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1 Abstract

Human experience and behaviour is subject to multiple different mental processes,
which can be separated into cognitive and socio-affective processes. Many studies
investigate how experience and behaviour is linked to brain structure and function,
and also how much influence can be attributed to our genetic makeup. However, little
is known about how behavioural domains are subject to different influencing factors
of inter-individual differences of the brain. In particular, how overlapping genetic
influences exhibit in brain structure, and which influence different functional task
states drive in predictability of individual behaviour. Therefore, in my dissertation I
investigated the phenotypic and genetic correlations of cognitive and affective traits
and brain structure (cortical thickness, surface area and subcortical volumes; study
1). I further examined to what extent the correspondence of functional network priors
and task states with behavioural target domains influenced the predictability of
individual performance in cognitive, social, and affective tasks (study 2).

Using phenotypic correlation and heritability-analysis the first study investigated
heritability and genes as influencing factors on inter-individual differences of the
brain. Cognition revealed several associations with brain morphology, while trait
affect revealed only few significant correlations with subcortical volumes and local
cortical thickness, where it overlaps in left superior frontal cortex with cognition.
Decomposing the phenotypic association into genetic and environmental
components, revealed that the associations were accounted for by shared genetic
effects between the traits. Using functional correlation and predictability of task states
and network priors the second study investigated state- and network-specificity as
influencing factors on brain-behaviour relationships, by predicting individual
performance in cognitive, social, and affective tasks. Predictions from whole-brain FC
were slightly better than those from FC in task-specific networks, and a slight benefit
of predictions based on FC from task versus resting state was observed for
performance in the cognitive domain.

With my dissertation I provide an integrative model of how cognition and affect relate
to the human brain. By combining insights from structural anatomy, heritability
modelling, and functional connectivity-based prediction, my results reveal that these
traditionally distinct domains share common neural substrates. The superior frontal
cortex has been identified as a heritable anatomical hub for both cognitive and
affective traits. However, multivariate FC patterns during both task and resting states
carried only moderate predictability of individual performance levels of cognition and
socio-affective processes, manifesting nevertheless the influence of brain state and
network dynamics in shaping individual behaviour. In sum, with these studies I
replicated previous findings, but also extended insights into the interplay of cognitive
and socio-affective processes with brain-behaviour relationships, and how different
factors influence inter-individual differences in the brain.






2 Zusammenfassung

Menschliches Erleben und Verhalten unterliegt vielen verschiedenen mentalen
Prozessen, die in kognitive und sozio-affektive Prozesse unterteilt werden konnen. In
vielen Studien wird untersucht, wie Erleben und Verhalten mit der Struktur und
Funktion des Gehirns zusammenhdngen und welchen Einfluss genetischen
Veranlagung spielen. Es ist jedoch nur wenig dariiber bekannt, wie unterschiedliches
Verhalten den verschiedenen Einflussfaktoren interindividueller Unterschiede des
Gehirns unterliegt. Insbesondere, wie sich iiberlappende genetische Einfliisse in der
Gehirnstruktur zeigen und welchen Einfluss verschiedene funktionelle Aufgaben auf
die Vorhersagbarkeit des individuellen Verhaltens haben. In meiner Dissertation
untersuchte ich daher die phanotypischen und genetischen Korrelationen von
kognitiven und affektiven Merkmalen und der Hirnstruktur (kortikale Dicke, Flache
und subkortikale Volumina; Studie 1). Dartiiber hinaus habe ich untersucht, inwieweit
die Ubereinstimmung von funktionellen Netzwerken und Aufgabenzustinden die
Vorhersagbarkeit der individuellen Leistung bei kognitiven, sozialen und affektiven
Aufgaben beeinflusst (Studie 2).

Mit Hilfe phanotypischer Korrelationen und Heritabilitatsanalysen untersuchte die
erste Studie die Heritabilitdat und Gene als Einflussfaktoren auf interindividuelle
Unterschiede des Gehirns. Kognitive Prozesse zeigten mehrere Assoziationen mit
Hirnstruktur, wahrend Affekt nur wenige signifikante Korrelationen mit den
subkortikalen Volumina und der lokalen kortikalen Dicke aufwies, wobei es im linken
superioren frontalen Kortex Ubereinstimmungen mit Kognition gab. Die Analyse der
phanotypischen Assoziation in genetische und umweltbedingte Komponenten ergab,
dass die Assoziationen durch gemeinsame genetische Effekte zwischen den Domanen
erklairt werden konnten. Mit Hilfe der funktionellen Korrelation (functional
connectivity; FC) und der Pradiktion von Aufgabenzustinden und Netzwerken
untersuchte die zweite Studie die Zustands- und Netzwerkspezifitit als
Einflussfaktoren auf die Beziehungen zwischen Gehirn und Verhalten, indem sie die
individuelle Leistung bei kognitiven, sozialen und affektiven Aufgaben vorhersagte.
Die Vorhersagen aus der FC des gesamten Gehirns waren etwas besser als die aus der
FC in aufgabenspezifischen Netzwerken. Fiir die Leistung im kognitiven Bereich
wurde ein leichter Vorteil der Vorhersagen auf der Grundlage der FC aus dem
Aufgaben- gegeniiber dem Ruhezustand festgestellt.

In meiner Dissertation stelle ich ein integratives Modell vor, wie Kognition und Affekt
mit dem menschlichen Gehirn zusammenhdngen. Durch die Kombination von
Erkenntnissen aus der strukturellen Anatomie, der Modellierung der Vererbbarkeit
und der auf FC basierenden Vorhersage zeigen meine Ergebnisse, dass diese
traditionell unterschiedlichen Bereiche gemeinsame neuronale Substrate aufweisen.
Der superiore frontale Kortex wurde als vererbbarer anatomischer Knotenpunkt
sowohl fir kognitive als auch fir affektive Merkmale identifiziert. Die multivariaten



FC-Muster sowohl im Aufgaben- als auch im Ruhezustand zeigten jedoch nur eine
mafdige Vorhersagbarkeit des individuellen Leistungsniveaus bei kognitiven und
sozio-affektiven Prozessen, was den Einfluss des Hirnzustands und der
Netzwerkdynamik auf die Gestaltung des individuellen Verhaltens deutlich macht.

