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Functional omics analyses reveal 
only minor effects of microRNAs 
on human somatic stem cell 
differentiation
Jessica Schira-Heinen1,2,8, Agathe Czapla3,8, Marion Hendricks2, Andreas Kloetgen4,5, 
Wasco Wruck   6, James Adjaye6, Gesine Kögler3, Hans Werner Müller   2,7, Kai Stühler1,7,9* & 
Hans-Ingo Trompeter3,9

The contribution of microRNA-mediated posttranscriptional regulation on the final proteome in 
differentiating cells remains elusive. Here, we evaluated the impact of microRNAs (miRNAs) on the 
proteome of human umbilical cord blood-derived unrestricted somatic stem cells (USSC) during retinoic 
acid (RA) differentiation by a systemic approach using next generation sequencing analysing mRNA 
and miRNA expression and quantitative mass spectrometry-based proteome analyses. Interestingly, 
regulation of mRNAs and their dedicated proteins highly correlated during RA-incubation. Additionally, 
RA-induced USSC demonstrated a clear separation from native USSC thereby shifting from a 
proliferating to a metabolic phenotype. Bioinformatic integration of up- and downregulated miRNAs 
and proteins initially implied a strong impact of the miRNome on the XXL-USSC proteome. However, 
quantitative proteome analysis of the miRNA contribution on the final proteome after ectopic 
overexpression of downregulated miR-27a-5p and miR-221-5p or inhibition of upregulated miR-34a-5p, 
respectively, followed by RA-induction revealed only minor proportions of differentially abundant 
proteins. In addition, only small overlaps of these regulated proteins with inversely abundant proteins 
in non-transfected RA-treated USSC were observed. Hence, mRNA transcription rather than miRNA-
mediated regulation is the driving force for protein regulation upon RA-incubation, strongly suggesting 
that miRNAs are fine-tuning regulators rather than active primary switches during RA-induction of 
USSC.

MicroRNAs (miRNAs) are small non-coding RNAs which primarily bind to the 3′UTR of target mRNAs in 
a sequence-specific manner resulting in translational repression or destabilization and degradation of the tar-
geted mRNA1. In animals, primary miRNA transcripts are trimmed in a two-step process involving double 
strand-specific nucleases Drosha and Dicer. The mature single-stranded miRNA is then incorporated into the 
RNA-induced silencing complex (RISC) where functional binding to the mRNA target sequence takes place1. As 
a most important feature, miRNA-mediated regulation is characterised by a bidirectional target gene redundancy. 
This allows a single miRNA to target the 3′ UTRs of hundreds of mRNAs in parallel2. Vice versa, binding sites for 
several miRNAs can be found on a single 3′ UTR. In consequence of these properties, miRNAs primarily can act 
as network regulators being able to affect large numbers of regulatory targets in parallel2,3.
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MiRNAs are involved in widespread biological processes throughout the entire organism also including devel-
opment and disease4. Herein, a single miRNA can fulfil different functions in various organs or cellular environ-
ments in parallel. For example, miRNAs miR-9 and miR-124 are highly expressed in brain tissues5, and fulfil a 
variety of well described functions in regulating embryonic and adult neurogenesis, neuronal differentiation and 
functions5–13. Additionally, miR-124 fulfils functions in cells of the immune system14. Among other miRNAs 
affecting neuronal development, miR-34 was recently identified as regulator of neuronal maturation in PC12 cells 
by arresting cells in the G1 phase which is a prerequisite for neuronal differentiation15.

Systemic analyses of miRNomes and transcriptomes are established tools to identify global miRNA regulation 
which, for example, allows the identification of a regulatory network underlying the onset of cortical neurogen-
esis16. In addition, analysis of miRNAs and mRNAs from murine embryonic stem cells (mESC) and descendant 
neural stem cells led to a bioinformatic model for miRNA-based control of neuronal differentiation in mice17. In 
HeLa cells, overexpression of several miRNAs led to downregulation of hundreds of proteins albeit at a moder-
ate level18, often associated with parallel decreases in mRNAs. Consequently, it has emerged in recent years that 
mRNA decay is the dominant regulatory miRNA effect which explains the majority (66–90%) of miRNA medi-
ated protein repression19,20. However, extending the transcriptome analysis by quantitative proteome analysis is a 
valuable strategy to identify global, proteome-wide changes in response to miRNA regulation.

Unrestricted somatic stem cells (USSC) from hUCB are a CD45-negative subpopulation of primary cells 
having a multipotent differentiation potential21 and can be induced to pluripotency by ectopic expression of 
OCT4, SOX2, KLF4, and C-MYC22. USSC are similar to mesenchymal stem cells from bone marrow (BM-MSC), 
but have a specific Hox-gene expression pattern resembling that of ESC21,23. In addition, USSC possess longer 
telomeres, exhibit a significant lower senescence rate compared to BM-MSC and do not form teratoma after 
transplantation21,24. USSC have a regenerative phenotype promoting nerve regeneration after transplantation into 
the injured rat spinal cord25, at least partially, by secretion of trophic proteins and thereby influencing a multi-
tude of relevant biological processes26. Using a medium comprised of retinoic acid (RA) together with growth 
and differentiation factors termed XXL-medium, USSC can differentiate in vitro into cells displaying a neuronal 
phenotype which have been named XXL-USSC3,21,27 in a time frame varying from 14–21 days. Upon incubation 
with XXL-medium, USSC immediately exit the cell cycle and apoptotic events lead to cell loss during ongoing 
XXL-treatment27. At the final stage of XXL-incubation, XXL-USSC have acquired a neuronal-like morphology 
and are characterised by expression of different neuronal markers. In addition, XXL-USSC express tyrosine 
hydroxylase which catalyses hydroxylation of L-tyrosine to L-DOPA, the precursor for the neurotransmitter 
dopamine, and release the neurotransmitter dopamine27. However, since USSC treated with XXL for 14 days lack 
action potentials they must be considered as only partially differentiated cells.

We have previously analysed the impact of miRNA expression on osteogenic and XXL-induced differenti-
ations of USSC3,28,29. MiRNAs miR-26a/b and miR-29b accelerate osteogenic differentiation of USSC through 
targeting osteogenesis-inhibiting factors. In XXL-USSC, downregulation of 18 miRNAs primarily stemming from 
the miR-17-92 family was observed 14 days after induction3. Based on experimental target validations, these 
miRNAs were integrated into a regulatory network of target genes relevant for neuronal development and func-
tion3 and also functionally connected to the XXL induced cell cycle arrest28. However, these results were achieved 
by means of classical miRNA expression analysis as well as reporter gene-based experimental target validations 
followed by ectopic overexpression or inhibition of certain miRNAs. Yet, it still remains an open question how 
the in vivo regulation of miRNAs during RA-induction can affect the proteome of USSC and how the final abun-
dance of endogenous miRNA target proteins is balanced between XXL induced initial mRNA transcription and 
posttranscriptional miRNA regulation.

