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IV

Summary
Reinforcement learning is an essential function for most higher organisms to survive and thrive 

in dynamic environments. Herein, reward prediction errors (RPEs) play a central role. RPEs 

signal if an action outcome deviated from expectations and help improve future predictions. 

Traditionally, RPE processing has been linked to midbrain and prefrontal regions, but more 

recent evidence indicates RPE processing in the cerebellum as well. This dissertation explored 

the role of the cerebellum in reinforcement learning using different models of cerebellar 

dysfunction (i.e., patients with cerebellar stroke, transcranial magnetic stimulation of the 

cerebellum in healthy individuals) while recording cerebral signals. The key question was 

whether cerebellar deficits would change cerebral processing of RPEs.

Manuscript 1 investigated whether cerebellar deficits in patients with chronic cerebellar strokes 

and in healthy young adults receiving single-pulse cerebellar transcranial magnetic stimulation 

(TMS) would result in deficient RPE processing in a reinforcement learning task. 

Electroencephalography (EEG) was employed to measure cerebral RPE processing, 

focussing on the feedback-related negativity (FRN). The FRN had previously been shown to 

not only distinguish between negative and positive feedback but to also covary with RPEs. 

Both experiments showed that a cerebellar dysfunction led to a blunted RPE reflection in the 

FRN, suggesting cerebellar contributions to cerebral RPE processing. No behavioural deficits 

in overall learning success were apparent, potentially indicating compensation by other brain 

areas.

Manuscript 2 investigated response error processing in reinforcement learning. While naïve 

learners rely on feedback, advanced learners are able to recognise errors already at the 

response execution. Previous studies performed in non-reinforcement learning contexts 

implied the cerebellum in error processing. Manuscript 2 investigated whether cerebellar TMS 

applied in healthy adults altered error processing in reinforcement learning. EEG analyses of 

the error-related negativity (ERN) and error positivity (Pe) in the response-locked event-related 

potential showed that cerebellar TMS blunted error processing in the ERN but enhanced it in 

the Pe, with the latter potentially indicating compensation.

Last, Manuscript 3 explored the timing aspect of cerebellar-cerebral communication in error 

processing. While for the motor domain, a clear time window for cerebellar-cerebral 

communication is known, this is less clear for the cognitive domain. Several TMS timings 

around individual ERN latencies were investigated in a Go/Nogo Flanker task, i.e., a response 

conflict and inhibition task. It could be shown that only stimulation near ERN latency was 

effective in reducing error processing in ERN.
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Together, these findings further implicate the cerebellum in reinforcement learning and the 

more general area of performance monitoring. Cerebellar deficits altered cerebral processing, 

even though this did not directly translate to substantial behavioural impairments. Future 

research into the functional significance of these cerebellar deficits is required.
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Introduction

Reinforcement learning

Introduction

For most living beings, the ability to learn is not just critical for survival but also important for 

general well-being. In disease, learning can be impaired, potentially leading to a less 

successful or fulfilling life. While one might initially think of classical learning disabilities, such 

as reading disorders or math disorders, disordered learning extends beyond the school 

premises. Basic learning mechanisms shape the basis for many behaviours. One example is 

agoraphobia: A person with agoraphobia might be afraid for their life when they step out their 

door because of an alteration in their learning system. The perception of the outside 

environment can be altered after a singular threatening encounter causing a strengthening in 

the association between threat and avoidance behaviour. The difficulty to unlearn this response 

towards fear has a significant impact on this person’s life which creates the conviction that it 

would be dangerous to go outside. Another person might show an overly large preference 

towards certain substances, making it challenging for them to stop using a specific substance, 

and instead spiralling into addiction. It is thus of high interest to understand the processes 

underlying these learning mechanisms.

An important distinction is to be made between non-associative and associative learning 

(Pereira & van der Kooy, 2013; Thorwart & Livesey, 2016) which constitute two major 

categories of basic learning mechanisms. Other – in parts more advanced – learning 

mechanisms go beyond this distinction. These include, for example, observational learning 

where the learner observes and imitates others (Bandura, 2008; Bandura et al., 1974), and 

higher cognitive learning processes including insight where the learner takes into account a 

broader context of the learning situation (Köhler, 1921). The current work will, however, focus 

on basic learning mechanisms, and in particular associative learning.

Non-associative learning mechanisms describe learning without making associations between 

stimuli, and instead describe changes in reaction towards the same stimuli (Kirchkamp et al., 

2012). This primarily comprises habituation and sensitisation. Habituation describes a 

decrease in reaction towards a stimulus with repeated exposure, while sensitisation describes 

an increase in reaction with repeated exposure (Kirchkamp et al., 2012).

Associative learning mechanisms, on the other hand, describe learning via association of a 

stimulus with another stimulus or reaction (Hawkins & Byrne, 2015). This mainly comprises 

classical and operant conditioning. Even small organisms, such as nematodes, have been 

shown to be susceptible to classical condition (A. J. Yu & Rankin, 2022). In classical 
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conditioning, an organism learns to associate an unconditioned stimulus (US; e.g., food) with 

a conditioned stimulus (CS; e.g., a bell ring; Clark & Squire, 1998; Windholz, 1997). While 

previously, only an unconditioned reaction (UR; e.g., salivating) was shown in response to the 

US (food), the animal now also displays a conditioned reaction (CR, e.g., salivating, but does 

not need to be the same as the UR) towards the CS (bell). On the other hand, operant 

conditioning is available to animals with more complex nervous systems, including some 

insects (Kriete & Hollis, 2022). Instead of linking two stimuli with each other, an action is linked 

to a stimulus (Skinner, 1963; Thorndike, 1933). These stimuli are categorised into rewards 

which increase a certain behaviour and punishments which decrease the behaviour. This can 

be accomplished both by using appetitive and aversive stimuli: supplying an appetitive stimulus 

is rewarding (positive reward), while removing it is punishing (negative punishment); supplying 

an aversive stimulus is punishing (positive punishment), while removing it is rewarding 

(negative reward; Papageorgi, 2021).

Humans use these basic learning strategies in everyday life, especially in unfamiliar 

environments. An example from Schultz (2016) illustrates this nicely: Imagine standing in front 

of a vending machine in Japan. You would like to receive the hot coffee drink, but it is not clear 

from the images which button to press. You might try a button, and, surprisingly, the coffee is 

dispensed! The next time you encounter this vending machine, surely, you would press the 

same button. Yet, the next time, a milk tea is dispensed instead. Someone must have refilled 

the machine in a different way. Now you are back to trying out buttons. This example nicely 

illustrates how important operant conditioning is to find our way in unfamiliar environments.

However, these principles are not only useful to describe behaviour. In the computer science 

domain, instead of describing real behaviours, these frameworks are used to optimise 

behaviour of an actor (Sutton & Barto, 2018c), e.g., a drone that needs to move autonomously. 

Many of the ideas originate in the psychological research of the early 20th century previously 

described. They were, however, further developed to be applicable in computer science. 

Interestingly, algorithms that work better in computer science also seem to show a better fit for 

natural learning behaviour (Niv, 2009). It is thus extremely useful to understand these 

frameworks when modelling the behaviour of animals, humans, or neural populations.