Zusammenfassend lasst sich sagen, dass ich mit diesen Studien nicht nur frithere
Ergebnisse replizieren konnte, sondern um Erkenntnisse liber das Zusammenspiel
von kognitiven und sozio-affektiven Prozessen mit Gehirn-Verhaltens-Beziehungen
erweitern Kkonnte und dariiber, wie verschiedene Faktoren interindividuelle
Unterschiede im Gehirn beeinflussen.
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3 General Introduction

Everyone is unique in experience, thought and behaviour, affect and cognition, but also
brain structure and function. Understanding the link between the human brain,
individual behaviour, thoughts and feelings, remains one of the greatest questions in
neuroscience. Researching the link between brain and behaviour is a scientific pursuit
that offers great potential for mental health and personalized medicine, by offering
pathways to more precise diagnostic and therapeutic approaches. Therefore,
investigating the human brain helps us to elucidate human inter-individual variability.
Both within healthy individuals, and with regards to mental health and the treatment
of brain disorders.

Human experience and behaviour is subject to multiple different mental processes.
Roughly, these processes can be separated into cognitive and socio-affective
processes. Many studies investigate how experience and behaviour is linked to brain
structure and function, and how much influence can be attributed to our genetic
makeup. However, little is known about how behavioural domains are subject to
different influencing factors of inter-individual differences of the brain. In particular,
how overlapping genetic influences exhibit in brain structure, and which influence
different functional task states drive predictability of individual behaviour.

There are various neuroscientific approaches in the quest to study human brain-
behaviour relationships and to investigate how experience and behaviour is linked to
brain structure and function: Some studies use electrophysiological methods, such as
electroencephalography. Some use neuroimaging methods, such as structural
magnetic resonance imaging (MRI), or functional imaging methods, such as functional
MRI (fMRI). Some use genetic tools, such as genome-wide association studies or twin
studies. Some use specific analytic tools, such as machine learning (ML) or predictive
modelling, connectomics or network analysis, or functional decoding and meta-
analytic annotation. But irrespective which are the chosen measures, in order to study
behaviour, there need to be behavioural and psychometric measures. These can be
conducted in tasks or in self-report questionnaires.

My dissertation focuses on the influencing factors of inter-individual differences of the
brain, specifically, how genetic influences exhibit in brain structure, and how task
states drive predictability of individual behaviour. For this, [ will first elaborate on the
specific behaviours investigated here - cognition and affect - and their relationship to
the brain. Then, I will elaborate on heritability and functional task states, as
influencing factors of inter-individual differences of the brain.

11



3.1 Individual differences in behaviour

Human behaviour is driven by different complex mental processes, that can be
roughly separated into cognitive and socio-affective processes. Therefore, [ decided to
investigate cognition and affect as representations of human complex and rich
behavioural variability. Despite covering only a fraction, they provide insight into how
individuals perceive, interpret, and respond to their environment (Gross, 2015;
Langner et al., 2018; Pessoa, 2008). As such, they serve as robust, multidimensional
phenotypes for linking behaviour to underlying neural and genetic mechanisms.

3.1.1 Cognition

Cognition refers to mental processes involved in acquiring, processing, storing, and
applying information. These processes include perception, attention, memory,
language, reasoning, and executive control, including working memory, enabling
individuals to interpret and respond to their environment. Intelligence is described as
the capacity to carry out cognitive tasks effectively. It reflects how efficiently and
flexibly cognitive processes are deployed, usually in novel or complex situations.

The human interest and contemplation about cognition and intelligence have a long
history. A scientific approach on cognition dates back to the early nineteen hundreds,
where Spearman framed the “general ability factor g” (Spearman, 1904). This was
further investigated and developed by Cattel into two sub-constructs: crystallised and
fluid intelligence (Cattell, 1943, 1963).

Crystallized intelligence refers to the ability to recognise and apply solutions through
previously acquired knowledge and past experiences. It involves knowledge and skills
accumulated over time, such as cultural and general knowledge. It can therefore
improve with age, peaking in adult life, with only a slow decline until the age of 70
(Cattell, 1963; Hunt, 2001; Jones & Conrad, 1933; Salthouse, 2019).

In contrast, fluid intelligence refers to the ability to solve novel problems without
relying on prior knowledge. Therefore, fluid intelligence is usually involved in tasks of
non-verbal nature, such as solving mathematical or spatial problems. This involves
quick, abstract, and flexible reasoning, as well as the ability to comprehend and
manage multiple information simultaneously and manage the amount of information
needed to solve the problem (Cattell, 1963). A core component of fluid intelligence is
therefore working memory, the ability to maintain and update or manipulating
relevant information (Baddeley, 2012; Hofmann et al., 2012; Little et al.,, 2014). On
average, fluid intelligence reaches the maximum in ability in early adulthood and
declines with age (Baltes et al., 1999; Jones & Conrad, 1933; Salthouse, 2019).

Crystallised and fluid intelligence are distinct but interconnected cognitive systems
(Cattell, 1963; Tucker-Drob, 2009). The ability of fluid intelligence to solve novel
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problems, reason abstractly, and adapt to new situations is required for acquiring and
integrating new knowledge - which over time consolidates and contributes to
crystallized intelligence. Furthermore, crystallized intelligence can support fluid
intelligence by providing context and meaning. This bidirectional supportis especially
interesting, given that crystallised and fluid intelligence have different decline rates
throughout life (Baddeley, 2012; Tucker-Drob, 2009).

Moreover, while working memory (WM) represents only one aspect of fluid
intelligence, it has been shown to be a good proxy and representation for fluid
intelligence (Colom et al., 2015). Furthermore, it has been investigated, that working
memory capacity predict variation not only in fluid intelligence, but also crystallised
intelligence (Alloway & Alloway, 2009; Martinez, 2019).

