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Delays reduce culprit-presence 
detection but do not affect 
guessing-based selection in 
response to lineups
Amelie Therre , Raoul Bell , Nicola Marie Menne , Carolin Mayer , 
Ulla Lichtenhagen  & Axel Buchner

Police lineups are conducted with varying delays between the crime and the lineup. Crime-to-lineup 
delays may adversely affect the detection of the presence and absence of the culprit in the lineup 
and may potentially affect guessing-based selection. In the present study we examined how these 
processes change across four crime-to-lineup delays. Participants viewed a staged-crime video and 
then completed simultaneous photo lineups after no delay or after a delay of one day, one week or one 
month. The results showed a significant decline in the probability of culprit-presence detection. The 
form of the decline is best described by a power function with the most rapid decline occurring at short 
crime-to-lineup delays. Eyewitnesses did not compensate the decline in culprit-presence detection 
by increasing guessing-based selection, as demonstrated by the fact that the probability of guessing-
based selection remained constant across crime-to-lineup delays. The findings underscore the critical 
importance of conducting lineups as soon as possible after a crime to maximize the probability of 
memory-based-culprit detection.

Keywords  Police lineups, Eyewitness identification, Two-high threshold eyewitness identification model, 
Delay, Multinomial processing tree model

Responses made by eyewitnesses during police lineups can serve as important evidence in criminal prosecutions1. 
In a lineup, an eyewitness sees a single suspect (who may be guilty or innocent) along with a number of fillers 
who are known to be innocent. The ability of an eyewitness to detect the presence of the culprit in a given culprit-
present lineup or to detect the absence of the culprit in a given culprit-absent lineup depends on the eyewitness’ 
memory. One of the most well-established facts about memory is that it decreases with time2–4. Naturally, 
memory for crime-related details is no exception. For instance, the accuracy of eyewitness responses to crime-
related questions has been found to decline with increasing delay between the crime and the interview5–8. This 
may also affect performance in a lineup given that participants’ recall of facial characteristics has been reported 
to decline significantly after a crime-to-lineup delay ranging from one week9 to three weeks10 and one month11. 
Although conflicting results have been reported12, there is a general trend towards progressively worse accuracy 
of face memory as a function of an increasing delay13–18. Therefore, it may be a concern that lineups can occur 
with considerable delays due to factors outside of the control of investigators, such as the time needed to identify 
a suspect and the availability of eyewitnesses. Furthermore, there is good reason for conducting a lineup only 
after a thorough investigation because this increases the probability that the actual culprit and not an innocent 
suspect is in the lineup19. Delays can also result from resource limitations, as investigators must prioritize 
different tasks across multiple cases. Archive studies from Great Britain on real-world lineups show that delays 
between the crime and the lineup range from zero days to nine years20, with the most frequently reported delays 
being one to three months20–23. Against this background, the present study serves to test how increasing crime-
to-lineup delays affect the detection of the presence or absence of the culprit and guessing-based selection in 
lineups.

Particularly relevant in this context are studies that address the question of how a crime-to-lineup delay 
affect eyewitness’s responses to lineups24–35. Most of these studies have relied on observable response rates, such 
as rates of correct culprit identifications, filler identifications and lineup rejections27–35. However, when the aim 
is to understand how a delay affects the detection of the presence or absence of the culprit and guessing-based 
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selections in lineups, this approach does not yield clear conclusions because changes in the observable response 
rates may result from different underlying processes. For example, in some studies, the rate of correct culprit 
identifications from lineups have been found to decline with delays ranging from several minutes to eleven 
months27,28,31. In other studies, no differences were found in the culprit identification rates as a function of 
delay29,30,32,33. With one notable exception33, sample sizes in these studies were relatively small, ranging from 
N = 85 to N = 210. Therefore, it remains unclear whether delay had indeed no effect on the culprit identification 
accuracy or whether the relatively small sample sizes resulted in insufficient statistical sensitivity to detect 
such effects. A third possibility is that the ability to detect the culprit’s presence within the lineup declines, 
but participants compensate this decline by being more willing to select someone from the lineup based on 
guessing, resulting in no substantial change in culprit identification rates even after increasing delays. Indeed, 
in some studies, a descriptive increase in filler identifications in both culprit-present and culprit-absent lineups 
with increasing delay has been reported24–26,33. For instance, in one study33 there was no detrimental effect of 
a 48-h delay on the rate of culprit identifications, but a descriptive increase in filler identifications in both fair 
culprit-present lineups (from 10 to 15%) and fair culprit-absent lineups (from 24 to 45%). This pattern of results 
raises the question about whether the ability to detect the culprit’s presence was truly unaffected by the delay or 
whether participants perhaps compensated for a deficit in culprit-presence detection by being more willing to 
select someone based on guessing, the latter of which would be consistent with the observation that the rates of 
filler identifications were increased at a descriptive level. However, in other studies no increase was found in filler 
identification rates as a function of delay28,31,32,36. Also, the effects of delay on innocent-suspect identifications are 
somewhat mixed. Whereas no such effects have been reported in studies with a designated innocent suspect26,33, 
relatively small effects have been reported in studies without a designated innocent suspect in which, therefore, 
the innocent-suspect-identification rate could not be computed directly but had to be substituted by a value 
determined by dividing the number of filler identifications in culprit-absent lineups by the lineup size24,25.

