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Abstract
Hierarchical Clustering is a popular tool for understanding the hereditary proper-
ties of a data set. Such a clustering is actually a sequence of clusterings that starts 
with the trivial clustering in which every data point forms its own cluster and then 
successively merges two existing clusters until all points are in the same cluster. A 
hierarchical clustering achieves an approximation factor of α if the costs of each k-
clustering in the hierarchy are at most α times the costs of an optimal k-clustering. 
We study as cost functions the maximum (discrete) radius of any cluster (k-center 
problem) and the maximum diameter of any cluster (k-diameter problem). In gen-
eral, the optimal clusterings do not form a hierarchy and hence an approximation 
factor of 1 cannot be achieved. We call the smallest approximation factor that can 
be achieved for any instance the price of hierarchy. For the k-diameter problem we 
improve the upper bound on the price of hierarchy to 3 + 2

√
2 ≈ 5.83. Moreover 

we significantly improve the lower bounds for k-center and k-diameter, proving a 
price of hierarchy of exactly 4 and 3 + 2

√
2, respectively.

Keywords  Hierarchical clustering · Approximation algorithms · k-center · k-
diameter
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1  Introduction

Clustering is an ubiquitous task in data analysis and machine learning. In a typical 
clustering problem, the goal is to partition a set of objects into different clusters such 
that only similar objects belong to the same cluster. There are numerous ways how 
clustering can be modeled formally and many different models have been studied in 
the literature in the last decades. In many theoretical models, one assumes that the 
data comes from a metric space and that the desired number of clusters is given. Then 
the goal is to optimize some objective function like k-center, k-median, or k-means. 
In most cases the resulting optimization problems are NP-hard and hence approxima-
tion algorithms have been studied extensively.

One aspect of real-world clustering problems that is not captured by these models 
is that it is often already a non-trivial task to determine for a given data set the right 
or most reasonable number of clusters. One particularly appealing way to take this 
into account is hierarchical clustering. A hierarchical clustering of a data set is actu-
ally a sequence of clusterings, one for each possible number of clusters. It starts with 
the trivial clustering in which every data point forms its own cluster and then succes-
sively merges two existing clusters until all points are in the same cluster. This way 
for every possible number of clusters, a clustering is obtained. These clusterings help 
to understand the hereditary properties of the data and they provide information at 
different levels of granularity.

While hierarchical clustering is successfully used in many applications, it is not as 
well understood from a theoretical point of view as the models in which the number 
of clusters is given as part of the input. One reason for this is that it is not obvious 
how the quality of a hierarchical clustering should be measured. A possibility that 
has been explored in the literature is to define the quality of a hierarchical clustering 
based on its worst level. To be precise, let (X , d) be a metric space and P ⊂ X  a set 
of n points. Furthermore let H = (Hn, . . . , H1) be a hierarchical clustering of P , 
where Hk denotes a k-clustering, i.e., a clustering with at most k non-empty clusters. 
Then Hk−1 arises from Hk by merging some of the existing clusters. We assume that 
some objective function like k-center, k-median, or k-means is selected and denote 
by cost(Hk) the objective value of Hk with respect to the selected objective func-
tion. Furthermore, let Ok denote an optimal k-clustering and let cost(Ok) denote its 
objective value. Then we say that H  achieves an approximation factor of α ≥ 1 if 
cost(Hk) ≤ α · cost(Ok) for every k, assuming that cost is an objective that is to be 
minimized. In this work we consider the radius objective, which is well-known from 
the k-center problem. Here the cost is defined as the maximum radius of a cluster. 
Furthermore we consider the diameter objective, where the cost is defined as the 
maximum distance between any two points lying in the same cluster.

An α-approximation for small α yields a strong guarantee for the hierarchical 
clustering on every level. However, in general there do not exist optimal clusterings 
On, . . . , O1 that form a hierarchy. So even with unlimited computational resources, a 
1-approximation usually cannot be achieved. In the literature different algorithms for 
computing hierarchical clusterings with respect to different objective functions have 
been developed and analyzed. Dasgupta and Long [2] and Charikar et al. [3] initiated 
this line of research and presented both independently from each other an algorithm 
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that computes efficiently an 8-approximate hierarchical clustering with respect to 
the radius and diameter objective. That is, for every level k, the maximal radius or 
diameter of any cluster in the k-clustering computed by their algorithms is at most 
8 times the maximal radius or diameter in an optimal k-clustering. Inspired by [2], 
Plaxton [4] proposed a constant-factor approximation for the k-median and k-means 
objective. Later a general framework that also leads constant approximation guaran-
tees for many objective functions including in particular k-median and k-means has 
been proposed by Lin et al. [5].

Despite these articles and other related work, which we discuss below in detail, 
many questions in the area of hierarchical clustering are not yet resolved. We find it 
particularly intriguing to find out which approximation factors can be achieved for 
different objectives. This question comes in two flavors depending on the computa-
tional resources available. Of course it is interesting to study which approximation 
factors can and cannot be achieved in polynomial time, assuming P  ̸= NP. Since in 
general there do not exist hierarchical clusterings that are optimal on each level, it is 
also interesting to study which approximation factors can and cannot be achieved in 
general without the restriction to polynomial-time algorithms.

For an objective function like radius or diameter we define its price of hierarchy as 
the smallest α such that for any instance there exists an α-approximate hierarchical 
clustering. Hence, the price of hierarchy is a measure for how much quality one has 
to sacrifice for the hierarchical structure of the clusterings.

Our main results are tight bounds for the price of hierarchy for the radius, discrete 
radius and diameter objective. Here the difference between radius and discrete radius 
lies in the choice of centers. For the radius objective we allow to choose the center 
of a cluster C ⊂ P  from the whole metric space X , while for the discrete radius 
objective the center must be contained in C itself. We will see that this has an impact 
on the price of hierarchy. For all three objectives the algorithms in [2, 3] compute 
an 8-approximate hierarchical clustering in polynomial time. Until recently this was 
also the best known upper bound for the price of hierarchy in the literature for hierar-
chical radius and diameter. For discrete radius, Großwendt [6] shows an upper bound 
for the price of hierarchy of 4. The best known lower bounds are 2, proven by Das 
and Kenyon-Mathieu [7] for diameter and by Großwendt  [6] for (discrete) radius. 
We improve the framework in [5] for radius and diameter and show an upper bound 
on the price of hierarchy of 3 + 2

√
2 ≈ 5.83. The upper bound of 3 + 2

√
2 for the 

radius was also recently proved by Bock [8] in independent work. However our main 
contribution lies in the design of clustering instances to prove a lower bound of 4 for 
discrete radius and 3 + 2

√
2 for radius and diameter.

1.1  Related Work

Gonzales [9] presents a simple and elegant incremental algorithm for k-center. The 
algorithm exhibits the following nice property: given a set P  which has to be clus-
tered, it returns an ordering of the points, such that the first k points constitute the 
centers of the k-center solution, and this solution is a 2-approximation for every 
1 ≤ k ≤ |P|. However the resulting clusterings are usually not hierarchically com-
patible. Dasgupta and Long [2] use the ordering computed by Gonzales’ algorithm 

1 3

1422



Algorithmica (2025) 87:1420–1452

to compute a hierarchical clustering. The authors present an 8-approximation for the 
objective functions (discrete) radius and diameter. In an independent work Chari-
kar et al. [3] also present an 8-approximation for the three objectives which outputs 
the same clustering as the algorithm in  [2] under some reasonable conditions  [7]. 
In a recent work, Mondal  [10] gives a 6-approximation for hierarchical (discrete) 
radius. In Appendix A we present an instance where this algorithm computes only a 
7-approximation contradicting the claimed guarantee.

Plaxton [4] shows that a similar approach as in [2] yields a hierarchical cluster-
ing with constant approximation guarantee for the k-median and k-means objectives. 
Later a general framework for a variety of incremental and hierarchical problems 
was introduced by Lin et al. [5]. Their framework can be applied to compute hier-
archical clusterings for any cost function which satisfies a certain nesting property, 
especially those of k-median and k-means. This yields a 20.71α-approximation for 
k-median and a 576β-approximation for k-means. Here α = 2.67059 and β = 5.912 
are the currently best approximation guarantees for k-median [11] and k-means [12]. 
The algorithms presented in [2–5] run in polynomial time. Unless P=NP there is no 
polynomial-time α-approximation for α < 2 for hierarchical (discrete) radius and 
diameter. For (discrete) radius this is an immediate consequence of the reduction 
from dominating set presented by [13]. A similar reduction from clique cover yields 
the statement for hierarchical diameter.

However even without time constraints it is not clear what approximation guar-
antee can be achieved for hierarchical clustering. It is easy to find examples, where 
the approximation guarantee of any hierarchical clustering for all three objectives is 
greater than one. Das and Kenyon-Mathieu [7] and Großwendt [6] present instances 
for diameter and (discrete) radius, where no hierarchical clustering has an approxi-
mation guarantee smaller than 2. On the other hand Großwendt [6] proves an upper 
bound of 4 on the approximation guarantee of hierarchical discrete radius by using 
the framework of Lin et al. [5]. In recent independent work Bock [8] improved the 
bound for hierarchical radius to 3 + 2

√
2. While his approach is inspired by Dasgupta 

and Long [2], the resulting algorithm is similar to the algorithm we present in this 
paper as an improvement of [5].