3.1.2 Affect: Emotion, Social Cognition

As a clear distinction between “emotion” and “affect” remains unresolved, the terms
are often used interchangeably in the literature (Bradley & Lang, 2002; Pessoa, 2008;
Salsman et al., 2013). Broadly, affect is a complex and multifaceted construct used to
refer to emotional experience (Lindquist et al., 2012). Its elusive definition and
inherently subjective, bodily nature makes it difficult to be measured in a standardized
fashion (Nummenmaa et al.,, 2014). Therefore, measurement methods include self-
reports, physiological indicators (such as heart rate or skin conductance), or the
behavioural response to stimuli (Bradley & Lang, 2002). Nevertheless, in the
assessment a distinction can be made between emotional processes and trait affect.
On the one hand, affective traits can be assessed with self-reports, which are then
divided into positive and negative traits. On the other hand, emotional processes, that
pertain to identification and responding, can be assessed using tasks.

Trait affect is commonly measured through self-reports and divided into a positive
and negative dimension, which are considered independent, instead of opposites.
Hence, allowing both to be experienced at the same time (Diener & Emmons, 1984;
Salsman et al., 2013). Positive affect includes emotions such as happiness, enthusiasm,
and contentment, contributing to psychological well-being, including life satisfaction
and a sense of purpose (Salsman et al., 2014). Conversely, negative affect includes
emotions like anger, fear, and sadness, which can also manifest in varying intensities
and are linked to negative self-evaluation or life dissatisfaction (Pilkonis et al., 2013;
Salsman et al., 2013).

Emotion processing starts with a trigger and ends with a mental and behavioural
response. Importantly, an emotional response can only be elicited with a relevant
stimulus. Emotion processing refers to identifying, interpreting, and responding to
emotional cues in oneself and others (Gross, 2015; Langner et al., 2018). It is closely
linked to social cognition, which includes the understanding of others’ thoughts and
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feelings. It is crucial in engaging in effective social interactions, since it includes
understanding both oneself and others as social beings.

Social cognition spans across both the cognitive and affective domain. Social cognition
is linked to theory of mind, which is described as the ability to infer others’ mental
states, beliefs, intentions, and emotions. Theory of mind allows individuals to make
sense of others’ behaviour, predict and interpret social interactions and communicate
effectively and appropriately in social settings (Bzdok et al., 2012; Salazar Kampf et
al,, 2023; Wheatley et al.,, 2007).

Cognition and affect are essential behavioural domains, each representing distinct but
interacting processes. Further, they each offer important insights into human
individual behavioural variability. In sum, cognition includes attention, memory,
reasoning and problem-solving. It is linked to information processing and goal-
directed responses. Affect includes emotional states, responses and regulation, and is
driven by reflexive, spontaneous responses. However, despite these distinctions,
cognition and affect interact dynamically. Emotional states can bias decision-making,
while cognitive appraisal can influence and regulate emotion processing.
Furthermore, they are both influenced by internal and external stimuli (Langner et al,,
2018; Pessoa, 2008). In my dissertation I aim to investigate these concepts both
separately as well as their overlap.

3.2 Brain-Behaviour Relationships

To investigate the human brain and to link structure and function to behaviour, a lot
of different neuroimaging modalities have evolved. The prerogatives of being non-
invasive and in-vivo have been crucial for behavioural neuroscience. In my research I
primarily focused on structural and functional MRI, while further using multivariate
analyses comprised of heritability analyses and machine learning prediction.

3.2.1 Structural MRI - grey matter structure

Structural MRI captures the anatomy in a static, high-resolution image of the brain,
while fMRI measures brain activity over time. Structural MRI takes advantage of the
different densities of water content in the brain tissues. This is translated into images,
where the different tissues and structures of the brain, such as grey and white matter,
and cerebrospinal fluid can be distinguished. In my research I focused on grey matter
structure. Grey matter can be found in the central nervous system, hence the spinal
cord and the brain. It consists of neuronal cell bodies, dendrites, unmyelinated axons,
astrocytes, oligodendrocytes, microglia and blood vessels. It plays a central role in
sensory perception, motor control, and higher-order cognitive functions.
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3.2.1.1 Cortical thickness and subcortical volume

Cortical thickness refers to the distance in millimetres between the white matter and
the pial surface. The distance typically ranges between 1 and 4.5 millimetres (Fischl
& Dale, 2000; Palomero-Gallagher & Zilles, 2019). Even though measuring the grey
matter cortical thickness sounds simple, it is no small feat, since the pial surface is
difficult to detect in standard MRI. Hence, (Fischl & Dale, 2000) developed with
FreeSurfer an algorithm to estimate the grey and white matter boundary. This
boundary representation is then deformed, with specific constrains, outward until the
pial surface. From there, the distance to the white matter border at any point results
in the cortical thickness (Fischl & Dale, 2000). This procedure requires both T1 and T»
weighted images to accurately map the grey matter as well as distinguish the pial
surface from dura and blood vessels (Glasser et al., 2013).

Further, subcortical structures are neural formations in the basal brain, that have been
shown integral in motor function, memory, and emotional and cognitive processing.
They include deep grey matter structures and nuclei such as the thalamus, caudate,
putamen, pallidum, hippocampus, amygdala, accumbens area, and ventral
diencephalon. Similarly to cortical thickness, estimating the difference in tissue
densities between subcortical structures and surrounding white matter, boundaries
can be drawn and the subcortical volume can be calculated. Since the subcortical
structures are integral in several behavioural processes, it is important to include
them analogously to cortical thickness in brain-behaviour analyses.

3.2.1.2 Surface area

Surface area, understandably, refers to the surface of the cerebral cortex. It is
intrinsically related to the cortical folding (gyrification). Therefore, most of the
surface is hidden in the sulci (Chauhan et al., 2021), making it challenging to map out.
Similar to cortical thickness and subcortical volume, the computation of surface area
requires sophisticated processes. To automate and improve the delineation of the
cortical surface, (Glasser et al., 2013) further enhanced the widely-used FreeSurfer
pipeline for the Human Connectome Project (HCP) dataset (Fischl, 2012) used here.
Both T1i- and Tz-weighted images are used to clearly define the white matter and pial
surfaces and thereby the cortical ribbon. Following this ribbon, triangles are formed
and summed to create a grid or mesh. This mesh transforms the cerebral cortex into
a 2D sheet. This sheet can then be aligned to different spaces, such as the MNI surface
space, to further allow for comparison between subjects.