In addition to studies focusing on observable response rates, a few studies have used ROC analyses to examine 
the effects of delay on lineup performance26,33. One important limitation of this approach is that information 
provided by filler identifications is disregarded. Signal-detection-theory-based ROC analyses were not originally 
designed for analyzing lineup data (but see37 for a series of thought experiments on how to incorporate the 
information provided by filler identifications within a signal-detection-theory-based framework). To fit lineup 
data into the binary format required by ROC analyses, filler identifications and lineup rejections in culprit-
present lineups are treated as a single “false rejection” category and filler identifications and lineup rejections in 
culprit-absent lineups are treated as a single “correct rejection” category. This data reduction discards important 
distinctions among response types38–40. For instance, filler identifications in culprit-absent lineups are false 
responses, whereas rejections of culprit-absent lineups are correct responses, indicating that different processes 
underlie these responses. Another limitation of ROC analyses is that they yield only one single performance 
metric: the partial area under the curve. While reducing lineup data to a single performance metric may be 
considered sufficient for determining which of two conditions yields superior overall performance, this approach 
is limited when the aim is to disentangle the underlying processes that give rise to different lineup responses. 
For instance, when researchers sought to examine the effect of delay on response bias, they had to abandon 
the measurement model on which ROC analyses are based. In the studies mentioned above, researchers either 
reverted to analyzing raw response rates33 or used the response bias measure c derived from signal detection 
theory26. In each case, this entailed a shift to a different measurement model, grounded in assumptions that 
differ from those implied by ROC analyses.

The present research goals require a comprehensive model specifically designed to separately measure the 
detection of the culprit’s presence or absence and guessing-based selection in the lineups while taking into 
account the full pattern of lineup-response categories. Ideally, such a model should be supported by validation 
studies demonstrating that it reliably captures the processes it was designed to measure. In addition, such a 
model should allow for a formal evaluation of model fit to the data. Therefore, we used the two-high threshold (2-
HT) eyewitness identification model41–47, illustrated in Fig. 1. This model serves to trace back lineup responses 
to distinct underlying processes, which is essential for testing how crime-to-lineup delay affects the detection 
of the culprit’s presence or absence and guessing-based selection in lineups. Specifically, the 2-HT eyewitness 
identification model allows for the assessment of four distinct processes within a single, unified framework. 
These processes, represented by the model’s parameters, are culprit-presence detection, biased suspect selection, 
guessing-based selection and culprit-absence detection. Parameters are determined based on the complete 
information drawn from all six categories of observable eyewitness responses to both culprit-present and 
culprit-absent lineups. In culprit-present lineups, these categories are culprit identifications, filler identifications 
and lineup rejections; in culprit-absent lineups, they are innocent-suspect identifications, filler identifications 
and lineup rejections (see the rectangles on the right side of Fig. 1). The model has been thoroughly validated, 
showing that its parameters reliably and sensitively reflect the processes they were designed to measure. The 
model’s validity has been demonstrated in a series of experimental studies using the same stimulus materials 
as those used in the present study44, and through reanalyses of published data sets41 from various research 
groups around the world that used diverse lineup procedures, staged-crime videos and photographs of fillers 
and suspects32,33,48–53.

The 2-HT eyewitness identification model belongs to the class of multinomial processing tree models—a 
class of straightforward and transparent measurement models for which comprehensive tutorials54 and easy-
to-use software55 exist. Multinomial processing tree models are widely used in various domains of cognitive 
research54,56–58. In these models, observable responses are conceived of as being determined by an interplay of 
different processes that occur with certain probabilities58. As explicated previously41–47, the probabilities of these 
processes occurring are represented by model parameters for which estimates can be determined and which 
can be statistically compared. The processes of culprit-presence detection, biased suspect selection, guessing-
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based selection and culprit-absence detection are precisely and transparently defined by the model’s structure, as 
formalized in the model equations and illustrated in Fig. 1. The verbal labels used for the parameters only serve 
as accessible everyday-language descriptors to simplify communication. The following sections use these labels 
to explicate the model equations.

