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Abstract

Hierarchical Clustering is a popular tool for understanding the hereditary proper-
ties of a data set. Such a clustering is actually a sequence of clusterings that starts
with the trivial clustering in which every data point forms its own cluster and then
successively merges two existing clusters until all points are in the same cluster. A
hierarchical clustering achieves an approximation factor of « if the costs of each -
clustering in the hierarchy are at most « times the costs of an optimal k-clustering.
We study as cost functions the maximum (discrete) radius of any cluster (k-center
problem) and the maximum diameter of any cluster (k-diameter problem). In gen-
eral, the optimal clusterings do not form a hierarchy and hence an approximation
factor of 1 cannot be achieved. We call the smallest approximation factor that can
be achieved for any instance the price of hierarchy. For the k-diameter problem we
improve the upper bound on the price of hierarchy to 3 + 2v/2 ~ 5.83. Moreover
we significantly improve the lower bounds for k-center and k-diameter, proving a
price of hierarchy of exactly 4 and 3 + 2/2, respectively.
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1 Introduction

Clustering is an ubiquitous task in data analysis and machine learning. In a typical
clustering problem, the goal is to partition a set of objects into different clusters such
that only similar objects belong to the same cluster. There are numerous ways how
clustering can be modeled formally and many different models have been studied in
the literature in the last decades. In many theoretical models, one assumes that the
data comes from a metric space and that the desired number of clusters is given. Then
the goal is to optimize some objective function like k-center, k-median, or A-means.
In most cases the resulting optimization problems are NP-hard and hence approxima-
tion algorithms have been studied extensively.

One aspect of real-world clustering problems that is not captured by these models
is that it is often already a non-trivial task to determine for a given data set the right
or most reasonable number of clusters. One particularly appealing way to take this
into account is hierarchical clustering. A hierarchical clustering of a data set is actu-
ally a sequence of clusterings, one for each possible number of clusters. It starts with
the trivial clustering in which every data point forms its own cluster and then succes-
sively merges two existing clusters until all points are in the same cluster. This way
for every possible number of clusters, a clustering is obtained. These clusterings help
to understand the hereditary properties of the data and they provide information at
different levels of granularity.

While hierarchical clustering is successfully used in many applications, it is not as
well understood from a theoretical point of view as the models in which the number
of clusters is given as part of the input. One reason for this is that it is not obvious
how the quality of a hierarchical clustering should be measured. A possibility that
has been explored in the literature is to define the quality of a hierarchical clustering
based on its worst level. To be precise, let (X, d) be a metric space and P C X a set
of n points. Furthermore let 5# = (H.,,...,H1) be a hierarchical clustering of P,
where H}, denotes a k-clustering, i.e., a clustering with at most £ non-empty clusters.
Then Hj 1 arises from Hj, by merging some of the existing clusters. We assume that
some objective function like k-center, k~-median, or k-means is selected and denote
by cost(H) the objective value of Hy, with respect to the selected objective func-
tion. Furthermore, let Oy, denote an optimal k-clustering and let cost(Oy) denote its
objective value. Then we say that .7# achieves an approximation factor of & > 1 if
cost(Hy) < a - cost(Oy) for every k, assuming that cost is an objective that is to be
minimized. In this work we consider the radius objective, which is well-known from
the k-center problem. Here the cost is defined as the maximum radius of a cluster.
Furthermore we consider the diameter objective, where the cost is defined as the
maximum distance between any two points lying in the same cluster.

An a-approximation for small « yields a strong guarantee for the hierarchical
clustering on every level. However, in general there do not exist optimal clusterings
O, ..., Oq that form a hierarchy. So even with unlimited computational resources, a
1-approximation usually cannot be achieved. In the literature different algorithms for
computing hierarchical clusterings with respect to different objective functions have
been developed and analyzed. Dasgupta and Long [2] and Charikar et al. [3] initiated
this line of research and presented both independently from each other an algorithm
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that computes efficiently an 8-approximate hierarchical clustering with respect to
the radius and diameter objective. That is, for every level &, the maximal radius or
diameter of any cluster in the k-clustering computed by their algorithms is at most
8 times the maximal radius or diameter in an optimal k-clustering. Inspired by [2],
Plaxton [4] proposed a constant-factor approximation for the k-median and k-means
objective. Later a general framework that also leads constant approximation guaran-
tees for many objective functions including in particular k-median and k-means has
been proposed by Lin et al. [5].

Despite these articles and other related work, which we discuss below in detail,
many questions in the area of hierarchical clustering are not yet resolved. We find it
particularly intriguing to find out which approximation factors can be achieved for
different objectives. This question comes in two flavors depending on the computa-
tional resources available. Of course it is interesting to study which approximation
factors can and cannot be achieved in polynomial time, assuming P # NP. Since in
general there do not exist hierarchical clusterings that are optimal on each level, it is
also interesting to study which approximation factors can and cannot be achieved in
general without the restriction to polynomial-time algorithms.

For an objective function like radius or diameter we define its price of hierarchy as
the smallest « such that for any instance there exists an a-approximate hierarchical
clustering. Hence, the price of hierarchy is a measure for how much quality one has
to sacrifice for the hierarchical structure of the clusterings.

Our main results are tight bounds for the price of hierarchy for the radius, discrete
radius and diameter objective. Here the difference between radius and discrete radius
lies in the choice of centers. For the radius objective we allow to choose the center
of a cluster C' C P from the whole metric space X, while for the discrete radius
objective the center must be contained in C itself. We will see that this has an impact
on the price of hierarchy. For all three objectives the algorithms in [2, 3] compute
an 8-approximate hierarchical clustering in polynomial time. Until recently this was
also the best known upper bound for the price of hierarchy in the literature for hierar-
chical radius and diameter. For discrete radius, Gro3wendt [6] shows an upper bound
for the price of hierarchy of 4. The best known lower bounds are 2, proven by Das
and Kenyon-Mathieu [7] for diameter and by GroBwendt [6] for (discrete) radius.
We improve the framework in [5] for radius and diameter and show an upper bound
on the price of hierarchy of 3 4 21/2 ~ 5.83. The upper bound of 3 + 2/2 for the
radius was also recently proved by Bock [8] in independent work. However our main
contribution lies in the design of clustering instances to prove a lower bound of 4 for
discrete radius and 3 + 2+/2 for radius and diameter.

1.1 Related Work

Gonzales [9] presents a simple and elegant incremental algorithm for k-center. The
algorithm exhibits the following nice property: given a set P which has to be clus-
tered, it returns an ordering of the points, such that the first £ points constitute the
centers of the k-center solution, and this solution is a 2-approximation for every
1 < k < |P|. However the resulting clusterings are usually not hierarchically com-
patible. Dasgupta and Long [2] use the ordering computed by Gonzales’ algorithm
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to compute a hierarchical clustering. The authors present an 8-approximation for the
objective functions (discrete) radius and diameter. In an independent work Chari-
kar et al. [3] also present an 8-approximation for the three objectives which outputs
the same clustering as the algorithm in [2] under some reasonable conditions [7].
In a recent work, Mondal [10] gives a 6-approximation for hierarchical (discrete)
radius. In Appendix A we present an instance where this algorithm computes only a
7-approximation contradicting the claimed guarantee.

Plaxton [4] shows that a similar approach as in [2] yields a hierarchical cluster-
ing with constant approximation guarantee for the ~~-median and k-means objectives.
Later a general framework for a variety of incremental and hierarchical problems
was introduced by Lin et al. [S]. Their framework can be applied to compute hier-
archical clusterings for any cost function which satisfies a certain nesting property,
especially those of k-median and k-means. This yields a 20.71a-approximation for
k-median and a 576 3-approximation for k-means. Here o = 2.67059 and 5 = 5.912
are the currently best approximation guarantees for k-median [11] and k-means [12].
The algorithms presented in [2—5] run in polynomial time. Unless P=NP there is no
polynomial-time «a-approximation for o < 2 for hierarchical (discrete) radius and
diameter. For (discrete) radius this is an immediate consequence of the reduction
from dominating set presented by [13]. A similar reduction from clique cover yields
the statement for hierarchical diameter.

However even without time constraints it is not clear what approximation guar-
antee can be achieved for hierarchical clustering. It is easy to find examples, where
the approximation guarantee of any hierarchical clustering for all three objectives is
greater than one. Das and Kenyon-Mathieu [7] and GroBwendt [6] present instances
for diameter and (discrete) radius, where no hierarchical clustering has an approxi-
mation guarantee smaller than 2. On the other hand GroBwendt [6] proves an upper
bound of 4 on the approximation guarantee of hierarchical discrete radius by using
the framework of Lin et al. [5]. In recent independent work Bock [8] improved the
bound for hierarchical radius to 3 + 2v/2. While his approach is inspired by Dasgupta
and Long [2], the resulting algorithm is similar to the algorithm we present in this
paper as an improvement of [5].

Aside from the theoretical results, there also exist greedy heuristics, which are
more commonly used in applications. One very simple bottom up, also called agglom-
erative, algorithm is the following: starting from the clustering where every point is
separate, it merges in every step the two clusters whose merge results in the small-
est increase of the cost function. For (discrete) radius and diameter this algorithm
is known as complete linkage and for the k-means cost this is Ward’s method [14].
Ackermann et al. [15] analyze the approximation guarantee of complete linkage in
the Euclidean space. They show an approximation guarantee of O(log(k)) for all
three objectives assuming the dimension of the Euclidean space to be constant. This
was later improved by Gro3wendt and Roglin [16] to O(1). In arbitrary metric spaces
complete linkage does not perform well. There Arutyunova et al. [17] prove a lower
bound of Q(k) for all three objectives. For Ward’s method GroBwendt et al. [18]
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show an approximation guarantee of 2 under the strong assumption that the optimal
clusters are well separated.

