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Summary

Cyanobacteria are the only known prokaryotes that perform oxygenic photosynthesis, serving
as key primary producers across diverse habitats and playing a fundamental role in the earth's
ecosystem. In addition to their ecological importance, cyanobacteria also hold great promise
as sustainable resources for the production of industrially and medically valuable compounds.
Because of their importance, an important aim is to optimize how these organisms allocate
their limited cellular resources across various metabolic processes. The main goal of this
thesis is to address this challenge by developing and applying advanced computational
frameworks to study phototrophic growth and resource allocation in cyanobacteria. In line
with this objective, Chapter 1 serves as an introduction, providing an overview of
cyanobacteria and explaining the computational strategies used to study their growth and
metabolism.

This thesis comprises three studies. In Chapter 2 (manuscript 1), we develop a pan-genome-
scale metabolic model and use flux balance analysis (FBA), a linear approach to, investigate
the adaptability of 102 unicellular organisms — including a range of cyanobacteria — to new
nutrient sources under heterotrophic growth conditions. The analysis revealed a strong
correlation between genome size and the number of reactions necessary for these adaptations.

In the second study in Chapter 3 (manuscript 2), we reformulate and extend an existing model
of the cyanobacterium Synechocystis. We introduce Growth Balance Analysis (GBA) as an
alternative mathematical framework for modeling phototrophic growth in cyanobacteria.
Compared to the methodology in Faizi et al. (2018), GBA formulates equivalent models with
simpler equations that allow more efficient calculations and easier model extensions through
additional reactions and metabolites. As a proof of concept, we first present a GBA model
inspired by Faizi et al. (2018), using identical parameter values. We then present a second,
extended GBA model capable of predicting the optimal proteome allocation in more detail.

In the third study in Chapter 4 (manuscript 3), we present Cell Growth Simulator, a web-
based application that enables efficient construction and analysis of GBA models through a
user-friendly interface and interactive visualizations. Cell Growth Simulator uses an intuitive
spreadsheet interface, eliminating the need for coding, and integrates data from the BRENDA
enzyme database to facilitate the incorporation of kinetic parameters. Cell Growth Simulator
helps users to interpret optimization results through customizable plots and dynamic
metabolic pathway maps. The platform makes nonlinear modeling of resource allocation in
coarse-grained cellular systems accessible to a broad scientific audience, providing an
intuitive tool for advancing our understanding of cellular metabolism and growth and
fostering interdisciplinary collaborations.

Overall, this work offers both theoretical and practical contributions: it sheds light on
cyanobacterial adaptability and resource allocation while providing accessible computational
frameworks to facilitate deeper explorations of phototrophic (and non-phototrophic) growth.



Zusammenfassung

Cyanobakterien sind die einzigen bekannten Prokaryoten, die eine oxygene Photosynthese
durchfiihren. Sie fungieren als zentrale Primérproduzenten in vielféltigen Habitaten und
spielen eine grundlegende Rolle im Okosystem der Erde. Neben ihrer 8kologischen
Bedeutung gelten Cyanobakterien zudem als vielversprechende, nachhaltige Ressourcen fiir
die Herstellung industriell und medizinisch wertvoller Verbindungen. Aufgrund ihrer
Bedeutung ist es ein zentrales Ziel, zu optimieren, wie diese Organismen ihre begrenzten
zelluldren Ressourcen auf verschiedene Stoffwechselprozesse verteilen.

Das Hauptziel dieser Arbeit ist es, diese Herausforderung mithilfe der Entwicklung und
Anwendung fortgeschrittener computergestiitzter Rahmenwerke anzugehen, um phototrophes
Wachstum und Ressourcenallokation in Cyanobakterien zu untersuchen. Im Einklang mit
diesem Ziel dient Kapitel 1 als Einfiihrung, bietet einen Uberblick {iber Cyanobakterien und
erlautert die rechnerischen Strategien, die zur Untersuchung ihres Wachstums und
Stoffwechsels eingesetzt werden.

Diese Dissertation umfasst drei Studien. In Kapitel 2 (Manuskript 1) entwickeln wir ein pan-
genomisches metabolisches Modell und verwenden die Flux-Balance-Analysis (FBA), einen
linearen Ansatz, um die Anpassungsfihigkeit von 102 einzelligen Organismen — darunter
verschiedene Cyanobakterien — an neue Nahrstoffquellen unter heterotrophen
Wachstumsbedingungen zu untersuchen. Die Analyse zeigte eine starke Korrelation zwischen
der Genomgrofe und der Anzahl der fiir diese Anpassungen erforderlichen Reaktionen.

In der zweiten Studie in Kapitel 3 (Manuskript 2) reformulieren und erweitern wir ein
bestehendes Modell des Cyanobakteriums Synechocystis. Wir fithren die Growth Balance
Analysis (GBA) als alternatives mathematisches Rahmenwerk zur Modellierung phototrophen
Wachstums in Cyanobakterien ein. Im Vergleich zur Methodik von Faizi et al. (2018)
formuliert GBA dquivalente Modelle mit einfacheren Gleichungen, die effizientere
Berechnungen und eine leichtere Erweiterung der Modelle durch zusétzliche Reaktionen und
Metaboliten ermdglichen. Als Machbarkeitsnachweis prasentieren wir zundchst ein GBA-
Modell, das von Faizi et al. (2018) inspiriert ist und identische Parameterwerte verwendet.
AnschlieBend stellen wir ein zweites, erweitertes GBA-Modell vor, das in der Lage ist, die
optimale Proteom-Allokation detaillierter vorherzusagen.

In der dritten Studie in Kapitel 4 (Manuskript 3) stellen wir den Cell Growth Simulator vor,
eine webbasierte Anwendung, die durch eine benutzerfreundliche Oberfliache und interaktive
Visualisierungen eine effiziente Erstellung und Analyse von GBA-Modellen erméglicht. Der
Cell Growth Simulator nutzt eine intuitive Tabellenkalkulationsoberflache, wodurch
Programmieren tiberfliissig wird, und integriert Daten aus der BRENDA-Enzymdatenbank,
um die Einbindung kinetischer Parameter zu erleichtern. Er unterstiitzt Nutzer bei der
Interpretation von Optimierungsergebnissen durch anpassbare Diagramme und dynamische
Stoffwechselwegkarten. Die Plattform macht die nichtlineare Modellierung der
Ressourcenallokation in grobkornigen zelluldren Systemen einem breiten wissenschaftlichen
Publikum zugdnglich und bietet ein intuitives Werkzeug zur Vertiefung unseres
Verstiandnisses von Zellstoffwechsel und Wachstum sowie zur Forderung interdisziplindrer
Zusammenarbeit. Insgesamt leistet diese Arbeit sowohl theoretische als auch praktische
Beitrige: Sie beleuchtet die Anpassungsfihigkeit und Ressourcenallokation von
Cyanobakterien und stellt gleichzeitig zugidngliche rechnerische Rahmenwerke bereit, die
tiefere Untersuchungen des phototrophen (und nicht phototrophen) Wachstums ermoglichen.
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Chapter 1

Introduction



1.1 General Introduction

Rising atmospheric CO: levels, now at their highest point in human history and a primary
driver of climate change, together with accelerating population growth and expanding
industrial activity, have put unprecedented pressure on natural resources. The overexploitation
of these resources, combined with carbon emissions derived from fossil fuels, has already
caused significant environmental damage. In response, there is an urgent need to develop
sustainable and environmentally friendly strategies for the production of alternative fuels and
chemicals (Luan & Lu, 2018). Microbial biomanufacturing is a promising solution, as both
native and engineered microbes have been successfully used to produce a range of renewable
biofuels and biochemicals. However, most of these microbial platforms — such as Escherichia
coli and Saccharomyces cerevisiae — are heterotrophic and require organic carbon feedstocks
(e.g., glucose or other sugar-based substrates) to sustain growth (Dodds, 2002; Jojima et al.,
2010; Wang et al., 2019). In contrast, cyanobacteria use photosynthesis to directly convert
atmospheric carbon into biomass, making them particularly attractive for sustainable
bioproduction (Singh et al., 2016).

Cyanobacteria are a diverse and widespread group of prokaryotes known for their ability to
perform oxygenic photosynthesis. Utilizing sunlight as an energy source and carbon dioxide
as a feedstock, these photoautotrophic organisms can grow rapidly and have a relatively
simple cellular structure. In addition, they are amenable to genetic manipulation, making them
excellent model systems for studying photosynthesis and compelling hosts for
biotechnological applications. In particular, engineered cyanobacteria are now well
established as producers of several valuable chemicals (Knoot et al., 2018). However, their
productivity and product titers have remained relatively low compared to those of
heterotrophic hosts such as Escherichia coli, limiting the commercial potential of
cyanobacterial bioproduction. Early research on cyanobacteria focused primarily on strains
that were easily genetically tractable, laying the groundwork for more advanced strain
engineering. Among these, Synechocystis sp. PCC 6803, Synechococcus elongatus PCC 7942,
and Synechococcus sp. PCC 7002 have emerged as key unicellular models and remain widely
studied for both fundamental and applied research (Mukherjee et al., 2020).

A promising approach toward understanding how these model systems can be made more
efficient hosts for biotechnological applications is to take a systems biology perspective.
Systems biology takes a holistic approach to understanding how genes, proteins, and
metabolites interact within complex biological networks (Kitano, 2002). Over the past two
decades, rapid advances in “omics” technologies have generated large, high-quality data sets
that form the basis for increasingly sophisticated metabolic and regulatory models. These
computational tools provide a powerful complement to laboratory experiments, which are
often time-consuming and expensive. By simulating key aspects of wet-lab work, in silico
methods can not only reduce the number of experiments required, but also allow researchers
to explore broader experimental conditions and hypotheses.

Cyanobacteria became an early focus of systems biology because of their evolutionary
importance: they pioneered oxygenic photosynthesis about 2.5 billion years ago, a trait that
was subsequently transferred to eukaryotes through endosymbiosis, eventually giving rise to
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algae and plants (Hohmann-Marriott & Blankenship, 2011). The close evolutionary
relationship of cyanobacteria with plant plastids stimulated early genomic investigations,
leading to the first publicly available complete genome sequence of Synechocystis sp. PCC
6803 (hereafter Synechocystis) more than two decades ago (Kaneko et al., 1996a). Equipped
with robust genetic tools (Grigorieva & Shestakov, 1982), Synechocystis quickly became a
widely used model organism among cyanobacteria. Today, due to their ecological relevance
and industrial potential, more than 200 complete genome sequences of different
cyanobacterial species have been made publicly available (Shih et al., 2013). These
characteristics establish cyanobacteria as an important model organism for the development of
microbial cell factories (Santos-Merino et al., 2023). Despite the abundance of high-
throughput experimental data, including genomics, transcriptomics, and proteomics (Babele et
al., 2019; Jahn et al., 2018; Matthias et al., 2014; Zavfel et al., 2019), achieving a fundamental
mechanistic understanding of resource allocation in cyanobacteria remains a major challenge
in biotechnology. The main goal of this thesis is to address this issue by developing and
applying advanced computational frameworks to study phototrophic growth and resource
allocation in cyanobacteria.

1.2 Genome-Scale Metabolic Modeling

The growing demand for quantitative insights into metabolic physiology and bioprocess
optimization has led to extensive efforts in the mathematical modeling of metabolic function.
One of the most powerful approaches in this area is the use of genome-scale metabolic models
(GEMs), which use a stoichiometric matrix to represent the entire metabolic reaction network
of an organism. GEMs are based on gene-protein reaction (GPR) associations that integrate
annotated genomic data with experimentally derived information to create mass-balanced
reconstructions of cellular metabolism (Bernstein et al., 2021).

A key advantage of GEMs is their ability to incorporate species-specific knowledge and
complex 'omics data, providing a holistic framework for understanding cellular metabolism.
Combined with constraint-based reconstruction and analysis (COBRA) techniques — most
notably Flux Balance Analysis (FBA) — GEMs enable the translation of biological hypotheses
into computational algorithms that can predict metabolic phenotypes. As tools for combining
computational modeling with empirical data, GEMs have become indispensable for advancing
our understanding of metabolic physiology and guiding the design of more efficient
biotechnological processes (Gu et al., 2019).

1.3 Flux Balance Analysis (FBA)

Flux Balance Analysis (FBA) is a widely used constraint-based optimization framework that
employs a stoichiometric representation of metabolic networks, ranging from simplified
“core” models to comprehensive genome-scale reconstructions (Orth et al., 2010). The
method requires the assumption of an optimality criterion (usually the maximization of the
biomass yield in microbial systems (Feist & Palsson, 2010), often imprecisely referred to as
growth rate maximization (Schuster et al., 2008)). This optimization in turn requires a limiting
constraint, such as a limit on the uptake rate of an essential nutrient. Where available, kinetic
parameters (e.g., Vpq, Values) can be incorporated as flux bounds to refine the model. In its
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standard application, FBA finds the maximal biomass production rate vj;,mass and its
corresponding flux distribution v for a given uptake constraint and stoichiometric matrix S.
Formally, this defines the linear optimization problem:

Maximize Vpiomass
at Steady state condition Sv =0 (1)

with Vi <V < Vpay

Solving the FBA problem yields a set of metabolic flux distributions that satisfy the given
objective. Due to its linear formulation and relatively low computational cost, FBA scales
well to large metabolic networks with thousands of reactions. It is therefore particularly
suitable for modeling genome-scale networks, studying microbial communities or
multicellular tissues, and performing parameter scans under varying external conditions
(Topfer et al., 2020). However, by design, FBA does not inherently account for factors such
as temporal dynamics, regulatory constraints, or experimentally measured transcription,
protein, or metabolite abundances; these considerations typically require additional modeling
frameworks or hybrid approaches (Sahu et al., 2021).

1.4  Synechocystis sp. PCC 6803: A Model Cyanobacterium for Metabolic and

Biotechnological Insights

To date, Synechocystis is the best-characterized cyanobacterium and the model organism of
choice for applications in biotechnology due to its robust growth characteristics and well-
studied biology (Angermayr et al., 2009). This unicellular cyanobacterium, with a cell size of
approximately 2 pm (Zavfel et al., 2017), was isolated in 1968 from a freshwater lake in
California, USA (Stanier et al., 1971). Synechocystis is naturally transformable and
genetically tractable. In 1996, it was the first phototrophic organism to have its genome fully
sequenced, marking a milestone as the third bacterial genome ever sequenced (Kaneko et al.,
1996b). Its genome consists of a single chromosome and seven plasmids, with a total size of
approximately 3.95 megabases (Mb). A total of 3,507 protein-coding genes have been
annotated in the UniProt database (Kaneko et al., 2003). The organism exhibits a maximum
growth rate of approximately 0.135 [h'!], corresponding to a doubling time of 5.13 hours
(Zavrel et al., 2015).

Building on this foundational knowledge, several GEMs have been developed for
Synechocystis, reflecting its status as a model organism for the study of cyanobacterial
metabolism and photosynthesis. One of the earliest GEMs, iSyn669, was published in 2011
and included 882 reactions, 690 metabolites, and 669 genes, providing a basic framework for
understanding the metabolic network of Synechocystis (Montagud et al., 2011). This model
was later refined and expanded into iSyn731, which incorporated additional experimental data
and improved GPR associations, resulting in a more accurate representation of the organism's
metabolic capabilities (Knoop et al., 2013). Another notable model, iIJN678, was developed to
incorporate detailed descriptions of phototrophic growth and carbon fixation pathways,
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allowing simulations of light-driven metabolism and resource allocation under varying
environmental conditions (Nogales et al., 2012). Hoper et al. (2024) recently released an
updated GEM for Synechocystis that spans 865 reactions and 783 genes, which, crucially,
integrates explicit modeling of light absorption and thereby advances the quantitative analysis
of phototrophic metabolism. This groundlaying work, in conjunction with the availability of
its genome annotation on CyanoBase, positions Synechocystis as a suitable model for
examining photoautotrophic growth and resource allocation, as explored in this study.

1.5 Flux Balance Analysis as a Tool to Investigate Metabolic Complexity and

Evolutionary Strategies in Cyanobacteria

FBA provides a robust computational framework for investigating how metabolic fluxes and
phenotypic behaviors respond to various genetic and environmental factors, making it
particularly well-suited for assessing the impact of newly acquired genes on metabolic
networks and organismal fitness. Horizontal gene transfer (HGT) — the transfer of genetic
material across species boundaries — is a key evolutionary mechanism that has profoundly
influenced microbial genome evolution, adaptation, and metabolic diversity. In particular,
recent work has shown that Escherichia coli can acquire complex metabolic traits with
relatively few new enzymatic functions, highlighting the remarkable adaptability of bacterial
metabolism. However, it remains unclear whether this adaptability is unique to E. coli or
represents a more general feature of bacterial lineages (Szappanos et al., 2016). Cyanobacteria
offer an especially informative test case. These photoautotrophs thrive in diverse habitats,
from nutrient-poor open oceans to hypersaline ponds and hot deserts (Oren, 2015). They adapt
their metabolic strategies to meet the thermodynamic demands of photosynthetic electron
transport, carbon-concentrating mechanisms and, often, nitrogen fixation (Bothe et al., 2010).
Their genomes are highly modular, with large accessory gene pools — especially in freshwater
Synechocystis — suggesting repeated instances of gene gain and loss that adapt metabolism to
local light, CO: concentration, and nutrient availability (Jeong et al., 2021). Such rewiring can
create pathways that alter redox balance via alternative electron sinks or reconfigure the
ATP/NADPH ratio through cyclic electron flow. Through their integration of photosynthesis,
cyanobacteria add a compelling dimension to the broader question of how microbes adapt to
diverse environments. Despite their ecological significance, comparatively little is known
about the genetic and network-level factors that enable or limit their metabolic flexibility — an
important question that is addressed in manuscript 1 of this dissertation.

Several theoretical models have attempted to explain how new metabolic functions emerge
and are integrated into existing networks. The “toolbox model” proposed by Maslov et al.
(2009) posits that each new gene (i.e., tool) can combine with the organism's existing
“toolbox” of enzymes to generate additional metabolic pathways, creating a synergistic effect
for organisms already equipped with a large toolbox. Another complementary hypothesis
comes from (Wolf & Koonin, 2013), who introduced a "biphasic" model of genome
evolution. Their phylogenetic analyses suggest alternating phases of genome expansion and
contraction, potentially giving rise to generalist and specialist microbial lifestyles. While these
models offer valuable perspectives on evolutionary dynamics, the underlying reasons that



drive certain organisms to evolve as generalists — able to thrive in a variety of environments —
and others to evolve as specialists remain incompletely understood.

Manuscript 1 of this dissertation addresses this gap by examining 102 unicellular organisms,
including several cyanobacterial strains, to determine how metabolic adaptability correlates
with genome content. Using FBA simulations, the study shows that species with larger
metabolic “toolboxes” (i.e., gene repertoires) adapt more readily to novel nutrient conditions,
consistent with the "toolbox model" of Maslov et al. (2009). Indeed, manuscript 1 classifies
organisms as either generalists or specialists, and shows that generalists (including some
cyanobacteria) have branching metabolic networks and derive multiple ancillary benefits from
a single adaptive event. In contrast, specialists have more linear pathways in which adaptive
gains often serve narrowly defined purposes. Crucially, this work sheds light on how HGT
and intrinsic network architecture together govern the adaptive potential of cyanobacteria, a
group whose photosynthetic capacity and evolutionary history make it uniquely relevant for
both fundamental research and innovative biotechnological applications.

1.6 Conceptual and Computational Limitations of FBA

The linear optimization framework (Eq. 1) is computationally simple, but this simplicity
comes with certain conceptual limitations. For example, the maximum flux towards biomass
production (Vpiomass) typically depends on the upper bounds of key uptake reactions (e.g.,
limiting carbon sources). In contradiction to the notion of growth rate maximization, the
solution may favor maximum yield (the ratio of biomass flux to uptake flux of the limiting
nutrient) rather than maximum growth rate per se (Schuster et al., 2008). Moreover, because
biomass production is a direct (and, in the absence of a maintenance energy term, linear)
function of the maximal uptake flux of the limiting nutrient, accurate prediction of optimal
biomass flux requires prior knowledge of substrate uptake rates.

A second challenge arises when large-scale metabolic reconstructions have more reactions
than metabolites, which is typically the case. The resulting structure of the stoichiometric
matrix leads to an underdetermined system and multiple valid solutions for the flux vector v
at a given value of the objective function (Orth et al., 2010). As a result, additional criteria are
needed to determine a single, biologically relevant optimal flux distribution. Importantly,
these challenges are unproblematic for the work reported in manuscript 1: here, only the
metabolic network’s ability to produce biomass from a set of available nutrients is important,
while growth rate and detailed flux distributions are not considered. In contrast, the detailed
and accurate study of molecular physiology — as examined in manuscript 2, see below

— requires attention to these problems.

1.7 Beyond Traditional FBA: Linear Models of Resource Allocation and the
Challenge of Integrating Proteome Constraints

Parsimonious FBA (pFBA) (Holzhiitter, 2004) is one of the most common strategies to
address the requirement to choose among multiple optimal FBA solutions. pFBA reflects the

principle that cells can optimize growth by reducing enzymatic resource allocation wherever
possible. Under the simplifying assumptions that the absolute values of fluxes are
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proportional to the required enzyme investment and that the corresponding proportionality
constants are identical across enzymes, pFBA finds the most resource-efficient solution by
minimizing the sum of absolute fluxes at the maximal biomass production rate. Thus, pFBA
can be seen as the simplest variant of resource allocation models — a class of models built on
linear optimization frameworks to describe how cellular resources such as proteins,
metabolites, and energy are allocated among different processes to maximize growth or other
objective functions. Like pFBA, more advanced resource allocation models linearize the
kinetic relationships between enzyme abundance and metabolic fluxes (and hence growth
rate). These linear models provide a computationally tractable way to capture large-scale
cellular behavior (Goelzer et al., 2011; Goelzer & Fromion, 2011).

At their core, resource allocation models generalize the idea of imposing explicit constraints
on metabolic capacity. Two main approaches have emerged to address this "budgeting"
problem: (i) protein budgeting, in which a fixed pool of protein must be allocated among
different cellular tasks, and (ii) resource budgeting, in which protein budgeting is further
coupled with descriptions of protein synthesis requirements. However, conventional protein
budgeting approaches often assume that protein production itself is governed by a pre-existing
budget, rather than dynamically feeding back into it.

Two examples of protein budgeting frameworks are FBA with molecular crowding
(FBAWMC) (Vazquez et al., 2008) and Constrained-Allocation FBA (CAFBA) (Mori et al.,
2016), which constrain enzyme concentrations for the complete system or individually for
proteome sectors. Although these methods can improve predictive accuracy, they do so by
imposing extra assumptions. Nevertheless, such approaches have found that growth-
maximizing solutions, especially when coupled with genetic regulation, often match
experimental phenotypes. Later resource allocation models have extended these frameworks
by more fully integrating proteome partitioning and other capacity constraints (e.g., GECKO
(Sanchez et al., 2017)).