In this study, we aim to estimate the in vivo impact of regulated miRNAs on the proteome of RA induced phe-
notypic changes of USSC by integrating tightly clocked full transcriptome and proteome data of native USSC and 
USSC at days 3 (3d), 7 (7d) and 14 (14d, transcriptome only) of XXL-incubation (see also Supplementary Fig. 1). 
Using bioinformatic target predictions combined with ectopic overexpression or inhibition of specific miRNAs 
we demonstrate that XXL induced transcriptional enforcement plays the dominant role in shaping protein abun-
dance and that miRNAs play a comparatively small role, possibly acting as fine-tuners.

Results
Transcriptome regulation in XXL-USSC.  We initially characterised the molecular signatures during 
XXL-medium incubation of USSC in vitro using an integrated approach to analyse mRNA, protein and miRNA 
abundances. USSC were incubated with XXL-medium as previously described3,27,28. XXL-induction was quality 
controlled by immunofluorescent staining for neurofilament as a neuronal marker and Ki-67 to proof the cell 
cycle exit of XXL-USSC compared to native USSC (Supplementary Fig. 2). Employing next generation sequenc-
ing, the transcriptome of USSC was analysed longitudinally (native USSC lines 4/101, 4/146, and 5/03 as well as at 
3d, 7d and 14d of XXL incubation). Raw data filtering of 17,572 analysed transcripts resulted in 12,828 quantified 
transcripts from which 1,347 mRNAs were significantly upregulated and 800 mRNAs downregulated independ-
ent from the time point of XXL-incubation (Supplementary Tables S1 and S2). Clustering of all significantly 
regulated mRNAs (p < 0.01, q < 0.05, FC > 1.5) clearly demonstrated a major difference between native and XXL-
USSC (Fig. 1A). Clustering revealed comparable expression patterns in native USSC over all biological replicates. 
In addition, cluster-specific GO-term enrichment analysis indicated that upregulated transcripts in XXL-USSC 
were mainly associated with metabolic processes and negative regulation of cell proliferation whereas downreg-
ulated transcripts were involved in cell cycle regulation, DNA replication and repair (Fig. 1A, Supplementary 
Table S3).

From all regulated genes, 464 genes were found to be upregulated and 392 genes downregulated when all time 
points of differentiation (3d, 7d, 14d XXL) were considered (Fig. 1B,B’). Noteworthy, 529 genes were significantly 

https://doi.org/10.1038/s41598-020-60065-8


3Scientific Reports |         (2020) 10:3284  | https://doi.org/10.1038/s41598-020-60065-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

upregulated exclusively at 14d. However, enrichment analysis revealed no biological processes significantly 
over-represented for the latter gene set.

Proteome regulation in XXL-USSC.  Quantitative label-free mass spectrometry was employed to ana-
lyse the proteome in USSC lines 4/101, 4/146, 5/03, 5/73, 7/18, and 8/77 and derived XXL-USSC. However, due 
to strong apoptotic events during XXL-treatment this analysis was only possible until 7d of XXL-incubation. 
Altogether, 1,864 proteins were included for quantitative proteome analysis (Supplementary Tables S4 and S5). 
Pearson’s correlation revealed high biological reproducibility at each time point (Pearson’s correlation of 0.88–
0.99) (Fig. 2A). Cluster analysis demonstrated strong differences between native USSC and XXL-USSC with, 
however, only moderate differences between 3d and 7d XXL-incubation (Fig. 2B). Cluster-specific enrichment 
analysis showed that proteins with decreased abundance in differentiated USSC were assigned to biological pro-
cesses associated with proliferating cells, e.g., rRNA processing, mRNA splicing and translational initiation. In 
XXL-USSC, proteins mainly associated with metabolic processes were increased including gluconeogenesis and 
fatty-acid beta oxidation as well as mitochondria associated processes (Fig. 2B, Supplementary Table S6).

In general, 388 proteins were higher abundant (p < 0.01, q < 0.05, FC > 1.5) and 274 proteins were lower 
abundant in XXL-USSC from which 214 proteins were higher and 145 lower abundant at both time points (3d 
and 7d) compared to native USSC, respectively (Fig. 2C). In addition, 149 proteins were significantly higher 
abundant and 93 proteins lower abundant only at 7d (Fig. 2C). Proteins once significantly induced or reduced at 
3d XXL, did not show any significant inverse regulation at 7d XXL-incubation (Fig. 2C).

Comparison of proteome and NGS based transcriptome.  We next analysed whether differential 
abundance of mRNAs observed during XXL-incubation is also reflected in changes of corresponding proteins. 
Of the overall 1,864 quantified proteins, 1,797 were represented by corresponding mRNA expression (Fig. 3A). 
Focusing on statistically significant expression changes (p < 0.01, q < 0.05, FC > 1.5) of both, mRNAs and cor-
responding proteins (Fig. 3B,B’) 43 mRNAs and their related proteins were induced, and 44 mRNAs and their 
corresponding proteins were reduced upon 3d XXL-incubation (Fig. 3B). In 7d XXL-USSC, 52 mRNA/protein 
pairs were induced, and 60 mRNA/protein pairs were reduced in parallel, respectively (Fig. 3B’).

Figure 1.  mRNA expression analysis of native and XXL-USSC. (A) Heat map of differentially expressed 
mRNAs in USSC lines 4/101, 4/146, and 5/03 (p < 0.01, q < 0.05, FC > 1.5) at time points native, 3d, 7d, 14d 
of XXL-incubation. USSC lines and time points are colour-coded at the top of the heat map. The heat map 
represents two main clusters of up- and downregulated mRNAs. Top categorical gene ontology enrichment 
annotations (q < 0.05) based on DAVID database are given for each cluster (top 10 are shown). (B,B’) Venn 
diagrams of upregulated (B) and downregulated (B’) mRNA at the respective time points of XXL incubation in 
comparison to native USSC.
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However, 28 mRNAs were induced, and 66 mRNAs were reduced at 3d XXL-incubation, without showing a 
parallel regulation of their related proteins. Vice versa, 190 proteins were significantly higher and 135 proteins 
lower abundant without significant regulation of the corresponding mRNA (Fig. 3B). At both, 3d and 7d XXL, 
the numbers of significantly regulated mRNAs were quite similar, however, more proteins (300) were higher 
abundant at 7d without regulation of corresponding transcripts (Fig. 3B’).

