
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use:

A case for data-oriented specifications: simpler implementation of B tools and DSLs

Suggested Citation:
Körner, P., Mager, F., & Roßbach, J. (2025). A case for data-oriented specifications: simpler
implementation of B tools and DSLs. Innovations in Systems and Software Engineering, 21(3), 939–959.
https://doi.org/10.1007/s11334-025-00596-3

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20251027-124522-8

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Philipp Körner, Florian Mager & Jan Roßbach

Article - Version of Record

Innovations in Systems and Software Engineering (2025) 21:939–959
https://doi.org/10.1007/s11334-025-00596-3

S . I . : MODELS/MODEVVA’22 & SAM’22

A case for data-oriented specifications: simpler implementation of B
tools and DSLs

Philipp Körner1 · Florian Mager1 · Jan Roßbach1

Received: 20 February 2023 / Accepted: 14 January 2025 / Published online: 15 March 2025
© The Author(s) 2025

Abstract
Considering programs as data enables powerful meta-programming. One example is Lisp’s macro system, which gives rise to
powerful transformations of programs and allows easy implementation of domain-specific languages. Formal specifications,
however, usually do not rely on such mechanisms and are mostly written by hand in a textual format (or using specialised
domain-specific language (DSL) tools). In this paper,we investigate the opportunities that stem fromconsidering specifications
as data. For this, we embedded the B specification language in Clojure, a modern Lisp. We use Clojure as a functional meta-
programming language and the ProB Java API to capture the semantics of B, i.e., to find solutions for constraints or animate
machines. From our experience, it is especially useful for tool development and generation of constraints and machines from
external data sources. It can also be used to implement language extensions and to design DSLs.

Keywords B · ProB · Clojure · Language embedding · Meta-programming · Tool development · Domain-specific languages

1 Introduction

Formal specification languages are usually employed to gain
amathematical description of problems, algorithms and state
machines. The syntax and features of many formalisms typi-
cally are set in stone in order to capture a precise semantics of
a small core language. As a consequence, infrastructure for
domain-specific languages (DSLs) andmodel transformation
tools is usually not available. These points—domain-specific
modelling environments and transforming models—have
been identified as two of the core challenges in model-driven
engineering (MDE) [18] and still remain so today [43].

On the other hand, DSLs and code transformation have a
long history and strong support in other programming lan-
guages. One example is the family of Lisp programming
languages, where meta-programming is easily accessible
through a rich macro system. Because Lisp code is written in

B Philipp Körner
p.koerner@hhu.de

Florian Mager
florian.mager@hhu.de

Jan Roßbach
jan.rossbach@hhu.de

1 Institut für Informatik, Heinrich Heine Universität Düsseldorf,
Universitätsstraße 1, 40225 Düsseldorf, NRW, Germany

the data structures of the language, i.e., lists, it can be easily
programmatically transformed into other code. Thus, even
complex transformations of code snippets or DSL elements
can be implemented with relatively low effort.

As our main contribution of this paper, we explore the
combination of these two paradigms:We embed the language
of an MDE methodology, the B method [2], as a DSL in
Clojure [26], a modern Lisp that runs on the JVM. Further,
we employ the ProB Java API [33] to capture the semantics
ofB, to constructBmachines under the hood, tofind solutions
for constraints and for all verification & validation activities
(V&V).

We argue that, regardless of the embedded formalism or
the hosting programming language, strong support for lan-
guage extensions via DSLs as well as model transformations
is worth exploring. In this paper, we demonstrate the concept
by borrowing the infrastructure that Clojure provides—an
advanced macro system, a rich standard library and access
to the Java eco-system of libraries. Ultimately, we hope that
these features will be supported by specification languages
themselves, especially so that such transformations will be
captured more formally than we do in our approach. The
focus of this article for now is to facilitate the work of tool
developers (rather than modelling experts); but we hope to
convince the reader that the modelling expert can and should
be the tool developer.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-025-00596-3&domain=pdf
http://orcid.org/0000-0001-7256-9560

940 P. Körner et al.

Following, we give a brief introduction to B andClojure in
Sect. 2, and introduce the internals of our embedding—lisb
library—in Sect. 3. In Sect. 4, we present lisb’s capabilities
for tool development based on an automatic refinement tool
and give our insights on how well our chosen representation
synergises with widespread libraries. Further, the implemen-
tation of a small imperative DSL is described in Sect. 5.
Implementation details are presented in Sect. 6 by transfer-
ring the technique to LTL formulas. Finally, we give our
conclusions in Sect. 8.

1.1 Motivation

Overall, the development of lisb was driven by two experi-
ments of our group:

The initial idea came during implementation of a case
study on data validation of university curricula [49, 51].
Briefly summarised, the goal was to verify that all combi-
nations of major and minor subjects at the faculties of Arts
& Humanities and Business Administration & Economics
at Heinrich Heine University Düsseldorf can be studied in
a legal standard time (typically six semesters). One idea
was to generate conforming timetables from scratch using
a constraint-based approach [50].

A first version of lisb thus only covered the required B
sub-language that contains expressions and predicates (but
covered no state changes via variable substitutions) and was
created with two design goals in mind: First, to address sev-
eral shortcomings with the B language—in particular, the
lackof convenience operators (such as let and if on the level of
expressions instead of substitutions1) and an error-prone def-
inition system that was used to avoid repetition of predicates
and substitutions that are shared between several operations
(see Appendix A for details)—and, second, to interact with
(partial) solutions that the constraint solver provides. The
main application was to transform the course information
obtained from the electronic course catalogue into constraints
that can be programmatically manipulated, combined and
extended.

Later, another motivator was a student project aiming at
translating Solidity contracts [14] toBmachines. Thus, it was
required to extend lisb to cover the entirety of the B language
in order to capture state changes. This experiment helped to
expose the potential for DSLs. At this point, lisb was mature
enough so thatmore complex tools can be created on top of it.
As mentioned above, an example is a tool that applies certain
refinement steps in order to obtain an equivalent version of
the machine that exposes more information during a specific
static analysis (Sect. 4).

1 During the project, ProB was extended to introduce these operators.

1.2 Additional contributions

The article is based on our MoDeVVa 2022 workshop paper
[31] and extends it by

• providing a more inclusive background (Sect. 2),
• including lessons learned regarding library support
(Sect. 4.3),

• a revised step-by-step tutorial of creating a similar
embedding for the small LTL language, tools and DSLs
(Sect. 6),

• a more detailed discussion of related work (Sect. 7),
• giving an outlook on challenges regarding a unified inter-
mediate language for B and Event-B (in Sect. 8.1).

2 Background

In this section, we give a brief primer on the languages
involved in the embedding, the B specification language and
Clojure.

2.1 The B specification language

Roughly, the B methodology supports a correct-by-
construction approach: Starting with an abstract, state-based
model that specifies the desired behaviour, one adds more
details by refining the model. Each refinement step is linked
to the one before by proof obligations one has to discharge
in order to show that the specification did not diverge. The
models are written in the B language [2], which is based
on first-order logic and set theory. A rather simple B model
specifying Peterson’s algorithm is given in Listing 1 (where
we prefer standard mathematical symbols over the ASCII
notation).

In the SETS clause, an enumerated set of statuses is
defined (equivalent to enumerated types in programming lan-
guages). In the CONSTANTS clause, the constant other
is introduced, which is constrained to the sequence [2,1]
(equal to the relation {(1, 2), (2, 1)}) in the PROPERTIES
clause. The state variables are declared in VARIABLES
clause and initially assigned during the INITIALISATION
(note that x is chosen non-deterministically and two possible
initial states exist). The state is then manipulated as specified
by the guarded substitutions in the OPERATIONS clause;
here, it is encoded that either process must acquire the mutex
before it may enter the critical section. Afterwards, it leaves
the critical section again. The safety property that both pro-
cesses may not be in the critical section at the same time is
encoded as part of the INVARIANT clause. The invariant
is typically verified by proof (e.g., using AtelierB [35]) or
exhaustive model checking (e.g., using ProB [39]).

123

A Case for Data-Oriented... 941

1 MACHINE Peterson
2 SETS Status = {noncrit ,wait ,crit}
3 CONSTANTS other
4 PROPERTIES other = [2,1]
5 VARIABLES pc ,b,x
6 INVARIANT b ∈ 1..2→ B ∧ x∈1..2
7 ∧ pc ∈ 1..2→Status
8 ∧ not(pc(1)=crit ∧ pc(2)=crit)
9 ∧ ∀i(i∈1..2 ⇒
10 (b(i)=� ⇔ pc(i)=wait ∨ pc(i)=

crit))
11 INITIALISATION
12 b := [⊥,⊥] ‖ x :∈ 1..2
13 ‖ pc := [noncrit ,noncrit]
14 OPERATIONS
15 RequestCS(Proc) =
16 PRE Proc∈1..2 ∧ pc(Proc)=noncrit
17 THEN pc(Proc) := wait
18 ‖ b(Proc) := �
19 ‖ x := other(Proc)
20 END;
21 EnterCS(Proc) =
22 PRE pc(Proc)=wait ∧ Proc∈1..2
23 ∧ (x=Proc ∨ b(other(Proc))=⊥)
24 THEN pc(Proc) := crit
25 END;
26 LeaveCS(Proc) =
27 PRE Proc∈1..2 ∧ pc(Proc)=crit
28 THEN pc(Proc) := noncrit ‖ b(Proc)

:= ⊥
29 END
30 END

Listing 1 B specification of Peterson’s algorithm

Indeed, such amathematical notation is very powerful and
expressive. Different tools have been created or extended to
exploit the high abstraction level in order to concisely capture
constraints and perform data validation on large data sets.
Examples include ProB [25], OVADO [1], PredicateB or
DTVT [36]. Further industrial uses are described in [10].

We built lisb on top of the ProB [39] toolchain in order to
programmatically interact with solutions. ProB is an anima-
tor, model checker and constraint solver for the B language
that has been used in various industrial settings [10]. While
written in Prolog, a Java API exists to interact with the inter-
preter core and even to write entire applications that embed
B specifications [24, 33].

2.2 Clojure

Clojure is a functional programming language that runs on
topof the JVM. It has facilities to interoperatewith other JVM
languages and, thus, code can call and be called from Java,
Scala, Groovy, etc. We chose Clojure over other JVM lan-
guages because its strengths complement several weaknesses

of B: Clojure offers a rich standard library that facilitates gen-
eration and processing of data from disk or other sources; it
taps into the rich JVMecosystem for library and tool support;
and, most importantly, the rich macro system simplifies code
transformation and empowers development ofDSLs. Finally,
all of Clojure’s data structures are immutable by default (as
required for parallel substitutions in B), which also eases
transformation, re-combination of and interaction with parts
of variable values, predicates or state machines. As Clojure
is not a mainstream language, we will briefly introduce some
key concepts here.
Syntax: function calls As a Lisp dialect, function calls are
written as lists. For example, the call (f a b) is equivalent
to calling f(a, b) in Java. In nested calls, arguments are
evaluated before calling the function.
Code is data Clojure code is written as data structures of
the language: The function call (f a b) above is sim-
ply a list of three elements, where the first element is a
symbol that evaluates to a function object, and the other ele-
ments are the arguments. Similarly, part of the syntax are
also vectors, such as [1 2 3], or maps, such as {:key1
:value1, "key2" 42}. The property that code can be
regarded as data allows easy programmatic transformation
of code, which is usually achieved via macros.
Macros and Meta-Programming Macros are functions that
do not take part in the normal evaluation rules: Their argu-
ments are not evaluated. Instead, arbitrary code can be called
to re-write the arguments and to produce new code that
the macro-call is replaced with. Such macros facilitate DSL
development (even of entire DSL stack, e.g., [27]).

