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Summary

Reinforcement learning is an essential function for most higher organisms to survive and thrive
in dynamic environments. Herein, reward prediction errors (RPEs) play a central role. RPEs
signal if an action outcome deviated from expectations and help improve future predictions.
Traditionally, RPE processing has been linked to midbrain and prefrontal regions, but more
recent evidence indicates RPE processing in the cerebellum as well. This dissertation explored
the role of the cerebellum in reinforcement learning using different models of cerebellar
dysfunction (i.e., patients with cerebellar stroke, transcranial magnetic stimulation of the
cerebellum in healthy individuals) while recording cerebral signals. The key question was

whether cerebellar deficits would change cerebral processing of RPEs.

Manuscript 1 investigated whether cerebellar deficits in patients with chronic cerebellar strokes
and in healthy young adults receiving single-pulse cerebellar transcranial magnetic stimulation
(TMS) would result in deficient RPE processing in a reinforcement learning task.
Electroencephalography (EEG) was employed to measure cerebral RPE processing,
focussing on the feedback-related negativity (FRN). The FRN had previously been shown to
not only distinguish between negative and positive feedback but to also covary with RPEs.
Both experiments showed that a cerebellar dysfunction led to a blunted RPE reflection in the
FRN, suggesting cerebellar contributions to cerebral RPE processing. No behavioural deficits
in overall learning success were apparent, potentially indicating compensation by other brain

areas.

Manuscript 2 investigated response error processing in reinforcement learning. While naive
learners rely on feedback, advanced learners are able to recognise errors already at the
response execution. Previous studies performed in non-reinforcement learning contexts
implied the cerebellum in error processing. Manuscript 2 investigated whether cerebellar TMS
applied in healthy adults altered error processing in reinforcement learning. EEG analyses of
the error-related negativity (ERN) and error positivity (Pe) in the response-locked event-related
potential showed that cerebellar TMS blunted error processing in the ERN but enhanced it in

the Pe, with the latter potentially indicating compensation.

Last, Manuscript 3 explored the timing aspect of cerebellar-cerebral communication in error
processing. While for the motor domain, a clear time window for cerebellar-cerebral
communication is known, this is less clear for the cognitive domain. Several TMS timings
around individual ERN latencies were investigated in a Go/Nogo Flanker task, i.e., a response
conflict and inhibition task. It could be shown that only stimulation near ERN latency was

effective in reducing error processing in ERN.



Together, these findings further implicate the cerebellum in reinforcement learning and the
more general area of performance monitoring. Cerebellar deficits altered cerebral processing,
even though this did not directly translate to substantial behavioural impairments. Future

research into the functional significance of these cerebellar deficits is required.



List of Abbreviations

ACC anterior cingulate cortex

AICA anterior inferior cerebellar artery

CCAS cerebellar cognitive affective syndrome
CR conditioned reaction

CS conditioned stimulus

dIPFC dorsolateral prefrontal cortex

EEG electroencephalography

ERN error-related negativity

ERP event-related potential

FRN feedback-related negativity

fMRI functional magnetic resonance imaging
GABA gamma-aminobutyric acid

hEOG horizontal electrooculogram

LME linear mixed effects

MPRAGE magnetisation-prepared rapid acquisition gradient-echo

MSA-C multiple system atrophy-cerebellar type
Ne error negativity

NIBS non-invasive brain stimulation

OFC orbitofrontal cortex

Pe error positivity

PFC prefrontal cortex

PICA posterior inferior cerebellar artery

PRO prediction of response-outcome

RewP reward positivity

RPE reward prediction error

VI



rTMS
SCA
SN
SNc
spTMS
SUIT
TMS
UR

us
vbLSM
VEOG
vmPFC
VTA

WCST

repetitive transcranial magnetic stimulation
superior cerebellar artery

substantia nigra

substantia nigra pars compacta

single-pulse transcranial magnetic stimulation
spatially unbiased atlas template of the cerebellum
transcranial magnetic stimulation
unconditioned reaction

unconditioned stimulus

voxel-based lesion symptom mapping
vertical electrooculogram

ventromedial prefrontal cortex

ventral tegmental area

Wisconsin card sorting test

VI



Introduction

Reinforcement learning

Introduction

For most living beings, the ability to learn is not just critical for survival but also important for
general well-being. In disease, learning can be impaired, potentially leading to a less
successful or fulfilling life. While one might initially think of classical learning disabilities, such
as reading disorders or math disorders, disordered learning extends beyond the school
premises. Basic learning mechanisms shape the basis for many behaviours. One example is
agoraphobia: A person with agoraphobia might be afraid for their life when they step out their
door because of an alteration in their learning system. The perception of the outside
environment can be altered after a singular threatening encounter causing a strengthening in
the association between threat and avoidance behaviour. The difficulty to unlearn this response
towards fear has a significant impact on this person’s life which creates the conviction that it
would be dangerous to go outside. Another person might show an overly large preference
towards certain substances, making it challenging for them to stop using a specific substance,
and instead spiralling into addiction. It is thus of high interest to understand the processes

underlying these learning mechanisms.

An important distinction is to be made between non-associative and associative learning
(Pereira & van der Kooy, 2013; Thorwart & Livesey, 2016) which constitute two major
categories of basic learning mechanisms. Other — in parts more advanced — learning
mechanisms go beyond this distinction. These include, for example, observational learning
where the learner observes and imitates others (Bandura, 2008; Bandura et al., 1974), and
higher cognitive learning processes including insight where the learner takes into account a
broader context of the learning situation (Kéhler, 1921). The current work will, however, focus

on basic learning mechanisms, and in particular associative learning.

Non-associative learning mechanisms describe learning without making associations between
stimuli, and instead describe changes in reaction towards the same stimuli (Kirchkamp et al.,
2012). This primarily comprises habituation and sensitisation. Habituation describes a
decrease in reaction towards a stimulus with repeated exposure, while sensitisation describes

an increase in reaction with repeated exposure (Kirchkamp et al., 2012).

Associative learning mechanisms, on the other hand, describe learning via association of a
stimulus with another stimulus or reaction (Hawkins & Byrne, 2015). This mainly comprises
classical and operant conditioning. Even small organisms, such as nematodes, have been

shown to be susceptible to classical condition (A. J. Yu & Rankin, 2022). In classical
1



conditioning, an organism learns to associate an unconditioned stimulus (US; e.g., food) with
a conditioned stimulus (CS; e.g., a bell ring; Clark & Squire, 1998; Windholz, 1997). While
previously, only an unconditioned reaction (UR; e.g., salivating) was shown in response to the
US (food), the animal now also displays a conditioned reaction (CR, e.g., salivating, but does
not need to be the same as the UR) towards the CS (bell). On the other hand, operant
conditioning is available to animals with more complex nervous systems, including some
insects (Kriete & Hollis, 2022). Instead of linking two stimuli with each other, an action is linked
to a stimulus (Skinner, 1963; Thorndike, 1933). These stimuli are categorised into rewards
which increase a certain behaviour and punishments which decrease the behaviour. This can
be accomplished both by using appetitive and aversive stimuli: supplying an appetitive stimulus
is rewarding (positive reward), while removing it is punishing (negative punishment); supplying
an aversive stimulus is punishing (positive punishment), while removing it is rewarding

(negative reward; Papageorgi, 2021).

Humans use these basic learning strategies in everyday life, especially in unfamiliar
environments. An example from Schultz (2016) illustrates this nicely: Imagine standing in front
of a vending machine in Japan. You would like to receive the hot coffee drink, but it is not clear
from the images which button to press. You might try a button, and, surprisingly, the coffee is
dispensed! The next time you encounter this vending machine, surely, you would press the
same button. Yet, the next time, a milk tea is dispensed instead. Someone must have refilled
the machine in a different way. Now you are back to trying out buttons. This example nicely

illustrates how important operant conditioning is to find our way in unfamiliar environments.

However, these principles are not only useful to describe behaviour. In the computer science
domain, instead of describing real behaviours, these frameworks are used to optimise
behaviour of an actor (Sutton & Barto, 2018c), e.g., a drone that needs to move autonomously.
Many of the ideas originate in the psychological research of the early 20" century previously
described. They were, however, further developed to be applicable in computer science.
Interestingly, algorithms that work better in computer science also seem to show a better fit for
natural learning behaviour (Niv, 2009). It is thus extremely useful to understand these

frameworks when modelling the behaviour of animals, humans, or neural populations.

One such framework is reinforcement learning. It describes learning in an interactive
environment. Its origins largely go back to the “Law of Effect” proposed by Thorndike (1911),
i.e., essentially operant conditioning. It describes the strengthening or weakening of a
behaviour when an animal receives a stimulus or when a stimulus is withdrawn
(reward/punishment) in relation to a behaviour. Alan Turing first described such a construct in
a computer that goes along with the psychological “trial-and-error learning” and referred to it

as a “pleasure-pain system” (Turing, 1969). In computer science, reinforcement learning is a

2



subcategory of machine learning. Machine learning is a collective term for algorithms that can
learn from data and apply the knowledge to new data. For reinforcement learning to take place,
three prerequisites must be fulfilled (Sutton & Barto, 2018a): 1) the agent must be able to sense
its state, 2) it must be able to take actions to influence this state, and 3) it must have a goal.
This goal is usually to maximise a reward signal. These prerequisites are fulfilled for all operant
conditioning contexts. Note that the state refers to not only the environment of the agent but
also internal states. For example, it might be more or less useful to eat a large meal depending
on satiety. The basic components of a reinforcement learning algorithm involve at least three
components (Sutton & Barto, 2018a): 1) a policy, describing how the actor behaves in a given
situation, 2) a reward signal, and 3) a value function. In natural learning situations, the reward
signal is oftentimes (but not necessarily) supplied externally. While the value function attaches
subjective values to actions, states, and stimuli, the policy allows for optimisation of behaviour.
An essential dilemma in reinforcement learning lies between exploration and exploitation. To
increase reward, the agent must choose (exploit) actions which have proven to produce a
reward in the past. However, to maximise rewards in the future, it must also explore actions
not previously tried, as the gains might be larger than the known action-reward relations.
Stochastic relations need to be considered, as reward might not only differ in size, but also in
reliability, thus requiring a given action to be made more than once to gain sufficient

information.

Other types of machine learning, such as supervised and unsupervised learning (Sutton &
Barto, 2018c), have also been related to animal/human behaviour and neural activity.
Supervised learning describes learning from a training set with pairs of inputs (e.g., a situation)
and correct outputs (e.g., an action; Priddy & Keller, 2005). The goal is then to generalise
responses from this training set, in order to then also provide correct outputs towards new
inputs. The output may be categorical (classifier) or continuous (regressor; Sen et al., 2020).
This framework has often been referenced to describe cerebellar function (see below).
Unsupervised learning, in contrast, does not require a teaching signal. Instead, input may be
provided unlabelled, and patterns and characteristic properties are discovered without
requiring any additional input (Kyan et al., 2014). This functionality has been proposed for the
cerebral cortex (Marblestone et al., 2016). Note that the learning frameworks do not
necessarily work separate from each other. For example, a reinforcement learning algorithm

may include other approaches as subroutines.

Reinforcement learning algorithms

Even though reinforcement learning models have been derived from psychological theories
and have been relevant in computer science since the 80s, their application in

psychological/neuroscientific research has only become more popular in recent years. While
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there is a multitude of reinforcement learning models (confer Sutton & Barto, 2018c for an
overview), | will focus on the model used within this doctoral thesis (i.e., a Rescorla Wagner
model; Rescorla & Wagner, 1972; A. R. Wagner & Rescorla, 1972) together with the closely

associated temporal difference learning.

Rescorla-Wagner model Temporal Difference Learning
IR aq,
a4 141
A taq
s(t) = state at time point t R(t) = terminal reward at time point t
a,; = action 1 at time point t r(t) = reward at time point t

Figure 1. Graphical comparison of the Rescorla-Wagner model and temporal difference
learning.

Rescorla-Wagner Model

The Rescorla-Wagner model originally described association strengths in the context of
classical conditioning. It was developed in the 70s by the psychologists Robert Rescorla and
Allan Wagner (Rescorla & Wagner, 1972; A. R. Wagner & Rescorla, 1972). The model

equations describe associations between a CS and a US:
AVx 41 = axB(A = Vior)
and
Vi1 = Ve + AVx 41

where Uy, is the associative strength of the CS X towards the US in trial t, A is the maximal
associative strength for the US, ay is the learning parameter for stimulus X, and B is the
learning parameter for the US. AVy .., is thus the change in associative strength that is added

to Vy . to form the updated association strength Vy ;1.



For action value and reward prediction error (RPE) modelling, a simplified equation is
oftentimes used (Dayan, 2004), with various terms to refer to it, e.g., Q-learning (Haruno &

Kawato, 2006) or simple reinforcement learning (L. Zhang et al., 2020).
This derived equation describes the updating of action values and reads as follows:
Va,s+1 = Va,s + a(Ra,t - Va,s)

V, s denotes the predicted action value for action a at state s while R,, denotes the outcome
received for action a in state s. (R, —V,s) describes the error term, using the distance
between the prediction for the outcome and the actually received outcome. a, often referred to
as alearning parameter, is a parameter describing step size, i.e., how big of a change is applied
to the prediction following an RPE. Note that the equation does not include a predictor for
which actions would lead to which states; instead it is assumed that states are independent
from each other in a trial-based fashion. If an environment would require the performance of
several actions towards several states with a terminal outcome, the Rescorla-Wagner model
would thus only update predictions after the receipt of the outcome. While this approach seems
quite inefficient for organisms to perform in natural environments, the assumptions suffice in
an experimental environment where one terminal outcome follows an action performed in a
given environment, and where environments are independent from the performed action(s)

(i.e., an action does not influence which environment is encountered next).

Temporal Difference Learning

Temporal Difference Learning also finds its origins in psychology, i.e., from the concept of
secondary reinforcement (Sutton & Barto, 2018a). Secondary reinforcement describes that
after a given CS is paired with an US, it can be further paired with a second CS, and the CS
will trigger the UR as well (Myers, 1958). A good example for this might be money. While money
itself cannot directly fulfil a primary need (e.g., it cannot be eaten), it can be used to fulfil them

indirectly (e.g., by buying food).

Temporal difference learning enables updating without reaching the terminal outcome. It thus
considers that one action might lead to a more profitable state than another, which in turn leads

to a better total outcome. It is thus capable of describing more complex prediction processes.

While there are several temporal difference learning models, the simplest one is considered to

be the TD(0) model. The corresponding equation reads as follows:

V(se) =V(se) + a(rpgr + YV (Se41) — V()

where V(s;) denotes the value of the state s at time point t. At time point t+1, the update for
V(s;) is then performed, using V(s;,,), the value of the next state, and r;,,, the observed

outcome. Here, 1344 + ¥V (s¢41) — V(s;) describes the RPE (also referred to as temporal
5



difference error), thus taking into consideration the next state in addition to the received reward
and value of the state at time point t. Note that y is added as a temporal discounting parameter,
decreasing the value of states that lie further in the future. a again describes step size, in

parallel to its function in the Rescorla-Wagner model.

Temporal difference learning describes natural behaviour better which is not divisible into trials,
and where predictions can be updated at any time during the trial. An example for this would
be driving back from work. We might estimate the time it takes based on previous drives home
at the time of getting in the car. After driving for a few minutes, an announcement on the radio
warns us against a traffic jam, prompting us to adjust our estimation. Notably, updating the

estimate thus does not require to reach the terminal state (arrival at home).

Differentiation

To more clearly illustrate the differences between the Rescorla Wagner model and Temporal
difference learning for a more experimental setting, one might consider a classical conditioning
situation itself: the Rescorla Wagner model would assume that after CS-US associations have
been learnt, no RPE occurs when the US is presented following the CS, as the contingency
between CS and US is known, thus averting surprise at the US delivery. On the other hand,
the temporal difference learning model would assume an RPE even in this scenario, however,
at the time of CS delivery. Before the CS, no reward is expected, but after the CS, reward is
expected (Niv & Schoenbaum, 2008). A graphical comparison of the two approaches is also

given in Figure 1.

For the paradigm at hand of this doctoral thesis, a simple Rescorla-Wagner model suffices, as
the interest of the studies at hand lies in RPEs at the time of outcome delivery in a trial-by-trial

fashion.

Actor-critic model

Another notable model in neuroscience is the actor-critic model. The actor-critic model is a
combination of policy-based and value-based reinforcement learning (Barto et al., 1983). In
this algorithm, the actor, who chooses an action from several options (policy), is informed by a
critic, who evaluates how good the action was and how to adjust (value). The critic thus uses
a temporal-difference like evaluation function, while the actor determines the likelihood with
which each action is chosen at a given state (Barto et al., 1983; Dayan & Balleine, 2002; Niv,
2009).

Differences in nomenclature between psychology and computer science

As described in the introduction, reinforcement learning originates from psychology, primarily

relating to operant conditioning. Note that above, a classical conditioning scenario is being

described using reinforcement learning algorithms. Following the use of the concept in
6



computer science, scenarios which are not operant conditioning have started to be referred to
as reinforcement learning, as long as the behaviour of the agent can be described with a
reinforcement learning algorithm (Averbeck & Costa, 2017; Gershman et al., 2015; Swain et
al., 2011). This is mostly true for classical conditioning scenarios. Note that the application of
reinforcement learning algorithms for classical conditioning has also been criticised as
inappropriate (Dayan & Balleine, 2002). For the doctoral thesis at hand, the term reinforcement
learning will be used with its meaning restricted to operant conditioning. However, evidence
for reinforcement learning in the brain is oftentimes jointly drawn from the two types of

conditioning, and studies investigating classical conditioning will be brought up accordingly.

Reinforcement learning in the brain

Beginnings

While this doctoral thesis focusses on studies in humans, many ground-breaking discoveries
have been made through research in animals, and in particular in rodents and other primates.
One such study which paved the way for reinforcement learning as a concept outside of
computer science was performed by Wolfram Schultz and colleagues in 1993 and in further
follow-up studies (Schuliz et al., 1993, 1997; Silvetti & Verguts, 2012). In a simple classical
conditioning setup, they recorded dopaminergic neurons of macaques. A CS (a tone) was
followed by a US (a drop of juice). Initially, dopaminergic activity increased following delivery
of the US. However, after learning throughout the task, dopaminergic activity increased already
at the time of the CS. When the rewarding US was then unexpectedly not dispensed,
dopaminergic activity decreased below the baseline level. In this way, the dopaminergic activity
followed predictions made by temporal difference learning models, and displayed an RPE:
before learning, the CS did not trigger an RPE, but the rewarding US triggered a positive RPE.
The rewarding US was not previously expected and was a better outcome than expected, thus
violating predictions in a positive direction. After learning, the CS triggered a positive RPE,
giving notice to the soon occurring rewarding US. If then, the US was delivered as predicted,
no RPE occurred, and the dopaminergic activity consequentially stayed at baseline level.
However, if the US was not dispensed even though the CS was previously provided, a negative
RPE occurred, as the received outcome was now worse than expected. These findings
provided good evidence that dopamine neurons do not simply signal the reward (as assumed
previously), but instead signal an RPE (Niv, 2009). Since the 90s, reinforcement learning has

been explored more deeply in neuroscience.

Reinforcement learning in EEG

Many studies investigating reinforcement learning have been conducted using
electroencephalography (EEG) as it offers a high temporal precision. In EEG, a measure for

feedback processing was first proposed by Miltner and colleagues (1997), i.e., the feedback-
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related negativity (FRN). The FRN is a frontocentral component in the feedback-locked event-
related potential (ERP). It usually peaks within 200-350 ms after feedback onset with a relative
negative peak. In its origins and also nowadays, it was closely associated with the error-related
negativity (ERN) in terms of performance monitoring (Gehring et al., 2018; Holroyd & Coles,
2002; Potts et al., 2011). Performance monitoring encompasses a wide range of cognitive and
emotional functions required for adaptive behaviour which includes feedback processing and

error detection (see below for a more detailed overview; Peterburs & Desmond, 2016).

The ERN, originally termed error negativity (Ne), was first presented in 1989 by Michael
Falkenstein and colleagues (Falkenstein et al., 1991; Gehring et al., 2018). The term “ERN”
was introduced by Gehring and colleagues (1993), who found further evidence for this error-
related activity soon after. The ERN is a frontocentral negativity in the response-locked ERP.
It peaks within 100 ms post-response, and studies aligning its latency with the onset of
electromyographic activity of the relevant muscle (to press a response button) have shown that
the ERN onset starts at the same time (Gehring et al., 1993; Krigolson, 2018). The ERN is
increased (i.e., more negative) for response errors as opposed to correct responses
(Falkenstein et al., 1991; Gehring et al., 1993, 2018). It could also be shown that the ERN is
larger for bigger over smaller errors (Albrecht & Bellebaum, 2023; Bernstein et al., 1995). The
ERN has been proposed to reflect a fast-paced mismatch detection (Coles et al., 2001;
Nieuwenhuis et al., 2001). Source analyses have indicated the anterior cingulate cortex (ACC)
as a generator of the ERN (Herrmann et al., 2004; Hochman et al., 2009; Ladouceur et al.,
2006; Roger et al., 2010; for a review see Wessel, 2012). This is also consistent with
activations of ACC towards errors in functional magnetic resonance imaging (fMRI) studies
(Kiehl et al., 2000; Lutcke & Frahm, 2008; van Veen & Carter, 2002) as well as lesion studies
indicating reduced ERNs following damage to the medial prefrontal cortex (PFC) including the
rostral ACC (Maier et al., 2015; Stemmer et al., 2004).

Studies investigating the ERN oftentimes used tasks where errors are caused by impulsive
reactions rather than participants not knowing the correct response (Davies et al., 2001).
Miltner et al. (1997) investigated the idea that if the information on the correctness of a
response was not immediately known but provided through a feedback following the response,
would the ERN occur at this later time point? They indeed found an ERN-like component
following feedback presentation which was larger (i.e., more negative) for incorrect responses
(negative feedback) than correct (positive feedback). Follow-up dipole analysis found that this
component seemed to have the same neural generator as the ERN (i.e., ACC; Miltner et al.,
1997). They concluded that there must be a general underlying system for error detection. In
the following years, this ERN-like component was termed FRN, and treated as a separate but

related ERP component. Following studies have further supported the ACC as a neural
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generator for the FRN, via source localisation in EEG (Balconi & Scioli, 2012; Bellebaum &
Daum, 2008; Hauser et al., 2014; R. Yu et al., 2011; for a review see San Martin, 2012), similar
activation in fMRI studies (Amiez et al., 2012; Mies et al., 2011; Volz et al., 2005), and
electrophysiological recordings in rodent, macaque and most recently also human ACC
showing similar signals (Emeric et al., 2008; Oerlemans et al., 2025; Warren et al., 2015). A
very recent study performed in humans found that lesions to the ACC did indeed result in a
reduced differentiation between negative and positive feedback in FRN (Oerlemans et al.,
2024), providing further support for the ACC as a neural generator. This similarity in neural
generator thus further links FRN to ERN. The valence effect in the FRN is also well-evidenced
and has been continuously confirmed in a wide range of studies (Paul et al., 2025; for a review

see San Martin, 2012; see Figure 2 for a conceptual plot of the valence effect in FRN).

feedback onset

AW

= negative feedback

= positive feedback

+

Figure 2. Conceptual plot showing the Feedback-related Negativity (FRN) in the feedback-
locked grand-average event-related potential for positive and negative feedback.

Following the findings on the sensitivity on the FRN to feedback valence, separate accounts
have been made for the underlying mechanism. Two major theories emerged: the
reinforcement learning account proposed by Holroyd & Coles (2002; presented in more detail
below), and the prediction of response-outcome (PRO) account by Alexander and Brown
(2011). While the former account assumes a true reflection of outcome valence in FRN, the
second account attributes the higher FRN amplitude in response to negative feedback towards
a lower frequency of negative feedback. They consider that after learning, negative feedback
will occur much less frequently, as participants would generally make more correct than
incorrect choices. This would mean that the valence effect in the FRN amplitude could similarly
be explained as a general salience signal, as rarer stimuli have a higher salience. This can be

observed in so-called oddball tasks. In these tasks, participants need to identify an infrequent
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target stimulus in a series of frequent standard stimuli (Picton, 1992). Alexander and Brown
could provide evidence for their account by keeping the amount of negative and positive
feedback on similar levels, thus mostly eliminating oddball effects. They did this within a time
estimation task. Participants needed to press a button after a certain amount of time had
passed. The task thus does not have clearly distinct correct or false reactions. The amount of
positive and negative feedback can instead be manipulated by choosing the size of the
“correct” response time window. Alexander and Brown were able to adapt this time window
depending on individual task performances in a way that positive and negative feedback
occurred similarly often, thus preventing any confounding effects of feedback frequency. They
could show that valence effects disappeared. The PRO model thus reconciles different
proposed functionalities of ACC, in particular conflict monitoring and reinforcement learning
(Alexander & Brown, 2019).

However, several lines of evidence speak again the PRO model as the sole explanatory model
for ACC and FRN: 1), only very few neurons in the ACC show valence-independent activations
(Monosov, 2017). 2), in fMRI meta analyses, ACC was more strongly activated for signed over
unsigned RPE (Corlett et al., 2022; Fouragnan et al., 2018; although these findings might yet
be explainable by differences in feedback frequency). 3), the finding could not be consistently
replicated, and other groups could still find a valence effect even after keeping feedback
frequencies consistent among feedback valences (Becker et al., 2014; Schulreich et al., 2013).
Nevertheless, even though the feedback valence effect might not be fully explainable by
feedback frequency, feedback frequency is still an important variable to consider, especially
when certain feedback types occur more frequently than others, such as positive feedback in

later stages of learning tasks.

Another important aspect that overlaps in parts with frequency is expectancy, i.e., how
expected the feedback was. In many studies, the concept of expectancy has been determined
by the experimental manipulation, such as feedback probability (e.g., Bellebaum & Daum,
2008; M. X. Cohen et al., 2007; Pfabigan et al., 2011; for a review see Sambrook & Goslin,
2015). For example, in a probabilistic feedback learning task, a correct/incorrect choice does
not lead deterministically to a positive/negative feedback, but rather with a certain probability.
Here, a rare negative feedback (e.g., with a probability of 10 %) towards a correct choice might
be considered unexpected, while a frequent negative feedback (e.g., with a probability of 90
%) towards an incorrect choice might be considered expected. However, subjective predictions
might differ from objective probabilities. To explore this possibility, studies have been
conducted where participants are asked for their expectation during the experimental course
(Hajcak et al., 2007; Ichikawa et al., 2010). In these cases, participants are asked about their

prediction after making a choice and before receiving feedback. It could be shown that
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subjective predictions differed substantially from objective probability (Hajcak et al., 2005,
2007). While this could be considered the gold standard of assessing the expectations and
consequently the expectancy of a feedback, it requires significantly more time and effort on
the participants’ part. In recent years, instead, reinforcement learning approaches used in
computer science have been employed more and more to model the expectancy of a feedback
and the resulting RPE. It could be shown that the accuracy of these approaches is comparable
to the direct assessment of feedback expectancy (Ichikawa et al., 2010). Analyses relating the
FRN to modelled RPEs could consistently show that the FRN tracks RPEs, with a more
negative FRN towards negative RPEs and a more positive FRN towards more positive RPEs
(Burnside et al., 2019; Chase et al., 2011; Fischer & Ullsperger, 2013; Fromer et al., 2021; Hoy
et al., 2021; Humann et al., 2020; Kirschner et al., 2022; Rawls & Lamm, 2021). A conceptual
plot of this finding is given in Figure 3.

feedback onset

unexpected negative

expected negative

expected positive

+

unexpected positive

Figure 3. Conceptual plot showing the Feedback-related Negativity (FRN) as a function of
valence (positive, negative) and expectancy (expected, unexpected).

As proposed originally by Miltner et al. (1997), the FRN was assumed to be a relative negativity,
driven rather by negative than positive feedback. However, it was more recently proposed that
the actual effect stems from a positivity towards positive feedback concurrent with an
absence/reduction of this positivity towards negative feedback. This was in particular
evidenced by principal component analysis (Proudfit, 2015; Yin et al., 2018). It was suggested
to refer to the FRN more correctly as reward positivity (RewP; Holroyd et al., 2008; Proudfit,
2015). Notably, the term RewP was proposed as a more correct way to describe the FRN, i.e.,
limiting the term towards a matter of nomenclature. FRN/RewP have been oftentimes
quantified within the difference signal between positive and negative feedback, thus yielding
the same latency/amplitude in peak detection irrespective of whether the ERP for positive
feedback is subtracted from that for negative feedback or the other way around. However, the
11



FRN and RewP have also been discussed as different components with differing sensitivities
towards negative and positive valence and different quantifications (e.g., Cavanagh, 2015;
Cavanagh et al., 2019; Meadows et al., 2016). Source localisation shows differences for FRN
and RewP in neural generators: While literature supports the ACC as a generator of the FRN
(Krigolson, 2018; also see above), results for the RewP differ: the basal ganglia, and especially
the ventral striatum have been proposed as a neural generator (Proudfit, 2015). It was also
shown that the RewP reflects the neural activity towards positive RPEs better (Cavanagh,
2015; Hoy et al., 2021), similar to the differing sensitivity of dopaminergic neurons towards
positive and negative RPEs (see below). For the FRN, on the other hand, effects have been
in some studies clearer for negative RPEs and in other studies clearer for positive RPEs
(Chase et al., 2011; Hoy et al., 2021; Rawls & Lamm, 2021; Weber & Bellebaum, 2024). Future
studies might uncover these potential differences in more detail. For this doctoral thesis, the
term FRN will be used.

Reinforcement learning theory

A unified account of findings in EEG, (f)MRI, and the temporal difference learning principles
was proposed in 2002 by Holroyd & Coles. The FRN was previously already closely linked to
performance monitoring in terms of error monitoring, due to its close relation with ERN. Holroyd
and Coles provided a unifying approach, linking this performance monitoring system to the
reinforcement learning system in terms of a temporal difference learning signal. They proposed
that the ACC receives a temporal difference signal from the basal ganglia, which acts as a
critic, i.e., provides and updates a value-based signal. It also receives input from motor
controllers, such as amygdala, orbitofrontal cortex (OFC), PFC, and others. These areas solve
higher-level motor problems, and might weight different aspects, such as outcome value,
outcome delay, effort, or also be more suitable to navigate different types of problems, e.g.,
social situations. According to the reinforcement learning theory, these also receive a temporal
difference signal, in addition to sensory input. Holroyd and Coles proposed the ACC as a
control filter, allowing and disallowing access of the motor controllers to the motor system. This
thus offers an explanation why the FRN signal, likely generated by the ACC, can be observed

in a large variety of situations (FalRbender et al., 2023; Peters et al., 2024).

Brain structures involved in reinforcement learning

A wide range of brain regions has been proposed to be involved in reinforcement learning. This
is not surprising, as reinforcement learning is an important foundation for intact behaviour.
Regions considered most central to reinforcement learning and in particular the processing of

RPEs will be described below (also see Figure 4).
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Figure 4. Overview of brain regions closely associated with reinforcement learning. ACC =
anterior cingulate cortex, dIPFC = dorsolateral prefrontal cortex, vmPFC = ventromedial
prefrontal cortex, OFC = orbitofrontal cortex, SN = substantia nigra, VTA = ventral tegmental
area.

Substantia nigra

The substantia nigra pars compacta (SNc) has been consistently associated with
reinforcement learning. The activity of dopamine cells follows predictions of temporal difference
learning models quite closely, showing RPE signals (Nomoto et al., 2010; Zaghloul et al.,
2009). There is good evidence that the SN is required for reinforcement learning. It was shown
that people with disease affecting dopaminergic neurons in the SN, such as Parkinson’s
disease, show worse reinforcement learning (Shiner et al., 2012). Additionally,
neurostimulation of the SN in Parkinson patients undergoing deep brain stimulation surgery
also decreased reinforcement learning success (Ramayya et al., 2014). The SN is connected
to a wide range of brain regions, including the thalamus, nucleus ruber, basal ganglia,
cerebellum, primary motor cortex, primary sensory cortex, and others (Kwon & Jang, 2014).
There also seems to be a distinction in functional connectivity for the motor, cognitive, and
limbic domain (Y. Zhang et al., 2017): while the lateral SNc seems to mainly connect to

sensorimotor regions, the medial SNc shows connections towards limbic regions, such as
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OFC, hippocampus, and amygdala. The ventral SN connects to PFC, ACC, and anterior insula.

It is thus conceivable that different parts of the SN process RPE depending on the domain.

Ventral tegmental area

The ventral tegmental area (VTA) is an area in the midbrain which contains dopaminergic cells
and is also considered part of the reward circuitry (Morales & Margolis, 2017). Similar to
dopaminergic neurons in the SNc, it could be shown that dopaminergic neurons in the VTA
reflect RPEs (J. Y. Cohen et al.,, 2012; Takahashi et al., 2023). The VTA has reciprocal
connections with a wide range of brain areas, including (medial) PFC, basal ganglia, amygdala,
and several further subcortical structures related to reinforcement learning and reward
(Coenen et al., 2018; Derdeyn et al., 2022; Kwon & Jang, 2014; Morales & Margolis, 2017). It
also shows connectivity with sensorimotor areas (Hosp et al., 2019). There is evidence that
the function of the VTA and SNc might differ, with the VTA relaying true value-based signals,
while the SNc relays information that might better align with policy, in terms of an actor-critic
model (Araujo et al., 2024; Fraser et al., 2023; Lerner et al., 2021; Ramayya et al., 2014).
Besides the dopaminergic neurons and projections of the VTA, there has been considerable
research on gamma-aminobutyric acid-ergic (GABAergic) and glutamatergic neurons in the
VTA (Walsh & Han, 2014), also attributing a role in reinforcement learning to these neurons (J.
H. Yoo et al., 2016).

Note that some studies do not differentiate between VTA and SNc, and instead only specify
that they measured dopaminergic neurons (e.g., Bayer & Glimcher, 2005; Schultz et al., 1997)
or jointly report results for the two structures (e.g., Chowdhury et al., 2013; S. Zhang et al.,

2016). This is oftentimes due to difficulties in distinguishing the two areas (Trutti et al., 2019).

Striatum

The striatum, the largest part of the basal ganglia, has been recognised as one of the main
processing stations for reinforcement learning. It receives dopaminergic input from the SN and
the VTA, and is central to action selection (Bariselli et al., 2019; Silberberg & Bolam, 2015).
Distinctions have been made into the ventral and dorsal striatum (and also the central striatum
as a transitory zone; Basile et al., 2021). The ventral striatum contains the nucleus accumbens,
while the dorsal striatum contains the nucleus caudatus and the putamen (Haber, 2011; Yates,
2023). Note that the ventral striatum also includes parts of the nucleus caudatus and putamen
(Haber, 2011). The ventral and dorsal striatum differ in their connectivity to the PFC, with the
ventral striatum receiving projections from the ventromedial PFC (vmPFC) while the dorsal
striatum receives projections from the dorsolateral PFC (dIPFC; Averbeck & O’Doherty, 2022).
Both areas have been implicated in reinforcement learning, mostly in terms of value functions
(Fellows & Farah, 2007; Lee & Seo, 2007; O’'Doherty, 2011; also see below). While the dorsal
and ventral striatum do not directly project back to the PFC, they do so indirectly. The ventral
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and dorsal striatum project towards the ventral and dorsal pallidum, respectively, which then
projects towards the vmPFC and dIPFC, respectively, via the medial dorsal nucleus of the
thalamus (Averbeck & O’Doherty, 2022).

Concerning function, there has been considerable support that the ventral and dorsal striatum
act as critic and actor, respectively, in terms of an actor-critic model (Araujo et al., 2024;
Balleine et al., 2007; O’'Doherty et al., 2004). Consequently, the ventral striatum should reflect
value-related information while the dorsal striatum should reflect policy-related information.
The ventral striatum was shown to indeed reflect RPE and reward value (D’Ardenne et al.,
2008; although there have been some inconsistencies dependent upon used measures; van
der Meer & Redish, 2011). It is also connected to several brain areas associated with value-
based functions. The vmPFC, with which the ventral striatum has reciprocal connections, is
strongly associated with the tracking of outcome values (Hiser & Koenigs, 2018; Jocham et al.,
2011). Considerable input to the ventral striatum comes from the VTA, which has consistently
shown to reflect RPEs (D’Ardenne et al., 2008; Lerner et al., 2021). For the dorsal striatum,
evidence points towards a role in action selection (Balleine et al., 2007; Nakano et al., 2000),
further supported by its input broadly coming from, but not limited to, sensorimotor areas
(Nakano et al., 2000; Postuma & Dagher, 2006). Findings thus seem consistent with an actor-

critic distinction within the striatum.

Anterior cingulate cortex

The ACC has oftentimes been proposed to play a role in performance monitoring, an
overarching framework for reinforcement learning (Botvinick et al., 1999; Clairis & Lopez-
Persem, 2023; Holroyd et al., 2004). Important functional distinctions have been made
according to topography: The ACC can be subdivided into a more anterior part, referred to as
rostral/ventral ACC, and a more posterior part, referred to as caudal/dorsal ACC (Stevens et
al., 2011). A functional distinction has been proposed in terms of hierarchy of action selection,
with dorsal ACC monitoring performance of specific tasks and rostral ACC monitoring the
execution of higher-level operations (Holroyd & Verguts, 2021). This is further supported by its
connectivity towards other brain areas: the dorsal ACC has shown connectivity towards
sensorimotor circuits, while the rostral ACC has shown connectivity towards prefrontal regions
(Margulies et al., 2007). Similar has been proposed for prediction errors, with dorsal ACC
suggested to compute prediction errors for specific events and rostral ACC to compute
prediction errors concerning the context of the event (Holroyd & Verguts, 2021). Monosov
(2017) conducted single cell recordings showing that ACC neurons reflected outcome
uncertainty, with reward-related information more in the dorsal ACC and punishment-related
information more in the rostral ACC. Only few neurons showed excitations towards uncertainty

under both contexts. However, lesion studies have yielded less clear results considering the
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role of the ACC, with the majority showing deficits in cognitive control and behavioural flexibility
(e.g., Akam et al., 2021; Brockett et al., 2020; di Pellegrino et al., 2007; Maier et al., 2015; but
also see Kennerley et al., 2006; Rushworth et al., 2003).

The connectivity of the ACC further supports a role in reinforcement learning. The pregenual
ACC, a subdivision of the rostral ACC (Stevens et al., 2011), showed connectivity to the vmPFC
and lateral OFC, areas which process outcome value information (Rolls, 2023). Connectivity
with the VTA was also shown: the direction, however, depends on approach/avoidance
behaviour (Elston et al., 2018, 2019), an important function for anxiety disorders (Aupperle &
Paulus, 2010; Wong et al., 2022). Between the rostral and dorsal ACC, there seems to be a
transitory zone which seems to integrate both sensorimotor and prefrontal networks, potentially

with the function of conflict and error monitoring (Margulies et al., 2007).

Amygdala

The amygdala is most known for its function in fear (LeDoux, 2007). However, the amygdala
has been found to be involved in a wide range of functions, such as aggression, maternal and
sexual behaviours (LeDoux, 2007). The amygdala seems to also play a central role in
reinforcement learning. A study performed in macaques could show that lesions in the
amygdala resulted in deficits in both deterministic and stochastic reinforcement learning (Costa
et al., 2016). The amygdala receives projections from the VTA (Tang et al., 2020) and it could
be shown that inhibition of these projections can decrease learning of drug-seeking behaviour
but did not affect reinstatement (D. M. Smith & Torregrossa, 2024).

Orbitofrontal cortex

Electrophysiological recordings and imaging studies have found a multitude of signals related
to reinforcement learning within the OFC, including outcome value, choice representation,
RPE, action-outcome history, and outcome expectation (for a review see Groman et al., 2021).
The OFC might integrate these signals (Moneta et al., 2024). Indeed, it has been proposed
that the OFC provides state representation, i.e., task-related information such as the mapping
of state transitions (Schuck et al., 2018; Z. Zhang et al., 2018). This would naturally require the
input of a lot of task-related information. Several lesion studies have indicated that the OFC is
required for classical conditioning, the learning of stimulus-outcome associations, and meta
reinforcement learning (Camille et al., 2011; Hattori et al., 2023; McDannald et al., 2011;
Rudebeck et al., 2008).

Ventromedial prefrontal cortex

The vmPFC lies directly adjacent to the OFC and is functionally oftentimes closely associated
with it, as both are part of the limbic loop (J. X. Wang et al., 2018). The vmPFC tracks expected

outcome values, task state, and outcome values of irrelevant, alternative contexts, and seems
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to integrate this information (Moneta et al., 2023, 2024). Patients with damage to the vmPFC
show deficits in reinforcement learning within both maintenance and adaptation of outcome

values (Schneider & Koenigs, 2017).

Dorsolateral prefrontal cortex

The dIPFC also tracks information closely related to reinforcement learning, such as outcome
value and RPE (Lee & Seo, 2007). It seems to construct object value estimates from previous
recent experiences, converting this information to choice signals (Tsutsui et al., 2016). This is
further supported by the finding that the dIPFC modulates activity in the motor cortex (Morris
et al., 2014), and studies using non-invasive brain stimulation (NIBS) showing that stimulation
of the dIPFC influences reinforcement learning strategies (Ott et al., 2011; Overman et al.,
2023). While stimulation of the left dIPFC increased reward-guided behaviour, stimulation of
the right dIPFC increased avoidance-guided behaviour. As such, the role of the dIPFC has not
fully been differentiated from the ACC (J. X. Wang et al., 2018).

Feedback valence

While the original article by Schultz and colleagues (1993) indicated that positive and negative
RPEs are processed within the same system, this same finding has not been so clear in
subsequent fMRI and EEG studies. The decrease of dopaminergic neuron firing rate below
baseline observed by Schultz et al. (1993) was also rather small, as the baseline of
dopaminergic neurons is rather low (3-8 spikes per second; Niv & Schoenbaum, 2008). It was
shown that micro-stimulation of the SN only had an effect on behaviour related to positive, but
not negative feedback (Ramayya et al., 2014). For EEG, there has been an ongoing debate
on whether the valence effect within the FRN stems from a negativity towards negative
feedback or rather a positivity towards positive feedback, resulting in the question whether
different measures should be used (see above for a discussion of RewP). The FRN is more
strongly associated with negative valence, while the RewP is more strongly associated with
positive valence. The differentiation into valences has also been of topic in fMRI studies.
Findings overlap, with the ventral striatum, i.e., the suggested generator of the RewP, rather
coding positive prediction errors and the dorsal ACC, i.e., the suggested generator of the FRN,
rather coding negative prediction errors (Meder et al., 2016). This effect was confirmed in a

recent meta-analysis (Corlett et al., 2022).

Reward and punishment

While RPE valence is oftentimes considered before outcome valence, there might be
differences in how prediction errors are processed for rewards and punishments. The findings
by Schultz et al. (1993, 1997) were based on reward delivery and reward omission. One might
assume that reinforcers can be grouped into rewarding ones (i.e., reward delivery, punishment

omission) and punishing ones (i.e., reward omission, punishment delivery). Photostimulation
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was able to elicit both approach behaviour by excitatory stimulation of the SNc and VTA, and
avoidance behaviour by inhibitory stimulation of both SNc and VTA (llango et al., 2014).
However, it could be argued that this did not require a distinction into reward-related and
punishment-related stimuli. In practice, this assumption proves difficult. Studies in
dopaminergic neurons examining aversive stimuli could not find a sensitivity towards
punishment-related stimuli (punishment delivery and withdrawal; Fiorillo, 2013; Mirenowicz &
Schultz, 1996). It is thus advisable to consider both appetitive and aversive contexts before

generalising from one to the other.

Signed and unsigned reward prediction errors

While a true RPE is signed and thus contains valence information, the magnitude of the RPE
can be regarded separately from valence, in the form of an unsigned RPE. Considering brain
regions with more activity related to signed than unsigned RPE, a meta-analysis performed by
Corlett et al. (2022) could find activation of the dorsal and ventral striatum, pallidum, medial
PFC and anterior and posterior cingulate. As described above, these are regions associated
with value-based functions or policy selection within reinforcement learning. In addition,
neurons in the pallidum were shown to also reflect signed RPE activity, and correlate with
learning rates in a classical conditioning setup (Kaplan et al., 2020). For the posterior cingulate,
a multitude of functions has been proposed, including monitoring of subjective values and
reward outcomes (Pearson et al., 2011). Considering brain regions that reflect an unsigned
RPE more strongly than the signed RPE, Corlett et al. found the cerebellum, dIPFC,
dorsomedial PFC, cingulate, SMA, supramarginal gyrus, parietal regions, middle temporal
gyrus, claustrum, and a disparate region of insula. Several of these regions have been
implicated in reinforcement learning: the cerebellum has been implicated in processing of
RPEs in some initial studies (see below for an in-depth discussion). The dIPFC and parietal
cortex have been found to track action values (Lee et al., 2012). The dorsomedial PFC
including the SMA has been implicated in probabilistic reasoning concerning switching
between exploitation and exploration (Domenech & Koechlin, 2015). The supramarginal gyrus
and anterior insula have been associated with predictive functions (Siman-Tov et al., 2019).
The middle temporal gyrus has been associated with the detection of general sensory
mismatches, independent of actions (van Kemenade et al., 2019). Lastly, for the claustrum, a
more general role in cognitive control and higher cognitive functions has been proposed
(Madden et al.,, 2022; J. B. Smith et al.,, 2020). Taken together, there are considerable
differences in brain regions processing signed and unsigned RPEs, which might be

differentially related to valence and salience.
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Classical and operant conditioning

As presented above, reinforcement learning encompasses only operant conditioning, as it
requires an actor to influence its state through its actions. This is not the case for classical
conditioning. Thus, while brain activity in both processes can be explained by reinforcement
learning algorithms, this does not extend to behaviour. Brain activity might still differ depending
on the type of conditioning. Corlett et al. (2022) found that there was an overlap in brain
activations between classical and operant conditioning, especially in dorsal and ventral
striatum, insula and midbrain. However, there were also differences in activation: operant
conditioning engaged the dorsal and ventral striatum, anterior and posterior cingulate, and
several other frontal and parietal regions more, while classical conditioning engaged the
amygdala, parahippocampal gyrus, putamen, insula, and several other cortical and subcortical
areas more. Note that this might be due to different use of positive/negative outcomes in
classical and operant conditioning (Corlett et al., 2022). Notably, there yet seems to be a
pattern where action-outcome association (which might only occur in operant conditioning)
requires the ACC and not the OFC, but stimulus-outcome association (which can occur in both
classical and operant conditioning) requires the OFC but not the ACC (Camille et al., 2011;
Rudebeck et al., 2008). These findings are not explainable by valence effects. There might
thus yet be a difference in the required brain areas for classical and operant conditioning, even

though the overlap seems to be considerable.

Feedback delays

While feedback can be provided immediately upon action performance, it can also be provided
after a delay. Feedback delay generally refers to the time passed between the response and
feedback presentation. It could be shown by several groups that the FRN is more negative for
negative over positive feedback only, or at least more strongly, for feedback delivered with only
short delays compared to feedbacks delivered with longer delays post-response (Arbel et al.,
2017; Holtje & Mecklinger, 2020; Weinberg et al., 2012; Weismiiller & Bellebaum, 2016). At
least one study (Peterburs et al., 2016) also showed a gradual decrease in valence
differentiation with increasing feedback delay. This reflects fMRI findings showing that longer
feedback delays result in less involvement of the striatum/dopaminergic structures and
increased involvement of the medial temporal lobe, in particular the hippocampus (Foerde &
Shohamy, 2011).

Evidence for a role of the cerebellum in reinforcement learning

While many neuroimaging studies have been conducted on the matter of reinforcement
learning, focus has been put on dopaminergic structures. Descriptive models have further
focussed on the cerebral cortex in relation to dopaminergic structures, as it is easy to measure

with fMRI. Smaller structures, on the other side, are harder to measure with the resolution of
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fMRI. In the past, it was general practice to not or not fully measure the cerebellum due to
reasons of practicality. In fMRI, measuring the complete cerebellum in addition to the cerebrum
oftentimes requires a larger field of view, increasing acquisition time. In addition, cerebellar
activity is likely only partially captured by fMRI (Johnson et al., 2019). In EEG, the cerebellum
lies in an impractical region at the lower back of the head, which is not covered by standard
EEG caps and where impedances are usually higher. Additionally, muscle artefacts due to the

proximity to the neck muscles are more present (Todd et al., 2018).

Considering recent studies in humans and rodents, this might have concealed a potential
supportive role of the cerebellum in reinforcement learning (Berlijn et al., 2024; Kostadinov &
Hausser, 2022; Kruithof et al., 2023). In rodents, several studies from different groups have
found activity in the cerebellum and in projections originating from the cerebellum resembling
RPEs (Hull, 2020; Kostadinov & Hausser, 2022; Manto et al., 2024). These studies offer good
reason to look more closely at the cerebellum and its role in reinforcement learning. For
humans, evidence is more correlative with only limited causal evidence (e.g., Nicholas et al.,
2024; Rustemeier et al., 2016; Thoma et al., 2008). It is further not clear what the cerebellum
contributes to the reinforcement learning processes, i.e., which role it plays. Within the doctoral

thesis at hand, | attempted to contribute towards answering these questions.

