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ABSTRACT
There is increasing evidence that the cerebellum contributes to feedback processing in reinforcement learning. As yet, it has not 
been investigated whether the cerebellum also contributes to error processing in reinforcement learning. Studies have shown, 
however, that the cerebellum is involved in the processing of response errors in non-reinforcement learning contexts, for ex-
ample, in response conflict tasks. In the present study, we aimed to extend these findings to the processing of response errors, 
which slowly emerges as a result of reinforcement learning. To this end, we inhibited the cerebellum via single-pulse transcranial 
magnetic stimulation (spTMS) and recorded cerebral electroencephalography (EEG) measures associated with error processing. 
If input from the cerebellum is required for error processing, error-correct differentiation should be decreased for cerebellar 
compared to vertex (control) stimulation. Cerebellar spTMS was applied and EEG was recorded while healthy adults performed 
a probabilistic feedback learning task. The error-related negativity (ERN), a component in the response-locked event-related 
potential (ERP), was used as a measure of error processing. It reflects a rapidly detected mismatch between representations of 
the actual and the desired response and is typically larger for errors than correct responses. Error-correct differentiation in the 
ERN was diminished for cerebellar compared to control TMS. However, increased error-correct differentiation was found in a 
later ERP component, the error positivity (Pe), which is more strongly associated with error awareness. Cerebellar spTMS thus 
impaired fast error processing reflected in the ERN and facilitated later, conscious error processing reflected in the Pe. These 
findings provide causal evidence of cerebellar contributions to error processing within reinforcement learning.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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1   |   Introduction

Understanding how organisms optimize their behavior in dy-
namic environments is crucial not only to improve learning 
processes but also to advance our understanding of disorders 
associated with maladaptive learning, such as addiction and de-
pression (Gueguen et al. 2021; Chen et al. 2015). Reinforcement 
learning is a basic form of learning in which behavior is shaped 
by its consequences/outcomes, that is, rewards that reinforce 
and punishments that inhibit a specific behavior (Sutton and 
Barto  2018). Initially, in an unfamiliar context, information 
about actions and outcomes must be gathered on a trial-and-
error basis. With learning, actions are then chosen based on their 
predicted outcomes. Learning success thus strongly depends on 
the accuracy of outcome predictions. While improving these 
predictions, the individual gets a better understanding of which 
action is correct and which is false. Ultimately, the individual is 
able to identify an error already at the stage of action execution, 
rather than having to wait for external feedback/the outcome. 
This shift from outcome-level processing to response-level pro-
cessing underlying the distinction between right and wrong 
responses throughout the learning process could be shown in 
a reinforcement learning task by recording brain activity using 
electroencephalography (EEG; Eppinger et al. 2008; Bellebaum 
and Colosio 2014).

Processing of both actions/responses and outcomes has been 
predominantly linked to structures in the fore- and midbrain 
(Corlett et  al.  2022). In EEG studies, error processing has 
been shown to emerge with learning/task progression when 
an understanding of correct and false responses has been de-
veloped (Eppinger et  al.  2008; Bellebaum and Colosio  2014; 
Pietschmann et  al.  2008). In later stages of a learning task, 
a more pronounced negative deflection in the response-
locked signal is typically found for errors relative to correct 
responses (Eppinger et al. 2008; Bellebaum and Colosio 2014; 
Pietschmann et al. 2008), that is, the error-related negativity 
(ERN; Falkenstein et al. 1991; Gehring et al. 1993). The ERN 
has a frontocentral scalp distribution and typically peaks 
within 100 ms post-response. Its origin lies primarily in the 
anterior cingulate cortex (ACC, Dehaene et al. 1994; Miltner 
et  al.  2003; Iannaccone et  al.  2015, but also see Herrmann 
et al. 2004) which has been associated with error processing 
(Hester et al. 2004). The ERN is followed by the more poste-
rior error positivity (Pe, peaking 200–400 ms post-response, 
Falkenstein et al. 1991; Wessel 2012). ERN and Pe have been 
proposed to be functionally distinct (Wessel  2012), with 
the ERN reflecting a fast-paced mismatch between the ac-
tual and desired response (Coles et  al.  2001; Nieuwenhuis 
et al.  2001), and the Pe reflecting more conscious error pro-
cessing (Nieuwenhuis et  al.  2001; Ridderinkhof et  al.  2009). 
On the other hand, feedback processing, as reflected in the 
feedback-related negativity (FRN), is typically found at 
early stages of reinforcement learning where participants 
strongly depend on external feedback to perform the task ac-
curately (Eppinger et  al.  2008; Bellebaum and Colosio  2014; 
Pietschmann et  al.  2008). The FRN has been described as a 
functional equivalent of the ERN during feedback processing, 
as both seem to contribute toward an adjustment of behav-
ior toward error correction (Gentsch et al. 2009). In addition, 
there seems to be a high overlap in topography and neural 

generators (Gentsch et al. 2009; Holroyd and Coles 2002; Potts 
et al. 2011).

