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ABSTRACT

There is increasing evidence that the cerebellum contributes to feedback processing in reinforcement learning. As yet, it has not
been investigated whether the cerebellum also contributes to error processing in reinforcement learning. Studies have shown,
however, that the cerebellum is involved in the processing of response errors in non-reinforcement learning contexts, for ex-
ample, in response conflict tasks. In the present study, we aimed to extend these findings to the processing of response errors,
which slowly emerges as a result of reinforcement learning. To this end, we inhibited the cerebellum via single-pulse transcranial
magnetic stimulation (spTMS) and recorded cerebral electroencephalography (EEG) measures associated with error processing.
If input from the cerebellum is required for error processing, error-correct differentiation should be decreased for cerebellar
compared to vertex (control) stimulation. Cerebellar spTMS was applied and EEG was recorded while healthy adults performed
a probabilistic feedback learning task. The error-related negativity (ERN), a component in the response-locked event-related
potential (ERP), was used as a measure of error processing. It reflects a rapidly detected mismatch between representations of
the actual and the desired response and is typically larger for errors than correct responses. Error-correct differentiation in the
ERN was diminished for cerebellar compared to control TMS. However, increased error-correct differentiation was found in a
later ERP component, the error positivity (Pe), which is more strongly associated with error awareness. Cerebellar spTMS thus
impaired fast error processing reflected in the ERN and facilitated later, conscious error processing reflected in the Pe. These
findings provide causal evidence of cerebellar contributions to error processing within reinforcement learning.
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1 | Introduction

Understanding how organisms optimize their behavior in dy-
namic environments is crucial not only to improve learning
processes but also to advance our understanding of disorders
associated with maladaptive learning, such as addiction and de-
pression (Gueguen et al. 2021; Chen et al. 2015). Reinforcement
learning is a basic form of learning in which behavior is shaped
by its consequences/outcomes, that is, rewards that reinforce
and punishments that inhibit a specific behavior (Sutton and
Barto 2018). Initially, in an unfamiliar context, information
about actions and outcomes must be gathered on a trial-and-
error basis. With learning, actions are then chosen based on their
predicted outcomes. Learning success thus strongly depends on
the accuracy of outcome predictions. While improving these
predictions, the individual gets a better understanding of which
action is correct and which is false. Ultimately, the individual is
able to identify an error already at the stage of action execution,
rather than having to wait for external feedback/the outcome.
This shift from outcome-level processing to response-level pro-
cessing underlying the distinction between right and wrong
responses throughout the learning process could be shown in
a reinforcement learning task by recording brain activity using
electroencephalography (EEG; Eppinger et al. 2008; Bellebaum
and Colosio 2014).

Processing of both actions/responses and outcomes has been
predominantly linked to structures in the fore- and midbrain
(Corlett et al. 2022). In EEG studies, error processing has
been shown to emerge with learning/task progression when
an understanding of correct and false responses has been de-
veloped (Eppinger et al. 2008; Bellebaum and Colosio 2014;
Pietschmann et al. 2008). In later stages of a learning task,
a more pronounced negative deflection in the response-
locked signal is typically found for errors relative to correct
responses (Eppinger et al. 2008; Bellebaum and Colosio 2014;
Pietschmann et al. 2008), that is, the error-related negativity
(ERN; Falkenstein et al. 1991; Gehring et al. 1993). The ERN
has a frontocentral scalp distribution and typically peaks
within 100 ms post-response. Its origin lies primarily in the
anterior cingulate cortex (ACC, Dehaene et al. 1994; Miltner
et al. 2003; Iannaccone et al. 2015, but also see Herrmann
et al. 2004) which has been associated with error processing
(Hester et al. 2004). The ERN is followed by the more poste-
rior error positivity (Pe, peaking 200-400ms post-response,
Falkenstein et al. 1991; Wessel 2012). ERN and Pe have been
proposed to be functionally distinct (Wessel 2012), with
the ERN reflecting a fast-paced mismatch between the ac-
tual and desired response (Coles et al. 2001; Nieuwenhuis
et al. 2001), and the Pe reflecting more conscious error pro-
cessing (Nieuwenhuis et al. 2001; Ridderinkhof et al. 2009).
On the other hand, feedback processing, as reflected in the
feedback-related negativity (FRN), is typically found at
early stages of reinforcement learning where participants
strongly depend on external feedback to perform the task ac-
curately (Eppinger et al. 2008; Bellebaum and Colosio 2014;
Pietschmann et al. 2008). The FRN has been described as a
functional equivalent of the ERN during feedback processing,
as both seem to contribute toward an adjustment of behav-
ior toward error correction (Gentsch et al. 2009). In addition,
there seems to be a high overlap in topography and neural

generators (Gentsch et al. 2009; Holroyd and Coles 2002; Potts
et al. 2011).

Interestingly, recent studies in rodents (Kostadinov and
Hiusser 2022) and humans (Huvermann et al. 2025;
Rustemeier et al. 2016; Berlijn et al. 2025) have provided ev-
idence for a potentially supportive role of the cerebellum in
feedback processing during reinforcement learning (Peterburs
and Desmond 2016). The cerebellum is best known for pre-
dictive processes in the context of motor control (Popa and
Ebner 2019) but in the last decades increasingly also for cog-
nitive processes (Berlijn et al. 2024b; Sokolov et al. 2017). The
cerebellum is thought to support both motor and cognitive
function by predicting outcomes via internal forward models
(Popa and Ebner 2019; Wolpert et al. 1998; Tanaka et al. 2020),
connecting with a wide range of cerebral brain areas, in-
cluding the ACC, in a closed-loop fashion (Ramnani 2012;
Schmahmann and Pandya 1997; Glickstein et al. 1985; Kruithof
et al. 2023; Habas 2021; Bostan and Strick 2018). Cerebellar
dysfunction might thus influence feedback processing as re-
flected in the FRN via maladaptive support of ACC function.
Indeed, in recent studies (Huvermann et al. 2025; Berlijn
et al. 2025), we found that cerebellar lesions, degeneration,
and TMS disrupted feedback processing in the sense that the
prediction error was not represented in the FRN.