In a culprit-present lineup (see the upper tree in Fig. 1), it is assumed that the presence of the culprit is either 
detected or not detected. This detection-based process may depend, for example, on how clearly or how long the 
culprit’s face was visible at encoding41,44. With probability dP, the presence of the culprit is detected, which leads 
to a correct identification of the culprit. With probability 1 − dP, the culprit’s presence is not detected. In this 
case, the culprit can still be identified through one of two non-detection-based processes: biased selection and 
guessing-based selection. Biased selection occurs with the conditional probability b. This process is determined by 
the fairness of the lineup42. If the lineup is unfair and the suspect noticeably stands out due to physical appearance 
or distinctive characteristics of the photo, biased suspect selection occurs with the conditional probability b > 0. 
In case of no biased suspect selection, which occurs with the conditional probability 1 − b, a lineup member may 
still be selected based on guessing, which occurs with the conditional probability g. Guessing-based selection is 
defined as a selection process that is neither driven by detection nor by bias, implying that there is no systematic 
preference for selecting the suspect over the fillers. Specifically, the probability of the selection of the culprit is 
determined by the sampling probability 1 ÷ n, with n being a constant representing the number of individuals 
(suspect and fillers) in the lineup. For example, in a lineup consisting of six individuals, the probability of 
selecting the culprit as a consequence of a guessing-based process is 1 ÷ 6 = 0.16̄. The probability of selecting a 
filler as a consequence of a guessing-based process is given by the complementary probability 1−(1 ÷ n). In six-
person lineups, this probability is 5 ÷ 6 = 0.83̄, illustrating that, as Wixted and Wells59 have noted, “a witness who 
chooses randomly is far more likely to land on a filler than the suspect”59. In case of no guessing-based selection, 
which occurs with the conditional probability 1 − g, the lineup is falsely rejected.

The model also includes a second detection-based process for culprit-absent lineups (see the lower tree in 
Fig. 1). Here, the absence of the culprit is detected with probability dA, leading to a correct rejection of the 
lineup. With probability 1 − dA, culprit-absence detection does not occur. In this case, biased suspect selection 
may occur with the conditional probability b, resulting in the selection of the innocent suspect. In case of no 

Fig. 1.  Graphical illustration of the 2-HT eyewitness identification model. Rounded rectangles on the left 
represent the two types of lineups an eyewitness may be confronted with: culprit-present lineups and culprit-
absent lineups. The rectangles on the right represent the categories of observable responses. Letters along the 
branches denote parameters representing the processes specified by the model: dP represents the probability 
of culprit-presence detection, b represents the probability of biased suspect selection which occurs in unfair 
lineups, g represents the probability of guessing-based selection and dA represents the probability of culprit-
absence detection. The constant 1 ÷ n represents the probability of selecting the culprit (upper tree) or the 
innocent suspect (lower tree) if guessing-based selection occurs, with n corresponding to the number of 
individuals in the lineup.
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biased suspect selection, which occurs with the conditional probability 1 − b, a lineup member may still be 
selected based on guessing, which occurs with the conditional probability g. The probability of this guessing-
based process leading to the selection of the innocent suspect is determined by the sampling probability 1 ÷ n, 
while the probability of selecting a filler is 1−(1 ÷ n). In case of no guessing-based selection, which occurs with 
the conditional probability 1 − g, the lineup is correctly rejected.

To date, the effects of delay on culprit-presence detection, guessing-based selection and culprit-absence 
detection have not been examined directly, which was therefore the aim of the present study. Furthermore, 
with a few notable exceptions29,31,35, manipulations of the delay variable in previous studies in which lineups 
were presented were typically limited to only two points in time: one condition with no or a small delay and 
one condition with a larger delay24–26,30,32–34. This binary approach, while certainly informative, does not 
capture the form of the changes occurring over time. We therefore decided to examine the effects of delay 
across four points in time with the goal to provide a more comprehensive understanding of how the processes 
underlying eyewitness responses to lineups change as a function of delay. Specifically, we investigated changes in 
culprit-presence detection, guessing-based selection and culprit-absence detection as defined within the 2-HT 
eyewitness identification model with no delay, a delay of one day, a delay of one week and a delay of one month 
between viewing a staged-crime video and responding to the lineups.

The first prediction about the effects of these delays refers to the memory-based process of culprit-presence 
detection (parameter dP). As memory is susceptible to forgetting4, we expected parameter dP to decline as a 
function of delay in the form of a typical forgetting function16. In contrast, two different predictions as to how 
guessing-based selection (parameter g) changes as a function of delay were possible based on prior research. 
The inference for deriving one of the predictions begins by noting that guessing-based selection is known to 
be very sensitive to the probability with which eyewitnesses expect the culprit to be in the lineup based on the 
instructions they receive44,46. Theses instructions were the same for all delay conditions. Thus, one possible 
prediction was that guessing-based selection stays constant across delays. Alternatively, the possibility exists that, 
given a decline in culprit-presence detection as a function of delay, participants might engage in compensatory 
guessing60–63. If this were the case, then the probability of guessing-based selection would increase as a function 
of increasing delays.