Independent of statistical significance most mRNAs and corresponding proteins were regulated in parallel 
with a Pearson’s correlation coefficient of 0.62 in 3d XXL and 0.67 in 7d XXL-USSC compared to native USSC, 
respectively (Fig. 3C,C’). However, the correlations were higher at both time points (0.88 each) when significantly 
regulated transcripts and their corresponding proteins were selected (Fig. 3D,D’). It is worth noting that only a 
few proteins showed an inverse regulation after XXL-induction compared to their related mRNAs. Comparison 
of fold changes of all 1,797 mRNAs and their corresponding proteins revealed that only 22 proteins induced by 
FC > 1.5 showed an inverse mRNA regulation in 3d XXL-USSC. By the same criteria, 8 proteins were reduced 
with the corresponding mRNAs induced at this time point (Supplementary Fig. 3A). In 7d XXL-USSC, 26 

Figure 2.  Proteome analysis of native and XXL-USSC. (A) Correlation plots of quantified proteins between 
native and XXL-treated USSC lines. Pearson’s correlations indicate a high similarity between the biological 
replicates. (B) Heat map of differentially abundant proteins in USSC lines 4/101, 4/146, 5/03, 5/73, 7/18, and 
8/77 (p < 0.01, q < 0.05, FC > 1.5) at time points native, 3d, 7d, of XXL-incubation. USSC lines and time 
points are colour-coded at the top of the heat map. The heat map represents two main clusters of up- and 
downregulated proteins. Top categorical gene ontology enrichment annotations (q < 0.05) based on DAVID 
database are given (top 10 are shown). (C) Differentially abundant proteins at 3d and 7d XXL-USSC compared 
to native USSC. Black arrows denote the regulatory direction.
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proteins were higher, and 9 proteins were lower abundant with related transcripts regulated in inverse direction 
(Supplementary Fig. 3B).

MicroRNA regulation in XXL-USSC.  The aforementioned NGS dataset was analysed for miRNA expres-
sion. Herein, altogether, 750 miRNAs were quantified, 592 of which were used for fold change analyses upon 
filtering as described above (Supplementary Tables S7 and S8). In general, miRNA expression profiles clearly 
separated native USSC from XXL-USSC and miRNA expression profiles segregated further during ongoing 
XXL-incubation (Fig. 4A). In detail, statistical analysis revealed 5 up- and 13 downregulated miRNAs at day 3 
of XXL-incubation (p < 0.01, q < 0.05, FC > 1.5) (Fig. 4B,B’). In 7d XXL-USSC, each 26 miRNAs were up- and 
downregulated. After 14d XXL-incubation, 19 miRNAs were up- and 33 miRNAs downregulated (Fig. 4B,B’). 
Among these, 8 miRNAs were up- and 16 miRNAs were downregulated exclusively at 14d XXL. Table 1 shows 
expression data of all miRNAs downregulated and upregulated from/to CPM > 100. Summarized, miRNomes of 
USSC and XXL-USSC separate from each other in a steady process from native USSC to 14d XXL-USSC.

Bioinformatic integration of expression data.  To initially estimate the contribution of miRNAs reg-
ulated in USSC upon XXL-induction we performed an extensive bioinformatic miRNA target gene prediction 
survey employing all 12 algorithms implemented in miRWalk 2.030,31 with p-value <0.01 and otherwise default 
settings. From the miRNAs presented in Table 1, we selected candidate miRNAs which were significantly regu-
lated (p < 0.01, q < 0.05, FC > 1.5) at all three analysed time points during XXL-incubation. Thus from the group 
of downregulated miRNAs, we chose hsa-miR-221-5p, hsa-miR-24-2-5p, hsa-miR-27a-5p, hsa-miR-222-5p, and 
hsa-miR-138-1-3p. From the upregulated miRNAs, hsa-miR-146a-5p, hsa-miR-34a-5p, and hsa-miR-212-5p 
matched the criteria. Target predictions resulted in average 14,116 non-redundant putative target genes for 
each miRNA, ranging from 3,673 targets for hsa-miR-24-2-5p up to 18,205 putative targets for hsa-miR-27a-5p 
(Supplementary Tables S9 and S10) compared to the aforementioned 12,828 identified transcripts in USSC 
(Supplementary Tables S1–S3).

To estimate the effect of regulated miRNAs on the proteome of XXL-USSC we next cross-matched the pre-
dicted target genes for these regulated miRNAs with proteins inversely regulated in XXL-USSC at day 3 and/
or day 7. To create networks of regulated miRNAs and predicted inversely regulated target proteins we lim-
ited the number of putative targets to those being predicted in parallel by at least five out of twelve algorithms 
used by miRWalk 2.0. The resulting networks for down- and upregulated miRNAs are given in Fig. 5. The full 

Figure 3.  Comparison of mRNA- and proteome data in USSC and XXL-USSC. (A) Coverage of mRNA and 
protein data. From all quantified proteins, 96% were also found in the transcriptome. To exclude non-coding 
RNAs from the NGS data, only identified transcripts known to encode proteins were included here as revealed 
by UniProt database. (B,B’) Significantly regulated genes and significantly regulated corresponding proteins 
at 3d (B) and 7d (B’) of XXL incubation. Black arrows denote the regulatory direction. (C,C’) Correlation of 
mRNA- and corresponding protein regulation at 3d XXL (C, Pearson correlation coefficient 0.62) and 7d XXL 
(C’ Pearson correlation coefficient 0.67) compared to expression levels in native USSC, respectively. (D,D’) 
Correlation of significantly regulated mRNAs and corresponding proteins at 3d XXL (D, 89 mRNAs, Pearson 
correlation coefficient 0.88) and 7d of XXL incubation (D’, 112 mRNAs, Pearson correlation coefficient 0.88) 
compared to expression levels in native USSC, respectively.
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crossmatches of the regulated miRNAs and unlimited number of predicted target proteins inversely regulated at 
3d and 7d XXL-induction are given in Supplementary Tables S9 and S10.

For both, down- and upregulated miRNAs the predicted networks (Fig. 5) initially imply a strong impact of 
the regulated miRNome on the proteome of XXL-USSC, since many proteins are predicted targets of more than a 
single miRNA. When based on all putative targets without limitations in numbers of algorithms, the crossmatches 
(Supplementary Tables S9 and S10) revealed that for all miRNAs analysed, only a small fraction of regulated pro-
teins were not predicted as targets for the regulated miRNAs.

Proteome analysis upon ectopic overexpression and inhibition of microRNAs.  The bioinformatic 
data integration points to networks of regulated miRNAs and inversely regulated proteins (Fig. 5). However, the 
large amounts of putative targets generated by the unfiltered predictions (Supplementary Tables S9 and S10) chal-
lenge the reliability of such bioinformatic analyses since they exceed the number of identified transcripts in USSC. 
In addition, the quite similar regulation of mRNAs and proteins outlined in Fig. 3 raised questions regarding the 
real in vivo contribution of miRNAs to the final protein abundance in XXL-USSC. Therefore, we tested the real 
impact of candidate miRNAs on proteome formation by their ectopic overexpression or inhibition followed by 
proteome analysis of transfected XXL-USSC.

Three representative candidates from the miRNAs used for the bioinformatic integration (see also Table 1) were 
selected. Herein, both regulatory directions as well as absolute expression strengths of the miRNAs in native USSC 
were taken into account. Hsa-miR-221-5p is the most strongly expressed miRNA in native USSC (mean CPM: 
4066) that is significantly reduced at all analysed time points. Hsa-miR-27a-5p represents a group of miRNAs  
far weaker (CPM < 1000) expressed in USSC (mean CPM: 281) but still significantly reduced at all time points. 
Hsa-miR-34a-5p is the most strongly upregulated miRNA in XXL-USSC.

