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1 Abstract 

Human experience and behaviour is subject to multiple different mental processes, 

which can be separated into cognitive and socio-affective processes. Many studies 

investigate how experience and behaviour is linked to brain structure and function, 

and also how much influence can be attributed to our genetic makeup. However, little 

is known about how behavioural domains are subject to different influencing factors 

of inter-individual differences of the brain. In particular, how overlapping genetic 

influences exhibit in brain structure, and which influence different functional task 

states drive in predictability of individual behaviour. Therefore, in my dissertation I 

investigated the phenotypic and genetic correlations of cognitive and affective traits 

and brain structure (cortical thickness, surface area and subcortical volumes; study 

1). I further examined to what extent the correspondence of functional network priors 

and task states with behavioural target domains influenced the predictability of 

individual performance in cognitive, social, and affective tasks (study 2). 

Using phenotypic correlation and heritability-analysis the first study investigated 

heritability and genes as influencing factors on inter-individual differences of the 

brain. Cognition revealed several associations with brain morphology, while trait 

affect revealed only few significant correlations with subcortical volumes and local 

cortical thickness, where it overlaps in left superior frontal cortex with cognition. 

Decomposing the phenotypic association into genetic and environmental 

components, revealed that the associations were accounted for by shared genetic 

effects between the traits. Using functional correlation and predictability of task states 

and network priors the second study investigated state- and network-specificity as 

influencing factors on brain–behaviour relationships, by predicting individual 

performance in cognitive, social, and affective tasks. Predictions from whole-brain FC 

were slightly better than those from FC in task-specific networks, and a slight benefit 

of predictions based on FC from task versus resting state was observed for 

performance in the cognitive domain. 

With my dissertation I provide an integrative model of how cognition and affect relate 

to the human brain. By combining insights from structural anatomy, heritability 

modelling, and functional connectivity-based prediction, my results reveal that these 

traditionally distinct domains share common neural substrates. The superior frontal 

cortex has been identified as a heritable anatomical hub for both cognitive and 

affective traits. However, multivariate FC patterns during both task and resting states 

carried only moderate predictability of individual performance levels of cognition and 

socio-affective processes, manifesting nevertheless the influence of brain state and 

network dynamics in shaping individual behaviour. In sum, with these studies I 

replicated previous findings, but also extended insights into the interplay of cognitive 

and socio-affective processes with brain–behaviour relationships, and how different 

factors influence inter-individual differences in the brain.
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2 Zusammenfassung 

Menschliches Erleben und Verhalten unterliegt vielen verschiedenen mentalen 

Prozessen, die in kognitive und sozio-affektive Prozesse unterteilt werden ko nnen. In 

vielen Studien wird untersucht, wie Erleben und Verhalten mit der Struktur und 

Funktion des Gehirns zusammenha ngen und welchen Einfluss genetischen 

Veranlagung spielen. Es ist jedoch nur wenig daru ber bekannt, wie unterschiedliches 

Verhalten den verschiedenen Einflussfaktoren interindividueller Unterschiede des 

Gehirns unterliegt. Insbesondere, wie sich u berlappende genetische Einflu sse in der 

Gehirnstruktur zeigen und welchen Einfluss verschiedene funktionelle Aufgaben auf 

die Vorhersagbarkeit des individuellen Verhaltens haben. In meiner Dissertation 

untersuchte ich daher die pha notypischen und genetischen Korrelationen von 

kognitiven und affektiven Merkmalen und der Hirnstruktur (kortikale Dicke, Fla che 

und subkortikale Volumina; Studie 1). Daru ber hinaus habe ich untersucht, inwieweit 

die U bereinstimmung von funktionellen Netzwerken und Aufgabenzusta nden die 

Vorhersagbarkeit der individuellen Leistung bei kognitiven, sozialen und affektiven 

Aufgaben beeinflusst (Studie 2). 

Mit Hilfe pha notypischer Korrelationen und Heritabilita tsanalysen untersuchte die 

erste Studie die Heritabilita t und Gene als Einflussfaktoren auf interindividuelle 

Unterschiede des Gehirns. Kognitive Prozesse zeigten mehrere Assoziationen mit 

Hirnstruktur, wa hrend Affekt nur wenige signifikante Korrelationen mit den 

subkortikalen Volumina und der lokalen kortikalen Dicke aufwies, wobei es im linken 

superioren frontalen Kortex U bereinstimmungen mit Kognition gab. Die Analyse der 

pha notypischen Assoziation in genetische und umweltbedingte Komponenten ergab, 

dass die Assoziationen durch gemeinsame genetische Effekte zwischen den Doma nen 

erkla rt werden konnten. Mit Hilfe der funktionellen Korrelation (functional 

connectivity; FC) und der Pra diktion von Aufgabenzusta nden und Netzwerken 

untersuchte die zweite Studie die Zustands- und Netzwerkspezifita t als 

Einflussfaktoren auf die Beziehungen zwischen Gehirn und Verhalten, indem sie die 

individuelle Leistung bei kognitiven, sozialen und affektiven Aufgaben vorhersagte. 

Die Vorhersagen aus der FC des gesamten Gehirns waren etwas besser als die aus der 

FC in aufgabenspezifischen Netzwerken. Fu r die Leistung im kognitiven Bereich 

wurde ein leichter Vorteil der Vorhersagen auf der Grundlage der FC aus dem 

Aufgaben- gegenu ber dem Ruhezustand festgestellt. 

In meiner Dissertation stelle ich ein integratives Modell vor, wie Kognition und Affekt 

mit dem menschlichen Gehirn zusammenha ngen. Durch die Kombination von 

Erkenntnissen aus der strukturellen Anatomie, der Modellierung der Vererbbarkeit 

und der auf FC basierenden Vorhersage zeigen meine Ergebnisse, dass diese 

traditionell unterschiedlichen Bereiche gemeinsame neuronale Substrate aufweisen. 

Der superiore frontale Kortex wurde als vererbbarer anatomischer Knotenpunkt 

sowohl fu r kognitive als auch fu r affektive Merkmale identifiziert. Die multivariaten 
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FC-Muster sowohl im Aufgaben- als auch im Ruhezustand zeigten jedoch nur eine 

ma ßige Vorhersagbarkeit des individuellen Leistungsniveaus bei kognitiven und 

sozio-affektiven Prozessen, was den Einfluss des Hirnzustands und der 

Netzwerkdynamik auf die Gestaltung des individuellen Verhaltens deutlich macht.  