The cerebellum and its functions

The human cerebellum is a brain structure located inferior and posterior to the cerebrum
(Btaszczyk et al., 2024). It lies in the posterior cranial fossa, just below the occipital lobe. Even
though its size is small (with its Latin name meaning little brain), its cortex is folded much more
delicately. The cerebellum contains around 50 % of the total number of neurons in the brain
and has around 80 % of the surface volume of the neocortex even though it makes up only
around 10 % of the total brain mass (Azevedo et al., 2009; Sereno et al., 2020; van Essen et
al., 2018). Concerning its composition, clear differences from the composition of the cerebrum
must be considered. While these differences might enable the cerebellum to perform certain
tasks that cannot be performed by the cerebrum (such as fine movements), they are also one
of the reasons why cerebellar functionality beyond motor function has been historically
underresearched. Its different composition requires potentially different ways of measuring,

analysing, or interpreting data that require knowledge of these differences.

Anatomy

Macroscopic anatomy

The cerebellum consists of two hemispheres as well as the vermis in the middle (Colin et al.,
2001; Voogd & Glickstein, 1998; Voogd & Marani, 2016). The cerebellar cortex can be

distinguished into ten lobules which are separated by sulci running from left to right. Lobule I-
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V are generally considered to be the anterior lobe of the cerebellum while lobule VI-IX are
considered to lie in the posterior lobe of the cerebellum. The anterior and posterior lobe of the
cerebellum are separated by the fissure prima (Moulton et al., 2014). Note that lobules VIl and
VIII are frequently separated into Lobule Vlla/Vllla and VIIb/VIlIb, and Lobule Vlla is further
separated into Crus | and Il. The flocculonodular lobule (lobule X) is separated from the
posterior cerebellum by the posterolateral fissure (Voogd & Glickstein, 1998). An anatomical
overview of cerebellar lobes, lobules, and sulci is given in Figure 5. Broadly speaking, motor
functions have been attributed to anterior parts and higher (non-motor) functions to the
posterior part (e.g., cognition, emotion, social behaviour; Stoodley et al., 2016; Tedesco et al.,
2011). The posterior cerebellar lobe, in particular Crus | and Il, developed over-proportionately
from an evolutionary standpoint, together with prefrontal cerebral areas, supporting the notion

that it supports higher cognitive function (Balsters et al., 2010).

vermis hemisphere
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Figure 5. Schematic illustration of the cerebellar lobes, lobules, and sulci.

While anatomical parcellations of the cerebellum into lobules have been helpful to report
findings, these do not reflect functionally distinct zones accurately, and activations often cross
lobule borders. In recent years, attempts have been made to parcellate the cerebellum based
on non-anatomical markers, such as resting state activity (Buckner et al., 2011) and task-based
activations (King et al., 2019; Nettekoven et al., 2024). The most recent functional parcellation
developed by Nettekoven et al. (2024) made use of several datasets which used different types
of tasks, as to overcome inaccuracies due to lack of certain task types (e.g., motor tasks,
working memory tasks, somatotopic tasks). The resulting parcellation distinguishes into four

different functional regions on the coarsest level which are motor, action, demand, and social-
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linguistic-spatial functions. Such functional parcellations have been shown to have higher
predictability of functional boundaries (Nettekoven et al., 2024), and might be a useful addition
to report (f)MRI findings.

Within the white matter in the middle of the cerebellum lie the cerebellar nuclei, the only output
station of the cerebellum. There are four cerebellar nuclei: the dentate nucleus, the fastigial
nucleus, the globose nucleus, and the emboliform nucleus (Colin et al., 2001; Prekop &
Wingate, 2016). The globose nucleus and the emboliform nucleus are sometimes collectively
referred to as interposed nucleus (Prekop & Wingate, 2016). The dentate nucleus is the largest
of the four nuclei and contains 90 % of the cerebellar nuclei neurons (Colin et al., 2001). The
output from the dentate nucleus seems to be segregated according to functionality, with dorsal
parts sending projections towards cerebral motor areas, and ventral parts sending projections
to cerebral non-motor areas (e.g., areas concerned with cognitive, emotional, executive, or

linguistic functions; Ramnani, 2012).

The cerebellum is supplied with blood via three paired arteries. The posterior inferior cerebellar
arteries (PICAs) originate directly from the intracranial vertebral arteries (Bftaszczyk et al.,
2024; Caplan, 2022; Delion et al., 2017). They supply posterior portions of the cerebellum, but
in some cases also contribute to supply towards the cerebellar nuclei, in particular the fastigial
nucleus and at times the ventral part of the dentate nucleus (Caplan, 2022; Delion et al., 2017).
The intracranial vertebral arteries join at the medullo-pontine junction, forming the basilar
artery. The anterior inferior cerebellar arteries (AICAs) then originate from the basilar artery
(Delion et al., 2017), supplying a rather limited part of the anterior cerebellum and flocculus
(Caplan, 2022). Lastly, the superior cerebellar arteries (SCAs) originate from the end of the
basilar artery (Btaszczyk et al., 2024; Malicki et al., 2023), close to the location where it splits
into the paired posterior cerebral arteries (Caplan, 2022). It supplies the upper areas of the
cerebellum but also the cerebellar nuclei (Btaszczyk et al., 2024; Caplan, 2022; Delion et al.,
2017; Malicki et al., 2023). The SCAs and PICAs can usually be distinguished in lateral and
medial branches (Delion et al., 2017). Strokes in the cerebellum are often limited to these two
major arteries, and oftentimes also to the medial or lateral branch (e.g., medial SCA; Caplan,
2022). Note that the supply of these three arteries is not limited to the cerebellum. For example,
the AICAs largely supply the lateral pontine tegmentum, and the medial PICAs often also
supply the dorsal medulla oblongata (Caplan, 2022). There is also evidence that the SCAs
partially supply the lateral pontine tegmentum and the pontine and mesencephalic tectum
(Caplan, 2022; Delion et al.,, 2017). Cerebellar strokes however do not always affect

extracerebellar brain areas (Chaves et al., 1994).
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Cytoarchitecture

Considering the seminal work of Korbinian Brodmann, who mapped the entire cerebral cortex
based on the differences in cytoarchitectural organisation, one might expect that the same is
true for the cerebellar cortex. However, very different from the cerebral cortex, the cerebellar
cortex shows a uniform organisation, and consequently no differences in cytoarchitectural
organisation between cerebellar areas with different functionality (Schmahmann, 2000). This
peculiarity later resulted in the idea that the cerebellum might simply perform the same
computations for different domains (see below). Note that more recent work did find more
subtle differences in microscopic architecture and other areas, such as differences in dendritic
bifurcation of Purkinje cells (Busch & Hansel, 2023), or Zebrin expression (Y.-C. Lin et al.,
2020).

The cerebellar cortex consists of three layers (Voogd & Glickstein, 1998): The granule layer
lies closest to the white matter and furthest from the cortical surface. The molecular layer is

located on the surface of the cerebellar cortex, and in between the two lies the Purkinje layer.

Granule layer
The granule layer’s main purpose is thought to separate patterns received from the input from
mossy fibres and expand them (Dieudonné, 2016). It contains granule, Golgi, unipolar brush,

and Lugaro cells (Ruigrok et al., 2015).

The small granule cells are the main type of cells in the human brain, with cerebellar granule
cells making up more than half of all neurons in the human brain (Herculano-Houzel, 2010; M.
J. Wagner et al., 2017). Granule cells receive their input mainly from mossy fibres which
originate from several different brain regions (Shinoda & Sugihara, 2022; see below for a
summary of input to the cerebellum via mossy fibres). While one granule cell receives input
from 4-5 mossy fibres, one mossy fibre supplies 400-600 granule cells (Ito, 2009). The output
of granule cells is excitatory, using glutamate as neurotransmitter (Hudson et al., 1976; Su et
al.,, 1997). The axons reach into the molecular layer which is at the surface of the cerebellar
cortex. There, the axons bifurcates, forming a ‘T’-shape, and constituting the parallel fibres
(D’Angelo, 2016). Besides granule cells, Golgi cells and unipolar brush cells can be found in

the granular layer.

Golgi cells receive excitatory inputs from both mossy fibres and granule cells (Dieudonné,
2016). The input from granule cells originates both from ascending axons of neighbouring
granule cells, as well as from more distant granule cells via parallel fibres. Golgi cells also
receive inhibitory inputs from Lugaro cells (Lainé & Axelrad, 1998). Collaterals from climbing
fibres also innervate Golgi cells (Castejon & Sims, 2000). While some Golgi cells are

interconnected with each other, Golgi cells do not receive input from Purkinje cells or molecular
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layer interneurons (Dieudonné, 2016). Golgi cell output is the only inhibitory input for granule
cells. Arole in spatio-temporal coordination of cerebellar responses has been proposed for the

Golgi cells, consistent with their complex intracerebellar connectivity (Galliano et al., 2010).

Unipolar brush cells, which can be found in the cochlear nuclear complex in addition to the
cerebellar cortex, receive their input, similarly to the granule cells, from mossy fibres (Martina,
2016). However, one unipolar brush cell receives input from only one mossy fibre, via its short
dendrite with a brush-like ending (Martina, 2016). Their axons do not leave the granule layer,
and instead terminate at several mossy fibres, forming a feedforward amplification of mossy

fibre signal (Mugnaini et al., 2011).

Lastly, the Lugaro cells lie just beneath the Purkinje cell layer, but still in the granule layer
(Hirono, 2016). They receive input from a multitude of fibres and cells, including climbing fibres,
mossy fibres, granule cells, Purkinje cells and Golgi cells (Miyazaki et al., 2021). They are also
well interconnected with neighbouring Lugaro cells (Miyazaki et al., 2021). While they do not
innervate Purkinje cells, they exert an inhibitory output towards basket and stellate cells in the

molecular layer as well as towards Golgi cells (Lainé & Axelrad, 1998; Miyazaki et al., 2021).

Molecular layer

The most superficial layer, i.e., the molecular layer, contains the parallel fibres as well as
stellate and basket cells. Both of these cell types are inhibitory interneurons, and both receive
excitatory input from parallel fibres and climbing fibres (S. J. Liu & Dubois, 2016; Watanabe,
2016). They are often collectively referred to as molecular layer interneurons. However, their
function might differ, as they inhibitorily stimulate Purkinje cells at different points. Basket cells
are located in the basal third of the molecular layer and stimulate the soma and axons of
Purkinje cells (Watanabe, 2016). Thus, they can inhibit the spiking output of Purkinje cells (S.
J. Liu & Dubois, 2016; Watanabe, 2016). Stellate cells on the other hand suppress Purkinje
cell activity in a different way: they are located in the top 2/3 of the molecular layer and target
the dendrites of Purkinje cells (Watanabe, 2016). As Purkinje cells also receive input from
parallel fibres (Daniel & Crepel, 2022; Grangeray et al., 2016), stellate cells inhibit rather via
counterbalancing the parallel fibre excitation without directly inhibiting the spiking output of

Purkinje cells (Watanabe, 2016). This is often referred to as a feedforward inhibition.

Purkinje layer

Lastly, the much thinner Purkinje layer lies between the granule and molecular layer. It contains
the Purkinje cells, but also the much smaller candelabrum cells (Grangeray et al., 2016; Lainé
& Axelrad, 1994).

Purkinje cells are some of the most remarkable cells in the cerebellar cortex, having the largest

dendritic tree out of all cells in the human brain (Busch & Hansel, 2024). They were first
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described by Jan Evangeliska Purkyné in 1893 and famously characterised by Ramén y Cajal
in 1899 (Grangeray et al., 2016). They receive excitatory input from the granule cells via the
parallel fibres as well as from the climbing fibres. While one Purkinje cell receives input from
an average of 200,000 parallel fibres, it is innervated by only one climbing fibre (Daniel &
Crepel, 2022; Grangeray et al., 2016; Shinoda & Sugihara, 2022). Note that the latter
information was strongly driven by findings in rodents, in which around 47.5 % of Purkinje cells
have only one dendrite. Newer findings show that around 16.6 % of rodent Purkinje cells are
polysynaptic, i.e., have several trunks emerge directly from the soma (Busch & Hansel, 2023).
These numbers are strongly increased in humans, especially for the polysynaptic Purkinje cells
(51.2 % instead of 16.6 %; Busch & Hansel, 2023), potentially hinting at inputs from more than
one climbing fibre. Very recently it could be shown that indeed at least 1/10 of Purkinje cells
receive input from more than one climbing fibre (Busch & Hansel, 2024). The Purkinje cells
also receive inhibitory input from the molecular layer interneurons (see above). One single
axons targeting the cerebellar nuclei constitutes the inhibitory, GABAergic output of the
Purkinje cells (Grangeray et al., 2016). While stimulation of parallel fibres result in a simple
spike output, stimulation of climbing fibres results in a complex spike output, which is a massive
electrical output compared to the smaller and frequent simple spikes (Bauswein et al., 1983;
Davie et al., 2008; Grangeray et al., 2016; Orozco et al., 2010).

The candelabrum cells form a part of an inhibitory loop between the molecular layer
interneurons and Purkinje cells (Lainé & Axelrad, 1994; Osorno et al., 2022): They receive
excitatory inputs from granule cells and mossy fibres, but also receive inhibitory inputs from
Purkinje cells. Integrating these inputs, candelabrum cells project towards stellate and basket
cells in the molecular layer. Nevertheless, their exact function is not yet well understood
(Osorno et al., 2022).

Note that this unique neuroarchitecture of the cerebellum makes it a very suitable candidate
for a supervised learner: the massive sensory input from the mossy fibres ensures sufficient
input of information, while climbing fibre input has oftentimes been proposed as a teaching
signal input, constituting the two main requirements for a supervised learner (Priddy & Keller,
2005; Raymond & Medina, 2018).

Cerebellar nuclei neurons

Lastly, the cerebellar nuclei consist of several distinct types of neurons. The two best known

projecting neurons are the large glutamatergic projection neurons which project to several

areas outside the cerebellum and the midsize GABAergic projection neurons which project to

the inferior olive (Hoshino et al., 2022; Kebschull et al., 2024). Additionally, there are several

other types of neurons described for the cerebellar nuclei, including glutamatergic,

GABAergic, and glycinergic neurons (Bagnall et al., 2009; Uusisaari et al., 2007; Uusisaari &
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De Schutter, 2011; Uusisaari & Knopfel, 2010). Five types are found in all cerebellar nuclei,
which are Class A and B glutamatergic projection neurons, GABAergic neurons projecting to
the inferior olive, local GABAergic and glycinergic neurons, and GABA and glycinergic neurons
projecting to the cerebellar cortex (Kebschull et al., 2024). However, so far, 14 types of
excitatory cell types could be identified across all nuclei (Kebschull et al., 2024), showcasing
a high complexity in cerebellar nuclei neurons. Knowledge on the neurons in the cerebellar
nuclei and their function is however small in comparison to the cerebellar cortex (Kebschull et
al., 2024; Uusisaari & De Schutter, 2011).

Connectivity with other brain areas

To understand the functionality of the cerebellum, it is helpful to know from which brain areas
it receives projections and to which brain areas it projects (Strick et al., 2009). The cerebellum
mostly connects with other brain areas in a closed-loop feedback system organised
topologically (Chen et al.,, 2022), meaning that the areas towards which the cerebellum
projects, project back to the same areas within the cerebellum. Thus, the function of brain
areas with which a certain area of the cerebellum is connected might be indicative of the

function of the cerebellar area.

Projections from and to the cerebellum pass via the three cerebellar peduncles, which are thick
fibre bundles differentiated into the superior, middle, and inferior peduncle (Schmahmann,
2016).

The cerebellum receives all of its projections via either mossy fibres or climbing fibres (Ruigrok
et al., 2015). The sources of mossy fibres are manyfold while the climbing fibres originate from
the inferior olive. The sole output of the cerebellar cortex is the inhibitory output of the Purkinje
cells. These project towards the cerebellar nuclei, which project towards a wide range of brain
areas (Kebschull et al., 2024).

Cerebellar input via the mossy fibres mostly passes through four precerebellar nuclei: the
pontine grey nucleus and reticulotegmental nucleus in the pons, the lateral reticular nucleus in
the hindbrain, and the external cuneate nucleus in the medulla oblongata (Hoshino et al., 2022;
Yamada & Hoshino, 2016). Input towards these nuclei stems from widespread areas within the
frontal, parietal, temporal, and occipital lobe (Strick et al., 2009). Afferences from the pons
mainly originate from the cerebral cortex, although the superior colliculus and other areas of
the brain stem partially contribute (Glickstein, 2022). Some mossy fibre input also originates
from the spinal trigeminal nucleus and Clark’s column in the spinal cord (Hoshino et al., 2022;
Yamada & Hoshino, 2016) and mainly terminate in the anterior cerebellum, hinting at a primary
motor function (Ruigrok et al., 2015). Historically, it was assumed that this large variety of

inputs serves as a means of gaining as much sensory input as possible, to convey
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sensorimotor information to the motor cortex (Strick et al., 2009). However, this view has

changed since, following findings of outputs of the cerebellum to several other brain regions.

Initial problems arose from the circumstance that only monosynaptic projections could be
traced. This problem could be overcome with the help of viral tracers, such as rabies virus
(Kuypers & Ugolini, 1990). The group around Peter Strick could show via anterograde and
retrograde tracing that the cerebellum is interconnected with both the primary motor cortex and
prefrontal areas (R. M. Kelly & Strick, 2003; Middleton & Strick, 2001). The primary motor
cortex projected mainly to cerebellar lobule 1V-VI, which are primarily labelled as motor/pre-
motor lobule. On the other hand, several prefrontal areas they examined were found to
exclusively project back towards cerebellar Crus Il which is located in the posterior cerebellum.
A study using diffusion weighted imaging could confirm these results in humans (Palesi et al.,
2017). They found that motor areas projected primarily to lobule I-VI (primarily the anterior
lobe). However, projections from the cerebral cortex were primarily received by the largely non-
motor Crus |, Il, lobule VIIb and lobule VIII (Palesi et al., 2017). Areas in the cerebral cortex
that projected to the cerebellum were mainly within the temporal and frontal lobe (Palesi et al.,
2017). In total, around 70 % of the tracts seemed to involve cognitive cerebral and cerebellar

areas, hinting towards non-motor functions of the cerebellum.

The cerebellum is widely interconnected with areas across all cerebral lobes. Tracing studies
could show connections with the cerebellum via the pons from not only motor but also non-
motor frontal areas, such as ACC, dIPFC and anterior PFC (Glickstein et al., 1985; Ramnani,
2012; Schmahmann & Pandya, 1997). Bidirectional connections between the cerebellum and
parietal lobe, in particular the intraparietal sulcus and inferior parietal lobe, were shown in both
tracing studies and functional connectivity in-vivo (Bostan & Strick, 2022; Clower et al., 2001;
Habas, 2021; Prevosto et al., 2010; Ramnani, 2012). While Chen et al. (2022) found that a
majority of projections into the cerebellum come from frontoparietal and subcortical networks,
Palesi et al. (2017) found that the majority of projections originate from the temporal lobe.
Within the temporal lobe, projections towards the cerebellum seems to mainly come from the
superior temporal lobe via the pons (Schmahmann & Pandya, 1991, 1997). This connection
could be shown to be functionally significant for auditory pattern discrimination (Stockert et al.,
2021). Diffusion-weighted imaging in humans could however also show projections from the
hippocampus and amygdala to the cerebellum (Palesi et al., 2017). Last, bidirectional
connections between the cerebellum and occipital lobe have been demonstrated as well
(Glickstein et al., 1994; Schmahmann & Pandya, 1992, 1993), although seemingly more
strongly for higher visual areas (van Es et al., 2019; Xue et al., 2021). Note that the cerebellum

also forms at least two closed loops with the contralateral inferior olive, which is the only source
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of input towards the cerebellum via the climbing fibres (Bengtsson & Hesslow, 2006; De Zeeuw
et al., 1998; Loyola et al., 2022).

Importantly, the cerebellum is also connected to areas involved in reinforcement learning.
Studies in rodents and macaques showed that the cerebellum is connected with the striatum
via the thalamus as a di-synaptic pathway (Hoshi et al., 2005; Ichinohe et al., 2000). This was
further supported by resting state functional connectivity in humans (for a meta-analysis see
Cauda et al., 2011). Further evidence comes from diffusion tensor imaging, diseases involving
either the basal ganglia or the cerebellum, and task-based functional connectivity (for a review,
see Bostan & Strick, 2018). Concerning the SN, studies in rodents and cats could show that
stimulation of the cerebellum affected dopamine release in the SN (Nieoullon et al., 1978), and
lesion of the SNc affected glutamate release in the cerebellum (Gotembiowska et al., 2013).
The corresponding pathway likely also runs through the thalamus (Faull & Carman, 1968).
However, a very recent study could also show a monosynaptic projection from the cerebellum
towards the SNc (Washburn et al., 2024). On a similar note, projections from the dentate
nucleus towards the VTA have also been shown (Beier et al., 2015; Watabe-Uchida et al.,
2012). Lastly, the cerebellar lobule VI and Crus | have also been implicated in a salience
network with the ACC (Habas et al., 2009). Resting-state functional connectivity between the
ACC and cerebellum could further be shown in a recent meta-analysis (Kruithof et al., 2023).
In sum, there is substantial evidence for a connectivity of the cerebellum with areas involved

in reinforcement learning.

Cerebellar diseases

Cerebellar disorders (or ataxias) can be caused by focal cerebellar diseases (for example due
to stroke) and cerebellar degeneration (which can have genetic, non-genetic or acquired
causes). Cerebellar disorders differ based on their progression rate and age at onset (Palau &
Arpa, 2016).

Cerebellar strokes

Focal cerebellar lesions are usually caused by ischemic or haemorrhagic stroke, tumour
resections, abscesses, or demyelinating diseases such as multiple sclerosis (Palau & Arpa,
2016). Cerebellar strokes occur seldom and account only for around 2-3% of total annual
strokes in the US (Edlow et al., 2008; P. J. Kelly et al., 2001; Tohgi et al., 1993). A majority is
ischemic (Shenkin & Zavala, 1982). Prognosis concerning recovery of motor functions is quite
good for ischemic cerebellar strokes, with 2/3 of patients reaching functional independence at
the time of discharge; this was the case for only 40% of patients with haemorrhage (P. J. Kelly
et al., 2001). Note that cognitive function does not recover as well (Erdlenbruch et al., 2024).
Acute symptoms are oftentimes vertigo, dizziness, and unsteadiness (Sarikaya & Steinlin,

2018). Strokes in the anterior cerebellum up to lobule VI may lead to persistent motor deficits,
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such as ataxia, while strokes in the posterior lobe do not seem to result in persistent motor
deficits (Schmahmann et al., 2009; Stoodley et al., 2016). Instead, strokes in the posterior lobe
have been associated with deficits in language, spatial and executive functions (Stoodley et
al., 2016). Motor and non-motor symptoms have also been found after tumour resections
in/near the cerebellum (De Smet et al.,, 2009; Konczak et al., 2005; Svaldi et al., 2024).
Additionally, the connectivity to several cerebral areas is reduced acutely following cerebellar
stroke (Fan et al., 2019), but differentially increased and decreased in chronic stroke, indicating

reorganisational processes (Park et al., 2011).

Degenerative cerebellar disease

Degenerative cerebellar diseases can be acquired, sporadic, or due to genetic causes.
Hereditary ataxias may be autosomal-dominant (e.g., spinocerebellar ataxias), autosomal-
recessive (e.g., Friedreich’s ataxia) or x-chromosomal (fragile X-associated tremor-ataxia
syndrome) inheritance (Koeppen, 2001; Thieme & Timmann, 2022). Acquired ataxias may be
infectious (such as cerebellitis, progressive multifocal leukoencephalopathy, Whipple’s
disease; Manto, 2001b), autoimmune (such as multiple sclerosis, Miller Fisher syndrome;
Duquette, 2001), paraneoplastic (Afzal et al., 2015), toxic (alcohol, antiepileptic drugs, and
others; Manto & Jacquy, 2001b; Pentney, 2001; for a systematic review see van Gaalen et al.,
2014), or metabolic (hypothyroidism, hypomagnesemia, deficiency of vitamin E, and others;
Koibuchi, 2001; Manto & Zulewski, 2001; Olmedo-Saura et al., 2023; Schuelke, 2005).
Sporadic degenerative disorders include multiple system atrophy-cerebellar type (MSA-C) and
sporadic adult onset ataxia of unknown aetiology (Berciano, 2001; Manto & Jacquy, 2001a).
As such, there is a large variety in aetiology (Topka & Massaquoi, 2001) — however, symptoms
are strongly influenced by the location of the damage rather than pathological characteristics
(Manto, 2001a). An overview of genetics and phenotypes for different hereditary cerebellar
ataxias is given at https://neuromuscular.wustl.edu/ataxia/aindex.html. A majority of these
diseases also include involvement of extracerebellar areas (e.g., spinocerebellar ataxia types

1,2 and 3 or MSA-C), making interpretations of cerebellar contributions more difficult.

Currently, only a handful of cerebellar diseases are considered to primarily affect the
cerebellum, most commonly spinocerebellar ataxia types 6, 14, and 27B (Rentiya et al., 2020;
Satolli et al., 2024; Taron et al., 2022; Teive et al., 2011) as well as sporadic adult-onset ataxia
of unknown aetiology (Abele et al., 2007). These disorders are thus especially suitable to

investigate the effects of cerebellar degeneration on brain and behaviour.

Very rarely, cerebellar agenesis, i.e., the complete or partial absence of the cerebellum from

birth, occurs (Romaniello & Borgatti, 2022). Realistically, even in patients with “no cerebellum”,

some amount of cerebellar tissue can be found post-mortem (Gardner et al., 2001).

Importantly, living without a cerebellum is indeed possible for these patients, although with
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considerable deficits in not only the motor domain but also the cognitive and emotional domain
(Romaniello & Borgatti, 2022). This further strengthens the theoretical basis for a

complementary rather than a holistic role of the cerebellum in these domains (see below).

Motor deficits

Motor symptoms associated with cerebellar diseases have been divided into four major
categories: 1) postural and gait disturbances, 2) limb ataxia, 3) dysarthria, and 4) oculomotor
disorders. These have been implemented in the International Cooperative Ataxia Ratings
Scale (ICARS; Manto, 2001a; Trouillas et al., 1997).

1) Patients with cerebellar disorder may show an increased back-and-forth sway when
standing still, known as titubation (Bodranghien et al., 2016). Their gait appears as “clumsy,

staggering movements with a wide-based gait” (Bodranghien et al., 2016, p. 380).

2) Limb ataxia refers to a number of symptoms, including intention and other tremors,
dysmetria, and diadochokinesis (Bodranghien et al., 2016; Holmes, 1917). Intention tremor is
a tremor that increases when approaching a movement target (Bhatia et al., 2018). Note that
other types of tremor, such as rest tremor (i.e., tremor occurring when at rest) and postural
tremor (i.e., relating to tremor occurring when holding a body part, such as an arm, in a position
against gravity) have also been described in connection with cerebellar disease (Holmes,
1917; Lenka & Louis, 2019). Dysmetria refers to the over- (hypermetria) or undershoot
(hypometria) of a movement towards a target (Holmes, 1917; Hore et al., 1991). Together with
tremor and oculomotor deficits, it might result in severe difficulties with grasping movements
(Bodranghien et al., 2016).

3) Dysarthria describes symptoms related to deficits in speech production. These mainly relate
to impairment of articulation and prosody (Darley et al., 1969a; Spencer & Slocomb, 2007). A
slowness and slurring of speech is observed (Darley et al., 1969b; Manto, 2001a; Spencer &
Slocomb, 2007), and, also noticeably, ‘scanning’ speech, which means excessive and equal
stress of the syllables, disrupting the general rhythm (e.g., “won (pause) der (pause) ful”;
Darley et al., 1969b; Kent et al., 2000). Further irregularities have been described for loudness,

timing of breaks, and pitch (Spencer & Slocomb, 2007).

4) Oculomotor deficits comprise deficits in the slow eye movements, saccades, ocular
alignment, gaze, and nystagmus (Bodranghien et al., 2016; Manto, 2001a; Salari et al., 2024).
Concerning nystagmus, cerebellar disorders are often associated with a downbeat nystagmus
(i.e., an upward drift of the eyes followed by a downward saccade; Hiufner et al., 2007; Yee,
1989), but also other forms of nystagmus, such as gaze-evoked nystagmus (i.e., a drift towards
the centre when looking to the periphery), rebound nystagmus (i.e., a drift towards the prior

gaze towards the periphery when looking towards the centre), and others (for an overview, see
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Bodranghien et al., 2016). For the slow eye movements, smooth pursuit may be impaired, and
instead, corrective saccades can be observed when following a moving object with the gaze
(for a review, see Sharpe, 2008). The vestibulo-ocular reflex, i.e., the reflex to adjust the gaze
when the head is moved while fixating an object, can also be impaired in cerebellar disorders
(Ito, 1998; Szmulewicz et al., 2011). Saccades may be hyper- or hypometric depending on

damage location (Barash et al., 1999; Bodranghien et al., 2016; Botzel et al., 1993).

Note that non-specific symptoms, such as dizziness and vertigo as described above might also
occur episodically or chronically (Bodranghien et al., 2016). Sensory function, such as pitch
discrimination and proprioception may also be reduced (Frings et al., 2004; Parsons et al.,
2009; Tinazzi et al., 2013; Weeks et al., 2017).

Cerebellar Cognitive Affective Syndrome

While researchers started to explore the role of the cerebellum in motor control more
thoroughly in the 19" and 20" centuries, non-motor deficits in cerebellar disease have only
been described sparsely in case reports. This might also have been the case because
cognitive performance of adult patients with cerebellar damage lies in the lower normal range,
with motor symptoms being more prominent (Leggio, 2016). The deficits are, in parallel to
motor deficits, less in the fundamental inability to perform certain behaviours and more in the
efficiency (Leggio, 2016). Notably, this still leads to relevant deficits in executive, language,
and visuospatial function (Ahmadian et al., 2019). Previous evidence for a role of the
cerebellum in non-motor function had mainly come from studies examining the connectivity of
the cerebellum with cerebral non-motor areas (see above). In 1998, Schmahmann and
colleagues described the “cerebellar cognitive affective syndrome” (CCAS; Schmahmann &
Sherman, 1997, 1998) which they used as an umbrella term for several non-motor symptoms
in patients with cerebellar damage. The syndrome was also closely connected to the proposed
“Dysmetria of Thought” (Schmahmann, 1998). Schmahmann proposed that deficits in the non-
motor domain relating to cerebellar damage might present similar in form to deficits in the
motor domain. The meaning of dysmetria, i.e., an over- or undershooting of a movement, is
thus transferred to mean an over- or undershooting of a non-motor process, such as an
emotional reaction. Non-motor symptoms described for the CCAS include deficits in the
executive function (e.g., planning, working memory), spatial cognition, personality changes,
and linguistic difficulties that cannot be ascribed to motor function (Schmahmann & Sherman,
1998). While the initial study examined only 20 patients with mostly focal cerebellar damage
(but also a number of cases with cerebellitis and cerebellar atrophy), the findings could be
replicated in a much larger sample by Tedesco et al. (2011). Using a large subsample of 78
patients with only focal cerebellar damage (through ischemic or haemorrhagic stroke or

surgical tumour resection), they could further show that non-motor deficits occur in particular
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when the posterior lobe is affected, especially Crus | and Il. This was mostly the case after
damage within the PICA territory. This finding also fits with the above-described connectivity of

the posterior cerebellar lobe with cerebral brain areas encompassing non-motor functions.

To characterise non-motor deficits specific to cerebellar function in a clinical setting, the CCAS
scale was invented as a bedside test by the Schmahmann group (Hoche et al., 2018) and
subsequently translated into several languages (Chirino-Pérez et al., 2022; Maas et al., 2021;
Naeije et al., 2020; Rodriguez-Labrada et al., 2022; Thieme et al., 2020, 2022). The scale tests
the core domains of CCAS, including executive, linguistic, visuospatial, and neuropsychiatric
functions. An additional verbal memory test item is not part of CCAS, but considered an
indicator item for extracerebellar involvement (Hoche et al., 2018). Later work performed by
Thieme et al. (2021) could show that age and education, and to a lesser degree sex affected
test scores and need to be considered when examining patients for a CCAS. Notably, the
CCAS scale has a weakness in identifying patients with only mild forms of CCAS (Q. Liu et al.,
2024). Nevertheless, the CCAS scale is as yet the only widely used assessment method to
screen for CCAS which can be used to compare patient groups across studies and was

proposed for clinical trials by an expert group (Klockgether et al., 2024).

Cerebellar involvement in other disorders

While there are diseases with predominantly cerebellar involvement (see above), these are
oftentimes rather rare diseases. However, cerebellar involvement has also been described in
more common disorders that had previously not been as closely associated with cerebellar
function, such as anxiety disorders, autism spectrum disorder, schizophrenia/psychosis, and
addiction (Andreasen & Pierson, 2008; Biswas et al., 2024; D’Mello & Stoodley, 2015; Miquel
et al., 2016; Moulton et al., 2014; Schutter, 2021a; Y. Wang & Lan, 2023). For example,
cerebellar activations towards threat and fear extinction have pointed towards a role of the
cerebellum in fear and extinction learning, which is a form of reinforcement learning (Doubliez
et al., 2023; Schutter, 2021a). Indeed, the connectivity between the cerebellum and amygdala
as well as striatum is altered in several anxiety disorders, such as generalised and social
anxiety disorder, post-traumatic stress disorder, and obsessive-compulsive disorder (Blithikioti
et al., 2022; Etkin et al., 2009; Moreno-Rius, 2018; Roy et al., 2013; Shobeiri et al., 2024; Vaghi
et al., 2017; H. Zhang et al., 2019; X. Zhang et al., 2022). Deficits in the non-motor domain
were also related to cerebellar connectivity for autism spectrum disorder and psychosis, such
as theory of mind, social cognition, executive function, and language in autism spectrum
disorder (Biswas et al., 2024) and auditory hallucinations in psychosis (Pinheiro et al., 2021).
Concerning addiction, findings have been less consistent but seem to relate the cerebellum to

behavioural inhibition (Miquel et al., 2016). The involvement of the cerebellum in these
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disorders highlights the need for further research concerning the cerebellum’s role in non-

motor processes.

Cerebellar function

Brief historical overview

Cerebellar function was characterised in several early works (Glickstein et al., 2009; Manto,
2001a; Schmahmann, 2016). In 1809, Luigi Rolanda could show that the ablation of the
cerebellum resulted in difficulties in posture and movements (Schmahmann, 2016). He
concluded that the cerebellum is responsible for movement initiation (Glickstein et al., 2009).
A few years later, Flourens could show that it is rather the coordination than the initiation of
movement (Schmahmann, 2016). Animals were not paralysed but he observed that their
movements were irregular and uncoordinated (Glickstein et al., 2009). The coordination
deficits were later described in more detail by Luciani (1891), using more advanced methods;

he also made first descriptions of intention tremor (Glickstein et al., 2009).

In the late 19" century and early 20" century, several hallmark symptoms of cerebellar motor
deficits were described, such as dysmetria and diadochokinesis by Babinksi (Clarac et al.,
2009; Manto, 2001a), and ataxia by Gordon Holmes (1917). Holmes’ work was especially
noteworthy, with terminology in many cases still used today (Bodranghien et al., 2016; Haines,
2016; Manto, 2001a). To his avail was a large population of soldiers with gunshot or shrapnel

wounds to the cerebellum due to poor helmet design in the first world war (Haines, 2016).

Descriptive models of cerebellar motor functions

While it is widely accepted that the cerebellum computes internal models for motor functions
(Ishikawa et al., 2016), the exact nature of these models has been a matter of debate. Several
proposals have been made to describe the function of the cerebellum in a way that generates
predictions that can be tested. Internal models can be described as either forward or inverse
models (Kawato et al., 2021).

According to the forward model, the cerebellum receives a copy of the motor command that is
being sent to the muscle (Miall & Wolpert, 1996; Wolpert et al., 1998). From this command, it
generates a prediction of the sensory outcome. For example, when grabbing a cup of coffee,
the commands with the succession of movements is sent to the arm and hand. At the same
time, it is being sent to the cerebellum. The cerebellum then predicts whether the cup of coffee
will be grabbed or how far off we will be. When the movement has been executed, the actual
sensory consequence will be sent back. For example, we might have been distracted due to
speaking to another person and missed the cup slightly. This information can be compared to

the predicted sensory consequences (“successfully grabbed the cup”), and an error signal can
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be generated. This error signal can then be used as a learning signal to improve future

predictions.

In contrast, the inverse model assumes the opposite: instead of the motor signal, the planned
sensory outcome is sent to the cerebellum. In turn, the cerebellum generates the necessary
motor commands to reach this outcome (Popa & Ebner, 2022; Schweighofer et al., 1998;
Shidara et al., 1993). Both models have the advantage that the movement is independent from

subsequent (delayed) sensory information (Tanaka et al., 2021).

Note that combinations of both models have been proposed (Wolpert & Kawato, 1998),
oftentimes with the proposition that the forward model is more dominant early in the learning
process and that the inverse model is more dominant late in the learning process (e.g., Olson
et al., 2023). While there is good evidence that the cerebellum functions as a forward model,

whether it also functions as an inverse model still requires evaluation (Popa & Ebner, 2022).

Several other models have been proposed as a basis for cerebellar function (see Manto, 2009
for an overview). One of the most prominent ones is the Marr-Albus theory, proposed in close
temporal proximity by Marr (1969) and Albus (1971). They proposed that mossy fibre input
serves as the motor/sensory input. This input is then expanded by granule cells into orthogonal
representations provided at the parallel fibres (Sanger et al., 2020). These representations can
subsequently be thresholded by the Purkinje cells. Climbing fibre input from the inferior olive,
on the other hand, serves as a teaching/error signal, by modulating the synapses between
parallel fibres and Purkinje cells through long-term potentiation and depression (Albus, 1971;
Kawato et al., 2021; Manto, 2009; Marr, 1969; Sanger et al., 2020). Importantly, while Masao
Ito proposed a complementary role for the cerebellum, Marr and Albus attributed a holistic role
to the cerebellum in motor control, meaning that the cerebellum can control movements by
itself (Kawato et al., 2021).

Universal Transform Theory

As detailed above, cerebellar damage does not only result in deficits in the motor but also
several non-motor domains. Jeremy Schmahmann (1998) had proposed that non-motor
deficits might present similar to motor deficits, relating the motor symptom dysmetria to the
cognitive domain (‘Dysmetria of Thought’). In terms of functionality, this would mean that the
cerebellum generates and updates internal models for motor and non-motor functions in a
similar way (Guell et al., 2018; Popa & Ebner, 2022). Several findings have supported this
assumption. One main line of support for universal cerebellar transform comes from the
relatively homogeneous cytoarchitecture: despite the finding that cerebellar areas show
distinct functionality pertaining to modality (e.g., anterior cerebellum with more sensorimotor

functions, posterior lobe with more cognitive functions), the cytoarchitecture in the cerebellum
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proves relatively unchanging across these areas (Ashida et al., 2018; Guell et al., 2018; Popa
& Ebner, 2022; Schutter, 2021b). Additionally, deficits resulting from damage to the cerebellum
appear relatively similar across domains, as they do not hamper the execution of
movements/cognitive processes themselves but instead make them less precise (Guell et al.,
2018; Schmahmann, 1998).

Multiple Functionality Theory

However, Orban de Xivry & Diedrichsen (2024) could show that the input to the cerebellum via
both mossy and climbing fibres as well as the cerebellar output could change based on task
demands. They proposed that it might not be possible to relate the cerebellar function to a
single model of computation. This further built on the hypothesis of multiple functionality of the
cerebellum, proposed by Diedrichsen et al. (2019). Diedrichsen and colleagues proposed that
while the cerebellum may have uniform circuits, the underlying computations might differ. They
note important differences between domains in task-based activity and functional connectivity
to the cerebrum and propose that instead of looking at non-motor functions through the lens
of sensorimotor computations, it might be more productive to examine these functions

separately. They thus do not exclude a universal transform (Diedrichsen et al., 2019).

Reinforcement Learning

Behavioural patterns in cerebellar disease/disruption

Not many studies have been conducted on the potential deficits of patients with cerebellar
damage in reinforcement learning. As outlined in a recent review by Berlijn et al. (2024), some
initial studies showed no deficits in patients with cerebellar damage (Berlijn et al., in press;
Dirnberger et al., 2010; Rustemeier et al., 2016; Turner et al., 2007) while others did (Mak et
al., 2016; Mukhopadhyay et al., 2007; Nicholas et al., 2024; Thoma et al., 2008). There is thus
yet no sufficient evidence for a clear behavioural correlate of cerebellar damage/disruption in

reinforcement learning.

Neuroimaging findings

A recent meta-analysis conducted by Kruithof et al. (2023) examined cerebellar activations
associated with reward anticipation and reward outcome. They reported activations in the
anterior lobe, lobule VI, left Crus | and the vermis for reward anticipation, in conformity with the
suspected role of the cerebellum in predictive processes. A recent systematic review by Berlijn
et al. (2024) examined findings with a focus on studies employing feedback learning
paradigms, independently of whether they examined reward anticipation or outcome. This
allowed for examination of more specific effect patterns. Consistent with the meta-analysis by
Kruithof et al., they found that feedback/outcome valence is related to activations in lobule VI

(Peterburs et al., 2018; Tricomi & Fiez, 2008). Crus | and |l seemed to be specifically related
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to feedback learning (Balsters et al., 2013; Balsters & Ramnani, 2011). Crus | also seemed to
play a role in switching behaviour within a study using reversal learning in addition to simple
reinforcement learning (Peterburs et al., 2018). As noted above, cerebellar activations were
also found for unsigned RPE processing in a large meta-analysis examining RPE activations
(Corlett et al., 2022). Notably, several difficulties present when examining the cerebellum using
fMRI: cerebellar blood flow changes are dominated by synaptic mossy fibre input to the granule
cells, which is input-related activity (Diedrichsen et al., 2019). fMRI studies examining the
cerebellar cortex thus show mainly the input rather than the output of the cerebellar cortex
(Diedrichsen et al., 2019).

11 patients, negative feedback ===== 25 controls, negative feedback -
11 patients, posilive feedback —— 25 controls, positive feedback

amplitude [u\v]

=200 L1] 200 400 800 =200 a 200 400 800 =200 D 200 400 500
time [ms]
Figure 6. Feedback-locked grand-average ERPs for positive and negative feedback in the

fractal task by Rustemeier et al. (2016). ERPs are given separately for patients with cerebellar
stroke and healthy controls. Reproduced with permission from Springer Nature.

To my knowledge, there are yet no studies showing feedback processing in fMRI in patients
with cerebellar damage. However, an initial study using EEG showed altered feedback
processing in a small sample of patients with cerebellar stroke (Rustemeier et al., 2016).
Rustemeier et al. (2016) employed a fractal task while measuring EEG in patients with
cerebellar stroke and healthy controls. Within the fractal task, participants were able to choose
between two fractals to receive a monetary reward or punishment. The chance to receive either
feedback, was however at 50 % for all fractals, and learning was thus not possible. Examining
the FRN, they found a differentiation between positive and negative feedback in the patients
but not controls. The authors interpreted the effect as increased surprise in the patients: the
differentiation between positive and negative feedback in FRN should be low as both feedback
valences were of similar expectancy (following the hypothesis of Alexander & Brown, 2011). In
the control group, this was likely the case, resulting in an overall non-significant difference in

FRN. For the patients with cerebellar stroke, negative feedback resulted in a higher FRN than
36



positive feedback, indicating that the differentiation was stronger than in controls. The authors
reasoned that feedback might have seemed more surprising for patients, resulting in an
enhanced positive-negative differentiation in FRN. This argument is consistent with the
dysmetria of thought hypothesis (Schmahmann, 1998), relating cerebellar dysfunction to an
overshoot (hypermetria) of a cognitive action, i.e., in this case, salience/surprise. However, as
no follow-up analyses or experiments regarding changes in feedback frequency/task

progression were conducted, this conclusion remains unconfirmed.

Performance Monitoring Framework

The cerebellum has been implicated in reinforcement learning in terms of performance
monitoring only rather recently, such as by Peterburs and Desmond (2016). Performance
monitoring is an umbrella term capturing all processes necessary to enable flexible
adjustments in constantly changing environments. This encompasses (1) feedback
processing, (2) error detection, (3) inhibition of conflicting responses, (4) attentional control,
and (5) emotional regulation (Peterburs & Desmond, 2016). Several lines of evidence support
this argument: concerning (1), as detailed above, there have been several findings of
cerebellar activation in feedback and RPE processing in fMRI, and initial studies showing
deficits in reversal learning and feedback processing in patients with cerebellar stroke.
Regarding (2), patients with cerebellar stroke and degeneration showed deficits in error
processing in response conflict tasks (Peterburs et al., 2012, 2015). As for (3), patients with
cerebellar lesions (stroke and surgical) showed deficits in response inhibition in Stroop and
Go/Nogo tasks (Brunamonti et al., 2014; Neau et al., 2000). In regards to (4), patients with
cerebellar lesions (stroke and surgical) also showed deficits in both attention and working
memory tasks (Craig et al., 2021; Gottwald et al., 2003; lig et al., 2013; Ravizza et al., 2006).
Concerning (5), patients with cerebellar lesions also showed mal-adjusted reactions towards
(in particular negative) emotions, such as missing increases in flow velocity in the left middle
cerebral artery towards negative stimuli (Adamaszek et al., 2017; Lupo et al., 2015), and
deficits in the acquisition (in rats: Lopiano et al., 1990) and potentiation of startle response
(Maschke et al., 2000). Taken together, there seems to be a strong basis for a role of the
cerebellum in performance monitoring, including feedback processing/reinforcement learning
(Peterburs & Desmond, 2016).

Recent findings in rodents

In recent years, rodent and primate studies have investigated reward-related information
processing in granule cells, climbing fibres and Purkinje cells more in-depth. Findings
consistent with a coding of RPEs were reported in several complementary studies. Wagner et
al. (2017) investigated this in granule cells of rodents using calcium imaging. They found that

separate granule cell populations code reward delivery, reward omission, and reward
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anticipation. The findings were not explainable with licking behaviour (that also increases upon
reward anticipation and delivery) or sensory input. The signals also showed dynamics across
the task that one would expect from reinforcement learning signals: in the beginning, more
activity related to reward delivery was found, while later in the task — when expectancies had
formed — activity related to reward anticipation and omission was found. The findings could
also be replicated across classical and operant conditioning (M. J. Wagner et al., 2017).
Similarly, climbing fibre input into Purkinje cells as measured with complex spike activity was
found to be consistent with unexpected reward delivery, omission, and anticipation (Heffley et
al., 2018; Heffley & Hull, 2019; Kostadinov et al., 2019; Vignali et al., 2024). Interestingly, the
signal increased toward both unexpected reward delivery (positive RPE) and omission
(negative RPE), hinting at an unsigned RPE signal. However, a signed RPE in the cerebellum
could be shown in at least one study using aversive instead of rewarding stimuli: Ohmae and
Medina (2015) found that complex spike activity increased towards unexpected punishments
(air puffs) but decreased below baseline towards unexpected punishment omission. This
finding might indicate different RPE signalling in the cerebellum towards rewards and

punishments.

These studies, however, all relate to the input of and internal processing within the cerebellum.
What about the cerebellar output? Is the RPE input of the cerebellum used to drive RPE
processing in cerebral areas? Initial studies in rodents showed that this might be indeed the
case: projections from the cerebellum to the VTA and SN contain reward-related information
(Carta et al., 2019; Washburn et al., 2024; J. Yoshida et al., 2022; T. Yoshida et al., 2024).
Carta et al. (2019) could further show that stimulation of this (monosynaptic) pathway was
suitable to induce short- and long-term place preference; optogenetic inhibition was, however,

not aversive.

Regarding the wealth of new upcoming studies in rodents, the question emerges whether

findings are indeed replicable in humans.

Research Objective

The aim of this dissertation was to further comprehend the role of the cerebellum in
performance monitoring, and in particular error and feedback processing. Causal evidence
was gathered investigating whether the cerebellum is required for performance monitoring. In
all studies, a lesion approach was combined with EEG recordings of the cerebrum to derive
whether damage/disruption of the cerebellum results in deficits in performance and changes

in neural processing.

Feedback processing was investigated within a reinforcement learning task in Manuscript 1,

using the FRN as an index of RPE processing within the cerebrum. Two parallel lesion
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approaches were used: Experiment 1 used patients with chronic cerebellar stroke and
matched controls; Experiment 2 applied cerebellar and control single-pulse transcranial
magnetic stimulation (spTMS) in healthy young adults. TMS was used to induce ‘virtual
lesions’: spTMS induces action potentials, and its effect has been characterised as excitatory
or inhibitory depending on various factors, both on the neuron population and the single neuron
level (Hannah et al., 2020; Romero et al., 2019). Its inhibitory effect on neuron populations is
theoretically based on noise models, meaning that the TMS pulse induces noise in the target
region (Harris et al., 2008). For the cerebellum, an inhibitory effect of spTMS has been
assumed (Desmond et al., 2005; Schutter & van Honk, 2006; Vinas-Guasch et al., 2023; for a

review see Fernandez et al., 2020).