One such framework is reinforcement learning. It describes learning in an interactive 

environment. Its origins largely go back to the “Law of Effect” proposed by Thorndike (1911), 

i.e., essentially operant conditioning. It describes the strengthening or weakening of a 

behaviour when an animal receives a stimulus or when a stimulus is withdrawn 

(reward/punishment) in relation to a behaviour. Alan Turing first described such a construct in 

a computer that goes along with the psychological “trial-and-error learning” and referred to it 

as a “pleasure-pain system” (Turing, 1969). In computer science, reinforcement learning is a 
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subcategory of machine learning. Machine learning is a collective term for algorithms that can 

learn from data and apply the knowledge to new data. For reinforcement learning to take place, 

three prerequisites must be fulfilled (Sutton & Barto, 2018a): 1) the agent must be able to sense 

its state, 2) it must be able to take actions to influence this state, and 3) it must have a goal. 

This goal is usually to maximise a reward signal. These prerequisites are fulfilled for all operant 

conditioning contexts. Note that the state refers to not only the environment of the agent but 

also internal states. For example, it might be more or less useful to eat a large meal depending 

on satiety. The basic components of a reinforcement learning algorithm involve at least three 

components (Sutton & Barto, 2018a): 1) a policy, describing how the actor behaves in a given 

situation, 2) a reward signal, and 3) a value function. In natural learning situations, the reward 

signal is oftentimes (but not necessarily) supplied externally. While the value function attaches 

subjective values to actions, states, and stimuli, the policy allows for optimisation of behaviour. 

An essential dilemma in reinforcement learning lies between exploration and exploitation. To 

increase reward, the agent must choose (exploit) actions which have proven to produce a 

reward in the past. However, to maximise rewards in the future, it must also explore actions 

not previously tried, as the gains might be larger than the known action-reward relations. 

Stochastic relations need to be considered, as reward might not only differ in size, but also in 

reliability, thus requiring a given action to be made more than once to gain sufficient 

information.

Other types of machine learning, such as supervised and unsupervised learning (Sutton & 

Barto, 2018c), have also been related to animal/human behaviour and neural activity. 

Supervised learning describes learning from a training set with pairs of inputs (e.g., a situation) 

and correct outputs (e.g., an action; Priddy & Keller, 2005). The goal is then to generalise 

responses from this training set, in order to then also provide correct outputs towards new 

inputs. The output may be categorical (classifier) or continuous (regressor; Sen et al., 2020). 

This framework has often been referenced to describe cerebellar function (see below). 

Unsupervised learning, in contrast, does not require a teaching signal. Instead, input may be 

provided unlabelled, and patterns and characteristic properties are discovered without 

requiring any additional input (Kyan et al., 2014). This functionality has been proposed for the 

cerebral cortex (Marblestone et al., 2016). Note that the learning frameworks do not 

necessarily work separate from each other. For example, a reinforcement learning algorithm 

may include other approaches as subroutines.

Reinforcement learning algorithms

Even though reinforcement learning models have been derived from psychological theories 

and have been relevant in computer science since the 80s, their application in 

psychological/neuroscientific research has only become more popular in recent years. While 
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there is a multitude of reinforcement learning models (confer Sutton & Barto, 2018c for an 

overview), I will focus on the model used within this doctoral thesis (i.e., a Rescorla Wagner 

model; Rescorla & Wagner, 1972; A. R. Wagner & Rescorla, 1972) together with the closely 

associated temporal difference learning.

Figure 1. Graphical comparison of the Rescorla-Wagner model and temporal difference 
learning. 

Rescorla-Wagner Model

The Rescorla-Wagner model originally described association strengths in the context of 

classical conditioning. It was developed in the 70s by the psychologists Robert Rescorla and 

Allan Wagner (Rescorla & Wagner, 1972; A. R. Wagner & Rescorla, 1972). The model 

equations describe associations between a CS and a US:Δ𝑉𝑋,𝑡+1 = 𝛼𝑋𝛽(𝜆 − 𝑉𝑡𝑜𝑡)
and 𝑉𝑋,𝑡+1 = 𝑉𝑋,𝑡 + Δ𝑉𝑋,𝑡+1
where 𝑉𝑋,𝑡 is the associative strength of the CS X towards the US in trial t, 𝜆 is the maximal 

associative strength for the US, 𝛼𝑋 is the learning parameter for stimulus X, and β is the 

learning parameter for the US. Δ𝑉𝑋,𝑡+1 is thus the change in associative strength that is added 

to 𝑉𝑋,𝑡 to form the updated association strength 𝑉𝑋,𝑡+1.



5

For action value and reward prediction error (RPE) modelling, a simplified equation is 

oftentimes used (Dayan, 2004), with various terms to refer to it, e.g., Q-learning (Haruno & 

Kawato, 2006) or simple reinforcement learning (L. Zhang et al., 2020). 

This derived equation describes the updating of action values and reads as follows:𝑉𝑎,𝑠+1 =  𝑉𝑎,𝑠 + 𝛼(𝑅𝑎,𝑡 − 𝑉𝑎,𝑠)𝑉𝑎,𝑠 denotes the predicted action value for action a at state s while  𝑅𝑎,𝑡 denotes the outcome 

received for action a in state s. (𝑅𝑎,𝑡 − 𝑉𝑎,𝑠) describes the error term, using the distance 

between the prediction for the outcome and the actually received outcome. α, often referred to 

as a learning parameter, is a parameter describing step size, i.e., how big of a change is applied 

to the prediction following an RPE. Note that the equation does not include a predictor for 

which actions would lead to which states; instead it is assumed that states are independent 

from each other in a trial-based fashion. If an environment would require the performance of 

several actions towards several states with a terminal outcome, the Rescorla-Wagner model 

would thus only update predictions after the receipt of the outcome. While this approach seems 

quite inefficient for organisms to perform in natural environments, the assumptions suffice in 

an experimental environment where one terminal outcome follows an action performed in a 

given environment, and where environments are independent from the performed action(s) 

(i.e., an action does not influence which environment is encountered next).

Temporal Difference Learning

Temporal Difference Learning also finds its origins in psychology, i.e., from the concept of 

secondary reinforcement (Sutton & Barto, 2018a). Secondary reinforcement describes that 

after a given CS is paired with an US, it can be further paired with a second CS, and the CS 

will trigger the UR as well (Myers, 1958). A good example for this might be money. While money 

itself cannot directly fulfil a primary need (e.g., it cannot be eaten), it can be used to fulfil them 

indirectly (e.g., by buying food).

Temporal difference learning enables updating without reaching the terminal outcome. It thus 

considers that one action might lead to a more profitable state than another, which in turn leads 

to a better total outcome. It is thus capable of describing more complex prediction processes.

While there are several temporal difference learning models, the simplest one is considered to 

be the TD(0) model. The corresponding equation reads as follows:𝑉(𝑠𝑡) = 𝑉(𝑠𝑡) + 𝛼(𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡))
where 𝑉(𝑠𝑡) denotes the value of the state s at time point t. At time point t+1, the update for 𝑉(𝑠𝑡) is then performed, using 𝑉(𝑠𝑡+1), the value of the next state, and 𝑟𝑡+1, the observed 

outcome. Here, 𝑟𝑡+1 + 𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡) describes the RPE (also referred to as temporal 
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difference error), thus taking into consideration the next state in addition to the received reward 

and value of the state at time point t. Note that γ is added as a temporal discounting parameter, 

decreasing the value of states that lie further in the future. α again describes step size, in 

parallel to its function in the Rescorla-Wagner model.

Temporal difference learning describes natural behaviour better which is not divisible into trials, 

and where predictions can be updated at any time during the trial. An example for this would 

be driving back from work. We might estimate the time it takes based on previous drives home 

at the time of getting in the car. After driving for a few minutes, an announcement on the radio 

warns us against a traffic jam, prompting us to adjust our estimation. Notably, updating the 

estimate thus does not require to reach the terminal state (arrival at home).