Zusammenfassend la sst sich sagen, dass ich mit diesen Studien nicht nur fru here 

Ergebnisse replizieren konnte, sondern um Erkenntnisse u ber das Zusammenspiel 

von kognitiven und sozio-affektiven Prozessen mit Gehirn-Verhaltens-Beziehungen 

erweitern konnte und daru ber, wie verschiedene Faktoren interindividuelle 

Unterschiede im Gehirn beeinflussen. 
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3 General Introduction 

Everyone is unique in experience, thought and behaviour, affect and cognition, but also 

brain structure and function. Understanding the link between the human brain, 

individual behaviour, thoughts and feelings, remains one of the greatest questions in 

neuroscience. Researching the link between brain and behaviour is a scientific pursuit 

that offers great potential for mental health and personalized medicine, by offering 

pathways to more precise diagnostic and therapeutic approaches. Therefore, 

investigating the human brain helps us to elucidate human inter-individual variability. 

Both within healthy individuals, and with regards to mental health and the treatment 

of brain disorders.  

Human experience and behaviour is subject to multiple different mental processes. 

Roughly, these processes can be separated into cognitive and socio-affective 

processes. Many studies investigate how experience and behaviour is linked to brain 

structure and function, and how much influence can be attributed to our genetic 

makeup. However, little is known about how behavioural domains are subject to 

different influencing factors of inter-individual differences of the brain. In particular, 

how overlapping genetic influences exhibit in brain structure, and which influence 

different functional task states drive predictability of individual behaviour. 

There are various neuroscientific approaches in the quest to study human brain–

behaviour relationships and to investigate how experience and behaviour is linked to 

brain structure and function: Some studies use electrophysiological methods, such as 

electroencephalography. Some use neuroimaging methods, such as structural 

magnetic resonance imaging (MRI), or functional imaging methods, such as functional 

MRI (fMRI). Some use genetic tools, such as genome-wide association studies or twin 

studies. Some use specific analytic tools, such as machine learning (ML) or predictive 

modelling, connectomics or network analysis, or functional decoding and meta-

analytic annotation. But irrespective which are the chosen measures, in order to study 

behaviour, there need to be behavioural and psychometric measures. These can be 

conducted in tasks or in self-report questionnaires.  

My dissertation focuses on the influencing factors of inter-individual differences of the 

brain, specifically, how genetic influences exhibit in brain structure, and how task 

states drive predictability of individual behaviour. For this, I will first elaborate on the 

specific behaviours investigated here – cognition and affect – and their relationship to 

the brain. Then, I will elaborate on heritability and functional task states, as 

influencing factors of inter-individual differences of the brain. 
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3.1 Individual differences in behaviour 

Human behaviour is driven by different complex mental processes, that can be 

roughly separated into cognitive and socio-affective processes. Therefore, I decided to 

investigate cognition and affect as representations of human complex and rich 

behavioural variability. Despite covering only a fraction, they provide insight into how 

individuals perceive, interpret, and respond to their environment (Gross, 2015; 

Langner et al., 2018; Pessoa, 2008). As such, they serve as robust, multidimensional 

phenotypes for linking behaviour to underlying neural and genetic mechanisms. 

 

3.1.1 Cognition 

Cognition refers to mental processes involved in acquiring, processing, storing, and 

applying information. These processes include perception, attention, memory, 

language, reasoning, and executive control, including working memory, enabling 

individuals to interpret and respond to their environment. Intelligence is described as 

the capacity to carry out cognitive tasks effectively. It reflects how efficiently and 

flexibly cognitive processes are deployed, usually in novel or complex situations. 

The human interest and contemplation about cognition and intelligence have a long 

history. A scientific approach on cognition dates back to the early nineteen hundreds, 

where Spearman framed the “general ability factor g” (Spearman, 1904). This was 

further investigated and developed by Cattel into two sub-constructs: crystallised and 

fluid intelligence (Cattell, 1943, 1963).  

Crystallized intelligence refers to the ability to recognise and apply solutions through 

previously acquired knowledge and past experiences. It involves knowledge and skills 

accumulated over time, such as cultural and general knowledge. It can therefore 

improve with age, peaking in adult life, with only a slow decline until the age of 70 

(Cattell, 1963; Hunt, 2001; Jones & Conrad, 1933; Salthouse, 2019). 

In contrast, fluid intelligence refers to the ability to solve novel problems without 

relying on prior knowledge. Therefore, fluid intelligence is usually involved in tasks of 

non-verbal nature, such as solving mathematical or spatial problems. This involves 

quick, abstract, and flexible reasoning, as well as the ability to comprehend and 

manage multiple information simultaneously and manage the amount of information 

needed to solve the problem (Cattell, 1963). A core component of fluid intelligence is 

therefore working memory, the ability to maintain and update or manipulating 

relevant information (Baddeley, 2012; Hofmann et al., 2012; Little et al., 2014). On 

average, fluid intelligence reaches the maximum in ability in early adulthood and 

declines with age (Baltes et al., 1999; Jones & Conrad, 1933; Salthouse, 2019). 

Crystallised and fluid intelligence are distinct but interconnected cognitive systems 

(Cattell, 1963; Tucker-Drob, 2009). The ability of fluid intelligence to solve novel 
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problems, reason abstractly, and adapt to new situations is required for acquiring and 

integrating new knowledge – which over time consolidates and contributes to 

crystallized intelligence. Furthermore, crystallized intelligence can support fluid 

intelligence by providing context and meaning. This bidirectional support is especially 

interesting, given that crystallised and fluid intelligence have different decline rates 

throughout life (Baddeley, 2012; Tucker-Drob, 2009).  

Moreover, while working memory (WM) represents only one aspect of fluid 

intelligence, it has been shown to be a good proxy and representation for fluid 

intelligence (Colom et al., 2015). Furthermore, it has been investigated, that working 

memory capacity predict variation not only in fluid intelligence, but also crystallised 

intelligence (Alloway & Alloway, 2009; Martinez, 2019). 

