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Abstract
Context  With artificial intelligence (AI) being well established within the daily lives of 
research communities, we turn our gaze toward formal methods (FM). FM aim to provide 
sound and verifiable reasoning about problems in computer science.
Objective  We conduct a systematic mapping study to overview the current landscape of 
research publications that apply AI to FM. We aim to identify how FM can benefit from AI 
techniques and highlight areas for further research. Our focus lies on the previous five years 
(2019–2023) of research.
Method  Following the proposed guidelines for systematic mapping studies, we searched 
for relevant publications in four major databases, defined inclusion and exclusion criteria, 
and applied extensive snowballing to uncover potential additional sources.
Results  This investigation results in 189 entries which we explored to find current trends 
and highlight research gaps. We find a strong focus on AI in the area of theorem proving 
while other subfields of FM are less represented.
Conclusions  The mapping study provides a quantitative overview of the modern state of 
AI application in FM. The current trend of the field is yet to mature. Many primary studies 
focus on practical application, yet we identify a lack of theoretical groundwork, standard 
benchmarks, or case studies. Further, we identify issues regarding shared training data sets 
and standard benchmarks.

Keywords  Formal methods · Artificial intelligence · Machine learning · Systematic 
mapping study

1  Introduction

Artificial intelligence (AI), and especially the subdomain of machine learning (ML), is 
becoming increasingly relevant for all industries and increasingly penetrates research com-
munities, as several studies show (Lu 2019; Elahi et al. 2023; Jiang et al. 2023; Chang 2023). 
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Consequently, AI applications also gained popularity in software development (Barenkamp 
et al. 2020; Shafiq et al. 2021).

This study asks whether this trend is also observable within the formal methods commu-
nities. Formal methods (FM) correspond to a mathematically rigorous approach to software 
and systems development in which the concern is to provide a formal representation of 
hardware, software, or systems engineering problem (Abran et al. 2004). This representa-
tion then lends itself to mathematical assessments such as correctness, soundness, or well-
definedness. These assessments can be easily reproduced and followed by the practitioner.

However, the needed guarantees and the rigorousness of these methods seem to conflict 
with AI applications, which often show nondeterministic behavior and mostly correspond 
to black-box techniques. The trade-off appears obvious: Injecting AI’s nondeterminism and 
unpredictability into FM’s rigorousness could lead to faster results and proofs with less 
human intervention at the price of fundamental guarantees. This point of tension seems 
interesting and needs further investigation, but it is not the only way how AI can enrich 
FM. Much like in software development, AI-driven tools might still supplement the formal 
development process without impeding the correctness of the results. From personal experi-
ence, we noticed increased publications applying AI techniques to FM in recent years, sug-
gesting that the FM field also follows the overall trend.

To substantiate this and to obtain an overview of which FM subdomains already utilize 
AI, we performed this systematic mapping study (SMS) (Petersen et al. 2015). The primary 
goal is to observe the development of AI applications quantitatively to the field of FM.

In this work, we report on our journey and the results of our SMS, accessing the quantita-
tive nature of the topic of AI applications in the FM domain. This represents a typical goal 
for this kind of study, as pointed out by Kitchenham et al. (2010). Mainly, we are interested 
in which FM domains are targeted by AI improvement already, which AI or ML applica-
tions have been investigated in the literature so far, where potential research gaps exist, and 
whether there appears to be consensus within the FM domains of which AI techniques seem 
most beneficial. A challenge in this assessment is the wide variety of topics on both sides. 
AI and FM are huge topics, and their potential overlap may be considerable. This study aims 
to be the first assessment of the general research landscape, i.e., we assume a mainly quan-
titative lens on the topic. Consequently, we highlight areas that received more attention in 
the literature, as well as those that received less attention. However, we refrain from doing 
a qualitative assessment, e.g., a systematic review of the literature. Our goal is to gain an 
initial overview of the field’s landscape.

While our search process resulted in a data set of 457 highly relevant publications cover-
ing more than 50 years of research applying AI to FM, we investigated only articles from the 
last five years in more detail. This period is chosen as it corresponds to a peak in the number 
of publications as indicated by previously mentioned studies and also allows us to focus on 
the most recent developments. Consequently, we have 191 primary studies, two of which 
are pure data set presentations. We analyzed the remaining 189 studies to determine which 
AI techniques were found to be applicable in which FM areas. Further, we derive research 
suggestions from our insights by pointing out research gaps that might further mature the 
field. Both the data set of the last five years and the complete data set of 457 publications 
are made publicly available to interested researchers at ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​h​h​u​-​s​t​u​p​s​/​a​i​4​f​
m​-​s​t​u​d​i​e​s​​​​​.​​
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The rest of this mapping study is structured as follows: Section 2 introduces the relevant 
subdomains of FM and AI. It will also provide an overview of our understanding of AI. 
We present our leading research questions in Section 3 and detail our search and selection 
process in Section 4. Section 5 presents the results of the search while Section 6 engages 
in a deeper discussion about these results. In Section 7, we discuss potential threats to the 
validity of our conducted systematic mapping study. Section 8 presents related studies we 
found during our research and compares them against our efforts. Finally, we conclude in 
Section 9.

2  Background

2.1  Systematic Mapping Studies

Systematic mapping studies (SMS), as proposed by Kitchenham et al. (2007), aim to assess 
the quantitative nature of a research field. Here, the goal is to give an overview of the avail-
able research. The counterpart to an SMS would be a systematic literature review where the 
main goal is to assess the quality of contributions.

SMS are typically performed using a multi-step approach. First, the field of interest is 
selected. Then, research questions are formulated, and inclusion criteria (IC) and exclusion 
criteria (EC) are defined. IC and EC serve as filters over the collected primary studies to 
help select relevant results.

After that, the search query is crafted. The goal is to apply the search query to the sci-
entific meta-search engines to retrieve a good corpus of primary studies that answer the 
research questions. With the retrieved corpus, the IC and EC are applied. If indicated, snow-
balling is done, usually until a stable closure of the corpus is reached. With a corpus con-
structed, the aim is to answer the research questions.

2.2  Formal Methods

Formal methods (FM) describe a mathematically rigorous approach to design and assess 
software as well as hardware systems, and are concerned with analysis, validation, and veri-
fication at any part of the respective system’s life cycle (Woodcock et al. 2009; Clarke and 
Wing 1996). Employing FM allows to formulate precise statements of desired functionality 
or requirements in form of a formal model (or formal specification) while not constraining 
the possible implementation thereof. The formal model is represented in a mathematically 
approachable form which lends itself to reasoning and hence allows rigorous analysis of 
critical properties such as correctness, safety, soundness, or well-definedness. The following 
section overviews FM’s creation and this work’s most relevant reasoning methods.

Model Checking  Model checking (Baier and Katoen 2008; Clarke et al. 2018) explores a 
program’s or system’s state space. The state space sets all possible value constellations that 
the program can achieve. In its most basic form, model checking aims to explore all reach-
able states and check if they are faulty, i.e., violate any specified properties. If this is the 
case, a counterexample is found. Otherwise, the system works correctly, as no faulty states 
are reachable.
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There are different types of model checking, besides classical, explicit state model check-
ing. Noteworthy for this study are linear temporal logic (LTL) model checking, symbolic 
model checking, and statistical model checking. While explicitly visiting states, LTL model 
checking focuses on temporal properties encoded in LTL formulas, which are checked 
against execution traces of the state space. Symbolic model checking abstracts the state 
space and makes a symbolic evaluation of a complex expression; thus, it shrinks the overall 
state space for the price of precision. With enough abstraction, it can handle even infinite 
state spaces for the price of precision. Statistical model checking investigates state spaces 
created by assigning probabilities on transitions between states and provide probabilistic 
guarantees.

Theorem Proving  A core application of theorem proving (TP) is to evaluate statements 
about a formal model’s internal consistency and behavioral integrity. When talking about 
theorem proving, we usually assume some formal representation of the problem for which 
proofs are formulated and discharged. Discharging proofs can either be done by a fully auto-
matic theorem prover (ATP) (Gallier 2015) that finds a solution on its own, or an interactive 
theorem prover (ITP) (Bertot and Castéran 2013) that requires human input for individual 
proof steps and transformations. ITPs provide a user interface to keep track of progress, 
sub-goals, and available properties.

SAT/SMT Solving  The Boolean satisfiability problem (SAT)  (Biere et  al. 2015) refers to 
finding the right model for a Boolean formula to satisfy the formula. Historically, SAT was 
the first problem found to be NP-complete and has since drawn a broad research interest.

Satisfiability modulo theories (SMT)  (Barrett and Tinelli 2018) is a more generalized 
form of the SAT, which enriches the problem setting with various theories such as arithme-
tic, data structures, or set theory.