Importantly, surface area is a morphological feature distinct from cortical thickness.
It has been suggested that cortical thickness and surface area evolutionary developed
independently (Geschwind & Rakic, 2013), are influenced by different genetic and
environmental factors (Panizzon et al, 2009), and develop differently and
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independently across the lifespan (Fjell et al., 2015; Hogstrom et al., 2013). Cortical
thickness reflects neuronal density and dendritic arborization within a cortical
column, while cortical surface area reflects the horizontal expansion of the cortical
sheet and number of cortical columns. Therefore, it is important to look at them
separately (instead of using cortical volume), as well as looking at them both, in order
to understand the individual neural influences.

3.2.2 Functional MRI - functional connectivity

While structural MRI captures static images of the brain's anatomy by acquiring each
brain slice once, functional MRI (fMRI) measures brain activity over time by
repeatedly scanning the whole brain. fMRI is based on the effect, that active brain
regions have increased metabolic demand, consuming more oxygen, resulting in an
increased blood flow into the specific region. This vascular response results in a shift
in the ratio of oxygenated to deoxygenated haemoglobin, producing the so-called
Blood Oxygen Level Dependent (BOLD) contrast, which can be detected by the MRI
scanner as changes in signal intensity. This alteration in regional blood oxygenation,
the hemodynamic response, is observed over several seconds, with peaks at 3-5
seconds after a stimulus (Hillman, 2014).

To reliably capture these dynamics and acquire high-quality fMRI images, it is
important to scan the brain with a repetition time shorter than the width of the
hemodynamic response function. Additionally, shorter repetition time also improves
artefact removal through e.g. physiological noise or head movement. Therefore, in the
HCP high-resolution data with a repetition time of 0.72 seconds was acquired (Glasser
et al, 2016). Further, spatial resolution is critical for accurately localizing BOLD
signals and distinguishing between anatomical compartments such as grey matter,
white matter, and CSF. Therefore, by acquiring functional data at 2 mm isotropic
resolution, this further enables a precise location of the BOLD signal onto the cortex
(Glasser et al, 2013, 2016). Despite significant technical differences between
structural and functional imaging, acquired fMRI data can only be processed and
analysed precisely by projecting the functional signals onto the structural surface
reconstruction, providing an anatomically informed framework for analyses.

3.2.2.1 Resting-state and task-based FC

While the BOLD contrast is considered a proxy for neuronal activation, functional
connectivity (FC) identifies correlations of activity between multiple regions of the
brain. FC refers to the temporal (statistic) correlation of signal fluctuations between
spatially distant regions, revealing distinct brain regions functioning in accordance,
reflecting the functional integration of brain regions.
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Since the brain is constantly active, the interactions between brain regions can be
measured in the absence of tasks, hence during rest (resting-state FC), or during the
performance of specific tasks (task-based FC). Resting-state FC captures BOLD signal
fluctuations that occur in the absence of explicit tasks. It captures the intrinsic
network structure of the brain, which have been shown to be stable and reproducible
over time (Biswal et al,, 1995). Commonly observed networks include the default
mode network, frontoparietal network, dorsal attention network, and salience
network (Biswal et al., 1995; Yeo et al., 2011). Resting-state FC is suggested to reveal
baseline or “trait-like” properties of brain organization (Finn et al., 2015).

Task-based FC assesses connectivity patterns of functional coupling between brain
regions in response to specific cognitive, emotional, or sensory tasks performed in the
scanner. Task-based FC reflects context- or state-dependent networks, by task-evoked
modulation of functional connectivity through increased coupling. While resting-state
and task-based FC share common network architectures, task-based FC shows altered
functional coupling in response to task demands (Cole et al., 2014; Shine et al., 2016).

Particularly resting-state fMRI (rs-fMRI) has gained popularity in recent years, due to
its convenient application. It can be assessed quickly and easily for all parties involved.
The low level of compliance simplifies measurement, making it especially popular in
clinical populations, while additionally reducing costs. This lead to a high focus of
research on resting state fMRI. As mentioned above, while there seems to be an
overlap between resting-state and task-based activation, and even structural
morphology, some resting-state fMRI research reveals rather low brain-behaviour
relationships. However, both resting-state and task-based FC patterns are unique and
can therefore be used to research inter-individual differences. Therefore, in my
dissertation I compare and investigate different “states” (resting-state and different
task-states) and their effect on predictability of individual behaviour.

FC can be assessed with seed-based correlation analysis or data-driven methods, such
as independent component analysis (ICA) or graph-theoretical approaches. While
each of these methods have their specific uses and advantages, data-driven methods
pose the difficulty of interpretability, while also often being data-set specific. Thus, in
my dissertation, | used seed-based correlation analysis. By using a priori regions of
interest (ROIs), or seeds, it can be assumed, that the selected regions activate during
certain tasks. A priori ROIs can be defined in a multitude of ways. Here, I defined
specialised networks based on activation likelihood estimation (ALE) meta-analyses,
and further used a data-driven approach, by delineating networks using general linear
modelling (GLM) reflecting brain activation in the large HCP data sample during the
tasks of interest. However, the question is whether it has to be exactly the task
network that is related to a specific behaviour or whether interactions within other
networks are also associated with behaviour.
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3.2.3 Neural correlates of cognition and affect

While cognition is multifaceted, a consistent set of brain regions have been identified
quite early due to lesion studies: the prefrontal and parietal cortices (Damasio et al.,
1996; Rosenbaum et al., 2005; Scoville & Milner, 1957; Stuss et al., 2001). Damage to
these regions lead to impaired executive functions. Then, Haier and colleagues
showed a correlation between intelligence and grey matter volume in frontal,
temporal, parietal, and occipital regions using voxel based morphometry (Haier et al.,
2004), which has been supported in functional studies as well. In a large meta-analysis
Basten et al. found supporting evidence of brain activation in the lateral prefrontal
cortex, the medial frontal cortex, as well as the parietal and temporal cortex in
intelligence. More specifically, they found the inferior frontal sulcus and gyrus, middle
frontal and temporal gyrus, superior parietal lobule, and the pre-supplementary
motor area to be consistently activated during tasks associated with cognition (Basten
etal,, 2015). Other meta-analyses focussing on working memory found, in addition to
some of the aforementioned regions, the thalamus and basal ganglia to be involved
(Rottschy et al,, 2012).