Interestingly, recent studies in rodents (Kostadinov and 
Häusser  2022) and humans (Huvermann et  al.  2025; 
Rustemeier et al. 2016; Berlijn et al. 2025) have provided ev-
idence for a potentially supportive role of the cerebellum in 
feedback processing during reinforcement learning (Peterburs 
and Desmond  2016). The cerebellum is best known for pre-
dictive processes in the context of motor control (Popa and 
Ebner 2019) but in the last decades increasingly also for cog-
nitive processes (Berlijn et al. 2024b; Sokolov et al. 2017). The 
cerebellum is thought to support both motor and cognitive 
function by predicting outcomes via internal forward models 
(Popa and Ebner 2019; Wolpert et al. 1998; Tanaka et al. 2020), 
connecting with a wide range of cerebral brain areas, in-
cluding the ACC, in a closed-loop fashion (Ramnani  2012; 
Schmahmann and Pandya 1997; Glickstein et al. 1985; Kruithof 
et  al.  2023; Habas  2021; Bostan and Strick  2018). Cerebellar 
dysfunction might thus influence feedback processing as re-
flected in the FRN via maladaptive support of ACC function. 
Indeed, in recent studies (Huvermann et  al.  2025; Berlijn 
et  al.  2025), we found that cerebellar lesions, degeneration, 
and TMS disrupted feedback processing in the sense that the 
prediction error was not represented in the FRN.

These previous studies (Huvermann et  al.  2025; Rustemeier 
et al. 2016; Berlijn et al. 2025) have focused on the role of the 
cerebellum at the outcome stage. However, prediction at the 
response stage (i.e., error processing), as described above, is 
also a prominent part of reinforcement learning. Cerebellar 
damage and disruption of cerebellar function by non-invasive 
brain stimulation have already been associated with defi-
cits in error processing in response conflict tasks (Peterburs 
et  al.  2012, 2015; Berlijn et  al.  2024a; Tunc et  al.  2019). 
Specifically, differentiation between errors and correct re-
sponses in the ERN was consistently reduced for cerebellar 
dysfunction (Peterburs et al. 2012, 2015; Berlijn et al. 2024a, 
only on trend level in Tunc et al. 2019). For the Pe, findings are 
more heterogeneous, with most studies not finding effects of 
cerebellar dysfunction, except for one study in cerebellar post-
acute stroke which showed increased error-correct differenti-
ation that was interpreted as compensatory for deficient error 
processing in the ERN (Peterburs et al. 2012). Response con-
flict tasks, however, contain no feedback and can instead be 
performed based on the initial instructions. For example, in a 
flanker task, participants need to indicate the direction of a 
central arrow in the presence of flanking arrows. Predictions 
thus do not evolve slowly with learning as in reinforcement 
learning.

In summary, previous studies support a cerebellar role in 
outcome processing in reinforcement learning and error pro-
cessing in response conflict tasks. This is consistent with the 
proposed role of the cerebellum in performance monitoring, 
that is, in functions which support adaptive behavior, to which 
both reinforcement learning and error processing contribute 
(Peterburs and Desmond 2016). Error and feedback processing 
are closely intertwined, and it seems conceivable that in rein-
forcement learning tasks, disrupted feedback processing (on 
which participants rely in particular early in the task) caused 
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by cerebellar dysfunction leads to changes in error process-
ing (which emerges later in the task, with learning from feed-
back). These changes may be similar to those found for error 
processing under cerebellar dysfunction in response conflict 
tasks (Peterburs et  al.  2012, 2015; Berlijn et  al.  2024a; Tunc 
et al. 2019).

In the current study, we aimed to examine if aberrant feedback 
processing in cerebellar dysfunction transfers to the response 
phase with learning progression in a reinforcement learning 
task. We disrupted cerebellar function by non-invasive brain 
stimulation in young adults. Single-pulse TMS (spTMS) excites 
the subjacent neuronal populations followed by a prolonged pe-
riod of reduced activity (Romero et al.  2019), potentially lead-
ing to inhibition or facilitation depending on various factors 
including stimulation site and timing (Shirota and Ugawa 2024; 
Luber and Lisanby 2014). For cerebellar stimulation, an inhib-
itory effect of spTMS on cortical function is mostly assumed 
(Desmond et  al.  2005; Schutter and van Honk  2006; Viñas-
Guasch et al. 2023, but also see Du et al. 2018, for a review see 
Fernandez et al. 2020). We analyzed data from a previous study 
by our group (Huvermann et al. 2025) which were collected in 
young, healthy adults who received cerebellar spTMS while per-
forming a probabilistic feedback learning task with trial-by-trial 
feedback. Importantly, overall learning performance was not 
affected by the TMS, in theory enabling error processing as the 
task progresses and learning takes place (Eppinger et al. 2008; 
Bellebaum and Colosio 2014; Pietschmann et al. 2008). ERN and 
Pe were analyzed as EEG indices of error processing. In accor-
dance with previous work in response conflict tasks (Peterburs 
et al. 2012, 2015; Berlijn et al. 2024a), we expected to see reduced 
or absent error-correct differentiation in the ERN for cerebellar 
TMS (Iannaccone et al. 2015, but also see Berlijn et al. 2024b). We 
expected to see this effect more strongly later in the task when 
response-outcome contingencies have been learnt and error pro-
cessing is more pronounced (Eppinger et  al.  2008; Bellebaum 
and Colosio 2014; Pietschmann et al. 2008). However, we did not 
expect to see distinct compensatory mechanisms indexed by an 
increased Pe as observed in cerebellar stroke patients (Peterburs 
et al. 2012) due to the immediate effect of spTMS. Two stimula-
tion timings were used, to differentiate direct disruption of error 
processing (via post-stimulus/pre-response TMS) from indirect 
effects of disrupted feedback processing on error processing 
(pre-feedback TMS) due to maladjusted predictive processes.

In line with the hypotheses, we found decreased error-correct 
differentiation in the ERN for cerebellar TMS. In addition, 
error-correct differentiation in the Pe was increased for cere-
bellar stimulation while behavioral performance was overall 
preserved.