Aside from the theoretical results, there also exist greedy heuristics, which are 
more commonly used in applications. One very simple bottom up, also called agglom-
erative, algorithm is the following: starting from the clustering where every point is 
separate, it merges in every step the two clusters whose merge results in the small-
est increase of the cost function. For (discrete) radius and diameter this algorithm 
is known as complete linkage and for the k-means cost this is Ward’s method [14]. 
Ackermann et al. [15] analyze the approximation guarantee of complete linkage in 
the Euclidean space. They show an approximation guarantee of O(log(k)) for all 
three objectives assuming the dimension of the Euclidean space to be constant. This 
was later improved by Großwendt and Röglin [16] to O(1). In arbitrary metric spaces 
complete linkage does not perform well. There Arutyunova et al. [17] prove a lower 
bound of Ω(k) for all three objectives. For Ward’s method Großwendt et al.  [18] 
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show an approximation guarantee of 2 under the strong assumption that the optimal 
clusters are well separated.

Recently other cost functions for hierarchical clustering were proposed, which do 
not compare to the optimal clustering on every level. Dasgupta [19] defines a new 
cost function for similarity measures and presents an O(α log(n))-approximation for 
the respective problem. This was later improved to O(α) independently by Charikar 
and Chatziafratis  [20] and Cohen-Addad et al.  [21]. Here α is the approximation 
guarantee of sparsest cut. However Cohen-Addad et al. [21] prove that every hier-
archical clustering is an O(1)-approximation to the corresponding cost function for 
dissimilarity measures when the dissimilarity measure is a metric. A cost function 
more suitable for Euclidean spaces was developed by Wang and Moseley [22]. They 
prove that a randomly generated hierarchical clustering performs poorly for this cost 
function and show that bisecting k-means computes an O(1)-approximation.

2  Results

We define the price of hierarchy ρcost  with respect to an objective function cost as 
the smallest number such that for every clustering instance there exists a hierarchi-
cal clustering which is a ρcost-approximation with respect to cost. Observe that the 
results [2, 3, 6, 7] imply that the price of hierarchy for radius and diameter is between 
2 and 8 and for discrete radius between 2 and 4. We close these gaps and prove that 
the price of hierarchy for radius and diameter is exactly 3 + 2

√
2 and for discrete 

radius exactly 4. Notice that this does not imply the existence of polynomial-time 
algorithms with approximation guarantee ρcost. Especially our algorithm which com-
putes a 3 + 2

√
2-approximation for radius and diameter does not run in polynomial 

time. This is also the case for the 3 + 2
√

2-approximation for radius presented by 
Bock [8] in independent work. Our upper bound of 3 + 2

√
2 can be achieved by a 

small improvement in the framework of Lin et al. [5]. However our most technically 
demanding contribution is the design of a clustering instance for every ϵ > 0 such 
that every hierarchical clustering has approximation guarantee at least 3 + 2

√
2 − ϵ 

for radius and diameter and 4 − ϵ for discrete radius. It requires a careful analysis of 
all possible hierarchical clusterings, which is highly non-trivial for complex cluster-
ing instances.

3  Preliminaries

A clustering instance (X , P, d) consists of a metric space (X , d) and a finite subset 
P ⊂ X . For a set (or cluster) C ⊂ P  we denote by

	
diam(C) = max

p,q∈C
d(p, q)
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the diameter of C. By rad(C, c) = maxp∈C d(c, p) we denote the radius of C with 
respect to a center c ∈ X . This is the largest distance between c and a point in C. The 
radius of C is defined as the smallest radius of C with respect to a center c ∈ X , i.e.,

	
rad(C) = min

c∈X
rad(C, c)

while the discrete radius of C is defined as the smallest radius of C with respect to a 
center c ∈ C, i.e.,

	
drad(C) = min

c∈C
rad(C, c).

A k-clustering of P  is a partition of P  into at most k non-empty subsets. We consider 
three closely related clustering problems.

The k-diameter problem asks to minimize diam(Ck) = maxC∈Ck
diam(C), i.e., the 

maximum diameter of a k-clustering Ck. In the k-center problem we want to minimize 
the maximum radius rad(Ck) = maxC∈Ck

rad(C), and in the discrete k-center problem 
we want to minimize the maximum discrete radius drad(Ck) = maxC∈Ck

drad(C).

Definition 1  Given an instance (X , P, d), let n = |P|. We call two clusterings C 
and C′ of P  with |C| ≥ |C′| hierarchically compatible if for all C ∈ C there exists 
C ′ ∈ C′ with C ⊂ C ′. A hierarchical clustering of P  is a sequence of clusterings 
H = (Hn, . . . , H1), such that 

1.	 Hi is an i-clustering of P
2.	 for 1 < i ≤ n the two clusterings Hi−1 and Hi are hierarchically compatible.

For cost ∈ {diam, rad, drad} let Oi denote the optimal i-clustering with respect to 
cost. We say that H  is an α-approximation with respect to cost if for all i = 1, . . . , n 
we have

	 cost(Hi) ≤ α · cost(Oi).

Since optimal clusterings are generally not hierarchically compatible, there is usually 
no hierarchical clustering with approximation guarantee α = 1. We have to accept 
that the restriction on hierarchically compatible clusterings comes with an unavoid-
able increase in the cost compared to an optimal solution.

Definition 2  For cost ∈ {diam, rad, drad} the price of hierarchyρcost ≥ 1 is defined 
as follows. 

1.	 For every instance (X , P, d), there exists a hierarchical clustering H  of P  that 
is a ρcost-approximation with respect to cost.
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2.	 For any α < ρcost there exists an instance (X , P, d), such that there is no hierar-
chical clustering of P  that is an α-approximation with respect to cost.

Thus ρcost is the smallest possible number such that for every clustering instance 
there is a hierarchical clustering with approximation guarantee ρcost.

4  An Upper Bound on the Price of Hierarchy

The framework by by Lin et al. [5] can be applied to compute incremental and hier-
archical solutions to a large class of minimization problems. We first discuss their 
framework in the context of hierarchical clustering for (discrete) radius and diameter. 
In the second part we then present an improved version of their algorithm for radius 
and diameter.

First we introduce the notion of a hierarchical sequence, which is a relaxation of a 
hierarchical clustering in the sense that it does not have to contain a k-clustering for 
every 1 ≤ k ≤ |P|.

Definition 3  Given an instance (X , P, d), with n = |P|. We call a sequence 
C = (C(t), . . . , C(1)) of clusterings a hierarchical sequence if it satisfies 

1.	 |C(t)| = n and |C(1)| = 1
2.	 for 1 ≤ i ≤ t either C(i−1) = C(i) or C(i−1) is obtained from C(i) by merging 

some of its clusters.

Such a hierarchical sequence can be extended to a hierarchical clustering of P  as 
follows. We define the respective hierarchical clustering h(C ) by assigning every 
1 ≤ i ≤ n the clustering among C(t), . . . , C(1) of smallest cost and size at most i. We 
say that C  is an α-approximation iff h(C ) is an α-approximation.
Before we are able to define the algorithm we need one important definition from [5].

Definition 4  Given an instance (X , P, d). For cost ∈ {diam, rad, drad} we say that 
the (γ, δ)-nesting property holds for reals γ, δ ≥ 0, if for any two clusterings C, D of 
P  with |C| > |D| there exists a clustering C′ with 

1.	 |C′| ≤ |D|
2.	 C′ is hierarchically compatible with C and
3.	 cost(C′) ≤ γcost(C) + δcost(D).

We say that C′ is a nesting of C at D. Let Augmentcost(C, D, γ, δ) denote the subrou-
tine that computes such a clustering C′.
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Algorithm 1 (Lin et al. [5])

The algorithm of Lin et al. [5] is shown as Algorithm 1. It computes a hierarchical 
sequence C = (C(t), . . . , C(1)) of clusterings as follows. Starting with C(t) = O|P| 
the algorithm builds the i-th clustering C(i) as nesting of C(i+1) at an optimal cluster-
ing Oni . This guarantees that the clusterings are hierarchically compatible.

Theorem 1  [5] Forcost ∈ {drad, rad, diam}, if the(γ, δ)-nesting property holds for 
realsγ ≥ 1, δ > 0, then Algorithm  1computes a hierarchical clustering ofPwith 
approximation guarantee4γδwith respect tocost.

Großwendt  [6] proved the existence of such a nesting property for diam, rad, and 
drad.

Lemma 2  [6] Forcost ∈ {diam, rad}there exists a (2, 1)-nesting and forcost = drad
there exists a (1, 1)-nesting.

In combination with Theorem 1 this yields ρdrad ≤ 4. However, for the other two 
objectives we obtain an upper bound of only 8. We improve Algorithm 1 to obtain the 
claimed upper bound of 3 + 2

√
2.

In the definition of the (γ, δ)-nesting property we require a nesting of C at D for 
arbitrary clusterings C, D with |C| > |D|. However, in Algorithm 1 we know more 
about the structure of C. This clustering is obtained by repeatedly nesting at optimal 
clusterings of increasing cost. In Algorithm 2 we define a nesting subroutine for this 
type of clusterings that eventually leads to a better approximation-guarantee.
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Algorithm 2

The main difference between Algorithm 1 and Algorithm 2 is the replacement of 
the function Augmentcost(Ci+1, Oni

, γ, δ), which computes the nesting of C(i+1) at 
Oni , by a more explicit approach to compute such a nesting. We use the fact that 
C(i+1) is obtained by a nesting at Oni+1 . This is reflected in the function parenti+1 
which assigns every cluster in C(i+1) a cluster from Oni+1 . In iteration i we then 
use the (i + 1)-st parent function to determine which clusters of C(i+1) will be 
merged to obtain C(i). We are allowed to merge clusters C, D ∈ C(i+1) if there is a 
cluster O ∈ Oni  which has a non-empty intersection with both, parenti+1(C) and 
parenti+1(D). The parent of the merged cluster in C(i) is then set to O.