A similar trajectory can be seen in how we came to understand which brain regions
are critical for trait affect. Early lesion studies highlighted the importance of the
amygdala, ventromedial prefrontal cortex (vmPF(C), and insula in emotion processing
and regulation, emotional experience, and decision-making involving affective valence
(Adolphs et al., 1995, 1996; Bechara et al.,, 1999; Calder et al., 2000; Damasio et al,,
1994). However, also frontal, temporal and parietal brain regions, as well as the
anterior cingulate cortex, have been shown to be involved (Barbey et al., 2014; Hornak
et al.,, 2003). The lesion-based evidence is also supported by structural und functional
studies (Lindquist et al., 2012; Schmaal et al, 2017), which further found the
prefrontal cortex, the thalamus and the periaqueducal grey to be involved (Kober et
al., 2008; Lindquist et al., 2012). In particular relevant for emotion processing (or
emotional face processing) are the already mentioned amygdala and insula. However,
further active regions found in the limbic areas include the parahippocampal gyrus
and the posterior cingulate cortex, and in the temporoparietal areas the parietal
lobule and the middle temporal gyrus. Further involved are visual areas, such as the
fusiform and lingual gyrus, the medial frontal gyrus, the putamen and the cerebellum
(Fusar-Poli et al., 2009; Miiller et al., 2018).

In sum, key brain regions in cognition are covered mainly by the multiple-demand and
the cognitive control network. The multiple demand network includes the (posterior-
medial) frontal cortex, insula, intraparietal sulcus, and inferior frontal sulcus. The
cognitive control network includes the anterior cingulate cortex/pre-supplementary
motor area, dorsolateral prefrontal cortex, inferior frontal junction, and posterior
parietal cortex. In affect, the limbic system, including in particular the amygdala, with
extensions to the prefrontal cortex, cingulate gyrus, thalamus, and hippocampus, have
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been associated. These regions have been mainly based on lesion studies and group
effect between task conditions. They therefore show, that these regions are
consistently involved in these processes. However, to what extent they are associated
with individual behavior is incompletely understood.

3.3 Influencing Factors on Brain-Behaviour Relationships

One of the main goals in behavioural neuroscience is to understand how the human
brain works and how individual variability is driven. Several approaches can be
applied to try to elucidate this quest: heritability analyses can help explain how much
of individual variability in brain structure or function is influenced by genes.
Prediction can help us move beyond group averages. Finally, multivariate and
multimodal analyses tie all modalities together and try to approach the brain as it is:
an interconnected system.

3.3.1 Heritability

Heritability is a statistical estimate explaining what proportion of the variation in a
given trait in a population is due to genetic variation. The variance (V) of a phenotype
(P) within a population is composed of genotypic (G) and environmental (E) variance.
Narrow-sense heritability (h?), calculable with twin studies, refers to the proportion
of phenotypic variance that is attributable to additive genetic variance V(A), and is
estimated as h? = V(A) / V(P) (Bruell, 1970; Nes & Roysamb, 2015). Research of
genetic influences provides insights into the biological basis and possible influences
in both healthy and diseased people. It helps us further understand the biological
(genetic) constrains, while empowering us with the knowledge about potential
environmental influence. This pertains to both the brain, as well as behavioural traits.

Thanks to heritability analyses based on twin studies, it has been analysed, that the
majority of the human brain morphology is highly heritable (Jansen et al., 2015), but
also, individually both cortical thickness and surface area revealed to be highly
heritable in humans (Panizzon et al., 2009). Further, behavioural traits are heritable.
Ranking at the top is cognition, which has been shown to be highly heritable (Krapohl
et al.,, 2014; Plomin & Deary, 2015). In contrast, since affective traits are much more
elusive and a clear delineation still of debate (Desmet, 2018; Gross, 2015), the
research of heritability in these traits is much less consistent. Nevertheless, affective
traits have been identified as heritable to some extent (Bouchard & Loehlin, 2001;
Lykken & Tellegen, 1996), while some diseases associated with affective disorders
show high heritability (Fernandez-Pujals et al., 2015; Kendall et al.,, 2021). Further,
cognitive empathy or social cognition has also been shown to be heritable (Warrier et
al,, 2018).

19



Therefore, in the first study, I not only investigate the phenotypic association between
cognition, affect and local brain anatomy, but also investigate the shared brain basis
between cognition and trait affect and their genetic correlation. This enables me to
investigate heritability as an influencing factor on brain-behaviour relationships in
cognition and affect.

3.3.2 Prediction

For the most time, and laid out in the previous section, neuroscience relied on very
specified lesion patients or large samples to establish brain—-behaviour relationships.
Through new insights this locationist approach is being challenged by the
constructionist approach, which suggests an interaction between brain functional
networks, instead of one specific location to be responsible for a specified function
(Lindquist et al, 2012). In addition, we now have more (brain) data available,
including large densely sampled datasets, such as the Human Connectome Project.
Prediction with machine learning allows us to go beyond conventional statistics and
make use of the large, complex and high-dimensional datasets. While conventional
statistical approaches help us understand relationships between variables, they often
rely on simplifying assumptions—such as independence, linearity, and low
dimensionality—that may not reflect the true complexity of brain-behaviour
relationships.

In contrast, predictive modelling and machine learning are able to handle high-
dimensional, complex, and often nonlinear data, enabling the analysis and
identification of distributed patterns across the brain that are informative at the level
of individual behaviour. Therefore, the application of prediction in neuroscience offers
the potential to further knowledge and the development of brain-based biomarkers
for personalized medicine to inform diagnosis, prognosis, and intervention strategies
on an individual level.

However, statistics allow an interpretable hypothesis driven approach to brain-
behaviour relationships, while machine learning functions largely within a “black
box”. While the ability to handle complex data and potentially discover patterns with
machine learning is a major strength, the models often lack interpretability, making it
difficult to infer the underlying biological mechanisms driving the observed patterns.