Three major large-scale modeling strategies with resource budgeting are currently in use:
Resource Balance Analysis (RBA) (Goelzer et al., 2011), Metabolic and Macromolecular
Expression (ME) models (O’Brien et al., 2013), and Proteome Constrained (pc) models
(Elsemman et al., 2022). Each formulates an optimization problem at a fixed growth rate
under linear constraints. RBA, introduced by (Goelzer et al., 2011), extends beyond
metabolism to include other growth-related macromolecules (e.g., DNA, membranes) and the
cellular translation apparatus, and, in some implementations, incorporates growth rate-
dependent enzyme catalytic rates (k;(u) = a;u + b;). This approach, calibrated against
proteomic data, accurately predicts proteome partitioning in Bacillus subtilis (Goelzer et al.,
2015). ME models, proposed by (Lerman et al., 2012), take a slightly different approach by
embedding the gene expression machinery directly into the metabolic network and generating
solutions that minimize ribosome production at the given growth rate. Unlike RBA, ME
models do not impose explicit density constraints, but retain certain assumptions from the
underlying metabolic framework, such as the use of fixed exchange flux limits.

Despite the success of these linearized resource allocation methods, they rely on important
simplifying assumptions. All of the mentioned models assume that cells operate under an
optimal state that can be found via linear optimization, thus ignoring the inherently non-linear
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nature of enzymatic rate laws and the interplay between substrate concentrations and enzyme
efficiency. This approximation is justified by the fact that fully nonlinear genome-scale
models — involving thousands of variables — pose significant computational challenges with
current technologies (Orth et al., 2010). To remain tractable, all methods discussed so far treat
reaction fluxes (v;) as proportional to enzyme abundance (e;) multiplied by a catalytic rate
(kj) that is assumed to be either constant or, in some RBA implementations, a linear function
of growth rate. As a result, the effects of substrate concentrations are ignored and other
nonlinear phenomena are often overlooked.

1.8 Non-linear Framework for Understanding Cellular Resource Allocation

While all models discussed so far approximate cellular metabolism as a linear process,
biological systems are inherently nonlinear. In contrast to linear cellular models, nonlinear
approaches explicitly capture metabolite concentrations and their effects on reaction fluxes
via kinetic rate laws. Molenaar et al. (2009) pioneered “self-replicator” models in which
resource allocation emerges from optimizing cellular growth under key physiological
constraints, including nonlinear kinetics in transport and enzymatic reactions, a fixed total
protein concentration, and the allocation of ribosomes to produce all necessary proteins.
Subsequent studies have extended this framework to photoautotrophic systems, incorporating
processes such as photodamage and carbon cycling (Burnap, 2015; Faizi et al., 2018).

So far, nonlinear kinetic cell models have focused on small, coarse-grained representations of
cellular physiology (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018; Molenaar et al., 2009).
These models compress cellular complexity by representing multiple enzymes or pathways
with a single catalytic unit. While lacking in molecular detail, these simplified models still
provide valuable insights into overarching metabolic trade. Their limited scale reflects the
computational difficulty of solving large nonlinear optimization problems (Wortel et al.,
2018).

1.9 Growth Balance Analysis

Recently, growth balance analysis (GBA; Figure 1) has been introduced as a general
framework for studying nonlinear resource allocation in growing cells subject to mass
conservation, nonlinear reaction kinetics, and cell density constraints (Dourado et al., 2023;
Dourado & Lercher, 2020). This work not only demonstrates the feasibility of large-scale
nonlinear simulations, but also provides new perspectives on the mathematical properties of
such models. In GBA, a cellular model is specified by a triple (M, , p). The matrix M is a
mass-fraction form of the stoichiometric matrix, scaled by molecular weights and including a
special ribosome reaction “r” that synthesizes proteins, as well as a row “p” that represents
total protein concentration. The vector T = t(c, x) encodes turnover times for each reaction in
the network; these kinetic functions are the inverses of the more customary kinetic rate laws,
and they depend on internal metabolite concentrations ¢ and on relevant external
concentrations x. Finally, p indicates the sum of all mass concentrations inside the cell,

encompassing both metabolites and proteins, and is assumed to remain fixed.

Moreover, the balanced growth model at steady-state is specified by the following constraints:
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z Mji v = pct (Mass conservation)

J

. pj/Tj (1) (Reaction kinetics)
z p; =cP (Protein density)
J
z cl=p (Cellular density)
i
c™ >0 (Non-negativity of metabolite concentration)
p/ >0 (Non-negativity of protein concentration)

Because M is scaled in mass units, both metabolite concentrations c¢* and protein
concentrations p; appear in units of [g L'], and fluxes v/ have units of [g L"! h"']. Kinetic
parameters — such as Michaelis constants (K,,,) ([g L']) and turnover numbers (k.4;) (the
amount of product per unit of protein per unit of time, resulting in units of [h™']) — should also
be expressed in mass units. By definition, p (in [g L'']) is the sum of the mass concentrations
of every intracellular component, a quantity taken to be constant under balanced growth,
consistent with observations in E. coli (Bremer & Dennis, 2008).

Within GBA, the optimal state of the cell emerges as a solution to an optimization problem
built on two core algebraic expressions, formulated in terms of flux fractions f := v/(up).
Here, v denotes the mass reaction fluxes, u is the growth rate, p is the constant total density
of intracellular components, and the ratio is taken element-wise. The first core equation,

MPf* )
frt(oMf,x)

focuses on how the ribosome reaction contributes to the growth rate, where M/ is the relevant

u(f,x) =

entry in M. The second equation,

> M =1 3)
)

ensures a strict balance on total cellular density. Here, the summation runs over the internal
reactants (i) and the reactions (j) in M. Apart from this explicit density condition, all other
constraints — such as reaction stoichiometry, nutrient limitations, and enzyme capacities — are
encoded in the first equation or in the expressions for T (Dourado et al., 2023). Solving for f
at optimal growth also determines key cellular properties, including metabolite levels ¢,
total protein concentration ¢, and each individual protein concentration p’ via



c=pMf 4

p/=upfit/(pMf,x) (5)

The turnover times T are defined by reaction rate laws (here, irreversible Michaelis—Menten
with inhibition (eq. 6)), so that T values depend systematically on the intracellular metabolite
pool ¢, and, for transport reactions, on the external environment x.

-1 -1 j -1 -1
(c.x) = 1 I Cm Cm KL I X,
A B V77 KA. + ¢ KL +c "\Kk/ +x (6)
catf m m m m m m n n

Here,

. ki atf is the forward turnover number;

. K,{; is the Michaelis constant for internal metabolite m in reaction j
e K A,{n is the activation constant for metabolite m in reaction j;
e K I,];l is the inhibition constant for metabolite m in reaction j;

e K is the Michaelis constant for external reactant n in reaction j;
e products over m run across internal metabolites involved in reaction j;
e products over xn run across external reactants transported by j.

10



FIES -]

i Growth Rate
Mass Conservation

M, il
ulf,x) = e—F =+
"O= s o Gor,
Metabolic Network
Q.. @ Constant density
. oo,
mc.ecy
o o
2= UjTj(C, x)
. . =g+ ).
Nonlinear reaction & mcm
kinetics
&= Z Pj
)

Figure 1. Schematic representation of the Growth Balance Analysis (GBA) framework
(adapted from manuscript 1)

In manuscript 2, we present a proof-of-concept GBA model for the cyanobacterium
Synechocystis, inspired by a previous self-replicator model (Faizi et al., 2018) and using
identical parameter values to validate the approach against established work. We then extend
the GBA framework to predict optimal proteome allocation at a more detailed level,
demonstrating the ability of the GBA framework to move toward self-replicator models of
complex cellular systems.

In manuscript 3, to increase the accessibility of Growth Balance Analysis (GBA) beyond the
expert community, we describe Cell Growth Simulator, a user-friendly web platform built
with R and Shiny. R is a widely used programming language and environment for statistical
analysis and data visualization, while Shiny provides a lightweight framework for building
interactive web applications. There are currently numerous web tools for linear metabolic
modeling and visualization-such as CNApy (Thiele et al., 2022), Escher (King et al., 2015),
ModelExplore (Martyushenko & Almaas, 2019), CAVE (Mao et al., 2023), and Fluxer (Hari
& Lobo, 2020)-all of which use linear optimization approaches such as flux balance analysis
(FBA) (Orth et al., 2010c). In addition, platforms like COPASI (Hoops et al., 2006) can
handle constant catalytic rates (k.4 ), which is consistent, e.g., with Resource Balance
Analysis (RBA) models (Goelzer & Fromion, 2011). However, no existing, easy-to-use web
application facilitates the solution of cellular models with nonlinear kinetics. Cell Growth
Simulator fills this gap by providing the first dedicated web-based solution for building,
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simulating, and analyzing coarse-grained GBA models with up to ten reactions. This upper
limit on model complexity is chosen deliberately to allow users to capture fundamental
principles of cellular resource allocation and proteome efficiency with minimal computational
cost (Doan et al., 2022; Dourado et al., 2023; Ghaffarinasab et al., 2023; Hui et al., 2015;
Molenaar et al., 2009; Scott et al., 2010; Weille et al., 2015).

1.10 Integrative Overview of the Three Studies

Manuscript 1 focused on the role of metabolic complexity in shaping the adaptive potential of
bacteria, particularly of cyanobacteria. Using a pan-genome-scale metabolic model and flux
balance analysis (FBA), we showed that species with larger metabolic networks (generalists)
adapt more readily to novel nutrient environments than species with smaller metabolic
networks (specialists). This finding supports the “toolbox model” (Maslov et al., 2009), in
which a large existing set of enzymes (“tools’) provides multiple evolutionary stepping stones
that facilitate rapid adaptation through horizontal gene transfer (HGT). Our results highlight a
positive feedback loop between complexity and evolvability: organisms with large and
branched metabolic networks benefit disproportionately from each gene acquisition,
accelerating adaptation. These findings contrast with more traditional evolutionary models
(e.g., Fisher's geometric model), which suggest that complexity may hinder adaptive
evolution (Fisher, 1930). Instead, we show that metabolic complexity can be a facilitator of
evolutionary diversification.

Building on this large-scale understanding of metabolic adaptability, manuscript 2 focused on
the resource allocation strategies in the cyanobacteria Synechocystis sp. PCC 6803 using
growth balance analysis (GBA). Linear constraint-based models, such as FBA, generally do
not capture how enzymes and other cellular resources (e.g., proteins, metabolites) are
quantitatively allocated in response to changing environmental conditions. By contrast, GBA
explicitly accounts for metabolite concentrations and their influence on reaction fluxes
through kinetic rate laws (Dourado et al., 2023; Dourado & Lercher, 2020). Compared to a
previous coarse-grained nonlinear model of Synechocystis (Faizi et al., 2018), the GBA
formulation proved to be mathematically simpler yet equally effective in reproducing
observed growth trends and proteome allocation under different light intensities. This
streamlined approach is particularly advantageous for exploring more sophisticated
phototrophic behaviors and extending the model to include additional cellular processes, such
as major photosynthetic complexes or carbon fixation. Both the base model — equivalent to
the model of Faizi et al. (2018) — and our extended GBA model successfully reproduced
experimental observations such as the average proteome fractions and growth rate-dependent
trends (Zaviel et al., 2019). Specifically, as the growth rate shifts from light-limited to light-
saturated conditions, the extended GBA model predicts a decrease in the proteome fractions
of photosystem I (PSI) and photosystem II (PSII) along with an increase in ATP synthase and
cytochrome b6, mirroring experimental observations (Faizi et al., 2018; Zavfel et al., 2019).

Finally, manuscript 3 addressed a practical challenge: the computational and technical barriers
associated with nonlinear modeling of cellular systems. Although GBA offers a robust
approach for modeling self-replicating cells — explicitly incorporating metabolite
concentrations and their effects on reaction fluxes — its implementation traditionally demands
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significant programming expertise and computational resources. To address these challenges,
the Cell Growth Simulator was developed as a user-friendly web application designed for
small-scale, self-replicating cell models. Cell Growth Simulator uses an intuitive spreadsheet
interface, integrates kinetic parameter retrieval from the BRENDA enzyme database (Chang
et al., 2021), and offers interactive visualization tools. This platform not only makes nonlinear
modeling of resource allocation in coarse-grained cellular systems accessible to researchers
with limited programming skills, but it also serves as a valuable tool for fostering
interdisciplinary collaboration and enriching our understanding of cellular metabolism and
growth.
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Abstract

Cyanobacteria exemplify the remarkable ability of bacteria to adapt to new environments
through horizontal gene transfer (HGT), a key driver of genome innovation and ecological
success. However, anecdotal observations suggest that not all bacteria adapt equally: while
certain species frequently diversify into new niches, others remain more specialized. To
investigate the factors governing this variation, we used pan-genomic modeling to examine
how 102 unicellular organisms, including several cyanobacterial strains, respond to over
5,000 different nutrient environments. Our analysis revealed that highly specialized
endosymbionts typically require more than 50 additional metabolic reactions to establish
growth in a novel environment, while generalist species such as E. coli require fewer than
five. Strikingly, several cyanobacteria also exhibit higher adaptability, driven by their larger
metabolic repertoires, which allow for more efficient evolutionary stepping stones via HGT.
Thus, there is a positive feedback between metabolic complexity and evolvability, contrary to
prior theoretical expectations that organismal complexity hinders adaptive evolution.
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2.1 Introduction

Cyanobacteria have played a pivotal role in shaping Earth’s biosphere by pioneering oxygenic
photosynthesis roughly 2.5 billion years ago, fundamentally altering the planet’s atmosphere
and paving the way for the evolution of eukaryotes. Like many unicellular organisms, they
exhibit an extraordinary capacity to adapt to diverse and changing environments (Brooks,
Turkarslan, Beer, Lo, & Baliga, 2011). Different phylogenetic lineages differ widely in the
frequency with which they give rise to new strains or even new species, but it is currently
unclear what determines these differences. The splitting off of new lineages will often be
adaptive, with the new lineage specializing to a different life style or environment. Among
bacteria, such specialization is typically accompanied by the loss of now superfluous genes
from the genome and the acquisition of additional genes via horizontal gene transfer (HGT,
also termed lateral gene transfer) (Koonin & Wolf, 2008; Pal, Papp, & Lercher, 2005). While
classic examples include the massive gene loss in the endosymbiotic bacterium Buchnera (Pal
et al., 20006) or the gain of niche-specific pathways by pathogenic Escherichia coli strains
(Alteri, Smith, & Mobley, 2009), cyanobacteria stand out for their evolutionary longevity and
metabolic diversity — traits that have helped them persist in varied habitats, from open oceans
to extreme terrestrial environments (Chen et al., 2021). As a consequence of these
evolutionary dynamics, bacterial pan-genomes can be partitioned into core genes (found in
almost all strains), shell genes (found in several strains), and cloud genes (restricted to a
single strain) (Koonin & Wolf, 2008). Understanding how HGT can shape the remarkable
adaptability of cyanobacteria offers insights not only into their evolutionary history, but also
into broader questions about the mechanisms underpinning microbial specialization and
innovation.

Bacterial strains of the same species often differ widely in their metabolic capabilities. For
example, a study on E. coli found that individual strains could grow in between 437 and 624
of the tested environments (Monk et al., 2013). Based on such differences, lineages can be
categorized as metabolic generalists or specialists. A prolonged reduction in environmental
complexity — such as experienced by a generalist bacterium becoming a permanent
endosymbiont — causes a corresponding reduction in metabolic complexity, which can be
predicted quantitatively from genome-scale metabolic modeling (Pal et al., 2006). That
bacterial evolution appears to organize itself into short bursts of innovation followed by long
phases of genome reduction (Wolf & Koonin, 2013) indicates that the inverse process — a
specialist evolving into a generalist — is comparatively rare.

In previous work (Szappanos et al., 2016), we utilized metabolic simulations to show that the
standard lab strain E. coli K-12 can adapt to most previously unviable nutritional
environments by acquiring at most three additional enzymes and/or transporters via HGT. In
many cases, different new environments required the acquisition of overlapping gene sets. We
found that complex metabolic innovations requiring multiple enzyme-coding genes can
evolve via the successive acquisition of individual biochemical reactions, where each confers
an additional benefit for the utilization of specific nutrients. This observation indicates an
important role of exaptations in metabolic evolution, where stepwise metabolic niche
expansion can lead to a substantial acceleration of adaptation (Szappanos et al., 2016).
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However, multiple genes can also be acquired simultaneously via horizontal gene transfer.
Successful transfer events of DNA in E. coli appear to co-transfer at most 30kb of DNA (Pang
& Lercher, 2017). A reconstruction of the ancestral metabolic networks of 53 E. coli strains
showed that all metabolic innovations identifiable in silico in this lineage indeed arose
through the acquisition of a single DNA segment <30kb on one of the branches of the
phylogeny. At the same time, around 10% of innovations relied on the exaptation of
acquisitions on earlier branches of the strain phylogeny (Pang & Lercher, 2019).

These findings demonstrate that complex metabolic innovations can evolve — and have indeed
evolved in E. coli — without the need to resort to neutral explorations of phenotype space.
Such neutral explorations had been suggested earlier as an important facilitator of adaptation
(Barve & Wagner, 2013), but the corresponding non-adaptive evolution of metabolic
networks is expected to be extremely slow, and no direct empirical support has been identified
for this scenario in bacteria (Szappanos et al., 2016). Thus, theoretical, computational, and
comparative genomics considerations indicate that bacterial evolution of metabolic networks
can be understood purely from a consideration of adaptive processes (Szappanos et al., 2016).

It has been suggested that complex organisms adapt more slowly than simple ones owing to
increasing pleiotropic constraints (Fisher, 1930; Orr, 2005). Here, we argue that at least when
metabolic networks are considered, the opposite may be true. More complex networks
provide more raw material for adaptation to novel environments. Prompted by previous
evidence for a broad adaptability of the generalist E. coli (Pang & Lercher, 2019; Szappanos
et al., 2016) and simulations of abstract representations of artificial reaction networks
(Maslov, Krishna, Pang, & Sneppen, 2009), we hypothesize that bacteria with more complex
metabolic systems might be more adaptable than specialists.

Here, we explore this hypothesis in cyanobacteria along with other bacterial organisms by
investigating how the size of metabolic networks affects the adaptability of their metabolic
systems. Using pan-genome-scale metabolic simulations, we show that the ease with which
microbes adapt to novel environments varies widely among species, with metabolic
specialists typically requiring an order of magnitude more gene acquisitions than generalists
adapting to the same environment. The increased adaptability of generalists is highlighted by
their much higher potential for collateral adaptation, i.e. the ability to grow in additional,
unselected environments due to ecologically unrelated previous adaptations. Specialist
species, on the other hand, have largely lost their adaptive potential. When they do adapt,
however, they show a stronger tendency toward exaptation, i.e., they are more likely to re-use
previously acquired enzymes and transporters for subsequent adaptations.

2.2 Results and Discussion

Construction of a pan-genome scale metabolic supermodel from organism-specific
models

To allow coherent simulations of metabolic network expansion through HGT, we first created
a pan genome-scale metabolic supermodel that contained all examined organism-specific
metabolic networks as submodels. The supermodel built from 102 organismal metabolic
models contains 16,018 unique reactions and 7,551 unique metabolites. Fig. 1 shows the sizes
of the organism submodels included. Most metabolites are assigned to the compartments
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extracellular (e), periplasm (p), and cytosol (c) (Suppl. Fig. S2). Several additional
compartments in the supermodel originate from the contributions of four eukaryotic
organisms (Chlamydomonas (iRC1080), Saccharomyces cerevisiae (iIMM904, iND750),
Phaeodactylum tricornutum (1ILB1027 lipid)) and the cyanobacterium Synechocystis sp. PCC
6803 (1iJN678). For the well-studied Escherichia coli str. K-12 substr. MG1655, five different
models were included. We also included metabolic models for 55 other E. coli and Shigella
strains (Monk et al., 2013). Further details about the organisms and metabolic models
included are listed in Suppl. Table S1.

Branching points in metabolic networks occur when multiple reactions produce and/or
consume the same metabolite. One function of such branching points is to link alternative
pathways to central metabolism. As expected, we find that larger metabolic networks tend to
be less linear, i.e., they contain a lower proportion of metabolites that are consumed and
produced by less than three reactions (Spearman’s p=-0.42, P=0.04; Suppl. Fig. S3).

P. tricornutum (iLB1027_lipid) -
E.coli(iML1515
S. enterica (STM_v1_0)—
K.pneumoniae (iYL1228
Chlamydomonas (IRC1080) -
Y. pestis (iPC815
S. cerevisiae (IMM904) -
G. metallireducens (iAF987
B. subtilis (iYO844)—
C. difficile (iCN900
M. tuberculosis (iEK1008)—
P.berghei (IAM_Pb448
P.putida (iJN746)—
A.baumannii (ICN718
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Figure 1. The models included represent a broad range of metabolic complexity.
The bars show the number of metabolic reactions for each model that contributed to the
pan-genome-scale supermodel. Only one representative strain and model is shown for
each species. Red bars indicate eukaryotic models. Suppl. Fig. S1 shows the
corresponding information for additional strains and models.

We used flux balance analysis (FBA) (Orth, Thiele, & Palsson, 2010; Watson, 1984) to
estimate the ability of each submodel to grow in each of a large number of nutritional
environments. To make the results comparable, we used the same general biomass reaction
for all organism-specific submodels, i.e., each metabolic system was required to produce the
same metabolic precursors for cellular growth (Methods). We examined two sets of
nutritional environments: one set that largely contains typical wet lab growth media (Henry et
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al., 2010), including those assayed in the Biolog phenotyping system; and another set of
random minimal media, each comprising a combination of carbon, nitrogen, sulfur, and
phosphorus sources plus trace elements.

As most models cannot grow in any of the random minimal environments, we checked
whether all models can grow in a medium that supplies all possible nutrients. Only three
models are not viable in this maximally rich condition: the hyperthermophilic bacterium
Thermotoga maritima (1LJ478), the parasitic protozoon Trypanosoma cruzi Dm28c (iLS312),
and the endosymbiotic bacterium Buchnera aphidicola (1ISM199). This is because the general
biomass objective function contains more amino acids than the original biomass functions of
these models. Therefore, we included the missing essential reactions (1, 13, and 5 reactions,
respectively; Suppl. Table S2) to enable these models to grow on this fully rich medium. We
chose not to exclude these models from further analyses, as the ability of extreme specialists
to adapt to new environments is one of the questions we aim to explore.

As shown in Fig. 2, the minimal random environments are too restricted for most modeled
organisms and hence provide limited insights into the growth of the submodels in the real
world. In contrast, almost all submodels can grow in at least some of the wet lab
environments, with the most versatile model — E. coli — growing in 36% of wet lab media,
while the cyanobacterium Synechocystis sp. PCC 6803 achieves growth in 8% of these
conditions (Fig. 2). The distribution of the fraction of viable wet lab environments across
submodels is bimodal (Suppl. Fig. S4), naturally dividing these organisms into generalists
and specialists; we set the dividing line at growth in 20% of assayed media. As expected, the
same three organisms unable to grow in the full medium are also unable to grow in any wet
lab environment. To guard against any biases introduced by the general biomass function, we
repeated this analysis with using the generation of energy (conversion of ADP to ATP) as the
objective function, with qualitatively similar results (Suppl. Fig. S5).

