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A B S T R A C T

Background: Cardiogenic shock (CS) caused by acute myocardial infarction (AMI) is a critical condition with high 
mortality rate. Insulin-like growth factor binding protein 2 (IGFBP-2) is dysregulated in cardiovascular diseases. 
The purpose of the present study was to investigate the prognostic value of IGFBP-2 in patients with AMI-CS.
Methods: This study is a post-hoc analysis of the randomized multicentre CULPRIT-SHOCK trial. IGFBP-2 levels 
were measured in serum samples from 423 patients using commercially available enzyme-linked immunosorbent 
assay (ELISA) kits. Associations of IGFBP-2 with 30-day and one-year mortality were investigated.
Results: Median IGFBP-2 concentration was 415 ng/ml (IQR 274–699 ng/ml). Patients with IGFBP-2 ≥ median 
demonstrated higher 30-day (54 % vs. 37 %; p < 0.001) and one-year mortality (60 % vs. 42 %; p < 0.001) 
compared to the < median group. Higher IGFBP-2 concentrations were associated with increased 30-day and 
one-year mortality, irrespective of it being analysed as continuous or categorical variable (per 100 ng/ml IGFBP- 
2, hazard ratio (HR) 1.06; 95 % confidence interval (CI) 1.04–1.09; p < 0.001, respectively; IGFBP-2 ≥ vs. <
median, HR 1.70, 95 % CI 1.23–2.35, p = 0.001 and HR 1.72, 95 %CI 1.27–2.33, p < 0.001). Furthermore, 
IGFBP-2 ≥ median was associated with increased 30-day (HR 1.70; 95 %CI 1.23–2.35; p = 0.001) and one-year 
mortality (HR 1.72; 95 %CI 1.27–2.33; p < 0.001), even after adjustment for established prognostic factors.
Conclusions: In AMI-CS, elevated levels of IGFBP-2 were associated with higher mortality at 30 days and one year 
after admission. IGFBP-2 represents a promising prognostic biomarker and could add value to risk stratification 
in this high-risk patient cohort, potentially informing early clinical decision-making.
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1. Introduction

Cardiogenic shock (CS) is a critical condition defined by hemody
namic impairment and/or systemic hypoperfusion resulting from car
diac dysfunction of various causes [1,2]. One of the most common 
aetiologies of CS is acute myocardial infarction (AMI) [3,4]. CS occurs in 
around 10 % of hospitalized AMI patients, representing the leading 
cause of death in this patient cohort [5,6]. Despite advances in cardio
vascular care, particularly immediate revascularization of the culprit 
lesion, mortality rates of CS complicating AMI remain high, ranging 
around 40–50 % within 30 days [5]. Clinicians in advanced healthcare 
systems often face the dilemma of choosing between advanced treat
ment options, such as mechanical circulatory support devices, and 
implementing reasonable therapy limitations. Thus, fast and precise risk 
stratification is crucial for decision making in acute clinical settings. To 
date several risk scores containing clinical or hemodynamic features or 
laboratory parameters, have been proposed. Whereas, some of them, 
such as Simplified Acute Physiology Score (SAPS II), were developed for 
an unselected cohort of critically ill patients, also scores for mixed CS 
populations, such as the CardShock or the Cardiogenic Shock scores, 
have been previously described [3,7,8]. In AMI-related CS populations, 
the IABP-SHOCK II score as well as the biomarker-based Cystatin C, 
Lactate, Interleukin 6, NT-proBNP (CLIP) score have been shown to 
predict prognosis [9–11]. In addition to these scores, requiring imple
mentation of several parameters, which can be challenging in case of 
scarce resources at the intensive care unit (ICU), we have previously 
reported delta-lactate, defined as the change in serum lactate levels 
within 24 h after ICU admission, as an easy and handy tool for outcome 
prediction in an unselected ICU population [12]. In the present study, 
we sought to identify a single biomarker that can be used as a simple risk 
stratification parameter, in patients with AMI-related CS, as add-on to 
the general assessment by the treating physician, without the need for 
additional calculations.