A built-in macro that we use later is the threading
macro −>>. It takes a form and iteratively inserts it as
the last argument of all preceding forms. As an example,
(−>> a (b c) (d e)) is re-written to (d e (b c a)).

Macros can be significantly more complex than produc-
ing small re-orderings. A macro b might override the call
to the addition in (b (+ 1 2)) and instead return code
that loads a constraint solving tool, re-writes the expression
into an input format it accepts, and uses that tool to evalu-
ate the expression instead of using Clojure’s + operator. As
arbitrary code can be called, a macro can perform very com-
plex tasks: The functionality of a macro could even include
program analysis tasks, such as type checking, or transfor-
mation, such as partial evaluation.

2.3 Internal versus external DSLs

WithClojuremacros, one (typically) creates a so-called inter-
nal DSL. It is built on top of the hosting language, using the
constructs it offers. Thus, a call to a DSL in Clojure must
always be in parentheses, as the outermost form must be a
macro or function call.

123

942 P. Körner et al.

Another kind is the external DSL: Typically, it introduces
its own syntactical rules andmay differ significantly from the
language that is used to process it. Thus, a specialised parser
is needed in order to generate the (abstract) syntax tree for
further processing. As an example, even the ASCII notation
of B machines can be regarded as an external DSL.

2.4 Language workbenches versus Clojure macros

There are a number of language workbenches,2 that
include JetBrain’s MPS [9], Xtext [8], or, specific to the B-
method, Meeduse [28]. A new DSL can be defined in three
parts: First, by a schema for the abstract representation of the
DSL’s elements (a so-calledmeta-model); Second, by an edi-
tor that generates the meta-model’s elements (which often is
a structured editor, and in some instances a graphical editor);
And third, by a generator that transforms the instances of the
meta-model into executable code (which is often done using
templating languages).

An advanced language workbench will also provide IDE
support for the external DSL, and—due to the editor—will
not require the implementation of a parser. The workbench
might also offer support for testing, debugging, etc.

Opposed to Clojure macros, a language workbench pro-
vides a more structured workflow for the creation of DSLs.
Amacro includes both the definition of the language element
and the generator, i.e., the code it is re-written to. Since we
consider internal DSLs for Clojure macros, a specialised edi-
tor is not required. However, we do not automatically gain
additional support for error messages, e.g., due to syntactical
errors or wrong argument types.

3 lisb—internals

The lisb library is, ultimately, an embedding of the B
language in Clojure. Mainly, three representations of B con-
straints for different tasks are offered, which are presented
in Sect. 3.1. Aside from the syntactical representations, the
semantics of B are available by loading constraints or entire
state machines in the ProB tool. How a user program might
make use of this is discussed in Sect. 3.2.

3.1 Three representations

1 user=> (require ’[lisb.translation.util :as util]

2 ’[lisb.translation.lisb2ir

3 :refer :all])

4 user=> (def lmch (util/b->lisb (slurp

5 "Peterson.mch")))

2 For a more in-depth discussion, we refer to Martin Fowler’s
essay on language workbenches, see https://martinfowler.com/articles/
languageWorkbench.html.

6 user=> (clojure.pprint/pprint lmch)

7 ;; pretty print, shortened

8 (machine :Peterson

9 (sets (enumerated-set :Status :noncrit

10 :wait :crit))

11 ...

12 (variables :pc :b :x)

13 (invariants

14 (member? :b (--> (interval 1 2) bool-set)) ...

15 (for-all [:i]

16 (member? :i (interval 1 2))

17 (or (<=> (= (fn-call :b :i) true) (= (fn-call

18 :pc :i) :wait))

19 (= (fn-call :pc :i) :crit))))

20 (init (parallel-sub (assign :b (sequence

21 false false))

22 (becomes-element-of [:x]

23 (interval 1 2))

24 (assign :pc (sequence

25 :noncrit :noncrit))))

26 (operations ...

27 (:LeaveCS [:Proc]

28 (pre (and (member? :Proc (interval 1 2))

29 (= ...))

30 (parallel-sub (assign (fn-call :pc :Proc)

31 :noncrit)

32 (assign (fn-call :b :Proc)

33 false))))))

34 user=> (def ir (eval ‘(b ~lmch))) ;; generate IR

Listing 2 Loading the Peterson Machine in lisb

lisb contains three representations of the B language that
can be seen in Fig. 1, each with a different purpose. We first
give a quick overview, and will discuss them in more detail
afterwards:

• An internal DSL for B (and, more recently, Event-B
[3, 5]) that can be used to express constraints and B
machines. This DSL can be easily read, written and gen-
erated by (Clojure) developers. Sometimes, this DSL is
referred to as “lisb code”, as, for example, the function
name b−>lisb in l. 3 of Listing 2 indicates. This text,
however, will always use the term “internal DSL”.

• An intermediate representation (IR) of the mathematical
concepts, which are represented as Clojure maps. This
IR is, due to its verbosity, less readable (compared to the
internal DSL); However, programmatic manipulation of
such data structures is easier.

• An embedding of the ProB Java API [33], including the
parser suite of ProB. This allows us to transform the
IR into an AST that ProB can directly process without
further parsing.

The internal DSL is implemented as amacro that re-writes
DSL code to an expression that evaluates against the corre-
sponding IR. The IR can be transformed into the parser nodes
that make up the ProB AST. This AST can be (a) pretty
printed into the standard ASCII notation of B machines, (b)
transformed into the internal DSL or (c) directly be passed
to functions in the ProB Java API.

In Listing 2, the machine from Listing 1 is loaded from
disk. The b−>lisb function will call ProB’s parser, gen-
erate an AST and translate it into the internal DSL. Next, in

123

https://martinfowler.com/articles/languageWorkbench.html
https://martinfowler.com/articles/languageWorkbench.html

A Case for Data-Oriented... 943

Fig. 1 Frontend, Intermediate
Representation and Backend

(b= (b* 2 :x)
(b+ 1 2 3))

f:tag :equals,
:left f:tag :mul,

:nums (2 :x) g,
:right f:tag :add,

:nums (1 2 3) ggInternal
DSL

IR

=

*

x 2

+

1 +

2 3

AST (Backend)

1 new Start(
2 new APredicateParseUnit(
3 new AEqualPredicate(
4 new AMultOrCartExpression(
5 new AIntegerExpression(
6 new TIntegerLiteral("2"))

,
7 new AIdentifierExpression(
8 Collections.singletonList

("x"))),
9 new AAddExpression(
10 new AAddExpression(
11 new AIntegerExpression(
12 new TIntegerLiteral("1"

)),
13 new AIntegerExpression(
14 new TIntegerLiteral("2"

))),
15 new TIntegerLiteral("3"))))

,
16 new EOF());

Listing 3 Creating the Java AST for x ∗ 2 = 1 + 2 + 3

l. 4, we ask for a pretty print of the internal DSL representa-
tion (which is shortened for brevity’s sake). By wrapping the
DSL code in the b macro and evaluating it (l. 23), we will
obtain the IR (which is less readable and, thus, not shown).

Below,wewill discuss these three representations bottom-
up in more detail, in particular their advantages and short-
comings.
ProB Java AST The backbone of lisb is the AST library
provided by the ProB parser. It is the argument type of many
ProBAPI functions, e.g., when constraints should be solved
or a model checking process is started. The parser nodes are
represented as Java classes and are instantiated in Clojure
(due to its interoperability with Java).

Unfortunately, the Java classes themselves are automat-
ically generated by the parser generator tool SableCC [19]
and are not intended to be constructed manually: First, the
unwieldy code depicted in Listing 3 is required in order to
create a small predicate such as x*2=1+2+3 (cf. the lisb
code in Fig. 1). Second, since AST nodes are automatically
generated, the usage of many nodes is unintuitive (e.g., a
singleton list is required in line 8 of Listing 3) in order to

instantiate an identifier node. Third, as the nodes are muta-
ble, inserting the same sub-tree in multiple locations of the
AST is not allowed. Overall, this AST is not suitable for easy
manipulation, is hard to readwithout a pretty print and is very
hard to write.
Intermediate representation (IR) The IR is intended to
address one of the shortcomings of the ProB AST: Its main
goal is to ease programmatic processing and transformation.
The equivalent IR of the code in Listing 3 is depicted in the
middle box of Fig. 1.

Themain difference is that the IR is a pure data representa-
tion (as nestedmaps), which offers the following advantages:
First, it avoids encapsulation of the AST’s information and,
thus, yields a data literal that can be written and accessed
without too much boilerplate. Second, we claim that the IR
is more intuitive because it is based on the semantics of the
actual operators in the language instead of grammar rules
used for parsing. Third, as the IR is just data, one may re-use
sub-trees without worrying to break something.

Scalar values (booleans, numbers, sets and strings) do
not require to be wrapped and are simply the correspond-
ing Clojure data literal. Variable identifiers are represented
as Clojure keywords (identifiers prefixed with a colon, such
as :x). All mathematical operators contained in the B lan-
guage are represented by maps containing the key :tag for
identification and an additional key for their operands. The
representation of the mathematical sub-language for predi-
cates and expressions is, in principle, agnostic to B and can
be re-used for other formalism. Nodes of state machines,
e.g., the invariant or operations clauses, are represented in
the same way as operators; however, their representation is
B-specific and aligns with ProB’s AST nodes.
Internal DSL lisb’s internal DSL is built on top of its IR. It is
designed to address the other shortcomings of the Java AST:
Thegoal is to offer aClojure-style representation that humans
can read and write. However, programmatic manipulation
was explicitly not a goal of this representation.

The foundation of the internal DSL consists of pure func-
tions that generate the corresponding IR.Note that this allows
mixing the internalDSLwith the IR: TheDSLpartswill eval-
uate to IR, and since the IR is data, it will just evaluate to
itself. All operators andmachine clauses of B are available in

123

944 P. Körner et al.

Table 1 Examples of lisb syntax

B (ASCII) lisb Intermediate representation Description

42 42 42 Number

"foo" "foo" "foo" String

x :x :x Variable

{1,2,3} #{1 2 3} #{1 2 3} Enumerated set

NATURAL natural-set {:tag :natural-set} Set of natural numbers

1 |-> 2 (maplet 1 2) {:tag :maplet,:left 1,:right 2} Tuple

(|-> 1 2) Tuple (alternative)

1 + 2 (+ 1 2) {:tag :add,:nums (1 2)} Addition

a + b + c (+ :a :b :c) {:tag :add,:nums (:a :b :c)} Addition

0 < x & x < 42 (< 0 :x 42) {:tag :less,:nums (0:x 42)} Less than

a: {1,2} (member? :a #{1,2}) {:tag :member, :elem :a,:set #{1 2}} Membership

#(x).(x > 42) (exists [:x] (< :x 42)) {:tag :exists,:ids [:x], Existential quantification

:pred {:tag :less,:nums (:x 42)}}

MACHINE foo… (machine foo...) {:tag :machine,:machine-clauses..., B machine

:name :foo,:args []}

OPERATIONS… (operations...) {:tag :operations,:values...} Operations clause

RequestCS(Proc) = … (RequestCS [:Proc]...) {:tag :op,:returns [],:args [], Operation definition

:name :RequestCS,:body...}

PRE X THEN Y (pre (lisb X) (lisb Y)) {:tag :precondition,:pred (IR X) Precondition

:subs (IR Y)}

the internal DSLwith a one-to-one mapping to AST nodes in
B. For example, in Fig. 1, we made use of the functions b=,
b+ and b*. The operator names are prefixed with b in order
to avoid name clashes with the default Clojure core functions
(so that they remain available). However, a separate bmacro
will replace all instances of =, + and * in its argument by the
corresponding functions that generate the IR. Thus, (b (+
1 1)) will not yield 2, but instead the IR that represents
this addition.

