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Abstract

This study investigated cerebellar involvement in reinforcement learning and prediction error (RL-PE) processing. Partici-
pants with pure cerebellar degeneration and demographically matched healthy controls performed a probabilistic feedback-
based learning task while brain activity was recorded using electroencephalography (EEG). Structural magnetic resonance
imaging was used to quantify cerebellar gray matter volume (GMV). Data from 21 cerebellar and 25 control participants
were included in the analysis. We aimed to determine if feedback-based learning was impaired in patients relative to con-
trols, and if single-trial RL-PEs were reflected in FRN, P3a, and P3b in the event-related potential (ERP) in patients and
controls. Analysis of behavioral data revealed no differences in accuracy between patients and controls. Crucially, ERP
analysis revealed that, while in controls, coding of RL-PEs was found in FRN and P3a for positive and in P3b for positive
and negative feedback, these effects were absent in patients. Voxel-based morphometry revealed widely distributed cerebel-
lar GMV reduction in patients, most pronounced in bilateral Crus I/ II and bilateral lobules I-IV. Multiple regressions in
patients revealed a negative correlation between GMV in bilateral Crus I and II and FRN amplitudes. The present study
extends previous evidence for cerebellar involvement in RL-PE processing in humans and advances our understanding of
the cerebellum’s role in performance monitoring and adaptive control of behavior.

Keywords Reinforcement learning - Reward prediction errors - Performance monitoring - Cerebellum -
Neurodegeneration - Ataxia

(Ullsperger et al., 2014). Central to reinforcement learning
is the processing of reward prediction errors (RL-PEs) which
arise when an action is followed by an unexpected reward/
punishment or by omission of an expected reward/punish-

Introduction

Reinforcement learning is a key cognitive ability that ena-
bles humans to process performance-related external feed-

back and to adapt their decisions and actions accordingly
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a distributed network of cortical and subcortical cerebral
structures, such as midbrain/striatum, the medial prefrontal
cortex, and the anterior cingulate cortex (ACC: for a review,
see Ullsperger et al., 2014). Interestingly, recent findings
also point to a prominent role of the cerebellum in reinforce-
ment learning and particularly the processing of RL-PEs.
For instance, recent rodent studies showed reward sensitivity
in several cerebellar cell populations such as climbing fib-
ers (Ohmae & Medina, 2015) and the mossy fiber-granule
cell pathway (Wagner et al., 2017, for a review see Kostadi-
nov & Hiusser, 2022). In humans, several functional mag-
netic resonance imaging (fMRI) studies showed cerebellar
activations during feedback-based learning (e.g., Peterburs
et al., 2018; for a comprehensive review, see Berlijn et al.,
2024b). In addition, a meta-analysis on reward anticipa-
tion and reward outcome processing (Kruithof et al., 2023)
revealed functional connectivity between the cerebellum and
higher order, associative brain regions like the rostral ACC,
also consistent with the notion of cerebellar involvement in
RL-PE processing.

Several previous studies have pointed to alterations of
feedback-processing in patients with cerebellar lesions. For
instance, Thoma et al. (2008) reported impaired reversal
learning in patients with cerebellar stroke. Rustemeier et al.
(2016) and Huvermann et al. (2025) recorded electroenceph-
alography (EEG) while patients with cerebellar lesions and
healthy controls performed a feedback-based learning task.
Both studies revealed differences in patients compared to
healthy controls in components of the event-related poten-
tial (ERP) that can be seen as indices of feedback process-
ing, e.g., the feedback-related negativity (FRN, Holroyd &
Coles, 2002; Nieuwenhuis et al., 2004) and the P300 (Polich,
2007). This is in line with studies reporting altered error
processing in patients with cerebellar stroke or cerebellar
degeneration (e.g., Peterburs et al., 2012, 2015; Tunc et al.,
2019), given that error processing is functionally linked to
feedback processing (Bellebaum & Colosio, 2014; Peterburs
& Desmond, 2016).

The FRN is a negative deflection in the ERP that peaks
approximately 200-350 ms after feedback onset (Gehring
& Willoughby, 2002; Holroyd & Coles, 2002). Of note,
a positive deflection within the same time window of the
feedback-locked ERP has been identified to be sensitive
to rewards and has been termed reward positivity (RewP,
Proudfit, 2015). The RewP appears to reflect a positive
RL-PE and appears to be preceded by a negative deflection
(around 200 ms, therefore also termed N200). Since we
were interested in the fundamental influence of feedback
valence and RL-PE on the feedback-locked ERP, we opted
to use the term FRN, consistent with previous studies (e.g.,
Rustemeier et al., 2016; Huvermann et al., 2025). The
FRN has been shown to be sensitive to feedback valence

(Gehring & Willoughby, 2002; Nieuwenhuis et al., 2005;
Pfabigan et al., 2011), and to reflect RL-PEs during learn-
ing (Fischer & Ullsperger, 2013; Burnside et al., 2019;
Weber & Bellebaum, 2024). Furthermore, the FRN is sen-
sitive to feedback timing (FaB3bender et al., 2023; Peterburs
et al., 2016; Weber & Bellebaum, 2024). FRN amplitude
differences between negative and positive feedback typi-
cally decrease with increasing delay between response
and feedback (Peterburs et al., 2016), consistent with a
shift away from striatal processing for delayed compared
to immediate feedback (Foerde & Shohamy, 2011). The
FRN amplitude itself increases with increasing feedback
delay (Peterburs et al., 2016). In line with the latter find-
ing, Weber and Bellebaum (2024) found more negative
amplitudes for delayed compared to immediate feedback
using a single-trial analysis approach.

Another ERP component linked to feedback processing is
the P300, a positive deflection in the ERP peaking between
300 and 500 ms after stimulus onset (Polich, 2007). While
findings concerning effects of feedback valence on the P300
are mixed (see Ullsperger, 2024 for a review), the P300 is
sensitive to feedback expectancy (Pfabigan et al., 2011;
Rustemeier et al., 2016; Walentowska et al., 2019). Indeed,
two subcomponents of the P3, the frontocentral P3a and the
centroparietal P3b, were found to be sensitive to RL-PE cod-
ing (Fischer & Ullsperger, 2013; Hoy et al., 2021; Ullsperger,
2024; Weber & Bellebaum, 2024; Wessel & Huber, 2019).

Regarding alterations of feedback processing in patients
with cerebellar lesions, the findings by Rustemeier et al.
(2016) revealed enhanced differentiation of positive and
negative feedback as reflected in the negative-positive dif-
ference signal in the FRN time window in patients compared
to controls, possibly indicative of altered coding of RL-PEs.
However, RL-PEs were not explicitly modelled in this study.
In the study by Huvermann et al. (2025), coding of RL-PEs
in the FRN was directly investigated and modelled, first in
patients with cerebellar lesions compared to controls, and
second in a complementary experiment using single-pulse
transcranial magnetic stimulation (TMS) applied to the left
posterolateral cerebellum or a control site (vertex) in healthy
subjects. Results showed a lack of RL-PE coding in the FRN
in cerebellar lesion patients compared to controls, and for
cerebellar compared to vertex TMS.

The present study aimed to further characterize the cer-
ebellum’s role in reinforcement learning by investigating
patients with progressive cerebellar degeneration, and by
focusing on coding of RL-PEs in the feedback-locked ERP
during feedback learning as a function of feedback timing.
To this end, feedback in the probabilistic learning task was
presented either immediately (500 ms post-response) or with
a 6500 ms delay. Of note, we deviated from the preregistra-
tion (see below) by using a single-trial analysis approach
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with modelling of RL-PE values for each trial (Weber &
Bellebaum, 2024), and by assessment of choice switching
(Huvermann et al., 2025).