These previous studies (Huvermann et al. 2025; Rustemeier
et al. 2016; Berlijn et al. 2025) have focused on the role of the
cerebellum at the outcome stage. However, prediction at the
response stage (i.e., error processing), as described above, is
also a prominent part of reinforcement learning. Cerebellar
damage and disruption of cerebellar function by non-invasive
brain stimulation have already been associated with defi-
cits in error processing in response conflict tasks (Peterburs
et al. 2012, 2015; Berlijn et al. 2024a; Tunc et al. 2019).
Specifically, differentiation between errors and correct re-
sponses in the ERN was consistently reduced for cerebellar
dysfunction (Peterburs et al. 2012, 2015; Berlijn et al. 2024a,
only on trend level in Tunc et al. 2019). For the Pe, findings are
more heterogeneous, with most studies not finding effects of
cerebellar dysfunction, except for one study in cerebellar post-
acute stroke which showed increased error-correct differenti-
ation that was interpreted as compensatory for deficient error
processing in the ERN (Peterburs et al. 2012). Response con-
flict tasks, however, contain no feedback and can instead be
performed based on the initial instructions. For example, in a
flanker task, participants need to indicate the direction of a
central arrow in the presence of flanking arrows. Predictions
thus do not evolve slowly with learning as in reinforcement
learning.

In summary, previous studies support a cerebellar role in
outcome processing in reinforcement learning and error pro-
cessing in response conflict tasks. This is consistent with the
proposed role of the cerebellum in performance monitoring,
that is, in functions which support adaptive behavior, to which
both reinforcement learning and error processing contribute
(Peterburs and Desmond 2016). Error and feedback processing
are closely intertwined, and it seems conceivable that in rein-
forcement learning tasks, disrupted feedback processing (on
which participants rely in particular early in the task) caused
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by cerebellar dysfunction leads to changes in error process-
ing (which emerges later in the task, with learning from feed-
back). These changes may be similar to those found for error
processing under cerebellar dysfunction in response conflict
tasks (Peterburs et al. 2012, 2015; Berlijn et al. 2024a; Tunc
et al. 2019).

In the current study, we aimed to examine if aberrant feedback
processing in cerebellar dysfunction transfers to the response
phase with learning progression in a reinforcement learning
task. We disrupted cerebellar function by non-invasive brain
stimulation in young adults. Single-pulse TMS (spTMS) excites
the subjacent neuronal populations followed by a prolonged pe-
riod of reduced activity (Romero et al. 2019), potentially lead-
ing to inhibition or facilitation depending on various factors
including stimulation site and timing (Shirota and Ugawa 2024;
Luber and Lisanby 2014). For cerebellar stimulation, an inhib-
itory effect of spTMS on cortical function is mostly assumed
(Desmond et al. 2005; Schutter and van Honk 2006; Vifias-
Guasch et al. 2023, but also see Du et al. 2018, for a review see
Fernandez et al. 2020). We analyzed data from a previous study
by our group (Huvermann et al. 2025) which were collected in
young, healthy adults who received cerebellar spTMS while per-
forming a probabilistic feedback learning task with trial-by-trial
feedback. Importantly, overall learning performance was not
affected by the TMS, in theory enabling error processing as the
task progresses and learning takes place (Eppinger et al. 2008;
Bellebaum and Colosio 2014; Pietschmann et al. 2008). ERN and
Pe were analyzed as EEG indices of error processing. In accor-
dance with previous work in response conflict tasks (Peterburs
et al. 2012, 2015; Berlijn et al. 2024a), we expected to see reduced
or absent error-correct differentiation in the ERN for cerebellar
TMS (Iannaccone et al. 2015, but also see Berlijn et al. 2024b). We
expected to see this effect more strongly later in the task when
response-outcome contingencies have been learnt and error pro-
cessing is more pronounced (Eppinger et al. 2008; Bellebaum
and Colosio 2014; Pietschmann et al. 2008). However, we did not
expect to see distinct compensatory mechanisms indexed by an
increased Pe as observed in cerebellar stroke patients (Peterburs
et al. 2012) due to the immediate effect of spTMS. Two stimula-
tion timings were used, to differentiate direct disruption of error
processing (via post-stimulus/pre-response TMS) from indirect
effects of disrupted feedback processing on error processing
(pre-feedback TMS) due to maladjusted predictive processes.

In line with the hypotheses, we found decreased error-correct
differentiation in the ERN for cerebellar TMS. In addition,
error-correct differentiation in the Pe was increased for cere-
bellar stimulation while behavioral performance was overall
preserved.

2 | Material and Methods

The present study was part of a larger investigation of cere-
bellar contributions to reinforcement learning and presents
novel, follow-up analyses of data reported previously by our
group (Huvermann et al. 2025). There, we focused on outcome/
feedback processing and thus did not analyze response-locked
ERPs. We performed two studies on reinforcement learning,
one with cerebellar stroke patients and respective controls, the

other with healthy adults using cerebellar (vs. vertex) spTMS.
The present work is focused on the spTMS study, because older
adults typically show only weak error-correct differentiation in
the response-locked ERP in reinforcement learning (Eppinger
et al. 2008; Pietschmann et al. 2008; Herbert et al. 2011).
However, analogous analyses were also performed for data from
the patient study and are provided in Supplementary Analysis S1.

