserted sequence (only for insertions and modified for larger 
insertions) and a 2-kb reference sequence downstream of the SV end 
coordinate. For insertions longer than 100 bp, we used at most the first 
and last 50 bp of the inserted sequence to avoid aberrant mapping of 
the insert, which was especially observed in the case of long insertions. 
Owing to the use of truncated inserts for insertions, only homologies 
with a length of 50 bp were considered, and larger values were set to 
50 bp. The second approach aimed to capture longer stretches of 
homology using BLAST99-based detection of homologous stretches 

of DNA. For this, various pairs of search windows around both break-
points were defined. Search windows were either symmetric with a 
padding of 50 bp, 100 bp, 200 bp, 400 bp, 1 kb, 2 kb, 5 kb, 10 kb, 50 kb 
and 100 kb, or asymmetric with a window size of ‘SV length’, which is 
shifted regularly along the breakpoint (0 bp upstream/‘SV length’ bp 
downstream; 1/6 ‘SV length’ upstream/5/6 ‘SV length’ downstream; 
…; ‘SV length’ upstream/0 bp downstream). From the predefined 
windows, only those leading to no overlap between windows were 
used. Potential homologies were detected using blastn 2.12.0 with 
-perc_identity 80 and -word_size 5, for which the sequences inside the 
search windows were passed using the -subject and -query parameters. 
To allow for equivalent analyses between deletions and insertions, 
insertions were implanted into the CHM13 reference genome and the 
search windows were defined on the modified reference sequence. 
BLAST results were filtered to ensure flanking homology stretches 
show the same directionality, span the respective SV breakpoints and 
contain the respective breakpoint at the relative same position inside 
the homology segment.

For annotation of repeat-mediated SVs, the overlap of the homolo-
gous sequences with RepeatMasker (v.4.1.2) annotations was used. 
For deletions, overlap of the homologous regions with the elements of 
the RepeatMasker track of the CHM13 reference12,22,63 (obtained from 
https://github.com/marbl/CHM13) was calculated with bedtools73 
(v.2.31.1) intersect. Deletions were classified as repeat-mediated if at 
least 85% of the bases of the homologous regions on both sides intersect 
a RepeatMasker annotation of the same class and at least one homolo-
gous region spans 85% of the RepeatMasker element. For insertions, 
the homologous sequences outputted by blastn were annotated with 
RepeatMasker and insertions for which both homologous flanks show 
a reciprocal overlap of at least 85% with a RepeatMasker annotation of 
the same class were deemed repeat-mediated. To analyse SD-mediated 
deletions, all deletions were intersected with the SD track of CHM13. 
Hits spanning more than 85% of the homologous region and span-
ning more than 200 bases or 50% of the SD were defined as putatively 
SD-mediated.

VNTR genotyping using vamos
We performed VNTR genotyping on the long-read data from our 
resource using vamos (v.2.1.3)7. We used the VNTR motif annotations 
provided by the authors of vamos on the CMH13 reference100 to geno-
type VNTRs on all the samples of our dataset. We performed quality 
control on the VNTR calls by comparing the calls produced from these 
ONT reads with the VNTR calls produced from recently generated 
multi-platform whole-genome assemblies20, focusing on the 16 over-
lapping sampling between the two callsets (Supplementary Fig. 7). 
For each VNTR position described by the motif annotations, we com-
pared the number of repeat units that were present in the VNTR allele 
called using vamos. As the VNTRs called on our dataset are read-based 
and the HGSVC dataset20 is genome assembly-based, the VNTR alleles 
of our dataset are unphased whereas the HGSVC VNTRs are phased. 
For allelic comparison, we paired the ONT 1kGP-based alleles with the 
HGSVC alleles having the smallest difference in repeat unit counts. We 
removed the VNTR alleles for which the HGSVC assemblies showed the 
VNTR to be close to the reference VNTR (when the VNTR allele from 
the assemblies had a base pair length between 90% and 110% of the 
reference VNTR allele). We compared the rest of the VNTR alleles to 
assess the concordance between calls on the basis of our resource and 
the HGSVC assembly-based calls. We also conducted a comparison for 
mismatched samples, verifying that random VNTR matching does not 
produce similar results.