Therefore, in my dissertation, I applied statistical models to achieve an interpretable
and reduced feature space of brain data before applying different machine learning
algorithms. Instead of relying on whole-brain data—and therefore omit biological
interpretability—I yielded functional networks through different approaches: 1)
Meta-analyses of networks activated through specific tasks, and 2) Definition of
networks from high-powered and diversified task-fMRI studies. [ then computed the
functional connectivity within these networks based on different task states and
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analysed their predictability with regards to corresponding behaviour. By comparing
FC derived from resting-state and task-based fMRI, and applying predictive modelling
techniques, I can assess whether FC from behaviourally related states (e.g. FC from
WM predicting WM) offer better predictive power than unrelated states (e.g. FC from
WM predicting EMO).

This integrated approach allows not only to identify associations between brain
regions and behaviour (statistical analysis), but also to determine whether these
associations are genetically influenced (heritability analysis) and whether they are
informative for predicting individual differences in behaviour (predictive modelling).

3.4 Aim of the studies

One main goal of neuroscience is to understand and gain deeper insights into brain
function and organisation and to link it to behaviour. Many studies investigated how
experience and behaviour is linked to brain structure and function, and also how
much influence can be attributed to our genetic makeup. While there are many
converging studies investigating cognition, there are inconclusive findings for affect,
as well as their interplay. Further, little is known about how behavioural domains are
subject to different influencing factors of inter-individual differences of the brain. In
particular, how overlapping genetic influences exhibit in brain structure, and which
influence different functional task states drive predictability of individual behaviour.

Therefore, the first study focused on identifying a shared behavioural basis across
cognition and affect and examined whether this convergence is mirrored in local brain
structure. Here, 1 focused on structural morphometry such as cortical thickness,
surface area, and subcortical volume. Finally, by analysing the heritability, | investigate
if cognition and affect have shared genetic effects within behaviour and in brain
morphology.

In the second study I move from structural anatomy to functional brain networks.
Here, | investigate if individual differences in cognition (represented by working
memory), emotion, and social cognition can be predicted from potential patters of FC.
By comparing the predictability of FC derived from resting-state and task-based fMRI
in different a priori networks, I can assess the influencing factor of task state and
network specificity on brain-behaviour relationships. Further, by using a priori
defined networks based on meta-analyses and large samples, I aim to improve
interpretability of machine learning models.

With this dissertation [ aim to investigate how inter-individual differences in cognitive
and socio-affective processes are related to structural brain anatomy and functional
connectivity. Further, I assess phenotypic and morphological heritability, as well as
the predictability of task states and network specificity as influencing factors of brain
variability.
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6 Summary and general discussion

With this dissertation [ aimed to investigate how inter-individual differences in
cognitive and socio-affective processes are related to structural brain anatomy and
functional connectivity and how heritability and task state impact brain-behaviour
relationships as influencing factors. First, 1 investigated the phenotypic and
morphological association of cognition and affect in the brain, as well as their shared
genetic variance. [ then assessed the predictability of task states and network
specificity.

With my first study I was able to show phenotypic relationships with both affect and
cognition and brain structure in the left superior frontal cortex. Decomposing the
phenotypic correlations into genetic and environmental components showed that the
associations were accounted for by shared genetic effects between the traits. Yet, my
second study revealed that individual behaviour can only moderately be explained by
network interactions. The results indicate that interactions within a priori networks
are less predictive than global effects. However, a slight benefit of predictions based
on FC from task versus resting state was observed for performance in the cognitive
domain, indicating state specificity.

6.1 Cognition and affect - integrated dimensions

Intelligence or cognition is a very well-studied and delineated concept. Reliable
measures have been developed (Akshoomoff et al, 2013; Heaton et al., 2014),
capturing different aspects of cognition such as fluid reasoning and crystallized
knowledge, including executive function, working memory, processing speed,
attention, episodic memory, and language. In the first study, I used these measures to
analyse crystallised and fluid intelligence, assessed with the National Institute of
Health (NIH) toolbox for Assessment of Neurological and Behavioral Function®
(neuroscienceblueprint.nih.gov). This measurement has been shown to capture
interindividual differences reliably (Akshoomoff et al., 2013; Gershon et al., 2013).
However, in the second study, to investigate the influence of task states, I used the
cognitive process of working memory, which in this dataset was assessed with a 2-
back task. Unfortunately, the simplicity of the task leads to a ceiling effect, where many
participants solve the task successfully, leading to a low variance. This has been,
however, mitigated by introducing reaction time into an inverse efficiency score.
Nevertheless, the moderate predictability of task states could be related to the low
variance within both the cognitive score, as well as a within the task states.

Emotion or affect has gained scientific attention later and has seen struggles being
investigated due to the elusive nature (Barrett, 2012; Lindquist et al., 2012). However,
emotion and trait affect influence what we notice, learn (Mather & Sutherland, 2011;
Tyng et al,, 2017), remember (Cahill & McGaugh, 1998; Mather & Sutherland, 2011)
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and even how we decide (Bechara et al., 2000). Several tests have been developed to
assess emotion and affect. In the first study, self-reports were used to capture trait
affect from the Emotion Battery of the NIH Toolbox (Pilkonis et al., 2013; Salsman et
al, 2013, 2014). For the second study an emotional face matching task was performed,
which has been developed and tested to reliably activate the amygdala. However, only
little variance of individual emotion processing abilities is captured. This has been,
again, mitigated by introducing reaction time into an inverse efficiency score.
Nevertheless, it would be interesting to see a similar study setup to investigate state
and network specificity, however with different, more complex tasks.

Despite cognition and affect being seen as separate constructs for a long time and
therefore being studied separately, an integration is inevitable. This can be seen with
the word “emotional intelligence”, the ability to use and regulate emotions. But also
with social cognition or theory of mind, which has been investigated in the second
study, showing a combination of both emotional interpretation and social inference.