2   |   Material and Methods

The present study was part of a larger investigation of cere-
bellar contributions to reinforcement learning and presents 
novel, follow-up analyses of data reported previously by our 
group (Huvermann et al. 2025). There, we focused on outcome/
feedback processing and thus did not analyze response-locked 
ERPs. We performed two studies on reinforcement learning, 
one with cerebellar stroke patients and respective controls, the 

other with healthy adults using cerebellar (vs. vertex) spTMS. 
The present work is focused on the spTMS study, because older 
adults typically show only weak error-correct differentiation in 
the response-locked ERP in reinforcement learning (Eppinger 
et  al.  2008; Pietschmann et  al.  2008; Herbert et  al.  2011). 
However, analogous analyses were also performed for data from 
the patient study and are provided in Supplementary Analysis S1.

2.1   |   Participants

Sample characteristics are detailed in Huvermann et al. (2025). 
Data from 24 healthy participants (7 men, 17 women; mean age 
23.3 years, SD = 2.9 years, age range 19–30 years) entered the 
analyses. According to the Edinburgh Handedness Inventory 
(Oldfield  1971) scores, 20 participants were right-handed, two 
left-handed, and two ambidextrous.

All participants gave written informed consent prior to partici-
pation. The study was conducted in accordance with the ethical 
principles for medical research involving human subjects out-
lined in the Declaration of Helsinki and approved by the Ethics 
Committees at the Faculty of Medicine of Heinrich-Heine-
University Düsseldorf (2018-240_1) and the University Hospital 
Essen (18-8477-BO).

2.2   |   Procedure

Please see Huvermann et al. (2025) for a detailed description. In 
brief, cerebellar and vertex TMS took place in separate sessions 
at least 48 h apart to decrease repetition effects in the task. After 
EEG and EMG preparations and motor threshold estimation, 
the double cone TMS coil was positioned and secured to the par-
ticipant's head (see Figure 1). Before and after the experimental 
task, an additional cognitive task was performed for which re-
sults are reported in Berlijn et al. (2024a).

Participants completed a probabilistic feedback learning task 
(Eppinger et  al.  2008; Bellebaum and Colosio  2014). Figure  2 
illustrates the sequence and time course of stimulus presenta-
tion in each trial. The task consisted of 6 blocks of 56 trials, thus 
336 trials in total. Each trial began with a fixation cross, fol-
lowed by one of four stimuli (Chinese characters). Participants 
responded by pressing the left or right button on a response 
box within a response window of 1000 ms. Choices were high-
lighted on the screen, followed by a black screen before feedback 
was displayed, with “+20ct” in green font as positive feedback 
or “−10ct” in red font as negative feedback. Two stimuli were 
linked to random feedback (50% positive and 50% negative, inde-
pendent of response), while the other two stimuli were linked to 
contingent feedback. Here, correct responses were followed by 
positive feedback in 80% of the cases and by negative feedback 
in 20% of the cases (vice versa for errors). Contingencies could 
thus be learnt. TMS was delivered 100 ms post-stimulus for one 
stimulus and 100 ms pre-feedback for the other.

TMS was applied at 120% of motor threshold using a Magstim 
Double Cone Coil and a Magstim BiStim2 unit (Magstim Co., 
Whitland, United Kingdom). A fast-paced task flow was en-
abled by alternating stimulation between two BiStim units. 
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Stimulation was applied either to the left lateral cerebellum 
(1 cm below and 3 cm to the left of the inion; confer Hardwick 
et al. 2014; Théoret et al. 2001; Torriero et al. 2004) or position 
vertex as a control site (at electrode position Cz, Jung et al. 2016; 
Pizem et al. 2022). Stimulation of the left cerebellar hemisphere 
is consistent with its implication in processing visual–spatial in-
formation (Stoodley and Schmahmann 2009) and stronger acti-
vations of the left hemisphere in a previous fMRI study using a 
similar feedback learning task (Peterburs et al. 2018). Following 
spontaneous reports of side effects in the initial testing sessions, 
a post-experimental questionnaire was introduced in which par-
ticipants were asked to rate symptoms associated with TMS [see 
Huvermann et al. (2025) for more details]. No significant differ-
ences between vertex and cerebellar stimulation were observed 
regarding headaches, neck pain, toothaches, inattentiveness, 
discomfort, phosphenes ratings, or free field responses for other 
symptoms (all p ≥ 0.343, see Figure 3).

2.3   |   EEG Recording and Preprocessing

Data were recorded at 1000 Hz from 30 passive Ag/AgCl mul-
titrode electrodes positioned in the 10–20 system (Chatrian 
et  al.  1985), using BrainAmp MR amplifier and BrainVision 
Recorder 1.21 (Brain Products GmbH, Gilching, Germany). 
Impedances were kept below 5 kΩ.

For preprocessing, the ARTIST algorithm by Wu et  al.  (2018) 
based on EEGLAB (v2022.1; Delorme and Makeig  2004) was 
used. This algorithm decreases artifacts in the EEG signal 
caused by TMS pulses [see Huvermann et  al.  (2025) for a de-
tailed description of preprocessing procedures].

Using Brainvision Analyzer 2 software (version 2.2, Brain 
Products GmbH, Gilching, Germany), data were segmented 
around responses, starting 200 ms before and ending 500 ms 
after the response. Next, a baseline correction was performed 
using the time window from 200 to 100 ms before response onset. 
Data were then exported for further processing in MATLAB. 
Although data were analyzed on a single-trial basis, we addi-
tionally averaged the data according to conditions (stimulation 
site, TMS timing, response type) to extract peak latencies of the 
ERP components of interest (described below). Only trials for 
stimuli with learnable contingencies (i.e., 80–20) were included.