Finally, the prediction about delay-induced changes in culprit-absence detection  (parameter dA) was not 
as straightforward. On the one hand, the memory-based process of culprit-absence detection should become 
less likely with increasing delay, just like the memory-based process of culprit-presence detection. On the other 
hand, low estimates for dA have often been reported in empirical studies even under no-delay conditions42,45,46,64 
because culprit-absence detection is an inherently demanding process. Whereas culprit-presence detection 
requires only one lineup member (the culprit) to elicit culprit-presence detection, culprit-absence detection 
requires the eyewitness to rule out every single lineup member as the culprit. Consequently, while a delay 
may still negatively affect culprit-absence detection, the to-be-expected low value of dA even in the no-delay 
condition makes further substantial reductions unlikely.

Method
Participants
Participants were recruited via the Horizoom research panel (www.horizoom-panel.de), a panel certified under 
ISO 20252 which ensures rigorous quality control. All participants were first exposed to the staged-crime 
video and were then randomly assigned to one of four groups defined by the duration of the delay after which 
the participants were invited to participate in the second phase of the experiment. Of the 3,108 data sets of 
participants who had given their informed consent before being exposed to a staged-crime video, 22 had to be 
excluded because participants had not passed the attention check (see below), 31 had to be excluded because 
of duplicate participation and 245 had to be excluded because participants had not completed the experiment 
or had withdrawn their consent after having completed the first phase of the experiment. Therefore, valid data 
sets of 2,810 participants were available after the first phase of the experiment in which participants had been 
exposed to the staged-crime video. Of these participants, 550 were assigned to the no-delay condition and were 
asked to respond to the lineups right after having seen the staged-crime video, 788 participants were assigned to 
the 1-day-delay condition, 706 participants were assigned to the one-week-delay condition and 766 participants 
were assigned to the 1-month-delay condition. More participants were assigned to the with-delay conditions 
than to the no-delay condition in an attempt to compensate for anticipated dropouts.

Responses to lineups were collected from 550 participants in the no-delay condition, from 532 participants in 
the one-day-delay condition, from 520 participants in the 1-week-delay condition and from 506 participants in 
the 1-month-delay condition, resulting in a total of 2,108 data sets that were analyzed. A sensitivity analysis with 
G*Power65 showed that given N = 2,108 participants and four responses per participant, error probabilities of 
α = β = 0.05 (and thus a power of 0.95) and df = 3 for tests of parameter equality across the four delay conditions, 
effects of delay as small as w = 0.05 could be detected (for further details, see https://osf.io/fqus6).

The groups were compared with respect to the demographic data that we had collected to assess whether 
there was any indication that the dropout was selective. Mean age and age range, gender and educational level 
are reported in Table 1. Neither age, F(3, 2104) = 0.59, p = .619, nor gender distribution, χ²(6) = 5.23, p = .515, 
nor educational level, χ²(3) = 4.42, p = .220 differed significantly among groups. Thus, even though the sample 
size and, hence, the sensitivity of the statistical tests of differences among groups was rather high, there was no 
evidence that the dropout was selective.

Ethics statement
The ethics committee of the Faculty of Mathematics and Natural Sciences at Heinrich Heine University 
Düsseldorf approved the experiment. The experiment was conducted in accordance with the Declaration of 
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Helsinki. Participants provided informed consent before participating. In the consent form and prior to viewing 
the staged-crime video, participants were informed that the video would contain physical and verbal violence. 
They were instructed to proceed with the study only if they were comfortable watching such content.

Materials and procedure
Materials and procedure were the same as those used in a number of previous studies41–47,66 except for the 
manipulation of the delay between viewing the staged-crime video and responding to the lineups. The 
experiment was conducted online using SoSci Survey67 (www.soscisurvey.de). Participation was possible with a 
desktop or a laptop computer. Participants were informed that the experiment consisted of two parts, the first of 
which they would complete directly. In addition, participants were informed that the experiment would include 
a video portraying physical and verbal violence. They were advised that participation required their consent to 
view such a video and to the use of their data. Next, participants provided their age, gender and educational level. 
Participants could participate only if they were least 18 years old (a legal requirement in Germany).

After having been instructed to start the video by clicking on a “Start“ button, each participant watched 
one of two staged-crime videos (referred to as Video 1 and Video 2). The videos were presented at a resolution 
of 885 × 500 pixels and lasted approximately 130 seconds. The videos depicted the same events in the same 
sequence and timing but the actors differed between the videos. However, the actors playing the same characters 
in both videos were chosen to be similar in body shape, hair color and hairstyle. For instance, the actor playing 
Character A in Video 1 resembled the actor playing Character A in Video 2. The same applied to Characters B, 
C and D. Both videos featured four men dressed in FC Bayern München soccer club fan clothing who physically 
and verbally assaulted a man in Borussia Dortmund fan clothing at a bus stop. All culprits were involved in the 
crime to a similar extent.

