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ABSTRACT

Keywords: The present review focusses on artificial light at night (ALAN) and night shift work (NSW) as examples for

Circadiaﬂ_mifalignmem chronodisruption occurring in modern societies. Chronodisruption can lead to significant sleep and health

ﬁulc‘zcofncmds problems and increase the risk of chronic diseases. This pathomechanism involves endocrine systems (gluco-
elatonin

corticoids, melatonin). ALAN affects at least 80% of mankind and disturbs physiological, biological and
Blood cells behavioral processes in wildlife. In humans, the nighttime use of illuminated screens contributes to ALAN, with
Body mass index as yet unforeseeable consequences for body and brain. Acute continuous light exposure triggers pro-
LDL/HDL ratio inflammatory responses in the brain which may make it more vulnerable to additional aversive stimuli. More-
over, acute continuous light impairs cognitive function and synaptic plasticity and leads to an increase in
corticosterone, a stress hormone and an important mediator in the circadian system. Several studies on NSW
reported increased risk for sleep disorders, cancer, cardiovascular disease, type 2 diabetes, obesity, and
depression. However, objective imaging analyses supplemented by neuropsychological examinations revealed
that NSW has only minor effects on brain functions. Moreover, a recent study showed that NSW was not
accompanied by metabolic, cardiovascular or immunological problems. In conclusion, ALAN may be considered
a relevant factor influencing human health and biodiversity and should be avoided whenever possible. Studies on
the effects of NSW report varying results. This may be due to differences in light intensity during shift, the quality
of the occupational health service and the shift work schedule. All these aspects need further investigations to
prevent or mitigate the health risk of NSW.

Resting-state functional connectivity

1. Artificial light at night affects at least 80 % of the world’s population and more than 99 % of
Europeans. ALAN can disturb physiological, biological and behavioral
processes that rely on the natural light cycles in wildlife, plants and
marine life. In humans, the nighttime use of illuminated screens,
Chronodisruption also called circadian misalignment can lead to including smartphones, may also contribute to ALAN, with as yet un-

impaired mental and physical health (Bara et al., 2023) (impaired foreseeable consequences for the body and brain.
cognition, significant sleep and health problems, increasing risks of
chronic diseases and cancer). Dysregulation of endocrine systems likely
plays a key role in the pathomechanism with glucocorticoids and
melatonin being prime targets. This article discusses two examples of
chronodisruption that occur in modern societies: artificial light at night
(ALAN) and night shift work (NSW). ALAN is considered a real pollutant allow them to anticipate rhythmic changes and adapt their behavior and
that can harm people and the environment (Bara et al., 2023).ALAN physiology accordingly. The core of the circadian system in mammals is
the central circadian rhythm generator in the suprachiasmatic nucleus

1.1. General outline

1.2. Basics of the circadian system

Living organisms have developed self-sustained circadian clocks that
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(SCN) of the hypothalamus, also called the conductor of the circadian
system. The SCN transmits information to subsidiary oscillators in the
brain and body via neuronal and (neuro-) endocrine output pathways.
The activity of the SCN is controlled by various input pathways, the most
important being the retinohypothalamic tract providing information
about the ambient lighting conditions (photoperiod). It controls daily
rhythms in brain and body function including the sleep/wake cycle,
endocrine rhythms as well as rhythms in core body temperature,
detoxification, metabolic and cardiovascular function (Fig. 1). Seasonal
rhythms are also controlled by the circadian system. However, their role
for human health is investigated only to a limited extent, they play a role
in winter depression and are likely involved in the seasonal control of
the immune system (Dopico et al., 2015; Korf, 2018; Korf and Moller,
2021).

At the cellular level, the SCN and subsidiary oscillators comprise a
molecular clockwork composed of self-sustaining transcriptional/
translational feedback loops of clock genes (Reppert and Weaver, 2002)
that regulate rhythmic gene expression. The molecular clock drives
rhythmic transcription as well as posttranslational (Koike et al., 2012)
and epigenetic (Koike et al., 2012) modification and about 43 % of all
coding genes and about 1000 noncoding RNAs show circadian rhythms
(Zhang et al., 2014; Panda et al., 2002; Akhtar et al., 2002). Because they
are self-sustaining, these rhythms also oscillate in vitro with a period
length of approximately 24 h (hence circadian). However, most circa-
dian oscillators outside the SCN cease their rhythms in vitro after a few
cycles (Duffield et al., 2002), underscoring the importance of rhythmic
output signals from the SCN (Akhtar et al., 2002). Moreover, the dele-
tion of the essential clock gene Bmall is associated with severe alter-
ations in viability (Kondratov et al., 2006), physiology (Kondratov et al.,
2006), cognition (Kondratova et al., 2010), and morphology (Kondratov
et al., 2006), including those of the brain (Musiek et al., 2013; Ali et al.,
2020) and retina (Storch et al., 2007; Baba et al., 2018; Korkmaz et al.,
2025). This underlines the importance of clock genes for maintenance of
rhythmic processes and shows that chronodisruption can affect the
structure and function of the brain and the light input into the brain.

The SCN controls subsidiary oscillators in the brain through neuronal
pathways and neuroendocrine signals, such as SCN-derived AVP. Sub-
sidiary oscillators in the body are controlled by the autonomic nervous
system (Buijs et al., 2003) and endocrine pathways (Kalsbeek et al.,
2006). Melatonin, also known as “hormone of darkness” and glucocor-
ticoids, also known as “stress hormones,” are important rhythmic signals
for circadian oscillators (Balsalobre et al., 2000) in the brain and body.
In both nocturnal animals and humans, melatonin levels rise with the
onset of darkness, while glucocorticoid levels increase during the late
part of the sleep phase and reach peak levels around awakening
(Selmaoui and Touitou, 2003; Albers et al., 1985).

Melatonin is produced by the pineal gland under the control of the
SCN via the sympathetic nervous system (Korf et al., 1998). It feeds back
to the SCN through the G-protein coupled melatonin receptor 1 (MT;)
and 2 (MT3) (Dubocovich et al., 2003), modulating the amplitude and
phase of SCN rhythmicity (Liu et al., 1997). Melatonin synchronizes
circadian oscillators subordinate to the SCN (Korf and von Gall, 2006)
and drives rhythmic clock gene expression in the pars tuberalis of the
pituitary gland (Dardente et al., 2003; von Gall et al., 2005). This is
particularly important in the context of the role of melatonin in
decoding the length of the night for the control of seasonal rhythms
(Korf, 2025). Melatonin is implicated in blood pressure regulation
(Pechanova et al., 2014), immune function (Bondy and Campbell,
2020), hippocampal synaptic plasticity and memory processes (Feng
et al., 2023), has been proposed as an antioxidant (Reiter et al., 2016)
and shown to improve glucose and lipid metabolism, modulate energy
balance, attenuate neurodegenerative processes and depressive and
anxiety behavior (Korkmaz et al., 2009; Majidinia et al., 2018; Reiter
et al., 2010; Repova et al., 2022). In humans and other diurnal animals,
melatonin has sleep-inducing capacities because it seems to modulate
sleep onset by reducing the threshold for wake-to-sleep transitioning
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(Kim et al., 2024). Administration of exogenous melatonin affects main
characteristics of human sleep, that is, latency to sleep onset, sleep
consolidation, slow waves, sleep spindles, and REM sleep (Dijk and
Cajochen, 1997). Melatonin produced by the mother and released via
the placenta or milk, also represents an important systemic time cue
during prenatal and early postnatal development (Verteramo et al.,
2022), when the offspring components of the circadian system are not
yet fully matured. Importantly, ALAN suppresses melatonin secretion
(Lewy et al., 1980) by inducing a rapid decrease in the rate-limiting
enzyme in melatonin synthesis (Klein and Weller, 1972).