An excerpt of the syntax of the internal DSL is given in
Table 1.3 Note that no new semantics is defined; all functions
of the internal DSL map directly to B operators and clauses.
In fact, the exact same AST nodes ProB uses to represent B
machines are generated.

There are however minor differences to ease usage for
Clojure developers. Some operators have multiple aliases
(for example, we deemed it sensible to include the name
partial-surjection additionally to providing the
ASCII symbol>+>). Others take a variable number of argu-
ments (such as<) to accommodate a Clojure-style of writing
predicates. In a pre-processing step, it is replaced by a proper
conjunction of predicates, for example, (< 1 2 3) will be
internally re-written to 1 < 2 ∧ 2 < 3.

3 A full overview can be found https://github.com/pkoerner/lisb/blob/
master/doc/Lisb.md.

3.2 Architecture overview and user programs

In this subsection, wewill first discuss how ProB’s advanced
capabilities are embedded in lisb. Afterwards, we will
describe how a user program is situated in this stack and
give an overview about expected uses.

3.2.1 The re-translation module

The ProB tool can be used to solve constraints, and to ani-
mate and model checking state-based specifications. The
different representations in lisb, that we discussed above,
seamlessly integrate with the ProB Java API.

In Fig. 1, we wrote the constraint (b= (b* 2 :x)
(b+ 1 2 3)) in the internal DSL. lisb provides the means
to solve it (as the IR can be translated to the AST), and to
obtain the solutionmapping x to 3. Similarly, the IR of a state
machine can be loaded in ProB and model checking tasks
can be executed. Step-wise exploration of the state space is
possible as well.

The ProB Java API has different representations of such
solutions, traces, states and model checking results as Java
objects. In order to work with them, for example, including
calculated solutions in new constraints, we need to translate
them back into a Clojure-like representation.

This re-translation module consists of a small translation
layer that transforms aforementioned Java objects back into

123

https://github.com/pkoerner/lisb/blob/master/doc/Lisb.md
https://github.com/pkoerner/lisb/blob/master/doc/Lisb.md

A Case for Data-Oriented... 945

Clojure data. For numbers, strings, or enumerated sets, this
is straightforward and the default Clojure literals are used.
Yet, sets may be infinite and be stored as a symbolic value
in ProB (for example, the set containing all even numbers).
Though they do not have a corresponding value in Clojure,
they can be translated to the corresponding internal DSL or
IR snippet.

3.2.2 User program

lisb is a library that is intended to be included in a user
program. Such user program will typically be situated as
depicted in Fig. 2.

Fundamentally, lisb serves as an intermediate layer between
the user program and the ProB Java API: It can be used for
(a) accessing the internal DSL in order to create models or
generate constraints; (b) obtaining the IR to transform speci-
fications; or (c) interacting with ProB to calculate solutions
and use the results in the program.

On top of lisb, users can implement their own DSLs (User
DSL in Fig. 2) (in Clojure, or, in principle, any JVM lan-
guage). Such a user DSL might directly generate the IR
representation, or make use of anyDSL that already is imple-
mented.

User
Program

User
DSL

Internal
DSL

IR

ProB AST

ProB Java API

Re-
Translation

ProB core
(Prolog)

may generate

may be written in
written in

may
generate

evaluates to

generates

generates

generates

model-checking
animation

solve
constraint

solution

MC result
machine state

translated
solutions
& states

commandsresults

lisb

Fig. 2 Architecture of a program using lisb—arrows denote possible
data flows

3.2.3 Potential use cases

In the following, we want to give our expectations of how
lisb could be used. Note that this does not cover all possibil-
ities: the point of lisb is that it facilitates implementation of
any tool that needs to re-structure or generate a formal (B)
specification. Yet, at the core of each tool will be at least one
of the following activities:
Modelling activities A modelling expert (in B) who is not
acquainted with Clojure already would not be interested too
much in lisb: The internal DSL would be a new syntax to
learn, and they would probably not be very comfortable
creating a custom DSL. For them, lisb would not offer an
obvious benefit. However, modellers experienced in Lisp-
like languages would use a mixture of the internal DSL and,
potentially, write their own DSLs. Regardless of expertise,
writing or reading the IR is not necessary for any modelling
activity.

The main benefit is that a formalism can be extended
syntactically without the need to wait for tool developers
to integrate changes. Examples specific to B are given in
Appendix A.
Specification transformation Some users may be interested
in transforming existing constraints and specifications; We
think this is especially the case for tool developers. A typical
workflow for them would include to (a) load a machine from
disk and transform it into the IR, and (b) write some IR-
to-IR transformation. The resulting tool might combine the
IR with snippets of lisb’s internal DSL or a custom DSL, as
they can bemixed arbitrarily. Resultingmodels can be loaded
and animated in combination with the original specification;
simplybe saved to a newBmachinefile; or the transformation
can be validated using Clojure’s testing framework. More
detail about how lisb can be used like this is presented in
Sect. 4.
Specification generation and DSLs Finally, it can be inter-
esting to capture data from external data sources and use
lisb to generate constraints (and solve them), or to generate
B machines. Again, one would generate bits of the internal
DSL, evaluate them to the IR, and, finally, re-combine such
IR snippets programmatically. User DSLswould typically be
implemented so that they are re-written (or generate directly)
a lower-level DSL or lisb’s internal DSL. Technically, it can
make sense to directly emit IR code; but the translation rules
will be less readable. How a DSL might be implemented is
outlined in Sect. 5.
Runtime embedding Another possible use case is that the
ProB constraint solver is queried at runtime. One way is
to execute a loaded machine based on incoming data (e.g.,
from a web application, a socket, a user, …). This mimics
the style of embedding B machines in applications, which
has been used in Java to control trains [23].

123

946 P. Körner et al.

Similarly, one can solve constraints at runtime and work
with the results. As an example, lisb is used to create its
own documentation4: The documentation includes a static
site generator with different types of code blocks (Clojure,
B or lisb’s internal DSL). Constraints included in the code
blocks are parsed, evaluated via lisb and both the ASCII B
pretty-print and the solutions are injected. This allows doc-
umentation in the style of literate programming. It can also
be used without exposing lisb or Clojure at all, with the goal
to document the semantics of ASCII B expressions.

4 Case study: machine transformation

In the following, we want to give a concrete example on how
amachine-to-machine transformationmight be implemented
using lisb. The exact rules we apply are not relevant for this
(we will have to refer to a paper that describes the re-writes
in detail [30]); instead, we want to highlight some synergies
of the components above that might not be obvious at first
glance.

4.1 Motivation and idea

ProB offers an implementation [15] of partial order reduc-
tion (POR) [44], a state space reduction technique. We will
skip complex details of how this technique works and focus
on points relevant to the implemented transformation.

Before the actual POR techniques are applied, the imple-
mentation in ProB has an analysis phase of the model. The
ultimate goal of the analysis is to locate as many “indepen-
dent” pairs of operations as possible. Independent operations
will always commute, i.e., first applying operationα and then
β will yield the same state as β and α; further, they cannot
disable each other. A fast syntactical approximation is: If two
operations do not read or write a shared variable, they must
be independent.

In the description of Peterson’s algorithm in Listing 1, the
three operations RequestCS, EnterCS and LeaveCS all
write (different values) to the state variable pc. Thus, no
independent operations will be found by the aforementioned
approximation, and POR will yield no reduction.

However, all three operations accept only two possible
parameter values, 1 and 2. Further, the state variables b and
x are always collections of size 2. This information can be
determined statically.

The idea, thus, is to re-write the model as follows (mostly
as a data refinement): If we can determine that there is only a
finite number n of possible parameter values for an operation,
we transform this operation into n operations that instantiate
all possible values. Further, if we can determine that a state

4 https://pkoerner.github.io/lisb-doc/

1 VARIABLES pc1 , pc2 , b1 , b2 , ...
2 INVARIANT b1 ∈B ∧ b2 ∈B ∧ pc1 ∈ Status

∧ pc2 ∈ Status ∧ ...
3 OPERATIONS ...
4 LeaveCS1 = PRE pc1 = crit
5 THEN pc1 := noncrit ‖ b1 :=⊥

END
6 LeaveCS2 = PRE pc2 = crit
7 THEN pc2 := noncrit ‖ b2 :=⊥

END
8 END

Listing 4 Excerpt of desired re-writes

variable is a functionwith a fixed-sized finite domain, wewill
generate a new state variable for each mapping. Similarly,
sets over a known finite domain are split into a number of
boolean values, indicating whether they are contained or not
(which is often referred to as bit-blasting). Of course, all
accesses of the original function have to be replaced as well
(for which we implemented the rules Kodkod applies for its
SAT encoding [53]).

The resulting machine would look like the excerpt in
Listing 4: The original LeaveCS operations allowed two
parameters, so two operations are generated. Further, both
pc and b mapped the numbers 1 and 2 to a Boolean or Sta-
tus value. Instead, the newmodel has two new variables each,
pc1 and pc2 that stem from pc, and b1 and b2 from b.

If we now consider the operations LeaveCS1 and
LeaveCS2, we can determine only from the accessed iden-
tifiers (pc1 and b1 vs. pc2 and b2) that these operations
must be independent of each other. This equivalent model
will now yield some state space reduction without changing
the implementation of POR.

4.2 Implementation

The concept of lisb’s usage in this transformation tool is given
below. To no surprise, a number of re-writes have been imple-
mented, based on the intermediate representation. Though, a
relevant question is: How is it possible to obtain the relevant
static information?

After all, we need to determine that domains of functions
and parameters are finite. In the case of the Petersonmachine,
we might encounter, for example, the IR for Proc ∈ 1..2.
We could implement a special case for such membership
constraints; but, ultimately, we require a constraint solver for
more complex machines. This is where we can make use of
the integration with ProB!

The idea is that we can simply evaluate constraints guard-
ing operations or for set cardinality in the context of the
original machine. We just have to transform the IR snippet
into ProB’s AST and ask the constraint solver for all solu-

123

https://pkoerner.github.io/lisb-doc/

A Case for Data-Oriented... 947

tions. This combination of the specification transformation
and runtime embedding aspects allows easy implementation
even of complex tools.5

Summarising, the high-level workflow of this transforma-
tion makes use of the following features of lisb:

1. The original machine is parsed and the resulting AST is
transformed into the IR (for programmatic manipulation).

2. To determine whether set variables have a fixed-size
domain, the machine is loaded via the ProB Java API
and the set cardinality constraints are solved. Via ProB,
we also gain type information (e.g., elements of custom-
defined sets).

3. In order to split the operation, the IR representation of the
guards are fed to the constraint solver in order to find all
solutions for operation parameters.

4. With the information gained in the previous steps, the
actual IR transformation is performed in multiple steps.
First, generating the new operations that will eliminate
parameters. Afterwards, the bit-blasting of set variables
and re-writing their usages in expressions. Finally, a sim-
plification step eliminates redundant conjuncts, assign-
ments, etc.

5. The pretty printer of ProB’s parser suite is used to emit
a new B machine.

Based on lisb, a prototype of such a rather large auto-
matic refinement tool that is capable to work with complex
machines (such as the one discussed in [38]) can be written
in about 750 lines of Clojure code,6 of which about 60 lines
are devoted to a small DSL.