Peak detection was performed on the averaged data and sepa-
rately for each condition for the ERN and Pe using MATLAB. The 
time windows and electrode sites that had been pre-registered 
based on previous related studies (Peterburs et al.  2012, 2015; 
Berlijn et al. 2024a; Tunc et al. 2019) were used. For the ERN, 
peak detection was performed at FCz in the time window start-
ing at response onset and ending 100 ms thereafter. For the Pe, 
we used the maximal positive peak within the time window be-
tween 200 and 400 ms at Pz. For the single-trial data, the mean 
amplitude in a time window around the respective latency de-
termined by the peak detection on the averaged data for each 
condition was extracted (20 ms for ERN; 40 ms for Pe, Albrecht 
and Bellebaum 2023; Meadows et al. 2016).

2.4   |   Statistical Data Analysis

Data were analyzed in R (version 4.2.3, R Core Team  2023) 
using RStudio (version 2023.3.0.386, Posit Team  2023). 
Analyses of accuracy and choice switching (i.e., choosing a 

FIGURE 1    |    Experimental setup. Depending on the session, TMS was applied to either the left cerebellum (1 cm down and 3 cm to the left of the 
inion) or vertex using a double cone coil. EEG and EMG were recorded simultaneously. Reproduced from Huvermann et al. (2025) with permission.
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different response than before following e.g., positive/neg-
ative feedback) are reported in Huvermann et  al.  (2025). As 
data were not clearly separable into pre- and post-learning for 
a majority of participants, we opted for a single trial-based 
analysis approach using linear mixed effects (LME) models 
including the trial-by-trial factor trial number, thus capturing 
the course of error-correct differentiation across the experi-
ment. This also overcame a common concern of unequal num-
bers of trials for errors and correct responses as well as (too) 
few error trials per condition (Olvet and Hajcak 2009; Pontifex 
et al. 2010; Larson et al. 2010) due to learning throughout the 
task. Exclusion of participants with too few error trials would 
systematically exclude good learners (Clayson et al. 2025) and 
including an equal number of trials in the analysis does not sal-
vage the concern (Fischer et al. 2017). Multilevel approaches 
using single-trial data; however, overcome these limitations 

by taking into account different numbers of data points per 
factor level and being relatively robust to large numbers of 
missing data points (Clayson et al. 2025; Bolker 2015; Krueger 
and Tian 2004).

The packages lme4 (version 1.1-32, Bates et  al.  2015) and 
lmertest (version 3.1–3, Kuznetsova et al. 2017) were used for 
LME modeling. We used restricted maximum likelihood with 
p-values computed using Satterthwaite approximation to eval-
uate significance, following Luke (Luke  2017). Participants 
with a Cook's distance (Cook 1977) above 4/(n-p-1) were iden-
tified as outliers (using the influence.ME package, version 
0.9-9, Nieuwenhuis et  al.  2012). We strived for a maximal 
random effects structure but in case of singular fit gradually 
reduced random effects starting with main effects and then 
lower-grade interactions until fit was ensured. Significant in-
teractions were followed up using simple slope analyses (in-
teractions package, version 1.1.5, Long  2019). p-values were 
Bonferroni-corrected according to the number of simple 
slopes.

LME analyses were conducted with the categorical fixed ef-
fects response type (−0.5: error, 0.5: correct), stimulation 
site (−0.5: vertex, 0.5: cerebellum), TMS timing (−0.5: post-
stimulus, 0.5: pre-feedback), and the continuous factor trial 
number, which was scaled via the built-in scale function. We 
also included all interactions of these factors as fixed effects. 
No participants were identified as outliers based on Cook's 
distance. The model equation for both ERN and Pe was as 
follows:

ERN∕Pe∼1+response type∗TMS condition∗TMS timing∗ trial number

+(1+response type: TMS condition: TMS timing: trial number | subject)

FIGURE 2    |    Time course in one trial in the experimental task. (A) 
Time course of stimulus presentation and timing of TMS pulses in one 
trial in the experimental task. First, a fixation cross was presented 
for 500–1000 ms. Subsequently, one of four stimuli was presented for 
500 ms together with flanking rectangles representing the response 
options. Participants responded by pressing the left or right button on 
a response pad up until 500 ms after the stimulus was presented. The 
respective rectangle was highlighted for 200 ms. After 500 ms of blank 
screen, positive (“+20 ct”) or negative feedback (“−10 ct”) was presented 
for 1000 ms. Participants had to learn by trial and error which of the two 
options was more likely to result in positive/negative feedback, sepa-
rately for each of the four stimuli. Feedback for two stimuli had an 80% 
contingency, and a 50% contingency for the other two. Stimulation in a 
particular trial was applied either 100 ms post-stimulus or 100 ms pre-
feedback. The task consisted of 336 trials. (B) Time course of stimulus 
presentation and timing of the TMS pulse in relation to ERN and Pe 
time windows in one trial in the experimental task. ERN was quanti-
fied in the time window between 0 and 100 ms following the response 
while Pe was quantified in the time window between 200 and 400 ms 
following the response. Distance to the post-stimulus TMS pulse thus 
differed and depended on response time in the respective trial, while 
the pre-feedback TMS pulse always occurred after ERN and Pe. Note 
that the TMS pulse in a particular trial was given either post-stimulus 
or pre-feedback.
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Note that we also performed a complementary analysis using 
action value modeling, as commonly conducted for analyses 
involving prediction error modeling in reinforcement learning 
contexts (see e.g., McDougle et al. 2019; Ichikawa et al. 2010). 
Analyses involved a new measure, Qdiff, which reflects the 
relative subjective action value (action value of the unchosen 
choice subtracted from the action value of the chosen option). 
It should thus offer a better measure for subjective error pro-
cessing than the objective response type (see Supplementary 
Analysis S2 for further details), especially because, due to the 
probabilistic nature of our task, errors and correct responses 
are not as clearly defined as in response-conflict tasks. 
Relative action values have been shown to be more reliable 
than absolute action values (Katahira et  al.  2017), although 
the procedure of action value/prediction error estimation in 
general has been shown to be highly correlated to subjective 
measures (Ichikawa et al. 2010).