Glucocorticoid production in the adrenal cortex is under the control
of the hypothalamo-pituitary-adrenal axis. In addition, the sympathetic
nervous system is implicated in enhancing glucocorticoid production
following chronic stress (Lowrance et al., 2016). Glucocorticoids play an
important role in energy homeostasis and the circadian rhythm probably
serves primarily to anticipate the increase in energy demands associated
with wakefulness (Melendez-Fernandez et al., 2023) but is also crucial
for the rhythmic function of circadian oscillators subordinate to the SCN
(Balsalobre et al., 2000). They are associated with the pathogenesis of
lifestyle diseases such as type II diabetes and obesity (Vegiopoulos and
Herzig, 2007), with chronodisruption presumably playing a key role
(Melendez-Fernandez et al., 2023). Glucocorticoids are also crucial in
immune response (Cain and Cidlowski, 2017), cardiovascular (Cruz-
Topete et al., 2016; Burford et al., 2017) and reproductive (Whirledge
and Cidlowski, 2017) function. Furthermore, glucocorticoids play an
important role in the structural synaptic plasticity of the hippocampus
(Ikeda et al., 2015) and stress-induced higher glucocorticoid levels
impair spatial learning (Krugers et al., 1997). ALAN alters glucocorti-
coid levels through the involvement of the SCN and the sympathetic
nervous system (Ishida et al, 2005), which negatively affects
hippocampus-dependent cognitive functions (Ishida et al., 2005). Syn-
thetic glucocorticoids have been used since 1948 in the treatment of
immune-related disorders (Cain and Cidlowski, 2017). The widespread
role in various physiological systems also explains the diverse adverse
side effects of an excess of endogenous or exogenous glucocorticoids
(Cain and Cidlowski, 2017).

Melatonin and glucocorticoids have many similarities in terms of
their regulation and effects. They also appear to interact in relation to
circadian misalignment (Melendez-Fernandez et al., 2023) and stress. In
humans, nocturnal physical activity can lead to an increase in cortisol,
which precedes a decrease in melatonin, suggesting a temporal rela-
tionship between cortisol and melatonin in responses to physical stress
(Monteleone et al., 1992).

1.3. The role of light for the circadian system in mammals

Life on earth has evolved under rhythmic environmental changes,
such as the 24-hour light-dark cycle and information about the ambient
lighting conditions (photoperiod) is the most important environmental
stimulus to entrain the circadian rhythm generator in the SCN to the 24 h
environmental rhythm.

Light input to brain regions that process non-visual light informa-
tion, including the SCN, is provided by a subset of intrinsically light-
sensitive retinal ganglion cells (ipRGCs) (Hattar et al., 2002; Panda
et al., 2002; Ruby et al., 2002; Berson et al., 2002). These not only
integrate the light information from the rods and cones, but they also
contain an intrinsic photopigment, melanopsin. The ipRGCs use gluta-
mate as a neurotransmitter in combination with neuropeptides such as
PACAP (Colwell et al., 2004).

For the SCN, light information serves to adjust the endogenous
period length and the phase to external time, a process called photo-
entrainment (Foster et al., 2020). The circadian clock plays an important
role in the interpretation or “gating” of light information for photo-
entrainment. During the day, light is expected and does not affect the
phase of the rhythm generated by the SCN. At night, however, especially
at the beginning and end of the night (Foster et al., 2020), light is
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Fig. 1. In mammals including humans ALAN is transmitted via input from the retina. A: Inputs from non-visual photoreceptors into various brain areas, B: (Neuro-)
endocrine pathways which are controlled by the non-visual- SCN pathway. C: Neuronal output connections of the non-visual-SCN pathway. All connections may be

disturbed by artificial light at night (ALAN). Abbreviations:ACTH adrenocorticotrophic hormone; AVP arginine vasopressin; CRH corticotrophine releasing hormone;
PVN paraventricular nucleus; SCN suprachiasmatic nucleus.
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interpreted as an error signal, which causes phase shifts of circadian
rhythms at the molecular, cellular, and systemic levels (Ginty et al.,
1993; Zhang et al., 1996; Gau et al., 2002). In a natural environment,
this photoentrainment ensures adaptation to changing light conditions
over the seasons. In humans, phase adjustment is particularly evident in
the change to daylight saving time and in jet lag, where it typically takes
several days for the circadian clock to adjust to the new time.

Photoperiodic signals transmitted from the SCN to key neuroendo-
crine structures in the brain are also important for the adaptation of
physiological processes to the seasons.

In humans, shorter days, thus reduced sunlight, seems to be impli-
cated in winter-onset seasonal affective disorder (wSAD), a type of
depression that occurs during the winter and can be mitigated by
extending the photoperiod with bright artificial light (Rosentha et al.,
1984). In winter, the shorter days and reduced sunlight are thought to
affect mood in humans by damping circadian rhythms such as the sleep
wake rhythm, and triggering higher levels of the sleep-related hormone
melatonin as well as lower levels of serotonin, a neurotransmitter which
plays a significant role in mood, behavior, cognitive functions, and the
pathogenesis and progression of depression (Shu et al., 2025). Lower
sunlight exposure in winter is also associated with a higher light sensi-
tivity of the human circadian system to ALAN in winter (Blume and
Munch, 2025).

Non visual light information is provided not only to the SCN, but also
directly or indirectly to many other brain regions. Light can therefore
influence behavior and physiology on many levels. In nocturnal species,
such as the mouse, a widely used model animal in the laboratory, light
has opposing effects on behavior, depending on the illuminance, which
are known as masking. In dim light, activity is increased compared to
complete darkness, which is known as positive masking (Mrosovsky,
1999). In contrast, bright light inhibits activity, which is known as
negative masking (Mrosovsky, 1999). Nocturnal animals also prefer
dark or dimly lit areas to brightly lit ones. This light aversion is strong
enough to counteract the natural tendency to explore a new environ-
ment (Crawley and Goodwin, 1980). In contrast, in diurnal species light
promotes alertness and vigilance (Foster et al., 2020).

Several brain regions that are related to the circadian pacemaker
function of the SCN receive additional direct input from the ipRGCs such
as the intergenic leaflet, which provides feedback to the SCN (Moore and
Card, 1994), the subparaventricular zone, which plays a role in rhythmic
body temperature, sleep and locomotor activity (Vujovic et al., 2015),
and the ventrolateral preoptic area and the lateral hypothalamus, which
are important for the regulation of sleep and wake (Saper et al., 2005).
IpRGCs also control the pupillary light reflex (Hattar et al., 2003) and
appear to mediate effects of light on hippocampal long-term potentia-
tion and hippocampus-dependent learning, but this appears to be in-
dependent of the circadian pacemaker function of the SCN (Fernandez
et al., 2018).

In addition, SCN-independent ipRCGs projections, target the medial
amygdala (Luan et al., 2018) and the perihabenula (Fernandez et al.,
2018), which are involved in anxiety and affective behavior (LeGates
et al., 2014; Schmidt et al., 2011), respectively. The perihabenula, a
nucleus of the dorsal thalamus, is connected to the ventromedial pre-
frontal cortex (vmPFC) as well as the dorsomedial striatum and the
nucleus accumbens (Fernandez et al., 2018). Loss of ipRGC signaling in
mice leads to dendritic degeneration, dysregulation of genes involved in
synaptic plasticity, and reduced neuronal activity in the vmPFC, thereby
impairing the ability to regulate emotions (Lazzerini Ospri et al., 2024).
It is not yet known whether this ipRGC-dependent influence of light on
affective behavior, mood and emotions also plays a role in human
mental disorders.