We transfected USSC with miRNA mimics (hsa-miR-221-5p, hsa-miR-27-5p) or hairpin inhibitors (hsa-miR-
34a-5p) 24 h prior to XXL-incubation followed by proteome analysis 3 days after XXL-induction in comparison 
to 3d XXL-USSC pre-transfected with an unspecific negative control (n.t. siRNA). Detailed proteome data are 
given in Supplementary Tables S11–S14. Transfection of both hsa-miR-221-5p and hsa-miR-27a-5p mimics led 
to a clear separation from the controls as revealed by PCA and volcano plots (Fig. 6A–D). A smaller segrega-
tion, however, was observed between hsa-miR-34a-5p hairpin inhibitor and control transfected cells (Fig. 6E,F). 
Subsequently, we analysed the overlap between regulated putative target proteins in transfected USSC and pre-
dicted target proteins inversely regulated in XXL-USSC (see workflow Fig. 7A).

We identified 1,505 and 1,550 proteins upon transfection of hsa-miR-221-5p and hsa-miR-27a-5p mimics 
from which 1,144 and 1,469 proteins were predicted targets according to aforementioned target gene predictions, 
respectively (Fig. 7B). Transfection of hsa-miR-34a-5p hairpin inhibitors resulted in the identification of 1,577 
proteins including 1,444 predicted targets. The large portion of predicted targets among the identified proteins 
reflects the high numbers of predicted target proteins. Apparently, only a small portion of the identified predicted 
target proteins were indeed lower abundant upon transfection of hsa-miR-221-5p or hsa-miR-27-5p mimics 

Figure 4.  miRNA expression analysis in USSC and XXL-USSC. (A) Heat map of differentially expressed 
miRNAs in USSC lines 4/101, 4/146, and 5/03 (p < 0.01, q < 0.05, FC > 1.5) at time points native, 3d, 7d, 14d of 
XXL-incubation. USSC lines and time points are color-coded at the top of the heat map. (B, B’) Venn diagrams 
showing numbers of upregulated (B) and downregulated (B’) miRNAs at the respective time points of XXL 
incubation (3d, 7d and 14d), each compared to native untreated USSC. Black arrows denote the regulatory 
direction.
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in 3d XXL-USSC (24 proteins out of 1,144 predicted proteins and 9 regulated out of 1,469 predicted proteins, 
respectively, see Fig. 7B). The same was true for proteins higher abundant upon hsa-miR-34a-5p hairpin inhibitor 
transfection (6 proteins out of 1,444 predicted proteins, see Fig. 7B). These transfection responsive predicted 
target proteins likely represent true targets of the respective transfected miRNA.

In addition, we observed only a small overlap between predicted target proteins differentially abundant 
upon mimic or inhibitor transfection and those predicted target proteins that had been inversely regulated in 
non-transfected XXL-USSC (eight proteins out of 301 after hsa-miR-221-5p mimic transfection, three proteins 
out of 373 after hsa-miR-27-5p mimic transfection, two proteins out of 255 after hsa-miR-34a-5p hairpin inhib-
itor transfection; see Fig. 7B and Supplementary Table S14). It is noteworthy that several of these overlapping 
putative targets were predicted by only one single algorithm and RNAhybrid accounts for all these predictions 
(Supplementary Tables S9, S10, and S14). Only one overlapping protein (RDH10) was predicted by ≥5 algorithms 
and thus present in the virtual network (Fig. 5A).

Of note, mimic transfections also led to higher abundant proteins as well as vice versa upon hairpin inhibitor 
transfection (Fig. 7B), which is likely due to indirect effects rather than direct targeting by the respective miRNA.

In summary, our findings demonstrate that induction of USSC with XXL-medium is associated with sig-
nificant changes in both, transcriptome and proteome with a good concordance between mRNA and protein 
regulation. For miRNAs, however, our experimental findings revealed (i) small numbers of miRNA transfection 
responsive targets under XXL conditions and (ii) a small overlap of these with inversely regulated proteins in 
non-transfected XXL-USSC, strongly indicating that miRNAs play only a minor role in shaping the proteome of 
XXL-USSC. Thus, miRNAs might act here as fine-tuning molecules rather than as primary regulators.