With regard to behavior, given the functional link between
error and feedback processing (Bellebaum & Colosio, 2014)
and previous reports of impaired error processing in patients
with cerebellar degeneration (e.g., Peterburs et al., 2015),
we hypothesized that patients would show decreased accu-
racy relative to healthy controls. This deficit in accuracy
in patients was expected to be altered by feedback timing.
Using single-trial data, we hypothesized reduced choice
switching in patients compared to controls, consistent with
impaired reversal learning and thus behavioral flexibil-
ity (Thoma et al., 2008). Regarding neural responses, we
expected deficient/absent coding of the RL-PE in the FRN
in patients compared to controls for immediate feedback.
We additionally analyzed the P3a and P3b, expecting to
find expectancy effects, i.e., differences between trials with
high unsigned RL-PEs (= low expectancy) compared to low
unsigned RL-PEs (= high expectancy).

Last, we investigated whether specific cerebellar subre-
gions could be linked to potential alterations in behavior or
neural response patterns in patients by analyzing cerebellar
gray may volume (GMV) using whole-brain and cerebellar
voxel-based morphometry (VBM). Based on the cerebellar
functional topography (King et al., 2019) and previous find-
ings on error processing (Peterburs et al., 2015), posterolat-
eral cerebellar regions were hypothesized to be most critical.

The study protocol and hypotheses were preregistered on
the Open Science Framework (OSF: https://osf.io/fgw8h/)

Methods
Sample

Fifty-nine participants were recruited, of which 28 were
patients and 31 healthy controls. Information on the a pri-
ori power analysis for the preregistered repeated measures
ANOVA is provided in the supplement. For the patient
group, only individuals with pure forms of cerebellar degen-
eration were included, such as spinocerebellar ataxia type 6
(SCAO6), for details see Table 1.

Patients were recruited from the ataxia clinics of the
Departments of Neurology at the University Hospitals Diis-
seldorf and Essen, Germany. Exclusion criteria for patients
were alcohol and illicit substance abuse, presence of other
neurological disorders or psychiatric disorders except for
mild depression. As participants received structural MRI,
typical exclusion criteria for MRI studies applied, such
as prosthesis, metallic clips, pacemakers, insulin pumps,
claustrophobia, and pregnancy. All patients underwent neu-
rological and neuropsychological assessment (for details,

@ Springer

Table 1 Patient characterization

Number  Type of disease Age (years) Sex EHI-LQ
sub-pat-01 SCA6 54 m 100
sub-pat-03 SCARS 29 m 100
sub-pat-04 SCA6 66 f 100
sub-pat-05 SCA14 64 m  73.33
sub-pat-06 SCA48 38 m 100
sub-pat-08 SCA27B 29 m 100
sub-pat-09 SCA27B 70 f 100
sub-pat-10 SCA14 65 f 100
sub-pat-13 SCA14 43 m 100
sub-pat-14 SCA14 40 m 100
sub-pat-16 SCA14 61 m 100
sub-pat-17 CACNAIL A 55 m 100
sub-pat-18 SCA14 38 f 100
sub-pat-19 SCA27B 67 m 100
sub-pat-20 SCA14 62 f 100
sub-pat-22 SCA6 71 m 100
sub-pat-23 SCARI10 32 f 100
sub-pat-24 SCARI10 (ANO10) 33 f 100
sub-pat-26 SCA6 66 m 100
sub-pat-27 Early-onset cerebellar 43 m 100
ataxia
sub-pat-28 SCAI14* 53 f 20

Note. SCA = Spinocerebellar ataxia (autosomal dominant), SCAR10
= Spinocerebellar ataxia - autosomal recessive, CACNA1 A = cal-
cium voltage-gated channel subunit alphal A mutation, m = male, f
= female

!Genetic defect not yet found

“Patient did not take part in the MRI session. Handedness was meas-
ured using the EHI obtaining the lateralization quotient (LQ)

see Table 2 and Table S1 in the supplement). Healthy par-
ticipants were recruited via newspaper advertisements and
postings at the respective university and/or clinic. Control
subjects were matched to the patients regarding sex, age,
and educational attainment. Exclusion criteria for control
subjects were presence or history of any neurological dis-
orders, psychiatric disorders other than sufficiently treated
depression (e.g., antidepressants/psychotherapy; this was
due to the high prevalence of depression in the patients), and
alcohol or illicit substance abuse. In addition, MRI exclu-
sion criteria also applied. All control participants underwent
neuropsychological testing but did not receive a neurological
examination.

After inspecting the structural MRI data (T1- and
T2-weighted scans; not available for one patient and one
control subject) and EEG data as well as evaluating the
questionnaires, a total of thirteen participants had to be
excluded from data analyses (seven patients, six controls).
One patient and one control subject were excluded due to
severe white matter hyperintensities/lesions as rated by


https://osf.io/fgw8h/
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Table 2 Group means (M) and standard deviations (SD) for scores obtained in the neurological and neuropsychological assessment

Function and test Patients (M/SD) Controls (M/SD) p-value
Intelligence quotient (MWT-B) 108/10.81 111.4/9.84 282
Severity of ataxia (SARA) 9.17/3.47 NA

Neuropsychological deficits (CCAS-Scale) 1.33/1.46 1.48/1.76 945
Depressed mood (BDI-II) 8.38/5.73 3.12/2.82 <.001

Note. t-tests for parametric and Wilcoxon rank test for non-parametric distribution were calculated. N = 21 patients, N = 25 controls

three reviewers (A.B., A.R., M.M.) including an experi-
enced neurologist (M.M.) using the Scale for Age-Related
White Matter Changes (ARWMC, scoring with 3, Wahl-
und et al., 2001). Two individuals from the control group
(hydrocephalus, lacunar lesion within the cerebellum) and
one patient (hydrocephalus) were excluded based on inci-
dental findings. One patient and one control subject were
excluded due to current psychological disorders (major
depression and agoraphobia, respectively). Inspecting the
EEG data, another six participants (four patients and two
control subjects) had to be excluded due to poor signal
quality (excessive noise due to technical problems) which
did not allow pooling and reconstructing the electrodes
of interest FCz and Pz (n = 3), a wrongly selected EEG
sampling rate (n = 1), excessive movements during the
experimental task (n = 1), and data loss due to a technical
problem (n = 1).

In total, data from 21 patients (n = 8 female, mean age
in years = 51.38, SD = 14.70) and 25 healthy controls (n
= 10 female, mean age in years 52.52, SD = 13.72) were
included in the behavioral and ERP analyses. In this sam-
ple, age (#(41.48) = 0.27, p =.789) and education years
(#(43.70) = 1.44, p =.156) did not differ between groups.
VBM was performed using a subset of n = 18 patients
because one patient (sub-pat-28) had not been able to par-
ticipate in the MRI session, and two patients with SCAR10
(sub-pat-23, sub-pat-24) had massive atrophy of the cer-
ebellum and were identified in a homogeneity analysis on
cerebellar gray matter volume as extreme outliers (see
Figure S1 for a boxplot, and Figure S2 for a gray matter
slice for each patient in the supplement). Detailed demo-
graphic information about each included patient can be
found in Table 1. For the group comparison, a subset of
n = 24 control subjects was used because MRI data were
not available for one individual.

The present study was conducted in accordance with the
ethical principles for medical research involving human
subjects outlined in the revised version of the Declara-
tion of Helsinki (World Medical Association, 2013), and
had received ethical clearance by the Ethics Committees
of the Faculty of Medicine at Heinrich Heine University

Diisseldorf, Germany, and of the University Hospital
Essen, Germany.

Neurological and neuropsychological assessment

Severity of ataxia symptoms in patients was assessed using
the Scale for the Assessment and Rating of Ataxia (SARA;
Schmitz-Hiibsch et al., 2006). To assess possible cognitive
and/or affective impairments, the German version (Thieme
et al., 2020) of the Cerebellar Cognitive Affective Syndrome
Scale (CCAS; Hoche et al., 2018) was used in both groups.
In addition, the intelligence quotient (IQ) was estimated
based on performance in a multiple-choice vocabulary test,
i.e., the MWT-B (Mehrfachwahl-Wortschatz-Intelligenztest
Version B; Lehrl et al., 1995). The BDI-II (Beck Depression
Inventory 2; Beck et al., 1996) was used to measure severity
of depression, and handedness was assessed using the EHI
(Edinburgh Handedness Inventory: Oldfield, 1971). Group
means and comparisons for the different tests and question-
naires are provided in Table 2. Table S1 in the supplement
contains further neurological scores and results from ques-
tionnaires on motor and nonmotor symptoms as well as gen-
eral quality of life.