2.1 | Participants

Sample characteristics are detailed in Huvermann et al. (2025).
Data from 24 healthy participants (7 men, 17 women; mean age
23.3years, SD=2.9years, age range 19-30years) entered the
analyses. According to the Edinburgh Handedness Inventory
(Oldfield 1971) scores, 20 participants were right-handed, two
left-handed, and two ambidextrous.

All participants gave written informed consent prior to partici-
pation. The study was conducted in accordance with the ethical
principles for medical research involving human subjects out-
lined in the Declaration of Helsinki and approved by the Ethics
Committees at the Faculty of Medicine of Heinrich-Heine-
University Diisseldorf (2018-240_1) and the University Hospital
Essen (18-8477-BO).

2.2 | Procedure

Please see Huvermann et al. (2025) for a detailed description. In
brief, cerebellar and vertex TMS took place in separate sessions
at least 48 h apart to decrease repetition effects in the task. After
EEG and EMG preparations and motor threshold estimation,
the double cone TMS coil was positioned and secured to the par-
ticipant's head (see Figure 1). Before and after the experimental
task, an additional cognitive task was performed for which re-
sults are reported in Berlijn et al. (2024a).

Participants completed a probabilistic feedback learning task
(Eppinger et al. 2008; Bellebaum and Colosio 2014). Figure 2
illustrates the sequence and time course of stimulus presenta-
tion in each trial. The task consisted of 6 blocks of 56 trials, thus
336 trials in total. Each trial began with a fixation cross, fol-
lowed by one of four stimuli (Chinese characters). Participants
responded by pressing the left or right button on a response
box within a response window of 1000 ms. Choices were high-
lighted on the screen, followed by a black screen before feedback
was displayed, with “4+20ct” in green font as positive feedback
or “~10ct” in red font as negative feedback. Two stimuli were
linked to random feedback (50% positive and 50% negative, inde-
pendent of response), while the other two stimuli were linked to
contingent feedback. Here, correct responses were followed by
positive feedback in 80% of the cases and by negative feedback
in 20% of the cases (vice versa for errors). Contingencies could
thus be learnt. TMS was delivered 100 ms post-stimulus for one
stimulus and 100 ms pre-feedback for the other.

TMS was applied at 120% of motor threshold using a Magstim
Double Cone Coil and a Magstim BiStim? unit (Magstim Co.,
Whitland, United Kingdom). A fast-paced task flow was en-
abled by alternating stimulation between two BiStim units.

Psychophysiology, 2025
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FIGURE1 | Experimental setup. Depending on the session, TMS was applied to either the left cerebellum (1 cm down and 3cm to the left of the

inion) or vertex using a double cone coil. EEG and EMG were recorded simultaneously. Reproduced from Huvermann et al. (2025) with permission.

Stimulation was applied either to the left lateral cerebellum
(1cm below and 3cm to the left of the inion; confer Hardwick
et al. 2014; Théoret et al. 2001; Torriero et al. 2004) or position
vertex as a control site (at electrode position Cz, Jung et al. 2016;
Pizem et al. 2022). Stimulation of the left cerebellar hemisphere
is consistent with its implication in processing visual-spatial in-
formation (Stoodley and Schmahmann 2009) and stronger acti-
vations of the left hemisphere in a previous fMRI study using a
similar feedback learning task (Peterburs et al. 2018). Following
spontaneous reports of side effects in the initial testing sessions,
a post-experimental questionnaire was introduced in which par-
ticipants were asked to rate symptoms associated with TMS [see
Huvermann et al. (2025) for more details]. No significant differ-
ences between vertex and cerebellar stimulation were observed
regarding headaches, neck pain, toothaches, inattentiveness,
discomfort, phosphenes ratings, or free field responses for other
symptoms (all p>0.343, see Figure 3).

2.3 | EEG Recording and Preprocessing

Data were recorded at 1000Hz from 30 passive Ag/AgCl mul-
titrode electrodes positioned in the 10-20 system (Chatrian
et al. 1985), using BrainAmp MR amplifier and BrainVision
Recorder 1.21 (Brain Products GmbH, Gilching, Germany).
Impedances were kept below 5kQ.

For preprocessing, the ARTIST algorithm by Wu et al. (2018)
based on EEGLAB (v2022.1; Delorme and Makeig 2004) was
used. This algorithm decreases artifacts in the EEG signal
caused by TMS pulses [see Huvermann et al. (2025) for a de-
tailed description of preprocessing procedures].

Using Brainvision Analyzer 2 software (version 2.2, Brain
Products GmbH, Gilching, Germany), data were segmented
around responses, starting 200ms before and ending 500 ms
after the response. Next, a baseline correction was performed
using the time window from 200 to 100 ms before response onset.
Data were then exported for further processing in MATLAB.
Although data were analyzed on a single-trial basis, we addi-
tionally averaged the data according to conditions (stimulation
site, TMS timing, response type) to extract peak latencies of the
ERP components of interest (described below). Only trials for
stimuli with learnable contingencies (i.e., 80-20) were included.

Peak detection was performed on the averaged data and sepa-
rately for each condition for the ERN and Pe using MATLAB. The
time windows and electrode sites that had been pre-registered
based on previous related studies (Peterburs et al. 2012, 2015;
Berlijn et al. 2024a; Tunc et al. 2019) were used. For the ERN,
peak detection was performed at FCz in the time window start-
ing at response onset and ending 100 ms thereafter. For the Pe,
we used the maximal positive peak within the time window be-
tween 200 and 400 ms at Pz. For the single-trial data, the mean
amplitude in a time window around the respective latency de-
termined by the peak detection on the averaged data for each
condition was extracted (20ms for ERN; 40ms for Pe, Albrecht
and Bellebaum 2023; Meadows et al. 2016).