The study by Schroder et al. (Schmidt et al., 2011) suggests that the
light/dark cycle rather than rhythmic locomotor activity modulates
learning and memory and synaptic plasticity in the hippocampus.
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1.4. Detrimental effects of artificial light at night (ALAN)

1.4.1. Humans

In modern society, there is a growing decline in the use of natural
light sources such as day-and moonlight and an increase in the use of
artificial light sources. Due to artificial lighting conditions indoors and
street lighting, people in modern society experience significantly lower
illuminance (400-600 1x) during the day as compared with sunlight
(~100,000 Ix) (Grubisic et al., 2019) and significantly higher illumi-
nance (100-300 Ix) in the evening/night as compared with moonlight
(0.1-0.3 Ix) (Rumanova et al., 2020; Kyba et al., 2017). Due to urbani-
zation and, in particular, the introduction of efficient and cost-effective
light-emitting diodes, light pollution has increased rapidly in recent
decades (Rumanova et al., 2020). In urban areas, nighttime illuminance
reaches 20 Ix, locally even 150 Ix (Kyba et al., 2014; Gaston et al., 2013).
The increase in ALAN disturbs not only the flora and fauna but also
humans.

Because ALAN has strong effects on physiological parameters such as
hormone secretion, core body temperature, sleep, heart rate, car-
diometabolic function and modulates cognitive functions, mood and
emotions (Melendez-Fernandez et al., 2023), it could have a detrimental
effect on general and mental health in humans. A single night of expo-
sure to room light during sleep can change sleep architecture, heart rate
and impair glucose homeostasis, potentially via an increase in the acti-
vation of the sympathetic nervous system (Mason et al., 2022). There-
fore, avoiding exposure to light at night while sleeping will be beneficial
for cardiometabolic health (Mason et al., 2022). Also, as mentioned
above, light especially at the beginning and the end of the night shifts
circadian rhythms at the molecular, cellular, and systemic levels (Ginty
et al., 1993; Zhang et al., 1996; Gau et al., 2002). This means that the
later we go to bed and thus expose ourselves to artificial light for longer
in the evening, the more we delay our internal clock and thus bed time.

In humans and other mammals (Ganguly et al., 2002) ALAN,
particularly light in the blue (460-480 nm) range (Brainard et al., 2001),
decreases melatonin synthesis in a time- and dose-dependent manner
(Ganguly et al., 2002; Brainard et al., 2001; Rahman et al., 2019). At the
same time, ALAN modifies alertness, cardiometabolic function (Mason
etal., 2022), vasoconstriction, and heart rate (Cajochen et al., 2005) and
leads to an increase in cortisol levels (Rahman et al., 2019). Therefore,
ALAN leads to major changes in physiology and two important hor-
mones of the circadian system, promoting a shift from tiredness to
wakefulness. Cold light (6500 K), in contrast to warm light (2500 K,
3000 K), in the early night, even at low illuminance (40 1x), can reduce
melatonin synthesis and subjective sleepiness and increase alertness
(Chellappa et al., 2011). However, there is no convincing experimental
proof that blue light screen filters protect children and adults from dif-
ficulty falling asleep or hyperactivity when using portable devices in the
evening, as claimed by some hardware and software developers. Light
suppresses the human SCN activity, as measured by functional MRI
(Schoonderwoerd et al., 2022). While blue light (Amax: 470 nm) elicits
the highest response, green (Amax: 515 nm) and orange (Amax: 590 nm)
light also affect the SCN (Schoonderwoerd et al., 2022). This study
shows that the human SCN is sensitive to a broad light spectrum,
meaning that all wavelengths of visible light can be potentially disrup-
tive at night. To date, the long-term effects of ALAN, especially on brain
development in children and adolescents, have not yet been sufficiently
elucidated.

In addition to the general light pollution, light-emitting electronic
devices such as televisions, monitors, tablets, and smartphones, which
are increasingly used at night, contribute substantially to ALAN
(Rumanova et al., 2020; Chinoy et al., 2018). Most portable devices use
LEDs that often emit light in the blue wavelength range (Zhang et al.,
2023; Campbell et al., 2023), which has the strongest impact on the
human SCN (Schoonderwoerd et al., 2022). In particular the use of these
devices in the evening close to bedtime negatively affects circadian
rhythms in physiology and behavior and sleep (Chinoy et al., 2018). In
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the 2011 survey by the National Sleep Foundation, 90 % of US Ameri-
cans reported using a light-emitting electronic device within one hour of
bedtime, with those under 30 more likely to use mobile phones and
other interactive devices. The use of interactive devices within one hour
of bedtime was associated with difficulty falling asleep and unrefreshing
sleep across all age groups (Gradisar et al., 2013). Since the use of
interactive smartphone applications and social media, which are
particularly popular among young people, have increased significantly
since then (Oecd, 2025; Primack and Escobar-Viera, 2017), this is a
serious problem. Especially since good sleep is a prerequisite for phys-
ical and mental health. Both insufficient sleep and aberrant light expo-
sure (Foster and Wulff, 2005; West and Bechtold, 2015; Wulff et al.,
2010) have far-reaching harmful effects on cardiovascular function,
metabolism and various brain functions, including attention, mood and
cognitive performance (Killgore, 2010). A 2021 meta-analysis indicates
that an intervention that improves sleep also improves general mental
health as well as specific mental health problems such as depression,
anxiety, rumination, and stress (Scott et al., 2021). In 2022, 98 % of 15-
year-olds and approximately 70 % of around 10-year-olds in the OECD
reported having a smartphone with an Internet connection (Oecd,
2025). According to this study, 15-year-olds spend at least three hours
on a typical weekday playing video games (27 %) and using social media
(63 %) (Oecd, 2025). Although the time of day of use was not recorded
in this study, it can be assumed that it primarily occurs in the evening,
thus probably affecting both the circadian system and sleep duration.
Epidemiologic studies suggest that high social media use (spending two
or more hours per day) is associated with conditions such as depression,
anxiety, and sleep disturbance, in particular in young adults (Primack
and Escobar-Viera, 2017; Shensa et al., 2016). In addition, around 20 %
of 15-year-olds reported feeling anxious or nervous at least half the time
when they are without their digital devices. Social media users regularly
neglected other activities (e.g., hobbies, sports) because they wanted to
use social media (Oecd, 2025), indicating signs of addiction. This is also
consistent with other studies examining addictive behavior in mobile
gaming and social media use among children and adolescents
(Westbrook et al., 2021; Burhan., 2020; Pan et al., 2019; Derevensky
et al., 2019). The neurotransmitter of the reward system, dopamine, is a
potential modulator of the circadian activity rhythm by rewarding
stimuli (Tang et al., 2022). The additive effect of light and stimulation of
the reward system could explain why the evening use of interactive
light-emitting devices has a greater effect on sleep than the use of pas-
sive light-emitting electronic devices. However, there are few studies on
this topic.

1.4.2. Nocturnal rodents

In the laboratory, exposure of nocturnal rodents, such as mice,
hamster, and rats, to constant light (LL) leads to a lengthening of the
period and a gradually increasing disruption of circadian rhythms such
as rhythms in locomotor activity (Mrosovsky, 2003; Fonken et al., 2010;
Ohta et al., 2005) and serum corticosterone levels (Claustrat et al.,
2008). In mice, prolonged exposure (7 weeks) to strong or dim constant
light leads to changes in the timing of food intake, resulting in excessive
weight gain and reduced glucose tolerance (Fonken et al., 2010). LL for
three weeks impairs the formation of new neurons, long-term depression
in hippocampal neurons, and cognitive performance (Fujioka et al.,
2011; Ma et al., 2007), presumably due to stress adaptation (Ma et al.,
2007). LL (400 Ix) for 14 days, which leads to a prolongation of the
period of activity rhythm but not to a loss of rhythmicity, triggers a pro-
inflammatory response in the brain which may make it more vulnerable
to additional aversive stimuli (Ketelauri et al., 2023). LL (400 Ix) for 38 h
impairs cognitive function and hippocampal synaptic plasticity and
leads to an increase in corticosterone (Schroder et al., 2023). These
findings from basic research suggest that ALAN should be avoided, as it
causes particularly harmful cardiometabolic and neuronal changes.