Manuscript 2 investigated error processing within reinforcement learning contexts. Data from
Experiment 2 in Manuscript 1 were re-analysed, focussing on error instead of feedback
processing. The ERN was thus analysed, as well as the error positivity (Pe) which is an ERP
component in the error-related signal that peaks later — at around 200-400 ms — and
predominantly at parietal sites (Falkenstein et al., 1991; Wessel, 2012). The Pe is more
strongly related to conscious error processing and error awareness (Nieuwenhuis et al., 2001;
Ridderinkhof et al., 2009).

Last, Manuscript 3 dealt with the temporal aspect of disruption caused by cerebellar TMS in
relation to cortical processing: spTMS was applied at a wider range of timings around individual
ERN latencies in a response conflict paradigm (Go/Nogo Flanker task). The study aimed at

finding differences in effectiveness of cortical disruption depending on TMS timing.
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Overview of Studies

Manuscript 1 — The cerebellum contributes to prediction error coding

in reinforcement learning in humans

Introduction and hypotheses

A cerebellar role in reinforcement learning has been initially investigated in patients with
chronic cerebellar stroke (Rustemeier et al., 2016; Thoma et al., 2008). Recent studies in
rodents found further evidence for cerebellar involvement in reinforcement learning, with
signals related to reward anticipation, omission, and RPEs (Kostadinov & Hausser, 2022).
Further animal studies indicated that these signals are conveyed to the cerebrum (Washburn
et al., 2024; J. Yoshida et al., 2022; T. Yoshida et al., 2024). However, this has not yet been
shown in humans, and there is an additional need for causal evidence to answer the question
whether the cerebellum is required for RPE processing in extra-cerebellar (cerebral) regions
traditionally associated with reinforcement learning. Two previous studies could show deficits
in behavioural flexibility in patients with cerebellar damage (Nicholas et al., 2024; Thoma et al.,
2008), and one study could show changes in neural processing of feedback in reinforcement

learning in patients with chronic cerebellar stroke (Rustemeier et al., 2016).

Manuscript 1 aimed to contribute to the question whether the cerebellum is necessary for intact
reinforcement learning and cortical RPE processing in humans. To this end, two separate
experiments were conducted: in Experiment 1, patients with a chronic stroke restricted to the
cerebellum and healthy controls performed a probabilistic feedback learning task while
cerebral EEG was recorded. As detailed above, the frontocentral ERP component FRN can
serve as a measure of cerebral RPE processing. In case the cerebellum contributes to cerebral
RPE processing, RPE effects in FRN should be altered in patients with cerebellar damage (in
this case, stroke) while it should be intact in the matched healthy controls. Experiment 2 was
performed analogously in healthy young controls. In two separate sessions, they underwent
single-pulse cerebellar TMS and control stimulation (i.e., TMS applied to the vertex) while
performing the task. Following the same reasoning, participants should show deficits in RPE
processing in FRN under cerebellar stimulation, while they should show intact RPE processing

in FRN under control stimulation. In detail, the following was expected:

1) A general main effect in terms of increasing accuracy with task progression/ascending
block number was expected (ME block).
a. For Experiment 1, no differences between patients and controls were expected
due to compensatory mechanisms available in chronic stroke, consistent with
Rustemeier et al. (2016).
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b. For Experiment 2, worse learning was expected when participants received
cerebellar compared to vertex TMS. This was due to long-term compensatory
processes — such as for chronic cerebellar stroke patients — not being available
in spTMS, as stimulation is instantaneous. Instead, it was expected that
behavioural performance might rather follow the pattern observed in patients
with cerebellar degeneration (i.e., decreased performance), such as in
response conflict paradigms (Peterburs et al., 2015; IE block x stimulation site).

2) A general effect of RPE on FRN was expected in terms of a main effect of feedback
valence and RPE, respectively, as well as an interaction between feedback valence
and unsigned RPE. FRN should be enhanced with increasing negative RPEs and
decreased with increasing positive RPEs (ME feedback valence; ME RPE; IE feedback
valence x RPE).

a. For Experiment 1, it was expected that this effect is decreased in patients with
cerebellar stroke, but intact in healthy controls (IE feedback valence x RPE x
group).

b. For Experiment 2, it was expected that this effect is decreased when healthy
participants received cerebellar TMS but intact when they received vertex TMS
(IE feedback valence x RPE x stimulation site).

3) In Experiment 1, lesion symptom mapping was performed in patients to investigate
whether deficits in processing or behaviour in the reinforcement learning task can be
related to certain lesion locations in the cerebellum. A relation between deficits and
more posterolateral regions, in particular Crus | and |l was expected, as these areas

are more strongly related to higher cognitive processes.

Method

Participants

Experiment 1 was conducted in patients with chronic cerebellar stroke. Data from twenty-six
patients entered the analyses. On average, experiments were conducted 8.4 years post-stroke
(SD = 6.0 years; range from 1.5 months to 22 years). The majority of patients were men (20
men, 6 women) and middle-aged (M = 56.2 years, SD = 12.1 years). Patients with
extracerebellar lesions, or who reported current psychiatric disease, current or past
neurological disease, intake of medicine affecting the central nervous system, or alcohol or
illicit drug abuse were excluded. Lesions were mostly in the posterolateral cerebellum, with
most strokes within the PICA territory (PICA: 21 patients; SCA: 3 patients; PICA and SCA: 2
patients). Twenty-six healthy controls were matched to patients in age, sex, education,
handedness, 1Q, and depression indices. To match three patients with a diagnosis of major

depression and intake of antidepressants, three controls with a clinical diagnosis of major
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depression, antidepressant medication, and a roughly matched depression index entered the

analysis.

Experiment 2 was conducted in healthy young adults. Data from twenty-four participants
entered the analysis. Participants were mostly female (17 women, 7 men) young adults (M =
23.3 years, SD = 2.9 years), with an average 1Q (M = 103.5, SD = 15.4) according to the
Mehrfachwahl-Wortschatz-Test-B (Merz et al., 1975).

Procedure

Both Experiment 1 and 2 were conducted on two separate days. For Experiment 1, different
task versions were tested in separate study sessions. For Experiment 2, different stimulation

sites were targeted in separate study sessions.

In both experiments, a probabilistic feedback learning task was used (confer Bellebaum &
Colosio, 2014; Eppinger et al., 2008). After a fixation cross, participants saw abstract stimuli
and were instructed to press either the left or right button in response. The response time
window in Experiment 1 was 3000 ms and 1000 ms in Experiment 2 (with the stimulus visible
for half the duration). The higher response time window in Experiment 1 was due to the older
age of the participants, as well as potential motor deficits in patients with cerebellar damage.
The response was highlighted for 200 ms, followed by a feedback delay. The feedback was
then presented for 1000 ms (‘+20 ct’ for positive feedback and ‘-10 ct’ for negative feedback).
For Experiment 1, two versions of the task were conducted: one version with a feedback delay
of 500 ms, and another version with a delay of 6500 ms. Experiment 2 only used the 500 ms
delay. Feedback was provided probabilistically. Two stimuli had contingent feedback that was
thus learnable for participants (90-10 contingency for Experiment 1 and 80-20 contingency for
Experiment 2). This meant that when pressing the correct one of the two buttons, positive
feedback was given with a higher chance than negative feedback, but not in 100 % of the
cases (and vice-versa for incorrect responses). Two other stimuli had random feedback that
was thus not learnable (50-50 contingency). Participants were instructed to learn by trial and

error how to gain more positive and less negative feedback.

For Experiment 2, spTMS was added to the procedure. The motor threshold was determined
before the experiment and based on motor-evoked potentials measured at the hand using
electromyography. Stimulation was conducted at 120 % of the motor threshold, and at the left
cerebellum (1 cm below and 3 cm to the inion) and at the vertex (electrode position Cz) in
separate sessions. Vertex is a common control site, particularly in experiments using cerebellar
stimulation (Gatti et al., 2023). A Magstim double cone coil and a Magstim BiStim? unit
(Magstim Co., Whitland, United Kingdom) were used for TMS.
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EEG recording

EEG was recorded in both experiments. In Experiment 1, EEG was recorded at 1,000 Hz from
28 active Ag/AgCl electrodes (F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8,
CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, Oz, 02, PO10) using the 10-20 system
(Chatrian et al., 1985). AFz was used as a ground electrode, and FCz served as the online
reference. Electrodes were placed on the mastoids to be used later as offline references. An
additional electrode was placed to the left outer canthus of the left eye as the horizontal

electrooculogram (hEOG), and Fp1 was used as the vertical electrooculogram (VEOG).

In Experiment 2, EEG was recorded at 1,000 Hz from 30 passive Multitrode electrodes (Fp1,
Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CPz, CP2, CP6,
P7, P3, Pz, P4, P8, O1, Oz, 02, Iz) using the 10-20 system. AFz was used as a ground

electrode, and FCz served as the online reference.

EEG preprocessing

Preprocessing for Experiment 1 was conducted within Brain Vision Analyzer software (version
2.2, Brain Products GmbH, Gilching, Germany). Data were first re-referenced to the mastoid
electrodes, and FCz was restored as an active electrode. Next, a direct current drift correction
was performed followed by a band-pass (high-pass: 1 Hz; low-pass: 30 Hz) and notch filter (50
Hz). Vertical and horizontal eye movement artefacts were removed based on the vEOG and
hEOG using the semi-automatic Ocular Correction ICA implemented in the Brain Vision
Analyzer. Data were then segmented around feedback markers, beginning from 200 ms before
and ending 600 ms after the marker. A baseline correction was performed using the 200 ms
directly before the feedback. An automated artefact rejection followed, excluding segments
with a voltage step above 50 pV/ms, an amplitude exceeding 100 pV or below -100 pV, or
activity not exceeding 0.1 pyV. On average, 1.1 % of segments (SD = 2.5 %) were rejected.

Single-trial ERPs were then exported via a generic data export.

Experiment 2 required a more extensive preprocessing due to artefacts from the TMS pulse.
The ARTIST algorithm by Wu et al. (2018) was thus used. The algorithm included a direct
current drift correction, removal of the TMS pulse artefact, removal of the pulse decay artefact
via ICA, followed by a band-pass (high-pass: 1 Hz; low-pass: 30 Hz) and notch filter (50 Hz).
After segmentation around the TMS pulse, ARTIST rejected segments containing movement
artefacts (M = 2.8 % of segments, SD = 2.6 %) and interpolated bad channels (M = 0.96
channels, SD = 1.15 channels). A second ICA was used to remove bad independent
components, and the signal was re-referenced to an average reference, restoring FCz as an
active electrode. The time window between 300 and 100 ms preceding the TMS pulse was
used for a baseline correction. Further preprocessing was conducted within the Brain Vision

Analyzer. Data were then segmented around the feedback onset starting from 200 ms
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preceding to 500 ms after the feedback marker. An additional baseline-correction was
conducted using the time window from 200 ms before to feedback onset. Single-trial ERPs

were exported via a generic data export.

Peak detection for the FRN was conducted using MATLAB and performed on the individual
averages per condition (for Experiment 1: feedback valence [negative, positive] x feedback
delay [short, long]; for Experiment 2: feedback valence [negative, positive] x stimulation site
[cerebellum, vertex] x TMS timing [post-stimulus, pre-feedback]). FRN was quantified as the
local maximal negative peak in the time window between 200 and 350 ms post-feedback at
FCz (Sambrook & Goslin, 2015). Within the single-trial data, the mean amplitude in the time
window of 40 ms around the corresponding FRN latency was then extracted and used in the

analyses (Meadows et al., 2016).

Prediction error estimation

Concurrent with previous studies (Fischer & Ullsperger, 2013; Ichikawa et al., 2010; McDougle
et al., 2019), RPE were estimated based on participants’ responses and received feedback
using a Rescorla-Wagner model (see general introduction for an in-depth explanation).
Response probabilities were modelled using a softmax function (Boltzmann, 1868; Sutton &
Barto, 2018c). The probability of the chosen action p was estimated using the estimated action

value Q for action a and trial t:

eﬁ*Qal,t

pal’t - eﬂ*Qal,t + eﬁ*Qaz,t
As parameters, a learning rate a per feedback valence, and an inverse temperature

(exploration parameter) 3 were estimated using the function fmincon implemented in MATLAB.

Data analysis

Data were analysed in R (version 4.2.3). Only trials with learnable feedback (i.e., contingent
feedback) were included in the analyses. Choice accuracy was analysed via ANOVAs with the
within-subject factors feedback delay (short, long) and block (1-8) and the between-subject
factor group (controls, patients) for Experiment 1 and the within-subject factors stimulation site
(vertex, cerebellum), TMS timing (post-stimulus, pre-feedback), and block (1-6) for Experiment
2.

For all other choice switching and ERP analyses, linear mixed effects (LME) models were used
via the packages Ime4 (version 1.1-32; Bates et al.,, 2015) and Imertest (version 3.1-3;
Kuznetsova et al., 2017). For choice switching in Experiment 1, the within-subject factors
feedback valence (negative, positive), response type (false, correct), feedback delay (short,

long), and block (1-8) as well as the between-subject factor group (controls, patients) were
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included as fixed effects. For choice switching in Experiment 2, the within-subject factors
feedback valence, response type, stimulation site (vertex, cerebellum), TMS timing (post-

stimulus, pre-feedback) and block (1-6) were included as fixed effects.

For the FRN in Experiment 1, the within-subject factors feedback valence, feedback delay, and
the unsigned RPE as well as the between-subject factor group were included as fixed effects.
For the FRN in Experiment 2, the within-subject factors feedback valence, stimulation site,

TMS timing, and the unsigned RPE were included as fixed effects.

For random effects, a maximal fit was attempted including all within-subject factors and an
intercept per subject but in case of singular fit, lower interaction levels were removed stepwise
(starting with main effects) until fit and convergence was ensured. Outliers were detected using
Cook’s distance (Cook, 1977) and subjects exceeding the criterion of 4/(n-p-1) were excluded.
Interactions were resolved via simple slope analyses, using Bonferroni correction according to

the number of slopes.

Lesion symptom mapping

For Experiment 1, an analysis of the additionally acquired structural MRI data was conducted.
To this end, a 3D T1-weighted magnetisation-prepared rapid acquisition gradient-echo
(MPRAGE) sequence was acquired on the first study session using a MAGNETOM Vida 3T
system (Siemens Healthcare, Erlangen, Germany) and a 64-channel head coil (voxel size = 1
x 1 x 1 mm). For 5 patients for whom an MR scan was not possible, existing structural MR

images were used.

After confirming no extracerebellar lesions, cerebellar lesions were manually traced on non-
normalised T1 images previously aligned to the AC-PC line and saved as regions of interest

within MRIcron (https://www.nitrc.org/projects/mricron). The cerebellum was subsequently

isolated, and datasets were segmented using the function suit_isolate_seg provided by the
spatially  unbiased atlas template of the  cerebellum (SUIT)  toolbox

(https://www.diedrichsenlab.org/imaging/suit.htm). Isolation masks were visually inspected

and manually corrected if necessary. Next, datasets were normalised using the function
suit_isolate_mask with the lesion mask as optional input, and lastly transformed into SUIT

space using the function suit_reslice (Diedrichsen, 2006).

Voxel-based lesion symptom mapping (vbLSM) was performed via NPM which is implemented
in MRIcron (Stoodley et al., 2016; Timmann et al., 2022). vbLSM tests for each voxel if there
is a significant difference in a parameter of interest between patients with this voxel affected
and patients with this voxel unaffected. As a parameter of interest, the difference FRN (high

RPE — low RPE for negative valence) was chosen post-hoc, as differences between patients
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and controls were found. The probabilistic atlas of the human cerebellum (Diedrichsen et al.,

2009, 2011) was used to define affected lobule and nuclei.

Results and Discussion

As hypothesised, cerebellar lesions (Experiment 1) and cerebellar disruption (Experiment 2)
decreased RPE coding in the FRN. While a significant effect of RPE for negative feedback
could be found for the control group in Experiment 1 and the control stimulation in Experiment
2, this effect was non-significant for patients with chronic cerebellar stroke (Experiment 1) and
when healthy participants received cerebellar stimulation (Experiment 2). Concerning
behaviour, only minor changes were found, which was expected for Experiment 1 but not

Experiment 2.

RPE coding was found in healthy controls (Experiment 1) and control stimulation (Experiment
2) only for negative feedback, consistent with previous studies that found RPE coding in FRN
only or at least stronger for negative feedback (Chase et al., 2011; Hoy et al., 2021; Rawls &
Lamm, 2021; but also see Cavanagh, 2015; Weber & Bellebaum, 2024). Importantly, RPE
coding for patients (Experiment 1) and cerebellar stimulation (Experiment 2) was non-
significant. This finding closely followed our hypotheses. Previous studies in healthy adults had
also found an enhanced FRN with increasing negative RPE (Burnside et al., 2019; Chase et
al., 2011; Fischer & Ullsperger, 2013; Fromer et al., 2021; Hoy et al., 2021; Humann et al.,
2020; Kirschner et al., 2022; Rawls & Lamm, 2021). An absence of this RPE coding in FRN
for cerebellar lesions/disruption indicates that the cerebellum is required for intact RPE coding.
This is consistent with studies in animals that found signals appearing as RPE computation in
the cerebellum as well as projections of such signals from the cerebellum to cerebral areas
(Heffley et al., 2018; Heffley & Hull, 2019; Kostadinov et al., 2019; M. J. Wagner et al., 2017;
Washburn et al., 2024).

Of note, the non-significant RPE effect in patients/cerebellar stimulation seemed to have
resulted from an increase in FRN amplitude towards low RPEs instead of a decrease towards
high RPEs. This points to an over-activation instead of an under-activation, potentially
indicative of inappropriate surprise/salience towards expected feedback. This is consistent with
a previous study (Rustemeier et al., 2016) that found increased negative-positive differentiation
in the FRN in patients with cerebellar stroke, which was interpreted as an excessive surprise

signal.

The vbLSM yielded that the decreased RPE differentiation in the FRN in Experiment 1 was
connected to strokes within the posterolateral cerebellum, and in particular Crus | and 11, lobule
VIIb, and Vllla. This is consistent with the hypothesis that deficits would be more strongly

related to the posterolateral cerebellum and in particular Crus | and Il. When comparing these
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regions to functional atlases of the cerebellum, they overlap with working memory, default
mode network, and spatial rotation (Nettekoven et al., 2024), which are all functions relevant

for the performed task.

Considering the strong effect that cerebellar damage/disruption had on RPE processing in
FRN, it seems unexpected that only minor changes were found in behaviour, with no deficits
in learning performance and minor differences in choice switching that, however, did not affect
overall learning success. First, deficits in reinforcement learning under cerebellar
damage/disruption do not appear to be common, with most studies reporting no deficits in
acquisition learning (Kruithof et al., 2025; Rustemeier et al., 2016; Thoma et al., 2008). Deficits
seem to be rather related to behavioural flexibility (Kruithof et al., 2025; Nicholas et al., 2024;
Thoma et al., 2008) which is also the domain where we found minor changes (choice
switching). Second, the FRN does not have a strong behavioural correlate (Ullsperger, 2024).
The likely generator of the FRN, the ACC, was shown to be essential for action-outcome
learning but not stimulus-outcome learning (Camille et al., 2011; Rudebeck et al., 2008). The
presentation of choices on screen in addition to selection of actions via button press might
have sufficed to enable stimulus-outcome learning via other brain areas. A potential candidate
for these compensatory processes might be the OFC which was shown to be essential for
stimulus-outcome learning but not action-outcome learning (Camille et al., 2011; Rudebeck et
al., 2008). However, since we did not measure indices of OFC, this notion cannot be confirmed
conclusively. The FRN itself was connected to behavioural flexibility in studies with a more
dynamic environment (M. X. Cohen & Ranganath, 2007; Fischer & Ullsperger, 2013; Kirschner
et al., 2022; but also see Chase et al., 2011). However, in an exploratory analysis, we were
able to relate only P3 but not FRN to choice switching (see Table 11); the task might not have

been dynamic enough in the current study.

While the RPE effect in controls in Experiment 1 followed the expected direction, i.e., an
enhanced FRN for high negative compared to low negative RPEs (Sambrook & Goslin, 2015),
the direction of the effect was unexpectedly reversed for the control stimulation in Experiment
2. A likely explanation seems to be that vertex TMS affected processing, even though it is a
common control site. At least one study (Jung et al., 2016) could show that vertex TMS reduced
ACC activation. The control stimulation thus likely did not succeed as a control condition.
Noteworthy, however, is that the findings in the cerebellar stimulation in Experiment 2 still

replicated the findings in the patients in Experiment 1.

Conclusion

The findings point to a reliance of RPE processing in FRN on cerebellar output. Cerebellar

damage and disruption led to non-significant RPE effects in FRN, while negative RPE was

reflected in FRN for control participants and control stimulation. The pattern was consistent
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across two studies with different lesion methods (stroke and spTMS). Behavioural performance
was largely unaffected except for minor differences in behavioural flexibility. This study adds
to a growing body of evidence indicating that the cerebellum processes RPEs and conveys
these signals to other brain areas, further showing that this signal is required for RPE

processing in FRN.
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Manuscript 2 — Cerebellar single-pulse TMS differentially affects

early and late error processing in reinforcement learning

Introduction and hypotheses

Feedback processing is an important aspect of reinforcement learning, and essential for the
updating of action values to make better decisions. However, similar to response conflict tasks,
response errors can be processed already at the stage of the response, when the feedback in
the trial has not yet been provided. This requires an understanding of whether a specific
response is correct or an error, which usually happens in later stages of reinforcement learning.
Previous studies could show a shift in processing through the course of learning, with
feedback-dominant processing in initial stages and error-dominant processing in later learning
stages (Bellebaum & Colosio, 2014; Eppinger et al., 2008). Naturally, participants need to rely
on feedback processing in initial stages as the correct response is unknown and needs to be
found out via trial and error. Errors are committed because the correct answer is unknown,
requiring participants to wait for the feedback to know whether their response was correct. In
later stages, after several repetitions, however, an understanding of correct responses and
errors should be acquired. Error rates should decrease, and errors are committed less
commonly due to uncertainty and more commonly by accident/slips of attention. Participants
at this stage know the correctness of responses at the time of response instead of needing to
wait for the feedback. Concurrent with this, stronger processing can be found in error
processing indices at later learning stages, such as the ERN (Bellebaum & Colosio, 2014;

Eppinger et al., 2008).

Following the finding in Manuscript 1 that cerebellar disruption impacts RPE processing in the
FRN in reinforcement learning, the question arose whether this is also the case for error
processing in the ERN in reinforcement learning. Importantly, while feedback processing in
FRN was disrupted, reinforcement learning was unaffected by cerebellar TMS, enabling error
processing in later stages of the task. The ERN and FRN are closely connected in their function
in performance monitoring as well as the neural generator (Hauser et al., 2014; Herrmann et
al., 2004; Holroyd & Coles, 2002; Miltner et al., 1997; Roger et al., 2010; San Martin, 2012;
Wessel, 2012), making a similar impact of cerebellar disruption more likely. While previously,
Peterburs et al. (2012, 2015) could show that cerebellar deficits impact error processing in the
ERN in response conflict tasks, it is unclear whether this is also the case for error processing
in reinforcement learning contexts. The ERN is not often investigated in reinforcement learning
task (see, e.g., Chase et al.,, 2011; Hoéltie & Mecklinger, 2020; Peterburs et al., 2016;
Rustemeier et al., 2016; Weismdiiller & Bellebaum, 2016).
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Manuscript 2 comprised a reanalysis of Experiment 2 of Manuscript 1: instead of feedback-
related signals, the response-locked signals in the probabilistic feedback learning task were
investigated. This re-analysis followed the findings by Peterburs et al. (2012, 2015) in response
conflict tasks, which found impaired error processing in patients with cerebellar stroke or
degeneration in the ERN. A later component, the Pe, which is more closely related to error
awareness, was also investigated (Falkenstein et al., 1991; Nieuwenhuis et al., 2001;
Ridderinkhof et al., 2009; Wessel, 2012). In Manuscript 2, we addressed the question whether
error processing would also be impaired in reinforcement learning tasks. ERN and Pe were
analysed. Effects were expected to follow the findings of Peterburs et al. (2015) in patients with

cerebellar degeneration. In detail, the following was expected:

1) The ERN was expected to be increased for errors over correct responses (ME
response type).

a. We expected this effect to become larger with progressing learning, i.e., with
increasing trial number, as participants do not have a representation of choice
correctness at the beginning of the task (IE response type x trial number).

b. We expected the interaction effect between response type and trial number to
also be modulated by stimulation site: while the interaction effect should be
intact for vertex TMS, the effect should be reduced for cerebellar TMS (IE
response type x trial number x stimulation site).

2) The Pe was expected to be increased for errors over correct responses (ME response
type).

a. We expected this effect to become larger with progressive learning, i.e., with
increasing trial number (IE response type x trial number)

b. We did not expect any interactions between response type, trial type, and
stimulation site. A change in Pe had previously been reported by Peterburs et
al. (2012) for patients with chronic cerebellar stroke and interpreted as reflecting
a compensatory mechanism. As spTMS only creates transient virtual lesion
which should not allow for long-term compensatory mechanisms, we did not

expect such a change under cerebellar TMS.

Method

As Manuscript 2 constituted a re-analysis of data from Experiment 2 in Manuscript 1, sample
characteristics, procedure and EEG recording are given in the Methods section of Manuscript
1.

EEG preprocessing

EEG preprocessing closely followed the description for Experiment 2 in Manuscript 1 up to the

segmentation around the feedback markers. Instead, segmentation was placed around the
50



response markers, starting 200 ms before and ending 500 ms post-response. A baseline
correction was performed based on the interval from 200 to 100 ms before the response.

Single-trial data were exported using a generic data export.

Peak detection for the ERN and Pe was performed based on the individual averages per
condition (response type [error, correct] x stimulation site [vertex, cerebellum] x TMS timing
[post-stimulus, pre-feedback]). The ERN was defined as the maximal negative peak within the
time window from response onset to 100 ms post-response at electrode FCz (Hajcak & Foti,
2008). The Pe was defined as the maximal positive peak within the time window from 200 to
400 ms post-response at electrode Pz (Larson et al., 2010). For the analysis, the mean
amplitude in a time window around the determined latency was extracted from the single-trial
data (20 ms for the ERN; 40 ms for the Pe; Albrecht & Bellebaum, 2023; Meadows et al., 2016).

Data analysis

Data analysis was conducted in R (version 4.2.3). LME analyses were conducted for both ERN
and Pe, using the within-subject factors response type (error, correct), stimulation site (vertex,
cerebellum), TMS timing (post-stimulus, pre-feedback), trial type and all interactions between

these factors as fixed effects.

For random effects, a maximal fit was attempted including all within-subject factors and an
intercept per subject but in case of singular fit, lower interaction levels were removed stepwise
(starting with main effects) until fit and convergence was ensured. No outliers were detected
using Cook’s distance (Cook, 1977) and a criterion of 4/(n-p-1). Interactions were resolved via

simple slope analyses, using Bonferroni correction according to the number of slopes.

Results and Discussion

The expected effect of cerebellar TMS on ERN could be confirmed, with a non-significant error-
correct differentiation for cerebellar TMS while it was intact for vertex TMS late in the task. For
the Pe, an unexpectedly increased error-correct differentiation could be found for post-stimulus

cerebellar TMS compared to vertex TMS.

The effect pattern found in the ERN conforms to findings previously reported in patients with
cerebellar stroke and degeneration in a response conflict task (Peterburs et al., 2012, 2015).
This could indicate that the role of the cerebellum in error processing presents similar in
response conflict and reinforcement learning contexts, further supporting its proposed function

in overall performance monitoring (Peterburs & Desmond, 2016).

Unexpectedly, the result pattern closely followed the pattern reported in chronic stroke patients
(Peterburs et al., 2012): while the ERN showed a decreased error-correct differentiation, the

Pe showed an increased error-correct differentiation, and behavioural performance was intact.
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This pattern was previously interpreted by Peterburs et al. (2012) as long-term compensation
available to patients following stroke recovery. However, in the study at hand, spTMS was used
to induce temporary disruption. This technique applies instantaneous disruption present for

only a short duration, and, naturally, long-term compensation should thus not be possible.

Instead, short-term compensation might seem plausible, as the learning performance was
intact. Such compensation might come at the disadvantage of being more effortful or a problem
in fast-paced environments. However, it cannot be established whether this was truly the case
in the current study; compensation could have taken place at several other times within the
task, such as the inter-trial interval. An alternative explanation for the increased error-correct
differentiation in the Pe might be dysmetria (i.e., over- or undershooting of a goal-directed
movement). Schmahmann (1998) proposed that dysmetria might not only occur in the motor
domain but also the cognitive domain in terms of a dysmetria of thought. The Pe might thus
display an exaggerated perception of errors or salience, in terms of a hypermetria/an
overshoot. The differences in effects of cerebellar disruption on ERN and Pe might lie in the
nature of their neural generators: while both components have shown to be generated by the
ACC, additional generators seem to contribute to the Pe (Hester et al., 2005; Overbeek et al.,

2005). The spTMS applied to the cerebellum might affect these regions differently.

Notably, this was a re-analysis of data from Manuscript 1. Feedback processing in terms of
RPE processing was therefore already impacted, and the question arises whether the
disrupted feedback processing might have impacted error processing, e.g., via a misadjusted
update of action values, leading to deficits in error recognition. However, the effect in both ERN
and Pe appeared to be stronger after post-stimulus (i.e., pre-response) TMS (although only on
trend level for ERN). This indicates that the disruption of error processing took place more

locally at the response stage.

Of note, the Pe appeared to show a less pronounced positive peak in the grand averages
compared to studies using response conflict tasks. While the Pe has oftentimes not been
analysed in studies that employed reinforcement learning (Bellebaum & Colosio, 2014;
Eppinger et al., 2008; Herbert et al., 2011; Pietschmann et al., 2008), it appeared to be less
pronounced in studies that did (Unger et al., 2012; Zhuang et al., 2021); this might thus simply
be a property of Pe in feedback-based tasks, potentially due to errors being more ambiguous
compared to errors in response conflict tasks. However, a posterior positivity is clearly visible
within the topographical plots of the difference signal for cerebellar post-stimulus TMS (see

Supplementary Figure S3).

In parallel to Manuscript 1, problems with the vertex stimulation as a control condition need to
be considered. While no impact on error processing was apparent in the analyses performed

in Manuscript 2, the analyses in Manuscript 1 pointed to an effect of vertex TMS on FRN. FRN
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and ERN are closely connected, both in function and neural generator (Balconi & Scioli, 2012;
Herrmann et al., 2004; Oerlemans et al., 2025; Roger et al., 2010; San Martin, 2012; Wessel,
2012). Further replication is thus necessary to make sure that the findings are valid, even
though the findings in ERN and Pe under vertex stimulation appeared to be normal (Bellebaum
& Colosio, 2014; Falkenstein et al., 1991; Miltner et al., 1997).

Conclusion

The expected deficits in error-correct differentiation in ERN when participants received
cerebellar TMS could be confirmed, in accordance with previous studies using response
conflict paradigms. The general result pattern with decreased error-correct differentiation in
ERN, increased error-correct differentiation in Pe, and intact learning appeared to be
consistent with a previous finding in chronic stroke patients. The study further supports that

the cerebellum plays a role in performance monitoring and is required for error processing.

53



Manuscript 3 — The effect of cerebellar TMS on error processing: A

combined single-pulse TMS and ERP study

Introduction and hypotheses

Last, in Manuscript 3, the question of timing of cerebellar involvement was investigated. While
in the motor domain, there is an established time window concerning communication from the
cerebellum to the motor cortex (Ugawa et al., 1991), this is not established for the cognitive
domain. TMS in Manuscript 1 and 2 was applied at 100 ms post-stimulus and 100 ms pre-
feedback. However, these stimulation time points are rather arbitrary, as they are not based
on previous findings. To investigate this question, more timings need to be examined.
Therefore, for the third study, instead of a reinforcement learning task, a Go/Nogo Flanker task
was employed. The Flanker task required participants to press a left or right button in response
to an arrow presented on screen. Shortly before the relevant arrow was presented, flanking
arrows were presented which mostly pointed in the same direction but in a small number of
trials in a different direction. This thus induced a response conflict, as the response towards
the flanking arrow was prepared and needed to be suppressed when the relevant arrow
pointed in the opposite direction. In Nogo trials, the response had to be inhibited altogether.
The task thus did not require learning. This offered the advantage of a more flexible shift in
stimulation timings while still avoiding an unnecessarily long task duration, as stimulation times
did not need to be locked to certain stimuli in the task. Stimulation times were adjusted to the
individual error latency which was the sum of the individual median error response times and
mean ERN latencies (thus the estimated time point of the ERN peak). This was calculated
based off data of a short version of the task previously conducted. Stimulation was then applied
either 100 ms before, 50 ms before, at, or 50 ms after this individual error latency. We expected

the following:

1) We expected increased error rates for cerebellar TMS compared to vertex TMS, but

only when stimulation is applied before the response (IE stimulation site x TMS timing).

2) We expected an increased ERN towards errors compared to correct responses (ME
response type).

a. We expected this effect to be reduced when receiving cerebellar TMS before

the ERN (-100 and -50 ms TMS timing; IE response type x stimulation site x

TMS timing).

3) We expected an increased Pe towards errors compared to correct responses (ME
response type).

a. We did not expect this effect to be reduced when receiving cerebellar TMS

compared to vertex TMS.
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Method

Participants

Data from sixteen participants entered the analysis. Participants were predominantly female
(13 women, 3 men) young adults (M = 24.0 years, SD = 3.7 years) with an average 1Q (M =
98.75, SD = 10.88).

Procedure

The task analysed was part of a series of tasks performed within the same session. After EEG
and TMS preparation (see Experiment 2 in Manuscript 1), a pre-task was performed to
determine the individual ERN latency (see below for more details). Next, the probabilistic
feedback learning task presented in Manuscript 1 (Experiment 2) was performed. Last,
participants completed a Go/Nogo Flanker task while receiving spTMS, of which data was
analysed for Manuscript 3. Go trials, in which participants needed to react to the presented
stimuli made up 80 % of trials, while Nogo trials, in which participants needed to inhibit their
response made up 20 % of trials, with a total of 600 trials. In the beginning of each Go trial,
flanking arrows were presented above and below a fixation cross, both pointing either to the
right or left. After 200 ms, the fixation cross was replaced by the target arrow which pointed in
the same direction of the flanking arrows in 80 % of Go trials (congruent trials) or in the other
direction in 20 % of Go trials (incongruent trials). Participants were instructed to react to the
target arrow by indicating whether it pointed in the left or right direction by pressing one of two
buttons on a response box within the response time window of 350 ms (alternatively 400 ms
in case the miss rate was too high in the pre-task). In Nogo trials, the fixation cross was instead
replaced by a circle, indicating that participants should not press a button using the same
response time window as for Go trials. Afterwards, a fixation cross was presented for 500 ms.

The inter-trial interval was jittered between 900 and 1300 ms.

The setup of the TMS is detailed in Manuscript 1. Stimulation timings were determined based
on the individual error latency. To this end, a pre-task without TMS was performed that
contained 120 trials using the same ratios of Go, Nogo, and congruent/incongruent trials. While
participants subsequently performed the probabilistic feedback learning task, the median error
response time and the mean ERN latency in this pre-task were calculated. The summary of
these values was used to determine stimulation timings for the main Go/Nogo Flanker task.
Stimulation took place at four different timings: 100 ms before, 50 ms before, at, or 50 ms after
the individually calculated ERN latency. This strategy followed the approach of Verleger et al.

(2009) who applied it for lateralised readiness potentials and TMS of the motor cortex.
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EEG recording and preprocessing

EEG recording followed the procedure in Experiment 2 of Manuscript 1. Trials without a TMS
pulse were manually removed before preprocessing. On average, 29.25 trials per subject and
stimulation site were rejected due to missing TMS pulse (SD = 39.67 trials). Preprocessing
then largely followed the explanations for Experiment 2 of Manuscript 1, using the ARTIST
algorithm with the same settings. In artefact rejection, 14.88 trials per subject and stimulation
site were rejected on average (SD = 14.72 trials). On average, 1.13 channels were interpolated
(SD = 1.13 channels). Following preprocessing via ARTIST, data were exported to the
BrainVision Analyzer and segmented around the response markers, starting 200 ms before
and ending 600 ms after the marker. Data were averaged per condition (trial type [error, correct]
x gstimulation site [vertex, cerebellum] x TMS timing [early stimulation, late stimulation]) and
the difference signal between the response types error and correct was formed (error —
correct). Next, the peak detection was performed in the BrainVision Analyzer. ERN and Pe
were quantified within the difference waveforms (error — correct responses). The ERN was
extracted as the maximum negative peak at electrode FCz between response onset and 100
ms following response onset while the Pe was extracted as the maximum positive peak at Pz
between 200 and 400 ms after response onset. The peak amplitudes were then exported for

statistical data analysis using R.

Data analysis

LME analyses were performed for error rates, response times, difference ERN (error — correct
trials), and difference Pe (error — correct trials). For the difference ERN, a follow-up analysis

with the original waveforms (correct and error separately) was performed.

For error rates, the within-subject factors stimulation site (vertex, cerebellum) and TMS timing
(early stimulation, late stimulation) were included as fixed effects. For response times, the
within-subject factors stimulation site, TMS timing, and trial type (error, correct) were included
as fixed effects. For the difference ERN and Pe, the within-subject factors stimulation site and

TMS timing were included as fixed effects.

For random effects, a maximal fit was attempted including all within-subject factors and an
intercept per subject but in case of singular fit, interaction terms and main effects were removed
until fit and convergence was ensured. Subjects exceeding a Cook’s distance (Cook, 1977)
criterion of 4/n were excluded from the respective analysis. Interactions were resolved via

simple slope analyses.

Results and Discussion

No effects of stimulation site could be found for accuracy or response time. The difference

ERN (error — correct responses) was indeed reduced for cerebellar compared to vertex TMS,
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as hypothesised. This pattern persisted only for the late stimulation (at calculated ERN latency
or 50 ms post-ERN latency). Analyses of the original waveforms indicated that this effect was
more strongly driven by the ERN for errors than correct responses. No significant effects arose

for the difference Pe, consistent with the hypotheses.

The finding of a reduced difference ERN for cerebellar stimulation is consistent with previous
findings in patients with chronic cerebellar stroke or degeneration (Peterburs et al., 2012,
2015). However, the overall pattern with a reduced error-correct differentiation in ERN,
unchanged error-correct differentiation in Pe, and unchanged behavioural performance does
not fit with either of the studies performed by Peterburs et al. (2012, 2015). Peterburs et al.
(2015) found reduced error-correct differentiation in ERN with unchanged error-correct
differentiation in Pe together with decreased performance in patients with degenerative
cerebellar disorders. In the study in 2012, they found reduced error-correct differentiation in
ERN with increased error-correct differentiation in Pe together with unchanged performance,
potentially indicating a compensation of processing in ERN by Pe in patients with chronic
cerebellar stroke. The pattern in the current study might have a better fit to results reported by
Tunc et al. (2019) who used a Flanker task which might fit more closely to the Go/Nogo Flanker
task used in this study (instead of the antisaccade task used in the studies performed by
Peterburs et al., 2012, 2015). Tunc et al. found no differences in error rates between healthy
controls and patients with cerebellar degeneration, but also a decreased difference ERN for
patients compared to controls, although only on trend level. The Pe was, however, overall

increased for healthy controls compared to patients.

Notably, cerebellar spTMS needs to be dissociated from investigations in cerebellar diseases,
as effects might present differently. In this case, an interpretation in terms of facilitation cannot
be excluded, potentially in terms of a decreased need of cognitive control that is reflected in
the ERN amplitude. Unlike with cerebellar disease/damage, a disruption of the inhibitory output
of the cerebellar cortex towards the deep cerebellar nuclei is a possibility with cerebellar TMS,
potentially resulting in disinhibition of cerebellar output. However, this interpretation is limited
to speculation. No differences in error rates and response times were found between cerebellar

and vertex TMS, which might speak against facilitatory effects of cerebellar TMS.

An interesting pattern in Manuscript 3 was revealed via the manipulation of the TMS timing
around the ERN latency: only late TMS reduced the difference ERN when stimulating the
cerebellum, but not early TMS. This finding indicates that stimulation needs to occur in close
temporal proximity to ERN to be effective. A necessity of such a close time point of stimulation
might lie in the course of information exchange for the forward model computed within the
cerebellum. Following the forward model, information on the performed action should reach

the cerebellum in close temporal proximity to the execution of the action. It might be crucial to

57



stimulate closely to this time point, and earlier stimulation might leave enough time for

cerebellar function to resume normal functionality.

Again, the potentially disruptive effect of vertex TMS on the ACC, the likely neural generator of
the ERN, needs to be considered (Jung et al., 2016). Fortunately, recordings were made prior
to the TMS, originally to compute the individual ERN latencies. These recordings were post-
hoc analysed to compare whether cerebellar TMS truly led to a decrease in error-correct
differentiation or whether possibly vertex TMS led to an increase in error-correct differentiation.
When comparing the difference ERN from the recordings with no TMS to the ERN under
cerebellar and vertex TMS, the effect in the main task seems to be truly driven by a decrease
in error-correct differentiation when using the cerebellar TMS and not an increase towards
vertex TMS. While this does not restore vertex as a valid control condition, it seems to indicate
that its disruptive effects on the ACC do not prove as severe for error processing as for
feedback processing. Considering that two participants dropped out following cerebellar TMS
during the task, it is nevertheless highly recommended to use an active control site when
investigating cerebellar TMS, despite reservations concerning the use of vertex TMS as a

control.

Conclusion

Manuscript 3 adds to a growing body of research implicating the cerebellum in error processing
and performance monitoring. It replicates findings that cerebellar damage and disruption
reduce the error-correct differentiation in the ERN, and further shows that a close temporal
proximity in stimulation to the ERN is required to be effective, following previous studies that

showed this in the motor domain.
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General Discussion

The aim of the studies presented within this dissertation was to better comprehend the role of
the cerebellum within reinforcement learning, and performance monitoring in general. Previous
work indicated that the cerebellum processes RPEs and is involved in performance monitoring,
including both response inhibition and reinforcement learning (Berlijn et al., 2024; Kostadinov
& Hausser, 2022). To investigate how this cerebellar computation interacts with cerebral
performance monitoring, we conducted three studies using lesion methods to the cerebellum
while recording EEG from the cerebrum. If cerebellar output is required for cerebral
computations, cerebral computations should be altered when the cerebellum is
damaged/disrupted. Manuscript 1 investigated RPE processing within a reinforcement learning
paradigm in two parallel experiments: Experiment 1 involved patients with chronic cerebellar
stroke, while Experiment 2 used cerebellar spTMS in healthy young adults. RPE processing
was indeed found to be affected in FRN in both cerebellar groups/conditions but not in the
control participants/under control stimulation. Reinforcement learning was unaffected.
Manuscript 2 was a follow-up analysis of the data of Experiment 2 in Manuscript 1. Instead of
feedback processing, error processing was investigated. Error processing was also affected
under cerebellar TMS: while error processing in ERN was impaired, error processing in Pe was
enhanced by cerebellar TMS compared to control stimulation to the vertex. Finally, in
Manuscript 3, the cerebellar role in performance monitoring was investigated in a response
conflict paradigm with a focus on TMS timing. Stimulation took place at four different timings,
determined individually based on previously measured ERN latencies and response times.
Similar to Manuscript 2, error processing in ERN was blunted, however, only when stimulation

occurred close to the ERN latency. Behaviour was largely unaffected in all studies.
The cerebellum in reinforcement learning

Reward prediction error

In Manuscript 1, cerebellar lesions and disruption both led to an absent/decreased RPE coding
in the FRN, indicating that cerebellar contribution is required for normal RPE coding in the
FRN. This finding fits with previous studies in rodents and primates that found RPE-like signals
and other signals consistent with reinforcement learning in the cerebellum (Heffley et al., 2018;
Heffley & Hull, 2019; Kostadinov et al., 2019; Ohmae & Medina, 2015; Sendhilnathan et al.,
2020, 2021; Vignali et al., 2024; M. J. Wagner et al., 2017). The results reported in Manuscript
1 indicate that the RPE signal found in the cerebellum in these studies is required for normal
RPE coding in the forebrain; in particular in the neural generators of the FRN. This further
converges with studies in rodents that found projections from the cerebellum to the VTA and

SN conveying reward-related information (Carta et al., 2019; Washburn et al., 2024; J. Yoshida
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et al., 2022; T. Yoshida et al., 2024). These two regions have been shown to be functionally
connected to the ACC, one of the main neural generators of the FRN (Elston et al., 2018, 2019;
Oerlemans et al., 2024, 2025; Y. Zhang et al., 2017). A connection via the SN or VTA might

thus provide a potential pathway for RPE-related information from the cerebellum to the ACC.

RPE effect in patients (Experiment 1)

In Experiment 1, the direction of the effect in patients might be of interest: we found that the
FRN amplitude did not appear to be reduced for high negative RPEs but instead increased for
low negative RPEs, amounting to the non-significant RPE effect. This finding might be
indicative of inappropriately increased perception of salience. This would converge with the
“dysmetria of thought” hypothesis, i.e., that dysmetria, a symptom oftentimes found in the
motor domain with cerebellar dysfunction, can also occur in the cognitive domain
(Schmahmann, 1998). In the FRN, the salience signal towards feedback with low RPEs should
result in low salience, as the outcome was expected. However, for cerebellar dysfunction
(lesion/disruption), a cognitive hypermetria/overshoot of this salience signal might occur,
making the FRN towards low RPEs inappropriate high. This interpretation would also be
consistent with the interpretation of the findings reported by Rustemeier et al. (2016). They did
not examine RPE coding but valence effects in FRN in a sample of patients with chronic
cerebellar stroke within a fractal task. In this task, participants were able to choose between
two different fractals (i.e., abstract and unfamiliar visual stimuli) to receive a monetary reward
or punishment. However, the chance for either feedback type was 50 % for all fractals, and
learning was thus not possible. Across the task, they found valence coding for patients. In
controls, however, the valence effect did not reach significance. They interpreted this finding
of increased valence coding for patients compared to controls in terms of surprise/salience. In
controls, the FRN should differentiate less between positive and negative feedback as
feedback stimuli were of similar expectancy (Alexander & Brown, 2011), as 50-50
contingencies were used. Rustemeier et al. speculated that the same effect did not occur for
the patients, resulting in sustained surprise/salience towards feedback. RPE modelling was,

however, not performed, making direct comparisons between the studies difficult.

The increased instead of decreased FRN in cerebellar damage points to a modulatory instead
of a driving role of the cerebellum in RPE coding in the FRN. Many of the patients had lesions
within the cerebellar cortex instead of the nuclei. Similarly, cerebellar TMS in Experiment 2
likely reached the cerebellar cortex more strongly than deeper structures. Considering that the
output of the cerebellar cortex via the Purkinje cells is largely inhibitory (Ito et al., 1970; Zheng
& Raman, 2010), it appears conceivable that the damage/disruption in the cerebellar cortex

led to a disinhibition of the DCN, and then as a consequence to increased cerebellar output.
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Considering the recent debate on RewP, an alternative explanation arises: if the valence and
RPE effects we see within the time window of the FRN are in actuality not driven by a negativity
but a positivity, the results concerning signal increase in the current study need to be
interpreted differently. Namely, a more negative, thus less positive RewP would mean a
decrease of signal towards low RPE, instead of an increase in signal, as interpreted above. In
turn, this would be more fitting with a potentially driving role of the cerebellum within this
process. However, this interpretation would result in an even stronger contradiction with
behavioural findings, posing the question of how the signal can be strongly decreased when
the behaviour is intact (see below for a discussion of the brain-behaviour disconnect).
Considering recent observations and views, two deflections occur within the time window of
the FRN: a negativity called N2 and a positivity referred to as RewP (Krigolson, 2018; Proudfit,
2015; Ullsperger, 2024). The N2 is sensitive towards frequency and surprise (Patel & Azzam,
2005; Ullsperger, 2024), while the RewP is more associated with RPE, in particular positive
RPE (Ullsperger, 2024). However, it is difficult to separate the unsigned RPE from salience in
the current study. The unsigned RPE represents surprise which involves salience. Thus, it
cannot be excluded that the effect is more strongly driven by the negative component in the
FRN time window, i.e., N2. Notably, it has been proposed that the negativity associated with
FRN is in fact an N2 (Holroyd et al., 2008). However, without conducting an additional PCA to
separate N2 and RewP in the data available, conclusions as to the contribution of N2 and
RewP for the signal analysed cannot be drawn. Nevertheless, as one would expect a stronger
signal for a highly relevant signal (high negative RPE) over one with lower relevance (low
negative RPE), it might be more meaningful to interpret the signal as a negativity rather than

positivity, although this interpretation remains speculative.