miRNA name

mean CPM log2FC XXL vs. native USSC

native 
USSC

3d XXL 
USSC

7d XXL 
USSC

14d XXL 
USSC 3d XXL 7d XXL 14d XXL

downregulated miRNAs

hsa-miR-222-3p 18723 6440 6377 4381 −1.5 −1.6 −2.1

hsa-miR-221-5p * 4066 566 403 594 −2.8 −3.3 −2.8

hsa-miR-484 2156 530 265 1385 −2.0 −3.0 −0.6

hsa-miR-24-2-5p 1096 285 167 310 −1.9 −2.7 −1.8

hsa-miR-335-5p 1078 252 189 203 −2.1 −2.5 −2.4

hsa-miR-335-3p 284 119 49 34 −1.3 −2.5 −3.1

hsa-miR-27a-5p * 281 43 61 67 −2.7 −2.2 −2.1

hsa-miR-431-5p 231 82 73 48 −1.5 −1.7 −2.3

hsa-miR-222-5p 210 25 24 18 −3.1 −3.1 −3.6

hsa-miR-138-1-3p 203 52 42 13 −2.0 −2.3 −3.9

hsa-miR-17-5p 149 99 64 47 −0.6 −1.2 −1.7

hsa-miR-1185-1-3p 104 37 55 22 −1.5 −0.9 −2.2

hsa-miR-424-5p 101 41 21 21 −1.3 −2.3 −2.3

upregulated miRNAs

hsa-miR-146a-5p 7218 57295 60493 55211 3.0 3.1 2.9

hsa-miR-191-5p 15298 29437 45496 47388 0.9 1.6 1.6

hsa-let-7i-5p 24212 43439 76470 44284 0.8 1.7 0.9

hsa-miR-34a-5p * 522 5372 5849 8076 3.4 3.5 4.0

hsa-miR-23b-3p 2178 2675 3652 5662 0.3 0.7 1.4

hsa-miR-132-3p 187 523 1278 706 1.5 2.8 1.9

hsa-miR-7706 91 267 303 430 1.6 1.7 2.2

hsa-miR-425-5p 203 277 1020 412 0.5 2.3 1.0

hsa-miR-328-3p 61 109 231 312 0.8 1.9 2.3

hsa-miR-212-5p 24 117 155 156 2.3 2.7 2.7

hsa-miR-1180-3p 55 85 285 155 0.6 2.4 1.5

hsa-miR-212-3p 48 171 243 153 1.8 2.3 1.7

hsa-miR-182-5p 43 87 188 144 1.0 2.1 1.7

hsa-miR-3605-3p 25 57 101 144 1.2 2.0 2.5

hsa-miR-132-5p 21 57 171 60 1.5 3.0 1.5

Table 1.  Expression pattern of significantly regulated miRNAs. Summary of miRNAs downregulated from a 
mean CPM value >100 (upper part of the table) and upregulated to a mean CPM value >100 at any time point 
of XXL incubation (lower part of the table). In XXL-USSC, 13 miRNAs were downregulated from a mean CPM 
value > 100 from which five miRNAs were significantly reduced at all three investigated time points of XXL 
incubation (hsa-miR-221-5p, hsa-miR-24-2-5p, hsa-miR-27a-5p, hsa-miR-222-5p, hsa-miR-138-1-3p). From 
15 miRNAs induced in XXL-USSC, three miRNAs (hsa-miR-146a-5p, hsa-miR-34a-5p, hsa-miR-212-5p) were 
significantly upregulated at all investigated time points of XXL incubation. Numbers indicate the corresponding 
mean CPM values for the respective miRNAs at the four time points. Expression changes are shown as log2FC 
values at the right side. Log2 fold values in italics indicate significant expression changes. The miRNAs with * 
were used for transfection experiments.
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Discussion
In the present study, we applied for the first time an integrative analysis of miRNome, transcriptome, and pro-
teome together with functional miRNA analyses in order to estimate the impact of regulated miRNAs on the 
proteome of XXL-USSC. In an earlier quantitative PCR approach covering 377 miRNAs, we had demonstrated 
downregulation of various miRNAs, primarily from the miR-17-92 family, in XXL-USSC compared to native 
USSC3. Experimental target validations confirmed a bioinformatically predicted network between these miRNAs 

Figure 5.  Virtual networks of regulated miRNAs and predicted target proteins inversely regulated in XXL-
USSC. Networks were generated from miRNAs significantly regulated (p < 0.01, q < 0.05, FC > 1.5) at all time 
points of XXL-incubation and proteins significantly regulated in inverse direction (3d and/or 7d XXL) that are 
predicted as targets of the respective miRNA by at least 5 algorithms. Blue boxes: miRNAs. Proteins are colour-
coded for the number of predicting miRNAs: grey, 1 miRNA; light green, 2 miRNAs; dark green 3 miRNAs; red, 
4 miRNAs. (A) Network including downregulated miRNAs and higher abundant predicted target proteins. (B) 
Network including upregulated miRNAs and lower abundant predicted target proteins.
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and several representative target proteins associated with neuronal development and function3. Although 
3′-UTR-based sensor constructs demonstrated the capability of intracellular miRNAs to regulate these target 
genes in XXL-USSC3, no systemic data are yet available which estimate the real participation of differentially 
regulated miRNAs on the proteome in XXL-USSC. We thus employed USSC and XXL-derivatives as a model 
system to analyse the interplay between XXL-driven transcription and posttranscriptional miRNA-regulation a 
global level rather than investigating particular miRNA target gene interactions. As the current mirBase (release 
22.1, October 2018) lists 2,693 mature human miRNAs, we now used NGS together with proteome analyses in 
order to get a complete picture of miRNA, mRNA, and proteome expression profiles and to include more detailed 
time kinetics.

The majority of up- and downregulation of mRNAs was observed already at 3d XXL (Fig. 1B,B’) implying that 
the switch to XXL leads to immediate changes in transcriptional patterns. It is worth noting that GO analysis of 
differentially regulated mRNAs at one hand points to cell cycle and proliferation-related genes (Fig. 1A), which 
is in line with the strong cell cycle arrest that occurs in USSC immediately upon addition of XXL. On the other 
hand, only few genes directly or indirectly related to neuronal function (neurofilament chains NEFL, NEFM and 
NEFH) or development (doublecortin, DCX) were upregulated even at 14d XXL demonstrating that XXL-USSC, 
despite having acquired a neuronal-like phenotype, have not differentiated into fully functional neurons within 
this period. It is worth noting that XXL-USSC show first phenotypic signs of neuronal lineage differentiation at 

Figure 6.  Proteome analysis of miRNA mimic/inhibitor transfected XXL-USSC at 3d XXL. Principle 
component analyses (PCA) and Volcano Plots of 3d XXL-USSC transfected with hsa-mir-221-5p mimic (A,B), 
hsa-mir-27a-5p mimic (C,D) and hsa-mir-34a-5p inhibitor (E,F) in comparison to n.t. siRNA transfected USSC 
(unspecific control). (A,C,E) PCAs showing separation of mimic/inhibitor transfected 3d XXL-USSC from 
control transfected 3d XXL-USSC. (B,D,F) Corresponding Volcano plots displaying differentially abundant 
proteins from transfected 3d XXL-USSC compared to the unspecific control.
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14d or later27 and since only a minority of cells are affected at these late time points, the resulting heterogeneity 
likely masks the analysis of neuronal pathways in these populations by NGS. Analysing neuronal pathways in 
XXL-USSC would require later time points which is compromised by the strong cells loss and was thus not the 
focus of our study.

In contrast to mRNAs, most of the miRNA regulation appeared at 7d and 14d of XXL-incubation (Fig. 4B,B’). 
In good agreement with our previous study3, miRNAs were predominantly downregulated at day 14. Since solely 
at 14d XXL far more mRNAs were upregulated rather than downregulated, this is at first glance in concordance 
with the inverse kind of regulatory pattern seen from miRNAs and implies that at this late time point the cells 
have achieved a new transcriptional balance.

Although apoptotic events prevent proteome analyses beyond 7d of XXL-incubation, comparison of full 
mRNA and proteome expression data revealed that a large majority of mRNAs and proteins were regulated 
in parallel (Fig. 3) with only few exceptions showing inverse regulation irrespective of statistical significance 
(Supplementary Fig. 3). Correlation between mRNA and protein regulation increased to 0.88 at both time points 
when only significantly regulated mRNAs were examined (Fig. 3D,D’). Comparison of significantly regulated 
mRNAs and significantly regulated proteins revealed that more proteins were solely up- or downregulated 
(Fig. 3B,B’). This is possibly due to proteins or mRNAs, which might still be regulated in parallel to their corre-
sponding mRNA or protein, respectively, but only fail to meet our statistical criteria for differential expression.

In contrast to our observations in USSC and XXL-USSC, only a poor correlation of transcripts and proteins 
is seen in many biological systems32–35 although the interpretation of data might still be dependent on the under-
lying mathematical models34. Different correlations between transcriptomes and proteomes were observed in 
steady-state cells compared to cells undergoing biological transitions. In steady-state cells, transcripts seem to be 
the driving force behind the proteome34,36, whereas in state-transiting cells delays between mRNA regulation and 
subsequent proteome changes become visible within few hours37,38. Although induction with XXL also leads to 
USSC state transition, the far longer period of our analyses could not reflect these very early regulatory events. 
We observed an ongoing regulation of miRNAs, mRNAs and proteins in both regulatory directions over 3–7 days 
of XXL-incubation, with an emphasis on upregulation of mRNAs and proteins and downregulation of miRNAs 
(Figs. 1–4). It is likely that the proceeding upregulation of transcripts at 14d (Fig. 1B) also results in upregulation 
of corresponding proteins although cell loss prevents proteome analysis at this time point.