Differentiation

To more clearly illustrate the differences between the Rescorla Wagner model and Temporal 

difference learning for a more experimental setting, one might consider a classical conditioning 

situation itself: the Rescorla Wagner model would assume that after CS-US associations have 

been learnt, no RPE occurs when the US is presented following the CS, as the contingency 

between CS and US is known, thus averting surprise at the US delivery. On the other hand, 

the temporal difference learning model would assume an RPE even in this scenario, however, 

at the time of CS delivery. Before the CS, no reward is expected, but after the CS, reward is 

expected (Niv & Schoenbaum, 2008). A graphical comparison of the two approaches is also 

given in Figure 1.

For the paradigm at hand of this doctoral thesis, a simple Rescorla-Wagner model suffices, as 

the interest of the studies at hand lies in RPEs at the time of outcome delivery in a trial-by-trial 

fashion.

Actor-critic model

Another notable model in neuroscience is the actor-critic model. The actor-critic model is a 

combination of policy-based and value-based reinforcement learning (Barto et al., 1983). In 

this algorithm, the actor, who chooses an action from several options (policy), is informed by a 

critic, who evaluates how good the action was and how to adjust (value). The critic thus uses 

a temporal-difference like evaluation function, while the actor determines the likelihood with 

which each action is chosen at a given state (Barto et al., 1983; Dayan & Balleine, 2002; Niv, 

2009).

Differences in nomenclature between psychology and computer science

As described in the introduction, reinforcement learning originates from psychology, primarily 

relating to operant conditioning. Note that above, a classical conditioning scenario is being 

described using reinforcement learning algorithms. Following the use of the concept in 
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computer science, scenarios which are not operant conditioning have started to be referred to 

as reinforcement learning, as long as the behaviour of the agent can be described with a 

reinforcement learning algorithm (Averbeck & Costa, 2017; Gershman et al., 2015; Swain et 

al., 2011). This is mostly true for classical conditioning scenarios. Note that the application of 

reinforcement learning algorithms for classical conditioning has also been criticised as 

inappropriate (Dayan & Balleine, 2002).  For the doctoral thesis at hand, the term reinforcement 

learning will be used with its meaning restricted to operant conditioning. However, evidence 

for reinforcement learning in the brain is oftentimes jointly drawn from the two types of 

conditioning, and studies investigating classical conditioning will be brought up accordingly.

Reinforcement learning in the brain

Beginnings

While this doctoral thesis focusses on studies in humans, many ground-breaking discoveries 

have been made through research in animals, and in particular in rodents and other primates. 

One such study which paved the way for reinforcement learning as a concept outside of 

computer science was performed by Wolfram Schultz and colleagues in 1993 and in further 

follow-up studies (Schultz et al., 1993, 1997; Silvetti & Verguts, 2012). In a simple classical 

conditioning setup, they recorded dopaminergic neurons of macaques. A CS (a tone) was 

followed by a US (a drop of juice). Initially, dopaminergic activity increased following delivery 

of the US. However, after learning throughout the task, dopaminergic activity increased already 

at the time of the CS. When the rewarding US was then unexpectedly not dispensed, 

dopaminergic activity decreased below the baseline level. In this way, the dopaminergic activity 

followed predictions made by temporal difference learning models, and displayed an RPE: 

before learning, the CS did not trigger an RPE, but the rewarding US triggered a positive RPE. 

The rewarding US was not previously expected and was a better outcome than expected, thus 

violating predictions in a positive direction. After learning, the CS triggered a positive RPE, 

giving notice to the soon occurring rewarding US. If then, the US was delivered as predicted, 

no RPE occurred, and the dopaminergic activity consequentially stayed at baseline level. 

However, if the US was not dispensed even though the CS was previously provided, a negative 

RPE occurred, as the received outcome was now worse than expected. These findings 

provided good evidence that dopamine neurons do not simply signal the reward (as assumed 

previously), but instead signal an RPE (Niv, 2009). Since the 90s, reinforcement learning has 

been explored more deeply in neuroscience. 

Reinforcement learning in EEG

Many studies investigating reinforcement learning have been conducted using 

electroencephalography (EEG) as it offers a high temporal precision. In EEG, a measure for 

feedback processing was first proposed by Miltner and colleagues (1997), i.e., the feedback-
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related negativity (FRN). The FRN is a frontocentral component in the feedback-locked event-

related potential (ERP). It usually peaks within 200-350 ms after feedback onset with a relative 

negative peak. In its origins and also nowadays, it was closely associated with the error-related 

negativity (ERN) in terms of performance monitoring (Gehring et al., 2018; Holroyd & Coles, 

2002; Potts et al., 2011). Performance monitoring encompasses a wide range of cognitive and 

emotional functions required for adaptive behaviour which includes feedback processing and 

error detection (see below for a more detailed overview; Peterburs & Desmond, 2016). 

The ERN, originally termed error negativity (Ne), was first presented in 1989 by Michael 

Falkenstein and colleagues (Falkenstein et al., 1991; Gehring et al., 2018). The term “ERN” 

was introduced by Gehring and colleagues (1993), who found further evidence for this error-

related activity soon after. The ERN is a frontocentral negativity in the response-locked ERP. 

It peaks within 100 ms post-response, and studies aligning its latency with the onset of 

electromyographic activity of the relevant muscle (to press a response button) have shown that 

the ERN onset starts at the same time (Gehring et al., 1993; Krigolson, 2018). The ERN is 

increased (i.e., more negative) for response errors as opposed to correct responses 

(Falkenstein et al., 1991; Gehring et al., 1993, 2018). It could also be shown that the ERN is 

larger for bigger over smaller errors (Albrecht & Bellebaum, 2023; Bernstein et al., 1995). The 

ERN has been proposed to reflect a fast-paced mismatch detection (Coles et al., 2001; 

Nieuwenhuis et al., 2001). Source analyses have indicated the anterior cingulate cortex (ACC) 

as a generator of the ERN (Herrmann et al., 2004; Hochman et al., 2009; Ladouceur et al., 

2006; Roger et al., 2010; for a review see Wessel, 2012). This is also consistent with 

activations of ACC towards errors in functional magnetic resonance imaging (fMRI) studies 

(Kiehl et al., 2000; Lütcke & Frahm, 2008; van Veen & Carter, 2002) as well as lesion studies 

indicating reduced ERNs following damage to the medial prefrontal cortex (PFC) including the 

rostral ACC (Maier et al., 2015; Stemmer et al., 2004).

Studies investigating the ERN oftentimes used tasks where errors are caused by impulsive 

reactions rather than participants not knowing the correct response (Davies et al., 2001). 