Lemma 3  Forcost ∈ {diam, rad}and anyα > 1Algorithm 2 computes a hierarchical 
clustering with approximation guaranteeα

( 2
α−1 + 1

)
.

Proof  Let n denote the cardinality of P . Notice first that (C(t), . . . , C(1)) is indeed 
a hierarchical sequence. The first property of a hierarchical sequence is satis-
fied: We define C(t) = On and since cost(O1) = ∆ ∈ (αt−2, αt−1] we obtain 
|C(1)| ≤ n1 = 1. The second property is satisfied since C(i) either equals C(i+1) or 
is obtained by merging clusters from C(i+1). Thus Algorithm 2 indeed computes a 
hierarchical clustering.

Diameter (cost = diam): Let 1 ≤ i ≤ t. We claim 
1.	 for every cluster C ∈ C(i) and every point p ∈ parenti(C) that 

maxq∈C d(p, q) ≤
∑t−i

l=1 αl,

2.	 that diam(C(i)) ≤ αt−i + 2
∑t−i−1

l=1 αl.
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We prove this by induction over i, starting with i = t in decreasing order. Observe 
that C(t) consists only of clusters of size one so these claims are true for i = t.

Let 1 ≤ i ≤ t − 1. If C(i) = C(i+1) both claims are true by induction hypoth-
esis. Thus we assume from now on that C(i) ̸= C(i+1). For the first claim, we fix 
a cluster C ∈ C(i) and two points p ∈ parenti(C) and q ∈ C. Let D ∈ C(i+1) 
be the cluster which contains q. Since C(i) is obtained by merging clusters from 
C(i+1), we know that D ⊂ C and thus parenti+1(D) ∩ parenti(C) ̸= ∅. Let 
x ∈ parenti+1(D) ∩ parenti(C). By the induction hypothesis

	
d(x, q) ≤ max

y∈D
d(x, y) ≤

t−i−1∑
l=1

αl.

Since p and x lie both in parenti(C) we obtain d(p, x) ≤ diam(Oni
) ≤ αt−i. Using 

the triangle inequality we conclude

	
d(p, q) ≤ d(p, x) + d(x, q) ≤

t−i∑
l=1

αl.

For the second claim we again fix a cluster C ∈ C(i) and two points 
p, q ∈ C. Let B, D ∈ C(i+1) such that p ∈ B and q ∈ D. Observe that B ∪ D ⊂ C 
and thus parenti+1(B) ∩ parenti(C) ̸= ∅ ̸= parenti+1(D) ∩ parenti(C). Let 
xp ∈ parenti+1(B) ∩ parenti(C) and xq ∈ parenti+1(D) ∩ parenti(C). Since xp 
and xq lie both in parenti(C) we obtain d(xp, xq) ≤ diam(Oni

) ≤ αt−i. We apply 
the triangle inequality and the induction hypothesis to obtain

	
d(p, q) ≤ d(p, xp) + d(xp, xq) + d(xq, q) ≤ αt−i + 2

t−i−1∑
l=1

αl.

Radius (cost = rad): Let 1 ≤ i ≤ t. We claim that for every cluster C ∈ C(i) and 
the center c of cluster parenti(C) holds maxq∈C d(c, q) ≤ αt−i + 2

∑t−i−1
l=1 αl. 

Notice that this immediately implies

	
rad(C(i)) ≤ αt−i + 2

t−i−1∑
l=1

αl.

We prove this by induction over i. Observe that C(t) consists only of clusters of size 
one. So this claim is true for i = t. Let 1 ≤ i ≤ t − 1. If C(i) = C(i+1) the claim is 
true by induction hypothesis. Thus we assume from now on that C(i) ̸= C(i+1). We 
fix a cluster C ∈ C(i) a point q ∈ C and denote by c the center of parenti(C). Let 
D ∈ C(i+1) be the cluster which contains q. Since C(i) is obtained by merging clus-
ters from C(i+1), we know that D ⊂ C and thus parenti+1(D) ∩ parenti(C) ̸= ∅. 
Let x ∈ parenti+1(D) ∩ parenti(C). By induction hypothesis the following holds 
for the center d of parenti+1(D)
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max
v∈D

d(d, v) ≤ αt−i−1 + 2
t−i−2∑

l=1

αl.

Together with the triangle inequality this implies

	
d(x, q) ≤ d(x, d) + d(d, q) ≤ rad(Oni+1) + αt−i−1 + 2

t−i−2∑
l=1

αl ≤ 2
t−i−1∑

l=1

αl.

This yields the claim, as

	
d(c, q) ≤ d(c, x) + d(x, q) ≤ rad(Oni

) + 2
t−i−1∑

l=1

αl ≤ αt−i + 2
t−i−1∑

l=1

αl.

Finally we can bound the approximation factor for both radius and diameter. Let 
cost ∈ {diam, rad}. Since d(x, y) > 2 for all x, y ∈ P  we get that cost(On−1) > 1. 
Thus for every 1 ≤ m < n there is 1 ≤ i ≤ t − 1 such that cost(Om) ∈ (αt−i−1, αt−i]. 
Thus the clustering h((C(t), . . . , C(1))) is an α

(
2

α−1 + 1
)

-approximation iff for all 
1 ≤ i ≤ t

	
cost(C(i)) ≤ α

( 2
α − 1

+ 1
)

cost(O)

for all optimal clusterings O with cost(O) ∈ (αt−i−1, αt−i]. We obtain

	

cost(C(i)) ≤αt−i + 2
t−i−1∑

l=1

αl < αt−i + 2 · αt−i

α − 1
= αt−i

( 2
α − 1

+ 1
)

≤α
( 2

α − 1
+ 1

)
cost(O).

� □

Theorem 4  For cost ∈ {diam, rad} we have ρcost ≤ 3 + 2
√

2 ≈ 5.828.

Proof  Let (X , P, d) be a clustering instance. We can assume without loss of general-
ity that d(x, y) > 2 for all x, y ∈ P , otherwise we scale the metric d accordingly. For 
cost ∈ {diam, rad} we then use Algorithm 2 with α = 1 +

√
2 to compute a hierar-

chical clustering. By Lemma 3 we obtain a hierarchical clustering that is an 3 + 2
√

2 
approximation and thus ρcost ≤ 3 + 2

√
2. � □
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5  A Lower Bound on the Price of Hierarchy

The most challenging contributions of this article are matching lower bounds on the 
price of hierarchy for diameter, radius, and discrete radius.

Theorem 5  For cost ∈ {diam, rad}we have ρcost ≥ 3 + 2
√

2and for cost = dradwe 
have ρcost ≥ 4.

There is already existing work in this area by Das and Kenyon-Mathieu [7] for the 
diameter and Großwendt [6] for the radius. Both show a lower bound of 2 for the 
respective objective. To improve upon these results we have to construct much more 
complex instances which differ significantly from those in [6, 7].

For every ϵ > 0 we will construct a clustering instance (X , P, d) such that for 
any hierarchical clustering H = (H|P|, . . . , H1) of P  there is 1 ≤ i ≤ |P| such that 
cost(Hi) ≥ α · cost(Oi), where Oi is an optimal i-clustering of P  with respect to 
cost and α = (3 + 2

√
2 − ϵ) for cost ∈ {diam, rad} and α = 4 − ϵ for cost = drad.

The proof is divided in three parts. First we introduce the clustering instance 
(X , P, d) and determine its optimal clusterings. In the second part we develop the 
notion of a bad cluster. We prove that any hierarchical clustering contains such bad 
clusters and develop a lower bound on their cost. In the third part we compare the 
lower bound to the cost of optimal clusterings and prove Theorem 5.

5.1  Definition of the Clustering Instance

For n ∈ N we denote by [n] the set of numbers from 1 to n.
Let k ∈ N and Γ = k + 1. For 0 ≤ ℓ ≤ k we define point sets Qℓ and Pℓ recur-

sively as follows 

1.	 For ℓ = 0 let P0 = Q0 = [1] and denote by N0 the cardinality of P0.
2.	 For ℓ > 0 let Qℓ = [Γ · Nℓ−1]Nℓ−1  and Pℓ =

∏ℓ
i=0 Qi. Furthermore set 

Nℓ = |Pℓ|.
Moreover let ϕℓ : Pℓ →

[
Nℓ] be a bijection for 0 ≤ ℓ ≤ k.

We refer to a point X ∈ Pk as a matrix with k + 1 rows and Nℓ−1 entries in the ℓ
-th row. Thus we write

	 X = (x01 | . . . | xℓ1, . . . , xℓNℓ−1 | . . . | xk1, . . . , xkNk−1).

Let Xℓ = (xℓ1, . . . , xℓNℓ−1) ∈ Qℓ for 0 ≤ ℓ ≤ k. For a shorter representation we can 
replace the ℓ-th row directly by Xℓ and for 0 ≤ i ≤ j ≤ k we can replace the i-th up 
to j-th row by X[i:j] = (Xi | . . . | Xj).

Let X ∈ Pk and 1 ≤ ℓ ≤ k. Notice that X[0:ℓ−1] ∈ Pℓ−1 and let 
m = ϕℓ−1(X[0:ℓ−1]), we define

	A
X
ℓ = {(X[0:ℓ−1] | xℓ1, . . . , xℓm−1, ⋆, xℓm+1, . . . , xℓNℓ−1 | X[ℓ+1:k]) | ⋆ ∈ [Γ · Nℓ−1]}.