Insulin-like growth factors (IGFs) are peptide hormones, involved in 
several metabolic signaling pathways, evolutionary mostly controlling 
growth in relation to nutritional environment and thus regulating 
glucose up-take, glycogen storage, lipogenesis, and suppression of pro
tein degradation [13,14]. Insulin-like growth factor binding proteins 
(IGFBP) act as decoy receptor for IGF ligands, thereby modulating their 
half-life in the bloodstream, the tissue distribution, and interaction with 
cell receptors [15]. IGFBP-2 is a member of the IGFBP superfamily and is 
involved in several physiological and pathological processes; inter alia, 
protective effects in diabetes development or involvement in develop
ment of diabetic kidney disease have been shown [16,17]. The potential 
role of IGFBP-2 as a biomarker in cardiovascular disease is of particular 
interest due to its involvement in metabolic pathways that may influ
ence cardiac function and recovery. Regarding the cardiovascular sys
tem, only few studies have investigated the role of IGFBP-2. In patients 
with peripheral artery disease elevated IGFBP-2 levels were associated 
with increased long-term mortality [18]. Our group has previously 
demonstrated that preprocedural elevated IGFBP-2 in patients receiving 
transcatheter aortic valve implantation (TAVI) were not only associated 
with increased 30-day and one-year mortality but also a worse func
tional outcome [19].

The purpose of the present study was to evaluate the prognostic 
value of IGFBP-2 in patients with AMI-related CS enrolled in one of the 
largest randomized CS trials, with the aim of identifying a clinically 
applicable biomarker for early risk stratification that could potentially 
guide therapeutic decisions.

2. Methods

2.1. Study population

The present analysis is a post-hoc substudy of the multicentre ran
domized CULPRIT-SHOCK trial. In this trial, patients with AMI-related 

CS and multivessel disease were randomized to either percutaneous 
coronary intervention (PCI) of the culprit lesion only with the option of 
staged revascularization of non-culprit lesions or immediate multivessel 
PCI. Overall, 706 patients were enrolled in the trial. CS was defined as a 
sustained low systolic blood pressure of less than 90 mmHg for >30 min, 
need for catecholamine support, clinical signs of pulmonary congestion, 
and signs of poor organ perfusion such as altered mental status, cold and 
clammy skin or limbs, urine output of <30 ml/h or arterial lactate levels 
>2 mmol/l. Exclusion criteria included prolonged resuscitation >30 
min, absence of heart activity, single-vessel disease, urgent need for 
bypass surgery, severe cerebral impairment, defined as coma with fixed 
dilated pupils, non-cardiac causes of shock, shock onset >12 h before 
randomization, very advanced age, severe renal insufficiency, and other 
life-limiting conditions (life-expectancy <6 months). Written informed 
consent was obtained from all participants. The local ethics committee 
of each site approved the study protocol, which conforms to the ethical 
guidelines of the 1975 Declaration of Helsinki. Non-randomizable pa
tients with CS were included in the CULPRIT-SHOCK registry. The 
detailed trial design has been published previously [20]. Blood was 
collected from the patients at hospital admission before angiography 
and PCI. EDTA-anticoagulated serum samples were isolated and stored 
at − 80 ◦C until further analysis. Biobanking samples were available 
from 423 patients from both randomization groups. IGFBP-2 values in 
these patients were analysed in the present study.

2.2. IGFBP-2 measurements

IGFBP-2 measurements in patients with available biobanking sam
ples at admission were performed retrospectively. Serum levels of 
IGFBP-2 were determined using a commercially available enzyme- 
linked sandwich immunosorbent assay (ELISA) kit (Mediagnost, Reut
lingen, Germany) according to the manufacturer’s protocol. In short, a 
5-point calibration (2–80 ng/ml) and two control levels were applied for 
quantification of IGFBP-2. Samples (15 μl serum) were diluted (1:21) 
with dilution reagent and added to a microtiter plate pre-coated with 
specific antibodies for IGFBP-2. After 1 h the plate was washed and a 
second antibody, conjugated with streptavidin peroxidase enzyme, was 
added. After an additional incubation for 30 min at 25 ◦C and a second 
washing step the substrate for the enzyme reaction was added. Absor
bance were measured at 450 nm. The intensity of the resulting colour 
was proportional to the IGFBP-2 content of the samples.

2.3. Statistical analysis

Statistical analyses were performed using STATA statistic software 
(StataNow/BE 18.5). Patients were divided in two groups based on 
IGFBP-2 values below or above the median level (415 ng/ml). Differ
ences in IGFBP-2 levels between 30-day survivors and non-survivors 
were compared using Mann-Whitney U test. Categorical variables are 
expressed as numbers (percentage). Chi-Square test was applied to 
assess differences between groups. For continuous variables, data are 
presented as median with interquartile-range (IQR) and compared using 
Kruskal-Wallis test. Univariable and multivariable Cox regression ana
lyses were used to analyse associations of IGFBP-2 with 30-day and one- 
year mortality and to adjust for potential confounding factors. Due to 
missing values, only 343 (30-days) and 368 (one-year) patients were 
analysed in the multivariable regression model. Associations between 
IGFBP-2 and cardiac biomarkers were assessed using Spearman rank 
correlation coefficients due to non-normal distribution of biomarker 
data. Pearson correlations yielded similar results. A p-value of <0.05 
was considered statistically significant.