2.4 | Statistical Data Analysis

Data were analyzed in R (version 4.2.3, R Core Team 2023)
using RStudio (version 2023.3.0.386, Posit Team 2023).
Analyses of accuracy and choice switching (i.e., choosing a
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A. Time course of stimulus presentation and
timing of the TMS pulse

500-1000 ms
+ . .
fixation cross
[L 500 ms
/4 (2 Jll stimulus with
(TMS 100 ms choice
post-stimulus)
500 ms
only choice
OR 200 ms
choice display
500 ms
- feedback delay
: 14
(TMS 100 ms 1000 ms
feedback

pre-feedback)

B. Time course of stimulus presentation and
TMS timing in relation to ERN and Pe

ERN time Pe time
window  window
1 1 1 1 1l I |
T T T 1 T T T T 1
T™S response, ™S
e.g., 400 ms
stimulus after
stimulus

—
100 ms

different response than before following e.g., positive/neg-
ative feedback) are reported in Huvermann et al. (2025). As
data were not clearly separable into pre- and post-learning for
a majority of participants, we opted for a single trial-based
analysis approach using linear mixed effects (LME) models
including the trial-by-trial factor trial number, thus capturing
the course of error-correct differentiation across the experi-
ment. This also overcame a common concern of unequal num-
bers of trials for errors and correct responses as well as (too)
few error trials per condition (Olvet and Hajcak 2009; Pontifex
et al. 2010; Larson et al. 2010) due to learning throughout the
task. Exclusion of participants with too few error trials would
systematically exclude good learners (Clayson et al. 2025) and
including an equal number of trials in the analysis does not sal-
vage the concern (Fischer et al. 2017). Multilevel approaches
using single-trial data; however, overcome these limitations

FIGURE 2 | Time course in one trial in the experimental task. (A)
Time course of stimulus presentation and timing of TMS pulses in one
trial in the experimental task. First, a fixation cross was presented
for 500-1000ms. Subsequently, one of four stimuli was presented for
500ms together with flanking rectangles representing the response
options. Participants responded by pressing the left or right button on
a response pad up until 500ms after the stimulus was presented. The
respective rectangle was highlighted for 200ms. After 500 ms of blank
screen, positive (“+20 ct”) or negative feedback (“—10 ct”) was presented
for 1000 ms. Participants had to learn by trial and error which of the two
options was more likely to result in positive/negative feedback, sepa-
rately for each of the four stimuli. Feedback for two stimuli had an 80%
contingency, and a 50% contingency for the other two. Stimulation in a
particular trial was applied either 100ms post-stimulus or 100ms pre-
feedback. The task consisted of 336 trials. (B) Time course of stimulus
presentation and timing of the TMS pulse in relation to ERN and Pe
time windows in one trial in the experimental task. ERN was quanti-
fied in the time window between 0 and 100 ms following the response
while Pe was quantified in the time window between 200 and 400 ms
following the response. Distance to the post-stimulus TMS pulse thus
differed and depended on response time in the respective trial, while
the pre-feedback TMS pulse always occurred after ERN and Pe. Note
that the TMS pulse in a particular trial was given either post-stimulus
or pre-feedback.

by taking into account different numbers of data points per
factor level and being relatively robust to large numbers of
missing data points (Clayson et al. 2025; Bolker 2015; Krueger
and Tian 2004).

The packages lme4 (version 1.1-32, Bates et al. 2015) and
Imertest (version 3.1-3, Kuznetsova et al. 2017) were used for
LME modeling. We used restricted maximum likelihood with
p-values computed using Satterthwaite approximation to eval-
uate significance, following Luke (Luke 2017). Participants
with a Cook's distance (Cook 1977) above 4/(n-p-1) were iden-
tified as outliers (using the influence.ME package, version
0.9-9, Nieuwenhuis et al. 2012). We strived for a maximal
random effects structure but in case of singular fit gradually
reduced random effects starting with main effects and then
lower-grade interactions until fit was ensured. Significant in-
teractions were followed up using simple slope analyses (in-
teractions package, version 1.1.5, Long 2019). p-values were
Bonferroni-corrected according to the number of simple
slopes.

LME analyses were conducted with the categorical fixed ef-
fects response type (—0.5: error, 0.5: correct), stimulation
site (—0.5: vertex, 0.5: cerebellum), TMS timing (—0.5: post-
stimulus, 0.5: pre-feedback), and the continuous factor trial
number, which was scaled via the built-in scale function. We
also included all interactions of these factors as fixed effects.
No participants were identified as outliers based on Cook's
distance. The model equation for both ERN and Pe was as
follows:

ERN /Pe ~1+response type = TMS condition * TMS timing * trial number

+ (1+response type: TMS condition: TMS timing: trial number | subject)

Psychophysiology, 2025
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FIGURE3 | Ratings of side effects in the post-experimental questionnaire, as reported in Huvermann et al. (2025). Means and standard errors are

shown in red, individual ratings are shown in black.

Note that we also performed a complementary analysis using
action value modeling, as commonly conducted for analyses
involving prediction error modeling in reinforcement learning
contexts (see e.g., McDougle et al. 2019; Ichikawa et al. 2010).
Analyses involved a new measure, Qs Which reflects the
relative subjective action value (action value of the unchosen
choice subtracted from the action value of the chosen option).
It should thus offer a better measure for subjective error pro-
cessing than the objective response type (see Supplementary
Analysis S2 for further details), especially because, due to the
probabilistic nature of our task, errors and correct responses
are not as clearly defined as in response-conflict tasks.
Relative action values have been shown to be more reliable
than absolute action values (Katahira et al. 2017), although
the procedure of action value/prediction error estimation in
general has been shown to be highly correlated to subjective
measures (Ichikawa et al. 2010).