Miltner et al. (1997) investigated the idea that if the information on the correctness of a 

response was not immediately known but provided through a feedback following the response, 

would the ERN occur at this later time point? They indeed found an ERN-like component 

following feedback presentation which was larger (i.e., more negative) for incorrect responses 

(negative feedback) than correct (positive feedback). Follow-up dipole analysis found that this 

component seemed to have the same neural generator as the ERN (i.e., ACC; Miltner et al., 

1997). They concluded that there must be a general underlying system for error detection. In 

the following years, this ERN-like component was termed FRN, and treated as a separate but 

related ERP component. Following studies have further supported the ACC as a neural 



9

generator for the FRN, via source localisation in EEG (Balconi & Scioli, 2012; Bellebaum & 

Daum, 2008; Hauser et al., 2014; R. Yu et al., 2011; for a review see San Martín, 2012), similar 

activation in fMRI studies (Amiez et al., 2012; Mies et al., 2011; Volz et al., 2005), and 

electrophysiological recordings in rodent, macaque and most recently also human ACC 

showing similar signals (Emeric et al., 2008; Oerlemans et al., 2025; Warren et al., 2015). A 

very recent study performed in humans found that lesions to the ACC did indeed result in a 

reduced differentiation between negative and positive feedback in FRN (Oerlemans et al., 

2024), providing further support for the ACC as a neural generator. This similarity in neural 

generator thus further links FRN to ERN. The valence effect in the FRN is also well-evidenced 

and has been continuously confirmed in a wide range of studies (Paul et al., 2025; for a review 

see San Martín, 2012; see Figure 2 for a conceptual plot of the valence effect in FRN).

Figure 2. Conceptual plot showing the Feedback-related Negativity (FRN) in the feedback-
locked grand-average event-related potential for positive and negative feedback.

Following the findings on the sensitivity on the FRN to feedback valence, separate accounts 

have been made for the underlying mechanism. Two major theories emerged: the 

reinforcement learning account proposed by Holroyd & Coles (2002; presented in more detail 

below), and the prediction of response-outcome (PRO) account by Alexander and Brown 

(2011). While the former account assumes a true reflection of outcome valence in FRN, the 

second account attributes the higher FRN amplitude in response to negative feedback towards 

a lower frequency of negative feedback. They consider that after learning, negative feedback 

will occur much less frequently, as participants would generally make more correct than 

incorrect choices. This would mean that the valence effect in the FRN amplitude could similarly 

be explained as a general salience signal, as rarer stimuli have a higher salience. This can be 

observed in so-called oddball tasks. In these tasks, participants need to identify an infrequent 
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target stimulus in a series of frequent standard stimuli (Picton, 1992). Alexander and Brown 

could provide evidence for their account by keeping the amount of negative and positive 

feedback on similar levels, thus mostly eliminating oddball effects. They did this within a time 

estimation task. Participants needed to press a button after a certain amount of time had 

passed. The task thus does not have clearly distinct correct or false reactions. The amount of 

positive and negative feedback can instead be manipulated by choosing the size of the 

“correct” response time window. Alexander and Brown were able to adapt this time window 

depending on individual task performances in a way that positive and negative feedback 

occurred similarly often, thus preventing any confounding effects of feedback frequency. They 

could show that valence effects disappeared. The PRO model thus reconciles different 

proposed functionalities of ACC, in particular conflict monitoring and reinforcement learning 

(Alexander & Brown, 2019). 

However, several lines of evidence speak again the PRO model as the sole explanatory model 

for ACC and FRN: 1), only very few neurons in the ACC show valence-independent activations 

(Monosov, 2017). 2), in fMRI meta analyses, ACC was more strongly activated for signed over 

unsigned RPE (Corlett et al., 2022; Fouragnan et al., 2018; although these findings might yet 

be explainable by differences in feedback frequency). 3), the finding could not be consistently 

replicated, and other groups could still find a valence effect even after keeping feedback 

frequencies consistent among feedback valences (Becker et al., 2014; Schulreich et al., 2013). 

Nevertheless, even though the feedback valence effect might not be fully explainable by 

feedback frequency, feedback frequency is still an important variable to consider, especially 

when certain feedback types occur more frequently than others, such as positive feedback in 

later stages of learning tasks.

Another important aspect that overlaps in parts with frequency is expectancy, i.e., how 

expected the feedback was. In many studies, the concept of expectancy has been determined 

by the experimental manipulation, such as feedback probability (e.g., Bellebaum & Daum, 

2008; M. X. Cohen et al., 2007; Pfabigan et al., 2011; for a review see Sambrook & Goslin, 

2015). For example, in a probabilistic feedback learning task, a correct/incorrect choice does 

not lead deterministically to a positive/negative feedback, but rather with a certain probability. 

Here, a rare negative feedback (e.g., with a probability of 10 %) towards a correct choice might 

be considered unexpected, while a frequent negative feedback (e.g., with a probability of 90 

%) towards an incorrect choice might be considered expected. However, subjective predictions 

might differ from objective probabilities. To explore this possibility, studies have been 

conducted where participants are asked for their expectation during the experimental course 

(Hajcak et al., 2007; Ichikawa et al., 2010). In these cases, participants are asked about their 

prediction after making a choice and before receiving feedback. It could be shown that 
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subjective predictions differed substantially from objective probability (Hajcak et al., 2005, 

2007). While this could be considered the gold standard of assessing the expectations and 

consequently the expectancy of a feedback, it requires significantly more time and effort on 

the participants’ part. In recent years, instead, reinforcement learning approaches used in 

computer science have been employed more and more to model the expectancy of a feedback 

and the resulting RPE. It could be shown that the accuracy of these approaches is comparable 

to the direct assessment of feedback expectancy (Ichikawa et al., 2010). Analyses relating the 

FRN to modelled RPEs could consistently show that the FRN tracks RPEs, with a more 

negative FRN towards negative RPEs and a more positive FRN towards more positive RPEs 

(Burnside et al., 2019; Chase et al., 2011; Fischer & Ullsperger, 2013; Frömer et al., 2021; Hoy 

et al., 2021; Humann et al., 2020; Kirschner et al., 2022; Rawls & Lamm, 2021). A conceptual 

plot of this finding is given in Figure 3.

Figure 3. Conceptual plot showing the Feedback-related Negativity (FRN) as a function of 
valence (positive, negative) and expectancy (expected, unexpected).

As proposed originally by Miltner et al. (1997), the FRN was assumed to be a relative negativity, 

driven rather by negative than positive feedback. However, it was more recently proposed that 

the actual effect stems from a positivity towards positive feedback concurrent with an 

absence/reduction of this positivity towards negative feedback. This was in particular 

evidenced by principal component analysis (Proudfit, 2015; Yin et al., 2018). It was suggested 

to refer to the FRN more correctly as reward positivity (RewP; Holroyd et al., 2008; Proudfit, 

2015). Notably, the term RewP was proposed as a more correct way to describe the FRN, i.e., 

limiting the term towards a matter of nomenclature. FRN/RewP have been oftentimes 

quantified within the difference signal between positive and negative feedback, thus yielding 

the same latency/amplitude in peak detection irrespective of whether the ERP for positive 

feedback is subtracted from that for negative feedback or the other way around. However, the 
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FRN and RewP have also been discussed as different components with differing sensitivities 

towards negative and positive valence and different quantifications (e.g., Cavanagh, 2015; 

Cavanagh et al., 2019; Meadows et al., 2016). Source localisation shows differences for FRN 

and RewP in neural generators: While literature supports the ACC as a generator of the FRN 

(Krigolson, 2018; also see above), results for the RewP differ: the basal ganglia, and especially 

the ventral striatum have been proposed as a neural generator (Proudfit, 2015). It was also 

shown that the RewP reflects the neural activity towards positive RPEs better (Cavanagh, 

2015; Hoy et al., 2021), similar to the differing sensitivity of dopaminergic neurons towards 

positive and negative RPEs (see below). For the FRN, on the other hand, effects have been 

in some studies clearer for negative RPEs and in other studies clearer for positive RPEs 

(Chase et al., 2011; Hoy et al., 2021; Rawls & Lamm, 2021; Weber & Bellebaum, 2024). Future 

studies might uncover these potential differences in more detail. For this doctoral thesis, the 

term FRN will be used.