3   |   Results

3.1   |   Accuracy

While a main effect of block, that is, a general learning effect, 
was found (F(3.18, 73.05) = 6.21, p < 0.001), no differences be-
tween cerebellar and vertex TMS emerged, p ≥ 0.461. These re-
sults indicate that error rates decreased over the course of the 
task and were not affected by cerebellar TMS. On average, 9.6 
errors per block, stimulation site, and participant were commit-
ted (SD = 4.4 errors). The full results concerning accuracy are 
reported in Huvermann et al. (2025).

3.2   |   ERN—Effects of Response Type 
(Error/Correct)

Grand averages for the ERPs at FCz time-locked to individual 
ERN latencies for correct responses and errors (i.e., response 
type) according to stimulation site, TMS timing, and trial num-
ber (early, late experiment) are provided in Figure 4A.

The ERN was more negative for errors compared to correct 
responses (β = 0.81, SE = 0.16, t(7451.23) = 4.94, p < 0.001). 
This effect was further modulated by trial number (β = 0.51, 
SE = 0.16, t(7394.78) = 3.22, p = 0.001). While response types 
did not differ in ERN amplitude early on (β = 0.29, SE = 0.22, 
t = 1.30, p = 0.386), errors as compared to correct responses were 
associated with increased negativity late in the task (β = 1.35, 
SE = 0.24, t = 5.75, p < 0.001).

Importantly, this interaction was further modulated by stimu-
lation site (β = −0.80, SE = 0.32, t(7431.03) = 2.53, p = 0.012; see 
Figure  4B). Follow-up simple-slope analyses showed that for 
both cerebellar and vertex TMS, response types were not distin-
guished in the ERN early in the task (both p ≥ 0.453). However, 
late in the task, the ERN was more pronounced for errors than 
correct responses for vertex TMS (β = 1.94, SE = 0.32, t = 6.01, 
p < 0.001) but not for cerebellar TMS (β = 0.75, SE = 0.34, t = 2.22, 
p = 0.106).

Additionally, a trend-level interaction between response type, 
stimulation site, and TMS timing emerged (β = 1.22, SE = 0.65, 
t(7448.34) = 1.88, p = 0.060; see Figure  S1 for the slope plots). 
Descriptively, response types were distinguished in the ERN for 

FIGURE 3    |    Ratings of side effects in the post-experimental questionnaire, as reported in Huvermann et al. (2025). Means and standard errors are 
shown in red, individual ratings are shown in black.
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FIGURE 4    |     Legend on next page.
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vertex TMS and pre-feedback cerebellar TMS but not when stim-
ulating the cerebellum post-stimulus.

Complete inferential statistics are provided in Table S1. Effects 
that include the TMS timing factor independent of stimulation 
site are reported in Supplementary Analysis S3.

3.3   |   Pe—Effects of Response Type (Error/Correct)

Grand averages for the response-locked ERPs at Pz for correct 
responses and errors (i.e., response type) according to stimula-
tion site, TMS timing, and trial number (early, late experiment) 
are provided in Figure 5A.

The Pe was more pronounced for errors compared to correct re-
sponses (β = −0.99, SE = 0.15, t(7848.81) = 6.68, p < 0.001), and 
late compared to early in the experiment (β = 0.24, SE = 0.07, 
t(7734.12) = 3.37, p = 0.001).

Importantly, the effect of response type was modulated by stim-
ulation site and TMS timing (β = 2.07, SE = 0.58, t(7855.11) = 3.55, 
p < 0.001; see Figure 5B). Post hoc simple slope analyses showed 
that the Pe differentiated errors and correct responses for vertex 
TMS applied both pre-feedback (β = −0.76, SE = 0.29, t = 2.63, 
p = 0.034) and post-stimulus (β = −0.74, SE = 0.29, t = 2.54, 
p = 0.044). For cerebellar TMS, Pe amplitudes did not differ be-
tween errors and correct responses when TMS was applied 
pre-feedback (β = 0.20, SE = 0.29, t = 0.70, p > 0.999). However, a 
strong response type effect emerged for cerebellar TMS applied 
post-stimulus (β = −2.25, SE = 0.30, t = 7.58, p < 0.001), with more 
positive amplitudes for errors compared to correct responses. To 
check whether this response type differentiation in the Pe for 
post-stimulus TMS was truly stronger for cerebellar compared 
to vertex TMS, we checked the interaction effect (stimulation 
site × response type) for post-stimulus TMS trials via simple slope 
analysis, which proved to be significant (β = −1.51, SE = 0.41, 
t(7835.18) = 3.64, p < 0.001). Notably, the interaction effect did not 
reach significance for pre-feedback TMS trials (β = 0.55, SE = 0.41, 
t(7838.69) = 1.34, p = 0.182), indicating that the differences within 
post-stimulus TMS were more decisive for the triple interaction.