The overall inverse regulatory patterns of miRNAs and mRNAs/proteins in general could be expected from 
miRNA-mediated regulations and imply a network effect of miRNAs as we had proposed earlier3. The bioinfor-
matic integration of regulated miRNAs and inversely regulated predicted target proteins indeed unfolded putative 
networks potentially participating in proteome shaping of XXL-USSC (Fig. 5). Bidirectional target gene redun-
dancy of the regulated miRNAs is seen in both networks as several proteins are predicted to be regulatory targets 

Figure 7.  Summary of bioinformatic analysis of miRNA transfections and subsequent differential protein 
expression in XXL-USSC. (A) Bioinformatic workflow. Proteins regulated in 3d XXL-USSC upon transfection 
with mimics/inhibitors (left Venn diagram) were filtered for predicted targets (red arrow, using all 12 algorithms 
from miRWalk 2.0) and cross-analysed with inversely regulated predicted targets in non-transfected XXL-USSC 
(right Venn diagram). (B) For each miRNA mimic/inhibitor transfection, numbers of quantified proteins in 
transfected 3d XXL-USSC, predicted target proteins hereof, proteins with altered abundance (high and low) 
upon transfection, predicted targets hereof, and overlap (light green cell/column) with inversely regulated 
predicted targets (changes in abundance at 3d and/or 7d XXL incubation) in XXL-USSC are given.
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of more than one miRNA. However, the estimation of the real in vivo contribution of these regulated miRNAs on 
the proteome is hampered by obviously unrealistically high numbers of predicted target genes using miRWalk 
2.0 as described (Supplementary Tables S9 and S10) that mostly exceed the numbers of identified transcripts. As 
seen in the crossmatch tables in Supplementary Tables S9 and S10 only very few regulated proteins are, in fact, no 
predicted targets of the respective miRNAs. Removal of certain algorithms or limiting results to targets predicted 
by a (subjective) minimum number of algorithms as we did for the visualization of networks (minimum 5 out of 
12, Fig. 5) might, however, result in a loss of true targets from the dataset. Therefore, even in view of the bioinfor-
matic target predictions, it needs to be experimentally addressed whether the good correlation between mRNAs 
and proteins (Fig. 3D,D’) is solely achieved by mRNA transcription or to what extent it is further increased by 
inversely regulated miRNAs that influence protein abundance during XXL-incubation.

To analyse this balance, we linked miRNAs and proteome by transfecting USSC with selected miRNA mimics 
and hairpin inhibitors followed by 3d XXL-incubation and subsequent proteome analysis. Representing different 
regulatory directions and expression levels in USSC we used hsa-mir-27a-5p which is involved in cell cycle regu-
lation and differentiation of pluripotent stem cells39,40 and hsa-mir-221-5p which is downregulated in RA-induced 
differentiation and also involved in cell cycle regulation41,42. In addition, we employed hsa-mir-34a-5p, known to 
be involved in tumour suppression, cell cycle arrest43–45, and regulation of neuronal differentiation15,46.

Our experimental approach of ectopic miRNA overexpression/inhibition cannot inherently discriminate 
between direct miRNA targeting and indirect miRNA effects. However, only small amounts (in total 44 out of 
4057) of the quantified proteins predicted to be regulated by the respective miRNA showed an altered abundance 
in the expected inverse direction under conditions of ongoing XXL-incubation (Fig. 7B). It is thus likely that 
these 44 proteins are candidates for being true targets of the respective miRNA. However, in a more general 
view, our results also point to XXL as the major regulatory force in USSC able to counteract regulatory effects 
even from ectopically overexpressed or inhibited miRNAs. Remarkably, the predictions underlying the overall 44 
transfection-responsive proteins (Fig. 7B) stem from the range of one single algorithm (RNA Hybrid, 13 proteins) 
up to 10 algorithms (1 protein) in parallel (Supplementary Table S14). This finding also demonstrates that pos-
sible true interactions can be predicted by just one single algorithm and reducing the number of predictions by 
restricting them to a certain minimum number of algorithms might indeed result in losses of possible true targets.

Proteomics is proposed to be a powerful tool to identify miRNAs and their regulatory targets and mech-
anisms47. In various studies, it has proven to be helpful to identify miRNA targets and regulation. Recently, 
stable isotope labelling with amino acids in cell culture (SILAC)-based mass spectrometry analysis helped to 
identify regulatory targets in miR-197-transfected rhabdomyosarcoma cells48. In addition, proteome, transcrip-
tome and miRNome data identified networks related to cardiotoxicity in human pluripotent stem cells49. In this 
manner, miR-145 targets were identified in pancreatic cancer50 and several putative miRNA targets were found 
in intestinal cell lines51. Furthermore, a crosstalk between proteome and non-coding RNAs was proposed by 
proteome and miRNome data during ongoing endothelial senescence52 and during telomere shortening in can-
cer cells53. Possible targets for miR-23a, miR-24-2, and miR-27a were identified by mass spectrometry in pre 
B-lymphoblasts54. On proteome-wide scale, ectopic expression of hsa-mir-34a caused moderate changes in pro-
tein translation44. In glioma cells, overexpressing the brain-specific miR-128, 11 out of 13 selected candidate 
proteins derived from proteome data were validated by luciferase assays as potential targets55. Knock-down of 
miR-21 in breast cancer cells resulted in an abundance increase of 58 potential target proteins and 6 out of 12 
candidates were validated successfully56.

With our USSC/XXL-USSC model system we did not primarily address the experimental identification of 
new miRNA targets in a global manner. The observation that ectopically overexpressed or inhibited miRNAs did 
not induce large changes in the proteome of XXL-USSC, however, does not devalue the virtual networks pre-
sented in Fig. 5, but in fact implies that XXL-driven mRNA transcription is the dominant regulatory force in pro-
teome modelling, fully in line with the observed good correlation of mRNA and proteome in XXL-USSC. In this 
view, miRNAs likely act as more fine-tuning elements, supporting the cells to shape the primarily XXL-induced 
proteome. This is further strengthened by the finding that from the total of 44 predicted targets with altered 
abundancies upon transfection with miRNA mimics or inhibitors only 13 overlapped with the total of 929 pre-
dicted targets with reversely altered abundancies in non-transfected XXL-USSC (Fig. 7B) with only one of these 
(RDH10) predicted by ≥5 algorithms (Fig. 5A).

It must be noted that these results only reflect the impact of a single transfected miRNA. As several miRNAs 
are significantly regulated in parallel (Table 1), it is possible that our results underestimate the in vivo impact of 
several miRNAs regulated in parallel, especially in view of the miRNA target gene redundancy. This is supported 
by our earlier observation that 3′-target-UTR sensor constructs indeed report an influence of downregulated 
miRNA-populations in XXL-USSC upon however XXL-decoupling normalization3. In upcoming experiments, 
analyses of single miRNAs should therefore be broadened to a wider range of individual miRNA candidates 
and transfection of miRNA batches need to be considered for effective analysis of the coordinated impact of the 
miRNome on proteome regulation in a global manner.