Recently other cost functions for hierarchical clustering were proposed, which do
not compare to the optimal clustering on every level. Dasgupta [19] defines a new
cost function for similarity measures and presents an O(« log(n))-approximation for
the respective problem. This was later improved to O(«) independently by Charikar
and Chatziafratis [20] and Cohen-Addad et al. [21]. Here « is the approximation
guarantee of sparsest cut. However Cohen-Addad et al. [21] prove that every hier-
archical clustering is an O(1)-approximation to the corresponding cost function for
dissimilarity measures when the dissimilarity measure is a metric. A cost function
more suitable for Euclidean spaces was developed by Wang and Moseley [22]. They
prove that a randomly generated hierarchical clustering performs poorly for this cost
function and show that bisecting k-means computes an O(1)-approximation.

2 Results

We define the price of hierarchy p.ost With respect to an objective function cost as
the smallest number such that for every clustering instance there exists a hierarchi-
cal clustering which is a peost-approximation with respect to cost. Observe that the
results [2, 3, 6, 7] imply that the price of hierarchy for radius and diameter is between
2 and 8 and for discrete radius between 2 and 4. We close these gaps and prove that
the price of hierarchy for radius and diameter is exactly 3 4 21/2 and for discrete
radius exactly 4. Notice that this does not imply the existence of polynomial-time
algorithms with approximation guarantee pcost. Especially our algorithm which com-
putes a 3 4 2v/2-approximation for radius and diameter does not run in polynomial
time. This is also the case for the 3 -+ 2+/2-approximation for radius presented by
Bock [8] in independent work. Our upper bound of 3 4 2v/2 can be achieved by a
small improvement in the framework of Lin et al. [S]. However our most technically
demanding contribution is the design of a clustering instance for every € > 0 such
that every hierarchical clustering has approximation guarantee at least 3 4+ 21/2 — ¢
for radius and diameter and 4 — ¢ for discrete radius. It requires a careful analysis of
all possible hierarchical clusterings, which is highly non-trivial for complex cluster-
ing instances.

3 Preliminaries

A clustering instance (X, P, d) consists of a metric space (X, d) and a finite subset
P C X. For aset (or cluster) C' C P we denote by

diam(C) = max d(p, q)

p,q€C
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the diameter of C. By rad(C, ¢) = maxpec d(c, p) we denote the radius of C with
respect to a center ¢ € X. This is the largest distance between ¢ and a point in C. The
radius of C is defined as the smallest radius of C with respect to a center ¢ € &, i.e.,

rad(C) = min rad(C, ¢)
while the discrete radius of C is defined as the smallest radius of C with respect to a
centerc € C i.e.,

drad(C) = minrad(C, ¢).
ceC
A k-clustering of P is a partition of P into at most £ non-empty subsets. We consider
three closely related clustering problems.

The k-diameter problem asks to minimize diam(Cy) = maxcec, diam(C),i.e., the
maximum diameter of a k-clustering Cy. In the k-center problem we want to minimize
the maximumradius rad(Cy,) = maxcec, rad(C),andin the discrete k-center problem
we want to minimize the maximum discrete radius drad(Cy,) = maxcec, drad(C).

Definition 1 Given an instance (X, P,d), let n = |P|. We call two clusterings C
and C’ of P with |[C| > |C’| hierarchically compatible if for all C' € C there exists
C' € ¢’ with C C C’. A hierarchical clustering of P is a sequence of clusterings
H = (Hp,...,H1), such that

1. H; is an i-clustering of P
2. for 1 < i < nthe two clusterings H;_1 and H; are hierarchically compatible.

For cost € {diam,rad,drad} let O; denote the optimal i-clustering with respect to
cost. We say that .77 is an a-approximation with respect to cost if foralli = 1,...,n
we have

cost(H;) < a - cost(O;).

Since optimal clusterings are generally not hierarchically compatible, there is usually
no hierarchical clustering with approximation guarantee o = 1. We have to accept
that the restriction on hierarchically compatible clusterings comes with an unavoid-
able increase in the cost compared to an optimal solution.

Definition 2 For cost € {diam, rad, drad} the price of hierarchypeost > 1 is defined
as follows.

1. For every instance (X, P, d), there exists a hierarchical clustering .# of P that
IS a peost-approximation with respect to cost.
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2. Forany a < peost there exists an instance (X, P, d), such that there is no hierar-
chical clustering of P that is an a-approximation with respect to cost.

Thus peost is the smallest possible number such that for every clustering instance
there is a hierarchical clustering with approximation guarantee pcost.

4 An Upper Bound on the Price of Hierarchy

The framework by by Lin et al. [5] can be applied to compute incremental and hier-
archical solutions to a large class of minimization problems. We first discuss their
framework in the context of hierarchical clustering for (discrete) radius and diameter.
In the second part we then present an improved version of their algorithm for radius
and diameter.

First we introduce the notion of a hierarchical sequence, which is a relaxation of a
hierarchical clustering in the sense that it does not have to contain a k-clustering for
every 1 <k <|P|.

Definition 3 Given an instance (X,P,d), with n=|P|. We call a sequence
€ = (CW,...,CM) of clusterings a hierarchical sequence if it satisfies

1. [ =nand|CV| =1
2. for 1 <i <t either =Y = or C~1 is obtained from C*) by merging
some of its clusters.

Such a hierarchical sequence can be extended to a hierarchical clustering of P as
follows. We define the respective hierarchical clustering k(%) by assigning every
1 < i < n the clustering among C(), ..., C™) of smallest cost and size at most i. We
say that € is an a-approximation iff h(%’) is an c-approximation.

Before we are able to define the algorithm we need one important definition from [5].

Definition 4 Given an instance (X, P, d). For cost € {diam, rad, drad} we say that
the (v, §)-nesting property holds for reals v, > 0, if for any two clusterings C, D of
P with |C| > |D| there exists a clustering C’ with

L [C'| <D
2. (' is hierarchically compatible with C and
3. cost(C") < ~cost(C) + dcost(D).

We say that C' is a nesting of C at D. Let Augment,,(C, D, , d) denote the subrou-
tine that computes such a clustering C’.
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Algorithm 1 (Lin et al. [5])

Require: Clustering instance (X, P,d), with d(z,y) > 2 for all z,y € P, optimal
clusterings O)p|, ..., 01 of P with respect to cost
Ensure: A hierarchical clustering of P
1 Set A = cost(0,),t = [logy, (A)] + 1 and CH = 0Opp,
2: fori=t—1to1do
3: Let 1 < n; < |[|P| be the smallest number such that cost(O,,) €
(@)=t @)
if such a number exists then

»

5: set C(Z) = Augmentcost(c(i+l)’ O”l T 6)
6: else

7. set C(D = ¢+

8: end if

9: end for

-

o: return h((CY,...,cM))

The algorithm of Lin et al. [5] is shown as Algorithm 1. It computes a hierarchical
sequence ¢ = (C®,...,CM) of clusterings as follows. Starting with C) = Oyp,
the algorithm builds the i-th clustering C(*) as nesting of C(**1) at an optimal cluster-
ing O,,,. This guarantees that the clusterings are hierarchically compatible.

Theorem 1 [5] Forcost € {drad, rad, diam}, if the(, 0)-nesting property holds for
realsy > 1,6 > 0, then Algorithm 1computes a hierarchical clustering of Pwith
approximation guaranteedydwith respect tocost.

GroBwendt [6] proved the existence of such a nesting property for diam, rad, and
drad.

Lemma 2 [6] Forcost € {diam, rad}there exists a (2, 1)-nesting and forcost = drad
there exists a (1, 1)-nesting.

In combination with Theorem 1 this yields pqraq < 4. However, for the other two
objectives we obtain an upper bound of only 8. We improve Algorithm 1 to obtain the
claimed upper bound of 3 + 2/2.

In the definition of the (v, §)-nesting property we require a nesting of C at D for
arbitrary clusterings C, D with |C| > |D|. However, in Algorithm 1 we know more
about the structure of C. This clustering is obtained by repeatedly nesting at optimal
clusterings of increasing cost. In Algorithm 2 we define a nesting subroutine for this
type of clusterings that eventually leads to a better approximation-guarantee.
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Algorithm 2

Require: Step size o > 1. Clustering instance (X, P,d), with d(z,y) > 2 for all
x,y € P, optimal clusterings O|p|,...,O; of P with respect to cost
Ensure: A hierarchical clustering of P
1: Set A = cost(0y),t = [log,(A)] + 1 and C) = Op|
2. For all C' € C™ we set parent,(C) = C
3: fori=t—1to1do
4. Let 1 < n; < |P| be the smallest number such that cost(O,,) € (a!~~ 1, at~
5 if such a number exists then
6: For C € Cli*Y) let O € O, be a cluster with parent; ;(C) N O # 0 and set
Nest;(C) = O

7 Set € = {Upeneat-1(0)C 1 0 € On}

8 Set parenti(UCENest@l)(O) C)=0foral Oc O,,
9: else '

10: Set C = C*+Y parent; = parent,;

11: end if

12: end for
13: return h((CY,...,cM))

The main difference between Algorithm 1 and Algorithm 2 is the replacement of
the function Augment...,(Ci+1,On,,7,d), which computes the nesting of C(*1) at
O,,,, by a more explicit approach to compute such a nesting. We use the fact that
€+ is obtained by a nesting at On, .- This is reflected in the function parent;, ;
which assigns every cluster in C*+1) a cluster from O,,, +1- In iteration i we then
use the (7 + 1)-st parent function to determine which clusters of C(tY) will be
merged to obtain C(*), We are allowed to merge clusters C, D € C“+1) if there is a
cluster O € O, which has a non-empty intersection with both, parent, ,,(C) and
parent; (D). The parent of the merged cluster in C is then set to O.