RPE in healthy participants (Experiment 1 and 2)

A further point of discussion concerns why RPE coding in FRN was found only for negative
feedback in healthy controls (Experiment 1) and for control stimulation (Experiment 2). Not
many previous studies have examined RPE coding in FRN separately for positive and negative
feedback. Instead, a signed RPE was examined (e.g., Burnside et al., 2019; Fischer &
Ullsperger, 2013; Fromer et al., 2021; Humann et al., 2020; Kirschner et al., 2022) which is,
however, highly correlated with valence. Considering studies which examined RPE coding in
FRN separately for positive and negative valence, some studies found effects stronger or only
for negative valence (Chase et al., 2011; Hoy et al., 2021; Rawls & Lamm, 2021), and some
only for positive valence (Cavanagh, 2015; Weber & Bellebaum, 2024). Recordings of single
cells in the ACC show that some neurons only react to negative feedback, while others only
react to positive feedback, and again others show excitation to both negative and positive
feedback (Amemori et al., 2015; Kawai et al., 2015; Monosov, 2017). A potential reason for the

differences in valence preference in the (suspectedly ACC-generated) signal in FRN might be
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differences in paradigms which draw more attention towards either of the valence types and
thus preferentially activate the respective neurons in ACC. For example, tasks in which
participants can learn more easily will have less negative feedback in the later course of the
task and negative feedback will consequently have more salience due to the lower frequency.
The FRN is sensitive to salience (Hauser et al., 2014; Stewardson & Sambrook, 2020; Talmi
et al., 2013). As proposed by Alexander and Brown (2011), frequency also explains parts of
the valence effects found in FRN. It might be sensible to use tasks which show robust effects
for RPEs under both positive and negative feedback to examine cerebellar influences on
signed and unsigned RPEs. This might require online control of accuracy, such as achieved
by Hoy et al. (2021) in a time estimation task. However, even though Hoy et al. were able to
show RPE effects in FRN for both positive and negative feedback, further studies are

necessary to show whether these effects are robust.

Valence

For Manuscript 1, a control analysis was performed to investigate whether processing was
disrupted in general or whether this was specifically related to unsigned RPE. Interestingly,
valence processing in FRN was indeed intact for both groups in Experiment 1 and both
stimulation sites in Experiment 2. This is consistent with the robust valence effect in FRN
(Sambrook & Goslin, 2015). Of note, the valence effect in Experiment 1, where feedback delay
was varied, was only found for short feedback delays. This is consistent with a wide variety of
literature showing that the valence effect in the FRN is dependent upon feedback timing:
valence effects generally presented as decreased when feedback was more delayed (for a
review see Hinneberg & Hegele, 2022). As detailed in the introduction, this might be due to a
shift in involvement of different brain areas, with the striatum showing stronger activation for
immediate feedback and the medial temporal lobe showing stronger activation for delayed
feedback (Foerde & Shohamy, 2011).

It is also worth noting that the intact valence effect in the current study is different from the
findings of Rustemeier et al. (2016) who also examined patients with chronic cerebellar stroke.
Differences in paradigm should be considered: the fractal task that Rustemeier et al. used only
included 50-50 contingencies. Learning was thus not possible, unlike in the task in the study
at hand. Interestingly, Rustemeier et al. reported the findings of a probabilistic feedback
learning task — which was conducted in the same patient sample — in their supplement: here,
they did not find differences in valence coding in FRN between patients and controls. Notably,
they also did not specify whether a general valence effect was found (although supplementary
grand averages appear to show valence differences in the FRN time window). Learning
success in this secondary probabilistic feedback learning task presented as parallel to our

findings: no differences between patients and controls emerged. Intact valence coding and
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acquisition learning in FRN in patients with chronic cerebellar stroke thus appears consistent

across studies.

Brain-behaviour disconnect

While the abnormalities in RPE coding in FRN were quite pronounced, this was not the case
for behavioural deficits. Only minor differences between patients and controls (Experiment 1)
and between cerebellar and vertex stimulation (Experiment 2) were found. This finding prompts
two questions: 1) what does the cerebellum contribute to reinforcement learning, and 2) how

does the FRN relate to behaviour?

Cerebellar contribution to reinforcement learning

Concerning the first question, our findings did not indicate behavioural deficits concurrent with
cerebellar damage or disruption besides minor changes in choice switching. While the main
take-away of this finding could be that the cerebellum is not essential for the specific learning
processes necessary for acquisition learning, several factors need to be considered. The task
we used required participants to observe and understand patterns between stimuli, actions,
and outcomes. They were not given information on how the task was to be performed except
for that they would be able to influence the outcomes they received and the general course of
the task. While the task did not include any other features making it more difficult besides the
probabilistic contingencies (Experiment 1: 90-10 for two stimuli and 50-50 for the other two
stimuli; Experiment 2: 80-20 for two stimuli and 50-50 for the other two stimuli), the task was
not easy considering average accuracy. Accuracy for learnable stimuli in the last block was at
around 70 % for Experiment 1 and at around 60 % for Experiment 2. The results can thus not

be explained by a simple ceiling effect.

When considering other studies that examined reinforcement learning under cerebellar
damage/disruption, a pattern seems to emerge with intact acquisition learning but deficient
behavioural flexibility (i.e., an aspect for which we found minor changes): Rustemeier et al.
(2016) and Berlijn et al. (in press) could not find deficits in patients with cerebellar stroke and
degeneration, respectively. Thoma et al. (2008) could demonstrate that while patients with a
cerebellar stroke showed normal acquisition in reinforcement learning, reversal learning was
decreased. The same pattern with intact acquisition and deficient reversal learning was
observed when Kruithof et al. (2025) applied theta-burst stimulation to the cerebellum.
Nicholas et al. (2024) also found deficits in reinforcement learning in patients with cerebellar
degeneration in a task that required behavioural flexibility throughout the whole task. They
used shifting reward probabilities, thus requiring participants to constantly adjust action values.
A decisive factor for deficits under cerebellar damage/disruption might thus be behavioural
flexibility rather than acquisition learning. Notably, however, as Berlijn et al. (2024) outline in

their systematic review, studies including the Wisconsin Card Sorting Test (WCST) or a
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modified version of it did not yield as clear of a result pattern. The WCST requires participants
to sort cards according to a pattern unknown to them that also changes throughout the task.
This thus also requires behavioural flexibility. While some studies found deficits in patients with
cerebellar damage (applying an old rule even though the rule shifted; Mak et al., 2016;
Mukhopadhyay et al., 2007), others did not (Dirnberger et al., 2010; Turner et al., 2007). There
is thus as yet no sufficient evidence for a clear behavioural correlate of cerebellar
damage/disruption in reinforcement learning, although it seems more likely that flexibility rather

than pure acquisition learning is affected in these patients.

Future studies are required to characterise the reinforcement learning deficits associated with
cerebellar damage/disruption more in-depth. There might be differences both in terms of
paradigm as well as in terms of clinical population/cerebellar stimulation. Concerning the
paradigms, a wide range of paradigms with a focus on behavioural flexibility but differences in
other requirements should be tested. Differences might be examined in task domain, required
working memory load, risk behaviour, attention, and others. For example, reversal learning
tasks might require the sensing of a sudden shift in stimulus-/action-outcome contingencies,
which might pose higher demands to salience networks. This would be reconcilable with the
deficits in unsigned RPE coding in FRN, which might also be interpreted as a deficient salience
signal. Constantly shifting reward probabilities might require the involvement of other brain-
areas involved in the computation of reward values, and should present as more difficult. In
addition, more complex tasks such as two-step tasks requiring the performance of several
actions instead of one have not yet been sufficiently explored within the framework of
cerebellar dysfunction and might even require a different set of processes and brain areas.
Balsters et al. (2013) could show initial evidence that the cerebellum, in particular Crus | and
I, is active in higher-order rule learning (which is required for two-step tasks). In rodents, a
deficit in the reversal but not acquisition stage concurrent with cerebellar Purkinje cell loss was
also shown in a visual discrimination task and discussed in terms of higher- and lower-order
rule learning (Dickson et al., 2017). Interestingly, while the task was framed as a visual
discrimination task and results were mainly interpreted in terms of higher- and lower-order rule
learning, mice were instrumentally conditioned to learn visual stimuli, thus constituting a
reinforcement learning task. The study thus provides further evidence for a role of the
cerebellum in behavioural flexibility. It might be beneficial to consider higher-order rule learning

when investigating a cerebellar role in reinforcement learning in terms of behavioural flexibility.

Behavioural correlates of the FRN

Concerning the second question, previous studies indicated that the correlation between FRN
and behaviour is not straightforward. An overview by Ullsperger (2024) shows that there is no

strong basis for behavioural correlates for the FRN yet. A few studies showed a relation to
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deficits within behavioural flexibility (Fischer & Ullsperger, 2013; Kirschner et al., 2022; but also
see Chase et al., 2011) which is also the area where we found minor deficits in Experiment 1
and 2. However, the task we used in these experiments does not require a particularly high
demand on behavioural flexibility; only acquisition learning was required. More severe deficits
could potentially be found in tasks which require more behavioural flexibility, such as reversal
learning tasks or tasks with continuously changing contingencies. The question on what the
FRN reflects nevertheless persists. The signal clearly reflects RPEs, as many previous studies
have shown (Burnside et al., 2019; Cavanagh, 2015; Chase et al., 2011; Fischer & Ullsperger,
2013; Fromer et al., 2021; Hoy et al., 2021; Humann et al., 2020; Kirschner et al., 2022; Rawls
& Lamm, 2021; Weber & Bellebaum, 2024). Several explanations come to mind on why the
deficient RPE processing represented in FRN does not result in a behavioural deficit in the

present experiments.

First, it might be that the RPE signal in the FRN is simply not essential for acquisition learning.
Instead, other regions besides the ACC, i.e., the likely neural generator of the FRN, might
represent RPEs independently from ACC and are instead required for this type of learning.
Several fMRI and electrophysiological studies in animals have shown that RPE is represented
in SN, VTA, Striatum, OFC, and likely further other regions (J. Y. Cohen et al., 2012; D’Ardenne
et al., 2008; Groman et al., 2021; Schultz et al., 1993, 1997; Takahashi et al., 2023). It thus
seems that the RPE is widely represented in the brain, which seems adequate, as it is such a
crucial value for the correct adjustment of action values, and consequently the reinforcement
learning success in a wide variety of contexts. The RPE signal in the FRN seems to make up
only a part of these representations. The FRN might not account for the complete distribution
of RPE signals in the brain. Since the absent RPE coding in FRN in the cerebellar lesion
patients and healthy participants under cerebellar TMS does not result in behavioural deficits,
the RPE signal in FRN cannot be the only signal used for action value updating in acquisition
learning in probabilistic feedback learning contexts. That would had to have resulted in
behavioural deficits. Notably, this argumentation is not compatible with the reinforcement
learning theory proposed by Holroyd and Coles (2002) which assumes that the ACC acts as a
control filter for all reinforcement learning processes (and should thus represent all RPE
signals). Following this theory, deficits in processing within ACC should have resulted in

behavioural deficits, which was however not the case.

Second, RPE processing in FRN might be used for reinforcement learning in acquisition
contexts but can be compensated by other brain areas. This could be, for example, a later,
more effortful process. However, we examined later ERP components for Experiment 1 and 2,
i.e., P3a and P3b, and could not find any effects consistent with such a conclusion. Several

brain areas associated with RPE processing were, however, not captured, as there is no
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straightforward ERP component reflecting their activity. It is very possible that these brain
areas took over the function of the ACC. Importantly, these would have to be compensatory
processes that are available on the short term, as the stimulation in Experiment 2 was
instantaneous. Lesion studies could show that the ACC is necessary for action-outcome
associations but not stimulus-outcome associations (Camille et al., 2011; Rudebeck et al.,
2008). Of note, these findings demonstrate that the ACC cannot be the only final processing
stage for all reinforcement learning processes. Instead, it seems that the ACC has a tendency
towards action-based reinforcement learning. For stimulus-based reinforcement learning,
areas such as OFC seem to be more relevant. Lesion studies could show that OFC is required
for stimulus-outcome learning but not action-outcome learning, thus showing a double
dissociation (Camille et al., 2011; Rudebeck et al., 2008). This insight is highly relevant to our
findings. In the paradigm for Experiment 1 and 2, we assumed that action-outcome learning
would take place, as choices were made by pressing one of two buttons on a response box.
Stimuli were only used to represent the context of the choice, such that for a given stimulus,
different contingencies between responses and outcomes applied. However, responses were
additionally represented on screen via rectangles. In the previously mentioned studies, which
showed a necessity of ACC for action-outcome learning, responses were made by moving a
joystick, without representation on screen. The button presses and rectangle representation
might have enabled learning via stimulus-outcome learning to some degree, facilitating the
compensation via regions such as OFC. The OFC, and also the closely associated vmPFC
receive a wide range of information highly relevant to reinforcement learning (Groman et al.,
2021; Moneta et al., 2023, 2024) and might be suitable to compensate ACC function. However,
we were not able to test this as no correlate of OFC/vmPFC activity was measured. It is also
worth mentioning that ACC function has not been closely defined yet. Another suitable region
to compensate ACC function might be dIPFC, a region which is able to modulate activity of the
motor cortex and whose stimulation is able to cause shifts in reinforcement learning strategies
(Morris et al., 2014; J. X. Wang et al., 2018).

While it will be helpful to investigate this more directly using a method with a higher spatial
resolution, such as fMRI, within a reinforcement learning task, it might also be helpful to
investigate the effect of cerebellar TMS at a more basic level. Applying cerebellar repetitive
TMS (rTMS; and several control stimulations on different appointments) and measuring
resting-state fMRI before and after would be insightful to understand the effects of cerebellar
TMS on cerebellar connectivity with other brain areas. rTMS can be used off-line and increase
or decrease excitability of the subjacent area depending on stimulation frequency (Klomjai et
al., 2015). This approach could shed light on several speculative interpretations for the studies
presented here. While it would be interesting to see to which degree connectivity to areas
involved in reinforcement learning changes, the direction of the effect (increased or decreased
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activation/connectivity) would help interpreting whether cerebellar over- or underactivation is

causal for the differences found in FRN and ERN.

Cerebellar computation in reinforcement learning

A recent study investigated feedback processing in the FRN in patients with ACC lesions
(Oerlemans et al., 2024), i.e., the main generator of the FRN. This appears highly relevant in
relation to the results of Manuscript 1. If the results were similar to the findings in Manuscript
1, this would speak for a driving role of the cerebellum in generating the FRN. However,
Oerlemans et al. (2024) found a blunted valence effect in FRN for patients with lesions to the
(right dorsal) ACC while we found intact valence coding in patients with cerebellar damage. On
the other hand, we found deficits in RPE coding which is something that was not tested in the
study by Oerlemans et al. (2024). This points towards a complementary role of the cerebellum.
Instead of a loss of valence coding as with ACC lesions, cerebellar lesions did not result in
deficits in valence coding and instead selectively seemed to affect RPE. This is in conformity
with the general assumption that the cerebellar influence on the cerebrum is modulatory and

does not drive processes directly (Kawato et al., 2021).

A crucial point of interest concerns whether cerebellar RPE processing is related to signed or
unsigned RPE. The reflection of RPEs in FRN was decreased only for negative valence. For
positive valence, we could not find RPE coding for either patients/cerebellar TMS or
controls/vertex TMS. This makes an interpretation as to whether the cerebellum is required for
signed or unsigned RPEs more complex. Notably, valence coding in FRN was unaffected in a
control analysis, indicating that cerebellar damage/disruption affected valence to a smaller
degree. This could indicate that the cerebellum is more associated with unsigned than signed
RPE. The ACC, on the other hand was shown to display both signed and unsigned RPEs
depending on the study (Amemori et al., 2015; Corlett et al., 2022; Kawai et al., 2015; Monosov,
2017).

The interpretation of our results as deficits within the processing of unsigned RPE fits well with
recent findings in fMRI and rodents. A meta-analysis conducted by Corlett et al. (2022) yielded
that cerebellar activations in reinforcement learning mainly relate to unsigned instead of signed
RPE. Further supporting this interpretation, rodent studies found signal increases towards both
positive and negative RPEs (Heffley et al., 2018; Heffley & Hull, 2019; Kostadinov et al., 2019;
Vignali et al., 2024; M. J. Wagner et al., 2017). Only one study found signal decreases towards
omission in punishment contexts (Ohmae & Medina, 2015). However, a study investigating the
output of the cerebellum did indeed find signals consistent with a signed RPE (Washburn et

al., 2024), although the signal overlapped with licking activity.
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Importantly, the finding that the cerebellum contributes towards reinforcement learning does
not indicate that the computation within the cerebellum itself follows principles of reinforcement
learning. Reinforcement learning algorithms can have subprocesses that provide information
to the higher-level reinforcement learning process but do not constitute reinforcement learning
themselves (Sutton & Barto, 2018a, 2018b). They might for instance instead be supervised or
unsupervised learning processes. In fact, supervised learning has been proposed as a ruling
principle for cerebellar computations (Raymond & Medina, 2018), although recent accounts
have also proposed reinforcement learning as an alternative principle within the cerebellum
(Kuriyama et al., 2024).

Cerebellar subregions

In addition to the general findings within FRN and learning success, further investigations were
made into what subregions of the cerebellum might be most relevant for RPE processing within
the FRN for Experiment 1. Stroke patients present with inhomogeneity in lesion location and
(usually) clearly circumscribed lesions, enabling examination of relations between degrees of
deficits and lesion location. Exploiting this characteristic of the sample, a vbLSM was
performed for Experiment 1 of Manuscript 1 in order to relate the decreased RPE processing

in FRN to cerebellar lesion location.

Results of the vbLSM pointed to a special role of four subregions: a cluster in the transition
between Crus Il and lobule Vb, one in medial Crus Il, one in Crus |, and one in medial lobule
Vilb/vermal lobule Vllla. All these regions are part of the posterior cerebellum which is
associated with higher cognitive functions (Stoodley et al., 2016; Tedesco et al., 2011). As
functional boundaries present differently than anatomical boundaries, it can be helpful to
consider where these regions lie in an atlas based on task data, such as the one by Nettekoven
et al. (2024). Considering the statistically significant clusters against this atlas, several
functions related to the task are apparent. The cluster in the transition between Crus Il and
lobule VIIb overlapped with region D2 in the Nettekoven atlas which is associated with working
memory function. Working memory and reinforcement learning are closely intertwined, both in
required brain areas and function (A. H. Yoo & Collins, 2022). It is thus not unexpected to find
regions with such functions affected in patients with deficient RPE coding. The cluster in the
medial Crus Il corresponded to the region D1, which is also working memory (Nettekoven et
al., 2024). The cluster in Crus | corresponded to S3, which is associated with the default mode
network and theory of mind (Nettekoven et al., 2024). While it might seem surprising to find a
region associated with theory of mind among the regions associated with deficient RPE
processing, an interpretation concerning its function within the default mode network might be
more sensible: a main purpose that has been suggested for the default mode network is

reinforcement learning (Dohmatob et al., 2020). Lastly, the cluster in medial lobule VlIb/vermal
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lobule Vllla overlaps with region A1, that has been associated with spatial rotation and
simulation (Nettekoven et al., 2024). While not specifically related to reinforcement learning,
visual spatial skills have been related to the reading of Chinese characters which were used
as visual stimuli in the task (D. Lin et al., 2016). It might thus be a second-tier function that is

relevant for this task but likely not in general for reinforcement learning tasks.

Importantly, the parcellation by Nettekoven et al. (2024) did not include reinforcement learning
tasks, making assumptions as to whether these regions overlap with areas relevant for
reinforcement learning more difficult. However, considering that most clusters overlapped with
regions with functionality closely related to or required for reinforcement learning, it seems
likely that these are in fact regions that perform tasks in reinforcement learning. Future
parcellations should use task batteries or data sets that also include reinforcement learning

tasks to answer this question more directly.

Itis further important to note that while we found these four clusters in connection to particularly
reduced RPE processing in the FRN, the distribution of FRN difference amplitudes was overall
shifted in patients compared to controls (see Figure 8C in Manuscript 1). It is therefore likely
that several other regions besides the ones mentioned above are relevant for reinforcement
learning. Lesions were predominantly in the posterior cerebellum. In the review of Berlijn et al.
(2024), a wide range of regions was found to be active in reinforcement learning as revealed
by studies using fMRI in healthy adults. It is possible that some of these activations are also
task-specific, as it is presumably the case with the cluster in medial lobule Vllb/vermal lobule
Vllla found in Experiment 1. It would be useful to investigate a wider range of tasks in a larger
patient sample; however, this would likely require a multi-site effort, as patients with strokes
limited to the cerebellum are scarce and not always easy to recruit in the chronic state (as
there is less necessity for visiting an inpatient clinic as compared to, e.g., patients with

degenerative disease).

The stimulation site in Experiment 2 also allowed for conclusions concerning relevant brain
regions: the initial reason for stimulating the left cerebellum was the finding that spatial
processing is more strongly processed in the right cerebrum and left cerebellum (Corballis,
2003; Petrosini et al., 1998). Parallels were drawn to the complex stimuli presented in the task
(Chinese stimuli or radicals). However, stimulating the left site is also consistent with studies
showing that cerebellar activity towards fear extinction learning (a form of classical
conditioning) is found within the left cerebellar hemisphere (Doubliez et al., 2023; Ernst et al.,
2019; Nio et al., 2025; Yaguez et al., 2005).

Interestingly, a recent study found deficits in reversal learning when stimulating the medial
cerebellum but not the right cerebellum or occipital lobe via rTMS (Kruithof et al., 2025). The

reason for stimulating the medial cerebellum was based on a recent meta-analysis from the
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same group that showed that reward is processed more strongly within the vermis (Kruithof et
al., 2023). Deficits in reversal learning would be predicted when considering deficits in RPE
coding in FRN, as behavioural flexibility is one of the few behavioural correlates for which some
evidence points to the FRN (Fischer & Ullsperger, 2013; Kirschner et al., 2022; Ullsperger,
2024; but also see Chase et al., 2011). It thus seems consistent that a stimulation of the
cerebellum would result in both a reduction of RPE processing as in Manuscript 1 and a
reduction in reversal learning as in the study by Kruithof et al. (2025). It initially seems
incongruent that deficits were found in FRN for stimulation on the left site, and in reversal
learning for stimulation on the medial cerebellum. However, cerebellar TMS is not very focal.
Modelling and measurements of the electrical field for cerebellar TMS indicate that especially
the double-cone coil we used in Experiment 2, but also the figure-of-8 coil that Kruithof et al.
used, stimulates a rather large area (Can et al., 2018). There thus seems to be considerable
overlap between the electrical fields of the two stimulation sites. The actual regions that might
be essential for eliciting deficits in the two studies might thus well lie within either or between
the left hemisphere and vermis. However, the study performed by Kruithof et al. seems to
indicate that the right cerebellum is not required even for reversal learning. This seems at odds
with the findings of Experiment 1 in Manuscript 1 where around half of the lesions were on the
left and half on the right side. There, the overall distribution of difference FRN was shifted in
the whole patient sample compared to the control participants, and not selectively for patients
with lesions to the left cerebellum. Cerebellar connectivity might be changed in the side
contralateral to the stroke in terms of network-level changes; however, this alone is not
sufficient to clearly explain the inconsistencies in findings. It thus still stands to question
whether only the left hemisphere or vermis is required. It might be helpful to make use of newer
brain stimulation techniques, such as transcranial ultrasound stimulation (TUS). TUS has been
explored more recently as an alternative to more established NIBS methods. It offers the
advantage of a much higher spatial resolution and is easily combinable with EEG and fMRI
(Darmani et al., 2022). A more focal stimulation could offer a clearer picture on the cerebellar

regions involved in reinforcement learning.

TMS timing

For Experiment 2 in Manuscript 1, the interaction between feedback valence, unsigned RPE,
and stimulation site did not involve TMS timing. While non-significant effects are always difficult
to interpret, this finding might indicate that 1) stimulation at both time points affected the same
process, 2) stimulation at the different time points affected different subprocesses which were,
however, both required for RPE coding, 3) a more general rTMS-like effect emerged via the
prolonged single-pulse stimulation. For 1), outcome anticipation might be a fitting candidate.
Outcome anticipation builds slowly starting from the response execution towards the outcome

delivery (M. J. Wagner et al., 2017). While the time window in which the disruptive effect of the
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TMS is effective is unknown, it might be that both stimulation time points disrupted this process.
For 2), post-stimulus TMS might have disrupted error processing and pre-feedback TMS might
have disrupted feedback processing. There is evidence that both of these processes are
affected by cerebellar damage (Peterburs et al., 2012, 2015; Rustemeier et al., 2016). Error
processing was also indeed affected in the data used for Experiment 2, as shown in Manuscript
2. The disruption of error processing might have indirectly disrupted RPE processing, while the
disruption of feedback processing might have had a direct influence. Lastly, for 3), disruption
might have been induced via unintended low-frequency rTMS, with effects potentially
developing across the course of the task (which was, however, not investigated). While low-
frequency rTMS is usually applied at 1 Hz (Klomjai et al., 2015), a few studies have also found
decreased motor excitability and long-term depression for TMS at even lower frequencies such
as 0.5 or 0.25 Hz (Gorsler et al., 2003; Zhuo et al., 1994). In Experiment 2, stimulation took
place once per trial with a duration of ca. 4 seconds per trial, thus approximating 0.25 Hz in
stimulation frequency. However, a study performed by Muller et al. (2014) was able to show
that — at least for the motor domain — effects are strongest for stimulation at 1 Hz. Additionally,
stimulation was varied between post-stimulus and pre-feedback TMS, and consequently no
consistent rhythm was applied. It thus seems unlikely that an unintentional rTMS was

responsible for the absent effects of stimulation timing on RPE coding in FRN.
The cerebellum in error detection

Result pattern in ERN

While Manuscript 1 focussed on the role of the cerebellum in feedback processing, Manuscript
2 and 3 focussed on error processing. Interestingly, even though Manuscript 2 investigated
error processing within a reinforcement learning paradigm and Manuscript 3 investigated error
processing within a response conflict paradigm, the influence of cerebellar TMS on error
processing in the ERN presented similarly: in both studies, the discrimination of errors and
correct responses in the ERN was diminished when stimulating the cerebellum. These findings
are further consistent with previous studies by Peterburs et al. (2012, 2015). In these studies,
participants performed antisaccade tasks, another type of response conflict task. Participants
needed to perform a saccade in the opposite direction of a peripheral stimulus. Both patients
with chronic cerebellar stroke and patients with a degenerative cerebellar disease showed
diminished discrimination between errors and correct responses in ERN. One other study
performed by Tunc et al. (2019) in patients with cerebellar degeneration could not show this
effect. In this study, a Flanker task was performed. Notably, the group difference in the
difference ERN (errors — correct responses) showed a trend-level effect, indicating
descriptively that the difference ERN was smaller in patients than in controls. Although the

authors interpreted this effect strictly as non-significant, it would fit the general pattern of
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studies presented above. The smaller effect in the study by Tunc et al. does not seem
explainable purely by sample size (23 patients, 29 healthy controls) or time pressure (450 ms
response time window vs. 350/400 ms in Manuscript 3). While they did use wider inclusion
criteria, also including cerebellar disease with extracerebellar involvement, such as SCA 1, one
would expect more severe rather than smaller deficits, as a wider range of brain areas is
affected. In addition, there were some differences in preprocessing and the quantification of
the ERN, although it is not apparent whether these are the reason for the differences in effect
sizes. Nevertheless, the overall pattern with decreased discrimination between errors and

correct responses in ERN in cerebellar disease or disruption is consistent across studies.

Result pattern in Pe

However, the result pattern for the Pe in Manuscript 2 presented much differently than for the
ERN, with an increased error-correct differentiation. Differences in both neural generators and
function have been proposed for the Pe. While it is suspected that the ACC contributes to
generating the Pe, additional generators have been proposed, such as the parietal cortex
(Hester et al., 2005). It is possible that these generators were not or differently affected by the
cerebellar TMS. The function of the Pe is not as clear as for the ERN (van Veen & Carter,
2006). A differentiation into an early and a late Pe has been proposed, with different
functionality: while the early Pe should show a signal similar to and highly correlated with the
ERN that is generated potentially by the same source (i.e., ACC), differences in functionality
from ERN have been proposed for the late Pe (Wessel, 2012). For the late Pe and later ERP
signal in general, error awareness has been suggested as a potential underlying process (Del
Cul et al., 2007). While early and late Pe were not separately assessed and, instead, only the
peak Pe was detected, the major differences between result patterns in ERN and Pe indicate

that we might have captured a different process in Pe than in ERN.

The complementary effects in ERN and Pe in Manuscript 2 with no deficits in behaviour
appeared to be highly similar to the findings reported by Peterburs et al. (2012) in a response
conflict task in patients with chronic cerebellar stroke. Peterburs et al. quoted long-term
compensatory mechanisms as a potential reason for this result pattern in chronic cerebellar
stroke, with an increased error-correct differentiation in Pe compensating for the decreased
error-correct differentiation in the earlier-peaking ERN, resulting in an intact performance.
However, as TMS in Manuscript 2 was applied instantaneous, a long-term compensation does
not seem fitting to explain the result pattern. Two other options stand to reason: first, the
increased error-correct differentiation might yet constitute compensation, however, in a short-
term manner. In favour of this argument would be the indeed intact learning performance. Error
processing might thus have been taken over by the Pe instead of ERN. This interpretation calls

into question whether the findings shown by Peterburs et al. truly reflected long-term
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compensation, or whether these also showed a short-term compensation available
instantaneously. Notably, the compensation in the two studies might differ, as 1) compensation
available in reinforcement learning and response inhibition might differ, and 2), the
manipulation applied via cerebellar spTMS might differ greatly from the effects of cerebellar
degeneration and stroke. It thus cannot be excluded that Peterburs et al. observed long-term
compensation and Manuscript 2 showed short-term compensation. It is important to note that
late error processing (in Pe) might not result in intact performance in all contexts: it might prove
more problematic in contexts that require a fast-paced line of action, such as in sports or the
play of instruments. However, intact performance does not evidence that increased error-
correct differentiation in the Pe constitute compensation. Compensation could also have taken
place at other stages of the task, such as feedback anticipation or processing, or even in the
inter-trial-interval, and the changes to Pe might have a different underlying cause than
compensation. For example, the increased error-correct differentiation in Pe might constitute
a hypermetria, i.e., a maladjusted, overly high signal. A potential variable in which hypermetria
might have occurred could be salience which is associated with Pe (Overbeek et al., 2005).
This interpretation would be consistent with the dysmetria of thought hypothesis
(Schmahmann, 1998), i.e., that dysmetria concurrent with cerebellar dysfunction occurs not
only in the motor but also in the cognitive domain. This interpretation could be testable in

settings with a wider range of error saliences.

Another important point of consideration is that results between Manuscript 2 and 3 were not
consistent for the Pe: while for Manuscript 2, an increased error-correct differentiation in Pe
was found for cerebellar TMS, no significant effects were observed in Pe in Manuscript 2. First,
differences in sample or other external parameters do not offer an explanation for these
differences, as samples were almost the same and data were acquired within the same session
(first, the pre-test for Manuscript 3, followed by the probabilistic feedback learning study for
Manuscript 2, then the Go/Nogo Flanker task for Manuscript 3). The only notable difference
concerning the sample appears to be the smaller final sample size for Manuscript 3, as more
subjects needed to be excluded. Besides sample size, reasons might lie within differences in
the tasks: Manuscript 3 used a fast-paced response conflict task while Manuscript 2 used a
slow-paced reinforcement learning task. Potential differences might be pace, task difficulty, or
reliance on error awareness. Another reason might lie within the timing of the stimulation which
took place much closer to the ERN (and also Pe) latency in Manuscript 3 compared to
Manuscript 2. The stimulation in Manuscript 3 might have consequently been more effective
than in Manuscript 2. Importantly, the absence of effects within Pe in Manuscript 3, with
simultaneously no deficits within behavioural performance, prompts the question whether the
interpretation of the increased error-correct differentiation in Pe in Manuscript 2 can truly be
compensation. However, differences in reliance on processes reflected in Pe between
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response conflict and reinforcement learning are also an important point of consideration. The
Pe presented with a less pronounced peak in the grand average in Manuscript 2, consistent
with studies that examined Pe in reinforcement learning paradigms (Unger et al., 2012; Zhuang
et al., 2021). The Pe might present different in reinforcement learning task, potentially due to
errors being more ambiguous than in response conflict tasks. This is also a question of basic
research into the background of the Pe, which has been less extensively investigated than
ERN.

Association of error and feedback processing

Manuscript 2 investigated the influence of cerebellar TMS onto error processing in a
reinforcement learning task — importantly, in this data, the RPE coding in the FRN was blunted
when receiving cerebellar TMS. This is an important consideration for the effects in the ERN,
as deficits might thus also be caused by deficient feedback processing. Stimulation was
applied at two time points (but only once per stimulus/trial): either at 100 ms after stimulus
presentation (thus before the response) or 100 ms before the feedback presentation.
Considering the processing deficits in ERN with cerebellar TMS, two potential explanations
arise: 1) The deficit in ERN might have been caused by the blunted RPE coding in FRN. This
would indicate that RPE coding and consequentially the updating of action values is essential
for error detection in reinforcement learning. 2) The effect stems from the post-stimulus
stimulation directly affecting error processing. While this interpretation indicates that the deficit
in FRN did not affect ERN, the causality might be inverted: for example, a disruption of action
value representation could affect both error detection and RPE processing, as action value
representation is required for both. A trend-level interaction in ERN indicated a stronger
blunting of the response type effect in ERN under post-stimulus cerebellar TMS. This finding
supports a more direct effect of TMS on ERN, and not indirectly via blunted RPE coding during
the feedback stage. Nevertheless, this alone does not allow for the conclusion that the deficit
in ERN is causal for the deficit in FRN. It might yet be that both deficits are completely separate
from each other. The finding in the FRN presented in Manuscript 1 did not show any interaction
indicating that any of the stimulation time points resulted in stronger blunting of RPE coding in
FRN. It might thus well be that the ERN is affected by only post-stimulus TMS while the FRN
is affected by both post-stimulus and pre-feedback TMS.

The finding that both error coding in ERN and RPE coding in FRN is blunted while error coding
in Pe and RPE coding in P300 is not, proves interesting in relation to the networks and
functionality involved. The ACC, the likely neural generator of the ERN and FRN, has been
implicated within both the salience and executive network (Carter et al.,, 1999; Ham et al.,
2013). While the Pe has been less well researched, the P300 has been implicated in the

executive network and several sensory networks (Guerrero et al., 2022; Li et al., 2018). The
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findings in Manuscript 1 and 2 taken together might thus indicate differences in functional
significance of connectivity between the cerebellum and these networks in reinforcement

learning or different capabilities of these networks to compensate cerebellar deficits.

TMS timing

While TMS timing in Manuscript 2 was rigidly set to 100 ms post-stimulus, the timing was more
varied and individually adjusted in Manuscript 3. This followed the question of whether a clear
time window could be established for an effect of cerebellar TMS towards a disruption of ERN.
For the motor domain, this has been established more clearly in terms of cerebellar brain
inhibition (Ugawa et al., 1991). Here, one coil is placed on the cerebellum and one over the
contralateral motor cortex. It could be shown that cerebellar TMS around 5 ms before TMS
over M1 results in decreased motor output (Fernandez et al., 2018). Considering the effects
found in Manuscript 2, this time window needs to be larger for the cognitive domain, as the
distance between stimulation and response/ERN latency varied depending on response time,
and stimulation seemed to still be effective. In Manuscript 3, TMS timing was applied at four
different stimulation time points: either 100 or 50 ms before, at the calculated ERN latency, or
50 ms afterwards. However, to increase the number of trials per condition, stimulation timings
were pooled for analysis: the stimulation at 100 or 50 ms before the ERN latency were pooled
together as early stimulation and the stimulation at ERN latency or 50 ms afterwards were
pooled together as late stimulation. The blunting of error-correct discrimination in ERN was,
however, only found for the late stimulation. This appears to be inconsistent with the findings
of Manuscript 2 which showed a blunting of the error-correct discrimination in ERN with a rather
large temporal distance between stimulation and response/ERN (stimulation 100 ms post-
stimulus, median response time at 453.5 ms post-stimulus with an average individual standard
deviation of 98.8 ms). A potential reason for this might be different requirements of the task.
Reinforcement learning tasks rely strongly on the representation and updating of action values.
However, there might be a difference in reliance on action values for response conflicts. It was
previously shown that the ERN (but not the Pe) requires knowledge of which action is correct,
i.e., the action value (Di Gregorio et al., 2018); however, it is conceivable that there is no
necessity for an updating of these values. As detailed in the introduction, behaviour is not only
regulated by action values but may also be directed by policy. There is a difference in brain
regions associated with value- and policy-based functions, with VTA, ventral striatum, OFC,
and vmPFC being more associated with value-based function and SNc, dorsal striatum, and
dIPFC being more associated with policy-based functions (Araujo et al., 2024; Balleine et al.,
2007; Fraser et al., 2023; Groman et al., 2021; Lerner et al., 2021; Moneta et al., 2023, 2024;
Morris et al., 2014; O’'Doherty et al., 2004; Ott et al., 2011; Overman et al., 2023). It might be
the case that response conflicts require a higher degree of policy updating and a lower degree

of action value representation. As policy functions are more closely connected with motor
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functions, processing might be faster, making cerebellar TMS only effective in this close range

around the ERN latency while a wider time window works for more cognitive tasks.

In addition, the relation between response times and ERN latency in the pre-task (that was
used to calculate the individual ERN latency for stimulation) and response times and ERN
latency in the experimental task needs to be considered. With the median response time in the
pre-task at around 250 ms and the mean ERN latency at around 50 ms, the average ERN
latency should roughly be at 300 ms. The stimulation at 50 ms after this calculated time would
thus happen after the ERN, and close to the end of the response time window (at 350 ms). An
influence on the ERN via this stimulation time point is thus only conceivable if reaction times
or ERN latency in the experimental task were higher — otherwise it would still occur after the
ERN. While reaction times in the experimental task seemed to have been slightly lower than
250 ms, the ERN latency appears to be higher in the experimental task compared to the pre-
task. The late stimulation time points thus seemed to occur closely before or at ERN latency

in the experimental task.

More research is necessary concerning the temporal relation between cerebellar and cerebral
error processing in the cognitive domain. Future studies might want to stimulate at a wider
range of timings, but it would also be interesting to see whether error processing is deficient in
response conflict tasks with cerebellar rTMS. Such a study would make an important
contribution as to determine whether cerebellar TMS does not affect behavioural performance
in general in response conflict tasks or whether cerebellar spTMS does not have a strong

enough effect to see behavioural deficits.
Limitations

Vertex as a control condition

In all three manuscripts, vertex was used as a control site. Vertex is a commonly used control
site for cerebellar stimulation (Gatti et al., 2023). A sham stimulation does not suffice as a
control site, as the cerebellar stimulation is quite distracting. This does not only make
differences between the stimulation site quite noticeable to participants but also creates
problems when comparing performance parameters between stimulation sites, as the
distraction might be causal for differences. In our study, vertex seemed to offer a good match
in several parameters of side effects, such as inattentiveness, headaches, and discomfort (see

Figure 5 in Manuscript 1).

However, in Study 2 of Manuscript 1, it is apparent that vertex TMS induced changes to the
RPE effect within the FRN. Instead of finding enhanced FRN amplitudes for higher compared
to lower RPEs as one would expect from previous studies (Burnside et al., 2019; Chase et al.,

2011; Fischer & Ullsperger, 2013; Fromer et al., 2021; Hoy et al., 2021; Humann et al., 2020;
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Kirschner et al., 2022; Rawls & Lamm, 2021; Weber & Bellebaum, 2024), the pattern was
reversed, with a decreased FRN amplitude for higher compared to lower RPEs. A likely reason
seems to be a direct stimulation of the ACC. A study performed by Jung et al. (2016) could
show a deactivation of the ACC concurrent with a series of 12 short 1 Hz TMS pulses. Vertex
stimulation thus cannot serve as a true control stimulation, leaving Experiment 2 of Manuscript
1 without a control condition. This makes comparisons in learning performance impossible. No
learning differences between cerebellar and vertex TMS were found. However, it is not clear
whether this is due to no influence of cerebellar TMS on learning, or due to a similar influence
of vertex and cerebellar TMS on learning. Nevertheless, it is still meaningful to regard the
cerebellar TMS in Experiment 2 as a comparison to the cerebellar patients in Experiment 1.

Both showed the same pattern of a blunted RPE coding in the FRN.

Interestingly, no influence of vertex TMS was apparent for the ERN, for which the ACC also
serves as the likely generator (Herrmann et al., 2004; Hochman et al., 2009; Ladouceur et al.,
2006; Roger et al., 2010). As detailed in both Manuscript 2 and 3, the expected error-correct

differentiation was found.

Nevertheless, the present results speak against using vertex TMS as the sole control site, at
least in reinforcement learning paradigms, but, if possible, also in other paradigms, as the ACC
is involved a wide range of processes in the emotional, motor, and cognitive domain (Devinsky
et al.,, 1995). Unfortunately, no alternative active control sites have been tested robustly.
Kruithof et al. (2025) used the occipital cortex as a control site, which can, however, lead to
problems in visual perception (Kammer, 1998). They used the right cerebellum as an additional
stimulation site, which was useful in showing differences in effects within the same region
(cerebellum). From the current status of the literature, it might be sensible to use several
control sites, both to compare effects across control sites within studies and to potentially find
a valid control site in the long term. For learning paradigms, this makes within-subject designs,
such as the one in Experiment 2, difficult if not impossible, as repetition effects will increase
with increasing repetition of the same paradigm. Instead, for healthy participants, between-

subject paradigms should be considered.

Lack of learning success

Even though pilots were conducted in elderly participants to assess whether task difficulty was
appropriate, many participants in Experiment 1 of Manuscript 1 did not learn the stimulus
contingency and did not increase their performance significantly above chance level. This
made comparisons between pre- and post-learning, as originally pre-registered, impossible.
Instead, an alternative approach using RPE modelling was applied. Of note, the learning
success was not substantially lower than in the study of Rustemeier et al. (2016; ca. 75 % vs.
ca. 70 % in the last block).
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Asimilar issue arose for Experiment 2, which was likely due to the distracting effect of the TMS.
This was reported in spontaneous self-reports at the end of the sessions and was also

apparent from the side effects questionnaire.

Alternatively, adaptive tasks might help ensure that most participants learn. This is particularly
important when considering adding a reversal learning phase, where contingencies are
reversed. For reversal to have a meaningful effect, participants need to understand how to
correctly perform the task. Otherwise, the reversal might just further confuse participants and

lead to decreased engagement with the task.

Conclusions

In summary, the presented studies showed that cerebellar function is required for cerebral
processing in reinforcement learning as measured in the ERN and FRN. Both the processing
of RPEs at the feedback stage and the processing of response errors at the response stage
were affected under cerebellar dysfunction. Cerebellar disruption also affected response error
processing in a response conflict task, substantiating the importance of cerebellar function in
performance monitoring in its entirety. Behavioural deficits were absent or minor. The
presented findings converge with previous initial studies in humans and a growing body of
studies showing signals consistent with reinforcement learning in the rodent cerebellum.
Future research should focus on determining behavioural deficits concurrent with cerebellar
dysfunction and further comprehending the role of the cerebellum in disorders with abnormal
reinforcement learning, such as addiction, anxiety disorders, and psychosis. Understanding
the mechanisms in which the cerebellum is involved in the emergence of these diseases might
prove particularly helpful in light of recent research into the cerebellum as a target for brain

stimulation (Basavaraju et al., 2024).
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Recent rodent data suggest that the cerebellum—a region typically associated with processing sensory prediction errors (PEs)—also
processes PEs in reinforcement learning (RL-PEs; i.e., learning from action outcomes). We tested whether cerebellar output is
necessary for RL-PE processing in regions more traditionally associated with action-outcome processing, such as the striatum
and anterior cingulate cortex. The feedback-related negativity (FRN) was measured as a proxy of cerebral RL-PE processing in a
probabilistic feedback learning task using electroencephalography. Two complementary experiments were performed in humans.
First, patients with chronic cerebellar stroke (20 male, 6 female) and matched healthy controls (19 male, 7 female) were tested.
Second, single-pulse cerebellar transcranial magnetic stimulation (TMS) was applied in healthy participants (7 male, 17 female),
thus implementing a virtual lesion approach. Consistent with previous studies, learning of action-outcome associations was intact
with only minor changes in behavioral flexibility. Importantly, no significant RL-PE processing was observed in the FRN in patients
with cerebellar stroke and in participants receiving cerebellar TMS. Findings in both experiments show that RL-PE processing in the
forebrain depends on cerebellar output in humans, complementing and extending previous findings in rodents.

Key words: cerebellum; event-related potentials (ERPs); executive functions; lesion; noninvasive brain stimulation; performance
monitoring
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Significance Statement

While processing of prediction errors in reinforcement learning (RL-PEs) is usually attributed to midbrain and forebrain,
recent rodent studies have recorded RL-PE signals in the cerebellum. It is not yet clear whether these cerebellar RL-PE signals
contribute to RL-PE processing in the forebrain/midbrain. In the current study, we could show that forebrain RL-PE coding is
blunted when the cerebellum is affected across two complementary lesion models (patients with cerebellar stroke, cerebellar
TMS). Our results support direct involvement of the cerebellum in RL-PE processing. We can further show that the
cerebellum is necessary for RL-PE coding in the forebrain.
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Introduction

In our fast-paced world, we need to constantly monitor our envi-
ronment and our actions and choose according to the anticipated
consequences of our actions. In such reinforcement learning
contexts, we rely on external feedback (e.g., reward/success, pun-
ishment/failure) to acquire action-outcome associations and
thereby improve our behavior. Thus, we need to learn to predict
action outcomes, for which we rely heavily on processing predic-
tion errors, ie., the difference between predicted and actual
outcomes.

Prediction errors in reinforcement learning contexts (RL-PEs)
have mainly been linked to basal ganglia, midbrain, and prefrontal
areas (Fouragnan et al., 2018). Predictive functions beyond the
motor domain have also been proposed for the cerebellum
(Ramnani, 2006; Sokolov et al., 2017). More recent studies have
shown cerebellar activation patterns consistent with RL-PEs in
both humans and rodents (Kostadinov and Hausser, 2022;
Manto et al,, 2024; Berlijn et al., 2024b). Moreover, psychiatric
disorders with cerebellar involvement, such as schizophrenia,
autism spectrum disorder, and major depression (Phillips et al,
2015), have been reliably associated with altered and/or impaired
reinforcement learning (Balsters et al., 2017; Halahakoon et al.,
2020; Katthagen et al., 2020). However, deficits cannot clearly
be attributed to cerebellar dysfunction, as multiple brain areas
are typically affected in these disorders. Causal evidence for cere-
bellar involvement in reinforcement learning in humans is scarce.
Patients with cerebellar damage showed deficits in reversal, but
not acquisition learning within reinforcement learning (Thoma
et al,, 2008; Nicholas et al., 2024). An initial study using electroen-
cephalography (EEG) showed altered outcome/feedback process-
ing in patients with cerebellar stroke without impaired acquisition
learning (Rustemeier et al., 2016).

In humans, RL-PE processing is typically studied using feed-
back learning tasks. Here, participants have to learn through trial
and error that, for example, one of several response options leads
to a higher probability of monetary reward over punishment
(Eppinger et al., 2008). EEG can be used to measure an approx-
imation of activity in one of the main drivers of RL-PE process-
ing, the anterior cingulate cortex (ACC; Fouragnan et al., 2018):
the feedback-related negativity (FRN) is a frontocentral negative
deflection in the event-related potential (ERP) that emerges
~250 ms after feedback onset (e.g., presentation of a reward or
punishment; Miltner et al., 1997; San Martin, 2012). Reflecting
the activity of dopaminergic target regions, such as the ACC
and striatum (Holroyd and Coles, 2002; Hauser et al., 2014;
Foti et al,, 2015), FRN amplitudes covary with the estimated
RL-PE at the single-trial level (Fischer and Ullsperger, 2013;
Hoy et al., 2021; Rawls and Lamm, 2021).

Despite findings of RL-PE-like signals in the cerebellum in
rodents and initial accounts of altered reinforcement learning
in humans with cerebellar damage, acquisition learning seems
to be largely unaffected in cerebellar lesion patients (Thoma et
al., 2008; Rustemeier et al., 2016). In the present study, we there-
fore studied the interplay between the cerebellum and cerebral
cortex with respect to RL-PE processing more directly by inves-
tigating the impact of cerebellar damage/disruption on cortical
RL-PE coding in the FRN and learning success. This approach
extends previous observations of RL-PE signals in the cerebellum
toward the question whether these are necessary for intact cere-
bral RL-PE processing. In two experiments, we studied patients
with chronic cerebellar stroke and used single-pulse transcranial
magnetic stimulation (TMS) in healthy adults to create a “virtual
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lesion.” Single-pulse TMS offers the advantage of examining
effects of deficits with a high temporal precision.
Reinforcement learning success was assessed using a probabilistic
feedback learning task. RL-PE processing was assessed using the
FRN on a trial-by-trial basis. If the cerebellum contributes to
reinforcement learning, RL-PE processing as reflected in the
FRN should be reduced in cerebellar stroke patients compared
with healthy controls (Experiment 1) and for cerebellar single-
pulse TMS (Experiment 2). Indeed, no significant RL-PE pro-
cessing as indexed by the FRN was found in cerebellar stroke
patients and for cerebellar TMS. Concerning behavior, only
minor abnormalities in behavioral flexibility were observed,
with reinforcement learning success generally preserved.