3. Results

IGFBP-2 levels were measured and analysed in 423 patients. Median 
serum concentration of IGFBP-2 in these patients was 415 ng/ml (IQR 
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274–699 ng/ml). Patients’ baseline characteristics are presented in the 
Table 1. Patients in the IGFBP-2 ≥ median group (n = 211) were older (p 
< 0.001) and more often male (p < 0.001) than patients in the IGFBP-2 
< median group (n = 212). The prevalence of arterial hypertension (p =
0.008), atrial fibrillation (p = 0.019) or a history of heart failure (p =
0.023) was higher in the IGFBP-2 ≥ median group, whereas other 
comorbidities, such as diabetes mellitus, previous myocardial infarction 
or dyslipidemia did not differ between groups. Patients in both groups 
had a similar severity of CS, as reflected by similar SAPS II score and 
initial lactate levels. However, patients in the IGFBP-2 ≥ median group 
had lower hemoglobin (p < 0.001) and higher creatinine (p < 0.001) 
levels (Table 1). Survivors after 30 days displayed significantly lower 
IGFBP-2 levels than non-survivors (p < 0.001; Fig. 1). IGFBP-2 levels 
showed a moderate correlation with NT-proBNP (Spearman rho = 0.51, 
p < 0.001) and weak correlations with troponin T (rho = 0.17, p <
0.001) and left ventricular ejection fraction (rho = − 0.15, p = 0.055). 
Results were similar using Pearson correlations.

We analysed 30-day as well as longer-term one-year survival 
depending on IGFBP-2. As continuous variable, higher IGFBP-2 was 
associated with increased 30-day as well as one-year mortality (both 
associations with hazard ratio (HR) 1.06, 95 % confidence interval (CI) 
1.04–1.09; p < 0.001, per 100 ng/ml IGFBP-2). When analyzing IGFBP-2 
as dichotomous variable, patients with IGFBP-2 above the median 
showed higher 30-day (54 % vs. 37 %; p < 0.001) and long-term mor
tality (60 % vs. 42 %; p < 0.001) rates compared to the below median 
group. In a Cox regression analysis, IGFBP-2 ≥ median was associated 
with higher mortality after 30 days (HR 1.70; 95 %CI 1.23–2.35; p =
0.001) and one year (HR 1.72; 95 %CI 1.27–2.33; log-rank p < 0.001; 
Fig. 2). This association of IGFBP-2 ≥ median and one-year mortality 

was confirmed in multivariable regression models correcting for SAPS II 
and lactate (HR 2.10; 95 %CI 1.50–2.93; p < 0.001; Table 2) and other 
possible confounders like age, sex or randomization to culprit-lesion- 
only vs. multivessel PCI group (HR 1.77; 95 %CI 1.26–2.48; p =
0.001; Table 2). There were no significant interaction effects between 
IGFBP-2 levels and other prognostic factors including serum lactate 
concentrations, creatinine, SAPS II score, left ventricular ejection frac
tion, age, sex, previous congestive heart failure, ST-elevation myocardial 
infarction or randomization group with regard to one-year mortality 
(Supplementary Table 1). Additional adjustment for the IABP-SHOCK II 
score did not attenuate the association between IGFBP-2 and one-year 
mortality (HR 1.062 per 100 ng/ml, 95 %CI 1.036–1.090, p < 0.001).

4. Discussion

In patients with AMI-CS, higher IGFBP-2 levels at admission were 

Table 1 
Laboratory and clinical patient characteristics according to IGFBP-2 levels.