In the context of FM, SAT and SMT solving find applications in theorem proving (Brown 
2013), bounded model checking (Shtrichman 2000), equivalence checking (Goldberg et al. 
2001) or test generation (Zeng et al. 2005).

Synthesis  Under the term of synthesis, we group all attempts automatically or semi-auto-
matically create (parts of) formal models during the formal development process, such as 
the generation of models from natural language specification or vice versa. We further group 
the idea of automated model repair under this aspect, where, for a model with some viola-
tion, a fix is synthesized that rectifies the violation.

Other Categories  In the scope of this mapping study, we may encounter FM approaches 
and techniques that do not belong to any previous group. We will group these as other FM 
techniques. For instance, this includes meta-approaches such as selecting the right verifica-
tion algorithm, general program analysis, or termination analysis.

2.3  Artificial Intelligence

Artificial Intelligence (AI) is a catch-all phrase for various techniques and approaches that 
aim to imitate seemingly intelligent behavior. Simmons and Chappell (1988) define the term 
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as “[...] behavior of a machine which, if a human behaves in the same way, is considered 
intelligent”. They further emphasize the problem with the term itself, pointing out the dif-
ficulty of precisely defining what it means for a human to be intelligent. Nevertheless, AI is 
regularly used in daily life and the research community.

An important AI paradigm is machine learning (ML). The goal of ML algorithms is to 
observe and extract patterns within the data which can then be applied to the automation of 
a given task (Mitchell 1997). Instead of manually defining a set of rules for pattern recogni-
tion, machine learning algorithms uncover such rules automatically, a process referred to 
as learning. ML algorithms experience the given data in some manner and improve their 
exhibited performance to solve the task at hand gradually, the more experience they gather.

Below, we list and briefly explain AI and ML algorithms which are most relevant to this 
mapping study. For the reader familiar with AI, the selection seems mostly ML rather than 
AI. Indeed, we aimed to find applications of AI to FM, and the search query we will discuss 
later was prepared accordingly. However, to bring a result up front, most contributions use 
some form of ML.

Neural Networks and Deep Learning  Neural networks (NNs) (Rosenblatt 1962) build the 
foundation of what is known today as the area of deep learning (Goodfellow et al. 2016). 
A deep neural network (DNN) consists of a layer of inputs, a layer of outputs, and one or 
more hidden layers. Inputs are forwarded layer-wise and combined first by a weighted sum 
and a follow-up non-linear transformation. The clue is the training of a DNN, which starts 
the network with randomly initialized weights for the summations above, but adjusts them 
gradually in the learning process to converge to the desired function.

A considerable benefit of neural networks lies in their variety. Different approaches and 
architectures exist for deep learning in specialized environments with differently shaped 
data. The most important for this work are convolutional neural networks (CNNs) (LeCun 
et al. 2010) for images, recurrent neural networks (RNNs) (Jordan 1997) for sequential data, 
the transformer architecture (Vaswani et al. 2017) for language processing, and graph neural 
networks (GNNs) (Zhou et al. 2020). Today, deep learning is considered one of the most 
popular topics in ML (Sarker 2021).

Reinforcement Learning  Reinforcement learning (RL) (Kaelbling et al. 1996) is foremost a 
machine learning paradigm. Given an environment, a set of actions that change the environ-
ment, and a reward function that quantifies a given environmental state, the RL agent aims 
to learn a policy over their available actions that maximizes the cumulative reward over 
time. Initially, the agent does not know the environment or the task it is supposed to solve, 
but can only learn from feedback through the received rewards (Sutton and Barto 2018).

Natural Language Processing  Natural language processing (NLP)  (Chowdhary 2020) 
describes the research area of, as the name suggests, processing and evaluating texts of 
human language. This includes information extraction, language translation tasks, text clas-
sification, semantic analysis, and natural language generation and dialogue systems (Chow-
dhary 2020; Khurana et al. 2023).
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One of the most recent developments is large language models (LLMs)  (Chang et al. 
2024) which gained significant popularity and even worldwide attention with the release of 
ChatGPT (Wu et al. 2023). For the sake of compactness, we count contributions with LLMs 
towards NLP.

Genetic/evolutionary Algorithms  Genetic and evolutionary algorithms (EAs)  (Mitchell 
1998) describe a family of optimization algorithms rooted in evolution. An EA starts with a 
randomly assembled population of candidates for a given optimization problem and a fitness 
function. The fitness function measures how well a candidate solves the problem. Parent 
candidates are chosen via a random selection process that is nonetheless influenced by each 
individual’s fitness. These are adapted using mutation or recombination to produce a new 
child population. Repeating this process converges the individuals toward suitable solutions 
for the problem at hand.

Statistical Approaches  In contrast to the abovementioned techniques, we consider tech-
niques from more classical, statistical ML. These differ from the above methods as they do 
not depend on deep learning and are typically faster to compute in comparison. This does, 
however, not imply that they are not competitive. The considered statistical approaches 
include support vector machines (SVM)  (Kecman 2005), logistic and linear regression 
(LR) (Montgomery et al. 2021), k nearest neighbors (KNN) (Cover and Hart 1967), deci-
sion trees (DT) (Breiman et al. 1984) and random forests (RF) (Breiman 2001), or Bayesian 
inference approaches (Tipping 2004).

2.4  Contribution Classification

We classified the contributions into various types. The aim is to show the different approaches 
to target the same research area. The different types of contributions are distinguished as 
follows:

Tool  Contributions that provide practical means to solve an FM problem, for instance, in the 
form of a binary or source code release.

Tool Enhancement  Contributions that aim to enhance or complement an existing tool.

Approach  Contributions that propose an overall style or idea to overcome a problem. An 
approach is a generalized concept that details overcoming and resolving a problem. The 
approach remains more theoretical and does not involve tested or empirically proven steps.

Methodology  Contributions that realize and test an approach.

Framework  Contributions that propose a conceptual structure intended to support or guide 
the construction or expansion of a solution for an actual problem.

Case Study  Contributions apply an approach, a methodology, or a framework to a real-
world problem.

1 3
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Benchmark  Contributions that test an existing tool or methodology.

Idea  Contributions that focus on a brief overview or discussion of an idea to solve a prob-
lem. Compared to an approach, it does not lay out larger theories but serves as a quick pitch.

Training Data  An openly accessible data set that claims to be reusable outside of the replica-
tion of the contribution it was originally used in.

2.5  Publication Venue Classification

We further divide the publication venues into the following categories to better assess the 
respective maturity of the contributions:

Workshop and Short Papers  We grouped contributions in this category if they are (a) rather 
short (4 pages or less) or (b) if the venue they appeared in has workshop character, i.e., is 
classified as a workshop, calls itself a workshop, or focuses on the in-person presentation of 
results but requires submission of an extended abstract.

Conference Proceedings  Here, we group all the contributions that are published in the pro-
ceedings of a conference. From a full conference paper, we expect a more in-depth expla-
nation of the result than compared to a workshop or short paper, ultimately resulting in an 
overall more sizable contribution.

Journal Articles  Here, we group all contributions published as part of a journal volume. As 
journal articles tend to consist of more pages and go through a more thorough reviewing 
process, the results of journal articles are expected to have a broader scientific basis for their 
claims.

Book Chapters  As the name suggests, these contributions are part of a larger collection 
of articles bundled in one book. As the production of scientific books takes a significant 
amount of time, the reader expects a high quality of the provided scientific contribution that 
is considered, by that time, state of the art.

3  Research Questions

To get an overview of the field, we divide our research questions (RQs) into two main areas. 
First, RQs 1.1 to 1.3 focus on the overall demographics of the research field. With these 
questions, we want a basic quantitative overview to explore the field’s maturity. Second, 
RQs 2.1 to 2.4 focus on the content of the contributions and aim to map out the field, high-
lighting potential gaps and showcasing quantitative interest in respective subtopics. Our 
research questions are defined as follows. 

RQ 1:	 Demographics of the research area 
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1.1	What is the research publication timeline, and is there a trend? Rationale: We are 
interested in knowing whether the field experiences a growth or decline in interest, 
or if no trends are detectable at all.

1.2	Which publication venues are most frequent in the field? Rationale: We want to 
explore the field’s maturity, whereby books, book chapters, and journal articles 
indicate more mature results.

1.3	What are the main contributions provided by the primary studies? Rationale: We 
want to learn where the community focuses its efforts, e.g., more on the theoretical 
groundwork or practical application.

 

RQ 2:	 Content type of contributions 

2.1	Which AI techniques and tools were used? Are there any prevalent choices within 
the community? Rationale: We want to know if there is an indication that some AI 
techniques are more relevant (or at least popular) than others.