4.3 Lessons learned: library synergy

During the work on this refinement tool, we found that the IR
harmonises greatly with a couple of libraries: first, Specter
offers a so-called navigator abstraction allowing us to spec-
ify paths in the nested IR data structure which then can be
used to extract and transform information; second, the pattern
matching library core.match, which allows us to define trans-
formations based not only on specific node types, but also on
defined additional properties; third, the meander library that
offers a term-rewriting engine.

5 An implementation directly in ProB is possible, but would be signif-
icantly harder. We used this prototype to determine whether it is worth
the hassle.
6 The tool can be found at https://github.com/JanRossbach/fset.

4.3.1 Data transformation—specter

The IRharmonises—because it is plain data—withwidespread
transformation libraries in Clojure, such as Specter.7 For
example, Listing 5 shows that one can retrieve the IR of all
guard conjuncts (without duplicates) in a few lines of code.

1 user=> (require ’[com.rpl.specter
2 :as s])
3 user=> (defn TAG [t] (s/path
4 #(= (:tag %) t)))
5 user=> (def CLAUSES (s/if-path
6 (s/must :ir) [:ir :clauses]
7 [:machine-clauses]))
8 user=> (defn CLAUSE [name] (s/path
9 [CLAUSES s/ALL (TAG name)]))
10 user=> (->> ir
11 (s/select [(CLAUSE
12 :operations) :values s/ALL
13 :body :pred :preds])
14 (apply concat)
15 (map ir->b)
16 ;; pretty-print
17 set)
18 #{"Proc:1..2", "pc(Proc)=noncrit",

"x=Proc or b(other(Proc)) =FALSE",
"pc(Proc)=wait"}

Listing 5 Retrieving the IR of all unique guard conjuncts from the Peter-
son machine (continues Listing 2)

One can generate a modified copy by simply calling
Specter’s transform instead of select. Using the path
from Listing 5, one would transform all guards based on an
argument function. Naturally, the described refinement tool
has to transform more parts of the machine than just the
guards.

Specter also has a walking feature, that recursively
searches the data-structure for sub-structures that match a
particular pattern and then applies the transformation func-
tion to the matching structure.

4.3.2 Pattern matching—core.match

1 user=> (require ’[clojure.core.match

2 :refer [match])

3 user=> (defn simplify-formula [formula]

4 (match formula

5 {:tag :not :pred {:tag :not :pred p}} p

6 _ nil))

7 user=> (defn simplify-ir [ir]

8 (s/transform [(s/walker simplify-

9 formula)] simplify-formula ir))

10 user=> (-> "#FORMULA x=y & not(not(y=x))"

11 b->ir

12 simplify-ir

13 ir->b)

14 "x=y & y=x"

Listing 6 Applying a simple transformation rule with core.match and
Specter

7 https://github.com/redplanetlabs/specter

123

https://github.com/JanRossbach/fset
https://github.com/redplanetlabs/specter

948 P. Körner et al.

The core.match library is an implementation for pat-
tern matching in Clojure and, in this context, allows us, to
write conciser transformation rules than a more native con-
struct like multi-methods.

In combination with core.match, Specter’s walker can
be used to make IR transformation and simplification trivial.
In Listing 6 one can see an example of codifying a single
simplification rule of¬¬P ⇔ P for any predicate P, in order
to rewrite the IR for¬(x
= y) into x = y. This can easily be
extended to very elaborate transformation rules which, only
take a single line of code each in the match statement.8

When using this kind of setup, one has to be careful to not
use excessively large IR for performance reasons, but that
can usually be easily avoided.

4.3.3 Term rewriting—meander

1 (require ’[meander.epsilon :as m])

2 (require ’[meander.strategy.epsilon :as s])

3
4 (defn replace-var [data old-name new-name]

5 (let [f (s/top-down-until #(m/find % (’for-all

6 [_ ... ~old-name . _ ...] ?body) true)

7 (s/match ~old-name new-name

8 ?value ?value))]

9 (f data)))

Listing 7 A small renaming tool using meander

The last library we employed in a lisb-related project is
meander.9 Specter was very useful for extracting information
that is located at a given path, i.e., in a specific position of the
machine. One example is to find or manipulate all elements
in the OPERATIONS clause. The main strength of meander,
on the other hand, is to locate or re-write terms at any position
of the machine.

As an example, consider a small tool that implements a
refactoring operation on a B machine that re-names a spe-
cific variable. A naive solution would replace, for example,
all occurrences of :xwith :y. However, there are also oper-
ators that introduce a local scope for variables, such as the
universal and existential quantification, as well as the set
comprehensions or lambda expressions. If such an operator
introduces a variable also named :x, it should not be re-
named within its scope.

The code in Listing 7 outlines how such a refactoring
tool might be implemented on top of the internal DSL; an
implementation on top of the IR would be very similarly.
The match expression in l. 6–7 specifies how the replace-
ment should occur: If the old variable name is found, instead
the new variable name should be inserted. All other values
will remain as-is. This is wrapped inside a so-called strategy:

8 More elaborate examples: https://github.com/JanRossbach/fset/blob/
main/components/simplifier/src/hhu/fset/simplifier/core.clj
9 https://github.com/noprompt/meander/

The parse tree is walked top-down, until a for-all expres-
sion is found that introduces the old-name as any element of
its bindings (the underscores and dots are part of meander’s
syntax for this and do not indicate an omission). If such an
expression is found, its sub-tree will not be explored any
further.

In consequence, if we include all operators that introduce
a fresh scope in the find-expression in l. 5, we are able to
implement a small refactoring tool in very little code.

5 Case study: algorithm description
language DSL

In the following, we give an impression of how to implement
aDSL in lisb.We chose to re-implement a (slightly simplified
version of) an external DSL for algorithm description (ADL)
as an internal DSL in lisb. The ADLwas originally translated
to the Event-B notation [13]; Event-B is similar to B, but does
not contain while-loops or if-then-else statements [37]. For
a fair comparison, we will not use these constructs in lisb
either.

ADL Overview
The ADL roughly aligns with imperative pseudo-code.

The constructs the external DSL offers are:

• variable assignments,
• sequential composition of statements,
• assertion statements,
• if-then-else statements,
• while-loops with loop invariants.

For expressions, strings with Event-B formulas are used.
A small example of this language can be seen in Listing 8,
depicting a small algorithm that calculates the multiplica-
tion of two numbers via repeated addition (or doubling one
number and halving the other if the latter is even). The same
example can be written in the internal ADL-DSL that we
developed, as is shown in Listing 9.

Translation Idea
The translation is not straightforward because the branch-

ing rules of conditionals and loops have to be simulated.
The main idea is that each construct in the language cor-
responds to (at least) one operation in the resulting state
machine. If-statements and while-loops will be modelled by
two operations: onewith the if- orwhile-condition as a guard,
and another with the negated condition. Further, an artificial
program counter variable (PC) is added to the model. Each
operation then will be guarded by a conjunct pc = x , testing
whether the “virtual instruction pointer” is currently at this
position in the code.

123

https://github.com/JanRossbach/fset/blob/main/components/simplifier/src/hhu/fset/simplifier/core.clj
https://github.com/JanRossbach/fset/blob/main/components/simplifier/src/hhu/fset/simplifier/core.clj
https://github.com/noprompt/meander/

A Case for Data-Oriented... 949

1 procedure(name: "mult") {

2 argument "x", "NAT"

3 argument "y", "NAT"

4 result "product", "NAT"

5 precondition "x >= 0 & y >= 0"

6 postcondition "product = x * y"

7 implementation {

8 var "x0", "x0 : NAT", "x0 := x"

9 var "y0", "y0 : NAT", "y0 := y"

10 var "p", "p : NAT", "p := 0"

11 algorithm {

12 While("x0 > 0",

13 invariant: "p + x0*y0 = x*y") {

14 If("x0 mod 2 /= 0") {

15 Then("p := p + y0")

16 }

17 Assign("x0,y0 := x0/2,y0*2")

18 }

19 Assert("p = x*y")

20 Return("p")

21 }}}

Listing 8 Multiplication example from [13]

1 (adl :Multiply

2 (var :x (in :x nat-set) 5)

3 (var :y (in :y nat-set) 3)

4 (var :p (in :p nat-set) 0)

5 (algorithm

6 (while (> :x 0)

7 (assert (= (+ :p (* :x :y)) (* 5 3)))

8 (if (not= 0 (mod :x 2))

9 (assign :p (+ :p :y)))

10 (assign :x (/ :x 2), :y (* :y 2)))

11 (assert (= :p (* :x :y))))))

Listing 9 Example usage of algorithm DSL in lisb

1 (defn assign [pc & kvs]

2 {:pc (+ pc 1)

3 :ops (fn [jump?]

4 (let [opname (str "assign" pc)

5 pc’ (if jump? jump? (+ pc 1))]

6 [‘(bop ~opname []

7 (bprecondition

8 (b= :pc ~pc)

9 (bassign ~@kvs :pc ~pc ’)))]))})

Listing 10 Implementation of assignments in lisb’s algorithm DSL

Typically, one would simply increase the PC with each
operation. However, it might be the last assignment in a
then-branch (and one has to skip over the else-branch); or
it might be the last assignment in a while-loop (where one
might have to jump back to the evaluation of the condition).
Thus, one issue is that, for example when generating the path
with a negated if-condition, one does not know yet howmany
instructions the else-branch requires.

We further sketch the idea based on the translation of
assignments in Listing 10. The assign function take the
next PC value that is available and a sequence of variable
names and expressions. It will generate one operation only
(ll. 6–9): the guard will verify that the PC enables the oper-
ation, and the variables are assigned. However, it is not yet
known that the PC value should be after the assignment, as a

jump forward (in case of if-statements) or backward (in case
of while-loops) in the program is required. Thus, instead of
returning that operation immediately, a function is returned
(l. 3) that can be instantiated with the correct next PC value,
indicating whether a jump to a certain position is required or
that the PC can simply be incremented. In the outer map, the
next available PC is contained as well (l. 2): as the assign-
ment contains only one instruction, we can simply increment
the original PC.

If-statements and while-loops are more complex and will
generate more than one operation (two for the positive and
negated condition, and also including all the operations
for their bodies). These constructs also manage the correct
instantiation of the PC. Finally, assertions add an operation
(similar to an empty assignment) as well as a conjunct con-
taining their expression as an invariant: This conjunct has the
form of pc = loc ⇒ expr. Finally, all generated operations
and invariants have to be merged into a single machine.

EvaluationThe entire code for theADL in lisb can bewritten
in about 100 lines of Clojure.10 As it is an internal DSL, no
new parser is required.

In order to understand the code, only little knowledge of
Clojure is required— in particular, the applied compiler con-
struction techniques for introducing the program counter are
harder to grasp than the actual implementation.We think that
any capable programmerwhohas suchknowledgewould also
be able to write such a DSL.

6 Technique transfer: LTL pattern languages

In this section, we show implementation details by trans-
ferring lisb’s technique to linear temporal logic (LTL). The
goal of this section is to show a complete implementation
of the concepts of lisb based on a smaller language than B.
It also demonstrates the amount of Clojure knowledge that
is required to create or understand such a tool; and might
give better insights on the feasibility of an implementation
in other languages.

LTL is a formalism that reasons about the temporal
behaviour of programs. A basic building block is the atomic
proposition, i.e., any predicate that argues about a singular
program state. If the atomic proposition holds true, then the
state will satisfy the formula.

There are many dialects of LTL. Here, we consider a very
small subset of operators that is complete, i.e.:

• The next operator �φ, which holds true iff the formula φ

holds in all successor states of the current state.

10 The implementation can be found at https://github.com/pkoerner/
lisb/blob/f22cb5962b87c047f6ab107dcee28f81d3b8aaf0/src/lisb/adl/
adl2lisb.clj.