 

3.1.2 Affect: Emotion, Social Cognition 

As a clear distinction between “emotion” and “affect” remains unresolved, the terms 

are often used interchangeably in the literature (Bradley & Lang, 2002; Pessoa, 2008; 

Salsman et al., 2013). Broadly, affect is a complex and multifaceted construct used to 

refer to emotional experience (Lindquist et al., 2012). Its elusive definition and 

inherently subjective, bodily nature makes it difficult to be measured in a standardized 

fashion (Nummenmaa et al., 2014). Therefore, measurement methods include self-

reports, physiological indicators (such as heart rate or skin conductance), or the 

behavioural response to stimuli (Bradley & Lang, 2002). Nevertheless, in the 

assessment a distinction can be made between emotional processes and trait affect. 

On the one hand, affective traits can be assessed with self-reports, which are then 

divided into positive and negative traits. On the other hand, emotional processes, that 

pertain to identification and responding, can be assessed using tasks.  

Trait affect is commonly measured through self-reports and divided into a positive 

and negative dimension, which are considered independent, instead of opposites. 

Hence, allowing both to be experienced at the same time (Diener & Emmons, 1984; 

Salsman et al., 2013). Positive affect includes emotions such as happiness, enthusiasm, 

and contentment, contributing to psychological well-being, including life satisfaction 

and a sense of purpose (Salsman et al., 2014). Conversely, negative affect includes 

emotions like anger, fear, and sadness, which can also manifest in varying intensities 

and are linked to negative self-evaluation or life dissatisfaction (Pilkonis et al., 2013; 

Salsman et al., 2013).  

Emotion processing starts with a trigger and ends with a mental and behavioural 

response. Importantly, an emotional response can only be elicited with a relevant 

stimulus. Emotion processing refers to identifying, interpreting, and responding to 

emotional cues in oneself and others (Gross, 2015; Langner et al., 2018). It is closely 

linked to social cognition, which includes the understanding of others’ thoughts and 
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feelings. It is crucial in engaging in effective social interactions, since it includes 

understanding both oneself and others as social beings.  

Social cognition spans across both the cognitive and affective domain. Social cognition 

is linked to theory of mind, which is described as the ability to infer others’ mental 

states, beliefs, intentions, and emotions. Theory of mind allows individuals to make 

sense of others’ behaviour, predict and interpret social interactions and communicate 

effectively and appropriately in social settings (Bzdok et al., 2012; Salazar Ka mpf et 

al., 2023; Wheatley et al., 2007). 

Cognition and affect are essential behavioural domains, each representing distinct but 

interacting processes. Further, they each offer important insights into human 

individual behavioural variability. In sum, cognition includes attention, memory, 

reasoning and problem-solving. It is linked to information processing and goal-

directed responses. Affect includes emotional states, responses and regulation, and is 

driven by reflexive, spontaneous responses. However, despite these distinctions, 

cognition and affect interact dynamically. Emotional states can bias decision-making, 

while cognitive appraisal can influence and regulate emotion processing. 

Furthermore, they are both influenced by internal and external stimuli (Langner et al., 

2018; Pessoa, 2008). In my dissertation I aim to investigate these concepts both 

separately as well as their overlap. 

 

3.2 Brain–Behaviour Relationships 

To investigate the human brain and to link structure and function to behaviour, a lot 

of different neuroimaging modalities have evolved. The prerogatives of being non-

invasive and in-vivo have been crucial for behavioural neuroscience. In my research I 

primarily focused on structural and functional MRI, while further using multivariate 

analyses comprised of heritability analyses and machine learning prediction.  

 

3.2.1 Structural MRI - grey matter structure 

Structural MRI captures the anatomy in a static, high-resolution image of the brain, 

while fMRI measures brain activity over time. Structural MRI takes advantage of the 

different densities of water content in the brain tissues. This is translated into images, 

where the different tissues and structures of the brain, such as grey and white matter, 

and cerebrospinal fluid can be distinguished. In my research I focused on grey matter 

structure. Grey matter can be found in the central nervous system, hence the spinal 

cord and the brain. It consists of neuronal cell bodies, dendrites, unmyelinated axons, 

astrocytes, oligodendrocytes, microglia and blood vessels. It plays a central role in 

sensory perception, motor control, and higher-order cognitive functions.  
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3.2.1.1 Cortical thickness and subcortical volume 

Cortical thickness refers to the distance in millimetres between the white matter and 

the pial surface. The distance typically ranges between 1 and 4.5 millimetres (Fischl 

& Dale, 2000; Palomero-Gallagher & Zilles, 2019). Even though measuring the grey 

matter cortical thickness sounds simple, it is no small feat, since the pial surface is 

difficult to detect in standard MRI. Hence, (Fischl & Dale, 2000) developed with 

FreeSurfer an algorithm to estimate the grey and white matter boundary. This 

boundary representation is then deformed, with specific constrains, outward until the 

pial surface. From there, the distance to the white matter border at any point results 

in the cortical thickness (Fischl & Dale, 2000). This procedure requires both T1 and T2 

weighted images to accurately map the grey matter as well as distinguish the pial 

surface from dura and blood vessels (Glasser et al., 2013).  

Further, subcortical structures are neural formations in the basal brain, that have been 

shown integral in motor function, memory, and emotional and cognitive processing. 

They include deep grey matter structures and nuclei such as the thalamus, caudate, 

putamen, pallidum, hippocampus, amygdala, accumbens area, and ventral 

diencephalon. Similarly to cortical thickness, estimating the difference in tissue 

densities between subcortical structures and surrounding white matter, boundaries 

can be drawn and the subcortical volume can be calculated. Since the subcortical 

structures are integral in several behavioural processes, it is important to include 

them analogously to cortical thickness in brain–behaviour analyses. 

 

3.2.1.2 Surface area 

Surface area, understandably, refers to the surface of the cerebral cortex. It is 

intrinsically related to the cortical folding (gyrification). Therefore, most of the 

surface is hidden in the sulci (Chauhan et al., 2021), making it challenging to map out. 

Similar to cortical thickness and subcortical volume, the computation of surface area 

requires sophisticated processes. To automate and improve the delineation of the 

cortical surface, (Glasser et al., 2013) further enhanced the widely-used FreeSurfer 

pipeline for the Human Connectome Project (HCP) dataset (Fischl, 2012) used here. 

Both T1- and T2-weighted images are used to clearly define the white matter and pial 

surfaces and thereby the cortical ribbon. Following this ribbon, triangles are formed 

and summed to create a grid or mesh. This mesh transforms the cerebral cortex into 

a 2D sheet. This sheet can then be aligned to different spaces, such as the MNI surface 

space, to further allow for comparison between subjects. 