Summarized, even upon ectopic overexpression or inhibition, the tested miRNAs induced only minor changes 
in the proteome of XXL-USSC. This indicates a dominant influence of XXL induced transcription and, on the 
other hand, more fine-tuning effects of the miRNA candidates in their normal in vivo expression situation rather 
than being primary regulatory tools.

Methods
Cell culture and cell differentiation.  USSC were isolated from human umbilical cord blood as previously 
described by Kögler et al.21 and characterised by Hox-gene23 and delta-like 1 (DLK-1) expression57. USSC lines 
were provided by the Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine-University 
Medical Center, Düsseldorf, Germany. Informed consent was obtained from the donors’ mothers and has been 
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approved by the Ethics Committee of Heinrich-Heine-University Düsseldorf Medical School. All experiments 
were performed in accordance with relevant guidelines and regulations (Ethics Committee of Heinrich-Heine-
University Düsseldorf Medical School, approval number 3484). For both proteome and transcriptome analy-
sis, USSC were cultured and differentiated in parallel as previously described with modifications3,27,28. In brief, 
USSC were expanded in Dulbecco’s modified Eagle’s medium (Lonza, Cologne, Germany) supplemented with 
30% heat-inactivated FBS (Biochrom, Berlin, Germany), 2 mM glutamine (GibcoTM, Darmstadt, Germany) and 
penicillin/streptomycin (100 U/ml, GibcoTM) at 37 °C, 5% CO2 and 98% humidity. For analyses of proteome, 
transcriptome and miRNome, USSC lines 4/101, 4/146, 5/03, 5/73, 7/18, and 8/77 were cultured in parallel. USSC 
were seeded on poly-D-lysine (PDL, 0.5 mg/ml) and laminin (13 µg/ml) pre-coated glass coverslips in 6-well 
plates with a density of 110,000–140,000 USSC per well. 24 h later, USSC were incubated with differentiation 
medium (XXL)27 including DMEM GlutaMAXTM (GibcoTM), 15% FBS, penicillin/streptomycin, 50 ng/ml beta-
NGF, 20 ng/ml basic FGF (both Peprotech), 1 mM dibutyryl-cAMP, 0.5 mM 3-isobutyl-methylxanthine and 
10 µM all-trans-retinoic acid (all Sigma-Aldrich, Steinheim, Germany). Medium was changed every 2–3 days. 
USSC were used in passage 7–9 for all experiments.

For quality control of the XXL-induction, at each time point analysed by LC-MS/MS as well as NGS (native, 3d 
XXL, 7d XXL, 14d XXL), immunocytochemical stainings were performed. USSC were fixed using 3.7% formal-
dehyde (Merck) for 15 min and carefully washed with PBS. Afterwards, fixed USSC were incubated with blocking 
solution containing 10% normal goat serum (Sigma Aldrich) and 0.03% Triton x-100 (Sigma Aldrich) for 1 h. To 
characterise USSC cultures at different stages, the neuronal marker neurofilament (mouse anti-neurofilament, 
Sigma Aldrich, MAB1592, 1:500 dilution in blocking solultion) and the proliferation marker Ki-67 (mouse 
anti-Ki-67, Millipore, MAB4190, 1:500 dilution in blocking buffer) were stained over night at 4 °C. After washing 
with PBS, secondary antibodies (goat anti-mouse Alexa 488 and goat anti-mouse Alexa 594, both Invitrogen, 
1:500 dilution in PBS) were incubated for 3 h at room temperature. DAPI (4′,6-diamidino-2-phenylindole) 
staining was performed to label all cell nuclei. Coverslips were mounted in Fluoromount G® (SouthernBiotech, 
Birmingham, USA). Images were taken using AxioPlan2 microscope (Zeiss).

Sample preparation for proteome analysis.  Native and XXL-USSC were washed three times with PBS 
to remove FBS and subsequently removed by scraping the cells with a cell scraper in 1 ml ice-cold PBS per well. 
Cell suspension was centrifuged at 800 × g for 5 min at 4 °C, the supernatant was removed, and cells were lysed by 
adding buffer containing 30 mM Tris Base, 7 M urea, 2 M thiourea, 4% CHAPS (pH 8.5). The lysate was sonicated 
6 × 10 sec and centrifuged at 16,000 × g for 15 min. Protein concentration of the supernatant was determined 
by Pierce™ 660 nm Protein Assay (Thermo Fisher Scientific). For in-gel digestion, 5 µg protein per sample was 
loaded on an SDS-PAGE and run shortly for ~10 min (5 mm running distance). Afterwards, proteins were vis-
ualized by silver staining according to Nesterenko et al.58. The resulting lane was cut out, decolorized with a 1:1 
mix of 30 mM sodium thiosulfate (Fluka) and 100 mM potassium hexacyanoferrate (III) (Merck), reduced with 
10 mM dithiothreitol (Serva) and alkylated with 55 mM iodacetamide (Sigma Aldrich). Overnight trypsin diges-
tion (2 µg, Serva) was performed at 37 °C and peptides were extracted with 50% acetonitrile (Sigma Aldrich) and 
0.05% trifluoroacetic acid.

LC-MS/MS.  Extracted peptides were separated by a Ultimate 3000 RSCLnano System (Thermo Fisher 
Scientific) with a Acclaim PepMap100 trap column (3 µm C18 particle size, 100 Å pore size, 75 µm inner diam-
eter, 2 cm length, Thermo Fisher Scientific) as a precolumn using 0.1% TFA as a mobile phase and a Acclaim 
PepMapRSLC (2 µm C18 particle size, 100 Å pore size, 75 µm inner diameter, 25 cm length, Thermo Fisher 
Scientific) as analytical column. The flow rate was constant with 300 nl/min using a 2 h gradient of 0.1%FA (Fluka) 
to 0.1% FA/60% acetonitrile. Separated peptides were eluted via nano electrospray ionization into the mass spec-
trometer (QExactive hybrid quadrupole-orbitrap mass spectrometer, Thermo Fisher Scientific). Mass spectra 
were recorded in positive ion mode with a mass range of 300–2,000 m/z and a resolution of 70,000. Up to ten pre-
cursors (+2, +3 charge states) were isolated within a 2 m/z isolation window and fragmented via higher-energy 
collisional dissociation. MS/MS spectra were recorded in centroid mode with a maximal ion time of 60 ms and 
a target value for the automatic gain control set to 100,000. The resolution was 17,500 at a scan range of 200 to 
2,000 m/z. Already fragmented precursors were excluded from further isolation for the next 100 s.

