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Summary 

Cyanobacteria are the only known prokaryotes that perform oxygenic photosynthesis, serving 
as key primary producers across diverse habitats and playing a fundamental role in the earth's 
ecosystem. In addition to their ecological importance, cyanobacteria also hold great promise 
as sustainable resources for the production of industrially and medically valuable compounds. 
Because of their importance, an important aim is to optimize how these organisms allocate 
their limited cellular resources across various metabolic processes. The main goal of this 
thesis is to address this challenge by developing and applying advanced computational 
frameworks to study phototrophic growth and resource allocation in cyanobacteria. In line 
with this objective, Chapter 1 serves as an introduction, providing an overview of 
cyanobacteria and explaining the computational strategies used to study their growth and 
metabolism. 

This thesis comprises three studies. In Chapter 2 (manuscript 1), we develop a pan-genome-
scale metabolic model and use flux balance analysis (FBA), a linear approach to, investigate 
the adaptability of 102 unicellular organisms – including a range of cyanobacteria – to new 
nutrient sources under heterotrophic growth conditions. The analysis revealed a strong 
correlation between genome size and the number of reactions necessary for these adaptations.  

In the second study in Chapter 3 (manuscript 2), we reformulate and extend an existing model 
of the cyanobacterium Synechocystis. We introduce Growth Balance Analysis (GBA) as an 
alternative mathematical framework for modeling phototrophic growth in cyanobacteria. 
Compared to the methodology in Faizi et al. (2018), GBA formulates equivalent models with 
simpler equations that allow more efficient calculations and easier model extensions through 
additional reactions and metabolites. As a proof of concept, we first present a GBA model 
inspired by Faizi et al. (2018), using identical parameter values. We then present a second, 
extended GBA model capable of predicting the optimal proteome allocation in more detail.  

In the third study in Chapter 4 (manuscript 3), we present Cell Growth Simulator, a web-
based application that enables efficient construction and analysis of GBA models through a 
user-friendly interface and interactive visualizations. Cell Growth Simulator uses an intuitive 
spreadsheet interface, eliminating the need for coding, and integrates data from the BRENDA 
enzyme database to facilitate the incorporation of kinetic parameters. Cell Growth Simulator 
helps users to interpret optimization results through customizable plots and dynamic 
metabolic pathway maps. The platform makes nonlinear modeling of resource allocation in 
coarse-grained cellular systems accessible to a broad scientific audience, providing an 
intuitive tool for advancing our understanding of cellular metabolism and growth and 
fostering interdisciplinary collaborations. 

Overall, this work offers both theoretical and practical contributions: it sheds light on 
cyanobacterial adaptability and resource allocation while providing accessible computational 
frameworks to facilitate deeper explorations of phototrophic (and non-phototrophic) growth.
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Zusammenfassung 

Cyanobakterien sind die einzigen bekannten Prokaryoten, die eine oxygene Photosynthese 
durchführen. Sie fungieren als zentrale Primärproduzenten in vielfältigen Habitaten und 
spielen eine grundlegende Rolle im Ökosystem der Erde. Neben ihrer ökologischen 
Bedeutung gelten Cyanobakterien zudem als vielversprechende, nachhaltige Ressourcen für 
die Herstellung industriell und medizinisch wertvoller Verbindungen. Aufgrund ihrer 
Bedeutung ist es ein zentrales Ziel, zu optimieren, wie diese Organismen ihre begrenzten 
zellulären Ressourcen auf verschiedene Stoffwechselprozesse verteilen. 

Das Hauptziel dieser Arbeit ist es, diese Herausforderung mithilfe der Entwicklung und 
Anwendung fortgeschrittener computergestützter Rahmenwerke anzugehen, um phototrophes 
Wachstum und Ressourcenallokation in Cyanobakterien zu untersuchen. Im Einklang mit 
diesem Ziel dient Kapitel 1 als Einführung, bietet einen Überblick über Cyanobakterien und 
erläutert die rechnerischen Strategien, die zur Untersuchung ihres Wachstums und 
Stoffwechsels eingesetzt werden. 

Diese Dissertation umfasst drei Studien. In Kapitel 2 (Manuskript 1) entwickeln wir ein pan-
genomisches metabolisches Modell und verwenden die Flux-Balance-Analysis (FBA), einen 
linearen Ansatz, um die Anpassungsfähigkeit von 102 einzelligen Organismen – darunter 
verschiedene Cyanobakterien – an neue Nährstoffquellen unter heterotrophen 
Wachstumsbedingungen zu untersuchen. Die Analyse zeigte eine starke Korrelation zwischen 
der Genomgröße und der Anzahl der für diese Anpassungen erforderlichen Reaktionen. 

In der zweiten Studie in Kapitel 3 (Manuskript 2) reformulieren und erweitern wir ein 
bestehendes Modell des Cyanobakteriums Synechocystis. Wir führen die Growth Balance 
Analysis (GBA) als alternatives mathematisches Rahmenwerk zur Modellierung phototrophen 
Wachstums in Cyanobakterien ein. Im Vergleich zur Methodik von Faizi et al. (2018) 
formuliert GBA äquivalente Modelle mit einfacheren Gleichungen, die effizientere 
Berechnungen und eine leichtere Erweiterung der Modelle durch zusätzliche Reaktionen und 
Metaboliten ermöglichen. Als Machbarkeitsnachweis präsentieren wir zunächst ein GBA-
Modell, das von Faizi et al. (2018) inspiriert ist und identische Parameterwerte verwendet. 
Anschließend stellen wir ein zweites, erweitertes GBA-Modell vor, das in der Lage ist, die 
optimale Proteom-Allokation detaillierter vorherzusagen. 

In der dritten Studie in Kapitel 4 (Manuskript 3) stellen wir den Cell Growth Simulator vor, 
eine webbasierte Anwendung, die durch eine benutzerfreundliche Oberfläche und interaktive 
Visualisierungen eine effiziente Erstellung und Analyse von GBA-Modellen ermöglicht. Der 
Cell Growth Simulator nutzt eine intuitive Tabellenkalkulationsoberfläche, wodurch 
Programmieren überflüssig wird, und integriert Daten aus der BRENDA-Enzymdatenbank, 
um die Einbindung kinetischer Parameter zu erleichtern. Er unterstützt Nutzer bei der 
Interpretation von Optimierungsergebnissen durch anpassbare Diagramme und dynamische 
Stoffwechselwegkarten. Die Plattform macht die nichtlineare Modellierung der 
Ressourcenallokation in grobkörnigen zellulären Systemen einem breiten wissenschaftlichen 
Publikum zugänglich und bietet ein intuitives Werkzeug zur Vertiefung unseres 
Verständnisses von Zellstoffwechsel und Wachstum sowie zur Förderung interdisziplinärer 
Zusammenarbeit. Insgesamt leistet diese Arbeit sowohl theoretische als auch praktische 
Beiträge: Sie beleuchtet die Anpassungsfähigkeit und Ressourcenallokation von 
Cyanobakterien und stellt gleichzeitig zugängliche rechnerische Rahmenwerke bereit, die 
tiefere Untersuchungen des phototrophen (und nicht phototrophen) Wachstums ermöglichen. 
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1.1 General Introduction 

Rising atmospheric CO₂ levels, now at their highest point in human history and a primary 
driver of climate change, together with accelerating population growth and expanding 
industrial activity, have put unprecedented pressure on natural resources. The overexploitation 
of these resources, combined with carbon emissions derived from fossil fuels, has already 
caused significant environmental damage. In response, there is an urgent need to develop 
sustainable and environmentally friendly strategies for the production of alternative fuels and 
chemicals (Luan & Lu, 2018). Microbial biomanufacturing is a promising solution, as both 
native and engineered microbes have been successfully used to produce a range of renewable 
biofuels and biochemicals. However, most of these microbial platforms – such as Escherichia 

coli and Saccharomyces cerevisiae – are heterotrophic and require organic carbon feedstocks 
(e.g., glucose or other sugar-based substrates) to sustain growth (Dodds, 2002; Jojima et al., 
2010; Wang et al., 2019). In contrast, cyanobacteria use photosynthesis to directly convert 
atmospheric carbon into biomass, making them particularly attractive for sustainable 
bioproduction (Singh et al., 2016).    

Cyanobacteria are a diverse and widespread group of prokaryotes known for their ability to 
perform oxygenic photosynthesis. Utilizing sunlight as an energy source and carbon dioxide 
as a feedstock, these photoautotrophic organisms can grow rapidly and have a relatively 
simple cellular structure. In addition, they are amenable to genetic manipulation, making them 
excellent model systems for studying photosynthesis and compelling hosts for 
biotechnological applications. In particular, engineered cyanobacteria are now well 
established as producers of several valuable chemicals (Knoot et al., 2018). However, their 
productivity and product titers have remained relatively low compared to those of 
heterotrophic hosts such as Escherichia coli, limiting the commercial potential of 
cyanobacterial bioproduction. Early research on cyanobacteria focused primarily on strains 
that were easily genetically tractable, laying the groundwork for more advanced strain 
engineering. Among these, Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942, 
and Synechococcus sp. PCC 7002 have emerged as key unicellular models and remain widely 
studied for both fundamental and applied research (Mukherjee et al., 2020).  

A promising approach toward understanding how these model systems can be made more 
efficient hosts for biotechnological applications is to take a systems biology perspective. 
Systems biology takes a holistic approach to understanding how genes, proteins, and 
metabolites interact within complex biological networks (Kitano, 2002). Over the past two 
decades, rapid advances in “omics” technologies have generated large, high-quality data sets 
that form the basis for increasingly sophisticated metabolic and regulatory models. These 
computational tools provide a powerful complement to laboratory experiments, which are 
often time-consuming and expensive. By simulating key aspects of wet-lab work, in silico 
methods can not only reduce the number of experiments required, but also allow researchers 
to explore broader experimental conditions and hypotheses.  

Cyanobacteria became an early focus of systems biology because of their evolutionary 
importance: they pioneered oxygenic photosynthesis about 2.5 billion years ago, a trait that 
was subsequently transferred to eukaryotes through endosymbiosis, eventually giving rise to 
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algae and plants (Hohmann-Marriott & Blankenship, 2011). The close evolutionary 
relationship of cyanobacteria with plant plastids stimulated early genomic investigations, 
leading to the first publicly available complete genome sequence of Synechocystis sp. PCC 
6803 (hereafter Synechocystis) more than two decades ago (Kaneko et al., 1996a). Equipped 
with robust genetic tools (Grigorieva & Shestakov, 1982), Synechocystis quickly became a 
widely used model organism among cyanobacteria. Today, due to their ecological relevance 
and industrial potential, more than 200 complete genome sequences of different 
cyanobacterial species have been made publicly available (Shih et al., 2013). These 
characteristics establish cyanobacteria as an important model organism for the development of 
microbial cell factories (Santos-Merino et al., 2023). Despite the abundance of high-
throughput experimental data, including genomics, transcriptomics, and proteomics (Babele et 
al., 2019; Jahn et al., 2018; Matthias et al., 2014; Zavřel et al., 2019), achieving a fundamental 
mechanistic understanding of resource allocation in cyanobacteria remains a major challenge 
in biotechnology. The main goal of this thesis is to address this issue by developing and 
applying advanced computational frameworks to study phototrophic growth and resource 
allocation in cyanobacteria. 

1.2 Genome-Scale Metabolic Modeling 

The growing demand for quantitative insights into metabolic physiology and bioprocess 
optimization has led to extensive efforts in the mathematical modeling of metabolic function. 
One of the most powerful approaches in this area is the use of genome-scale metabolic models 
(GEMs), which use a stoichiometric matrix to represent the entire metabolic reaction network 
of an organism. GEMs are based on gene-protein reaction (GPR) associations that integrate 
annotated genomic data with experimentally derived information to create mass-balanced 
reconstructions of cellular metabolism (Bernstein et al., 2021). 

A key advantage of GEMs is their ability to incorporate species-specific knowledge and 
complex 'omics data, providing a holistic framework for understanding cellular metabolism. 
Combined with constraint-based reconstruction and analysis (COBRA) techniques – most 
notably Flux Balance Analysis (FBA) – GEMs enable the translation of biological hypotheses 
into computational algorithms that can predict metabolic phenotypes. As tools for combining 
computational modeling with empirical data, GEMs have become indispensable for advancing 
our understanding of metabolic physiology and guiding the design of more efficient 
biotechnological processes (Gu et al., 2019). 

1.3  Flux Balance Analysis (FBA) 

Flux Balance Analysis (FBA) is a widely used constraint-based optimization framework that 
employs a stoichiometric representation of metabolic networks, ranging from simplified 
“core” models to comprehensive genome-scale reconstructions (Orth et al., 2010). The 
method requires the assumption of an optimality criterion (usually the maximization of the 
biomass yield in microbial systems (Feist & Palsson, 2010), often imprecisely referred to as 
growth rate maximization (Schuster et al., 2008)). This optimization in turn requires a limiting 
constraint, such as a limit on the uptake rate of an essential nutrient. Where available, kinetic 
parameters (e.g., !!"# values) can be incorporated as flux bounds to refine the model. In its 
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standard application, FBA finds the maximal biomass production rate !$%&!"'' and its 
corresponding flux distribution ! for a given uptake constraint and stoichiometric matrix ". 
Formally, this defines the linear optimization problem: 

 

Maximize  !$%&!"'' 

at Steady state condition   "! = 0 

with !!%( ≤ ! ≤ !!"# 

 

 

(1) 

Solving the FBA problem yields a set of metabolic flux distributions that satisfy the given 
objective. Due to its linear formulation and relatively low computational cost, FBA scales 
well to large metabolic networks with thousands of reactions. It is therefore particularly 
suitable for modeling genome-scale networks, studying microbial communities or 
multicellular tissues, and performing parameter scans under varying external conditions 
(Töpfer et al., 2020). However, by design, FBA does not inherently account for factors such 
as temporal dynamics, regulatory constraints, or experimentally measured transcription, 
protein, or metabolite abundances; these considerations typically require additional modeling 
frameworks or hybrid approaches (Sahu et al., 2021). 

1.4 Synechocystis sp. PCC 6803: A Model Cyanobacterium for Metabolic and 

Biotechnological Insights 

To date, Synechocystis is the best-characterized cyanobacterium and the model organism of 
choice for applications in biotechnology due to its robust growth characteristics and well-
studied biology (Angermayr et al., 2009). This unicellular cyanobacterium, with a cell size of 
approximately 2 µm (Zavřel et al., 2017), was isolated in 1968 from a freshwater lake in 
California, USA (Stanier et al., 1971). Synechocystis is naturally transformable and 
genetically tractable. In 1996, it was the first phototrophic organism to have its genome fully 
sequenced, marking a milestone as the third bacterial genome ever sequenced (Kaneko et al., 
1996b). Its genome consists of a single chromosome and seven plasmids, with a total size of 
approximately 3.95 megabases (Mb). A total of 3,507 protein-coding genes have been 
annotated in the UniProt database (Kaneko et al., 2003). The organism exhibits a maximum 
growth rate of approximately 0.135 [h-1], corresponding to a doubling time of 5.13 hours 
(Zavřel et al., 2015).  

Building on this foundational knowledge, several GEMs have been developed for 
Synechocystis, reflecting its status as a model organism for the study of cyanobacterial 
metabolism and photosynthesis. One of the earliest GEMs, iSyn669, was published in 2011 
and included 882 reactions, 690 metabolites, and 669 genes, providing a basic framework for 
understanding the metabolic network of Synechocystis (Montagud et al., 2011). This model 
was later refined and expanded into iSyn731, which incorporated additional experimental data 
and improved GPR associations, resulting in a more accurate representation of the organism's 
metabolic capabilities (Knoop et al., 2013). Another notable model, iJN678, was developed to 
incorporate detailed descriptions of phototrophic growth and carbon fixation pathways, 
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allowing simulations of light-driven metabolism and resource allocation under varying 
environmental conditions (Nogales et al., 2012). Höper et al. (2024) recently released an 
updated GEM for Synechocystis that spans 865 reactions and 783 genes, which, crucially, 
integrates explicit modeling of light absorption and thereby advances the quantitative analysis 
of phototrophic metabolism. This groundlaying work, in conjunction with the availability of 
its genome annotation on CyanoBase, positions Synechocystis as a suitable model for 
examining photoautotrophic growth and resource allocation, as explored in this study. 

1.5  Flux Balance Analysis as a Tool to Investigate Metabolic Complexity and 

Evolutionary Strategies in Cyanobacteria 

FBA provides a robust computational framework for investigating how metabolic fluxes and 
phenotypic behaviors respond to various genetic and environmental factors, making it 
particularly well-suited for assessing the impact of newly acquired genes on metabolic 
networks and organismal fitness. Horizontal gene transfer (HGT) – the transfer of genetic 
material across species boundaries – is a key evolutionary mechanism that has profoundly 
influenced microbial genome evolution, adaptation, and metabolic diversity. In particular, 
recent work has shown that Escherichia coli can acquire complex metabolic traits with 
relatively few new enzymatic functions, highlighting the remarkable adaptability of bacterial 
metabolism. However, it remains unclear whether this adaptability is unique to E. coli or 
represents a more general feature of bacterial lineages (Szappanos et al., 2016). Cyanobacteria 
offer an especially informative test case. These photoautotrophs thrive in diverse habitats, 
from nutrient-poor open oceans to hypersaline ponds and hot deserts (Oren, 2015). They adapt 
their metabolic strategies to meet the thermodynamic demands of photosynthetic electron 
transport, carbon-concentrating mechanisms and, often, nitrogen fixation (Bothe et al., 2010). 
Their genomes are highly modular, with large accessory gene pools – especially in freshwater 
Synechocystis – suggesting repeated instances of gene gain and loss that adapt metabolism to 
local light, CO₂ concentration, and nutrient availability (Jeong et al., 2021). Such rewiring can 
create pathways that alter redox balance via alternative electron sinks or reconfigure the 
ATP/NADPH ratio through cyclic electron flow. Through their integration of photosynthesis, 
cyanobacteria add a compelling dimension to the broader question of how microbes adapt to 
diverse environments. Despite their ecological significance, comparatively little is known 
about the genetic and network-level factors that enable or limit their metabolic flexibility – an 
important question that is addressed in manuscript 1 of this dissertation. 

Several theoretical models have attempted to explain how new metabolic functions emerge 
and are integrated into existing networks. The “toolbox model” proposed by Maslov et al. 
(2009) posits that each new gene (i.e., tool) can combine with the organism's existing 
“toolbox” of enzymes to generate additional metabolic pathways, creating a synergistic effect 
for organisms already equipped with a large toolbox. Another complementary hypothesis 
comes from (Wolf & Koonin, 2013), who introduced a "biphasic" model of genome 
evolution. Their phylogenetic analyses suggest alternating phases of genome expansion and 
contraction, potentially giving rise to generalist and specialist microbial lifestyles. While these 
models offer valuable perspectives on evolutionary dynamics, the underlying reasons that 
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drive certain organisms to evolve as generalists – able to thrive in a variety of environments – 
and others to evolve as specialists remain incompletely understood. 

Manuscript 1 of this dissertation addresses this gap by examining 102 unicellular organisms, 
including several cyanobacterial strains, to determine how metabolic adaptability correlates 
with genome content. Using FBA simulations, the study shows that species with larger 
metabolic “toolboxes” (i.e., gene repertoires) adapt more readily to novel nutrient conditions, 
consistent with the "toolbox model" of Maslov et al. (2009). Indeed, manuscript 1 classifies 
organisms as either generalists or specialists, and shows that generalists (including some 
cyanobacteria) have branching metabolic networks and derive multiple ancillary benefits from 
a single adaptive event. In contrast, specialists have more linear pathways in which adaptive 
gains often serve narrowly defined purposes. Crucially, this work sheds light on how HGT 
and intrinsic network architecture together govern the adaptive potential of cyanobacteria, a 
group whose photosynthetic capacity and evolutionary history make it uniquely relevant for 
both fundamental research and innovative biotechnological applications. 

1.6  Conceptual and Computational Limitations of FBA 

The linear optimization framework (Eq. 1) is computationally simple, but this simplicity 
comes with certain conceptual limitations. For example, the maximum flux towards biomass 
production (!$%&!"'') typically depends on the upper bounds of key uptake reactions (e.g., 
limiting carbon sources). In contradiction to the notion of growth rate maximization, the 
solution may favor maximum yield (the ratio of biomass flux to uptake flux of the limiting 
nutrient) rather than maximum growth rate per se (Schuster et al., 2008). Moreover, because 
biomass production is a direct (and, in the absence of a maintenance energy term, linear) 
function of the maximal uptake flux of the limiting nutrient, accurate prediction of optimal 
biomass flux requires prior knowledge of substrate uptake rates. 

A second challenge arises when large-scale metabolic reconstructions have more reactions 
than metabolites, which is typically the case. The resulting structure of the stoichiometric 
matrix leads to an underdetermined system and multiple valid solutions for the flux vector ! 
at a given value of the objective function (Orth et al., 2010). As a result, additional criteria are 
needed to determine a single, biologically relevant optimal flux distribution. Importantly, 
these challenges are unproblematic for the work reported in manuscript 1: here, only the 
metabolic network’s ability to produce biomass from a set of available nutrients is important, 
while growth rate and detailed flux distributions are not considered. In contrast, the detailed 
and accurate study of molecular physiology – as examined in manuscript 2, see below 
– requires attention to these problems. 

1.7  Beyond Traditional FBA: Linear Models of Resource Allocation and the 

Challenge of Integrating Proteome Constraints 

Parsimonious FBA (pFBA) (Holzhütter, 2004) is one of the most common strategies to 
address the requirement to choose among multiple optimal FBA solutions. pFBA reflects the 
principle that cells can optimize growth by reducing enzymatic resource allocation wherever 
possible. Under the simplifying assumptions that the absolute values of fluxes are 
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proportional to the required enzyme investment and that the corresponding proportionality 
constants are identical across enzymes, pFBA finds the most resource-efficient solution by 
minimizing the sum of absolute fluxes at the maximal biomass production rate. Thus, pFBA 
can be seen as the simplest variant of resource allocation models – a class of models built on 
linear optimization frameworks to describe how cellular resources such as proteins, 
metabolites, and energy are allocated among different processes to maximize growth or other 
objective functions. Like pFBA, more advanced resource allocation models linearize the 
kinetic relationships between enzyme abundance and metabolic fluxes (and hence growth 
rate). These linear models provide a computationally tractable way to capture large-scale 
cellular behavior (Goelzer et al., 2011; Goelzer & Fromion, 2011).  

At their core, resource allocation models generalize the idea of imposing explicit constraints 
on metabolic capacity. Two main approaches have emerged to address this "budgeting" 
problem: (i) protein budgeting, in which a fixed pool of protein must be allocated among 
different cellular tasks, and (ii) resource budgeting, in which protein budgeting is further 
coupled with descriptions of protein synthesis requirements. However, conventional protein 
budgeting approaches often assume that protein production itself is governed by a pre-existing 
budget, rather than dynamically feeding back into it. 

Two examples of protein budgeting frameworks are FBA with molecular crowding 
(FBAwMC) (Vazquez et al., 2008) and Constrained-Allocation FBA (CAFBA) (Mori et al., 
2016), which constrain enzyme concentrations for the complete system or individually for 
proteome sectors. Although these methods can improve predictive accuracy, they do so by 
imposing extra assumptions. Nevertheless, such approaches have found that growth-
maximizing solutions, especially when coupled with genetic regulation, often match 
experimental phenotypes. Later resource allocation models have extended these frameworks 
by more fully integrating proteome partitioning and other capacity constraints (e.g., GECKO 
(Sánchez et al., 2017)). 