Random environments | Wet lab environments

E. coli (iML1515 -

S. enterica (STM_v1_0)
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Figure 2. The fraction of viable environments differs widely across submodels, both for
random minimal environments (green bars to the left) and for common wet lab environments
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(blue and red bars to the right). The dotted vertical line at 0.2 indicates the threshold for
partitioning metabolic systems into generalists (blue) and specialists (red). Models are ordered
top to bottom by decreasing genome size. Suppl. Fig S6 shows the corresponding results
when using energy production instead of biomass production as the objective function.

More complex networks are more adaptable

We next quantify the difficulty for an organism to adapt to new environments. For each
submodel and each environment in which it is currently unable to grow, we identified the
minimal number of reactions that have to be added to produce biomass; below, we refer to
this number as the added reactions. The distribution of added reactions per wet lab
environment varies widely across organisms (Fig. 3a, including only one representative for E.
coli). Results are quantitatively similar when considering random instead of wet lab
environments (Suppl. Fig. S6), and qualitatively similar when using energy generation
instead of biomass production as the objective function (Suppl. Fig. S7).

The four smallest and most specialized metabolic networks require the largest number of
added reactions to adapt to new environments. The endosymbiont Buchnera aphidicola needs
to add on average 51.7 reactions to reach new environments. Similarly, the pathogen
Helicobacter pylori, which exclusively lives in human stomachs, needs on average 33.7
additional reactions. Plasmodium berghei, which is a protozoan parasite that causes malaria in
rodents, requires on average 83.0 reactions to be viable in a new environment. Finally, the
parasite Trypanosoma cruzi Dm28c requires on average 129.1 reactions. All four organisms
are highly specialized to one or a few specific, stable environments. Accordingly, their
metabolisms show very little flexibility, reflected in very small numbers of metabolic genes
(B. aphidicola: 199 metabolic genes out of a total of 517 genes (Shigenobu, Watanabe,
Hattori, Sakaki, & Ishikawa, 2000); H. pylori: 341 metabolic genes out of 1590 total genes
(Tomb et al., 1997); T. cruzi: 312 metabolic genes out of 1430 (De Pablos & Osuna, 2012); P.
berghei: 448 metabolic genes out of 5216 (Otto et al., 2014)). At the other end of the
spectrum in Fig. 3a is E. coli: the standard lab strain K12 (iML1515) requires on average 2.55
and at most 6 reactions to adapt to any of the tested environments. The cyanobacteria
Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 require similarly low
numbers of extra reactions on average — 3.27 and 3.99, respectively.

Although it is likely that many properties influence the ability of a metabolic system to adapt
to new nutritional environments, network size alone explains 56% of the variance across all
assayed models (Fig. 3b; Spearman’s p = -0.75, P = 3.57x107). The solid line in Fig. 3b
shows the best-fitting power law, added reactions = a x (gene count)”. The best-fitting
exponent is b = 2.87 (95% CI = [3.47, 2.28]), which is slightly larger than the b = 2 expected
from abstract models of metabolic network expansion (Maslov et al., 2009). The two
cyanobacterial strains, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942,
fall below the fitted curve in Fig. 3b. In other words, they exhibit negative residuals; they
require fewer added reactions than the power law predicts based on their gene counts. This
deviation is consistent with their photoautotrophic physiology. External energy from light and
reliance on CO: fixation lessen the need to recruit new catabolic modules when the medium
changes. Thus, adaptation mainly hinges on a small set of transport and cofactor steps rather
than on the addition of entire pathways.
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The dataset contains E.coli models of various sizes, with between 904 and 1,516 metabolic
genes. These mostly differ only marginally in their adaptability (Suppl. Fig. S8): the average
number of added reactions for generalist E. coli (including nine strains with auxotrophies) lies
between 2.40 and 2.97, while the average number of added reactions for specialist E. coli
ranges from 2.30 to 5.22. The outlier requiring the largest number of additional reactions is E.
coli DH1 (iEcDH1 1363; Suppl. Fig. S8), which is auxotrophic for thiamine (Meselson &
Yuan, 1968) due to the loss of a complete operon (Monk et al., 2013). Similar to the picture
across species (Fig. 3b), and despite the low variation in adaptability, we find a substantial
negative correlation between the average number of added reactions and network size when
comparing different E. coli strains (Spearman’s p=-0.60, P=6.3x10°, excluding strains with
auxotrophies).

Do different metabolic subsystems contribute unequally to the adaptations observed in the
simulations? To answer this question, we utilized the high-quality subsystem annotations
available for the 55 strain-specific E. coli models. We repeated the analysis of environment-
specific adaptation for each E. coli strain, but restricting gene acquisitions to genes from other
E. coli strains. For this purpose, we created a second pan-genome-scale metabolic supermodel
exclusively for the 55 E. coli strains (see Methods, “Analysis of E. coli metabolic subsystems
involved in adaptations”), containing 1,644 unique metabolites and 2,493 unique reactions
from a total of 69 metabolic subsystems. Our simulations predicted the involvement of genes
from 27 subsystems in environment-specific adaptations (Suppl. Table S3). 19 of these
subsystems coincided with those observed in a comparative genomics analysis of adaptive
gene acquisitions across E. coli strains (Pang & Lercher, 2019) (P=0.026, OR=3.43, Fisher’s
exact test; Suppl. Table S3). However, the odds ratios for observing gene acquisitions from a
specific subsystem (compared to all other subsystems) differ markedly between our
simulations and those inferred from comparative genomics (Suppl. Table S3). This
discrepancy indicates that the simulated nutritional environment changes may not be directly
representative of those experienced by real E. coli strains, possibly because E. coli strains tend
to transition between relatively similar, host-associated environments.
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Figure 3. The number of additional reactions required for adaptation decreases with
increasing genome size. (a) Distributions of added reactions, summarized as violin plots.
The height at each point in a “violin” indicates the local density of the distribution for the
given model. Models are ordered top-down by decreasing size. (b) The average number of
added reactions (log scale) plotted against metabolic gene count for each model. The green
line shows the best fitting power law, added reactions = a x (gene count)’. In both panels,
colors distinguish specialists (red) and generalists (blue). Organisms with known
auxotrophies are shown as open circles. The 55 E. coli strains are represented by the
iML1515 model (blue triangle) only. For this figure, only wet lab environments are
considered.

Specialists often re-use gained reactions in later adaptations

If an organism adapts to a given environment by acquiring a matching set of metabolic
reactions, it can happen that the same reactions now also facilitate growth in another
environment, where the organism was unviable before. With few exceptions, such collateral,
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unselected-for adaptation happens more frequently for generalists than for specialists across
species; this trend is reversed when comparing different E. coli strains, possibly because the
repair of auxotrophies facilitates growth in multiple environments (Suppl. Fig. S9; see also
Refs. (Barve & Wagner, 2013; Hosseini & Wagner, 2016)).

But even if the reactions acquired to adapt to environment 4 do not provide immediate access
to environment B, they may still provide a subset of the reactions required to adapt later to
this second environment. We quantify the propensity to profit from adaptations in this way
with an exaptation index (see Methods). One might hypothesize that while specialists show
little collateral adaptation, they may show a high potential for step-wise exaptation, for
example if added reactions remove an auxotrophy. As expected from this hypothesis, Suppl.
Fig. S10 shows that we indeed tend to find higher exaptation indices for specialists than for
generalists; moreover, the propensity for such exaptations is higher for specialists with small
genomes compared to specialists with larger genomes. The cyanobacteria Synechocystis sp.
PCC 6803 and Synechococcus elongatus PCC 7942 behave more like generalists. The few
reactions they acquire to enter one medium are often reused in others through collateral
adaptation, while they rely modestly on stepwise exaptation.

2.3 Conclusions

Adaptations arise by extensions of existing phenotypes and genotypes. In specialists with
small genomes, adaptation to new ecological niches is typically difficult, as it demands the
simultaneous acquisition of multiple mutations or genes. As a consequence, specialists with
simple genomes may often be evolutionary dead-ends. The smallest and most specialized
metabolic systems, those of Buchnera aphidicola (an endosymbiont of aphids), Trypanosoma
cruzi Dm28c (an internal human pathogen), and Helicobacter pylori (an endosymbiont of the
human stomach), are trapped in their endosymbiotic life style, having all but lost their
adaptive potential. The opposite is true for organisms with complex genomes — such as
Synechocystis or E. coli — whose larger “toolboxes” (Maslov et al., 2009) can more easily be
extended for novel tasks.

The observed relationship between metabolic network size and adaptability leads to a positive
feedback between complexity and evolvability. This conclusion is the exact opposite of what
is suggested by Fisher’s geometric model (Fisher, 1930; Orr, 2005). Fisher’s model supports
the idea that more complex systems are less likely to adapt through natural selection.
Specifically, it has been argued that a mutation of a given size is less likely to be favorable in
complex than in simple organisms because it affects many phenotypic traits simultaneously in
the former. In support of this idea, it has been observed that genes encoding proteins involved
in many protein-protein interactions are less likely to be horizontally transferred than genes
encoding less highly-connected proteins (Cohen, Gophna, & Pupko, 2011; Jain, Rivera, &
Lake, 1999). This effect might be expected, as the interaction between two proteins requires
the co-evolution of the amino acid sequences directly involved in the contact, and hence a
protein encoded by a newly acquired gene may not bind sufficiently strongly to existing
proteins of the host. Conversely, different enzymes that interact in a metabolic network
perform their molecular functions independently, and their amino acid sequences do not need
to be finetuned with respect to each other. This line of argument suggests that metabolic genes
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with high connectivity may be integrated easily into an existing network, while genes with
high connectivity in the protein-protein interaction network may not.

However, while the amino acid sequences of different enzymes may be independent of each
other, their expression has to be coordinated precisely. Thus, finetuning is necessary also for
the integration of metabolic genes into an existing network, although the adjustments must
occur in terms of regulatory changes rather than amino acid sequence changes. That metabolic
complexity and protein-protein interaction complexity appear to have opposite effects on
adaptability might then be explained by faster adaptive evolution of gene expression
compared to functional gene properties (Lenski, 2017; Lozada-Chavez, Janga, & Collado-
Vides, 2006).

Exaptation — the utilization of metabolic genes acquired in previous adaptations for adaptive
purposes in a new environment — plays an important role in the adaptation of both generalists
and specialists, although in different ways. Generalist species, but not specialist species, show
a high degree of collateral adaptation, i.e., previous adaptations often enable growth in
environments other than those experienced by the organisms’ ancestors (Barve & Wagner,
2013). Conversely, specialist species that acquire new metabolic genes in the adaptation to
one environment are more likely to re-use (exapt) these genes in later adaptations to other
environments; thus, stepwise metabolic niche expansion will play an even stronger role in the
adaptation of specialists than previously observed for the generalist E. coli (Szappanos et al.,
2016), and might thus be the facilitator of rare genome expansions (Koonin & Wolf, 2008).

2.4 Materials and Methods

Supermodel generation

We started with 109 genome scale models (GSMs) downloaded from the BiGG database
(Schellenberger, Park, Conrad, & Palsson, 2010). We removed seven models of multicellular
eukaryotes. As we are specifically interested in variations in metabolic model size and as the
BiGG database contains only few species with very small metabolic systems, we added the
model for Buchnera aphidicola str. APS (Macdonald, Lin, Russell, Thomas, & Douglas,
2012). Thus, 102 GSMs (termed “submodels” in this work) contributed to the supermodel
(Suppl. Table S1). As a preprocessing step, we checked whether reactions and metabolites
from different submodels but with the same IDs represented the same biochemical reaction; if
not, we renamed them. Reactions were compared on the basis of stoichiometry and
reversibility, while metabolites were compared on the basis of their chemical formulas if these
were available.

A preliminary supermodel was formed as the union of the reactions and metabolites from all
submodels. As detailed below, we then curated this preliminary model by ensuring mass
balance and by removing energy generating cycles (EGCs) (Fritzemeier, Hartleb, Szappanos,
Papp, & Lercher, 2017). While each individual model passes these quality checks, the
reactions in the merged supermodel may be combined in ways that violate thermodynamic
laws or the mass balance. Mass balance is considered first, because proper mass balance is a
requirement for the EGC removal. The final supermodel was thus mass-balanced and had no
energy-generating cycles.
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Correction of mass balance

Mass balance of a reaction is generally ensured by contrasting all atoms of the educts and all
atoms of the products. However, due to incomplete data, the mass balance for many reactions
is not known; removing all reactions with uncertain mass balance would render most of the
models non-functional. To circumvent this problem, only the mass balance of the exchange
reactions was considered: the number of atoms of the same kind (e.g., carbon) entering the
model has to equal the number of corresponding atoms leaving the model. The only reactions
that allow exchange of molecules with the model environment are exchange reactions and
biomass reactions. At the same time, these are the only reactions in a network that are allowed
to be imbalanced. We first removed exchange reactions and biomass objective functions that
contain a metabolite of unknown composition from the model, as for these we cannot
guarantee mass balance. To identify potentially imbalanced reactions, we fixed the net
exchange of atoms to zero. We then removed all reactions that are blocked in this situation.

Removing erroneous energy-generating cycles

Another problem occurring when combining multiple GSMs is the formation of erroneous
energy generating cycles (EGCs) (Fritzemeier et al., 2017; Szappanos et al., 2016). In GSMs,
such thermodynamically impossible cycles can produce energy equivalents (e.g., by
synthesizing ATP) in infinite amounts without the consumption of nutrients (Fritzemeier et
al., 2017). Thermodynamics are strongly influenced by metabolite concentrations. However,
GSMs consider thermodynamics only approximately through the directionality of reactions.
Thus, combining two networks can cause the formation of EGCs even if the individual
networks are EGC-free.

Based on a previously published algorithm (Fritzemeier et al., 2017), we constructed a greedy
approach to build organism-specific EGC-free supermodels. We chose not to build one
supermodel for all analyses, as the order of adding metabolic networks to the growing
supermodel can affect the final model, and as we wanted to study the adaptability of each
organism starting from a model from which none (or only a few) reactions had been removed.

From the preliminary, mass-balanced supermodel, we first considered the set of reactions of
the focal organism and removed any EGCs present. We then iteratively added the remaining
submodels, each time removing all EGCs before proceeding to the next one. The order of
adding organisms was determined by the initial number of EGCs; models with fewer EGCs
were always added first.

To remove EGCs, we first determined the smallest set of reactions capable of producing
energy equivalents in the model. This problem was solved in previous work with the ARM
MILP algorithm, but here we instead used the ARM LP algorithm (see Methods, “Active
reaction minimization”). We randomly chose one reaction in this cycle; we deleted the
reaction if it was irreversible, and constrained it to be irreversible in the opposite direction if it
was reversible. We repeated this process until no more EGCs were present. This procedure
resulted in one mass-balanced, EGC-free supermodel for each organism-specific model in our
dataset.
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Active reaction minimization

Mixed integer linear programs (MILP) are frequently used to extend FBA, e.g., in ROOM
(Satish Kumar, Dasika, & Maranas, 2007), gapfind, and gapfill (Shlomi, Berkman, & Ruppin,
2005). In many of these problems, the objective is active reaction minimization (ARM). The
pan-genome-scale model in this work is much bigger than any genome-scale models. Current
methods of minimizing the number of active reactions under flux balance constraints cannot
be applied due to the exponential complexity of this problem. We here use an approximate
method that leads to major speedups and minor inaccuracies. A corresponding linear
approximation has also been used in combination with the Gapfill algorithm (Thiele, Vlassis,
& Fleming, 2014).

We relax the following ARM MILP problem into a sequence of ARM LP* for k € {1, ..., n}
problems. We use the property of the simplex algorithm to find sparse solution vectors.

ARM MILP:
min(zbi>
iEB
s.t.:
S+xv=20
liSviSuiViER
ARM LPk;

min(z
i€B
S.t.:

S*xv=20

liSUiSuiViER

1
vt max(ef , |[vF1|) D

Table 1. Definition of variables of the ARM LP.

S e RMI x RIRl | stoichiometric matrix

v € RIFI Vector of fluxes

[ € RIRI Vector of lower bounds

u € RIEI Vector of upper bounds

b € {0,1}/8! Vector of binary variables

Re{l,..,m} Set of m reaction indices

BCR Set of indices that are objective of the optimization

vk Flux of the i-th reaction in the k-th optimization (0 if
undefined)

k Optimization step counter
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n Total number of optimization steps

i-th upper bound of weight factor in optimization round k

~

In this sequence of linear problems, the optimization function of the (k + 1)-th problem is
reweighted with the solution of the k-th problem. The initial values for & are either set to one
or to some positive random values. For the (k + 1)-th optimization, we recalculated

gt i=gfx 1/1()~

In order to show the practical application of our linear approximation of active reaction
minimization, we show the comparison between the MILP result and the LP approximation.
To limit the computation time to a reasonable span, we allowed the solver for the MILP eight
parallel threads per problem and a maximum time of two minutes per problem. Thus, some
results are suboptimal, but the gap value accounts for the maximal possible difference to the
optimal value. For the ARM LP calculations, the linear problem was solved twelve times and
the best solution was kept. After every fourth optimization, & was reinitialized with random
values and v is set as undefined.

Suppl. Fig. S11a shows both results in direct comparison for a total of 2830 problems we
solved with the E. coli model iAF1260 and the standard biomass reaction. The ARM LP
performs better for some problems with the non-optimal MILP solutions, i.e., with a gap
greater zero. This is also the case for the exact solutions. We suspect the solver to have some
numerical issues and thus to give a non-optimal solution in four MILP cases. All results were
successfully verified with FBA. The differences between the pairwise results are shown in
Suppl. Fig. S11b. For over 50% (1587 of 2830) of the problems, the ARM LP found a better
or equally good optimal value. For 75% of the problems, the ARM LP solution differed by at
most two reactions from the MILP ARM solution. Without a pre-specified time limit, the
MILP ARM computation times vary widely (from seconds to hours), while the ARM LP
problems are always solved in split seconds.

Adaptation cost

The adaptation cost is the minimal number of reactions an organism has to obtain in order to
survive in an environment that did not support growth beforehand. The environment is
defined as the set of nutrients available for growth, and viability is defined as the ability to
produce biomass at a rate above 0.01 mmol gDW-! h!. This calculation depends on two major
factors: the definition of the environments, i.e., the growth media, and the choice of the
biomass objective function for a model.

Sets of environments

All molecule types that can be taken up by the supermodel are potential nutrients.
Environments differ by which of these potential nutrients are present. We analyzed two sets of
environments. The first set (“wet lab media”) is taken from the Seed database (Henry et al.,
2010) and represents wet lab growth media. The environments in the second set (“random
media”) are derived from a minimal growth medium for the E. coli model iAF1260. Each of
these environments consists of one carbon, one nitrogen, one sulfur, and one phosphorous
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(CNPS) source, accompanied by trace elements essential for growth (Szappanos et al., 2016).
The complete set is generated by randomly choosing 5000 such combinations.

Biomass objective functions

Each model includes the definition of at least one biomass reaction. For the further analyses,
we selected one of these. The biomass reactions of 16 models were blocked in the mass
balance step. These models did not have a valid biomass reaction anymore and were excluded
from the analyses that were based on the model-specific biomass functions. To make the
submodels comparable, we defined a general biomass reaction (based on the iAF1260
biomass reaction) that contains only a set of core metabolites shared by all organisms (ribose
nucleotides; deoxyribose nucleotides; amino acids; water) and an energy dissipation term
(converting ATP to ADP + Phosphate + H"). However, for a subset of three models that were
unable to grow on maximally rich medium using this general objective function, we
performed the adaptation cost analysis to identify essential reactions. Subsequently, we
supplemented these models with the essential reactions to allow them to grow on maximally
rich medium. In addition, we also considered a biomass reaction that consists only of the
energy dissipation term, thus indicating if a model is able to produce energy from the
nutrients. Suppl. Fig. S12 shows the percentages of environments (wet lab or random) in
which the individual submodels can produce a non-zero flux through the different biomass
reactions.

Calculation of adaptation cost with ARM LP

The mass-balanced and EGC-free, organism-specific model is formally a submodel of the
organism-specific supermodel (see above). For a given environment and both the submodel
and the supermodel, we used standard FBA to test if biomass can be produced above the
threshold of 0.01 mmol gDW-! h'! (“growth”). Adaptation cost were calculated for
environments that support growth of the supermodel but not of the submodel. For each such
environment, we used ARM LP to estimate the minimal number of reactions that have to be
added from the supermodel to the submodel to facilitate growth. This procedure was
performed for each combination of organism-specific model, environment, and biomass
reaction.

Analysis of E. coli metabolic subsystems involved in adaptations

To examine the contribution of specific metabolic subsystems to adaptability, we constructed
a second pan-genome-scale metabolic supermodel restricted to the 55 E. coli strains. This
reduced supermodel was built using the same procedure described above, ensuring that
simulated gene acquisitions were limited to genes present in other E. coli strains. For each
strain-specific submodel, we calculated the adaptation cost in the SEED wet-lab media, using
the model-specific biomass objective function. Each acquired gene was assigned to a
metabolic subsystem based on the consistent subsystem annotations provided with the
models.

For each gene, we computed its gain frequency per simulation as the total number of
acquisitions across all simulations, divided by the number of model-environment
combinations in which the gene was both absent from the model and required for growth (i.e.,
where the model was non-viable prior to gene acquisition). Aggregating across all models and
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environments, we then calculated the mean gain frequency for each subsystem. The odds ratio
for a given subsystem was defined as the mean gain frequency within the subsystem, divided
by the mean gain frequency across all other subsystems. This odds ratio quantifies whether
genes from a particular subsystem were disproportionately acquired during simulated
adaptations.

We then calculated an empirical P-value to test if gene acquisitions from a given subsystem
were statistically significantly higher than expected under the null hypothesis that genes from
all subsystems were equally likely to be gained. In each of N=100,000 randomizations, we
randomly permuted the subsystem labels of all genes and recalculated the odds ratio. For each
subsystem, the empirical P-value was estimated as the fraction of simulations where the odds
ratio from the random assignment was equal or higher than the odds ratio observed in the
original simulations.

To compare our simulation results to metabolic gene acquisitions inferred from comparative
genomics of sequenced E. coli strains, we used data from the study by Pang et al. (Pang &
Lercher), which inferred gene acquisitions along the branches of a phylogenetic tree of 55 E.
coli strains. We calculated odds ratios and empirical P-values as described above.

Collateral Adaptation Index

We defined a collateral adaptation index to quantify the probability that adaptation to one
environment would lead to a “collateral” adaptation to other, unselected-for environments.
For each submodel, we first identified the n» random environments in which it cannot produce
biomass (unviable environments). For each of these environments in turn, we identified the
smallest set of reactions from the supermodel that have to be added to enable biomass
production; these reactions define the adaptation cost. We then determined in how many of
the n-1 remaining previously unviable environments this extended model can grow. If we
denote this number m, then the collateral adaptation index is defined as the corresponding
fraction, m / (n-1). Thus, an index of 1 indicates collateral adaptation to all environments,
while an index of 0 indicates no collateral adaptation. This definition was similarly described
elsewhere (Barve & Wagner, 2013). To make sure that the adaptations considered are indeed
collateral and not selected in the initial environment, we considered only environments that
had no overlap with the source environment, i.e. none of the carbon, nitrogen, sulfur or
phosphate source from the adapted environment was contained in the tested environments.