Materials and Methods

Experiment 1

Participants

Thirty-one adults with a chronic stroke restricted to the cerebellum were
recruited from the university hospitals Essen and Diisseldorf as well as
the Rhein-Ruhr Clinic in Essen-Kettwig, Germany. Only patients with
a postacute stroke, i.e., at least 6 months after the stroke event (with
one exception who was only 42 d poststroke), were included. Lesions
had to be confined to the cerebellum. Thirty-three adults without
stroke were recruited as controls. Inclusion criteria were no current psy-
chiatric and no current or past neurological disease, no use of medica-
tions affecting the central nervous system, and no alcohol or illicit
drug abuse. Five patients and four controls were excluded because they
did not meet these inclusion criteria. In total, data from 26 patients
(20 men and 6 women) and the 26 controls (19 men and 7 women)
who provided the best match regarding demographic parameters entered
the analyses. Three controls were excluded during matching to ensure
that nontask-related parameters (Table 1) did not result in group differ-
ences in task-related variables. Means and standard deviations on the
main demographic variables are listed in Table 1 (for details, see
Table 2 for patients and Table 3 for controls). Of note, three patients
with depression and antidepressant medication and three matched con-
trols (who also had a clinical diagnosis of depression and antidepressant
medication, roughly matched on BDI score) were included in the analy-
ses, as we could not exclude this to be part of a cerebellar cognitive affec-
tive symptom (CCAS; Schmahmann and Sherman, 1998), and to ensure
that target sample size was met.

Handedness was assessed with the Edinburgh Handedness Inventory
(EHL Table 1; Oldfield, 1971). According to LQgyq;, 19 patients and 21
controls were right-handed, 3 patients and 1 control were left-handed,
and 4 patients and 4 controls were ambidextrous. IQ estimates were
obtained using the Mehrfachwahl-Wortschatz-Test-B score (MWT-B;
multiple choice vocabulary test; Table 1; Merz et al., 1975). As depression
might affect feedback processing (Keren et al.,, 2018) and has a higher
incidence poststroke (Robinson and Jorge, 2016), we assessed depression
using the Beck Depression Inventory II (BDI; Beck et al., 1996).

Figure 1 shows the overlaid lesion regions for all 26 patients. Overall, 21
patients had a stroke in the posterior inferior cerebellar artery (PICA) ter-
ritory (9 left, 9 right, 3 bilateral), 3 patients had a stroke in the superior

Table 1. Demographic data for patients and controls as well as group comparisons

Variable Meontrols (D) Mpatients (SD) t df p

Age 564 (12.7) 56.2 (12.1) 0.04 49.86 0.964
Education (years) 135 (23) 14.1 (2.9) 0.90 47.44 0.371
LQg 709 (47.2) 56.6 (54.0) 1.01 49.11 0316
MWT-B (1Q) 118.8 (16.1) 113.4 (13.9) 1.28 4891 0.205
WML rating 0.31(0.47) 0.69 (0.79) 214 40.81 0.039
BDI-II 53 (7.5) 6.3 (9.1) 0.42 48.17 0.679

Neantrols = 26, Mpatients = 26. M, mean; SD, standard deviation. Age and education are given in years. LQ, laterality
quotient; EHI, Edinburgh Handedness Inventory; MWT-B, Mehrfachwahl-Wortschatz-test B (a vocabulary-based
German intelligence test); WML, white matter lesion; BDI-II, Beck depression inventory II.
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Table 2. Patients’ and lesion characteristics
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Time since stroke

ID Age Sex  Edu. Hnd.  Vascular territory (years) Affected cerebellar regions Additional information
005 55-59 m 16-20 r PICA-L (lacunar) 0-5 Left Crus II, left Crus |, left Vlla
011 45-499 m  16-20 r PICA-R 0-5 Right Crus II, right Vllla, right VIIb, right VIlIb, right IX, External MRI
right Crus |
012 30-34 m 16-20 r PICA-R 0-5 Right Vllla, right VIIb, right VIIIb, right IX, right Crus Il
014 65-69 m 11-15 a PICA-R 21-25 Right VIIb, right Crus 11, right Vllla, right VIlIb, right IX,
vermal Vllla, vermal Vlllb
018 55-59 m 11-15 a PICA-L 11-15 Left Crus |, left Crus 11, left Villa, left Vilb, left VIIb, left VI
020 70-74 m 11-15 r SCA-R 11-15 Right I-1V, right V, right Dentate
023 55-59 f 1n-15 | PICA-R 16-20 Right Crus I, right VIlIb, right IX, right Crus I, right VIIb, right
Villa
024 60-64 m 11-15 r PICA-L+R (lacunar) Right Vb, left Vilb
026 65-69 f 6-10 r PICA-R, PICA-L — Right Vllla, right Vb, right IX, right Crus II, right VIlIb, left ~ Migraine
(lacunar) Villa, left IX, left Vil
029 50-54 m 16-20 a SCA-R 11-15 Right VI, right V, right Dentate, right Crus | Recent history of AD, negative BAI
031 45-49 m  11-15 r PICA-R (lacunar) -5 right Crus 1, right Crus II, right Villa
033 50-54 f 1M1-15 r PICA-L, SCA-R 6-10 Left Crus |, left Crus I, left VIIb, right Crus |, left Vllla, vermal ~ MDD, intake of antidepressants
(lacunar) Crus Il
035 60-64 m 16-20 a PICA-L 16-20 Left Vllla, left VIb, left VIllb, left Crus II, left X, left Crus |~ MDD, antidepressants
037 55-59 f 16-20 r PICA-L 0-5 Left IX, left Vlllb, left VIb, left Villa, left Crus I, left Dentate  External MRI
038 55-59 1-15 r PICA-L, PICA-R 6-10 Left Crus II, left VIIb, left Villa, left IX, left Crus |, left Villb
(lacunar)
039 60-64 m 16-20 | PICA-R (lacunar) n/a’ Right Crus | External MRI
040 60-64 m 16-20 r PICA-L 0-5 Left Crus I, left VIIb, left Vllla, left VIIb, left Crus |, left IX  Not a native German speaker
042 50-54 m 11-15 r PICA-R 6-10 Right Crus II, right VlIb, right Crus I, right Vllla
046 18-24 m 11-15 r PICA-R 0-5 Right VIIb, right Vlla, right Villb External MRI
047 65-69 m  16-20 r PICA-R 0-5 Right Crus II, right Crus |, right Vlb, right Vllla, right Vllib,
right IX
048 6569 m  16-20 | PICA-L 6-10 Left Crus I, left VIIb, left Villa, left VIllb, left Crus |, left X, left
dentate
055 70-74 m 6-10 r PICA-L 6-10 Left Crus II, left Crus |
05 65-69 m  11-15 r SCA-L 6-10 Left V, left VI, left I-IV, left dentate
058 45-49 f n-15 r PICA-L (lacunar) 0-5 Left VliIb, left IX MDD, childhood diagnosis of ADD,
antidepressants
060 50-54 m 11-15 r SCA-L, PICA-R 16-20 Left V, left VI, right Crus II, left I-IV, right VIIb, left Dentate
061 55-59 m  16-20 r PICA-L 0-5 Left Crus II, left Crus |, left Vb, left Villa, left VIllb, left IX

h Handed
F

Age is given in years. m, male; f, female; edu., years of education; hnd., | according to Edinburg

Inventory; |, left; r, right; a, ambidextrous; PICA, posterior inferior cerebellar artery; SCA, superior inferior artery;

SARA, scale for the assessment and rating of ataxia (maximum score = 40); MDD, major depressive disorder; AD, anxiety disorder; ADD, attention deficit disorder; BAI, Beck anxiety inventory (Beck et al., 1988). For affected regions, only
those that made out >1% of total lesion volume were included. Regions are sorted according to percentage of total lesion volume. Age, education, and time since stroke are given in ranges to comply with data protection requirements.

alime since stroke was unknown in this case, as the lacunar stroke was an incidental finding.

cerebellar artery (SCA) territory (1 left, 2 right), and 2 patients had a stroke
in both the PICA and SCA territory (1 in the left PICA and right SCA ter-
ritory, 1 in the right PICA and left SCA territory). Lesions were thus uni-
lateral in all but five patients (Table 2). Images of individual lesions are
provided in Extended Data Figure 1-1. Mean time between cerebellar
infarct and participation in the experiment was 8.4 years (SD =6.0 years,
range from 1.5 months to 22 years; unknown in one case).

Both patients and controls were assessed for clinical neurological
symptoms. While patients showed overall higher scores on the scale
for the assessment and rating of ataxia (SARA; Schmitz-Hiibsch et al.,
2006) than controls (f4701)=2.74, p=0.009), no participants showed
deficits in oculomotor function in the neurological examination (which
might have affected task performance).

All participants gave written informed consent prior to participation.
They received monetary compensation for participation and were reim-
bursed for travel costs. The experiment was preregistered on the Open
Science Framework (OSF; https://osf.io/rd3xb), conducted in accordance
with the ethical principles for medical research involving human subjects
outlined in the Declaration of Helsinki, and approved by the Ethics
Committees at the Faculty of Medicine of Heinrich-Heine-University
Diisseldorf and at the University Hospital Essen.

Procedure
The experiment usually took place on 2 consecutive days. The temporal
gap between sessions was longer for three patients (56, 29, and 43 d) and

two controls (9 and 2 d) due to participants’ time constraints or sched-
uling issues. The experimental task with EEG was conducted on both
days with different versions (short and long feedback delay version,
respectively; see below for details). On the first day, we initially obtained
informed consent and participants filled in a demographic questionnaire,
the EHI, the BDI-II, and the MWT-B. Following EEG preparations, par-
ticipants were informed about EEG artifacts and how to avoid them.
Subsequently, participants completed one of two feedback delay ver-
sions of a probabilistic feedback learning task as described by Eppinger
et al. (2008; see Fig. 2A for the experimental procedure), which was con-
ducted using Presentation software (version 20.0, Neurobehavioral
Systems). Order of the versions was counterbalanced among partici-
pants. Figure 2B illustrates the sequence and time course of stimulus pre-
sentation in one trial. The task consisted of 8 blocks of 40 trials, thus 320
trials in total. Five practice trials with different stimuli were provided.
Each trial began with a fixation cross presented for 500-1,500 ms.
Next, one of four abstract stimuli (Chinese characters and radicals)
was presented for 1,500 ms. Participants had to respond by pressing
the left or right button on a response box (Cedrus RB-740, Cedrus
Corporation) within a response time window of 3,000 ms. Choices
were highlighted on the screen for 200 ms, followed by a black screen
for 500 ms in the short delay condition and 6,500 ms in the long delay
condition. Different delay durations were used as previous studies had
shown differential involvement of cerebral brain areas depending on
feedback delay (Foerde and Shohamy, 2011). While immediate delay
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Table 3. Characteristics of controls for Experiment 1 (patient study)

Handedness Years of

D Age Sex  (EHI) education Additional information

001 55-59 f Right 11-15

002 75-79 m  Right 16-20 Excluded (matching)

004 60-64 m  Right 1-15 Excluded (developmental venous
anomaly)

006 70-74 m Right 11-15

007 55-59 f Right 11-15

008 55-59 m  Right 6-10 MD, intake of antidepressants

009 70-74 m  Right 11-15

010 50-54 f Right 1-15

013 55-59 m Right 16-20

017 70-74 f Right 11-15

019 60-64 m Right 1-15

021 50-54 m  Right 16-20

022 55-59 f Right 16-20 MD, intake of antidepressants

025 55-59 m Right 1-15 Excluded (moderate brain
volume loss)

027 70-74 m  Right 16-20

028 45-49 f Right 1-15 MD, intake of antidepressants

030 45-49 m  Right 11-15

032 55-59 m Right 16-20 Excluded (matching)

034 55-59 m  Right 11-15

036 25-29 m  Right 6-10 Excluded (intake of
antidepressants)

043 18-24 m  Right 11-15

044 55-59 m Left 11-15

045 65-69 m  Ambidextrous  11-15

049 70-74 m  Right 1-15 Not a native German speaker

050 50-54 f Right 6-10

051 50-54 m Right 1-15 MD, intake of antidepressants,
excluded (matching)

052 18-24 m  Ambidextrous 6-10

054 55-59 m  Ambidextrous  11-15

057 70-74 m  Right 1-15 Excluded (extensive white
matter lesions)

059 55-59 m  Ambidextrous  16-20

062 50-54 m Right 11-15

063 55-59 m Right 11-15

064 65-69 m Right 11-15

Age is given in years. m, male; f, female; EHI, Edinburgh Handedness Inventory; SARA, Scale for the Assessment
and Rating of Ataxia; MD, major depression. Age and education are given in ranges to comply with data protection
requirements.

activated areas typically associated with reward processing, such as
the striatum, activations for delayed feedback shifted toward the
hippocampus (Foerde and Shohamy, 2011). This shift was also apparent
in FRN, with a decreased FRN amplitude with longer feedback
delays (Peterburs et al, 2016). This shift in activation could affect
potential deficits in cerebellar patients due to differences in connectivity
of these brain regions with the cerebellum. Finally, feedback was
displayed for 1,000 ms. Feedback consisted of either the display of
“+20 ct” in green font as positive feedback or “—10 ct” in red font as
negative feedback.

Two of the four stimuli were linked to random feedback (50% posi-
tive and 50% negative regardless of response), while the other two were
linked to contingent feedback. Here, correct responses were followed by
positive feedback 90% of the time and by negative feedback 10% of the
time (and vice versa for incorrect responses). Correctness was balanced
for the two response buttons, so that for one of these stimuli, the chance
of positive feedback was higher for the left button, while for the other sti-
mulus, the chance of positive feedback was higher for the right button. In
case a participant exceeded the learning criterion of 65% correct answers
by the second of eight blocks, a new stimulus set was provided to increase
the number of prelearning trials. This was the case for eight patients and
eight controls in one feedback delay condition/session (of which 1 and 5,
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respectively, were second sessions) and for six patients and eight controls
in both conditions. In case a participant did not exceed the learning cri-
terion until the eighth and last block, a ninth block was added to increase
the number of postlearning trials. This was the case for three patients and
two controls in one of the two conditions.

Following this task on Day 1, participants underwent cranial MRI
and a clinical neurological examination.

On the second day, following EEG preparations, the remaining other
version (short or long feedback delay version) of the probabilistic feed-
back task was completed. Versions were counterbalanced between ses-
sions. Two different stimulus sets were used per session, and order was
counterbalanced. Responses (choice, choice accuracy) and response
times were recorded during the experiment.

EEG recording and preprocessing

EEG was recorded from 28 active Ag/AgCl electrodes (F7, F3, Fz, F4, F8,
EC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz,
P4, P8, POY, O1, Oz, 02, PO10) positioned on a BrainCap (Brain
Products) according to the 10-20 system. FCz was used as an on-line ref-
erence, and AFz was used as ground electrode. Fpl was used as vertical
electrooculogram (vEOG) and an electrode was placed next to the outer
canthus of the left eye as horizontal electrooculogram (hEOG).
Impedances were kept below 25kQ. Data were amplified with a
BrainAmp DC amplifier and recorded at 1,000 Hz using BrainVision
Recorder 1.21 (Brain Products). Data preprocessing was performed using
BrainVision Analyzer 2 software (version 2.2, Brain Products) and
MATLAB (MathWorks).

First, data were rereferenced to the mastoid electrodes and FCz was
reestablished. Next, a DC detrend was applied and data were filtered
using zero phase shift Butterworth filters with a low cutoff of 1 Hz
and high cutoff of 30 Hz, as well as a notch filter at 50 Hz to remove
powerline artifacts. Subsequently, we removed vertical and horizontal
eye movement artifacts using a semiautomatic Ocular Correction
ICA as implemented in BrainVision Analyzer 2. vVEOG was used for
blinks and vertical activity, and hEOG for horizontal activity. The
first 177.2 s were used for ICA. We then segmented data from the start
marker of the experiment to end of experiment, and segmented them
around the feedback markers, starting 200 ms before and ending
600 ms after each marker. Only feedback markers for learnable stimuli
were segmented. Baseline correction was performed based on the
200 ms preceding feedback onset, followed by automated artifact rejec-
tion. Segments with a voltage step exceeding 50 uV/ms, an amplitude
above 100 uV or below —100 uV, or activity not exceeding 0.1 uV
were excluded. Single-trial data were then exported via generic data
export. On average, 1.1% of segments (SD=2.5%) were rejected.
Additionally, data for learnable stimuli were averaged and exported
according to feedback valence (positive, negative) and feedback delay
(short, long).

The EEG system had to be switched from an actiCAP system to a
newer actiCAP snap system after the first 27 participants due to a defect
in impedance measurement.

In MATLAB, peak detection was performed on the averaged data
separately for each condition [feedback valence (positive, negative) x
feedback delay (short, long)]. The FRN was defined as the local maximal
negative peak within the time window between 200 and 350 ms at
electrode site FCz (Sambrook and Goslin, 2015). If no local maximum/
minimum could be detected, the corresponding single-trial segments
were excluded. For the single-trial data, the mean amplitude in a
time window of 40 ms around the respective FRN latency determined
by the peak detection on the averaged data was extracted (Meadows et
al.,, 2016).

Prediction error estimation

Prediction errors on each trial were estimated based on choices partici-
pants made and feedback they received using a reinforcement learning
model (Sutton and Barto, 2018) consistent with previous studies
(Ichikawa et al., 2010; Fischer and Ullsperger, 2013; McDougle et al.,
2019) which has been shown to be highly correlated with the gold stan-
dard (i.e., subjective ratings; Ichikawa et al., 2010). We modeled action
values Q and PEs & based on the actually received feedback R and
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Overlap plot of all lesions in the patient group (n = 26) superimposed on () a cerebellar flatmap (Diedrichsen and Zotow, 2015) and in 2D (B) sagittal, (€) coronal, and (D) axial

views. Lesions on the right side were mirrored to the left side. Color code shown on the top right denotes total lesion overlap (from purple =0 to red = 12). Individual lesions are depicted in

Extended Data Figure 1-1.

A. Experimental setup

Figure 2.

B. Time course and sequence of stimulus presentation

500-1000 ms 1500 ms 1500 ms 200 ms 500 or 6500
fixation cross  stimulus with only choice  choice display
choice feedback 1000 Hig
|
ey feedback

Experimental procedure of Experiment 1 (patient study). A, Experimental setup. EEG was recorded while participants performed the probabilistic feedback task. B, Time course and

sequence of stimulus presentation in one trial of the feedback learning task. After a fixation cross was presented for 500—1,000 ms, one of four stimuli was presented, toward which participants
were required to respond by pressing the left or right button on a response pad within 3,000 ms. The stimulus was only shown for the first 1,500 ms. After the response, the respective choice was
highlighted on screen for 200 ms, followed by either 500 or 6,500 ms of blank screen (depending on feedback delay version). Positive (“+20 ct”) or negative feedback (“—10 ct”) was then
presented on screen for 1,000 ms. Participants needed to learn by trial and error whether one of the choices was related to higher chance of positive/negative feedback depending on stimulus.
Feedback for two of the stimuli had a 90% contingency, while for the other two it had a 50% (random) contingency. A total of 320 trials were used in the task.

participants’ chosen response a, using a Rescorla-Wagner model
(Rescorla and Wagner, 1972; Wagner and Rescorla, 1972):

Q41 = Qui + ax 8y,

5r = Ra,t - Qa,t~

To model response probabilities, we used a softmax function (Sutton
and Barto, 2018), which estimates the probability p of the chosen action
with the estimated action values Q per action a and time point ¢ (in this
case, the trial):

oB* Qs
Part = pig B Que
e ay .t + e ay .t

The function fmincon provided by MATLAB was used to fit this model to
the data via minimizing the negative sum of log-likelihoods minus a
gamma distribution of  with a shape parameter of 2 and scale parameter
of 3 (as to penalize high 5; McDougle et al., 2019). We estimated a learn-
ing rate « as well as an inverse temperature 8 for exploration behavior,
separately for each stimulus and reward and punishment. We allowed
a to assume any value between 0 and 1 and f3 to assume any value between
0 and 50.

Experimental design and statistical analysis
This study was preregistered to OSF (https:/osf.io/rd3xb). Necessary
sample size was determined via power analysis to be N=48, i.e., 24 per

group, as detailed in the preregistration. Required sample size was thus
matched (n =26 per group). Raw data and code used for preprocessing
and analysis are available from https://ost.io/cqf97.

Analysis focused on differences in the FRN between controls and
patients (on group level), especially in relation to coding of RL-PEs. As
the signed RL-PE overlaps with feedback valence, we split the signed
RL-PE into the unsigned RL-PE (on a scale from 0/low to 1/high) and
feedback valence (positive, negative), which were used as separate predic-
tors in the analysis. We further examined learning success as reflected in
choice accuracy and choice switching as an index of behavioral flexibility.
The analysis was restricted to stimuli with a 90% contingency, as partic-
ipants were not able to learn in the 50% contingency condition.

Data were analyzed in R (version 4.2.3; R Core Team, 2023) using
RStudio (version 2023.3.0.386, Posit Team, 2023). Concerning choice
accuracy, the preregistered ANOVA was performed. For the FRN, since
only 14 patients and 12 controls exceeded the learning criterion of >65%
correct responses within at least one block of the task in either version,
the preregistered ANOVA analysis with learning phase (pre-/postlearn-
ing) as a factor was not feasible. With the factor learning phase, we had
aimed to investigate to what extent feedback processing changed over the
course of the task as participants learned which responses resulted in a
higher chance of reward/punishment. Instead, we decided to pursue a
single-trial-based analysis approach using LME models including the
trial-by-trial unsigned RL-PE. Analyses based on single trials have
increasingly been used in recent studies as they offer the possibility to
use variables that vary from trial to trial as factors in the statistical
analysis (Volpert-Esmond et al., 2021). LME analyses based on single-
trial data have also been shown to deliver less biased results compared
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with ANOVAs based on averaged data (Heise et al., 2022). The Ime4
library (version 1.1-32; Bates et al., 2015) was used for LME modeling,
and the Imertest library (version 3.1-3; Kuznetsova et al., 2017) was
used to evaluate statistical significance. Significance was evaluated
using restricted maximum likelihood with p values computed using
Satterthwaite approximation, following the findings by Luke (Luke,
2017). While we initially tested a maximal fit for random effects, in
case of singular fit, we reduced the originally maximal random effects
structure up to the random intercept and highest-order interaction as
random slope per participant (Brauer and Curtin, 2018). For all LME
analyses, outliers were identified via Cook’s distance (Cook, 1977) using
the influence. ME package (version 0.9-9; Nieuwenhuis et al., 2012) and
an outlier criterion of 4/(n-p-1), where # is the number of subjects and
p is the number of fixed effects. Significant interactions were followed
up using simple slope analyses via the interactions library (version
1.1.5; Long, 2019). p values were Bonferroni-corrected according to the
number of simple slopes in the respective analysis.

Choice accuracy. We conducted a mixed ANOVA with the factors
group (patients, controls), feedback delay (short, long), and block (1-8).
Significant effects were followed up with Bonferroni-corrected f tests using
the emmeans_test function (Lenth, 2025). No participant exceeded the out-
lier criterion of M+ 2.5 SD per feedback delay/study session.

Choice switching. As an additional behavioral measure, we analyzed
whether choice switching following feedback was influenced by the cat-
egorical fixed effects feedback valence (—0.5: negative, 0.5: positive),
response type (—0.5: false, 0.5: correct), group (—0.5: control, 0.5:
patient), feedback delay (—0.5: short, 0.5: long), and the continuous
effect block which was scaled via the built-in scale function. Choice
switching for a given trial was defined as whether the choice for the cur-
rent stimulus was switched (choice switching=1) or sustained (choice
switching=0) in the next trial that the same stimulus was presented
in. The variable was scaled via the built-in scale function. We also
included all interactions of these factors as fixed effects. No participants
exceeded our Cook’s distance criterion. The model equation was as fol-
lows:

choice switching ~ 1+ feedback valence % response type * group
* feedback delay * block + (1 + feedback valence:
response type:feedback delay:block|subject)

FRN. For FRN amplitudes, we again employed an LME model with
the fixed effects feedback valence (negative: —0.5, positive: 0.5), group
(—0.5: control, 0.5: patient), feedback delay (—0.5: short, 0.5: long), and
the continuous fixed effect unsigned RL-PE which was the absolute of
the signed RL-PE minus 0.5 (thus with minimal values of —0.5 and max-
imal values of 0.5). We also included all interactions of these factors as
fixed effects. Here, we deviated from the preregistration (which only
included the signed RL-PE), because analyzing the signed RL-PE in an
LME model is confounded by valence effects and disregards possible
U-shaped relations which are identifiable by separating feedback valence
and unsigned RL-PE (i.e., RL-PE magnitude). Initial convergence issues
were solved via changing the optimizer to bobyqa. Four controls were
excluded due to exceeding the Cook’s distance criterion. The model
equation was as follows:

FRN ~ 1 4 unsigned PE x feedback valence x group s feedback delay
+ (1 + unsigned PE:feedback valence:feedback delay +
unsigned PE:feedback valence + unsigned PE:feedback delay
+ feedback valence:feedback delay|subject)

Structural MRI and lesion symptom mapping

For 21 patients and all controls, a 3D T1-weighted magnetization-
prepared rapid acquisition gradient-echo (MPRAGE) sequence was
acquired [176 slices, repetition time (TR), 2,530 ms; echo time (TE),
2.27 ms; inversion time (TI), 1,100 ms; flip angle (FA), 7° voxel size,
1x1x1mm; acceleration factor, 2 (GRAPPA); field of view, 256 x
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256 mm; acquisition time (TA), 6:03 min:s]. A MAGNETOM Vida 3T
system (Siemens Healthcare) with a 64-channel coil was used. For the
remaining five patients, an MR scan was not possible due to implants
(n=4) or claustrophobia (n=1), and instead, existing diagnostic
structural MR images were used.

We first confirmed that lesions were isolated to the cerebellum, which
was also reconfirmed by an experienced neuroradiologist (SGO).
T2-weighted images were also assessed for white matter lesions (see below).

Non-normalized 3D T1 images were first manually aligned to the
AC-PC line. Cerebellar, postischemic lesions were then manually traced
and saved as regions of interest using MRIcron (https:/www.nitrc.org/
projects/mricron). Next, the cerebellum was isolated, and datasets were
segmented using the suit_isolate_seg function provided by SUIT toolbox
(https:/www.diedrichsenlab.org/imaging/suit.htm). Isolation masks
were manually corrected. Datasets were then normalized with the func-
tion suit_isolate_mask, using the lesion mask as optional input, thus
ignoring the respective area(s). Finally, lesion ROIs were transformed
via suit_reslice into the spatially unbiased atlas template of the cerebel-
lum (SUIT; Diedrichsen, 2006).

For statistical analysis of whether deficits corresponded to specific
lesion locations, voxel-based lesion symptom mapping (vbLSM) was
conducted using NPM as implemented with MRIcron (Stoodley et al.,
2016; Timmann et al., 2022). For this purpose, all lesion ROIs on the
right side were mirrored to the left side (in the five patients with bilateral
lesions, the side with the larger lesion was considered). For one subject
(sub-060) with bilateral lesions, the lesion of higher interest for our cog-
nitive task in posterolateral regions (Crus II, lobule VIIb) was mirrored
to the left side instead of the larger lesion in anterior cerebellar motor
regions. vbLSM compares for each voxel, whether patients with this voxel
affected differ from patients with this voxel unaffected within a variable
of interest. A Brunner-Munzel test was employed (Brunner and Munzel,
2000) with a statistical threshold of p < 0.05. Only variables with statisti-
cal differences between patients and controls were considered, which in
our case was the interaction effect between RL-PE, feedback valence,
and group onto FRN amplitude. We collapsed this effect into one vari-
able per participant by taking the difference between the mean FRN
amplitude for high RL-PE (>—0.5) and low RL-PE (<0.5) for negative
feedback (because FRN amplitudes differed between high and low
RL-PE only for negative feedback valence in controls). Signs were
reversed for the analysis, as lower values are related to more dysfunction
in vbLSM (while in our case positive values were associated with more
dysfunction). Clusters of voxels with significant effects were extracted
using MRIcroGL (Brett et al., 2001), considering clusters larger than
32 mm’. Affected lobules and nuclei were defined based on the probabi-
listic atlases of the human cerebellum by Diedrichsen et al. (2009, 2011).

White matter lesion assessment

3D dark fluid T2-weighted spin-echo sequences [SPACE; 160 slices; TR,
7,000 ms; TE, 428 ms; T1, 2,050 ms; voxel size, 1 x 1 x 1 mm; acceleration
factor, 2 (GRAPPA), field of view, 256 x 256 mm; TA, 5:24 min:s] were
acquired and examined for white matter lesions. They were rated following
Wahlund et al. (2001; Table 1). Even though we excluded patients with
particularly pronounced and widespread white matter lesions, we still
found higher white matter lesion ratings for cerebellar stroke patients
than controls. White matter lesions have previously been shown to contrib-
ute to deficits in cognition (Filley and Fields, 2016), although findings spe-
cifically concerning reinforcement learning appear as yet lacking. To
exclude effects of WMLs in our data, we checked our cognitive scores
(CCAS) and did not find any general cognitive deficits in patients com-
pared with controls (f4989)=1.03, p=0.310). Our finding concerning
RL-PE processing in stroke patients additionally coincides with our
findings for cerebellar TMS in Experiment 2, where cerebellar and control
stimulation was applied within-subject, excluding between-subject
factors like white matter lesions as a cause. It thus seems likely that the
deficits in RL-PE processing in our patients are caused by the cerebellar
stroke itself.

Quantitative susceptibility mapping
In an additional analysis, we examined whether lesions within the den-
tate nucleus had a special impact on RL-PE processing, as the dentate
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nucleus constitutes the main output of the cerebellum, with more than
half of its projection relating to non-motor functions (Palesi et al.,
2021). To identify the dentate nucleus based on its high iron levels
(Deistung et al., 2016), quantitative susceptibility mapping (QSM)
was conducted based on data collected using a multi-echo gradient-echo
scan [176 axial slices; TR, 27 ms; TE;_4, 3.66 ms/9.74 ms/15.83 ms/21.91 ms;
FA, 15° voxel size, 0.9 x 0.9 x 0.9 mm; acceleration factor, 2 (GRAPPA);
field of view, 230 mm X230 mm; TA, 8:15 min:s] as described in
Deistung et al. (2022). Outlines of the dentate nucleus as well as dentate
nucleus lesion (if present) were manually drawn in ITK-SNAP
(Yushkevich et al., 2006). We identified six patients who had a lesion
in the dentate nucleus, with two of those previously classified as impaired
concerning the differentiation between negative low and high RL-PE
in FRN. We coregistered both dentate nucleus regions of interest and
lesions to the T1 images and then normalized and resliced them into
SUIT space. Functions included within the SUIT toolbox were used,
i.e., suit_normalize_dentate for normalization and suit_reslice_dartel
for reslicing. However, as overlaps between lesions were too few and
did not allow meaningful statistical analysis, we abstained from an addi-
tional analysis and instead provide images of the individual dentate
lesions in Figure 3.

Experiment 2

Participants

Twenty-nine healthy adults were recruited for participation. Four partici-
pants completed only one of two sessions and were thus excluded; one
participant was excluded due to stimulation at a false output strength in
one of the sessions. Thus, data from 24 participants (7 men, 17 women)
with a mean age of 23.3 years (SD =2.9 years, range from 19 to 30 years)
were analyzed. Handedness was assessed with the EHI (Oldfield, 1971),
with a mean LQ score of 62.3 (SD=53.3, range from —85.7 to 100.0).
According to LQgyqy, 20 participants were right-handed, 2 left-handed,
and 2 ambidextrous. All participants reported no neurological or psychi-
atric diseases and no metal implants in or near their head. Further
exclusion criteria were pregnancy, alcohol or illicit substance abuse, and
intake of psychotropic medication. IQ estimates were obtained using the
MWT-B (Merz et al, 1975), yielding a mean IQ of 103.5 (SD=15.4).
Participants received monetary compensation for participation in
two sessions.

All participants gave written informed consent prior to participation.
The experiment was conducted in accordance with the ethical principles
for medical research involving human subjects outlined in the
Declaration of Helsinki and approved by the Ethics Committee at the
Faculty of Medicine of Heinrich-Heine-University Diisseldorf.

Procedure

The experiment took place on 2 separate days with at least 48 h in
between to decrease repetition effects (M=101.6d, SD=152.1d,
range from 2 to 448 d). Note that due to a technical defect of
the TMS system and a consequent pause of experiments, the
time between sessions was exceptionally long for five individuals
included in the analysis (362-448 d). Without these participants,
the average time between sessions was 26.6 d (SD=28.0d, range
from 2 to 98 d).

While one session of Experiment 2 comprised the experimental
task with vertex (control) stimulation, the other session comprised the
cerebellar stimulation. Order for stimulation site was counterbalanced.

After participants arrived in the lab, informed consent was
obtained and they filled in a demographic questionnaire, the EHI,
and the MWT-B. Following EEG and EMG preparations and the sub-
sequent motor threshold estimation, we placed the double cone TMS
coil on their head with a custom mounting and further secured it
with an elastic band (see below for a detailed description; Fig. 4A).
Before and after the experimental task, an additional Flanker task
was performed for which results are reported elsewhere (Berlijn
et al., 2024a).

Participants completed a probabilistic feedback learning task that
closely followed procedures as described for Experiment 1. Figure 4B
illustrates the sequence and time course of stimulus presentation in
each trial. The task consisted of six blocks of 56 trials, thus 336 trials
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Figure 3. Individual, unmirrored dentate nucleus lesions for Experiment 1 (patient study),
normalized to SUIT space, are presented in sagittal (left column), coronal (middle
column), and axial view (right column) for patients with dentate lesions (sub-004, sub-005,
sub-019, sub-022, sub-026, and sub-036). Lesion are marked in red.

in total. Again, five practice trials with different stimuli were provided.
Due to the younger sample, stimulus presentation was reduced to
500 ms and the response time window was shortened to 1,000 ms.
Only short feedback delays (i.e., 500 ms) were used. Two stimuli were
again linked to random feedback while the other two stimuli were linked
to contingent feedback. For the contingent stimuli, correct responses
were followed by positive feedback in 80% of the cases and by negative
feedback in 20% of the cases (vice versa for incorrect responses). In
both contingency conditions, TMS was delivered 100 ms poststimulus
for one stimulus and 100 ms prefeedback for the other. In case a partic-
ipant had learnt so fast that they exceeded the learning criterion of 75%
correct answers by the second of six blocks, a new stimulus set was pro-
vided to increase the number of prelearning trials. This was the case for
seven participants in one condition (of which four were second sessions)
and for one participant in both conditions. In case a participant did not
exceed the learning criterion until the sixth and last block, a seventh
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Experimental procedure of Experiment 2 (TMS study). A, Experimental setup. A double cone coil was placed on either the left cerebellum (1 cm down and 3 cm to the left of the

inion) or vertex depending on session. Simultaneously, EEG and EMG were recorded. B, Time course and sequence of stimulus presentation and timing of TMS pulses in one trial in the exper-
imental task. After a fixation cross was presented for 500—1,000 ms, one of four stimuli was presented, toward which participants could respond by pressing the left or right button on a response
pad within 1,000 ms. The stimulus was only shown for the first 500 ms. After response, the respective choice was highlighted on screen for 200 ms, followed by 500 ms of blank screen. Positive
(“+20 ct”) or negative feedback (“—10 ct”) was then presented on screen for 1,000 ms. Participants needed to learn by trial and error whether one of the choices was related to a higher chance
of positive/negative feedback depending on stimulus. Feedback for two of the stimuli had an 80% contingency, while for the other two, it had a 50% contingency. TMS stimulation was applied
either 100 ms poststimulus presentation or 100 ms prefeedback stimulation. A total of 336 trials were used in the task.

block was added to increase the number of postlearning trials. This was
the case for three participants in one condition and for one participant in
both conditions.

TMS application and EMG recording

The complete experimental setup is depicted in Figure 4A. Stimulation
was applied at 120% of motor threshold (MT) as measured in the
first session. MT was measured again on the second session.
While there was a trend for a lower motor threshold on the second
(M =36.8%, SD=7.4%) compared with the first session (M =37.8%,
SD =7.4%; t;)=1.72, p=0.100), there was no significant difference
in MT between cerebellar and vertex stimulation session (¢;2)=0.44,
p =0.663).

MT was determined as the lowest intensity that still triggered
a motor-evoked potential in at least 5 of 10 stimulations. MEPs
were recorded by AgCl surface electrodes (Ambu) from the left
M. abductor pollicis brevis in resting condition. The signal was amplified
with a Digitimer D360 (Digitimer). The frequency band of the filter was
set to 100-5,000 Hz and digitized at a sampling rate of 5 kHz (Signal
version 6.02, Cambridge Electronic Design). We monitored for MEPs
during the experimental task as to avoid stimulating too close to
the brainstem.

TMS was applied via a Magstim Double Cone Coil using a Magstim
BiStim? unit (Magstim). To enable a fast-paced task flow, we alternated
stimulation between two Bistim units. Stimulation was applied either
to the left lateral cerebellum (1 cm below and 3 cm to the left of the
inion; confer Hardwick et al, 2014) or vertex (at electrode position
Cz, Jung et al, 2016), both with inferior voltage flow. The coil was
wrapped in plastic wrap to reduce electrode motion artifacts caused by
direct contact between TMS and EEG. Participants were given earplugs
to reduce auditory artifacts. After the coil was positioned, we fixed it
with a custom stand and to the participant’s head via a fabric elastic
band over the participant’s forehead (cerebellar TMS) or chin (vertex
TMS). Coil position was constantly monitored and adjusted during the
breaks if necessary.

Vertex was chosen as a control site, as it is common choice of
control site (Gatti et al., 2023). We did not use sham cerebellar TMS
as it provides participants with a very different experience in terms
of vibrations, coil clicks, and magnetic field build-up (Duecker and
Sack, 2015).

Single-pulse TMS was chosen over rTMS due to its advantage of
examining effects of deficits with a high temporal resolution. Instead
of examining processing and task performance with a relatively
steady deficit across all processing stages, like with rTMS, single-pulse
TMS can be applied at different time points within the trial. This
offers the advantage of differentiating effects stemming from deficits
at different processing stages.

Side effects questionnaire

As participants spontaneously reported side effects after the
experiment, we introduced a postexperimental side effect questionnaire
halfway through the study in which participants were asked to rate
symptoms (headaches, neck pain, toothaches, inattentiveness, discom-
fort, phosphenes, others) associated with TMS on a scale from 1 to 5
(see Fig. 5 for a plot of the side effect ratings). Ten participants completed
this questionnaire in both of their sessions and five participants
completed it in one session. There were no significant differences
between vertex and cerebellar TMS (all p >0.343) in terms of reported
side effects.

EEG recording and preprocessing

All EEG equipment used was explicitly suitable for concurrent TMS.
EEG was recorded from 30 passive Ag/AgCl Multitrode electrodes
(Fpl, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8,
CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, 02, Iz) positioned
on a BrainCap (Brain Products) according to the 10-20 system. FCz was
used as an on-line reference, and AFz was used as ground electrode.
Impedances were kept below 5kQ. Data were amplified with a
BrainAmp MR amplifier and recorded at 1,000 Hz using BrainVision
Recorder 1.21 (Brain Products).
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Figure 5. Side effects reported in the postexperimental questionnaire in Experiment 2

(TMS study). Means and standard errors are shown in red, individual ratings are shown in
black.

Preprocessing was conducted using the ARTIST algorithm by Wu et
al. (2018; see Bertazzoli et al., 2021 for a comparison of TMS-EEG pre-
processing methods) and Brain Vision Analyzer. Nevertheless, a remain-
der of the TMS pulse artifact was still seen in the ERP.

Data were initially checked for missing TMS pulses (TMS marker
was sent but pulse was not) both by visual inspection and via an
explorative artifact detection: first, trials were segmented around the
TMS marker (starting 100 ms before and ending 100 ms after it).
Since TMS pulses cause large spikes in the raw data, an automatic arti-
fact detection was employed on the ERP data to identify whether a
pulse was sent. Segments with an amplitude >400 or less than
—400 pV at electrode Fz were considered to contain a TMS artifact.
For all except one participant, all segments contained this artifact,
meaning that for each TMS marker in the ERP, a TMS pulse was trig-
gered. Segments in which the above criterion was not met were visually
confirmed to contain no TMS pulse artifact and were subsequently
excluded from analysis. Marker timings for delayed markers (due to
port conflicts) were adjusted in the marker files. This was the case
for one marker in 10 participants and two markers in one participant.
In two participants, one of these markers indicated a TMS pulse, thus
also indicating delay of the corresponding TMS trigger. We excluded
the corresponding segments as the TMS pulse had thus not been
sent at the correct time.

For preprocessing, we used the ARTIST algorithm by Wu et al.
(2018), which is based on EEGLAB (v2022.1; Delorme and Makeig,
2004). This algorithm is designed to decrease artifacts in the EEG signal
caused by TMS pulses. In a first step, the ARTIST algorithm corrected for
direct current drift, removed the TMS pulse artifact by interpolating the
EEG signal around the TMS marker (here: 15 ms prior to until 5 ms after
the TMS marker), and removed the decay artifact via ICA. Data were
then notch-filtered (50 Hz) and bandpass filtered (high-pass filter:
1 Hz; low-pass filter: 30 Hz). Next, data were segmented into epochs
beginning 1,500 ms before and ending 2,200 ms after the TMS markers.
Following this, segments containing movement artifacts were rejected
(M=2.8% of segments, SD=2.6%) and bad channels were interpolated
(M =0.96 channels, SD = 1.15 channels). In a final step, bad independent
components were removed via a second ICA, after which the signal was
rereferenced to an average reference. Deviating from the ARTIST algo-
rithm, we restored electrode FCz after this, because FCz was essential
for our data analysis. For baseline correction, the time window between
300 and 100 ms preceding the TMS pulse was used to avoid confounding
the baseline correction with the TMS pulse deflection. We always
excluded electrode Iz before any preprocessing because it was particu-
larly noisy in pilot testing. Data were then saved in the BrainVision
exchange format.
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The segment size needed to be rather large, because initial segments
were created around the TMS pulse, while in a later step the ERPs needed
to be time locked to feedback onset. Therefore, some markers existed in
more than one segment (when they were overlapping). To correct this,
marker files were edited with a custom MATLAB script, deleting all
excess markers. In this step, segments with more than one response
were also excluded.

Data were then further preprocessed in BrainVision Analyzer 2.2.
Due to only 10 participants exceeding the learning criterion of 75% cor-
rect responses in both conditions, the planned data analysis using
ANOVA was not feasible. As a result, we pursued a single-trial analysis
approach in parallel to data analysis for Experiment 1 and thus deviated
from the preregistered procedures. We segmented data around feed-
back onset, starting 200 ms before and ending 500 ms after feedback
markers. Next, we performed an additional baseline correction using
the time window from 200 to 0 ms before feedback onset (thus includ-
ing parts of the remaining pulse artifact for those pulses that were
applied 100 ms before the feedback). We then exported single-trial
ERPs with a generic data export, on average resulting in 329.3 segments
(SD =18.8 segments) per participant. Data were then exported via a
generic data export for further processing in MATLAB. We addition-
ally averaged data according to conditions (stimulation site, TMS tim-
ing, feedback valence) to extract FRN peak latencies. Only trials with
contingent feedback were included. Peak detection was performed in
parallel to Experiment 1.

Prediction error estimation

Prediction errors were again modeled as described in Experiment 1. Before
merging the behavioral, RL-PE, and EEG data, we excluded all trials in the
behavioral and RL-PE data that were not included in the preprocessed EEG
data. These were either trials that did not enter the segmentation in
ARTIST because the TMS marker/trigger had not been sent (e.g., when
participants did not respond in time and thus no feedback-locked TMS
trigger was sent) or trials/segments that ARTIST excluded during artifact
rejection. Behavioral, RL-PE, and EEG data were then merged.

Experimental design and statistical analysis

The study was preregistered to OSF (https://ost.io/a24rg). We had aimed
for a sample size of 20-25 participants (see preregistration for more
details). The targeted sample size was thus matched (n=24). Raw data
and code used for preprocessing and analysis are available from
https://osf.io/9n7yp.

Data were again analyzed in R (version 4.2.3; R Core Team, 2023) using
RStudio (version 2023.3.0.386; Posit Team, 2023). Concerning choice
accuracy, the preregistered ANOVA analysis as well as an additional linear
mixed effects (LME) analysis were performed (see below). Since only 10
participants exceeded the learning criterion of >75% correct responses in
at least one block for both stimulation sites, the preregistered ANOVA
with learning (pre-/postlearning) as a factor was not possible for the
FRN analysis. We again decided to pursue a single-trial-based analysis
approach using LME models including the unsigned RL-PE instead.

Analyses were conducted to match procedures in Experiment 1, only
deviating within the Cook’s distance criterion for the choice switching
LME analysis where the original criterion was not applicable, so that
we instead used the criterion of 4/n (Nieuwenhuis et al., 2012).

Choice accuracy. We conducted a repeated-measures ANOVA
with the within-subjects factors stimulation site (cerebellum, vertex),
TMS timing (poststimulus, prefeedback), and block (1-6), as preregis-
tered. Significant effects were followed up with Bonferroni-corrected ¢
tests using the function emmeans_test. No participant exceeded the out-
lier criterion of M +2.5 SD per stimulation site/study session.

Choice switching. We analyzed whether choice switching was
influenced by the categorical fixed effects feedback valence (—0.5: nega-
tive, 0.5: positive), response type (—0.5: false, 0.5: correct), stimulation
site (—0.5: vertex, 0.5: cerebellum), TMS timing (—0.5: poststimulus,
0.5: prefeedback), and the continuous effect block which was scaled
via the built-in scale function. We also included all interactions of
these factors as fixed effects. Three participants had to be excluded
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because they exceeded the Cook’s distance criterion. The model equation
was as follows:

choice switching ~ 1 + feedback valence * response type s stimulation site
* TMS timing % block + (1 4 feedback valence:
response type:stimulation site:TMS timing:block|subject).

FRN. For FRN amplitudes, we again employed LME models with
the fixed effects feedback valence (negative: —0.5, positive: 0.5), stimula-
tion site (—0.5: vertex, 0.5: cerebellum), TMS timing (—0.5: poststimulus,
0.5: prefeedback), and the continuous fixed effect unsigned RL-PE which
was the absolute of the signed RL-PE minus 0.5 (thus with minimal val-
ues of —0.5 and maximal values of 0.5). We also included all interactions
of these factors as fixed effects. While we were initially also able to keep
random slopes up to third-level interactions, solving convergence issues
via changing the optimizer to bobyqa, due to singular fit after the subse-
quent exclusion of one Cook’s distance outlier, we had to revert to a ran-
dom effects structure with only the fourth-level interactions and random
intercept. Two outliers identified by Cook’s distance were excluded. The
model equation was as follows:

FRN ~ 1 4 unsigned PE * feedback valence « TMS condition s TMS timing
* learnability + (1 + unsigned PE:feedback valence:TMS condition:
TMS timing:learnability|subject).

Results

Experiment 1: RL-PE processing in cerebellar stroke patients
In Experiment 1, we studied patients with chronic cerebellar
stroke (n=26) and a matched healthy control group (n=26) to
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investigate reinforcement learning success and RL-PE process-
ing, quantified by ACC-driven FRN amplitude. Participants per-
formed a probabilistic feedback learning task (Fig. 24,B) in which
they had to optimize their behavior via trial and error to obtain a
monetary reward (“+20 ct” per trial) and avoid a monetary pun-
ishment (“—10 ct”). Responses were made by pressing one of two
buttons on a response pad. Two out of four stimuli were associ-
ated with a 90% reward contingency (i.e., pressing the “correct”
button resulted in a reward in 90% of the time and a punishment
10% of the time; vice versa for the “incorrect” button), while the
other two stimuli were associated with random feedback. As
learning was only possible for the 90% contingency stimuli, the
analysis was restricted to these (see Materials and Methods for
a more detailed description of the task). Two different feedback
delays were used (short, 500 ms; long, 6,500 ms), as previous
work has shown differences in FRN depending on feedback tim-
ing (Peterburs et al., 2016).

During task performance, EEG was recorded to analyze the
FRN (Fig. 2A). To see whether potential deficits were associated
with specific lesion locations, lesion symptom mapping was con-
ducted based on T1-weighted MR images in patients.

Choice accuracy

Mean choice accuracy by group (patients, controls), feedback delay
(short delay, long delay), and block (1-8) is shown in Figure 6A.
The effect of these factors on choice accuracy was analyzed within
an ANOVA. We expected no differences in accuracy between
groups and only a general learning effect. This expectation was
based on a previous study which did not find deficient learning
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Figure 6.

Accuracy for Experiments 1 (patient study) and 2 (TMS study). A, Left, Choice accuracy in the probabilistic feedback task in Experiment 1 (patient study) according to group (patients,

controls), feedback delay (short delay, long delay), and block (1-8). Red lines denote patients and blue lines controls. Opaque lines denote group means. Error bars indicate standard errors.
Translucent lines denote individual mean accuracy. Right, Choice accuracy according to block. Opaque lines denote means across groups and feedback delays. Error bars indicate standard errors.
Translucent dots denote individual mean accuracy. B, Left, Choice accuracy in the probabilistic feedback task in Experiment 2 (TMS study) according to stimulation site (cerebellum, vertex), TMS
timing (poststimulus, prefeedback), and block (1-6). Red lines denote vertex TMS and blue lines cerebellar TMS. Opaque lines denote means per stimulation site. Error bars indicate standard
errors. Translucent lines denote individual mean accuracy per stimulation site. Right, Choice accuracy according to block. Opaque lines denote means across TMS timings and stimulations sites.
Error bars indicate standard errors. Translucent dots denote individual mean accuracy. *p < 0.05. **p < 0.01. ***p < 0.001.
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in patients with cerebellar stroke (Rustemeier et al., 2016), which is
likely due to compensatory mechanisms in this patient group
(Peterburs et al., 2012). Overall, we found a significant main
effect of block, i.e., alearning effect, but none of the effects involving
the factor group (patients vs controls) reached significance.