Reinforcement learning theory

A unified account of findings in EEG, (f)MRI, and the temporal difference learning principles 

was proposed in 2002 by Holroyd & Coles. The FRN was previously already closely linked to 

performance monitoring in terms of error monitoring, due to its close relation with ERN. Holroyd 

and Coles provided a unifying approach, linking this performance monitoring system to the 

reinforcement learning system in terms of a temporal difference learning signal. They proposed 

that the ACC receives a temporal difference signal from the basal ganglia, which acts as a 

critic, i.e., provides and updates a value-based signal. It also receives input from motor 

controllers, such as amygdala, orbitofrontal cortex (OFC), PFC, and others. These areas solve 

higher-level motor problems, and might weight different aspects, such as outcome value, 

outcome delay, effort, or also be more suitable to navigate different types of problems, e.g., 

social situations. According to the reinforcement learning theory, these also receive a temporal 

difference signal, in addition to sensory input. Holroyd and Coles proposed the ACC as a 

control filter, allowing and disallowing access of the motor controllers to the motor system. This 

thus offers an explanation why the FRN signal, likely generated by the ACC, can be observed 

in a large variety of situations (Faßbender et al., 2023; Peters et al., 2024).

Brain structures involved in reinforcement learning

A wide range of brain regions has been proposed to be involved in reinforcement learning. This 

is not surprising, as reinforcement learning is an important foundation for intact behaviour. 

Regions considered most central to reinforcement learning and in particular the processing of 

RPEs will be described below (also see Figure 4).
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Figure 4. Overview of brain regions closely associated with reinforcement learning. ACC = 
anterior cingulate cortex, dlPFC = dorsolateral prefrontal cortex, vmPFC = ventromedial 
prefrontal cortex, OFC = orbitofrontal cortex, SN = substantia nigra, VTA = ventral tegmental 
area.

Substantia nigra

The substantia nigra pars compacta (SNc) has been consistently associated with 

reinforcement learning. The activity of dopamine cells follows predictions of temporal difference 

learning models quite closely, showing RPE signals (Nomoto et al., 2010; Zaghloul et al., 

2009). There is good evidence that the SN is required for reinforcement learning. It was shown 

that people with disease affecting dopaminergic neurons in the SN, such as Parkinson’s 

disease, show worse reinforcement learning (Shiner et al., 2012). Additionally, 

neurostimulation of the SN in Parkinson patients undergoing deep brain stimulation surgery 

also decreased reinforcement learning success (Ramayya et al., 2014). The SN is connected 

to a wide range of brain regions, including the thalamus, nucleus ruber, basal ganglia, 

cerebellum, primary motor cortex, primary sensory cortex, and others (Kwon & Jang, 2014). 

There also seems to be a distinction in functional connectivity for the motor, cognitive, and 

limbic domain (Y. Zhang et al., 2017): while the lateral SNc seems to mainly connect to 

sensorimotor regions, the medial SNc shows connections towards limbic regions, such as 
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OFC, hippocampus, and amygdala. The ventral SN connects to PFC, ACC, and anterior insula. 

It is thus conceivable that different parts of the SN process RPE depending on the domain.

Ventral tegmental area

The ventral tegmental area (VTA) is an area in the midbrain which contains dopaminergic cells 

and is also considered part of the reward circuitry (Morales & Margolis, 2017). Similar to 

dopaminergic neurons in the SNc, it could be shown that dopaminergic neurons in the VTA 

reflect RPEs (J. Y. Cohen et al., 2012; Takahashi et al., 2023). The VTA has reciprocal 

connections with a wide range of brain areas, including (medial) PFC, basal ganglia, amygdala, 

and several further subcortical structures related to reinforcement learning and reward 

(Coenen et al., 2018; Derdeyn et al., 2022; Kwon & Jang, 2014; Morales & Margolis, 2017). It 

also shows connectivity with sensorimotor areas (Hosp et al., 2019). There is evidence that 

the function of the VTA and SNc might differ, with the VTA relaying true value-based signals, 

while the SNc relays information that might better align with policy, in terms of an actor-critic 

model (Araújo et al., 2024; Fraser et al., 2023; Lerner et al., 2021; Ramayya et al., 2014). 

Besides the dopaminergic neurons and projections of the VTA, there has been considerable 

research on gamma-aminobutyric acid-ergic (GABAergic) and glutamatergic neurons in the 

VTA (Walsh & Han, 2014), also attributing a role in reinforcement learning to these neurons (J. 

H. Yoo et al., 2016). 

Note that some studies do not differentiate between VTA and SNc, and instead only specify 

that they measured dopaminergic neurons (e.g., Bayer & Glimcher, 2005; Schultz et al., 1997) 

or jointly report results for the two structures (e.g., Chowdhury et al., 2013; S. Zhang et al., 

2016). This is oftentimes due to difficulties in distinguishing the two areas (Trutti et al., 2019).

Striatum

The striatum, the largest part of the basal ganglia, has been recognised as one of the main 

processing stations for reinforcement learning. It receives dopaminergic input from the SN and 

the VTA, and is central to action selection (Bariselli et al., 2019; Silberberg & Bolam, 2015). 

Distinctions have been made into the ventral and dorsal striatum (and also the central striatum 

as a transitory zone; Basile et al., 2021). The ventral striatum contains the nucleus accumbens, 

while the dorsal striatum contains the nucleus caudatus and the putamen (Haber, 2011; Yates, 

2023). Note that the ventral striatum also includes parts of the nucleus caudatus and putamen 

(Haber, 2011). The ventral and dorsal striatum differ in their connectivity to the PFC, with the 

ventral striatum receiving projections from the ventromedial PFC (vmPFC) while the dorsal 

striatum receives projections from the dorsolateral PFC (dlPFC; Averbeck & O’Doherty, 2022). 

Both areas have been implicated in reinforcement learning, mostly in terms of value functions 

(Fellows & Farah, 2007; Lee & Seo, 2007; O’Doherty, 2011; also see below). While the dorsal 

and ventral striatum do not directly project back to the PFC, they do so indirectly. The ventral 
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and dorsal striatum project towards the ventral and dorsal pallidum, respectively, which then 

projects towards the vmPFC and dlPFC, respectively, via the medial dorsal nucleus of the 

thalamus (Averbeck & O’Doherty, 2022).

Concerning function, there has been considerable support that the ventral and dorsal striatum 

act as critic and actor, respectively, in terms of an actor-critic model (Araújo et al., 2024; 

Balleine et al., 2007; O’Doherty et al., 2004). Consequently, the ventral striatum should reflect 

value-related information while the dorsal striatum should reflect policy-related information. 

The ventral striatum was shown to indeed reflect RPE and reward value (D’Ardenne et al., 

2008; although there have been some inconsistencies dependent upon used measures; van 

der Meer & Redish, 2011). It is also connected to several brain areas associated with value-

based functions. The vmPFC, with which the ventral striatum has reciprocal connections, is 

strongly associated with the tracking of outcome values (Hiser & Koenigs, 2018; Jocham et al., 

2011). Considerable input to the ventral striatum comes from the VTA, which has consistently 

shown to reflect RPEs (D’Ardenne et al., 2008; Lerner et al., 2021). For the dorsal striatum, 

evidence points towards a role in action selection (Balleine et al., 2007; Nakano et al., 2000), 

further supported by its input broadly coming from, but not limited to, sensorimotor areas 

(Nakano et al., 2000; Postuma & Dagher, 2006). Findings thus seem consistent with an actor-

critic distinction within the striatum.