Complete inferential statistics can be found in Table S2. Effects 
that include the TMS timing factor independent of stimulation 
site are reported in Analysis S3.

3.4   |   Control Analysis—Predictability of Pe 
by ERN

In an additional analysis we explored whether the effects of 
spTMS on ERN and Pe were separate effects or whether spTMS 

only had an effect on ERN which in turn influenced Pe ampli-
tude. The amplitudes of ERN and Pe correlated significantly with 
each other (r = −0.04, t(7477) = 3.35, p < 0.001), although the cor-
relation strength was very low (Cohen 1988; Evans 1996; Gignac 
and Szodorai 2016; Funder and Ozer 2019). To check whether the 
pattern in the Pe is explainable by ERN amplitudes without con-
sidering TMS effects, we fitted two additional models: one with 
the factors response type, trial number, and ERN amplitude (thus 
disregarding effects of the TMS), and one with the factors re-
sponse type, trial number, stimulation site, TMS timing, and ERN 
(thus including both the effects of TMS and ERN). Both models 
included all interaction terms in the fixed effects. The model 
including the TMS effects provided a better fit (χ2(16) = 116.7, 
p < 0.001) and the triple interaction between response type, stim-
ulation site, and TMS timing remained significant even when 
ERN was included as an additional factor (β = 2.64, SE = 0.65, 
t(7429.14) = 4.05, p < 0.001). To examine whether, conversely, the 
ERN amplitude adds information to the analysis of the Pe, we 
compared the original model to the model with the ERN as an 
additional factor. The model fit improved when adding the ERN 
(χ2(16) = 72.60, p > 0.001), indicating that the ERN amplitude 
does explain variance in the Pe amplitude that cannot be ex-
plained solely by the other factors. We did not perform the same 
analysis with ERN amplitude as dependent and Pe as an indepen-
dent variable as the Pe occurs after the ERN, preventing effects of 
the Pe onto the ERN (at least within the same trial).

While we used the objective correctness of the responses as a 
predictor in these analyses (i.e., response type), subjective per-
ception of which action is better/worse might have differed from 
this, especially considering that responses were associated with 
outcomes over time in the experiment, that not all participants 
learned the contingencies and that errors and correct responses 
were not as clearly defined as in response-conflict tasks due 
to the probabilistic nature of action-outcome associations. We 
therefore conducted an additional analysis using a measure that 
reflects the subjective, relative, instead of objective valuation 
of the chosen option. We computed the Qdiff, that is, the mod-
eled subjective value of the unchosen option subtracted from 
the value of the chosen option (see Supplementary Analysis 
S2). This measure thus reflects to what degree the chosen op-
tion was perceived as the better/worse option, thereby reflecting 
intra- and interindividual differences in learning and action-
outcome representation (Katahira et al. 2017). Importantly, this 
analysis yielded a comparable result pattern (see Supplementary 
Analysis S2).

4   |   Discussion

In the present study, healthy young adults learnt stimu-
lus–response-feedback associations while single-pulse TMS 

FIGURE 4    |    (A) Grand-average ERPs at FCz locked to individual ERN latencies per condition (response type × stimulation site × TMS timing): 
early and late in the task according to response type (correct, error), stimulation site (cerebellum, vertex), and TMS timing (post-stimulus, pre-
feedback). Blue lines denote correct responses, red lines errors. Colored bands display standard errors. See Figure S2 for a response-locked grand-
average ERP. (B) Slope estimates for ERN amplitude predicted by response type and modulated by stimulation site and trial number (early, late ex-
periment). Red lines denote cerebellar stimulation and blue lines vertex stimulation. Colored bands indicate 95% confidence intervals. ***p < 0.001. 
nerror = 2702, ncorrect = 4777.
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FIGURE 5    |     Legend on next page.
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(spTMS) was applied to the cerebellum or a control site (ver-
tex) either post-stimulus (i.e., pre-response) or pre-feedback. 
Response-related ERP components (ERN and Pe) were ana-
lyzed to investigate whether cerebellar output was necessary 
for error processing in the forebrain during reinforcement 
learning. Given that feedback processing during reinforce-
ment learning was compromised in cerebellar dysfunction 
(Huvermann et al. 2025), we expected aberrant error process-
ing for cerebellar TMS. Results in the current study indicate 
that this is likely the case: Error-correct differentiation in the 
ERN was blunted by cerebellar TMS, while being intact for 
vertex TMS. Error-correct differentiation in the Pe, on the 
other hand, was unexpectedly enhanced for post-stimulus 
cerebellar TMS.

Consistent with patterns observed in patients with cerebellar 
damage/dysfunction in a response conflict task (i.e., reduced 
error-correct differentiation in the ERN, Peterburs et al. 2012, 
2015; Berlijn et al. 2024a), we found reduced error-correct dif-
ferentiation in the ERN under cerebellar spTMS. However, 
the overall result pattern with unaffected reinforcement learn-
ing (Rustemeier et al. 2016; Thoma et al. 2008), reduced error-
correct differentiation in the ERN, and increased error-correct 
differentiation in the Pe (Peterburs et al. 2012) resembled results 
observed in patients with cerebellar stroke. The consistency in 
results between reinforcement learning and response conflict 
tasks suggests that the cerebellum is involved in error pro-
cessing in both task contexts in a similar way, in line with its 
proposed function in performance monitoring (Peterburs and 
Desmond 2016). Of note, long-term compensation and/or func-
tional reorganization in stroke recovery have been proposed to 
support preserved task performance for these patients in a re-
sponse conflict task (Peterburs et  al.  2012). Such effects were 
previously not observed in patients with progressive cerebel-
lar degeneration who showed an altered ERN, increased error 
rates, but unchanged Pe in a response conflict task (Peterburs 
et al. 2015). For the present study, we had expected that cere-
bellar spTMS disrupts cerebral processing instantaneously 
(Romero et al. 2019). Long-term compensation should therefore 
not be relevant. Instead, increased error-correct differentiation 
in the Pe in the presence of reduced differentiation in the ERN 
was observed instantaneously, giving rise to questions on the 
underlying mechanisms.