Task

Participants completed two versions of a probabilistic feed-
back-based learning task as described by Eppinger et al.
(2008), Bellebaum and Colosio (2014), and Huvermann
et al. (2025) in two sessions that took place on two consecu-
tive days. EEG was recorded concurrently. The task versions
differed in feedback timing and stimulus sets (see below) but
were otherwise identical.

The task consisted of eight blocks with 40 trials each,
thus 320 trials in total. Figure 1 illustrates the time course
and sequence of stimulus presentation in one trial of the
task. Each trial began with a fixation cross presented for
500-1500 ms. Next, one of four abstract stimuli was pre-
sented for 1500 ms, and participants were asked to respond
by pressing the left or right button on a response box. The
choice options were represented by red rectangles which
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— Fixation (500 — 1000 ms)

Fig. 1 Schematic illustration of the time course and sequence of
stimulus presentation in one trial of the probabilistic feedback-based
learning task. Each trial started with a fixation cross, followed by a
stimulus along with two response options (left or right) presented for
1500 ms. Responses had to be made within 3000 ms after stimulus
onset as indicated by the gray shading. The choice was highlighted on

stayed on screen for further 1500 ms, if no response was
given. Once a response was given, the respective rectangle
was highlighted for 200 ms, followed by a black screen for
500 ms in the task version with immediate feedback con-
dition, and for 6500 ms in the task version with delayed
feedback. Last, feedback was displayed for 1000 ms. Feed-
back was either displayed as a monetary reward of"+20ct"in
green font as positive feedback or"—10ct"in red font as nega-
tive feedback. Two stimuli were linked to random feedback
(50 % positive and 50 % negative feedback independent of
response) and served as distractors, while for the other two
stimuli, choosing the correct option (left or right, respec-
tively), resulted in positive feedback 90% of the time and in
negative feedback 10% of the time. These two stimuli will
henceforth be referred to as “learnable”.

In case a participant had learned so fast that they exceeded
the learning criterion of 65 % correct responses for learn-
able stimuli by the second of eight blocks, a new stimulus
set was provided to increase the number of pre-learning tri-
als. This was the case in 32 participants (15 patients, 17
controls). If a participant did not exceed the learning crite-
rion until the eighth and last block, a ninth block was added
to generate post-learning trials. This was the case in one
patient and one control subject for one task version. Trials
with responses made within 100 ms after stimulus onset,
responses given later than 3000 ms after stimulus onset, or
multiple responses were excluded from analysis.

@ Springer
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— Choice (200 ms)
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screen for 200 ms. Subsequently, feedback was provided after a delay
period of either 500 ms (immediate feedback) or 6500 ms (delayed
feedback), with positive feedback indicated by “+ 20 ct” in green
color and negative feedback with “—10 ct” in red color. Feedback was
displayed for 1000 ms

Procedure

Participants were seated in a brightly lit room in front of a
laptop (DELL® Precision M4800, 15.4 inch with a resolu-
tion of 1920 x 1080 pixels and a refresh rate of 60 Hz).
Left and right button presses were made using a response
box (Cedrus RB-740, Science Plus Group, Groningen, NL)
placed in front of the laptop. A third key was used to navi-
gate through instruction slides and pauses. Across both ses-
sions, the distance between response box and laptop was
kept constant. After positioning the participant, the EEG
cap was fitted, and the electrodes were prepared. Subse-
quently, standardized task instructions were given, and five
practice trials were presented before the first block of the
experiment started. Following the completion of the proba-
bilistic feedback-based learning task (approx. 30 min for the
immediate feedback version, or 60 minutes for the delayed
feedback version), demographic data, neuropsychological
and neurological testing and MRI data were obtained. The
entire test session on the first day took approx. 2.5-3 hours.
On the second day, the other version of the probabilistic
feedback-based learning task was conducted, either with
immediate or delayed feedback and a different stimulus set
to avoid any spill-over effects between the sessions. Ver-
sion order and stimulus set were balanced across partici-
pants. The test session on the second day took approx. 1.5-2
hours.
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EEG acquisition and preprocessing

EEG was recorded from 28 active Ag/AgCl electrodes on
an actiCAP (BrainProducts GmbH, Munich, Germany)
with the following electrode sites: Fz, F3, F4, F7, F8,
FC1, FC2, FC5, FCe6, Cz, C3, C4, CP1, CP2, CP5, CP6,
T7, T8, Pz, P3, P4, P7, P§, PO9Y, PO10, O1, 02, Oz. FCz
served as on-line reference, and AFz was used as ground
electrode. Both mastoids were recorded for later re-refer-
encing. Horizontal (hEOG) eye movements were measured
with an electrode positioned next to the outer canthus of
the left eye, and vertical (VEOG) eye movements/blinks
were recorded using electrode position Fpl, respectively.
BrainVision Recorder software (version 1.21; BrainProd-
ucts, Munich, Germany) was used for recording. Data were
amplified with a BrainAmp DC amplifier, and impedances
were kept below 25 kQ. Data were sampled at 1000 Hz.

First, the EEG signal in each data set was visually
inspected for noisy electrodes which were removed before
re-referencing. On average, 2.93 (SD = 1.33) electrodes
(mostly occipital) had to be removed in eleven partici-
pants. The signal was then re-referenced to the mean of
the mastoid electrodes so that FCz could be restored as an
active electrode. Direct current (DC) detrending and a But-
terworth filter with a low cut-off of 0.1 Hz (time constant:
1.59), a high cut-off of 30 Hz, and a notch filter of 50 Hz
were applied. As a next step, ocular correction independ-
ent component analysis as implemented in BrainVision
Analyzer 2 (version 2.2, Brain Products GmbH, Gilch-
ing, Germany) was applied using hEOG and vEOG. Data
were then segmented into epochs of 800 ms, starting 200
ms before and ending 600 ms after feedback onset. Next,
baseline correction was applied based on the 200 ms pre-
ceding feedback onset, and automatic artifact rejection was
performed. Here, segments with a voltage step above 50
uV/ms, values over 100 uV or below —100 pV, a difference
of more than 100 uV between values, or an activity lower
than 0.1 pV within an interval of 100 ms were excluded.
On average, M = 6.53 % (SD = 9.28 %) feedback-locked
segments were rejected per participant. Last, data were
exported via generic data export and then imported into
MATLAB (version R2020b: MathWorks, Natick, Massa-
chusetts, USA) to run custom scripts to further process
ERP components at single-trial level.

We extracted FRN amplitudes from the single-trial ERP
based on FRN latency in the average ERP per person for
each condition: FRN latency was defined as the latency of
the local maximum negative peak within the time window
from 200 to 350 ms post-feedback at FCz (Bellebaum &
Colosio, 2014; Bellebaum et al., 2010; Peterburs et al.,
2016). FRN amplitudes were determined based on the
mean signal in a time window between 20 ms before to
20 after the peak (40 ms length for averaging: Huvermann

et al., 2025). If no peak was detected in the respective
average, the trials in the condition were coded as outli-
ers. For P3a and P3b (scored at FCz and Pz, respectively,
Huvermann et al., 2025; Kirschner et al., 2024), mean
amplitudes in the time window from 300 to 500 ms after
feedback onset were used.