Anterior cingulate cortex

The ACC has oftentimes been proposed to play a role in performance monitoring, an 

overarching framework for reinforcement learning (Botvinick et al., 1999; Clairis & Lopez-

Persem, 2023; Holroyd et al., 2004). Important functional distinctions have been made 

according to topography: The ACC can be subdivided into a more anterior part, referred to as 

rostral/ventral ACC, and a more posterior part, referred to as caudal/dorsal ACC (Stevens et 

al., 2011). A functional distinction has been proposed in terms of hierarchy of action selection, 

with dorsal ACC monitoring performance of specific tasks and rostral ACC monitoring the 

execution of higher-level operations (Holroyd & Verguts, 2021). This is further supported by its 

connectivity towards other brain areas: the dorsal ACC has shown connectivity towards 

sensorimotor circuits, while the rostral ACC has shown connectivity towards prefrontal regions 

(Margulies et al., 2007). Similar has been proposed for prediction errors, with dorsal ACC 

suggested to compute prediction errors for specific events and rostral ACC to compute 

prediction errors concerning the context of the event (Holroyd & Verguts, 2021). Monosov 

(2017) conducted single cell recordings showing that ACC neurons reflected outcome 

uncertainty, with reward-related information more in the dorsal ACC and punishment-related 

information more in the rostral ACC. Only few neurons showed excitations towards uncertainty 

under both contexts. However, lesion studies have yielded less clear results considering the 
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role of the ACC, with the majority showing deficits in cognitive control and behavioural flexibility 

(e.g., Akam et al., 2021; Brockett et al., 2020; di Pellegrino et al., 2007; Maier et al., 2015; but 

also see Kennerley et al., 2006; Rushworth et al., 2003).

The connectivity of the ACC further supports a role in reinforcement learning. The pregenual 

ACC, a subdivision of the rostral ACC (Stevens et al., 2011), showed connectivity to the vmPFC 

and lateral OFC, areas which process outcome value information (Rolls, 2023). Connectivity 

with the VTA was also shown: the direction, however, depends on approach/avoidance 

behaviour (Elston et al., 2018, 2019), an important function for anxiety disorders (Aupperle & 

Paulus, 2010; Wong et al., 2022). Between the rostral and dorsal ACC, there seems to be a 

transitory zone which seems to integrate both sensorimotor and prefrontal networks, potentially 

with the function of conflict and error monitoring (Margulies et al., 2007).

Amygdala

The amygdala is most known for its function in fear (LeDoux, 2007). However, the amygdala 

has been found to be involved in a wide range of functions, such as aggression, maternal and 

sexual behaviours (LeDoux, 2007). The amygdala seems to also play a central role in 

reinforcement learning. A study performed in macaques could show that lesions in the 

amygdala resulted in deficits in both deterministic and stochastic reinforcement learning (Costa 

et al., 2016). The amygdala receives projections from the VTA (Tang et al., 2020) and it could 

be shown that inhibition of these projections can decrease learning of drug-seeking behaviour 

but did not affect reinstatement (D. M. Smith & Torregrossa, 2024).

Orbitofrontal cortex

Electrophysiological recordings and imaging studies have found a multitude of signals related 

to reinforcement learning within the OFC, including outcome value, choice representation, 

RPE, action-outcome history, and outcome expectation (for a review see Groman et al., 2021). 

The OFC might integrate these signals (Moneta et al., 2024). Indeed, it has been proposed 

that the OFC provides state representation, i.e., task-related information such as the mapping 

of state transitions (Schuck et al., 2018; Z. Zhang et al., 2018). This would naturally require the 

input of a lot of task-related information. Several lesion studies have indicated that the OFC is 

required for classical conditioning, the learning of stimulus-outcome associations, and meta 

reinforcement learning (Camille et al., 2011; Hattori et al., 2023; McDannald et al., 2011; 

Rudebeck et al., 2008).

Ventromedial prefrontal cortex

The vmPFC lies directly adjacent to the OFC and is functionally oftentimes closely associated 

with it, as both are part of the limbic loop (J. X. Wang et al., 2018). The vmPFC tracks expected 

outcome values, task state, and outcome values of irrelevant, alternative contexts, and seems 
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to integrate this information (Moneta et al., 2023, 2024). Patients with damage to the vmPFC 

show deficits in reinforcement learning within both maintenance and adaptation of outcome 

values (Schneider & Koenigs, 2017).

Dorsolateral prefrontal cortex

The dlPFC also tracks information closely related to reinforcement learning, such as outcome 

value and RPE (Lee & Seo, 2007). It seems to construct object value estimates from previous 

recent experiences, converting this information to choice signals (Tsutsui et al., 2016). This is 

further supported by the finding that the dlPFC modulates activity in the motor cortex (Morris 

et al., 2014), and studies using non-invasive brain stimulation (NIBS) showing that stimulation 

of the dlPFC influences reinforcement learning strategies (Ott et al., 2011; Overman et al., 

2023). While stimulation of the left dlPFC increased reward-guided behaviour, stimulation of 

the right dlPFC increased avoidance-guided behaviour. As such, the role of the dlPFC has not 

fully been differentiated from the ACC (J. X. Wang et al., 2018).

Feedback valence

While the original article by Schultz and colleagues (1993) indicated that positive and negative 

RPEs are processed within the same system, this same finding has not been so clear in 

subsequent fMRI and EEG studies. The decrease of dopaminergic neuron firing rate below 

baseline observed by Schultz et al. (1993) was also rather small, as the baseline of 

dopaminergic neurons is rather low (3-8 spikes per second; Niv & Schoenbaum, 2008). It was 

shown that micro-stimulation of the SN only had an effect on behaviour related to positive, but 

not negative feedback (Ramayya et al., 2014). For EEG, there has been an ongoing debate 

on whether the valence effect within the FRN stems from a negativity towards negative 

feedback or rather a positivity towards positive feedback, resulting in the question whether 

different measures should be used (see above for a discussion of RewP). The FRN is more 

strongly associated with negative valence, while the RewP is more strongly associated with 

positive valence. The differentiation into valences has also been of topic in fMRI studies. 

Findings overlap, with the ventral striatum, i.e., the suggested generator of the RewP, rather 

coding positive prediction errors and the dorsal ACC, i.e., the suggested generator of the FRN, 

rather coding negative prediction errors (Meder et al., 2016). This effect was confirmed in a 

recent meta-analysis (Corlett et al., 2022).

Reward and punishment

While RPE valence is oftentimes considered before outcome valence, there might be 

differences in how prediction errors are processed for rewards and punishments. The findings 

by Schultz et al. (1993, 1997) were based on reward delivery and reward omission. One might 

assume that reinforcers can be grouped into rewarding ones (i.e., reward delivery, punishment 

omission) and punishing ones (i.e., reward omission, punishment delivery). Photostimulation 
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was able to elicit both approach behaviour by excitatory stimulation of the SNc and VTA, and 

avoidance behaviour by inhibitory stimulation of both SNc and VTA (Ilango et al., 2014). 

However, it could be argued that this did not require a distinction into reward-related and 

punishment-related stimuli. In practice, this assumption proves difficult. Studies in 

dopaminergic neurons examining aversive stimuli could not find a sensitivity towards 

punishment-related stimuli (punishment delivery and withdrawal; Fiorillo, 2013; Mirenowicz & 

Schultz, 1996). It is thus advisable to consider both appetitive and aversive contexts before 

generalising from one to the other.