Three major large-scale modeling strategies with resource budgeting are currently in use: 
Resource Balance Analysis (RBA) (Goelzer et al., 2011), Metabolic and Macromolecular 
Expression (ME) models (O’Brien et al., 2013), and Proteome Constrained (pc) models 
(Elsemman et al., 2022). Each formulates an optimization problem at a fixed growth rate 
under linear constraints. RBA, introduced by (Goelzer et al., 2011), extends beyond 
metabolism to include other growth-related macromolecules (e.g., DNA, membranes) and the 
cellular translation apparatus, and, in some implementations, incorporates growth rate-
dependent enzyme catalytic rates (&)(µ) = *)µ + ,)). This approach, calibrated against 

proteomic data, accurately predicts proteome partitioning in Bacillus subtilis (Goelzer et al., 
2015). ME models, proposed by (Lerman et al., 2012), take a slightly different approach by 
embedding the gene expression machinery directly into the metabolic network and generating 
solutions that minimize ribosome production at the given growth rate. Unlike RBA, ME 
models do not impose explicit density constraints, but retain certain assumptions from the 
underlying metabolic framework, such as the use of fixed exchange flux limits. 

Despite the success of these linearized resource allocation methods, they rely on important 
simplifying assumptions. All of the mentioned models assume that cells operate under an 
optimal state that can be found via linear optimization, thus ignoring the inherently non-linear 
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nature of enzymatic rate laws and the interplay between substrate concentrations and enzyme 
efficiency. This approximation is justified by the fact that  fully nonlinear genome-scale 
models – involving thousands of variables – pose significant computational challenges with 
current technologies (Orth et al., 2010). To remain tractable, all methods discussed so far treat 
reaction fluxes (!)) as proportional to enzyme abundance (-)) multiplied by a catalytic rate 

(&)) that is assumed to be either constant or, in some RBA implementations, a linear function 

of growth rate. As a result, the effects of substrate concentrations are ignored and other 
nonlinear phenomena are often overlooked.  

1.8  Non-linear Framework for Understanding Cellular Resource Allocation 

While all models discussed so far approximate cellular metabolism as a linear process, 
biological systems are inherently nonlinear. In contrast to linear cellular models, nonlinear 
approaches explicitly capture metabolite concentrations and their effects on reaction fluxes 
via kinetic rate laws. Molenaar et al. (2009) pioneered “self-replicator” models in which 
resource allocation emerges from optimizing cellular growth under key physiological 
constraints, including nonlinear kinetics in transport and enzymatic reactions, a fixed total 
protein concentration, and the allocation of ribosomes to produce all necessary proteins. 
Subsequent studies have extended this framework to photoautotrophic systems, incorporating 
processes such as photodamage and carbon cycling (Burnap, 2015; Faizi et al., 2018). 

So far, nonlinear kinetic cell models have focused on small, coarse-grained representations of 
cellular physiology (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018; Molenaar et al., 2009). 
These models compress cellular complexity by representing multiple enzymes or pathways 
with a single catalytic unit. While lacking in molecular detail, these simplified models still 
provide valuable insights into overarching metabolic trade. Their limited scale reflects the 
computational difficulty of solving large nonlinear optimization problems (Wortel et al., 
2018).  

1.9  Growth Balance Analysis 

Recently, growth balance analysis (GBA; Figure 1) has been introduced as a general 
framework for studying nonlinear resource allocation in growing cells subject to mass 
conservation, nonlinear reaction kinetics, and cell density constraints (Dourado et al., 2023; 
Dourado & Lercher, 2020). This work not only demonstrates the feasibility of large-scale 
nonlinear simulations, but also provides new perspectives on the mathematical properties of 
such models. In GBA, a cellular model is specified by a triple (., 0, 1). The matrix . is a 
mass-fraction form of the stoichiometric matrix, scaled by molecular weights and including a 
special ribosome reaction “r” that synthesizes proteins, as well as a row “p” that represents 
total protein concentration. The vector 0 = 0(2, 3)	encodes turnover times for each reaction in 
the network; these kinetic functions are the inverses of the more customary kinetic rate laws, 
and they depend on internal metabolite concentrations 2 and on relevant external 
concentrations 3. Finally, 5 indicates the sum of all mass concentrations inside the cell, 
encompassing both metabolites and proteins, and is assumed to remain fixed. 

Moreover, the balanced growth model at steady-state is specified by the following constraints: 
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67)
%

)

!) = 89% (Mass conservation) 

!) = :) ;)< 	(9, =) (Reaction kinetics) 

6:)
)

= 9* (Protein density) 

69%
%

= 1 (Cellular density) 

9! ≥ 0 (Non-negativity of metabolite concentration) :) ≥ 0 (Non-negativity of protein concentration) 

 

Because . is scaled in mass units, both metabolite concentrations 9% and protein 

concentrations :) appear in units of [g L-1], and fluxes !) have units of [g L-1 h-1]. Kinetic 

parameters – such as Michaelis constants (?!) ([g L-1]) and turnover numbers (&+",) (the 
amount of product per unit of protein per unit of time, resulting in units of [h-1]) – should also 
be expressed in mass units. By definition, 1 (in [g L-1]) is the sum of the mass concentrations 
of every intracellular component, a quantity taken to be constant under balanced growth, 
consistent with observations in E. coli (Bremer & Dennis, 2008). 

Within GBA, the optimal state of the cell emerges as a solution to an optimization problem 
built on two core algebraic expressions, formulated in terms of flux fractions @ ∶= B/(D5). 
Here, B denotes the mass reaction fluxes, 8 is the growth rate, 1 is the constant total density 
of intracellular components, and the ratio is taken element-wise. The first core equation, 

 

 8(@, 3) = 	 7-
.E-	@/	0(1	.	@, =) (2) 

focuses on how the ribosome reaction contributes to the growth rate, where 7-
. is the relevant 

entry in .. The second equation, 

 

 67)
%E)

%,)

= 1 (3) 

ensures a strict balance on total cellular density. Here, the summation runs over the internal 
reactants (G) and the reactions (H) in .. Apart from this explicit density condition, all other 
constraints – such as reaction stoichiometry, nutrient limitations, and enzyme capacities – are 
encoded in the first equation or in the expressions for 0 (Dourado et al., 2023). Solving for @ 
at optimal growth also determines key cellular properties, including metabolite levels 21, 

total protein concentration 22, and each individual protein concentration :) via 
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 2 = 1	.	@ (4) 

 

 :) = 8	1	E) 	;)(1	.	@, 3) (5) 

The turnover times 0 are defined by reaction rate laws (here, irreversible Michaelis–Menten 
with inhibition (eq. 6)), so that 0 values depend systematically on the intracellular metabolite 
pool 21 and, for transport reactions, on the external environment 3. 
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(6) 

Here,  

 !  is the forward turnover number; 

 "  is the Michaelis constant for internal metabolite m in reaction j 

 "#  is the activation constant for metabolite m in reaction j; 

 "$  is the inhibition constant for metabolite m in reaction j; 

 "  is the Michaelis constant for external reactant % in reaction  j; 

 products over m run across internal metabolites involved in reaction j;  

 products over n run across external reactants transported by j. 
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Figure 1. Schematic representation of the Growth Balance Analysis (GBA) framework 
(adapted from manuscript 1) 

In manuscript 2, we present a proof-of-concept GBA model for the cyanobacterium 
Synechocystis, inspired by a previous self-replicator model (Faizi et al., 2018) and using 
identical parameter values to validate the approach against established work. We then extend 
the GBA framework to predict optimal proteome allocation at a more detailed level, 
demonstrating the ability of the GBA framework to move toward self-replicator models of 
complex cellular systems. 

In manuscript 3, to increase the accessibility of Growth Balance Analysis (GBA) beyond the 
expert community, we describe Cell Growth Simulator, a user-friendly web platform built 
with R and Shiny. R is a widely used programming language and environment for statistical 
analysis and data visualization, while Shiny provides a lightweight framework for building 
interactive web applications. There are currently numerous web tools for linear metabolic 
modeling and visualization-such as CNApy (Thiele et al., 2022), Escher (King et al., 2015), 
ModelExplore (Martyushenko & Almaas, 2019), CAVE (Mao et al., 2023), and Fluxer (Hari 
& Lobo, 2020)-all of which use linear optimization approaches such as flux balance analysis 
(FBA) (Orth et al., 2010c). In addition, platforms like COPASI (Hoops et al., 2006) can 
handle constant catalytic rates (&+",), which is consistent, e.g., with Resource Balance 
Analysis (RBA) models (Goelzer & Fromion, 2011). However, no existing, easy-to-use web 
application facilitates the solution of cellular models with nonlinear kinetics. Cell Growth 

Simulator fills this gap by providing the first dedicated web-based solution for building, 
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simulating, and analyzing coarse-grained GBA models with up to ten reactions. This upper 
limit on model complexity is chosen deliberately to allow users to capture fundamental 
principles of cellular resource allocation and proteome efficiency with minimal computational 
cost (Doan et al., 2022; Dourado et al., 2023; Ghaffarinasab et al., 2023; Hui et al., 2015; 
Molenaar et al., 2009; Scott et al., 2010; Weiße et al., 2015). 

1.10 Integrative Overview of the Three Studies 

Manuscript 1 focused on the role of metabolic complexity in shaping the adaptive potential of 
bacteria, particularly of cyanobacteria. Using a pan-genome-scale metabolic model and flux 
balance analysis (FBA), we showed that species with larger metabolic networks (generalists) 
adapt more readily to novel nutrient environments than species with smaller metabolic 
networks (specialists). This finding supports the “toolbox model” (Maslov et al., 2009), in 
which a large existing set of enzymes (“tools”) provides multiple evolutionary stepping stones 
that facilitate rapid adaptation through horizontal gene transfer (HGT). Our results highlight a 
positive feedback loop between complexity and evolvability: organisms with large and 
branched metabolic networks benefit disproportionately from each gene acquisition, 
accelerating adaptation. These findings contrast with more traditional evolutionary models 
(e.g., Fisher's geometric model), which suggest that complexity may hinder adaptive 
evolution (Fisher, 1930). Instead, we show that metabolic complexity can be a facilitator of 
evolutionary diversification. 

Building on this large-scale understanding of metabolic adaptability, manuscript 2 focused on 
the resource allocation strategies in the cyanobacteria Synechocystis sp. PCC 6803 using 
growth balance analysis (GBA). Linear constraint-based models, such as FBA, generally do 
not capture how enzymes and other cellular resources (e.g., proteins, metabolites) are 
quantitatively allocated in response to changing environmental conditions. By contrast, GBA 
explicitly accounts for metabolite concentrations and their influence on reaction fluxes 
through kinetic rate laws (Dourado et al., 2023; Dourado & Lercher, 2020). Compared to a 
previous coarse-grained nonlinear model of Synechocystis (Faizi et al., 2018), the GBA 
formulation proved to be mathematically simpler yet equally effective in reproducing 
observed growth trends and proteome allocation under different light intensities. This 
streamlined approach is particularly advantageous for exploring more sophisticated 
phototrophic behaviors and extending the model to include additional cellular processes, such 
as major photosynthetic complexes or carbon fixation. Both the base model – equivalent to 
the model of Faizi et al. (2018) – and our extended GBA model successfully reproduced 
experimental observations such as the average proteome fractions and growth rate-dependent 
trends (Zavřel et al., 2019). Specifically, as the growth rate shifts from light-limited to light-
saturated conditions, the extended GBA model predicts a decrease in the proteome fractions 
of photosystem I (PSI) and photosystem II (PSII) along with an increase in ATP synthase and 
cytochrome b6, mirroring experimental observations (Faizi et al., 2018; Zavřel et al., 2019).   

Finally, manuscript 3 addressed a practical challenge: the computational and technical barriers 
associated with nonlinear modeling of cellular systems. Although GBA offers a robust 
approach for modeling self-replicating cells – explicitly incorporating metabolite 
concentrations and their effects on reaction fluxes – its implementation traditionally demands 
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significant programming expertise and computational resources. To address these challenges, 
the Cell Growth Simulator was developed as a user-friendly web application designed for 
small-scale, self-replicating cell models. Cell Growth Simulator uses an intuitive spreadsheet 
interface, integrates kinetic parameter retrieval from the BRENDA enzyme database  (Chang 
et al., 2021), and offers interactive visualization tools. This platform not only makes nonlinear 
modeling of resource allocation in coarse-grained cellular systems accessible to researchers 
with limited programming skills, but it also serves as a valuable tool for fostering 
interdisciplinary collaboration and enriching our understanding of cellular metabolism and 
growth.
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Abstract 

Cyanobacteria exemplify the remarkable ability of bacteria to adapt to new environments 
through horizontal gene transfer (HGT), a key driver of genome innovation and ecological 
success. However, anecdotal observations suggest that not all bacteria adapt equally: while 
certain species frequently diversify into new niches, others remain more specialized. To 
investigate the factors governing this variation, we used pan-genomic modeling to examine 
how 102 unicellular organisms, including several cyanobacterial strains, respond to over 
5,000 different nutrient environments. Our analysis revealed that highly specialized 
endosymbionts typically require more than 50 additional metabolic reactions to establish 
growth in a novel environment, while generalist species such as E. coli require fewer than 
five. Strikingly, several cyanobacteria also exhibit higher adaptability, driven by their larger 
metabolic repertoires, which allow for more efficient evolutionary stepping stones via HGT. 
Thus, there is a positive feedback between metabolic complexity and evolvability, contrary to 
prior theoretical expectations that organismal complexity hinders adaptive evolution. 
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2.1 Introduction 

Cyanobacteria have played a pivotal role in shaping Earth’s biosphere by pioneering oxygenic 
photosynthesis roughly 2.5 billion years ago, fundamentally altering the planet’s atmosphere 
and paving the way for the evolution of eukaryotes. Like many unicellular organisms, they 
exhibit an extraordinary capacity to adapt to diverse and changing environments (Brooks, 
Turkarslan, Beer, Lo, & Baliga, 2011). Different phylogenetic lineages differ widely in the 
frequency with which they give rise to new strains or even new species, but it is currently 
unclear what determines these differences. The splitting off of new lineages will often be 
adaptive, with the new lineage specializing to a different life style or environment. Among 
bacteria, such specialization is typically accompanied by the loss of now superfluous genes 
from the genome and the acquisition of additional genes via horizontal gene transfer (HGT, 
also termed lateral gene transfer) (Koonin & Wolf, 2008; Pal, Papp, & Lercher, 2005). While 
classic examples include the massive gene loss in the endosymbiotic bacterium Buchnera (Pal 
et al., 2006) or the gain of niche-specific pathways by pathogenic Escherichia coli strains 
(Alteri, Smith, & Mobley, 2009), cyanobacteria stand out for their evolutionary longevity and 
metabolic diversity – traits that have helped them persist in varied habitats, from open oceans 
to extreme terrestrial environments (Chen et al., 2021). As a consequence of these 
evolutionary dynamics, bacterial pan-genomes can be partitioned into core genes (found in 
almost all strains), shell genes (found in several strains), and cloud genes (restricted to a 
single strain) (Koonin & Wolf, 2008). Understanding how HGT can shape the remarkable 
adaptability of cyanobacteria offers insights not only into their evolutionary history, but also 
into broader questions about the mechanisms underpinning microbial specialization and 
innovation. 

Bacterial strains of the same species often differ widely in their metabolic capabilities. For 
example, a study on E. coli found that individual strains could grow in between 437 and 624 
of the tested environments (Monk et al., 2013). Based on such differences, lineages can be 
categorized as metabolic generalists or specialists. A prolonged reduction in environmental 
complexity – such as experienced by a generalist bacterium becoming a permanent 
endosymbiont – causes a corresponding reduction in metabolic complexity, which can be 
predicted quantitatively from genome-scale metabolic modeling (Pal et al., 2006). That 
bacterial evolution appears to organize itself into short bursts of innovation followed by long 
phases of genome reduction (Wolf & Koonin, 2013) indicates that the inverse process – a 
specialist evolving into a generalist – is comparatively rare.  

In previous work (Szappanos et al., 2016), we utilized metabolic simulations to show that the 
standard lab strain E. coli K-12 can adapt to most previously unviable nutritional 
environments by acquiring at most three additional enzymes and/or transporters via HGT. In 
many cases, different new environments required the acquisition of overlapping gene sets. We 
found that complex metabolic innovations requiring multiple enzyme-coding genes can 
evolve via the successive acquisition of individual biochemical reactions, where each confers 
an additional benefit for the utilization of specific nutrients. This observation indicates an 
important role of exaptations in metabolic evolution, where stepwise metabolic niche 
expansion can lead to a substantial acceleration of adaptation (Szappanos et al., 2016).  
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However, multiple genes can also be acquired simultaneously via horizontal gene transfer. 
Successful transfer events of DNA in E. coli appear to co-transfer at most 30kb of DNA (Pang 
& Lercher, 2017). A reconstruction of the ancestral metabolic networks of 53 E. coli strains 
showed that all metabolic innovations identifiable in silico in this lineage indeed arose 
through the acquisition of a single DNA segment <30kb on one of the branches of the 
phylogeny. At the same time, around 10% of innovations relied on the exaptation of 
acquisitions on earlier branches of the strain phylogeny (Pang & Lercher, 2019). 

These findings demonstrate that complex metabolic innovations can evolve – and have indeed 
evolved in E. coli – without the need to resort to neutral explorations of phenotype space. 
Such neutral explorations had been suggested earlier as an important facilitator of adaptation 
(Barve & Wagner, 2013), but the corresponding non-adaptive evolution of metabolic 
networks is expected to be extremely slow, and no direct empirical support has been identified 
for this scenario in bacteria (Szappanos et al., 2016). Thus, theoretical, computational, and 
comparative genomics considerations indicate that bacterial evolution of metabolic networks 
can be understood purely from a consideration of adaptive processes (Szappanos et al., 2016). 

It has been suggested that complex organisms adapt more slowly than simple ones owing to 
increasing pleiotropic constraints (Fisher, 1930; Orr, 2005). Here, we argue that at least when 
metabolic networks are considered, the opposite may be true. More complex networks 
provide more raw material for adaptation to novel environments. Prompted by previous 
evidence for a broad adaptability of the generalist E. coli (Pang & Lercher, 2019; Szappanos 
et al., 2016) and simulations of abstract representations of artificial reaction networks 
(Maslov, Krishna, Pang, & Sneppen, 2009), we hypothesize that bacteria with more complex 
metabolic systems might be more adaptable than specialists. 

Here, we explore this hypothesis in cyanobacteria along with other bacterial organisms by 
investigating how the size of metabolic networks affects the adaptability of their metabolic 
systems. Using pan-genome-scale metabolic simulations, we show that the ease with which 
microbes adapt to novel environments varies widely among species, with metabolic 
specialists typically requiring an order of magnitude more gene acquisitions than generalists 
adapting to the same environment. The increased adaptability of generalists is highlighted by 
their much higher potential for collateral adaptation, i.e. the ability to grow in additional, 
unselected environments due to ecologically unrelated previous adaptations. Specialist 
species, on the other hand, have largely lost their adaptive potential. When they do adapt, 
however, they show a stronger tendency toward exaptation, i.e., they are more likely to re-use 
previously acquired enzymes and transporters for subsequent adaptations.    

2.2 Results and Discussion 

Construction of a pan-genome scale metabolic supermodel from organism-specific 

models 

To allow coherent simulations of metabolic network expansion through HGT, we first created 
a pan genome-scale metabolic supermodel that contained all examined organism-specific 
metabolic networks as submodels. The supermodel built from 102 organismal metabolic 
models contains 16,018 unique reactions and 7,551 unique metabolites. Fig. 1 shows the sizes 
of the organism submodels included. Most metabolites are assigned to the compartments 
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extracellular (e), periplasm (p), and cytosol (c) (Suppl. Fig. S2). Several additional 
compartments in the supermodel originate from the contributions of four eukaryotic 
organisms (Chlamydomonas (iRC1080), Saccharomyces cerevisiae (iMM904, iND750), 
Phaeodactylum tricornutum (iLB1027_lipid)) and the cyanobacterium Synechocystis sp. PCC 
6803 (iJN678). For the well-studied Escherichia coli str. K-12 substr. MG1655, five different 
models were included. We also included metabolic models for 55 other E. coli and Shigella 

strains (Monk et al., 2013). Further details about the organisms and metabolic models 
included are listed in Suppl. Table S1. 

Branching points in metabolic networks occur when multiple reactions produce and/or 
consume the same metabolite. One function of such branching points is to link alternative 
pathways to central metabolism. As expected, we find that larger metabolic networks tend to 
be less linear, i.e., they contain a lower proportion of metabolites that are consumed and 
produced by less than three reactions (Spearman’s ρ=-0.42, P=0.04; Suppl. Fig. S3). 

 

We used flux balance analysis (FBA) (Orth, Thiele, & Palsson, 2010; Watson, 1984) to 
estimate the ability of each submodel to grow in each of a large number of nutritional 
environments. To make the results comparable, we used the same general biomass reaction 
for all organism-specific submodels, i.e., each metabolic system was required to produce the 
same metabolic precursors for cellular growth (Methods). We examined two sets of 
nutritional environments: one set that largely contains typical wet lab growth media (Henry et 

 

 

Figure 1. The models included represent a broad range of metabolic complexity. 
The bars show the number of metabolic reactions for each model that contributed to the 
pan-genome-scale supermodel. Only one representative strain and model is shown for 
each species. Red bars indicate eukaryotic models. Suppl. Fig. S1 shows the 
corresponding information for additional strains and models. 
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al., 2010), including those assayed in the Biolog phenotyping system; and another set of 
random minimal media, each comprising a combination of carbon, nitrogen, sulfur, and 
phosphorus sources plus trace elements. 

As most models cannot grow in any of the random minimal environments, we checked 
whether all models can grow in a medium that supplies all possible nutrients. Only three 
models are not viable in this maximally rich condition: the hyperthermophilic bacterium 
Thermotoga maritima (iLJ478), the parasitic protozoon Trypanosoma cruzi Dm28c (iLS312), 
and the endosymbiotic bacterium Buchnera aphidicola (iSM199). This is because the general 
biomass objective function contains more amino acids than the original biomass functions of 
these models. Therefore, we included the missing essential reactions (1, 13, and 5 reactions, 
respectively; Suppl. Table S2) to enable these models to grow on this fully rich medium. We 
chose not to exclude these models from further analyses, as the ability of extreme specialists 
to adapt to new environments is one of the questions we aim to explore. 

As shown in Fig. 2, the minimal random environments are too restricted for most modeled 
organisms and hence provide limited insights into the growth of the submodels in the real 
world. In contrast, almost all submodels can grow in at least some of the wet lab 
environments, with the most versatile model – E. coli – growing in 36% of wet lab media, 
while the cyanobacterium Synechocystis sp. PCC 6803 achieves growth in 8% of these 
conditions (Fig. 2). The distribution of the fraction of viable wet lab environments across 
submodels is bimodal (Suppl. Fig. S4), naturally dividing these organisms into generalists 
and specialists; we set the dividing line at growth in 20% of assayed media. As expected, the 
same three organisms unable to grow in the full medium are also unable to grow in any wet 
lab environment. To guard against any biases introduced by the general biomass function, we 
repeated this analysis with using the generation of energy (conversion of ADP to ATP) as the 
objective function, with qualitatively similar results (Suppl. Fig. S5). 