By including four culprits, we were able to obtain four data points per participant, thereby increasing the 
statistical sensitivity of our analyses while also maintaining ecological validity given that more than one third 
of real-world crimes have been reported to involve multiple culprits68. Both in the real world and in study 
settings, responding to multiple lineups after having witnessed a multiple-culprit crime may be more cognitively 
demanding than responding to a single lineup after having witnessed a single-culprit crime69.

Following the video, participants answered an attention-check question in which they had to identify the 
roles of the protagonists in the video. The correct response was to select “soccer fans” among nine distractor 
options such as “dancers”, “farmers” or “artists”. Providing a correct response to the attention-check question was 
a prerequisite for participation in the second part of the experiment.

Participants assigned to the no-delay condition were then informed that they were about to enter the second 
part of the experiment. Participants assigned to one of the with-delay conditions were instead informed that they 
would receive an email inviting them to participate in the second part of the experiment after a delay of 24 h 
(1-day-delay condition), 7 days (1-week-delay condition) or 30 days (1-month-delay condition). Participants in 
the with-delay conditions did not always complete the second part of the experiment after the nominal delay, 
that is, on the same day at which the invitation email had been sent. The average actual delay was therefore 
somewhat larger than the nominal delay. The average actual delay was 1 day (standard deviation < 1 day) in the 
1-day-delay condition, 8 days (standard deviation = 1 day) in the 1-week-delay condition and 33 days (standard 
deviation = 3 days) in the 1-month-delay condition.

In the second part of the experiment, participants were instructed to identify the FC Bayern München 
fans—seen in the video during the first part of the experiment—from a series of photo lineups. The following 
instructions were given (the original instructions were in German): 

In the first part of the experiment, you saw a film with Bayern München fans. Now we want you to identify 
them. To do this, we will show you several lineups. In each lineup, you will see a series of faces. You will 
be asked to indicate whether one of the people in the lineup is one of the Bayern München fans. It is also 
possible that no one in the lineup is one of the Bayern München fans. If you recognize someone, click on 
the ‘Yes, was present’ button that belongs to the recognized face. Otherwise, click on the ‘No, none of these 
persons was present’ button.

Afterwards, each participant was presented with four separate lineups, one for each of the Bayern München fans 
from the video. In each lineup, one suspect and five fillers were displayed simultaneously in a single row. This 
presentation format is a possible method for photographic lineups70–74 and was chosen for several reasons. First, 
it resembles the arrangement used in in-person lineups, which remain part of the pertinent guidelines in various 
jurisdictions75,76. Second, it has been reported that, within these guidelines, “52% described an identification 

Delay Mean age (standard deviation) Gender Educational level

No delay (n = 550) 52 years (15 years) 45% ♀, 55% ♂, < 1% non-binary 55% A-Levels or higher

One day (n = 532) 51 years (14 years) 44% ♀, 55% ♂, 1% non-binary 59% A-Levels or higher

One week (n = 520) 51 years (14 years) 43% ♀, 57% ♂ 60% A-Levels or higher

One month (n = 506) 51 years (14 years) 41% ♀, 58% ♂, 1% non-binary 55% A-Levels or higher

All (n = 2108) 51 years (14 years) 43% ♀, 56% ♂, < 1% non-binary 57% A-Levels or higher

Table 1.  Mean age (standard deviations in parentheses), gender and educational level by delay. A-Levels 
include international baccalaureate (IB) or equivalent qualifications.
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procedure that suggested lineup members would be presented simultaneously (e.g., they would appear in a line)”, 
(emphasis added75, p. 302). Based on this, we considered the single-row photographic format to be a reasonable 
choice for the present study.

As in earlier studies41–47,66, the crossed-lineup procedure was used. Two of the four lineups were culprit-
present lineups and two were culprit-absent lineups. The two culprits for the culprit-present lineups were 
selected randomly without replacement from the four culprits of the video the participant had seen. The innocent 
suspects in the culprit-absent lineups were culprits from the parallel video that the participant had not seen. For 
example, if Characters C and D from Video 1 had randomly been selected as culprits in the culprit-present 
lineups, then Characters A and B from Video 2 were selected as innocent suspects in the culprit-absent lineups. 
This crossed-lineup procedure ensures that the photos of the culprits and innocent suspects (taken right after 
the videos had been recorded) differ to the same degree from the photos of the fillers which were taken from a 
face database77 and resembled one of the culprits in body shape, hair color and hairstyle. This setup is analogous 
to real-world situations where photos of suspects (whose guilt or innocence is unknown to the police) often 
come from a different source, such as social media, than the filler photos which are typically taken from a face 
database. The crossed-lineup procedure is similar, but not identical, to the single-lineup procedure proposed 
by Oriet and Fitzgerald78. In the single-lineup procedure, a single lineup is shown to all participants and the 
suspect’s guilt is determined by which of two videos participants viewed (either featuring the suspect from the 
lineup or a similar-looking person). As suggested by Quigley-McBride and Wells79 it is advisable to additionally 
determine randomly for each participant whether a suspect appears in a culprit-present or culprit-absent lineup. 
This randomization ensures that each suspect has an equal likelihood of being presented as a culprit or as an 
innocent suspect (see80, for an early implementation of this technique). This makes the crossed-lineup procedure 
particularly suitable for cases involving multiple culprits, as it allows for variation across lineups in whether a 
culprit or an innocent suspect is presented.