First, it is debatable whether the observed pattern truly rep-
resents a compensatory mechanism, or whether the increased 
differentiation in the Pe could also be the result of hypermetria. 
This might be the case in terms of a mismatch in salience which 
is one parameter that correlates with Pe amplitude (Overbeek 
et al. 2005). Perceived error salience as measured in the Pe might 
thus be larger than would be appropriate under cerebellar com-
pared to control spTMS. Dysmetria is a common deficit observed 
in cerebellar disorders (Manto 2009) and has also been suggested 

as a deficit in cognitive processes (Schmahmann 1998). Future 
studies could test this by using different error severities/salien-
cies in their study. An interpretation in terms of hypermetria 
would indicate that TMS affected ERN and Pe separately from 
each other. While this might be the case, an indirect effect of 
TMS on the Pe via the ERN is also conceivable. An additional 
control analysis indicated that effects within the Pe amplitude 
are at least partially explainable by ERN amplitude. An indirect 
effect of TMS on Pe via ERN would be more consistent with an 
interpretation of the pattern in the Pe in terms of compensation. 
However, indirect effects via propagation of the TMS stimulus 
to further brain areas within the same network, as shown for 
repetitive TMS (Hussain and Freedberg 2025), could provide a 
further possibility.

While the ERN is generated mostly by the ACC (Debener 
et al. 2005; Ridderinkhof et al. 2004; Hester et al. 2005; van Veen 
and Carter 2002; van Boxtel et al. 2005, but also see Herrmann 
et al. 2004), neural generators for the Pe are less clear and ap-
pear not to be limited to the ACC (Overbeek et al. 2005; Hester 
et al. 2005). This wider network might have allowed the Pe to be 
less or differently affected by cerebellar spTMS effects, although 
more conscious error processing as reflected in the Pe may poten-
tially be more effortful and slower. This unexpectedly increased 
error coding in the Pe might have compensated for deficits in 
the ERN, allowing unimpeded behavioral performance. Intact 
behavioral performance was previously not expected due to the 
instantaneous disruptive effect of spTMS, which in theory does 
not allow for long-term compensation as seen in stroke patients 
(Peterburs et al. 2012). Conversely, differences in properties of 
the underlying learning mechanism—potentially caused by the 
deficits in feedback processing/FRN—might have also resulted 
in differences in error processing later in the task, resulting in 
decreased use of systems underlying the ERN and increased re-
liance on systems underlying the Pe, eventually leading to more 
Pe-driven error processing. However, these differences in error 
processing might not always correspond to intact behavioral 
performance. Relying on later vs. earlier error processing (i.e., 
on the Pe instead of the ERN) could be unfavorable in everyday 
tasks that require swift processing, for example, fast-paced se-
quences of responses like in sports or music. It is also possible 
that this potentially compensatory process is not available in all 
learning contexts, for example, in more complex tasks. Notably, 
despite overall preserved learning performance, we did find de-
creased behavioral flexibility (choice switching; see Huvermann 
et al. 2025), in line with previous findings (Thoma et al. 2008), 
which might be related to deficits in the ERN.

Concerning the type of cerebellar output essential for ERN but 
not Pe, our results do not offer a clear answer. In the present 
dataset, feedback processing was already shown to be impaired 
(Huvermann et al. 2025). This might have led to impaired ad-
justments of prediction, resulting in deficits in error processing 

FIGURE 5    |    (A) Grand-average response-locked ERPs early and late in the task at Pz according to response type (correct, error), stimulation 
site (cerebellum, vertex) and TMS timing (post-stimulus, pre-feedback). Blue lines denote correct responses, red lines errors. Colored bands display 
standard errors. (B) Slope estimates for Pe amplitude predicted by response type and modulated by stimulation site and TMS timing. Red lines de-
note cerebellar stimulation and blue lines vertex stimulation. Colored bands indicate 95% confidence intervals. *p < 0.05, ***p < 0.001. nerror = 2769, 
ncorrect = 5122.
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at the subsequent response stage. However, the effect of cerebel-
lar TMS on ERN and Pe only occurred for post-stimulus TMS 
(trend-level for ERN), which fits better with a perturbation of 
information processing directly at the response stage. This will 
likely include predictive processes, as the ERN relies on this 
rapid matching of representations of the desired and the actual 
response based on internal information (i.e., an efference copy). 
The interaction between response type and stimulation in ERN 
was found only late during the experiment, which also supports 
predictive processes, as these predictions can only form through-
out the learning process. Previous studies in healthy adults could 
show that error processing in ERN is stronger after learning, 
while before learning, feedback processing is more dominant 
(Eppinger et al. 2008; Bellebaum and Colosio 2014; Pietschmann 
et al. 2008). Perturbed predictive processes would also be consis-
tent with the finding that stimulation timing did not appear to 
significantly affect feedback processing (Huvermann et al. 2025), 
as the predictive information is required for updating of predic-
tions at the feedback stage. This mechanism might have affected 
feedback processing similarly to pre-feedback TMS. ERN and 
the FRN (Miltner et al. 1997) are thought to share the ACC as a 
neural generator (ERN: Dehaene et al. 1994; Miltner et al. 2003; 
Iannaccone et al. 2015, FRN: Foti et al. 2015; Hauser et al. 2014; 
Nieuwenhuis et  al.  2004), thus potentially being affected in a 
similar way. Considering the increased error-correct differen-
tiation in the Pe as a compensatory process, two explanations 
are possible: The Pe, reflecting more conscious error processing 
(Wessel 2012; Hester et al. 2005), might either not rely as strongly 
on cerebellar information, or might also simply be outside the 
time window of the disruptive effect of the TMS pulse.