2.2	What are the application areas of AI in FM? Are there any commonly found FM 
techniques or tools? Rationale: We are curious about which FM techniques cur-
rently get the most attention or if there are dark spots in the literature.

2.3	What is the distribution of AI types in the different FM application areas? Ratio-
nale: Here we want to overlap the results of RQs 2.1 and 2.2..

2.4	Are the studies’ employed data sets publicly available? Rationale: Especially in 
machine learning, having the source material available and accessible for experi-
ments benefits the scientific community.

4  Search Strategy

In the following, we explain our approach for aggregating the contributions for this map-
ping study which we have visualized in Fig. 1. For this, we follow the suggested multi-
step approach by Petersen et al. (2015), which consists of an initial search in meta-search 
engines, followed by a snowballing process. As our selection of topics will show, it provided 
a challenging environment with overlapping search terms and related research areas. We 
tweaked our search strategy to address these challenges and avoid a result set of tens of 
thousands of potential studies.

A vital role was played by the IC & EC, which we applied twice. After the initial search, 
the first application was made to remove unrelated contributions that would introduce over-
heating into the snowballing. The second time was again after the snowballing to filter out 
wrongly selected contributions.

4.1  Employed Search Query

Finding a search query that would return a manageable amount of relevant contributions 
proved difficult. The main problem was harnessing the bandwidth of terms used in the AI 
and FM domains. Hereby, the difficulty lies in the often ambiguous use of terms like “formal 
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method”, which can be used in the sense of formal methods as outlined in Section 2.2 or as 
a term to describe an only somewhat formal approach to a problem. The situation is even 
more difficult for AI, as AI and ML are often used interchangeably. In contrast, essential 
publications may only use the specific name of an applied technique without naming the 
fields of AI or ML.

Another issue was the cross-pollution of our results with studies from the related research 
field of verification for AI and ML systems. This is essentially the other direction in which 
FM is applied to AI. This field is also a highly relevant topic and shares the majority of 
potential search key phrases, further inflating our results tally.

As a reaction, we experimented with different approaches and probed the quantity and 
quality of their respective results to find a suitable search query. Highly abstract queries 
such as

“formal methods & artificial intelligence”

produce multiple thousands of results which we deemed impossible to process in a rea-
sonable amount of time and which contained many studies outside of our intended scope. 
From probing some results as well as personal experience, we also knew that many relevant 
publications tend not to use these high-level terms, but use nomenclature specific to their 
sub-community. For instance, research regarding the formal B method tends to simply use 
“B method” instead of “formal method” as keyword. On the other hand, we noticed how 

Fig. 1  Visualization of the search process
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relevant publications also seemed to prefer to use the concrete names of the applied AI 
algorithms, rather than stating they used AI in a superficial manner. Therefore, we were con-
cerned that a search query that was too abstract would not be able to penetrate the relevant 
fields well enough.

As a result, we settled on a more complex query containing the precise terminology 
of specific algorithms. For this, we distinguish between two sets of terms, the AI-terms 
(Fig. 2b) and the FM-terms (Fig. 2a). Both correspond to a disjunction of a set of selected 

Fig. 2  Construction of the used search query. The query consists of a disjunction of search terms for 
AI and FM, respectively. The unified query (c) enforces that at least one keyword from each subfield is 
present in the title, the abstract, and the keywords of a respective publication. An asterisk (*) indicates a 
wildcard character that can match any sub-word. For instance, “solv*” matches with solver but also with 
solving
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terms from the respective field. The terms themselves were selected based on previous expe-
riences in the field following the PICO (Population Intervention Comparision Outcome) 
approach as suggested by Kitchenham et al. (2007).

Here Population may refer to a specific field of FM or AI, such as formal model(ing) or 
deep learn(ing). Intervention may refer to specific techniques or methodologies of FM or 
AI, such as SAT or SVM. Comparision was not applicable as we focused on a direct connec-
tion, while Outcomes shall contain at least strongly correlated AI and FM terms.

The final search query (Fig. 2c) now uses both term aggregates to produce a corpus of 
primary studies in a strict and targeted manner. We only looked for studies that use at least 
one AI term and at least one FM term in their titles, abstracts, and keywords. The reasoning 
is to get a good initial penetration of all key fields, while relevant but missed entries are 
found in the later search stages via snowballing.

4.2  Database Search and Processing

The search was conducted in the last quarter of 2023. We used four meta-search engines1 as 
suggested by Petersen et al. (2015): IEEE2, Scopus 3, ACM4 and Web of Science (WoS)5. 
We used the Guide to Computing Literature for ACM. Furthermore, as the ACM search 
engine limits the number of wildcards, we split the search terms into subsets, performed the 
subsearches, and merged them into the required superset. For WoS, results seemed to differ 
depending on which institution had access. Therefore, we decided to take the more exten-
sive result set. As far as the search engines allowed, we applied the EC, such as the area 
of publishing and the publication language. The result size after this step was 1492 entries. 
This number and all later numbers are without duplicates.

4.3  Inclusion and Exclusion Criteria

For the 1492 resulting contributions, we made two observations. First, the amount was too 
large for a snowballing procedure to be feasible. Second, while briefly looking at the corpus, 
we discovered many contributions that should not have been selected, i.e., contributions that 
included the term “specification” but meant it in a purely requirement engineering-minded 
context. Therefore, we decided to apply our IC and EC prematurely to the corpus as far 
as they applied, i.e., to the title and abstract. For this, we read the titles of our studies. If 
we could not decide whether the contributions should be included, we also conducted an 
abstract review, and very rarely, the contributions themselves were skimmed.

To achieve this for such a large corpus, the first and second authors passed over all entries 
individually and decided whether they should be included or excluded. In agreement cases, 
the respective studies were kept or discarded. For disagreement, both authors discussed each 
instance together to reach an agreement. The disagreement could not be settled this way in 

1 Springer’s engine was not used because by the time of the search it performed extremely poor in dealing 
with large search queries, large result sets and filtering.

2 https://ieeexplore.ieee.org/Xplore/home.jsp
3 ​h​t​t​p​s​:​​/​/​w​w​w​​.​s​c​o​p​u​​s​.​c​o​​m​/​s​e​a​​r​c​h​/​f​​o​r​m​.​u​r​​i​?​d​i​​s​p​l​a​y​=​b​a​s​i​c​#​b​a​s​i​c
4 https://dl.acm.org/
5 https://www.webofknowledge.com/
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two cases, and the third author was consulted as a tiebreaker. This procedure reduced the 
number of primary studies to 89, but took time.

The applied IC and EC are detailed in the following. 

IC 1:	 The contribution focuses on applying techniques from the domain of AI to the 
domain of FM.

IC 2:	 The contribution is in English.
IC 3:	 The contribution has at least two pages of content (excluding references).
IC 4:	 If the contribution was submitted in different versions, we took longer. For 

instance, the journal version was taken for a conference contribution and subsequently 
published as an extended version. The journal version was taken for a journal-first sub-
mission and an invited version.

IC 5:	 The contribution is a data set used for ML.

 

EC 1:	 The contribution appears not to have been reviewed in any form.
EC 2:	 The contribution is not available.
EC 3:	 The contribution is not posed in computer science.
EC 4:	 The contribution is unclear (even after reviewing the full text).
EC 5:	 The contribution solely focuses on solving a mathematical optimization problem.
EC 6:	 (During initial skim) The contribution focuses only on common or general con-

straint-solving techniques (without specializing in SMT/SAT)
EC 7:	 (During initial skim) The contribution focuses on portfolios for SAT solvers with-

out explicitly mentioning any AI/ML technology
EC 8:	 (During initial skim) The contribution is not a primary study, i.e., it is another 

mapping study, survey, etc.
EC 9:	 (Snowballing) The contribution is concerned with 2Sat, which is solvable in poly-

nomial time.
EC 10:	 (Snowballing) If the contribution proposes a way to synthesize some automaton 

(e.g., a Markov process), then the produced result must explicitly be used within the 
context of FM. This means that the synthesized automaton and its analysis with FM’s 
help are described within the contribution.

For the EC, some additional criteria were added in later steps in response to contributions 
encountered that were of low value for this study. For instance, EC 6 was added because 
many contributions focused on constraint solving, thus being closer to mathematics. EC 7 
was added in response to a large influx of SAT contributions that mentioned learning but 
focused on remembering already-seen clauses. EC 8 is a rule that was introduced to not 
have secondary studies in the result set but to use those studies to ensure that even with a 
restrictive query, we cover as much of the field as possible. EC 10 was added in the fifth 
snowballing round, where we got many contributions that synthesized automatons, but no 
further analysis was mentioned. While an automaton may represent a formal model, analy-
sis of larger automatons is very human-unfriendly compared to mathematical formulas or 
formal models written in a modeling language. Therefore, we expected the authors to sub-
ject the generated automaton to some validation, e.g., model checking or SAT/SMT solv-
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ing, to enable reasoning about the validity of the generated automaton. EC 9 was added as 
we found 2Sat as a problem irrelevant for this study, as solutions are already achievable in 
polynomial time.