Even short exposure to light at the beginning or the end of the sub-
jective night not only leads to a shift in the phase of circadian rhythms
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and changes in melatonin and cortisol levels but also to major changes in
physiology. A one-hour light pulse (100 1x) during the late subjective
night and even stronger during the early subjective night leads to an
increase in brain and body core temperature, which is probably due to
an SCN-mediated increase in sympathetic tone (Song and Rusak, 2000).
Similarly, a 30-minute light pulse during the early subjective night leads
to altered gene expression in the adrenal gland and to an increase in
plasma and brain glucocorticoid levels comparable to that induced by a
strong stressor, which appears to be SCN- dependent and mediated by
sympathetic innervation (Ishida et al., 2005). These findings suggest
that ALAN should be avoided, especially in the early hours of the night,
as this is interpreted by the body as a stress signal, leading to physio-
logical changes.

1.4.3. Other ecosystems

ALAN is one of the pollutants emerging with the continued global
growth of anthropogenic activities (Bara et al., 2023) and is a threat to
biodiversity (Burt et al., 2023; Owens et al., 2020). The detrimental
effects of ALAN are not only observed in mammals but also in non-
mammalian and invertebrate species and plants which are largely un-
explored (Kyba et al., 2014). Since a comprehensive review of the
literature on light pollution on other species and plants would go beyond
the scope of this article, we refer to the literature database “Artificial
Light at Night” (Artificial light at night literature database, xxxx). We
would like to give only a few examples that point to commonalities in
the harmful effects of ALAN. For example, treatment of toads with
continuous light leads to a deterioration in general physical condition, a
change in blood count, and an altered response of leukocytes to stress
(Gaston et al., 2019), suggesting a general effect of ALAN on stress in
vertebrates. Lower concentrations (< 5 1x) of ALAN, which are present in
many places as light pollution, probably do not lead to drastic distur-
bances of the circadian system in vertebrates (Alaasam et al., 2021).
However, since the direction, duration, and spectral properties of nat-
ural light often serve as a source of information for many organisms
about their location, the time of day and year, and the characteristics of
their natural environment, ALAN can disrupt this flow of information
and provide misleading signals (Kyba et al., 2014). Therefore, light
pollution is particularly harmful to migratory organisms such as
migratory birds and other species, some of which cross the Earth’s
hemisphere (Burt et al., 2023). Moreover, urban songbirds show
reduced melatonin secretion and an earlier onset of morning activity
than birds kept in dark conditions at night, which is probably due to a
misinterpretation of day length (Dominoni et al., 2013). Even weak
ALAN (<1.5 Ix) appears to alter the behavior and physiology of birds,
which is particularly important in the context of light pollution
(Alaasam et al., 2021). Furthermore, ALAN appears to be one of the
drivers of insect decline, as it negatively affects the development,
movement, foraging and reproduction of various insect species and also
facilitates prey capture by insectivorous species (Owens et al., 2020).
Both local sources of ALAN and diffuse skyglow seem to contribute to the
impact of ALAN on physiology, behavior, and fitness of insects (Owens
et al., 2020). Light pollution not only directly affects organisms and
ecosystems but also interacts and synergizes with other pollutants,
resulting in more complex impacts (Pu et al., 2019). For example, pat-
terns of anthropogenic light pollution and ozone pollution are spatially
correlated worldwide, suggesting a relationship that needs further
investigation (Kyba and A., Holker, F. , 2014). Transdisciplinary and
cross-border approaches to investigating light pollution and its impacts,
as well as to mitigating them, are urgently needed to prevent further
damage to biodiversity.
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2. Night shift work (NSW) and its effects on brain function and
cognition

2.1. General outline

Shift work, particularly night shift work (NSW) is another reason for
chronodisruption in humans, which potentially affects brain functions
and cognition. Consequently, the effects of shift work on brain function
and cognitions have been repeatedly investigated, but these studies
yielded variable and even controversial results (Kazemi et al., 2016;
Hart et al., 2006). A prospective cohort study led to the conclusion that
“shift work chronically impairs cognition, with potentially important safety
consequences not only for the individuals concerned, but also for society*
(Marquié et al., 2015). Press media have paid ample attention to this
study (Shift work dulls your brain, BBC News, 4 November 2014; Long
term shifts ages brains, Sky News, 4 November 2014 https://www.nhs.
uk/news/neurology/shift-work-ages-the-brain-study-suggests/). Titova
et al. (Titova et al., 2016) showed altered performance in present, but
not in former shift workers. Investigations on early career physicians
(Alaasam et al., 2021) reported a decline in short-term memory after day
and over nightshifts and a high incidence of disturbed sleep, while
another study reported that cognitive flexibility during night shifts was
not altered per se, but largely depended on the circadian phase of the
individual (Cheng et al., 2017). No difference in late-life cognitive aging
was observed between individuals with a history of working shifts as
compared to those who had typical day work schedules during midlife
(Devore et al., 2013).

Cognitive impairment in shift workers may be due to malfunction of
brain regions involved in circadian rhythms (Marquié et al., 2015).
Circadian misalignment has indeed been discussed to affect neuronal
pacemakers (James et al., 2017) and to play a role in psychiatric dis-
orders (Logan and McClung, 2019). Also the individual chronotype, i.e.
the intrinsic, biological preference for an early or late sleep onset, is
involved in modulation of the functional connectivity (FC) of the large-
scale default mode brain network involved in cognitive functions (Facer-
Childs et al., 2019). The individual chronotype may also change the
ability to cope with shift work (Juda et al., 2013; Griefahn et al., 2002),
therefore constituting a potentially important influence. Taken together,
alterations within neuronal networks associated with shift work may
explain differences in cognitive performance.

Older adults display a high variability in cognitive abilities (Jockwitz
et al., 2017; Jockwitz et al., 2017; Jockwitz et al., 2019) which may be
influenced up to old ages by various factors (Park and Reuter-Lorenz,
2009; Reuter-Lorenz and Cappell, 2008; Reuter-Lorenz and Lustig,
2005; Reuter-Lorenz and Park, 2010), such as education and lifestyle
(Bittner et al., 2019; Bittner et al., 2021). Importantly, cognitive per-
formance as a complex, higher-order brain function involves several
brain structural correlates, particularly within the cortex (Burgaleta
et al., 2014; Karama et al., 2014; Dickerson et al., 2008). An extensive
body of research established the relationship between cortical thickness
and cognitive performance in adolescents (Burgaleta et al., 2014; Gen-
natas et al., 2017), younger and older adults (Frangou et al., 2021) as
well as in patients suffering from neurodegenerative disorders (Querbes
et al., 2009; Ossenkoppele et al., 2019). Further, cortical thinning has
been proposed as a surrogate marker for the early diagnosis of Alz-
heimer’s disease (Querbes et al., 2009). Cognitive decline in ageing and
neurodegenerative diseases further affects archicortical structures, such
as the hippocampus (Small et al., 1999; Laakso et al., 1995; Dard et al.,
2019). A study with flight attendants addressed the problem whether
jetlag with short and long recovery periods is associated to volume
differences in the right temporal lobe (Cho, 2001). In those with short
recovery periods a correlation was found between saliva cortisol levels,
lower volume of the right temporal lobe and longer reaction times in a
visual-spatial memory task.
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2.2. Data obtained from the population-based 1000brains study

2.2.1. Questions and hypotheses

A re-analysis of the 1000BRAINS study (Bittner et al., 2022) allowed
to test the hypothesis whether NSW is associated with brain dysfunction
by means of objective parameters (brain image analyses) and psycho-
logical tests (Fig. 2, Table 1) in a large, population-based sample. The
participants of the study were divided into three groups: PRESENT shift
workers, FORMER shift workers and matched controls (NEVER shift
workers). The following questions were addressed:

1. Is there a difference in chronotype between the three groups?

2. Is there a difference in brain parameters between PRESENT shift
workers and controls? To this end PRESENT shift workers were
compared with NEVER shift workers with regard to (i) resting-state
functional connectivity (RSFC), (ii), cortical thickness and (iii) volume
of subcortical structures.