Prediction error modelling

A reinforcement learning model was used to estimate the pre-
diction error  associated with positive and negative feedback
in each trial (PE: Sutton & Barto, 2018). Many previous stud-
ies have used this approach (e.g., Bray & O'Doherty, 2007,
Chase et al., 2011; Ichikawa et al., 2010; McDougle et al.,
2018; Pessiglione et al., 2006). The action values Q and PE &
were modelled using a Rescorla-Wagner model (Rescorla &
Wagner, 1972). For the estimation of the PE §, the informa-
tion from the individual trial including the received feedback
R and the given response a of each participant were used:

Qa,t+1 = Qa,t +a X4,
51 = Ra,t - Qa,t

A softmax function (Sutton & Barto, 2018) was used to
model response probabilities by estimating the probability of
the chosen action and its respective action value Q for each
action option a and time point # (trial):

P
D -
a.t eﬂXQa],t + eﬂxQuz,l

The model was fitted using the fmincon function imple-
mented in MATLAB (version R2020b). This function
minimized the negative sum of log-likelihoods minus a
gamma distribution of  with a shape parameter of 2 and
scale parameter of 3 to adjust for high p (Leong et al., 2017;
McDougle et al., 2018). The learning rate a was separately
estimated for positive and negative feedback and each stimu-
lus. We allowed o to assume any value between 0 and 1. In
addition, we calculated an inverse temperature f§ for explora-
tion behavior which could assume any value between 0 and
50. In the statistical analysis, valence and the unsigned PE
were used as separate predictors, as the signed PE correlates
with feedback valence.

Voxel-based morphometry

Imaging data were acquired with a 3 T MR scanner (MAG-
NETOM Trio, a Tim System, Siemens Healthineers AG,
Forchheim, Germany) using a 12-channel head coil. This
included 3D T1-weighted magnetisation-prepared rapid acqui-
sition gradient-echo (MPRAGE) sequence (voxel size 1 mm?).
The complete MRI protocol can be found in the OSF folder.
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DICOM files were transformed into the Brain Imaging Data
Format (BIDS: Gorgolewski et al., 2017) by using the BIDS-
mapper and BIDScoiner applications (Zwiers et al., 2022).

VBM (Ashburner & Friston, 2000, 2005) was used to
characterize GMYV loss in patients relative to controls, and to
relate possible group differences found in the feedback-based
learning task and/or in EEG measures to specific cerebellar
regions using multiple regression. For whole-brain VBM,
we used the Computational Anatomy Toolbox (CAT12:
Gaser et al., 2022) implemented in the Statistical Parametric
Mapping software package (SPM12: Wellcome Department
of Cognitive Neurology, London, UK) in MATLAB (version
R2020b). The default preprocessing procedure was used, and
we calculated the total intracranial volume (TIV) for each
participant. In addition, we checked the homogeneity of the
whole-brain data for all participants. Last, the preprocessed
gray matter images were smoothed using an 8§ mm full-width
half-maximum (FWHM) gaussian kernel.

For cerebellar VBM, we applied an optimized approach to
isolate the cerebellum using the Spatially Unbiased Infraten-
torial toolbox (SUIT: Diedrichsen, 2006). We followed pre-
vious analysis protocols to conduct VBM in SUIT (Burciu
et al., 2013; Peterburs et al., 2015) and visually inspected
the preprocessed images for each subsequent analysis step
to ensure sufficient data quality. First, the cerebellum and
brainstem were isolated using the standard isolation and seg-
mentation procedure in SUIT which created gray and white
matter maps as well as the respective masks.

For six datasets, we additionally used T2-weighted
images (Sampling Perfection with Application optimized
Contrasts using different flip angle Evolution: SPACE)
and fluid attenuated inversion recovery (FLAIR; see sup-
plemental material for MRI protocol details) to optimize
the isolation and segmentation procedure of the cerebellum
due to poor results after visual inspection of an initial isola-
tion and segmentation run. The T1-weighted images were
oriented according to the AC-PC line, and the T2-weighted
images were subsequently registered on the reoriented
T1-weighted images. After optimizing these six datasets,
results improved. In the next step, all cerebellar masks were
hand-corrected by an expert (B.B.) using MRIcron (https://
www.nitrc.org/projects/mricron). This step was conducted to
correct the automatically generated masks for any occipital
cortex within the cerebellar mask and to add any missing
cerebellar matter. Afterwards, the isolated and segmented
gray matter maps were spatially normalized to the SUIT
template using the normalization procedure with Dartel.

Next, we resliced the spatially normalized gray matter maps
using Dartel into SUIT-space with 1 mm?® voxel size and
with a 2 mm FWHM gaussian kernel.

Statistical analysis

We deviated from the preregistration and conducted mixed
linear model (MLM) analysis instead of analysis of variance
(ANOVA) because we decided to analyze the RL-PE which
is a single-trial predictor and cannot be analyzed using
ANOVA. MLMs are robust against missing values and can
additionally model each participant as a random factor to
explain more variance. MLMs were conducted in R (R Core
Team, version 4.0.3) using RStudio (version 1.3.959) and the
Ime4 package (version: 1.1.25, Bates et al., 2015). Meteyard
and Davies (2020) advise in their best practice guidelines to
use the maximum model including all within-subject main
and interaction effects as random effects as long as no errors
in model fit occur (e.g., convergence errors or singular fits).
The buildmer (version 2.8) package was used to find the
maximum model by fitting the MLM in an ordered stepwise
manner by deleting terms that led to convergence errors. In
addition, the optimizer was changed from default to bobyqa
when the buildmer model did not converge after using the
Imer function to check the model. Outlier detection was con-
ducted using Cook’s distance.

For the behavioral data, accuracy was calculated as the
mean percentage of correct responses for all learnable tri-
als per block corrected for misses (> 3000 ms), multiple
responses, and too fast responding (within 100 ms following
stimulus onset). The between-subjects factor group (patients,
controls) and the within-subject factors feedback timing
(immediate, delayed) and block (block 1-8, scaled using
the built-in scale function) were included as fixed-effects
and the within-subject factors main effects and interaction
as random slopes per participant:

Accuracy ~ group X feedback timing X block
+ (1 + feedback timing X block|participant)

To investigate behavioral flexibility, choice switching
was calculated on the single-trial level by checking whether
the response in the next trial with the same stimulus was
the same or different compared to the current trial. Choice
switching was analyzed with the factors group, feedback
valence, feedback timing, response type, and block (block
1-8, scaled), and the within-subject factors were again used
as random slopes per participant

Choice switching ~ group X feedback timing X feedback valence X response type X block

+ (1 + feedback timing + feedback valence + response type + feedback valence :

response type|participant)
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For the single-trial EEG analyses, separate models were
calculated for FRN, P3a, and P3b amplitudes as depend-
ent variables. We calculated the unsigned prediction error
(unsigned PE) using the unsigned value of each PE to sep-
arate the sign from the PE and subtracting the value from
0.5 to center the range (—0.5 minimum and 0.5 maximum
value). The between-subjects factor group (patient, control)
and the categorical within-subject factors feedback timing

(immediate, delayed), feedback valence (positive, negative),
and learnability (learnable, unlearnable) were included. In
addition, we modelled the continuous predictor unsigned PE.
Their main effects and interactions were used as fixed effects.
To account for individual differences, a random intercept per
participant and random slopes per participant for all within-
subject factors main and interaction effects were used:

FRN ~ group X feedback timing X unsigned PE X feedback valence X learnability + (1 + feedback timing X feedback valence

+ learnability + feedback valence : learnability + feedback timing : learnability|participant)

P3a ~ group X feedback timing X unsigned PE X feedback valence X learnability + (1 + feedback timing

+ feedback valence|participant)

P3b ~ group X feedback timing X unsigned PE X feedback valence X learnability + (1 + feedback timing

+ feedback valence + unsigned PE + feedback timing : unsigned PE|participant)

All categorical predictors were simple coded: group (0.5
= patient, —0.5 = control), feedback timing (0.5 = delayed
feedback, —0.5 = immediate feedback), feedback valence (0.5
= positive feedback, —0.5 = negative feedback), learnability
(0.5 = learnable, —0.5 = unlearnable), response type (0.5 =
correct, —0.5 = false). The ImerTest package (version: 3.1.3,
Kuznetsova et al., 2017) in R including the Satterthwaite’s
method to estimate the degrees of freedom and to generate
p-values for MLMs was used. P-values below .05 were con-
sidered as statistically significant. Interactions were resolved
using the probe_interaction function to estimate simple slopes
based on the moderating factors of interest. Total numbers of
included trials for each condition grouped by the factors used
in the MLM are provided in the supplement (see Table S13).