 

 

Figure 2. The fraction of viable environments differs widely across submodels, both for 
random minimal environments (green bars to the left) and for common wet lab environments 
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More complex networks are more adaptable 

We next quantify the difficulty for an organism to adapt to new environments. For each 
submodel and each environment in which it is currently unable to grow, we identified the 
minimal number of reactions that have to be added to produce biomass; below, we refer to 
this number as the added reactions. The distribution of added reactions per wet lab 
environment varies widely across organisms (Fig. 3a, including only one representative for E. 

coli). Results are quantitatively similar when considering random instead of wet lab 
environments (Suppl. Fig. S6), and qualitatively similar when using energy generation 
instead of biomass production as the objective function (Suppl. Fig. S7).  

The four smallest and most specialized metabolic networks require the largest number of 
added reactions to adapt to new environments. The endosymbiont Buchnera aphidicola needs 
to add on average 51.7 reactions to reach new environments. Similarly, the pathogen 
Helicobacter pylori, which exclusively lives in human stomachs, needs on average 33.7 
additional reactions. Plasmodium berghei, which is a protozoan parasite that causes malaria in 
rodents, requires on average 83.0 reactions to be viable in a new environment. Finally, the 
parasite Trypanosoma cruzi Dm28c requires on average 129.1 reactions. All four organisms 
are highly specialized to one or a few specific, stable environments. Accordingly, their 
metabolisms show very little flexibility, reflected in very small numbers of metabolic genes 
(B. aphidicola: 199 metabolic genes out of a total of 517 genes (Shigenobu, Watanabe, 
Hattori, Sakaki, & Ishikawa, 2000); H. pylori: 341 metabolic genes out of 1590 total genes 
(Tomb et al., 1997); T. cruzi: 312 metabolic genes out of 1430 (De Pablos & Osuna, 2012); P. 

berghei: 448 metabolic genes out of 5216 (Otto et al., 2014)). At the other end of the 
spectrum in Fig. 3a is E. coli: the standard lab strain K12 (iML1515) requires on average 2.55 
and at most 6 reactions to adapt to any of the tested environments. The cyanobacteria 
Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 require similarly low 
numbers of extra reactions on average – 3.27 and 3.99, respectively. 

Although it is likely that many properties influence the ability of a metabolic system to adapt 
to new nutritional environments, network size alone explains 56% of the variance across all 
assayed models (Fig. 3b; Spearman’s ρ = -0.75, P = 3.57×10-5). The solid line in Fig. 3b 
shows the best-fitting power law, added reactions = a × (gene count)b. The best-fitting 
exponent is b = 2.87 (95% CI = [3.47, 2.28]), which is slightly larger than the b = 2 expected 
from abstract models of metabolic network expansion (Maslov et al., 2009). The two 
cyanobacterial strains, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942, 
fall below the fitted curve in Fig. 3b. In other words, they exhibit negative residuals; they 
require fewer added reactions than the power law predicts based on their gene counts. This 
deviation is consistent with their photoautotrophic physiology. External energy from light and 
reliance on CO₂ fixation lessen the need to recruit new catabolic modules when the medium 
changes. Thus, adaptation mainly hinges on a small set of transport and cofactor steps rather 
than on the addition of entire pathways. 

(blue and red bars to the right). The dotted vertical line at 0.2 indicates the threshold for 
partitioning metabolic systems into generalists (blue) and specialists (red). Models are ordered 
top to bottom by decreasing genome size. Suppl. Fig S6 shows the corresponding results 
when using energy production instead of biomass production as the objective function. 
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The dataset contains E.coli models of various sizes, with between 904 and 1,516 metabolic 
genes. These mostly differ only marginally in their adaptability (Suppl. Fig. S8): the average 
number of added reactions for generalist E. coli (including nine strains with auxotrophies) lies 
between 2.40 and 2.97, while the average number of added reactions for specialist E. coli 

ranges from 2.30 to 5.22. The outlier requiring the largest number of additional reactions is E. 

coli DH1 (iEcDH1_1363; Suppl. Fig. S8), which is auxotrophic for thiamine (Meselson & 
Yuan, 1968) due to the loss of a complete operon (Monk et al., 2013). Similar to the picture 
across species (Fig. 3b), and despite the low variation in adaptability, we find a substantial 
negative correlation between the average number of added reactions and network size when 
comparing different E. coli strains (Spearman’s ρ=-0.60, P=6.3×10-6, excluding strains with 
auxotrophies). 

Do different metabolic subsystems contribute unequally to the adaptations observed in the 
simulations? To answer this question, we utilized the high-quality subsystem annotations 
available for the 55 strain-specific E. coli models. We repeated the analysis of environment-
specific adaptation for each E. coli strain, but restricting gene acquisitions to genes from other 
E. coli strains. For this purpose, we created a second pan-genome-scale metabolic supermodel 
exclusively for the 55 E. coli strains (see Methods, “Analysis of E. coli metabolic subsystems 
involved in adaptations”), containing 1,644 unique metabolites and 2,493 unique reactions 
from a total of 69 metabolic subsystems. Our simulations predicted the involvement of genes 
from 27 subsystems in environment-specific adaptations (Suppl. Table S3). 19 of these 
subsystems coincided with those observed in a comparative genomics analysis of adaptive 
gene acquisitions across E. coli strains (Pang & Lercher, 2019) (P=0.026, OR=3.43, Fisher’s 
exact test; Suppl. Table S3). However, the odds ratios for observing gene acquisitions from a 
specific subsystem (compared to all other subsystems) differ markedly between our 
simulations and those inferred from comparative genomics (Suppl. Table S3). This 
discrepancy indicates that the simulated nutritional environment changes may not be directly 
representative of those experienced by real E. coli strains, possibly because E. coli strains tend 
to transition between relatively similar, host-associated environments.  
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Figure 3. The number of additional reactions required for adaptation decreases with 

increasing genome size. (a) Distributions of added reactions, summarized as violin plots. 
The height at each point in a “violin” indicates the local density of the distribution for the 
given model. Models are ordered top-down by decreasing size. (b) The average number of 
added reactions (log scale) plotted against metabolic gene count for each model.  The green 
line shows the best fitting power law, added reactions = a × (gene count)b. In both panels, 
colors distinguish specialists (red) and generalists (blue). Organisms with known 
auxotrophies are shown as open circles. The 55 E. coli strains are represented by the 
iML1515 model (blue triangle) only. For this figure, only wet lab environments are 
considered. 

 

Specialists often re-use gained reactions in later adaptations  

If an organism adapts to a given environment by acquiring a matching set of metabolic 
reactions, it can happen that the same reactions now also facilitate growth in another 
environment, where the organism was unviable before. With few exceptions, such collateral, 
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unselected-for adaptation happens more frequently for generalists than for specialists across 
species; this trend is reversed when comparing different E. coli strains, possibly because the 
repair of auxotrophies facilitates growth in multiple environments (Suppl. Fig. S9; see also 
Refs. (Barve & Wagner, 2013; Hosseini & Wagner, 2016)). 

But even if the reactions acquired to adapt to environment A do not provide immediate access 
to environment B, they may still provide a subset of the reactions required to adapt later to 
this second environment. We quantify the propensity to profit from adaptations in this way 
with an exaptation index (see Methods). One might hypothesize that while specialists show 
little collateral adaptation, they may show a high potential for step-wise exaptation, for 
example if added reactions remove an auxotrophy. As expected from this hypothesis, Suppl. 

Fig. S10 shows that we indeed tend to find higher exaptation indices for specialists than for 
generalists; moreover, the propensity for such exaptations is higher for specialists with small 
genomes compared to specialists with larger genomes. The cyanobacteria Synechocystis sp. 
PCC 6803 and Synechococcus elongatus PCC 7942 behave more like generalists. The few 
reactions they acquire to enter one medium are often reused in others through collateral 
adaptation, while they rely modestly on stepwise exaptation. 

2.3 Conclusions 

Adaptations arise by extensions of existing phenotypes and genotypes. In specialists with 
small genomes, adaptation to new ecological niches is typically difficult, as it demands the 
simultaneous acquisition of multiple mutations or genes. As a consequence, specialists with 
simple genomes may often be evolutionary dead-ends. The smallest and most specialized 
metabolic systems, those of Buchnera aphidicola (an endosymbiont of aphids), Trypanosoma 

cruzi Dm28c (an internal human pathogen), and Helicobacter pylori (an endosymbiont of the 
human stomach), are trapped in their endosymbiotic life style, having all but lost their 
adaptive potential. The opposite is true for organisms with complex genomes – such as 
Synechocystis or E. coli – whose larger “toolboxes” (Maslov et al., 2009) can more easily be 
extended for novel tasks. 

The observed relationship between metabolic network size and adaptability leads to a positive 
feedback between complexity and evolvability. This conclusion is the exact opposite of what 
is suggested by Fisher’s geometric model (Fisher, 1930; Orr, 2005). Fisher’s model supports 
the idea that more complex systems are less likely to adapt through natural selection. 
Specifically, it has been argued that a mutation of a given size is less likely to be favorable in 
complex than in simple organisms because it affects many phenotypic traits simultaneously in 
the former.  In support of this idea, it has been observed that genes encoding proteins involved 
in many protein-protein interactions are less likely to be horizontally transferred than genes 
encoding less highly-connected proteins (Cohen, Gophna, & Pupko, 2011; Jain, Rivera, & 
Lake, 1999). This effect might be expected, as the interaction between two proteins requires 
the co-evolution of the amino acid sequences directly involved in the contact, and hence a 
protein encoded by a newly acquired gene may not bind sufficiently strongly to existing 
proteins of the host. Conversely, different enzymes that interact in a metabolic network 
perform their molecular functions independently, and their amino acid sequences do not need 
to be finetuned with respect to each other. This line of argument suggests that metabolic genes 
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with high connectivity may be integrated easily into an existing network, while genes with 
high connectivity in the protein-protein interaction network may not.  

However, while the amino acid sequences of different enzymes may be independent of each 
other, their expression has to be coordinated precisely. Thus, finetuning is necessary also for 
the integration of metabolic genes into an existing network, although the adjustments must 
occur in terms of regulatory changes rather than amino acid sequence changes. That metabolic 
complexity and protein-protein interaction complexity appear to have opposite effects on 
adaptability might then be explained by faster adaptive evolution of gene expression 
compared to functional gene properties (Lenski, 2017; Lozada-Chavez, Janga, & Collado-
Vides, 2006). 

Exaptation – the utilization of metabolic genes acquired in previous adaptations for adaptive 
purposes in a new environment – plays an important role in the adaptation of both generalists 
and specialists, although in different ways. Generalist species, but not specialist species, show 
a high degree of collateral adaptation, i.e., previous adaptations often enable growth in 
environments other than those experienced by the organisms’ ancestors (Barve & Wagner, 
2013). Conversely, specialist species that acquire new metabolic genes in the adaptation to 
one environment are more likely to re-use (exapt) these genes in later adaptations to other 
environments; thus, stepwise metabolic niche expansion will play an even stronger role in the 
adaptation of specialists than previously observed for the generalist E. coli (Szappanos et al., 
2016), and might thus be the facilitator of rare genome expansions (Koonin & Wolf, 2008). 

2.4 Materials and Methods 

Supermodel generation 

We started with 109 genome scale models (GSMs) downloaded from the BiGG database 
(Schellenberger, Park, Conrad, & Palsson, 2010). We removed seven models of multicellular 
eukaryotes. As we are specifically interested in variations in metabolic model size and as the 
BiGG database contains only few species with very small metabolic systems, we added the 
model for Buchnera aphidicola str. APS (Macdonald, Lin, Russell, Thomas, & Douglas, 
2012). Thus, 102 GSMs (termed “submodels” in this work) contributed to the supermodel 
(Suppl. Table S1). As a preprocessing step, we checked whether reactions and metabolites 
from different submodels but with the same IDs represented the same biochemical reaction; if 
not, we renamed them. Reactions were compared on the basis of stoichiometry and 
reversibility, while metabolites were compared on the basis of their chemical formulas if these 
were available.  

A preliminary supermodel was formed as the union of the reactions and metabolites from all 
submodels. As detailed below, we then curated this preliminary model by ensuring mass 
balance and by removing energy generating cycles (EGCs) (Fritzemeier, Hartleb, Szappanos, 
Papp, & Lercher, 2017). While each individual model passes these quality checks, the 
reactions in the merged supermodel may be combined in ways that violate thermodynamic 
laws or the mass balance. Mass balance is considered first, because proper mass balance is a 
requirement for the EGC removal. The final supermodel was thus mass-balanced and had no 
energy-generating cycles. 
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Correction of mass balance 

Mass balance of a reaction is generally ensured by contrasting all atoms of the educts and all 
atoms of the products. However, due to incomplete data, the mass balance for many reactions 
is not known; removing all reactions with uncertain mass balance would render most of the 
models non-functional. To circumvent this problem, only the mass balance of the exchange 
reactions was considered: the number of atoms of the same kind (e.g., carbon) entering the 
model has to equal the number of corresponding atoms leaving the model. The only reactions 
that allow exchange of molecules with the model environment are exchange reactions and 
biomass reactions. At the same time, these are the only reactions in a network that are allowed 
to be imbalanced. We first removed exchange reactions and biomass objective functions that 
contain a metabolite of unknown composition from the model, as for these we cannot 
guarantee mass balance. To identify potentially imbalanced reactions, we fixed the net 
exchange of atoms to zero. We then removed all reactions that are blocked in this situation.  

Removing erroneous energy-generating cycles 

Another problem occurring when combining multiple GSMs is the formation of erroneous 
energy generating cycles (EGCs) (Fritzemeier et al., 2017; Szappanos et al., 2016). In GSMs, 
such thermodynamically impossible cycles can produce energy equivalents (e.g., by 
synthesizing ATP) in infinite amounts without the consumption of nutrients (Fritzemeier et 
al., 2017). Thermodynamics are strongly influenced by metabolite concentrations. However, 
GSMs consider thermodynamics only approximately through the directionality of reactions. 
Thus, combining two networks can cause the formation of EGCs even if the individual 
networks are EGC-free.  

Based on a previously published algorithm (Fritzemeier et al., 2017), we constructed a greedy 
approach to build organism-specific EGC-free supermodels. We chose not to build one 
supermodel for all analyses, as the order of adding metabolic networks to the growing 
supermodel can affect the final model, and as we wanted to study the adaptability of each 
organism starting from a model from which none (or only a few) reactions had been removed.  

From the preliminary, mass-balanced supermodel, we first considered the set of reactions of 
the focal organism and removed any EGCs present. We then iteratively added the remaining 
submodels, each time removing all EGCs before proceeding to the next one. The order of 
adding organisms was determined by the initial number of EGCs; models with fewer EGCs 
were always added first. 

To remove EGCs, we first determined the smallest set of reactions capable of producing 
energy equivalents in the model. This problem was solved in previous work with the ARM 
MILP algorithm, but here we instead used the ARM LP algorithm (see Methods, “Active 
reaction minimization”). We randomly chose one reaction in this cycle; we deleted the 
reaction if it was irreversible, and constrained it to be irreversible in the opposite direction if it 
was reversible. We repeated this process until no more EGCs were present. This procedure 
resulted in one mass-balanced, EGC-free supermodel for each organism-specific model in our 
dataset. 
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Active reaction minimization 

Mixed integer linear programs (MILP) are frequently used to extend FBA, e.g., in ROOM 
(Satish Kumar, Dasika, & Maranas, 2007), gapfind, and gapfill (Shlomi, Berkman, & Ruppin, 
2005). In many of these problems, the objective is active reaction minimization (ARM). The 
pan-genome-scale model in this work is much bigger than any genome-scale models. Current 
methods of minimizing the number of active reactions under flux balance constraints cannot 
be applied due to the exponential complexity of this problem. We here use an approximate 
method that leads to major speedups and minor inaccuracies. A corresponding linear 
approximation has also been used in combination with the Gapfill algorithm (Thiele, Vlassis, 
& Fleming, 2014). 

We relax the following ARM MILP problem into a sequence of ARM LPk for & ∈ {1,… , Q} 
problems. We use the property of the simplex algorithm to find sparse solution vectors. 

ARM MILP: 

minV6,%
%∈7

W	
X. Z. :	" ∗ ! = 0	]% ≤ !% ≤ ^% 	∀G ∈ `	!% ≠ 0	 ⇒	,% = 1	∀	G	 ∈ c 

ARM LPk: 

minV6d	!% ∗ 1maxgh%8 	, |!%845|j	d%∈7

W	
X. Z. :	" ∗ ! = 0	]% ≤ !% ≤ ^% 	∀G ∈ ` 

Table 1. Definition of variables of the ARM LP. " ∈ ℝ|:| × ℝ|;|  stoichiometric matrix ! ∈ ℝ|;|  Vector of fluxes ] ∈ 	ℝ|;|	 Vector of lower bounds ^ ∈ ℝ|;|	 Vector of upper bounds , ∈ {0,1}|7|  Vector of binary variables ` ∈ {1,… ,m}  Set of m reaction indices c ⊆ `  Set of indices that are objective of the optimization !%8  Flux of the G-th reaction in the &-th optimization (0 if 
undefined) &  Optimization step counter 
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Q  Total number of optimization steps h%8  G-th upper bound of weight factor in optimization round & 
 

 

In this sequence of linear problems, the optimization function of the (& + 1)-th problem is 

reweighted with the solution of the &-th problem. The initial values for	h%< are either set to one 
or to some positive random values. For the (& + 1)-th optimization, we recalculated  h%8=5 ∶= h%8∗ 1 10o  . 

In order to show the practical application of our linear approximation of active reaction 
minimization, we show the comparison between the MILP result and the LP approximation. 
To limit the computation time to a reasonable span, we allowed the solver for the MILP eight 
parallel threads per problem and a maximum time of two minutes per problem. Thus, some 
results are suboptimal, but the gap value accounts for the maximal possible difference to the 
optimal value. For the ARM LP calculations, the linear problem was solved twelve times and 
the best solution was kept. After every fourth optimization, h was reinitialized with random 
values and ! is set as undefined. 

Suppl. Fig. S11a shows both results in direct comparison for a total of 2830 problems we 
solved with the E. coli model iAF1260 and the standard biomass reaction. The ARM LP 
performs better for some problems with the non-optimal MILP solutions, i.e., with a gap 
greater zero. This is also the case for the exact solutions. We suspect the solver to have some 
numerical issues and thus to give a non-optimal solution in four MILP cases. All results were 
successfully verified with FBA. The differences between the pairwise results are shown in 
Suppl. Fig. S11b. For over 50% (1587 of 2830) of the problems, the ARM LP found a better 
or equally good optimal value. For 75% of the problems, the ARM LP solution differed by at 
most two reactions from the MILP ARM solution. Without a pre-specified time limit, the 
MILP ARM computation times vary widely (from seconds to hours), while the ARM LP 
problems are always solved in split seconds. 

Adaptation cost 

The adaptation cost is the minimal number of reactions an organism has to obtain in order to 
survive in an environment that did not support growth beforehand. The environment is 
defined as the set of nutrients available for growth, and viability is defined as the ability to 
produce biomass at a rate above 0.01 mmol gDW-1 h-1. This calculation depends on two major 
factors: the definition of the environments, i.e., the growth media, and the choice of the 
biomass objective function for a model. 

Sets of environments 

All molecule types that can be taken up by the supermodel are potential nutrients. 
Environments differ by which of these potential nutrients are present. We analyzed two sets of 
environments. The first set (“wet lab media”) is taken from the Seed database (Henry et al., 
2010) and represents wet lab growth media. The environments in the second set (“random 
media”) are derived from a minimal growth medium for the E. coli model iAF1260. Each of 
these environments consists of one carbon, one nitrogen, one sulfur, and one phosphorous 
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(CNPS) source, accompanied by trace elements essential for growth (Szappanos et al., 2016). 
The complete set is generated by randomly choosing 5000 such combinations. 

Biomass objective functions 

Each model includes the definition of at least one biomass reaction. For the further analyses, 
we selected one of these. The biomass reactions of 16 models were blocked in the mass 
balance step. These models did not have a valid biomass reaction anymore and were excluded 
from the analyses that were based on the model-specific biomass functions. To make the 
submodels comparable, we defined a general biomass reaction (based on the iAF1260 
biomass reaction) that contains only a set of core metabolites shared by all organisms (ribose 
nucleotides; deoxyribose nucleotides; amino acids; water) and an energy dissipation term 
(converting ATP to ADP + Phosphate + H+). However, for a subset of three models that were 
unable to grow on maximally rich medium using this general objective function, we 
performed the adaptation cost analysis to identify essential reactions. Subsequently, we 
supplemented these models with the essential reactions to allow them to grow on maximally 
rich medium. In addition, we also considered a biomass reaction that consists only of the 
energy dissipation term, thus indicating if a model is able to produce energy from the 
nutrients. Suppl. Fig. S12 shows the percentages of environments (wet lab or random) in 
which the individual submodels can produce a non-zero flux through the different biomass 
reactions. 

Calculation of adaptation cost with ARM LP 

The mass-balanced and EGC-free, organism-specific model is formally a submodel of the 
organism-specific supermodel (see above). For a given environment and both the submodel 
and the supermodel, we used standard FBA to test if biomass can be produced above the 
threshold of 0.01 mmol gDW-1 h-1 (“growth”). Adaptation cost were calculated for 
environments that support growth of the supermodel but not of the submodel. For each such 
environment, we used ARM LP to estimate the minimal number of reactions that have to be 
added from the supermodel to the submodel to facilitate growth. This procedure was 
performed for each combination of organism-specific model, environment, and biomass 
reaction. 

Analysis of E. coli metabolic subsystems involved in adaptations 

To examine the contribution of specific metabolic subsystems to adaptability, we constructed 
a second pan-genome-scale metabolic supermodel restricted to the 55 E. coli strains. This 
reduced supermodel was built using the same procedure described above, ensuring that 
simulated gene acquisitions were limited to genes present in other E. coli strains. For each 
strain-specific submodel, we calculated the adaptation cost in the SEED wet-lab media, using 
the model-specific biomass objective function. Each acquired gene was assigned to a 
metabolic subsystem based on the consistent subsystem annotations provided with the 
models. 

For each gene, we computed its gain frequency per simulation as the total number of 
acquisitions across all simulations, divided by the number of model-environment 
combinations in which the gene was both absent from the model and required for growth (i.e., 
where the model was non-viable prior to gene acquisition). Aggregating across all models and 
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environments, we then calculated the mean gain frequency for each subsystem. The odds ratio 
for a given subsystem was defined as the mean gain frequency within the subsystem, divided 
by the mean gain frequency across all other subsystems. This odds ratio quantifies whether 
genes from a particular subsystem were disproportionately acquired during simulated 
adaptations. 

We then calculated an empirical P-value to test if gene acquisitions from a given subsystem 
were statistically significantly higher than expected under the null hypothesis that genes from 
all subsystems were equally likely to be gained. In each of N=100,000 randomizations, we 
randomly permuted the subsystem labels of all genes and recalculated the odds ratio. For each 
subsystem, the empirical P-value was estimated as the fraction of simulations where the odds 
ratio from the random assignment was equal or higher than the odds ratio observed in the 
original simulations.  