3. Is there a difference in brain parameters between FORMER shift
workers and NEVER shift workers? This question related to the problem
whether the observed differences may be reversible (Marquié et al.,
2015).

4. Does longer employment in shift work (measured in number of
shift work years) elicit a stronger alteration in brain parameters?

The objective brain image analyses investigations were supple-
mented by a large set of neuropsychological examinations indicative for
performance in several cognitive domains (see Shift work and cognitive
performance).

2.2.2. NSW and chronotype

The chronotype has to be considered as a potential modulator be-
tween shift work and cognitive performance. Early and late chronotypes
are thought to differ in the strength of the circadian misalignment they
experience during shift work (Juda et al., 2013). Early chronotypes may
cope better with early shifts and late chronotypes may cope better with
night shifts: in a cohort of younger participants the chronotype of shift
workers was later than in non-shift workers (Schuster et al., 2019).
Lower performance in tasks of cognitive flexibility in shift workers was
also shown to depend on the circadian phase as measured in saliva-
melatonin (Cheng et al., 2017). Furthermore, a recent study on the
relationship between chronotypes and RSFC reported fundamental dif-
ferences in the default mode network (DMN) between early and late
chronotypes (Facer-Childs et al., 2019). These differences were consid-
ered to account for the compromised attentional performance and
increased sleepiness observed in late chronotypes when extrinsic social
rhythms do not match their intrinsic circadian phenotype (Facer-Childs
et al., 2019). Thus, also misalignment in RSFC of shift workers may
depend on their chronotype. However, this possibility can be ruled out
in the study by Bittner et al. (Bittner et al., 2022), since there was no
difference in chronotype between PRESENT or FORMER shift workers
and matched controls.

2.2.3. NSW and resting-state functional connectivity (RSFC)

Resting state functional connectivity (RSFC) derived from magnetic
resonance imaging (MRI) was analyzed as a marker for general func-
tional brain architecture and intrinsic communication (Beckmann et al.,
2005; Smith et al., 2009). RSFC is associated to cognitive processes, as
shown for higher-order cognitive networks (e.g. fronto-parietal, ventral
and dorsal attention) and primary processing networks (Stumme et al.,
2020) (e.g., the visual and sensorimotor network). Cognitive perfor-
mance differences seem to largely depend on the communication and
cooperation within and between these functional networks (Stumme
et al., 2020; Chan et al., 2014). A highly segregated network that shows
high within-network RSFC is considered particularly specialized and
effective. On the other hand, highly integrated networks largely depend
on other networks and are thus reduced in their specificity. Highly
segregated networks may constitute a more resilient functional state
against certain types of changes such as circadian disruption by shift
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Effect of Night Shift Work on Brain Function and Structure
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Fig. 2. A: Representation of 7 functional networks on the left lateral surface of the brain: visual network (VN), dorsal attention network (DAN), ventral attention
network (VAN), sensori-motor network (SMN), fronto-parietal network (FPN), limbic network (LIMN) and default mode network (DMN). FORMER shift workers
showed lower inter-network RSFC of the visual network than MATCHED controls, but these association were not significant (n.s.) after multiple comparison
correction. B: Gray matter volume of the left thalamus in PRESENT, FORMER and all NEVER shift workers. None of these association were significant after multiple
comparison correction. C: No major effect of number of shift work years on performance in a reasoning task, representative for results obtained in a large neuro-
psychological battery. Results are given as residuals since correlations between shift work years and cognitive performance were corrected for age, sex and education.
Associations were not significant after multiple comparison correction. Modified after Bittner et al., 2022 (Bittner et al., 2022).
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Table 1
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Summary of the results from Bittner et al. (Bittner et al., 2022). Abbreviations: FC = functional connectivity; within-FC = functional connectivity between all regions
(“nodes”) belonging to the same cortical brain network, e.g. visual network (VN); inter-FC = functional connectivity of one network (e.g. VN) to all other 6 networks
(sensorimotor network = SMN; fronto-parietal network (FPN), dorsal = DAN and ventral attention network = VAN; limbic network = LIM, default-mode network
(DMN)); FCratio = ratio of within-FC to inter-FC for one specific network, thought to reflect integration or segregation of that network.

Parameter Type of Analysis Groups Finding Details
Analyses of 7 major RSFC networks
Within-FC, inter-FC and FCratio of all Group comparison PRESENT vs. No general differences Small difference in within-FC of FPN and FCratio of
7 major networks NEVERpggs VN;
n.s. after correction
FORMER vs. Lower inter-FC of VN in FORMER Effect smaller than in PRESENT shift workers;
NEVERgorM n.s. after correction
Correlation with PRESENT shift Positive correlation with FCratio More years of shift work — stronger segregation,
shift years workers of VN less FC to other networks;
n. s. after correction
FORMER shift No relationship
workers
Analyses of brain morphology
Cortical thickness Group comparison PRESENT vs. No differences No evidence for morphological differences related
NEVERpggs to shift work
FORMER vs. No differences No evidence for morphological differences related
NEVERgorM to shift work
Correlation with PRESENT No relationship
shift years FORMER No relationship
Gray matter volume of subcortical Group comparison PRESENT < PRESENT: lower volume in left No differences in other regions;
volumes NEVERpggs; thalamus n. s. after correction
PRESENT <
FORMER
Correlation with PRESENT and Positive correlation with volume Longer shift work years —smaller gray matter in
shift years FORMER of left thalamus left thalamus

Also significant after adding total gray matter
volume

work, aging or neurodegenerative disease (Wig, 2017; Ewers et al.,
2021). The explanatory power of network-wise RSFC for cognitive
performance has already been shown within a subsample 1000BRAINS
cohort (Stumme et al., 2020).

The analyses of RSFC of 7 major networks of the brain (Stumme
et al., 2020; Schaefer et al., 2018) revealed no differences in the exec-
utive, attention and default-mode network between PRESENT and
FORMER night shift workers and controls (NEVER shift workers,
Fig. 2A). However, a strong correlation between more years of shift work
and a higher segregation of the visual network was observed in PRE-
SENT shift workers. Thus, the longer the PRESENT shift workers had
worked in shift the more segregated the visual network was.

This hints at a reorganization of the connectedness of the visual
network with more shift work experience: Potentially the visual network
responds to differences in visual perception, e.g. different light exposure
due to shift work, with stronger intrinsic connectivity and less connec-
tivity to all other networks. This was explicitly true for the RSFC be-
tween the visual and the ventral attention network, which was lower
with more years of shift. Thus, within the adaptation process of the vi-
sual network to differences in perception it seems to communicate less
with the ventral attention network during rest, which is involved in
directing selective attention processes (Schaefer et al., 2018).

Less segregation, i.e. higher integration of networks has been dis-
cussed as a compensational mechanism, with higher coupling being a
means of supporting networks affected by structural decline (e.g. during
aging) to maintain cognitive functioning (Reuter-Lorenz and Park, 2010;
Chan et al., 2014). Thus, one may conclude that there is less compen-
sational effort with more years of shift work experience.

In contrast, high segregation of large-scale networks has been
observed in healthy, young adults and related to better cognitive per-
formance, as compared to older adults, who show more integrated
network states (Chan et al., 2014). Accordingly, higher integration has
largely been interpreted as a dedifferentiation in functional specializa-
tion. Segregated networks therefore are considered as independent

entities that are highly specialized to subserve certain processes. The
ratio of segregation to integration within the brain at rest may reflect an
optimal state from which dynamic connectivity changes can be initiated
to solve a task (Wig, 2017).

Further, more integrated network states are observed at the begin-
ning of learning an unknown task, while continued practice is accom-
panied by increased segregation of networks (Shine et al., 2016; Bassett
et al., 2015). This conforms to the observation that the visual network is
more segregated with higher experience in shift work. It may be spec-
ulated, that the greater segregation may be an adaptation to the altered
exogenous environment, such as light condition (Cordani et al., 2018)
and may therefore reflect a more optimal state during rest for shift
workers.