1 3

1431



Algorithmica (2025) 87:1420–1452

Thus all coordinates of points in AX
ℓ  are fixed and agree with those of X except one 

which is variable. Here X[0:ℓ−1] serves as prefix which indicates through ϕℓ−1 which 
coordinate of Xℓ can be changed.

We define Aℓ = {AX
ℓ | X ∈ Pk} as the set containing all subsets of this form. 

It is clear that Aℓ is a partition of Pk and that it contains only sets of size Γ · Nℓ−1. 
Furthermore we set A0 = {{X} | X ∈ Pk}.

Example 1  If we perform the first three steps of the construction we get 
Q0 = [1], Q1 = [Γ], Q2 = [Γ2]Γ and

	

P1 = {(1 | x11) | x11 ∈ [Γ]},

P2 = {(1 | x11 | x21, . . . , x2Γ) | x11 ∈ [Γ], x2i ∈ [Γ2] for 1 ≤ i ≤ Γ}

Since ϕ0 is a map between two sets of cardinality one this map is always unique. Now 
suppose that we picked ϕ1 such that ϕ1((x01 | x11)) = x11 for all (x01 | x11) ∈ P1. 
Then the partition A1 consists of the sets

	 {(1 | ⋆ | x21, . . . , x2Γ) | ⋆ ∈ [Γ]}

with x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ. The partition A2 consists of the sets

	 {(1 | x11 | x21, . . . , x2x11−1, ⋆, x2x11+1, . . . , x2Γ) | ⋆ ∈ [Γ2]}

with x11 ∈ [Γ] and x2i ∈ [Γ2] for all 1 ≤ i ≤ Γ with i ̸= x11.
Let G = (V, E, w) denote the weighted hyper-graph with V = Pk and E =

∪k
i=1 Ai. 

The weight of a hyper-edge e ∈ E is set to ℓ iff e ∈ Aℓ. For 0 ≤ ℓ ≤ k, the sub-graph 
Gℓ = (Vℓ, Eℓ, wℓ) is given by Vℓ = Pk, Eℓ =

∪ℓ
i=0 Ai and wℓ = w|Eℓ

.
We extend G to a hyper-graph H = (V ′, E′, w′) as follows. Let 

V ′ = V ∪
∪k

i=0{vA | A ∈ Ai} and E′ = E ∪
∪k

i=0{{v, vA} | A ∈ Ai, v ∈ A}. 
Thus H contains one vertex for every A ∈

∪k
i=0 Ai and this vertex is connected by 

edges to every vertex v ∈ A. For e ∈ E we set w′(e) = w(e) and for e = {v, vA} for 
some A ∈ Aℓ and v ∈ A we set w′(e) = ℓ/2.

The clustering instance (X , P, d) is given by X = V ′, P = V , and d as the short-
est path metric on H. Observe that the extension of G to H is only necessary for the 
lower bound for the radius but not for the diameter and the discrete radius. This is 
because the additional points V ′ \ V  do not belong to P  and are hence irrelevant for 
the clustering instance for the diameter and discrete radius. In the lower bound for the 
radius they will be used as centers, however.

Lemma 6  Let p, q ∈ V , thend(p, q) is the length of a shortest path betweenpandqinG.

Proof  By definition d(p, q) is the length of a shortest path between p and q in H. 
Suppose the shortest path contains a vertex vA for some A ∈

∪k
i=0 Ai with v ∈ A as 
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predecessor and w ∈ A as ancestor. Since v and w are connected in H by the hyper-
edge A we can delete vA from the path and the length of the path does not change. 
The resulting path is also a path in G, so d(p, q) is also the length of a shortest path 
between p and q in G.

Next we state some structural properties of the graph G and the clustering instance 
(X , P, d). To establish a lower bound on the approximation factor of a hierarchical 
clustering we first focus on the optimal clusterings of the instance (X , P, d). One 
can already guess that Aℓ is an optimal clustering with Nk

ΓNℓ−1
 clusters with respect 

to cost ∈ {diam, rad, drad} and we will prove this in this section. First we need the 
following statement about the connected components of Gℓ.

Lemma 7  The vertex set of every connected component in Gℓhas car-
dinality Nℓand is of the form V X

ℓ = {(X ′ | X) | X ′ ∈ Pℓ}for a given 
X = (Xℓ+1 | . . . | Xk) ∈

∏k
i=ℓ+1 Qi.

Proof  Notice that |V X
ℓ | = Nℓ and that {V X

ℓ | X ∈
∏k

i=ℓ+1 Qi} is a partition of V. 
Furthermore since Eℓ =

∪ℓ
i=0 Ai any edge e ∈ Eℓ is either completely contained in 

or disjoint to V X
ℓ .

It is left to show that V X
ℓ  is connected. We prove this via induction over ℓ. For ℓ = 0 

this is clear because |V X
0 | = 1. For ℓ > 0 let Y = (Yℓ | X), Z = (Zℓ | X) ∈

∏k
i=ℓ Qi. 

By the induction hypothesis we know that the sets V Y
ℓ−1, V Z

ℓ−1 are connected. To prove 
that V X

ℓ  is connected it is sufficient to show that there is a path from a point in V Y
ℓ−1 

to a point in V Z
ℓ−1. We show this claim by induction over the number m of coordi-

nates in which Y and Z differ. For m = 0 there is nothing to show. If m > 0 pick 
1 ≤ s ≤ Nℓ−1 such that yℓs ̸= zℓs and let P = ϕ−1

ℓ−1(s) ∈
∏ℓ−1

i=0 Qi. Consider the 
point (P | Yℓ | X) which is contained in V Y

ℓ−1. This point is also contained in the set

	 {(P | yℓ1, . . . , yℓs−1, ⋆, yℓs+1, . . . , yℓNℓ−1 | X) | ⋆ ∈ [Γ · Nℓ−1]} ∈ Eℓ.

Thus there is an edge in Gℓ connecting a point in V Y
ℓ−1 to a point in V Y ′

ℓ−1 with 

Y ′ = (yℓ1, . . . , yℓs−1, zℓs, yℓs+1, . . . , yNℓ−1 | X). Now Y ′ and Z differ in m − 1 
coordinates, thus there is a path between two points in V Y ′

ℓ−1 and V Z
ℓ−1 by induction 

hypothesis. If we combine this with the induction hypothesis that V Y ′

ℓ−1 is connected 
this yields the claim (see Fig. 1 for an illustration). � □

Lemma 8  Any clustering of (X , P, d) with less than Nk

Nℓ−1
 clusters costs at least ℓ if 

cost ∈ {diam, drad} and ℓ/2 if cost = rad.

Proof  The shortest path in G between any two points which lie in different con-
nected components of Gℓ−1 must contain an edge of weight ≥ ℓ. Thus any set of 
points M ⊂ V  which is disconnected in Gℓ−1 has diameter ≥ ℓ. Remember that the 
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discrete radius of M is given by drad(M) = minc∈M maxp∈M d(p, c). For every 
possible choice of c ∈ M  there exists a point p ∈ M  which is not in the same con-
nected component of Gℓ−1 as c, thus d(c, p) ≥ ℓ and therefore drad(M) ≥ ℓ and 
rad(M) ≥ diam(M)/2 ≥ ℓ/2.

We conclude that if cost ∈ {diam, drad} any cluster of cost smaller than ℓ is con-
tained in one of the sets V X

ℓ−1 for some X ∈
∏k

i=ℓ Qi by Lemma 7 and any clustering 
with less than 

∣∣ ∏k
i=ℓ Qi

∣∣ clusters costs at least ℓ. By the same argument if cost = rad 
any cluster of cost smaller than ℓ/2 is contained in one of the sets V X

ℓ−1 for some 
X ∈

∏k
i=ℓ Qi by Lemma  7 and any clustering with less than 

∣∣ ∏k
i=ℓ Qi

∣∣ clusters 
costs at least ℓ/2. Since

	

∣∣∣
k∏

i=ℓ

Qi

∣∣∣ =
∣∣ ∏k

i=0 Qi

∣∣
∣∣ ∏ℓ−1

i=0 Qi

∣∣ = Nk

Nℓ−1

this proves the lemma. � □

Corollary 9  For 1 ≤ ℓ ≤ k and cost ∈ {diam, rad, drad} the clustering Aℓ 
is an optimal Nk

ΓNℓ−1
-clustering for the instance (X , P, d). Furthermore 

diam(Aℓ) = drad(Aℓ) = ℓ and rad(Aℓ) = ℓ/2.

Proof  If cost ∈ {diam, drad} we obtain by definition of (X , P, d) that 
cost(Aℓ) ≤ ℓ. If cost = rad we obtain that cost(A) ≤ ℓ/2 by picking vA ∈ X \P  as 
center for A ∈ Aℓ. On the other hand |Aℓ| = Nk

ΓNℓ−1
< Nk

Nℓ−1
 and thus cost(Aℓ) ≥ ℓ 

if cost ∈ {diam, drad} and cost(Aℓ) ≥ ℓ/2 for cost = rad by Lemma 8. � □

Fig. 1  Here we see the construction of the path. It corresponds to changing the coordinates of Y suc-
cessively until they match Z. We use an edge in Aℓ to change yls to zls, next we change yls′  to zls′  
and proceed like this until we obtain Z. The respective edges are then connected to a path from V X

ℓ−1 
to V Z

ℓ−1
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5.2  Characterization of Hierarchical Clusterings

Let from now on H = (HNk
, . . . , H1) denote a hierarchical clustering of (X , P, d). 

We introduce the notion of bad clusters in H Nk
ΓNℓ−1

 which are clusters whose cost 

increases repeatedly, as we will see later. In this section we prove the existence of 
such clusters in H  and we give a lower bound on their cost.