To compare our simulation results to metabolic gene acquisitions inferred from comparative 
genomics of sequenced E. coli strains, we used data from the study by Pang et al. (Pang & 
Lercher), which inferred gene acquisitions along the branches of a phylogenetic tree of 55 E. 

coli strains. We calculated odds ratios and empirical P-values as described above. 

Collateral Adaptation Index 

We defined a collateral adaptation index to quantify the probability that adaptation to one 
environment would lead to a “collateral” adaptation to other, unselected-for environments. 
For each submodel, we first identified the n random environments in which it cannot produce 
biomass (unviable environments). For each of these environments in turn, we identified the 
smallest set of reactions from the supermodel that have to be added to enable biomass 
production; these reactions define the adaptation cost. We then determined in how many of 
the n-1 remaining previously unviable environments this extended model can grow. If we 
denote this number m, then the collateral adaptation index is defined as the corresponding 
fraction, m / (n-1). Thus, an index of 1 indicates collateral adaptation to all environments, 
while an index of 0 indicates no collateral adaptation. This definition was similarly described 
elsewhere (Barve & Wagner, 2013). To make sure that the adaptations considered are indeed 
collateral and not selected in the initial environment, we considered only environments that 
had no overlap with the source environment, i.e. none of the carbon, nitrogen, sulfur or 
phosphate source from the adapted environment was contained in the tested environments.  

Exaptation Index 

Assume that to adapt to grow in a new environment m5, an organism needs the additional 
reaction set p5. To grow in a second distinct environment m>, the same organism may need 

the reaction set p>. The fraction of preadapted reactions can be defined as E!!,!"
≔ |?!∩	?"|

|?"|
. 

We define the exaptation index as 

-!#
∶= mean sE!$,!#

t	  , 
Where the mean is calculated across all m% ∈ 7, and 7 is the set of environments distinct 
from m) in which the un-adapted submodel was unviable.  For example, an exaptation index -!#

= 0.5 means that on average, the organism already acquired half of the reactions needed 
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to adapt to further environments, while an exaptation index of -!#
= 1 indicates collateral 

adaptation. 

Hardware, Software 

All calculations were computed with the constraint-based modelling package “sybil” in GNU 
R, using IBM ILOG CPLEX as the solver. Calculations were done on a compute cluster with 
a peak usage of about 600 CPUs. The whole process is implemented as a pipeline reducing 
human interaction to a minimum. Frequent control points ensure data integrity and correctness 
of calculations. The code used in our simulations, as well as the corresponding results, are 
available on a GitLab repository at the following link: https://github.com/Sijr73/Supermodel 
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Table S1. Organism specific models and their properties. The models in this table are sorted in ascending order by the number of metabolic 
genes. The column “55 E.coli” indicates, whether models from the publication Monk et al. (2013). 

Model ID Organism 
Gene 
count 

Metabolite 
count 

Reaction 
count 55 E.coli Taxonomy ID PubMed ID 

e_coli_core Escherichia coli str. K-12 substr. MG1655 137 72 95  511145 26443778 

iSM199 Buchnera aphidicola str. APS 199 298 297   22513857 

iIS312 Trypanosoma cruzi Dm28c 312 606 519  1416333  

iIS312_Epimastigote Trypanosoma cruzi Dm28c 312 606 519  1416333  

iIS312_Amastigote Trypanosoma cruzi Dm28c 312 606 519  1416333  

iIS312_Trypomastigote Trypanosoma cruzi Dm28c 312 606 519  1416333  

iIT341 Helicobacter pylori 26695 339 485 554  85962 16077130 

iAM_Pb448 Plasmodium berghei 448 903 1067  5821 29300748 

iAM_Pc455 Plasmodium cynomolgi strain B 455 907 1074  1120755 29300748 

iAM_Pk459 Plasmodium knowlesi strain H 459 909 1079  5851 29300748 

iAM_Pv461 Plasmodium vivax Sal-1 461 909 1078  126793 29300748 

iAM_Pf480 Plasmodium falciparum 3D7 480 909 1083  36329 29300748 

iLJ478 Thermotoga maritima MSB8 482 570 652  243274 19762644 

iNF517 Lactococcus lactis subsp. cremoris MG1363 516 650 754  416870 23974365 

iSB619 Staphylococcus aureus subsp. aureus N315 619 655 743  158879 15752426 

iJN678 Synechocystis sp. PCC 6803 622 795 863  1148 22308420 

iHN637 Clostridium ljungdahlii DSM 13528 637 698 785  748727 24274140 

iNJ661 Mycobacterium tuberculosis H37Rv 661 826 1025  83332 17555602 

iAF692 Methanosarcina barkeri str. Fusaro 692 628 690  269797 16738551 

iCN718 Acinetobacter baumannii AYE 709 888 1015  509173 29692801 

iJN746 Pseudomonas putida KT2440 746 909 1056  160488 18793442 

iND750 Saccharomyces cerevisiae S288c 750 1059 1266  559292 15197165 

iJB785 Synechococcus elongatus PCC 7942 785 768 849  1140 27911809 

iPC815 Yersinia pestis CO92 815 1552 1961  214092 21995956 
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Model ID Organism 
Gene 
count 

Metabolite 
count 

Reaction 
count 55 E.coli Taxonomy ID PubMed ID 

iSynCJ816 Synechocystis sp. PCC 6803 816 928 1044  1148       – 

iYO844 Bacillus subtilis subsp. subtilis str. 168 844 991 1250  224308 17573341 

iYS854 
Staphylococcus aureus subsp. aureus 
USA300_TCH1516 866 1335 1455  451516 30625152 

iCN900 Clostridioides difficile 630 900 885 1229  272563  

iJR904 Escherichia coli str. K-12 substr. MG1655 904 761 1075  511145 12952533 

iMM904 Saccharomyces cerevisiae S288c 905 1226 1577  559292 19321003 

iAF987 Geobacter metallireducens GS-15 987 1109 1285  269799 24762737 

iEK1008 Mycobacterium tuberculosis H37Rv 1008 998 1226  83332 29499714 

iLB1027_lipid Phaeodactylum tricornutum CCAP 1055/1 1027 2172 4456  556484 27152931 

iSDY_1059 Shigella dysenteriae Sd197 1059 1890 2540 X 300267 24277855 

iRC1080 Chlamydomonas 1086 1706 2191  3052 21811229 

iSBO_1134 Shigella boydii Sb227 1134 1910 2592 X 300268 24277855 

iSbBS512_1146 Shigella boydii CDC 3083-94 1147 1912 2592 X 344609 24277855 

iSFxv_1172 Shigella flexneri 2002017 1169 1918 2639 X 591020 24277855 

iSFV_1184 Shigella flexneri 5 str. 8401 1184 1917 2622 X 373384 24277855 

iS_1188 Shigella flexneri 2a str. 2457T 1188 1914 2620 X 198215 24277855 

iSF_1195 Shigella flexneri 2a str. 301 1195 1917 2631 X 198214 24277855 

iYL1228 
Klebsiella pneumoniae subsp. pneumoniae 
MGH 78578 1229 1658 2262  272620 21296962 

iSSON_1240 Shigella sonnei Ss046 1240 1938 2694 X 300269 24277855 

iAF1260 Escherichia coli str. K-12 substr. MG1655 1261 1668 2382  511145 17593909 

iAF1260b Escherichia coli str. K-12 substr. MG1655 1261 1668 2388  511145 19840862 

iECH74115_1262 Escherichia coli O157:H7 str. EC4115 1262 1918 2695 X 444450 24277855 

STM_v1_0 
Salmonella enterica subsp. enterica serovar 
Typhimurium str. LT2 1271 1802 2545  99287 21244678 

iECED1_1282 Escherichia coli ED1a 1279 1929 2707 X 585397 24277855 

iECUMN_1333 Escherichia coli UMN026 1332 1935 2741 X 585056 24277855 
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Model ID Organism 
Gene 
count 

Metabolite 
count 

Reaction 
count 55 E.coli Taxonomy ID PubMed ID 

iG2583_1286 Escherichia coli O55:H7 str. CB9615 1283 1919 2705 X 701177 24277855 

iE2348C_1286 Escherichia coli O127:H6 str. E2348/69 1284 1919 2704 X 574521 24277855 

iECSP_1301 Escherichia coli O157:H7 str. TW14359 1299 1920 2713 X 544404 24277855 

iECNA114_1301 Escherichia coli NA114 1301 1927 2719 X 1033813 24277855 

iECs_1301 Escherichia coli O157:H7 str. Sakai 1301 1923 2721 X 386585 24277855 

iLF82_1304 Escherichia coli LF82 1302 1940 2727 X 591946 24277855 

iECOK1_1307 Escherichia coli IHE3034 1304 1943 2730 X 714962 24277855 

iECS88_1305 Escherichia coli S88 1305 1944 2730 X 585035 24277855 

ic_1306 Escherichia coli CFT073 1307 1938 2727 X 199310 24277855 

iZ_1308 Escherichia coli O157:H7 str. EDL933 1308 1923 2722 X 155864 24277855 

iECP_1309 Escherichia coli 536 1309 1943 2740 X 362663 24277855 

iUTI89_1310 Escherichia coli UTI89 1310 1942 2726 X 364106 24277855 

iNRG857_1313 Escherichia coli O83:H1 str. NRG 857C 1311 1945 2736 X 685038 24277855 

iAPECO1_1312 Escherichia coli APEC O1 1313 1944 2736 X 405955 24277855 

iEC042_1314 Escherichia coli 042 1314 1926 2715 X 216592 24277855 

iUMN146_1321 Escherichia coli UM146 1319 1944 2736 X 869729 24277855 

iECABU_c1320 Escherichia coli ABU 83972 1320 1944 2732 X 655817 24277855 

iEcHS_1320 Escherichia coli HS 1321 1965 2754 X 331112 24277855 

iECIAI39_1322 Escherichia coli IAI39 1321 1957 2722 X 585057 24277855 

iECO103_1326 Escherichia coli O103:H2 str. 12009 1327 1958 2759 X 585395 24277855 

iECSF_1327 Escherichia coli SE15 1327 1951 2743 X 431946 24277855 

iECDH10B_1368 Escherichia coli str. K-12 substr. DH10B 1327 1947 2743 X 316385 24277855 

iBWG_1329 Escherichia coli BW2952 1328 1949 2742 X 595496 24277855 

iECO111_1330 Escherichia coli O111:H- str. 11128 1328 1959 2761 X 585396 24277855 

iECB_1328 Escherichia coli B str. REL606 1329 1953 2749 X 413997 24277855 

iEC55989_1330 Escherichia coli 55989 1330 1953 2757 X 585055 24277855 
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Model ID Organism 
Gene 
count 

Metabolite 
count 

Reaction 
count 55 E.coli Taxonomy ID PubMed ID 

iECD_1391 Escherichia coli BL21(DE3) 1333 1945 2742 X 469008 24277855 

iETEC_1333 Escherichia coli ETEC H10407 1333 1964 2757 X 316401 24277855 

iB21_1397 Escherichia coli BL21(DE3) 1337 1945 2742 X 469008 24277855 

iEcE24377_1341 Escherichia coli E24377A 1341 1974 2764 X 331111 24277855 

iECIAI1_1343 Escherichia coli IAI1 1343 1970 2766 X 585034 24277855 

iEC1344_C Escherichia coli C 1344 1934 2726  498388 27667363 

iEcSMS35_1347 Escherichia coli SMS-3-5 1347 1949 2747 X 439855 24277855 

iECSE_1348 Escherichia coli SE11 1348 1957 2769 X 409438 24277855 

iEC1349_Crooks Escherichia coli ATCC 8739 1349 1946 2756  481805 27667363 

iUMNK88_1353 Escherichia coli UMNK88 1353 1971 2778 X 696406 24277855 

iECBD_1354 Escherichia coli BL21-Gold(DE3)pLysS AG 1354 1954 2749 X 866768 24277855 

iEKO11_1354 Escherichia coli KO11FL 1354 1974 2779 X 595495 24277855 

iECO26_1355 Escherichia coli O26:H11 str. 11368 1355 1965 2781 X 573235 24277855 

iEC1356_BI23DE3 Escherichia coli BL21(DE3) 1356 1918 2740  469008 27667363 

iY75_1357 Escherichia coli str. K-12 substr. W3110 1358 1953 2760 X 316407 24277855 

iEcDH1_1363 Escherichia coli DH1 1363 1949 2751 X 536056 24277855 

iEC1364_W Escherichia coli W 1364 1927 2764  566546 27667363 

iJO1366 Escherichia coli str. K-12 substr. MG1655 1367 1805 2583 X 511145 21988831 

iEcolC_1368 Escherichia coli ATCC 8739 1368 1971 2769 X 481805 24277855 

iEC1368_DH5a Escherichia coli DH5[alpha] 1368 1951 2779  668369 27667363 

iEC1372_W3110 Escherichia coli str. K-12 substr. W3110 1372 1918 2758  316407 27667363 

iECW_1372 Escherichia coli W 1372 1975 2783 X 566546 24277855 

iWFL_1372 Escherichia coli W 1372 1975 2783 X 566546 24277855 

iECDH1ME8569_1439 Escherichia coli DH1 1439 1950 2756 X 536056 24277855 

iJN1463 Pseudomonas putida KT2440 1452 2153 2927  160488  

iML1515 Escherichia coli str. K-12 substr. MG1655 1516 1877 2712  511145 29020004 

iYS1720 Salmonella pan-reactome 1707 2436 3357   30218022 
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Table S2. Essential Reactions Added to Enable Growth on Fully Rich Medium 

Model ID Organism Added reaction Name of the reaction 

iLS312 Trypanosoma cruzi Dm28c 

UMPK 

 

UMP kinase 

 

 

ADKd Adenylate kinase 

 DADNt2 Deoxyadenosine transport 

 DGSNt2 Deoxyguanosine transport 

 NTD8 5'-nucleotidase (dGMP) 

 TYRabc 

polar amino acid transport system via abc system 

(tyrosine) 

 TRPabc 

polar amino acid transport system via abc system 

(tryptophan) 

 AMPt6 AMP transport inout 

 CMPt6 CMP transport inout 

 DTMPt6 DTMP transport inout 

 DURIK1_1 Deoxyuridine kinase 

 DURIt2 Deoxyuridine transport 

 MANpts D-mannose transport via PEP:Pyr PTS 

iLJ478 Thermotoga maritima ASNt2r L asparagine reversible transport 

iSM199 Buchnera aphidicola LEUTAi Leucine transaminase 

  ILEabc L-isoleucine transport via ABC system 

  VALt2r L valine reversible transport 

  ILETA2 Branched-chain-amino-acid transaminase 

  PHEabc L phenylalanine reversible transport via abc system 
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Table S3. Common Subsystems with Associated Gains in Simulations and Experiments 

Subsystem 
Total gains in 
Simulations 

Total gains in 
Experiments 

Odds ratio 
Simulations 

Odds ratio 
Experiments 

P-value 
Simulations 

P-value 
Experiments 

Alternate Carbon Metabolism 659 67 0.48 0.69 0.83 0.98 

Arginine and Proline Metabolism 6 4 0.15 1.23 0.58 0.27 

Cell Envelope Biosynthesis 16 15 0.21 1.73 0.51 0.02 

Cofactor and Prosthetic Group Biosynthesis 2040 2 13.9 0.25 0 0.99 

Cysteine Metabolism 4 1 0.69 2.81 0.19 0.10 

Exchange 2 1 0.05 0.31 0.65 0.48 

Fatty Acid Metabolism 11 2 0.41 0.68 0.19 0.24 

Folate Metabolism 652 4 22.8 1.71 0.02 0.2 

Inorganic Ion Transport and Metabolism 5 52 0.01 1.5 0.99 0.09 

Methionine Metabolism 189 2 3.82 0.33 0.07 0.68 

Nucleotide Salvage Pathway 49 7 0.4 1.00 0.56 0.45 

S_Alternate_Carbon_source 31 3 0.68 1.51 0.21 0.23 

S_Aromatic_Acid_Breakdown 17 2 0.05 0.8 0.86 0.62 

S_Transport_Outer_Membrane_Porin 1 5 0.01 1.41 0.83 0.27 

Transport Inner Membrane 246 56 0.26 1.29 0.95 0.04 

Transport Outer Membrane 9 15 0.08 2.93 0.89 0.001 

Tyrosine Tryptophan, and Phenylalanine Metabolism 379 2 16.8 0.74 0.01 0.61 

Urea Cycle 49 3 0.94 1.18 0.14 0.19 

Valine Leucine, and Isoleucine Metabolism 760 2 23.3 0.66 0.006 0.4 
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Figure S1. Networks sizes (number of reactions) of all models combined in the supermodel. 
The 55 E. coli models shown in an extra group and are depicted in lighter shade. The taxonomy 
ID refers to the NCBI taxonomy and the PubMed ID refers to the respective publication of the 
model. 
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Figure S2. Additional properties of the supermodel. a) Number of metabolites in the compartments. 
The compartment with the most reactions is the cytosol (c) followed by the extracellular (e) and periplasm 
(p). The Remaining compartments originate from the eukaryotic models used. 
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Figure S3. Small metabolic networks tend to be less branched than large networks. Network 
linearity is defined as the fraction of metabolites that participate in only two reactions, i.e., 
metabolites that are intermediates in unbranched pathways. The colors of circles and points 
distinguish specialists (red) and generalists (blue). The 55 E. coli strains are represented by the 
iML1515 model (blue triangle) only. Organisms with known auxotrophies are shown as open 
circles. The highly branched E. coli core metabolism is shown with a red plus sign. Spearman 
correlation between network linearity and gene count: ρ = -0.42, using only iML1515 as 
representative for the 55 E. coli.
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Figure S4. Fractions of viable environments for submodels in wet lab environments (seed). 
Bars show a single stacked histogram combining 55 E. coli strains (blue) and all other species 
(red). The dotted vertical line marks the threshold used to classify models as specialists (left) 
versus generalists (right). 
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Figure S5. The fraction of viable environments differs widely across submodels, both for 
random minimal environments (green bars to the left) and for common wet lab environments 
(blue and red bars to the right), here energy generation as the objective function.
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Figure S6. The number of additional reactions required for adaptation decreases with 

increasing genome size. Same as Fig. 3 of the main text, but considering random environments 
instead of wet lab environments. (a) Distributions of added reactions, summarized as violin plots. 
The height at each point in a “violin” indicates the local density of the distribution for the given 
model. Models are ordered top-down by decreasing size. (b) The average number of added 
reactions (log scale) plotted against metabolic gene count for each model. The solid line shows 
the best fitting power law, added reactions = a × (gene count)b, with the best-fitting exponent 
b=2.54. In both panels, colors distinguish specialists (red) and generalists (blue). Organisms with 
known auxotrophies are shown as open circles. The 55 E. coli strains are represented by the 
iML1515 model (blue triangle) only.
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Figure S7. The number of additional reactions required for adaptation decreases with 

increasing genome size. Same as Fig. 3 of the main text, but considering the generation of 
energy as the objective function (instead of biomass production). (a) Distributions of added 
reactions, summarized as violin plots. The height at each point in a “violin” indicates the local 
density of the distribution for the given model. Models are ordered top-down by decreasing size. 
(b) The average number of added reactions (log scale) plotted against metabolic gene count for 
each model. The solid line shows the best fitting power law, added reactions = a × (gene count)b, 
with the best-fitting exponent b=1.4. In both panels, colors distinguish specialists (red) and 
generalists (blue). Organisms with known auxotrophies are shown as open circles. The 55 E. coli 
strains are represented by the iML1515 model (blue triangle) only.
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Figure S8. Different E. coli strains show similar adaptabilities, despite variations in genome 

size. Analogous to Fig. 3b of the main text, but showing all E. coli submodels. Colors distinguish 
specialists (red) and generalists (blue). Organisms with known auxotrophies are shown as open 
circles. 
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Figure S9. Across species, generalists (blue) show a higher tendency for collateral 

adaptations than specialists (red), while this trend is reversed within E. coli. For each 
submodel, we first identified the n random environments in which it cannot produce biomass 
(unviable environments). For each of these environments in turn, we then identified the smallest 
set of reactions from the supermodel that have to be added to enable biomass production. The 
collateral adaptation index is then the fraction of the n-1 remaining previously unviable 
environments in which this extended model can grow. Each “violin” summarizes the distribution 
of the collateral adaptation indices for one submodel. Models in each of the two groups on the y-
axis (top: one representative per species; bottom: E. coli strains) are sorted by gene count. The 
mean of each distribution is marked with a vertical line.



 

50 

 

 

Figure S10. Specialists (red) tend to have higher exaptation indices than generalists (blue). 
Each “violin” summarizes the distribution of the exaptation index for one submodel. Models in 
the groups on the y-axis (top: one representative per species; bottom: E. coli strains) are sorted by 
gene count. The mean of each distribution is marked with a vertical line. 
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Figure S11. Practical application of ARM LP shows equally good performance as ARM 

MILP. a) Result (objective value) comparison of ARM MILP and ARM LP. Dot color 
indicates the gap size (smaller is better). In the left panel, ARM MILP solutions are suboptimal 
due to the limited computation time. Results shown in the right panel could be solved exactly 
within the time limit. The blue lines indicate equal objective values. b) Distribution of the 
difference between ARM LP and ARM MILP results 

a 
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Figure S12. Growth for submodels and supermodel in all environment types (random 
minimal environments, and wet lab (seed) environments) and with three types of biomass 
objective functions (energy production, general biomass, and organism specific).
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Abstract 

Cyanobacteria have emerged as attractive microbial cell factories because of their ability to 
convert atmospheric CO2 and sunlight into valuable chemicals. To increase their growth and 
productivity, one should aim to optimize the allocation of limited cellular resources among 
different metabolic processes. Here, we developed two growth balance analysis (GBA) models 
for the cyanobacterium Synechocystis sp. PCC 6803. The first model reformulates an existing 
coarse-grained, non-linear model of Synechocystis in the GBA framework, thereby drastically 
simplifying the mathematical formulation. The streamlined GBA formulation facilitates simple 
model extensions, such as the inclusion of additional reactions and reactants. We exploit this 
capability by extending the Synechocystis GBA model with a more detailed description of 
photosynthesis. The extended model captures the main trends of proteome partitioning across 
environmental conditions. Our findings demonstrate that GBA models provide a useful and 
easily extensible toolbox for understanding the physiological capabilities of cyanobacteria, their 
allocation of cellular resources, and the potential of their bioengineering for optimized biomass 
production. 

 

Keywords: 

Growth balance analysis, Optimal Resource allocation, Cyanobacteria, Photodamage, Systems 
Biology
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3.1 Introduction 

Photosynthetic cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis, 
converting CO2 and sunlight into biomass. Compared to plants and microalgae, cyanobacteria 
exhibit higher photosynthetic efficiency as well as faster growth, and they are more accessible to 
genetic manipulations. These features make them an important model organism for designing 
microbial cell factories (Santos-Merino et al., 2023). While a vast amount of experimental high-
throughput data – including genomics, transcriptomics, and proteomics – is available (Babele et 

al., 2019; Jahn et al., 2018; Matthias et al., 2014; Zavřel et al., 2019), a mechanistic understanding of 
cyanobacterial resource allocation from simple principles remains an ongoing challenge in 
biotechnology. 