Statistical analysis showed a main effect of block
(F3.15,15426) = 15.65, p<0.001), indicating that subjects had
learned to optimize their behavior over the course of the task.
Post hoc ¢ tests revealed that choice accuracy was significantly
higher in block 4 (fs,3)=3.97, p=0.002), block 5 (ts,3y=3.91,
p<0.001), block 6 (f(s23) =4.61, p<0.001), block 7 (f(s23) = 5.72,
p<0.001), and block 8 (fg23)=5.26, p<0.001) compared with
that in block 1. Additionally, choice accuracy was higher in block
7 compared with that in block 2 (#g23)=3.18, p=0.042) and
block 3 (t(s23)=3.42, p=0.018). All other pairwise comparisons
were nonsignificant (all p > 0.087). No other effects reached sign-
ificance (all p>0.179; see Table 4 for the complete inferential
statistics).

Choice switching

The effects of response type, feedback valence, block, group, and
feedback delay on choice switching were analyzed using LME
analysis. We found the expected effects of increased choice
switching after negative feedback, false responses, short feedback
delays, as well as early in the experiment. Importantly, while in
controls, choice switching was increased for negative compared
with positive feedback for both short and long feedback delays,
in patients, this effect was present only for short but not for
long feedback delay (Fig. 7A).

Statistical analysis showed that choice switching was
increased after incorrect compared with correct responses
(B=—0.23, SE=0.03, 594501 = 8.65, p<0.001). The effect of
response type was further modulated by block (f=-0.10,
SE=0.03, #(15919.59)=3.78, p<0.001), such that the differentia-
tion between correct and false responses was stronger late in
the task (8 =—-0.33, SE=0.04, t=7.79, p <0.001) but already pre-
sent early in the task (8=—-0.14, SE=0.04, t=3.77, p <0.001).

Choice switching was also increased after negative compared
with positive feedback (8=-0.20, SE=0.03, t15920.60) = 7.60,
p<0.001). This effect was further modulated by feedback delay
and group (8=0.32, SE=0.10, t(5g2698)=3.10, p=0.002;
Fig. 7A). For controls, negative compared with positive feedback
resulted in increased choice switching for both short (8 =—0.16,
SE=0.05, t=3.27, p=0.004) and long feedback delay (f =—0.23,
SE=0.05, t=4.58, p<0.001). For patients, negative compared
with positive feedback resulted in increased choice switching
for short (f=-0.34, SE=0.05, t=6.97, p<0.001) but not for
long feedback delay (8 =—0.11, SE=0.05, t=2.13, p=0.134).

Choice switching was also reduced for the long compared with
the short feedback delay (8=-0.08, SE=0.03, f5gs070)=3.21,

Table 4. Inferential statistics for the ANOVA investigating the influence of group,
feedback delay, and block on accuracy in Experiment 1 (patient study)

Effect df, df, F p
Group 1.00 49.00 0.28 0.600
Feedback delay 1.00 49.00 0.50 0.484
Block 3.5 154.26 15.65 <0.001
Group X feedback delay 1.00 49.00 0.96 0.331
Group X block 3.15 154.26 1.64 0.179
Feedback delay x block 418 204.87 0.24 0.923
Group X feedback delay x block 418 204.87 1.24 0.295
n=52
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Figure 7.  Choice switching results for Experiments 1 (patient study) and 2 (TMS study).

A, Slope estimates for choice switching predicted by feedback valence and modulated by
feedback delay and group in Experiment 1 (patient study). pos., positive feedback valence;
neg., negative feedback valence. Red lines denote patients and blue lines controls. Colored
bands indicate 95% confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001. B, Mean
choice switching according to stimulation site in Experiment 2 (TMS study). Means per stim-
ulation site are displayed in cyan while individual means per stimulation site are displayed in
black. Error bars indicate standard errors.

p=0.001) and across blocks (f=-0.08, SE=0.01,
t15.896.82) = 5.82, p<0.001). Complete inferential statistics can
be found in Table 5.

FRN

The effects of (signed) RL-PE (reflected by the factors unsigned
RL-PE and feedback valence), group, and feedback delay on
FRN amplitude were analyzed using LME analysis. We expected
the FRN to be increased for high compared with low unsigned
RL-PEs for negative feedback and decreased for high compared
with low unsigned RL-PEs for positive feedback and expected
this effect to be reduced in the patient group. Grand averages of
the feedback-locked ERP at FCz show that the FRN amplitude
was increased (i.e., more negative) for high compared with low
RL-PEs for negative feedback for controls but not for patients
(Fig. 8A). This effect could also be confirmed in statistical analysis.
For grand average feedback-locked ERPs for all conditions, see
Figure 9A.

Statistical analysis showed that the FRN was enhanced for
negative compared with positive feedback (=048, SE=0.11,
ta,53550)=4.15, p<0.001) and for high compared with low
RL-PEs (f=-0.39, SE=0.18, p=0.031).
Importantly, within an interaction between RL-PE, feedback
valence, and group (8=3.28, SE=1.34, f(370s)=2.44, p=0.020),
the FRN reflected the RL-PE for controls only in negative
(B=-2.10, SE=0.44, t=4.78, p < 0.001), but not positive feedback
contexts ($=0.73, SE=0.39, t = 1.88, p = 0.242; see Fig. 8B for sim-
ple slope plots). For patients, the RL-PE was not reflected for either
feedback valence, both p>0.999.

t(769.27) = 2.16,
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Table 5. Inferential statistics for the LME analysis examining the effect of feedback
valence, response type, feedback delay, group, and block onto choice switching in
Experiment 1 (patient study)

Fixed effects
Est/B SEdf t p

(Intercept) 008  0.04 5856 196  0.055

Feedback valence —0.20 0.03 1592060 —7.60 <0.001

Response type —0.23 0.03 1594801 —8.65 <0.001

Feedback delay —0.08 003 1588070 —3.21  0.001

Group 0.00 008 5856 —0.02 0.988

Block —0.08 0.01 1589.82 —582 <0.001

Feedback valence X response type —0.07 005 1589570 —126  0.208

Feedback valence X feedback delay 009 005 1582698 177 0.076

Response type X feedback delay —010 005 1592676 —1.92  0.054

Feedback valence X group —005 005 1592060 —087 0387

Response type X group —0.08 005 1594801 —145  0.148

Feedback delay x group 003 005 1588070 061 0544

Feedback valence X block 002 003 1552896 061  0.542

Response type X block —0.10 003 1591959 —3.78 <0.001

Feedback delay x block 005 0.03 1588545 190 0.057

Group X block 0.04  0.03 15896.82 167 0.09

Feedback valence  response type X —0.05 010 1591073 —046  0.648
feedback delay

Feedback valence x response type X 0.09 010 1589570 085  039%
group

Feedback valence x feedback delay x 032 010 1582698 310  0.002
group

Response type x feedback delay x —011 010 1592676 —1.01 0312
group

Feedback valence X response type X 0.05 0.05 1591481 1.03 0305
block

Feedback valence X feedback delayx ~ —0.03  0.05 12,591.80 —0.62  0.535
block

Response type x feedback delay x —002 005 1592219 -043  0.670
block

Feedback valence x group X block —003 005 1552896 —0.61 0540

Response type X group X block —0.06 005 1591959 -—-112 0262

Feedback delay x group X block 005 0.05 1588545 .02 0309

Feedback valence X response type X —=0.13 021 1591073 —0.64 0522
feedback delay x group

Feedback valence X response type X —012 011 32287 —1.09  0.276
feedback delay x block

Feedback valence X response type X —0.15 0.0 1591481 —144  0.149
group X block

Feedback valence x feedback delayx ~ —0.16 ~ 0.10 12,591.80 —149  0.136

group X block

Response type X feedback delay x 014 0.0
group X block

Feedback valence X response type X
feedback delay x group X block

15,922.19 131 0.190

=012 022 32287 —054  0.587

Random effects

Variance SD  Corr

Subject (intercept) 007 026

Subject (feedback valence X response 005 023 -062
type X feedback delay x block)
Residual 086 093
Model fit
Marginal Conditional
R 0.05 0.12

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switch ~ 1+
feedback valence * response type * feedback delay * group * block + (1 + feedback valence:response type:feedback
delay:block | subject). Agpjeas = 52, Mopsenvtions = 16,001.
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Within an interaction between feedback valence and feedback
delay (B=—-1.09, SE=027, ty352=4.04, p<0.001), the FRN
was enhanced for negative compared with positive feedback
only for short (8=0.89, SE=0.16, t=5.66, p<0.001) but not
long feedback delay (5 =—0.06, SE=0.16, t=0.37, p>0.999).

It was also increased within a feedback delay main effect
for long over short feedback delay (f=-0.94, SE=0.13,
t2,765.36) = 7-24, p <0.001). This effect was further modulated by
group within an interaction (=0.59, SE=0.26, t2,76536) = 2.27,
p=0.024). The FRN amplitude was more strongly increased for
long feedback delays for controls (8=-1.51, SE=0.19, t=7.93,
P <0.001) than patients ($=—0.68, SE=0.16, t=4.15, p<0.001).

Complete inferential statistics can be found in Table 6.

Lesion symptom mapping

Lesions were mainly located in posterolateral regions, with high-
est overlap in lobules Crus II, 1, VIIb, VIIIa, and VIIIb (Fig. 1). Six
patients had a lesion extending into the dentate nucleus. Images
of individual lesions are displayed in Extended Data Figure 1-1.
For analysis, all lesions were mirrored to the left side (in case
of bilateral lesions, the side with the larger lesion was mirrored
to the left side if necessary).

To investigate whether the FRN changes were linked to
specific cerebellar lesion locations, voxel-based lesion symptom
mapping (vbLSM) was performed. While controls mostly
showed the expected coding of RL-PEs in the FRN in the antic-
ipated direction (i.e., increased/more negative FRN amplitude for
high over low RL-PEs), only few patients showed this pattern,
and some patients even showed the opposite (i.e., decreased/
more positive FRN for high over low RL-PE; Fig. 8C). We used
the difference FRN for negative feedback as a parameter for the
vbLSM (ERN for high RL-PEs [>0.5] - FRN for low RL-PEs
[<0.5]). We expected aberrant processing to be associated with
damage to posterolateral regions, especially Crus I and IL
Indeed, a more aberrant difference FRN was associated with
more four posterior lesion clusters: in Crus II extending toward
lobule VIIb (peak z=3.0, peak coordinates: x=—26 mm,
y=-=78 mm, z=-51 mm, 535 mm?), medial Crus II (peak
z=2.6, peak coordinates: x=—5mm, y=-79 mm, z=—35 mm,
37 mm?), Crus I (peak z=2.5, peak coordinates: x=—27 mm,
y=—86 mm, z=-34 mm, 149 mm°), and medial lobule VIIb/
vermal VIIla (peak z=2.3, peak coordinates: x=—6 mm,
y=—68 mm, z=—45 mm, 550 mm?; Fig. 10).

In an additional step, we examined lesions in the dentate
nucleus (see Materials and Methods). There were only six
patients with lesions in the dentate nucleus (of which two
had been classified as impaired) with only minimal overlap.
Meaningful analyses could thus not be performed. Plots of
individual dentate nucleus lesions are shown in Figure 3.

Experiment 2: RL-PE processing in healthy young adults
receiving cerebellar TMS

In Experiment 2, we investigated reinforcement learning and
RL-PE processing in young healthy adults (n =24) for cerebellar
and control (vertex) single-pulse TMS using the same probabilis-
tic feedback learning task as in Experiment 1 (Fig. 4A). Pulses
were applied once per trial and either at the response stage
(100 ms poststimulus onset) or at the feedback stage (100 ms
prefeedback; Fig. 4B). Single-pulse TMS has the advantage of
transient effects on behavior and neural processing (Gatti et al.,



Huvermann et al. o Cerebellar Contributions to Reinforcement Learning

A. Grand average feedback-locked ERPs at FCz
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Figure 8.

ERP results for Experiment 1 (patient study). A, Grand average feedback-locked ERPs at F(z according to unsigned RL-PE (low, high), feedback valence (positive, negative), and group

(patients, controls). Red lines denote high unsigned RL-PE (>0.5) and blue lines low unsigned RL-PE (<0.5). Colored bands indicate standard errors. B, Slope estimates for FRN amplitude
predicted by unsigned RL-PE and modulated by feedback valence and group. Red lines denote positive feedback valence and blue lines negative feedback valence. Colored bands indicate 95%
confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001. ¢, Mean difference FRN (mean negative high RL-PE — mean negative low RL-PE) separately for groups (controls, patients). Group
means are displayed in cyan while individual means are displayed in black. Error bars indicate standard errors. Patients with a difference FRN above 1 pV (i.e., decreased/more positive difference

FRN) are marked in red who are used as impaired group in lesion symptom mapping.

2023) within-subject, excluding the possibility of long-term com-
pensation that may be present in chronic stroke patients
(Peterburs et al., 2012).

Choice accuracy

Mean choice accuracy as a function of stimulation site (cerebel-
lum, vertex), TMS timing (poststimulus, prefeedback), and
block (1-8) is shown in Figure 6B. The effects of these factors
on choice accuracy were analyzed using an ANOVA. We
expected a main effect of block, and participants to perform
worse when receiving cerebellar compared with vertex TMS,
as no long-term compensatory mechanisms should be available
due to the instantaneous effect of the TMS. Overall, we found
a main effect of block, i.e., a learning effect, while no effects
involving the stimulation site factor (cerebellum/vertex) reached
significance.

Statistical analysis showed a significant main effect of block
(F3.18,73.05=6.21, p<0.001) with higher choice accuracy in
block 4 (t(s70) = 3.49, p=0.008), block 5 (ts70) = 3.33, p=0.014),
and block 6 (f(s70)=3.77, p=0.003) compared with block 1. All
other effects were nonsignificant (all p > 0.461; see Table 7 for
complete inferential statistics).

Choice switching

The effects of response type, feedback valence, block, stimulation
site, and TMS timing on choice switching were analyzed using
LME analysis. We found the expected effects of increased choice
switching after negative feedback and false responses.
Importantly, choice switching was generally reduced for cerebel-
lar compared with vertex stimulation (Fig. 7B).

The main effect of stimulation site reached significance
(B=-0.11, SE=0.03, t(647516 =3.67, p<0.001), with decreased
choice switching for cerebellar compared with vertex TMS (Fig. 7B).

Further, the main effect of response type was significant
(B=—0.39, SE=0.03, t(s0240)=12.64, p<0.001), with more
choice switching after incorrect compared with correct choices.
This effect was further modulated by block (S=-0.15,
SE=0.03, t(6499.06)=5.02, p<0.001). Follow-up simple slope
analyses showed that while choice switching was significantly
increased both early (8=-0.22, SE=0.04, t=5.22, p<0.001)
and late in the task (f=—0.54, SE=0.05, t=11.44, p<0.001),
the effect was stronger late in the task.

Statistical analysis also showed a main effect of feedback valence
(B=—0.23, SE=0.03, t(s.4s074)=7.74, p<0.001), with more choice
switching after negative compared with positive feedback.
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B. Grand average feedback-locked ERPs at
FCz for all conditions (Experiment 2)
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Grand average feedback-locked ERPs for all conditions and three RL-PE levels. 4, Grand average feedback-locked ERPs for Experiment 1 (patient study) at F(z according to unsigned

RL-PE (low, medium, high), feedback valence (positive, negative), feedback delay (short delay, long delay), and group (patients, controls). Red lines denote low, blue lines denote medium, and
green lines denote high unsigned RL-PE. Colored bands indicate standard errors. B, Grand average feedback-locked ERPs for Experiment 2 (TMS study) at F(z according to unsigned RL-PE (low,
medium, high), feedback valence (positive, negative), TMS timing (poststimulus, prefeedback), and stimulation site (vertex, cerebellum). Red lines denote low, blue lines denote medium, and

green lines denote high unsigned RL-PE. Colored bands indicate standard errors.

No other effects involving response type or feedback valence
with stimulation site or each other emerged (all p>0.246).
Complete inferential statistics can be found in Table 8.

FRN

The effects of (signed) RL-PE (reflected in unsigned RL-PE
and feedback valence), stimulation site, and TMS timing on
FRN amplitude were analyzed using LME analysis. We
expected the FRN to be increased for higher unsigned
RL-PEs for negative feedback and decreased for higher
unsigned RL-PEs for positive feedback, and we expected this
effect to be reduced when stimulating the cerebellum com-
pared with the vertex. Grand averages for the feedback-locked
ERP at FCz are shown in Figure 11A. For grand average
feedback-locked ERPs for all conditions, see Figure 9B. FRN
amplitudes were reduced for high compared with low

RL-PEs for negative feedback only for control stimulation
but not for cerebellar stimulation.

Statistical analysis showed that FRN was enhanced for nega-
tive compared with positive feedback (8=1.08, SE=0.14,
tz.116.94)=7.90, p<0.001). Feedback valence further interacted
significantly with the unsigned RL-PE, (f=-1.11, SE=0.49,
t(6,506.98) =2.28, p=0.023). Follow-up simple slope analyses
revealed that while the unsigned RL-PE modulated the FRN
for negative feedback, with a reduced FRN with increasing
RL-PE at trend level ($=0.70, SE=0.32, t=2.18, p=0.058),
this was not the case for positive feedback (=-0.12, SE=0.29,
t=0.42, p>0.999). This interaction was further modulated by
stimulation site (8=2.82, SE=0.93, fs523.19)=3.05, p=0.002;
Fig. 11B). For vertex TMS, FRN was reduced with increasing
unsigned RL-PE for negative feedback (f=1.57, SE=043,
t=3.69, p<0.001) but not positive feedback (B=-0.56,
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Table 6. Inferential statistics for the LME analysis examining the effect of unsigned
RL-PE, feedback valence, feedback delay, and group onto FRN amplitude in
Experiment 1 (patient study)

Fixed effects
Est/p SE df t p
(Intercept) 029 034 4600 087 0389
Unsigned PE —0.39 018  769.27 —2.16 0.031
Feedback valence 0.48 011 1,535.59 415  <0.001
Feedback delay —094 013 276536 —7.24 <0.001
Group —0.48 0.67 46.00 —0.72 0.477
Unsigned PE x feedback valence 079 067 37.08 118 0.246
Unsigned PE x feedback delay 0.56 047 41.99 119 0239
Feedback valence x feedback delay =109 027 73.82  —4.04 <0.001
Unsigned PE X group 0.67 037  769.27 183 0.068
Feedback valence X< group 026 023 153559 113 0258
Feedback delay x group 0.59 0.26  2,765.36 227 0.024
Unsigned PE x feedback valence x —2.02 173 3629 =117 0.250
feedback delay
Unsigned PE x feedback valence x —3.28 1.34 3708 —244  0.020
group
Unsigned PE x feedback delay x group  —0.99  0.9%4 4199 -1.06  0.295

Feedback valence x feedback delay x 0.09 0.54 73.82 016  0.872

group
Unsigned PE x feedback valence x —403 345 3629 =117 0.251
feedback delay x group
Random effects
Variance  SD Corr
Subject (intercept) 5.20 2.28
Subject (unsigned PE x 11.10 333 —0.07
feedback valence)
Subject (unsigned PE x 4.16 204 042 0.65
feedback delay)
Subject (feedback valence x 0.96 098 —0.07 —0.96 —0.70
feedback delay)
Subject (unsigned PE X 104.57 1023 —008 —052 —0.16 070
feedback valence X
feedback delay)
Residual 37.25 6.10
Model fit
Marginal Conditional
R 0.01 0.16

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: FRN ~ 1+
unsigned PE * feedback valence * feedback delay * group + (1 + unsigned PE:feedback valence:feedback
delay + unsigned PE:feedback valence + unsigned PE:feedback delay + feedback valence:feedback delay|
subject). Muupjects = 48, Mopservations = 15,034.

b
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Figure 10.
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SE=0.39, t=1.45, p=0.594). When stimulating the cerebellum,
the FRN was not significantly modulated by the unsigned
RL-PE (both p>0.999).

No other effects involving feedback valence or the
unsigned RL-PE with stimulation site or each other emerged
(all p>0.207). Complete inferential statistics can be found in
Table 9.

Control analysis

To explore whether feedback processing was generally disrupted or
whether this was more specific to the processing of RL-PEs, we
performed a control analysis investigating whether patients with
cerebellar stroke (Experiment 1) and healthy controls receiving
cerebellar TMS (Experiment 2) showed preserved valence coding
in the FRN, as valence effects for short feedback delays are a
well-reported finding (Sambrook and Goslin, 2015; Hinneberg
and Hegele, 2022). This was investigated within the same LME
model reported above, resolving the (nonsignificant) interactions
between outcome valence, feedback delay, and group for
Experiment 1 and outcome valence, TMS timing, and stimulation
site for Experiment 2.

Indeed, result patterns were consistent with intact valence cod-
ing in FRN under short feedback delays for patients with cerebellar
stroke and healthy participants receiving cerebellar TMS. In
Experiment 1, the FRN was indeed more negative for negative
relative to positive feedback in both controls (3=0.81, SE=0.23,
t=3.54, p=0.002) and patients (f=1.01, SE=0.21, t=4.79,
p<0.001) in the short delay condition but not in the long delay
condition (both p>0.103; Fig. 12A). In Experiment 2, where
only short delays were used, the FRN was consistently more
negative for negative over positive valence for both stimulation
sites and TMS timings (poststimulus vertex: f=1.12, SE=0.27,
t=4.13, p<0.001; poststimulus cerebellum: $=0.79, SE=0.27,
t=2.96, p=0.012; prefeedback vertex: f=1.47, SE=0.27, t=5.54,
p<0.001; prefeedback cerebellum: $=1.09, SE=0.27, t=4.07,
p<0.001; Fig. 12B).

To further examine whether we could find evidence against an
effect of these interactions, model comparisons were performed
to extract an estimation of the Bayes factor. The full LME models
were compared against a model without the interaction between
outcome valence, feedback delay, and group for Experiment 1
and outcome valence, TMS timing, and stimulation site for
Experiment 2. The Bayes factor was then estimated based on
the difference Bayesian Information Criterion, following Shen
and Gonzalez (2021). In line with the control analyses, the

Crus Il

Viilb Crus Il v||p

Lesion symptom mapping in Experiment 1 (patient study). Voxel-based lesion symptom mapping of lesion location comparing groups on (4) a cerebellar flatmap (Diedrichsen and

Zotow, 2015) and in 2D (B) sagittal, (€) coronal, and (D) axial views. Color code shown on the top right denotes z-scores (from purple = 1.7 to red =3.0). r, right; |, left.
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Table 7. Inferential statistics for the ANOVA investigating the influence of
stimulation site, TMS timing and block on accuracy in Experiment 2 (TMS study)

Effect df, df, F p
Stimulation site 1 23 0.01 0.938
TMS timing 1 23 0.13 0.717
Block 3.18 73.05 6.21 <0.001
Stimulation site X TMS timing 1 23 0.01 0.929
Stimulation site X block 312 71.87 0.88 0.461
TMS timing X block 333 76.65 0.62 0.619
Stimulation site < TMS timing  block 5 15 0.65 0.660
n=24.

estimated Bayes Factor indicated very strong evidence for an
absence of the triple interactions (BF =90.02 for both experi-
ments/comparisons).

Exploratory analysis of predictability of choice switching by
ERP components

While differences in accuracy or choice switching between groups
(Experiment 1) and stimulation sites (Experiment 2) were either
not significant or not as severe, differences in RL-PE processing in
the FRN were substantial. While the FRN does not seem to have a
strong behavioral correlate (Ullsperger, 2024), there is some evi-
dence linking it to behavioral flexibility (Cohen and Ranganath,
2007; Fischer and Ullsperger, 2013; Kirschner et al., 2022; but
also see Chase et al., 2011). In an exploratory analysis, we added
the FRN amplitude as an additional factor to the LME models
with choice switching as the dependent variable. However, the
respective LME models did not offer a better fit to the data than
the original models (Experiment 1: y(s,=36.01, p=0.286;
Experiment 2: x(s2) = 24.82, p = 0.813) and neither did any effects
including the FRN amplitude and the group factor reach signifi-
cance within these models (all p>0.079). In an additional
analysis for Experiment 1, we tried to relate the difference FRN
as presented in Figure 8C to choice switching using group-specific
correlations. However, this correlation did not reach significance
for controls (t;4=0.29, p=0.773) or patients (t,3)=0.28,
p=0.784).

For completeness, we also added the P3a and P3b separately
to the choice switching model to see whether these would
improve model fit. P3a and P3b in the feedback-related ERP
peak at ~300-500 ms postfeedback frontocentrally and parie-
tally, respectively (Hruby and Marsalek, 2003; Polich, 2007),
and have been more clearly associated with behavioral flexibil-
ity (Ullsperger, 2024). Indeed, including P3a/b in the model
significantly improved model fit for both P3a (y(s)=58.19,
p=0.003) and P3b ()(%32)=54.72, p=0.007) in Experiment 1.
Full statistics for the model comparisons can be found in
Table 10. Several effects including both P3a and group reached
significance and one effect including both P3b and group
reached significance. The general effect patterns seem to indi-
cate that the P3a is generally predictive of choice switching
for healthy controls, but only under specific circumstances for
patients.

For the P3a LME model in Experiment 1, the interaction
between P3a and group reached significance (f=0.01,
SE=0.00, t(575283=2.04, p=0.042). P3a was predictive of
choice switching for controls (8=-0.01, SE=0.00, t=-2.45,
p=0.028), such that an increased P3a corresponded to decreased
choice switching. This effect did not reach significance in patients
(8=0.00, SE=0.00, t=0.90, p=0.734). This interaction was fur-
ther modulated by block (8=0.01, SE=0.00, 571076 = 2.05,
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Table 8. Inferential statistics for the LME analysis examining the effect of feedback
valence, response type, stimulation site, TMS timing, and block onto choice
switching in Experiment 2 (TMS study)

Fixed effects

Est/B SE df t p
(Intercept) 0.07 004 22.60 1.91 0.069
Feedback valence —0.23 0.03 6,489.74 —7.74 <0.001
Response type —039 003 650249 —12.64 <0.001
Stimulation site —0.11 0.03 647516  —3.67 <0.001
TMS timing 000 003 6477.69 0.06 0954

Block 0.00 002 648140 021 0831

Feedback valence X response type 007 006 647945 115 0252

Feedback valence X stimulation site —0.01 006 648720 —0.19 0852

Response type X stimulation site —006 006 648388 —107  0.286

Feedback valence x TMS timing 0.01 006 6,461.84 014  0.889

Response type X TMS timing 0.04 006 6502.24 0.64 0524

Stimulation site X TMS timing —0.03 006 6,479.64 —0.56 0.577

Feedback valence x block 0.01 0.03 6,327.19 0.36 0.720

Response type x block —015 003 649.06 —502 <0.001

Stimulation site x block —0.03 0.03 648272 —087 0.387

TMS timing X block 001 003 648330 031 0758

Feedback valence X response type X 013 012 648154 1.04  0.298
stimulation site

Feedback valence X response type X 0.04 012 6489.48 035 0727
TMS timing

Feedback valence X stimulation sitex ~ —0.12 012 643624 —099 0325
TMS timing

Response type X stimulation site x 0.02 012 650230 019 0848
TMS timing

Feedback valence X response type X —0.07 006 648486 —111 0268
block

Feedback valence X stimulation site X 0.00 0.06 6,10747 —0.04 0.968
block

Response type X stimulation site X —0.02 006 6490.12 —036 0721
block

Feedback valence x TMS timing X 013 006 6,384.46 208 0.037
block

Response type X TMS timing x block ~ —0.03  0.06 6,485.44 —0.48  0.629

Stimulation site X TMS timing X block ~ —0.07  0.06 647998 —1.16  0.246

Feedback valence X response type X —0.03 024 6489.04 —012 0906
stimulation site X TMS timing

Feedback valence X response type X —0.04 012 648543 —037 0709
stimulation site X block

Feedback valence X response type X —027 012 648930 —222  0.027
TMS timing X block

Feedback valence X stimulation site x 0.03 012 492233 021 0833
TMS timing X block

Response type X stimulation site X 0.13 0.12 6,489.78 110 0271
TMS timing X block

Feedback valence X response type X 001 025 48.64 0.04 0971
stimulation site X TMS timing X
block

Random effects

Variance SD  Corr

Subject (intercept) 0.03 0.16
Subject (feedback valence X response 010 032 053
type X stimulation site x TMS
timing X block)

Residual 088 094
Model fit

Marginal Conditional
R 0.08 0.1

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switching
~ 1+ feedback valence * response type * stimulation site * TMS timing * block + (1 + feedback valence:
response type:stimulation site:TMS timing:block | subject). gupjecs = 21, Mopservations = 6,541.
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B. PE effect on FRN amplitude

vertex cerebellum
-5 =
(]
a ® 1 vertex cerebellum
= o M
0 5 204"
—~ R - -
S y —
O 5_ % @© 2‘ ////\)***
e L=
~ g =z 3 T
3 ~ 4
3 _5_ -c T T T T T T | T T T
= S 0 05 1 0.5
g = unsigned PE
< . o
© 0 @ valence —negative — positive
(0] . .
® | — high negative PE
5 S = high positive PE
Q "
. . . o . . > = low positive PE
-200 0 200 400 -200 O 200 400 -= low negative PE
time (ms)
Figure 11.  ERP results for Experiment 2 (TMS study). A, Grand average feedback-locked ERPs at F(z according to unsigned RL-PE (low, high), feedback valence (positive, negative), and

stimulation site (vertex, cerebellum). Red lines denote high unsigned RL-PE (>0.5) and blue lines low unsigned RL-PE (<0.5). Colored bands indicate standard errors. B, Slope estimates for FRN
amplitude predicted by unsigned RL-PE and modulated by feedback valence and stimulation site. Red lines denote positive feedback valence and blue lines negative feedback valence. Colored

bands indicate 95% confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001.

p=0.041). Choice switching was increased with increasing P3a
for patients late in the task on trend level ($=0.01, SE=0.00,
t=2.38, p=0.068), but not early in the task, and not at all
for healthy controls (all p>0.191). The interaction was further
modulated by outcome valence in a four-way interaction (=
0.02, SE=0.01, t(570665 =2.31, p=0.021). Choice switching
was increased on trend level with increasing P3a for patients
late in the task only for positive feedback (8=0.01, SE=0.01,
t=2.55, p=0.087). No other simple slopes reached significance
when resolving the interaction (all p > 0.168).

A three-way interaction including P3a, group, and feedback
delay (8=-0.02, SE=0.01, f(5720.44)=2.23, p=0.026) showed
that P3a was predictive of choice switching only for controls in
the short feedback delay condition, however, only at trend level
(8=-0.01, SE=0.00, t=2.39, p=0.067). Larger P3a amplitudes
led to reduced choice switching. The effect did not reach signifi-
cance for controls in the long feedback delay condition or for
patients at all (all p >0.125). However, two higher-level interac-
tions indicated that a P3a-choice switching relation did exist for
patients under specific circumstances: The interaction between
P3a, group, and feedback delay was further modulated by
response type in a four-way interaction (8=-0.04, SE=0.02,
tas,712.02) = 2.37, p=0.018). This four-way interaction revealed
that P3a was significantly predictive of choice switching only
for patients for short feedback delay when the choice was correct
(8=0.02, SE=0.00, t =3.48, p =0.004). In no other condition did
the effect reach significance (all p > 0.301). Finally, the four-way
interaction was further modulated by outcome valence in a
five-way interaction (8=0.08, SE=0.04, f(57052s)=2.16,
p=0.031). In this five-way interaction, P3a was predictive of
choice switching on trend level only for patients for the short
delay condition, when feedback was positive and the reaction
was correct, with larger P3a amplitudes predicting more choice
switching (8=0.01, SE=0.00, t=2.77, p=0.090). No other slope
reached significance (all p >0.254). These effect patterns might

be due to a smaller, more general effect of P3a on choice switch-
ing in healthy controls, while for patients, the direction of the
effect was more dependent on the experimental condition. The
full statistical pattern is displayed in Table 11.

For P3Db, a four-way interaction between P3b, outcome valence,
group, and block emerged (8=0.02, SE=0.01, f(14,13518)=1.97,
p=0.049). P3b amplitude was predictive of choice switching
only for patients when receiving positive feedback and only late
in the task (8=0.02, SE=0.01, t=3.97, p<0.001; all other
p>0.894).

Notably, we could not replicate these findings for Experiment
2. The stroke patient sample might have been more suitable to
explore such deficits, as the single-pulse TMS we used in
Experiment 2 creates a virtual lesion merely via inducing noise.
A brain-behavior connection might be clearer when using
r'TMS protocols. Including the P3a/b in the model did not result
in significant improvements in model fit (P3a: X(232) =4442,
p=0.071; P3b: x%5,) = 45.47, p=0.058).

Discussion

The current study aimed to investigate whether cerebellar output
is required for reinforcement learning-prediction error (RL-PE)
coding in the ACC-generated FRN. We studied this in two cere-
bellar lesion models (cerebellar stroke patients and single-pulse
cerebellar TMS) during a probabilistic feedback learning task.
While we found RL-PE coding in the FRN for healthy controls
and for control stimulation (vertex) in negative outcome/feed-
back contexts, it was largely absent for cerebellar stroke patients
and for cerebellar TMS. The results provide evidence that RL-PE
computation is dependent on cerebellar output. Behavioral defic-
its, however, were subtle. While overall learning success was
unaffected by cerebellar lesions or cerebellar TMS, behavioral
flexibility, as indexed by choice switching, was reduced. Subtle
deficits may be due to compensation by other brain areas within
the reinforcement learning network.
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Table 9. Inferential statistics for the LME analysis examining the effect of unsigned
RL-PE, feedback valence, stimulation site, and TMS timing onto FRN amplitude in
Experiment 2 (TMS study)

Fixed effects
Est/B SE df t p

(Intercept) 1.92 0.64 2108 3.02  0.007
Unsigned PE 0.20 020 7,125.07 1.00 0.320
Feedback valence 1.08 0.14 7,116.94 7.90  <0.001
Stimulation site 0.08 0.14 595365 056 0577
TMS timing 3.38 015 552183 2299 <0.001
Unsigned PE x feedback valence —-11n 049 650698 —228  0.023
Unsigned PE x stimulation site —0.46 040 772004 =117 0244
Feedback valence x stimulation site —0.27 027 712363 —100 0317
Unsigned PE x TMS timing 0.89 040 7121.23 224 0.025
Feedback valence x TMS timing 0.49 0.27 712251 180 0.07
Stimulation site < TMS timing 1.28 031 3,279.84 414 <0.001
Unsigned PE x feedback valence x 2.82 093 552319 305  0.002

stimulation site

Unsigned PE x feedback valence x TMS 2.45 0.89 6,049.33 275 0.006

timing

Unsigned PE x stimulation site X TMS 0.38 080 7,72494 048  0.632
timing

Feedback valence X stimulation site X 0.21 0.54 7,124.02 0.39 0.696
TMS timing

Unsigned PE x feedback valence x 531 4.07 19.75 130 0.207

stimulation site x TMS timing

Random effects

Variance  SD  Corr

Subject (intercept) 8.82 2.97
Subject (unsigned PE x feedback 28719 16,95 0.03
valence X stimulation site x TMS

timing)
Residual 29.10 539
Model fit
Marginal Conditional
R 0.08 030

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: FRN ~ 1+
unsigned PE * feedback valence * stimulation site * TMS timing + (1 + unsigned PE:feedback valence:
stimulation site:TMS timing | subject). Ngupjects = 22, Nopservations = 7,162

For healthy controls (Experiment 1) and control stimulation
(Experiment 2), RL-PE coding in the FRN was found only for
negative feedback. This is consistent with previous studies in
healthy participants that found the RL-PE reflected in the FRN
only, or at least more strongly, for negative outcomes/feedback
(Hoy et al., 2021; Rawls and Lamm, 2021). Note that the direction
of the effect was unexpectedly reversed for control stimulation in
Experiment 2, as discussed below. Importantly, patients with cer-
ebellar damage and healthy participants receiving cerebellar TMS
showed no significant RL-PE coding in the FRN. Activity consis-
tent with RL-PE has previously been described in the rodent cer-
ebellum, although mainly for reward contexts (Kostadinov and
Hausser, 2022). It is thus conceivable that RL-PE processing in
the cerebellum, as found in these previous studies, is necessary
for further RL-PE processing in connected areas classically asso-
ciated with reinforcement learning (i.e., forebrain and midbrain
areas). Of note, feedback processing was not deficient in general,
with an intact valence effect in the FRN under short feedback
delays in cerebellar patients and in healthy participants receiving
cerebellar TMS.

Closer inspection of Figure 7A reveals that the lack of differ-
entiation between low and high RL-PEs in the FRN in patients
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Figure 12. Slope estimates for FRN amplitude predicted by feedback valence. 4, Slope
estimates for FRN amplitude predicted by feedback valence and modulated by feedback delay
and group. Red lines denote patients and blue lines healthy controls. B, Slope estimates for
FRN amplitude predicted by feedback valence and modulated by TMS timing and stimulation
site. Red lines denote cerebellar TMS and blue lines vertex TMS. Colored bands indicate 95%
confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001.

was driven by an increase in FRN amplitudes for low RL-PEs
rather than a decrease in FRN amplitudes for high RL-PEs.
Thus, it appears that the effect is driven by over-activation
toward expected outcomes rather than underactivation for unex-
pected outcomes, which may be indicative of exaggerated per-
ceived salience of expected feedback.

The deficit in RL-PE coding in the FRN was most pronounced
in patients with lesions at the border of Crus II and lobule VIIb
and to a smaller degree in medial Crus II, Crus I, lobule VIIb, and
VIIIa. Especially Crus I and II have previously been identified to
be involved in decision making and executive control (Berlijn et
al,, 2024b) and are also connected to the reinforcement learning
network (Habas, 2021). The present cluster in Crus II/lobule
VIIb overlapped with regions associated with higher cognitive
functions, in particular working memory (region D2 in
Nettekoven et al., 2024), shown in cerebellar parcellations based
on functional magnetic resonance imaging (fMRI) data. The
cluster in Crus I, Crus II, and lobule VIIb/VIIIa seemed to be
related to default mode network/theory of mind, working mem-
ory, and spatial rotation/simulation (regions S3, D1, and Al in
Nettekoven et al., 2024). Data on reinforcement learning tasks,
however, were not included in the fMRI data on which these par-
cellations are based. Notably, the cluster in Crus II/lobule VIIb in
the present study seems to match with a cluster found in relation
to behavioral changes in a feedback learning task very similar to
ours (Peterburs et al., 2018). While the abovementioned regions
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Table 10. Model comparisons for the choice switching LME analysis with FRN, P3a, and P3b as additional predictors, respectively, for Experiments 1 and 2

Model comparison

Model Nparameter AIC BIC Log likelihood Deviance s df p
Experiment 1
Standard model (data with valid FRN, P3a, and P3b) 36 42,815 43,091 —21,372 42,743
Model with FRN as an additional predictor 68 42,843 43,365 —21,354 42,707 36.01 32 0.286
Model with P3a as an additional predictor 68 42,821 43,343 —21,343 42,685 58.19 32 0.003
Model with P3b as an additional predictor 68 42,825 43,346 —21,344 42,689 54.72 32 0.007
Experiment 2
Standard model (data with valid FRN) 36 17,686 17,930 —8,807.1 17,614
Model with FRN as an additional predictor 68 17,725 18,186 —8,794.7 17,589 24.82 32 0.813
Standard model (data with valid P3a/b) 36 17,821 18,065 —8,874.4 17,749
Model with P3a as an additional predictor 68 17,841 18,302 —8,852.2 17,705 4442 32 0.071
Model with P3b as an additional predictor 68 17,839 18,301 —8,851.7 17,703 45.47 32 0.058

Model comparisons based on deviance.

were associated with especially aberrant RL-PE coding, the distri-
bution of difference FRN was overall shifted for patients com-
pared with controls (Fig. 8C). Considering the overall lesion
distribution in patients, it is conceivable that other posterolateral
cerebellar regions also play a role in RL-PE processing.

It has to be noted that behavioral changes associated with cer-
ebellar lesions or cerebellar TMS were quite subtle which seems
unexpected given the substantial changes in the FRN. While
the FRN generator, ACC, is essential for action-outcome learning
(Rudebeck et al., 2008; Camille et al., 2011), the present experi-
ments used additional visual stimuli to represent choices
(i.e, button presses). It is therefore conceivable that areas
involved in stimulus-outcome learning, such as the orbitofrontal
cortex (OFC; Rudebeck et al., 2008; Camille et al., 2011), were
able to compensate for ACC-driven deficits. Action-outcome-
and stimulus-outcome-based learning might have redundancy
to accommodate different environmental requirements. While
both the ACC and the OFC receive a wide range of input
(Heilbronner and Hayden, 2016; Groman et al., 2021), they
might differ in relation to cerebellar input and dependency on
predictive information processed by the cerebellum (Peterburs
and Desmond, 2016). Previous studies in rodents showed that
the cerebellum modulates dopaminergic activity in the substantia
nigra (Washburn et al., 2024), and projections from the cerebel-
lum to the VTA were able to modulate place preference (Carta
et al,, 2019). Both the substantia nigra and the VTA project
toward the ACC (Zhang et al,, 2017; Elston et al., 2018, 2019).
The OFC, in turn, may be more independent from cerebellar pro-
cessing. While there is some evidence for connections between
the cerebellum and OFC (Palesi et al., 2017), we did not measure
proxies of OFC activity and therefore cannot conclude whether
processing in the OFC was affected. Notably, there seems to be
a general pattern of reduced behavioral flexibility and intact
acquisition concomitant with cerebellar damage/disruption:
learning acquisition was shown to be intact in patients with
cerebellar stroke (Thoma et al., 2008; Rustemeier et al., 2016; pre-
sent Exp. 1) and cerebellar degeneration (A.M. Berlijn, D.M.
Huvermann, E. Bechler et al., unpublished observation) as well
as healthy participants receiving cerebellar single-pulse or
rTMS (present Exp.2, Kruithof et al, 2025). Nicholas et al
(2024) showed deficits in behavioral flexibility in patients with
cerebellar degeneration using a task with constantly changing
drifting reward probabilities. In an additional exploratory
analysis, we were able to link deficits not in the FRN but in later
feedback processing (P3a) to deficits in choice switching, which
is consistent with the current conception that the P3 has

stronger behavioral correlates than the FRN (Ullsperger, 2024).
There is some evidence for a relation between FRN and beha-
vioral adjustment (Fischer and Ullsperger, 2013; Kirschner
et al., 2022; but also see Chase et al.,, 2011), which might not
have played a big enough role in the current study. FRN seems
to predict choice switching in highly adaptive environments
(Cohen and Ranganath, 2007). The FRN might thus be a readout
of a RL-PE that depends on cerebellar output but is not strictly
required for learning success in tasks which do not require
a high degree of behavioral flexibility. Thoma et al. (2008)
and Kruithof et al. (2025) showed that behavioral flexibility
required in reversal learning is indeed impaired in cerebellar
damage/disruption even in the presence of intact learning
acquisition.

In Experiment 2, we varied TMS pulse timing to test whether
the cerebellum is potentially involved in response and/or feedback
processing selectively. The variation in pulse timing did not appear
to modulate the effect of cerebellar TMS on RL-PE coding in the
FRN. While this might be related to differential contributions of
predictive effects (poststimulus TMS) and feedback processing
(prefeedback TMS), an absence of a timing effect might also result
from nonoptimal temporal placement of stimulation timings.

While in Experiment 1, the FRN reflected the RL-PE in the
expected direction in control participants (i.e., more negative
FRN amplitudes for higher RL-PEs), the direction was unexpect-
edly reversed for the control stimulation in Experiment 2. It thus
seems that even though vertex is a common site for control stim-
ulation, it did have an effect on feedback processing, challenging
its use as a control condition in Experiment 2. At least one study
(Jung et al., 2016) showed reduced activity in the ACC (i.e., the
generator of FRN; Hauser et al., 2014) with vertex TMS, although
not significantly with the inverted stimulation that we used.
Nevertheless, it is still noteworthy that findings for the cerebellar
TMS in Experiment 2 replicated the findings in Experiment 1 for
cerebellar stroke patients. Both showed a lack of RL-PE coding in
FRN. Even though the RL-PE was reflected in the FRN for vertex
TMS in the opposite direction, there was a significant RL-PE cod-
ing for vertex TMS, while it could not be found for the cerebellar
TMS, as well as no effect of stimulation site on learning, thus rep-
licating the overall result pattern in Experiment 1.