Signed and unsigned reward prediction errors

While a true RPE is signed and thus contains valence information, the magnitude of the RPE 

can be regarded separately from valence, in the form of an unsigned RPE. Considering brain 

regions with more activity related to signed than unsigned RPE, a meta-analysis performed by 

Corlett et al. (2022) could find activation of the dorsal and ventral striatum, pallidum, medial 

PFC and anterior and posterior cingulate. As described above, these are regions associated 

with value-based functions or policy selection within reinforcement learning. In addition, 

neurons in the pallidum were shown to also reflect signed RPE activity, and correlate with 

learning rates in a classical conditioning setup (Kaplan et al., 2020). For the posterior cingulate, 

a multitude of functions has been proposed, including monitoring of subjective values and 

reward outcomes (Pearson et al., 2011). Considering brain regions that reflect an unsigned 

RPE more strongly than the signed RPE, Corlett et al. found the cerebellum, dlPFC, 

dorsomedial PFC, cingulate, SMA, supramarginal gyrus, parietal regions, middle temporal 

gyrus, claustrum, and a disparate region of insula. Several of these regions have been 

implicated in reinforcement learning: the cerebellum has been implicated in processing of 

RPEs in some initial studies (see below for an in-depth discussion). The dlPFC and parietal 

cortex have been found to track action values (Lee et al., 2012). The dorsomedial PFC 

including the SMA has been implicated in probabilistic reasoning concerning switching 

between exploitation and exploration (Domenech & Koechlin, 2015). The supramarginal gyrus 

and anterior insula have been associated with predictive functions (Siman-Tov et al., 2019). 

The middle temporal gyrus has been associated with the detection of general sensory 

mismatches, independent of actions (van Kemenade et al., 2019). Lastly, for the claustrum, a 

more general role in cognitive control and higher cognitive functions has been proposed 

(Madden et al., 2022; J. B. Smith et al., 2020). Taken together, there are considerable 

differences in brain regions processing signed and unsigned RPEs, which might be 

differentially related to valence and salience.
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Classical and operant conditioning

As presented above, reinforcement learning encompasses only operant conditioning, as it 

requires an actor to influence its state through its actions. This is not the case for classical 

conditioning. Thus, while brain activity in both processes can be explained by reinforcement 

learning algorithms, this does not extend to behaviour. Brain activity might still differ depending 

on the type of conditioning. Corlett et al. (2022) found that there was an overlap in brain 

activations between classical and operant conditioning, especially in dorsal and ventral 

striatum, insula and midbrain. However, there were also differences in activation: operant 

conditioning engaged the dorsal and ventral striatum, anterior and posterior cingulate, and 

several other frontal and parietal regions more, while classical conditioning engaged the 

amygdala, parahippocampal gyrus, putamen, insula, and several other cortical and subcortical 

areas more. Note that this might be due to different use of positive/negative outcomes in 

classical and operant conditioning (Corlett et al., 2022). Notably, there yet seems to be a 

pattern where action-outcome association (which might only occur in operant conditioning) 

requires the ACC and not the OFC, but stimulus-outcome association (which can occur in both 

classical and operant conditioning) requires the OFC but not the ACC (Camille et al., 2011; 

Rudebeck et al., 2008). These findings are not explainable by valence effects. There might 

thus yet be a difference in the required brain areas for classical and operant conditioning, even 

though the overlap seems to be considerable.

Feedback delays

While feedback can be provided immediately upon action performance, it can also be provided 

after a delay. Feedback delay generally refers to the time passed between the response and 

feedback presentation. It could be shown by several groups that the FRN is more negative for 

negative over positive feedback only, or at least more strongly, for feedback delivered with only 

short delays compared to feedbacks delivered with longer delays post-response (Arbel et al., 

2017; Höltje & Mecklinger, 2020; Weinberg et al., 2012; Weismüller & Bellebaum, 2016). At 

least one study (Peterburs et al., 2016) also showed a gradual decrease in valence 

differentiation with increasing feedback delay. This reflects fMRI findings showing that longer 

feedback delays result in less involvement of the striatum/dopaminergic structures and 

increased involvement of the medial temporal lobe, in particular the hippocampus (Foerde & 

Shohamy, 2011). 

Evidence for a role of the cerebellum in reinforcement learning

While many neuroimaging studies have been conducted on the matter of reinforcement 

learning, focus has been put on dopaminergic structures. Descriptive models have further 

focussed on the cerebral cortex in relation to dopaminergic structures, as it is easy to measure 

with fMRI. Smaller structures, on the other side, are harder to measure with the resolution of 
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fMRI. In the past, it was general practice to not or not fully measure the cerebellum due to 

reasons of practicality. In fMRI, measuring the complete cerebellum in addition to the cerebrum 

oftentimes requires a larger field of view, increasing acquisition time. In addition, cerebellar 

activity is likely only partially captured by fMRI (Johnson et al., 2019). In EEG, the cerebellum 

lies in an impractical region at the lower back of the head, which is not covered by standard 

EEG caps and where impedances are usually higher. Additionally, muscle artefacts due to the 

proximity to the neck muscles are more present (Todd et al., 2018).

Considering recent studies in humans and rodents, this might have concealed a potential 

supportive role of the cerebellum in reinforcement learning (Berlijn et al., 2024; Kostadinov & 

Häusser, 2022; Kruithof et al., 2023). In rodents, several studies from different groups have 

found activity in the cerebellum and in projections originating from the cerebellum resembling 

RPEs (Hull, 2020; Kostadinov & Häusser, 2022; Manto et al., 2024). These studies offer good 

reason to look more closely at the cerebellum and its role in reinforcement learning. For 

humans, evidence is more correlative with only limited causal evidence (e.g., Nicholas et al., 

2024; Rustemeier et al., 2016; Thoma et al., 2008). It is further not clear what the cerebellum 

contributes to the reinforcement learning processes, i.e., which role it plays. Within the doctoral 

thesis at hand, I attempted to contribute towards answering these questions.

The cerebellum and its functions

The human cerebellum is a brain structure located inferior and posterior to the cerebrum 

(Błaszczyk et al., 2024). It lies in the posterior cranial fossa, just below the occipital lobe. Even 

though its size is small (with its Latin name meaning little brain), its cortex is folded much more 

delicately. The cerebellum contains around 50 % of the total number of neurons in the brain 

and has around 80 % of the surface volume of the neocortex even though it makes up only 

around 10 % of the total brain mass (Azevedo et al., 2009; Sereno et al., 2020; van Essen et 

al., 2018). Concerning its composition, clear differences from the composition of the cerebrum 

must be considered. While these differences might enable the cerebellum to perform certain 

tasks that cannot be performed by the cerebrum (such as fine movements), they are also one 

of the reasons why cerebellar functionality beyond motor function has been historically 

underresearched. Its different composition requires potentially different ways of measuring, 

analysing, or interpreting data that require knowledge of these differences.

Anatomy

Macroscopic anatomy

The cerebellum consists of two hemispheres as well as the vermis in the middle (Colin et al., 

2001; Voogd & Glickstein, 1998; Voogd & Marani, 2016). The cerebellar cortex can be 

distinguished into ten lobules which are separated by sulci running from left to right. Lobule I-
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V are generally considered to be the anterior lobe of the cerebellum while lobule VI-IX are 

considered to lie in the posterior lobe of the cerebellum. The anterior and posterior lobe of the 

cerebellum are separated by the fissure prima (Moulton et al., 2014). Note that lobules VII and 

VIII are frequently separated into Lobule VIIa/VIIIa and VIIb/VIIIb, and Lobule VIIa is further 

separated into Crus I and II. The flocculonodular lobule (lobule X) is separated from the 

posterior cerebellum by the posterolateral fissure (Voogd & Glickstein, 1998). An anatomical 

overview of cerebellar lobes, lobules, and sulci is given in Figure 5. Broadly speaking, motor 

functions have been attributed to anterior parts and higher (non-motor) functions to the 

posterior part (e.g., cognition, emotion, social behaviour; Stoodley et al., 2016; Tedesco et al., 

2011). The posterior cerebellar lobe, in particular Crus I and II, developed over-proportionately 

from an evolutionary standpoint, together with prefrontal cerebral areas, supporting the notion 

that it supports higher cognitive function (Balsters et al., 2010).