Exaptation Index

Assume that to adapt to grow in a new environment m,, an organism needs the additional

reaction set ;. To grow in a second distinct environment m,, the same organism may need

the reaction set 1. The fraction of preadapted reactions can be defined as f, m, = |r1|: er|
2

We define the exaptation index as

em, := mean (fmi,mj) ,

Where the mean is calculated across all m; € M, and M is the set of environments distinct
from m; in which the un-adapted submodel was unviable. For example, an exaptation index

em; = 0.5 means that on average, the organism already acquired half of the reactions needed
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to adapt to further environments, while an exaptation index of em; = 1 indicates collateral

adaptation.
Hardware, Software

All calculations were computed with the constraint-based modelling package “sybil” in GNU
R, using IBM ILOG CPLEX as the solver. Calculations were done on a compute cluster with
a peak usage of about 600 CPUs. The whole process is implemented as a pipeline reducing
human interaction to a minimum. Frequent control points ensure data integrity and correctness
of calculations. The code used in our simulations, as well as the corresponding results, are
available on a GitLab repository at the following link: https://github.com/Sijr73/Supermodel
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Table S1. Organism specific models and their properties. The models in this table are sorted in ascending order by the number of metabolic
genes. The column “55 E.coli” indicates, whether models from the publication Monk et al. (2013).

Gene Metabolite Reaction

Model ID Organism count count count 55FE.coli  TaxonomyID  PubMed ID
e _coli_core Escherichia coli str. K-12 substr. MG1655 137 72 95 511145 26443778
1SM199 Buchnera aphidicola str. APS 199 298 297 22513857
iIS312 Trypanosoma cruzi Dm28c¢ 312 606 519 1416333
iIS312_Epimastigote Trypanosoma cruzi Dm28¢ 312 606 519 1416333

iIS312_Amastigote Trypanosoma cruzi Dm28c¢ 312 606 519 1416333
iIS312_Trypomastigote  Trypanosoma cruzi Dm28c 312 606 519 1416333

iIT341 Helicobacter pylori 26695 339 485 554 85962 16077130
1AM_Pb448 Plasmodium berghei 448 903 1067 5821 29300748
1AM_Pc455 Plasmodium cynomolgi strain B 455 907 1074 1120755 29300748
1AM_Pk459 Plasmodium knowlesi strain H 459 909 1079 5851 29300748
1AM _Pv461 Plasmodium vivax Sal-1 461 909 1078 126793 29300748
1AM_Pf480 Plasmodium falciparum 3D7 480 909 1083 36329 29300748
iLJ478 Thermotoga maritima MSB8 482 570 652 243274 19762644
iNF517 Lactococcus lactis subsp. cremoris MG1363 516 650 754 416870 23974365
iSB619 Staphylococcus aureus subsp. aureus N315 619 655 743 158879 15752426
1JN678 Synechocystis sp. PCC 6803 622 795 863 1148 22308420
1HN637 Clostridium ljungdahlii DSM 13528 637 698 785 748727 24274140
iNJ661 Mycobacterium tuberculosis H37Rv 661 826 1025 83332 17555602
1AF692 Methanosarcina barkeri str. Fusaro 692 628 690 269797 16738551
iCN718 Acinetobacter baumannii AYE 709 888 1015 509173 29692801
1JN746 Pseudomonas putida KT2440 746 909 1056 160488 18793442
iND750 Saccharomyces cerevisiae S288¢ 750 1059 1266 559292 15197165
1JB785 Synechococcus elongatus PCC 7942 785 768 849 1140 27911809
iPC815 Yersinia pestis CO92 815 1552 1961 214092 21995956
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Gene Metabolite Reaction

Model ID Organism count count count 55 E.coli  TaxonomyID  PubMed ID
iSynCJ816 Synechocystis sp. PCC 6803 816 928 1044 1148 -
1YO844 Bacillus subtilis subsp. subtilis str. 168 844 991 1250 224308 17573341

Staphylococcus ~ aureus — subsp.  aureus
1YS854 USA300 _TCHI1516 866 1335 1455 451516 30625152
iCN900 Clostridioides difficile 630 900 885 1229 272563
1JR904 Escherichia coli str. K-12 substr. MG1655 904 761 1075 511145 12952533
iMM904 Saccharomyces cerevisiae S288¢ 905 1226 1577 559292 19321003
1AF987 Geobacter metallireducens GS-15 987 1109 1285 269799 24762737
iEK1008 Mpycobacterium tuberculosis H37Rv 1008 998 1226 83332 29499714
iLB1027_lipid Phaeodactylum tricornutum CCAP 1055/1 1027 2172 4456 556484 27152931
iSDY_1059 Shigella dysenteriae Sd197 1059 1890 2540 X 300267 24277855
iRC1080 Chlamydomonas 1086 1706 2191 3052 21811229
iSBO 1134 Shigella boydii Sb227 1134 1910 2592 X 300268 24277855
iSbBS512 1146 Shigella boydii CDC 3083-94 1147 1912 2592 X 344609 24277855
iSFxv_1172 Shigella flexneri 2002017 1169 1918 2639 X 591020 24277855
iSFV_1184 Shigella flexneri 5 str. 8401 1184 1917 2622 X 373384 24277855
iS_1188 Shigella flexneri 2a str. 2457T 1188 1914 2620 X 198215 24277855
iSF_1195 Shigella flexneri 2a str. 301 1195 1917 2631 X 198214 24277855

Klebsiella pneumoniae subsp. pneumoniae
1YL1228 MGH 78578 1229 1658 2262 272620 21296962
iSSON_ 1240 Shigella sonnei Ss046 1240 1938 2694 X 300269 24277855
1AF1260 Escherichia coli str. K-12 substr. MG1655 1261 1668 2382 511145 17593909
1AF1260b Escherichia coli str. K-12 substr. MG1655 1261 1668 2388 511145 19840862
iIECH74115_1262 Escherichia coli O157:H7 str. EC4115 1262 1918 2695 X 444450 24277855

Salmonella enterica subsp. enterica serovar
STM vl 0 Typhimurium str. LT2 1271 1802 2545 99287 21244678
iECED1 1282 Escherichia coli EDIa 1279 1929 2707 X 585397 24277855
iECUMN 1333 Escherichia coli UMNO26 1332 1935 2741 X 585056 24277855
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Gene Metabolite Reaction
Model ID Organism count count count 55F.coli  TaxonomyID  PubMed ID
1G2583 1286 Escherichia coli O55:H7 str. CB9615 1283 1919 2705 X 701177 24277855
1E2348C 1286 Escherichia coli O127:H6 str. E2348/69 1284 1919 2704 X 574521 24277855
iECSP_1301 Escherichia coli O157:H7 str. TW14359 1299 1920 2713 X 544404 24277855
iECNA114_1301 Escherichia coli NA114 1301 1927 2719 X 1033813 24277855
iECs 1301 Escherichia coli O157:H7 str. Sakai 1301 1923 2721 X 386585 24277855
iLF82 1304 Escherichia coli LF82 1302 1940 2727 X 591946 24277855
iECOK1 1307 Escherichia coli IHE3034 1304 1943 2730 X 714962 24277855
iECS88 1305 Escherichia coli S88 1305 1944 2730 X 585035 24277855
ic_1306 Escherichia coli CFT073 1307 1938 2727 X 199310 24277855
iZ 1308 Escherichia coli O157:H7 str. EDL933 1308 1923 2722 X 155864 24277855
iECP_1309 Escherichia coli 536 1309 1943 2740 X 362663 24277855
iUTI89 1310 Escherichia coli UTIS9 1310 1942 2726 X 364106 24277855
iNRGS857 1313 Escherichia coli O83:HI str. NRG 857C 1311 1945 2736 X 685038 24277855
iIAPECO1 1312 Escherichia coli APEC O1 1313 1944 2736 X 405955 24277855
iIEC042 1314 Escherichia coli 042 1314 1926 2715 X 216592 24277855
iUMN146 1321 Escherichia coli UM146 1319 1944 2736 X 869729 24277855
iECABU ¢1320 Escherichia coli ABU 83972 1320 1944 2732 X 655817 24277855
iEcHS 1320 Escherichia coli HS 1321 1965 2754 X 331112 24277855
iECIAI39 1322 Escherichia coli IAI39 1321 1957 2722 X 585057 24277855
iECO103_1326 Escherichia coli O103:H2 str. 12009 1327 1958 2759 X 585395 24277855
iECSF_1327 Escherichia coli SE15 1327 1951 2743 X 431946 24277855
iECDH10B_1368 Escherichia coli str. K-12 substr. DH10B 1327 1947 2743 X 316385 24277855
iBWG_1329 Escherichia coli BW2952 1328 1949 2742 X 595496 24277855
iECO111 1330 Escherichia coli O111:H- str. 11128 1328 1959 2761 X 585396 24277855
iECB_1328 Escherichia coli B str. REL606 1329 1953 2749 X 413997 24277855
iIEC55989 1330 Escherichia coli 55989 1330 1953 2757 X 585055 24277855
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Gene Metabolite Reaction

Model ID Organism count count count 55F.coli  TaxonomyID  PubMed ID
iECD_1391 Escherichia coli BL21(DE3) 1333 1945 2742 X 469008 24277855
iETEC 1333 Escherichia coli ETEC H10407 1333 1964 2757 X 316401 24277855
iB21 1397 Escherichia coli BL21(DE3) 1337 1945 2742 X 469008 24277855
iEcE24377 1341 Escherichia coli E24377A 1341 1974 2764 X 331111 24277855
iECIAIL 1343 Escherichia coli IAI1 1343 1970 2766 X 585034 24277855
iEC1344 C Escherichia coli C 1344 1934 2726 498388 27667363
iEcSMS35 1347 Escherichia coli SMS-3-5 1347 1949 2747 X 439855 24277855
iECSE 1348 Escherichia coli SE11 1348 1957 2769 X 409438 24277855
iEC1349 Crooks Escherichia coli ATCC 8739 1349 1946 2756 481805 27667363
IUMNKS88 1353 Escherichia coli UMNK88 1353 1971 2778 X 696406 24277855
iECBD_1354 Escherichia coli BL21-Gold(DE3)pLysS AG 1354 1954 2749 X 866768 24277855
iIEKO11 1354 Escherichia coli KO11FL 1354 1974 2779 X 595495 24277855
iECO26 1355 Escherichia coli O26:H11 str. 11368 1355 1965 2781 X 573235 24277855
iEC1356_BI23DE3 Escherichia coli BL21(DE3) 1356 1918 2740 469008 27667363
1Y75 1357 Escherichia coli str. K-12 substr. W3110 1358 1953 2760 X 316407 24277855
iEcDH1 1363 Escherichia coli DHI 1363 1949 2751 X 536056 24277855
iEC1364 W Escherichia coli W 1364 1927 2764 566546 27667363
1JO1366 Escherichia coli str. K-12 substr. MG1655 1367 1805 2583 X 511145 21988831
iEcolC_1368 Escherichia coli ATCC 8739 1368 1971 2769 X 481805 24277855
iEC1368 DH5a Escherichia coli DH5[alpha] 1368 1951 2779 668369 27667363
iEC1372_W3110 Escherichia coli str. K-12 substr. W3110 1372 1918 2758 316407 27667363
iIECW_1372 Escherichia coli W 1372 1975 2783 X 566546 24277855
iWFL 1372 Escherichia coli W 1372 1975 2783 X 566546 24277855
iIECDHIMER8569 1439  Escherichia coli DHI 1439 1950 2756 X 536056 24277855
1JN1463 Pseudomonas putida KT2440 1452 2153 2927 160488

iIML1515 Escherichia coli str. K-12 substr. MG1655 1516 1877 2712 511145 29020004
1YS1720 Salmonella pan-reactome 1707 2436 3357 30218022
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Table S2. Essential Reactions Added to Enable Growth on Fully Rich Medium

Model ID Organism Added reaction Name of the reaction
UMPK UMP kinase
iLS312 Trypanosoma cruzi Dm28¢
ADKd Adenylate kinase
DADNTt2 Deoxyadenosine transport
DGSNt2 Deoxyguanosine transport
NTD8 5'-nucleotidase (dAGMP)
polar amino acid transport system via abc system
TYRabc (tyrosine)
polar amino acid transport system via abc system
TRPabc (tryptophan)
AMPt6 AMP transport inout
CMPt6 CMP transport inout
DTMPt6 DTMP transport inout
DURIK1 1 Deoxyuridine kinase
DURIt2 Deoxyuridine transport
MANDpts D-mannose transport via PEP:Pyr PTS
iLJ478 Thermotoga maritima ASNt2r L asparagine reversible transport
iSM199 Buchnera aphidicola LEUTAI Leucine transaminase
ILEabc L-isoleucine transport via ABC system
VAL2r L valine reversible transport
ILETA2 Branched-chain-amino-acid transaminase
PHEabc L phenylalanine reversible transport via abc system

39



Table S3. Common Subsystems with Associated Gains in Simulations and Experiments

Total gains in Total gains in Odds ratio Odds P-value P-value
Subsystem Simulations Experiments Simulations  Experiments Simulations  Experiments
Alternate Carbon Metabolism 659 67 0.48 0.69 0.83 0.98
Arginine and Proline Metabolism 6 4 0.15 1.23 0.58 0.27
Cell Envelope Biosynthesis 16 15 0.21 1.73 0.51 0.02
Cofactor and Prosthetic Group Biosynthesis 2040 2 13.9 0.25 0 0.99
Cysteine Metabolism 4 1 0.69 2.81 0.19 0.10
Exchange 2 1 0.05 0.31 0.65 0.48
Fatty Acid Metabolism 11 2 0.41 0.68 0.19 0.24
Folate Metabolism 652 4 22.8 1.71 0.02 0.2
Inorganic Ion Transport and Metabolism 5 52 0.01 1.5 0.99 0.09
Methionine Metabolism 189 2 3.82 0.33 0.07 0.68
Nucleotide Salvage Pathway 49 7 0.4 1.00 0.56 0.45
S_Alternate_Carbon_source 31 3 0.68 1.51 0.21 0.23
S_Aromatic_Acid Breakdown 17 2 0.05 0.8 0.86 0.62
S_Transport Outer Membrane Porin 1 5 0.01 1.41 0.83 0.27
Transport Inner Membrane 246 56 0.26 1.29 0.95 0.04
Transport Outer Membrane 9 15 0.08 293 0.89 0.001
Tyrosine Tryptophan, and Phenylalanine Metabolism 379 2 16.8 0.74 0.01 0.61
Urea Cycle 49 3 0.94 1.18 0.14 0.19
Valine Leucine, and Isoleucine Metabolism 760 2 23.3 0.66 0.006 0.4
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Figure S1. Networks sizes (number of reactions) of all models combined in the supermodel.
The 55 E. coli models shown in an extra group and are depicted in lighter shade. The taxonomy
ID refers to the NCBI taxonomy and the PubMed ID refers to the respective publication of the
model.
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Figure S3. Small metabolic networks tend to be less branched than large networks. Network
linearity is defined as the fraction of metabolites that participate in only two reactions, i.e.,
metabolites that are intermediates in unbranched pathways. The colors of circles and points
distinguish specialists (red) and generalists (blue). The 55 E. coli strains are represented by the
iML1515 model (blue triangle) only. Organisms with known auxotrophies are shown as open
circles. The highly branched E. coli core metabolism is shown with a red plus sign. Spearman
correlation between network linearity and gene count: p =-0.42, using only iML1515 as
representative for the 55 E. coli.
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Figure S4. Fractions of viable environments for submodels in wet lab environments (seed).
Bars show a single stacked histogram combining 55 E. coli strains (blue) and all other species

(red). The dotted vertical line marks the threshold used to classify models as specialists (left)
versus generalists (right).
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Figure S5. The fraction of viable environments differs widely across submodels, both for
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(blue and red bars to the right), here energy generation as the objective function.

45



E. coli (iML1515

S. enterica (STM_v1_0

K. pneumoniae (iYL1228
Chlamydomonas (iRC1080
P. tricornutum (iLB1027_lipid
M. tuberculosis (IEK1008
G. metallireducens (IAF987
S. cerevisiae (IMM904

C. difficile (iCN900

B. subtilis (iYO844

Y. pestis (iPC815

S. elongatus (iJB785

P. putida (iJN746
A.baumannii(ICN718

M. barkeri (iIAF692

C. ljungdahlii (IHN637
Synechocystis (iJN678

S. aureus (iSB619

L. lactis (INF517

T. maritima (iLJ478

P. berghei (iIAM_Pb448

H. pylori(ilT341
T.cruzi(ilS312

B. aphidicola (iSM199

Model - ordered by network size

160
100 ~

i1S312
@

50

iSB619

Mean adaptation cost (# reactions)

el ——

iAF692

o 3 iJE
iLJ478 iHN637 i

iUN746

0 50 100 150

Adaptation cost (#reactions)

Spearman's p=-0.75

iIAM_Pb448
[

ICN900
_icn71g” IRC1080

iLB1@27 lipid
iEK1008

o)

®
iYO844
iPC815

IAF98 vi 0

{ ]
iYL1228 iML1515

500

Figure S6. The number of additional reactions required for adaptation decreases with
increasing genome size. Same as Fig. 3 of the main text, but considering random environments
instead of wet lab environments. (a) Distributions of added reactions, summarized as violin plots.
The height at each point in a “violin” indicates the local density of the distribution for the given
model. Models are ordered top-down by decreasing size. (b) The average number of added
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the best fitting power law, added reactions = a x (gene count)’, with the best-fitting exponent
b=2.54. In both panels, colors distinguish specialists (red) and generalists (blue). Organisms with
known auxotrophies are shown as open circles. The 55 E. coli strains are represented by the
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Figure S7. The number of additional reactions required for adaptation decreases with
increasing genome size. Same as Fig. 3 of the main text, but considering the generation of
energy as the objective function (instead of biomass production). (a) Distributions of added
reactions, summarized as violin plots. The height at each point in a “violin” indicates the local
density of the distribution for the given model. Models are ordered top-down by decreasing size.
(b) The average number of added reactions (log scale) plotted against metabolic gene count for
each model. The solid line shows the best fitting power law, added reactions = a x (gene count)”,
with the best-fitting exponent b=1.4. In both panels, colors distinguish specialists (red) and
generalists (blue). Organisms with known auxotrophies are shown as open circles. The 55 E. coli
strains are represented by the iML1515 model (blue triangle) only.

47



—
m (@)
g 5 | Spearman's p=-0.39 IECDH1_1363
=
3]
©
)
| .
ETY
S
@ 4
(o]
o
c
O
=
©
s )
o iISBO_1134 ic_1306
% 3 N ISSON_1240
. i 3

o SRR oo Tig iECUMN_1333 LT
: Hal a \ VAR Vol alsl =

[Opi=i-a s (6] v 9 i' &;s A
8 0 <3 iECIAIZ9 1322 © °
s iSbBS512, 11457 V-1184 CigF 1195 ; [ECDH10B 1368 :

1 1
1100 1200 1300 1400 1500
Metabolic gene count

Figure S8. Different E. coli strains show similar adaptabilities, despite variations in genome
size. Analogous to Fig. 3b of the main text, but showing all £. co/i submodels. Colors distinguish
specialists (red) and generalists (blue). Organisms with known auxotrophies are shown as open
circles.

48



E. coli (iML1515

Salmonelia (iYS1720
P. putida (iJN1463

E.coli (iEC13 6 _BI21DE3
E. coli (iEC1349_Crooks
E.coli (EC1344_C

K. pneumoniae (iYL1228

Distributions of the collateral adaptation index per submodel

|
%

%

i
m

P
%

Chlamydomonas (iIRC1080
P. tricornutum (iLB1027_lipid
M. tuberculosis (IEK1008
G. metallireducens (iAF987
S. cerevisiae (IMM904

E. coli (iJR904

C. difficile (ICN90O

S. aureus (iYS854

B. subtilis (iYO844
Synechocystis (iSynCJ816
Y. pestis (iPC815

S. elongatus (iJB785

S. cerevisiae (IND750

P. putida (iJN746
A.baumannii YCN718

saads 1ayjo

M. barkeri (iIAF692

M. tuberculosis (iNJE61

C. ljungdahlii (HN637.
Synechocystis (iJN678

S. aureus (iSB619

L. lactis (INF517

T. maritima (iLJ478

P. falciparum (iAM_Pf480
P.vivax (IAM_Pv461

P. knowlesi (iAM_Pk459
P.cynomolgi (iAM_Pc455
P. berghei (iAM_Pb448

H. pylori{ilT341

T. cruzi(i1S312

T. cruzi (i1S312_Trypomastigote:
T. cruzi (ilS372_Epimastigote
T. cruzi(i1S312_Amastigote:
B. aphidicola (iISM199

E. coli(e_coli_core

E. coli (ECDH1ME8569_1439
E. coli (IWFL_1372

E. coli IECW_1372

E. coli (iEcolC_1368

E. coli (iJ01366

E. coli (iEcDH1_1363
E.coli(iY75_1357

E. COHE‘E 026_1355,

DoRRERRS 2 2 wyw'-*—v-

i
”?

|

N

|
|

E. coli (IEKO1171354
E.coli (iECBD_1354
E. coli (lUMNK88~1353
E. coli (IECSE_1348
E. coli (IECSMS35 1347
E. coli(IECE24377 1341
E. coli(iB21_1397
E. coli (IETEC1333]

E. coli (iECD'
E. coli (IECUMN_1333
E. coli (iEC55989_1330
E. coli (iE 328
E. coli (ECO111-1330.

model - ordered by network size

@
2

(e}
w

i

%

m
o
=2
i
o
[%2)

| n
@
8
N

E. coli IECO103 1326

E. coli (IECDH10B_1368
E. coli (IECIAI39_1322

E. coli (IECHS_1320

E. coli (IECABU_c1320

E. coli (lUMN146_1321

i (IEC042”1314
1312

19
"'

E.co
E. coli (IAPECO1
E. coli (INRG857_1313

E. coli (jUTI89-1310

E. coli iIECP_1309
E. coli(iZ_1308

E. coli(ic_1306

E. coli (IECS88_1305,
E. coli (IECOK1_1307
E. coli (iLF82-1304
E. coli(iECs

E. coli (IECSP_1301
E. coli (iIE2348C_1286

E. coli (iG2583_1286

E. coli IECED1_1282

E. coli (IECH74115_1262
S. sonnei (ISSON_1240

S. flexneri (iSF_1195

S. flexneri (iS_1188
S. flexneri (iSFV_1184

i

==

-

&_»

|
t
|

!
T

«

M

|
v

i

S. boydii (iISBO 1134
iSDY_1059 1 1

0.2 0!4 :
collateral adaptation index

0
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set of reactions from the supermodel that have to be added to enable biomass production. The
collateral adaptation index is then the fraction of the #-1 remaining previously unviable
environments in which this extended model can grow. Each “violin” summarizes the distribution
of the collateral adaptation indices for one submodel. Models in each of the two groups on the y-
axis (top: one representative per species; bottom: E. coli strains) are sorted by gene count. The
mean of each distribution is marked with a vertical line.
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Abstract

Cyanobacteria have emerged as attractive microbial cell factories because of their ability to
convert atmospheric CO> and sunlight into valuable chemicals. To increase their growth and
productivity, one should aim to optimize the allocation of limited cellular resources among
different metabolic processes. Here, we developed two growth balance analysis (GBA) models
for the cyanobacterium Synechocystis sp. PCC 6803. The first model reformulates an existing
coarse-grained, non-linear model of Synechocystis in the GBA framework, thereby drastically
simplifying the mathematical formulation. The streamlined GBA formulation facilitates simple
model extensions, such as the inclusion of additional reactions and reactants. We exploit this
capability by extending the Synechocystis GBA model with a more detailed description of
photosynthesis. The extended model captures the main trends of proteome partitioning across
environmental conditions. Our findings demonstrate that GBA models provide a useful and
easily extensible toolbox for understanding the physiological capabilities of cyanobacteria, their
allocation of cellular resources, and the potential of their bioengineering for optimized biomass
production.
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3.1 Introduction

Photosynthetic cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis,
converting COz and sunlight into biomass. Compared to plants and microalgae, cyanobacteria
exhibit higher photosynthetic efficiency as well as faster growth, and they are more accessible to
genetic manipulations. These features make them an important model organism for designing
microbial cell factories (Santos-Merino et al., 2023). While a vast amount of experimental high-
throughput data — including genomics, transcriptomics, and proteomics — is available (Babele et
al., 2019; Jahn et al., 2018; Matthias et al., 2014; Zaviel et al., 2019), a mechanistic understanding of
cyanobacterial resource allocation from simple principles remains an ongoing challenge in
biotechnology.