Parameter IGFBP-2 <
415 ng/ml

IGFBP-2 ≥
415 ng/ml

Overall cohort p-value

Median (IQR) Median (IQR) Median (IQR)

Age
64.0 
(56.0–74.0)

73.0 
(64.0–79.0)

69.0 
(60.0–77.0)

<0.001

Male gender (%) 84 % 68 % 76 % <0.001
Systolic BP 

(mmHg)
102 (88–126) 105 (85–125) 103 (87–125) 0.74

Heart rate (bpm) 87 (72–102) 90 (70–112) 89 (70–108) 0.24
SAPS II (pts) 47 (27–69) 53 (37–69) 51 (31–69) 0.11
Afib at admission 

(%)
8 % 15 % 11 % 0.019

Arterial 
hypertension 
(%)

56 % 68 % 62 % 0.008

Diabetes mellitus 
(%) 30 % 36 % 33 % 0.17

Smoker (%) 28 % 25 % 27 % 0.44
Dyslipidemia (%) 34 % 32 % 33 % 0.56
Previous MI (%) 15 % 15 % 15 % 0.89
Previous heart 

failure (%)
4 % 10 % 7 % 0.023

Lactate (mmol/l) 3.6 (2.0–7.5) 3.7 (2.0–7.1) 3.7 (2.0–7.4) 0.75
Hemoglobin (g/ 

dl) 8.8 (7.9–9.4) 8.0 (6.8–8.8) 8.4 (7.4–9.2) <0.001

Creatinine 
(μmol/l)

104.0 
(85.5–128.0)

120.0 
(94.0–159.0)

111.0 
(91.0–141.0) <0.001

STEMI (%) 64 % 56 % 60 % 0.089
Use of 

mechanical 
support (%)

27 % 28 % 28 % 0.89

CPR during 
procedure (%) 17 % 16 % 17 % 0.81

Bleeding events 
(%)

22 % 20 % 21 % 0.72

BP = blood pressure, SAPS = simplified acute physiology score, Afib = atrial 
fibrillation, MI = myocardial infarction, STEMI = ST elevation myocardial 
infarction, CPR = cardiopulmonary resuscitation.
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Fig. 1. Box plots showing serum IGFBP-2 concentrations (ng/ml) in patients 
with acute myocardial infarction-related cardiogenic shock stratified by 30-day 
survival status. Survivors (n = 230) had significantly lower IGFBP-2 levels 
compared to non-survivors (n = 193) with median values of 383.7 ng/ml (IQR 
250.5–555.4) versus 505.3 ng/ml (IQR 316.9–774.9), respectively (p < 0.001).

Log-rank test
P < 0.001
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Fig. 2. High IGFBP-2 levels were associated with mortality in patients with 
AMI-CS. Kaplan-Meier curve showing a significantly lower survival rate in 
patients with IGFBP-2 serum concentrations above median of 415 ng/ml (HR 
1.72; 95 %CI 1.27–2.33; p < 0.001).
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associated with an increased 30-day and one-year mortality. This asso
ciation was independent of age, sex or established parameters reflecting 
the severity of disease such as lactate levels or SAPS II score.

4.1. Risk stratification in infarction-related cardiogenic shock

CS is characterized by high mortality rates despite enormous ad
vances in cardiovascular care in the last decades. Due to heterogeneity of 
patients and variability of mortality rates in AMI-CS, accurate risk 
assessment is a crucial task in clinical CS management [9]. Despite 
several conventional scores proposed for outcome prediction in mixed 
CS cohorts, novel risk stratification tools are machine learning models, 
developed from datasets from large studies, possibly allowing a very fast 
and precise prognosis prediction in different patient cohorts in the future 
[21,22]. Another approach is the identification of biomarkers predicting 
the course of disease which may allow targeted drug therapies. For 
instance, circulating dipeptidyl peptidase 3 (cDPP-3) has been shown to 
be a prognostic marker in AMI-CS and a specific drug against cDPP-3 is 
currently under investigation [23,24]. In the present study, we propose a 
new serum biomarker robustly associated with 30-day and one-year 
mortality.