Lemma 3 Forcost € {diam, rad}and anya > 14lgorithm 2 computes a hierarchical
clustering with approximation guaranteea(% + 1).

Proof Let n denote the cardinality of P. Notice first that (C®),...,C(V) is indeed
a hierarchical sequence. The first property of a hierarchical sequence is satis-
fied: We define C¥) = @, and since cost(O;) = A € (a!~2,at~'] we obtain
|C™M| < ny = 1. The second property is satisfied since C(*) either equals C“t1) or
is obtained by merging clusters from C(**1), Thus Algorithm 2 indeed computes a
hierarchical clustering.

Diameter (cost = diam): Let 1 < ¢ < ¢t. We claim
1. for every cluster C €C® and every point p € parent,(C) that
maxgec d(p, q) < YiJ o
2. thatdiam(C?) < ot~ 423171 ol
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We prove this by induction over i, starting with ¢ = ¢ in decreasing order. Observe
that C(*) consists only of clusters of size one so these claims are true for i = ¢.

Let 1 <i<t—1. If C® = U+ both claims are true by induction hypoth-
esis. Thus we assume from now on that C(¥) = C(+1)_ For the first claim, we fix
a cluster C € C® and two points p € parent,(C) and g € C. Let D € Ct+tD
be the cluster which contains ¢. Since C*) is obtained by merging clusters from
CU*+Y we know that D C C and thus parent, (D) N parent;(C) # 0. Let
x € parent;_ (D) N parent;(C). By the induction hypothesis

t—i—1

d(x, q)<maxda:y < Z

Since p and x lie both in parent;(C) we obtain d(p, z) < diam(O,,,) < a!~%. Using
the triangle inequality we conclude

t—1i

d(p,q) < d(p,x) +d(w,q) <) _al.

=1

For the second claim we again fix a cluster C' € C) and two points
p,q € C.Let B,D e Cl"*tY guch that p € B and g € D. Observe that BU D C C
and thus parent;,,(B) N parent;(C) # 0 # parent, (D) N parent;(C). Let
x, € parent,,(B) N parent,(C') and x, € parent, (D) N parent;(C). Since x,
and z, lie both in parent,(C) we obtain d(z,, z,) < diam(0,,,) < a'~". We apply
the triangle inequality and the induction hypothesis to obtain

t—i—1

d(p,q) < d(p,zp) + d(xp, zq) + d(x4,q) < a4 Z ol

Radius (cost = rad): Let 1 < i < ¢. We claim that for every cluster C' € C*) and
the center ¢ of cluster parent;(C') holds max,cc d(c,q) < a'~# +2317; Ty
Notice that this immediately implies

t—i—1

rad(C) < at~" 42 Z ol

We prove this by induction over i. Observe that C(*) consists only of clusters of size
one. So this claim is true fori =t. Let 1 < i < ¢ — 1. If C() = CU+D) the claim is
true by induction hypothesis. Thus we assume from now on that C(" # C(+1) We
fix a cluster C € C®) a point ¢ € C and denote by ¢ the center of parent;(C). Let
D e U+ be the cluster which contains ¢. Since C(¥ is obtained by merging clus-
ters from C+Y), we know that D C C' and thus parent, (D) N parent,(C) # (.
Let = € parent, (D) N parent;(C). By induction hypothesis the following holds
for the center d of parent, (D)
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t—i—2

d(d < ot~ 1 2 l'
max (d,v) <« + ; «@

Together with the triangle inequality this implies

t—1—2 t—i—1

d(z,q) < d(x,d) +d(d,q) <rad(Oy,,,) + a7 +2 Y ol <2 Y ol
=1 =1

This yields the claim, as

t—i—1 t—i—1

d(c,q) < d(e,z) +d(z,q) < rad(O,) + 2 Z ol <alTt g2 Z ol
=1 I=1

Finally we can bound the approximation factor for both radius and diameter. Let
cost € {diam, rad}. Since d(z,y) > 2 for all z,y € P we get that cost(O,,—1) > 1.
Thusforeveryl < m < nthereis1 < i <t — Isuchthatcost(0,,) € (a!~i~1 al~?].

Thus the clustering ((C®),...,C™M)) is an a(ﬁ + 1>-approximation iff for all
1<i<t

, 2
cost(C) < a( 1 + 1)cost((’))

o —

for all optimal clusterings O with cost(O) € (a!~*~1, a!~*]. We obtain
(i) i tit . i at™? i 2
t(CV) <at™ 12 <ol 2. =o' (s 1)
cost(C*) <a'™* + ;a o' Tt 4 e a—1+

Sa(a i 1 + l)cost(O).

Theorem 4 For cost € {diam,rad} we have peost < 3 + 2v/2 ~ 5.828.

Proof Let (X, P,d) be a clustering instance. We can assume without loss of general-
ity that d(x,y) > 2 for all z,y € P, otherwise we scale the metric d accordingly. For
cost € {diam, rad} we then use Algorithm 2 with o = 1 4+ v/2 to compute a hierar-
chical clustering. By Lemma 3 we obtain a hierarchical clustering that is an 3 + 21/2
approximation and thus peost < 3 + 2v/2. O
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5 A Lower Bound on the Price of Hierarchy

The most challenging contributions of this article are matching lower bounds on the
price of hierarchy for diameter, radius, and discrete radius.

Theorem 5 For cost € {diam, rad}we have peost > 3 + 2v/2and for cost = dradwe
have Pcost = 4.

There is already existing work in this area by Das and Kenyon-Mathieu [7] for the
diameter and GroBwendt [6] for the radius. Both show a lower bound of 2 for the
respective objective. To improve upon these results we have to construct much more
complex instances which differ significantly from those in [6, 7].

For every € > 0 we will construct a clustering instance (X', P, d) such that for
any hierarchical clustering /%" = (Hp|, ..., H1) of P thereis 1 < i < |P| such that
cost(H;) > « - cost(O;), where O; is an optimal i-clustering of P with respect to
cost and o = (3 + 2v/2 — ¢) for cost € {diam, rad} and o = 4 — ¢ for cost = drad.

The proof is divided in three parts. First we introduce the clustering instance
(X, P,d) and determine its optimal clusterings. In the second part we develop the
notion of a bad cluster. We prove that any hierarchical clustering contains such bad
clusters and develop a lower bound on their cost. In the third part we compare the
lower bound to the cost of optimal clusterings and prove Theorem 5.

5.1 Definition of the Clustering Instance

For n € N we denote by [#] the set of numbers from 1 to n.
Let ke Nand I' = k + 1. For 0 < ¢ < k we define point sets Q; and P, recur-
sively as follows

1. Forl =0let Py = Qp = [1] and denote by N the cardinality of Py.

2. For £>0 let Q=["-Ny_1]V1 and P, = Hf:o Q;. Furthermore set
Ny = |Py].

Moreover let ¢ : P, — [N,] be a bijection for 0 < ¢ < k.

We refer to a point X € Py, as a matrix with k£ + 1 rows and N,_ entries in the ¢
-th row. Thus we write

X = (3301 ‘ ‘ xgl,...,xg]v£71 | | xk.l,...,kakil).
Let Xy = (z1,...,2en,_,) € Qp for 0 < ¢ < k. For a shorter representation we can
replace the /-th row directly by X, and for 0 < i < j < k we can replace the i-th up
to j-th row by X550 = (Xi | ... | Xj).
Let X€Pp and 1<{¢<k Notice that Xjp, 1)€Pr—1 and let

m = ¢g—1(X[.0-1)), we define

AF = {(Xpou—1) | T, - s Tom—1,% Tomi1s - - Teng_y | Xjegrny) | * € [ Ne—a]}.
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Thus all coordinates of points in A% are fixed and agree with those of X except one
which is variable. Here X|o.,_1j serves as prefix which indicates through ¢,_; which
coordinate of X, can be changed.

We define Ay = {AX | X € Py} as the set containing all subsets of this form.
It is clear that Ay is a partition of P}, and that it contains only sets of size I" - N,_1.
Furthermore we set Ag = {{X} | X € Px}.