3 | Results
3.1 | Accuracy

While a main effect of block, that is, a general learning effect,
was found (F(3.18, 73.05)=6.21, p<0.001), no differences be-
tween cerebellar and vertex TMS emerged, p >0.461. These re-
sults indicate that error rates decreased over the course of the
task and were not affected by cerebellar TMS. On average, 9.6
errors per block, stimulation site, and participant were commit-
ted (SD=4.4 errors). The full results concerning accuracy are
reported in Huvermann et al. (2025).

3.2 | ERN—Effects of Response Type
(Error/Correct)

Grand averages for the ERPs at FCz time-locked to individual
ERN latencies for correct responses and errors (i.e., response
type) according to stimulation site, TMS timing, and trial num-
ber (early, late experiment) are provided in Figure 4A.

The ERN was more negative for errors compared to correct
responses ($=0.81, SE=0.16, #(7451.23)=4.94, p<0.001).
This effect was further modulated by trial number (8=0.51,
SE=0.16, t(7394.78)=3.22, p=0.001). While response types
did not differ in ERN amplitude early on (8=0.29, SE=0.22,
t=1.30, p=0.386), errors as compared to correct responses were
associated with increased negativity late in the task (f=1.35,
SE=0.24, t=5.75, p<0.001).

Importantly, this interaction was further modulated by stimu-
lation site (8=-0.80, SE=0.32, £(7431.03)=2.53, p=0.012; see
Figure 4B). Follow-up simple-slope analyses showed that for
both cerebellar and vertex TMS, response types were not distin-
guished in the ERN early in the task (both p>0.453). However,
late in the task, the ERN was more pronounced for errors than
correct responses for vertex TMS (f=1.94, SE=0.32, t=6.01,
p <0.001) but not for cerebellar TMS (=0.75,SE=0.34, t=2.22,
p=0.106).

Additionally, a trend-level interaction between response type,
stimulation site, and TMS timing emerged (f=1.22, SE=0.65,
1(7448.34)=1.88, p=0.060; see Figure S1 for the slope plots).
Descriptively, response types were distinguished in the ERN for

6 of 15

Psychophysiology, 2025

85UB017 SUOLUIOD 9AI1e8.D) 3[cfedt(dde U Aq peusenob ae 9l VO ‘8sn J0 [Nl o} Akeiq 18Ul UO /8|1 LD (SUONIPUOD-PUE-SWSIALIY A8 | 1M Ake.q Ul |uo//:Sdny) SUORIPUOD pue swie | 8y} 88s *[5202/TT/2T] uo Akeiqi8uliuo A8|IM *HOpRSSNA Yeylol|qigsepue] pun -SIIseAIuN Aq 82102 dASA/TTTT 0T/I0p/woo 8| im Ake.q1pul|uoj/sdny wouy pepeojumod 'TT 'SZ0Z ‘986869 T



A. Grand average response-locked ERPs at FCz

vertex cerebellum

FCz Post-stimulus pre-feedback post-stimulus  pre-feedback

-4.01
-2.01

0.0_

N
T

y
o

amplitude (uV)

0 200 |
— correct time (ms)
—| error

B. Response type effect on ERN

early late
MV

-
o
1

\

*k*

ERN amplitude
N
o O
| |

| | | |
error correct error correct

response type

stimulation site — cerebellum — vertex
FIGURE4 | Legend on next page.

Juswiiadxa Ajes

Juswiiadxa aje|

Psychophysiology, 2025

7 of 15

85UB017 SUOLUIOD 9AI1e8.D) 3[cfedt(dde U Aq peusenob ae 9l VO ‘8sn J0 [Nl o} Akeiq 18Ul UO /8|1 LD (SUONIPUOD-PUE-SWSIALIY A8 | 1M Ake.q Ul |uo//:Sdny) SUORIPUOD pue swie | 8y} 88s *[5202/TT/2T] uo Akeiqi8uliuo A8|IM *HOpRSSNA Yeylol|qigsepue] pun -SIIseAIuN Aq 82102 dASA/TTTT 0T/I0p/woo 8| im Ake.q1pul|uoj/sdny wouy pepeojumod 'TT 'SZ0Z ‘986869 T



FIGURE 4 | (A) Grand-average ERPs at FCz locked to individual ERN latencies per condition (response type X stimulation site x TMS timing):
early and late in the task according to response type (correct, error), stimulation site (cerebellum, vertex), and TMS timing (post-stimulus, pre-
feedback). Blue lines denote correct responses, red lines errors. Colored bands display standard errors. See Figure S2 for a response-locked grand-
average ERP. (B) Slope estimates for ERN amplitude predicted by response type and modulated by stimulation site and trial number (early, late ex-
periment). Red lines denote cerebellar stimulation and blue lines vertex stimulation. Colored bands indicate 95% confidence intervals. ***p <0.001.

n =2702,n

error correct

=47717.

vertex TMS and pre-feedback cerebellar TMS but not when stim-
ulating the cerebellum post-stimulus.

Complete inferential statistics are provided in Table S1. Effects
that include the TMS timing factor independent of stimulation
site are reported in Supplementary Analysis S3.

3.3 | Pe—Effects of Response Type (Error/Correct)

Grand averages for the response-locked ERPs at Pz for correct
responses and errors (i.e., response type) according to stimula-
tion site, TMS timing, and trial number (early, late experiment)
are provided in Figure 5A.