Deletion recurrence analysis
To detect potential NAHR-mediated deletion recurrence, we ana-
lysed deletions shorter than 5 kb in length exhibiting a flanking 
sequence homology of 200–9,000 bp. The lower bound of 200 bp 
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was introduced to account for the minimal processing length of flank-
ing repeat sequences previously thought to be necessary for NAHR 
to occur52,101. The upper bound of 9,000 bp was chosen to system-
atically assess the role of the most abundant repeat elements in the 
human genome, including small- to intermediate-sized SDs as well 
as mobile elements, which we consider to be ideal candidate sites 
for SV recurrence owing to their pervasive presence as repeats in the 
genome providing substrates for NAHR. Additionally, to focus the 
analysis on potentially recurrent events, we limited our analysis to 
deletions with allele frequency of 40–60%. Furthermore, we used 
Hardy–Weinberg equilibrium and Mendelian consistency statistics 
to exclude events with potential genotyping errors. Last, we filtered 
out deletions for which phasing information was unavailable. Using the 
above-mentioned criteria, we retained 42 deletions for our analysis. 
To find evidence of recurrence, we used an approach similar to the 
approach we previously devised to detect recurrent inversions in the 
genome36. We screened for SNPs with at least 10% allele frequency 
lying within a 20-kb window centred around the deletion in search for 
positions for which we observe SNP alleles in haplotypes both with and 
without the deletion—which we denote recurrence-indicating SNPs. 
Additionally, we used centroid hierarchical clustering to cluster the 
SNP haplotypes in a 100-kb window centred around the deletion, in 
an effort to assess whether the haplotypes with and without the dele-
tion appear together in similar clusters, a phenomenon that indicates 
that the event recurred in humans. For all 42 shortlisted potentially 
recurrent candidates, we manually inspected these visualizations of 
SNP haplotypes as well as read alignments from carriers of deletion 
and reference alleles, respectively, to confirm that genotyping was 
accurate, that the clustering signal was not driven by recombination 
and that recurrence-indicating SNPs were present on both sides of 
the deletion. We selected six candidates with the strongest evidence 
for SV recurrence upon inspection and included the visualizations as 
Supplementary Figs. 38–43 and as Extended Data Fig. 8.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Our open data resource is fully available to the community for down-
load at the IGSR. Data access FTP link: https://ftp.1000genomes.ebi.
ac.uk/vol1/ftp/data_collections/1KG_ONT_VIENNA/. The data have 
additionally been made available at the Amazon Web Services (AWS) 
cloud computing platform at s3://1kg-ont-vienna and at the European 
Nucleotide Archive (ENA) under accession PRJEB89727. These reposito-
ries contain the graph and linear reference genomes, alignments, input 
SV callsets, the augmented genome graph, genotyped and phased SVs, 
as well as auxiliary data used for evaluating SV callset accuracy. Raw and 
basecalled sequencing data are also available via the OpnMe initiative 
of Boehringer Ingelheim: https://opnme.com/genomiclens. Further 
sequencing data are available from the European Genome-Phenome 
Archive under accession EGAS00001008170.

Code availability
General information about this project is available at https://github.
com/1kg-ont-vienna/sv-analysis. A pipeline to create a multi-sample 
SVarp VCF from single-sample SVarp calls (used as one of the call-
sets going into graph augmentation) and the graph augmentation 
pipeline is available at https://github.com/eblerjana/long-read-1kg 
(commit: 44a1752). The Giggles genotyping algorithm is available at 
https://github.com/samarendra-pani/giggles (commit: 5226884). The 
pipelines and scripts available at https://github.com/marschall-lab/
project-ont-1kg (commit: 32d896d) are: haplo-tagging of aligned 