4.4  Snowballing

For the 89 entries, we conducted an extensive snowballing procedure (Wohlin 2014) where 
we conducted both forward and backward snowballing. Five iterations were needed until we 
eventually reached closure. This extensive snowballing approach was meant to complement 
the strict search query and to uncover relevant yet initially missed studies or even subfields 
of research. Therefore, snowballing served as a means to alleviate these threats to validity.

For the backward snowballing, we consulted the references of a given contribution and 
selected promising titles or publications that were explicitly highlighted in the respective 
related work sections. If a publication appeared promising, but the contribution was unclear 
from its title alone, the abstract was also consulted. For the forward snowballing, we used 
Google Scholar and applied the same title and abstract procedure. This brought the number 
of contributions up to 540. After concluding the snowballing, we applied the IC and EC a 
second time, reducing the number of contributions to 457.

4.5  Filtering by Years

While the 457 results are all highly relevant, the number of contributions was too large to 
conduct a deeper investigation necessary to answer all the RQs that require a more in-depth 
consideration of the contributions, i.e., RQs 1.2 and 1.3 and RQ 2. Therefore, we restricted 
the result tally to studies published between 2019 and 2023. While this shifts our focus on 
the most recent developments in the field, it aligns with the peak in this period we discussed 
back in Section 1. By only considering studies from 2019 to 2023, we reduced the corpus to 
191 primary studies. Of these, 2 studies purely provide data sets for future AI applications 
in the field of FM without showcasing any form of direct AI application themselves (IC 5). 
That leaves us with a final tally of 189 primary studies to conduct this mapping study.

5  Results

In the following section, we will discuss the results. For this, we will answer the individual 
research questions and aim to make a cross-analysis between individual research questions, 
thus extracting as much information as possible from the existing dataset. We refer to Sec-
tion 6 for a discussion of the observed results. An overview of the results matched to their 
respective application domain in FM can be found in Table 1.

5.1  RQ 1: Demographics of the Research Area

5.1.1   RQ 1.1: What is the Research Publication Timeline, and is there a Trend?

The whole corpus of 457 primary studies we found was published in the years 1972–2023. 
Figure 3 displays the histogram of publications per year and highlights that AI applications 
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on FM appear to mirror the trend of general AI applications mentioned in Section 1. That is, 
we can observe a steadily growing interest in the field, especially since around 2005.

Focusing on the last five years only (recall Section 4.5), there still appears to be growing 
interest overall, while not each year surpasses the respective previous one. We have 32 con-
tributions for 2019, 48 for 2020, 39 for 2021, 51 for 2022, and 21 for 2023. Noteworthy are 
two observations: First, for the last five years alone, there has been no strict upward trend 
in the number of publications, We can observe a decline from 2020 to 2021. Second, there 
were few publications in 2023. We explain this because we searched in the last quarter of 
2023, when not all possible studies were published. Given that we do not yet have complete 
data for 2023, it is impossible to forecast whether the overall trend will continue to grow or 
if the current peak from 2022 marks a global maximum.

5.1.2  RQ 1.2: Which Publication Venues are Most Frequent in the Field?

Figure 4 displays the publications over the years, divided by publication venues. The major-
ity of studies were published as conference papers while journal papers seem to be on the 
decline again since their peak in 2018. Within our five-year observation range, 124 contribu-
tions were conference papers, followed by 37 journal articles 29 workshop or short papers, 
and only one (1) book chapter with no full books.

Figure 5 shows the publication venues sorted by the main targeted area. For this, we 
skimmed through the titles of the conferences and sorted them into six different areas. We 
can see the majority of publications (94) happened in AI-focused venues, 49 contributions 
were published in software engineering venues, 40 in FM venues, 19 in venues concerned 
with automated reasoning specifically, 8 in mathematics-focused venues, and 20 in other, 

Fig. 4  Distribution of publication 
venues by submission type
 

Fig. 3  Distribution of contributions over years 
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less topical venues. Note that some venues have more than one area of focus, e.g., we 
counted publications from the conference on artificial intelligence and theorem proving 
(AITP) for both AI and FM.

5.1.3   RQ 1.3: What are the Main Contributions Provided by the Primary Studies?

Following the definitions of contribution types from Section 2.4, we see the division of the 
studies into these contribution types in Fig. 6a. We can see that the majority of contributions 
were methodologies (118), i.e., practical application of AI to FM, followed by studies with 
multiple types of contributions (29). Third place was tool contributions (14), followed by 
improvements for tools (10), followed by frameworks (6), training data (5), case studies (2), 
benchmarks (2), approaches (2), and finally, one (1) idea contribution. Studies with multiple 

Fig. 6  Distribution of contribution types of collected primary studies.

 

Fig. 5  Distribution of publication venues by area 
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contribution types most commonly provide a methodology (20/29), training data (14/29), or 
a tool (11/29). See Fig. 6b for a complete breakdown.

5.1.4  Intersecting RQs 1.2 and 1.3

We can gain some additional insights by investigating the individual results in context with 
each other. Figure 7 shows how the publication venues and the contribution types correlate. 
We can see that for any contribution type, a heavy focus lies on conference papers. Interest-
ingly, we can see that case studies are only conducted within the scope of journal papers and 
book chapters. Furthermore, workshops and short papers are primarily used to introduce 
new methodologies, which seem unexpected, as usually, due to limited space, authors aim 
to restrict themselves to outlining an approach or an idea.

5.2  RQ 2: Content type of Contributions

5.2.1  RQ 2.1: Which AI Techniques and Tools Were Used?

In Fig. 8a, we can see that the majority of contributions use NN (70), followed by RL (32). 
27 contributions use multiple techniques, while 16 use NLP methods and 14 use EA. A total 
of 8 studies presented custom algorithms. The rest of the contributions are divided between 
utilizing decision trees (7), clustering (3), Bayesian inference (3), KNN (2), random forests 
(2), data mining approaches (2), automaton learning (2), and SVM (1).

Studies that employed multiple algorithms mostly did so in a contrasting manner, i.e., 
they trained on numerous models to see which one performed best for their respective appli-
cations. A detailed view of the category of multiple algorithms is given in Fig. 8b. Here, we 
can see that if multiple techniques are used, they mainly rely on NN (13/31), random for-
est (12/31), and some variant of tree learners (12/31). Interestingly, SVM (6/31) and KNN 
(5/31) applications are more predominant in a setting with multiple algorithms compared to 
being the sole focus of a study. We explain this by KNN or SVM, which are simple algo-

Fig. 7  Contribution type and publication 
venues. Studies with multiple contribution 
types are considered individually for each 
distinct contribution type
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rithms that authors can train quickly. Further, they need less fine-tuning than NNs, making 
them a baseline comparison approach.

Intersecting RQs 2.1 and 1.3  Figure 9 shows the intersection of RQs 2.1 and 1.3. The wide 
focus on methodologies was already assessed with Fig. 6a. In Fig. 9, we can see that the 
amount of NN contributions remained focused on methodologies (37/189) or as part of a 
broader application of techniques (13/189) or a tool (8/189).

Intersecting RQs 2.1 and 1.1  Figure 10 show the intersection of RQs 2.1 and 1.1. Here, we 
can see that the amount of NN contributions remained steady over the years, similar to the 
amount of RL contributions. Noteworthy is that there is no notable decline in any technique 
over the observed period. The alternating nature of the overall amount of contributions was 
already found back in Section 5.1.

Fig. 9  Distribution of contribution type 
and AI techniques
 

Fig. 8  Overview of AI contributions. Underrepresented AI types are aggregated as Other with a number 
in parentheses indicating how many sub-techniques were included
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5.2.2  RQ 2.2: What are the Application Areas of AI in FM?

Figure 11a gives an overview of the FM techniques in the contributions. TP is leading by 
a large margin with 85 entries. SAT is next with 45 entries. Synthesis approaches come in 
third place with 19 entries, followed by model checking (18) and SMT solving (13). The 
remaining entries fall into algorithm selection, program analysis, and termination analysis.

In Fig. 11b, we can see a more detailed investigation of the topic of theorem proving. 
Here, we can see that premise, axiom, and clause selection received the most attention 
(27/85), followed by proof search (21/85) and proof synthesis (18/85). After that, a signifi-
cant gap exists in a row of smaller topics.