While cognitive functions have traditionally been attributed to higher-order cortical
regions—such as the lateral and medial prefrontal, temporal, and parietal cortices—
affective processes have historically been associated with evolutionarily older,
subcortical structures, including the amygdala, basal ganglia, and hypothalamus.
However, as outlined above, recent research increasingly investigates the integration
of affect and cognition across both cortical and subcortical systems, challenging the
historical dichotomy between emotional and cognitive brain networks. In line with
that, both my studies showed on the one hand a convergence phenotypically, as well
as in the superior frontal gyrus (study 1), as well as no network-specificity and only
moderate state-specificity for cognition (study 2), suggesting potential overlapping
networks and functions.

6.1.1 Brain morphology and heritability (study 1)

The modular approach on cognition and affect has already been challenged by several
researchers such as (Barrettetal., 2011; Lindquist et al., 2012; Pessoa, 2008), arguing,
that cognition and emotion are deeply intertwined in both brain and behaviour. In this
dissertation, by using anatomic data and twin modelling, I build on this by
demonstrating that cognitive and affective traits are not only theoretically connected,
but phenotypically and genetically associated, pointing toward a shared neural
infrastructure in the superior frontal gyrus. This convergence underlines previous
findings (Barrett & Satpute, 2013), while furthering this integration through
heritability modelling, showing a shared phenotypic and genetic association with
cortical thickness in the left superior frontal cortex. This convergence indicates the
prefrontal cortex as not just essential for cognitive function, but a hub where
emotional and cognitive traits are co-constructed. The discovery of a brain region
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simultaneously relating to cognitive and affective traits, while further driving these
associations genetically, strongly indicates that cognition and emotion are integrated
within the brain. Therefore, this biologically stable marker has further implications
for understanding trait-level vulnerabilities, also in mental health.

6.1.2 Functional connectivity and predictability of task states (study 2)

The finding of a shared phenotypic and genetic association between cognition and
trait affect in the superior frontal cortex is rooted in quantifiable structural
morphology providing trait-level and heritability insights. In a next step, [ put a
stronger focus on the effects of state and the relationship to brain function, in contrast
to brain structure. Thus, these results led me to develop the research of cognition and
emotion into a more dynamic approach, by complementing it with functional
connectivity in resting-state und task-based fMRI.

Unlike structural markers, functional connectivity reflects state-dependent and
network-based dynamics. Therefore, in my second study I explored whether
functional connectivity could predict inter-individual differences within cognition
(represented through WM), and emotion, complemented with social cognition.
Moving from structural morphology and heritability to functional connectivity and
machine learning prediction, allowed me to investigate the influence of state on brain-
behaviour relationships.

Here, I found that, overall, FC patterns showed limited ability to predict individual
behavioural performance. The predictive power was modest, though comparable to
other studies applying a similar approach (Dubois et al., 2018; Greene et al., 2018; Ooi
et al., 2022). However, slightly better predictions were achieved using task-based FC
compared to resting-state FC, particularly in the working memory domain, which
extend results from previous studies, showing that FC from task-based fMRI carry
more behaviourally relevant and individual information (Finn et al.,, 2015; Finn &
Bandettini, 2021; Greene et al., 2018). Despite the modest predictive power, the
stronger prediction performance of task-based compared to resting-state FC supports
the idea that contextual activation enhances signal relevance by being more reflective
of individual differences. While in my study this was only observed for working
memory, it stands to investigate, whether an improvement could be seen within a
larger sample (through increase of statistical power) or with different task capturing
the emotion domain (through capturing more emotional variance).

6.1.3 Complementary results

With these two studies I investigated how the behavioural and brain morphometric
data provide trait-level and heritable foundations, revealing a stable hub of
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convergence between cognition and affect in the superior frontal cortex. Further, I
approached functional connectivity with machine learning predictions offering
insights into large-scale patterns in cognitive and emotional functioning. Here, task-
based connectivity yielded better prediction performance (compared to resting-state
FC, in working memory prediction) implying the importance of state and network
interactions within interindividual variation. However, no significant difference in
prediction performance between the different domains could be observed, which
could potentially indicate individual variability similarities in FC of cognitive and
socio-affective processing.

Encompassing both studies, I applied several analyses, leveraging the power of
multimodal integration. With the analyses on both structural and functional data I
offer complimentary insights. While the analysed structure in combination with the
heritability analysis reveals stable traits and genetic boundaries within which one can
change and develop, functional analysis reveals how a person behaves and feels in the
moment. Therefore, my results show that cognition and affect are both stable and
flexible within our behaviour, as well as our brain, revealing insights important for our
understand within the layered inter-individual brain-behaviour relationships. With
this dissertation I present the results of a genetically driven overlap between
cognition and affect in the superior frontal cortex, while the influence of state showed
moderate predictability only in cognition but none for the socio-affective domain. This
is in line with the latest research endeavours and important for future individualised
neuroscience. In sum, by examining structure and function and investigating different
influencing factors of brain-behaviour relationships one gets a more nuanced picture
about the integration of cognition and affect in the human brain.

6.2 Limitations and opportunities

Despite the faceted and broad approach, there are some limitations to be
acknowledged. First, both studies used the openly available Human Connectome
Project. Openly available large datasets such as the HCP used here, or the Adolescent
Brain Cognitive Development Study (ABCD), and the UK Biobank are tremendously
valuable and have transformed and furthered research in neuroscience. They play an
important role in the standardization of protocols and data collection, and in the
promotion of reproducibility through transparency, replicability and validation of
findings. Further, the varied data sampling within these datasets allows for the
multimodal analysis of complex research questions as done here. Importantly, the
large sample sizes increase statistical power, through which robust correlations
(study 1) and the application machine learning models (study 2) are only possible.

While the HCP is a densely sampled dataset enabling the research of complex research
questions, it also shows only a small fraction of the population: the age range is
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between 22 and 37 years, with all healthy subjects from the USA, with a slightly higher
IQ than the population average. While this sample was chosen consciously in an effort
to establish potential brain-behaviour relationships within a healthy and constrained
sample, it anyhow constrains the results to only a section of the population. For both
studies it would be beneficial to repeat the analyses in different samples in order to
test for generalisability. However, these very specific research questions addressed in
this dissertation could for now unfortunately only be answered with the HCP dataset,
as they allow for twin-based heritability testing (study 1), and further offer a wide
variety of in- and out-of-scanner tests and questionnaires allowing for the analysis
and comparison of FC predictability between different behaviour performances
(study 2). Yet, the extensive testing comes at the cost of potentially rather superficial
and short tasks. This includes the tasks performed in the scanner as well as outside.
Most of the task developed for fMRI induce a robust activation of targeted brain areas
instead of allowing for strong interindividual variability. Further, tasks performed
both inside and outside the scanner are often optimized for stable group-average
effects. In both studies this needs to be factored into the interpretation of the findings.