The preprocessed whole-brain volumes and cerebel-
lar gray matter volumes were analyzed using two-sample
t-tests for group comparisons. For patients only, cerebel-
lar GMV was correlated (separately for positive and nega-
tive correlations) with parameters derived from the learn-
ing task that yielded significant group differences. TIV and
age were used as covariates of no interest for all analyses
within the framework of the general linear model (GLM) as
implemented in SPM12. First, we compared the GMV for
the whole-brain data between patients and controls (con-
trast control > patient) using two-sample z-test. Second, we
used the cerebellar GMV for the same contrast. Third, for
multiple regression analysis, we aggregated the single-trial
FRN across all trials for each patient as a covariate of inter-
est. All regressors were demeaned before entering the final
model. For the statistical threshold, we used the Family-wise
error (FWE) corrected p-value <.05 for the between-subjects
comparison and an uncorrected p-value (p <.001) for the

multiple regression. Last, the contrasts were masked using
the SUIT atlas with 1 mm resolution, and the cerebellar lob-
ules were labelled using the probabilistic MRI atlas of the
human cerebellum according to Diedrichsen et al. (2009).

Results

Since this study’s focus was on potential differences between
patients with cerebellar degeneration and healthy controls
regarding feedback learning and RL-PE processing, we only
report significant effects that included the group factor or
replicated known effects from the literature in the main text.
For complete statistical results, readers are kindly referred
to the respective results tables provided in the supplement.

Accuracy

MLM analysis did not reveal the hypothesized difference
in accuracy between patients and controls (p =.341). The
main effect of feedback timing was significant (f = —4.52,
1(44.00) = -2.11, p =.041). Across groups, accuracy was
increased for delayed (M = 73.66 %, SD = 22.02 %) com-
pared to immediate feedback (M = 68.81 %, SD = 22.10
%). The main effect of block was also significant (p = 5.50,
1(44.00) = 7.09, p <.001), with lower accuracy at the begin-
ning of the task (first block: M = 59.79 %, SD = 20.56 %)
than at the end (last block: M = 78.38 %, SD = 23.05 %),
indicating that learning took place. All other main and inter-
action effects were non-significant (all p-values >.087; N =
46, see Figure 2A and Table S2 in the supplement for the
complete results).
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Fig.2 Interaction plots for accuracy (A) and choice switching (B)
with the categorial factors group, feedback timing, and the scaled
factor block. (A) For accuracy, asterisks indicate the significant main
effect of block which reflects higher accuracy as the task progressed.

Choice switching

We also did not find the expected difference between patients
and controls in choice switching (p =.823). However, the
analysis revealed a significant main effect of feedback valence
(B =-0.42, 1(37.94) = -9.59, p <.001). Choice switching
was reduced for positive compared to negative feedback (see
Fig. 2B for the plot and Table S2 in the supplement). Likewise,
choice switching was generally reduced after correct compared
to incorrect choices (f = —0.34, 1(40.37) = —4.63, p <.001).
The three-way interaction between feedback timing, group,
and block was significant (f = —0.12, #(7414.71) = —1.98, p
=.048; see Fig. 2B. Simple slopes were resolved using the fac-
tors feedback timing and group as moderators. The analysis
revealed two significant block effects for both groups: decreased
choice switching for immediate (controls: p = —0.06, SE = 0.02,
t=-2.72, p =.007; patients: § = —0.08, SE =0.03, r = -3.35,
p <.001) and delayed feedback with task progression (controls:
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(B) For choice switching, asterisks indicate significantly decreased
choice switching with task progression. The strongest effect was
found in controls for delayed feedback. The smoothing around the
lines indicates the 95% confidence interval for N = 46

B=-0.13,SE=0.02, = —5.12, p <.001; patients: p = —0.06,
SE =0.03, r=—-2.37, p=.018). In patients, the block effect (i.e.,
learning) was weaker for delayed feedback compared to controls.
For the complete results, see the supplement (Table S3).

Feedback-related negativity (FRN)

Feedback-locked grand-average ERPs at electrode FCz accord-
ing to group (controls, patients), feedback timing (immediate,
delayed), and feedback valence (positive, negative) for learna-
ble trials are provided in Fig. 3. Corresponding grand-averages
according to the unsigned PE (high, low) are shown in Fig. 4.
Table S14 in the Supplement provides information on the
mean number trials included in the grand-averages according
to group, feedback timing, feedback valence, and unsigned PE.

For single-trial FRN amplitudes, altered coding of
RL-PE in patients relative to controls would be reflected in
a significant interaction between group, feedback valence,



Cognitive, Affective, & Behavioral Neuroscience (2025) 25:1126-1146

1135

FCz; nv
-2.5
0.0
2.5
5.0
7.5
10.0
-2.5
0.0
2.5
5.0
7.5
10.0

Immediate

Controls

Patients

-200 0 200 400

Feedback valence
E negative

positive
Fig.3 Feedback-locked grand-average ERPs at electrode FCz
according to group (patients, controls), feedback timing (immediate,
delayed), and feedback valence (positive, negative) for learnable tri-
als. The light and medium gray rectangle mark the time window for
the peak amplitude extraction of the FRN (200-350 ms). The P3a
was quantified as mean amplitude in the time window from 300 to
500 ms as indicated by the medium and dark gray rectangle. Note that
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the time window from 300 and 350 ms is thus shared by FRN and
P3a. Colored bands indicate standard errors. A total of 6356 trials
for patients and 7206 trials for controls were averaged for the grand-
averages. Detailed information on the mean number of trials included
in the grand-averages according to group, feedback valence, and feed-
back timing are provided in the Supplement (see Table S14)
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Fig.4 Feedback-locked grand-average ERPs for learnable trials at
electrode FCz according to group (patients, controls), feedback tim-
ing (immediate, delayed), feedback valence (positive, negative), and
unsigned PE, categorized into high unsigned PE (> 0.5) and low
unsigned PE (< 0.5). The light and medium gray rectangles indicate
the time window for FRN peak amplitude extraction (200-350 ms
post-feedback). The P3a was quantified as the mean amplitude in the

-200 0 200 400

-200 0 200 400

time window from 300 to 500 ms post-feedback as indicated by the
medium and dark gray rectangles. Note that the time window from
300 to 350 ms post-feedback is thus shared by FRN and P3a. Colored
bands indicate standard errors. Detailed information on the mean
number of trials included in the grand-averages according to group,
feedback valence, feedback timing, and unsigned PE can be found in
the Supplement (see Table S14)
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Fig.5 Interaction plot for single-trial FRN amplitudes at electrode
FCz. Panel A shows the significant interaction between group, feed-
back valence, and unsigned PE. The slope for positive feedback mod-
ulated by the unsigned PE in controls was significant. Panel B shows
the significant interaction between feedback timing and group. The
slope for the controls modulated by feedback timing was significant.
Panel C shows the interaction between feedback timing and feedback
valence. The slope for positive feedback modulated by feedback tim-
ing was significant. Asterisks indicate significant effects. The smooth-
ing around the lines indicates the 95% confidence interval for N = 46

and unsigned PE. Indeed, a significant three-way interac-
tion between group, feedback valence, and unsigned PE
was found (f = —1.36, #(5672.17) = —2.04, p =.041, see
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Fig. 5A for the interaction plot). Simple slope analyses
with the moderating factors group and feedback valence
revealed a significant effect of the unsigned PE for controls
when feedback was positive (f = 0.98, SE = 0.30, t = 3.26,
p =.001). FRN amplitudes were more positive for higher
unsigned PE. This effect was not significant for negative
feedback (p =.461). In patients, effects of the unsigned PE
were neither found for positive (p =.256), nor for negative
feedback (p =.446). In addition, a main effect of group
emerged (p = —1.61, #(44.25) = —2.64, p =.011), indicat-
ing a more negative FRN in patients (M = 2.10 uV, SD =
7.54 uV) compared to controls (M = 3.61 uV, SD = 8.04
1V). The interaction between group and feedback timing
was also significant (f = 2.06, #(44.45) = 2.26, p =.029,
see Fig. 5B for the interaction plot). Simple slope analyses
with the moderating factor group revealed a significant tim-
ing effect for controls (B = —2.23, SE = 0.63, t = —3.54,
p <.001), indicating that the FRN was more negative for
delayed (M = 2.49 uV, SD = 8.25 uV) compared to imme-
diate feedback (M =4.72 uV, SD = 7.68 nV). For patients,
the effect of feedback timing was non-significant (p =.848).