The Pe was more pronounced for errors compared to correct re-
sponses (§=-0.99, SE=0.15, t(7848.81)=6.68, p<0.001), and
late compared to early in the experiment (§=0.24, SE=0.07,
1(7734.12)=3.37, p=0.001).

Importantly, the effect of response type was modulated by stim-
ulation site and TMS timing (8=2.07, SE=0.58, #(7855.11) =3.55,
p<0.001; see Figure 5B). Post hoc simple slope analyses showed
that the Pe differentiated errors and correct responses for vertex
TMS applied both pre-feedback (f=-0.76, SE=0.29, t=2.63,
p=0.034) and post-stimulus (f=-0.74, SE=0.29, t=2.54,
p=0.044). For cerebellar TMS, Pe amplitudes did not differ be-
tween errors and correct responses when TMS was applied
pre-feedback (5=0.20, SE=0.29, t=0.70, p>0.999). However, a
strong response type effect emerged for cerebellar TMS applied
post-stimulus (8=-2.25, SE=0.30, t=7.58, p<0.001), with more
positive amplitudes for errors compared to correct responses. To
check whether this response type differentiation in the Pe for
post-stimulus TMS was truly stronger for cerebellar compared
to vertex TMS, we checked the interaction effect (stimulation
site X response type) for post-stimulus TMS trials via simple slope
analysis, which proved to be significant (§=-1.51, SE=0.41,
£(7835.18) =3.64, p <0.001). Notably, the interaction effect did not
reach significance for pre-feedback TMS trials (3=0.55, SE=0.41,
£(7838.69)=1.34, p=0.182), indicating that the differences within
post-stimulus TMS were more decisive for the triple interaction.

Complete inferential statistics can be found in Table S2. Effects
that include the TMS timing factor independent of stimulation
site are reported in Analysis S3.

3.4 | Control Analysis—Predictability of Pe
by ERN

In an additional analysis we explored whether the effects of
spTMS on ERN and Pe were separate effects or whether spTMS

only had an effect on ERN which in turn influenced Pe ampli-
tude. The amplitudes of ERN and Pe correlated significantly with
each other (r=-0.04, t(7477)=3.35, p<0.001), although the cor-
relation strength was very low (Cohen 1988; Evans 1996; Gignac
and Szodorai 2016; Funder and Ozer 2019). To check whether the
pattern in the Pe is explainable by ERN amplitudes without con-
sidering TMS effects, we fitted two additional models: one with
the factors response type, trial number, and ERN amplitude (thus
disregarding effects of the TMS), and one with the factors re-
sponse type, trial number, stimulation site, TMS timing, and ERN
(thus including both the effects of TMS and ERN). Both models
included all interaction terms in the fixed effects. The model
including the TMS effects provided a better fit (y*(16)=116.7,
p<0.001) and the triple interaction between response type, stim-
ulation site, and TMS timing remained significant even when
ERN was included as an additional factor (§=2.64, SE=0.65,
(7429.14)=4.05, p < 0.001). To examine whether, conversely, the
ERN amplitude adds information to the analysis of the Pe, we
compared the original model to the model with the ERN as an
additional factor. The model fit improved when adding the ERN
(x¥¥(16)=72.60, p>0.001), indicating that the ERN amplitude
does explain variance in the Pe amplitude that cannot be ex-
plained solely by the other factors. We did not perform the same
analysis with ERN amplitude as dependent and Pe as an indepen-
dent variable as the Pe occurs after the ERN, preventing effects of
the Pe onto the ERN (at least within the same trial).

While we used the objective correctness of the responses as a
predictor in these analyses (i.e., response type), subjective per-
ception of which action is better/worse might have differed from
this, especially considering that responses were associated with
outcomes over time in the experiment, that not all participants
learned the contingencies and that errors and correct responses
were not as clearly defined as in response-conflict tasks due
to the probabilistic nature of action-outcome associations. We
therefore conducted an additional analysis using a measure that
reflects the subjective, relative, instead of objective valuation
of the chosen option. We computed the Qg that is, the mod-
eled subjective value of the unchosen option subtracted from
the value of the chosen option (see Supplementary Analysis
S2). This measure thus reflects to what degree the chosen op-
tion was perceived as the better/worse option, thereby reflecting
intra- and interindividual differences in learning and action-
outcome representation (Katahira et al. 2017). Importantly, this
analysis yielded a comparable result pattern (see Supplementary
Analysis S2).

4 | Discussion

In the present study, healthy young adults learnt stimu-
lus-response-feedback associations while single-pulse TMS
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FIGURE 5 | (A) Grand-average response-locked ERPs early and late in the task at Pz according to response type (correct, error), stimulation
site (cerebellum, vertex) and TMS timing (post-stimulus, pre-feedback). Blue lines denote correct responses, red lines errors. Colored bands display
standard errors. (B) Slope estimates for Pe amplitude predicted by response type and modulated by stimulation site and TMS timing. Red lines de-

note cerebellar stimulation and blue lines vertex stimulation. Colored bands indicate 95% confidence intervals. *p <0.05, ***p <0.001. n

n =5122.

correct

=2769,

error

(spTMS) was applied to the cerebellum or a control site (ver-
tex) either post-stimulus (i.e., pre-response) or pre-feedback.
Response-related ERP components (ERN and Pe) were ana-
lyzed to investigate whether cerebellar output was necessary
for error processing in the forebrain during reinforcement
learning. Given that feedback processing during reinforce-
ment learning was compromised in cerebellar dysfunction
(Huvermann et al. 2025), we expected aberrant error process-
ing for cerebellar TMS. Results in the current study indicate
that this is likely the case: Error-correct differentiation in the
ERN was blunted by cerebellar TMS, while being intact for
vertex TMS. Error-correct differentiation in the Pe, on the
other hand, was unexpectedly enhanced for post-stimulus
cerebellar TMS.