Importantly, surface area is a morphological feature distinct from cortical thickness. 

It has been suggested that cortical thickness and surface area evolutionary developed 

independently (Geschwind & Rakic, 2013), are influenced by different genetic and 

environmental factors (Panizzon et al., 2009), and develop differently and 
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independently across the lifespan (Fjell et al., 2015; Hogstrom et al., 2013). Cortical 

thickness reflects neuronal density and dendritic arborization within a cortical 

column, while cortical surface area reflects the horizontal expansion of the cortical 

sheet and number of cortical columns. Therefore, it is important to look at them 

separately (instead of using cortical volume), as well as looking at them both, in order 

to understand the individual neural influences. 

 

3.2.2 Functional MRI - functional connectivity 

While structural MRI captures static images of the brain's anatomy by acquiring each 

brain slice once, functional MRI (fMRI) measures brain activity over time by 

repeatedly scanning the whole brain. fMRI is based on the effect, that active brain 

regions have increased metabolic demand, consuming more oxygen, resulting in an 

increased blood flow into the specific region. This vascular response results in a shift 

in the ratio of oxygenated to deoxygenated haemoglobin, producing the so-called 

Blood Oxygen Level Dependent (BOLD) contrast, which can be detected by the MRI 

scanner as changes in signal intensity. This alteration in regional blood oxygenation, 

the hemodynamic response, is observed over several seconds, with peaks at 3–5 

seconds after a stimulus (Hillman, 2014). 

To reliably capture these dynamics and acquire high-quality fMRI images, it is 

important to scan the brain with a repetition time shorter than the width of the 

hemodynamic response function. Additionally, shorter repetition time also improves 

artefact removal through e.g. physiological noise or head movement. Therefore, in the 

HCP high-resolution data with a repetition time of 0.72 seconds was acquired (Glasser 

et al., 2016). Further, spatial resolution is critical for accurately localizing BOLD 

signals and distinguishing between anatomical compartments such as grey matter, 

white matter, and CSF. Therefore, by acquiring functional data at 2 mm isotropic 

resolution, this further enables a precise location of the BOLD signal onto the cortex 

(Glasser et al., 2013, 2016). Despite significant technical differences between 

structural and functional imaging, acquired fMRI data can only be processed and 

analysed precisely by projecting the functional signals onto the structural surface 

reconstruction, providing an anatomically informed framework for analyses. 

 

3.2.2.1 Resting-state and task-based FC 

While the BOLD contrast is considered a proxy for neuronal activation, functional 

connectivity (FC) identifies correlations of activity between multiple regions of the 

brain. FC refers to the temporal (statistic) correlation of signal fluctuations between 

spatially distant regions, revealing distinct brain regions functioning in accordance, 

reflecting the functional integration of brain regions.  
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Since the brain is constantly active, the interactions between brain regions can be 

measured in the absence of tasks, hence during rest (resting-state FC), or during the 

performance of specific tasks (task-based FC). Resting-state FC captures BOLD signal 

fluctuations that occur in the absence of explicit tasks. It captures the intrinsic 

network structure of the brain, which have been shown to be stable and reproducible 

over time (Biswal et al., 1995). Commonly observed networks include the default 

mode network, frontoparietal network, dorsal attention network, and salience 

network (Biswal et al., 1995; Yeo et al., 2011). Resting-state FC is suggested to reveal 

baseline or “trait-like” properties of brain organization (Finn et al., 2015). 

Task-based FC assesses connectivity patterns of functional coupling between brain 

regions in response to specific cognitive, emotional, or sensory tasks performed in the 

scanner. Task-based FC reflects context- or state-dependent networks, by task-evoked 

modulation of functional connectivity through increased coupling. While resting-state 

and task-based FC share common network architectures, task-based FC shows altered 

functional coupling in response to task demands (Cole et al., 2014; Shine et al., 2016).  

Particularly resting-state fMRI (rs-fMRI) has gained popularity in recent years, due to 

its convenient application. It can be assessed quickly and easily for all parties involved. 

The low level of compliance simplifies measurement, making it especially popular in 

clinical populations, while additionally reducing costs. This lead to a high focus of 

research on resting state fMRI. As mentioned above, while there seems to be an 

overlap between resting-state and task-based activation, and even structural 

morphology, some resting-state fMRI research reveals rather low brain–behaviour 

relationships. However, both resting-state and task-based FC patterns are unique and 

can therefore be used to research inter-individual differences. Therefore, in my 

dissertation I compare and investigate different “states” (resting-state and different 

task-states) and their effect on predictability of individual behaviour.  

FC can be assessed with seed-based correlation analysis or data-driven methods, such 

as independent component analysis (ICA) or graph-theoretical approaches. While 

each of these methods have their specific uses and advantages, data-driven methods 

pose the difficulty of interpretability, while also often being data-set specific. Thus, in 

my dissertation, I used seed-based correlation analysis. By using a priori regions of 

interest (ROIs), or seeds, it can be assumed, that the selected regions activate during 

certain tasks. A priori ROIs can be defined in a multitude of ways. Here, I defined 

specialised networks based on activation likelihood estimation (ALE) meta-analyses, 

and further used a data-driven approach, by delineating networks using general linear 

modelling (GLM) reflecting brain activation in the large HCP data sample during the 

tasks of interest. However, the question is whether it has to be exactly the task 

network that is related to a specific behaviour or whether interactions within other 

networks are also associated with behaviour.  
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3.2.3 Neural correlates of cognition and affect 

While cognition is multifaceted, a consistent set of brain regions have been identified 

quite early due to lesion studies: the prefrontal and parietal cortices (Damasio et al., 

1996; Rosenbaum et al., 2005; Scoville & Milner, 1957; Stuss et al., 2001). Damage to 

these regions lead to impaired executive functions. Then, Haier and colleagues 

showed a correlation between intelligence and grey matter volume in frontal, 

temporal, parietal, and occipital regions using voxel based morphometry (Haier et al., 

2004), which has been supported in functional studies as well. In a large meta-analysis 

Basten et al. found supporting evidence of brain activation in the lateral prefrontal 

cortex, the medial frontal cortex, as well as the parietal and temporal cortex in 

intelligence. More specifically, they found the inferior frontal sulcus and gyrus, middle 

frontal and temporal gyrus, superior parietal lobule, and the pre-supplementary 

motor area to be consistently activated during tasks associated with cognition (Basten 

et al., 2015). Other meta-analyses focussing on working memory found, in addition to 

some of the aforementioned regions, the thalamus and basal ganglia to be involved 

(Rottschy et al., 2012). 