Such mechanistic understanding can be sought through computational models, which also allow 
the study of phenotypes that are not easily accessible to experiments. Recently, various linear 
approaches in computational biology have been used to study resource allocation of organisms at 
balanced growth, a steady-state condition where concentrations of cellular components are 
constant in time (Dourado et al., 2023; Molenaar et al., 2009). These linear approaches include 
genome-scale Models of Metabolism and Macromolecular Expression, ME-models (O’Brien et 

al., 2013); Resource Balance Analysis, RBA (Goelzer et al., 2011); and genome-scale models 
with enzymatic constraints using kinetic and omics data, GECKO (Sánchez et al., 2017). These 
methodologies consider the production cost of macromolecules for catalyzing each reaction by 
approximating the kinetic rate laws as a linear relationship between fluxes and the concentration 
of their catalysts, ignoring metabolite concentrations and how they influence fluxes via the 
saturation of the catalysts (Dourado & Lercher, 2020).  

In contrast to these linear cellular models, alternative nonlinear models can explicitly account for 
metabolite concentrations and their influence on reaction fluxes through kinetic rate laws. 
Molenaar et al. (2009) introduced nonlinear “self-replicator” models, where resource allocation 
patterns follow directly from the optimization of the cellular growth rate under basic 
physiological constraints. These constraints include a fixed total protein concentration; nonlinear 
kinetic rate laws for all modeled reactions, including transporters that exchange mass with the 
environment, enzymatic reactions converting internal reactants, and a “ribosome” reaction 
producing the total amount of protein required to catalyze all cellular reactions; and mass 
conservation accounting for the dilution by growth of all components. Later work (Burnap, 2015; 
Faizi et al., 2018) extended this self-replicator approach to simulate photoautotrophic resource 
allocation, including physiological processes specific to photoautotrophs, such as photodamage 
and carbon cycling.  

Cellular models with nonlinear kinetics have been limited to small, coarse-grained descriptions 
of cellular physiology (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018; Molenaar et al., 2009). 
The main purpose of such small, nonlinear models is to reduce the cellular complexity to only a 
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few components and reactions that still provide important insights into the main patterns of 
cellular behavior. This simplification is achieved by combining multiple essential enzymes and 
metabolic pathways into single catalytic units. These coarse-grained models are useful tools for 
identifying metabolic tradeoffs under different conditions without requiring much information 
about the organism (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018; Molenaar et al., 2009). 
The restriction to simplified cellular models was enforced by the difficulty of numerically 
solving nonlinear optimization problems for large-scale models (Wortel et al., 2018). However, 
recent studies have shown how the mathematical formulation of such nonlinear problems can be 
greatly simplified (Dourado et al., 2023; Dourado & Lercher, 2020). These studies not only 
indicate the feasibility of simulating larger nonlinear models, but also shed new light on the 
mathematical properties of such models. 

Below, to study phototrophic growth in cyanobacteria, we reformulate and extend an existing 
model of the cyanobacterium Synechocystis sp. PCC 6803, hereafter simply referred to as 
"Synechocystis". Faizi et al. (2018) proposed two coarse-grained nonlinear models for this 
organism. The first basic model comprises four reactions: carbon transport (T), metabolism and 
carbon assimilation (M), ribosome and protein translation (R), and a “light reaction” catalyzed 
by a photosynthetic unit (PSU). The photosynthetic unit in this model is separated into two 
components: an "inactive" protein unit v< and an "active" unit v∗. In this model, photosynthesis 
involves the conversion between v< and v∗, providing "e" when absorbing light. Faizi et al. 
(2018) then propose a second model that also accounts for photoinhibition due to the 
photodamage of the active photosynthetic unit at high light intensities, leading to the degradation 
of the photosynthetic unit into its amino acid constituents. With both models, the authors 
simulated the optimal proteome allocation to the various reactions, considering different 
environmental conditions distinguished by the external carbon concentrations *C  (not 
distinguishing between wx> and ywxD4) and the light intensity *E. The simulations require the 
solution of a system of differential equations and consider the maximization of growth rate under 
the constraints given by mass conservation, reaction kinetics, and the fixed total concentration of 
cellular components. The cellular components consist of internal carbon, an amino acid pool, and 
one protein acting as a catalyst for each reaction in the model. The growth rate is defined as the 
net mass influx of carbon divided by the fixed total mass concentration of cellular components. 

Below, we present Growth Balance Analysis (GBA) as an alternative mathematical framework 
for modeling phototrophic growth in cyanobacteria. Compared to the methodology in (Faizi et 
al., 2018), GBA represents equivalent models with simpler equations that not only facilitate more 
efficient calculations, but also allow easier model extensions through additional reactions and 
metabolites. As a proof of concept, we first present a GBA model that corresponds to that of 
(Faizi et al., 2018) and uses identical parameter values. We then present a second, extended GBA 
model capable of predicting the optimal proteome allocation in more detail. 

GBA has been introduced before as a general, simplified framework to study completely self-
replicating kinetic models of cells (Dourado et al., 2023; Dourado & Lercher, 2020). The models 
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studied by GBA are completely defined by the triple (7, ;, 1). Here, 7denotes a mass fraction 
matrix, i.e., an internal stoichiometric matrix normalized by the molecular masses of the 
reactants and products, which includes a row “p” for the total protein concentration and a column 
“r” for a ribosome reaction that produces all proteins;  ; = ;(9, *)denotes a vector of reaction 
turnover times, which are functions of internal metabolite concentrations 9 and external 
concentrations * determined by – typically nonlinear – kinetic rate laws; and 1 denotes the fixed 
sum of mass concentrations across all cellular components, which are the metabolites and the 
proteins catalyzing the reactions. In the GBA framework, the optimal cell state is found by 
solving an optimization problem that is completely defined by the following two algebraic 
equations, formulated in terms of flux fractions z:= ! 81⁄ , where ! denotes the mass reaction 
fluxes and 8 is the cellular growth rate (Dourado et al., 2023). The first equation defines the 
growth rate 8(z, *) as a function of flux fractions and external concentrations, 

 8(z, *) = 7?
*z?q. ;(17z, *)		, (1) 

where 7?
* is the entry in the matrix 7 corresponding to the ribosome column “r” and the total 

protein row “p”. Equation (1) emerges from a reformulation of the balanced growth problem in 
terms of dimensionless flux fractions. It expresses the growth rate as a ratio between the 
production of total protein mass by the ribosome, and the total proteome investment required to 
sustain all reaction fluxes. The second equation simply enforces the constraint on cellular 
density, 

 ∑ 7)
%z)%,) = 1    , (2) 

where we sum over all rows G and all columns H of 7. Equation (1) already encodes all the 
constraints in Table 1 in terms of E (see Methods and (Dourado et al., 2023) for details), except 
for the density constraint captured by equation (2). The vector E determines all system properties 
listed in Table 1. This includes the concentrations 9 (metabolite concentrations 9! and total 
protein concentration9*),  

 9 = 17z     , (3) 

and each protein concentration :)allocated to the catalyst or transporter of reaction H, 
 :) = 81z);)(17z, *). (4) 

The reaction turnover times ; are defined by rate laws that depend on metabolite mass 
concentrations9!, which are in turn uniquely determined by equation (4); here, we use 
irreversible Michaelis-Menten rate laws with inhibition. The turnover times ; of transport 
reactions at the cell surface additionally depend on the external concentrations * that define the 
environmental condition of interest. Importantly, in GBA, biomass is not an assumed input but 
an emergent output determined from first principles: it corresponds to the sum of all intracellular 
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components, constrained by total density 1. An overview of the parameters, properties, and 
equations used to define the base GBA model for Synechocystis is provided in Table 1. 

Model parameters 

7: mass fraction matrix &+",) : turnover number of reaction j [h-1] ?!) : Michaelis constant of metabolite m in reaction j [g L-1] M(): Inhibition constant for external concentration Q in reaction H [g L-1] 1: cellular density [g L-1] 

System properties 

!): flux of reaction j [g L-1 h-1] 8: growth rate [h-1] 9: reactant concentration vector (including concentrations 9! of metabolites 
and the total protein concentration 9*) [g L-1] :): protein concentration of j [g L-1] ;): turnover time of j [h] 

Mass conservation  

constraint 

7! = 89  , 

Where 																			" 		v"~ 			7-Z 			` 

7 = w-LL: � 1 0 −0.8 0−0.018 1 −0.2 −0.030 0 1 −0.970 0 0 1 � 

Reaction kinetics 

constraint 

:) = !);)(9, *) 
where 

;)(9, *) = 1&+",)
�J 9!?!) + 9!K!

45�J *(?() + *(K(

45 J M()M() + *(K
45

 

Total protein constraint 9* =6:)
)

 

Cellular density 
constraint 

1 = 9* +69!
!

 

Table 1. The parameters, properties, and equations defining the base GBA model for Synechocystis. 
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3.2 Results 

Base GBA model: a simple cyanobacterium model including photoinhibition 

We first developed a base GBA model of Synechocystis based on the (Faizi et al., 2018) model, 
with few modifications that simplify its mathematical description while retaining its key 
biological properties (see Figure 1 for a schematic representation of our base GBA model, with 
Table 1 listing its details). For any given GBA model, a simple set of equations determining the 
balanced growth problem can be derived from first principles (Dourado et al., 2023). These 
equations are based solely on the mass balance of reactions within the matrix M, as well as 
kinetic parameters and cell density data. The parameters used in our model are equivalent to 
those used in the Synechocystis model proposed by Faizi et al. (2018), except for those pertaining 
to photosynthesis and diffusion. In contrast to the Faizi model, the GBA framework does not 
account for proteins as substrates of reactions. We thus reformulate photosynthesis as a simple 
transport reaction “PSU” that imports energy “e” into the system, a mathematically equivalent 
approach that preserves the original model’s predictions. We also simplify the Faizi model by 
ignoring carbon passive diffusion through the cell membrane, only accounting for an active 
import of carbon by the protein transporter “S”. Due to the lack of corresponding experimental 
data, the physiological relevance of passive carbon uptake is currently unclear. While the Faizi 
model includes both passive and active carbon uptake, its optimal solution under high external 
carbon concentration relies exclusively on diffusion, resulting in zero investment into the carbon 
transporter. In contrast, our GBA model predicts sustained investment in active carbon transport 
by excluding passive diffusion. 

We posit that the main effect of the photodamage of proteins is to place an additional burden of 
protein production on the ribosome, as damaged photosynthetic units are degraded into amino 
acids and need to be replaced. To model the corresponding photoinhibition of growth, we thus 
incorporate an inhibition term into the general kinetic rate law (Liebermeister & Klipp, 2006) 
describing the ribosome. Accordingly, the light inhibition in our GBA model is quantified by an 
inhibition constant ME? for the ribosome reactionp. The external light intensity =E then modulates 
the inhibitory effect defined by this constant (ME?). Faizi et al. (2018) adjusted three 
photosynthesis parameters in their extended model to minimize the distance between 
experimental and simulated growth rates. We do not use these fitted values; instead, we simply 
set the inhibition constantME? to a value that ensures that the optimal growth rate of the model 
coincides with the last point for the experimental growth rate at 1100 [µE m-2 s-1] (100% light 
intensity).  

In an environment * = (*C , *E), defined by the external concentration of carbon *C  (not 
distinguishing between wx> and ywxD4) and the light intensity *E, the optimal cellular state is the 
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set of flux fractions that maximizes the balanced growth rate 8 under the constraints of mass 
conservation, reaction kinetics, and fixed cell density.  

We note that the Faizi model employs molar units, while in GBA, all equations are mass-
normalized, which simplifies calculations and promotes consistency. Mass normalization 
facilitates the comparison of theoretical calculations with experimental data by providing a 
common unit of measurement, reducing the need for complex unit conversions. Thus, we utilized 
molecular weights of metabolites to normalize the mass fraction matrix) as well as the Michaelis 

constants (?!) ) and turnover numbers (&+",) ) of the enzymes. Specifically, each ?!) value in [mol 

L-1] was multiplied by the molecular mass of the corresponding reactant in [g mol-1], resulting in 
units of [g L-1]. To convert turnover numbers, note that these are usually given in mole of 

product per mole of enzyme per unit time. Thus, the &+",)  values in [h-1] were multiplied by the 

molecular mass of the product and divided by the molecular mass of the catalyzing enzyme, 
resulting in a different numeric value in the same units, [h-1].   

To validate our Synechocystis base GBA model, we compared its growth rate predictions across 
different light intensities to the Faizi model on which it is based. Figure 2 shows the predicted 
growth curves in light-limited (I), light-saturated (II), and light-inhibited (III) conditions for high 
(corresponds to 425 ppm of CO₂ in the air) and low concentrations (in relation to ?! of carbon 
transporter S) of external inorganic carbon. The predictions of the mathematically simpler GBA 
model (blue line) closely align with the Faizi model predictions (in red) across the entire range of 
growth rates. Additionally, the predictions showed robust agreement with the experimentally 
measured growth rates (black diamonds), which were used as the basis for fitting the parameters 
of the original Faizi model. Across the light-limited and the light-saturated regime, both the Faizi 
and GBA model similarly predict an increase in the growth rate of Synechocystis, reaching a 
maximum of 0.108 h-1 (equivalent to a doubling time of 6.41 h). Subsequently, transitioning 
from the light-saturated to the light-inhibited growth phase, the growth rate begins to decline to 
0.093 h-1 (corresponding to a doubling time of 7.45 h) as excessive light inhibits the photosystem 
unit, resulting in a lower photosystem reaction rate that decreases the growth rate. 
Mechanistically, both models elucidate this phenomenon, highlighting the role of excessive light 
in inhibiting photosystem function and consequently impeding growth dynamics. 

The two models differed in their predictions for the maximum growth rates at a low carbon 
concentration, defined as 5% of the high saturating concentration in relation to ?! of carbon 
transporter S (Figure 2). As indicated by the proteome allocation analysis (see below), this 
difference can be attributed to the presence of two carbon transporter mechanisms (active and 
passive) in the Faizi model, as opposed to the single active carbon transporter in the GBA model. 

We compared the proteome allocation patterns predicted by the two models under different light 
intensities at high external carbon concentration, finding qualitative agreement (Figure 3). The 
base GBA model (blue) and Faizi model (red) both capture the overall empirical trends (black 
diamonds). Under conditions of light limitation, both models assign the majority of protein mass 
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to the photosynthetic unit (0.99 of the proteome fraction at the lowest light intensity), with a 
subsequent decrease in allocation as light intensity increases, thereby allowing the allocation of 
protein mass to other processes and hence increasing growth rate. Accordingly, the proteome 
fractions associated with metabolic enzymes and ribosomal reactions show an increase in line 
with the growth rate, a trend observed both in the experimental data and in both models. 

Notably, while the Faizi model includes carbon translocation both through diffusion and through 
active transport, the optimal model solution at high external carbon concentration only uses 
diffusion. This results in a zero investment into carbon transport proteins (Figure 3C). 
Unfortunately, experimental data is unavailable for the cellular investment into carbon transport, 
so it is unclear if this pattern is biologically realistic.  

Overall, both models fail to capture absolute proteome fractions quantitatively, suggesting that 
some important processes or features were not considered adequately in the models' construction 
and/or parameterization. Refined models should integrate a richer set of parameters to reflect 
complex biological realities. Any such expansion of the Faizi model would necessitate a 
complete rewriting of its equations and the re-fitting of its parameters. In the GBA framework, in 
contrast, any model extension requires only the inclusion of new columns and rows in the matrix 7, and a corresponding inclusion of kinetic parameters ?!, &+", for the new reactions. We next 
exploit this inherent extensibility to develop a more detailed and comprehensive GBA model of 
Synechocystis. 
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Figure 1. Overview of the base GBA model for Synechocystis. External “metabolites” (external 
inorganic carbon C and light e) are imported by the “transporters” S and PSU, respectively. A 
metabolic reaction “Met” converts the internal C, e into amino acids “AA”, which are used by the 
ribosome “R” to produce all protein “p” in the model. The protein “p” is assumed to be instantly 
distributed into the four reactions (PSU, S, Met, R) such that their protein catalyst maintains its 
concentration despite its dilution by balanced growth. Mass conservation of internal reactants (C, 
e, AA) at balanced growth is enforced by the equation &' = )*, relating fluxes ', growth rate ), 

and internal mass concentrations * = +* , * , * , * -: the net production of each reactant, &', 

must balance its dilution by growth, )*. Each reaction j is catalyzed by a specific protein with 
concentration .  and a turnover rate / (*, 1), which is determined by kinetic rate laws and 

depends on the internal concentrations * and external concentrations 1 = (1 , 1 ) of reactants 
involved in the reaction. The fixed cellular density 3 constrains the sum of all metabolite 
concentrations *  and total protein concentration * , which is itself defined as the sum of all 

individual protein concentrations . . The growth rate optimization problem in a given 

environment 1 = (1 , 1 )  can be entirely formulated on flux fractions 4 = ' )3⁄ , greatly 
simplifying analytical and numerical studies (Dourado et al., 2023). 
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Figure 2. Simulated growth curve of Synechocystis with photoinhibition. The blue line 
shows the growth rate estimated for Synechocystis with the GBA model under different light 
intensities at two different levels of external inorganic carbon: high (solid line) or low (dashed 
line, 5% of high concentration). The red lines show the corresponding simulation results using 
the Faizi model. Three different growth regimes are delineated: light-limited (I); light-saturated 
(II); and light-inhibited (III). The experimentally observed steady-state growth rates for 
Synechocystis (black diamonds) (Faizi et al., 2018) are well explained by both models. 
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Development of an extended GBA model for examining photosynthesis components in 

cyanobacteria 

Qualitatively, our base GBA model replicated major trends observed in the basic phototrophic 
growth behavior of cyanobacteria, including the main patterns of proteome allocation across 
growth rates. As light intensity increases, the GBA model predicts a decrease in the proteome 
fraction allocated to the photosynthesis unit. Photosynthesis is a fundamental biological process 
in cyanobacteria that has a profound impact on their overall physiology, and its complexity 
extends well beyond the boundaries of the mere light harvesting reactions represented in our base 
model and the Faizi model. In biological reality, photosynthesis interweaves various reactions 
and pathways to form a complex network of interrelated processes. It comprises not only the 
light-harvesting components of Photosystems I and II, but also the dynamic interplay of 
Cytochrome b6 and ATP Synthase. Any realistic model of cyanobacteria must thus represent at 
least four major light reactions of photosynthesis to convert light energy to chemical energy. 

Figure 3. The predicted proteome allocation in the GBA model (blue) and in the Faizi model 

(red) at high external carbon concentration, including the effect of photoinhibition. The 
black diamonds are experimental proteomics data (Zavřel et al., 2019). 
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Additionally, a more realistic model must include at least a coarse-grained, quantitative 
description of carbon fixation, which should represent the conversion of atmospheric carbon 
dioxide into organic compounds and the synthesis of amino acids, ribosomal RNA, ribosomal 
proteins, and other cellular components essential for growth. Figure 4 shows the mass fraction 
matrix 7of an expanded GBA model that includes these additional subsystems. 

 

 

Figure 4. The mass fraction matrix for the extended GBA model, expanding the base model 
by including new reactions and new metabolites. Compared to the base model, the 
photosynthetic unit was extended to comprise Photosystem II (PSII), Photosystem I (PSI), 
Cytochrome b6f (Cytb6f), and ATP synthase (ATPsyn), and the metabolic reactions were 
extended to comprise carbon fixation and metabolism. 
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The model summarized in Figure 5 consists of 8 reactions and 11 metabolites, drawing 
inspiration from a previously published, simplified metabolic network of Synechocystis (Rugen 
et al., 2015), with adjustments made to make the formulation consistent with the GBA 
framework. In this model, the absorption of photons occurs in the components associated with 
Photosystem II (PSII) and Photosystem I (PSI), leading to the reduction of plastoquinone (PQ) 
and oxidization of Plastocyanin (PC). Plastocyanin and Plastoquinone (in both reduced and 
oxidized states) serve as vital electron carriers, shuttling electrons between the various 
photosynthetic complexes, including Cytb6f through a reversible reaction, thereby facilitating the 

Figure 5. Overview of the extended GBA model for Synechocystis. The model encompasses 
8 reactions and 11 metabolites. Photon absorption initiates in Photosystem II (PSII) and 
Photosystem I (PSI), triggering plastoquinone (PQ) reduction and plastocyanin (PC) oxidation. 
PQ and PC (in both reduced and oxidized forms) act as electron carriers, facilitating electron 
transfer among photosynthetic complexes, including Cytb6f, via reversible reactions. This 
process drives efficient energy flow and NADPH generation through PSI. ATP, a crucial 
energy carrier, is replenished by the ATPase complex. Inorganic carbon uptake and 
assimilation into organic compounds are unified, without distinguishing between 67  and 
867 . The carbon fixation cycle is represented by a single reaction, yielding 3-
phosphoglycerate (C3), a central metabolic precursor for subsequent biosynthesis reactions. C3 
undergoes further conversion into amino acids and proteins via metabolism and ribosome 
reactions. 
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efficient flow of energy and generation of NADPH via photosystem I (PSI). ATP, an essential 
energy carrier molecule, is regenerated by the ATPase complex. For simplicity, this model does 
not account for the oxidized states of the cofactors, specifically ADP and NADP+; to avoid the 
apparent generation or vanishing of mass, we assume that the molecules representing the reduced 
state (ATP, NADPH) have masses corresponding to the difference in molecular weight between 
the oxidized and reduced states. Similar to our base model, inorganic carbon is taken up and 
assimilated into organic compounds, with no distinction made betweenwx> and ywxD4. The 
carbon fixation cycle is represented by a single reaction, yielding the 3-carbon molecule 3-
phosphoglycerate (C3) (same as in Ref. (Rugen et al., 2015)). C3 serves as the central metabolic 
precursor for subsequent biosynthesis reactions, undergoing further conversion into amino acids 
and proteins via the Metabolism and Ribosome reactions. 

The extended GBA model provides a detailed prediction of the proteome allocation into 8 
different core processes at different light intensities, compared to only four processes represented 
in the base model. The kinetic parameter values (?! and &+",values) were obtained from the 
BRENDA database (Schomburg et al., 2013) when available, otherwise we directly sourced 
them from our base model for shared reactions (see Mehtods, “Parameters of GBA models for 
cyanobacteria”). Note that we did not introduce any more adjustable parameters; we still only 
adjusted the inhibition constant ME? to ensure that the model prediction for the highest light 
intensity matches the experimental value. 
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Across light intensities, the growth rates predicted with the extended model are highly consistent 
with the experimentally observed growth rates (Figure 6); the model extension slightly improves 
the agreement between predictions and observations compared to the base GBA model, despite 
no additional adjustable parameters. As light intensity increases from the light-limited to the 
saturated regime, the predicted cellular investment of two photosynthetic components 
(ATPsynthase and Cytochrome b6) behaves markedly different from the base model (Figure 7). 
The light harvesting components, represented by the PSI and PSII proteome sectors, decrease as 
growth rate increases until both reach the light-saturated level. Conversely, the protein allocation 
to the ATPsynthase and Cytochrome b6 units increases with increasing light intensity up to this 
level. The ribosome proteome allocation follows an almost identical pattern as for the base 
model. From the light-saturated to the light-inhibited level, a downward kink is observed in the 
light-harvesting sectors of PSI and PSII. The PSI and PSII proteome sectors continue to decrease 
as growth rate decreases. Meanwhile, ATPsynthase and Cytochrome b6, which increase with 
growth rate from the light-limited to light-saturated level, experience a reduction as they enter 
the light-inhibited level. Thus, in accordance with previous empirical observations in proteomics 
studies of Synechocystis under various growth conditions (Jahn et al., 2018; Zavřel et al., 2019), the 
cellular investment into the light harvesting sectors decreases with increasing light intensity, 
while investment into ATPsynthase and Cytochrome b6 increases (Figure 7). Furthermore, the 
model reproduced the experimentally observed dependence of total protein concentrations on the 
growth rate, demonstrating a reduction in overall protein content as the growth rate increased 

Figure 6. Growth curves of Synechocystis in the extended GBA model (dark blue) and base 
GBA model (light blue) at different light intensities at high (solid lines) or low (dashed lines, 5% 
of high concentration) external inorganic carbon concentrations. Three different growth regimes 
are depicted: light-limited (I), light-saturated (II), and light-inhibited (III), along with 
experimental steady-state growth rate for Synechocystis (black diamonds) (Faizi et al., 2018). 