4.2. IGFBP-2 as prognostic marker in cardiovascular diseases

IGFBP-2, a component of the somatotropic axis, is the second most 
abundant circulating IGFBP and influenced by several physiological and 
pathological conditions [25,26]. Previous studies have demonstrated a 
correlation between IGFBP-2 levels and insulin sensitivity, proposing it 
as a marker for the metabolic syndrome [13,27,28]. Furthermore, it 
plays a crucial role in signaling pathways during critical illness [29]. In 
the context of cardiovascular system, only few studies have investigated 
the role of IGFBP-2. In patients with peripheral artery disease (PAD) 
elevated IGFBP-2 levels were associated with increased long-term 
mortality [18]. Our group has previously demonstrated that preproce
dural elevated IGFBP-2 in patients receiving transcatheter aortic valve 
implantation (TAVI) were not only associated with increased 30-day and 
one-year mortality but also a worse functional outcome [19]. In our 
patient cohort, the median IGFBP-2 concentration of 415 ng/ml was 
higher than in the mentioned studies with PAD patients (313 ng/ml) or 
TAVI patients (227 ng/ml) [18,19]. This might be the reflection of the 
acute state of the AMI-CS patients in our study, whereas patients with 
PAD had a chronic condition and TAVI procedures were most likely 
performed in an elective setting. In another single-centre study, 
including a hemodynamically stable cohort of AMI patients, median 
IGFBP-2 levels were still lower than in our cohort (e.g. 364 ng/ml in 
patients with ST-elevation myocardial infarction), suggesting, that not 

only the acute setting but also hemodynamic deterioration contributes 
to higher IGFBP-2 concentrations [30]. This is also in line with obser
vations in heart failure (HF) patients: In a study investigating three 
different cohorts of HF patients, Barutaut and colleagues have found 
more than double median IGFBP-2 levels in acutely decompensated HF 
patients than in two chronic stable cohorts (393 ng/ml vs. 165 and 172 
ng/ml). Baseline IGFBP-2 levels in healthy individuals vary throughout 
the literature (e.g. 137,9 ng/ml or 199 ng/ml), but are always consid
erably lower than in our AMI-CS cohort [30,31].

As IGFBP-2 is involved in multiple molecular pathways, there are 
several potential mechanisms leading to elevated IGFBP-2 levels in AMI- 
related cardiogenic shock to consider. Thus, IGFBP-2 has been shown to 
be increased in critical illness due to cytokine activity [26]. Moreover, it 
is involved in the PI3K/Akt signaling pathway, which has been shown to 
play a critical role in the regulation of cardiomyocyte function, growth 
and survival in myocardial infarction and ischemia/reperfusion injury 
[32,33]. Finally, IGFBP2 has been shown to increase VEGF expression 
under oxidative stress, which is known to be involved in several physi
ological and pathological processes, such as angiogenesis or endothelial 
function [34,35]. Although further studies are needed to understand the 
underlying mechanisms of IGFBP-2 elevation in cardiogenic shock, our 
results suggest it as a possible marker of disease severity and an inde
pendent prognostic parameter.

In our cohort, IGFBP-2 levels showed a moderate correlation with 
NT-proBNP (Spearman rho = 0.51, p < 0.001) but only weak correla
tions with troponin T (rho = 0.17, p < 0.001) and left ventricular 
ejection fraction (rho = − 0.15, p = 0.055), suggesting that IGFBP-2 
reflects pathophysiological dimensions beyond myocardial necrosis 
and contractile dysfunction alone. Notably, in multivariable Cox 
regression models adjusting for age, sex, previous heart failure, STEMI, 
randomization group, and lactate, IGFBP-2 remained independently 
associated with one-year mortality after additional adjustment for NT- 
proBNP (HR 1.057 per 100 ng/ml, 95 %CI 1.021–1.093, p = 0.001, n 
= 368) or troponin (HR 1.060, 95 %CI 1.028–1.093, p < 0.001, n =
368). In these models, neither NT-proBNP nor troponin retained inde
pendent prognostic significance. Similarly, IGFBP-2 remained predictive 
after adjustment for the IABP-SHOCK II score (HR 1.062, 95 %CI 
1.036–1.090, p < 0.001, n = 383). This underscores the unique prog
nostic value of IGFBP-2, potentially reflecting systemic metabolic 
derangement, inflammatory response, or other pathophysiological pro
cesses characteristic of cardiogenic shock that extend beyond the degree 
of cardiac injury or hemodynamic impairment captured by conventional 
parameters.

4.3. Clinical implications and future perspective

In the present study, we showed for the first time the prognostic 
relevance of IGFBP-2 in AMI-CS. We could clearly demonstrate an 
additional benefit of IGFBP-2 as outcome predictor to established pa
rameters such as serum lactate, thus, proposing a novel and valuable risk 
stratification parameter in this cohort. Of note, in the present study we 
have focused on survival analyses, explicitly showing an add-on effect of 
IGFBP-2 as predictor of mortality. In the future, risk stratification based 
on integration of individually assessed biomarkers such as IGFBP-2 in 
machine learning models, could be a helpful comprehensive approach.