In Fig. 11c, we see the division of SAT approaches into their application areas. Overall, 
37/45 studies focused on typical SAT solving, 2 on QBFs, and 6 on 3SAT. Out of 45 articles, 
9 focused on solving, 8 on finding MaxSAT, 7 on solver selection, 6 on instance selection, 5 
aimed to predict solvability, and 4 contributions aimed at analyzing the performance of solv-
ers. A small group of contributions aimed to do multiple things, generated SAT problems, 
and developed branching heuristics aimed at parameter selection or dependency analysis.

Figure 11d takes a closer look at the topic of synthesis. 8/19 contributions aimed to syn-
thesize a model or specification, 4/19 aimed to learn a loop invariant, 3/19 aimed to repair 
models, and 3/19 targeted general invariant learning. One contribution targets the genera-
tion of annotations for the verification of JML code.

Detailed View on Theorem Proving  A closer inspection is warranted, as TP makes up the 
most significant portion of contributions. For the studies concerned with TP, we distin-
guished between higher-order logic (47/85) and first-order logic (38/85). We further classi-
fied them by their automation levels: fully automatic TP (74/85), interactive TP (10/85), and 
contributions employing both (1/85). This granularity gives rise to additional observations 
about the problem structure. Figure 12a shows that the majority of contributions (26/85) 
were made in the area of premise selection for automatic theorem proving, followed by 
proof search (21/85) and proof synthesis (18/85).

Figure 12b shows that of the 38 first-order entries, there is a tight focus on premise 
selection (20/38), proof search (8/38), and proof synthesis (7/38). Although not as drastic, 
a similar spread can be observed for the higher-order contributions. Premise selection has 
7/47 entries, proof search 13/47, and proof synthesis 11/47 entries. 4/47 entries focused on 
tactics prediction.

Fig. 10  Distribution of year and AI 
techniques
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Fig. 11  Quantity of FM approaches with a detailed view of the most relevant contribution types
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Intersecting RQ 2.2 with RQs 1.1 and 1.3  Figure 13a shows the different types of FM over 
the years. We can see no particular concentration on one year, similar to Fig. 10, However, 
there may be some trends. SAT had two solid years in 2020 and 2022, while TP had a slow 
decline; contributions to model checking and synthesis increased. Nonetheless, given the 
small time frame of five years, any actual trends might be invisible to us.

Fig. 13  Quantity of FM approaches and comparison with time frame and contribution type

 

Fig. 12  Theorem proving in detail
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In Fig. 13b, we showcase the distribution of FM types over contribution types. While 
all FM techniques have found AI applications in the last five years, we now see a frag-
mented distribution of specific contribution types per discipline. In general, for TP, the dif-
ferent types of available contributions are the broadest, while for model checking, we are 
restricted to methodologies and one tool. The notable absence of tool improvements outside 
of TP might indicate developments in the respective subfields. There might be no devel-
opments that deem an extension of tools necessary, or no relevant tools can be extended. 
However, the underlying reasons for this observation are out of the scope of this mapping 
study. For the synthesis of formal models, we see a slightly better situation regarding a 
broader landscape of contribution types. Overall, however, the absence of case studies and 
benchmarks deserves attention and might highlight that the field is still in the early stages 
of development.

5.2.3  RQ 2.3: What is the Distribution of AI types in the Different FM Application 
Areas?

In Fig. 14, we see several overlays of FM applications with FM techniques at different 
granularities. Figure 14a is the most abstract. Here, we can see that the bulk of the theorem-
proving techniques apply NNs (38), RL (16), and NLP (12). SAT solvers mainly utilize NNs 
(24). Model checking frequently uses EA (6) and NN (5). The area of synthesis is mainly 
divided between NNs (5), RL (4), and NLP (6) as well.

Taking a closer look at TP in Fig. 14b, we can see that NN is primarily used for the 
premise, axiom, and clause selection (17) proof search (7) and proof synthesis (10). RL 
techniques are often used for proof search as well (8). With three exceptions for heuristic 
selection, premise selection, or proof search, EA is absent from the area of theorem proving.

Focusing on SAT in Fig. 14c, we can see that NN is dominant in most subcategories, 
except for portfolio selection and branching heuristics. EA has higher relevance for MaxSat.

Finally, taking a closer look at the synthesis topic in Fig. 14d, we can see that NLP is 
relevant for the model generation and the generation of verification annotations. NN and RL 
are mainly used for (loop) invariant learning. For the repair of formal models, the contribu-
tions consider multiple techniques.

5.2.4  RQ 2.4: Are the Studies’ Employed Data Sets Publicly Available?

Lastly, we investigated the data sets that were found. Here, multiple observations took place.
First, we searched for high-quality data sets enabling other researchers to conduct their 

research efficiently. As pointed out earlier, we found 21 data sets. In Fig. 15, we see the 
respective scopes of the data sets. Of the 21 data sets, 15 focused on TP, while 3 aimed at 
synthesis, 1 at SAT, 1 at SMT, and 1 at MC.

However, we were also interested in datasets that were not novel contributions but were 
found to be reused in other studies. For this, we skimmed all our studies for dataset men-
tions. As it turns out, of the 189 articles, 124 used external data sets. The 65 remaining 
studies generate random samples or do not mention their data source. Noteworthy is that 
when random data is used, the generated data is seldom shared, hindering the reproduction 
of results.
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The datasets found for the 124 contributions are largely heterogeneous. This means 
that most studies utilized different datasets. However, we could find some data reposi-
tories that had multiple usages. The Mizar Library6 (and associated libraries like, e.g., 
MPTP (Urban 2003)) saw 23 usages, TPTP Problem Library7 has 7 mentions, The ProB 

6 https://mizar.uwb.edu.pl/library/
7 https://tptp.org/TPTP/

Fig. 14  The quantity of FM approaches and comparison with a time frame and contribution type. Studies 
that applied multiple AI techniques are considered individually for each distinct AI technique. Under-
represented techniques are aggregated as Other with a number in parentheses indicating how many sub-
techniques were included
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machine library8 got 5 mentions, HoL9 5, SMTLib10 5, SATComp11 5, SATLib12 4, 
CoqGym13 4. The full list is available in the repository linked in Section 1.

6  Discussion

In the following, we will evaluate the results and conclude by answering our research ques-
tions. Further, we will outline lessons learned to provide actionable insights for conducting 
future studies in the area.

6.1  RQ 1: Demographics of the Research Area

In RQs 1.1 to 1.3, we investigated the publication timeline for possible trends, and assessed 
the qualitative nature of the studies, i.e., the maturity of the publication format as well as 
their level of postulated contribution, following our taxonomies as defined in Section 2.4. 
While we were able to analyze RQs 1.1 and 1.2 over the full corpus of 457 publications, 
we restricted ourselves to the processed corpus of 189 publications from the last five years 
for content assessment as outlined in Section 4.5. Consequently, RQ 1.3 is limited to these 
189 publications.

For RQ 1.1, we see a general growth in the research field. However, from the presented 
data points, it cannot be inferred alone whether this trend follows the overall trend of AI’s 
rise in popularity or is independent.

For RQ 1.2, we see a strong focus on conference papers, short papers, and workshops. 
Together with the singular book chapter, this indicates an emerging field, as there is a ten-
dency to rely on publication methods supporting short review cycles. This is further sup-
ported by the fact that the only book chapter was a case study. Furthermore, we see that the 

8 ​h​t​t​p​s​:​​​/​​/​p​r​o​​b​.​h​h​​u​.​​d​e​​​/​w​/​i​n​​​d​e​x​.​​​p​h​p​?​t​​​i​t​l​e​​=​D​o​w​n​l​o​a​d
9 https://isabelle.in.tum.de/library/

10 https://smt-lib.org
11 https://satcompetition.github.io
12 ​h​t​t​p​s​:​/​/​w​w​w​.​c​s​.​u​b​c​.​c​a​/​~​h​o​o​s​/​S​A​T​L​I​B​/​b​e​n​c​h​m​.​h​t​m​l
13 https://github.com/princeton-vl/CoqGym

Fig. 15  Overview of the distribution of data sets over FM 
domains
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AI side of things mainly drives the topic, and especially FM-based conferences publish less 
content about the application of AI in FM. This could indicate hesitance to adapt or a lack of 
AI maturity. Contrasting this with RQ 1.1, we assume that the research interest will at least 
not plummet in the foreseeable future, but might plateau for the time being.

For RQ 1.3, we can see that the bulk of the work lies within the area of methodolo-
gies. This could be due to the current paper requirements, which request a novel approach 
and some evaluation within the paper. Another reason might be AI’s applicative nature, 
which often allows it to serve as a support system to automate parts of the work. We also 
want to highlight the possibility that we primarily introduced methodology papers based on 
the nature of our search query, which focuses on the application of AI in the FM domain. 
However, due to rigorous snowballing, we are confident we correctly assessed the state of 
research in this field.