Such mechanistic understanding can be sought through computational models, which also allow
the study of phenotypes that are not easily accessible to experiments. Recently, various linear
approaches in computational biology have been used to study resource allocation of organisms at
balanced growth, a steady-state condition where concentrations of cellular components are
constant in time (Dourado et al., 2023; Molenaar et al., 2009). These linear approaches include
genome-scale Models of Metabolism and Macromolecular Expression, ME-models (O’Brien et
al., 2013); Resource Balance Analysis, RBA (Goelzer et al., 2011); and genome-scale models
with enzymatic constraints using kinetic and omics data, GECKO (Sanchez et al., 2017). These
methodologies consider the production cost of macromolecules for catalyzing each reaction by
approximating the kinetic rate laws as a linear relationship between fluxes and the concentration
of their catalysts, ignoring metabolite concentrations and how they influence fluxes via the
saturation of the catalysts (Dourado & Lercher, 2020).

In contrast to these linear cellular models, alternative nonlinear models can explicitly account for
metabolite concentrations and their influence on reaction fluxes through kinetic rate laws.
Molenaar et al. (2009) introduced nonlinear “self-replicator” models, where resource allocation
patterns follow directly from the optimization of the cellular growth rate under basic
physiological constraints. These constraints include a fixed total protein concentration; nonlinear
kinetic rate laws for all modeled reactions, including transporters that exchange mass with the
environment, enzymatic reactions converting internal reactants, and a “ribosome” reaction
producing the total amount of protein required to catalyze all cellular reactions; and mass
conservation accounting for the dilution by growth of all components. Later work (Burnap, 2015;
Faizi et al., 2018) extended this self-replicator approach to simulate photoautotrophic resource
allocation, including physiological processes specific to photoautotrophs, such as photodamage
and carbon cycling.

Cellular models with nonlinear kinetics have been limited to small, coarse-grained descriptions
of cellular physiology (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018; Molenaar et al., 2009).
The main purpose of such small, nonlinear models is to reduce the cellular complexity to only a
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few components and reactions that still provide important insights into the main patterns of
cellular behavior. This simplification is achieved by combining multiple essential enzymes and
metabolic pathways into single catalytic units. These coarse-grained models are useful tools for
identifying metabolic tradeoffs under different conditions without requiring much information
about the organism (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018; Molenaar et al., 2009).
The restriction to simplified cellular models was enforced by the difficulty of numerically
solving nonlinear optimization problems for large-scale models (Wortel et al., 2018). However,
recent studies have shown how the mathematical formulation of such nonlinear problems can be
greatly simplified (Dourado et al., 2023; Dourado & Lercher, 2020). These studies not only
indicate the feasibility of simulating larger nonlinear models, but also shed new light on the
mathematical properties of such models.

Below, to study phototrophic growth in cyanobacteria, we reformulate and extend an existing
model of the cyanobacterium Synechocystis sp. PCC 6803, hereafter simply referred to as
"Synechocystis". Faizi et al. (2018) proposed two coarse-grained nonlinear models for this
organism. The first basic model comprises four reactions: carbon transport (T), metabolism and
carbon assimilation (M), ribosome and protein translation (R), and a “light reaction” catalyzed
by a photosynthetic unit (PSU). The photosynthetic unit in this model is separated into two
components: an "inactive" protein unit P and an "active" unit P*. In this model, photosynthesis
involves the conversion between P° and P*, providing "e" when absorbing light. Faizi et al.
(2018) then propose a second model that also accounts for photoinhibition due to the
photodamage of the active photosynthetic unit at high light intensities, leading to the degradation
of the photosynthetic unit into its amino acid constituents. With both models, the authors
simulated the optimal proteome allocation to the various reactions, considering different
environmental conditions distinguished by the external carbon concentrations a. (not
distinguishing between CO, and HCO3) and the light intensity a;. The simulations require the
solution of a system of differential equations and consider the maximization of growth rate under
the constraints given by mass conservation, reaction kinetics, and the fixed total concentration of
cellular components. The cellular components consist of internal carbon, an amino acid pool, and
one protein acting as a catalyst for each reaction in the model. The growth rate is defined as the
net mass influx of carbon divided by the fixed total mass concentration of cellular components.

Below, we present Growth Balance Analysis (GBA) as an alternative mathematical framework
for modeling phototrophic growth in cyanobacteria. Compared to the methodology in (Faizi et
al., 2018), GBA represents equivalent models with simpler equations that not only facilitate more
efficient calculations, but also allow easier model extensions through additional reactions and
metabolites. As a proof of concept, we first present a GBA model that corresponds to that of
(Faizi et al., 2018) and uses identical parameter values. We then present a second, extended GBA
model capable of predicting the optimal proteome allocation in more detail.

GBA has been introduced before as a general, simplified framework to study completely self-
replicating kinetic models of cells (Dourado et al., 2023; Dourado & Lercher, 2020). The models
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studied by GBA are completely defined by the triple (M, 7, p). Here, Mdenotes a mass fraction
matrix, i.e., an internal stoichiometric matrix normalized by the molecular masses of the

[1¥e4]

reactants and products, which includes a row “p” for the total protein concentration and a column
“r” for a ribosome reaction that produces all proteins; T = t(c, a)denotes a vector of reaction
turnover times, which are functions of internal metabolite concentrations ¢ and external
concentrations a determined by — typically nonlinear — kinetic rate laws; and p denotes the fixed
sum of mass concentrations across all cellular components, which are the metabolites and the
proteins catalyzing the reactions. In the GBA framework, the optimal cell state is found by
solving an optimization problem that is completely defined by the following two algebraic
equations, formulated in terms of flux fractions q: = v/up, where v denotes the mass reaction
fluxes and u is the cellular growth rate (Dourado et al., 2023). The first equation defines the

growth rate u(q, a) as a function of flux fractions and external concentrations,

M7 q, (1)

)a :—F
ua.a) q.-7(pMgq, a)

where M? is the entry in the matrix M corresponding to the ribosome column “r” and the total
protein row “p”. Equation (1) emerges from a reformulation of the balanced growth problem in
terms of dimensionless flux fractions. It expresses the growth rate as a ratio between the
production of total protein mass by the ribosome, and the total proteome investment required to
sustain all reaction fluxes. The second equation simply enforces the constraint on cellular

density,
YiiMig =1, (2)

where we sum over all rows i and all columns j of M. Equation (1) already encodes all the
constraints in Table 1 in terms of f (see Methods and (Dourado et al., 2023) for details), except
for the density constraint captured by equation (2). The vector f determines all system properties
listed in Table 1. This includes the concentrations ¢ (metabolite concentrations ¢, and total
protein concentrationcy,),

c=pMq 3)
and each protein concentration p;allocated to the catalyst or transporter of reaction j,

p; = upq;ti(pMgq, a). 4)

The reaction turnover times 7 are defined by rate laws that depend on metabolite mass
concentrationsc,,, which are in turn uniquely determined by equation (4); here, we use
irreversible Michaelis-Menten rate laws with inhibition. The turnover times 7 of transport
reactions at the cell surface additionally depend on the external concentrations a that define the
environmental condition of interest. Importantly, in GBA, biomass is not an assumed input but
an emergent output determined from first principles: it corresponds to the sum of all intracellular
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components, constrained by total density p. An overview of the parameters, properties, and
equations used to define the base GBA model for Synechocystis is provided in Table 1.

Table 1. The parameters, properties, and equations defining the base GBA model for Synechocystis.

Model parameters

M mass fraction matrix

. C
k.,.: turnover number of reaction j [h™']

K,{l: Michaelis constant of metabolite m in reaction j [g L'!]
1,{: Inhibition constant for external concentration n in reaction j [g L]

p: cellular density [g L]

System properties

v;: flux of reaction j [g L' h']
u: growth rate [h'!]

c: reactant concentration vector (including concentrations ¢ of metabolites
and the total protein concentration cP) [g L]

pj: protein concentration of j [g L]

7j: turnover time of j [h]

Mv = uc ,
Where
Mass conservation S PSU Met R
constraint I 1 0 -0.8 0
M= e |-0.018 1 -0.2 -0.03
AAl o 0 1 -097
p 0 0 0 1
p; = v;7i(c,a)
Reaction kinetics where

constraint

-1 -1 i -1
c.a) = 1 Cm a, 5
HRear =1 | | K | | K 7
m T Cm n n T ay ntan

Total protein constraint

cat m
J

Cellular density
constraint

p=cp+zcm
m
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3.2 Results
Base GBA model: a simple cyanobacterium model including photoinhibition

We first developed a base GBA model of Synechocystis based on the (Faizi et al., 2018) model,
with few modifications that simplify its mathematical description while retaining its key
biological properties (see Figure 1 for a schematic representation of our base GBA model, with
Table 1 listing its details). For any given GBA model, a simple set of equations determining the
balanced growth problem can be derived from first principles (Dourado et al., 2023). These
equations are based solely on the mass balance of reactions within the matrix M, as well as
kinetic parameters and cell density data. The parameters used in our model are equivalent to
those used in the Synechocystis model proposed by Faizi et al. (2018), except for those pertaining
to photosynthesis and diffusion. In contrast to the Faizi model, the GBA framework does not
account for proteins as substrates of reactions. We thus reformulate photosynthesis as a simple
transport reaction “PSU” that imports energy “e” into the system, a mathematically equivalent
approach that preserves the original model’s predictions. We also simplify the Faizi model by
ignoring carbon passive diffusion through the cell membrane, only accounting for an active
import of carbon by the protein transporter “S”. Due to the lack of corresponding experimental
data, the physiological relevance of passive carbon uptake is currently unclear. While the Faizi
model includes both passive and active carbon uptake, its optimal solution under high external
carbon concentration relies exclusively on diffusion, resulting in zero investment into the carbon
transporter. In contrast, our GBA model predicts sustained investment in active carbon transport
by excluding passive diffusion.

We posit that the main effect of the photodamage of proteins is to place an additional burden of
protein production on the ribosome, as damaged photosynthetic units are degraded into amino
acids and need to be replaced. To model the corresponding photoinhibition of growth, we thus
incorporate an inhibition term into the general kinetic rate law (Liebermeister & Klipp, 2006)
describing the ribosome. Accordingly, the light inhibition in our GBA model is quantified by an
inhibition constant I for the ribosome reactionr. The external light intensity x; then modulates
the inhibitory effect defined by this constant (I]). Faizi et al. (2018) adjusted three
photosynthesis parameters in their extended model to minimize the distance between
experimental and simulated growth rates. We do not use these fitted values; instead, we simply
set the inhibition constantl] to a value that ensures that the optimal growth rate of the model
coincides with the last point for the experimental growth rate at 1100 [uE m s!] (100% light
intensity).

In an environment a = (a, a;,), defined by the external concentration of carbon a. (not
distinguishing between C0O, and HCO3 ) and the light intensity a;, the optimal cellular state is the
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set of flux fractions that maximizes the balanced growth rate u under the constraints of mass
conservation, reaction kinetics, and fixed cell density.

We note that the Faizi model employs molar units, while in GBA, all equations are mass-
normalized, which simplifies calculations and promotes consistency. Mass normalization
facilitates the comparison of theoretical calculations with experimental data by providing a
common unit of measurement, reducing the need for complex unit conversions. Thus, we utilized
molecular weights of metabolites to normalize the mass fraction matrix) as well as the Michaelis

constants (K,{l) and turnover numbers (kgat) of the enzymes. Specifically, each K,{lvalue in [mol
L-'] was multiplied by the molecular mass of the corresponding reactant in [g mol™'], resulting in
units of [g L!]. To convert turnover numbers, note that these are usually given in mole of
product per mole of enzyme per unit time. Thus, the kgat values in [h'!] were multiplied by the

molecular mass of the product and divided by the molecular mass of the catalyzing enzyme,
resulting in a different numeric value in the same units, [h!].

To validate our Synechocystis base GBA model, we compared its growth rate predictions across
different light intensities to the Faizi model on which it is based. Figure 2 shows the predicted
growth curves in light-limited (I), light-saturated (II), and light-inhibited (III) conditions for high
(corresponds to 425 ppm of COs: in the air) and low concentrations (in relation to K,,, of carbon
transporter S) of external inorganic carbon. The predictions of the mathematically simpler GBA
model (blue line) closely align with the Faizi model predictions (in red) across the entire range of
growth rates. Additionally, the predictions showed robust agreement with the experimentally
measured growth rates (black diamonds), which were used as the basis for fitting the parameters
of the original Faizi model. Across the light-limited and the light-saturated regime, both the Faizi
and GBA model similarly predict an increase in the growth rate of Synechocystis, reaching a
maximum of 0.108 h'! (equivalent to a doubling time of 6.41 h). Subsequently, transitioning
from the light-saturated to the light-inhibited growth phase, the growth rate begins to decline to
0.093 h'! (corresponding to a doubling time of 7.45 h) as excessive light inhibits the photosystem
unit, resulting in a lower photosystem reaction rate that decreases the growth rate.
Mechanistically, both models elucidate this phenomenon, highlighting the role of excessive light
in inhibiting photosystem function and consequently impeding growth dynamics.

The two models differed in their predictions for the maximum growth rates at a low carbon
concentration, defined as 5% of the high saturating concentration in relation to K,,, of carbon
transporter S (Figure 2). As indicated by the proteome allocation analysis (see below), this
difference can be attributed to the presence of two carbon transporter mechanisms (active and
passive) in the Faizi model, as opposed to the single active carbon transporter in the GBA model.

We compared the proteome allocation patterns predicted by the two models under different light
intensities at high external carbon concentration, finding qualitative agreement (Figure 3). The
base GBA model (blue) and Faizi model (red) both capture the overall empirical trends (black
diamonds). Under conditions of light limitation, both models assign the majority of protein mass
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to the photosynthetic unit (0.99 of the proteome fraction at the lowest light intensity), with a
subsequent decrease in allocation as light intensity increases, thereby allowing the allocation of
protein mass to other processes and hence increasing growth rate. Accordingly, the proteome
fractions associated with metabolic enzymes and ribosomal reactions show an increase in line
with the growth rate, a trend observed both in the experimental data and in both models.

Notably, while the Faizi model includes carbon translocation both through diffusion and through
active transport, the optimal model solution at high external carbon concentration only uses
diffusion. This results in a zero investment into carbon transport proteins (Figure 3C).
Unfortunately, experimental data is unavailable for the cellular investment into carbon transport,
so it is unclear if this pattern is biologically realistic.

Overall, both models fail to capture absolute proteome fractions quantitatively, suggesting that
some important processes or features were not considered adequately in the models' construction
and/or parameterization. Refined models should integrate a richer set of parameters to reflect
complex biological realities. Any such expansion of the Faizi model would necessitate a
complete rewriting of its equations and the re-fitting of its parameters. In the GBA framework, in
contrast, any model extension requires only the inclusion of new columns and rows in the matrix
M, and a corresponding inclusion of kinetic parameters K,,,, k., for the new reactions. We next
exploit this inherent extensibility to develop a more detailed and comprehensive GBA model of
Synechocystis.
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Figure 1. Overview of the base GBA model for Synechocystis. External “metabolites” (external
inorganic carbon C and light e) are imported by the “transporters” S and PSU, respectively. A
metabolic reaction “Met” converts the internal C, e into amino acids “AA”, which are used by the
ribosome “R” to produce all protein “p” in the model. The protein “p” is assumed to be instantly
distributed into the four reactions (PSU, S, Met, R) such that their protein catalyst maintains its
concentration despite its dilution by balanced growth. Mass conservation of internal reactants (C,
e, AA) at balanced growth is enforced by the equation Mv = puc, relating fluxes v, growth rate p,
and internal mass concentrations ¢ = (CC, Cer Canr cp): the net production of each reactant, Mv,
must balance its dilution by growth, uc. Each reaction j is catalyzed by a specific protein with
concentration p; and a turnover rate 7;(c, a), which is determined by kinetic rate laws and
depends on the internal concentrations ¢ and external concentrations a = (a¢, a; ) of reactants
involved in the reaction. The fixed cellular density p constrains the sum of all metabolite
concentrations ¢, and total protein concentration ¢,, which is itself defined as the sum of all
individual protein concentrations p;. The growth rate optimization problem in a given
environment a = (a¢,a;) can be entirely formulated on flux fractions g = v/up, greatly
simplifying analytical and numerical studies (Dourado et al., 2023).
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Figure 2. Simulated growth curve of Synechocystis with photoinhibition. The blue line
shows the growth rate estimated for Synechocystis with the GBA model under different light
intensities at two different levels of external inorganic carbon: high (solid line) or low (dashed
line, 5% of high concentration). The red lines show the corresponding simulation results using
the Faizi model. Three different growth regimes are delineated: light-limited (I); light-saturated
(I); and light-inhibited (III). The experimentally observed steady-state growth rates for
Synechocystis (black diamonds) (Faizi et al., 2018) are well explained by both models.
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Figure 3. The predicted proteome allocation in the GBA model (blue) and in the Faizi model
(red) at high external carbon concentration, including the effect of photoinhibition. The
black diamonds are experimental proteomics data (Zavtel et al., 2019).

Development of an extended GBA model for examining photosynthesis components in
cyanobacteria

Qualitatively, our base GBA model replicated major trends observed in the basic phototrophic
growth behavior of cyanobacteria, including the main patterns of proteome allocation across
growth rates. As light intensity increases, the GBA model predicts a decrease in the proteome
fraction allocated to the photosynthesis unit. Photosynthesis is a fundamental biological process
in cyanobacteria that has a profound impact on their overall physiology, and its complexity
extends well beyond the boundaries of the mere light harvesting reactions represented in our base
model and the Faizi model. In biological reality, photosynthesis interweaves various reactions
and pathways to form a complex network of interrelated processes. It comprises not only the
light-harvesting components of Photosystems I and II, but also the dynamic interplay of
Cytochrome b6 and ATP Synthase. Any realistic model of cyanobacteria must thus represent at
least four major light reactions of photosynthesis to convert light energy to chemical energy.
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Additionally, a more realistic model must include at least a coarse-grained, quantitative
description of carbon fixation, which should represent the conversion of atmospheric carbon
dioxide into organic compounds and the synthesis of amino acids, ribosomal RNA, ribosomal
proteins, and other cellular components essential for growth. Figure 4 shows the mass fraction
matrix Mof an expanded GBA model that includes these additional subsystems.

Carbon _T| Psil| | PSI | [Cytbef|[ATPsyn|(C_fix] Met]

1 0 0 0 0 -09 0
0 002 0 001 -1 0 0 0
0 0 099 —07 0 0 0 0

pc || © 0 —09 069 0 0 0 0
0o -09 0 03 0 0 0 0
0 098 0 03 0 0 0 0
—-0.01 0 0 0 1 -0.05 -0.05 -03
NADPH|| 0 0 001 0 0 —005 —005 0
0 0 0 o 0 1  -09 0
0 0 0 0 0 0 1 -07
Protein [ 0 0 0 0 0 0 0 1 |

Figure 4. The mass fraction matrix for the extended GBA model, expanding the base model
by including new reactions and new metabolites. Compared to the base model, the
photosynthetic unit was extended to comprise Photosystem II (PSII), Photosystem I (PSI),
Cytochrome b6f (Cytb6f), and ATP synthase (ATPsyn), and the metabolic reactions were
extended to comprise carbon fixation and metabolism.
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Figure 5. Overview of the extended GBA model for Synechocystis. The model encompasses
8 reactions and 11 metabolites. Photon absorption initiates in Photosystem II (PSII) and
Photosystem I (PSI), triggering plastoquinone (PQ) reduction and plastocyanin (PC) oxidation.
PQ and PC (in both reduced and oxidized forms) act as electron carriers, facilitating electron
transfer among photosynthetic complexes, including Cytb6f, via reversible reactions. This
process drives efficient energy flow and NADPH generation through PSI. ATP, a crucial
energy carrier, is replenished by the ATPase complex. Inorganic carbon uptake and
assimilation into organic compounds are unified, without distinguishing between CO, and
HCO3 . The carbon fixation cycle is represented by a single reaction, yielding 3-
phosphoglycerate (C3), a central metabolic precursor for subsequent biosynthesis reactions. C3
undergoes further conversion into amino acids and proteins via metabolism and ribosome
reactions.

The model summarized in Figure 5 consists of 8 reactions and 11 metabolites, drawing
inspiration from a previously published, simplified metabolic network of Synechocystis (Rugen
et al., 2015), with adjustments made to make the formulation consistent with the GBA
framework. In this model, the absorption of photons occurs in the components associated with
Photosystem II (PSII) and Photosystem I (PSI), leading to the reduction of plastoquinone (PQ)
and oxidization of Plastocyanin (PC). Plastocyanin and Plastoquinone (in both reduced and
oxidized states) serve as vital electron carriers, shuttling electrons between the various
photosynthetic complexes, including Cytb6f through a reversible reaction, thereby facilitating the
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efficient flow of energy and generation of NADPH via photosystem I (PSI). ATP, an essential
energy carrier molecule, is regenerated by the ATPase complex. For simplicity, this model does
not account for the oxidized states of the cofactors, specifically ADP and NADP*; to avoid the
apparent generation or vanishing of mass, we assume that the molecules representing the reduced
state (ATP, NADPH) have masses corresponding to the difference in molecular weight between
the oxidized and reduced states. Similar to our base model, inorganic carbon is taken up and
assimilated into organic compounds, with no distinction made betweenCO, and HCO5 . The
carbon fixation cycle is represented by a single reaction, yielding the 3-carbon molecule 3-
phosphoglycerate (C3) (same as in Ref. (Rugen et al., 2015)). C3 serves as the central metabolic
precursor for subsequent biosynthesis reactions, undergoing further conversion into amino acids
and proteins via the Metabolism and Ribosome reactions.