The FRN also showed the expected main effect of feed-
back valence (p = 0.65, #(43.61) = 3.85, p <.001), with
more negative amplitudes for negative (M = 2.63 uV, SD
= 7.75 uV) compared to positive feedback (M = 3.10 uV,
SD =7.91 uV). A full table of the statistical output can be
found in Table S4 of the supplemental material.

P3a

Similar to the FRN, we discovered a significant three-way
interaction between group, feedback valence, and unsigned
PE (B = —2.53, #(26811.17) = —=3.95, p <.001, see Figs. 3
and 4 for the grand-averages separately for high and low PE,
and Fig. 6A for the interaction plot). Simple slope analysis
with the moderating factor group revealed a significant effect
for positive feedback only for controls (f = 1.95, SE = 0.28,
t =17.01, p <.001), with more positive P3a amplitudes for
higher unsigned PEs. All other simple slopes were non-sig-
nificant (all p-values >.196). A significant three-way inter-
action was also present between the factors group, learn-
ability, and unsigned PE (p = —1.18, #(18997.71) = -2.10,
p =.036, see Fig. 6B for the interaction plot). Simple slo
pe analysis with the moderating factor group revealed again
a significant effect for learnable trials only in controls (f =
1.56, SE =0.29, r = 5.28, p <.001), with more positive P3a
amplitudes for higher unsigned PEs. All other simple slopes
were non-significant (all p-values >.124). A significant main
effect of feedback valence was present (f = 0.57, #(45.88)
=4.03, p <.001). The P3a was increased for positive (M =
5.41 pV, SD =7.86 uV) compared to negative feedback (M
=5.03 uV, SD = 8.10 uV). Table S5 in the supplemental
material contains the complete statistical results.
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trol group. Panel B shows the significant interaction between group,
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the lines indicates the 95% confidence interval for N = 46
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Fig.7 Feedback-locked grand-average ERPs for learnable trials at
electrode Pz according to group (patients, controls), feedback timing
(immediate, delayed), and feedback valence (positive, negative). The
gray rectangle indicates the time window for P3b mean amplitude
quantification (300 to 500 ms post-feedback). Colored bands indicate

P3b

Feedback-locked grand-average ERPs for learnable trials at
electrode Pz according to group (controls, patients), feed-
back timing (immediate, delayed), and feedback valence

standard errors. Detailed information on the mean number of trials
included in the grand-average according to group, feedback valence,
feedback timing, and unsigned PE is provided in the Supplement (see
Table S14)

(positive, negative) are provided in Fig. 7. Corresponding
grand-averages according to the unsigned PE (high, low)
are depicted in Fig. 8.

For the single-trial P3b, we found a significant four-
way interaction between group, feedback timing, feedback

@ Springer



1138

Cognitive, Affective, & Behavioral Neuroscience (2025) 25:1126-1146

Feedback valence
— negative
— positive

Immediate

High PE
Delay

Pz; pv

Low PE

Immediate Delay

Controls

\"’\‘v«:’f Patients

12
-200 0 200 400

-200 0 200 400

Fig.8 Feedback-locked grand-average ERPs for learnable trials at
electrode Pz according to group (patients, controls), feedback tim-
ing (immediate, delayed), feedback valence (positive, negative), and
unsigned PE categorized into high unsigned PE (> 0.5) and low
unsigned PE (< 0.5). The gray rectangle indicates the time window
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for P3b mean amplitude quantification (300 to 500 ms post-feedback).
Colored bands indicate standard errors. Detailed information on the
mean number of trials according to group, feedback valence, feed-
back timing, and unsigned PE can be found in the supplement (see
Table S14)
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Fig.9 Interaction plots for the single-trial P3b at electrode Pz. The
categorical factors are feedback timing (immediate, delay), feedback
valence (positive, negative), and the continuous factor is unsigned PE.
Panel A: the effects for positive immediate and positive and negative
delayed feedback in the control group were significant. Asterisks indi-

valence, and unsigned PE (f = —3.79, #(23933.17) =
—2.71, p =.007). To resolve this complex interaction, we
created separate models for patients and controls. For
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cate significant effects. The smoothing around the lines indicates the
95% confidence interval for n = 25. Panel B shows the plot of the
non-significant three-way interaction in patients (n = 21). The signifi-
cance of the slopes is therefore not highlighted or further interpreted

patients, the three-way interaction between feedback tim-
ing, feedback valence, and unsigned PE was non-signif-
icant (p =.170). For controls, the three-way interaction
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between feedback timing, feedback valence, and unsigned
PE was significant (f = 2.42, #(13684.19) = 2.55, p =.011,
see Fig. 9 for the interaction plot). Simple slope analy-
sis moderated by feedback timing and feedback valence
revealed a significant effect of the unsigned PE for posi-
tive, delayed feedback (fp = 2.36, SE =0.44,r=5.43,p
<.001). P3b amplitudes were more positive, i.e. increased,
for higher unsigned PEs when feedback was positive and
delayed. In addition, a significant negative effect of the
unsigned PE for negative, delayed feedback was present
(p=-0.97, SE =049, t = -2.01, p =.045). For nega-
tive, delayed feedback, P3b amplitudes decreased with
higher unsigned PEs. A positive effect of the unsigned
PE for positive, immediate feedback was also significant
(B=1.18, SE=0.44, t = 2.65, p =.008), indicating more

A. Whole-brain VBM: Control > Patient (FWE)
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b
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Fig. 10 Panel A: Whole-brain GMV reduction in patients compared
to controls. Panel B: Cerebellar GMV reduction in patients relative
to controls (SUIT space) uncorrected (p <.001) and in Panel C after
FWE-correction (for p < 0.05) projected on the cerebellar flatmap

positive P3b amplitudes for higher unsigned PEs. The
effect for negative, immediate feedback was non-signifi-
cant (p =.595). The full results tables for the main model
on the P3b (see Table S6) and subordinate group-specific
models (see Table S7 for patients and S8 for the controls)
are provided in the supplemental material.

Voxel-based morphometry (VBM)

The analysis of GMV in patients (n = 18) and controls
(n = 24) revealed the expected significant volume reduc-
tion in patients in widely distributed cerebellar clusters
(see Fig. 10A and Table S10 and S11 in the supplement
for the whole-brain results, Figure 10B for the cerebel-
lar results uncorrected, Fig. 10C for the FWE-corrected

Cerebellar VBM: Control > Patient (p uncorr.)

C.

(Diedrichsen & Zotow, 2015). TIV and age were used as covariates
of no interest. The color bars indicate the range of 7T-values for whole
brain and z scores for the cerebellar flatmaps
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Table 3 Summary of the six local maxima for the largest cluster of the between-subjects contrast controls > patients

location side X Y Z peak p-value peak t-value
VI right 29 -38 -35 p <.001 11.43

VIIb right 35 —43 —44 p <.001 10.13

Crus I left -39 -67 -36 p <.001 10.00

Crus I left -8 -80 -39 p <.001 9.80

I-IV right 11 —44 =25 p <.001 9.52

IX right 10 =50 —46 p <.001 9.46

Note. Covariates of no interest were TIV and age. The cluster size was 11869 voxels. Results were FWE-corrected for p < 0.05. A complete list

of significant regions can be found in the supplement Table S9

Negative correlation FRN and GMV (p uncorr.)