Example 1 If we perform the first three steps of the construction we get
Qo = [1], Q1 = [[,Q2 = [*]" and

Pr={(1]z11) |z € [T},
Py = {(1 | 11 | 1‘21,...,1‘21’*) | r11 € [F],l‘gi € [FZ} for1 <i< F}

Since ¢q is a map between two sets of cardinality one this map is always unique. Now
suppose that we picked ¢; such that ¢1 ((zo1 | #11)) = 211 for all (zo1 | 211) € P1.
Then the partition 4; consists of the sets

{(U x| @21,. .. 22r) | % € [T}
with zo; € [['?] forall 1 < i < T'. The partition A5 consists of the sets
{(1 ] 211 | @21, .+, Towyy—1,%, Tawy 41, - - -, Tar) | * € [[?]}

with 211 € [['] and 2o; € [[?] forall 1 <i < T withi # z1.
Let G = (V, E, w) denote the weighted hyper-graph with V' = Py and F = Uf=1 A;.
The weight of a hyper-edge e € F issetto {iff e € A;. For 0 < ¢ < k, the sub-graph
Gy = (Vi, By, wy) is given by Vp = Py, By = Uf:o A; and wy = w)g, .

We extend G to a hyper-graph H = (V' E’ w’) as follows. Let
Vi=VUUl{valAe A} and F' = EUU {{v,va} | A€ A;,ve A}
Thus H contains one vertex for every A € Ufzo A; and this vertex is connected by

edges to every vertex v € A. Fore € E we set w’(e) = w(e) and for e = {v,v4} for
some A € Ay and v € A we set w’(e) = £/2.

The clustering instance (X, P, d) is given by X = V', P =V, and d as the short-
est path metric on H. Observe that the extension of G to H is only necessary for the
lower bound for the radius but not for the diameter and the discrete radius. This is
because the additional points V' \ V' do not belong to P and are hence irrelevant for
the clustering instance for the diameter and discrete radius. In the lower bound for the
radius they will be used as centers, however.

Lemma6 Letp,q € V, thend(p, q) is the length of a shortest path betweenpandgqinG.

Proof By definition d(p, g) is the length of a shortest path between p and ¢ in H.
Suppose the shortest path contains a vertex v 4 for some A € Uf:o A; withv € Aas
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predecessor and w € A as ancestor. Since v and w are connected in H by the hyper-
edge A we can delete v4 from the path and the length of the path does not change.
The resulting path is also a path in G, so d(p, ¢) is also the length of a shortest path
between p and ¢ in G.

Next we state some structural properties of the graph G and the clustering instance
(X,P,d). To establish a lower bound on the approximation factor of a hierarchical
clustering we first focus on the optimal clusterings of the instance (X, P, d). One

can already guess that A is an optimal clustering with & ]]\\,’[ *— clusters with respect

to cost € {diam, rad, drad} and we will prove this in this section. First we need the
following statement about the connected components of G.

Lemma 7 The vertex set of every connected component in Gghas car-
dinality Neand is of the form VX ={(X"|X)|X € P,jfor a given

k
X =Xepr [ | Xi) € [Timpyr Qv

Proof Notice that [V, X| = N and that {V,X | X € [[\_,,, Q;} is a partition of V.

Furthermore since £y = Uf:o A; any edge e € Ey is either completely contained in
or disjoint to V;X.

Itis left to show that VX is connected. We prove this via induction over ¢. For £ = 0
thisisclearbecause |V5X | = 1.For¢ > OletY = (Y, | X),Z = (Z, | X) € Hf:é Q;.
By the induction hypothesis we know that the sets V", V7 | are connected. To prove
that VX is connected it is sufficient to show that there is a path from a point in V,¥’
to a point in V,Z ;. We show this claim by induction over the number m of coordi-
nates in which Y and Z differ. For m = 0 there is nothing to show. If m > 0 pick
1 < s < Ny_; such that y,s # 2zp5 and let P = (;5[_11 (s) € Hf;é Q;. Consider the
point (P | Y, | X) which is contained in V,Y" . This point is also contained in the set

{(Plyers- - Yes—1,% Yest1- - Yen,_, | X) | *x €[ No_q]} € Ey.

Thus there is an edge in G connecting a point in V¥, to a point in V}i/l with
Y = (Ye1, - Yes—15 205, Yost1s - - -, YN,y | X). Now Y’/ and Z differ in m — 1
coordinates, thus there is a path between two points in VX', and V/Z | by induction

hypothesis. If we combine this with the induction hypothesis that V}ill is connected
this yields the claim (see Fig. 1 for an illustration). (]

Lemma 8 Any clustering of (X, P,d) with less than N]jﬁl clusters costs at least { if

cost € {diam, drad} and £/2 if cost = rad.

Proof The shortest path in G between any two points which lie in different con-
nected components of G,_1 must contain an edge of weight > ¢. Thus any set of
points M C V which is disconnected in G, has diameter > ¢. Remember that the
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Yes — Zus
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Fig. 1 Here we see the construction of the path. It corresponds to changing the coordinates of Y suc-
cessively until they match Z. We use an edge in Ay to change y;5 to z;5, next we change y;/ to 24/
and proceed like this until we obtain Z. The respective edges are then connected to a path from Ve{ 1
to V.2

-1

discrete radius of M is given by drad(M) = min.c s maxpen d(p, ¢). For every
possible choice of ¢ € M there exists a point p € M which is not in the same con-
nected component of Gy_; as ¢, thus d(c,p) > ¢ and therefore drad(M) > ¢ and
rad(M) > diam(M)/2 > £/2.

We conclude that if cost € {diam, drad} any cluster of cost smaller than ¢ is con-
tained in one of the sets VX | for some X € Hf: ¢, @; by Lemma 7 and any clustering
with less than | Hf: , Qi clusters costs at least £. By the same argument if cost = rad
any cluster of cost smaller than ¢/2 is contained in one of the sets VX, for some

X e Hf: , Qi by Lemma 7 and any clustering with less than | Hf:e Qi’ clusters
costs at least £/2. Since

’ﬁg — ’Héczo Q’| — Nk
=t | Hf;é Qi  Ne

this proves the lemma. O

Corollary 9 For 1</{¢<k and cost € {diam,rad,drad} the clustering A,
is an optimal F]]\Z’il—clustering for the instance (X, P,d). Furthermore

diam(A;) = drad(A¢) = £ and rad(Ag) = £/2.

Proof If cost € {diam,drad} we obtain by definition of (X,P,d) that
cost(A;) < L. If cost = rad we obtain that cost(A) < £/2 by picking v4 € X\P as

center for A € Ay. On the other hand |A| = FJJ\\,Zk_l < ijfl and thus cost(A,) > ¢
if cost € {diam, drad} and cost(.A;) > £/2 for cost = rad by Lemma 8. O
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5.2 Characterization of Hierarchical Clusterings

Let from now on ¢ = (Hx,, - . ., H1) denote a hierarchical clustering of (X, P, d).

We introduce the notion of bad clusters in H n~, which are clusters whose cost
Ny

increases repeatedly, as we will see later. In this section we prove the existence of
such clusters in .77 and we give a lower bound on their cost.

Definition 5 We call all clusters C' € H y, bad at time 0 and denote by Kero(C) = C
the kernel of C at time 0 and set Bad(0) = H, .

For 1 < ¢ < k we say that a cluster C € H ~, is anchored at £ < ¢’ < k if the

TNy_1

set UDeBad((%—l):DCc Ker,_1(D) is

1. connected in Gy,
2. disconnected in Gy _1.

We call Cbad attime £ if Cis anchored at some ¢’ > ¢. We denoteby Bad(¢) C H_w,

T'Ng_1
the set of all bad clusters at time /. If C is bad we define the kernel of C as the union
of all kernels of bad clusters at time £ — 1 contained in C, i.e.,

Kery(C) = U Kerg_1(D).
DeBad(¢4—1):DcC

All clusters in H_~,, \Bad(¥) are called good.

TNg_1

The example in Fig. 2 shows that a bad cluster at time ¢ can contain clusters which are
good at time ¢ — 1. However we are only interested in points that are contained exclu-
sively in bad clusters at any time ¢ < ¢. The set Kery(C') contains exactly such points.

We will use two crucial properties to prove the final lower bound on the approxi-
mation factor of any hierarchical clustering 77 of (X', P, d). We first observe that bad
clusters exist in ¢ for every time-step 1 < ¢ < k and second that these clusters have
a large cost compared to the optimal clustering.

Lemma 10 LetChe a good cluster at time 1 < ¢ < k and

W= U Kerg_1(D),
DeBad(¢—1):DCC

thenWis connected in Gy—_1 and thus |W| < Ny_1.

Proof Suppose W is disconnected in Gy_;. Since G, = G is connected, there must
be a time ¢’ > ¢ such that W is connected in G4 and disconnected in Gy _1. But then
C'is a bad cluster at time £ which is anchored at £’ in contradiction to our assumption.
Thus W is connected in Gy_;. By Lemma 7 we know that every connected compo-
nent in Gy_1 is of size Ny_1. O
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/
©

Fig. 2 An illustration of the evolution of good and bad clusters: In the example, we see five clusters
at time £ — 1. The clusters 4, B, D, E are assumed to be bad, with their kernels depicted in dark gray,
while C is assumed to be a good cluster. At time /, clusters 4, B and C are merged. The resulting cluster
is bad because the kernels of 4 and B lie in different connected components of Gy_ 1. Clusters D and E
are still present at time £, but now D is a good cluster since its kernel is completely contained in Vé{ 1
while E is still bad, since its kernel is disconnected in Gy_1

Lemma 11 Forall 0 < £ <k we have Y. paq(r) |Kere(C)| > L5 NG

Proof We prove this via induction over /. For ¢ =0 this is clear since
UCeBad(O) Kero(C) = Py.