In summary, feedback processing, as indexed by the FRN, was
shown to be dependent on cerebellar output. While cerebellar
dysfunction or damage resulted in only subtle changes in beha-
vioral flexibility with reinforcement learning performance largely
intact, processing of RL-PEs as reflected in the FRN was substan-
tially blunted. Crucially, this pattern was consistent across two
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Table 11. Inferential statistics for the LME analysis examining the effect of P3a, feedback valence, response type, feedback delay, group, and block onto choice switching in

Experiment 1 (patient study)

Fixed effects
Est/B SE df t p

(Intercept) 0.09 0.04 64.23 231 0.024
P3a 0.00 0.00 15,752.83 —-1.38 0.167
Feedback valence —0.18 0.03 15,706.55 —5.87 <0.001
Response type —0.25 0.03 15,739.13 —8.04 <0.001
Feedback delay —0.09 0.03 15,714.33 —2.78 0.005
Group —0.04 0.08 64.23 —0.48 0.632
Block —0.08 0.02 15,707.24 —5.59 <0.001
P3a X feedback valence 0.00 0.00 15,709.07 —1.06 0.288
P3a X response type 0.01 0.00 15,713.92 1.80 0.072
Feedback valence X response type —0.13 0.06 15,704.73 -214 0.032
P3a x feedback delay 0.00 0.00 15,729.44 —0.82 0.412
Feedback valence X feedback delay 0.12 0.06 15,707.21 1.93 0.053
Response type X feedback delay —0.10 0.06 15,717.62 —1.61 0.108
P3a X group 0.01 0.00 15,752.83 2.04 0.042
Feedback type X group —0.08 0.06 15,706.55 —1.34 0.180
Response type X group —0.07 0.06 15,739.13 -1.09 0.275
Feedback delay x group 0.10 0.06 15,714.33 1.68 0.092
P3a x block 0.00 0.00 15,710.76 132 0.186
Feedback valence X block 0.01 0.03 15,706.32 0.33 0.738
Response type X block —0.10 0.03 15,715.07 -3.29 0.001
Feedback delay x block 0.06 0.03 15,704.81 2.12 0.034
Group X block 0.01 0.03 15,707.24 0.39 0.700
P3a x feedback valence X response type 0.02 0.01 15,707.98 1.78 0.075
P3a x feedback valence x feedback delay —0.01 0.01 15,708.47 —0.67 0.505
P3a X response type X feedback delay 0.00 0.01 15,712.02 —0.45 0.652
Feedback valence x response type x feedback delay —0.07 0.12 15,704.17 —0.58 0.565
P3a x feedback valence x group 0.01 0.01 15,709.07 1.18 0.240
P3a X response type X group 0.00 0.01 15,713.92 —0.06 0.951
Feedback valence X response type X group 0.23 0.12 15,704.73 1.87 0.061
P3a x feedback delay x group —0.02 0.01 15,729.44 -3 0.026
Feedback valence x feedback delay x group 0.26 0.12 15,707.21 214 0.033
Response type X feedback delay x group 0.03 0.12 15,717.62 0.22 0.829
P3a x feedback valence x block 0.00 0.00 15,706.65 0.33 0.740
P3a X response type X block 0.00 0.00 15,708.16 0.18 0.857
Feedback valence X response type x block 0.09 0.06 15,704.32 1.58 0.114
P3a x feedback delay x block —0.01 0.00 15,707.03 -1.29 0.199
Feedback valence X feedback delay x block 0.01 0.06 15,705.59 0.21 0.836
Response type X feedback delay X< block —0.06 0.06 15,708.86 —0.92 0.357
P3a X group x block 0.01 0.00 15,710.76 2.05 0.041
Feedback valence x group X block —0.10 0.06 15,706.32 —1.69 0.092
Response type X group X block 0.00 0.06 15,715.07 0.02 0.983
Feedback delay x group X block 0.06 0.06 15,704.81 1.05 0.295
P3a x feedback valence X response type X feedback delay 0.02 0.02 15,705.28 0.89 0.374
P3a x feedback valence X response type X group —0.03 0.02 15,707.98 —1.85 0.065
P3a x feedback valence X feedback delay x group 0.02 0.02 15,708.47 1.3 0.219
P3a X response type X feedback delay x group —0.04 0.02 15,712.02 —237 0.018
Feedback valence X response type x feedback delay x group —0.43 0.25 15,704.17 —1.75 0.081
P3a x feedback valence X response type X block —0.01 0.01 15,706.99 —1.45 0.147
P3a x feedback valence x feedback delay x block —0.01 0.01 15,706.18 -1n 0.268
P3a X response type X feedback delay x block 0.01 0.01 15,707.24 1.29 0.19
Feedback valence  response type X feedback delay X block —0.14 0.12 15,704.08 -1.13 0.257
P3a x feedback valence x group x block 0.02 0.01 15,706.65 231 0.021
P3a X response type X group X block —0.01 0.01 15,708.16 —1.51 0.132
Feedback valence X response type X group X block —0.06 0.12 15,704.32 —0.47 0.638
P3a x feedback delay x group X block —0.01 0.01 15,707.03 -1.13 0.257
Feedback valence x feedback delay x group x block —0.14 0.12 15,705.59 -1.16 0.246
Response type X feedback delay x group X block 0.07 0.12 15,708.86 0.62 0.533
P3a x feedback valence X response type x feedback delay x group 0.08 0.04 15,705.28 2.16 0.031
P3a x feedback valence X response type X feedback delay x block 0.00 0.02 15,705.60 —0.13 0.894
P3a x feedback valence X response type X group X block —0.03 0.02 15,706.99 —1.48 0.140
P3a x feedback valence x feedback delay x group x block —0.01 0.02 15,706.18 —0.36 0.720
P3a X response type X feedback delay x group X block 0.02 0.02 15,707.24 0.93 0.350
Feedback valence X response type x feedback delay x group X block —0.04 0.24 15,704.08 —0.15 0.883
P3a x feedback valence X response type x feedback delay x group X block —0.02 0.04 15,705.60 —0.52 0.606

(Table continues.)
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Fixed effects

Est/B SE df p
Random effects

Variance SD
Subject (intercept) 0.07 0.26
Residual 0.86 0.93
Model fit
R Marginal Conditional

0.06 0.13

Simple slope analyses
P3a x group Est/B SE p
P3a slope for controls —0.01 0.00 245 0.028
P3a slope for patients 0.00 0.00 0.90 0.734
P3a x group X block Est/B SE p
P3a slope for controls and early experiment (M — 1SD) —0.01 0.00 1.56 0.471
P3a slope for controls and late experiment (M + 15D) —0.01 0.00 1.98 0.191
P3a slope for patients and early experiment (M — 15D) 0.00 0.00 1.09 >0.999
P3a slope for patients and late experiment (M + 15D) 0.01 0.00 238 0.068
P3a X group X block x feedback valence Est/B SE p
P3a slope for controls, early experiment (M — 1SD), and negative feedback —0.01 0.01 1.20 >0.999
P3a slope for controls, early experiment (M — 15D), and positive feedback 0.00 0.00 1.05 >0.999
P3a slope for controls, late experiment (M + 15D), and negative feedback 0.00 0.01 0.04 >0.999
P3a slope for controls, late experiment (M + 15D), and positive feedback —0.02 0.01 231 0.168
P3a slope for patients, early experiment (M — 15D), and negative feedback 0.00 0.01 0.01 >0.999
P3a slope for patients, early experiment (M — 15D), and positive feedback —0.01 0.00 157 >0.999
P3a slope for patients, late experiment (M + 1SD), and negative feedback 0.01 0.01 0.76 >0.999
P3a slope for patients, late experiment (M + 1SD), and positive feedback 0.01 0.01 2.55 0.087
P3a X group x feedback delay Est/B SE p
P3a slope for controls and short feedback delays —0.01 0.00 239 0.067
P3a slope for controls and long feedback delays 0.00 0.00 1.06 >0.999
P3a slope for patients and short feedback delays 0.01 0.01 215 0.125
P3a slope for patients and long feedback delays —0.01 0.00 1.44 0.600
P3a x group x feedback delay x response type Est/B SE p
P3a slope for controls, short feedback delays, and incorrect choices —0.01 0.01 149 >0.999
P3a slope for controls, short feedback delays, and correct choices —0.01 0.00 1.96 0.403
P3a slope for controls, long feedback delays, and incorrect choices —0.02 0.01 2.08 0.301
P3a slope for controls, long feedback delays, and correct choices 0.00 0.00 0.72 >0.999
P3a slope for patients, short feedback delays, and incorrect choices 0.00 0.01 0.03 >0.999
P3a slope for patients, short feedback delays, and correct choices 0.02 0.00 348 0.004
P3a slope for patients, long feedback delays, and incorrect choices 0.00 0.01 0.72 >0.999
P3a slope for patients, long feedback delays, and correct choices —0.01 0.00 1.28 >0.999
P3a x group X feedback delay X response type X feedback valence Est/B SE p
P3a slope for controls, short feedback delays, incorrect choices, and negative feedback 0.00 0.01 0.07 >0.999
P3a slope for controls, short feedback delays, incorrect choices, and positive feedback —0.02 0.02 153 >0.999
P3a slope for controls, short feedback delays, correct choices, and negative feedback —0.02 0.01 1.76 >0.999
P3a slope for controls, short feedback delays, correct choices, and positive feedback 0.00 0.00 0.41 >0.999
P3a slope for controls, long feedback delays, incorrect choices, and negative feedback 0.00 0.00 0.64 >0.999
P3a slope for controls, long feedback delays, incorrect choices, and positive feedback —0.03 0.01 241 0.254
P3a slope for controls, long feedback delays, correct choices, and negative feedback 0.00 0.01 0.51 >0.999
P3a slope for controls, long feedback delays, correct choices, and positive feedback 0.00 0.00 0.77 >0.999
P3a slope for patients, short feedback delays, incorrect choices, and negative feedback —0.01 0.01 121 >0.999
P3a slope for patients, short feedback delays, incorrect choices, and positive feedback 0.01 0.02 0.50 >0.999
P3a slope for patients, short feedback delays, correct choices, and negative feedback 0.02 0.01 2.10 >0.999
P3a slope for patients, short feedback delays, correct choices, and positive feedback 0.01 0.00 271 0.090
P3a slope for patients, long feedback delays, incorrect choices, and negative feedback 0.00 0.00 0.33 >0.999
P3a slope for patients, long feedback delays, incorrect choices, and positive feedback —0.01 0.01 1.22 >0.999
P3a slope for patients, long feedback delays, correct choices, and negative feedback —0.02 0.01 146 >0.999
P3a slope for patients, long feedback delays, correct choices, and positive feedback 0.00 0.00 0.03 >0.999

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switching ~ 1+ P3a * feedback valence * response type * feedback delay * group * block + (1] subject). Rgypjeqs = 52,

Nobservations = 15,817
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complementary lesion models (i.e., stroke patients and single-
pulse TMS). Furthermore, lesion symptom mapping in patients
showed that regions at the border of Crus II and Lobule VIIb,
medial Crus II, and Crus I were of particular importance.
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Abstract

There is increasing evidence that the cerebellum contributes to feedback processing
in reinforcement learning. As yet, it has not been investigated whether the cerebellum
also contributes to error processing in reinforcement learning. Studies have shown,
however, that the cerebellum is involved in the processing of response errors in non-
reinforcement learning contexts, e.g., in response conflict tasks. In the present study,
we aimed to extend these findings to the processing of response errors, which slowly
emerges as a result of reinforcement learning. To this end, we inhibited the cerebellum
via single-pulse transcranial magnetic stimulation (spTMS) and recorded cerebral
electroencephalography (EEG) measures associated with error processing. If input
from the cerebellum is required for error processing, error-correct differentiation should
be decreased for cerebellar compared to vertex (control) stimulation. Cerebellar
spTMS was applied and EEG was recorded while healthy adults performed a
probabilistic feedback learning task. The error-related negativity (ERN), a component
in the response-locked event-related potential (ERP), was used as a measure of error
processing. It reflects a rapidly detected mismatch between representations of the
actual and the desired response and is typically larger for errors than correct
responses. Error-correct differentiation in the ERN was diminished for cerebellar
compared to control TMS. However, increased error-correct differentiation was found
in a later ERP component, the error positivity (Pe), which is more strongly associated
with error awareness. Cerebellar spTMS thus impaired fast error processing reflected
in the ERN and facilitated later, conscious error processing reflected in the Pe. These
findings provide causal evidence of cerebellar contributions to error processing within

reinforcement learning.
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Impact statement

This study showed that single-pulse-TMS-induced disruption of cerebellar function
alters cerebral error processing as captured in the error-related negativity (ERN).
These results align with prior research on impaired error processing in patients with
cerebellar damage during response inhibition tasks and extend this evidence towards
reinforcement learning contexts. Our findings further add to a growing body of evidence
relating the cerebellum to reinforcement learning, influencing both error and feedback

processing.

Key words: cerebellum, performance monitoring, cognitive control, reinforcement

learning, single-pulse transcranial magnetic stimulation, ERP, ERN
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Introduction

Understanding how organisms optimise their behaviour in dynamic environments is
crucial not only to improve learning processes but also to advance our understanding
of disorders associated with maladaptive learning, such as addiction and depression
(1,2). Reinforcement learning is a basic form of learning in which behaviour is shaped
by its consequences/outcomes, i.e., rewards that reinforce and punishments that
inhibit a specific behaviour (3). Initially, in an unfamiliar context, information about
actions and outcomes must be gathered on a trial-and-error basis. With learning,
actions are then chosen based on their predicted outcomes. Learning success thus
strongly depends on the accuracy of outcome predictions. While improving these
predictions, the individual gets a better understanding of which action is correct and
which is false. Ultimately, the individual is able to identify an error already at the stage
of action execution, rather than having to wait for external feedback/the outcome. This
shift from outcome-level processing to response-level processing underlying the
distinction between right and wrong responses throughout the learning process could
be shown in a reinforcement learning task by recording brain activity using

electroencephalography (EEG; 4,5).

Processing of both actions/responses and outcomes has been predominantly linked to
structures in the fore- and midbrain (6). In EEG studies, error processing has been
shown to emerge with learning/task progression when an understanding of correct and
false responses has been developed (4,5,7). In later stages of a learning task, a more
pronounced negative deflection in the response-locked signal is typically found for
errors relative to correct responses (4,5,7), i.e., the error-related negativity (ERN; 8,9).
The ERN has a frontocentral scalp distribution and typically peaks within 100 ms post-

response. Its origin lies primarily in the anterior cingulate cortex (ACC, 10-12, but also

4
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see 13) which has been associated with error processing (14). The ERN is followed by
the more posterior error positivity (Pe, peaking 200-400 ms post-response, 8,15). ERN
and Pe have been proposed to be functionally distinct (15), with the ERN reflecting a
fast-paced mismatch between the actual and desired response (16,17), and the Pe
reflecting more conscious error processing (17,18). On the other hand, feedback
processing, as reflected in the feedback-related negativity (FRN), is typically found at
early stages of reinforcement learning where participants strongly depend on the
external feedback to perform the task accurately (4,5,7). The FRN has been described
as a functional equivalent of the ERN during feedback processing, as both seem to
contribute towards an adjustment of behaviour towards error correction (19). In
addition, there seems to be a high overlap in topography and neural generators (19—

21).

Interestingly, recent studies in rodents (22) and humans (23-25) have provided
evidence for a potentially supportive role of the cerebellum in feedback processing
during reinforcement learning (26). The cerebellum is best known for predictive
processes in the context of motor control (27) but in the last decades increasingly also
for cognitive processes (28,29). The cerebellum is thought to support both motor and
cognitive function by predicting outcomes via internal forward models (27,30,31),
connecting with a wide range of cerebral brain areas, including the ACC, in a closed-
loop fashion (32—37). Cerebellar dysfunction might thus influence feedback processing
as reflected in the FRN via maladaptive support of ACC function. Indeed, in recent
studies (23,25), we found that cerebellar lesions, degeneration, and TMS disrupted
feedback processing in the sense that the prediction error was not represented in the

FRN.
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These previous studies (23-25) have focussed on the role of cerebellum at the
outcome stage. However, prediction at the response stage (i.e., error processing), as
described above, is also a prominent part of reinforcement learning. Cerebellar
damage and disruption of cerebellar function by non-invasive brain stimulation have
already been associated with deficits in error processing in response conflict tasks (38—
41). Specifically, differentiation between errors and correct responses in the ERN was
consistently reduced for cerebellar dysfunction (38—40, only on trend level in 41). For
the Pe, findings are more heterogeneous, with most studies not finding effects of
cerebellar dysfunction, except for one study in cerebellar post-acute stroke which
showed increased error-correct differentiation that was interpreted as compensatory
for deficient error processing in ERN (38). Response conflict tasks, however, contain
no feedback and can instead be performed based on the initial instructions. For
example, in a flanker task, participants need to indicate the direction of a central arrow
in the presence of flanking arrow. Predictions thus do not evolve slowly with learning

as in reinforcement learning.

In summary, previous studies support a cerebellar role in outcome processing in
reinforcement learning and error processing in response conflict tasks. This is
consistent with the proposed role of the cerebellum in performance monitoring, i.e., in
functions which support adaptive behaviour, to which both reinforcement learning and
error processing contribute (26). Error and feedback processing are closely
intertwined, and it seems conceivable that in reinforcement learning tasks, disrupted
feedback processing (on which participants rely in particular early in the task) as
caused by cerebellar dysfunction leads to changes in error processing (which emerges

later in the task, with learning from feedback). These changes may be similar to those
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found for error processing under cerebellar dysfunction in response conflict tasks (38—

41).

In the current study, we aimed to examine if aberrant feedback processing in cerebellar
dysfunction transfers to the response phase with learning progression in a
reinforcement learning task. We disrupted cerebellar function by non-invasive brain
stimulation in young adults. Single-pulse TMS (spTMS) excites the subjacent neuronal
populations followed by a prolonged period of reduced activity (42), potentially leading
to inhibition or facilitation depending on various factors including stimulation site and
timing (43,44). For cerebellar stimulation, an inhibitory effect of spTMS on cortical
function is mostly assumed (45—47, but also see 48, for a review see 49). We analysed
data from a previous study by our group (23) which were collected in young, healthy
adults who received cerebellar spTMS while performing a probabilistic feedback
learning task with trial-by-trial feedback. Importantly, overall learning performance was
not affected by the TMS, in theory enabling error processing as the task progresses
and learning takes place (4,5,7). ERN and Pe were analysed as EEG indices of error
processing. In accordance with previous work in response conflict tasks (38—40), we
expected to see reduced or absent error-correct differentiation in the ERN for
cerebellar TMS (12, but also see 28). We expected to see this effect more strongly
later in the task when response-outcome contingencies have been learnt and error
processing is more pronounced (4,5,7). However, we did not expect to see distinct
compensatory mechanisms indexed by an increased Pe as observed in cerebellar
stroke patients (38) due to the immediate effect of spTMS. Two stimulation timings
were used, to differentiate direct disruption of error processing (via post-stimulus/pre-
response TMS) from indirect effects of disrupted feedback processing on error

processing (pre-feedback TMS) due to maladjusted predictive processes.



160 In line with the hypotheses, we found decreased error-correct differentiation in the ERN
161  for cerebellar TMS. In addition, error-correct differentiation in the Pe was increased for

162  cerebellar stimulation while behavioural performance was overall preserved.
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Material and Methods

The present study was part of a larger investigation of cerebellar contributions to
reinforcement learning and presents novel, follow-up analyses of data reported
previously by our group (23). There, we focused on outcome/feedback processing and
thus did not analyse response-locked ERPs. We performed two studies on
reinforcement learning, one with cerebellar stroke patients and respective controls, the
other with healthy adults using cerebellar (vs. vertex) spTMS. The present work is
focused on the spTMS study, because older adults typically show only weak error-
correct differentiation in the response-locked ERP in reinforcement learning (4,7,50).
However, analogous analyses were also performed for data from the patient study and

are provided in Supplementary Analysis S1.

Participants

Sample characteristics are detailed in Huvermann et al. (23). Data from 24 healthy
participants (7 men, 17 women; mean age 23.3 years, SD = 2.9 years, age range 19
to 30 years) entered the analyses. According to Edinburgh Handedness Inventory (51)

scores, 20 participants were right-handed, two left-handed, and two ambidextrous.

All participants gave written informed consent prior to participation. The study was
conducted in accordance with the ethical principles for medical research involving
human subjects outlined in the Declaration of Helsinki and approved by the Ethics
Committees at the Faculty of Medicine of Heinrich-Heine-University Dusseldorf (2018-

240_1) and the University Hospital Essen (18-8477-BO).

Procedure

Please see Huvermann et al. (23) for a detailed description. In brief, cerebellar and

vertex TMS took place in separate sessions at least 48 hours apart to decrease
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repetition effects in the task. After EEG and EMG preparations and motor threshold
estimation, the double cone TMS coil was positioned and secured to the participant’s
head (see Figure 1). Before and after the experimental task, an additional cognitive

task was performed for which results are reported in Berlijn et al. (40).

EMG recording

EEG recording cerebellar stimulation

Figure 1. Experimental setup. Depending on session, TMS was applied to either the left
cerebellum (1 cm down and 3 cm to the left of the inion) or vertex using a double cone coil.
EEG and EMG were recorded simultaneously.

Participants completed a probabilistic feedback learning task (4,5). Figure 2 illustrates
the sequence and time course of stimulus presentation in each trial. The task consisted
of 6 blocks of 56 trials, thus 336 trials in total. Each trial began with a fixation cross,
followed by one of four stimuli (Chinese characters). Participants responded by
pressing the left or right button on a response box within a response window of 1000
ms. Choices were highlighted on the screen, followed by a black screen before
feedback was displayed, with "+20ct" in green font as positive feedback or "-10ct" in
red font as negative feedback. Two stimuli were linked to random feedback (50%

positive and 50% negative, independent of response), while the other two stimuli were
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213
214
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217
218
219
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linked to contingent feedback. Here, correct responses were followed by positive
feedback in 80% of the cases and by negative feedback in 20% of the cases (vice
versa for errors). Contingencies could thus be learnt. TMS was delivered 100 ms post-

stimulus for one stimulus and 100 ms pre-feedback for the other.

A. Time course of stimulus presentation and
timing of the TMS pulse

500-1000 ms
fixation cross

500 ms
stimulus with
choice

L=
=7

(TMS 100 ms
post-stimulus)

500 ms
only choice

200 ms
choice display

OR

500 ms
feedback delay

(TMS 100 ms 1000 ms

pre-feedback) - feedback

B. Time course of stimulus presentation and
TMS timing in relation to ERN and Pe

ERNtime Pe time

window window

™S response, TMS
e.g., 400 ms
stimulus after
stimulus —
100 ms

Figure 2. Time course in one trial in the experimental task. A. Time course of stimulus
presentation and timing of TMS pulses in one trial in the experimental task. First, a fixation
cross was presented for 500-1000 ms. Subsequently, one of four stimuli was presented for
500 ms together with flanking rectangles representing the response options. Participants
responded by pressing the left or right button on a response pad up until 500 ms after the
stimulus was presented. The respective rectangle was highlighted for 200 ms. After 500 ms of
blank screen, positive (‘+20 ct’) or negative feedback (‘-10 ct’) was presented for 1000 ms.
Participants had to learn by trial and error which of the two options was more likely to result in
positive/negative feedback, separately for each of the four stimuli. Feedback for two stimuli
had an 80 % contingency, and a 50 % contingency for the other two. Stimulation in a particular

11
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trial was applied either 100 ms post-stimulus or 100 ms pre-feedback. The task consisted of
336 trials. B. Time course of stimulus presentation and timing of TMS pulse in relation to ERN
and Pe time windows in one ftrial in the experimental task. ERN was quantified in the time
window between 0 and 100 ms following response while Pe was quantified in the time window
between 200 and 400 ms following response. Distance to the post-stimulus TMS pulse thus
differed and depended on response time in the respective trial, while the pre-feedback TMS
pulse always occurred after ERN and Pe. Note that the TMS pulse in a particular trial was
given either post-stimulus or pre-feedback.

TMS was applied at 120% of motor threshold using a Magstim Double Cone Coil and
a Magstim BiStim? unit (Magstim Co., Whitland, United Kingdom). A fast-paced task
flow was enabled by alternating stimulation between two Bistim units. Stimulation was
applied either to the left lateral cerebellum (1 cm below and 3 cm to the left of the inion;
confer 52-54) or position vertex as a control site (at electrode position Cz, 55,56).
Stimulation of the left cerebellar hemisphere is consistent with its implication in
processing of visual-spatial information (57) and stronger activations of the left
hemisphere in a previous fMRI study using a similar feedback learning task (58).
Following spontaneous reports of side effects in the initial testing sessions, a post-
experimental questionnaire was introduced in which participants were asked to rate
symptoms associated with TMS (see ref. 23 for more details). No significant differences
between vertex and cerebellar stimulation were observed regarding headaches, neck

pain, toothaches, inattentiveness, discomfort, phosphenes ratings, or free field

responses for other symptoms (all p = .343, see Figure 3).
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Figure 3. Ratings of side effects in the post-experimental questionnaire, as reported in
Huvermann et al. (23). Means and standard errors are shown in red, individual ratings are
shown in black.

EEG recording and preprocessing

Data were recorded at 1,000 Hz from 30 passive Ag/AgCl Multitrode electrodes
positioned in the 10-20 system (59), using BrainAmp MR amplifier and BrainVision
Recorder 1.21 (Brain Products GmbH, Gilching, Germany). Impedances were kept

below 5 kQ.

For preprocessing, the ARTIST algorithm by Wu et al. (60) based on EEGLAB
(v2022.1; 61) was used. This algorithm decreases artefacts in the EEG signal caused

by TMS pulses (see ref. 23 for a detailed description of preprocessing procedures).

Using Brainvision Analyzer 2 software (version 2.2, Brain Products GmbH, Gilching,
Germany), data were segmented around responses, starting 200 ms before and

ending 500 ms after the response. Next, a baseline correction was performed using
13
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the time window from 200 to 100 ms before response onset. Data were then exported
for further processing in MATLAB. Although data were analysed on a single-trial basis,
we additionally averaged the data according to conditions (stimulation site, TMS timing,
response type) to extract peak latencies of the ERP components of interest (described

below). Only trials for stimuli with learnable contingencies (i.e., 80-20) were included.

Peak detection was performed on the averaged data and separately for each condition
for the ERN and Pe using MATLAB. The time windows and electrode sites that had
been pre-registered based on previous related studies (38—41) were used. For the
ERN, peak detection was performed at FCz in the time window starting at response
onset and ending 100 ms thereafter. For the Pe, we used the maximal positive peak
within the time window between 200 and 400 ms at Pz. For the single-trial data, the
mean amplitude in a time window around the respective latency determined by the
peak detection on the averaged data for each condition was extracted (20 ms for ERN;

40 ms for Pe, 62,63).

Statistical data analysis

Data were analysed in R (version 4.2.3, 64) using RStudio (version 2023.3.0.386, 65).
Analyses of accuracy and choice switching (i.e., choosing a different response than
before following e.g., positive/negative feedback) are reported in Huvermann et al.
(23). As data was not clearly separable into pre- and post-learning for a majority of
participants, we opted for a single trial-based analysis approach using linear mixed
effects (LME) models including the trial-by-trial factor trial number, thus capturing the
course of error-correct differentiation across the experiment. This also overcame a
common concern of unequal numbers of trials for errors and correct responses as well
as (too) few error trials per condition (66-68) due to learning throughout the task.

Exclusion of participants with too few error trials would systematically exclude good
14
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learners (69) and including an equal number of trials in the analysis does not salvage
the concern (70). Multilevel approaches using single-trial data, however, overcome
these limitations by taking into account different numbers of data points per factor level

and being relatively robust to large numbers of missing data points (69,71,72).

The packages Ime4 (version 1.1-32, 73) and Imertest (version 3.1-3, 74) were used for
LME modelling. We used restricted maximum likelihood with p-values computed using
Satterthwaite approximation to evaluate significance, following Luke (75). Participants
with a Cook’s distance (76) above 4/(n-p-1) were identified as outliers (using the
influence.ME package, version 0.9-9, 77). We strived for a maximal random effects
structure but in case of singular fit gradually reduced random effects starting with main
effects and then lower-grade interactions until fit was ensured. Significant interactions
were followed up using simple slope analyses (interactions package, version 1.1.5,

78). P-values were Bonferroni-corrected according to the number of simple slopes.

LME analyses were conducted with the categorical fixed effects response type (-0.5:
error, 0.5: correct), stimulation site (-0.5: vertex, 0.5: cerebellum), TMS timing (-0.5:
post-stimulus, 0.5: pre-feedback), and the continuous factor trial number, which was
scaled via the built-in scale function. We also included all interactions of these factors
as fixed effects. No participants were identified as outliers based on Cook’s distance.

The model equation for both ERN and Pe was as follows:

ERN/Pe ~ 1 + response type * TMS condition * TMS timing * trial number +

(1 + response type: TMS condition: TMS timing: trial number | subject)

Note that we also performed a complementary analysis using action value modelling,
as commonly conducted for analyses involving prediction error modelling in

reinforcement learning contexts (see e.g., 79,80). Analyses involved a new measure,
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Quifr, which reflects the relative subjective action value (action value of the unchosen
choice subtracted from the action value of the chosen option). It should thus offer a
better measure for subjective error processing than the objective response type (see
Supplementary Analysis S2 for further details), especially because, due to the
probabilistic nature of our task, errors and correct responses are not as clearly defined
as in response-conflict tasks. Relative action values have been shown to be more
reliable than absolute action values (81), although the procedure of action
value/prediction error estimation in general has been shown to be highly correlated to

subjective measures (80).

Results

Accuracy

While a main effect of block, i.e., a general learning effect, was found (F(3.18, 73.05)
= 6.21, p < .001), no differences between cerebellar and vertex TMS emerged, p =
.461. These results indicate that error rates decreased over the course of the task and
were not affected by cerebellar TMS. On average, 9.6 errors per block, stimulation site,
and participant were committed (SD = 4.4 errors). The full results concerning accuracy

are reported in Huvermann et al. (23).

ERN - effects of response type (error/correct)

Grand averages for the ERPs at FCz time-locked to individual ERN latencies for correct
responses and errors (i.e., response type) according to stimulation site, TMS timing,

and trial number (early, late experiment) are provided in Figure 4A.

The ERN was more negative for errors compared to correct responses (8 = 0.81, SE
=0.16, 1(7451.23) = 4.94, p < .001). This effect was further modulated by trial number

(B=0.51, SE=0.16, {(7394.78) = 3.22, p = .001). While response types did not differ
16
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in ERN amplitude early on (B = 0.29, SE=0.22, t=1.30, p = .386), errors as compared
to correct responses were associated with increased negativity late in the task (B =

1.35, SE=0.24, t=5.75, p < .001).

Importantly, this interaction was further modulated by stimulation site (B = -0.80, SE =
0.32, #(7431.03) = 2.53, p = .012; see Figure 4B). Follow-up simple-slope analyses
showed that for both cerebellar and vertex TMS, response types were not distinguished
in the ERN early in the task (both p = .453). However, late in the task, the ERN was
more pronounced for errors than correct responses for vertex TMS (B = 1.94, SE =
0.32, t=6.01, p <.001) but not for cerebellar TMS (B = 0.75, SE=0.34,t=2.22,p =

106).

Additionally, a trend-level interaction between response type, stimulation site, and TMS
timing emerged (B = 1.22, SE = 0.65, {(7448.34) = 1.88, p = .060; see Supplementary
Figure S1 for the slope plots). Descriptively, response types were distinguished in the
ERN for vertex TMS and pre-feedback cerebellar TMS but not when stimulating the

cerebellum post-stimulus.

Complete inferential statistics are provided in Supplementary Table S1. Effects that
include the TMS timing factor independent of stimulation site are reported in

Supplementary Analysis S3.

17



352
353
354
355
356
357
358
359
360

A. Grand average response-locked ERPs at FCz

vertex cerebellum
FCz post-stimulus pre-feedback post-stimulus pre-feedback
-4.0 ®
o
-2.0 i~
; X
0.0 4 @
< 2.0 g
> e =1
i
L 40
=
2
® '4.0_ g
(0]
-2.0 %
A 8
0.0+ 5
/2
2.0 -
4'0_ | | | ] | : | | | | 1 | I | | |
0 200 0 200_ 0 200 0 200
— correct time (ms)
error
B. Response type effect on ERN
early late
g |w
2 4.0+
=1
£ -3.01
w© \
Z — **%k%
& 2.0
L
| 1 | |
error correct error correct
response type
stimulation site — cerebellum — vertex

Figure 4. A) Grand-average ERPs at FCz locked to individual ERN latencies per condition
(response type x stimulation site x TMS timing): early and late in the task according to
response type (correct, error), stimulation site (cerebellum, vertex), and TMS timing (post-
stimulus, pre-feedback). Blue lines denote correct responses, red lines errors. Coloured bands
display standard errors. See Supplementary Figure S2 for a response-locked grand-average
ERP. B) Slope estimates for ERN amplitude predicted by response type and modulated by
stimulation site and trial number (early, late experiment). Red lines denote cerebellar
stimulation and blue lines vertex stimulation. Coloured bands indicate 95 % confidence
intervals. * p < .05. ** p <.01. *** p < .001. Neror = 2702, Ncorrect = 4777.
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Pe - effects of response type (error/correct)

Grand averages for the response-locked ERPs at Pz for correct responses and errors
(i.e., response type) according to stimulation site, TMS timing, and trial number (early,

late experiment) are provided in Figure 5A.

The Pe was more pronounced for errors compared to correct responses ( =-0.99, SE
=0.15, t(7848.81) = 6.68, p < .001), and late compared to early in the experiment ( =

0.24, SE = 0.07, {(7734.12) = 3.37, p = .001).

Importantly, the effect of response type was modulated by stimulation site and TMS
timing (B = 2.07, SE = 0.58, t(7855.11) = 3.55, p < .001; see Figure 5B). Post-hoc
simple slope analyses showed that the Pe differentiated errors and correct responses
for vertex TMS applied both pre-feedback (B =-0.76, SE = 0.29, t = 2.63, p =.034) and
post-stimulus (B = -0.74, SE = 0.29, t = 2.54, p = .044). For cerebellar TMS, Pe
amplitudes did not differ between errors and correct responses when TMS was applied
pre-feedback (B = 0.20, SE = 0.29, t = 0.70, p > .999). However, a strong response
type effect emerged for cerebellar TMS applied post-stimulus (B = -2.25, SE = 0.30, ¢
= 7.58, p < .001), with more positive amplitudes for errors compared to correct
responses. To check whether this response type differentiation in the Pe for post-
stimulus TMS was truly stronger for cerebellar compared to vertex TMS, we checked
the interaction effect (stimulation site x response type) for post-stimulus TMS trials via
simple slope analysis, which proved to be significant (B = -1.51, SE = 0.41, {(7835.18)
= 3.64, p < .001). Notably, the interaction effect did not reach significance for pre-
feedback TMS trials (B = 0.55, SE = 0.41, #(7838.69) = 1.34, p = .182), indicating that

the differences within post-stimulus TMS were more decisive for the triple interaction.
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Figure 5. A) Grand-average response-locked ERPs early and late in the task at Pz according
to response type (correct, error), stimulation site (cerebellum, vertex) and TMS timing (post-
stimulus, pre-feedback). Blue lines denote correct responses, red lines errors. Coloured bands
display standard errors. B) Slope estimates for Pe amplitude predicted by response type and
modulated by stimulation site and TMS timing. Red lines denote cerebellar stimulation and
blue lines vertex stimulation. Coloured bands indicate 95 % confidence intervals. * p < .05. **
p <.01.*** p <.001. Nerror = 2769, Ncorrect = 5122.
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Control analysis — predictability of Pe by ERN

In an additional analysis we explored whether the effects of spTMS in ERN and Pe
were separate effects or whether spTMS only had an effect on ERN which in turn
influenced Pe amplitude. The amplitudes of ERN and Pe correlated significantly with
each other (r = -0.04, {(7477) = 3.35, p < .001), although the correlation strength was
very low (82—-85). To check whether the pattern in the Pe is explainable by ERN
amplitudes without considering TMS effects, we fitted two additional models: one with
the factors response type, trial number, and ERN amplitude (thus disregarding effects
of the TMS), and one with the factors response type, trial number, stimulation site, TMS
timing, and ERN (thus including both the effects of TMS and ERN). Both models
included all interaction terms in the fixed effects. The model including the TMS effects
provided a better fit (X?(16) = 116.7, p < .001) and the triple interaction between
response type, stimulation site, and TMS timing remained significant even when ERN
was included as an additional factor (B = 2.64, SE = 0.65, {(7429.14) = 4.05, p < .001).
To examine whether, conversely, the ERN amplitude adds information to the analysis
of the Pe, we compared the original model to the model with the ERN as an additional
factor. The model fit improved when adding the ERN (X?(16) = 72.60, p > .001),
indicating that the ERN amplitude does explain variance in the Pe amplitude that
cannot be explained solely by the other factors. We did not perform the same analysis
with ERN amplitude as dependent and Pe as independent variable as the Pe occurs

after the ERN, preventing effects of the Pe onto the ERN (at least within the same trial).

While we used the objective correctness of the responses as predictor in these
analyses (i.e., response type), subjective perception of which action is better/worse

might have differed from this, especially considering that responses were associated
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with outcomes over time in the experiment, that not all participants learnt the
contingencies and that errors and correct responses were not as clearly defined as in
response-conflict tasks due to the probabilistic nature of action-outcome associations.
We therefore conducted an additional analysis using a measure that reflects the
subjective, relative, instead of objective valuation of the chosen option. We computed
the Quif, i.e., the modelled subjective value of the unchosen option subtracted from the
value of the chosen option (see Supplementary Analysis S2). This measure thus
reflects to what degree the chosen option was perceived as the better/worse option,
thereby reflecting intra- and interindividual differences in learning and action-outcome
representation (81). Importantly, this analysis yielded a comparable result pattern (see

Supplementary Analysis S2).
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Discussion

In the present study, healthy young adults learnt stimulus-response-feedback
associations while single-pulse TMS (spTMS) was applied to the cerebellum or a
control site (vertex) either post-stimulus (i.e., pre-response) or pre-feedback.
Response-related ERP components (ERN and Pe) were analysed to investigate
whether cerebellar output was necessary for error processing in the forebrain during
reinforcement learning. Given that feedback processing during reinforcement learning
was compromised in cerebellar dysfunction (23), we expected aberrant error
processing for cerebellar TMS. Results in the current study indicate that this is likely
the case: Error-correct differentiation in the ERN was blunted by cerebellar TMS, while
being intact for vertex TMS. Error-correct differentiation in the Pe, on the other hand,

was unexpectedly enhanced for post-stimulus cerebellar TMS.

Consistent with patterns observed in patients with cerebellar damage/dysfunction in a
response conflict task (i.e., reduced error-correct differentiation in the ERN, 38—40),
we found reduced error-correct differentiation in the ERN under cerebellar spTMS.
However, the overall result pattern with unaffected reinforcement learning (24,86),
reduced error-correct differentiation in the ERN, and increased error-correct
differentiation in the Pe (38) resembled results observed in patients with cerebellar
stroke. The consistency in results between reinforcement learning and response
conflict tasks suggests that the cerebellum is involved in error processing in both task
contexts in a similar way, in line with its proposed function in performance monitoring
(26). Of note, long-term compensation and/or functional reorganisation in stroke
recovery have been proposed to support preserved task performance for these
patients in a response conflict task (38). Such effects were previously not observed in

patients with progressive cerebellar degeneration who showed an altered ERN,
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increased error rates, but unchanged Pe in a response conflict task (39). For the
present study, we had expected that cerebellar spTMS disrupts cerebral processing
instantaneously (42). Long-term compensation should therefore not be relevant.
Instead, increased error-correct differentiation in the Pe in the presence of reduced
differentiation in the ERN was observed instantaneously, giving rise to questions on

the underlying mechanisms.

First, it is debatable whether the observed pattern truly represents a compensatory
mechanism, or whether the increased differentiation in the Pe could also be the result
of hypermetria. This might be the case in terms of a mismatch in salience which is one
parameter that correlates with Pe amplitude (87). Perceived error salience as
measured in the Pe might thus be larger than would be appropriate under cerebellar
compared to control spTMS. Dysmetria is a common deficit observed in cerebellar
disorders (88) and has also been suggested as a deficit in cognitive processes (89).
Future studies could test this by using different error severities/saliencies in their study.
An interpretation in terms of hypermetria would indicate that TMS affected ERN and
Pe separately from each other. While this might be the case, an indirect effect of TMS
on the Pe via the ERN is also conceivable. An additional control analysis indicated that
effects within the Pe amplitude are at least partially explainable by ERN amplitude. An
indirect effect of TMS on Pe via ERN would be more consistent with an interpretation
of the pattern in the Pe in terms of compensation. However, indirect effects via
propagation of the TMS stimulus to further brain areas within the same network, as

shown for repetitive TMS (90), could provide a further possibility.

While the ERN is generated mostly by the ACC (91-95,but also see 13), neural
generators for the Pe are less clear and appear not to be limited to the ACC (87,93).

This wider network might have allowed the Pe to be less or differently affected by
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cerebellar spTMS effects, although more conscious error processing as reflected in
the Pe may potentially be more effortful and slower. This unexpectedly increased error
coding in the Pe might have compensated for deficits in the ERN, allowing unimpeded
behavioural performance. Intact behavioural performance was previously not expected
due to the instantaneous disruptive effect of spTMS, which in theory does not allow for
long-term compensation as seen in stroke patients (38). Conversely, differences in
properties of the underlying learning mechanism — potentially caused by the deficits in
feedback processing/FRN — might have also resulted in differences in error processing
later in the task, resulting in decreased use of systems underlying the ERN and
increased reliance on systems underlying the Pe, eventually leading to more Pe-driven
error processing. However, these differences in error processing might not always
correspond to intact behavioural performance. Relying on later vs. earlier error
processing (i.e., on the Pe instead of the ERN) could be unfavourable in everyday
tasks that require swift processing, e.g., fast-paced sequences of responses like in
sports or music. It is also possible that this potentially compensatory process is not
available in all learning contexts, e.g., in more complex tasks. Notably, despite overall
preserved learning performance, we did find decreased behavioural flexibility (choice
switching; see ref. 23), in line with previous findings (86), which might be related to

deficits in the ERN.

Concerning the type of cerebellar output essential for ERN but not Pe, our results do
not offer a clear answer. In the present dataset, feedback processing was already
shown to be impaired (23). This might have led to impaired adjustments of prediction,
resulting in deficits in error processing at the subsequent response stage. However,
the effect of cerebellar TMS on ERN and Pe only occurred for post-stimulus TMS

(trend-level for ERN), which fits better with a perturbation of information processing
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directly at the response stage. This will likely include predictive processes, as the ERN
relies on this rapid matching of representations of the desired and the actual response
based on internal information (i.e., an efference copy). The interaction between
response type and stimulation in ERN was found only late during the experiment, which
also supports predictive processes, as these predictions can only form throughout the
learning process. Previous studies in healthy adults could show that error processing
in ERN is stronger after learning, while before learning, feedback processing is more
dominant (4,5,7). Perturbed predictive processes would also be consistent with the
finding that stimulation timing did not appear to significantly affect feedback processing
(23), as the predictive information is required for updating of predictions at the feedback
stage. This mechanism might have affected feedback processing similarly to pre-
feedback TMS. ERN and the FRN (96) are thought to share the ACC as neural
generator (ERN: 10-12, FRN: 97-99), thus potentially being affected in a similar way.
Considering the increased error-correct differentiation in the Pe as a compensatory
process, two explanations are possible: The Pe, reflecting more conscious error
processing (15,93), might either not rely as strongly on cerebellar information, or might

also simply be outside the time window of the disruptive effect of the TMS pulse.

Of note, the Pe in our study is not as pronounced as the positive peaks typically found
in response conflict paradigms. However, a distinction between errors and correct
responses is visible, and a posterior positivity could also be shown in topographical
plots of the difference signal for cerebellar post-stimulus TMS (Supplementary Figure
S3). In two previous studies which examined the Pe in feedback learning paradigms,
the Pe peak also seemed to be less prominent in the grand averages (100,101), which

might be a characteristic of the Pe in reinforcement learning tasks. This might be due
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to errors being more ambiguous in feedback learning tasks. However, the Pe is

oftentimes not analysed in feedback learning tasks (4,5,7,50).

Finally, subjective perception of action values might differ from the objective
classification as error/correct. An additional analysis based on action values (Qdiff; 81)
yielded result patterns consistent with the original results for both ERN and Pe, with
reduced Quirr differentiation in ERN and increased Quirr differentiation in Pe for
cerebellar TMS. This demonstrates that the original findings extend to subjective

perception of action value, which might be an interesting measure for future studies.

Limitations

We used an active control site (vertex TMS) instead of sham TMS. While vertex is a
common control site in cognitive tasks (e.g., 102—104), at least one study (55) showed
that vertex TMS reduced activity in the ACC, the likely generator of the ERN (10,91,92).
While we used inverted stimulation which showed considerably less and non-
significant ACC deactivation (55), and did not find abnormal ERN patterns during
vertex stimulation, we cannot rule out that vertex stimulation affected processing.
Unlike Jung et al. (55), we used a more deeply stimulating double cone coil instead of
a figure-of-eight coil. Feedback-related ERP components with neural generators within
the ACC seemed to be affected by vertex TMS (23). Unfortunately, there currently
seems to be no well-tested, better suited site for control stimulation. Sham TMS does
not seem ideal as it provides a very different experience regarding vibrations, coil
clicks, and magnetic field build (105). Even though we assessed potential side effects
of the TMS stimulation and found no significant differences between vertex and
cerebellar stimulation (see Figure 3), we cannot exclude that other differences in
experience of stimulation between the two sites that were not captured, such as

stimulation of the neck muscles, emerged and contributed to the findings described
28
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above. Future studies may want to include several control sites in between-subject

designs.

Moreover, we only stimulated the left cerebellum. Given that a learning task was used,
it was not feasible to repeat the task several times to incorporate other stimulation
sites, as repetition effects would have predominated. Future studies should investigate
the effect of spTMS on other cerebellar regions in feedback learning using between-

subjects designs.

Last, stimulation was applied either 100 ms post-stimulus or 100 ms pre-feedback.
There is currently no established time window of cerebellar-brain inhibition in the
cognitive domain as available for the motor domain (106). Given that stimulation was
applied 100 ms post-stimulus, it usually occurred several hundred milliseconds before
the response. Berlijn et al. (40) varied stimulation timing around the ERN peak in a
Go/NoGo flanker task and found that stimulation at or closely after the calculated peak
latency, but not shortly before, decreased error-correct differentiation, showcasing time
sensitivity of cerebello-cerebral communication in cognition. This might depend on the
task at hand, as in the current study, stimulation before responses also led to altered
error processing. Future studies need to explore these temporal dynamics in more

detail, e.g., by implementing continuous manipulation of stimulation timings.

Conclusions

The present findings show that cerebellar TMS alters cerebral error processing in
reinforcement learning. Error processing was decreased by cerebellar TMS in the ERN
and increased in the Pe. This pattern closely resembles altered error processing in
cerebellar stroke patients as shown in a previous study in a response conflict task. It
remains unclear whether the increased Pe in concert with preserved behavioural

performance reflects a compensatory process. Processing was affected more strongly
29



583 by stimulation closer in time to response execution (i.e., post-stimulus/pre-response).
584 Taken together, the present study adds to a growing body of evidence showing that
585 the cerebellum plays an important role in error processing and performance monitoring
586 in general, whereby it directly contributes to reinforcement learning and adaptive

587 control of behaviour.

588
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ABSTRACT

The present study investigated temporal aspects of cerebellar contributions to the processing of performance errors
as indexed by the error-related negativity (ERN) in the response-locked event-related potential (ERP). We co-registered
EEG and applied single-pulse transcranial magnetic stimulation (spTMS) to the left posterolateral cerebellum and an
extra-cerebellar control region (vertex) while healthy adult volunteers performed a Go/Nogo Flanker Task. In Go trials,
TMS pulses were applied at four different time points, with temporal shifts of -100 ms, -50 ms, 0 ms, or +50 ms rela-
tive to the individual error latency (IEL, i.e., individual ERN peak latency + median error response time). These stimu-
lation timings were aggregated into early (-100 ms, -50 ms) and late (0 ms, +50 ms) stimulation for the analysis. In
Nogo trials, TMS pulses occurred 0 ms, 100 ms, or 300 ms after stimulus onset. Mixed linear model analyses revealed
that cerebellar stimulation did not affect error rates overall. No effects were found for response times. As hypothe-
sized, ERN amplitudes were decreased for cerebellar stimulation. No significant differences were found for the error
positivity (Pe). Similar to TMS application to probe cerebellar-brain inhibition in the motor domain, the inhibitory tone
of the cerebellar cortex may have been disrupted by the pulses. Reduced inhibitory output of the cerebellar cortex
may have facilitated the processing of error information for response selection, which is reflected in a decreased ERN.

Keywords: Error processing, cerebellum, cognitive control, EEG, single pulse TMS, performance monitoring, executive
functions

1. INTRODUCTION Specifically, it has been suggested to generate internal

The cerebellum is assumed to be strongly involved in models of movement and thought that are crucial for effi-

making predictions, processing error information, and Ciency and precision in adaptive control (lto, 2008; Koziol
adjusting behavior not only in the motor but also in the et al., 2014; Wolpert et al., 1998). These internal models
cognitive domain (King et al., 2019; Sokolov et al., 2017).  reflect the process of error detection and correction in
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which the cerebellum functions as a comparator, compar-
ing the actual and predicted outcomes of actions and
adjusting the predictions accordingly. Along these lines,
performance monitoring, which includes error and feed-
back processing, has been proposed to be an overarching
function of the cerebellum (Peterburs & Desmond, 2016).

Performance monitoring can be indexed by the error-
related negativity (ERN) in the event-related potential
(ERP) in the electroencephalogram (EEG). The ERN, a rel-
ative negativity that typically peaks within 100 ms after an
erroneous response, is interpreted to reflect processes
related to the detection of errors (Falkenstein et al., 1991;
Gehring et al., 1993) or response conflict (Botvinick et al.,
2001; Yeung et al.,, 2004). The ERN has a symmetric,
frontocentral scalp distribution, and its neural generator
is likely in the anterior cingulate cortex (ACC) or supple-
mentary motor area (Dehaene et al., 1994; Herrmann
et al., 2004). It has been proposed that the ACC is critical
for detecting conflict and conveying conflict-related
information to other brain regions such as the lateral pre-
frontal cortex (Cohen et al., 2000). The ACC is also a key
structure for evaluating actions and their outcomes, thus
playing a critical role for reinforcement learning (Holroyd
& Yeung, 2011).

Findings from studies in patients with cerebellar dis-
eases suggest that the cerebellum contributes to the
processing of errors and response conflict. Specifically,
the ERN was shown to be reduced in patients with focal
post-acute vascular lesions of the cerebellum (Peterburs
et al, 2012) and cerebellar degenerative disease
(Peterburs et al., 2015). The latter patient group also
exhibited increased error rates, and the ERN reduction
and behavioral impairment were linked to gray matter
volume loss in posterolateral cerebellar regions
(Peterburs et al., 2015). In contrast, patients with post-
acute cerebellar lesions did not show altered behavior.
However, another ERP component related to error pro-
cessing, the error positivity (Pe), a relative positivity
occurring 200-400 ms post-response that has been
linked to more conscious aspects of error processing
(Falkenstein et al., 1995), was increased (Peterburs et al.,
2012). Interestingly, the Pe was unaffected in patients
with progressive cerebellar degeneration (Peterburs
et al., 2015). This result pattern could be indicative of a
compensatory mechanism that may help maintain
behavioral performance in patients with longstanding
lesions but is absent in patients with cerebellar degener-
ative disease. In contrast, Tunc et al. (2019) investigated
error processing in patients with different types of spi-
nocerebellar ataxia (SCA) and failed to find behavioral

impairments beyond a slowing of response times. How-
ever, they did report a trend-level reduction of the ERN in
patients compared with healthy controls, which con-
forms to previous findings (Peterburs et al., 2015). The
less pronounced neurophysiological differences and dis-
crepancy in behavioral results compared with the study
by Peterburs et al. (2015) may be attributed to sample
differences (e.g., SCA subtypes with extra-cerebellar
degeneration included in the study by Tunc et al., differ-
ences in extent and location of cerebellar degeneration).
Cerebellar degeneration in Crus I, Crus Il, and the deep
cerebellar nuclei may cause stronger effects on error
processing than the degeneration of other, more motor
control related regions of the cerebellum, such as the
anterior regions (see King et al., 2019 for a detailed over-
view on different cognitive functions reflected in different
regions of the cerebellum).