A similar trajectory can be seen in how we came to understand which brain regions 

are critical for trait affect. Early lesion studies highlighted the importance of the 

amygdala, ventromedial prefrontal cortex (vmPFC), and insula in emotion processing 

and regulation, emotional experience, and decision-making involving affective valence 

(Adolphs et al., 1995, 1996; Bechara et al., 1999; Calder et al., 2000; Damasio et al., 

1994). However, also frontal, temporal and parietal brain regions, as well as the 

anterior cingulate cortex, have been shown to be involved (Barbey et al., 2014; Hornak 

et al., 2003). The lesion-based evidence is also supported by structural und functional 

studies (Lindquist et al., 2012; Schmaal et al., 2017), which further found the 

prefrontal cortex, the thalamus and the periaqueducal grey to be involved (Kober et 

al., 2008; Lindquist et al., 2012). In particular relevant for emotion processing (or 

emotional face processing) are the already mentioned amygdala and insula. However, 

further active regions found in the limbic areas include the parahippocampal gyrus 

and the posterior cingulate cortex, and in the temporoparietal areas the parietal 

lobule and the middle temporal gyrus. Further involved are visual areas, such as the 

fusiform and lingual gyrus, the medial frontal gyrus, the putamen and the cerebellum 

(Fusar-Poli et al., 2009; Mu ller et al., 2018).  

In sum, key brain regions in cognition are covered mainly by the multiple-demand and 

the cognitive control network. The multiple demand network includes the (posterior-

medial) frontal cortex, insula, intraparietal sulcus, and inferior frontal sulcus. The 

cognitive control network includes the anterior cingulate cortex/pre-supplementary 

motor area, dorsolateral prefrontal cortex, inferior frontal junction, and posterior 

parietal cortex. In affect, the limbic system, including in particular the amygdala, with 

extensions to the prefrontal cortex, cingulate gyrus, thalamus, and hippocampus, have 
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been associated. These regions have been mainly based on lesion studies and group 

effect between task conditions. They therefore show, that these regions are 

consistently involved in these processes. However, to what extent they are associated 

with individual behavior is incompletely understood.  

 

3.3 Influencing Factors on Brain–Behaviour Relationships 

One of the main goals in behavioural neuroscience is to understand how the human 

brain works and how individual variability is driven. Several approaches can be 

applied to try to elucidate this quest: heritability analyses can help explain how much 

of individual variability in brain structure or function is influenced by genes. 

Prediction can help us move beyond group averages. Finally, multivariate and 

multimodal analyses tie all modalities together and try to approach the brain as it is: 

an interconnected system. 

 

3.3.1 Heritability 

Heritability is a statistical estimate explaining what proportion of the variation in a 

given trait in a population is due to genetic variation. The variance (V) of a phenotype 

(P) within a population is composed of genotypic (G) and environmental (E) variance. 

Narrow-sense heritability (h²), calculable with twin studies, refers to the proportion 

of phenotypic variance that is attributable to additive genetic variance V(A), and is 

estimated as h² = V(A) / V(P) (Bruell, 1970; Nes & Roysamb, 2015). Research of 

genetic influences provides insights into the biological basis and possible influences 

in both healthy and diseased people. It helps us further understand the biological 

(genetic) constrains, while empowering us with the knowledge about potential 

environmental influence. This pertains to both the brain, as well as behavioural traits.  

Thanks to heritability analyses based on twin studies, it has been analysed, that the 

majority of the human brain morphology is highly heritable (Jansen et al., 2015), but 

also, individually both cortical thickness and surface area revealed to be highly 

heritable in humans (Panizzon et al., 2009). Further, behavioural traits are heritable. 

Ranking at the top is cognition, which has been shown to be highly heritable (Krapohl 

et al., 2014; Plomin & Deary, 2015). In contrast, since affective traits are much more 

elusive and a clear delineation still of debate (Desmet, 2018; Gross, 2015), the 

research of heritability in these traits is much less consistent. Nevertheless, affective 

traits have been identified as heritable to some extent (Bouchard & Loehlin, 2001; 

Lykken & Tellegen, 1996), while some diseases associated with affective disorders 

show high heritability (Fernandez-Pujals et al., 2015; Kendall et al., 2021). Further, 

cognitive empathy or social cognition has also been shown to be heritable (Warrier et 

al., 2018).  
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Therefore, in the first study, I not only investigate the phenotypic association between 

cognition, affect and local brain anatomy, but also investigate the shared brain basis 

between cognition and trait affect and their genetic correlation. This enables me to 

investigate heritability as an influencing factor on brain–behaviour relationships in 

cognition and affect. 

 

3.3.2 Prediction 

For the most time, and laid out in the previous section, neuroscience relied on very 

specified lesion patients or large samples to establish brain–behaviour relationships. 

Through new insights this locationist approach is being challenged by the 

constructionist approach, which suggests an interaction between brain functional 

networks, instead of one specific location to be responsible for a specified function 

(Lindquist et al., 2012). In addition, we now have more (brain) data available, 

including large densely sampled datasets, such as the Human Connectome Project. 

Prediction with machine learning allows us to go beyond conventional statistics and 

make use of the large, complex and high-dimensional datasets. While conventional 

statistical approaches help us understand relationships between variables, they often 

rely on simplifying assumptions—such as independence, linearity, and low 

dimensionality—that may not reflect the true complexity of brain–behaviour 

relationships.  

In contrast, predictive modelling and machine learning are able to handle high-

dimensional, complex, and often nonlinear data, enabling the analysis and 

identification of distributed patterns across the brain that are informative at the level 

of individual behaviour. Therefore, the application of prediction in neuroscience offers 

the potential to further knowledge and the development of brain-based biomarkers 

for personalized medicine to inform diagnosis, prognosis, and intervention strategies 

on an individual level. 

However, statistics allow an interpretable hypothesis driven approach to brain–

behaviour relationships, while machine learning functions largely within a “black 

box”. While the ability to handle complex data and potentially discover patterns with 

machine learning is a major strength, the models often lack interpretability, making it 

difficult to infer the underlying biological mechanisms driving the observed patterns.  