One might hypothesize that this optimal resting state reflects a more
bottom-up directed processing where the higher order processing of
visual input is rather guided by its exogenous characteristics (light
conditions) and processed directly within the visual network (as a pri-
mary sensory network) without larger modulations through top-down
mechanisms driven by e.g., the attentional networks. Whether and
how the connectivity profile of the visual network changes dynamically
in shift workers during an active state of task needs to be elucidated by
further studies. Further, it needs to be considered that larger effect sizes
are observed in smaller sample sizes, thus it would be desirable to
replicate these observations in a larger cohort.

Since there were no correlations between the number of shift work
years and cognitive performance in PRESENT shift workers, it is open
whether the observed segregation is a supportive adaptation or a mal-
adaptive uncoupling from the other networks and loss of
communication.

Lower RSFC of the visual network to all other networks (inter-network
RFSC) was also observed in FORMER shift workers as compared to
matched controls. However, this effect was smaller than in PRESENT
shift workers and not associated to the length of shift, since no corre-
lation between years of shift and RSFC in FORMER shift workers was
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found. Even though the increased segregation of the visual network in
PRESENT shift workers did not survive multiple comparison correction,
it was the strongest effect observed by Bittner et al. (Bittner et al., 2022).
Even though inter-network and segregation constitute two different
parameters, they point at the visual-processing network as potentially
interesting target for future studies focusing on the relationship between
brain function and shift work. These studies should also consider the
time of the day at which the analyses were performed since activation
patterns of brain regions belonging to executive, attentional and the
default-mode network were shown to be sensitive to time of the day
(Marek et al., 2010). Therefore, larger multi-variate studies are now
needed to examine the triangular relationship between night shift work,
cognitive performance and functional metrics, such as connectivity.

2.2.4. NSW, cortical thickness and thalamic volume

To supplement the analyses of RSFC, Bittner et al. (Bittner et al.,
2022) also examined cortical thickness and thalamic volume, particu-
larly since a previous study discussed correlations between brain
structure and recovery periods of flight attendants (Cho, 2001). How-
ever, there were no differences between PRESENT and FORMER shift
workers and matched controls (Fig. 2B). Thus, an association between
shift work and brain morphology is not supported by Bittner et al.
(Bittner et al., 2022).

2.2.5. NSW and cognitive performance

The objective brain investigations of Bittner et al. (Bittner et al.,
2022) were supplemented by a large set of neuropsychological exami-
nations indicative for performance in several cognitive domains. Based
on previous literature, special emphasis was placed to the domains of
attention, short-term and working memory, processing speed (Titova
etal., 2016; Morris et al., 1989), as well as executive functions (Baumler,
1985; Marek et al., 2010). Aiming for a complete examination, tests
shown to be sensible to age-related decline in cognitive domains
(Jockwitz et al., 2017; Jockwitz et al., 2017; Jockwitz et al., 2019)
including episodic memory, visual-spatial memory, vocabulary, creative
thinking and reasoning (Jockwitz et al., 2017; Caspers et al., 2014) were
also performed. In order to establish a triangular association between
shift work, differences in brain parameters and cognitive performance,
correlation and mediation analyses were performed.

PRESENT shift workers showed faster reaction times as compared to
matched controls in the Trail-Making-Test, task A, a measure of pro-
cessing speed, while they showed lower processing times in the
switching task of the Trail-Making-Test (task B — A). No correlations with
the number of shift work years were found after multiple comparison
correction (Fig. 2C).

Previous studies on cognitive performance yielded variable and
inconsistent results. Several studies have reported an association be-
tween shift work and cognitive performance in varying parameters.
After night shift, lower performance in tasks of cognitive flexibility was
described, but this depended on the circadian phase determined by
measurements of melatonin levels in saliva (Cheng et al., 2017) and was
associated to sleepiness. Unfortunately, no control group was included
in this study and thus no information was provided whether the overall
performance was lower in shift workers than in non-shift workers. The
lower performance could also just be related to “usual after work
tiredness” and non-shift workers would show the same after work
tiredness.

In a large epidemiological study, current shift workers, but not past
shift workers, showed slower performance in all three subtasks of the
Trail-Making-Test (TMT) than non-shift workers (Titova et al., 2016),
which fits with the results from the study by Bittner et al. (Bittner et al.,
2022). As reported by Kazemi et al. (Kazemi et al., 2016), night shift
workers made more errors, but reaction times in working memory,
sustained attention and processing speed measured with the TMT were
comparable to day shift workers. Performance of emergency physicians
was comparable after overnight shifts and dayshift, but working
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memory seemed to be slightly impaired after night shift (Machi et al.,
2012). Simulated night shifts seem to impair vigilance and cognitive
control (Hart et al., 2006). Matchock and Mordkoff (Matchock and
Mordkoff, 2009) provided evidence that even within the attention sys-
tem subprocesses (orienting versus alerting) rely differentially on time
of day and chronotype. These studies show that disruptions of the
intrinsic circadian rhythm do not affect global cognitive performance,
but they are rather associated to specific cognitive processes, as is also
suggested by Bittner et al. (Bittner et al., 2022). On the other hand
Marquié et al. (Marquié et al., 2015) found worse performance in cur-
rent shift workers in a global cognitive score. Taken together these
studies clearly point toward the complexity of the association between
shift work and cognitive performance. This may be attributed to the
time, at which cognitive performance is measured, e.g. directly after the
end of shift or the shift work schedule. A study investigating shift work
in nurses, found slightly impaired cognition in later life only, if they had
a shift work history of more than 20 years in comparison to non-shift
workers (Devore et al., 2013). Further, the study of Marquié et al.
(Marquié et al., 2015) reported lower cognitive performance in shift
workers, who had worked more than 10 years in rotating shift. Bittner
et al. (Bittner et al., 2022) also found decreases in cognitive perfor-
mances with a higher number of shift work years. Even though the
correlations were not significant after multiple comparison correction
and outlier exclusion, it may be inferred that the number shift years has
to be considered as a factor influencing cognitive performance.

In summary, none of the associations between shift work and
cognitive performance was significant after multiple comparison
correction, neither for group differences nor for correlations. Together
with the studies of Marquié et al. (Marquié et al., 2015) and Devore et al.
(Devore et al., 2013), who also studied former shift workers, this sug-
gests that shift work has no long-term effects on cognitive performance.
It has to be considered, though, that the study by Bittner et al. (Bittner
et al.,, 2022) is a pilot study sample drawn from a population-based
cohort of older adults. For future studies, it is essential to differentiate
between different cognitive parameters and tests administered, time of
examination (e.g. directly after exposure) and between different shift
work schedules. Further, it would be desirable to monitor cognitive
performance closely in night shift workers in relation to different shift
schedules, different work tasks (high cognitive versus low cognitive
load), occupational type (e.g. chemistry workers versus clinicians), ed-
ucation, as well as longitudinally also over time.

3. Night shift work and metabolism
3.1. General outline

NSW is listed as risk factor for metabolic, cardiovascular and immune
malfunctions (Sooriyaarachchi et al., 2022; Vetter et al., 2018; Khosra-
vipour et al., 2021; Shah et al., 2022; Karlsson et al., 2001; Sookoian
et al., 2007; Pietroiusti et al., 2010; Nikpour et al., 2019; Lu et al., 2017,
Vetter et al., 2015; Zoto et al., 2019). Changes in expression of circadian
clock genes and subclinical abnormalities in HbAlc were found in cur-
rent night shift workers, but not in former night shift workers and in-
dividuals who work during daylight hours only (Rizza et al., 2021). A
strong relationship between the circadian system and metabolism has
also been demonstrated in animal models. Genetic disruption of the
circadian clock predisposes rodents to metabolic disease (Rudic et al.,
2004; Turek et al., 2005) and exposure to artificial light at night pro-
moted significant metabolic disturbances (Opperhuizen et al., 2017;
Karamitri and Jockers, 2019).