What is more interesting is what we do not see: many case studies and benchmarks. 
Recalling Fig. 7, we only see two publications providing case studies and two providing 
benchmarks. This may hint at a further gap in maturity, especially as these contribution 
types are primarily present in journal and book contributions. One would assume more such 
publications if a set of robust solutions for everyday problems were readily available so that 
researchers could compare their effectiveness against each other. It also highlights the need 
for proper and uniform benchmark sets within the community, which can be shared between 
different research groups.

6.2  RQ 2: Content type of Contributions

In RQ 2, we were interested in how the AI application is distributed in FM. For this, we 
posed RQs 2.1 to 2.4 to investigate which AI techniques find appreciation in the community, 
which FM areas are already subject to AI application, if certain AI techniques are predomi-
nantly used in specific FM fields, and whether there exist publicly available data sets that 
can be used in further research.

For RQ 2.1, we saw in Fig. 8 that most studies use NNs, followed by RL, and NLP 
and EAs are far behind. From a paradigmatic point of view, it makes sense to rank these 
four at the top, as they all attempt to solve different problem settings. NNs are a stand-
in for classification and regression tasks, RL is applied for learning behavioral policies, 
NLP processes texts resembling natural language or code by extension, and EAs excel 
in optimization problems. However, it is interesting to see NNs being so far ahead of 
the rest with 83 publications utilizing them. Especially, since they are not the only algo-
rithms suitable for classification and regression tasks, but competing algorithms such as 
KNN, SVM, or decision trees are, at least as solely applied AI techniques, vastly under-
represented. These algorithms, which we categorized as classical approaches in Section 
2.3, are, however, not forgotten, as we can see in publications that contrast multiple dif-
ferent AI algorithms (Fig. 8b). This focus on NNs when only one technique is used can 
have multiple underlying reasons. First, implementing, training, and fine-tuning NNs is 
time-consuming and might require resources needed to investigate further algorithms. 
Second, we have seen in Fig. 3 that the research area gained traction in the early 2010s. 
As this coincides with the advent of deep learning (Sejnowski 2018), this might suggest 
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the need for NNs to overcome the complexities the area of FM offers, and that more 
classical ML algorithms are unsuitable for most tasks. Third, the community might 
be biased towards using NNs from the start instead of applying more straightforward 
techniques first.

However, the prominence of more classical algorithms in the case of multiple AI tech-
niques shows that the community seems to be aware that other algorithms might be suit-
able for their problems as well. This is especially amplified by Fig. 9, showing that most 
frequently, methodologies rely on various techniques to solve problems.

Regarding maturity, Fig. 10 indicates no noteworthy increase in techniques besides NLP. 
For 2023, we established insufficient data points so that we may see a rise in NLP-based 
contributions, which would fit a more general advent of NLP-related contributions due to 
the rise of transformer architectures and LLMs.

For RQ 2.2, we have seen in Fig. 11a that TP and SAT are the predominant FM areas 
in which AI is applied, making up 68.8 % of all publications in our five-year corpus. We 
explain this by the fact that both areas are also of interest to non-FM communities. A 
detailed view of the authors’ origin domains would be necessary to verify this assumption. 
However, this is still beneficial for the FM community as a whole. For instance, Fig. 12a 
shows a strong focus on FM-relevant daily use cases. Figure 12b reveals much current work 
regarding first-order logic on the especially relevant FM topics of premise selection. While 
this trend is good, complex FM models rely on complicated data types and require sophis-
ticated reasoning.

Regarding SAT, we can take away from Fig. 11c that much focus lies directly on SAT 
solving. At the same time, other authors also attempt to predict satisfiability, i.e., whether a 
formula is SAT or UNSAT. The latter seems to contradict the rigorousness needed in FM, 
as the probabilistic nature of AI approaches lacks the certainty of the predicted satisfiability. 
This can be a product of cross-fertilization, as SAT is also relevant for non-FM communi-
ties. Here, a reasonable estimate about a formula’s SAT or UNSAT may be more appreciated 
than in the FM community.

Figure 11d shows that the interest in synthesis is low compared to other topics and pri-
marily focuses on model generation. Given the recent rise of generative AI approaches, we 
see room for promising research in this area.

A similar low interest seems to be in model checking. Figure 13b shows a relatively low 
number of contributions in that area. The direct comparison with the TP field is interesting, 
as MC also contributes very little to tool and tool contributions, hinting at less application-
focused research. Figure 13a shows a relatively consistent interest in recent years, while 
Fig. 13b emphasizes how little is done for current practitioners in terms of tool (improve-
ments), benchmarks, training data, and case studies.

For RQ 2.3, we saw in Fig. 14a that NNs are the undeniable favorite in almost all FM 
areas investigated. We already discussed why NNs might be more popular than other algo-
rithms suitable for the same problem tasks above for RQ 2.1. However, this again suggests 
that the FM community mainly focuses on solving classification or regression problems 
rather than execution policies (RL) or direct processing of texts or code (NLP). The slight 
exception we see is in model checking, which focuses mainly on EAs, which interpret model 
checking as a sort of optimization problem, i.e., finding a path to a counter-example. From 
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building the larger corpus of 457 studies, we know from seeing various titles that we missed 
many EA papers due to our 5-year restriction. Presumably, EA was more prominently used 
before deep learning took off.

An interesting observation is the substantial absence of any data mining-related results, 
which might solve other problems still not covered by NNs, RL, NLP, or EA. In the 189 
investigated studies, only three applied data mining techniques. It is again worth noting that 
we only investigated the years 2019–2023. Hence, data mining may have been more wide-
spread before that, much like EA. More thorough data mining would be needed for a deeper 
insight, and only a secondary study would be required.

Finally, for RQ 2.4, we found 19 datasets (or training environment) contributions in our 
corpus of 189 studies. Considering the two separate, data set-only publications that did not 
pass IC 1 (see Section 4.5), this leaves us with 21 total data set contributions.

With the analyzed high heterogeneity of the used datasets, as already mentioned in Sec-
tion 5.1.3, there may be a general underlying issue. There seems to be no defined benchmark 
gold standard against which to run new insights. Instead, results are run on the data sets at 
hand. Furthermore, while datasets are publicly available for TP and SAT solving, the num-
ber of usable, established, and available benchmark datasets for other research areas that fit 
the named criteria is minuscule.

Generally, we see a current trend where researchers use datasets as they see fit or 
even generate data without referencing the procedure or providing the dataset after-
ward. This trend fits the overall trend of AI being only weakly reproducible  (Hutson 
2018). However, this trend endangers the whole research branch, as reproducibility is 
a core part of science.

In conclusion, we strongly need unified defaults to allow reproducibility and introduce 
familiar benchmarks into the field. Possible issues hindering such a development might be 
found in the various existing formalisms, which are not necessarily used or even supported 
by individual research groups. Such boundaries, of course, weaken the impact a data set 
publication might have onto researchers working with differing formalisms.

6.3  Observed Objectives of AI Applications in FM

Generally, we see that the stark majority of publications use AI as an assistance tool to 
enable or enhance a respective FM tool’s performance. That is, AI is used to find models, 
clauses, or lemmas. However, the found artifacts are then still checked by a formal tool.

With the notable exception of SAT solving, where 5 contributions directly predict the 
satisfiability of a formula with AI, we did not observe any focus on finding AI-generated 
guarantees for formal models to replace an FM tool. This seems only natural, as FM are 
about believable and reproducible guarantees. Therefore, giving most AI approaches 
a more prominent role comes with the price of admission: introducing determinism 
and uncertainty. For strictly formal-safety-related projects, this may be too much of a 
burden to pass.

Another observation we did not make was the presence of auto-active verification. Ana-
lyzing existing program code did not draw much attention, and the only remotely connected 
contribution was outside our search area.
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6.4  Suggested Research Directions

From the given analysis, we can derive five areas of growth potential, which we outline 
below.

Development of Unified Benchmarks and Data Sets  As pointed out in our discussion to RQ 
2.4, we are concerned with the lack of established data sets and benchmarks in the FM 
sub-communities. While many contributions have already tackled this problem for TP, the 
other areas seem to fall short. This creates room for reproducibility issues between research 
groups and hinders a more precise comparison between results and established benchmarks 
that could be provided.

Developing strong baselines might increase comparability between different methods 
and reduce the entry hurdle for new researchers due to publicly available data sets. The main 
challenge is to create data sets that can be used for different formalisms. This would allow 
smaller communities to still benefit from the available data, which might be presented in a 
more popular formalism while furthering research in their area.

An orientation on how such a unified benchmark environment could look would be 
OpenAIGym  (Brockman et  al. 2016), a Toolkit for RL to foster research by enhancing 
reproducibility.