Now suppose that ¢ > 0 and that

r—¢
Z |Kerg(C)| < ?Nk

CeBad(f)

By induction hypothesis we know that

r-7+1
> IKera(O)] = — Nk
C€EBad(¢—1)

Thus the number of points which are in the kernel of a bad cluster at time ¢ — 1 but
not at time / is larger than

In other words these are points that are in the kernel of a bad cluster at time £ — 1
but contained in a good cluster at time £. Now we use that any good cluster at time ¢
can contain only Ny_ such points by Lemma 10. Thus the number of good clusters
is greater than
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N, 1 N

I Ny, TINg

T JJ\\TZ “— clusters, which is not possible. L]

We obtain that { ~, contains more than
PNg_1

An immediate consequence of Lemma 11 is the existence of bad clusters at time ¢ for
any 0 < ¢ < k. To prove that their (discrete) radius and diameter is indeed large we
need a lower bound on the distance between two points X, Y € P that lie in different
connected components of G;_; forsome 1 < j < k.

Suppose that the points X and Y only differ in one coordinate, i.e., there is a
1 < s < Nj_; such that x;, # y;s, while X and Y agree m all other coordmates
There is only one edge in G; connecting V U+ with V M. Let P = qb 1(s),

then this edge connects the points (P | X J;k]) and (P | szk]). If we connect X to
(P | X[j.)) and (P | Y}j.) to Y via a shortest path, this results in a path from X to
Y, see Fig. 3. We show that this path is indeed a shortest path between X and Y and
generalize this to arbitrary X and Y which are disconnected in Gj_1.

Lemma 12 Let X,Y € P be two points and suppose there is 1 < j <k and
1 <s < Nj;_1 such that x5 # yjs. Let P = qu__ll(s) S HZ;& Q;. Then

dX,Y) > d(X,(P| X)) + 7+ d(Y, (P V)

Proof Observe that if two points in G are connected by an edge they differ in exactly
one coordinate. Since x ;j; # y;5 any shortest path connecting X'and ¥ must contain two
consecutive points Z, Z" with Z = (P | Z; | ... | Zg) and Z' = (P | Z} | ... | Z})
such that z;, # z;-S and Z agrees with Z’ in all remaining coordinates. We obtain

AX,Y)=d(X,2)+d(2,Z')+d(Z',Y) =d(X,Z) +j +d(Z',Y).

It is now left to show that d(X,Z)>d(X,(P| X[j:k])) and d(Y,Z') >
d(Y, (P | Y}j.x))- To prove this we consider a shortest path V1,... V' connecting
V=X with V! = Z. Let Wi = (Vi¢ 03 1y | Xpjw) fori =1,...,t. We claim that

W is connected to Wi*! by an edge in G and that d(V?, Vi+1) > d(Wi7 Witl) for
all1 <i<t—1.Soletl <i<t— 1, weknow that V* and Vi*+! differ in exactly
one coordinate. If they differ at a coordinate in row > j we have W = W**! and

Tjs — Yjs

Xijik)
Jj—1

Yij:k)
Jj—1

\%4 V.

Fig. 3 A shortest path between X and Y. It consists of two shortest paths inside the connected compo-
nents of Gj_1 and the unique edge of weight j between these components
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thus the claim holds. Otherwise let © = ¢T*1(Vv[6:r71]) then V* and Vit+! satisfy

v, # vt and d(V, Vi) = r. Since r < j — 1 we obtain that W is connected
to Wt! by the edge

i 7

{(‘/[6:7‘—1] ‘ 'Uilv to ’Uiu—l”ﬂ Uput1s: - 7U1Z-N,r,1 | W[r-',—l:k]) | * € [FNT—l}}a

which has weight . This yields the claim.
Observe that W' = X and W' = (P | X|;.;) and that

t—1 t—1
d(X, (P | X)) < S dWi, Wity < 37 d(vi, vith) = d(X, 2).
i=1 i=1

Analogously one can show d(Y, Z') > d(Y, (P | Y[;.47)) and obtains

AX,Y)=d(X,2) +j+d(Z.Y) 2 d(X,(P| X[ju) + 5 +d(Y, (P | Yj))-

(I
We now define the so called anchor set Ancy(C) of a bad cluster C at time £. If C is
anchored at ¢’ then Ancy(C') is the union of ¢’ and the anchor set of some bad cluster
D C C at time ¢ — 1. If we choose D appropriately the sum of anchors in Anc,(C)
is a lower bound on the discrete radius of C, as we show later. It is clear that ¢’ itself
is a lower bound on the discrete radius since Kery(C') is disconnected in Gy 1 by
definition. If we additionally assume that the discrete radius of D is large, e.g., lower
bounded by the sum of anchors in Ancy_1 (D), then it is reasonable to assume that the
discrete radius of C is lower bounded by some function in ¢’ and the sum of anchors
in Ancy_1 (D). Before proving this we give a formal definition of Ancy(C') and how
to choose D.

Definition6 Let1 < ¢ < kand Cbe abad cluster at time ¢ which is anchored at ¢/ > £.
If £ = 1 we define the anchor set of C as Ancy(C) = {¢'} and set prev(C) = {X}
for some X € C.

For ¢ > 1 we distinguish two cases.

Case 1: C contains a bad cluster D which is bad at time ¢ — 1 and anchored at ¢/. We
then set Ancy(C) = Ancy—1(D) and prev(C) = D.

Case 2: C does not contain such a cluster. Then let D C C' be a bad cluster at time
¢ — 1 minimizing

Y oa

a€Ancy_1 (D)

among all clusters D’ € Bad({ —1) with D' C C. We set Anc,(C) =
Ancy_1(D) U {¢'}and prev(C) = D.
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Observe that in Case 2 of the previous definition, the bad cluster D must be anchored
atsome {p < /.

Lemma 13 Let 1 < /¢ < k and C be a bad cluster at time (. I[fCcontains a clusterD-
which is bad at time £ — 1 then Kery_1(D) C Ker,(C).

Proof Since D € Bad(¢ — 1) and D C C, we get

Ker,_1(D) C U Kery_1(D') = Ker(C).
D’CBad(¢—1):D'CC

O

With the help of Lemma 12 we are able to show how the discrete radius and diameter
of a bad cluster, depends on the sum of anchors.

Lemma 14 Let 1 < ¢ < k and C be a bad cluster at time £ anchored at ¢'. Then for
any point Z € P there is X € Kery(C') such that

dz.X)> Y

a€Ancy(C)

Proof Let Z € P and suppose that C is a bad cluster at time ¢ anchored at ¢'. We
prove the lemma via induction over £. For £ = 1 we know that Ker,(C) is discon-
nected in Gy _1 by definition. Thus there is a point X € Ker,(C') which is discon-
nected from Z in Gy _; yielding

dz.X)>0= >
a€Ancy (C)

Let £ > 1. If D = prev(C) is anchored at ¢ we apply Lemma 13 to observe that
Kery—1(D) C Kerg(C). By induction hypothesis the lemma holds for D. Since
Anc,(C) = Ancy_1(D) the lemma also holds for C.

Otherwise let D = prev(C') be anchored at /p < ¢'. We know that Ker,(C') is
disconnected in Gy _;. On the other hand Ker,_; (D) is connected in Gy _1 since
{p < ?'. Thus there is V € Kerg(C) which is disconnected from Kery,_1(D) in
Gy —1.Let E C C be the cluster at time ¢ — 1 which contains V. Since V' € Ker,(C)
we know that E is a bad cluster at time £ — 1 anchored at {g < ¢/. We know that
Ker,—1(E) is connected in Gy 1 and lies in a different connected component than
Kery—1(D). Thus Z is disconnected from Kery_1 (D) or Kery—_1(E) in G ;.

We assume without loss of generality that Z is disconnected from
Kerp_1(E) in Gg_;. Since Ker;_1(F) is connected in Gy_1 we know by
Lemma 7 that (P | Yy.z)) = (P | Y[;,:k,]) for all VY’ € Ker;,_1(FE). Also by
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Lemma 7 there is ¢ <r <k and 1 <s < N,_; such that z.; # y,.s for all
Y € Kery_1(E). Let P = ¢!, (s). Thus we know by induction hypothesis that there
is a point X € Ker,_1(E) C Ker,(C) with

d(Xa (P | X[rk])) > Z a.

a€Ancy_1(E)

Figure 4 shows an exemplary path between X and Z.
We apply Lemma 12 to see that

d(Z,X)>d(Z,(P| Zypy)) + 7+ d(X, (P | Xjuh)))

>r4+ Z a

a€Ancy_1(E)

>0+ Z a

a€Ancy_1(E)

Zza

a€Anc, (C)

Here the last inequality follows from the minimality of >, canc, ,(p) @ among all
clusters D’ € Bad(¢ — 1) with D" C C.

If Z is disconnected from Kery,_1(D) in Gy —1 our argument still works after
replacing £ by D. (]

Lemma 15 Let1 < ¢ < k and C be a bad cluster at time ¢ anchored at V. Then there
are two points X, Y € Kery(C) such that

AXY)>0+2 > o«

a€Ancy (C)\{¢'}

Proof Suppose that C is a bad cluster at time ¢ anchored at ¢/. We prove the lemma
via induction over £. For £ = 1 we know that Ker,(C) is disconnected in Gy _; by

A B
VA, VP,

Fig.4 Shows the special case where Z|,..x) and Y/,.. only differ in the rs-coordinate. The length of the

right path is lower bounded by ZaEAncg_ ok
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definition. Thus there are two points X, Y € Ker,(C) that are disconnected in Gy _;
yielding

AXY)>0=0+2 Y  a
a€Ancy (C)\{¢'}

Let £ > 1. If D = prev(C) is anchored at ¢ we apply Lemma 13 to observe that
Kery—1(D) C Kerg(C). By induction hypothesis the lemma holds for D. Since
Anc,(C) = Ancy_1(D) the lemma also holds for C.