 



 

 

 

69 

(Figure 7); this reduction is likely due to photoinhibition within the cell, where damaged 
proteins are degraded into amino acids.  
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3.3 Discussion 

As seen in (Faizi et al., 2018), kinetic models are powerful tool to understand global patterns of 
cellular resource allocation in cyanobacteria. Above, we have combined insights from this work 
with theoretical advances in balanced growth modeling (Dourado et al., 2023) to construct a base 
GBA model of cyanobacterial physiology. This new model explains important aspects of 
cyanobacterial resource allocation directly from first principles.  

To extend our understanding of the optimal proteome allocation in Synechocystis, we further 
used this base model as a platform to develop an extended GBA model that incorporates the four 
key proteins of the photosynthetic light reactions. Proteome allocation predictions from the 

Figure 7. Synechocystis resource allocation predicted by the extended GBA model (dark 
blue line) compared to proteomics data at high external inorganic carbon availability. For 
comparison, the light blue lines show the simulation results from the base GBA model for the 
reactions common to both models. The data points are experimental proteomics data, obtained 
from (Zavřel et al., 2019) (black diamonds). Experimental data for the carbon transporter unit 
was not available. 
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extended GBA model are highly consistent with experimental findings (Zavřel et al., 2019), 
capturing both the mean levels of proteome allocation and the growth rate-dependent trends 
(Figure 7). Specifically, as the growth rate transitions from a light-limited to a light-saturated 
regime, the extended GBA model predicts a decrease in the proteome sectors of PSI and PSII 
and an increase in ATP synthase and cytochrome b6 levels. This reflects the increased demand 
for ATP caused by photodamage in high-light conditions and the need for new protein synthesis, 
in line with the experimental results. Across the modeled cellular components, a comparison of 
observed and predicted proteome allocation patterns across growth rates generally shows good 
quantitative agreement at high growth rates. In contrast, with the exception of photosystems I 
and II, the model predicts a smaller proteome mass fraction than experimentally observed at low 
growth rates. It has been argued that some bacteria maintain a proteome reserve at low growth 
rates to enable the quick resumption of growth once conditions improve (Mori et al., 2017) such 
proteome reserves could plausibly also have evolved in cyanobacteria, potentially explaining the 
excess of observed over predicted proteome allocation into cellular components essential for 
growth.  

Within the GBA modeling framework, all proteins are explicitly synthesized by the ribosome, 
including the ribosome itself. GBA can predict detailed, environment-dependent cell 
composition through constrained optimization of growth; it ensures the optimal utilization of all 
resources and optimal concentrations of all intracellular components, including proteins and 
metabolites (Dourado et al., 2023). This contrasts with linear modeling frameworks that do not 
consider the explicit synthesis of enzymes and the ribosome; instead, these alternative 
approaches either substitute these processes with a constant biomass reaction (Sánchez et al., 

2017) or, in cases where explicit synthesis is considered, they replace concentration-dependent, 
non-linear enzyme kinetics with a constant catalytic rate (&+",) and ignore the dilution of 
metabolites (Goelzer et al., 2011; O’Brien et al., 2013). The extended GBA model replicated the 
observed decrease in overall protein content with increasing growth rate, highlighting its ability 
to dynamically optimize resource allocation, in contrast to previous frameworks that relied on 
fixed total protein concentrations (Goelzer et al., 2011; Sánchez et al., 2017). 

By providing a minimal and transparent framework that is biologically and biophysically 
meaningful, we can relate the resource allocation between major protein pools and growth rate 
under different nutrient availabilities. Our GBA model provides basically the same results as the 
differential-equation based approach pursued by (Faizi et al., 2018). Both approaches have in 
common that the steady-state of the system, given a particular proteome allocation, is calculated, 
and that this function (defining the growth rate as a function of the proteome) is used to find the 
proteome allocation which maximizes growth rate. However, whereas in (Faizi et al., 2018) the 
steady-state is calculated by solving a system of differential equations, the GBA approach is 
completely analytical, which allows formulating a single non-linear and non-convex 
optimization, solving which results in the optimal proteome allocation. The advantage of the 
concise mathematical formulation of GBA models is that it facilitates efficient modeling of 
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balanced cellular growth in general and thus makes extending the model by including more or 
more detailed processes conceptually straight-forward.  

The framework developed above is general and derived from basic principles. While we have 
constructed and simulated our model around the data of Faizi for Synechocystis, the framework 
can be easily applied to other cyanobacteria, requiring only an adjustment of parameter values 
(such as kinetic parameters and cellular density) to account for alternative resource allocation 
strategies. Despite the simplicity of our assumptions, the GBA model not only exhibits 
comparable predictive capabilities to the coarse-grained model proposed by Faizi et al. (2018), 
but its streamlined mathematical formulation also offers substantial advantages for the 
construction and numerical solution of larger models of cyanobacteria. Recent studies suggested 
that Synechocystis as a model organism can introduce novel products in biotechnology and as a 
potential microbial cell factory (Blanc-Garin et al., 2022; Yu et al., 2013). Thus, GBA models of 
this organism can provide a new tool to study the direct conversion of CO2 and light to value-
added chemicals and fuels, contributing to the new field of blue bioeconomy.  

3.4 Materials and methods 

The growth balance analysis framework 

In the growth balance analysis, the optimization problem is defined as finding the optimum 
growth rate (8) subject to non-negativity constraints on metabolite and protein concentrations by 
varying the flux fraction z:= ! 81⁄ . Moreover, the balanced growth model at steady-state is 
specified by the following constraints: 

67)
%

)

!) = 89% (Mass conservation) 

!) = :);)(9, *) (Reaction kinetics) 

6:)
)

= 9* (Protein density) 

69%
%

= 1 (Cellular density) 

9! ≥ 0 (Non-negativity of metabolite concentration) :) ≥ 0 (Non-negativity of protein concentration) 

 
It is noteworthy to mention that the normalization of 7 results in the expression of protein 

concentrations (:)) and reactants (9%) in units of [g L-1]. Accordingly, fluxes ([g L-1 h-1]) and 

kinetic parameters must be represented in mass units. For instance, Michaelis constants (?!) are 
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expressed in [g L-1] and turnover numbers (&+",) are represented as the amount of product per 
unit of protein per unit of time, resulting in units of [h-1]. The cell density (1, [g L-1]) is defined 
as the sum of all metabolite and protein concentrations, which is assumed to be constant. The 
comprehensive explanation of the growth balance analysis framework is provided in the original 
publication by (Dourado & Lercher, 2020), along with its supplementary material. 

Construction of a base GBA model of Synechocystis sp. PCC 6803 based on the model by 

Faizi 

The cyanobacterial cell model presented in this study builds upon Faizi's model in the growth 
balance analysis framework, but has been adapted and expanded to incorporate experimental 
proteomics data and better reflect the realistic characteristics of a cyanobacterial cell. 

We take from the Faizi model the following set of parameters: I) stoichiometric coefficients, 
derived from the genome-scale reconstruction detailed in (Knoop et al., 2013); II) protein 
lengths, sourced from the Uniprot database; III) cell density, inferred from experimental data on 
cell dry weights and cell counts; IV) Michaelis constants ?!, estimated for energy and amino 
acids, while data for carbon transporter and metabolism reactions were collected from literature; 
V) turnover numbers &+", of reactions, obtained from literature with exception of diffusion and 
photosynthesis; VI) photosynthesis turnover rate. 

 The normalized mass stoichiometry of the model is defined as the stoichiometric matrix S, 
containing rows for reactants, is multiplied by the respective molecular mass. Then, we 
normalized the column so that the sum of negative entries is equal to -1 and the sum of positive 
entries is equal to +1 preserving mass conservation in reactions (Dourado et al., 2023). To 
determine the mass of protein classes (PSU, S, Met, R) in our model, we used the reference 
proteome of Synechocystis from UniProt (Bateman et al., 2017). Each protein was mapped 
according to its protein class from (Faizi et al., 2018; Zavřel et al., 2019) to ensure consistency in 
data comparison. The kinetic data (?! and &+",values) were sourced from previously published 
model of (Faizi et al., 2018), as indicated in the parameters section of the methods, and then 
converted into [g L-1] for ?!and [h-1] for&+",. It is noteworthy that unlike GBA, Faizi's model 
does not incorporate molecular weights in their formulation due to their molar [M] units. 
Therefore in our model, molecular weights were estimated based on simple metabolites, 
participating in each reaction. Overall, the model encompasses 6 metabolites and 4 reactions, and 
parameters used in the base model can be found in Table S1. 

 Description of the extended model 

The extended model is created following our implementation of cyanobacterial phototrophic 
growth. In simple terms, the model uses two inputs: a carbon source (with no distinction 
betweenwx> and ywxD4) and light, which serves as the energy source. The light is absorbed by 
the photosystem II and photosystem I light harvesting complexes, allowing the production of 
energy through ATPsynthase and the electron transport chain Cytochrome b6 via a reversible 
reaction. The carbon source is taken in through a carbon transporter, and incorporates it into 
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organic molecules through the process of carbon fixation, which is performed by the Calvin-
Benson cycle. These are then utilized in the metabolic and also ribosome enzymes during protein 
translation. The kinetic data (?! and &+",values) were obtained from the BRENDA (Schomburg 
et al., 2013) database and then converted into [g L-1] for ?!and [h-1] for &+",. For each enzyme 
class, we queried the BRENDA database using the enzyme commission (EC) number of 
reactions in each class to find the value of the wild-type enzymes. Whenever possible, we 
preferred values from Synechocystis or other cyanobacterial cells, otherwise we directly sourced 
them from previously published model (Faizi et al., 2018), as indicated in the parameters section 
of the methods. Moreover, the Michaelis constant ?! of each protein category were calculated 
based on the availability of data, multiplied by its respective molecular weight and total number 
of reactions present within the proteome sector. Similarly, the turnover number &+", for each 
enzyme was estimated by multiplying it by the total number of reactions catalyzed in each 
category. The model encompasses 11 metabolites, 8 reactions, and it is noteworthy that even 
upon expansion, the original formulation remains unchanged. 

Model implementation 

In this study, we used growth balance analysis (GBA) to simulate growth and resource allocation 
in cyanobacteria. R v4.1 programming language was used for implementation of balanced 
growth optimization problem using NLopt library. The optimization problem is solved through 
AUGLAG, an augmented Lagrangian approach that utilizes method of moving asymptotes 
(MMA) or sequential quadratic programming (SLSQP) algorithms as the sub-solver, which is a 
free and open-source software for nonlinear optimization. The models are presented in the Excel 
format in Supplementary File 1, and the R script necessary for running the simulations can be 
obtained from the (Dourado et al., 2023). 

Experimental proteomics data 

The present study utilized experimental proteomics data originally obtained by (Zavřel et al., 

2019), wherein the quantification of absolute protein abundance was carried out under varying 
light intensities. To determine the proteome fractions corresponding to each protein class within 
our model, we aggregated the protein quantities within each class and subsequently normalized 
them by the sum of all protein quantities at every given light intensity. This allowed us to 
integrate the obtained data with the relevant proteome sectors within our model. 

Parameters of GBA models for cyanobacteria 

Stoichiometric coefficients 

We started from the stoichiometric matrix (S), described by Faizi to construct our normalized 
mass fraction (M) in GBA model. Moreover, for the construction of matrix M, we calculated the 
entries based on the stoichiometric matrix (S) of (Faizi et al., 2018), and normalized each entry 
based on its defined molecular weights, in such a way that in a reaction, the sum of all substrates 
with negative entries results in -1 and the sum of all products with positive entries results in +1.  

 



 

 

 

75 

Molecular mass of protein classes 

In order to ascertain the mass distribution of protein classes within our model (S, PSU, Met, R, 
for the based model, and PSI, PSII, Cytb6f, ATPsynthase, carbon_transporter, carbon fixation, 
metabolism, and Ribosome, for the extended model), we employed the reference proteome of 
Synechocystis obtained from UniProt. Protein classes for the base model were obtained from the 
study conducted by (Zavřel et al., 2019), while protein classifications as described in (Faizi et al., 
2018) along with corresponding Uniprot IDs, were utilized to expand our model to incorporate 
the relevant proteins. Further elaboration on the characteristics and attributes of each protein 
class can be found in Supplementary Table 1.  

Molecular mass of metabolites 

For the molecular masses of metabolites, we estimated 1 [g mol-1] for “e” (corresponding to 
molecular mass of H+), 52.5 [g mol-1] for “ci”(corresponding to mean molecular mass of HCO3 
and CO2), 36 [g mol-1] for “c3” (corresponding to three times of molecular mass of carbon), and 
132 [g mol-1] for “aa” (as the average molecular mass among all amino acids(Schmidt et al., 
2016)).  

Kinetic parameters 

We sourced the kinetic parameters directly from (Faizi et al., 2018) and then performed the 
conversion of &+", and ?! to mass units in the following way: i) All ?! were converted from 
[mol L-1] to [g L-1] by multiplying the original value with the corresponding molecular mass (see 
previous paragraph), ii) All &+", were converted to mass units by multiplying the original value 
by product molecular mass, and then dividing by the mass of enzyme (see Supplementary 
Table 1). 

Carbon transporter 

The turnover number (&+",) of carbon transporter in Synechocystis, which we obtained from 
Faizi model is 45360 [h-1], which by mass normalization resulted in 8.434 [h-1]. Besides, the 
Michaelis constant (?!), 15 [µM] is also obtained from Faizi model, resulting in 0.0007875 [g 
L-1] by mass normalization. 

 Ribosome   

The turnover number of ribosome was adapted from Faizi model, 22 [s-1], which is the highest 
elongation rate observed experimentally in E. coli (Bremer & Dennis, 2008),and the Michaelis 
constant for amino acids and energy is estimated as 100000 [molec cell-1] in (Faizi et al., 2018), 
the ribosome molecular weight was measured 2,306,967 Da, which by mass normalization 
resulted, &+",  = 22 AA s−1 × (132.60 Da AA−1)/(2,306,967 Da) × 3600 s h−1 = 4.55 h−1 and ?!= 
10000 molec cell-1× (1 cell/2.24×10-14 L) ×(1 g/ 6.022×1023 mol) = 7.41× 10-7[g L-1] for “e” and 
similarly 9.78×10-5 [g L-1] for “aa”. We note that similar to (Faizi et al., 2018) ?!= 7.41× 10-7[g 
L-1] was set for energy unit “e” in all reactions for simplicity. 
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Metabolism 

The turnover number of metabolism for Synechocystis in Faizi model was reported 20 [s-1] 
(Marcus et al., 2005), and the ?! value for internal carbon was 0.00018 [M], which by 
converting to mass units results in 0.794 [h-1] and 0.00648 [g L-1], respectively. 

Photosynthesis 

The turnover number of photosynthetic unit is estimated 200 [s-1] as reported in (Milo & Phillips, 
2015), which by converting to mass units results in 0.0847 [h-1]. The ?! value for external light 
intensity was set to 440 [µE m-2 s-1], corresponding to the half of intensity in light-saturated 
condition. The only parameter fitted was inhibition constant ME?  with the value of 47 [µE m-2 s-1]. 
The inhibition constant fitted in a way that at light intensity of 1100 [µE m-2 s-1] (100% light 
intensity), the growth rate of the model fits to the last point in experimental growth rate. 

Extended model 

In this model, we followed the same procedure for calculating our model parameters. Here, we 
categorized the protein classes based on the new reactions in the model, and the parameters used 
in the extended model can be found in Table S2. Similarly, the detailed description of each 
protein class is provided in Supplementary Table 2. 

Mass normalized fraction 

We constructed the extended model of Synechocystis, based on our base model to incorporate 
major components of photosynthesis in our model and we chose simple decimal numbers in 
matrix M, reflecting the overall proportions of each column in S. 

Molecular mass of metabolites 

For the molecular masses of metabolites, we used 44 [g mol-1]  for “CO2”, 1 [g mol-1]  for “H+”, 
52.5 [g mol-1] for “a_C”(corresponding to mean molecular mass of HCO3 and CO2),   10500 [g 
mol-1] for “PC” and “PC-“ (corresponding to Plastocyanin molecular weight), 749.2 [g mol-1]  for 
“PQ” (corresponding to plastoquinone molecular weight), 751.2 [g mol-1]  for “PQH2” 
(corresponding to reduced plastoquinone molecular weight), 1 [g mol-1]  for “ATP” and 
“NADPH” (corresponding to the difference of molecular weight between their oxidized and 
reduced states to compensate the absence of each), 186 [g mol-1] for “C3” (corresponding to 
molecular weight of 3-phosphoglycerate, similar to (Rugen et al., 2015)), and 100 [g mol-1] for 
“aa” (estimated for the molecular mass of amino acids).  

Kinetic parameters 

We performed the same procedure for conversion of our kinetic parameters into mass units as 
was implemented on the base model; i) All ?! were converted from [mol L-1] to [g L-1] by 
multiplying the original value with the corresponding molecular mass (see previous section) and 
also by number of all reactions lumped in the corresponding enzyme (mentioned in each protein 
class, also in Supplementary Table 2), ii) All &+", were converted to mass units by multiplying 
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the original value with the product molecular mass and the total number of catalyzing reactions, 
and then dividing by the mass of the enzyme (see Supplementary Table 2). 

Carbon transporter 

The turnover number of carbon transporter (&+",) and Michaelis constant of carbon transporter is 
taken from the base model and multiplied by the number of 5 proteins in this category, which 
resulted in 51.54 [h-1] and 0.00315 [g L-1], respectively. The ?! value for ATP requirement to 
import carbon is set to 1.5×10-5 [M] (Omata et al., 2002), which by converting to mass units 
resulted in 0.0003 [g L-1].  

Photosystem II and photosystem I 

The ?!values for light as the external concentration were assigned the same value as the base 
model for both PSI (14 reactions) and PSII (28 reactions). The ?!value for the enzymatic 
reaction catalyzed by PSI (1.18.1.2) and (1.10.3.9) for PSII, which are the only accessible 
reference in this context, and we found a reported value of 0.011 mM (1.617 [g L-1] for “PQ”) 
from cyanobacteria of Anabaena and 0.06 mM (1.25 [g L-1] for “PC-”) for anthus annuus, 
respectively. The maximum turnover numbers for PSII and PSI enzymes were derived from a 
previously published model, with the values of 250 [s-1] (Matuszyńska et al., 2019). For the light-
harvesting components, we normalized their &+",by multiplying it by the product mass of the 
protons, and then multiplied the result by the sum of the enzyme masses within their respective 
classes, which corresponded to 3.69 [h-1] and 37.96 [h-1], respectively. Additionally, the only 
parameter that was fitted was the inhibition constantME?, which was estimated to have a value of 
85 [µE m-2 s-1]. The fitting of the inhibition constant was carried out such that the model growth 
rate matched the experimental growth rate at a light intensity of 1100 [µE m-2 s-1] (100% light 
intensity). 

Cytochrome b6 

In the case of Cytb6f, the EC number 7.1.1.6, which corresponds to this enzyme, lacked any 
recorded measurements. However, for its partial EC number 7.1.1.2, there was an available value 
of 1.8 [s-1], which was converted to mass units (15 reactions) resulting in 1404.89 [h-1], with the 
estimation of its backward&+",, equivalent to half of the forward kcat, which amounts to 702 [h-

1]. The ?! value for both plastocyanin (PC) was determined as 9×10-6 [M] (EC number 7.1.1.6 
for Spinacia oleracea), which were converted to mass units (15 reactions) resulting in 1.41 [g L-

1], and for reduced plastoquinone (PQH2) the ?! value was estimated as 1 [g L-1]. 

ATP synthase 

The unique EC number for ATPsynthase unit was 7.1.2.2. The ?! value for proton (H+) in 
ATPsynthase was estimated as 1 [g L-1] and for turnover number &+", value, partial EC number 
of 7.1.1.2 upon availability was used 1.8 [s-1], which were converted to mass units (one reaction 
of ATPsynthase) resulted in 4.9 [h-1]. 
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Metabolism & Carbon fixation 

For the turnover number (&+",), we utilized the EC. Number of 4.1.1.39 RuBisCo reaction with 
the value of 2.7 [s-1] as reported in (Horken & Tabita, 1999), which were converted to mass units 
(239 reactions) resulted in 3.45 [h-1]. The Michaelis constant of metabolism unit was also 
determined the maximum reported value in EC number 4.1.1.39 for Synechocystis, 0.2680 [mM], 
which were converted to mass units (239 reactions) resulted in 0.64 [g L-1], 0.65 [g L-1], 11.91 [g 
L-1] for ATP, NADPH and C3, respectively. We incorporated these value into both the 
Metabolism and Carbon Fixation reactions of our extended model, recognizing their central role 
within the overarching framework of carbon metabolism. 

Ribosome 

The turnover number (&+",) and Michaelis constant ?!of ribosome unit was identical to the base 
model. We also estimated the ?! value for ATP as 1 [g L-1]. 