123

https://github.com/pkoerner/lisb/blob/f22cb5962b87c047f6ab107dcee28f81d3b8aaf0/src/lisb/adl/adl2lisb.clj
https://github.com/pkoerner/lisb/blob/f22cb5962b87c047f6ab107dcee28f81d3b8aaf0/src/lisb/adl/adl2lisb.clj
https://github.com/pkoerner/lisb/blob/f22cb5962b87c047f6ab107dcee28f81d3b8aaf0/src/lisb/adl/adl2lisb.clj

950 P. Körner et al.

• The until operator φ1Uφ2, which holds true iff the for-
mula φ1 holds — on all pathes — until at least once φ2

is true. φ2 must be reached at least once on all pathes.

LTL suits particularly well as an example: first, it is a
formalism that is well-known; second, it consists of a small
amount of required operators; third, plenty convenience oper-
ators exist which typically are not part of definitions in order
to ease proofs; and fourth, larger formulas are very hard to
understand entirely, so some kind of DSLs or patterns are
certainly useful (see, e.g., [17, 20]).

This example follows the textbook definitions ofBaier and
Katoen [6, Ch. 5] that we will repeat here — first, a limited
set of LTL operators is considered and an internal DSL and
IR is defined. Passing the IR to a backend is then simulated by
simply pretty printing the formula. Afterwards, the language
is extended by adding operators in two different ways. As an
example for an IR-level transformation, we implement a tool
that generates a positive normal form. Finally, as a DSL, we
show how to implement LTL patterns on top based on the
patterns by Dwyer et al. [17].

Considered LTL-Flavour
First, we adopt the definition of an LTL formula φ to be

of the form [6, Ch. 5]:

φ:=true | a | φ1 ∧ φ2 | ¬φ | �φ | φ1Uφ2

Here, a may be any atomic proposition that is given as a
string.

Note, in particular, that this definition does not include
common operators such as the globally, finally, weak until
and the release operators; further, the negation and conjunc-
tion together are functionally complete set of logic operators
—operators such as disjunction, equivalence, etc. are derived
from them. This is done for shorter and more elegant proofs
in Baier and Katoen’s book.

In the same spirit, we define this minimal core in Sect. 6.1
and simulate a tool backend for this in Sect. 6.2. Other com-
mon operators will be added as a small DSL on top of the
LTL core language in Sect. 6.3. As more complex LTL for-
mulas are hard to understand, we will stack another DSL on
top in Sect. 6.4. We also demonstrate how an LTL-to-LTL
transformation can easily be implemented in Sect. 6.5.

6.1 Internal DSL definition and IR data generation

In a first step, we define functions that generate IR code
from the basic operator set. These functions will serve as our
internal DSL. Note that we do not employ Clojure macros
here. The reason is that this DSL is so small, that we do
not require analysis of the code. The four functions in
Listing 11 correspond to one of the operators each; Instead

1 (defn ltl-and [x y]
2 {:tag :and, :lhs x, :rhs y})
3 (defn negate [x]
4 {:tag :not, :ltl x})
5 (defn next [x]
6 {:tag :next, :ltl x})
7 (defn until [x y]
8 {:tag :until, :lhs x, :rhs y})

Listing 11 Code that generates the IR

1 (defmulti pp #(or (:tag %) (class
%)))

2 (defmethod pp Boolean [x] (str x))
3 (defmethod pp String [x] x)
4 (defmethod pp :next [x]
5 (str "◦(" (pp (:ltl x)) ")"))
6 (defmethod pp :until [x]
7 (str "(" (pp (:lhs x)) ") U ("
8 (pp (:rhs x)) ")"))
9 (defmethod pp :and [x]
10 (str "(" (pp (:lhs x)) ") ∧ ("
11 (pp (:rhs x)) ")"))
12 (defmethod pp :not [x]
13 (str "¬(" (pp (:ltl x))")"))

Listing 12 Pretty printer code

of a dedicated true value, we use the Clojure boolean value
true. Atomic propositions are also not created by calling a
function but instead are a primitive in the proposed internal
DSL. For example, we may construct a representation for the
LTL formula �a = 1 by calling (next "a=1"), and we
will obtain the IR {:tag :next, :ltl "a=1"}.

6.2 Obtaining formula strings

The next step is the translation of the IR to a pretty print of the
formula. Such a string representation usually can be passed
to most model checking tools; it can also be regarded as an
external DSL.

The code to generate this pretty print is given in List-
ing 12—it is a somewhat naive implementation. The pretty
printing function pp is defined as a multimethod in Clojure;
it chooses the implementation of the function based on the
keyword stored under :tag, or, in case no value is found,
it uses the class of object for the dispatch. This brings the
advantage that the IR can be extended later (as in Sect. 6.3).

The definitions of pp all are small and rather straight-
forward: the Booleans true and false are transformed into
a string; Strings (i.e., atomic propositions) are kept as-
is; and the other operators generate the corresponding
symbol as well as parentheses to avoid clashes in the
operator precedence. As an example, e.g., calling (pp

123

A Case for Data-Oriented... 951

1 (defn finally [x]
2 (until true x))
3

4 (defn globally [x]
5 (negate (finally (negate x))))

Listing 13 Introducing convenience operators

(until (negate "a=1") "foo=42")) first creates
the IR {:tag :until, :lhs {:tag :not, :ltl
"a=1", :rhs "foo=42"}} and finally constructs the
pretty-printed formula "(¬(a=1) U (foo=42)".

6.3 Extending the language

In the following, we show how to extend the language in
two ways: First, operators can be introduced only to the lan-
guage frontend and map to existing operators. This approach
is typically used when a new DSL is created. Second, if the
tool backend offers support for new constructs, it can also be
sensible to include them in the IR and extend the backend
translation.

Frontend extension
As mentioned before, more operators than included in the

basic core are widespread. Examples include the finally oper-
ator ♦φ, that holds true iff on all possible paths in a program,
the formula φ will be satisfied eventually by some program
state; and the globally operator �φ, that holds true iff on all
possible paths in a program, the formula φ will be satisfied
in every single program state.

We can define the finally operator in terms of the small
core language we already implemented; and the globally
operator in terms of finally. The corresponding rules are:
♦φ = true U φ (φ has to hold true at some point, and we
do not care about what happens before), and �φ = ¬♦¬φ

(there cannot be a point in time when φ does not hold true).
Let’s assume that we do not wish to extend our IR for

these operators, as if they only made sense in our domain.
Instead, we will rewrite them using the definitions above.11

In Listing 13, one can see the small implementation of these
two operators. Note that even though globally is defined in
terms of finally, the formula that is generated will not make
direct use of the finally operator, as it will be re-written to
the until first.

Backend extension For a second approach, we argue that the
operators wewant to add aremore general and, thus, wewant
to include them in the IR. This is even more worthwhile if
the underlying tool supports a straightforward translation.
In Listing 14, we follow this approach for the weak until

11 This is similar to adding the if-then-else operator in Sect. A.2.

1 ;; internal DSL functions
2 (defn weak-until [x y]
3 {:tag :weak-until, :lhs x, :rhs y

})
4 (defn ltl-or [x y]
5 {:tag :or, :lhs x, :rhs y})
6

7 ;; extending the backend
8 (defmethod pp :weak-until [x]
9 (str "(" (pp (:lhs x)) ") W ("
10 (pp (:rhs x)) ")"))
11 (defmethod pp :or [x]
12 (str "(" (pp (:lhs x)) ") ∨ ("
13 (pp (:rhs x)) ")"))

Listing 14 Extending the IR

operator (which is similar to the until operator, but φ1 might
hold forever and φ2 might not occur) and logic disjunction.

Note that, first, we implement functions for the frontend
that creates the IR nodes in order to expose them to the user.
It might also be valid to add nodes to the IR that the user
cannot directly instantiate—an example is a performance-
specialised node that is generated during a pre-processing
step. However, the second part which extends the backend is
important as the backend must be able to process the entirety
of the IR; otherwise, an extra IR-to-IR transformation is nec-
essary so that unsupported nodes are eliminated.

6.4 Stacking DSLs: Dwyer patterns

While the formal semantics of LTL is clear, nested LTL for-
mulas often become hard to understand for humans. Thus,
several abstractions (or patterns) have been suggested, which
can be regarded asDSLs. Examples include the patterns iden-
tified by Dwyer et al. [17]. Below, we will show how to
implement these.

In the “responsepattern”, four atomicpropositions P, S, Q
and R are considered. We implement three versions of the S
responds to P pattern. (i) The global version: every time P
occurs, S must hold eventually. The other two versions make
us of R (and Q) to define a scope in which the response
must happen: (ii) The response must only occur before R is
observed; And (iii) that the response always occurs after Q
was observed, but before R happened (but such an interval
may occur again).

The LTL formulas for these versions are [17]:

(i) �(P ⇒ ♦S)

(ii) (P ⇒ (¬R U (S ∨ ¬R))) U (R ∨ �¬R)

(iii) �((Q ∧ ◦♦R) ⇒ (P ⇒ (¬R U (S ∧ ¬R))) U R)

123

952 P. Körner et al.

While the first formula can be quickly understood, the
other two are significantly less intuitive. We will simply
assume that they are correct (as it does not make any dif-
ference in the implementation technique).

For brevity and better alignment with the given formulas,
we create a small DSL: first, symbolic aliases are defined
for better alignment (such as (def � globally)). Fur-
ther, we define the logical implication x ⇒ y by re-writing
it in the frontend to the formula ¬x ∧ y. The Dwyer
patterns then are implemented by simply writing them in
prefix notation. On top, we wrap this in another light DSL
that makes instantiations more readable, for example, (dr
S :responds-to P :between Q :and R) (for “S
responds to P between Q and R”). The full code and example
instantiations are given in Listings 18 and 19 in Appendix
B.1.

6.5 Transformation implementation

In [6, Def. 5.20] a normal form (more precise, a Weak-Until
positive normal form) is specified. Baier and Katoen then
show that any LTL formula can be transformed into this nor-
mal form. Themain idea of this normal form is that negations
only occur in front of atomic propositions and not in front of
LTL operators. More formally, the idea is to transform any
formula in our current IR of the form:

φ:= true | a | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ |
�φ | φ1Uφ2 | φ1Wφ2

into a formula of the form:

φ:= true | false | a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 |
�φ | φ1Uφ2 | φ1Wφ2

The basic idea exploits the duality of operators to push nega-
tion of operators inwards, towards the arguments. A few
transformation rules suffice for this task [6, Def. 5.20]. An
example is De Morgan’s law ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ . The
other rules can be found in Appendix B.2.

The implementation12 is done in two steps: first, the data
structure is simply traversed (by the traverse function).
Second, if a negation is encountered, it is pushed inwards (by
the push-negation-inwards (pni) function) according to the
rules above. The full code and an example can be found in
Listings 20 and 21 in Appendix B.

The traverse function is quite simple: Boolean and
String values are kept as they are; the unary next operator
recurs on its single operand; and all binary functions traverse

12 The basic concept is similar to the refinement tool in Sect. 4, but the
example here is significantly smaller.

both operands. If a logical negation is encountered, however,
the pni function is called.

The pni function actually encodes the re-writing rules.
For String literals, a negation layer is added; Boolean values
are immediately negated; and in case a second negation is
encountered, both are deleted and standard traversal is con-
tinued. The other functions also fall back to the traverse
function after one re-writing step.

6.6 Discussion

Note that up to here, we were able to give the entire imple-
mentation and only introduced very few Clojure-specific
constructs. Asides from using (open) multimethods instead
of using a (closed) switch-statement, any programmer should
be able to follow the definitions (though the syntax might be
unfamiliar).