Definition 5  We call all clusters C ∈ HNk  bad at time 0 and denote by Ker0(C) = C 
the kernel of C at time 0 and set Bad(0) = HNk .

For 1 ≤ ℓ ≤ k we say that a cluster C ∈ H Nk
ΓNℓ−1

 is anchored at ℓ ≤ ℓ′ ≤ k if the 

set 
∪

D∈Bad(ℓ−1):D⊂C Kerℓ−1(D) is 

1.	 connected in Gℓ′ ,
2.	 disconnected in Gℓ′−1.
We call C bad at time ℓ if C is anchored at some ℓ′ ≥ ℓ. We denote by Bad(ℓ) ⊂ H Nk

ΓNℓ−1
 

the set of all bad clusters at time ℓ. If C is bad we define the kernel of C as the union 
of all kernels of bad clusters at time ℓ − 1 contained in C, i.e.,

	
Kerℓ(C) =

∪
D∈Bad(ℓ−1):D⊂C

Kerℓ−1(D).

All clusters in H Nk
ΓNℓ−1

\Bad(ℓ) are called good.

The example in Fig. 2 shows that a bad cluster at time ℓ can contain clusters which are 
good at time ℓ − 1. However we are only interested in points that are contained exclu-
sively in bad clusters at any time t < ℓ. The set Kerℓ(C) contains exactly such points.

We will use two crucial properties to prove the final lower bound on the approxi-
mation factor of any hierarchical clustering H  of (X , P, d). We first observe that bad 
clusters exist in H  for every time-step 1 ≤ ℓ ≤ k and second that these clusters have 
a large cost compared to the optimal clustering.

Lemma 10  LetCbe a good cluster at time 1 ≤ ℓ ≤ k and

	
W =

∪
D∈Bad(ℓ−1):D⊂C

Kerℓ−1(D),

thenWis connected in Gℓ−1 and thus |W | ≤ Nℓ−1.

Proof  Suppose W is disconnected in Gℓ−1. Since Gk = G is connected, there must 
be a time ℓ′ ≥ ℓ such that W is connected in Gℓ′  and disconnected in Gℓ′−1. But then 
C is a bad cluster at time ℓ which is anchored at ℓ′ in contradiction to our assumption. 
Thus W is connected in Gℓ−1. By Lemma 7 we know that every connected compo-
nent in Gℓ−1 is of size Nℓ−1. � □
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Lemma 11  For all 0 ≤ ℓ ≤ k we have 
∑

C∈Bad(ℓ) |Kerℓ(C)| ≥ Γ−ℓ
Γ Nk.

Proof  We prove this via induction over ℓ. For ℓ = 0 this is clear since ∪
C∈Bad(0) Ker0(C) = Pk.

Now suppose that ℓ > 0 and that

	

∑
C∈Bad(ℓ)

|Kerℓ(C)| <
Γ − ℓ

Γ
Nk.

By induction hypothesis we know that

	

∑
C∈Bad(ℓ−1)

|Kerℓ−1(C)| ≥ Γ − ℓ + 1
Γ

Nk.

Thus the number of points which are in the kernel of a bad cluster at time ℓ − 1 but 
not at time ℓ is larger than

	
Γ − ℓ + 1

Γ
Nk − Γ − ℓ

Γ
Nk = Nk

Γ
.

In other words these are points that are in the kernel of a bad cluster at time ℓ − 1 
but contained in a good cluster at time ℓ. Now we use that any good cluster at time ℓ 
can contain only Nℓ−1 such points by Lemma 10. Thus the number of good clusters 
is greater than

Fig. 2  An illustration of the evolution of good and bad clusters: In the example, we see five clusters 
at time ℓ − 1. The clusters A, B, D, E are assumed to be bad, with their kernels depicted in dark gray, 
while C is assumed to be a good cluster. At time ℓ, clusters A, B and C are merged. The resulting cluster 
is bad because the kernels of A and B lie in different connected components of Gℓ−1. Clusters D and E 
are still present at time ℓ, but now D is a good cluster since its kernel is completely contained in V Z

ℓ−1, 
while E is still bad, since its kernel is disconnected in Gℓ−1
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Nk

Γ
· 1

Nℓ−1
= Nk

ΓNℓ−1
.

We obtain that H Nk
ΓNℓ−1

 contains more than Nk

ΓNℓ−1
 clusters, which is not possible. �□

An immediate consequence of Lemma 11 is the existence of bad clusters at time ℓ for 
any 0 ≤ ℓ ≤ k. To prove that their (discrete) radius and diameter is indeed large we 
need a lower bound on the distance between two points X, Y ∈ P  that lie in different 
connected components of Gj−1 for some 1 ≤ j ≤ k.

Suppose that the points X and Y only differ in one coordinate, i.e., there is a 
1 ≤ s ≤ Nj−1 such that xjs ̸= yjs, while X and Y agree in all other coordinates. 
There is only one edge in Gj  connecting V X[j:k]

j−1  with V Y[j:k]
j−1 . Let P = ϕ−1

j−1(s), 
then this edge connects the points (P | X[j:k]) and (P | Y[j:k]). If we connect X to 
(P | X[j:k]) and (P | Y[j:k]) to Y via a shortest path, this results in a path from X to 
Y, see Fig. 3. We show that this path is indeed a shortest path between X and Y and 
generalize this to arbitrary X and Y which are disconnected in Gj−1.

Lemma 12  Let X, Y ∈ P  be two points and suppose there is 1 ≤ j ≤ k and 
1 ≤ s ≤ Nj−1 such that xjs ̸= yjs. Let P = ϕ−1

j−1(s) ∈
∏j−1

i=0 Qi. Then

	 d(X, Y ) ≥ d
(
X, (P | X[j:k])

)
+ j + d

(
Y, (P | Y[j:k])

)
.

Proof  Observe that if two points in G are connected by an edge they differ in exactly 
one coordinate. Since xjs ̸= yjs any shortest path connecting X and Y must contain two 
consecutive points Z, Z ′ with Z = (P | Zj | . . . | Zk) and Z ′ = (P | Z ′

j | . . . | Z ′
k) 

such that zjs ̸= z′
js and Z agrees with Z ′ in all remaining coordinates. We obtain

	 d(X, Y ) = d
(
X, Z

)
+ d(Z, Z ′) + d

(
Z ′, Y

)
= d

(
X, Z

)
+ j + d

(
Z ′, Y

)
.

It is now left to show that d(X, Z) ≥ d
(
X, (P | X[j:k])

)
 and d(Y, Z ′) ≥

d
(
Y, (P | Y[j:k])

)
. To prove this we consider a shortest path V 1, . . . , V t connecting 

V 1 = X  with V t = Z. Let W i = (V i
[0:j−1] | X[j:k]) for i = 1, . . . , t. We claim that 

W i is connected to W i+1 by an edge in G and that d(V i, V i+1) ≥ d(W i, W i+1) for 
all 1 ≤ i ≤ t − 1. So let 1 ≤ i ≤ t − 1, we know that V i and V i+1 differ in exactly 
one coordinate. If they differ at a coordinate in row r ≥ j we have W i = W i+1 and 

Fig. 3  A shortest path between X and Y. It consists of two shortest paths inside the connected compo-
nents of Gj−1 and the unique edge of weight j between these components
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thus the claim holds. Otherwise let u = ϕr−1(V i
[0:r−1]) then V i and V i+1 satisfy 

vi
ru ̸= vi+1

ru  and d(V i, V i+1) = r. Since r ≤ j − 1 we obtain that W i is connected 
to W i+1 by the edge

	 {(V i
[0:r−1] | vi

r1, . . . , vi
ru−1, ⋆, vi

ru+1, . . . , vi
rNr−1

| W i
[r+1:k]) | ⋆ ∈ [ΓNr−1]},

which has weight r. This yields the claim.
Observe that W 1 = X  and W t = (P | X[j:k]) and that

	
d
(
X, (P | X[j:k])

)
≤

t−1∑
i=1

d(W i, W i+1) ≤
t−1∑
i=1

d(V i, V i+1) = d(X, Z).

Analogously one can show d(Y, Z ′) ≥ d
(
Y, (P | Y[j:k])

)
 and obtains

	d(X, Y ) = d
(
X, Z

)
+ j + d

(
Z ′, Y

)
≥ d

(
X, (P | X[j:k])

)
+ j + d

(
Y, (P | Y[j:k])

)
.

� □
We now define the so called anchor set Ancℓ(C) of a bad cluster C at time ℓ. If C is 
anchored at ℓ′ then Ancℓ(C) is the union of ℓ′ and the anchor set of some bad cluster 
D ⊂ C at time ℓ − 1. If we choose D appropriately the sum of anchors in Ancℓ(C) 
is a lower bound on the discrete radius of C, as we show later. It is clear that ℓ′ itself 
is a lower bound on the discrete radius since Kerℓ(C) is disconnected in Gℓ′−1 by 
definition. If we additionally assume that the discrete radius of D is large, e.g., lower 
bounded by the sum of anchors in Ancℓ−1(D), then it is reasonable to assume that the 
discrete radius of C is lower bounded by some function in ℓ′ and the sum of anchors 
in Ancℓ−1(D). Before proving this we give a formal definition of Ancℓ(C) and how 
to choose D.

Definition 6  Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ which is anchored at ℓ′ ≥ ℓ. 
If ℓ = 1 we define the anchor set of C as Anc1(C) = {ℓ′} and set prev(C) = {X} 
for some X ∈ C.

For ℓ > 1 we distinguish two cases. 