The extended GBA model provides a detailed prediction of the proteome allocation into 8
different core processes at different light intensities, compared to only four processes represented
in the base model. The kinetic parameter values (K,,, and k., values) were obtained from the
BRENDA database (Schomburg et al., 2013) when available, otherwise we directly sourced
them from our base model for shared reactions (see Mehtods, “Parameters of GBA models for
cyanobacteria”). Note that we did not introduce any more adjustable parameters; we still only
adjusted the inhibition constant I] to ensure that the model prediction for the highest light
intensity matches the experimental value.
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Figure 6. Growth curves of Synechocystis in the extended GBA model (dark blue) and base
GBA model (light blue) at different light intensities at high (solid lines) or low (dashed lines, 5%
of high concentration) external inorganic carbon concentrations. Three different growth regimes
are depicted: light-limited (I), light-saturated (II), and light-inhibited (III), along with
experimental steady-state growth rate for Synechocystis (black diamonds) (Faizi et al., 2018).

Across light intensities, the growth rates predicted with the extended model are highly consistent
with the experimentally observed growth rates (Figure 6); the model extension slightly improves
the agreement between predictions and observations compared to the base GBA model, despite
no additional adjustable parameters. As light intensity increases from the light-limited to the
saturated regime, the predicted cellular investment of two photosynthetic components
(ATPsynthase and Cytochrome b6) behaves markedly different from the base model (Figure 7).
The light harvesting components, represented by the PSI and PSII proteome sectors, decrease as
growth rate increases until both reach the light-saturated level. Conversely, the protein allocation
to the ATPsynthase and Cytochrome b6 units increases with increasing light intensity up to this
level. The ribosome proteome allocation follows an almost identical pattern as for the base
model. From the light-saturated to the light-inhibited level, a downward kink is observed in the
light-harvesting sectors of PSI and PSII. The PSI and PSII proteome sectors continue to decrease
as growth rate decreases. Meanwhile, ATPsynthase and Cytochrome b6, which increase with
growth rate from the light-limited to light-saturated level, experience a reduction as they enter
the light-inhibited level. Thus, in accordance with previous empirical observations in proteomics
studies of Synechocystis under various growth conditions (Jahn et al., 2018; Zavfel et al., 2019), the
cellular investment into the light harvesting sectors decreases with increasing light intensity,
while investment into ATPsynthase and Cytochrome b6 increases (Figure 7). Furthermore, the
model reproduced the experimentally observed dependence of total protein concentrations on the
growth rate, demonstrating a reduction in overall protein content as the growth rate increased
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(Figure 7); this reduction is likely due to photoinhibition within the cell, where damaged
proteins are degraded into amino acids.
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Figure 7. Synechocystis resource allocation predicted by the extended GBA model (dark
blue line) compared to proteomics data at high external inorganic carbon availability. For
comparison, the light blue lines show the simulation results from the base GBA model for the
reactions common to both models. The data points are experimental proteomics data, obtained
from (Zavfel et al., 2019) (black diamonds). Experimental data for the carbon transporter unit
was not available.

3.3 Discussion

As seen in (Faizi et al., 2018), kinetic models are powerful tool to understand global patterns of
cellular resource allocation in cyanobacteria. Above, we have combined insights from this work
with theoretical advances in balanced growth modeling (Dourado et al., 2023) to construct a base
GBA model of cyanobacterial physiology. This new model explains important aspects of
cyanobacterial resource allocation directly from first principles.

To extend our understanding of the optimal proteome allocation in Synechocystis, we further
used this base model as a platform to develop an extended GBA model that incorporates the four
key proteins of the photosynthetic light reactions. Proteome allocation predictions from the
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extended GBA model are highly consistent with experimental findings (Zavfel et al., 2019),
capturing both the mean levels of proteome allocation and the growth rate-dependent trends
(Figure 7). Specifically, as the growth rate transitions from a light-limited to a light-saturated
regime, the extended GBA model predicts a decrease in the proteome sectors of PSI and PSII
and an increase in ATP synthase and cytochrome b6 levels. This reflects the increased demand
for ATP caused by photodamage in high-light conditions and the need for new protein synthesis,
in line with the experimental results. Across the modeled cellular components, a comparison of
observed and predicted proteome allocation patterns across growth rates generally shows good
quantitative agreement at high growth rates. In contrast, with the exception of photosystems I
and II, the model predicts a smaller proteome mass fraction than experimentally observed at low
growth rates. It has been argued that some bacteria maintain a proteome reserve at low growth
rates to enable the quick resumption of growth once conditions improve (Mori et al., 2017) such
proteome reserves could plausibly also have evolved in cyanobacteria, potentially explaining the
excess of observed over predicted proteome allocation into cellular components essential for
growth.

Within the GBA modeling framework, all proteins are explicitly synthesized by the ribosome,
including the ribosome itself. GBA can predict detailed, environment-dependent cell
composition through constrained optimization of growth; it ensures the optimal utilization of all
resources and optimal concentrations of all intracellular components, including proteins and
metabolites (Dourado et al., 2023). This contrasts with linear modeling frameworks that do not
consider the explicit synthesis of enzymes and the ribosome; instead, these alternative
approaches either substitute these processes with a constant biomass reaction (Sanchez et al.,
2017) or, in cases where explicit synthesis is considered, they replace concentration-dependent,
non-linear enzyme kinetics with a constant catalytic rate (k.,¢) and ignore the dilution of
metabolites (Goelzer et al., 2011; O’Brien et al., 2013). The extended GBA model replicated the
observed decrease in overall protein content with increasing growth rate, highlighting its ability
to dynamically optimize resource allocation, in contrast to previous frameworks that relied on
fixed total protein concentrations (Goelzer et al., 2011; Sanchez et al., 2017).

By providing a minimal and transparent framework that is biologically and biophysically
meaningful, we can relate the resource allocation between major protein pools and growth rate
under different nutrient availabilities. Our GBA model provides basically the same results as the
differential-equation based approach pursued by (Faizi et al., 2018). Both approaches have in
common that the steady-state of the system, given a particular proteome allocation, is calculated,
and that this function (defining the growth rate as a function of the proteome) is used to find the
proteome allocation which maximizes growth rate. However, whereas in (Faizi et al., 2018) the
steady-state is calculated by solving a system of differential equations, the GBA approach is
completely analytical, which allows formulating a single non-linear and non-convex
optimization, solving which results in the optimal proteome allocation. The advantage of the
concise mathematical formulation of GBA models is that it facilitates efficient modeling of
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balanced cellular growth in general and thus makes extending the model by including more or
more detailed processes conceptually straight-forward.

The framework developed above is general and derived from basic principles. While we have
constructed and simulated our model around the data of Faizi for Synechocystis, the framework
can be easily applied to other cyanobacteria, requiring only an adjustment of parameter values
(such as kinetic parameters and cellular density) to account for alternative resource allocation
strategies. Despite the simplicity of our assumptions, the GBA model not only exhibits
comparable predictive capabilities to the coarse-grained model proposed by Faizi et al. (2018),
but its streamlined mathematical formulation also offers substantial advantages for the
construction and numerical solution of larger models of cyanobacteria. Recent studies suggested
that Synechocystis as a model organism can introduce novel products in biotechnology and as a
potential microbial cell factory (Blanc-Garin et al., 2022; Yu et al., 2013). Thus, GBA models of
this organism can provide a new tool to study the direct conversion of CO» and light to value-
added chemicals and fuels, contributing to the new field of blue bioeconomy.

3.4 Materials and methods

The growth balance analysis framework

In the growth balance analysis, the optimization problem is defined as finding the optimum
growth rate () subject to non-negativity constraints on metabolite and protein concentrations by
varying the flux fraction q: = v/up. Moreover, the balanced growth model at steady-state is
specified by the following constraints:

z Mivi =yl (Mass conservation)
J
i p’ (Reaction kinetics)
(c,a)
z p; = cP (Protein density)
J
z cl=p (Cellular density)
i
c™=>0 (Non-negativity of metabolite concentration)
p/ >0 (Non-negativity of protein concentration)

It is noteworthy to mention that the normalization of M results in the expression of protein
concentrations (p;) and reactants (') in units of [g L"']. Accordingly, fluxes ([g L' h']) and

kinetic parameters must be represented in mass units. For instance, Michaelis constants (K,,,) are
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expressed in [g L'] and turnover numbers (k_,;) are represented as the amount of product per
unit of protein per unit of time, resulting in units of [h™']. The cell density (p, [g L™']) is defined
as the sum of all metabolite and protein concentrations, which is assumed to be constant. The
comprehensive explanation of the growth balance analysis framework is provided in the original
publication by (Dourado & Lercher, 2020), along with its supplementary material.

Construction of a base GBA model of Synechocystis sp. PCC 6803 based on the model by
Faizi

The cyanobacterial cell model presented in this study builds upon Faizi's model in the growth
balance analysis framework, but has been adapted and expanded to incorporate experimental
proteomics data and better reflect the realistic characteristics of a cyanobacterial cell.

We take from the Faizi model the following set of parameters: I) stoichiometric coefficients,
derived from the genome-scale reconstruction detailed in (Knoop et al., 2013); II) protein
lengths, sourced from the Uniprot database; III) cell density, inferred from experimental data on
cell dry weights and cell counts; IV) Michaelis constants K,,, estimated for energy and amino
acids, while data for carbon transporter and metabolism reactions were collected from literature;
V) turnover numbers k,; of reactions, obtained from literature with exception of diffusion and
photosynthesis; VI) photosynthesis turnover rate.

The normalized mass stoichiometry of the model is defined as the stoichiometric matrix S,
containing rows for reactants, is multiplied by the respective molecular mass. Then, we
normalized the column so that the sum of negative entries is equal to -1 and the sum of positive
entries is equal to +1 preserving mass conservation in reactions (Dourado et al., 2023). To
determine the mass of protein classes (PSU, S, Met, R) in our model, we used the reference
proteome of Synechocystis from UniProt (Bateman et al., 2017). Each protein was mapped
according to its protein class from (Faizi et al., 2018; Zavfel et al., 2019) to ensure consistency in
data comparison. The kinetic data (K,,, and k.,,values) were sourced from previously published
model of (Faizi et al., 2018), as indicated in the parameters section of the methods, and then
converted into [g L] for K,,and [h™!] fork,4;. It is noteworthy that unlike GBA, Faizi's model
does not incorporate molecular weights in their formulation due to their molar [M] units.
Therefore in our model, molecular weights were estimated based on simple metabolites,
participating in each reaction. Overall, the model encompasses 6 metabolites and 4 reactions, and
parameters used in the base model can be found in Table S1.

Description of the extended model

The extended model is created following our implementation of cyanobacterial phototrophic
growth. In simple terms, the model uses two inputs: a carbon source (with no distinction
betweenCO, and HCO3 ) and light, which serves as the energy source. The light is absorbed by
the photosystem II and photosystem I light harvesting complexes, allowing the production of
energy through ATPsynthase and the electron transport chain Cytochrome b6 via a reversible
reaction. The carbon source is taken in through a carbon transporter, and incorporates it into
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organic molecules through the process of carbon fixation, which is performed by the Calvin-
Benson cycle. These are then utilized in the metabolic and also ribosome enzymes during protein
translation. The kinetic data (K,,, and k.,;values) were obtained from the BRENDA (Schomburg
et al., 2013) database and then converted into [g L!] for K,,and [h™!] for k.4;. For each enzyme
class, we queried the BRENDA database using the enzyme commission (EC) number of
reactions in each class to find the value of the wild-type enzymes. Whenever possible, we
preferred values from Synechocystis or other cyanobacterial cells, otherwise we directly sourced
them from previously published model (Faizi et al., 2018), as indicated in the parameters section
of the methods. Moreover, the Michaelis constant K,,, of each protein category were calculated
based on the availability of data, multiplied by its respective molecular weight and total number
of reactions present within the proteome sector. Similarly, the turnover number k_,; for each
enzyme was estimated by multiplying it by the total number of reactions catalyzed in each
category. The model encompasses 11 metabolites, 8 reactions, and it is noteworthy that even
upon expansion, the original formulation remains unchanged.

Model implementation

In this study, we used growth balance analysis (GBA) to simulate growth and resource allocation
in cyanobacteria. R v4.1 programming language was used for implementation of balanced
growth optimization problem using NLopt library. The optimization problem is solved through
AUGLAG, an augmented Lagrangian approach that utilizes method of moving asymptotes
(MMA) or sequential quadratic programming (SLSQP) algorithms as the sub-solver, which is a
free and open-source software for nonlinear optimization. The models are presented in the Excel
format in Supplementary File 1, and the R script necessary for running the simulations can be
obtained from the (Dourado et al., 2023).

Experimental proteomics data

The present study utilized experimental proteomics data originally obtained by (Zaviel et al.,
2019), wherein the quantification of absolute protein abundance was carried out under varying
light intensities. To determine the proteome fractions corresponding to each protein class within
our model, we aggregated the protein quantities within each class and subsequently normalized
them by the sum of all protein quantities at every given light intensity. This allowed us to
integrate the obtained data with the relevant proteome sectors within our model.

Parameters of GBA models for cyanobacteria
Stoichiometric coefficients

We started from the stoichiometric matrix (S), described by Faizi to construct our normalized
mass fraction (M) in GBA model. Moreover, for the construction of matrix M, we calculated the
entries based on the stoichiometric matrix (S) of (Faizi et al., 2018), and normalized each entry
based on its defined molecular weights, in such a way that in a reaction, the sum of all substrates
with negative entries results in -1 and the sum of all products with positive entries results in +1.
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Molecular mass of protein classes

In order to ascertain the mass distribution of protein classes within our model (S, PSU, Met, R,
for the based model, and PSI, PSII, Cytb6f, ATPsynthase, carbon_transporter, carbon fixation,
metabolism, and Ribosome, for the extended model), we employed the reference proteome of
Synechocystis obtained from UniProt. Protein classes for the base model were obtained from the
study conducted by (Zaviel et al., 2019), while protein classifications as described in (Faizi et al.,
2018) along with corresponding Uniprot IDs, were utilized to expand our model to incorporate
the relevant proteins. Further elaboration on the characteristics and attributes of each protein
class can be found in Supplementary Table 1.

Molecular mass of metabolites

For the molecular masses of metabolites, we estimated 1 [g mol™'] for “e” (corresponding to
molecular mass of HY), 52.5 [g mol'!] for “ci”(corresponding to mean molecular mass of HCOs
and CO»), 36 [g mol™'] for “c3” (corresponding to three times of molecular mass of carbon), and
132 [g mol!] for “aa” (as the average molecular mass among all amino acids(Schmidt et al.,
2016)).

Kinetic parameters

We sourced the kinetic parameters directly from (Faizi et al., 2018) and then performed the
conversion of k.,; and K,,, to mass units in the following way: 1) All K,,, were converted from
[mol L] to [g L!] by multiplying the original value with the corresponding molecular mass (see
previous paragraph), ii) All k.., were converted to mass units by multiplying the original value
by product molecular mass, and then dividing by the mass of enzyme (see Supplementary
Table 1).

Carbon transporter

The turnover number (k,;) of carbon transporter in Synechocystis, which we obtained from
Faizi model is 45360 [h™'], which by mass normalization resulted in 8.434 [h'!']. Besides, the
Michaelis constant (K,;,), 15 [uM] is also obtained from Faizi model, resulting in 0.0007875 [g
L-'] by mass normalization.

Ribosome

The turnover number of ribosome was adapted from Faizi model, 22 [s!], which is the highest
elongation rate observed experimentally in E. coli (Bremer & Dennis, 2008),and the Michaelis
constant for amino acids and energy is estimated as 100000 [molec cell'!] in (Faizi et al., 2018),
the ribosome molecular weight was measured 2,306,967 Da, which by mass normalization
resulted, k.o =22 AA s x (132.60 Da AA1)/(2,306,967 Da) x 3600 s h ' =4.55h™! and K,,,=
10000 molec cell''x (1 cell/2.24x10* L) x(1 g/ 6.022x10%} mol) = 7.41x 10”7[g L] for “¢” and
similarly 9.78x107 [g L] for “aa”. We note that similar to (Faizi et al., 2018) K,,= 7.41x 107[g
L'] was set for energy unit “e” in all reactions for simplicity.
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Metabolism

The turnover number of metabolism for Synechocystis in Faizi model was reported 20 [s™!]
(Marcus et al., 2005), and the K,,, value for internal carbon was 0.00018 [M], which by
converting to mass units results in 0.794 [h™'] and 0.00648 [g L], respectively.

Photosynthesis

The turnover number of photosynthetic unit is estimated 200 [s™'] as reported in (Milo & Phillips,
2015), which by converting to mass units results in 0.0847 [h'!]. The K,,, value for external light
intensity was set to 440 [uE m™ s!], corresponding to the half of intensity in light-saturated
condition. The only parameter fitted was inhibition constant I] with the value of 47 [uE m2 s1].
The inhibition constant fitted in a way that at light intensity of 1100 [nE m s7'] (100% light
intensity), the growth rate of the model fits to the last point in experimental growth rate.

Extended model

In this model, we followed the same procedure for calculating our model parameters. Here, we
categorized the protein classes based on the new reactions in the model, and the parameters used
in the extended model can be found in Table S2. Similarly, the detailed description of each
protein class is provided in Supplementary Table 2.

Mass normalized fraction

We constructed the extended model of Synechocystis, based on our base model to incorporate
major components of photosynthesis in our model and we chose simple decimal numbers in
matrix M, reflecting the overall proportions of each column in S.

Molecular mass of metabolites

For the molecular masses of metabolites, we used 44 [g mol!] for “CO”, 1 [g mol!] for “H",
52.5 [g mol '] for “a_C”(corresponding to mean molecular mass of HCO3 and CO,), 10500 [g
mol!] for “PC” and “PC-“ (corresponding to Plastocyanin molecular weight), 749.2 [g mol!] for
“PQ” (corresponding to plastoquinone molecular weight), 751.2 [g mol™!'] for “PQH2”
(corresponding to reduced plastoquinone molecular weight), 1 [g mol™'] for “ATP” and
“NADPH” (corresponding to the difference of molecular weight between their oxidized and
reduced states to compensate the absence of each), 186 [g mol!] for “C3” (corresponding to
molecular weight of 3-phosphoglycerate, similar to (Rugen et al., 2015)), and 100 [g mol'!] for
“aa” (estimated for the molecular mass of amino acids).

Kinetic parameters

We performed the same procedure for conversion of our kinetic parameters into mass units as
was implemented on the base model; i) All K,,, were converted from [mol L] to [g L] by
multiplying the original value with the corresponding molecular mass (see previous section) and
also by number of all reactions lumped in the corresponding enzyme (mentioned in each protein
class, also in Supplementary Table 2), ii) All k.., were converted to mass units by multiplying
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the original value with the product molecular mass and the total number of catalyzing reactions,
and then dividing by the mass of the enzyme (see Supplementary Table 2).

Carbon transporter

The turnover number of carbon transporter (k.,;) and Michaelis constant of carbon transporter is
taken from the base model and multiplied by the number of 5 proteins in this category, which
resulted in 51.54 [h!] and 0.00315 [g L'!], respectively. The K,,, value for ATP requirement to
import carbon is set to 1.5x1073 [M] (Omata et al., 2002), which by converting to mass units
resulted in 0.0003 [g L].

Photosystem II and photosystem I

The K,,values for light as the external concentration were assigned the same value as the base
model for both PSI (14 reactions) and PSII (28 reactions). The K, value for the enzymatic
reaction catalyzed by PSI (1.18.1.2) and (1.10.3.9) for PSII, which are the only accessible
reference in this context, and we found a reported value of 0.011 mM (1.617 [g L™'] for “PQ”)
from cyanobacteria of Anabaena and 0.06 mM (1.25 [g L '] for “PC™) for anthus annuus,
respectively. The maximum turnover numbers for PSII and PSI enzymes were derived from a
previously published model, with the values of 250 [s™'] (Matuszynska et al., 2019). For the light-
harvesting components, we normalized their k.,.by multiplying it by the product mass of the
protons, and then multiplied the result by the sum of the enzyme masses within their respective
classes, which corresponded to 3.69 [h''] and 37.96 [h'!], respectively. Additionally, the only
parameter that was fitted was the inhibition constantl], which was estimated to have a value of
85 [uE m™2 s7!']. The fitting of the inhibition constant was carried out such that the model growth
rate matched the experimental growth rate at a light intensity of 1100 [pE m s7'] (100% light
intensity).

Cytochrome b6

In the case of Cytb6f, the EC number 7.1.1.6, which corresponds to this enzyme, lacked any
recorded measurements. However, for its partial EC number 7.1.1.2, there was an available value
of 1.8 [s7!'], which was converted to mass units (15 reactions) resulting in 1404.89 [h™!], with the
estimation of its backwardk_,;, equivalent to half of the forward kcat, which amounts to 702 [h-
1. The K,, value for both plastocyanin (PC) was determined as 9x10° [M] (EC number 7.1.1.6
for Spinacia oleracea), which were converted to mass units (15 reactions) resulting in 1.41 [g L
1, and for reduced plastoquinone (PQHb>) the K,,, value was estimated as 1 [g L™!].

ATP synthase

The unique EC number for ATPsynthase unit was 7.1.2.2. The K,,, value for proton (H") in
ATPsynthase was estimated as 1 [g L''] and for turnover number k., value, partial EC number
of 7.1.1.2 upon availability was used 1.8 [s"!], which were converted to mass units (one reaction
of ATPsynthase) resulted in 4.9 [h™!].
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Metabolism & Carbon fixation

For the turnover number (k.,;), we utilized the EC. Number of 4.1.1.39 RuBisCo reaction with
the value of 2.7 [s'!] as reported in (Horken & Tabita, 1999), which were converted to mass units
(239 reactions) resulted in 3.45 [h'']. The Michaelis constant of metabolism unit was also
determined the maximum reported value in EC number 4.1.1.39 for Synechocystis, 0.2680 [mM],
which were converted to mass units (239 reactions) resulted in 0.64 [g L'], 0.65 [gL'], 11.91 [g
L] for ATP, NADPH and C3, respectively. We incorporated these value into both the
Metabolism and Carbon Fixation reactions of our extended model, recognizing their central role
within the overarching framework of carbon metabolism.

Ribosome

The turnover number (k.,;) and Michaelis constant K, of ribosome unit was identical to the base
model. We also estimated the K,,, value for ATP as 1 [g L™!].