This admittedly changes if transformations and DSLs
become more complex: One could think of a DSL that hides
most parentheses from theuser andprovides an infixnotation.
Such a call could be (ltl ¬ � ((a ∧ ¬ b) W ◦ ¬ c)).
Then, analysis of this language (or, in the case of the refine-
ment tool in Sect. 4, analysis of the specification itself) would
require an additional parsing stage (as reordering of the ele-
ments according to the operator precedences is required).
Additionally, as parentheses in Clojure overlap with func-
tion calls (e.g., in (a ∧ ¬ b), the symbol a should not be
called), the use of a macro now is required.

In such cases, the developer requires significant knowl-
edge of Clojure’s standard library and the macro expansion
mechanism.While we think a software engineer can become
acquainted with the necessary features in a relatively short
timespan (a couple of weeks), the required code will be sig-
nificantly more complicated than what we presented here. A
DSL design tool for Clojure that only makes use of a small
subset of Clojure could assist developers and domain experts
here.

7 Related work

High-level formalisms have already been embedded into
programming languages: as already discussed, we drew
inspiration from αRby [41], as well as from PlusCal [34].
However, these tools seem to be more tailored towards
modelling experts rather than tool developers who have to
examine and interact with specifications on a more fine-
grained basis.

PlusCal PlusCal is an imperative, pseudo-code-like language
that allows embedding of arbitrary TLA+ expressions, which
can be mathematical formulas. It is particularly useful to
let programmers with little to none modelling experience

123

A Case for Data-Oriented... 953

express specifications of (concurrent) algorithms. The lan-
guage then can be translated into TLA+ and tools such as
TLC can process the specification. Similarly, lisb’s b macro
(see Sect. 3.1, internal DSL) allows translation of idiomatic
Clojure code to B. However, the main difference is that the
PlusCal language is neither intended to be extended by the
user, nor that the obtained model can be inspected or trans-
formed.

αRby At the first glance, the core concept of αRby and
lisb seem very similar, and they share many advantageous
approaches: an internal DSL is embedded into a host lan-
guage so that no additional parsing tools are required; both
languages can be easily extended; solutions that the solver
provides canbeprocessed for further constraint solving tasks;
and, finally, external data from disk, network, etc. can be
transformed into a format suitable for the formal language
and its tooling. Yet, the goals of lisb and αRby ultimately
differ: where αRby seems to be mostly motivated by mixed
execution, usage of partial solutions and stages model find-
ing, no data-oriented representation of the specification itself
is available. While, technically, it is possible to access the
Ruby AST of the code, again, special knowledge of library-
generated AST nodes is required. The main design goal of
lisb is separating the IR from the backend code, and, thus,
allow easy transformation on this IR. Thus, we also differ
in our judgement concerning the programming language a
formalism should be embedded into: we deem a functional
language more suitable13 for data transformation than an
imperative language, which is more suitable for interacting
with a solver and its (partial) solutions.

B-specific meta-approaches For B and Event-B, approaches
have been presented that build a model of the formalism in
the formalism itself: The language workbenchMeeduse [28]
has been used to create proven DSLs. A possible approach
is to specify the structure of a DSL and to use B expres-
sion in order to instantiate a new B machine. This has been
demonstrated on the example of Petri-Nets [29]. In Event-B,
the EB4EB meta-theory [47] contains an Event-B model of
Event-B models. So far, the intended use seems to be extend-
ing the Event-B language so that new kinds of properties are
integrated in the proof obligation mechanism. Nonetheless,
one could also use this meta-theory in order to specify DSLs.

Construction via APIs The idea of programmatic construc-
tion of specifications is not new: solvers such as Z3 [42],
Coq [7] and also ProB itself have APIs that allow building
constraints. lisb attempts to hide low-level details (such as
creation of suitable types) and provides a more abstract DSL
to this end.

13 A worthwhile project could be to specify transformations in the
embedded formalism itself, in our case B.

Rosette The Rosette framework is written in Racket
and employs similar macro-based techniques14 in order to
construct solver-aided domain-specific languages (dubbed
SDSLs) [52]. Its main idea is that a developer only needs
to program an interpreter for a (domain-specific) language
that may even use advanced Racket features such as pat-
tern matching, dynamic evaluation, higher-order functions
or functions with side effects — which are typically hard to
translate into logic constraints — if they can be eliminated
using partial evaluation. Rosette also accepts libraries and
APIs for this purpose. That interpreter and a program in the
newly-defined language are both translated into SMT con-
straints. Under the hood, Rosette uses a symbolic virtual
machine in order to provide testing, debugging, verification
and program synthesis tools for the DSL.

Generic model checking framework Ayet to be namedmodel
checking framework15 byRozier et al. follows a similar over-
all approach: at its core shall also be an intermediate language
(IL) that can be used to define finite-state systems (that may
be extended to infinite-state as well). The idea is that the
IL will be powerful enough so that other formalisms can be
translated into the IL. Then, the model representation can be
fed into differentmodel checking algorithms and solver back-
ends, e.g., SMT and SAT solvers. This shares a vision with
lisb: while the IR itself (currently) is veryB-centric, themath-
ematical foundation of B is expressive enough that several
formalisms already have been successfully translated into B,
such as TLA+ [22], Alloy [32] and Lustre [54]. Then, the
rich variety of B-specific tools can be regarded as backends,
such as animation and model checking via ProB, machine
repair and synthesis tools (e.g., [12, 48]) and code generators
(e.g., [55]).

8 Conclusions

In this paper, we have presented lisb, which embeds the B
language into Clojure in order to meta-program specifica-
tions. While it may be less appealing for modelling experts,
as they are confronted with another programming language,
lisb certainly is a helpful library for rapid tool development.

By embracing the ideas of Lisp and treating specifications
as pure data, existing specifications can easily be transformed
and new ones can be generated from external data sources.
Especially for large datasets, it can be significantly faster
and more memory-efficient to avoid parsing a textual repre-
sentation and to generate the AST programmatically instead.
Moreover, Clojure’smacro systems provides support for easy
creation of DSLs.

14 Macros in Racket are fundamentally the same as in Clojure.
15 https://www.aere.iastate.edu/modelchecker/

123

https://www.aere.iastate.edu/modelchecker/

954 P. Körner et al.

Many new applications can quickly be implemented due
to the combination of (i) an easy way to pick apart and re-
combine formal specifications, (ii) a language interpreter to
give meaning to the specification snippets and (iii) a Turing-
complete general-purpose programming language. We think
that such mechanisms are needed so that tool developers can
thrive; so that formal methods appeal to a more general audi-
ence (as users can overcome limitations of existing tools and
come upwith their own syntax, visualisations or testing tools,
…) Yet, as transformation tools and DSLs can become arbi-
trarily complex, bugs might be introduced as well. Rules
engines and term rewriting libraries can assist in capturing
translation rules more formally; proof might be required to
ensure that such translation rules are correct wrt. the pro-
grammer’s expectations.

Overall, we conclude that formal methods tools will heav-
ily benefit from such a data-oriented approach. Aswe assume
that the majority of formal methods experts does not have
a background in Clojure, facilities for generating (parts) of
specifications, e.g., a proper macro system, could also be a
useful part of formal languages. Transformations and DSL
creation can maybe be limited to a structured subset of a
macro language in order to enforce correctness.

Overall, embedding formalisms and their supporting tools
into programming languages makes formal methods also
more accessible for programmers. An interesting idea is that
DSLs could generate parts of a model and of traditional code
at the same time. Co-simulation tools [21] can then be used
to validate that the program adheres to the specification.

8.1 Future work

lisb opens doors leading to many directions: first, many
higher-level specification languages such as TLA+ or Kod-
kod share a similar abstraction level. Large parts of their
corresponding IR overlap with the mathematical language of
B. One could incorporate the work of existing translations
to transform constructs that are specific to a given formal-
ism. lisb could then serve as a tool to translate specifications
into all (supported) formalisms. This would also allowmulti-
paradigm modelling and decomposing parts of models that
are more suitable for a specific tool. Here, DSLs and pattern
matching libraries can help to reduce awkward or inefficient
translations by providing constructs closer to a language’s
idioms.

Second, in contrast to the current focus on model check-
ing, animation and embedding into applications, one could
provide a DSL that generates constructs known to work well
with provers. This can be useful since many models writ-
ten to work with animators such as ProB often do not work
well with proving tools, and vice versa. This requires further
research in which language constructs work well with what
tool (e.g., based on the work of Dunkelau et al. [16]).

Third, one goal of lisb is to provide more DSLs so that
model extraction from existing software becomes feasible.
As demonstrated, constructs such as if-statements and loops
can easily be expressed, whereas function calls, classes and
interfaces require more complex translations. Polymorphic
and recursive functions are known tobeparticularly challeng-
ing to express in B [37]. FASTEN [45, 46] demonstrates the
power of entire DSL stacks that can be composed, e.g., sup-
port for components with inputs and outputs, contract-based
design, and allows unit testing of particular components
for test-driven development. We are currently working on
a translation from Solidity [14] to B, and plan to extract a
subset of rules as a foundation of a DSL that mimics the con-
trol flow of traditional programming languages (in particular,
stack-based function calls).

Fourth, we aim to strengthen our support for Event-B [3].
While we are already able to generate projects [5] compat-
ible with the Rodin platform [4], there is more work to be
done. One goal is to create an intermediate representation
for Rodin’s proof infrastructure (so that it becomes easier
to double-check a proof with external provers; or gener-
ate a proof from a different tool) and theories [11] (as they
include structured language extensions and thus are part of
the specification). Additionally, we are working on a com-
plete translation between B and Event-B: Though these two
formalisms share their roots and are very similar, they have
some differences (of whichmany are very subtle) [37]. Some
operators are available in only one of the dialects; and the
possibilities of machine refinement and inclusion in B are
more complex compared to what Event-B offers. Switching
between these dialects can assist modellers, as B ismore suit-
able for prototyping due to its flexibility, but proof support
in the Event-B eco-system is better [40].

Appendix A Addressing B-specific issues

In this section, we show how lisb can also be used to fix
certain shortcomings of the B language en passant. The B
language has a so-called definition system that is based on
text replacement (similar to macros in the C language). One
could argue that certain (local) transformations and DSLs
can be implemented directly using definitions. Below, we
examine drawbacks of this system and illustrate why lisb
offers a cleaner solution.