Nevertheless, several aspects about the association between night
shift work and metabolic malfunctions remain open. Thus, the sex of the
shift workers may play an important role and most studies addressing
the association between night shift work and metabolic, cardiovascular
and immune malfunctions were performed with females (nurses).
Interestingly, a study on male railway workers did not show a
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significantly increased risk of the metabolic syndrome by long-term
night shift work (Dong et al., 2022). Moreover, retrospective studies
comparing a large cohort of male night shift workers with non-shift
workers in a German chemical company did not provide evidence for
a carcinogenic effect of night shift (Yong et al., 2014), an excessive risk
of mortality from cancer (Yong et al., 2014) and non-cancer diseases,
especially ischemic heart disease (Yong et al., 2014; McNamee et al.,
2006) in night shift workers.

3.2. Data from the population-based Heinz-Nixdorf recall study and
the Heinz-Nixdorf-recall multigeneration study

3.2.1. Parameters analyzed

Bittner et al. (Bittner et al., 2025) evaluated the association between
night shift work, metabolism, cardiovascular and immune systems from
the population-based Heinz-Nixdorf Recall study (Schmermund et al.,
2002) and the related Heinz-Nixdorf-recall Multigeneration study (HNR-
MGS) (Fig. 3, Table 2). Particular attention was paid to the metabolic
syndrome which refers to the clustering of several known cardiovascular
risk factors, including insulin resistance, obesity, dyslipidemia, and
hypertension. Participants working in night shift were compared with
age- and sex-matched controls who never worked in night shift. The
following parameters were analyzed: systolic and diastolic blood pres-
sure, body mass index (BMI), waist hip ratio, levels of HbAlc, fasting
blood glucose, total HDL and LDL cholesterol, LDL/HDL ratio, tri-
glycerides, uric acid, C-reactive protein, number of erythrocytes and
white blood cells. To investigate sex differences, interaction effects be-
tween sex and shift work group were calculated. Furthermore, the
relationship between all parameters and the length of shift work was
analyzed. Finally, it was examined whether shift workers needed more
drugs targeting metabolic, cardiovascular, metabolic and immune
functions than participants who were never engaged in shift work.

3.2.2. Results

The first series of analyses comprised participants without medica-
tion and compared PRESENT shift workers (n = 69) with their respective
NEVER shift worker controls as well as FORMER shift workers (n = 212)
and their respective NEVER shift worker controls, who were matched for
age, sex and sample size to the respective shift working group. None of
the mean values of the anthropometric and blood parameters differed
significantly. Importantly, PRESENT and FORMER shift workers were
not compared directly without age adjustment since former shift
workers were significantly older. However, a significant interaction ef-
fect was observed between shift work and sex for BMI. Female FORMER
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shift workers showed the lowest BMI as compared to their respective
controls (female NEVER shift workers) or male FORMER shift workers
and their respective controls (male NEVER shift workers).

The analyses of the association between number of shift work years
and metabolism, cardiovascular and immune system parameters in
PRESENT shift workers without relevant medication did not reveal any
effect of shift work length or any interaction effect with sex. The same
held true for FORMER shift workers. Notably, between subject effects
indicated a significant interaction with sex, i.e. erythrocyte numbers
were lower in males who had worked in shift for longer periods as
compared to shift workers in shorter periods, while in females the
numbers of erythrocytes were higher when they had worked for longer
periods. However, all mean values and standard deviations were in the
normal range in both, male and female FORMER shift workers.

The analyses of the medication showed that the number of relevant
drugs taken did not differ between PRESENT shift workers and their
matched controls or FORMER shift workers and their matched controls.
FORMER shift workers as well as their matched controls took more
drugs than PRESENT shift workers and matched controls. However, the
number of medications was not associated to shift work but highly
significantly related to older age. This association between age and
number of drugs was not restricted to a specific type of medication, but
was generally found for all relevant drugs.

Since FORMER shift workers were significantly older than PRESENT
shift workers Bittner et al. (2025) (Bittner et al., 2025) did not compare
PRESENT to FORMER shift workers directly. Slightly elevated values for
BMI were observed in PRESENT shift workers and in matched controls.
Values for BMI were higher in FORMER shift workers, who also showed
increased values for total cholesterol, but again a very similar elevation
of these values was also observed in the matched controls. Thus, this
increase in BMI and total cholesterol is primarily related to age. When
comparing shift work groups (PRESENT and FORMER) directly with
selected controls and controlling for age, there was no mean difference
in BMI which could be specifically attributed to shift work.

PRESENT shift workers had a different portion of males (66,6%
males) than NEVER shift workers (42,2%, before matching) and
FORMER shift workers (71,7 % males). Since sex had been considered as
one influencing factor (Khosravipour et al., 2021), Bittner et al. (Bittner
et al., 2025) matched for sex to balance the higher portion of males in
shift- versus non-shift-workers. To still be able to investigate the dif-
ferences between male and female shift-workers, interaction effects
within the analyses of covariance were analyzed. The data revealed very
few interaction effects between sex and shift work. In PRESENT and
matched NEVER shift workers, male participants showed generally

Effect of night shift work on the immune, cardiovascular and metabolic system
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Fig. 3. Effect of night shift work on the immune, cardiovascular and metabolic system as demonstrated in a population-based cohort of the Hinze-Nixdorf Recall and
Multi-Generation study (Bittner et al. 2025) (Vetter et al., 2015). None of the parameters examined showed significant differences between shift workers and matched
controls after multiple comparison correction. Abbreviations: NSW = night shift work.

10



H.-W. Korf et al.

Table 2

Summary of the results from Bittner et al. (Bittner et al., 2025). Anthropometric
and blood values refer to systolic and diastolic blood pressure, body mass index
(BMI), waist hip ratio, levels of HbAlc, fasting blood glucose, total HDL and LDL
cholesterol, LDL/HDL ratio, triglycerides, uric acid, C-reactive protein, number
of erythrocytes and white blood cells. PRESENT = present shift workers,
FORMER = former shift workers, NEVER = all participants, who never worked
in shift, NEVERprgs = a subsample of NEVER shift workers, who have been
matched in age and sex to PRESENT shift workers; NEVERgory = a subsample of
NEVER shift workers, who have been matched in age and sex to FORMER shift
workers; ANCOVA = Analysis of Covariance; MANCOVA = multivariate Anal-
ysis of Covariance.

Analysis Parameters Groups Findings

Main analyses

Group Anthropometric & PRESENT vs. No significant
comparison: blood parameters, NEVERpggs differences
shift- vs. non- age & sex as FORMER vs. No significant
shift workers covariates NEVERgorM differences
(MANCOVA)

Test for Anthropometric & PRESENT vs. Female PRESENT
interaction blood parameters, NEVERpggs had lowest HDL
between group interaction with compared to all
and sex sex, groups
(MANCOVA) age as covariate, FORMER vs. Female FORMER

NEVERgorM had lowest BMI
compared to all
groups

Sensitivity analyses

Group Anthropometric & PRESENT vs. PRESENT vs.
comparison, blood parameters, NEVERpggs controls: Similar
including age & sex as results; additional
participants covariates interactions —
with medication females had lowest
(MANCOVA) LDL/HDL ratio

and CRP
FORMER vs. FORMER vs.
NEVERgorM controls: Similar

results as main

analyses

Omnibus group Anthropometric & PRESENT vs Patterns similar to
comparison blood parameters, FORMER, vs. main analyses;
using all age & sex as NEVER,; hints at sex-
participants, covariates specific
no matching triglyceride
(MANCOVA) differences in

PRESENT shift
workers

Test for group Number of PRESENT vs. Generally, no
differences in participants beyond NEVERpRgs differences;
prevalence of clinical cut-offs of exception — fewer
clinical values anthropometric & female PRESENT
(Chi-square test)  blood values had HDL levels

below cutoff
FORMER vs. More male
NEVERgorM FORMER had

elevated waist

circumference

Analyses of influence of shift work length

Group Anthropometric & PRESENT vs. No significant
comparison: blood values, age & NEVERpggs effects
shift workers sex as covariates FORMER vs. Interaction in
with short vs. NEVERfrorM erythrocyte levels:

long length
(MANCOVA)