reads, phasing experiments with WhatsHap, SV genotyping with Gig-
gles on HPRC_mg and HPRC_mg_44_966, SV discovery with SVarp, 
chimpanzee ancestral allele annotation, VNTR genotyping with vamos 
and some pipelines for quality assessment. The repository also hosts 
analysis scripts for the genotypes and the SVAN annotations. Cura-
tion work for VNTR-associated diseases has also been provided. The 
sequence-to-graph alignment sorting and processing of GAF files 
was done using gaftools. Gaftools is available at https://github.com/
marschall-lab/gaftools (commit: feaf7f4). The Structural Variants ANno-
tator (SVAN) tool is available at https://github.com/REPBIO-LAB/SVAN 
(commit: 7b97325, v.1.3). DELLY pangenome filtering mode is available 
at https://github.com/dellytools/delly (commit: 4984ff2) and sansa 
for SV comparison at https://github.com/dellytools/sansa (commit: 
198be12). The pangenome-based SV discovery tool SVarp is available at 
https://github.com/asylvz/SVarp (commit: 0acba75). Scripts for find-
ing and annotating homologous flanks at SV breakpoints are available 
at https://github.com/carstenhain/SV_homology (commit: 534b216). 
A pipeline to simulate ONT data on a genome with small inversions 
for benchmarking genome mappers and callers is available at https://
github.com/celiatsapalou/Simulations_ONT_Data (commit: cf0513b). 
A pipeline to export high-mismatch regions, perform remapping and 
carry out calling inversions is available at https://github.com/celiat-
sapalou/Small_Inversions_Remap (commit: f9d8a44). The pipeline to 
genotype inversions using ONT reads is available at https://github.com/
RMoreiraP/GeONTIpe (commit: 1b5db07). The pipeline for filtering 
rare disease-associated SVs using our resource is available at https://
github.com/hugocarmaga/rare-disease-analysis (commit: add69e9). 
A pipeline producing structural variation VCF files from HiFi reads is 
available at https://github.com/hugocarmaga/variant-calling (com-
mit: 5062a67). DNA methylome analysis scripts are available at https://
github.com/santanaw/1kGP_mods (commit: 8c7ba71).
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Extended Data Fig. 1 | From pseudo haplotypes to generating an augmented 
graph. Variant calls within centromere regions are removed and centromere 
regions are masked by ‘Ns’ in the reference genome. Then, sets of non-overlapping 

variants are grouped and inserted into the reference genome to obtain “pseudo- 
haplotypes”. Finally, pseudo-haplotypes are added as new sequences, thereby 
augmenting the graph, using the minigraph tool.
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Extended Data Fig. 2 | Evaluation of true positive (TP), false positive (FP) 
and false negative (FN) SV calls. a) SV size compared to recently generated 
multi-platform whole genome assemblies20 on 16 overlapping samples, for the 
Giggles genotyped callset, b) SV minor allele frequency (MAF) compared to 
these whole genome assemblies on 16 overlapping samples, for the Giggles 
genotyped call set, c) SV size compared to these whole genome assemblies on 

16 overlapping samples for the final VCF, which was further filtered for high-
quality genotypes emitted by Giggles (Methods) and d) SV MAF compared to 
these whole genome assemblies, on 16 overlapping samples for the final VCF that 
was further filtered for high-quality genotypes emitted by Giggles (Methods). 
DEL, deletion; INS, insertions.



Extended Data Fig. 3 | Quality assessment and population characteristics. 
a) Quality of the genotypes by Giggles on the HPRC_mg_44 + 966 graph after 
filtering. Genotyping quality is shown here using a Hardy-Weinberg Equilibrium 
(HWE) plot given with the allele frequency of the genotyped allele and the 
percentage of samples heterozygous for that allele (using only the 908 unrelated 
samples from our dataset). b) SV allele sharing across continental populations. 
Grey: shared by at least two (and less then all) continental groups. Black: shared 
by all continental groups. Deletions (top left), insertions (top right), all biallelic 
SVs (bottom left), all multiallelic (SVs). c) Linkage disequilibrium (LD) of all SVs 
(MAF > = 1%) with nearby single nucleotide polymorphisms (SNPs). d) As c)  
with SVs restricted to Genome in a Bottle high-confident regions of the  
CHM13 genome (2.3 Gbp, 74.2%). e) SV-based admixing spectrum using five 