Cell densities

Cell density (Rho) was determined through the analysis of experimental data provided in (Faizi
et al., 2018). The average cell dry weight across various light intensities was calculated, yielding
a value of 207.33 mg culture per liter. Additionally, the cell count was established at 2.4x101,
and with a conversion factor accounting for the volume of each cell set at 2.24x107!4, the
resulting cell density was determined to be 385.67 [g L], and it is assumed to be constant for all
the conditions for both models.
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Table S1. Parameters of the base model

Parameters definition Value (unit) Reference
KE Michaelis constant of e 0.0007875 [g L] (Faizi et al., 2018)
K% Michaelis constant of a_C 0.0007875 [g L] (Faizi et al., 2018)
KA4 Michaelis constant of AA 0.000097812 [g L] (Faizi et al., 2018)
K& Michaelis constant of ¢ 0.00648 [g L] (Faizi et al., 2018)
Ir Inhibition constant 47 [uE m? 5] Fitted
kESY turnover number of Photosystem 0.0847 [h!] (Milo & Phillips, 2015)
k3, turnover number of Carbon transporter 8.434 [h] (Faizi et al., 2018)
kM, turnover number of Metabolism 0.794 [h!] (Faizi et al., 2018)
kR, turnover number of Ribosome 4.55 [h' (Faizi et al., 2018)
EPSU Mass of the enzyme class of Photosystem 8,500,380 [Da] Sourced from UniProt
ES ass Mass of the enzyme class of Carbon Transporter 185,921 [Da] Sourced from UniProt
EM o Mass of the enzyme class of Metabolism 11,968,859 [Da] Sourced from UniProt
ER o Mass of the enzyme class of Ribosome 2,306,967 [Da] Sourced from UniProt
p Cell density 385.67 [g L] (Faizi et al., 2018)
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Table S2. Parameters of the extended model

Parameters definition Value (unit) Reference
K€ Michaelis constant of a_C 0.00315 [g L] Sourced from the base model
KATP Michaelis constant of ATP in Carbon_T 0.0003 [g L] (Omata et al., 2002)
K 1’:1 Q Michaelis constant of PQ in PSII 1.25[g L] Sourced from BRENDA
KPe Michaelis constant of PC~ in PSI 1.617 [g L] Sourced from BRENDA
KPC Michaelis constant of PC in Cytb6f 1.41 [gL1] Sourced from BRENDA
KroH: Michaelis constant of PQH, in Cytb6f 1[glY Estimated
KH * Michaelis constant of H* in ATPsyn 1[glY Estimated
Kﬁl‘)z Michaelis constant of CO, in C_fix 11.91 [gL1] Sourced from BRENDA
KATP Michaelis constant of ATP in C_fix & Met 0.64 [g L] Sourced from BRENDA
1(513 Michaelis constant of €5 in Met 11.91 [gL1] Sourced from BRENDA
KNADPH Michaelis constant of NADPH in C_fix & Met 0.65[g L] Sourced from BRENDA
KATP Michaelis constant of ATP in Ribosome 1[glY Estimated
K44 Michaelis constant of AA in Ribosome 83 [gL] Sourced from the base model
Ir Inhibition constant 85 [uE m?s!] Fitted
kfg[ bon.T turnover number of Carbon_T 51.54 [h] Sourced from the base model
kS turnover number of PSII 3.69 [h!] (Matuszynska et al., 2019)
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Parameters

definition

Value (unit)

Reference

PSI
kcat

Cytbéf
kcat

ATPsyn
kcat

kC,fix

cat

Met
kcat

Ribosome
kcat

Carbon_T
E mass

PSII
E mass

PSI
E mass

Cytbéf
Emass

ATPsyn
Emass

Met
Emass

ERibosome
mass

p

turnover number of PSI

turnover number of Cytb6f

turnover number of ATPsyn

turnover number of C_fix

turnover number of Met

turnover number of Ribosome

Mass of the enzyme class of Carbon T
Mass of the enzyme class of PSII
Mass of the enzyme class of PSI

Mass of the enzyme class of Cytb6f
Mass of the enzyme class of ATPsyn
Mass of the enzyme class of Met

Mass of the enzyme class of Ribosome

Cell density

37.96 [h]
1404.891 [h']
49h]
3.45[h!]
3.45[h!]

455 [h!]
185,921 [Da]
6,825,462 [Da]
331,876 [Da]
778,366 [Da]
564,676 [Da]
67,261,272 [Da]
2,306,967 [Da]

385.67 [g L]

(Matuszynska et al., 2019)
Sourced from BRENDA
Sourced from BRENDA
(Horken & Tabita, 1999)
(Horken & Tabita, 1999)
Sourced from the base model
Sourced from UniProt

Sourced from UniProt
Sourced from UniProt

Sourced from UniProt
Sourced from UniProt

Sourced from UniProt
Sourced from UniProt

(Faizi et al., 2018)
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Abstract

Computational models are essential for understanding the complex biochemical processes that
govern cellular growth and metabolism. Growth Balance Analysis (GBA) provides a powerful
framework for modeling cellular self-replication by incorporating metabolite concentrations and
their non-linear influence on reaction kinetics. However, the complexity of implementing and
solving such models has made them inaccessible to researchers without programming expertise.
Here we present Cell Growth Simulator, a web-based application that enables efficient
construction and analysis of GBA models through an intuitive interface and interactive
visualizations. Cell Growth Simulator uses an intuitive spreadsheet interface, eliminating the
need for coding, and integrates data from the BRENDA enzyme database to facilitate the
incorporation of kinetic parameters. Cell Growth Simulator provides interactive visualizations,
including customizable plots and dynamic metabolic pathway maps for interpreting optimization
results. The platform makes nonlinear modeling of resource allocation in coarse-grained cellular
systems accessible to a broader scientific audience, fostering interdisciplinary collaboration and
advancing our understanding of cellular metabolism and growth. Cell Growth Simulator is freely
available at: https://cellgrowthsim.com/.

Keywords:

Growth balance analysis, Optimal Resource allocation, Web application, Nonlinear Cellular
Model, Systems Biology
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Author summary

We created Cell Growth Simulator to make modeling cellular self-replication and growth more
accessible. Our goal was to create a web-based tool that helps researchers, regardless of their
programming background, investigate how cells allocate their resources under realistic, nonlinear
conditions. By focusing on a simplified framework that captures essential features of
metabolism, we enable scientists to explore core principles of cellular growth, such as how
proteins and metabolites interact to drive balanced growth.

Cell Growth Simulator provides a simple spreadsheet-like interface where users can build or
import their models, eliminating the need for coding. Our application connects to a widely used
enzyme database to help researchers select realistic parameter values, and provides interactive
graphs and pathway maps to visualize and interpret results. By streamlining the complex
mathematical steps involved in modeling and analysis, Cell Growth Simulator lowers technical
barriers and encourages collaboration between biologists, computational scientists, and anyone
interested in understanding how cells work. We hope it will serve as a valuable resource for
studying metabolism and advancing our knowledge of cell growth.
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4.1 Introduction

Metabolic modeling has emerged as a crucial approach for understanding the complex
biochemical processes that govern cellular growth and metabolism. Computational models
enable researchers to predict cellular behaviors, optimize metabolic pathways, and explore
resource allocation strategies from simple principles. Linear computational approaches have
been widely used to study resource allocation during balanced growth, a steady-state condition
where concentrations of cellular components are constant in time. These methods typically
approximate biochemical reaction kinetics by assuming linear relationships between fluxes and
catalyst concentrations, neglecting the nonlinear effects of metabolite concentrations on reaction
kinetics (Goelzer & Fromion, 2011; O’Brien et al., 2013; Sanchez et al., 2017). More
sophisticated nonlinear models can explicitly account for these metabolite-dependent effects
through kinetic rate laws (Molenaar et al., 2009). Recently, Growth Balance Analysis (GBA)
was introduced as a general framework to model and analyze such nonlinear systems,
investigating how cells grow and allocate their resources under fundamental physical constraints,
including mass conservation, nonlinear reaction kinetics, and a limit on cellular density,
accounting for the dilution of all cellular components by growth (Dourado et al., 2023; Dourado
& Lercher, 2020).

While the GBA framework simplifies and facilitates the mathematical modeling and analysis of
cellular balanced growth under nonlinear constraints, its computational implementation requires
mathematical and programming skills. To increase the accessibility of GBA to a wider audience,
we developed Cell Growth Simulator a user-friendly web-based platform built using R/Shiny. R
is a widely used programming language and software environment for statistical computing and
graphics, while Shiny is a web application framework for R that facilitates the creation of
interactive and user-friendly web-based interfaces.

A rich ecosystem of web-based platforms already supports metabolic modeling. For linear,
constraint-based workflows, such as flux balance analysis (FBA) (Orth et al., 2010) and its
extensions, tools like CNApy (Thiele et al., 2022), Escher (King et al., 2015), ModelExplore
(Martyushenko & Almaas, 2019), CAVE (Mao et al., 2023), and Fluxer (Hari & Lobo, 2020),
provide convenient model construction and visualization. For nonlinear kinetics, mature software
applications including COPASI (Hoops et al., 2006), Tellurium (Choi et al., 2018), Virtual Cell
(Schaff et al., 1997), and AMICI (Frohlich et al., 2021) support arbitrary rate laws and
time-course analyses, and web-based environments such as JWS Online (Olivier & Snoep, 2004)
and runBioSimulations (Shaikh et al., 2021) have long enabled web execution of nonlinear
cellular models. To contribute to the community and extend this ecosystem, we developed the
Cell Growth Simulator, a web-based implementation of the GBA formalism for nonlinear self-
replicator models, where resource allocation strategies emerge from the optimization of the
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cellular growth rate, incorporating metabolite-dependent (nonlinear) kinetics and the dilution of
all cellular components by growth. By focusing on coarse-grained systems, Cell Growth
Simulator enables efficient exploration of cellular resource allocation and proteome efficiency
(Doan et al., 2022; Ghaffarinasab et al., 2023; Hui et al., 2015; Molenaar et al., 2009; Scott et al.,
2010a; Weille et al., 2015).

Coarse-grained nonlinear models have proven to be especially useful for revealing fundamental
principles of cellular physiology. By simplifying complex networks into a few effective reactions
and catalytic sectors, these models can capture important trade-offs, such as growth laws
(ribosome allocation) (Erickson et al., 2017; Scott et al., 2010b), shifts in metabolic strategies
(Molenaar et al., 2009), and proteome partitioning, without requiring exhaustive mechanistic
detail (Doan et al., 2022; Ghaffarinasab et al., 2023; Hui et al., 2015; Weille et al., 2015). This
simplification renders nonlinear optimization problems tractable while providing insight into
global growth laws and resource allocation strategies (Erickson et al., 2017; Molenaar et al.,
2009; Scott et al., 2010b; Weille et al., 2015). In this spirit, the Cell Growth Simulator is
designed for coarse-grained self-replicator models, enabling the rapid, interpretable exploration
of how metabolite concentrations and growth-driven dilution shape cellular behavior.

The GBA framework estimates the cell state at balanced growth by solving a nonlinear
optimization problem that maximizes the growth rate (u), subject to mass conservation,
nonlinear kinetic rate laws of biochemical reactions, constant cell density, and non-negative
concentrations. This optimization is greatly simplified by its formulation on the flux fraction
vector defined as f: = v/up, where v denotes the vector of mass fluxes of reactions in units [g L
Uh!] and p is the cell mass density in [g L™!] (Dourado et al., 2023). Fig 1 presents a general
view of the framework. A detailed mathematical description of the GBA framework can be
found in the original publications (Dourado et al., 2023; Dourado & Lercher, 2020).

91



i Growth Rate
Mass Conservation

14
T
’ Z} Tj (f’ x) f]
‘
Metabolic Network
Total Proteins
r Ribosomes
..‘ | J Constant density
® omo®,
@ o .0.
oW o
pj = VjTj(C,X)
. . =lcytls Z C
Nonlinear reaction R e m

kinetics

Fig 1. Schematic representation of the Growth Balance Analysis (GBA) framework as
implemented in the Cell Growth Simulator. The diagram illustrates the key components and
constraints governing the optimal balanced growth of a self-replicating cell model defined by the
triple (M,7,p), where M is the mass fraction matrix encoding the reaction network structure, 7 are
kinetic rate laws, and p is the cell density. The mass conservation constraint (blue) relates mass
fluxes of reactions v with the growth rate u and concentrations ¢ of reactants in the model,
including concentrations of metabolites ¢,, and the total protein ¢, (equal to the sum of individual
protein concentrations p). The reaction kinetics (red) express the relationship between reaction
fluxes v, protein concentrations p, and reaction turnover times 7 that depend on internal
concentrations ¢ and external concentrations x. The density constraint (green) defines the total
cellular density p as the sum of metabolite and protein concentrations. All these constraints can be
encoded into a single equation (yellow) for the constrained growth rate p in terms of the flux
fractions (Dourado et al., 2023).
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4.2 Design and implementation

User interface and front-end development

Cell Growth Simulator is built using R (version 4.4.1) and the Shiny framework, creating an
interactive web application that combines robust backend functionality with an intuitive user
interface. The frontend architecture integrates HTML for content structure, CSS for visual
styling, and JavaScript for dynamic interactions and enhanced client-side performance. Building
upon the responsive Mazer dashboard template (https://github.com/zuramai/mazer), we
extensively customized the interface through additional CSS and JavaScript implementations to
create a specialized environment optimized for cellular growth modeling and analysis. This
layered architecture ensures both technical functionality and user accessibility while maintaining
high performance across different devices and screen sizes.

Data sources and management

Cell Growth Simulator integrates comprehensive enzyme kinetic data from the BRENDA
database (Chang et al., 2021), providing users access to curated turnover numbers (kcat) and
Michaelis constants (Km). The data processing pipeline filters the JSON-formatted database to
include only wild-type enzyme parameters, which are then systematically organized by Enzyme
Commission (EC) numbers. Through an interactive table powered by the "reactable" package
(Lin, 2019), users can efficiently search and filter enzyme parameters based on multiple criteria
including organism, EC number classification, and substrate specificity. This streamlined
interface simplifies the often challenging task of identifying appropriate kinetic parameters for
metabolic models.

Input data structure and model configuration

Kinetic models such as GBA describe reaction dynamics through reaction fluxes v; that depend
on protein concentrations p; catalyzing the reaction (transport, enzymatic, or “ribosome”
reaction producing proteins) and turnover times z; according to general kinetic rate laws:

__ b (1)
7j(c, x)

Vj

The turnover times 7;(c, x) depend on internal (c) and external (x) metabolite concentrations
through several kinetic parameters: turnover numbers (kca) for both forward and backward
directions, Michaelis constants (Km), and where applicable, activation (KA4) and inhibition
constants (K7).

In Cell Growth Simulator, we implement convenience kinetics (Liebermeister & Klipp, 2006), a
general framework that can describe reversible reactions and regulatory effects from activators
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and inhibitors. For an irreversible reaction j (where the backward turnover number kéatb = 0),

the turnover time 7; is given by:

1 c -1 c -1 KIj -1 X -1
T,(c,x) =—11I — = —n I, =+ ) )
J K’ M\k! +c KAl +c Kl +c K +x

catf m'-m mt-m mtTtm nTin

The parameters in this equation represent:

1.

Forward turnover number (k/ .o, 7): the maximum rate at which protein j (transporter,
enzyme, or ribosome) can convert substrates to products.
Michaelis constants (K’ ,,,): the substrate concentration where the reaction rate reaches
half its maximum value. Lower values indicate stronger protein-substrate binding. For
metabolites not participating in reaction j, we set K/,, = 0 .
Regulatory constants:
a. Activation constants (KA’,,): quantify activator effects. Set to 0 for non-
activating metabolites.
b. Inhibition constants (KI/,,): quantify inhibitor effects. Set to © for non-inhibiting
metabolites.

This formulation captures how reaction fluxes are modulated by both enzyme concentrations and
metabolite-dependent effects, with the turnover time 7; representing the time required to process
one unit of substrate under the given conditions.

Cell Growth Simulator accepts GBA models in open-source spreadsheet format (ODS),
consisting of the following matrices and vectors:

e Mass fraction matrix M: quantifies the mass fraction of each reactant going through

each reaction, with negative entries representing reactant consumption and positive
entries indicating product formation. Rows correspond to reactants, columns to reactions.
Due to mass conservation, the sum of positive entries in each column equals 1, and the
sum of negative entries equals -1. External reactants are denoted by the prefix "x ". By
default, the last row represents the total protein concentration in mass units, while the last
column corresponds to the ribosomal reaction that produces all cellular proteins.
Michaelis constant matrix K: Contains K/, values (in [g-L']) representing the
Michaelis constant for metabolite 7 in reaction j, organized in the same order as in M.
When unspecified, a low default value of 0.1 g-L! is applied.

Matrices of regulatory constants: inhibition constants (K/) and activation constants
(KA) for each metabolite m in each reaction j, expressed in [g-L'!] and arranged as in
matrix M. Zero values for individual entries indicate that no inhibition or activation
effects are considered.
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e Turnover number matrix (kc.): Comprises two rows: the first (kear) contains forward-
direction turnover numbers, while the second (kcaw) contains backward-direction values.
Column labels match those in matrix M. Values represent molecules of product produced
per catalyst protein per unit time (in [h™!]).

e Condition matrix: Defines simulation parameters for each growth condition. The first
row ("'rho") specifies cell density in [g-L™']. Subsequent rows contain external reactant
concentrations (g-L™"), with the number of rows corresponding to the number of external
reactants (with "x_" prefix) in M. Each column represents a distinct growth condition for
the simulations.

Cell Growth Simulator provides a downloadable GBA model template as a reference for users
developing their own models. Alternatively, users can build models directly within the "Create
Model" section of Cell Growth Simulator. The application employs the "shinyMatrix" R package
to generate and display matrices across model tabs, with custom JavaScript modifications that
enhance usability through features like arrow key navigation and full-cell editing capabilities
(Andreas Neudecker, 2019).

The model creation process begins by specifying the number of reactants and reactions, followed
by entering their corresponding labels. The system automatically designates "Ribosome" for the
final column and "Protein" for the final row. Users must input kinetic parameters (Km and kca) on
dedicated tabs. To facilitate this process, these tabs display collapsible cards containing relevant
kinetic parameters sourced from the BRENDA database (Chang et al., 2021), with an additional
option to query and filter parameters based on organism, EC numbers, and enzyme substrates.

In the "Condition" tab, users input the number of external reactants and "rho" for cell density,
and specify the total number of growth conditions for optimization. The application then
dynamically adjusts the "condition" matrix, enabling users to configure different external
concentrations for each optimization scenario.

After uploading or creating a GBA model, the application presents a comprehensive preview of
the input data. This allows users to review their model thoroughly and make direct modifications
within the interface. Once finalized, users can export their refined model in ODS format for
future use, supporting an iterative development approach that progressively enhances model
performance and accuracy.

Model validation and numerical optimization process in Cell Growth Simulator

After importing their GBA model, users can validate its compliance with framework
requirements through the "Check Model" function. This comprehensive validation process
ensures proper parameter import by performing several critical checks:
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1. Data integrity: verifies that no missing (NA) or non-numeric values exist throughout the
model;

2. Dimensional consistency: confirms that all matrices maintain consistent dimensions,
with matching numbers of reactions and reactants;

3. Non-negative value verification: validates that all external concentrations are non-
negative and that cell density is positive;

4. Michaelis constant validation: identifies instances where substrates (negative entries in
the matrix M) have Michaelis constants incorrectly set to zero (Km=0).

If Kn=0 errors are detected, the system issues a warning and automatically applies the default
low value of 0.1 [g-L"!] to these parameters. Should any other validation criteria fail, the
application displays a specific error message directing users to reset their session and revise the
problematic aspects of their model.

Upon successful validation, the system notifies users that their model meets all requirements,
enabling them to proceed confidently to subsequent analysis steps. This rigorous validation
workflow ensures that only properly formatted models enter the computational pipeline, reducing
the likelihood of simulation errors or biologically implausible results.

Users have the option to bypass the model validation step and directly initiate growth balance
analysis by selecting the "Run" button. The optimization process utilizes the "nloptr" R package,
which implements non-linear optimization through the AUGLAG (augmented Lagrangian)
method (Ypma & Johnson, 2011). This framework allows users to choose from several
specialized local solvers:

e SLSQP (Sequential Least Squares Quadratic Programming): the default solver, well-
suited for smaller models requiring precise constraint management.

e LBFGS (Low-storage BFGS): Selected for its efficient memory usage and robust
performance;

e MMA (Method of Moving Asymptotes): particularly effective for highly non-linear
models with complex constraints;

While SLSQP serves as the default, users can select alternative solvers through the 'Advanced
option' panel when facing performance challenges. Due to the nature of numerical optimization,
it is not always possible to know beforehand which solver will be most appropriate for a given
model. If the default solver exhibits slow convergence or fails to reach a solution that satisfies
the optimization criteria, users are encouraged to evaluate alternative solvers to enhance
performance outcomes.

The selection of solver can significantly impact both convergence rate and solution accuracy,
with the optimal choice depending on model complexity and problem characteristics. During
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optimization, a dynamic progress bar tracks completion for each growth condition, providing
users with real-time estimates of the total processing time. For reference, the included case study
model (comprising 4 reactions and 4 internal reactants) typically completes optimization in under
1 second per condition on standard personal computing hardware.

Interactive metabolic pathway and data visualization

Cell Growth Simulator uses the "apexcharter" package (Perrier & Meyer, 2019) to generate
comprehensive, interactive visualizations of numerical solutions across all simulation conditions.
These visualizations include growth rates, protein concentrations, protein fractions, reaction
fluxes, and metabolite concentrations. Each interactive plot supports zooming and panning to
enable researchers to investigate specific trends. Users can export these visualizations in both
SVG and JPEG formats for publication or presentation purposes.

Beyond conventional plotting capabilities, Cell Growth Simulator integrates d3flux
(https://github.com/pstjohn/d3flux) to automatically generate interactive metabolic pathway
diagrams directly within the web interface. These pathway visualizations dynamically represent
the GBA analysis results from the first growth condition, with line thicknesses and node sizes
proportionally reflecting flux magnitudes and concentration values, respectively. This feature
enhances biological understanding, helping researchers to quickly identify key metabolic
features or potential pathway errors. Users can interact with the pathway map by zooming,
dragging nodes to refine the layout, and viewing detailed information on metabolites and
reactions. For collaboration and documentation purposes, users can save pathway configurations

as JSON files for future editing or export them as publication-ready SVG files.

In addition to the visual outputs, users can download the numerical optimization results as a CSV
file, supporting rigorous statistical analysis and custom visualization.

4.3 Results

Case study: example of a GBA model using Cell Growth Simulator

We next provide an example of a GBA model to showcase the practical application of Cell
Growth Simulator, using a streamlined GBA model previously reported in the literature
(Dourado et al., 2023). This model consists of 4 reactions and 4 internal reactants, with two
redundant reactions, only one of which is active under optimal growth conditions.

The model assumes irreversible Michaelis-Menten kinetics, where the turnover times (t) are
determined by a matrix (K) of Michaelis constants and a vector (k.,;) of forward turnover
numbers for each reaction. Fig 2a-c illustrates the schematic representation of the model, along
with its parameters (M, K, k.4, and p).
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While most model parameters are arbitrary for demonstration purposes, several key values are
based on empirical data: the ribosome reaction parameters (k.. =4.55h" and K,, =83 g L'
for its primary substrate) reflect E. coli estimates (Dourado & Lercher, 2020), and the cell
density (p =340 g L") reflects the measured E. coli dry mass density (Zimmerman & Trach,
1991). This example deliberately omits regulatory mechanisms, with activation (K4) and
inhibition (K7) matrices set to zero.