All individuals were shown from a frontal view with neutral facial expressions against a black background 
with no visible clothing. The photographs were adjusted to maintain consistent face sizes and lighting conditions 
and were displayed at a resolution of 142 × 214 pixels. The positions of the photos in the lineups were determined 
randomly, as was the sequence of the lineups. Once participants had responded to all lineups, they were asked 
to reaffirm, or to withdraw, their consent to the use of their data. They were then debriefed, thanked for their 
participation and redirected to the panel provider to receive their monetary compensation.

Results
The response frequencies obtained in this experiment are presented in Table 2. The files with the raw frequency 
data and the equations needed for the model-based analyses are available at https://osf.io/fqus6.

All model-based analyses were conducted using multiTree55. Four instances of the model illustrated in Fig. 1 
were needed to analyze the data, one instance for each delay condition (no delay, 1  day, 1 week, 1 month). 
To generate a testable base model, restrictions were applied to the 2-HT eyewitness identification model. As 
six-person lineups were presented in the current experiment, the term 1 ÷ n which represents the sampling 
probability of the suspect in case of guessing-based selection was set to 0.16667 for all conditions. Given that the 
lineups consisted of the same suspects and fillers in all conditions, there was no reason to expect differences in 
lineup fairness among conditions. Consequently, parameter b was set to be equal for all conditions. As shown by 
the goodness-of-fit statistic G2 which is asymptotically chi-square distributed with degrees of freedom indicated 
in parentheses (see81 for details), the base model incorporating these restrictions fit the data, G2(3) = 2.87, p = .412, 
supporting the conclusion that lineup fairness, represented by parameter b, did not vary as a function of delay. 
This implies that the lineups were equally fair across all delays. Parameter b was estimated to be 0.04 (95% CI 
[0.03, 0.06]), reflecting a slight inherent unfairness in the lineups across all delays. By taking biased selection due 
to lineup unfairness into account explicitly in the 2-HT eyewitness identification model, two important goals 
are achieved. First, the model provides for a direct measure of lineup fairness that is more valid than measures 
based on the traditional mock-witness task because the processes involved differ between mock witnesses and 
eyewitnesses42. Second, the model also ensures that the measurement of the other model parameters remains 
uncontaminated by lineup unfairness41,42,44.

The estimates of parameters dP (culprit-presence detection), g (guessing-based selection) and dA (culprit-
absence detection) are displayed in Fig. 2. The estimates of parameter dP (upper panel of Fig. 2) clearly decline as 
a function of delay. To test whether this decline is statistically significant, parameter dP was set to be equal across 
all four delay conditions. The reduction in fit of the model with this equality restriction relative to the base model 
was statistically significant, ΔG2(3) = 176.43, p < .001. The model implying that parameter dP does not differ 

Delay

Culprit-present lineups Culprit-absent lineups

Culprit identifications Filler identifications Lineup rejections Innocent-suspect identifications Filler identifications Lineup rejections

No delay 401 (37%) 276 (25%) 423 (38%) 133 (12%) 383 (35%) 584 (53%)

One day 265 (25%) 355 (33%) 444 (42%) 137 (13%) 397 (37%) 530 (50%)

One week 188 (18%) 359 (35%) 493 (47%) 117 (11%) 396 (38%) 527 (51%)

One month 134 (13%) 347 (34%) 531 (52%) 109 (11%) 370 (37%) 533 (53%)