Furthermore, the widespread use of these datasets increases the risk of false positive
findings. Since numerous researchers are conducting a multitude of independent
analyses within these datasets, statistically significant results may arise by chance.
Publication bias adds to this problem, as positive findings are more likely to be
published, skewing the literature towards overstated effects. Therefore, it was
especially important to me to publish the results of the second paper as transparently
as possible, without overstating the findings and acknowledging the moderate
prediction performance.

As mentioned above, it would be valuable to test the generalisability of these findings
using independent samples. Since there are so far no suitable large openly available
datasets, it could be interesting to test the findings in smaller datasets, as well as in
harmonised data from several smaller datasets. Such a data pool could also be used to
inform synthetic data. Synthetic data could offer an exciting opportunity to train
machine learning models, especially in areas where there is notoriously insufficient
data (J. Wang et al.,, 2023), such as rare diseases, diseases with difficulties to be
scanned in an MRI scanner, or areas where data privacy protection is an issue (Vaden
etal., 2020).

Further, it is important to mention that although multimodal analyses are highly
promising, technical nuances and methodological limitations, and therefore
meaningful interpretation, depends on having (or inquiring) domain-specific
expertise. This has been especially evident in the work on the second paper applying
machine learning for behavioural performance prediction based on FC. Several
landmark papers used oversimplified assessments of prediction performance,
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painting a more optimistic picture of the achievements. For my publication it was
therefore important to offer a critical and transparent assessment of the findings.

Moreover, potential avenues to develop these findings presented here, despite the
multimodal approach within the papers, are manifold. Within the first paper the
research focus between brain-behaviour relationships and the genetic drivers, could
be extended to investigate the heritability of functional task activation and
connectivity. Based on studies performed in the same dataset, it would be expected to
be in line with our current findings and show that not only brain structure, but also
FC is heritable (Colclough et al, 2017; Ge et al, 2017). However, a potential
convergence between cognition and affect and FC has not been investigated.
Furthermore, in the second paper, only FC was used to predict behavioural
performance. While one of the goals of the second paper—to improve interpretability
of machine learning features—would be hindered, it would nevertheless be
interesting to see if a combination between structural and functional data or even
genetic or EEG data could improve prediction performance. Finally, since the network
used in the second paper were based on a priori defined delineations, future work
could adopt and compare different individualised parcellations (such as different
approaches developed by (Beckmann et al.,, 2005; Kong et al., 2019; Mueller et al,,
2013; D. Wang et al., 2015)). Within the scope of my research, I have applied the
approach by (Kong et al., 2019). However, preliminary results revealed only a
marginal improvement in prediction performance for the specific networks and
behavioural targets. Therefore, I assume that even individualised a priori defined
networks may not significantly improve prediction performance and therefore
interpretability of relevant features. Instead, machine-learning appropriate post-hoc
analyses of whole-brain FC predictions (Tian & Zalesky, 2021) might offer greater
potential to identify biologically relevant features.

6.3 Relevance and impact

The research and investigation of cognition and affect is not only of theoretical
interest, but is essential in everyone’s daily life, as well as fundamental in different
mental disorders. Many cognitive and neural processes are expected to operate in
similar ways in both healthy individuals and those with neurological or psychiatric
disorders. With my dissertation, using a healthy and constrained sample, I aimed to
apply different analyses to contribute new insights for precision neuroscience, by
providing a deeper understanding of the interplay between cognition and affect, and
individual variability in brain and behaviour.

Therefore, in line with previous studies showing structural association with cognition
and emotion in the superior frontal cortex (Engen & Anderson, 2018; Okon-Singer et
al,, 2015), I extend these findings in study 1 by providing evidence for shared genetic
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effects between the traits. It therefore reinforces the importance of integrated
theories (Barrett, 2012; Pessoa, 2008) and provides a basis for investigating shared
risk factors in mental health disorders. Further, study 2 extended the already
extensive research of task-based FC compared to resting-state FC comparison for
behavioural prediction within the cognitive domain (e.g. (Avery et al., 2020; Greene et
al,, 2018; Jiang et al., 2020)), by the socio-affective domain. Although the prediction
performance was moderate, an additional important contribution was the
transparent acknowledgment and reporting of these limitations. Moreover, the
undetected differences in prediction performance between unrelated FC and
behavioural score (e.g. prediction of working memory score from FC yielded from
emotion recognition task), might also suggest that cognitive and emotional processes
are interconnected at the neural level to allow for clearly separable predictive
patterns.

Finally, in order to improve interpretability of machine learning features, I defined a
priori networks based on meta-analyses and from large individual task-fMRI studies.
Therefore, [ computed GLM for all tasks, and further conducted three separate meta-
analyses for working-memory (n-back task), emotion recognition and social
cognition. These meta-analytically defined networks are openly available via the
ANIMA-database (Reid et al, 2016); https://anima.fz-juelich.de/studies/
Kraljevic_NetStateSpec_2024).

6.4 Conclusion

In sum, with my dissertation I provide an integrative model of how cognition and
affect relate to the human brain. By combining insights from structural anatomy,
heritability modelling, and functional connectivity-based prediction, my results reveal
that these traditionally distinct domains share common neural substrates, while also
being dynamically shaped through context-sensitive activation and connectivity.

The identification of the superior frontal cortex as a heritable anatomical hub for both
cognitive and affective traits emphasizes the stability of this integration at the trait
level. In contrast, the moderate, yet comparable, predictability of task-based FC shows
the influence of brain state and network dynamics in shaping individual behaviour,
while also promoting a transparent and critical assessment of multi-modal analyses.
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