Investigate the Benefits of Data Mining for FM  In the age of big data, we were expecting 
more studies that apply data mining techniques, be it for feature engineering or performance 
analytical approaches. This was not the case. While it might very well be that the kind of 
problems solvable by data mining are irrelevant to the FM communities, it is also possible 
that potential benefits are not well-known.

We propose to research whether and how data mining approaches can benefit FM. First, 
this would highlight potential benefits to the community. Second, due to the investigative 
nature of data mining, this might strengthen our insights into our tools and best practices. 
Consequently, this might further the quality of other AI applications in FM due to new 
knowledge.

Application of LLMs and Generative AI  While LLMs, at this point, are established tools that 
have found their way into daily applications, we have found little use in our corpus of stud-
ies. This can be due to their relatively high employment costs. Another reason could be that 
respective studies are still published and invisible to our systematic mapping study. Nev-
ertheless, we see strong potential for generative AI approaches, especially in synthesis and 
auto-formalization. However, simple test cases or documentation generation for existing 
models seems a promising starting point for building trust.

We envision substantial benefits from applying generative AI during FM development 
and highlight the need for more research. One can easily envision tool chains of automatic 
generation, checking, and documentation of formal models, logical formulas, or proofs with 
reproducible and provable results. However, we also see the need for more exploration 
regarding how generative AI can be helpful besides text production. For instance, how could 
generative AI be leveraged in proof mining? What stages in the formal development process 
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can benefit from generated inputs, and what types could and should be generated? Gen-
erative AI for FM may be thought of further than pure text and code generation and more 
toward reasoning support.

Increase the Potential of AI in Model Checking  Another underrepresented topic is model 
checking. Anecdotally, we know model checking had much EA applied in the past, 
while it was a seemingly unpopular application area for AI in our five-year corpus. 
However, we see significant potential in revisiting the research with a modern lens. 
Especially in the context of bounded model checking (BMC) or statistical model check-
ing (SMC) and faulty state prediction. BMC cuts off parts of a model’s state space for 
performance and computability. SMC checks states until a certain confidence in the 
absence of faulty states is reached. Both approaches do not fully traverse the state space 
and can only indicate the absence of faults.

AI-enforced model checking could complement BMC, SMC, and model checking by 
predicting potential faulty states or needed search depths, learning search policies via RL 
to reach faulty states more targeted, or predicting equivalence classes of states for search 
space reduction. For example, after estimating a defective state or a search depth, the model 
checker could be applied in a very targeted manner to confirm the predicted state.

7  Threats to Validity

A study of this type and extent can only be conducted with the possibility of encountering 
threats that threaten validity. Zhou et al. (2020) serves as a baseline for this discussion, as 
their contribution meticulously lists the possible threats to validity and how they may be 
addressed.

Internal Validity  A potential threat to the conclusion could be our selection of articles and 
our data source. To ensure the quality of our data, we carefully drafted our IC/EC, and in 
cases where we found them not yet sufficient, we enhanced them. Two experienced research-
ers, i.e., the first two authors, carefully read the publications.

Our data source was four famous known databases containing the relevant litera-
ture (Dyba et al. 2007). Due to the extensive snowballing, we made sure that the poten-
tial for blind spots, i.e., publications that are only listed by one engine or none at all, is 
minimized. This also holds for the case of WoS, where different result sizes are obtained. 
The divergence between the two results was marginal, so we are confident that excessive 
snowballing alleviates it. The snowballing also alleviated some of our rigor by applying IC/
EC early in our search process. While we reduced our initial tally of 1492 publications to 
only 89, a reduction of two orders of magnitude, snowballing helped us recapture significant 
contributions into our database again.

Construct Validity  Another threat is the selection and use of search terms. We used 
PICO as Kitchenham et al. (2007) suggest to select the appropriate search term. Nev-
ertheless, we know it is impossible to cover all types of FM, AI, and all their acronyms 
in one query due to the technical limitations of the search engines and the practical 
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feasibility of thoroughly skimming the amount of papers found this way. Therefore, the 
aim was to keep the initial set small and conduct an exhaustive snowballing procedure 
to include all relevant publications.

The amount of snowballing results was unsurprisingly large, as snowballing does not 
suffer from a compromise for a search query. This is a limitation already pointed out by 
Wohlin (2014).

Conclusion Validity  While we followed Kitchenham et  al. (2007) guidelines for a 
successful mapping study to minimize the threat to the conclusion of this study, one 
remaining potential threat is whether or not to include grey literature, as we could have 
missed crucial contributions that change the outcome of this study. Grey literature was 
not considered for two main reasons. First, we did not encounter large quantities of 
grey literature during our snowballing. Thus, We are positive that we can represent cur-
rent research directions without considering them. Second, we only did a soft skim of 
the content, and therefore, we can not offer a quality and feasibility assessment of the 
included contributions. As we aim to provide the reader with only high-quality studies, 
we decided to require official publications.

8  Related Work

While the lack of available literature partially motivated this work, there are noteworthy 
related works. One of the first contributions one finds when investigating the topic is that 
of Amrani et al. (2018). Here, the authors came to a similar conclusion as we did about the 
complicated nature of the investigated landscape of available literature. Therefore, they also 
resorted to a complex search string. The evaluation and focus, however, are different. The 
authors limit themselves to an excerpt of initial results and only conduct backward snow-
balling, leaving room for whether the corpus is complete. Additionally, the research ques-
tions are more specifically tailored to individual FM topics, while our work aims to give a 
general overview.

Wang et al. (2020) aims to give a general taxonomy of learning-based FM. One core 
contribution is that they divide the topic into two general directions: the learning of formal 
specifications and learning for formal verification. They proceeded to structure the literature 
found by individuals under this taxonomy. Compared to their work, our work aims to give 
a general introduction to the cross-section of the two fields, while the authors dive into the 
specifics of learning algorithms for formal verification.

Solvers and Solving  Large quantities of work exist to evaluate the use of AI to enable solv-
ers. A general overview was given by Ganesh et al. (2023). In the context of SAT, multiple 
works exist. A general overview with comments on the use of AI was presented by Kilani 
et  al. (2013). Explicit SAT solving was subject to two studies  (Holden 2021; Guo et  al. 
2023). Configuration and benchmarking of SAT solvers were investigated in three contribu-
tions (Granmo and Bouhmala 2010; Hoos et al. 2021; Fuchs et al. 2023).

We found many contributions that targeted the general constraint satisfaction problem 
during our search. However, we excluded these results as they are only loosely connected 
with FM. Amadini et al. (2013) conducted a general evaluation of portfolio approaches for 
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CSP problems. Popescu et al. (2022) gives an overview of machine learning techniques for 
CSP problems.

Proving  Multiple works aim to provide an overview of the topic within the math and auto-
mated reasoning community. Urban and Vyskočil (2013) give an overview of AI-supported 
automated theorem proving. Blanchette et al. (2014) surveyed ML-supported axiom selec-
tion, and two years later, Blanchette et al. (2016) surveyed the rising interest in automatizing 
reasoning over proofs. England (2018) published a survey on ML for symbolic reasoning. 
Tran et al. (2022) gave a short overview of the emerging field of NLP for premise selection.

Program Analysis  For general program analysis, there are works for runtime prediction by 
Hutter et al. (2014). Kumazawa et al. (2020) published a survey on applying swarm intel-
ligence (a flavor of EAs) for software verification. Bennaceur and Meinke (2018) published 
on which ML techniques may be suitable for software analysis.

Model/specification Generation  Brunello et  al. (2019) and Buzhinsky (2019) published 
surveys on creating temporal logic from natural language, while Fuggitti and Chakraborti 
(2023) and Szegedy (2020) discuss the topic of auto-formalization of natural language 
requirements.

Others  Less prominent were the topics of model repair, where Barriga et al. (2022) pub-
lished a longer article about the state of the art. Haltermann and Wehrheim (2022) gives an 
overview of invariant generation. Pan and Mishra (2022) surveyed hardware vulnerability 
analysis via ML, a field to which we found no contributions. For model checking, Besbas 
et al. (2022) gave a brief literature review of four pages.

9  Conclusion

In this systematic mapping study, we present the results of our work on assessing the quan-
tity of research in applying artificial intelligence to formal methods. Overall, we found 457, 
from which we selected 189 for a closer investigation. Concluding from this investigation, 
we see the current trend is yet to mature, as many contributions are making some practical 
applications. However, only a few studies aim to create theoretical groundwork, bench-
marks, or case studies. Furthermore, we see a focus on theorem proving and SAT solving. 
Model checking and model synthesis are underrepresented compared to this. Most work 
uses neural nets, reinforcement learning, or a combination of multiple approaches. Note-
worthy is the predominant degradation of AI to a support function within existing formal 
methods.