LC-MS/MS data analysis.  Proteome Discoverer (Version 1.4, Thermo Fisher Scientific http://www.ther-
moscientific.com/en/product/proteome-discoverer-software.html) and Mascot search engine were used for pro-
tein identification. MS/MS spectra were searched against the UniProtKB Database (version: 2016/02). Following 
search parameters were used: Mass tolerance of 10 ppm (MSmode) and 0.4 Da (MS/MS mode), enzyme specific-
ity was trypsin, two missed cleavage sites were considered during the search against human database. Mass range 
setting was 350–5,000 Da. Carbamidomethylation of cysteine was set as fixed modification. Oxidation of methio-
nine was accepted as variable modification. For positive identification, we considered a false discovery rate (FDR) 
of <1% on peptide level (high peptide confidence, default p < 0.01). For FDR calculation, a decoy approach 
based on reversed protein sequences using Proteome Discoverer was applied. Label-free relative quantification 
was performed with Progenesis QI for proteomics 2.0 (Nonlinear Dynamics, Newcastle upon Tyne, http://www.
nonlinear.com/progenesis). Only non-conflicting peptides were taken into account. Automatic alignment of runs 
to reference run was at least 84.3%. For filtering, peak picking limits were set to automatic and the maximum 
charge was set to 3. Normalization factor (NF) was ≤2 except one sample (NF 2.68). Peptides with a score <20 
and a mass error >10 ppm were excluded from quantification. A minimum of 2 unique peptides per protein was 
required for quantification. R was used for statistical analysis calculating differences between samples by ANOVA 
(FDR corrected p-value or q-value <0.05) and Tukey’s post-hoc test (p < 0.01).
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Next generation sequencing.  For sequencing, USSC were lysed in culture dish by adding 750 µl QIAzol 
(Qiagen, Hilden, Germany) after washing with PBS. RNA from native and XXL-USSC was isolated by miRNe-
asy Mini Kit (Qiagen). Quality and quantity of RNA samples were measured on a 2100 Bioanalyzer (Agilent, 
Amstelveen, the Netherlands). Integrity numbers ranged from 8.2 to 10. For RNA sequencing, a maximum of 
1 µg total RNA was used for library preparation with TruSeq Small RNA Sample Prep Kit (#RS-200-0012/0024, 
Illumina, San Diego, CA). 300 ng of total RNA were used for library preparation with TruSeq Stranded Total RNA 
Sample Prep Kit with Ribo-Zero Gold (#RS-122-2301, Illumina). Size and DNA concentration of prepared cDNA 
libraries were also analysed on a 2100 Bioanalyzer. A concentration of seven picomolar of template DNA was 
loaded per flow cell and high-throughput sequencing was performed on the Illumina HiSeq. 2500 with 50 cycles 
(miRNAs) or 100 cycles (mRNAs).

Sequencing data analysis.  Sequencing reads for mRNA and miRNA sequencing were handled in a sim-
ilar fashion. We obtained a total of 409,931,711 sequencing reads for mRNA-Seq and 273,704,169 sequencing 
reads for miRNA-Seq. First, adapter sequences and low quality ends were trimmed off using cutadapt59 and seqtk 
(https://github.com/lh3/seqtk). The remaining reads longer than 25/14 bases for the mRNA/miRNA dataset were 
then aligned against the human reference sequence GRCh38/hg38. We used STAR v2.4.060 for the mRNA-Seq 
data and BWA v0.7.8a61 for the miRNA-Seq data. BWA was run with the -n 0.04 option to allow for errors in 
the short reads. A total of 165,833,130 and 65,820,517 were mapped uniquely to the genome for the mRNA and 
miRNA datasets, respectively. To estimate the expressions, reads were counted per gene annotated in Ensembl 
Genes V8562 and per miRNA annotated in miRBase V2163 using HTseq.64. Read counts were intra-sample nor-
malized according to the sequencing depth of each sample with edgeR65, resulting in counts per million (CPM), 
which provided the basis for heatmap visualizations. To calculate differentially expressed genes and miRNAs, we 
have used edgeR functions glmQLFit and glmQLFTest. FDRs are reported which corrects for multiple testing. 
Only transcripts which are also listed as a protein in the UniProt database were taken into account to exclude 
non-coding transcripts (e.g. long non-coding RNAs) from further analysis. To exclude transcripts with extremely 
low CPM values of no biological significance, all sequencing data used for subsequent fold change analyses were 
filtered by CPM > 1 at least at one time point. Genes fulfilled significance criteria with p < 0.01, q < 0.05, FC > 1.5. 
In addition, miRNAs were selected from significantly regulated with p < 0.01, q < 0.05, FC > 1.5 at 3d, 7d and 14d 
XXL (same regulation direction).

Bioinformatic analysis.  Follow-up processing of the normalized transcriptome, microRNA and proteome 
data was done within the R/Bioconductor1 environment employing the packages gplots 2 and heatmap.plus66,67. 
Cluster analysis and heatmaps were calculated with the heatmap.2 and heatmap.plus functions from these pack-
ages. Genes, microRNAs and proteins were included in the heatmap when passing a threshold for the coefficient 
of variation. Colours were scaled for each row corresponding to a gene, microRNA or protein. Pearson’s correla-
tion was used as similarity measure.

MiRNA target gene predictions were performed using the miRWalk 2.0 website (http://zmf.umm.
uni-heidelberg.de/apps/zmf/mirwalk2/index.html)30 combining 12 individual algorithms (miRWalk, miRDB, 
PITA, MicroT4, miRMap, RNA22, miRanda, miRNAMap, RNAhybrid, miRBridge, PicTar2, and Targetscan) 
using the default setting except for the pValue, which was changed from 0.05 to 0.01 (and appears to affect 
miRWalk-results only). To increase the reliability of predictions, we only included putative targets predicted by 
≧5 individual algorithms. The resulting gene lists were matched to the NGS data on the level of the respective 
Ensembl IDs. Gene lists from proteome data, NGS data and target predictions were analysed for gene ontology by 
using the DAVID database (https://david.ncifcrf.gov/)68,69. Scatter plots, principle component analyses and cor-
relations were calculated by using the software package Perseus70. Calculation of Venn diagrams was performed 
with FunRich71. Protein-miRNA networks were visualised by using Cytoscape 3.7.172.

Transfection of USSC.  For transfection experiments, USSC line 5/03 was used. USSC were seeded on PDL 
and laminin pre-coated glass coverslips with a density of 150,000-170,000 USSC/well on 6 well plates and each 
well was transfected with 3 pMol of the respective miRIDIAN miRNA mimic or inhibitor (Dharmacon) using 
Dharmafect (Dharmacon) according to the manufacturer’s protocol. USSC were incubated with XXL-medium 
24 h after transfection and proteomes were analysed 3 days upon XXL-induction as described above.

Data availability
All the data analysed during this study are included in this published article (and its Supplementary Information 
files). We confirm that all the data in this manuscript is original. The mass spectrometry proteomics data have 
been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the 
PRIDE partner repository73 with the dataset identifier PXD016915. In addition, next generation sequencing 
data discussed in this publication have been deposited in NCBI’s Gene Expression Omnibus74 and are accessible 
through GEO Series accession number GSE144466.
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