Consistent with patterns observed in patients with cerebellar
damage/dysfunction in a response conflict task (i.e., reduced
error-correct differentiation in the ERN, Peterburs et al. 2012,
2015; Berlijn et al. 2024a), we found reduced error-correct dif-
ferentiation in the ERN under cerebellar spTMS. However,
the overall result pattern with unaffected reinforcement learn-
ing (Rustemeier et al. 2016; Thoma et al. 2008), reduced error-
correct differentiation in the ERN, and increased error-correct
differentiation in the Pe (Peterburs et al. 2012) resembled results
observed in patients with cerebellar stroke. The consistency in
results between reinforcement learning and response conflict
tasks suggests that the cerebellum is involved in error pro-
cessing in both task contexts in a similar way, in line with its
proposed function in performance monitoring (Peterburs and
Desmond 2016). Of note, long-term compensation and/or func-
tional reorganization in stroke recovery have been proposed to
support preserved task performance for these patients in a re-
sponse conflict task (Peterburs et al. 2012). Such effects were
previously not observed in patients with progressive cerebel-
lar degeneration who showed an altered ERN, increased error
rates, but unchanged Pe in a response conflict task (Peterburs
et al. 2015). For the present study, we had expected that cere-
bellar spTMS disrupts cerebral processing instantaneously
(Romero et al. 2019). Long-term compensation should therefore
not be relevant. Instead, increased error-correct differentiation
in the Pe in the presence of reduced differentiation in the ERN
was observed instantaneously, giving rise to questions on the
underlying mechanisms.

First, it is debatable whether the observed pattern truly rep-
resents a compensatory mechanism, or whether the increased
differentiation in the Pe could also be the result of hypermetria.
This might be the case in terms of a mismatch in salience which
is one parameter that correlates with Pe amplitude (Overbeek
et al. 2005). Perceived error salience as measured in the Pe might
thus be larger than would be appropriate under cerebellar com-
pared to control spTMS. Dysmetria is a common deficit observed
in cerebellar disorders (Manto 2009) and has also been suggested

as a deficit in cognitive processes (Schmahmann 1998). Future
studies could test this by using different error severities/salien-
cies in their study. An interpretation in terms of hypermetria
would indicate that TMS affected ERN and Pe separately from
each other. While this might be the case, an indirect effect of
TMS on the Pe via the ERN is also conceivable. An additional
control analysis indicated that effects within the Pe amplitude
are at least partially explainable by ERN amplitude. An indirect
effect of TMS on Pe via ERN would be more consistent with an
interpretation of the pattern in the Pe in terms of compensation.
However, indirect effects via propagation of the TMS stimulus
to further brain areas within the same network, as shown for
repetitive TMS (Hussain and Freedberg 2025), could provide a
further possibility.

While the ERN is generated mostly by the ACC (Debener
et al. 2005; Ridderinkhof et al. 2004; Hester et al. 2005; van Veen
and Carter 2002; van Boxtel et al. 2005, but also see Herrmann
et al. 2004), neural generators for the Pe are less clear and ap-
pear not to be limited to the ACC (Overbeek et al. 2005; Hester
et al. 2005). This wider network might have allowed the Pe to be
less or differently affected by cerebellar spTMS effects, although
more conscious error processing as reflected in the Pe may poten-
tially be more effortful and slower. This unexpectedly increased
error coding in the Pe might have compensated for deficits in
the ERN, allowing unimpeded behavioral performance. Intact
behavioral performance was previously not expected due to the
instantaneous disruptive effect of spTMS, which in theory does
not allow for long-term compensation as seen in stroke patients
(Peterburs et al. 2012). Conversely, differences in properties of
the underlying learning mechanism—potentially caused by the
deficits in feedback processing/ FRN—might have also resulted
in differences in error processing later in the task, resulting in
decreased use of systems underlying the ERN and increased re-
liance on systems underlying the Pe, eventually leading to more
Pe-driven error processing. However, these differences in error
processing might not always correspond to intact behavioral
performance. Relying on later vs. earlier error processing (i.e.,
on the Pe instead of the ERN) could be unfavorable in everyday
tasks that require swift processing, for example, fast-paced se-
quences of responses like in sports or music. It is also possible
that this potentially compensatory process is not available in all
learning contexts, for example, in more complex tasks. Notably,
despite overall preserved learning performance, we did find de-
creased behavioral flexibility (choice switching; see Huvermann
et al. 2025), in line with previous findings (Thoma et al. 2008),
which might be related to deficits in the ERN.