Therefore, in my dissertation, I applied statistical models to achieve an interpretable 

and reduced feature space of brain data before applying different machine learning 

algorithms. Instead of relying on whole-brain data—and therefore omit biological 

interpretability—I yielded functional networks through different approaches: 1) 

Meta-analyses of networks activated through specific tasks, and 2) Definition of 

networks from high-powered and diversified task-fMRI studies. I then computed the 

functional connectivity within these networks based on different task states and 
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analysed their predictability with regards to corresponding behaviour. By comparing 

FC derived from resting-state and task-based fMRI, and applying predictive modelling 

techniques, I can assess whether FC from behaviourally related states (e.g. FC from 

WM predicting WM) offer better predictive power than unrelated states (e.g. FC from 

WM predicting EMO).  

This integrated approach allows not only to identify associations between brain 

regions and behaviour (statistical analysis), but also to determine whether these 

associations are genetically influenced (heritability analysis) and whether they are 

informative for predicting individual differences in behaviour (predictive modelling). 

 

3.4 Aim of the studies 

One main goal of neuroscience is to understand and gain deeper insights into brain 

function and organisation and to link it to behaviour. Many studies investigated how 

experience and behaviour is linked to brain structure and function, and also how 

much influence can be attributed to our genetic makeup. While there are many 

converging studies investigating cognition, there are inconclusive findings for affect, 

as well as their interplay. Further, little is known about how behavioural domains are 

subject to different influencing factors of inter-individual differences of the brain. In 

particular, how overlapping genetic influences exhibit in brain structure, and which 

influence different functional task states drive predictability of individual behaviour.  

Therefore, the first study focused on identifying a shared behavioural basis across 

cognition and affect and examined whether this convergence is mirrored in local brain 

structure. Here, I focused on structural morphometry such as cortical thickness, 

surface area, and subcortical volume. Finally, by analysing the heritability, I investigate 

if cognition and affect have shared genetic effects within behaviour and in brain 

morphology. 

In the second study I move from structural anatomy to functional brain networks. 

Here, I investigate if individual differences in cognition (represented by working 

memory), emotion, and social cognition can be predicted from potential patters of FC. 

By comparing the predictability of FC derived from resting-state and task-based fMRI 

in different a priori networks, I can assess the influencing factor of task state and 

network specificity on brain–behaviour relationships. Further, by using a priori 

defined networks based on meta-analyses and large samples, I aim to improve 

interpretability of machine learning models. 

With this dissertation I aim to investigate how inter-individual differences in cognitive 

and socio-affective processes are related to structural brain anatomy and functional 

connectivity. Further, I assess phenotypic and morphological heritability, as well as 

the predictability of task states and network specificity as influencing factors of brain 

variability. 
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6 Summary and general discussion 

With this dissertation I aimed to investigate how inter-individual differences in 

cognitive and socio-affective processes are related to structural brain anatomy and 

functional connectivity and how heritability and task state impact brain–behaviour 

relationships as influencing factors. First, I investigated the phenotypic and 

morphological association of cognition and affect in the brain, as well as their shared 

genetic variance. I then assessed the predictability of task states and network 

specificity. 

With my first study I was able to show phenotypic relationships with both affect and 

cognition and brain structure in the left superior frontal cortex. Decomposing the 

phenotypic correlations into genetic and environmental components showed that the 

associations were accounted for by shared genetic effects between the traits. Yet, my 

second study revealed that individual behaviour can only moderately be explained by 

network interactions. The results indicate that interactions within a priori networks 

are less predictive than global effects. However, a slight benefit of predictions based 

on FC from task versus resting state was observed for performance in the cognitive 

domain, indicating state specificity. 

 

6.1 Cognition and affect – integrated dimensions 

Intelligence or cognition is a very well-studied and delineated concept. Reliable 

measures have been developed (Akshoomoff et al., 2013; Heaton et al., 2014), 

capturing different aspects of cognition such as fluid reasoning and crystallized 

knowledge, including executive function, working memory, processing speed, 

attention, episodic memory, and language. In the first study, I used these measures to 

analyse crystallised and fluid intelligence, assessed with the National Institute of 

Health (NIH) toolbox for Assessment of Neurological and Behavioral Function® 

(neuroscienceblueprint.nih.gov). This measurement has been shown to capture 

interindividual differences reliably (Akshoomoff et al., 2013; Gershon et al., 2013). 

However, in the second study, to investigate the influence of task states, I used the 

cognitive process of working memory, which in this dataset was assessed with a 2-

back task. Unfortunately, the simplicity of the task leads to a ceiling effect, where many 

participants solve the task successfully, leading to a low variance. This has been, 

however, mitigated by introducing reaction time into an inverse efficiency score. 

Nevertheless, the moderate predictability of task states could be related to the low 

variance within both the cognitive score, as well as a within the task states. 

Emotion or affect has gained scientific attention later and has seen struggles being 

investigated due to the elusive nature (Barrett, 2012; Lindquist et al., 2012). However, 

emotion and trait affect influence what we notice, learn (Mather & Sutherland, 2011; 

Tyng et al., 2017), remember (Cahill & McGaugh, 1998; Mather & Sutherland, 2011) 
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and even how we decide (Bechara et al., 2000). Several tests have been developed to 

assess emotion and affect. In the first study, self-reports were used to capture trait 

affect from the Emotion Battery of the NIH Toolbox (Pilkonis et al., 2013; Salsman et 

al., 2013, 2014). For the second study an emotional face matching task was performed, 

which has been developed and tested to reliably activate the amygdala. However, only 

little variance of individual emotion processing abilities is captured. This has been, 

again, mitigated by introducing reaction time into an inverse efficiency score. 

Nevertheless, it would be interesting to see a similar study setup to investigate state 

and network specificity, however with different, more complex tasks. 

Despite cognition and affect being seen as separate constructs for a long time and 

therefore being studied separately, an integration is inevitable. This can be seen with 

the word “emotional intelligence”, the ability to use and regulate emotions. But also 

with social cognition or theory of mind, which has been investigated in the second 

study, showing a combination of both emotional interpretation and social inference.  

While cognitive functions have traditionally been attributed to higher-order cortical 

regions—such as the lateral and medial prefrontal, temporal, and parietal cortices—

affective processes have historically been associated with evolutionarily older, 

subcortical structures, including the amygdala, basal ganglia, and hypothalamus. 