Case 1:	 C contains a bad cluster D which is bad at time ℓ − 1 and anchored at ℓ′. We 
then set Ancℓ(C) = Ancℓ−1(D) and prev(C) = D.

Case 2:	 C does not contain such a cluster. Then let D ⊂ C be a bad cluster at time 
ℓ − 1 minimizing 

	

∑
a∈Ancℓ−1(D)

a

	  among all clusters D′ ∈ Bad(ℓ − 1) with D′ ⊂ C. We set Ancℓ(C) = 
Ancℓ−1(D) ∪ {ℓ′}and prev(C) = D.
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Observe that in Case 2 of the previous definition, the bad cluster D must be anchored 
at some ℓD < ℓ′.

Lemma 13  Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ. IfCcontains a clusterD-
which is bad at time ℓ − 1 then Kerℓ−1(D) ⊂ Kerℓ(C).

Proof  Since D ∈ Bad(ℓ − 1) and D ⊂ C, we get

	
Kerℓ−1(D) ⊂

∪
D′⊂Bad(ℓ−1):D′⊂C

Kerℓ−1(D′) = Kerℓ(C).

� □

With the help of Lemma 12 we are able to show how the discrete radius and diameter 
of a bad cluster, depends on the sum of anchors.

Lemma 14  Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then for 
any point Z ∈ P  there is X ∈ Kerℓ(C) such that 

	
d(Z, X) ≥

∑
a∈Ancℓ(C)

a.

Proof  Let Z ∈ P  and suppose that C is a bad cluster at time ℓ anchored at ℓ′. We 
prove the lemma via induction over ℓ. For ℓ = 1 we know that Kerℓ(C) is discon-
nected in Gℓ′−1 by definition. Thus there is a point X ∈ Kerℓ(C) which is discon-
nected from Z in Gℓ′−1 yielding

	
d(Z, X) ≥ ℓ′ =

∑
a∈Anc1(C)

a.

Let ℓ > 1. If D = prev(C) is anchored at ℓ′ we apply Lemma 13 to observe that 
Kerℓ−1(D) ⊂ Kerℓ(C). By induction hypothesis the lemma holds for D. Since 
Ancℓ(C) = Ancℓ−1(D) the lemma also holds for C.

Otherwise let D = prev(C) be anchored at ℓD < ℓ′. We know that Kerℓ(C) is 
disconnected in Gℓ′−1. On the other hand Kerℓ−1(D) is connected in Gℓ′−1 since 
ℓD < ℓ′. Thus there is V ∈ Kerℓ(C) which is disconnected from Kerℓ−1(D) in 
Gℓ′−1. Let E ⊂ C be the cluster at time ℓ − 1 which contains V. Since V ∈ Kerℓ(C) 
we know that E is a bad cluster at time ℓ − 1 anchored at ℓE < ℓ′. We know that 
Kerℓ−1(E) is connected in Gℓ′−1 and lies in a different connected component than 
Kerℓ−1(D). Thus Z is disconnected from Kerℓ−1(D) or Kerℓ−1(E) in Gℓ′−1.

We assume without loss of generality that Z is disconnected from 
Kerℓ−1(E) in Gℓ′−1. Since Kerℓ−1(E) is connected in Gℓ′−1 we know by 
Lemma  7 that (P | Y[ℓ′:k]) = (P | Y ′

[ℓ′:k]) for all Y, Y ′ ∈ Kerℓ−1(E). Also by 
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Lemma  7 there is ℓ′ ≤ r ≤ k and 1 ≤ s ≤ Nr−1 such that zrs ̸= yrs for all 
Y ∈ Kerℓ−1(E). Let P = ϕ−1

r−1(s). Thus we know by induction hypothesis that there 
is a point X ∈ Kerℓ−1(E) ⊂ Kerℓ(C) with

	
d(X, (P | X[r:k])) ≥

∑
a∈Ancℓ−1(E)

a.

Figure 4 shows an exemplary path between X and Z.
We apply Lemma 12 to see that

	

d(Z, X) ≥ d
(
Z, (P | Z[r:k])

)
+ r + d

(
X, (P | X[r:k])

)

≥ r +
∑

a∈Ancℓ−1(E)

a

≥ ℓ′ +
∑

a∈Ancℓ−1(E)

a

≥
∑

a∈Ancℓ(C)

a

Here the last inequality follows from the minimality of 
∑

a∈Ancℓ−1(D) a among all 
clusters D′ ∈ Bad(ℓ − 1) with D′ ⊂ C.

If Z is disconnected from Kerℓ−1(D) in Gℓ′−1 our argument still works after 
replacing E by D. � □

Lemma 15  Let 1 ≤ ℓ ≤ k and C be a bad cluster at time ℓ anchored at ℓ′. Then there 
are two points X, Y ∈ Kerℓ(C) such that

	
d(X, Y ) ≥ ℓ′ + 2

∑
a∈Ancℓ(C)\{ℓ′}

a.

Proof  Suppose that C is a bad cluster at time ℓ anchored at ℓ′. We prove the lemma 
via induction over ℓ. For ℓ = 1 we know that Kerℓ(C) is disconnected in Gℓ′−1 by 

Fig. 4  Shows the special case where Z[r:k] and Y[r:k] only differ in the rs-coordinate. The length of the 
right path is lower bounded by 

∑
a∈Ancℓ−1(E) a
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definition. Thus there are two points X, Y ∈ Kerℓ(C) that are disconnected in Gℓ′−1 
yielding

	
d(X, Y ) ≥ ℓ′ = ℓ′ + 2

∑
a∈Anc1(C)\{ℓ′}

a.

Let ℓ > 1. If D = prev(C) is anchored at ℓ′ we apply Lemma 13 to observe that 
Kerℓ−1(D) ⊂ Kerℓ(C). By induction hypothesis the lemma holds for D. Since 
Ancℓ(C) = Ancℓ−1(D) the lemma also holds for C.

Otherwise let D = prev(C) be anchored at ℓD < ℓ′. We know that Kerℓ(C) is dis-
connected in Gℓ′−1 and Kerℓ−1(D) is connected in Gℓ′−1. Thus there is V ∈ Kerℓ(C) 
which is disconnected from Kerℓ−1(D) in Gℓ′−1. Let E ⊂ C be the cluster at time 
ℓ − 1 which contains V. We know that E is a bad cluster at time ℓ − 1 anchored at 
ℓE < ℓ′. Furthermore Kerℓ−1(E) is connected in Gℓ′−1 and lies in a different con-
nected component than Kerℓ−1(D).

Since Kerℓ−1(D) and Kerℓ−1(E) are disconnected in Gℓ′−1 but connected in Gℓ′ , 
there must be 1 ≤ s ≤ Nℓ′−1 such that for all U ∈ Kerℓ−1(D) and T ∈ Kerℓ−1(E) 
we have uℓ′s ̸= tℓ′s by Lemma 7. Let P = ϕ−1

ℓ′−1(s), we know by Lemma 12 that

	 d(U, T ) ≥ d(U, (P | U[ℓ′:k])) + ℓ′ + d(T, (P | T[ℓ′:k])).

Let U ∈ Kerℓ−1(D) and T ∈ Kerℓ−1(E). We know by Lemma 14 that for any two 
points Z = (P | U[ℓ′:k]) and Z ′ = (P | T[ℓ′:k]) there must be X ∈ Kerℓ−1(D) and 
Y ∈ Kerℓ−1(E) such that

	
d(X, Z) ≥

∑
a∈Ancℓ−1(D)

a

and

	
d(Y, Z ′) ≥

∑
a∈Ancℓ−1(E)

a.

We use Lemma 7 to observe that Z = (P | X[ℓ′:k]) and Z ′ = (P | Y[ℓ′:k]) because 
X is connected to U and Y is connected to T in Gℓ′−1. Figure 5 shows an exemplary 
path between X and Y. Thus

	

d(X, Y ) ≥ d(X, (P | X[ℓ′:k])) + ℓ′ + d(Y, (P | Y[ℓ′:k]))
≥ d(X, Z) + ℓ′ + d(Y, Z ′)

≥ ℓ′ +
∑

a∈Ancℓ−1(D)

a +
∑

a∈Ancℓ−1(E)

a

≥ ℓ′ + 2
∑

a∈Ancℓ(C)\{ℓ′}

a
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Here the last inequality follows from the minimality of 
∑

a∈Ancℓ−1(D) a among all 
clusters D′ ∈ Bad(ℓ − 1) with D′ ⊂ C. � □

5.3  Comparison to Optimal Clusterings

Our initial motivation was to construct an instance where any hierarchical clus-
tering has a high approximation ratio. If we consider an arbitrary time 1 ≤ ℓ ≤ k 
then the hierarchical clustering H  on (X , P, d) may be even optimal at time 
ℓ. Thus the bounds which we develop in Lemmas 14 and 15 on the discrete radius 
and diameter of bad clusters are useless without linking the cost of a bad cluster 
at time ℓ to the cost of bad clusters at other time steps. Therefore we construct a 
sequence of clusters C1 ⊂ C2 . . . ⊂ Ck where Ci is a bad cluster at time i such that 
Anc1(C1) ⊂ Anc2(C2) ⊂ . . . ⊂ Anck(Ck). We then show with the help of Lem-
mas 14 and 15 that at least one of these clusters has a high discrete radius and diam-
eter compared to the optimal cost.