Otherwise let D = prev(C') be anchored at £, < ¢. We know that Ker,(C) is dis-
connected in Gy and Kery_1 (D) is connected in G4/ 1. Thus thereis V' € Ker,(C)
which is disconnected from Kery_1 (D) in Gy:—;. Let E C C be the cluster at time
¢ — 1 which contains V. We know that £ is a bad cluster at time £ — 1 anchored at
{p < {'. Furthermore Ker,_1(F) is connected in Gy-_; and lies in a different con-
nected component than Ker,_; (D).

Since Kery_1 (D) and Kery_; (E) are disconnected in G/ _1 but connected in Gy,
there must be 1 < s < Ny/_1 such that for all U € Kery_1(D) and T € Kery_1(F)
we have up s # tys by Lemma 7. Let P = qb;il(s), we know by Lemma 12 that

d(U,T) > d(U,(P | Upr.gy)) + € + d(T, (P | Tipr.x)))-

Let U € Kery_1(D) and T € Ker;_1(FE). We know by Lemma 14 that for any two
points Z = (P | Uy .y)) and Z" = (P | Tjpr.p)) there must be X € Ker,_(D) and
Y € Kery_1(E) such that

dX.2)> > a

a€Ancy_1 (D)

and

av,z)y> > a

a€Anc,_1(E)

We use Lemma 7 to observe that Z = (P | X{p.1)) and Z' = (P | Y{y.)) because
X is connected to U and Y is connected to 7 in Gy _;. Figure 5 shows an exemplary
path between X and Y. Thus

A(X,Y) > d(X, (P | X)) + € + d(Y, (P | Yipsy))
>d(X,Z)+ 0 +d(Y,Z")
>0+ Z a+ Z a
a€Ancy_1(D) a€Ancy_1(E)
>0+2 >«
a€Ancy (C)\{¢'}
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A B
Vi Vira
Tps = Yors
é/

Fig. 5 Shows the special case where X(p/.x) and Y]y .5 only differ in the ¢’ s-coordinate. The length
of the left path is lower bounded by Z

bounded by Z

achncp_q (D) % while the length of the right path is lower

a€Ancy_1(E) @

Here the last inequality follows from the minimality of }° Anc,_, (D) @ among all
clusters D’ € Bad(¢ — 1) with D’ C C. O

5.3 Comparison to Optimal Clusterings

Our initial motivation was to construct an instance where any hierarchical clus-
tering has a high approximation ratio. If we consider an arbitrary time 1 < ¢ < k
then the hierarchical clustering 5# on (X,P,d) may be even optimal at time
£. Thus the bounds which we develop in Lemmas 14 and 15 on the discrete radius
and diameter of bad clusters are useless without linking the cost of a bad cluster
at time £ to the cost of bad clusters at other time steps. Therefore we construct a
sequence of clusters C; C Cs ... C Cy where C; is a bad cluster at time i such that
Anci(C1) C Ancy(Cs) C ... C Ancg(Ck). We then show with the help of Lem-
mas 14 and 15 that at least one of these clusters has a high discrete radius and diam-
eter compared to the optimal cost.

Lemma 16 Let Cy be a bad cluster at time k. For 1 <i<k—1 we define
C; = prev(Ciz1). Forall 1 < i <k — 1 cluster C; is bad at timeiand one of the fol-
lowing two cases occurs:

1. AncZ(C’z) = Anci+1(C¢+1),
2. Anci+1(C’i+1)\{€} = Anci(C’i), where { = max Anci+1(C’i+1).

Proof For i = k cluster CY; is bad at time k by assumption. If C;; is a bad cluster
at time ¢ + 1 then C; = prev(C;1) is a bad cluster at time i, by definition of prev.

Let C; be anchored at ¢ >4 and C;+q1 be anchored at ¢ > ¢+ 1. Since
Ker;(C;) C Ker;4+1(Cit+1) by Lemma 13, we know that ¢/ < ¢. If ¢/ = ¢ we obtain
by Definition 6, that Anc;(C;) = Anc;+1(Ciy1), so the lemma holds in this case.

If ¢ < £ we know by Definition 6 that Anc;(C;) = Anc;+1(Ci+1)\{¢}. So the
lemma also holds in this case. O

Corollary 17 Let Cy be a bad cluster at time k. For 1 <1 <k —1 we define
C; = prev(Cit1). Let Anc(Cr) = {1, ... s} suchthat by < Ly forall2 <t <'s

@ Springer



Algorithmica (2025) 87:1420-1452 1443

and let Ly = 0. Then for any 1 <t < s and for anyiwith {;_y < i < {;, we have
{Eh - ,ét} C Anci(C’i).

Proof We prove this via induction over i, starting from ¢ =k in decreasing
order. There is nothing to show for ¢ = k. For ¢ < k we distinguish two cases. If
Anc(C;) = Anc;11(Cit1), the lemma follows from the induction hypothesis.

Otherwise remember that Anc;(C;) C Ancg(Cy) and ¢;_1 < i. Thus we know
that max Anc;(C;) € {4, ..., L5} and therefore ¢; < max Anc;(C;).
By Lemma 16 we know that Anc;(C;) = Anci41(Ciy1)\{¢}, where

¢ =maxAnc;+1(Ciy1). Thus ¢ < maxAnc;(C;) < max Anc;+1(Ciy1) = ¢ and
by induction hypothesis we obtain

{gl, - ,Et} C Anci+1( z+1)\{£} Anc; (C)

Before we are able to prove the theorem we need some final lemma.

Lemma 18 Forevery e > 0 there exists k € Nsuch that for every s € N any sequence
of s + 1 numbers (Ly, ..., ls) € R‘;Bl with £y = 0 and £s = k satisfies the following.

1. Thereexists 1 <t < ssuch that for oy =4 — € and A1 = 1 we have

ft+A122 og

> Q1.
bi1+1 !

2. There exists 1 <t < s such that for ag = 3 + 2v2 — € and Ay = 2 we have

(NS St

> 9.
i +1 ?
Proof Let k,s € Nand j € {1,2}.
We call a sequence (ag,...,as) € R;Bl feasible if ag = 0,as = k and for all

1 <t < swehave

at+A Zl Oaz <

1
a1 +1 =% O

Our proof is divided in two parts. In the first part we argue that for all k,s € N
the existence of a feasible sequence ({y,...,¢s) yields the existence of a feasible
sequence (bo, . .., bs) which satisfies (1) for all u 4+ 1 < ¢ < s with equality, where
u is the smallest number such that b,, # 0. In the second part we observe that there
exists k € N such that for all s € N there is no feasible sequence (ag, . .., as) € RZH!
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which satisfies (1) for all u + 1 < ¢ < s with equality, where u is the smallest number
such that a,, # 0. In combination both parts yield the lemma.

Part 1: Let k, s € N and suppose that there exists a feasible sequence (o, . . ., £s).
We consider the set

M = {(ap,...,as) € RSZJBI (ag,...,as) is feasible}

of all feasible sequences.

For (ag, ...,as) € M, weclaim thata; < (a; + 1) forall 0 < ¢ < s. We show
this via a simple induction over z. If t = 0 there is nothing to show since ag = 0. For
t > 0 we obtain

t—1

i=0

Here the first inequality follows from the feasibility of the sequence. As a consequence
we see that M is a bounded set. Furthermore M is also closed since ag = 0,a; = k
are both linear inequalities and (1) is a linear inequality for all 1 < ¢ < s. Thus M is
compact.

We consider the function F: M — R with F(ag,...,as) = > ;_,a;. Since
F is continuous and M is compact and non-empty we know that F attains a mini-
mum on M, i.e., there is (b, ..., bs) € M with F(bg,...,bs) < F(ag,...,as) for
all (ag,...,as) € M. We claim that (b, ..., bs) satisfies (1) with equality for all
u—+ 1 <t < s, where u is the smallest number such that b,, # 0. Suppose this is not
the case and let ©u + 1 < ¢ < s be a number such that

b+ A 3 bi

< Q.
bi—1+1 Y

Ifb;_q =0, then (0,...,0,b,...,bs) is also feasible and moreover

F(0,...,0,by,...,bs) =Y bi <by+ > b < F(bo,...,bs)
i=t i=t

in contradiction to (by, . . ., bs) being a minimum. Thus we must have b;_; > 0 and
therefore by continuity there exists an € € (0, b;_1 ), such that

bt Db =)+ A Fisgb
bt,1—6+1 -7

Observe that the sequence (co, ..., ¢s) = (boy ..., bi—2,bi—1 — €, by, ..., bs) is still
feasible. The #-th inequality is satisfied by choice of €. All other inequalities are satis-
fied, since for all 1 < r < s with r # ¢ we have
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r—1 r—1
SRR AY D] < br + 48>0 bi < a
Cr71+1 o brfl"'_1 -

On the other hand

S

Fl(co, ..., cs) :Zci:—e—l—ibi < F(bg,...,by),

i=0 =0

which again stands in contradiction to (bg,...,bs) being the minimum. Thus
(bo, . .., bs) is of the desired form.
Part2: Let k, s € Nand (ag,...,as) € R‘;{Jl be a feasible sequence which satis-

fies (1) for all u + 1 < ¢ < s with equality, where u is the smallest number such that
a, # 0. Thus we know that a; = ... = a,—1 = 0 and a,, € (0, o;]. Furthermore

ut1 = o(ay +1) — A, Zai =aj(ay +1) — Ajay
i=0

and for u + 2 < t < s we have
t—1
ay = ij(at,1 —+ 1) — Aj Zai
i=0

t—2
= aj(at_l + 1) - Ajat_l - Aj Zai
=0

=aj(a—1 +1) = Ajaz—1 — (aj(a—2 +1) —az_1)

= aj(at_l — at_g) — (AJ — 1)(1,5_1.