However, as outlined above, recent research increasingly investigates the integration 

of affect and cognition across both cortical and subcortical systems, challenging the 

historical dichotomy between emotional and cognitive brain networks. In line with 

that, both my studies showed on the one hand a convergence phenotypically, as well 

as in the superior frontal gyrus (study 1), as well as no network-specificity and only 

moderate state-specificity for cognition (study 2), suggesting potential overlapping 

networks and functions. 

 

6.1.1 Brain morphology and heritability (study 1) 

The modular approach on cognition and affect has already been challenged by several 

researchers such as (Barrett et al., 2011; Lindquist et al., 2012; Pessoa, 2008), arguing, 

that cognition and emotion are deeply intertwined in both brain and behaviour. In this 

dissertation, by using anatomic data and twin modelling, I build on this by 

demonstrating that cognitive and affective traits are not only theoretically connected, 

but phenotypically and genetically associated, pointing toward a shared neural 

infrastructure in the superior frontal gyrus. This convergence underlines previous 

findings (Barrett & Satpute, 2013), while furthering this integration through 

heritability modelling, showing a shared phenotypic and genetic association with 

cortical thickness in the left superior frontal cortex. This convergence indicates the 

prefrontal cortex as not just essential for cognitive function, but a hub where 

emotional and cognitive traits are co-constructed. The discovery of a brain region 
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simultaneously relating to cognitive and affective traits, while further driving these 

associations genetically, strongly indicates that cognition and emotion are integrated 

within the brain. Therefore, this biologically stable marker has further implications 

for understanding trait-level vulnerabilities, also in mental health.  

 

6.1.2 Functional connectivity and predictability of task states (study 2) 

The finding of a shared phenotypic and genetic association between cognition and 

trait affect in the superior frontal cortex is rooted in quantifiable structural 

morphology providing trait-level and heritability insights. In a next step, I put a 

stronger focus on the effects of state and the relationship to brain function, in contrast 

to brain structure. Thus, these results led me to develop the research of cognition and 

emotion into a more dynamic approach, by complementing it with functional 

connectivity in resting-state und task-based fMRI. 

Unlike structural markers, functional connectivity reflects state-dependent and 

network-based dynamics. Therefore, in my second study I explored whether 

functional connectivity could predict inter-individual differences within cognition 

(represented through WM), and emotion, complemented with social cognition. 

Moving from structural morphology and heritability to functional connectivity and 

machine learning prediction, allowed me to investigate the influence of state on brain–

behaviour relationships. 

Here, I found that, overall, FC patterns showed limited ability to predict individual 

behavioural performance. The predictive power was modest, though comparable to 

other studies applying a similar approach (Dubois et al., 2018; Greene et al., 2018; Ooi 

et al., 2022). However, slightly better predictions were achieved using task-based FC 

compared to resting-state FC, particularly in the working memory domain, which 

extend results from previous studies, showing that FC from task-based fMRI carry 

more behaviourally relevant and individual information (Finn et al., 2015; Finn & 

Bandettini, 2021; Greene et al., 2018). Despite the modest predictive power, the 

stronger prediction performance of task-based compared to resting-state FC supports 

the idea that contextual activation enhances signal relevance by being more reflective 

of individual differences. While in my study this was only observed for working 

memory, it stands to investigate, whether an improvement could be seen within a 

larger sample (through increase of statistical power) or with different task capturing 

the emotion domain (through capturing more emotional variance). 

 

6.1.3 Complementary results 

With these two studies I investigated how the behavioural and brain morphometric 

data provide trait-level and heritable foundations, revealing a stable hub of 
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convergence between cognition and affect in the superior frontal cortex. Further, I 

approached functional connectivity with machine learning predictions offering 

insights into large-scale patterns in cognitive and emotional functioning. Here, task-

based connectivity yielded better prediction performance (compared to resting-state 

FC, in working memory prediction) implying the importance of state and network 

interactions within interindividual variation. However, no significant difference in 

prediction performance between the different domains could be observed, which 

could potentially indicate individual variability similarities in FC of cognitive and 

socio-affective processing.  

Encompassing both studies, I applied several analyses, leveraging the power of 

multimodal integration. With the analyses on both structural and functional data I 

offer complimentary insights. While the analysed structure in combination with the 

heritability analysis reveals stable traits and genetic boundaries within which one can 

change and develop, functional analysis reveals how a person behaves and feels in the 

moment. Therefore, my results show that cognition and affect are both stable and 

flexible within our behaviour, as well as our brain, revealing insights important for our 

understand within the layered inter-individual brain–behaviour relationships. With 

this dissertation I present the results of a genetically driven overlap between 

cognition and affect in the superior frontal cortex, while the influence of state showed 

moderate predictability only in cognition but none for the socio-affective domain. This 

is in line with the latest research endeavours and important for future individualised 

neuroscience. In sum, by examining structure and function and investigating different 

influencing factors of brain–behaviour relationships one gets a more nuanced picture 

about the integration of cognition and affect in the human brain.  

 

6.2 Limitations and opportunities 

Despite the faceted and broad approach, there are some limitations to be 

acknowledged. First, both studies used the openly available Human Connectome 

Project. Openly available large datasets such as the HCP used here, or the Adolescent 

Brain Cognitive Development Study (ABCD), and the UK Biobank are tremendously 

valuable and have transformed and furthered research in neuroscience. They play an 

important role in the standardization of protocols and data collection, and in the 

promotion of reproducibility through transparency, replicability and validation of 

findings. Further, the varied data sampling within these datasets allows for the 

multimodal analysis of complex research questions as done here. Importantly, the 

large sample sizes increase statistical power, through which robust correlations 

(study 1) and the application machine learning models (study 2) are only possible. 

While the HCP is a densely sampled dataset enabling the research of complex research 

questions, it also shows only a small fraction of the population: the age range is 
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between 22 and 37 years, with all healthy subjects from the USA, with a slightly higher 

IQ than the population average. While this sample was chosen consciously in an effort 

to establish potential brain–behaviour relationships within a healthy and constrained 

sample, it anyhow constrains the results to only a section of the population. For both 

studies it would be beneficial to repeat the analyses in different samples in order to 

test for generalisability. However, these very specific research questions addressed in 

this dissertation could for now unfortunately only be answered with the HCP dataset, 

as they allow for twin-based heritability testing (study 1), and further offer a wide 

variety of in- and out-of-scanner tests and questionnaires allowing for the analysis 

and comparison of FC predictability between different behaviour performances 

(study 2). Yet, the extensive testing comes at the cost of potentially rather superficial 

and short tasks. This includes the tasks performed in the scanner as well as outside. 