While these patient studies provided strong evidence
for a role of the cerebellum in error processing, testing
patients is not the only option to probe such cerebellar
involvement. An alternative approach that offers the pos-
sibility of direct manipulations of brain activity is to use
non-invasive stimulation of the cerebellum. Transcranial
magnetic stimulation (TMS) is a widely used non-invasive
brain stimulation technique that can be applied to a vari-
ety of brain regions (for a review, see Grimaldi et al., 2014)
to establish causal links to behavior (see Vaidya et al.,
2019). Single-pulse TMS (spTMS) is assumed to be use-
ful for both facilitation (Shirota et al., 2012) and disruption
of neuronal processes (Pascual-Leone, 1999) and can be
used in fast-paced task designs (Verleger et al., 2009). A
number of studies have targeted the cerebellum with
TMS, among other techniques, to investigate cerebellar-
brain inhibition (Ugawa et al., 1995; Fernandez et al., 2018).
For instance, Ugawa et al. (1995) demonstrated that the
motor cortex could be influenced by stimulating the cer-
ebellum. The cerebellar cortex inhibits the deep cerebel-
lar nuclei, which are the only output source of cerebellar
projections to higher cortical regions via the thalamus
(Palesi et al., 2017). The TMS pulse triggers activity of the
cerebellar cortex that suppresses motor cortical excit-
ability in M1 via increased inhibition of the cerebellar
nuclei. Notably, effects of cerebellar TMS have also been
reported in the non-motor domain. Stimulation of the
right superior cerebellum led to increased response times
in a verbal working memory task (Desmond et al., 2005)
and disrupted phonological prediction (Sheu et al., 2019).
We, thus, assume the influence of spTMS on the cerebel-
lum to be similarly disruptive for other cognitive domains
like the processing of performance errors.
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Mannarelli et al. (2020) used cathodal transcranial
direct current stimulation (tDCS) to the cerebellum before
healthy participants performed a Go/Nogo task. In con-
trast to the facilitating effects of anodal tDCS, cathodal
tDCS causes a hyperpolarization of neurons, making
upcoming action potentials harder to trigger. After cere-
bellar tDCS compared with sham stimulation, the
Nogo-N2, a negative ERP component peaking around
250-300 ms post stimulus onset (Folstein & van Petten,
2008), was reduced. The N2 has been linked to response
inhibition and cognitive control, with decreased ampli-
tudes indicating improved performance monitoring in
terms of cognitive flexibility (Larson & Clayson, 2011). In
addition, false alarm rates were increased. These results
provide the first evidence that cerebellar neuromodula-
tion alters behavioral and ERP indices of performance
monitoring and cognitive control. In particular, it has
been suggested that the stimulus-locked N2 and the
response-locked ERN may reflect activity of the same
underlying error monitoring system (Ferdinand et al.,
2008; Folstein & van Petten, 2008; van Veen & Carter,
2002). Hence, perturbing cerebellar function by non-
invasive brain stimulation should also affect error pro-
cessing and the ERN, and this is what the present study
aimed to demonstrate. However, it must be noted that
findings on effects of cerebellar tDCS on cognition and
motor behavior have been rather heterogeneous and
inconsistent (Jalali et al., 2017), and the exact mecha-
nisms on the cell or network level are still unclear (van
Dun et al., 2017). TMS, on the other hand, allows for a
more focal and controlled stimulation that can reach
deeper regions in the brain by generating pulses in a
time resolution of less than 1 ms (Koponen et al., 2018).
Therefore, the present study made use of cerebellar
spTMS (and stimulation of vertex as a control site) in a
Go/Nogo Flanker Task (Voegler et al., 2018) to investi-
gate effects on error processing. Guided by the previous
patient studies (Peterburs et al., 2012, 2015), our main
focus was on the response-locked ERP components
ERN and Pe. The stimulus-locked ERP components
Nogo-N2 and Nogo-P3 investigated in the previous
tDCS study in healthy subjects (Mannarelli et al., 2020)
were not the focus of the present work, so data on and
analyses of these components are only provided as
Supplementary Material. For a more comprehensive
neurophysiological account, we have also exploratively
analyzed induced theta power in the time-frequency
domain as an index of cognitive control (e.g., Cavanagh
& Frank, 2014). Information on preprocessing, results,
and discussion with respect to these dependent vari-

ables is provided in the Supplementary Material (see
Figs. S11-S14).

We selected the left lateral cerebellum for stimulation
with a double cone TMS coil because of several studies
pointing towards the significance of posterolateral cere-
bellar regions for executive functions, which also encom-
pass error processing (King et al., 2019; Sheu et al., 2019;
Stoodley & Schmahmann, 2009). The experiment was
conducted on two different days resulting in a fully within-
subject design (each participant underwent both cerebel-
lum and vertex stimulation). We followed the study design
by Verleger et al. (2009) in which an spTMS pulse was
delivered in each ftrial of a Flanker Task. As outlined
above, spTMS has a high temporal resolution, and it can
thus help elucidate causal links between brain and
behavior. Thus, spTMS can also help elucidate temporal
aspects of cerebellar contributions to error processing.
Verleger et al. (2009) temporally shifted the pulses
depending on an individually estimated peak latency of
the lateralized readiness potential, a potential reflecting
motor cortex activity leading up to voluntary movements,
which was measured before the TMS blocks. In the pres-
ent study, pulses were delivered at four different time
points relative to the individual error latency (IEL, i.e.,
individual ERN peak latency + median error response
time) in Go trials, and at three different time points relative
to stimulus onset in Nogo trials.

Similar to deficits found in patients with cerebellar
degeneration (Peterburs et al.,, 2015), we expected
increased error rates in Go trials for cerebellar TMS
compared to vertex TMS, but only when pulses were
delivered before the responses, due to disturbance of
the internal forward-model generated within the cere-
bellum (see Ramnani, 2006). Concerning the ERN,
patients with cerebellar damage showed reduced neg-
ativity in the error-correct difference signal in the typical
ERN time window (Peterburs et al., 2012, 2015). Con-
sequently, we expected a reduced ERN for cerebellar
TMS compared to vertex for pulses that were applied
100 ms and 50 ms before the IEL, since these time
points should precede the onset of error processing.
Since the Pe in patients with cerebellar lesions was
interpreted to be the result of long-term compensatory
processes of the brain (Peterburs et al., 2012), we did
not expect effects of cerebellar spTMS on the Pe. Fur-
ther, more exploratory hypotheses regarding response
inhibition in Nogo trials as reflected in Nogo-N2 and
Nogo-P3 and an additional analysis on the induced
theta power are provided and discussed in the Supple-
mentary Material.
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2. METHODS
2.1. Sample

Twenty-five young and healthy participants were recruited
through newspaper advertisements and postings at
Heinrich-Heine-University Dusseldorf. Data from nine
participants had to be excluded from the analyses: two
participants attended only the first appointments neces-
sary for study completion, further two participants com-
plained of mild headaches during the task and dropped
out, a miscalculated TMS onset value was used in another
two participants, two participants made too few errors in
the main task, and another misunderstood the task. Con-
cerning the pre-task, which was used to determine the
individual error latency (IEL, see below), we aimed to
repeat the Go/Nogo Flanker until participants who com-
mitted at least six errors in all conditions, because at
least six error trials are needed to reliably measure the
ERN (see Olvet & Hajcak, 2009; Pontifex et al., 2010). For
one participant we only discovered post hoc, after trial
inspection and removing double responses, that only five
error trials in one condition remained (see Table S1 in the
Supplementary Material). As the ERN was clearly visible
after averaging the five error trials, we decided to include
the participant in further data analysis. The final sample
thus consisted of 16 participants. The required sample
size was estimated based on studies which used cere-
bellar spTMS in a different task (n = 17, Desmond et al.,
2005; n =10, Panouilléres et al., 2012; n = 23, Sheu et al.,
2019), or spTMS at another location in a Flanker task
(n = 20, Danielmeier et al., 2009; n = 21, Klein et al., 2014;
n =8, Soto et al., 2009; n = 12, Verleger et al., 2009). Par-
ticipants were healthy adults (age range 19-32 years,
M = 24.00 years, SD = 3.70, n = 13 females, n = 12 right-
handed and n = 1 ambidextrous; for more details, see
Table S1 in the Supplementary Material). As TMS uses
electromagnetic pulses, exclusion criteria were metal
parts within the body (e.g., implants, pacemakers, shards
of metal, pumps for medication), spinal fractures, acute
heart attacks, or pregnancy. Further exclusion criteria
were current psychiatric disorders, neurological disor-
ders, alcohol or substance abuse, and intake of medica-
tion affecting the central nervous system. Participants
were paid 40 Euros for participating in the two appoint-
ments. All participants gave written informed consent.
The study was preregistered on the Open Science Frame-
work (OSF: https://osf.io/6v9pa) and was approved by
the Ethics Committee at the Faculty of Medicine of Hein-
rich Heine University Disseldorf in accordance with the
Declaration of Helsinki.

2.2. Questionnaires

Participants had to fill in a demographic questionnaire as
well as the “Mehrfachwahl-Wortschatz-Intelligenztest”
(1Q: M =98.75, SD = 10.88; Lehrl et al., 1977), a multiple-
choice vocabulary intelligence test.

2.3. Go/Nogo Flanker task

Participants completed a modified Go/Nogo Flanker task
coded in the software Presentation (version 20.0, Build
02.20.17, Neurobehavioral Systems, Inc.). Figure 1 pro-
vides a schematic illustration of the time course and
sequence of stimulus presentation in each trial. The main
task consisted of 600 trials in four blocks. Go trials made
up 80 % of all trials (480 trials), while Nogo trials made up
20 % of all trials (120 trials). In 80 % of Go Trials (384 tri-
als), the flanker arrows aligned with the central target
arrow (congruent trials), while in the other 20 % of Go tri-
als (96 trials), the flankers pointed in the opposite direc-
tion (incongruent). Each trial started with the onset of
arrow flankers positioned above and below a fixation
cross for 200 ms. During Go trials, the fixation cross was
replaced by the central target arrow to which participants
had to respond by pressing the corresponding (left or
right) button on a response pad with the index or middle
finger of their right hand, respectively. Participants were
instructed to respond as fast and as accurately as possi-
ble. If participants did not press one of the two buttons
within the response time window of 350 ms (alternatively
400 ms, when the miss rate was too high in the flanker
pre-task), a reminder to respond faster was displayed. No
feedback was provided concerning the correctness of the
response. During Nogo ftrials, the fixation cross was
replaced by a filled circle, to which participants should
suppress their response and not press a button. As in Go
trials, the flankers together with the circle were displayed
in the response time window for 350/400 ms. Thereafter,
a fixation cross without flankers was displayed for 500 ms.
During the subsequent inter-trial interval, the fixation
cross was presented for a further 900-1300 ms (jittered).

Since the aim of the present study was to disturb error
processing on a trial-by-trial basis using TMS pulses
applied to the cerebellum and to elucidate temporal
aspects of cerebellar involvement in error processing, it
was critical to determine the time point at which cerebel-
lar input was needed for error processing. More specifi-
cally, cerebellar input could be needed at the very onset
of error processing or a bit later when error processing is
already underway. To temporally approximate the onset
of error processing individually for each participant, we
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900-1300 ms
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Time
C. Nogo Trials

B. Go Trials Incongruent

TMS-Pulse

Response window

In case of missing response
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Delivery timing of TMS pulse
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L. - IEL
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- IEL + 50 ms
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200 ms
Target TMS-Pulse
350 /400 ms Response window

In case of missing response
500 ms

Time

In Nogo trials:

Fixation Cross

000-1800 ms - Stimulus Onset

Delivery timing of TMS pulse

- Stimulus Onset + 100 ms
- Stimulus Onset + 300 ms

Flanker
200 ms

Target
350 /400 ms

Time

Fig. 1.

TMS-Pulse

Schematic illustration of time course and sequence of stimulus presentation in a trial of the Go/Nogo Flanker

Task. Go trials with congruent flankers (A) and with incongruent flankers (B) relative to the target arrow in the center.

Only one single pulse was applied in each trial. TMS pulses were delivered for Go trials shortly before the IEL (-100 ms,
-50 ms), at the IEL, or shortly after the IEL (+50 ms). (C) In Nogo Trials, the target stimulus indicating the need to inhibit the
response was a circle. TMS pulses were delivered at stimulus onset or shortly after target onset (+100 ms or +300 ms).

determined the IEL using a Flanker pre-task without
pulses. This Flanker pre-task consisted of the same ratio
of Go and Nogo Trials as the main task (120 trials in total,
80 Go and 40 Nogo trials). The IEL was calculated by
adding the median error response time to the latency of
the ERN in the response-locked ERP. If a participant was
unable to respond within the standard response time
window of 350 ms in more than 25 % of trials in the pre-
task, the task was repeated with an increased response
time window of 400 ms. This was done to ensure that
enough valid trials were recorded. In total, three partici-
pants required the longer response time window.
Throughout the Flanker main task, monophasic single
TMS pulses were applied within each trial. The time
points at which TMS was applied differed for Go and

Nogo trials. In Go trials, TMS pulses were delivered at the
IEL (0 ms) as well as 100 ms before (-100 ms), 50 ms
before (-50 ms), and 50 ms after (+50 ms). In Nogo trials,
TMS pulses were delivered at fixed time points, that is, at
stimulus onset as well as 100 ms and 300 ms after stim-
ulus onset (+100 ms and +300 ms, respectively). Pulse
timings relative to the IEL in Go and relative to stimulus
onset in Nogo trials were randomized throughout the task
but occurred an equal number of times per trial type and
block.

2.4. Procedure

Upon arriving at the laboratory, the participants were
seated in a brightly lit room in front of a laptop (DELL®
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Precision M4800, 15.4 inch with a resolution of 1920 x 1080
pixels and a refresh rate of 60 Hz) with a response box
(Cedrus RB-740, Science Plus Group, Groningen, NL)
positioned before it. The distance between response box
and laptop was kept constant. Only two keys were rele-
vant for the task and had to be pressed with the index (left
key) and middle finger (right key) of the right hand. A third
key was used to navigate through pauses and instruction
slides. After positioning the participants and putting ear-
plugs in their ears, the EEG cap was aligned on the head,
and the scalp electrodes were prepared. The electrodes
on the cap were further covered with a plastic wrap to
avoid any direct contact between electrodes and the TMS
coil which could cause artifacts (Hernandez-Pavon et al.,
2023). EMG electrodes were attached to the left hand, and
the TMS stimulators were started and triggered via the
laptop so that pulses were sent for the determination of
the individual motor threshold (IMT). After IMT determina-
tion, the coil was firmly aligned and fixed with a custom
mounting structure. Thereafter, the Flanker pre-task was
started, in which no pulses occurred. Subsequently,
another experimental task with spTMS was completed,
which is not part of this manuscript. While participants
were completing this task, we calculated the individual
ERN peak latency and median response time for errors as
described above. Subsequently, the IEL was calculated
and used as an input value for the Flanker main task. After-
wards, the Flanker main task was performed. Participants
underwent cerebellar and vertex stimulation in separate
appointments. They were aware that both sessions
included stimulation, but they were not explicitly informed
about the specifics of the two stimulation sites. They were
also naive to the study’s intent. The two appointments
took place with a temporal gap of at least 48 hours
(M = 82.13 days, SD = 143.36 days, range from 2 to
373 days). Due to a defect in the TMS stimulators, the sec-
ond measurement had to be postponed for a long time,
resulting in time gaps of 362 to 373 days for 3 subjects.
Correcting for the delay of these subjects, the time interval
between the two appointments was on average only
16.00 days (SD = 20.52 days, range from 2 to 74 days).
The order of the stimulation sites was counterbalanced.

2.5. TMS-EEG-EMG interface

2.5.1. EEG system

A TMS compatible amplifier (BrainAmp MR plus, Brain-
Products GmbH, Munich, Germany) was used with a cap
containing 32 flat multitrodes. The flat electrodes mini-

mize the distance between the coil and the skull surface.
The following electrode sites were used: Fp1, Fp2, Fz, F3,
F4, F7, F8, FCz, FC1, FC2, FC5, FC6, Cz, C3, C4, CPz,
CP1, CP2, CP5, CP6, T7, T8, Pz, P3, P4, P7, P8, Oz, O1,
and O2. BrainVision Recorder software, version 1.21
(BrainProducts, Munich, Germany) was used for record-
ing. Impedances were kept below 5 kQ. Data were sam-
pled at 1000 Hz.

2.5.2. EMG system

Two surface EMG Ag/AgCl-electrodes (20 x 15 mm,
Ambu, Ballerup, Denmark) were placed on the left M.
abductor pollicis brevis in resting condition to record the
muscle activity in terms of motor evoked potentials
(MEPs) that reflect the corticospinal excitability through-
out the estimation period of the IMT. This also allowed us
to check that no MEPs would be triggered by the TMS
pulses during the tasks. The signal was amplified with a
Digitimer D360 (Digitimer Ltd, Hertfordshire, UK). The fre-
quency band of the filter was 100-5000 Hz and digitized
at a sampling rate of 5 kHz (Signal version 6.02, Cam-
bridge Electronic Design Ltd., Cambridge, UK).

2.5.3. TMS system

We estimated the IMT with a custom script in Presenta-
tion that sent a code to a single TMS stimulator (Mags-
tim® 200?) every 10 seconds to elicit a pulse. The double
cone coil was aligned so that we could stimulate the right
motor cortex (region M1). After an MEP was detected in
the EMG signal using the independent trigger mode in
the software Signal, 5 consecutive trials (out of 10) were
counted to determine whether the position also clearly
stimulated the motor cortex. The output power of the
device was then reduced until only 5 out of 10 trials elic-
ited an MEP. The estimated IMT with additional 20 %
power (corresponding to 120 % motor threshold) was
used as the output power for the TMS system for both
appointments. Nevertheless, we measured the motor-
threshold on both appointments to see if there was any
variability. Checking the IMT revealed no significant dif-
ference between the first (M = 38.20 %, SD = 7.84 %) and
second appointment (M = 37.68 %, SD = 7.97 %),
t(37) = 0.20, p = .840, and no significant difference
between the cerebellar (M = 37.80 %, SD = 8.15 %) and
vertex (M = 38.11 %, SD = 7.64 %) stimulation appoint-
ments t(37) = -0.12, p = .905. The TMS coil was either
placed at the level of the left lateral cerebellum (3 cm left
and 1 cm inferior to the inion; Hardwick et al., 2014) or at
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the vertex position which corresponds to electrode posi-
tion Cz of the international 10-20 system (Pizem et al.,
2022, see Fig. 2 for an illustration, and Figs. S15 and S16
for real photographs in the Supplementary Material) with
the voltage flow in the inferior direction. After the coil was
correctly aligned, it was fixed with a custom stand so that
the same position was maintained over the course of the
session. In addition, we used a fabric elastic band to
ensure that the coil-to-head distance was kept constant
(forehead for the cerebellar TMS or chin for the vertex
TMS). The distance of the coil to the head surface was
observed during the task and adjusted during the pause
between the individual, since even small changes lead to
a decrease in the induced magnetic field strength
(Hernandez-Pavon et al., 2023).

The BiStim TMS stimulators were manually charged
before the first trial, and the independent trigger mode
was selected in Signal for the subsequent tasks to trigger
the stimulators. Then, the single-pulses were observed in

the EMG-signal to ensure that no MEPs were evoked,
particularly when stimulating the cerebellum. If MEPs had
occurred, the session would have been interrupted, and
the coil would be realigned, in order to avoid co-
stimulating the brainstem. However, this did not occur
during our study. Additionally, the coil position was con-
stantly monitored and readjusted between the blocks
and tasks if substantial movement had occurred to
ensure that the distance between coil and scalp was con-
sistent. Since the recharge period of a single Magstim®
2002 stimulator exceeded the duration of a single trial, we
alternated activation of two BiStim stimulators. Unfortu-
nately, due to overheating of the stimulators, trials were
lost in 3 participants towards the end of the task, for the
TMS system no longer sent any pulses while the task and
EEG measurements were still running. The time of termi-
nation was checked in the EEG signal, so that all trials
without TMS pulses were excluded from analysis. The
heat development in the stimulators was related to both

Fig. 2.

lllustration of the TMS-EEG Setup for cerebellar and vertex stimulation. Top left circle shows the placement of

the electrodes for recording of the EMG signal. Below, the TMS pulse is shown in the EMG signal. Bottom left, continuous
measures of the EEG signal. Top right, TMS generators are shown. Below, the TMS coil orientation for vertex stimulation
is shown and, in the bottom, right, the coil alignment for the cerebellar stimulation is presented. The voltage flow indicated
by the arrows is aligned inferiorly. A double-cone coil was used for stimulation.
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the high number of single pulses and the output power
which varied greatly among the participants (see Table S1
in the Supplementary Material).

In case of a port conflict due to close proximity of two
marker codes sent by the presentation laptop to the EEG
system (i.e., codes sent within 5 ms), which may be the
case for the response codes and matching TMS pulse
codes, the later code was delayed until the port conflict
no longer arose. The respective code timings were cor-
rected in the EEG marker file using a custom script in
MATLAB. Time points were not changed for the TMS
pulse codes because the timing in the marker file always
fitted the timing of the real TMS pulse. Instead, trials with
a TMS pulse differently timed than the planned onset due
to marker code delay were excluded.

2.6. Individual error latency estimation based
on the flanker pre-task

ERN latency was determined by peak detection per-
formed in BrainVision Analyzer software, version 2.1
(BrainProducts, Munich, Germany). All trials containing
two or more responses were removed beforehand. Pre-
processing for peak detection was performed as follows:
First, data were re-referenced to the average signal of all
electrodes, and the signal at FCz was re-established.
Next, a DC detrend was performed, followed by low-pass
filtering with a cut-off of 30 Hz and a slope of 12 dB/oct,
high-pass filtering with a cut-off of 0.1 Hz and a slope of
12 dB/oct, and a notch filter set to 50 Hz. Subsequently,
automatic ocular correction ICA was performed, and
data were segmented into epochs of 600 ms, starting
200 ms before and ending 400 ms after erroneous
responses. The baseline-corrected data (with the 200 ms
period preceding response onset as baseline) underwent
artifact rejection (only 3 trials were rejected across all par-
ticipants and sessions) with the following settings: maxi-
mum difference of values over 100 pV or activity lower
than 0.1 pV within an interval of 100 ms, voltage steps
exceeding 50 pV/ms, or values above 100 pV or below
-100 pV. Segments were then averaged, and peak detec-
tion was performed on a time window of 100 ms after the
response, searching for a negative peak at site FCz.

2.7. Dependent variables

Behavioral outcome variables were error rates and
response times in Go trials. For the EEG data, we ana-
lyzed the ERN for Go Trials in the response-locked ERP.
In an exploratory analysis, the Pe (Go trials) was also ana-

lyzed. The ERN was defined as the local maximal nega-
tive peak in the error-correct difference signal within a
time window of 100 ms post-response at site FCz (see
Hajcak & Foti, 2008). The Pe was defined as the maxi-
mum positive peak in the difference signal within the time
window between 200 and 400 ms post-response at Pz
(see Larson et al., 2010). Follow-up analyses with the
original waveforms were conducted to further elucidate if
effects were specifically driven by altered ERP ampli-
tudes for errors or correct responses. In addition, analy-
ses of false alarm rates and Nogo-N2 and Nogo-P3 ERP
components as well as analyses of induced theta power
in the time-frequency domain are provided in the Supple-
mentary Material.

2.8. Preprocessing of the TMS-EEG data

Preprocessing of the spTMS-EEG co-registered EEG raw
data was conducted using the EEGLAB Toolbox (version
2021.1) in MATLAB (version R2021a) (MathWorks, Natick,
Massachusetts, USA) and the Automated aRTlIfact rejec-
tion for Single-pulse TMS-EEG Data (ARTIST) algorithm
created by Wu et al. (2018). This algorithm provides an
efficient and objective approach to preprocess raw EEG
data and has proven to be superior to manual artifact
rejection by experts and other algorithms such as TESA
(Rogasch et al., 2017; Wu et al., 2018). Some of the
default settings were adapted because the signal at elec-
trode FCz, which had been used as online reference
during EEG recording, needed to be re-established. In
addition, the high pass filter of 1 Hz was kept, and the low
pass filter was changed from 100 Hz to 30 Hz. The notch
filter was changed from 60 Hz to 50 Hz. Electrode Iz was
removed before applying the ARTIST algorithm because
of low signal quality. The ARTIST algorithm creates seg-
ments around a given code which marks the onset of the
TMS pulse. Here, segments were created with a length of
2500 ms, spanning 1000 ms before and 1500 ms after
TMS pulse onset. Next, response onsets were checked
by a custom script using MATLAB to ensure that only
valid trials were included into the analysis (see above,
some responses and therefore the respective response
codes had overlapped with other codes within trials and
were therefore delayed). In addition, we manually rejected
trials without a TMS pulse (due to overheating or close
proximity of two TMS pulses, see above) before re-
referencing and segmenting the data. Following this, the
ARTIST algorithm preprocessed the data in three distinct
stages. In the first stage, large-amplitude artifacts were
removed by applying DC drift correction, the removal and
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interpolation of the TMS pulse artifact (15 ms prior to the
TMS marker code onset until 5 ms after), downsampling
of the data, and the removal of the TMS decay artifacts in
a first ICA run. In the second stage, the AC line noise was
removed, and the band-pass filter was applied. Then, the
signal was segmented around the TMS pulse onset, and
segments that exceeded the default thresholds were
removed. The final step within the second stage was the
removal and interpolation of poor channels. ARTIST
interpolated on average 1.13 channels (SD = 1.13) per
participant and stimulation site. In addition, on average,
44 13 trials (SD = 50.93) were rejected, including both tri-
als which were manually rejected due to overheating
(M =29.25, SD = 39.67, range = 5-169) and trials which
ARTIST rejected (M = 14.88, SD = 14.72, range = 1-63),
with slightly more excluded trials in total for cerebellar
(M = 47.56, SD = 54.69) compared to vertex (M = 40.69,
SD = 48.41) stimulation (N = 16). In the third stage, poor
independent components were removed in a second ICA
run. The data average was referenced, and the baseline
was corrected. The output data were imported into Bra-
inVision Analyzer 2.1, and further segmentation was per-
formed according to trial type (Go/Nogo). For Go trials,
segmentation was done for response and stimulus onset
separately for error and correct trials. The adapted scripts
and raw data can be found in the following OSF folder:
https://osf.io/jwfn9/

2.9. Statistical models

We deviated from our preregistration and ran mixed linear
model (MLMs) analyses in R (R Core Team, version 4.0.3)
using RStudio Team (2020: version 1.3.959) and the Ime4
package (version: 1.1.25, Bates et al., 2014) in place of
traditional repeated-measures ANOVA. This enabled us
to analyze factors with missing values and use the partic-
ipant as a random factor to further explain variance in the
data. Meteyard and Davies (2020) proposed in their best
practice guidelines for MLMs that the maximum model
should be chosen, including all within-subject main and
interaction effects as random effects. The maximum
model should be only chosen if no errors in the model fit,
in terms of converging errors or singular fits, appear,
which would cause an overfitting of the model. To avoid
this, the models were checked using an iterative process
in which the within-subject highest order interaction was
first included as random factor and the random slopes
rejected subsequently in case of model fit errors. All our
models included stimulation site and stimulation timing
as fixed effects, but for some models, these factors were

additionally included as random slopes depending on the
model fit. In addition, Cooks distance (Cook, 1977) was
calculated to identify potential outlier subjects before
running the MLM analysis using the influence.ME pack-
age (version 0.9-9; Nieuwenhuis et al., 2012).

Before setting up our models for ERP analysis in Go
trials, we grouped the four stimulation timings into a two-
level factor, resulting in “early” and “late” stimulation. For
this purpose, the -100 ms and -50 ms trials were combined
into “early” and the 0 ms (at IEL) and +50 ms trials into
“late.” This allowed us to pool more error trials together, to
better take into account the variability of the IEL within and
across participants, and to compare the effect of stimula-
tion timing on error processing over a broader time period.

To check for baseline performance differences
between the two sessions in the Flanker pre-task, we cal-
culated Linear models (LMs) comparing error rates (Go
trials) and ERN amplitude between the cerebellar stimu-
lation and vertex stimulation session (see Fig. S1 and
Table S3 in the Supplementary Material).

To analyze behavioral performance in the Flanker main
task for Go trials, we set up an MLMs for error rates includ-
ing stimulation site (cerebellum, vertex), stimulation timing
(early, late), and the interaction between these factors as
fixed effects and added stimulation site and the interaction
with stimulation site and stimulation timing as random
slopes and participant as random effect in the model.

Error rate ~ site * timing +
(1 + site + site : timing | participant )

For response times, we included all responses to see
whether there was a difference in response times between
correct and error trials. In the final model, we included
trial type (correct trials, error trials) as fixed effect and as
random slope into the model equation.

Response time ~ site * timing * trial type +
(1 + site * trial type | participant)

In a third MLM, we analyzed error responses by their
timing relative to TMS onset to identify a possible influ-
ence of the pulse itself on the error rates independent of
the trial type. Here, the model was specified using the
error rates as the dependent variable, stimulation site
(cerebellum, vertex) and TMS timing (response preTMS,
response postTMS) as fixed effects and random slopes:

Error rate ~ site * TMStiming +
(1 + site + site : TMS timing | participant)
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For ERP analyses for Go trials, we analyzed the ERN
and Pe peak amplitudes obtained from the difference
wave as the dependent variables.

ERN_diff (amp) ~ site * timing +
(1 + site + timing | participant)

Pe_diff (amp) ~ site * timing + (1 + site | participant)

In addition, we analyzed the original waveforms, enter-
ing the amplitudes at the time points corresponding to
the ERN latency in the difference signal. We added fixed
effects of stimulation site (cerebellum, vertex) and timing
(early, late) and trial type (correct trials, error trials) for the
analysis as well as the interaction between the fixed
effects as well as the three factors as random slopes and
participant as a random effect. In addition, the optimizer
was changed from the default to Nelder-mead to cope
with an occurring convergence error as suggested by the
best practice guideline by Meteyard and Davies (2020).

The final, maximum model specification was as fol-
lows:

ERN (amp) ~ site * timing * trial type +
(1 + site + timing + trial type + site : timing | participant)

We simple-coded the categorical predictors stimula-
tion site (0.5 = cerebellum, —0.5 = vertex), stimulation tim-
ing (0.5 = early, -0.5 = late), and trial type (0.5 = correct,
—-0.5 = error). Also, TMS-timing (response pre-TMS = 0.5,
response post-TMS = -0.5) was simple-coded for the
additional analysis of the error rate. We used the ImerTest
package (version: 3.1.3, Kuznetsova et al., 2017) in R
using Satterthwaite’s method to estimate the degrees of
freedom and to generate p-values for MLMs. We consid-
ered p-values below .05 as statistically significant. Statis-
tical models for the analyses of false alarms, Nogo-N2,
and Nogo-P3 are provided in the Supplementary Material.

3. RESULTS

3.1.  Error rates

MLM analysis revealed no significant effects of stimula-
tion site or timing on error rates (all p > .384, n = 15, see
Fig. 3A). However, exploring the influence of TMS timing
relative to response execution (i.e., whether a pulse had
occurred prior to a response on a given trial or after the
response) revealed a highly significant main effect of TMS
timing (B = 5.02, ¢(15.00) = 13.30, p < .001, see Fig. 3B).
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Error rates were higher in trials in which pulses had
occurred after the response (i.e., response pre-TMS:
M =13.69 %, SD = 4.47 %) compared to trials in which
pulses had occurred prior to the response (i.e., response
post-TMS: M = 8.66 %, SD = 4.59 %), irrespective of
stimulation site. The main effect of stimulation site was
only marginally significant (3 = —-1.11, #(15.00) = -2.03,
p = .061). The interaction between stimulation site and
TMS timing relative to response was not significant
(B=-0.79, t(15.00) = -0.80, p = .437 N = 16, see Fig. 3B).

3.2. Response times

For response times, there was a significant main effect of
trial type (B = 25.66, t(14) = 10.05, p < .001). Overall,
responses were faster in error trials (M = 239.40 ms,
SD =19.53 ms) compared to correct trials (M = 265.07 ms,
SD = 18.41 ms). The main effects of site and stimulation
timing as well as the interaction between these factors
were not significant (all p-values > .119, n = 15, see
Fig. 3C).

3.3. EEG results

3.3.1.  ERN based on the difference wave (ERN-diff)

Figure 4A provides response-locked grand-average ERP
difference waves (error minus correct) at electrode FCz
according to stimulation site (cerebellum, vertex) and
stimulation timing (early, late), along with scalp topogra-
phies for the time points of maximum negativity in the
ERN time window. Figure 4B displays corresponding
response-locked grand-average ERPs for errors and cor-
rect responses.

There was a significant main effect of stimulation site
(B = 0.93, t(13.00) = 2.82, p = .015). The ERN was less
negative for cerebellar (M = -5.56 pV, SD = 2.81 pV) com-
pared to vertex stimulation (M = -6.49 pV, SD = 2.98 pV).
The main effect of timing was non-significant (3 = —-0.02,
t(13.00) = -0.05, p = .962). The interaction of stimulation
site and timing was significant (3 = -1.36, t(12.99) = -2.52,
p =.026). Simple slope analyses of the stimulation site for
early and late stimulation timing yielded a significant
slope (see Fig. S4 in the Supplementary Material) for late
stimulation (3 = 1.61, t = 3.78, p < .001). For early stimu-
lation, the slope was non-significant (3 = 0.25, t = 0.59,
p =.563). The interaction between site and timing seemed
to be driven by the late stimulation: for cerebellar TMS,
the negativity was reduced for late (M -5.21 v,
SD =2.72 pV) compared to early stimulation (M =-5.90 pV,
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(A) Mean error rates in Go trials according to stimulation site and stimulation timing. The analysis did not yield

any significant effects of stimulation site or stimulation timing on error rates. (B) Mean error rates in Go trials according to
stimulation site and pulse timing relative to response onset (i.e., whether a pulse had occurred prior to a response on a
given trial or after the response). Asterisks indicate the significant main effect of pulse timing relative to response onset:
error rates were higher in trials in which pulses had occurred after the response compared to trials in which pulses had
occurred prior to response. (C) Mean response times in Go trials according to stimulation site and stimulation timing.
Asterisks indicate the significant main effect of trial type: response times were shorter for errors compared to correct
responses. The dots were jittered horizontally, the central line reflects the median and the whisker the first and third

quartiles (the 25th and 75th percentiles) in all plots.

SD = 2.97 pV), and in contrast, vertex stimulation led to
increased negativity for late (M = -6.82 pV, SD = 2.85 pV)
compared to early stimulation (M =-6.16 pV, SD=3.17 pV,
see Fig. 5A for the boxplots of the ERN amplitudes as
well as Fig. S4 for the interaction plot in the Supplemen-
tary Material).

3.3.2. ERN in the original waveforms

To elucidate whether the decreased negativity in the dif-
ference waves for cerebellar compared to vertex stimula-
tion was specifically driven by altered neural responses
to errors or correct responses, the original waveforms
were analyzed (see Fig. 6). We found a significant main
effect of trial type (B = 6.01, {(12.99) = 8.18, p > .001), with
increased negativity for errors (M = -5.46 pV, SD = 3.98 pV)
compared to correct responses (M = 0.55 pV, SD = 3.30
pV). All other main effects were non-significant (all p >
.079). The interaction between trial type, and site was
significant (B = —-0.93, #(38.99) = -2.95, p = .005). Cru-
cially, the three-way interaction between site, timing, and
trial type was also significant (3 = 1.36, t(38.99) = 2.16,
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p = .037). To resolve this interaction, we performed sim-
ple slope analysis. Results showed only a marginal signif-
icant slope for error trials on the stimulation sites and
during late stimulation (3 = 0.98, t = 2.06, p = .052). The
slope was positive, indicating that the ERN was more
negative in vertex (M = -5.78 pV, SD = 4.23 uV) compared
to cerebellar stimulation (M = -5.13 pV, SD = 3.76 pV).
All other simple slopes for trial type, stimulation site,
and stimulation timing were not significant (all p > .200).

3.3.3. Pe-diff

Analysis of the Pe in the difference waves did not yield
any significant effects (all p > .198; see Fig. 5B for the
boxplots of the Pe amplitudes).

4. DISCUSSION

This study investigated the role of the cerebellum in error
processing using spTMS to stimulate the cerebellum
while co-registering EEG. With the help of a Flanker pre-
task, we estimated individual ERN peak latencies and
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Fig. 4. (A) Response-locked grand-average ERP difference wave (error minus correct) at electrode FCz according to
stimulation site (cerebellum, vertex) and stimulation timing (early, late), along with scalp topographies for the time points of
maximum negativity in the ERN time window. (B) Response-locked grand-average ERPs for errors and correct responses
at electrode FCz according to stimulation site (cerebellum, vertex) and stimulation timing (early, late) and trial type (correct,
error). Smoothing around the lines in panel (A) and (B) indicate the standard error. The shaded area indicates time window
for ERN quantification (0-100 ms post-response).
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Fig. 5. (A) ERN peak amplitudes in the difference wave (error — correct) at electrode FCz as a function of stimulation site
(cerebellum/vertex) and stimulation timing (early/late). Asterisks indicate the significant interaction effect between site and
stimulation timing with the highly significant slope for late stimulation timing only. (B) Pe peak amplitudes in the difference
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and timing (early, late). Asterisks indicate significant

main effects of trial type in both, cerebellar and vertex
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median error response times to calculate the Individual
Error Latency (IEL) as an approximation of the onset of
error processing for each study participant. TMS pulses
were then applied at different time points around the IEL
in each ftrial of the subsequent Flanker main task. We
expected to observe differences in error rates as well as
in response-locked ERP components (specifically ERN,
Pe) for cerebellar compared to vertex stimulation.

In line with our predictions, analysis of the ERP differ-
ence waves revealed that the ERN was reduced for cere-
bellar compared to vertex stimulation. This difference
was also modulated by the timing of stimulation, with
blunting particularly present for late compared to early
stimulation. Analysis of the original ERP waveforms to
determine whether the reduced negativity in the differ-
ence signal was particularly driven by altered neural
responses to either errors or correct responses revealed
that this effect was not specific to either response type.

Importantly, ERN magnitude in the Flanker pre-task was
comparable between the day of cerebellar (M = —6.37 pV,
SD = 2.09 pV) and vertex stimulation (M = -5.97 pV,
SD =2.18 pV, see Table S3 in the Supplementary Material).
While we cannot exclude that active vertex stimulation
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slightly increased the ERN (M = -6.49 pV, SD = 2.98 pV),
ERN magnitude was substantially reduced for cerebellar
stimulation (M = -5.56 pV, SD = 2.81 pV). Thus, the reduc-
tion of the ERN magnitude appeared to be driven mostly by
spTMS applied to the cerebellum and not the vertex region,
although vertex contributions cannot be fully excluded.

In general, the observed effect of stimulation site may
indicate that monophasic single-pulse TMS disrupted
inhibitory functions of the cerebellar cortex towards the
deep cerebellar nuclei. This may have caused disinhibi-
tion, thereby facilitating information exchange with higher
cortical structures through the cerebello-thalamo-cortical
loop (Palesi et al., 2017). Here, the anterior cingulate cor-
tex (ACC, Rubia et al., 2007), which is highly involved in
the generation of the ERN (Dehaene et al., 1994; Holroyd
& Coles, 2002), may be of particular interest. According
to the reinforcement learning theory (Holroyd & Coles,
2002), the ERN is generated when a reduction of dopami-
nergic input from the VTA, possibly reflecting prediction
errors, disinhibits deep cingulate cortical neurons. Recent
findings show that the cerebellum may contribute to the
generation of prediction errors. For instance, electro-
physiological findings in mammals show that different
cerebellar cell populations are sensitive to reward predic-
tions and prediction violations (Heffley et al., 2018; Hull,
2020), and by the presence of direct cerebellar projec-
tions to the VTA that can modulate dopamine release in
the striatum (Yoshida et al., 2022). Regarding the present
results, with facilitated cerebello-cerebral information
exchange, less phasic dopaminergic input towards the
ACC may have reduced the cognitive demand for error
processing (Holroyd & Coles, 2002).

In the conflict-monitoring theory (Botvinick et al.,
2001, 2004), the ACC is seen as a monitoring system
detecting conflicts (such as between opposing response
options) and signaling the need for cognitive control.
Here, facilitated cerebello-cerebral information exchange
may have promoted conflict detection, leading to a
reduced need for cognitive control that could be reflected
in a reduced ERN. Adjustments in cognitive control
related to conflict adaptation have previously been asso-
ciated with increased functional interaction between pre-
frontal regions, superior temporal regions, and the
anterior cerebellum (Egner & Hirsch, 2005). In addition,
right cerebellar activation along with frontal and parietal
activations were observed in the presence of persistent
conflict leading to the interpretation that the cerebellum
is involved in visuospatial attention processes during
conflict to maintain high activation (Casey et al., 2000).
However, somewhat contrary to both interpretations,
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error rates in the present study were not affected by cer-
ebellar spTMS, and it could be argued that reduced cog-
nitive demand or facilitated conflict detection should
have led to increased accuracy/decreased error rates.

By taking advantage of the temporal resolution of
spTMS, the present study addressed the question when
cerebellar input is used during error processing. Our
results show that late TMS pulses, that is, pulses that
were applied to the cerebellum at IEL onset or shortly
after, were more effective in that they were associated
with a decrease in ERN magnitude in the error-correct
difference signal. Early pulses, that is, pulses applied
within 100 ms prior to IEL onset, left the ERN unaffected.
A possible explanation for this pattern could be that the
cerebellum receives information about the action through
sensory input pathways and compares the actual infor-
mation with the predicted outcome as stated in the for-
ward model (Sokolov et al., 2017). Along these lines,
cerebellar input for error processing is needed as this
process is already underway. The peak of the ERN might
correspond with the reconciliation of the predicted and
actual action representation, that is., the use of the cere-
bellar input. Cerebellar spTMS may facilitate continuous
information exchange with frontal regions by disinhibiting
the cerebellar output signal. Thus, ERN generation would
depend on this interplay of multiple regions, extending
the existing framework (Falkenstein et al., 1991; Gehring
et al., 1993) towards involvement of the cerebellum.

Analysis of the Pe in the difference signal did not reveal
any significant effects of stimulation site or timing, which
is in line with our hypothesis (see Fig. S5 of the grand
averages in the Supplementary Material). The Pe likely
reflects the conscious detection of an error (Endrass et al.,
2007; Orr & Carrasco, 2011), and it is conceivable that
error awareness might have been low due to the lack of
feedback information in our rapid Go/Nogo Flanker task.
Unfortunately, we did not implement any assessment of
error awareness in the present study, so this notion
remains speculative. Regardless of this, Pe alterations in
the context of cerebellar damage were found in one previ-
ous study (Peterburs et al., 2012) in which patients with
chronic cerebellar lesions were investigated. Here, an
increase in Pe amplitudes—in concert with decreased
ERN and preserved performance accuracy—was inter-
preted to reflect a compensatory mechanism. Importantly,
spTMS to the cerebellum elicits a temporary effect while a
stroke is associated with permanent tissue damage.
Therefore, we can only roughly compare spTMS-induced
“virtual lesions” of the cerebellum with degenerative or
focal cerebellar diseases (Can et al., 2018).
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Analysis of the behavioral data showed no significant
effects of site or timing. The lack of a site effect was
unexpected, given that we had hypothesized an increase
in error rates for cerebellar stimulation based on results
observed in patients with cerebellar degeneration in an
antisaccade task (Peterburs et al., 2015). However,
another previous study also failed to find altered error
rates in patients with cerebellar degeneration using a
more comparable flanker task (Tunc et al., 2019). The
present findings also resemble to some extent results
obtained in patients with basal ganglia lesions, in whom
the ERN was reduced in the absence of behavioral defi-
cits in a flanker task (Ullsperger & von Cramon, 2006). In
general, altered neural responses despite preserved
behavior therefore are not particularly unusual. Interest-
ingly, such a pattern of results has also been reported for
feedback-based learning (Rustemeier et al., 2016) and in
the acquisition phase of learning stimulus related contin-
gencies in cerebellar lesion patients (Thoma et al., 2008),
However, impaired learning performance in these patients
was present when the task required reversal of learned
stimulus-response-outcome contingencies (Thoma et al.,
2008). Based on these observations, it could be specu-
lated that the simple Flanker task used in the present
study may not have been sensitive enough to detect
more subtle performance differences as a function of
stimulation site. It is conceivable that impaired cerebellar
function may specifically affect behavioral flexibility, as
suggested by findings of impaired feedback-based learn-
ing in cerebellar lesion patients only when the task
involved reversal learning (Thoma et al., 2008). Behav-
ioral flexibility is not tested in the Flanker task. Future
studies could therefore investigate feedback-based
learning and/or reversal learning in the context of cere-
bellar TMS.

When analyzing error rates according to TMS timing
relative to response execution, we observed increased
error rates in trials in which pulses had occurred after the
response compared to trials in which pulses had occurred
prior to response, irrespective of stimulation site. Thus,
this effect is not informative about cerebellar contribu-
tions to error processing. Given that there were no base-
line differences in error rates (based on flanker pre-task
runs, see Fig. S1), this effect cannot be attributed to dif-
ferences in baseline performance. It could, however, be
speculated that the pulses themselves (regardless of
where they were delivered) may have elicited a small star-
tle response that could have slowed down subsequent
responses. Along these lines, decreased error rates for
trials in which pulses had occurred prior to the response
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could reflect a speed-accuracy trade-off, if increased
accuracy after pre-response pulses coincided with
increased response times. Unfortunately, response times
could not be meaningfully analyzed according to TMS
timing relative to response onset because stimulation
timing was determined based on the IEL.

4.1. Limitations

This complex and technically advanced procedure led to
some unique challenges and limitations that are relevant
when interpreting the present results.

To begin, stimulation location was based on anatomi-
cal landmarks and not neuro-navigated. Moreover, the
pulses were generated using two Magstim 2002 in the
Bistim configuration to overcome the challenge of the
recharge period of the individual stimulators that is deter-
mined by the used output power, which varied greatly
across the participants (see Table S1 in the Supplemen-
tary Material). Nevertheless, individual trials still had to be
removed before analysis because no pulse had occurred.
This was mostly due to the development of heat in the
coil which caused the system to shut down so that the
task was still running, and EEG was still recorded but no
pulses were delivered. Here, the number of trials and
breaks between the blocks need to be considered when
planning a similarly fast-paced task in which monophasic
single pulses are delivered across several hundreds of
trials. Monophasic pulses are more likely to cause over-
heating due to the higher electrical charge compared to
biphasic pulses (see Klomjai et al., 2015). Here, an exter-
nal cooling system could help reduce heating issues.

Furthermore, the stimulation sites were the cerebel-
lum and the vertex region, but we cannot exclude the
possibility that stimulation also affected other brain
regions. The direction of the magnetic field lines of the
double cone coil are well-established to target deeper
brain layers (Can et al., 2018), but at the expense of a
less focal stimulation in comparison to a figure-of-eight
coil. Therefore, it may have caused stimulation of other,
adjacent regions. This has been shown to be especially
critical for vertex stimulation, which caused decreases in
the BOLD signal in the default-mode network (see Jung
et al., 2016). Regardless, we expected vertex stimulation
to be a better control condition than sham because of a
more comparable experience for participants regarding
vibrations, coil click sounds, magnetic field build
(Duecker & Sack, 2015), and discomfort. Some of the
participants told us that they experienced the stimulation
as uncomfortable, and that focusing on the task was
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difficult because of the frequency of the pulses. Two
participants dropped out in the cerebellar stimulation
condition after the first block because they found the
stimulation very unpleasant. The short trial period and
jitter as well as the total number of trials might have con-
tributed to this. Nevertheless, no systematic differences
in ratings of these side effects were present between the
two sessions, demonstrating that TMS pulses were per-
ceived as similar for the stimulation sites (see Table S2 in
the Supplementary Material).

In addition, Nogo trials and the analysis of response
inhibition related ERP components were not the main
focus of this work. This was partially due to the unexpect-
edly strong impact of TMS-induced EEG artifacts that
hampered data analysis and result interpretation. In the
grand-average ERPs for Nogo trials, the TMS induced
artifacts did not completely disappear after preprocess-
ing (see Fig. S7 in the Supplementary Material), and ERP
components of interest, especially the Nogo-N2, occurred
in close temporal proximity to pulses. We were able to
identify the Nogo-N2 and Nogo-P3 to a certain degree,
with grand-average patterns resembling those described
in the literature (e.g., Rietdijk et al., 2014). The pulse arti-
fact itself was cut out of the segment by the ARTIST algo-
rithm, but there was still noise present that was likely
caused by aftereffects (e.g., decay artifact) superimposed
on the signal. Visual inspection of the grand-averages
showed that the artifact was temporally shifted depend-
ing on pulse timing and more visible for vertex compared
to cerebellar TMS, likely due to spatial proximity to ana-
lyzed electrode sites. Nevertheless, the grand-averages
were also very similar to those obtained in the Go/Nogo
pre-task without TMS pulses (see Fig. S2 for Go and
Fig. S3 for Nogo ERPs in the Supplementary Material).

5. CONCLUSION

The present study investigated the role of the cerebellum
for error processing using spTMS to stimulate the cere-
bellum while co-registering EEG. Applying cerebellar
TMS caused a blunting of the ERN, directly supporting
cerebellar involvement in performance monitoring. Of
note, this effect was not specific to erroneous responses
but generalized also to correct responses. Most impor-
tantly, our study also provides a first glimpse into tempo-
ral aspects of cerebellar contributions to error processing.
The effect of cerebellar TMS on the ERN depended on
pulse timing and was evident only when stimulation
occurred around the onset of the IEL or shortly after.
Finally, Pe as an index of late, more cognitive, awareness-
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related aspects of error processing, was not affected by
cerebellar TMS.

In general, the present study adds to a growing body
of research supporting cerebellar involvement in error
processing and performance monitoring. More studies
applying brain stimulation techniques are needed to fur-
ther develop this line of research and investigate other
aspects of performance monitoring such as feedback
processing and feedback-based learning to better under-
stand the role of the cerebellum for adaptive control of
(non-motor) behavior.
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