Fig. 11 Clusters in which cerebellar GMV loss in patients relative to
controls was linked to blunting of the FRN (aggregated across all sin-
gle trials). The biggest cluster was present in left Crus II. TIV and
age were used as covariates of no interest. The color bar indicates the
range of z-scores. All identified clusters were uncorrected p <.001

results; Table 3 provides peak coordinates of the largest
cluster after FWE correction in SUIT-space). Note that
there were no extracerebellar clusters with significant vol-
ume reduction in patients relative to controls. Cerebellar
VBM revealed the most pronounced GMV reduction in
posterolateral regions of the cerebellum (here shown for
cluster size > 500 voxels) in right Crus I (1452 voxels),
right Crus IT (1401 voxels), left Crus II (872 voxels), right
I-IV (828 voxels), right IX (742 voxels), left I-IV (706
voxels), left Crus I (677 voxels), and left IX (563 voxels,
see Table S9 in the supplement for a complete list of clus-
ters and Table S10 for the list of uncorrected clusters).
Multiple regression analysis revealed that volume
reduction in bilateral Crus I (left = 266, right = 103 vox-
els) and Crus II (left = 620, right = 249 voxels) was asso-
ciated with more positive (i.e., blunted) FRN amplitudes
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(here shown for cluster size > 100 voxels, see Fig. 11 and
Table S12 for all clusters in the supplement).

Discussion

The goal of the present study was to investigate feedback-
based learning and RL-PE processing in patients with pure
cerebellar degeneration, with a focus on potential effects
of feedback timing. To this end, EEG was recorded while
participants completed a probabilistic feedback-based
learning task in two sessions with different feedback tim-
ings, i.e., immediate feedback (delay = 500 ms) or delayed
feedback (delay = 6500 ms). FRN, P3a, and P3b in the
feedback-locked ERP were analyzed in relation to (mod-
elled) unsigned PEs for each individual trial. VBM was
conducted on whole-brain data and in a separate analysis
for the cerebellum to characterize GMV volume reduction
in patients relative to controls, and to potentially link spe-
cific cerebellar regions to group differences in task perfor-
mance and/or EEG measures reflecting RL-PE processing.

Analysis of the behavioral data revealed that accuracy
increased with task progression, indicating that learning took
place gradually. Importantly, we did not find the hypoth-
esized group differences, nor differential effects of feed-
back timing. Given that accuracy was generally increased
for delayed feedback, this finding may hint at decreased
uncertainty when feedback was delayed. We had hypoth-
esized that the cerebellum may be differentially involved in
learning from feedback as a function of timing. The present
results do not support this notion. Of note, a recent study
in patients with cerebellar stroke reported similar results
(Huvermann et al., 2025). The present study found only
subtly reduced behavioral flexibility in patients as reflected
in reduced choice switching: While in controls, decreased
choice switching for delayed relative to immediate feedback
was found in later task stages, such an effect was absent
in patients. This pattern might indicate that choice switch-
ing was not modulated by the learning progress in patients,
possibly due to decreased behavioral flexibility as has been
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reported in patients with cerebellar damage for rule- and
reversal learning tasks (see Thoma et al., 2008; for a review
see Berlijn et al., 2024b).

EEG analyses revealed a typical modulation of the FRN
by feedback valence, with increased negativity for negative
relative to positive feedback (e.g., Gehring & Willoughby,
2002; Nieuwenhuis et al., 2005; Pfabigan et al., 2011). In
addition, in line with the expectations, the unsigned PE was
reflected in the FRN, with more negative amplitudes for
more unexpected feedback (i.e., higher unsigned PE; e.g.,
Chase et al., 2011; Walentowska et al., 2019). In addition,
the FRN was more negative for delayed compared to imme-
diate feedback which is in line with previous results (Arbel
et al., 2017; Peterburs et al., 2016; Weismiiller & Bellebaum,
2016; Weber & Bellebaum, 2024).

As hypothesized, the unsigned PE was not reflected in
the FRN in patients, while it was for controls, albeit only
for positive feedback. The pattern in controls is consistent
with recent reports of modulation of the FRN by positive
PEs (Kirsch et al., 2022; Weber & Bellebaum, 2024), indi-
cating that coding of high PEs (i.e., unexpected feedback)
in the FRN was more pronounced for positive compared to
negative feedback. This is consistent with the view that the
signal in the FRN time window is driven by a RewP (Weber
& Bellebaum, 2024). In this regard, one advantage of the
present study was using feedback valence and the unsigned
PE as separate factors, allowing us to investigate PE effects
in patients and controls as a function of feedback valence.

Lack of PE coding in the FRN in patients (in both timing
conditions) could be indicative of a general deficit in RL-PE
processing. In line with this notion, patients did show an
overall increased FRN that could hint at increased unexpect-
edness independent of the PE during the task. Evidence for
impaired coding of surprise, which can also be interpreted
as deficit in RL-PE processing, has previously been found in
cerebellar stroke (Rustemeier et al., 2016). However, in this
study, PEs were not modelled at single-trial level. In con-
trast, Huvermann et al. (2025) did model RL-PEs and found
RL-PE coding to be absent in cerebellar stroke patients com-
pared to controls. Further supporting the notion that cerebel-
lar dysfunction impairs RL-PE processing, RL-PE coding
was also lacking when healthy subjects received cerebellar
TMS (Huvermann et al., 2025). Together with the present
findings, these results evidence cerebellar involvement in
processing of RL-PEs as indexed by the FRN. Of note, this
conclusion is further supported by a recent meta-analysis
on PE processes in humans that discovered an association
between unsigned PEs and cerebellar activation, among
other regions (Corlett et al., 2022). For the signed PE, cer-
ebellar effects were not found.

The FRN was not the only ERP component sensitive to
RL-PE processing in the present study. Analysis of the P3a
revealed similar result patterns, with increased positivity

with higher unsigned PE in controls for positive feedback.
This finding is in line with recent studies in which the fron-
tal P300/P3a reflected the PE for positive immediate feed-
back (Kirsch et al., 2022; Weber & Bellebaum, 2024). It is
also consistent with results reported by Hoy et al. (2021).
Of note, these authors not only found the P3 to represent
an unsigned PE in healthy subjects (Hoy et al., 2021), they
also observed a more central scalp distribution (consistent
with the P3a) when analyzing the magnitude of the RL-PE
solely by positive feedback. Functionally, the P3a has been
linked to attentional reorienting and has been suggested to
encode expectancy (Chase et al., 2011; Walentowska et al.,
2019). Along these lines, PE effects in the P3a in the present
study could be interpreted as a surprise response in controls
for immediate positive feedback that was absent in patients.
Importantly, the present effects of the P3a could be also
influenced by the RewP because the time windows of both
ERP components overlap to some extent (Ullsperger, 2024).
We did not find an effect of feedback timing for the P3a,
which is in accordance with findings by Holtje and Meck-
linger (2020). In contrast, the later P3b was sensitive to
feedback timing, albeit as a function of feedback valence,
the unsigned PE, and group. This is particularly relevant
because functionally the P3b has been implicated in updat-
ing of context-related information (Polich, 2007), and also
in PE processing directly (Lauffs et al., 2020). Stewardson
and Sambrook (2020) calculated great grand-averages across
multiple studies and found that a parietal scalp deflection
related to reward PE processing was stronger than an earlier
frontal effect, underlining the significance of the P3b for PE
processing. In line with this, the unsigned PE was reflected
in the P3b in controls in the present study, with increased
positivity for higher PEs, particularly for positive, immediate
feedback. Moreover, differential patterns emerged for posi-
tive and negative delayed feedback: P3b amplitudes were
more positive for higher positive PEs but decreased with
higher negative PEs. Crucially, coding of the unsigned PE
in the P3b was completely absent in patients. Together with
largely absent PE coding in patients also in FRN and P3a,
this result appears to indicate a rather global alteration of
feedback-related ERPs in cerebellar degeneration regarding
RL-PE processing. Importantly, other aspects of feedback
processing such as valence coding were intact, arguing
against a global alteration of the ERP in patients per se.
Interestingly, patients did show a generally more posi-
tive P3b for delayed feedback, which might be driven by
the functional role of the P3b for updating contextual infor-
mation. Holtje and Mecklinger (2020) found a more pro-
nounced P3b for immediate compared to delayed feedback
in healthy subjects and linked this to increased action value
updating when feedback was presented immediately. Healthy
subjects in the present study did not show an effect of feed-
back timing, but we observed an effect in patients, with a
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decreased P3b for immediate compared to delayed feedback.
It is conceivable that context updating is more demanding
for longer delay duration due to higher working memory
demand. Working memory impairment is a common non-
motor symptoms in patients with cerebellar lesions (Hoche
et al., 2018; Peterburs et al., 2010). An fMRI study that used
an n-back task in patients with cerebellar lesions and healthy
controls suggested that increased, likely compensatory, acti-
vations in parietal areas in patients may underly preserved
task performance (Ziemus et al., 2007).