Interestingly, patients in the IGFBP-2 above median group had 
significantly higher creatinine levels. In previous studies, IGFBP-2 has 
been found to be increased in patients with chronic kidney disease 
[36,37]. Ravassa et al. analysed IGFBP-2 levels in patients with heart 
failure and chronic kidney disease (CKD) and reported increased IGFBP- 
2 levels in patients with decreased estimated glomerular filtration rate 
(eGFR) while also demonstrating an association between IGFBP-2 levels 
and cardiovascular mortality [38]. This is in line with our findings in our 
AMI-CS patient cohort. However, in the stated work, there was a 
stronger association between IGFBP-2 levels and cardiovascular death in 
patients with impaired eGFR [38], whereas in our cohort there was no 

Table 2 
IGFBP-2 above median of 415 ng/ml is associated with one-year-mortality after 
correction for confounders in a multivariable analysis.

Model 1

Variable HR 95 %CI p-value
IGFBP-2 ≥ median 2.10 1.50–2.93 <0.001
SAPS II 1.01 1.00–1.01 <0.001
Lactate 1.16 1.11–1.20 <0.001

Model 2
Variable HR 95 %CI p-value
IGFBP-2 ≥ median 1.77 1.26–2.48 0.001
Age 1.03 1.01–1.04 0.002
Male gender 1.40 0.95–2.08 0.095
CHF 0.92 0.54–1.58 0.779
STEMI 0.76 0.55–1.05 0.092
Rand grp (culprit-only) 0.97 0.71–1.32 0.847
Lactate 1.16 1.12–1.21 <0.001

HR = hazard ratio, CI = confidence interval, SAPS = simplified acute physiology 
score, CHF = chronic heart failure, STEMI = ST elevation myocardial infarction, 
Rand grp = randomization group.
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interaction between IGFBP-2 concentrations and creatinine levels. 
Furthermore, patients with IGFBP-2 levels above median were signifi
cantly older, which is consistent with published literature describing an 
increase of IGFBP-2 levels with age [39]. Nevertheless, the association of 
IGFBP-2 with mortality in our cohort remained robust after correction 
for age.

4.4. Strengths and limitations

One of the main strengths of our study is the relatively large patient 
number and the multicentre design derived from a large randomized 
controlled trial (RCT), delivering a high-quality dataset. Nevertheless, 
the rationale behind an early risk stratification in this vulnerable patient 
collective is to support clinical decision-making and treatment guiding, 
and unfortunately, to date, no model or laboratory parameter has shown 
value for therapeutic selection [11]. Therefore, there is still no 
consensus on implementing the established scores or parameters into 
decision-making regarding initiation of mechanical circulators support 
[11,40]. Furthermore, the two large RCTs on mechanical circulatory 
support (MCS) use in AMI-CS patients, the DanGer-Shock and ECLS- 
SHOCK trials have reported differing results, underlining the impor
tance of proper patient selection for this treatment strategy [41,42]. This 
constitutes one of the main limitations of our and other studies 
concentrating on risk stratification in CS patients, as it remains unclear 
how this prognostic information should influence therapeutic decisions. 
There is a general ethical limitation in relying on biomarker-based 
prognoses in bedside decision making, possibly running the risk of 
retraining treatment to certain patient groups. However, we suggest 
here a reliable marker, which can be combined with further clinical 
parameters. Implementation of novel biomarkers in CS characterization 
could be crucial for a better patient selection for prospective trials 
regarding therapeutic strategies such as MCS. Another limitation is the 
post-hoc analysis of this originally prospective study, resulting in 
missing parameters, affecting the analysed sample size. Unfortunately, 
not all participating sites of this multicentre trial collected biosampling 
material, which leads to a decreased patient cohort size (n = 423) as 
compared to the original study (n = 706) and potential selection bias. 
Another possible selection bias is the inclusion of only patients with 
multi-vessel-disease due to the design of the original trial. Furthermore, 
we do not have any information on the time course of symptom devel
opment and hemodynamic worsening prior to presentation at the hos
pital and therefore cannot provide a correlation of the temporal 
evolvement of cardiogenic shock with single-point IGFBP-2 
measurements.

5. Conclusions

IGFBP-2 was robustly associated with mortality after 30 days and 1 
year in patients with AMI-CS. Accordingly, we propose IGFBP-2 as a 
reliable prognostic biomarker with additional value to other clinical and 
laboratory parameters. Nevertheless, future prospective studies 
including IGFBP-2 in prognosis estimation and treatment decision are 
warranted in order to further evaluate its clinical value.
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