Cell densities 

Cell density (Rho) was determined through the analysis of experimental data provided in (Faizi 
et al., 2018). The average cell dry weight across various light intensities was calculated, yielding 
a value of 207.33 mg culture per liter. Additionally, the cell count was established at 2.4×1010, 
and with a conversion factor accounting for the volume of each cell set at 2.24×10-14, the 
resulting cell density was determined to be 385.67 [g L-1], and it is assumed to be constant for all 
the conditions for both models.  
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Table S1. Parameters of the base model 

Parameters definition Value (unit) Reference 

!%
&  Michaelis constant of " 0.0007875 [g L-1] (Faizi et al., 2018) 

!%
'_) Michaelis constant of 	$_& 0.0007875 [g L-1] (Faizi et al., 2018) 

!%
** Michaelis constant of '' 0.000097812 [g L-1] (Faizi et al., 2018) 

!%
)  Michaelis constant of ( 0.00648 [g L-1] (Faizi et al., 2018) 

)+
, Inhibition constant  47 [µE m-2 s-1] Fitted 

*-'.
/01 turnover number of Photosystem 0.0847 [h-1] (Milo & Phillips, 2015) 

*-'.
0  turnover number of Carbon transporter 8.434 [h-1] (Faizi et al., 2018) 

*-'.
2  turnover number of Metabolism 0.794 [h-1] (Faizi et al., 2018) 

*-'.
3  turnover number of Ribosome 4.55 [h-1] (Faizi et al., 2018) 

+%'44
/01  Mass of the enzyme class of Photosystem 8,500,380 [Da] Sourced from UniProt 

+%'44
0  Mass of the enzyme class of Carbon Transporter 185,921 [Da] Sourced from UniProt 

+%'44
2  Mass of the enzyme class of Metabolism 11,968,859 [Da] Sourced from UniProt 

+%'44
3  Mass of the enzyme class of Ribosome 2,306,967 [Da] Sourced from UniProt 

, Cell density 385.67 [g L-1]  (Faizi et al., 2018) 
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Table S2. Parameters of the extended model 

Parameters definition Value (unit) Reference 

!%
'_) Michaelis constant of $_& 0.00315 [g L-1] Sourced from the base model 

!%
*5/ Michaelis constant of '-. in Carbon_T 0.0003 [g L-1] (Omata et al., 2002) 

!%
/6

 Michaelis constant of ./ in PSII 1.25 [g L-1] Sourced from BRENDA 

!%
/)  Michaelis constant of .&7 in PSI 1.617 [g L-1] Sourced from BRENDA 

!%
/) Michaelis constant of .& in Cytb6f 1.41 [g L-1] Sourced from BRENDA 

!%
/68

 Michaelis constant of ./09 in Cytb6f 1 [g L-1] Estimated 

!%
	8  Michaelis constant of 0; in ATPsyn 1 [g L-1] Estimated 

!%
)<

 Michaelis constant of &19 in C_fix 11.91 [g L-1] Sourced from BRENDA 

!%
*5/ Michaelis constant of '-. in C_fix & Met 0.64 [g L-1] Sourced from BRENDA 

!%
)

 Michaelis constant of &= in Met 11.91 [g L-1] Sourced from BRENDA 

!%
>*?/8 Michaelis constant of 2'3.0 in C_fix & Met 0.65 [g L-1] Sourced from BRENDA 

!%
*5/ Michaelis constant of '-. in Ribosome 1 [g L-1] Estimated 

!%
** Michaelis constant of '' in Ribosome 8.3 [g L-1] Sourced from the base model 

)+
, Inhibition constant 85 [µE m-2 s-1] Fitted 

*-'.
)',@AB_5 turnover number of Carbon_T 51.54 [h-1] Sourced from the base model 

*-'.
/0CC turnover number of PSII 3.69 [h-1] (Matuszyńska et al., 2019) 
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Parameters definition Value (unit) Reference 

*-'.
/0C turnover number of PSI 37.96 [h-1] (Matuszyńska et al., 2019) 

*-'.
)D.@EF

 turnover number of Cytb6f 1404.891 [h-1] Sourced from BRENDA 

*-'.
*5/4DB

 turnover number of ATPsyn 4.9 [h-1] Sourced from BRENDA 

*-'.
)_FGH

 turnover number of C_fix 3.45 [h-1] (Horken & Tabita, 1999) 

*-'.
2&. turnover number of Met 3.45 [h-1] (Horken & Tabita, 1999) 

*-'.
3G@A4A%& turnover number of Ribosome 4.55 [h-1] Sourced from the base model 

+%'44
)',@AB_5 Mass of the enzyme class of Carbon_T 185,921 [Da] Sourced from UniProt 

+%'44
/0CC  Mass of the enzyme class of PSII 6,825,462 [Da] Sourced from UniProt 

+%'44
/0C  Mass of the enzyme class of PSI 331,876 [Da] Sourced from UniProt 

+%'44
)D.@EF

 Mass of the enzyme class of Cytb6f 778,366 [Da] Sourced from UniProt 

+%'44
*5/4DB

 Mass of the enzyme class of ATPsyn 564,676 [Da] Sourced from UniProt 

+%'44
2&.  Mass of the enzyme class of Met 67,261,272 [Da] Sourced from UniProt 

+%'44
3G@A4A%& Mass of the enzyme class of Ribosome 2,306,967 [Da] Sourced from UniProt 

, Cell density 385.67 [g L-1] (Faizi et al., 2018) 
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Abstract 

Computational models are essential for understanding the complex biochemical processes that 
govern cellular growth and metabolism. Growth Balance Analysis (GBA) provides a powerful 
framework for modeling cellular self-replication by incorporating metabolite concentrations and 
their non-linear influence on reaction kinetics. However, the complexity of implementing and 
solving such models has made them inaccessible to researchers without programming expertise. 
Here we present Cell Growth Simulator, a web-based application that enables efficient 
construction and analysis of GBA models through an intuitive interface and interactive 
visualizations. Cell Growth Simulator uses an intuitive spreadsheet interface, eliminating the 
need for coding, and integrates data from the BRENDA enzyme database to facilitate the 
incorporation of kinetic parameters. Cell Growth Simulator provides interactive visualizations, 
including customizable plots and dynamic metabolic pathway maps for interpreting optimization 
results. The platform makes nonlinear modeling of resource allocation in coarse-grained cellular 
systems accessible to a broader scientific audience, fostering interdisciplinary collaboration and 
advancing our understanding of cellular metabolism and growth. Cell Growth Simulator is freely 
available at: https://cellgrowthsim.com/. 

Keywords: 

Growth balance analysis, Optimal Resource allocation, Web application, Nonlinear Cellular 
Model, Systems Biology 
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Author summary 

We created Cell Growth Simulator to make modeling cellular self-replication and growth more 
accessible. Our goal was to create a web-based tool that helps researchers, regardless of their 
programming background, investigate how cells allocate their resources under realistic, nonlinear 
conditions. By focusing on a simplified framework that captures essential features of 
metabolism, we enable scientists to explore core principles of cellular growth, such as how 
proteins and metabolites interact to drive balanced growth. 

Cell Growth Simulator provides a simple spreadsheet-like interface where users can build or 
import their models, eliminating the need for coding. Our application connects to a widely used 
enzyme database to help researchers select realistic parameter values, and provides interactive 
graphs and pathway maps to visualize and interpret results. By streamlining the complex 
mathematical steps involved in modeling and analysis, Cell Growth Simulator lowers technical 
barriers and encourages collaboration between biologists, computational scientists, and anyone 
interested in understanding how cells work. We hope it will serve as a valuable resource for 
studying metabolism and advancing our knowledge of cell growth. 
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4.1 Introduction 

Metabolic modeling has emerged as a crucial approach for understanding the complex 
biochemical processes that govern cellular growth and metabolism. Computational models 
enable researchers to predict cellular behaviors, optimize metabolic pathways, and explore 
resource allocation strategies from simple principles. Linear computational approaches have 
been widely used to study resource allocation during balanced growth, a steady-state condition 
where concentrations of cellular components are constant in time. These methods typically 
approximate biochemical reaction kinetics by assuming linear relationships between fluxes and 
catalyst concentrations, neglecting the nonlinear effects of metabolite concentrations on reaction 
kinetics (Goelzer & Fromion, 2011; O’Brien et al., 2013; Sánchez et al., 2017). More 
sophisticated nonlinear models can explicitly account for these metabolite-dependent effects 
through kinetic rate laws (Molenaar et al., 2009). Recently, Growth Balance Analysis (GBA) 
was introduced as a general framework to model and analyze such nonlinear systems, 
investigating how cells grow and allocate their resources under fundamental physical constraints, 
including mass conservation, nonlinear reaction kinetics, and a limit on cellular density, 
accounting for the dilution of all cellular components by growth (Dourado et al., 2023; Dourado 
& Lercher, 2020). 

While the GBA framework simplifies and facilitates the mathematical modeling and analysis of 
cellular balanced growth under nonlinear constraints, its computational implementation requires 
mathematical and programming skills. To increase the accessibility of GBA to a wider audience, 
we developed Cell Growth Simulator a user-friendly web-based platform built using R/Shiny. R 
is a widely used programming language and software environment for statistical computing and 
graphics, while Shiny is a web application framework for R that facilitates the creation of 
interactive and user-friendly web-based interfaces. 

A rich ecosystem of web-based platforms already supports metabolic modeling. For linear, 
constraint-based workflows, such as flux balance analysis (FBA) (Orth et al., 2010) and its 
extensions, tools like CNApy (Thiele et al., 2022), Escher (King et al., 2015), ModelExplore 
(Martyushenko & Almaas, 2019), CAVE (Mao et al., 2023), and Fluxer (Hari & Lobo, 2020), 
provide convenient model construction and visualization. For nonlinear kinetics, mature software 
applications including COPASI (Hoops et al., 2006), Tellurium (Choi et al., 2018), Virtual Cell 
(Schaff et al., 1997), and AMICI (Fröhlich et al., 2021) support arbitrary rate laws and 
time‑course analyses, and web‑based environments such as JWS Online (Olivier & Snoep, 2004) 
and runBioSimulations (Shaikh et al., 2021) have long enabled web execution of nonlinear 
cellular models. To contribute to the community and extend this ecosystem, we developed the 
Cell Growth Simulator, a web-based implementation of the GBA formalism for nonlinear self-
replicator models, where resource allocation strategies emerge from the optimization of the 
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cellular growth rate, incorporating metabolite-dependent (nonlinear) kinetics and the dilution of 
all cellular components by growth. By focusing on coarse-grained systems, Cell Growth 

Simulator enables efficient exploration of cellular resource allocation and proteome efficiency 
(Doan et al., 2022; Ghaffarinasab et al., 2023; Hui et al., 2015; Molenaar et al., 2009; Scott et al., 
2010a; Weiße et al., 2015).  

Coarse-grained nonlinear models have proven to be especially useful for revealing fundamental 
principles of cellular physiology. By simplifying complex networks into a few effective reactions 
and catalytic sectors, these models can capture important trade-offs, such as growth laws 
(ribosome allocation) (Erickson et al., 2017; Scott et al., 2010b), shifts in metabolic strategies 
(Molenaar et al., 2009), and proteome partitioning, without requiring exhaustive mechanistic 
detail (Doan et al., 2022; Ghaffarinasab et al., 2023; Hui et al., 2015; Weiße et al., 2015). This 
simplification renders nonlinear optimization problems tractable while providing insight into 
global growth laws and resource allocation strategies (Erickson et al., 2017; Molenaar et al., 
2009; Scott et al., 2010b; Weiße et al., 2015). In this spirit, the Cell Growth Simulator is 
designed for coarse-grained self-replicator models, enabling the rapid, interpretable exploration 
of how metabolite concentrations and growth-driven dilution shape cellular behavior. 

The GBA framework estimates the cell state at balanced growth by solving a nonlinear 
optimization problem that maximizes the growth rate (8), subject to mass conservation, 
nonlinear kinetic rate laws of biochemical reactions, constant cell density, and non-negative 
concentrations. This optimization is greatly simplified by its formulation on the flux fraction 
vector defined as E:= !/81, where ! denotes the vector of mass fluxes of reactions in units [g L-

1 h-1] and ρ is the cell mass density in [g L-1] (Dourado et al., 2023). Fig 1 presents a general 
view of the framework. A detailed mathematical description of the GBA framework can be 
found in the original publications (Dourado et al., 2023; Dourado & Lercher, 2020). 
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Fig 1. Schematic representation of the Growth Balance Analysis (GBA) framework as 

implemented in the Cell Growth Simulator. The diagram illustrates the key components and 
constraints governing the optimal balanced growth of a self-replicating cell model defined by the 
triple (M,/,3), where M is the mass fraction matrix encoding the reaction network structure, / are 
kinetic rate laws, and 3 is the cell density. The mass conservation constraint (blue) relates mass 
fluxes of reactions ' with the growth rate ) and concentrations * of reactants in the model, 
including concentrations of metabolites * 	and the total protein *  (equal to the sum of individual 

protein concentrations .). The reaction kinetics (red) express the relationship between reaction 
fluxes ', protein concentrations ., and reaction turnover times / that depend on internal 
concentrations * and external concentrations :. The density constraint (green) defines the total 
cellular density ρ as the sum of metabolite and protein concentrations. All these constraints can be 
encoded into a single equation (yellow) for the constrained growth rate ) in terms of the flux 
fractions (Dourado et al., 2023). 
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4.2 Design and implementation 

User interface and front-end development 

Cell Growth Simulator is built using R (version 4.4.1) and the Shiny framework, creating an 
interactive web application that combines robust backend functionality with an intuitive user 
interface. The frontend architecture integrates HTML for content structure, CSS for visual 
styling, and JavaScript for dynamic interactions and enhanced client-side performance. Building 
upon the responsive Mazer dashboard template (https://github.com/zuramai/mazer), we 
extensively customized the interface through additional CSS and JavaScript implementations to 
create a specialized environment optimized for cellular growth modeling and analysis. This 
layered architecture ensures both technical functionality and user accessibility while maintaining 
high performance across different devices and screen sizes. 

Data sources and management 

Cell Growth Simulator integrates comprehensive enzyme kinetic data from the BRENDA 
database (Chang et al., 2021), providing users access to curated turnover numbers (kcat) and 
Michaelis constants (Km). The data processing pipeline filters the JSON-formatted database to 
include only wild-type enzyme parameters, which are then systematically organized by Enzyme 
Commission (EC) numbers. Through an interactive table powered by the "reactable" package 
(Lin, 2019), users can efficiently search and filter enzyme parameters based on multiple criteria 
including organism, EC number classification, and substrate specificity. This streamlined 
interface simplifies the often challenging task of identifying appropriate kinetic parameters for 
metabolic models. 

 

Input data structure and model configuration 

Kinetic models such as GBA describe reaction dynamics through reaction fluxes vj that depend 
on protein concentrations :) catalyzing the reaction (transport, enzymatic, or “ribosome” 

reaction producing proteins) and turnover times τj  according to general kinetic rate laws: 

!)	 = :);)(9, =) (1) 

The turnover times ; (*, :) depend on internal (c) and external (x) metabolite concentrations 

through several kinetic parameters: turnover numbers (kcat) for both forward and backward 
directions, Michaelis constants (Km), and where applicable, activation (KA) and inhibition 
constants (KI). 

In Cell Growth Simulator, we implement convenience kinetics (Liebermeister & Klipp, 2006), a 
general framework that can describe reversible reactions and regulatory effects from activators 
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and inhibitors. For an irreversible reaction j (where the backward turnover number &+",$) = 0), 

the turnover time τj is given by: 

;)(9, =) = 5
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The parameters in this equation represent: 

1. Forward turnover number (&)+",3): the maximum rate at which protein j (transporter, 

enzyme, or ribosome) can convert substrates to products. 

2. Michaelis constants (?)
!): the substrate concentration where the reaction rate reaches 

half its maximum value. Lower values indicate stronger protein-substrate binding. For 

metabolites not participating in reaction j, we set ?)
! = 0 . 

3. Regulatory constants: 

a. Activation constants (?L)
!): quantify activator effects. Set to 0 for non-

activating metabolites. 

b. Inhibition constants (?M)!): quantify inhibitor effects. Set to ∞ for non-inhibiting 

metabolites. 

This formulation captures how reaction fluxes are modulated by both enzyme concentrations and 
metabolite-dependent effects, with the turnover time τj representing the time required to process 
one unit of substrate under the given conditions. 

Cell Growth Simulator accepts GBA models in open-source spreadsheet format (ODS), 
consisting of the following matrices and vectors: 

● Mass fraction matrix M: quantifies the mass fraction of each reactant going through 
each reaction, with negative entries representing reactant consumption and positive 
entries indicating product formation. Rows correspond to reactants, columns to reactions. 
Due to mass conservation, the sum of positive entries in each column equals 1, and the 
sum of negative entries equals -1. External reactants are denoted by the prefix "x_". By 
default, the last row represents the total protein concentration in mass units, while the last 
column corresponds to the ribosomal reaction that produces all cellular proteins. 

● Michaelis constant matrix K: Contains ?)
! values (in [g·L-1]) representing the 

Michaelis constant for metabolite m in reaction j, organized in the same order as in M. 
When unspecified, a low default value of 0.1 g·L-1 is applied. 

● Matrices of regulatory constants: inhibition constants (KI) and activation constants 
(KA) for each metabolite m in each reaction j, expressed in [g·L-1] and arranged as in 
matrix M. Zero values for individual entries indicate that no inhibition or activation 
effects are considered. 
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● Turnover number matrix (kcat): Comprises two rows: the first (kcatf) contains forward-
direction turnover numbers, while the second (kcatb) contains backward-direction values. 
Column labels match those in matrix M. Values represent molecules of product produced 
per catalyst protein per unit time (in [h-1]). 

● Condition matrix: Defines simulation parameters for each growth condition. The first 
row ("rho") specifies cell density in [g·L-1]. Subsequent rows contain external reactant 
concentrations (g·L⁻¹), with the number of rows corresponding to the number of external 
reactants (with "x_" prefix) in M. Each column represents a distinct growth condition for 
the simulations. 

Cell Growth Simulator provides a downloadable GBA model template as a reference for users 
developing their own models. Alternatively, users can build models directly within the "Create 
Model" section of Cell Growth Simulator. The application employs the "shinyMatrix" R package 
to generate and display matrices across model tabs, with custom JavaScript modifications that 
enhance usability through features like arrow key navigation and full-cell editing capabilities 
(Andreas Neudecker, 2019). 

The model creation process begins by specifying the number of reactants and reactions, followed 
by entering their corresponding labels. The system automatically designates "Ribosome" for the 
final column and "Protein" for the final row. Users must input kinetic parameters (Km and kcat) on 
dedicated tabs. To facilitate this process, these tabs display collapsible cards containing relevant 
kinetic parameters sourced from the BRENDA database (Chang et al., 2021), with an additional 
option to query and filter parameters based on organism, EC numbers, and enzyme substrates. 

In the "Condition" tab, users input the number of external reactants and "rho" for cell density, 
and specify the total number of growth conditions for optimization. The application then 
dynamically adjusts the "condition" matrix, enabling users to configure different external 
concentrations for each optimization scenario. 

After uploading or creating a GBA model, the application presents a comprehensive preview of 
the input data. This allows users to review their model thoroughly and make direct modifications 
within the interface. Once finalized, users can export their refined model in ODS format for 
future use, supporting an iterative development approach that progressively enhances model 
performance and accuracy. 

Model validation and numerical optimization process in Cell Growth Simulator 
After importing their GBA model, users can validate its compliance with framework 
requirements through the "Check Model" function. This comprehensive validation process 
ensures proper parameter import by performing several critical checks: 
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1. Data integrity: verifies that no missing (NA) or non-numeric values exist throughout the 
model; 

2. Dimensional consistency: confirms that all matrices maintain consistent dimensions, 
with matching numbers of reactions and reactants; 

3. Non-negative value verification: validates that all external concentrations are non-
negative and that cell density is positive; 

4. Michaelis constant validation: identifies instances where substrates (negative entries in 
the matrix M) have Michaelis constants incorrectly set to zero (Km=0). 

If Km=0 errors are detected, the system issues a warning and automatically applies the default 
low value of 0.1 [g·L-1] to these parameters. Should any other validation criteria fail, the 
application displays a specific error message directing users to reset their session and revise the 
problematic aspects of their model. 

Upon successful validation, the system notifies users that their model meets all requirements, 
enabling them to proceed confidently to subsequent analysis steps. This rigorous validation 
workflow ensures that only properly formatted models enter the computational pipeline, reducing 
the likelihood of simulation errors or biologically implausible results. 

Users have the option to bypass the model validation step and directly initiate growth balance 
analysis by selecting the "Run" button. The optimization process utilizes the "nloptr" R package, 
which implements non-linear optimization through the AUGLAG (augmented Lagrangian) 
method (Ypma & Johnson, 2011). This framework allows users to choose from several 
specialized local solvers: 

● SLSQP (Sequential Least Squares Quadratic Programming): the default solver, well-
suited for smaller models requiring precise constraint management. 

● LBFGS (Low-storage BFGS):  Selected for its efficient memory usage and robust 
performance; 

● MMA (Method of Moving Asymptotes): particularly effective for highly non-linear 
models with complex constraints; 

While SLSQP serves as the default, users can select alternative solvers through the 'Advanced 
option' panel when facing performance challenges. Due to the nature of numerical optimization, 
it is not always possible to know beforehand which solver will be most appropriate for a given 
model. If the default solver exhibits slow convergence or fails to reach a solution that satisfies 
the optimization criteria, users are encouraged to evaluate alternative solvers to enhance 
performance outcomes. 

The selection of solver can significantly impact both convergence rate and solution accuracy, 
with the optimal choice depending on model complexity and problem characteristics. During 
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optimization, a dynamic progress bar tracks completion for each growth condition, providing 
users with real-time estimates of the total processing time. For reference, the included case study 
model (comprising 4 reactions and 4 internal reactants) typically completes optimization in under 
1 second per condition on standard personal computing hardware. 

Interactive metabolic pathway and data visualization 

Cell Growth Simulator uses the "apexcharter" package (Perrier & Meyer, 2019) to generate 
comprehensive, interactive visualizations of numerical solutions across all simulation conditions. 
These visualizations include growth rates, protein concentrations, protein fractions, reaction 
fluxes, and metabolite concentrations. Each interactive plot supports zooming and panning to 
enable researchers to investigate specific trends. Users can export these visualizations in both 
SVG and JPEG formats for publication or presentation purposes. 

Beyond conventional plotting capabilities, Cell Growth Simulator integrates d3flux 
(https://github.com/pstjohn/d3flux) to automatically generate interactive metabolic pathway 
diagrams directly within the web interface. These pathway visualizations dynamically represent 
the GBA analysis results from the first growth condition, with line thicknesses and node sizes 
proportionally reflecting flux magnitudes and concentration values, respectively. This feature 
enhances biological understanding, helping researchers to quickly identify key metabolic 
features or potential pathway errors. Users can interact with the pathway map by zooming, 
dragging nodes to refine the layout, and viewing detailed information on metabolites and 
reactions. For collaboration and documentation purposes, users can save pathway configurations 
as JSON files for future editing or export them as publication-ready SVG files. 

In addition to the visual outputs, users can download the numerical optimization results as a CSV 
file, supporting rigorous statistical analysis and custom visualization. 

4.3 Results 

Case study: example of a GBA model using Cell Growth Simulator 

We next provide an example of a GBA model to showcase the practical application of Cell 

Growth Simulator, using a streamlined GBA model previously reported in the literature 
(Dourado et al., 2023). This model consists of 4 reactions and 4 internal reactants, with two 
redundant reactions, only one of which is active under optimal growth conditions. 

The model assumes irreversible Michaelis-Menten kinetics, where the turnover times (τ) are 
determined by a matrix (?) of Michaelis constants and a vector (&+",) of forward turnover 
numbers for each reaction. Fig 2a-c illustrates the schematic representation of the model, along 
with its parameters (7, ?, &+",, and ρ).  
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While most model parameters are arbitrary for demonstration purposes, several key values are 
based on empirical data: the ribosome reaction parameters (&+", = 4.55 h⁻¹ and ?! = 8.3 g L⁻¹ 
for its primary substrate) reflect E. coli estimates (Dourado & Lercher, 2020), and the cell 
density (ρ = 340 g L⁻¹) reflects the measured E. coli dry mass density (Zimmerman & Trach, 
1991). This example deliberately omits regulatory mechanisms, with activation (KA) and 
inhibition (KI) matrices set to zero. 

Users can examine the complete model in the "Model Preview" section (Fig 2d), where they can 
also modify parameters and save customized versions. The "Check Model" function validates 
parameter integrity before optimization, while the "Run" button initiates numerical optimization 
using the SLSQP solver. Upon completion, Cell Growth Simulator generates a comprehensive 
overview of key results, such as the number of simulated growth conditions, the number of 
converged optimizations, the maximum achieved growth rate, and the average total protein 
concentration (Fig 2e). In the "Interactive Plots" panel, Cell Growth Simulator displays 
customizable plots where the x-axis can represent external reactant concentrations or growth rate 
(μ), while the y-axis can display various metrics including growth rates, protein fractions, protein 
concentrations, reaction fluxes, and metabolite concentrations. 