reference populations. f) Principal component analysis using all SVs. g) Relation 
between Variant Allele Count and the Number of Variant Sites with that allele 
count in the logarithmic space for the SV genotypes on the HPRC_mg_44 + 966 
graph, annotated by SVAN. Duplications (DUP), Mobile element insertions  
and deletions (MEI (non-reference) and MEI (reference), respectively), Nuclear 
mitochondrial DNA integration (NUMT), processed pseudogene integration 
(PSD). h) Relationship between the Inversion Allele Count (AC) and the Number 
of Variant Sites with that allele count shown in log-space for the GeONTIpe 
based inversion genotypes. The majority of inversions are rare, with most 
exhibiting an AC < 10. A small subset of inversions is observed more frequently 
across populations, with 37 inversions exceeding an AC of 1,000, potentially 
corresponding to reference genome inversions.
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Extended Data Fig. 4 | VNTR genotyping using vamos. a-c) Density plots 
comparing the range difference of repeat unit (RU) counts for different 
percentile ranges for VNTRs genotyped from our resource (“ONT”) and from 
multi-platform whole genome assemblies20 (“HGSVC”), using vamos (plotted 
range is restricted to data points with x < 100 and y < 100 for visualisation 
purposes). Plots show guide lines for y = x +/− c with c = 5, 20, 50 for visualizing 
ranges as shown in the legend below (a-c). Higher c values indicate more 
extreme cases where one dataset reports higher RU ranges compared to the 
other (Note S5 and Table S31). d-e) Distribution of the base pair lengths and the 
count of RUs in the VNTR alleles genotyped by vamos on the ONT data and on 

the HGSVC assemblies. We depict the distribution of two VNTR loci found in  
the genes ABCA7 (chr19:1,012,105-1,014,401) in (d) and PLIN4 (chr19:4,494,323-
4,497,243) in (e), which have been associated with late-onset human disease102,103. 
For the ABCA7 VNTR locus, alleles of a length greater than 5,720 bp (denoted 
through a dashed vertical line in (d)) are associated with late-onset disease, 
whereas for the PLIN4 VNTR locus, alleles with repeat count of 40 (denoted as  
a dashed vertical line in (e)) are disease-associated. We identify a 43 RU count 
VNTR allele for the PLIN4 locus in sample NA20127 (outlier denoted with an 
arrow), with this RU count confirmed using manual inspection (Fig. S62).



Extended Data Fig. 5 | Sequence features for polymorphic MEIs annotated 
using SVAN. a) At the top we depict a schematic representation of all possible 
sequence features for canonical L1 insertion conformations, shown as colored 
boxes. Features include poly-A tails (A(n)) and transductions (TD). Conformations 
are grouped based on their likely mechanism of origin: target-primed reverse 
transcription (TPRT) and twin priming (TP). At the bottom left, frequencies of 
each canonical L1 insertion conformation, where each conformation is defined 
by a unique combination of the sequence features shown in the schematic. 
Insertions with configurations inconsistent with TPRT or TP—such as those 
lacking poly-A tails or containing multiple internal breakpoints—are categorized 
as non-canonical. At the bottom right, for each L1 insertion conformation, box 