Table 2.  Response frequencies (and proportions, relative to the condition-specific response frequencies in 
culprit-present and culprit-absence lineups, respectively, in parentheses) as a function of culprit presence or 
absence and delay.
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among delay conditions thus must be rejected, leading to the conclusion that the probability of culprit-presence 
detection declines as a function of delay. Next, the two most successful of the five ‘classic’ functions describing 
forgetting curves4, a power function and a logarithmic function, were fitted to the estimates of parameter dP. 
Here we took into account that the standard power and logarithmic functions, dP = λ · (delay)−ψ and dP = λ · 
ln(delay) + ψ, are undefined at delay = 0. In doing so we followed Wixted and Ebbesen16 and used modified 
versions of these standard functions of the form dP = λ · (1 + delay)−ψ and dP = λ · ln(1 + delay) + ψ, which are 
defined at delay = 0 and quickly approximate dP = λ · (delay)−ψ and dP = λ · ln(delay) + ψ, respectively, as delay 
increases. Both functions fit the data well, but the best fitting power function, d̂P = 0.2744 · (1 + delay)−0.726, R2 
= 0.98 (shown as the continuous orange curve in Fig. 2) fit the data even better than the best fitting logarithmic 
function, d̂P = −0.0679 · ln(1 + delay) + 0.2377, R2 = 0.88 (not shown in Fig.  2). Whereas these functions 
provide an excellent description of the data, they are not theoretically motivated. The latter approach—to fit 
a theoretically motivated forgetting function—was taken in a meta-analysis by Deffenbacher et al.18 who fit 
the function implied by the power-exponential forgetting theory proposed by Wickelgren  [e. g.,82] to eleven 
data sets obtained in facial memory studies. However, while Deffenbacher et al.18 noted that this function was 
of necessity only fitted by eye due to limited data points making formal data fitting impractical18, they also 
discussed the simplified version of Wickelgren’s power-exponential forgetting function82 proposed by Wixted 
and Carpenter83. This simplification makes this forgetting function more practical for data fitting in empirical 
memory studies. Specifically, Wixted and Carpenter83 have shown that, under typical conditions, Wickelgren’s 
power-exponential forgetting function reduces to

	 m = λ(1 + βt)−ψ,� (1)

where m is memory strength, λ is the state of long-term memory at t = 0, β is a scaling parameter, t is the time 
delay and ψ is the rate of forgetting. This function can be fitted to the present data given a boundary condition 
proposed by Wickelgren82. This boundary condition is that m(t = 0) = λ, which was therefore equated with 
dP(t = 0). An estimate of dP at t = 0 is known ( d̂P = 0.2820 in the immediate condition, see Fig. 2). It is therefore 
straightforward to set λ = 0. 2820. Given this, the fit of the simplified version of the forgetting function implied 
by Wickelgren’s power-exponential forgetting theory63,64 is excellent ( d̂P = 0.2820 · (1 + 2.6623 · delay)−0.502, 
R2 = 0.99) and is shown as the dashed orange curve in Fig. 2. In the light of the similarly excellent fit of the 
descriptive power function mentioned above, the fact that this theoretically motivated forgetting function fits 
the present data so well may not be too surprising as it is, after all, also a power function, the only difference to 
the standard power function being the additional scaling parameter β in the theoretically motivated forgetting 
function.

The estimates of parameter g, in contrast, seem to be relatively constant across delays (middle panel of 
Fig. 2). To test whether this is indeed the case, parameter g was set to be equal across all four delay conditions. 
The reduction in fit of the model with this equality restriction relative to the base model was not statistically 
significant, ΔG2(3) = 6.26, p = .100. The model implying that parameter g does not differ among delay conditions 
is compatible with the data and need not be rejected, leading to the conclusion that the probability of guessing-
based selection does not significantly change as a function of delay.

Finally, the estimates of parameter dA were very low (bottom panel of Fig.  2). Given that the parameter 
estimates were so close to the boundary of the parameter space, we used the parametric bootstrap procedure 
implemented in multiTree55 to obtain a p- value based on a simulated sampling distribution54,84. The model in 
which parameter dA was set to be equal across all four delay conditions did not fit significantly worse than the 
base model, ΔG2(3) = 0.14, bootstrapped p =. 814, indicating that the probability of culprit-absence detection 
does not significantly change as a function of delay.

Discussion
The goal of the present study was to examine how the processes underlying eyewitness responses are affected 
by the delay between viewing a staged-crime video and responding to lineups. More specifically, we tested 
hypotheses about how delays affect culprit-presence detection, guessing-based selection and culprit-absence 
detection. Extending previous studies in which the effects of delay were typically investigated by comparing a 
condition with no or a small delay to another condition with a larger delay24–26,30,32–34, here the delay variable had 
four levels: no delay, one day, one week (average actual delay: eight days) and one month (average actual delay: 
33 days), allowing us to examine the form of changes in culprit-presence detection, guessing-based selection and 
culprit-absence detection over time. This was done using a large sample of N = 2,108 participants, each of whom 
contributed four data points, thus providing for sensitive statistical tests of the effects of delay on the processes 
underlying eyewitness responses to lineups.