Most of the task developed for fMRI induce a robust activation of targeted brain areas 

instead of allowing for strong interindividual variability. Further, tasks performed 

both inside and outside the scanner are often optimized for stable group-average 

effects. In both studies this needs to be factored into the interpretation of the findings. 

Furthermore, the widespread use of these datasets increases the risk of false positive 

findings. Since numerous researchers are conducting a multitude of independent 

analyses within these datasets, statistically significant results may arise by chance. 

Publication bias adds to this problem, as positive findings are more likely to be 

published, skewing the literature towards overstated effects. Therefore, it was 

especially important to me to publish the results of the second paper as transparently 

as possible, without overstating the findings and acknowledging the moderate 

prediction performance.  

As mentioned above, it would be valuable to test the generalisability of these findings 

using independent samples. Since there are so far no suitable large openly available 

datasets, it could be interesting to test the findings in smaller datasets, as well as in 

harmonised data from several smaller datasets. Such a data pool could also be used to 

inform synthetic data. Synthetic data could offer an exciting opportunity to train 

machine learning models, especially in areas where there is notoriously insufficient 

data (J. Wang et al., 2023), such as rare diseases, diseases with difficulties to be 

scanned in an MRI scanner, or areas where data privacy protection is an issue (Vaden 

et al., 2020). 

Further, it is important to mention that although multimodal analyses are highly 

promising, technical nuances and methodological limitations, and therefore 

meaningful interpretation, depends on having (or inquiring) domain-specific 

expertise. This has been especially evident in the work on the second paper applying 

machine learning for behavioural performance prediction based on FC. Several 

landmark papers used oversimplified assessments of prediction performance, 
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painting a more optimistic picture of the achievements. For my publication it was 

therefore important to offer a critical and transparent assessment of the findings. 

Moreover, potential avenues to develop these findings presented here, despite the 

multimodal approach within the papers, are manifold. Within the first paper the 

research focus between brain–behaviour relationships and the genetic drivers, could 

be extended to investigate the heritability of functional task activation and 

connectivity. Based on studies performed in the same dataset, it would be expected to 

be in line with our current findings and show that not only brain structure, but also 

FC is heritable (Colclough et al., 2017; Ge et al., 2017). However, a potential 

convergence between cognition and affect and FC has not been investigated. 

Furthermore, in the second paper, only FC was used to predict behavioural 

performance. While one of the goals of the second paper—to improve interpretability 

of machine learning features—would be hindered, it would nevertheless be 

interesting to see if a combination between structural and functional data or even 

genetic or EEG data could improve prediction performance. Finally, since the network 

used in the second paper were based on a priori defined delineations, future work 

could adopt and compare different individualised parcellations (such as different 

approaches developed by (Beckmann et al., 2005; Kong et al., 2019; Mueller et al., 

2013; D. Wang et al., 2015)). Within the scope of my research, I have applied the 

approach by (Kong et al., 2019). However, preliminary results revealed only a 

marginal improvement in prediction performance for the specific networks and 

behavioural targets. Therefore, I assume that even individualised a priori defined 

networks may not significantly improve prediction performance and therefore 

interpretability of relevant features. Instead, machine-learning appropriate post-hoc 

analyses of whole-brain FC predictions (Tian & Zalesky, 2021) might offer greater 

potential to identify biologically relevant features. 

 

6.3 Relevance and impact 

The research and investigation of cognition and affect is not only of theoretical 

interest, but is essential in everyone’s daily life, as well as fundamental in different 

mental disorders. Many cognitive and neural processes are expected to operate in 

similar ways in both healthy individuals and those with neurological or psychiatric 

disorders. With my dissertation, using a healthy and constrained sample, I aimed to 

apply different analyses to contribute new insights for precision neuroscience, by 

providing a deeper understanding of the interplay between cognition and affect, and 

individual variability in brain and behaviour. 

Therefore, in line with previous studies showing structural association with cognition 

and emotion in the superior frontal cortex (Engen & Anderson, 2018; Okon-Singer et 

al., 2015), I extend these findings in study 1 by providing evidence for shared genetic 
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effects between the traits. It therefore reinforces the importance of integrated 

theories (Barrett, 2012; Pessoa, 2008) and provides a basis for investigating shared 

risk factors in mental health disorders. Further, study 2 extended the already 

extensive research of task-based FC compared to resting-state FC comparison for 

behavioural prediction within the cognitive domain (e.g. (Avery et al., 2020; Greene et 

al., 2018; Jiang et al., 2020)), by the socio-affective domain. Although the prediction 

performance was moderate, an additional important contribution was the 

transparent acknowledgment and reporting of these limitations. Moreover, the 

undetected differences in prediction performance between unrelated FC and 

behavioural score (e.g. prediction of working memory score from FC yielded from 

emotion recognition task), might also suggest that cognitive and emotional processes 

are interconnected at the neural level to allow for clearly separable predictive 

patterns. 

Finally, in order to improve interpretability of machine learning features, I defined a 

priori networks based on meta-analyses and from large individual task-fMRI studies. 

Therefore, I computed GLM for all tasks, and further conducted three separate meta-

analyses for working-memory (n-back task), emotion recognition and social 

cognition. These meta-analytically defined networks are openly available via the 

ANIMA-database (Reid et al., 2016); https://anima.fz-juelich.de/studies/ 

Kraljevic_NetStateSpec_2024). 

 

6.4 Conclusion 

In sum, with my dissertation I provide an integrative model of how cognition and 

affect relate to the human brain. By combining insights from structural anatomy, 

heritability modelling, and functional connectivity-based prediction, my results reveal 

that these traditionally distinct domains share common neural substrates, while also 

being dynamically shaped through context-sensitive activation and connectivity. 

The identification of the superior frontal cortex as a heritable anatomical hub for both 

cognitive and affective traits emphasizes the stability of this integration at the trait 

level. In contrast, the moderate, yet comparable, predictability of task-based FC shows 

the influence of brain state and network dynamics in shaping individual behaviour, 

while also promoting a transparent and critical assessment of multi-modal analyses. 
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