plots show length distributions of the full insertions and their individual 
sequence features. Box plots and data points are colored according to the 
inferred insertion mechanism. b) Stacked dot plots showing alignments of  
twin priming insertions containing deletions (top) and duplications (bottom) 
at internal inversion breakpoints. Alignments are colored by orientation, with 
magenta indicating the inverted L1 sequence. c) Schematic representation of 
sequence features observed in SVA insertions, along with frequencies of distinct 
SVA insertion conformations and corresponding length distributions of 
individual SVA features, shown using the same conventions as for L1 insertions. 
d, e) Insertion conformations (following the L1 sequence feature colour codes) 
and length distributions for Alu and processed pseudogene (PSD) insertions.
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Extended Data Fig. 6 | Polymorphic Human Endogenous Retrovirus Type K 
(HERV-K) insertions annotated using SVAN. a, c) Length distributions of 
HERV-K and solo long terminal repeat (solo-LTR) insertions. b, d) Number of 
instance specific repetitive DNA element classes overlap the breakpoints for 
HERV-K and solo-LTR insertions. e) Alignments of HERV-K (top) and solo-LTR 
(bottom) insertions to the HERV-K113 provirus reference, visualized using  
the Integrative Genomics Viewer (IGV). Insertion coordinates relative to the 
CHM13 reference genome, and cytoband identifiers from previously reported39 
insertions. A schematic in the bottom right illustrates the two possible 
configurations for a full-length HERV-K insertion, with or without an LTR-flanking 
repeat present in the reference genome.



Extended Data Fig. 7 | SV breakpoint homology and microhomology 
landscape separated by SV annotation. For all SVs, homology and 
microhomology was determined. SVs were annotated using the SVAN pipeline 
as well as by leveraging flanking repeat elements and/or homologous sequence 
stretches. SVs were grouped into a) repeat-mediated SVs, b) segmental 
duplication (SD)-mediated SVs, c) duplications (DUP), d) mobile elements (MEI), 
e) VNTRs, f) not-classified (NA) or NHEJ-mediated SVs. The central scatter plot 

shows SV length versus (micro)homology length, for each group. Marginal 
histograms show the distribution of SV length (top) and homology length  
for deletions (left) and insertions (right). The axes are linear from 0 to 50 bp  
and log-scale afterwards, which is denoted by a dashed line. To highlight the 
distribution of rare SV classes, the stacking order in the marginal histograms 
proceeds from rare (bottom) to common classes (top). Colors correspond to 
those used in Fig. 5.
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Extended Data Fig. 8 | Inferred recurrent deletion at 12p13.3. An inferred 
recurrent 806 bp deletion at 12p13.3 mediated by an AluSx-AluY pair. The figure 
shows the variation of haplotypes in a 100 kb window centered around the 
deletion and the relationship between haplotypes with (red) and without the 
deletion (grey). Dendrograms of haplotypes are plotted using a centroid 
hierarchical clustering method. Green dashed lines represent the separation  
of four haplotype groups shown in Fig. 5g. In each haplotype, reference and 

alternative alleles are shown in blue and orange, respectively. SNPs within 20 kb 
around the deletion showing evidence of deletion recurrence are marked by 
triangles at the top. Two predicted independent occurrences of the deletion 
event are marked as *1 and *2. The deletion genotypes of the samples involved 
in these events have been verified by manual inspection of the aligned sequencing 
reads (Fig. S59).



Extended Data Fig. 9 | Patient Genome Analysis. a) Comparison between  
SV callsets from ‘rare disease patient A’ generated by PAV and Sniffles, the 
phased VCF panel of HPRC_mg_44 + 966 and the HGSVC assembly-based SV 
callset20, showing 160 SVs exclusive to the patient genome. b) Allele frequency 
distributions (log-scale) shown for SV alleles from our study matching those 
from rare disease patient A, for SVs found both in SAGA and HGSVC (top) and 
SVs found only in SAGA (bottom). c) Comparison of the number of SVs reported 
(1) by the pbsv caller (Note S9), (2) by DELLY using default settings, and (3) by 
DELLY when graph-based filtering is utilised. The median number of SVs 
detected in 31 rare disease patient genomes are indicated alongside the data 
points. The comparably high SV count in one patient sample (P1-D11; light 
orange) is likely attributable to population ancestry. d) An upset plot indicating 