Analyses of differences in medication

Shift-workers with
long history: males
had lower levels,
females higher
levels

(but all in normal
range)
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Table 2 (continued)

Analysis Parameters Groups Findings
Group Number of relevant PRESENT vs. No significant
comparison: medications taken NEVERpggs differences
shift- vs. non- FORMER vs. No significant

shift workers NEVERgorMm differences

(ANCOVA)

lower HDL values than female participants, but between male PRESENT
and NEVER shift workers HDL levels did not differ. Female PRESENT
shift workers showed lower HDL values than female NEVER shift
workers within the interaction effect (p = 0.040). Thus, HDL levels were
significantly different depending on the shift status of women, while this
was not true for men. In sensitivity analyses, the differences in HDL
between shift workers and controls turned out to be marginal, i.e. female
PRESENT shift workers had a mean HDL level of 60.77 mg/dl, while
female NEVER shift workers presented a level of 57.35 mg/dl. Thus,
both groups presented HDL values above the clinical cut-off value of 40
mg/dl, i.e. both groups presented mean HDL levels in the normal range.
Further, the statistical significance has to be considered rather low (p =
0.04) and the sample of female shift workers was smaller (n = 23 fe-
males) than the male sample and, thus, this difference might be
considered as clinically small. However, the interaction analyses
emphasized that the differences between males and females seem to be
greater in shift workers than in controls for certain parameters or may
even be reversed. Hence both sexes should be investigated on their own.
Stratifiying for sex, future studies could answer the question whether the
effects of shift work depend on sex.

For FORMER and matched NEVER shift workers, there was one
significant interaction effect between shift work group and sex for BMI:
female FORMER shift workers showed the lowest BMI as compared to
female NEVER or male FORMER or NEVER shift workers. Sensitivity
analyses no longer showed this interaction, but an interaction with sex
was found on levels of HbA1lc, where the differences between males and
females in shift workers (FORMER) was again greater than in matched
controls. Again, female FORMER shift workers showed the lowest levels
of HbAlc.

The results by Bittner et al. (Bittner et al., 2025) may therefore
suggest small differences between male and female shift workers, but the
statistical significance was rather low, as were the effect sizes. When
analyzing the proportion of participants with parameter values beyond
the normal range a higher percentage of male shift workers with
elevated values of BMI, WHR, and glucose was found as compared to
female shift workers and controls. Yet, only few of these proportions
were statistically significant: One surprising result was that more female
NEVER shift workers showed lower HDL-values than female PRESENT
shift workers, which might indicate better health conditions for female
PRESENT shift workers. For male participants only the higher propor-
tion of FORMER shift workers with larger hip circumference was sig-
nificant, but not the elevated levels in BMI and glucose levels.

3.2.3. Synopsis of divergent results

The observations by Bittner et al. (Bittner et al., 2025) did not pro-
vide evidence that night shift work is a major risk for the development of
a metabolic syndrome and are in line with results from retrospective
studies comparing a large cohort of male night shift workers with non-
shift workers which did not provide evidence for a carcinogenic effect
of night shift (Yong et al., 2014), an excessive risk of mortality from
cancer (Yong et al., 2014) and non-cancer diseases, especially ischemic
heart disease (Yong et al., 2014; McNamee et al., 2006) in night shift
workers. A systematic review of 12 studies evaluated the cross-sectional
association between shift work and the prevalence of metabolic syn-
drome between day and shift workers, specifically employed in health-
care, with an age range of 18 to 65 years. Like Bittner et al. (Bittner et al.,
2025) two studies did not report an association, while ten studies
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demonstrated a twofold increase in the chance of developing metabolic
syndrome in shift workers as compared with day workers
(Sooriyaarachchi et al., 2022). Notably, five of the 12 studies were
exclusively conducted in females. The authors suggest that the risk of
metabolic syndrome seems to be higher in healthcare workers than in
other industries. This might also be related to the high proportion of
female nurses examined in the respective studies, or to the irregular
shifts in the healthcare sector.

Another systematic review investigated the association between shift
work and metabolic syndrome, as well as obesity, dyslipidemia, hyper-
tension, and insulin resistance (Shah et al., 2022). A meta-analytic study
investigated the cross-sectional association between shift work and
metabolic syndrome as well as the roles of sleep, sex, and type of shift
work in over 120,000 participants. The pooled Odds ratio of metabolic
syndrome in shift-versus day-workers was estimated as 1.14, thus much
lower than estimated e.g. by Sooriyaarachchi et al. (Sooriyaarachchi
et al., 2022) and was no longer significant when cohort and case-control
data were considered. Further, the odds ratio was significantly higher
for those studies conducted only on females or males, compared to those
in mixed samples, and rotating shift workers had stronger odds of
metabolic syndrome than the other shift workers (Khosravipour et al.,
2021). The higher prevalence of metabolic syndrome in nurses seems to
hint at sex being one important factor within the association to shift
work. However, another study in Korean female nurses (Jung et al.,
2020) found a higher metabolic syndrome prevalence in non-shift
working nurses than in shift working nurses. This is in line with the
findings by Bittner et al. (Bittner et al., 2025) that female FORMER shift
workers showed a lower BMI and higher HDL-levels as compared to
female NEVER shift workers. Further along this line, female PRESENT
shift workers also presented the lowest triglyceride levels, compared to
male shift workers, but also compared to all other females, who never
worked in shift. Hence, these data suggest an interaction effect between
sex and shift work group and it might thus be desirable for future studies
to model the differences and interactions between females and males
more deeply. Specifically female PRESENT shift workers might display a
research group of interest. Here, Jung et al. (Jung et al., 2020) argued
that their observations might be related to a higher amount of physical
activity of shift work nurses, as well as eating habits which can be
related to a large proportion of variance in metabolic syndrome in
nurses since caloric intake and specifically the number of calories eaten
during evening hours explained more variance in metabolic syndrome
risk than shift work. In this line, Vetter et al. (Vetter et al., 2015)
examined female nurses in a prospective study design, but with a
particular focus on shift work schedule, chronotype and type 2 diabetes.
There was only slight evidence that newly developed type 2 diabetes was
higher in shift working nurses than day working nurses. Moreover, the
relation to shift work was much more complex: the proportion of nurses
with type 2 diabetes was not elevated in women working less than 10
years in shift work as compared with those working more than 10 years.
Among early chronotypes, risk of type 2 diabetes was modestly reduced
when working daytime schedules. In contrast, late chronotypes showed
a significantly increased diabetes risk in day workers. Interestingly, this
was attenuated if their work schedules included night shifts. These ob-
servations further hint at a mismatch between work schedule and
chronotype which may explain some of the variance in developing type
2 diabetes and may also be considered for metabolic syndrome. In the
study by Bittner et al. (Bittner et al., 2025) no sufficient data about the
chronotype and the precise shift work schedules were available which,
however, need to be addressed in future studies.

4. General conclusions

ALAN may be considered a relevant factor influencing human health
and biodiversity and should be avoided whenever possible. Studies
investigating the impact of night shift work as a chronodisruptor and
general risk factor for human health have yielded equivocal, sometimes
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even controversial results. Potential explanations for these varying re-
sults may be manifold and include inter alia differences in the (i) lighting
conditions during shift, (ii) schedule of night shift work (fast rotating
versus slowly rotating shifts), (iii) adaptability to shift work (Harding
et al.,, 2024) and (iv) the socio-economic differences, particularly the
quality of healthcare provision of study participants. Also, the sleeping
behavior and the chronotype may have an impact. All these data need to
be recorded in future studies in order to clearly define the impact of
night shift work on human health and to implement tailored health care
programs to prevent or mitigate significant effects of shift work on
human health.
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