Lemma 16  Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k − 1 we define 
Ci = prev(Ci+1). For all 1 ≤ i ≤ k − 1 cluster Ci is bad at timeiand one of the fol-
lowing two cases occurs:

1.	 Anci(Ci) = Anci+1(Ci+1),
2.	 Anci+1(Ci+1)\{ℓ} = Anci(Ci), where ℓ = max Anci+1(Ci+1).

Proof  For i = k cluster Ck is bad at time k by assumption. If Ci+1 is a bad cluster 
at time i + 1 then Ci = prev(Ci+1) is a bad cluster at time i, by definition of prev.

Let Ci be anchored at ℓ′ ≥ i and Ci+1 be anchored at ℓ ≥ i + 1. Since 
Keri(Ci) ⊂ Keri+1(Ci+1) by Lemma 13, we know that ℓ′ ≤ ℓ. If ℓ′ = ℓ we obtain 
by Definition 6, that Anci(Ci) = Anci+1(Ci+1), so the lemma holds in this case.

If ℓ′ < ℓ we know by Definition 6 that Anci(Ci) = Anci+1(Ci+1)\{ℓ}. So the 
lemma also holds in this case. � □

Corollary 17  Let Ck be a bad cluster at time k. For 1 ≤ i ≤ k − 1 we define 
Ci = prev(Ci+1). Let Anck(Ck) = {ℓ1, . . . , ℓs} such that ℓt−1 < ℓt for all 2 ≤ t ≤ s 

Fig. 5  Shows the special case where X[ℓ′:k] and Y[ℓ′:k] only differ in the ℓ′s-coordinate. The length 
of the left path is lower bounded by 

∑
a∈Ancℓ−1(D) a, while the length of the right path is lower 

bounded by 
∑

a∈Ancℓ−1(E) a
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and let ℓ0 = 0. Then for any 1 ≤ t ≤ s and for anyiwith ℓt−1 < i ≤ ℓt, we have 
{ℓ1, . . . , ℓt} ⊂ Anci(Ci).

Proof  We prove this via induction over i, starting from i = k in decreasing 
order. There is nothing to show for i = k. For i < k we distinguish two cases. If 
Anc(Ci) = Anci+1(Ci+1), the lemma follows from the induction hypothesis.

Otherwise remember that Anci(Ci) ⊂ Anck(Ck) and ℓt−1 < i. Thus we know 
that max Anci(Ci) ∈ {ℓt, . . . , ℓs} and therefore ℓt ≤ max Anci(Ci).

By Lemma  16 we know that Anci(Ci) = Anci+1(Ci+1)\{ℓ}, where 
ℓ = max Anci+1(Ci+1). Thus ℓt ≤ max Anci(Ci) < max Anci+1(Ci+1) = ℓ and 
by induction hypothesis we obtain

	 {ℓ1, . . . , ℓt} ⊂ Anci+1(Ci+1)\{ℓ} = Anci(Ci).

� □
Before we are able to prove the theorem we need some final lemma.

Lemma 18  For every ϵ > 0 there exists k ∈ N such that for every s ∈ N any sequence 
of s + 1 numbers (ℓ0, . . . , ℓs) ∈ Rs+1

≥0  with ℓ0 = 0 and ℓs = k satisfies the following.

1.	 There exists 1 ≤ t ≤ s such that for α1 = 4 − ϵ and ∆1 = 1 we have 

	
ℓt + ∆1

∑t−1
i=0 ℓi

ℓt−1 + 1
> α1.

2.	 There exists 1 ≤ t ≤ s such that for α2 = 3 + 2
√

2 − ϵ and ∆2 = 2 we have

	
ℓt + ∆2

∑t−1
i=0 ℓi

ℓt−1 + 1
> α2.

Proof  Let k, s ∈ N and j ∈ {1, 2}.

We call a sequence (a0, . . . , as) ∈ Rs+1
≥0  feasible if a0 = 0, as = k and for all 

1 ≤ t ≤ s we have

	
at + ∆j

∑t−1
i=0 ai

at−1 + 1
≤ αj .� (1)

Our proof is divided in two parts. In the first part we argue that for all k, s ∈ N 
the existence of a feasible sequence (ℓ0, . . . , ℓs) yields the existence of a feasible 
sequence (b0, . . . , bs) which satisfies (1) for all u + 1 ≤ t ≤ s with equality, where 
u is the smallest number such that bu ̸= 0. In the second part we observe that there 
exists k ∈ N such that for all s ∈ N there is no feasible sequence (a0, . . . , as) ∈ Rs+1

≥0  
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which satisfies (1) for all u + 1 ≤ t ≤ s with equality, where u is the smallest number 
such that au ̸= 0. In combination both parts yield the lemma.

Part 1: Let k, s ∈ N and suppose that there exists a feasible sequence (ℓ0, . . . , ℓs). 
We consider the set

	 M = {(a0, . . . , as) ∈ Rs+1
≥0 | (a0, . . . , as) is feasible}

of all feasible sequences.
For (a0, . . . , as) ∈ M , we claim that at ≤ (αj + 1)t+1 for all 0 ≤ t ≤ s. We show 

this via a simple induction over t. If t = 0 there is nothing to show since a0 = 0. For 
t > 0 we obtain

	
at ≤ αj(at−1 + 1) − ∆j

t−1∑
i=0

ai ≤ αj(at−1 + 1) ≤ αj((αj + 1)t + 1) ≤ (αj + 1)t+1.

Here the first inequality follows from the feasibility of the sequence. As a consequence 
we see that M is a bounded set. Furthermore M is also closed since a0 = 0, at = k 
are both linear inequalities and (1) is a linear inequality for all 1 ≤ t ≤ s. Thus M is 
compact.

We consider the function F : M → R with F (a0, . . . , as) =
∑s

i=0 ai. Since 
F is continuous and M is compact and non-empty we know that F attains a mini-
mum on M, i.e., there is (b0, . . . , bs) ∈ M  with F (b0, . . . , bs) ≤ F (a0, . . . , as) for 
all (a0, . . . , as) ∈ M . We claim that (b0, . . . , bs) satisfies (1) with equality for all 
u + 1 ≤ t ≤ s, where u is the smallest number such that bu ̸= 0. Suppose this is not 
the case and let u + 1 ≤ t ≤ s be a number such that

	
bt + ∆j

∑t−1
i=0 bi

bt−1 + 1
< αj .

If bt−1 = 0, then (0, . . . , 0, bt, . . . , bs) is also feasible and moreover

	
F (0, . . . , 0, bt, . . . , bs) =

s∑
i=t

bi < bu +
s∑

i=t

bi ≤ F (b0, . . . , bs)

in contradiction to (b0, . . . , bs) being a minimum. Thus we must have bt−1 > 0 and 
therefore by continuity there exists an ϵ ∈ (0, bt−1), such that

	
bt + ∆j(bt−1 − ϵ) + ∆j

∑t−2
i=0 bi

bt−1 − ϵ + 1
≤ αj .

Observe that the sequence (c0, . . . , cs) = (b0, . . . , bt−2, bt−1 − ϵ, bt, . . . , bs) is still 
feasible. The t-th inequality is satisfied by choice of ϵ. All other inequalities are satis-
fied, since for all 1 ≤ r ≤ s with r ̸= t we have

1 3

1444



Algorithmica (2025) 87:1420–1452

	
cr + ∆j

∑r−1
i=0 ci

cr−1 + 1
≤

br + ∆j

∑r−1
i=0 bi

br−1 + 1
≤ αj .

On the other hand

	
F (c0, . . . , cs) =

s∑
i=0

ci = −ϵ +
s∑

i=0
bi < F (b0, . . . , bs),

which again stands in contradiction to (b0, . . . , bs) being the minimum. Thus 
(b0, . . . , bs) is of the desired form.

Part 2: Let k, s ∈ N and (a0, . . . , as) ∈ Rs+1
≥0  be a feasible sequence which satis-

fies (1) for all u + 1 ≤ t ≤ s with equality, where u is the smallest number such that 
au ̸= 0. Thus we know that a1 = . . . = au−1 = 0 and au ∈ (0, αj ]. Furthermore

	
au+1 = αj(au + 1) − ∆j

u∑
i=0

ai = αj(au + 1) − ∆jau

and for u + 2 ≤ t ≤ s we have

	

at = αj(at−1 + 1) − ∆j

t−1∑
i=0

ai

= αj(at−1 + 1) − ∆jat−1 − ∆j

t−2∑
i=0

ai

= αj(at−1 + 1) − ∆jat−1 − (αj(at−2 + 1) − at−1)
= αj(at−1 − at−2) − (∆j − 1)at−1.

Here we use that (1) is satisfied with equality for t and t − 1.
Let

	
Ψ =

αj − ∆j + 1 +
√

(αj − ∆j + 1)2 − 4αj

2

and

	
Θ =

αj − ∆j + 1 −
√

(αj − ∆j + 1)2 − 4αj

2

be the two roots of the polynomial X2 − (αj − ∆j + 1)X + αj . We observe later 
that Φ ̸= Θ. Let x = Θau−au+1

Θ−Φ  and y = au+1−Φau

Θ−Φ .

Claim: It holds that at = Φt−ux + Θt−uy for all u ≤ t ≤ s.
We prove this claim by induction over t. For t = u we obtain

1 3

1445



Algorithmica (2025) 87:1420–1452

	
x + y = Θau − au+1 + au+1 − Φau

Θ − Φ
= au.

For t = u + 1 we obtain

	
Φx + Θy = ΦΘau − Φau+1 + Θau+1 − ΘΦau

Θ − Φ
= au+1.

For t > u + 1 we obtain

	

Φt−ux + Θt−uy

= Φt−u−2x((αj − ∆j + 1)Φ − αj) + Θt−u−2y((αj − ∆j + 1)Θ − αj)
= αj((Φt−u−1x + Θt−u−1y) − (Φt−u−2x + Θt−u−2y))

− (∆j − 1)(Φt−u−1x + Θt−u−1y)
= αj(at−1 − at−2) − (∆j − 1)at−1
= at.