Analysis of the example model shows that growth rates at different external concentrations are 
consistent with the Monod equation (Fig 2g). The results show an approximately linear 
relationship between ribosomal mass fraction �? and growth rate 8. The protein fraction 
allocated to the transporter � decreases with the increasing external concentration =I , 
corroborating previous theoretical findings regarding the efficiency of carbon source utilization 
(Burnap, 2015; Faizi et al., 2018; Molenaar et al., 2009; Weiße et al., 2015). These relationships 
reflect fundamental "bacterial growth laws," supporting the notion that optimal resource 
allocation drives maximal growth across diverse environmental conditions (Scott et al., 2010a; 
Scott & Hwa, 2011; You et al., 2013). 

Analysis of reaction activities reveals a dynamic metabolic shift between rxn_3 and rxn_4: rxn_3 
is active at lower growth rates (up to 1.58 h⁻¹), while rxn_4 is utilized at higher growth rates (Fig 
2f). Both reactions share a similar structural role in the matrix M (linearly dependent columns 
when considering only the 4 internal reactants) but have different kinetic parameters, resulting in 
different resource allocation costs; this favors the sole use of rxn_3 at lower growth rates and the 
sole use of rxn_4 at higher growth rates. 

The "Pathway Visualization" panel offers an intuitive graphical representation of the reaction 
network (Fig 2h), with visual elements scaled proportionally to simulation results from the first 
growth condition (representing maximal external concentrations in this example). Node sizes of 
metabolites reflect metabolite concentrations, while line thicknesses indicate protein 
concentrations. The redundant pathway, rxn_3 in this case, is highlighted using a dashed line. 
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Users can export the complete optimization results as a ".csv" file through the "Results" button in 
the main panel. 
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Fig 2. Analysis of an example GBA model using Cell Growth Simulator. (a) Schematic 
representation of the simplified GBA model, illustrating reaction pathways, metabolite interactions, 
and redundant routes. (b) Mass fraction matrix (M), detailing the stoichiometric relationships 
between reactants (rows) and reactions (columns), with negative values indicating consumption and 
positive values indicating production. Note that in panel b-c, “Ribosome” is shortened to “Rib” and 
“Protein” to “Prot” for clarity. (c) Kinetic parameter set comprising the Michaelis constant matrix 
(K) and turnover number vector (! ). (d) Cell Growth Simulator model preview interface 
displaying imported parameters and allowing for real-time modification before analysis. (e) Results 
summary dashboard presenting key optimization outcomes: total growth conditions analyzed, 
number of successfully converged optimizations, maximum achieved growth rate, and average total 
protein concentration. (f) Optimal protein allocation across varying growth rates. (g) Monod-like 
growth curve in response to external carbon source availability. (h) Interactive metabolic pathway 
visualization with node sizes proportional to metabolite concentrations and edge thicknesses 
reflecting protein allocation, with dashed lines indicating redundant pathways. 

f) g) 

h) 
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4.4 Discussion 

We introduce Cell Growth Simulator, a user-friendly web application for Growth Balance 
Analysis (GBA) that enhances accessibility for researchers interested in exploring cellular 
growth and resource allocation under nonlinear kinetic rate laws. Cell Growth Simulator 
provides an intuitive interface built with R/Shiny, supplemented by HTML, CSS, and JavaScript 
to enhance the user experience. The application allows users to construct and modify models 
through interactive matrices that resemble spreadsheet environments (here, .ods files), a familiar 
open-source format for many researchers. This design choice simplifies the process of inputting 
and managing model parameters – such as the mass fraction matrix (M), kinetic parameters (?! 
and &+",), cell density, and external growth conditions – without requiring direct coding. Cell 

Growth Simulator significantly streamlines the incorporation of kinetic parameters into models 
by integrating data tables retrieved from the BRENDA enzyme database (Chang et al., 2021). 

Cell Growth Simulator has an emphasis on customizable and interactive visualization to aid in 
the interpretation of optimization results. By integrating "d3flux", a package specifically 
designed for metabolic pathway visualization, and the “Apexcharter” package for generating 
interactive plots, the application provides a dynamic and informative representation of the 
metabolic network and the simulation results.  

The GBA formalism itself imposes no intrinsic limit on model size. In principle, it can be applied 
to networks ranging from minimal self-replicators to genome-scale models. However, we 
recommend using the Cell Growth Simulator with coarse-grained models that have fewer than 
~20 reactions and internal species. At this scale, models remain interpretable, optimization is 
feasible with standard solvers, and interactive visualization is responsive on modest hardware. 
While larger models can be constructed within the same framework, they are better explored 
through programmatic workflows (e.g., R/Python notebooks) coupled with more powerful 
numerical solvers. Future development will focus on improving computational efficiency and 
providing programmatic interfaces to facilitate the analysis of larger models. 

Cell Growth Simulator addresses key challenges in analyzing self-replicating cell models with 
nonlinear kinetics, making such fundamental analyses accessible to a wide range of researchers 
and fostering interdisciplinary collaboration by lowering technical barriers. Furthermore, Cell 

Growth Simulator's approach aligns with the growing emphasis on open science and 
reproducibility. By offering a platform that is both user-friendly and transparent, it supports the 
sharing of models and results, facilitating peer review and collaborative contributions to 
advancing our understanding of cellular metabolism and growth. 
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Availability and Future Directions  

Cell Growth Simulator is freely available as a web server at https://cellgrowthsim.com/, where 
researchers can analyze and share their models without additional registration or login 
requirements. Looking ahead, we plan to expand Cell Growth Simulator's capabilities in two key 
areas. First, although the underlying GBA formalism does not restrict model size, we will 
improve computational efficiency by using better solvers and parallelization strategies. This will 
make it possible to study larger, more detailed models than the coarse-grained scale 
recommended here. Second, we intend to incorporate dynamical simulations so that users can 
study time-dependent behavior and transient responses in metabolic and proteomic networks. By 
coupling these dynamic features with coarse-grained approaches for cellular resource allocation, 
Cell Growth Simulator will provide both steady-state and temporal insights into how cells adapt 
and grow under varying conditions. We welcome community-driven enhancements and 
collaborative projects to further improve Cell Growth Simulator's functionality, usability, and 
applications in diverse biological contexts. 

Data availability 

Cell Growth Simulator is a web server freely accessible without login requirement at 
https://cellgrowthsim.com/. 
The source code for Cell Growth Simulator is available at: 
https://github.com/Sijr73/CellGrowthSimulator.  
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5.1 Discussion 

This work had three main objectives related to the study of cyanobacterial metabolism and 
cellular resource allocation: first, to demonstrate how the extensive metabolic networks of 
cyanobacteria confer a remarkable ability to adapt to diverse environments, highlighting their  
ecological importance and industrial potential; second, to deepen our understanding of how these 
organisms allocate resources as a function of environmental conditions, by employing the growth 
balance analysis (GBA) framework that explicitly captures the intracellular processes underlying 
photoautotrophic growth; and third, to develop Cell Growth Simulator, a user-friendly 
framework that facilitates the modeling and analysis of resource allocation within such systems.  

Together, these studies shed light on different aspects of cyanobacterial adaptation. At the 
genome/network evolution level, the versatile metabolic repertoire of cyanobacteria provides 
them with adaptive flexibility: with relative ease, they can acquire the biochemical pathways 
needed for new environments. At the physiological level, they demonstrate adaptive flexibility 
by reallocating protein resources to optimize growth under specific conditions. When shifting 
from light-limited to light-saturated conditions, cyanobacteria exhibit a decrease in the proteome 
fractions of photosystem I (PSI) and photosystem II (PSII) along with an increase in ribosome 
protein fraction, mirroring experimental observations (Faizi et al., 2018; Zavřel et al., 2019). 
Importantly, the evolutionary and physiological scales likely reinforce one another. A larger 
metabolic network not only allows growth on varied substrates (long-term adaptation), but also 
offers redundancy or alternative pathways that cells can differentially regulate (short-term 
acclimation). Thus, the overarching theme is that resource allocation and adaptive evolution are 
interlinked: cyanobacteria that maintain a broad enzymatic repertoire adapt faster over 
evolutionary timescales and cope better with fluctuating conditions through nimble resource 
redistribution. 

Our finding that metabolic complexity accelerates evolvability challenges long-standing 
assumptions in evolutionary theory. According to Fisher’s model and subsequent analyses 
(Fisher, 1930; Orr, 2005), mutations in more complex organisms are less likely to be beneficial 
due to widespread pleiotropic side effects. However, by focusing on metabolic networks, we 
found the opposite trend: more complex networks are more adaptable. This apparent 
contradiction can be explained by considering the biological context. Empirical evidence from 
protein-protein interaction (PPI) networks supports Fisher's view that genes that code for highly 
connected proteins are rarely gained through horizontal transfer. This is presumably because 
successful integration would require the concurrent co-evolution of multiple binding sites, 
suggesting that complexity is costly (Cohen et al., 2011; Jain et al., 1999). In metabolic 
networks, however, enzymes largely function independently, so adding a new enzyme can plug 
into pathways without requiring co-evolved binding sites. The adaptive value of an enzyme lies 
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primarily in its catalytic activity, which can often be harnessed if the regulatory mechanisms 
adjust accordingly (Lenski, 2017; Lozada-Chávez et al., 2006). Indeed, prior empirical work on 
E. coli revealed that nearly all metabolic innovations in its lineage emerged through the 
acquisition of single DNA segments, frequently leveraging pre-existing "promiscuous" enzymes 
or substrates (Szappanos et al., 2016).  

Our pan-genome analysis generalized this concept across diverse bacteria, including 
cyanobacteria, and highlighted the role of exaptations and collateral adaptation. Generalists often 
gained the ability to grow in additional environments through one adaptation, which is a form of 
collateral benefit that has also been observed in network simulations by Barve and Wagner 
(2013). Specialists, on the other hand, showed little collateral adaptation. However, when forced 
to adapt, they tended to reuse previously gained functions in a stepwise fashion, resulting in 
higher exaptation indices. This finding aligns with the idea that rare expansions from a specialist 
niche likely occur through the sequential building on prior gains. An unexpected outcome was 
the magnitude of the difference. For example, the endosymbiont Buchnera aphidicola required 
an average of 52 new reactions to survive in a new medium, whereas Synechocystis sp. PCC 
6803 and Synechococcus elongatus PCC 7942, despite being obligate photoautotrophs, required 
only three to four additions. Thus, even phototrophic cyanobacteria, which are often viewed as 
niche specialists, exhibit considerable latent metabolic potential. This underscores how their two-
billion-year evolutionary history in fluctuating environments may have preserved metabolic 
complexity as a hedge against change (Cao et al., 2020). Our results provide a mechanistic basis 
for anecdotal observations of the versatility of cyanobacteria (e.g., their ability to tolerate 
extreme habitats) by revealing a robust metabolic network that defies the typical specialization 
trade-off. 

The GBA modeling results align with and extend prior studies on cyanobacterial physiology. 
Molenaar et al. (2009) and subsequent studies have proposed that microbes allocate proteins in a 
way that optimizes growth-limiting processes (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018; 
Zavřel et al., 2019). For Synechocystis, the trade-off between light harvesting and carbon 
assimilation is an example of this: under low light conditions, Synechocystis allocates most of the 
resources to photosynthetic components, whereas under carbon-limited or high-light conditions, 
investment shifts to metabolism and biosynthesis. The smooth reallocation exhibited by our 
model is consistent with continuous cultures of cyanobacteria grown under different light 
intensities (Jahn et al., 2018; Zavřel et al., 2019). Our extended model demonstrated the ability to 
capture the reduction in total cellular protein content with faster growth, a trend that was 
observed in experiments but not explained by earlier models that assumed a fixed proteome size 
(Goelzer & Fromion, 2011; O’Brien et al., 2013; Sánchez et al., 2017). In our framework, this 
behavior emerges naturally. At higher light intensities, despite higher growth rates, less pigment 
and antenna protein are needed, which frees up mass for other cell components. Additionally, 
photodamage at very high light levels necessitates the allocation of some resources to ribosomal 
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protein fractions instead to net growth. Compared to a previous coarse-grained nonlinear model 
of Synechocystis (Faizi et al., 2018), the GBA formulation proved to be mathematically simpler 
yet equally effective in reproducing observed growth trends and proteome allocation under 
different light intensities. This streamlined approach is particularly advantageous for exploring 
more sophisticated phototrophic behaviors and extending the model to include additional cellular 
processes, such as major photosynthetic complexes or carbon fixation. 

A useful aspect of this study is its integrated perspective on adaptation. We linked evolutionary 
innovation and physiological acclimation under the unifying theme of resource allocation. Using 
computational models at both scales allowed us to compare our findings with a broad spectrum 
of previous studies, ranging from theoretical models of evolvability to laboratory measurements 
of proteomes, and demonstrate that a consistent picture emerges. We showed that from a 
minimal set of governing principles (mass balance, density, and kinetic constraints), an 
explanation of diverse phenomena emerges, such as the long-term diversification of bacterial 
lineages and the short-term acclimation of a cyanobacterial culture. Furthermore, we introduced 
Cell Growth Simulator, a practical innovation and user-friendly web server that provides an 
accessible interface for these complex nonlinear models. It lowers the barrier for other 
researchers to apply growth balance analysis to their systems. Although GBA offers a robust 
approach for modeling self-replicating cells – explicitly incorporating metabolite concentrations 
and their effects on reaction fluxes – its implementation previously demanded significant 
programming expertise and computational resources. Cell Growth Simulator uses an intuitive 
spreadsheet interface, integrated kinetic parameter retrieval from the BRENDA enzyme database  
(Chang et al., 2021), and interactive visualization tools. This platform not only makes nonlinear 
modeling of resource allocation in coarse-grained cellular systems accessible to researchers with 
limited programming skills, but it also serves as a valuable tool for fostering interdisciplinary 
collaboration and enriching our understanding of cellular metabolism and growth. In summary, 
the combination of conceptual advances (pan-genomic analysis of adaptation), mechanistic 
modeling (growth balance analysis of phototrophic growth), and methodological tools (Cell 

Growth Simulator) constitutes a solid contribution to understanding cyanobacterial systems. 

However, these contributions come with certain limitations that must be acknowledged. First, the 
pan-genome metabolic modeling in our adaptation study relied on available genome-scale 
models of the BiGG database and simulated “virtual HGT” events (Schellenberger et al., 2010). 
While this approach is effective for scanning thousands of scenarios, its accuracy depends on the 
quality of the underlying metabolic reconstructions. Some cyanobacterial models may lack 
pathways, especially regulatory or stress response pathways, that in nature would affect viability. 
For instance, our definition of a "viable environment" focused solely on the metabolic ability to 
synthesize biomass precursors or energy generation, and did not consider other growth-limiting 
factors, such as light, temperature, and pH levels. In nature, cyanobacteria face multifaceted 
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challenges, and adaptability involves more than just metabolism (e.g., regulatory plasticity and 
physiological tolerance).  

One shortcoming of our adaptability metric is that it is narrow. A strain may appear 
metabolically adaptable according to our criteria, yet still fail to colonize a niche due to 
ecological constraints, e.g., unfavorable light spectra or high turbidity/UV exposure, and salinity 
or osmotic shocks. A key limitation in resource allocation modeling is the coarse-grained 
approach of GBA models. To keep the models mathematically simple, complex processes (such 
as the Calvin cycle or diverse metabolic pathways) are lumped into single reactions. 
Consequently, the models cannot capture certain details, such as the regulation of individual 
enzymes, the spatial organization of thylakoids, and the diurnal cycling of metabolism. Although 
the model accurately reproduced steady-state trends, it cannot yet describe transient dynamics or 
regulatory phenomena during acclimation. Finally, the Cell Growth Simulator itself, while user-
friendly, is limited to relatively small models (≤20 reactions) and steady-state conditions. Scaling 
up to genome-scale kinetic models remains computationally challenging, and users must supply 
many kinetic parameters; this is a non-trivial task given the limited experimental data available 
for many enzymes, although machine learning models for predicting kinetic parameters from 
amino acid sequences and chemical reaction representations can fill this gap (Kroll et al., 2021, 
2023). 

Despite these limitations, our holistic approach has revealed a coherent narrative of 
cyanobacterial adaptation. Organisms that were once considered photosynthetic specialists now 
seem to be well-positioned to expand their ecological and biochemical roles. Their genomes 
encode a variety of metabolic functions, making them generalists in potential. It may then seem 
surprising that not more heterotrophs have evolved from cyanobacterial ancestors; a potential 
reason is the ecological superiority of at least facultative photosynthesis, though more research 
may be needed to settle this question. The metabolic adaptability of cyanobacteria helps explain 
how these organisms have managed to colonize environments ranging from hot springs to polar 
lakes over geologic time (Rybak et al., 2024; Wejnerowski et al., 2023). We also learned that, 
much like other unicellular organisms, cyanobacteria allocate their cellular resources in a highly 
optimized manner constrained by their phototrophic lifestyle (e.g., they have to balance light 
harvesting components and carbon fixation). Our study notably showed that the frequently 
discussed trade-off between light-harvesting and growth machinery in phototrophs can be 
quantified and predicted. The strong correspondence between the predicted proteome fractions of 
our model and the empirical measurements builds confidence in our understanding of the 
allocative priorities of these cells.  

These mechanistic insights are not only academically interesting but also have practical 
implications. For instance, when bioengineering cyanobacteria to produce biofuels or chemicals, 
one could use these findings to ensure that the engineered pathways do not disrupt the cell’s 
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balanced allocation. Alternatively, one could use synthetic biology to re-engineer the allocation 
to favor production over growth. 

5.2 Future directions 

This work opens several avenues for further investigation. One clear direction is to bridge the 
evolutionary and physiological scales more directly. While we studied them separately, an 
integrated model could simulate how a cyanobacterium’s growth advantage in a new 
environment (as predicted by GBA) translates into a selection advantage that drives genome 
evolution. For instance, one could incorporate our resource allocation model into an evolutionary 
simulation to test which new metabolic gene, when acquired, results in the maximum growth 
under specific conditions and whether that aligns with the historical sequence of gene 
acquisitions in cyanobacterial lineages. This would require expanding GBA models to include 
alternative metabolic routes that are initially "absent" and then "added" to simulate horizontal 
gene transfer (HGT) – an approach that our pan-genomic analysis already employed in this 
study. Combining these approaches would result in a multi-scale evolutionary simulation in 
which the genotype (network) and phenotype (allocation) co-evolve.  

Therefore, one next logical step is to develop genome-scale GBA models that capture the full 
metabolic complexity of cyanobacteria. Current GBA models (including the Synechocystis 
model developed here) focus on relatively small, coarse-grained networks. In contrast, genome-
scale metabolic reconstructions already exist for cyanobacteria, providing a comprehensive 
definition of the stoichiometry of hundreds of reactions (Höper et al., 2024; Knoop et al., 2013; 
Montagud et al., 2011; Nogales et al., 2012). In addition, a genome-scale GBA model would 
require extensive kinetic data, such as turnover numbers, Michaelis constants, and 
activation/inhibition constants, for potentially thousands of enzymes. Acquiring the data of this 
scale is a formidable challenge because experimentally measured enzyme parameters cover only 
a small fraction of reactions, even in well-studied bacteria. Recent advances in machine learning 
predictions of the properties of enzymes and transporters indicate that this significant challenge 
is becoming addressable (Heckmann et al., 2018; Kroll et al., 2021). Using these predictions to 
parameterize proteome-constrained models significantly improved their accuracy (Li et al., 
2022). These breakthroughs suggest that creating a genome-scale GBA model for cyanobacteria 
is becoming feasible. Such a model would expand the scope of GBA to include every metabolic 
pathway and require new computational strategies to handle the high dimensionality and 
nonlinearity of a whole-cell kinetic model. New numerical optimization strategies, including 
dedicated high-performance solvers, are emerging to keep genome-scale kinetic models solvable. 
A particularly promising development is GBAcpp (https://github.com/charlesrocabert/gbacpp), a 
high-performance C++ solver that combines gradient-ascent optimization with parallelization 
and optional global-search heuristics developed at the Computational Cell Biology group at 
HHU. This approach delivers speed increases of orders of magnitude for GBA calculations. 
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Once achieved, a genome-scale GBA model could effectively unite the system-level insights of 
FBA (e.g., optimal flux distributions) with the detailed resource allocation mechanics of GBA, 
providing a more holistic platform for exploring cyanobacterial physiology. 

Second, modeling frameworks such as FBA, RBA, and GBA at steady-state conditions may not 
fully capture the dynamics of organisms whose metabolism varies over time. This is exemplified 
by the pronounced diurnal (day/night) cycles in cyanobacteria. As cyanobacterial growth and 
metabolism are tied to the light/dark cycle, assuming a constant steady state can overlook 
important regulatory and metabolic shifts. Therefore, extending GBA to include time-dependent 
phenomena beyond steady-state growth is a promising direction. Initial efforts in this area show 
great potential. For example, Reimers et al. (2017) developed a constraint-based framework that 
uses a genome-scale model of a Synechococcus to simulate optimal resource allocation over a 
full diurnal cycle. Their time-resolved model could predict cyclic patterns, such as glycogen 
storage, across day/night phases. These predictions were in qualitative agreement with 
experimental observations. Future GBA models could build on such approaches by incorporating 
dynamic regulation to better reflect how cells reallocate resources under cyclic and fluctuating 
conditions. These dynamic, GBA models would provide a more complete picture of how 
cyanobacteria balance metabolic demands over time and offer deeper insight into processes such 
as the circadian regulation of metabolism. This knowledge could inform more refined strategies 
for metabolic engineering and biotechnology. For instance, it could help identify the optimal 
time or conditions for inducing the production of a desired bioproduct in cyanobacterial cultures.  

Finally, as the GBA framework scales up to the genome level, maintaining accessibility and 
user-friendliness will be a key challenge. Genome-scale kinetic models are computationally 
intensive and complex. Therefore, future versions of our Cell Growth Simulator web-server 
should be improved to efficiently handle larger networks while remaining easy to use. Using 
more efficient optimization algorithms, such as better nonlinear solvers or decomposition 
methods (such as Augmented-Lagrangian (Birgin & Martínez, 2008; Conn et al., 1991)), and 
leveraging parallel computing could significantly reduce run times for large GBA models. 
Additionally, enhanced features such as automated parameter estimation to fit or refine kinetic 
parameters from data, expanded sensitivity analysis tools, and direct interfaces to genome-scale 
or enzyme databases to fetch reaction kinetics would streamline the modeling workflow. 
Crucially, these upgrades should preserve and build on the current design philosophy of 
accessibility in the Cell Growth Simulator. By lowering computational and technical barriers 
even further, an improved Cell Growth Simulator could support iterative model building and 
refinement at the genome scale while remaining accessible to experts and new users alike. We 
envision that, in the future, Cell Growth Simulator will become a central hub for collaborative, 
iterative, genome-scale modeling of cyanobacterial metabolism, enabling researchers to easily 
test hypotheses, integrate new data, and advance our understanding of these ecologically and 
biotechnologically important microbes. 
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