Users can examine the complete model in the "Model Preview" section (Fig 2d), where they can
also modify parameters and save customized versions. The "Check Model" function validates
parameter integrity before optimization, while the "Run" button initiates numerical optimization
using the SLSQP solver. Upon completion, Cell Growth Simulator generates a comprehensive
overview of key results, such as the number of simulated growth conditions, the number of
converged optimizations, the maximum achieved growth rate, and the average total protein
concentration (Fig 2e). In the "Interactive Plots" panel, Cell Growth Simulator displays
customizable plots where the x-axis can represent external reactant concentrations or growth rate
(1), while the y-axis can display various metrics including growth rates, protein fractions, protein
concentrations, reaction fluxes, and metabolite concentrations.

Analysis of the example model shows that growth rates at different external concentrations are
consistent with the Monod equation (Fig 2g). The results show an approximately linear
relationship between ribosomal mass fraction ¢, and growth rate p. The protein fraction
allocated to the transporter G decreases with the increasing external concentration x¢,
corroborating previous theoretical findings regarding the efficiency of carbon source utilization
(Burnap, 2015; Faizi et al., 2018; Molenaar et al., 2009; Weille et al., 2015). These relationships
reflect fundamental "bacterial growth laws," supporting the notion that optimal resource
allocation drives maximal growth across diverse environmental conditions (Scott et al., 2010a;
Scott & Hwa, 2011; You et al., 2013).

Analysis of reaction activities reveals a dynamic metabolic shift between rxn 3 and rxn_4: rxn 3
is active at lower growth rates (up to 1.58 h™*), while rxn_4 is utilized at higher growth rates (Fig
21). Both reactions share a similar structural role in the matrix M (linearly dependent columns
when considering only the 4 internal reactants) but have different kinetic parameters, resulting in
different resource allocation costs; this favors the sole use of rxn_3 at lower growth rates and the
sole use of rxn_4 at higher growth rates.

The "Pathway Visualization" panel offers an intuitive graphical representation of the reaction
network (Fig 2h), with visual elements scaled proportionally to simulation results from the first
growth condition (representing maximal external concentrations in this example). Node sizes of
metabolites reflect metabolite concentrations, while line thicknesses indicate protein
concentrations. The redundant pathway, rxn 3 in this case, is highlighted using a dashed line.
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Users can export the complete optimization results as a ".csv" file through the "Results" button in
the main panel.
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Fig 2. Analysis of an example GBA model using Cell Growth Simulator. (a) Schematic
representation of the simplified GBA model, illustrating reaction pathways, metabolite interactions,
and redundant routes. (b) Mass fraction matrix (M), detailing the stoichiometric relationships
between reactants (rows) and reactions (columns), with negative values indicating consumption and
positive values indicating production. Note that in panel b-c, “Ribosome” is shortened to “Rib” and
“Protein” to “Prot” for clarity. (c) Kinetic parameter set comprising the Michaelis constant matrix
(K) and turnover number vector (k.4 ). (d) Cell Growth Simulator model preview interface
displaying imported parameters and allowing for real-time modification before analysis. (¢) Results
summary dashboard presenting key optimization outcomes: total growth conditions analyzed,
number of successfully converged optimizations, maximum achieved growth rate, and average total
protein concentration. (f) Optimal protein allocation across varying growth rates. (g) Monod-like
growth curve in response to external carbon source availability. (h) Interactive metabolic pathway
visualization with node sizes proportional to metabolite concentrations and edge thicknesses
reflecting protein allocation, with dashed lines indicating redundant pathways.
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4.4 Discussion

We introduce Cell Growth Simulator, a user-friendly web application for Growth Balance
Analysis (GBA) that enhances accessibility for researchers interested in exploring cellular
growth and resource allocation under nonlinear kinetic rate laws. Cell Growth Simulator
provides an intuitive interface built with R/Shiny, supplemented by HTML, CSS, and JavaScript
to enhance the user experience. The application allows users to construct and modify models
through interactive matrices that resemble spreadsheet environments (here, .ods files), a familiar
open-source format for many researchers. This design choice simplifies the process of inputting
and managing model parameters — such as the mass fraction matrix (M), kinetic parameters (K,
and k., ), cell density, and external growth conditions — without requiring direct coding. Cell
Growth Simulator significantly streamlines the incorporation of kinetic parameters into models
by integrating data tables retrieved from the BRENDA enzyme database (Chang et al., 2021).

Cell Growth Simulator has an emphasis on customizable and interactive visualization to aid in
the interpretation of optimization results. By integrating "d3flux", a package specifically
designed for metabolic pathway visualization, and the “Apexcharter” package for generating
interactive plots, the application provides a dynamic and informative representation of the
metabolic network and the simulation results.

The GBA formalism itself imposes no intrinsic limit on model size. In principle, it can be applied
to networks ranging from minimal self-replicators to genome-scale models. However, we
recommend using the Cell Growth Simulator with coarse-grained models that have fewer than
~20 reactions and internal species. At this scale, models remain interpretable, optimization is
feasible with standard solvers, and interactive visualization is responsive on modest hardware.
While larger models can be constructed within the same framework, they are better explored
through programmatic workflows (e.g., R/Python notebooks) coupled with more powerful
numerical solvers. Future development will focus on improving computational efficiency and
providing programmatic interfaces to facilitate the analysis of larger models.

Cell Growth Simulator addresses key challenges in analyzing self-replicating cell models with
nonlinear kinetics, making such fundamental analyses accessible to a wide range of researchers
and fostering interdisciplinary collaboration by lowering technical barriers. Furthermore, Cell
Growth Simulator's approach aligns with the growing emphasis on open science and
reproducibility. By offering a platform that is both user-friendly and transparent, it supports the
sharing of models and results, facilitating peer review and collaborative contributions to
advancing our understanding of cellular metabolism and growth.
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Availability and Future Directions

Cell Growth Simulator is freely available as a web server at https://cellgrowthsim.com/, where
researchers can analyze and share their models without additional registration or login
requirements. Looking ahead, we plan to expand Cell/ Growth Simulator's capabilities in two key
areas. First, although the underlying GBA formalism does not restrict model size, we will
improve computational efficiency by using better solvers and parallelization strategies. This will
make it possible to study larger, more detailed models than the coarse-grained scale
recommended here. Second, we intend to incorporate dynamical simulations so that users can
study time-dependent behavior and transient responses in metabolic and proteomic networks. By
coupling these dynamic features with coarse-grained approaches for cellular resource allocation,
Cell Growth Simulator will provide both steady-state and temporal insights into how cells adapt
and grow under varying conditions. We welcome community-driven enhancements and
collaborative projects to further improve Cell Growth Simulator's functionality, usability, and
applications in diverse biological contexts.

Data availability

Cell Growth Simulator is a web server freely accessible without login requirement at
https://cellgrowthsim.com/.

The source code for Cell Growth Simulator is available at:
https://github.com/Sijr73/CellGrowthSimulator.
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Chapter 5

Discussion and Outlook



5.1 Discussion

This work had three main objectives related to the study of cyanobacterial metabolism and
cellular resource allocation: first, to demonstrate how the extensive metabolic networks of
cyanobacteria confer a remarkable ability to adapt to diverse environments, highlighting their
ecological importance and industrial potential; second, to deepen our understanding of how these
organisms allocate resources as a function of environmental conditions, by employing the growth
balance analysis (GBA) framework that explicitly captures the intracellular processes underlying
photoautotrophic growth; and third, to develop Cell Growth Simulator, a user-friendly
framework that facilitates the modeling and analysis of resource allocation within such systems.

Together, these studies shed light on different aspects of cyanobacterial adaptation. At the
genome/network evolution level, the versatile metabolic repertoire of cyanobacteria provides
them with adaptive flexibility: with relative ease, they can acquire the biochemical pathways
needed for new environments. At the physiological level, they demonstrate adaptive flexibility
by reallocating protein resources to optimize growth under specific conditions. When shifting
from light-limited to light-saturated conditions, cyanobacteria exhibit a decrease in the proteome
fractions of photosystem I (PSI) and photosystem II (PSII) along with an increase in ribosome
protein fraction, mirroring experimental observations (Faizi et al., 2018; Zavfel et al., 2019).
Importantly, the evolutionary and physiological scales likely reinforce one another. A larger
metabolic network not only allows growth on varied substrates (long-term adaptation), but also
offers redundancy or alternative pathways that cells can differentially regulate (short-term
acclimation). Thus, the overarching theme is that resource allocation and adaptive evolution are
interlinked: cyanobacteria that maintain a broad enzymatic repertoire adapt faster over
evolutionary timescales and cope better with fluctuating conditions through nimble resource
redistribution.

Our finding that metabolic complexity accelerates evolvability challenges long-standing
assumptions in evolutionary theory. According to Fisher’s model and subsequent analyses
(Fisher, 1930; Orr, 2005), mutations in more complex organisms are less likely to be beneficial
due to widespread pleiotropic side effects. However, by focusing on metabolic networks, we
found the opposite trend: more complex networks are more adaptable. This apparent
contradiction can be explained by considering the biological context. Empirical evidence from
protein-protein interaction (PPI) networks supports Fisher's view that genes that code for highly
connected proteins are rarely gained through horizontal transfer. This is presumably because
successful integration would require the concurrent co-evolution of multiple binding sites,
suggesting that complexity is costly (Cohen et al., 2011; Jain et al., 1999). In metabolic
networks, however, enzymes largely function independently, so adding a new enzyme can plug
into pathways without requiring co-evolved binding sites. The adaptive value of an enzyme lies
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primarily in its catalytic activity, which can often be harnessed if the regulatory mechanisms
adjust accordingly (Lenski, 2017; Lozada-Chévez et al., 2006). Indeed, prior empirical work on
E. coli revealed that nearly all metabolic innovations in its lineage emerged through the
acquisition of single DNA segments, frequently leveraging pre-existing "promiscuous" enzymes
or substrates (Szappanos et al., 2016).

Our pan-genome analysis generalized this concept across diverse bacteria, including
cyanobacteria, and highlighted the role of exaptations and collateral adaptation. Generalists often
gained the ability to grow in additional environments through one adaptation, which is a form of
collateral benefit that has also been observed in network simulations by Barve and Wagner
(2013). Specialists, on the other hand, showed little collateral adaptation. However, when forced
to adapt, they tended to reuse previously gained functions in a stepwise fashion, resulting in
higher exaptation indices. This finding aligns with the idea that rare expansions from a specialist
niche likely occur through the sequential building on prior gains. An unexpected outcome was
the magnitude of the difference. For example, the endosymbiont Buchnera aphidicola required
an average of 52 new reactions to survive in a new medium, whereas Synechocystis sp. PCC
6803 and Synechococcus elongatus PCC 7942, despite being obligate photoautotrophs, required
only three to four additions. Thus, even phototrophic cyanobacteria, which are often viewed as
niche specialists, exhibit considerable latent metabolic potential. This underscores how their two-
billion-year evolutionary history in fluctuating environments may have preserved metabolic
complexity as a hedge against change (Cao et al., 2020). Our results provide a mechanistic basis
for anecdotal observations of the versatility of cyanobacteria (e.g., their ability to tolerate
extreme habitats) by revealing a robust metabolic network that defies the typical specialization
trade-off.

The GBA modeling results align with and extend prior studies on cyanobacterial physiology.
Molenaar et al. (2009) and subsequent studies have proposed that microbes allocate proteins in a
way that optimizes growth-limiting processes (Burnap, 2015; Faizi et al., 2018; Jahn et al., 2018;
Zaviel et al., 2019). For Synechocystis, the trade-off between light harvesting and carbon
assimilation is an example of this: under low light conditions, Synechocystis allocates most of the
resources to photosynthetic components, whereas under carbon-limited or high-light conditions,
investment shifts to metabolism and biosynthesis. The smooth reallocation exhibited by our
model is consistent with continuous cultures of cyanobacteria grown under different light
intensities (Jahn et al., 2018; Zaviel et al., 2019). Our extended model demonstrated the ability to
capture the reduction in total cellular protein content with faster growth, a trend that was
observed in experiments but not explained by earlier models that assumed a fixed proteome size
(Goelzer & Fromion, 2011; O’Brien et al., 2013; Sanchez et al., 2017). In our framework, this
behavior emerges naturally. At higher light intensities, despite higher growth rates, less pigment
and antenna protein are needed, which frees up mass for other cell components. Additionally,
photodamage at very high light levels necessitates the allocation of some resources to ribosomal
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protein fractions instead to net growth. Compared to a previous coarse-grained nonlinear model
of Synechocystis (Faizi et al., 2018), the GBA formulation proved to be mathematically simpler
yet equally effective in reproducing observed growth trends and proteome allocation under
different light intensities. This streamlined approach is particularly advantageous for exploring
more sophisticated phototrophic behaviors and extending the model to include additional cellular
processes, such as major photosynthetic complexes or carbon fixation.

A useful aspect of this study is its integrated perspective on adaptation. We linked evolutionary
innovation and physiological acclimation under the unifying theme of resource allocation. Using
computational models at both scales allowed us to compare our findings with a broad spectrum
of previous studies, ranging from theoretical models of evolvability to laboratory measurements
of proteomes, and demonstrate that a consistent picture emerges. We showed that from a
minimal set of governing principles (mass balance, density, and kinetic constraints), an
explanation of diverse phenomena emerges, such as the long-term diversification of bacterial
lineages and the short-term acclimation of a cyanobacterial culture. Furthermore, we introduced
Cell Growth Simulator, a practical innovation and user-friendly web server that provides an
accessible interface for these complex nonlinear models. It lowers the barrier for other
researchers to apply growth balance analysis to their systems. Although GBA offers a robust
approach for modeling self-replicating cells — explicitly incorporating metabolite concentrations
and their effects on reaction fluxes — its implementation previously demanded significant
programming expertise and computational resources. Cell Growth Simulator uses an intuitive
spreadsheet interface, integrated kinetic parameter retrieval from the BRENDA enzyme database
(Chang et al., 2021), and interactive visualization tools. This platform not only makes nonlinear
modeling of resource allocation in coarse-grained cellular systems accessible to researchers with
limited programming skills, but it also serves as a valuable tool for fostering interdisciplinary
collaboration and enriching our understanding of cellular metabolism and growth. In summary,
the combination of conceptual advances (pan-genomic analysis of adaptation), mechanistic
modeling (growth balance analysis of phototrophic growth), and methodological tools (Cell
Growth Simulator) constitutes a solid contribution to understanding cyanobacterial systems.

However, these contributions come with certain limitations that must be acknowledged. First, the
pan-genome metabolic modeling in our adaptation study relied on available genome-scale
models of the BiGG database and simulated “virtual HGT” events (Schellenberger et al., 2010).
While this approach is effective for scanning thousands of scenarios, its accuracy depends on the
quality of the underlying metabolic reconstructions. Some cyanobacterial models may lack
pathways, especially regulatory or stress response pathways, that in nature would affect viability.
For instance, our definition of a "viable environment" focused solely on the metabolic ability to
synthesize biomass precursors or energy generation, and did not consider other growth-limiting
factors, such as light, temperature, and pH levels. In nature, cyanobacteria face multifaceted
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challenges, and adaptability involves more than just metabolism (e.g., regulatory plasticity and
physiological tolerance).

One shortcoming of our adaptability metric is that it is narrow. A strain may appear
metabolically adaptable according to our criteria, yet still fail to colonize a niche due to
ecological constraints, e.g., unfavorable light spectra or high turbidity/UV exposure, and salinity
or osmotic shocks. A key limitation in resource allocation modeling is the coarse-grained
approach of GBA models. To keep the models mathematically simple, complex processes (such
as the Calvin cycle or diverse metabolic pathways) are lumped into single reactions.
Consequently, the models cannot capture certain details, such as the regulation of individual
enzymes, the spatial organization of thylakoids, and the diurnal cycling of metabolism. Although
the model accurately reproduced steady-state trends, it cannot yet describe transient dynamics or
regulatory phenomena during acclimation. Finally, the Cell Growth Simulator itself, while user-
friendly, is limited to relatively small models (<20 reactions) and steady-state conditions. Scaling
up to genome-scale kinetic models remains computationally challenging, and users must supply
many kinetic parameters; this is a non-trivial task given the limited experimental data available
for many enzymes, although machine learning models for predicting kinetic parameters from
amino acid sequences and chemical reaction representations can fill this gap (Kroll et al., 2021,
2023).

Despite these limitations, our holistic approach has revealed a coherent narrative of
cyanobacterial adaptation. Organisms that were once considered photosynthetic specialists now
seem to be well-positioned to expand their ecological and biochemical roles. Their genomes
encode a variety of metabolic functions, making them generalists in potential. It may then seem
surprising that not more heterotrophs have evolved from cyanobacterial ancestors; a potential
reason is the ecological superiority of at least facultative photosynthesis, though more research
may be needed to settle this question. The metabolic adaptability of cyanobacteria helps explain
how these organisms have managed to colonize environments ranging from hot springs to polar
lakes over geologic time (Rybak et al., 2024; Wejnerowski et al., 2023). We also learned that,
much like other unicellular organisms, cyanobacteria allocate their cellular resources in a highly
optimized manner constrained by their phototrophic lifestyle (e.g., they have to balance light
harvesting components and carbon fixation). Our study notably showed that the frequently
discussed trade-off between light-harvesting and growth machinery in phototrophs can be
quantified and predicted. The strong correspondence between the predicted proteome fractions of
our model and the empirical measurements builds confidence in our understanding of the
allocative priorities of these cells.

These mechanistic insights are not only academically interesting but also have practical
implications. For instance, when bioengineering cyanobacteria to produce biofuels or chemicals,
one could use these findings to ensure that the engineered pathways do not disrupt the cell’s
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balanced allocation. Alternatively, one could use synthetic biology to re-engineer the allocation
to favor production over growth.

5.2 Future directions

This work opens several avenues for further investigation. One clear direction is to bridge the
evolutionary and physiological scales more directly. While we studied them separately, an
integrated model could simulate how a cyanobacterium’s growth advantage in a new
environment (as predicted by GBA) translates into a selection advantage that drives genome
evolution. For instance, one could incorporate our resource allocation model into an evolutionary
simulation to test which new metabolic gene, when acquired, results in the maximum growth
under specific conditions and whether that aligns with the historical sequence of gene
acquisitions in cyanobacterial lineages. This would require expanding GBA models to include
alternative metabolic routes that are initially "absent" and then "added" to simulate horizontal
gene transfer (HGT) — an approach that our pan-genomic analysis already employed in this
study. Combining these approaches would result in a multi-scale evolutionary simulation in
which the genotype (network) and phenotype (allocation) co-evolve.

Therefore, one next logical step is to develop genome-scale GBA models that capture the full
metabolic complexity of cyanobacteria. Current GBA models (including the Synechocystis
model developed here) focus on relatively small, coarse-grained networks. In contrast, genome-
scale metabolic reconstructions already exist for cyanobacteria, providing a comprehensive
definition of the stoichiometry of hundreds of reactions (Hoper et al., 2024; Knoop et al., 2013;
Montagud et al., 2011; Nogales et al., 2012). In addition, a genome-scale GBA model would
require extensive kinetic data, such as turnover numbers, Michaelis constants, and
activation/inhibition constants, for potentially thousands of enzymes. Acquiring the data of this
scale is a formidable challenge because experimentally measured enzyme parameters cover only
a small fraction of reactions, even in well-studied bacteria. Recent advances in machine learning
predictions of the properties of enzymes and transporters indicate that this significant challenge
is becoming addressable (Heckmann et al., 2018; Kroll et al., 2021). Using these predictions to
parameterize proteome-constrained models significantly improved their accuracy (Li et al.,
2022). These breakthroughs suggest that creating a genome-scale GBA model for cyanobacteria
is becoming feasible. Such a model would expand the scope of GBA to include every metabolic
pathway and require new computational strategies to handle the high dimensionality and
nonlinearity of a whole-cell kinetic model. New numerical optimization strategies, including
dedicated high-performance solvers, are emerging to keep genome-scale kinetic models solvable.
A particularly promising development is GBAcpp (https://github.com/charlesrocabert/gbacpp), a
high-performance C++ solver that combines gradient-ascent optimization with parallelization
and optional global-search heuristics developed at the Computational Cell Biology group at
HHU. This approach delivers speed increases of orders of magnitude for GBA calculations.
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Once achieved, a genome-scale GBA model could effectively unite the system-level insights of
FBA (e.g., optimal flux distributions) with the detailed resource allocation mechanics of GBA,
providing a more holistic platform for exploring cyanobacterial physiology.

Second, modeling frameworks such as FBA, RBA, and GBA at steady-state conditions may not
fully capture the dynamics of organisms whose metabolism varies over time. This is exemplified
by the pronounced diurnal (day/night) cycles in cyanobacteria. As cyanobacterial growth and
metabolism are tied to the light/dark cycle, assuming a constant steady state can overlook
important regulatory and metabolic shifts. Therefore, extending GBA to include time-dependent
phenomena beyond steady-state growth is a promising direction. Initial efforts in this area show
great potential. For example, Reimers et al. (2017) developed a constraint-based framework that
uses a genome-scale model of a Synechococcus to simulate optimal resource allocation over a
full diurnal cycle. Their time-resolved model could predict cyclic patterns, such as glycogen
storage, across day/night phases. These predictions were in qualitative agreement with
experimental observations. Future GBA models could build on such approaches by incorporating
dynamic regulation to better reflect how cells reallocate resources under cyclic and fluctuating
conditions. These dynamic, GBA models would provide a more complete picture of how
cyanobacteria balance metabolic demands over time and offer deeper insight into processes such
as the circadian regulation of metabolism. This knowledge could inform more refined strategies
for metabolic engineering and biotechnology. For instance, it could help identify the optimal
time or conditions for inducing the production of a desired bioproduct in cyanobacterial cultures.

Finally, as the GBA framework scales up to the genome level, maintaining accessibility and
user-friendliness will be a key challenge. Genome-scale kinetic models are computationally
intensive and complex. Therefore, future versions of our Cell Growth Simulator web-server
should be improved to efficiently handle larger networks while remaining easy to use. Using
more efficient optimization algorithms, such as better nonlinear solvers or decomposition
methods (such as Augmented-Lagrangian (Birgin & Martinez, 2008; Conn et al., 1991)), and
leveraging parallel computing could significantly reduce run times for large GBA models.
Additionally, enhanced features such as automated parameter estimation to fit or refine kinetic
parameters from data, expanded sensitivity analysis tools, and direct interfaces to genome-scale
or enzyme databases to fetch reaction kinetics would streamline the modeling workflow.
Crucially, these upgrades should preserve and build on the current design philosophy of
accessibility in the Cell Growth Simulator. By lowering computational and technical barriers
even further, an improved Cell Growth Simulator could support iterative model building and
refinement at the genome scale while remaining accessible to experts and new users alike. We
envision that, in the future, Cell Growth Simulator will become a central hub for collaborative,
iterative, genome-scale modeling of cyanobacterial metabolism, enabling researchers to easily
test hypotheses, integrate new data, and advance our understanding of these ecologically and
biotechnologically important microbes.
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