the number of pathogenic SVs found by DELLY, along with the number  
of pathogenic SVs retained in graph-based filtering mode (‘delly-pg’).  
e-f) Integrative Genomics Viewer (IGV) views of the 2 validated pathogenic 
SVs filtered in pangenome mode. e) A ~ 140 bp insertion in an STR in FMR1 called  
by DELLY (second row), but not retained in the DELLY-pangenome mode (third 
row). The length of this multiallelic STR varies in the population, with insert 
sizes beyond ~450 bp driving the fragile X syndrome104. f) A ~ 47 kbp deletion 
encompassing two regulatory conserved non-coding elements (CNEs) of SHOX 
is called by DELLY (second row), but not retained in DELLY-pangenome (third 
row). Variants in the SHOX CNEs exhibit recurrence and incomplete penetrance, 
consistent with the occasional presence of this SV in the general population 
(Note S9).
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Extended Data Fig. 10 | Targeted haplotyping accuracy based on Locityper. 
Haplotyping accuracy, here explored in complex loci of the genome across  
270 medically relevant loci, is calculated as sequence similarity between two 
predicted locus haplotypes and actual locus haplotypes, extracted from the 
whole genome assemblies for 1 sample from the HPRC and 8 samples from a 
recent multi-platform whole genome assembly study by the Human Genome 

Structural Variation Consortium (HGSVC)20. a) Comparison of haplotyping 
accuracy for high-coverage short-read3 and intermediate-coverage ONT based 
haplotypes, inferred using Locityper. b) Improvement in haplotyping accuracy 
(Locityper accuracy on ONT data minus accuracy on short-read data) across 
270 loci. The inset shows 20 genes with the highest improvement in haplotyping 
accuracy.
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these choices. If there is a gap between collection periods, state the dates for each sample cohort. Specify the spatial scale from which 
the data are taken
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Data exclusions If no data were excluded from the analyses, state so OR if data were excluded, describe the exclusions and the rationale behind them, 
indicating whether exclusion criteria were pre-established.

Reproducibility Describe the measures taken to verify the reproducibility of experimental findings. For each experiment, note whether any attempts to 
repeat the experiment failed OR state that all attempts to repeat the experiment were successful.

Randomization Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were 
controlled. If this is not relevant to your study, explain why.

Blinding Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why 
blinding was not relevant to your study.

Did the study involve field work? Yes No

Field work, collection and transport

Field conditions Describe the study conditions for field work, providing relevant parameters (e.g. temperature, rainfall).

Location State the location of the sampling or experiment, providing relevant parameters (e.g. latitude and longitude, elevation, water depth).

Access & import/export Describe the efforts you have made to access habitats and to collect and import/export your samples in a responsible manner and in 
compliance with local, national and international laws, noting any permits that were obtained (give the name of the issuing authority, 
the date of issue, and any identifying information).

Disturbance Describe any disturbance caused by the study and how it was minimized.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.

Validation Describe the validation of each primary antibody for the species and application, noting any validation statements on the 
manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.

Eukaryotic cell lines
Policy information about cell lines and Sex and Gender in Research

Cell line source(s) State the source of each cell line used and the sex of all primary cell lines and cells derived from human participants or 
vertebrate models.

Authentication Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

Mycoplasma contamination Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for 
mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

Name any commonly misidentified cell lines used in the study and provide a rationale for their use.
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Palaeontology and Archaeology

Specimen provenance Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the 
issuing authority, the date of issue, and any identifying information). Permits should encompass collection and, where applicable, 
export.

Specimen deposition Indicate where the specimens have been deposited to permit free access by other researchers.

Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals For laboratory animals, report species, strain and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Reporting on sex Indicate if findings apply to only one sex; describe whether sex was considered in study design, methods used for assigning sex. 
Provide data disaggregated for sex where this information has been collected in the source data as appropriate; provide overall 
numbers in this Reporting Summary. Please state if this information has not been collected.  Report sex-based analyses where 
performed, justify reasons for lack of sex-based analysis.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:
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No Yes

Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern

Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches, 
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the 
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe 
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor 
was applied.

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If 
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Authentication Describe any authentication procedures for each seed stock used or novel genotype generated. Describe any experiments used to 
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism, 
off-target gene editing) were examined.

Plants

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and 
lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.
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Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition
Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.
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Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference

(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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