A.1 Language semantics—definitions

The definition mechanism of the B language is similar to
C preprocessor macros and has similar drawbacks: Actual
operator precedences may be misleading and differ based on
the tool. Further, it is also possible to capture variables on

123

A Case for Data-Oriented... 955

1 DEFINITIONS
2 add(xx ,yy) == xx+yy
3 egt(xx) == (∃ yy.(yy ∈ 1..99 ∧ xx <

yy))

Listing 15 Two suspicious definitions

1 (defpred add [xx yy]
2 (+ xx yy))
3 (defpred egt [x]
4 (exists [:y] (and (in :y
5 (interval 1 99)) (< x :y)))

)

Listing 16 Two safe predicates

1 (defpred ifte [condition then else]
2 (fn-call (union (lambda [:t]
3 (and (member? t #{true})
4 condition) then))
5 (lambda [:t]
6 (and (member? t #{true})
7 (not condition) else)))
8 true))
9

10 (defpred abs [x] (ifte (> x 0)
11 x (- x)))

Listing 17 Manual implementation of if-then-else and its usage

accident. Below, we present two examples which have been
discussed by Leuschel [37] in detail.
Operator precedences One issue is that the definition mech-
anism is interpreted differently by different tools. Consider
the first definition in Listing 15: When calling the definition
in AtelierB as 2*add(0,5), the result will be 5 because it
will be expanded to 2∗0+5. However, evaluating the expres-
sion with ProB will expand the definition to 2 ∗ (0+ 5) and
10 will be returned.
Variable capturingThe seconddefinition inListing 15 shows
the issue of variable capturing. Calling egt(5) will yield true
(since yy = 6 exists). However, yy = 5∧egt(yy)will result
in the rewritten predicate yy = 5∧ (∃yy.(yy ∈ 1..99∧ yy <

yy)), which is false.16

lisb’s alternative to definitions lisb’s solution to code reuse
is the predicate abstraction (pred). It is a macro that inter-
nally replaces all variables (i.e., keywords) with new variable
names. The code snippet inListing 16 contains the safe equiv-
alent expressions to the B definitions in Listing 15. First, the
add predicate is unambiguous wrt. operator precedence as,
highlighted by the parenthesis, the result is an addition that
is directly inserted into the AST. Second, the egt predicate

16 For such cases, ProB will generate a warning.

1 (def � globally)
2 (def ♦ finally)
3 (def ◦ next)
4 (def U until)
5 (def ∧ ltl-and)
6 (def ∨ ltl-or)
7 (def ¬ negate)
8

9 (defn => [x y]
10 (ltl-or (negate x) y)

Listing 18 Small DSL for shorthand notation

cannot capture the variable y because of the renaming of all
prefixes of all local variables with lisb_. As an example,
the B code ∃lisb5355.(lisb5355 ∈ 1..99∧ 5 < lisb5355) results
from calling egt(5) in lisb.

A.2 Introducing convenience operators

The B language only supports a branching if-then-else con-
struct on the level of variable substitutions. However, it
is missing if-then-else on the expression level, e.g., one
cannot get the absolute value of an integer by writing
IF x > 0 THEN x ELSE −x END. During initial devel-
opment of lisb, ProB’s dialect introduced support for such
an expression, which required changes to its parser and its
constraint solver core. We argue that one should be able to
define an operator based on the (admittedly unwieldy) tool-
agnostic re-writing rule below presented by Hansen [22].

(λt .(t ∈ {TRUE} ∧ (x > 0) | x)
∪ λt .(t ∈ {TRUE} ∧ ¬(x > 0) | −x))(TRUE)

In lisb, one can introduce such a ternary operator easily
by simply defining the re-writing rule. The entire imple-
mentation of an ifte expression and of an absolute value
function, which require no further changes to ProB or its
parser, is given in Listing 17.

Appendix B Full code listings

Below, we give the full source code for the examples in
Sect. 6.

B.1 Dwyer pattern implementation

Listing 18 shows how a small DSL wrapper can be defined.
Listing 19 makes use of this DSL wrapper in order to encode
the formulas given by Dwyer et al. [17] Further, the func-

123

956 P. Körner et al.

1 (defn dwyer-s-responds-p-globally
2 "this generates the LTL formula

�(P ⇒ ♦S)"
3 [S P]
4 (� (=> P (♦ S))))
5 (defn dwyer-s-responds-p-before-r
6 "this generates the LTL formula
7 (P ⇒ (¬R U (S ∨ ¬R))) U (R ∨ �¬R)"
8 [S P R]
9 (U (=> P (U (¬ R) (∧ S (¬ R))))
10 (∨ R (� (¬ R)))))
11 (defn dwyer-s-responds-p-between-q-
12 and-r
13 "this generates the LTL formula
14 �((Q ∧ ◦♦R) ⇒ (P ⇒ (¬R U (S ∧ ¬R))) U R)"
15 [S P Q R]
16 (� (U (=> (∧ Q (◦ (♦ R)))
17 (=> P (U (¬ R) (∧ S (¬ R)))

)) R)))
18 (defn dr [S P & [opt-kw opt-Q

opt-kw2 opt-R]]
19 (pp (cond (not opt-kw) (dwyer-s-
20 responds-p-globally S P)
21 (= opt-kw :between) (dwyer-s-
22 responds-p-between-q-and-r S P

opt-Q opt-R)
23 (= opt-kw :before) (dwyer-s-
24 responds-p-before-r S P opt-Q)

)))
25 ;; example calls
26 user=> (dr "x=1":responds-to "y=2")
27 ;; S responds to P globally
28 "�((y=2) => (♦(x=1)))"
29 user=> (dr "x=1" :responds-to "y=2"

:before "a=2")
30 ;; S responds to P before R
31 "((y=2) => ((¬(a=2)) U ((x=1) ∨ (¬(

a=2))))) U ((a=2) ∨ (�(¬(a=2)))
)"

32 user=> (dr "x=1" :responds-to "y=2"
:between "a=3" :and "b=42")

33 ;; S responds to P
34 ;; between Q and R
35 "�((((a=3) ∧ (◦(♦(b=42)))) => ((y=2)

=> ((¬(b=42)) U ((x=1) ∧
36 (¬(b=42)))))) U (b=42))"

Listing 19 Definition of the response pattern and example calls

tion dwyer-response is a more user-oriented entry point
which leads to more readable expressions.

B.2 Positive normal-form transformation

This subsection contains the required transformation rules
and the code implementing them.
Transformation rules

In the following, the transformation rules to obtain a
positive-normal form from Baier and Katoen [6, Def. 5.20]
are given:

¬true = f alse

¬ f alse = true

¬¬φ = φ

¬(φ ∧ ψ) = ¬φ ∨ ¬ψ

¬φ = ¬φ

¬(ψUφ) = (φ ∧ ¬ψ)W (¬φ¬ψ)

Implementation
Listing 20 shows the code (pni) implementing the rules

above. The traverse function recursively walks through
the data structure and calls the pni function to apply the
rules once a negation is encountered.

And, indeed, for the formula ¬�((a U b) ∨ ◦c) (which
is an example used by Baier and Katoen [6, Ex. 5.21]), we
obtain the equivalent LTL formula in the normal form, as
shown in Listing 21.

123

A Case for Data-Oriented... 957

1 (declare pni traverse)
2

3 (defmulti traverse
4 (fn [x] (or (:tag x) (class x))))
5 (defmethod traverse Boolean [x] x)
6 (defmethod traverse String [x] x)
7 (defmethod traverse :next [x]
8 (update :ltl traverse))
9 (defmethod traverse :until [x]
10 (-> x (update :lhs traverse)
11 (update :rhs traverse)))
12 (defmethod traverse :and [x]
13 (-> x (update :lhs traverse)
14 (update :rhs traverse)))
15 (defmethod traverse :or [x]
16 (-> x (update :lhs traverse)
17 (update :rhs traverse)))
18 (defmethod traverse :weak-until [x]
19 (-> x (update :lhs traverse)
20 (update :rhs traverse)))
21 (defmethod traverse :not [x]
22 (pni (:ltl x)))
23

24 (defmulti pni
25 (fn [x] (or (:tag x) (class x))))
26 (defmethod pni String [x]
27 (negate x))
28 (defmethod pni Boolean [x]
29 (not x))
30 (defmethod pni :not [x]
31 (traverse (:ltl x)))
32 (defmethod pni :next [x]
33 (next (traverse
34 (negate (:ltl x)))))
35 (defmethod pni :until [x]
36 (traverse (weak-until
37 (ltl-and (:lhs x)
38 (negate (:rhs x)))
39 (ltl-and (negate (:lhs x))
40 (negate (:rhs x))))))
41 (defmethod pni :and [x]
42 (traverse (ltl-or
43 (negate (:lhs x))
44 (negate (:rhs x)))))
45 (defmethod pni :or [x]
46 (traverse (ltl-and
47 (negate (:lhs x))
48 (negate (:rhs x)))))
49 (defmethod pni :weak-until [x]
50 (traverse
51 (until (ltl-and (:lhs x)
52 (negate (:rhs x)))
53 (ltl-and (negate (:lhs x))
54 (negate (:rhs x))))))

Listing 20 Entire source code of a tool that transforms LTL formulas
into Positive Normal Form

user=> (pp (negate (globally
(ltl-or (until "a" "b")
(next "c")))))

"¬(¬((true) U (¬(((a) U (b))
W (◦(c))))))"

user=> (pp (traverse (negate
(globally (ltl-or (until
"a" "b") (next "c"))))))

"(true) U ((((a) ∧ (¬(b))) W
((¬(a)) ∧
(¬(b)))) ∧ (◦(¬(c))))"

Listing 21 REPL interaction in which we generate a formula in PNF

Acknowledgements The authorswould like to thankKristinRutenkolk
for her feedback, and David Geleßus for his quick fixes in the ProB
toolchain. The first author also thanks David Schneider, Jens Bendis-
posto and Michael Leuschel for their fruitful suggestions and support.
HenrikHinzmann provided the code in Listing 7. The authors also thank
the anonymous referees for their comments which helped significantly
in improving the paper.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data Availability All code of lisb and implemented tools is available on
GitHub:

Declarations

Conflict of interest The authors have no Conflict of interest to declare
that are relevant to the content of this article.

lisb https://github.com/pkoerner/lisb

AlgorithmDSL case study https://github.com/pkoerner/lisb/blob/master/
src/lisb/adl/adl2lisb.clj

Machine transformation case study https://github.com/JanRossbach/
fset

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Abo R, Voisin L (2014) Formal implementation of data validation
for railway safety-related systems with OVADO. In: Proceedings
SEFM (international conference on software engineering and for-

123

https://github.com/pkoerner/lisb
https://github.com/pkoerner/lisb/blob/master/src/lisb/adl/adl2lisb.clj
https://github.com/pkoerner/lisb/blob/master/src/lisb/adl/adl2lisb.clj
https://github.com/JanRossbach/fset
https://github.com/JanRossbach/fset
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

958 P. Körner et al.

malmethods) 2013, Lecture Notes in Computer Science, vol. 8368,
Springer, pp 221–236

2. Abrial JR (1996) The B-Book: assigning programs to meanings.
Cambridge University Press, Cambridge

3. Abrial JR (2010) Modeling in event-B: system and software engi-
neering. Cambridge University Press, Cambridge

4. Abrial JR, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin
L (2010) Rodin: an open toolset for modelling and reasoning in
event-B. Softw Tools Technol Transf 12(6):447–466

5. Armbrüster J, Körner P (2024) Meta-programming event-B—
advancing tool support and language extensions. In: Proceedings
ABZ (International conference on rigorous state-based methods),
Lecture Notes in Computer Science, vol 14759. Springer, pp 233–
240 https://doi.org/10.1007/978-3-031-63790-2_17

6. Baier C, Katoen JP (2008) Principles of model checking. MIT
Press, Cambridge

7. Bertot Y, Castran P (2010) Interactive theorem proving and
program development: Coq’Art the calculus of inductive construc-
tions. Springer, Berlin

8. Bettini L (2016) Implementing domain-specific languages with
Xtext and Xtend. Packt Publishing Ltd., Birmingham

9. Bucchiarone A, Cicchetti A, Ciccozzi F, Pierantonio A (2021)
Domain-specific languages in practice: with JetBrains MPS.
Springer. https://doi.org/10.1007/978-3-030-73758-0

10. Butler M, Körner P, Krings S, Lecomte T, Leuschel M, Mejia LF,
Voisin L (2020) The First Twenty-Five Years of Industrial Use of
the B-Method. In: Proceedings FMICS (International conference
on formal methods for industrial critical systems), Lecture Notes
in Computer Science, vol 12327. Springer, pp 189–209

11. Butler M, Maamria I (2013) Practical theory extension in event-B.
In: theories of programming and formal methods, Lecture Notes in
Computer Science, vol 8051. Springer, pp 67–81