Concerning the type of cerebellar output essential for ERN but
not Pe, our results do not offer a clear answer. In the present
dataset, feedback processing was already shown to be impaired
(Huvermann et al. 2025). This might have led to impaired ad-
justments of prediction, resulting in deficits in error processing
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at the subsequent response stage. However, the effect of cerebel-
lar TMS on ERN and Pe only occurred for post-stimulus TMS
(trend-level for ERN), which fits better with a perturbation of
information processing directly at the response stage. This will
likely include predictive processes, as the ERN relies on this
rapid matching of representations of the desired and the actual
response based on internal information (i.e., an efference copy).
The interaction between response type and stimulation in ERN
was found only late during the experiment, which also supports
predictive processes, as these predictions can only form through-
out the learning process. Previous studies in healthy adults could
show that error processing in ERN is stronger after learning,
while before learning, feedback processing is more dominant
(Eppinger et al. 2008; Bellebaum and Colosio 2014; Pietschmann
et al. 2008). Perturbed predictive processes would also be consis-
tent with the finding that stimulation timing did not appear to
significantly affect feedback processing (Huvermann et al. 2025),
as the predictive information is required for updating of predic-
tions at the feedback stage. This mechanism might have affected
feedback processing similarly to pre-feedback TMS. ERN and
the FRN (Miltner et al. 1997) are thought to share the ACC as a
neural generator (ERN: Dehaene et al. 1994; Miltner et al. 2003;
Tannaccone et al. 2015, FRN: Foti et al. 2015; Hauser et al. 2014;
Nieuwenhuis et al. 2004), thus potentially being affected in a
similar way. Considering the increased error-correct differen-
tiation in the Pe as a compensatory process, two explanations
are possible: The Pe, reflecting more conscious error processing
(Wessel 2012; Hester et al. 2005), might either not rely as strongly
on cerebellar information, or might also simply be outside the
time window of the disruptive effect of the TMS pulse.

Of note, the Pe in our study is not as pronounced as the positive
peaks typically found in response conflict paradigms. However,
a distinction between errors and correct responses is visible,
and a posterior positivity could also be shown in topograph-
ical plots of the difference signal for cerebellar post-stimulus
TMS (Figure S3). In two previous studies which examined the
Pe in feedback learning paradigms, the Pe peak also seemed
to be less prominent in the grand averages (Unger et al. 2012;
Zhuang et al. 2021), which might be a characteristic of the Pe
in reinforcement learning tasks. This might be due to errors
being more ambiguous in feedback learning tasks. However,
the Pe is oftentimes not analyzed in feedback learning tasks
(Eppinger et al. 2008; Bellebaum and Colosio 2014; Pietschmann
et al. 2008; Herbert et al. 2011).

Finally, subjective perception of action values might differ from
the objective classification as error/correct. An additional anal-
ysis based on action values (Q; Katahira et al. 2017) yielded
result patterns consistent with the original results for both ERN
and Pe, with reduced Q;; differentiation in ERN and increased
Qi differentiation in Pe for cerebellar TMS. This demonstrates
that the original findings extend to subjective perception of ac-
tion value, which might be an interesting measure for future
studies.

5 | Limitations

We used an active control site (vertex TMS) instead of sham TMS.
While vertex is a common control site in cognitive tasks (e.g.,

Cao et al. 2021; Ciricugno et al. 2020; Kalbe et al. 2010), at least
one study (Jung et al. 2016) showed that vertex TMS reduced
activity in the ACC, the likely generator of the ERN (Dehaene
et al. 1994; Debener et al. 2005; Ridderinkhof et al. 2004). While
we used inverted stimulation which showed considerably less
and non-significant ACC deactivation (Jung et al. 2016), and
did not find abnormal ERN patterns during vertex stimulation,
we cannot rule out that vertex stimulation affected processing.
Unlike Jung et al. (2016), we used a more deeply stimulating
double cone coil instead of a figure-of-eight coil. Feedback-
related ERP components with neural generators within the ACC
seemed to be affected by vertex TMS (Huvermann et al. 2025).
Unfortunately, there currently seems to be no well-tested,
better suited site for control stimulation. Sham TMS does not
seem ideal as it provides a very different experience regarding
vibrations, coil clicks, and magnetic field build (Duecker and
Sack 2015). Even though we assessed potential side effects of the
TMS stimulation and found no significant differences between
vertex and cerebellar stimulation (see Figure 3), we cannot ex-
clude that other differences in the experience of stimulation be-
tween the two sites that were not captured, such as stimulation
of the neck muscles, emerged and contributed to the findings
described above. Future studies may want to include several
control sites in between-subject designs.

Moreover, we only stimulated the left cerebellum. Given that
a learning task was used, it was not feasible to repeat the task
several times to incorporate other stimulation sites, as repetition
effects would have predominated. Future studies should investi-
gate the effect of spTMS on other cerebellar regions in feedback
learning using between-subjects designs.

Last, stimulation was applied either 100ms post-stimulus or
100ms pre-feedback. There is currently no established time
window of cerebellar-brain inhibition in the cognitive domain
as available for the motor domain (Ugawa et al. 1991). Given
that stimulation was applied 100ms post-stimulus, it usually
occurred several hundred milliseconds before the response.
Berlijn et al. (2024a) varied stimulation timing around the ERN
peak in a Go/NoGo flanker task and found that stimulation at or
closely after the calculated peak latency, but not shortly before,
decreased error-correct differentiation, showcasing the time
sensitivity of cerebello-cerebral communication in cognition.
This might depend on the task at hand, as in the current study,
stimulation before responses also led to altered error processing.
Future studies need to explore these temporal dynamics in more
detail, for example, by implementing continuous manipulation
of stimulation timings.

6 | Conclusions

The present findings show that cerebellar TMS alters cerebral
error processing in reinforcement learning. Error processing
was decreased by cerebellar TMS in the ERN and increased
in the Pe. This pattern closely resembles altered error process-
ing in cerebellar stroke patients as shown in a previous study
in a response conflict task. It remains unclear whether the in-
creased Pe in concert with preserved behavioral performance
reflects a compensatory process. Processing was affected more
strongly by stimulation closer in time to response execution (i.e.,
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post-stimulus/pre-response). Taken together, the present study
adds to a growing body of evidence showing that the cerebellum
plays an important role in error processing and performance
monitoring in general, whereby it directly contributes to rein-
forcement learning and adaptive control of behavior.
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