For the first equality we used that Φ and Θ are roots of X2 − (αj − ∆j + 1)X + αj , i.e., 
Φ2 = (αj − ∆j + 1)Φ − αj  and Θ2 = (αj − ∆j + 1)Θ − αj . For the third equal-
ity we used the induction hypothesis. This proves the claim.

We argue that if k is large enough, there must be u ≤ t ≤ s with at < 0 in con-
tradiction to our assumption that (a0, . . . , as) is feasible. For this we observe that 
by choice of αj  and ∆j , we get (αj − ∆j + 1)2 − 4αj < 0 and thus Φ and Θ are 
complex numbers. Furthermore Φ and Θ are complex conjugates and so are x and y. 
Thus there exists r > 0 such that the real part of Φrx and Θry is negative and thus 
Φrx + Θry is negative, see Fig. 6.

Observe that at ≤ (αj + 1)t−u+1 for u ≤ t ≤ s. One can prove this sim-
ilar to the bound in Part 1. Thus if k ≥ (αj + 1)r we obtain s ≥ r + u and thus 
ar+u = Φrx + Θry is negative. Therefore (a0, . . . , as) is not feasible in contradic-
tion to our assumption.

Let now k ≥ (αj + 1)r and suppose there exists s ∈ N and a feasible sequence 
(ℓ0, . . . , ℓs). By the first part we know that there also exists a feasible sequence 
(a0, . . . , as) which satisfies (1) for all u + 1 ≤ t ≤ s with equality, where u is the 
smallest number such that au ̸= 0. This is in contradiction with the second part, 
where we prove that for k ≥ (αj + 1)r such a sequence cannot exist. � □

Theorem 5  For cost ∈ {diam, rad} we have ρcost ≥ 3 + 2
√

2 and for cost = drad 
we have ρcost ≥ 4.

Proof  Let ϵ > 0 and k be the respective number from Lemma  18. We claim that 
the approximation factor of any hierarchical clustering H = (HNk

, . . . , H1) 
on the instance (X , P, d) is larger than 3 + 2

√
2 − ϵ if cost ∈ {diam, rad} and 

larger than 4 − ϵ if cost = drad. First we use Lemma  11 to observe that there 
is a cluster Ck ∈ H Nk

ΓNk−1
 that is bad at time k. For 1 ≤ i ≤ k − 1 we define 
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Ci = prev(Ci+1). Let Anck(Ck) = {ℓ1, . . . , ℓs} with ℓt−1 < ℓt for 2 ≤ t ≤ s and 
let ℓ0 = 0. We know by Corollary 17, that for any 1 ≤ t ≤ s and for i = ℓt−1 + 1 
we have {ℓ1, . . . , ℓt} ⊂ Anci(Ci). Let ℓ′ = max Anci(Ci), we obtain by Lemmas 15 
and 14 that

	

diam(Ci) ≥ ℓ′ + 2
∑

a∈Anci(Ci)\{ℓ′}

a ≥ ℓt + 2
t−1∑
u=1

ℓu,

rad(Ci) ≥ diam(Ci)
2

≥
ℓt + 2

∑t−1
u=1 ℓu

2
,

drad(Ci) ≥
∑

a∈Anci(Ci)

a ≥
t∑

u=1
ℓu.

Remember that by Corollary 9Ai is an optimal Nk

ΓNi−1
-clustering with cost(Ai) = i 

if cost ∈ {diam, drad} and cost(Ai) = i/2 if cost = rad. We obtain

	

rad(Ci)
rad(Ai)

= 2rad(Ci)
2rad(Ai)

≥ diam(Ci)
diam(Ai)

≥
ℓt + 2

∑t−1
u=1 ℓu

ℓt−1 + 1
drad(Ci)
drad(Ai)

≥
∑t

u=1 ℓu

ℓt−1 + 1

which are lower bounds on the approximation factor of H .
We apply Lemma 18 on (ℓ0, . . . , ℓs) to observe that there is 1 ≤ t′ ≤ s such that

	
ℓt′ + 2

∑t′−1
u=1 ℓu

ℓt′−1 + 1
> 3 + 2

√
2 − ϵ

and an 1 ≤ t′′ ≤ s such that

Fig. 6  Here we see the normalized numbers on the 
complex plane
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∑t′′

u=1 ℓu

ℓt′′−1 + 1
> 4 − ϵ.

This proves the theorem. � □

6  Conclusions and Open Problems

We have proved tight bounds for the price of hierarchy with respect to the diameter 
and (discrete) radius. It would be interesting to also obtain a better understanding 
of the price of hierarchy for other important objective functions like k-median and 
k-means. The best known upper bound is 16 for k-median [23] and 32 for k-means [6] 
but no non-trivial lower bounds are known. Closing this gap also for these objectives 
is a challenging problem for further research.

Another natural question is which approximation factors can be achieved by poly-
nomial-time algorithms. The algorithm we used in this article to prove the upper 
bounds is not a polynomial-time algorithm because it assumes that for each level k 
an optimal k-clustering is given. The approximation factors worsen if only approxi-
mately optimal clusterings are used instead. It is known that 8-approximate hierarchi-
cal clusterings can be computed efficiently with respect to the diameter and (discrete) 
radius [2]. It is not clear whether or not it is NP-hard to obtain better hierarchical clus-
terings. The only NP-hardness results come from the problems with given k. Since 
computing a (2 − ϵ)-approximation for k-clustering with respect to the diameter and 
(discrete) radius is NP-hard, this is also true for the hierarchical versions. However, 
this is obsolete due to our lower bound, which shows that in general there does not 
even exist a (2 − ϵ)-approximate hierarchical clustering.

Appendix A: Counterexample for Mondal’s Algorithm

The algorithm by Dasgupta and Long [2] computes a hierarchical clustering which 
is an 8-approximation with respect to the discrete radius objective and the diameter 
objective. Mondal’s algorithm is a modification of this algorithm and should compute 
a 6-approximation for the discrete radius objective [10, Theorem 3.7]. We claim that 
this is not correct and present an example where the approximation factor is 7. First 
we give a brief summary of Mondal’s algorithm.

Let (X , P, d) be the clustering instance. In the beginning we compute a number-
ing of the points in P  by running Gonzales’ algorithm [9]. The numbering is com-
puted as follows. We pick the first point x1 ∈ P  arbitrarily and set R1 = ∞. For 
2 ≤ k ≤ |P| we set

	
xk = argmaxx∈P\{x1,...,xk−1} min

1≤i≤k−1
d(x, xi)
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and Rk = min1≤i≤k−1 d(xk, xi). In other words the k-th point is picked as far as 
possible from the points x1, . . . , xk−1 and we denote by Rk the distance of xk to 
x1, . . . , xk−1.

Based on the R-values we define the parent of a point x ∈ P\{x1}. Let 
N(x) = argmin{d(x, y) | y ∈ P, Rx ≤ Ry

2 } denote the parent of x. In other words 
N(x) is the point nearest to x that satisfies Rx ≤ RN(x)

2 . Notice that every point in 
P\{x1} has a properly defined parent, as R1 = ∞.

We build a tree on P  as follows. For every point x ∈ P  we simply add an edge 
between x and N(x). The resulting graph is cycle free, since Rx < RN(x) for all 
x ∈ P , and contains |P| − 1 edges. Thus it is indeed a tree.

Fig. 7  Here we see the clustering instance and the numbering obtained from Gonzales’ algorithm as 
well as the optimal 9-clustering with radius 2 depicted in gray
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For any given 1 ≤ k ≤ |P| we observe that by deleting the edges {xi, N(xi)} 
for all 2 ≤ i ≤ k the tree decomposes into k connected components with vertex 
sets H1

k , . . . , Hk
k . We define the k-clustering on P  to be Hk = (H1

k , . . . , Hk
k ). Then 

H = (H|P|, . . . , H1) is a hierarchical clustering of P .
We believe that the algorithm by Mondal does not differ significantly from the 

algorithm by Dasgupta and Long. Since we already know that the analysis of the 
approximation guarantee of Dasgupta and Long’s algorithm is tight [7] the signifi-
cant improvement on the approximation guarantee seems surprising. We present an 
example where Mondal’s algorithm in fact computes a 7 − ϵ approximation for some 
arbitrarily small ϵ > 0, contradicting the claimed approximation guarantee of 6. We 
believe that this example can be generalized to prove that the approximation guaran-
tee of Mondal’s algorithm is at least 8.

Let ϵ ∈ (0, 1
2 ), Fig. 7 shows a graph with 27 points which need to be clustered. 

The metric is given by the shortest path metric in the graph. We perform Mondal’s 
algorithm on this instance under the assumption that we can decide how to break ties, 
whenever they occur.

In Fig. 7 we see the numbering of the points which is computed by Gonzales’ algo-
rithm as well as all R-values. Figure 8 shows the resulting tree. We obtain the 9-clus-
tering by cutting all edges {xi, N(xi)} with 2 ≤ i ≤ 9. This clustering contains the 
cluster {x5, x10, x11, x20, x21, x26, x27}, whose radius is 14 − 3ϵ, while the radius of 
the optimal 9-clustering is 2 (see Fig. 7).

Fig. 8  Here we see the final tree. To obtain the 9-clustering we cut the red edges. The resulting cluster-
ing contains the cluster {x5, x10, x11, x20, x21, x26, x27} of radius 14 − 3ϵ
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