The results are clear-cut for the memory-based process of culprit-presence detection (parameter dP) which 
declines in a way that is described well by a power function, one of the two ‘classic’ functions that have been 
found to best describe the decline in the ability to remember over time4. In fact, the present results are strikingly 
parallel to those from experimental paradigms as diverse as human face memory, matching-to-sample with 
pigeons and even Ebbinghaus’ original savings data for which a power function has been found to fit forgetting 
curves best and even slightly better than a logarithmic function, just like in the present case16. Additionally, the 
present results align closely with the simplified version of Wickelgren’s power-exponential forgetting function [e. 
g., 82] proposed by Wixted and Carpenter83. In sum, then, the changes in the memory-based process of culprit-
presence detection (parameter dP) as a function of delay are consistent with what is known about the time-
course of forgetting in general. With four levels of the delay variable, the study presented here allows for this 
conclusion which would not have been possible to draw based on only two levels of the delay variable, the latter 
of which is characteristic of most studies on the effects of delay on eyewitness memory24–26,30,32–34.
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In recommendations of how to perform lineups it has been noted that “eyewitness memory can fade with 
the passage of time. Hence, a lineup should be conducted as soon as possible after establishing evidence-based 
suspicion”1. The present results demonstrate just how rapid the fading of memory-based culprit-presence 
detection can be at small delays already. This underscores the critical importance of conducting lineups as soon 
as possible after a crime to maximize the chances of culprit identifications based on memory. It also highlights the 
importance of educating those involved in criminal trials such as jurors about the rapid reduction in memory-
based culprit-detection processes within the first days following the crime85, particularly when considering that 
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naïve metacognitive judgements typically do not anticipate the rapid declines reflected in empirical forgetting 
curves86,87.

The results are also clear-cut for guessing-based selection (parameter g) which does not change as a function 
of delay. Specifically, guessing-based selection does not increase parallel to the delay-related reduction in 
culprit-presence detection; thus, there is no evidence of compensatory guessing60–63. Culprit-absence detection 
(parameter dA) did not vary as a function of delay. Notably, the value of dA was already close to zero in the no-
delay condition and remained at this low level across all delays. This pattern of dA is commonly observed in the 
literature42,45,46,64 and the explanation for this pattern is straightforward. Whereas culprit-presence detection 
requires just one lineup member (the culprit) to elicit culprit-presence detection, culprit-absence detection 
requires the eyewitness to rule out every single lineup member as the culprit which is usually much more difficult.

The present results align with those of previous studies according to which delay primarily affects culprit-
present lineups as opposed to culprit-absent lineups27–29,36. Consistent with these findings, the most striking 
descriptive observation at the level of observable behavior is that culprit identification rates decrease with 
increasing delay (Table 2). A priori, this pattern could have been attributed to various underlying processes, 
such as a decline in culprit-presence detection, changes in guessing-based selection, or a combination of these 
and other processes. The model-based analysis presented here disambiguates this pattern by demonstrating that 
the decrease in culprit identification rates is driven by a pronounced decline in culprit-presence detection as a 
function of delay. By contrast, guessing-based selection and all other processes remain constant across delays.

As a limitation, it should be mentioned that the forgetting functions evaluated here describe the decline in 
culprit-presence detection but do not allow conclusions about mechanisms of forgetting such as decay, interference 
or consolidation. Future studies could aim at further disentangling the contributions of these mechanisms. 
Furthermore, the present conclusions rely on a single experiment, albeit one with a particularly large sample size, 
to assess the effects of four levels of delay (no delay, one day, one week, one month) on the processes underlying 
eyewitness responses. While the present results are consistent with the conclusions from previous research 
indicating that the decline of memory can be described by a power function16, future research could further test 
the robustness of the conclusions drawn here by investigating even longer delays and sequential lineups versus 
simultaneous lineups, as well as other variations in lineup procedures. Furthermore, while the 2-HT eyewitness 
identification model has been validated extensively with data from diverse research groups, stimulus materials 
and lineup procedures41, it may be seen as a limitation that, in the present study, the same stimulus materials and 
lineups as in previous studies41–47,66 were used. Replications with different stimulus materials and single-culprit 
staged-crime videos [e. g.,88]  could be done to examine generalizability. Another limitation of the present study 
is that it was not designed to perform formal comparisons across different frameworks for analyzing lineup data. 
Accordingly, our conclusions are confined to the specific hypotheses tested regarding the effects of delay on 
culprit-presence detection, guessing-based selection and culprit-absence detection.

In sum, the results of the present study underscore the critical importance of conducting lineups as soon as 
possible after a crime to enhance memory-based culprit-presence detection. Archival studies from Great Britain 
suggest that the most common delay between a crime and an associated lineup is one to three months20–23. 
Although it is not justified to generalize the exact time course of the decline in culprit-presence detection 
observed here to real-world cases, the rapid initial reduction in memory-based culprit detections strengthens 
the argument that lineups should be conducted as soon as possible, ideally within hours or days after the crime, 
rather than weeks or months later. These findings also highlight the need to educate jurors and others involved 
in criminal trials about the sharp decline in memory-based culprit-presence detection within the first days after 
the crime.

Data availability
The files with the frequency data and the equations needed for the model-based analyses are available at ​h​t​t​p​s​:​
/​/​o​s​f​.​i​o​/​f​q​u​s​6​​​​​.​​
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