As discussed so far, the present results suggest altered
neural responses, particularly with regard to RL-PE process-
ing, in patients with cerebellar degeneration, which, how-
ever, are only accompanied by subtle behavioral impairment.
As expected, whole-brain VBM results showed significant
GMV reduction in patients compared to controls spanning
wide regions of the cerebellum. Importantly, there were no
(structural) extra-cerebellar differences between patients and
controls. Cerebellar VBM using SUIT showed the strongest
GMV reduction in bilateral Crus I/II and other posterolateral
regions of the cerebellum. This is important because particu-
larly Crus I and II have been linked to cognitive functions
(Stoodley, 2012; Stoodley & Schmahmann, 2010). Accord-
ing to the functional atlas by King et al. (2019) and van
Overwalle et al. (2023), Crus II is particularly implicated in
action observation and understanding. In the present study,
GMV reduction particularly in bilateral Crus I/II was associ-
ated with more positive FRN amplitudes. At first glance, this
finding appears surprising, given generally more negative
FRN amplitudes in patients compared to controls. However,
blunting of the FRN (i.e., decreased negativity) with increas-
ing GMV reduction is consistent with previous observations
for the response-locked ERP component ERN in patients
with cerebellar degeneration (Peterburs et al., 2015). It also
conforms to recent findings in healthy subjects in whom cer-
ebellar function was disrupted by single-pulse TMS applied
to the posterolateral cerebellum (Berlijn et al., 2024a). Both,
the FRN and ERN originate from the ACC (Hauser et al.,
2014; Herrmann et al., 2004) and are closely linked to
RL-PE processing (Holroyd & Coles, 2002).

In general, the dissociation between preserved behavior
and altered neural responses warrants further discussion
(Ullsperger, 2024). Kirsch et al. (2022), contrary to their
hypotheses, only found a small association between behavior
and the FRN and argued that this could be due to the infor-
mation content of feedback in their task design. Walsh and
Anderson (2012) also discussed in their review the absence
of behavioral findings across different studies while effects
on the FRN were demonstrated. They hypothesized that the
FRN could reflect a habitual behavioral response rather than
goal-directed behavior. Given these different perspectives
on the nature of the FRN and the potential separation into
an N200 and the RewP as independent components that are
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differently affected by expectancy and feedback valence
(Ullsperger, 2024), the exact role of the FRN and therefore
its link to behavior is not yet fully understood (Kirsch et al.,
2022). It must be noted that the present task used reward
probabilities that were constant throughout the task, and
coding of feedback valence was intact in patients, so small
changes in PE might not have been necessary for learning
(unlike in reversal learning tasks). In contrast to the brain-
behavior dissociation in the FRN, P3a and P3b have been
linked to behavioral adaptation by Kirsch et al., (2022).
Here, the frontal P3a appeared to be less positive when more
behavioral adaptation for the next trial was necessary. Also,
unexpected feedback led to increased P3b amplitudes, sug-
gesting a role of the P3b for updating of action values. In
contrast, the present study did not reveal a relation between
absent coding of RL-PEs in P3a and P3b and behavioral
performance in the patient sample in comparison to controls.

Limitations

The present study was designed to characterize the cerebel-
lum’s role in reinforcement learning and coding of RL-PEs
as a function of feedback timing by investigating patients
with different ataxia disorders characterized by progressive
cerebellar degeneration. Including patients with etiologically
different diseases might have led to increased (unexplained)
variance in our results that was particularly problematic for
the VBM. However, we used a homogeneity analysis to
exclude participants with extreme cerebellar GMV reduc-
tion to cope with strong variance differences. It can be dis-
cussed whether the included neurodegenerative diseases
described as purely cerebellar also affect other regions of
the brain, as has been recently reported for patients with
SCAG6 who showed an increased concentration of iron in the
basal ganglia which correlated with lower cognitive perfor-
mance (Marvel et al., 2022). Also, the discrepancy between
the group effect in the FRN for the MLM and the nega-
tive correlation in the VBM could have been the result of
the aggregated data points for the FRN in the GLM. While
MLMs model each individual trial for each participant, the
GLM models only the aggregated values of the FRN for
each participant. Hence, individual variability is lost with
the GLM. In addition, we did not see the expected differ-
ences in CCAS scores between patients and controls (see
Table 2). This is in line with previous findings by Thieme
et al. (2022) who showed that although SCAG6 patients
scored numerically lower than controls, the group difference
was not significant (Thieme et al., 2022). Both the CCAS
scale and our task might not have been sensitive enough to
find behavioral differences. General learning performance
in the present study was comparable to previous studies,
with accuracy in the acquisition stage ranging between 50
% and 80 % in Thoma et al. (2008) and Rustemeier et al.
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(2016). Of note, we did not include reversal learning which
was shown to be altered in patients with cerebellar lesions
(Thoma et al., 2008). Thus, our task design with constant
reward probabilities unfortunately does not allow for insights
in this direction beyond the behavioral findings on trial-by
trial choice switching. Last, the time windows for FRN and
P3a extraction overlapped by 50 ms which could contribute
to diminished functional distinction if feedback processing is
assumed to be initially reflected in the FRN and later in the
P3a (Ullsperger, 2024). Including FRN and P3a as separate
measures is in line with many previous studies on feedback-
based learning (e.g., Mangels et al., 2018; Tilton-Bolowski
et al., 2021). In the present study, these two components
were scored differently. The FRN was scored as mean ampli-
tude in a time window of +20 ms around the FRN peak
latency that was determined in individual averages. The P3a
was scored as mean amplitude in the time window from
300 to 500 ms post-feedback. Importantly, the average FRN
peak latency was 257.29 ms (SD = 30.95 ms) for the entire
sample, thus clearly preceding the P3a time window so that
FRN results should not have been a confound for P3a results.

Conclusion

In conclusion, the present results revealed altered RL-PE
processing in probabilistic feedback-based learning in
patients with pure cerebellar degeneration. Analyses of FRN,
P3a, and P3b in the feedback-locked ERP revealed absent
coding of RL-PEs in patients. Whole-brain and cerebellar
VBM showed global cerebellar degeneration in patients
compared to controls, and multiple regression revealed that
reduced GMV in bilateral Crus I/II was associated with
blunting of the FRN. Importantly, the present results did
not provide evidence for differential involvement of the cer-
ebellum in reinforcement learning or feedback processing
as a function of feedback timing. Nevertheless, the present
results underline the cerebellum’s role in RL-PE process-
ing. More research is needed to fully elucidate the mecha-
nisms of cerebellar contributions to PE processing as well as
contextual factors that may modulate these processes using
task-based fMRI, particularly to disentangle the (cerebro-
cerebellar) networks underlying reinforcement learning in
healthy and diseased cerebellum.
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