Here we use that (1) is satisfied with equality for zand ¢t — 1.

Let
\Ij:aj—Aj+1+\/(aj—Aj+1)2—4aj
2
and
9:aj—Aj+l—\/(o¢j—Aj+1)2—4aj

2
be the two roots of the polynomial X2 — (a; — A; + 1) X + c;. We observe later

_ Bay—ayuq1 _ aygy1—Pay
that ® # ©. Letr = —g5—5"+ and y = —g—5—.

Claim: It holds that a; = ®!~%x + O %y forallu <t < s.
We prove this claim by induction over ¢. For ¢ = u we obtain
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@u_ u U _q)u
T+y= a a'gi_z)“ T _ g

For ¢t = u + 1 we obtain

®Oa, — Payi1 + Oayy1 — OPay,
(i)

bz + Oy = = Qyt1-

Fort > u + 1 we obtain

' 4+ 0y
=& ((a; — Ay + 1) — ;) + 0 Py((a; — A +1)0 — o)
_ aj((q)tfuflx + @tfufly) B (q)t7u72x + ®t7u72y))
— (A = D)@+ Oy
= aj(ag—1 —ar—2) — (A; — 1)ag—
= Q.

Forthefirstequality weused that® and © arerootsof X2 — (a; — A; + 1) X + aj,i.e.,
P? = (a; —A; +1)® — j and ©% = (oj — A + 1)O — «;. For the third equal-
ity we used the induction hypothesis. This proves the claim.

We argue that if £ is large enough, there must be v < ¢ < s with a; < 0 in con-
tradiction to our assumption that (aq, . ..,as) is feasible. For this we observe that
by choice of a; and A;, we get (a; — Aj +1)? — 4a; < 0 and thus ® and © are
complex numbers. Furthermore ® and © are complex conjugates and so are x and y.
Thus there exists 7 > 0 such that the real part of ®"x and ©"y is negative and thus
"z 4+ O7y is negative, see Fig. 6.

Observe that a; < (a; +1)77%T for u <t <s. One can prove this sim-
ilar to the bound in Part 1. Thus if k > (a; + 1)” we obtain s > r 4+« and thus
Gy = Pz + Oy is negative. Therefore (ao, . . ., as) is not feasible in contradic-
tion to our assumption.

Let now k > (a; + 1)" and suppose there exists s € N and a feasible sequence
(Lo, ..., ls). By the first part we know that there also exists a feasible sequence
(ao, - - - ,as) which satisfies (1) for all u + 1 <t < s with equality, where u is the
smallest number such that a, # 0. This is in contradiction with the second part,
where we prove that for k£ > (a; + 1)" such a sequence cannot exist. O

Theorem 5 For cost € {diam, rad} we have peost > 3 + 2/2 and for cost = drad
we have peost > 4.

Proof Let € > 0 and k be the respective number from Lemma 18. We claim that
the approximation factor of any hierarchical clustering 2 = (Hy,,...,H1)
on the instance (X, P,d) is larger than 3 + 2v/2 — ¢ if cost € {diam,rad} and
larger than 4 — € if cost = drad. First we use Lemma 11 to observe that there
is a cluster Cy, € H_n~, that is bad at time k. For 1 <¢ <k —1 we define

N1
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Fig. 6 Here we see the normalized numbers on the -
complex plane C Hg;m I
T
P2y
02|
dx
[|z]
X
]
Y
[y
Oy
oyl
0%
0%y
Oy
1e7yll

C; = prev(Ci41). Let Ancg(Ck) = {t1,...,4s} with ¢;_1 < ¥l for 2 <t < s and
let £9 = 0. We know by Corollary 17, that for any 1 <¢ < sand fori =4¢;_1 + 1
we have {{1,...,0;} C Anc;(C;). Let ¢ = max Anc;(C;), we obtain by Lemmas 15
and 14 that

t—1
diam(C;) > ¢ +2 > a>l+2> 0,
aGAnci(Ci)\{Z’} u=1
. t—1
ad(Cy) > dlam2(Cl) > b + 22221;1 €u7

t
drad(Cy) > > a=) L.
=1

a€Anc; (C;) u

Remember that by Corollary 9.4; is an optimal szv £—-clustering with cost(A;) =i

if cost € {diam, drad} and cost(.A;) = i/2 if cost = rad. We obtain

rad(Ci) _ 2rad(Cy) _ diam(Ci) _ Lo +250 e,
rad(A;)  2rad(A;) — diam(A4;) = Lo+ 1
drad(Ci) _ 3,y
drad(A;) =~ 61 +1

which are lower bounds on the approximation factor of 7.
We apply Lemma 18 on (£, . .., ¢s) to observe that there is 1 < ¢’ < s such that

by +25 "1y,
et 2yl g0
b1 +1

and an 1 < t" < s such that

@ Springer



1448 Algorithmica (2025) 87:1420-1452

Sy b
u= >4 —e.
b1+ 1

This proves the theorem. O

6 Conclusions and Open Problems

We have proved tight bounds for the price of hierarchy with respect to the diameter
and (discrete) radius. It would be interesting to also obtain a better understanding
of the price of hierarchy for other important objective functions like k-median and
k-means. The best known upper bound is 16 for k~~-median [23] and 32 for k-means [6]
but no non-trivial lower bounds are known. Closing this gap also for these objectives
is a challenging problem for further research.

Another natural question is which approximation factors can be achieved by poly-
nomial-time algorithms. The algorithm we used in this article to prove the upper
bounds is not a polynomial-time algorithm because it assumes that for each level k&
an optimal k-clustering is given. The approximation factors worsen if only approxi-
mately optimal clusterings are used instead. It is known that 8-approximate hierarchi-
cal clusterings can be computed efficiently with respect to the diameter and (discrete)
radius [2]. It is not clear whether or not it is NP-hard to obtain better hierarchical clus-
terings. The only NP-hardness results come from the problems with given k. Since
computing a (2 — €)-approximation for k-clustering with respect to the diameter and
(discrete) radius is NP-hard, this is also true for the hierarchical versions. However,
this is obsolete due to our lower bound, which shows that in general there does not
even exist a (2 — ¢)-approximate hierarchical clustering.

Appendix A: Counterexample for Mondal’s Algorithm

The algorithm by Dasgupta and Long [2] computes a hierarchical clustering which
is an 8-approximation with respect to the discrete radius objective and the diameter
objective. Mondal’s algorithm is a modification of this algorithm and should compute
a 6-approximation for the discrete radius objective [10, Theorem 3.7]. We claim that
this is not correct and present an example where the approximation factor is 7. First
we give a brief summary of Mondal’s algorithm.

Let (X, P, d) be the clustering instance. In the beginning we compute a number-
ing of the points in P by running Gonzales’ algorithm [9]. The numbering is com-
puted as follows. We pick the first point =1 € P arbitrarily and set Ry = oco. For
2 <k < |P| we set

Tl = argMmaTyep\{z;,... xp_1} 1<11¥1<i]1€1_1d(33,33i)
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Ry =0 8
Ry = 24— 2
R3 =Ry =16—¢
R; =8 3 2
Rﬁ :R7:R8:Rg:87€
Rio=Riy=Rip=Ri3=4 8
Riu=Ris=4—¢ AN 2-¢ 4
€
Rig = Ri7 = Rig = Rig = Ry €
R P 8 (2o d-c NN
=Ry = Rap = Ro3 =2
Roy =Ros=2—¢€ sl e .
Rog = Ror = 1 s 4
8—c¢

12

Fig. 7 Here we see the clustering instance and the numbering obtained from Gonzales’ algorithm as
well as the optimal 9-clustering with radius 2 depicted in gray

and Ry = minj<;<x—1d(zk, x;). In other words the k-th point is picked as far as
possible from the points x1,...,xx—1 and we denote by Ry the distance of z, to
LlyeeeyLh—1-

Based on the R-values we define the parent of a point x € P\{z1}. Let
N(z) = argmin{d(z,y) |y € P,Ry < %} denote the parent of x. In other words
N(x) is the point nearest to x that satisfies R, < %
P\{z1} has a properly defined parent, as R; = oc.

. Notice that every point in

We build a tree on P as follows. For every point z € P we simply add an edge
between x and N(x). The resulting graph is cycle free, since R, < Ry (,) for all
x € P, and contains |P| — 1 edges. Thus it is indeed a tree.
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® @

Fig. 8 Here we see the final tree. To obtain the 9-clustering we cut the red edges. The resulting cluster-
ing contains the cluster {x5, 10, 11, 220, Z21, 26, T27 } of radius 14 — 3¢

For any given 1 < k < |P| we observe that by deleting the edges {x;, N(x;)}
for all 2 <14 < k the tree decomposes into k& connected components with vertex
sets H}, ..., HF. We define the k-clustering on P to be Hy, = (H}, ..., HF). Then
H = (Hp|,.--,H1) is a hierarchical clustering of P.