12. Cai CH, Sun J, Dobbie G, Hóu Z, Bride H, Dong JS, Lee SUJ
(2022) Fast automated abstract machine repair using simultaneous
modifications and refactoring. Form Asp Comput 34:1–31

13. Clark J, Bendisposto J, Hallerstede S, Hansen D, Leuschel
M (2016) Generating Event-B Specifications from Algorithm
Descriptions. In: Proceedings ABZ (International conference on
abstract statemachines, alloy, B, TLA,VDMandZ), LectureNotes
in Computer Science, vol 9675. Springer, pp 183–197

14. Dannen C (2017) Introducing Ethereum and solidity, vol 1.
Springer, Berlin

15. Dobrikov I, LeuschelM (2016)Optimising the ProBmodel checker
for B using partial order reduction. Form Asp Comput 28(2):295–
323

16. Dunkelau J, Schmidt J, Leuschel M (2020) Analysing ProB’s
Constraint Solving Backends: What Do They Know? Do They
Know Things? Let’s Find Out! In: Proceedings ABZ (International
Conference on Rigorous State-Based Methods), Lecture Notes in
Computer Science, vol 12071. Springer, pp 107–123

17. Dwyer MB, Avrunin GS, Corbett JC (1998) Property specification
patterns for finite-state verification. In: Proceedings FMSP (work-
shop on formal methods in software practice), ACM, pp 7–15

18. France R, Rumpe B (2007) Model-driven development of com-
plex software: a research roadmap. In: Proceedings FOSE (future
of software engineering), IEEE. pp 37–54 https://doi.org/10.1109/
FOSE.2007.14

19. Gagnon EM,Hendren LJ (1998) SableCC: an object-oriented com-
piler framework. IEEE

20. Giannakopoulou D, Mavridou A, Rhein J, Pressburger T, Schu-
mann J, Shi N (2020) Formal Requirements Elicitation with FRET.
In: Proceedings REFSQ (international working conference on
requirements engineering: foundation for software quality), ARC-
E-DAA-TN77785

21. Gomes C, Thule C, Broman D, Larsen PG, Vangheluwe H (2018)
Co-simulation: a survey. ACM Comput Surv 51(3):1–33

22. Hansen D, Leuschel M (2012) Translating TLA+ to B for valida-
tion with ProB. In: Proceedings IFM (International conference on
integrated formal methods), Lecture Notes in Computer Science,
vol 7321. Springer, pp 24–38

23. Hansen D, Leuschel M, Körner P, Krings S, Naulin T, Nayeri N,
Schneider D, Skowron F (2020) Validation and real-life demon-
stration of ETCS hybrid level 3 principles using a formal B model.
Softw Tools Technol Transf 22:315

24. Hansen D, LeuschelM, Schneider D, Krings S, Körner P, Naulin T,
Nayeri N, Skowron F (2018) Using a Formal B Model at Runtime
in a Demonstration of the ETCSHybrid Level 3 Concept with Real
Trains. In: ProceedingsABZ (International Conference onAbstract
State Machines, Alloy, B, TLA, VDM, and Z), Lecture Notes in
Computer Science, vol 10817. Springer, pp 292–306

25. Hansen D, Schneider D, Leuschel M (2016) Using B and ProB
for data validation projects. In: Proceedings ABZ (International
conference on abstract state machines, Alloy, B, TLA, VDM, and
Z), Lecture Notes in Computer Science, vol 9675. Springer, pp
167–182

26. Hickey R (2020) A History of Clojure. In: Proceedings HOPL
(History of Programming Languages), ACM, pp 1–46

27. Humm BG, Engelschall RS (2010) Language-Oriented Program-
ming Via DSL Stacking. In: Proceedings ICSOFT (International
conference on software and data technologies), pp 279–287

28. Idani A (2020) Meeduse: a tool to build and run proved DSLs. In:
Proceedings IFM (international conference on integrated formal
methods), LectureNotes inComputer Science, vol 12546. Springer,
pp 349–367

29. Idani A (2024) Transpilation of petri-nets into b: Shallow and deep
embeddings. In: Proceedings ABZ (International Conference on
Rigorous State-Based Methods), Lecture Notes in Computer Sci-
ence, vol 14759. Springer, pp 80–98

30. Körner P, Leuschel M (2023) Towards practical partial order
reduction for high-level formalisms. In: ProceedingsVSTTE (inter-
national conference on verified software: theories, tools, and
experiments) 2022, LectureNotes inComputer Science, vol 13800.
Springer

31. Körner P, Mager F (2022) An embedding of B in Clojure. In: Com-
panion proceedings MODELS (international conference on model
driven engineering languages and systems: companion proceed-
ings), ACM, pp 598-606

32. Krings S, Leuschel M, Schmidt J, Schneider D, Frappier M (2020)
Translating alloy and extensions to classical B. Sci Comput Pro-
gram 188:1–25

33. Körner P, Bendisposto J, Dunkelau J, Krings S, Leuschel M (2020)
Integrating formal specifications into applications: the ProB Java
API. Form Methods Syst Des 57:160–187

34. Lamport L (2009)ThePlusCal algorithm language. In: Proceedings
ICTAC (international colloquium on theoretical aspects of comput-
ing), Lecture Notes in Computer Science, vol 5684. Springer, pp
36–60

35. Lecomte T (2014) Atelier B, chap. 2, Wiley, pp 35–46
36. Lecomte T, Burdy L, Leuschel M (2012) Formally checking large

data sets in the railways. CoRR abs/1210.6815. Proceedings of
DS-Event-B

37. Leuschel M (2021) Spot the difference: a detailed comparison
betweenB andEvent-B. In: Logic, computation and rigorousmeth-
ods, Lecture Notes in Computer Science, vol 12750. Springer, pp
147–172

38. Leuschel M, Bendisposto J, Hansen D (2014) Unlocking the mys-
teries of a formal model of an interlocking system. In: Proceedings
Rodin Workshop 2014

39. Leuschel M, Butler M (2008) ProB: an automated analysis toolset
for the B method. Softw Tools Technol Transf 10(2):185–203

40. Leuschel M, Mutz M, Werth M (2020) Modelling and validating
an automotive system in classical B and Event-B. In: Proceedings

123

https://doi.org/10.1007/978-3-031-63790-2_17
https://doi.org/10.1007/978-3-030-73758-0
https://doi.org/10.1109/FOSE.2007.14
https://doi.org/10.1109/FOSE.2007.14

A Case for Data-Oriented... 959

ABZ (International Conference on Rigorous State-Based Meth-
ods), Lecture Notes in Computer Science, vol 12071. Springer, pp
335–350

41. Milicevic Aleksandar Erfrati I, Jackson D (2014) αRby—an
embedding of alloy in ruby. In: Proceedings ABZ (international
conference on abstract state machines, alloy, B, TLA, VDM and
Z), Lecture Notes in Computer Science, vol 8477. Springer, pp
56–71

42. de Moura LM, Bjørner N (2008) Z3: an efficient SMT solver. In:
Proceedings TACAS (International conference on tools and algo-
rithms for the construction and analysis of systems), Lecture Notes
in Computer Science, vol 4963. Springer, pp 337–340

43. OzkayaM, Erata F (2020) Understanding practitioners’ challenges
on softwaremodeling: a survey. J Comput Lang 58:100963. https://
doi.org/10.1016/j.cola.2020.100963

44. Peled D (1994) Combining partial order reductions with on-the-fly
model-checking. In: Proceedings CAV (International Conference
on Computer Aided Verification), Lecture Notes in Computer Sci-
ence, vol. 818. Springer, pp 377–390

45. RatiuD,GarioM, SchoenhaarH (2019) FASTEN: an open extensi-
ble framework to experiment with formal specification approaches.
In: Proceedings formalise (workshop on formal methods in soft-
ware engineering), IEEE, pp 41–50

46. Ratiu D, Nordmann A, Munk P, Carlan C, Voelter M (2021) FAS-
TEN: an extensible platform to experiment with rigorous modeling
of safety-critical systems. In: Domain-specific languages in prac-
tice, Springer, pp 131–164

47. Rivière P, Singh NK, Aït-Ameur Y (2022) EB4EB: a framework
for reflexive Event-B. In: Proceedings ICECCS (International Con-
ference on Engineering of Complex Computer Systems), IEEE, pp
71–80 https://doi.org/10.1109/ICECCS54210.2022.00017

48. Schmidt J, Krings S, Leuschel M (2018) Repair and generation
of formal models using synthesis. In: Proceedings iFM (interna-
tional conference on integrated formal methods), Lecture Notes in
Computer Science, vol 11023. Springer, pp 346–366

49. Schneider D (2017) Constraint modelling and data validation using
formal specification languages. Ph.D. thesis,Universitäts- undLan-
desbibliothek der Heinrich-Heine-Universität Düsseldorf

50. Schneider D, Leuschel M, Witt T (2015) Model-based problem
solving for university timetable validation and improvement. In:
Proceedings FM (international symposium on formal methods),
Lecture Notes in Computer Science, vol 9109. Springer, pp 487–
495

51. Schneider D, Leuschel M, Witt T (2018) Model-based problem
solving for university timetable validation and improvement. Form
Asp Comput 30:545–569

52. Torlak E, Bodik R (2013) Growing Solver-Aided Languages With
Rosette. In: Proceedings Onward! (International Symposium on
New Ideas, New Paradigms, and Reflections on Programming &
Software), ACM, pp 135–152

53. Torlak E, Jackson D (2007) Kodkod: A relational model finder. In:
Proceedings TACAS (international conference on tools and algo-
rithms for the construction and analysis of systems), Lecture Notes
in Computer Science, vol 4424. Springer, pp 632–647

54. Vu F (2020) Simulation and verification of reactive systems in
Lustre with ProB.Master’s thesis, Heinrich Heine Universität Düs-
seldorf

55. Vu F, Hansen D, Körner P, Leuschel M (2019) A multi-target code
generator for high-level B. In: Proceedings iFM (International Con-
ference on integrated FormalMethods), Lecture Notes in Computer
Science, vol 11918. Springer, pp 456–473

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1016/j.cola.2020.100963
https://doi.org/10.1016/j.cola.2020.100963
https://doi.org/10.1109/ICECCS54210.2022.00017

	Titelblatt_Körner_final
	Körner_a case
	A case for data-oriented specifications: simpler implementation of B tools and DSLs
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Additional contributions
	2 Background
	2.1 The B specification language
	2.2 Clojure
	2.3 Internal versus external DSLs
	2.4 Language workbenches versus Clojure macros
	3 lisb—internals
	3.1 Three representations
	3.2 Architecture overview and user programs
	3.2.1 The re-translation module
	3.2.2 User program
	3.2.3 Potential use cases

	4 Case study: machine transformation
	4.1 Motivation and idea
	4.2 Implementation
	4.3 Lessons learned: library synergy
	4.3.1 Data transformation—specter
	4.3.2 Pattern matching—core.match
	4.3.3 Term rewriting—meander

	5 Case study: algorithm description language DSL

	6 Technique transfer: LTL pattern languages
	6.1 Internal DSL definition and IR data generation
	6.2 Obtaining formula strings
	6.3 Extending the language
	6.4 Stacking DSLs: Dwyer patterns
	6.5 Transformation implementation
	6.6 Discussion

	7 Related work
	8 Conclusions
	8.1 Future work

	Appendix A Addressing B-specific issues
	A.1 Language semantics—definitions
	A.2 Introducing convenience operators
	Appendix B Full code listings
	B.1 Dwyer pattern implementation
	B.2 Positive normal-form transformation
	Acknowledgements
	References