10  Supplementary information

The supplementary material provides an overview of the sorted, investigated primary stud-
ies. It consists of tables, the basis for the figures presented in this work.
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Appendix A Investigated Studies

FM 
technique

Application Articles Count

SAT SAT solving Amizadeh et al. (2019); Atkari et al. (2020); 
Fournier et al. (2022); Li and Si (2022); Nejati 
et al. (2020); Selsam et al. (2019); Xu and Lieber-
herr (2022); Yolcu and Poczos (2019); Zhang et al. 
(2022); Sun et al. (2020)

10

Predict solvability Cameron et al. (2020); Chang et al. (2022); Selsam 
and Bjørner (2019); Xu et al. (2021); Zhang et al. 
(2020)

5

MaxSat Berden et al. (2022); Chang et al. (2020); Framil 
et al. (2022); Kumar et al. (2023); Lassouaoui et al. 
(2019); Marino (2021); Nurcahyadi et al. (2022); 
Sadeg et al. (2021); Zheng et al. (2022)

9

SAT parameter selection Beskyd and Surynek (2022) 1
Branching heuristics Kurin et al. (2020); Lorenz and Nickerl (2020) 2
Algorithm/solver selection Fournier et al. (2022); Fuchs et al. (2023); Leder-

man et al. (2020); Nejati et al. (2020); Richter 
et al. (2020); Sadeg et al. (2021); Sadreddin et al. 
(2022); Wang et al. (2019)

8

Instance selection Dalla et al. (2021); Danisovszky et al. (2020); 
Farooque and Keni (2023); Han (2020); Hireche 
and Drias (2019); Hireche et al. (2020)

6

Dependency analysis Yan et al. (2023) 1
Meta analysis/performance 
prediction

Fu et al. (2020); Huang et al. (2022); Leventi-Peetz 
et al. (2020); Ozolins et al. (2022)

4

Generation Garzón et al. (2022); You et al. (2019) 2
Model counting Li and Si (2022) 1

SMT Quantifier instantiation Jakubův et al. (2023); Janota et al. (2022) 2
Solver selection/scheduling Blanchette et al. (2019); Dunkelau et al. (2019); 

Hůla et al. (2021); Leeson et al. (2023); Pim-
palkhare et al. (2021); Pimpalkhare (2021); Scott 
et al. (2021, 2023)

8

Quality assesment Dunkelau et al. (2020); Scott et al. (2021); Yao 
et al. (2021)

3

TP Heuristic selection Holden and Korovin (2019); Nagashima (2019) 2
Premise selection Bártek and Suda (2020, 2021); Chvalovský et al. 

(2019, 2021); Chvalovskỳ et al. (2023); Crouse 
et al. (2021); Ferreira and Freitas (2020); Firoiu 
et al. (2021); Goertzel et al. (2019); Goertzel and 
Urban (2019); Goertzel et al. (2021, 2022); Han 
et al. (2021); Huang et al. (2019); Jakubuv and 
Urban (2019); Jakubův et al. (2020); Jiang et al. 
(2022); Liu et al. (2020, 2022); Mangla et al. 
(2022); Morris et al. (2022); Nawaz et al. (2021); 
Olsák et al. (2020); Piotrowski and Urban (2020); 
Shminke (2022); Suda (2021); Tworkowski et al. 
(2022); Wei (2022); Welleck et al. (2022); Zhang 
et al. (2023); Zombori et al. (2021)

31

Table 1  Investigated primary studies sorted by their FM application
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FM 
technique

Application Articles Count

Proof search Abdelaziz et al. (2023); Baghdasaryan and Bo-
libekyan (2021); Bansal et al. (2019); Blaauwbroek 
et al. (2020); Färber et al. (2020); Gauthier et al. 
(2020); Goertzel (2020); Lample et al. (2022); 
Mo et al. (2020); Nawaz et al. (2021); Paliwal 
et al. (2020); Piepenbrock et al. (2021, 2022); 
Piotrowski and Urban (2020); Rawson and Reger 
(2019); Sanchez-Stern et al. (2020); Urban and 
Jakubův (2020); Wang et al. (2023); Wu et al. 
(2021); Zombori et al. (2019, 2020, 2021)

22

Proof mining Jiang et al. (2021); Nawaz et al. (2020) 2
Proof synthesis Aygün et al. (2022); First et al. (2020); First and 

Brun (2022); Gauthier (2020); Glorot et al. (2019); 
Han et al. (2022); Kommrusch et al. (2023); 
Laurent and Platzer (2022); Palermo et al. (2022); 
Poesia and Goodman (2023); Qian (2021); Rawson 
and Reger (2021); Sanchez-Stern et al. (2023); 
Wang and Deng (2020); Wu et al. (2020, 2022a, 
2022b); Yang and Deng (2019); Zhang et al. (2023)

19

Symbolic Poesia et al. (2021) 1
Formula synthesis Brown and Gauthier (2020) 1
Formula classification PurgaŁ et al. (2021); Suda (2021) 2
Tactic prediction Nawaz et al. (2019); Wu et al. (2020, 2021); Zhang 

et al. (2019, 2021)
5

Lemma name generation Nie et al. (2020) 1
Portfolio solving Nikolić et al. (2019) 1
Position prediction Huang et al. (2019) 1
Symbol guessing Olsák et al. (2020) 1

MC Cao et al. (2022); Dunkelau and Baldus (2021); 
Gross et al. (2022); Hu et al. (2023); Jaeger et al. 
(2020); Kumazawa et al. (2019, 2021, 2023); Luo 
et al. (2023); Ma et al. (2019); Pira (2022); Rafe 
et al. (2019); Tsutomu Kumazawa and Kambayashi 
(2022); Wang et al. (2020, 2021); Zhu et al. (2019); 
Zhu (2022); Zhu and Wu (2022)

18

Synthesis Invariant learning Kobayashi et al. (2021); Liu et al. (2023); Wang 
and Wang (2023)

3

Loop invariant learning Laurent and Platzer (2021); Xu et al. (2022); Yao 
et al. (2020); Yu et al. (2023)

4

Model repair Cai et al. (2019a, 2019b, 2022) 3
Models/Specification Abate et al. (2022); Bordg et al. (2022); Cherukuri 

et al. (2022); He et al. (2022); Hu et al. (2022); 
Koscinski et al. (2021); Nayak et al. (2022); 
Shigyo and Katayama (2020)

8

Annotations Puccetti et al. (2021) 1
Other Algorithm selection Richter and Wehrheim (2020); Wang et al. (2021) 2

Termination anlysis Giacobbe et al. (2022) 1
Program analysis Allamanis (2022); Chen et al. (2019); Kumazawa 

et al. (2022)
3

LTL satisfiability Luo et al. (2022) 1
General verification Cao et al. (2020); Si et al. (2020) 2

Unique total 189

Table 1  (continued) 
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Supplementary Information  The online version contains supplementary material available at ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​
/​1​0​.​1​0​0​7​/​s​1​0​6​6​4​-​0​2​5​-​1​0​7​2​9​-​8​​​​​.​​

Author Contributions  The first author conceived the idea of conducting the systematic mapping study. The 
first and second authors conducted the search process outlined in Section 4 together. The application of IC/
EC was done independently by the first and second authors. Disagreements in this filtering process were 
solved by the third author. The first and second authors were responsible for the manuscript’s writing. The 
third author reviewed the manuscript, provided feedback, and supervised the project. The public repository 
containing the dataset of found and investigated studies was prepared by the second author.

Funding  Open Access funding enabled and organized by Projekt DEAL. The authors have no relevant finan-
cial or non-financial interests to disclose.

Data Availibility Statement  The primary studies found in this systematic mapping study are publicly avail-
able at https://github.com/hhu-stups/ai4fm-studies.

Declarations

Conflicts of Interest  The authors have no competing interests to declare that are relevant to the content of 
this article.

Ethical Approval  Not applicable.

Informed Consent  Not applicable.

Clinical Trial Number  Not applicable.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
licence, and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. 
If material is not included in the article’s Creative Commons licence and your intended use is not permitted 
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

FM Articles Count
SAT You et al. (2019) 1
SMT Dunkelau et al. (2019) 1
TP Bansal et al. (2019); Blaauwbroek et al. (2020); 

Goertzel et al. (2022); Han et al. (2022); Jiang 
et al. (2021); Nagashima (2020); Piotrowski 
and Urban (2020); PurgaŁ et al. (2021); 
Reichel et al. (2023); Shminke (2022); Urban 
and Jakubův (2020); Wang and Deng (2020); 
Wu et al. (2020, 2020); Yang and Deng (2019)

15

MC Wang et al. (2021) 1
Synthesis Bordg et al. (2022); Cai et al. (2019a); He et al. 

(2022)
3

Total 21

Table 2  Datasets 
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