We believe that the algorithm by Mondal does not differ significantly from the
algorithm by Dasgupta and Long. Since we already know that the analysis of the
approximation guarantee of Dasgupta and Long’s algorithm is tight [7] the signifi-
cant improvement on the approximation guarantee seems surprising. We present an
example where Mondal’s algorithm in fact computes a 7 — € approximation for some
arbitrarily small € > 0, contradicting the claimed approximation guarantee of 6. We
believe that this example can be generalized to prove that the approximation guaran-
tee of Mondal’s algorithm is at least 8.

Let € € (0,1), Fig. 7 shows a graph with 27 points which need to be clustered.
The metric is given by the shortest path metric in the graph. We perform Mondal’s
algorithm on this instance under the assumption that we can decide how to break ties,
whenever they occur.

In Fig. 7 we see the numbering of the points which is computed by Gonzales’ algo-
rithm as well as all R-values. Figure 8 shows the resulting tree. We obtain the 9-clus-
tering by cutting all edges {x;, N (z;)} with 2 < i < 9. This clustering contains the
cluster {z5, 10, 11, 20, Z21, T26, T27 }, whose radius is 14 — 3¢, while the radius of
the optimal 9-clustering is 2 (see Fig. 7).

@ Springer



Algorithmica (2025) 87:1420-1452 1451

Acknowledgements This work has been supported by the German Research Foundation (DFG)—Project
Number 416767905.

Author Contributions All authors contributed equally to this work.

Funding Open Access funding enabled and organized by Projekt DEAL. This work has been supported by
the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—390685813 and 416767905
and by the LamarrInstitute for Machine Learning and Artificial Intelligence (lamarr-institute.org).

Data Availability Not applicable.

Code Availability Not applicable.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.
Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licen
ses/by/4.0/.

References

1. Arutyunova, A., Roglin, H.: The price of hierarchical clustering. In: Chechik, S., Navarro, G., Roten-
berg, E., Herman, G. (eds.) 30th Annual European Symposium on Algorithms, ESA 2022, September
5-9, 2022, Berlin/Potsdam, Germany. LIPIcs, vol. 244, pp. 10-11014. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, Berlin/Potsdam, Germany (2022). https://doi.org/10.4230/LIPICS.ESA.202
2.10

2. Dasgupta, S., Long, P.M.: Performance guarantees for hierarchical clustering. J. Comput. Syst. Sci.
70(4), 555-569 (2005). https://doi.org/10.1016/].jcss.2004.10.006

3. Charikar, M., Chekuri, C., Feder, T., Motwani, R.: Incremental clustering and dynamic information
retrieval. SIAM J. Comput. 33(6), 1417-1440 (2004). https://doi.org/10.1137/S0097539702418498

4. Plaxton, C.G.: Approximation algorithms for hierarchical location problems. J. Comput. Syst. Sci.
72(3), 425-443 (20006). https://doi.org/10.1016/].jcss.2005.09.004

5. Lin, G., Nagarajan, C., Rajaraman, R., Williamson, D.P.: A general approach for incremental approx-
imation and hierarchical clustering. SIAM J. Comput. 39(8), 3633-3669 (2010). https://doi.org/10.1
137/070698257

6.  GroBwendt, A.-K.: Theoretical analysis of hierarchical clustering and the shadow vertex algorithm.
Ph.D. thesis, University of Bonn (2020). http://hdl.handle.net/20.500.11811/8348

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4230/LIPICS.ESA.2022.10
https://doi.org/10.4230/LIPICS.ESA.2022.10
https://doi.org/10.1016/j.jcss.2004.10.006
https://doi.org/10.1137/S0097539702418498
https://doi.org/10.1016/j.jcss.2005.09.004
https://doi.org/10.1137/070698257
https://doi.org/10.1137/070698257
http://hdl.handle.net/20.500.11811/8348

1452 Algorithmica (2025) 87:1420-1452

7. Das, A., Kenyon-Mathieu, C.: On hierarchical diameter-clustering and the supplier problem. Theory
Comput. Syst. 45(3), 497-511 (2009). https://doi.org/10.1007/s00224-009-9186-6

8. Bock, F.: Hierarchy cost of hierarchical clusterings. J. Comb. Optim. (2022). https://doi.org/10.1007
/s10878-022-00851-4

9.  Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theoret. Comput. Sci. 38,
293-306 (1985). https://doi.org/10.1016/0304-3975(85)90224-5

10. Mondal, S.A.: An improved approximation algorithm for hierarchical clustering. Pattern Recognit.
Lett. 104, 23-28 (2018). https://doi.org/10.1016/j.patrec.2018.01.015

11. Cohen-Addad, V., Grandoni, F., Lee, E., Schwiegelshohn, C.: Breaching the 2 LMP approximation
barrier for facility location with applications to k-median. In: Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pp. 940—
986. SIAM, Florence, Italy (2023). https://doi.org/10.1137/1.9781611977554.ch37

12. Cohen-Addad, V., Esfandiari, H., Mirrokni, V.S., Narayanan, S.: Improved approximations for
Euclidean k-means and k-median, via nested quasi-independent sets. In: STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20-24, 2022, pp. 1621—
1628. ACM, Rome, Italy (2022). https://doi.org/10.1145/3519935.3520011

13. Hochbaum, D.S., Shmoys, D.B.: A unified approach to approximation algorithms for bottleneck
problems. J. ACM 33(3), 533-550 (1986). https://doi.org/10.1145/5925.5933

14. Ward, J.H., Jr.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301),
236-244 (1963). https://doi.org/10.1080/01621459.1963.10500845

15. Ackermann, M.R., Blémer, J., Kuntze, D., Sohler, C.: Analysis of agglomerative clustering. Algorith-
mica 69(1), 184-215 (2014). https://doi.org/10.1007/s00453-012-9717-4

16. GroBwendt, A., Roglin, H.: Improved analysis of complete-linkage clustering. Algorithmica 78(4),
1131-1150 (2017). https://doi.org/10.1007/s00453-017-0284-6

17.  Arutyunova, A., GroBwendt, A., Roglin, H., Schmidt, M., Wargalla, J.: Upper and lower bounds for
complete linkage in general metric spaces. In: Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM), pp. 18-11822 (2021). https://doi.
org/10.4230/LIPIcs. APPROX/RANDOM.2021.18

18. GroBwendt, A., Roglin, H., Schmidt, M.: Analysis of ward’s method. In: Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 2939-2957 (2019). https://do
i.org/10.1137/1.9781611975482.182

19. Dasgupta, S.: A cost function for similarity-based hierarchical clustering. In: Proceedings of the 48th
Annual ACM Symposium on Theory of Computing (STOC), pp. 118-127 (2016). https://doi.org/10.
1145/2897518.2897527

20. Charikar, M., Chatziafratis, V.: Approximate hierarchical clustering via sparsest cut and spread-
ing metrics. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 841-854 (2017). https://doi.org/10.1137/1.9781611974782.53

21. Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., Mathieu, C.: Hierarchical clustering: objective
functions and algorithms. In: Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 378-397 (2018). https://doi.org/10.1137/1.9781611975031.26

22. Wang, Y., Moseley, B.: An objective for hierarchical clustering in Euclidean space and its connection
to bisecting k-means. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no.
04, pp. 6307-6314 (2020). https://doi.org/10.1609/aaai.v34i04.6099

23. Dai, W.: A 16-competitive algorithm for hierarchical median problem. Sci. China Inf. Sci. 57(3), 1-7
(2014). https://doi.org/10.1007/s11432-014-5065-0

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


https://doi.org/10.1007/s00224-009-9186-6
https://doi.org/10.1007/s10878-022-00851-4
https://doi.org/10.1007/s10878-022-00851-4
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/j.patrec.2018.01.015
https://doi.org/10.1137/1.9781611977554.ch37
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1145/5925.5933
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1007/s00453-012-9717-4
https://doi.org/10.1007/s00453-017-0284-6
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.18
https://doi.org/10.1137/1.9781611975482.182
https://doi.org/10.1137/1.9781611975482.182
https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1145/2897518.2897527
https://doi.org/10.1137/1.9781611974782.53
https://doi.org/10.1137/1.9781611975031.26
https://doi.org/10.1609/aaai.v34i04.6099
https://doi.org/10.1007/s11432-014-5065-0

	Titelblatt_Arutyunova_final
	Arutyunova_the price
	﻿The Price of Hierarchical Clustering
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿1.1﻿ ﻿Related Work

	﻿2﻿ ﻿Results
	﻿3﻿ ﻿Preliminaries
	﻿﻿4﻿ ﻿An Upper Bound on the Price of Hierarchy
	﻿5﻿ ﻿A Lower Bound on the Price of Hierarchy
	﻿5.1﻿ ﻿Definition of the Clustering Instance
	﻿5.2﻿ ﻿Characterization of Hierarchical Clusterings
	﻿5.3﻿ ﻿Comparison to Optimal Clusterings

	﻿6﻿ ﻿Conclusions and Open Problems
	﻿﻿Appendix A: Counterexample for Mondal’s Algorithm
	﻿References