Of note, the Pe in our study is not as pronounced as the positive 
peaks typically found in response conflict paradigms. However, 
a distinction between errors and correct responses is visible, 
and a posterior positivity could also be shown in topograph-
ical plots of the difference signal for cerebellar post-stimulus 
TMS (Figure S3). In two previous studies which examined the 
Pe in feedback learning paradigms, the Pe peak also seemed 
to be less prominent in the grand averages (Unger et al. 2012; 
Zhuang et al. 2021), which might be a characteristic of the Pe 
in reinforcement learning tasks. This might be due to errors 
being more ambiguous in feedback learning tasks. However, 
the Pe is oftentimes not analyzed in feedback learning tasks 
(Eppinger et al. 2008; Bellebaum and Colosio 2014; Pietschmann 
et al. 2008; Herbert et al. 2011).

Finally, subjective perception of action values might differ from 
the objective classification as error/correct. An additional anal-
ysis based on action values (Qdiff; Katahira et al. 2017) yielded 
result patterns consistent with the original results for both ERN 
and Pe, with reduced Qdiff differentiation in ERN and increased 
Qdiff differentiation in Pe for cerebellar TMS. This demonstrates 
that the original findings extend to subjective perception of ac-
tion value, which might be an interesting measure for future 
studies.

5   |   Limitations

We used an active control site (vertex TMS) instead of sham TMS. 
While vertex is a common control site in cognitive tasks (e.g., 

Cao et al. 2021; Ciricugno et al. 2020; Kalbe et al. 2010), at least 
one study (Jung et  al.  2016) showed that vertex TMS reduced 
activity in the ACC, the likely generator of the ERN (Dehaene 
et al. 1994; Debener et al. 2005; Ridderinkhof et al. 2004). While 
we used inverted stimulation which showed considerably less 
and non-significant ACC deactivation (Jung et  al.  2016), and 
did not find abnormal ERN patterns during vertex stimulation, 
we cannot rule out that vertex stimulation affected processing. 
Unlike Jung et  al.  (2016), we used a more deeply stimulating 
double cone coil instead of a figure-of-eight coil. Feedback-
related ERP components with neural generators within the ACC 
seemed to be affected by vertex TMS (Huvermann et al. 2025). 
Unfortunately, there currently seems to be no well-tested, 
better suited site for control stimulation. Sham TMS does not 
seem ideal as it provides a very different experience regarding 
vibrations, coil clicks, and magnetic field build (Duecker and 
Sack 2015). Even though we assessed potential side effects of the 
TMS stimulation and found no significant differences between 
vertex and cerebellar stimulation (see Figure 3), we cannot ex-
clude that other differences in the experience of stimulation be-
tween the two sites that were not captured, such as stimulation 
of the neck muscles, emerged and contributed to the findings 
described above. Future studies may want to include several 
control sites in between-subject designs.

Moreover, we only stimulated the left cerebellum. Given that 
a learning task was used, it was not feasible to repeat the task 
several times to incorporate other stimulation sites, as repetition 
effects would have predominated. Future studies should investi-
gate the effect of spTMS on other cerebellar regions in feedback 
learning using between-subjects designs.

Last, stimulation was applied either 100 ms post-stimulus or 
100 ms pre-feedback. There is currently no established time 
window of cerebellar-brain inhibition in the cognitive domain 
as available for the motor domain (Ugawa et  al.  1991). Given 
that stimulation was applied 100 ms post-stimulus, it usually 
occurred several hundred milliseconds before the response. 
Berlijn et al. (2024a) varied stimulation timing around the ERN 
peak in a Go/NoGo flanker task and found that stimulation at or 
closely after the calculated peak latency, but not shortly before, 
decreased error-correct differentiation, showcasing the time 
sensitivity of cerebello-cerebral communication in cognition. 
This might depend on the task at hand, as in the current study, 
stimulation before responses also led to altered error processing. 
Future studies need to explore these temporal dynamics in more 
detail, for example, by implementing continuous manipulation 
of stimulation timings.

6   |   Conclusions

The present findings show that cerebellar TMS alters cerebral 
error processing in reinforcement learning. Error processing 
was decreased by cerebellar TMS in the ERN and increased 
in the Pe. This pattern closely resembles altered error process-
ing in cerebellar stroke patients as shown in a previous study 
in a response conflict task. It remains unclear whether the in-
creased Pe in concert with preserved behavioral performance 
reflects a compensatory process. Processing was affected more 
strongly by stimulation closer in time to response execution (i.e., 
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post-stimulus/pre-response). Taken together, the present study 
adds to a growing body of evidence showing that the cerebellum 
plays an important role in error processing and performance 
monitoring in general, whereby it directly contributes to rein-
forcement learning and adaptive control of behavior.
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