Figure 5. Schematic illustration of the cerebellar lobes, lobules, and sulci.

While anatomical parcellations of the cerebellum into lobules have been helpful to report 

findings, these do not reflect functionally distinct zones accurately, and activations often cross 

lobule borders. In recent years, attempts have been made to parcellate the cerebellum based 

on non-anatomical markers, such as resting state activity (Buckner et al., 2011) and task-based 

activations (King et al., 2019; Nettekoven et al., 2024). The most recent functional parcellation 

developed by Nettekoven et al. (2024) made use of several datasets which used different types 

of tasks, as to overcome inaccuracies due to lack of certain task types (e.g., motor tasks, 

working memory tasks, somatotopic tasks). The resulting parcellation distinguishes into four 

different functional regions on the coarsest level which are motor, action, demand, and social-
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linguistic-spatial functions. Such functional parcellations have been shown to have higher 

predictability of functional boundaries (Nettekoven et al., 2024), and might be a useful addition 

to report (f)MRI findings.

Within the white matter in the middle of the cerebellum lie the cerebellar nuclei, the only output 

station of the cerebellum. There are four cerebellar nuclei: the dentate nucleus, the fastigial 

nucleus, the globose nucleus, and the emboliform nucleus (Colin et al., 2001; Prekop & 

Wingate, 2016). The globose nucleus and the emboliform nucleus are sometimes collectively 

referred to as interposed nucleus (Prekop & Wingate, 2016). The dentate nucleus is the largest 

of the four nuclei and contains 90 % of the cerebellar nuclei neurons (Colin et al., 2001). The 

output from the dentate nucleus seems to be segregated according to functionality, with dorsal 

parts sending projections towards cerebral motor areas, and ventral parts sending projections 

to cerebral non-motor areas (e.g., areas concerned with cognitive, emotional, executive, or 

linguistic functions; Ramnani, 2012).

The cerebellum is supplied with blood via three paired arteries. The posterior inferior cerebellar 

arteries (PICAs) originate directly from the intracranial vertebral arteries (Błaszczyk et al., 

2024; Caplan, 2022; Delion et al., 2017). They supply posterior portions of the cerebellum, but 

in some cases also contribute to supply towards the cerebellar nuclei, in particular the fastigial 

nucleus and at times the ventral part of the dentate nucleus (Caplan, 2022; Delion et al., 2017). 

The intracranial vertebral arteries join at the medullo-pontine junction, forming the basilar 

artery. The anterior inferior cerebellar arteries (AICAs) then originate from the basilar artery 

(Delion et al., 2017), supplying a rather limited part of the anterior cerebellum and flocculus 

(Caplan, 2022). Lastly, the superior cerebellar arteries (SCAs) originate from the end of the 

basilar artery (Błaszczyk et al., 2024; Malicki et al., 2023), close to the location where it splits 

into the paired posterior cerebral arteries (Caplan, 2022). It supplies the upper areas of the 

cerebellum but also the cerebellar nuclei (Błaszczyk et al., 2024; Caplan, 2022; Delion et al., 

2017; Malicki et al., 2023). The SCAs and PICAs can usually be distinguished in lateral and 

medial branches (Delion et al., 2017). Strokes in the cerebellum are often limited to these two 

major arteries, and oftentimes also to the medial or lateral branch (e.g., medial SCA; Caplan, 

2022). Note that the supply of these three arteries is not limited to the cerebellum. For example, 

the AICAs largely supply the lateral pontine tegmentum, and the medial PICAs often also 

supply the dorsal medulla oblongata (Caplan, 2022). There is also evidence that the SCAs 

partially supply the lateral pontine tegmentum and the pontine and mesencephalic tectum 

(Caplan, 2022; Delion et al., 2017). Cerebellar strokes however do not always affect 

extracerebellar brain areas (Chaves et al., 1994).
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Cytoarchitecture

Considering the seminal work of Korbinian Brodmann, who mapped the entire cerebral cortex 

based on the differences in cytoarchitectural organisation, one might expect that the same is 

true for the cerebellar cortex. However, very different from the cerebral cortex, the cerebellar 

cortex shows a uniform organisation, and consequently no differences in cytoarchitectural 

organisation between cerebellar areas with different functionality (Schmahmann, 2000). This 

peculiarity later resulted in the idea that the cerebellum might simply perform the same 

computations for different domains (see below). Note that more recent work did find more 

subtle differences in microscopic architecture and other areas, such as differences in dendritic 

bifurcation of Purkinje cells (Busch & Hansel, 2023), or Zebrin expression (Y.-C. Lin et al., 

2020).

The cerebellar cortex consists of three layers (Voogd & Glickstein, 1998): The granule layer 

lies closest to the white matter and furthest from the cortical surface. The molecular layer is 

located on the surface of the cerebellar cortex, and in between the two lies the Purkinje layer. 

Granule layer

The granule layer’s main purpose is thought to separate patterns received from the input from 

mossy fibres and expand them (Dieudonné, 2016). It contains granule, Golgi, unipolar brush, 

and Lugaro cells (Ruigrok et al., 2015). 

The small granule cells are the main type of cells in the human brain, with cerebellar granule 

cells making up more than half of all neurons in the human brain (Herculano-Houzel, 2010; M. 

J. Wagner et al., 2017). Granule cells receive their input mainly from mossy fibres which 

originate from several different brain regions (Shinoda & Sugihara, 2022; see below for a 

summary of input to the cerebellum via mossy fibres). While one granule cell receives input 

from 4-5 mossy fibres, one mossy fibre supplies 400-600 granule cells (Ito, 2009). The output 

of granule cells is excitatory, using glutamate as neurotransmitter (Hudson et al., 1976; Su et 

al., 1997). The axons reach into the molecular layer which is at the surface of the cerebellar 

cortex. There, the axons bifurcates, forming a ‘T’-shape, and constituting the parallel fibres 

(D’Angelo, 2016). Besides granule cells, Golgi cells and unipolar brush cells can be found in 

the granular layer. 

Golgi cells receive excitatory inputs from both mossy fibres and granule cells (Dieudonné, 

2016). The input from granule cells originates both from ascending axons of neighbouring 

granule cells, as well as from more distant granule cells via parallel fibres. Golgi cells also 

receive inhibitory inputs from Lugaro cells (Lainé & Axelrad, 1998). Collaterals from climbing 

fibres also innervate Golgi cells (Castejon & Sims, 2000). While some Golgi cells are 

interconnected with each other, Golgi cells do not receive input from Purkinje cells or molecular 
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layer interneurons (Dieudonné, 2016). Golgi cell output is the only inhibitory input for granule 

cells. A role in spatio-temporal coordination of cerebellar responses has been proposed for the 

Golgi cells, consistent with their complex intracerebellar connectivity (Galliano et al., 2010).

Unipolar brush cells, which can be found in the cochlear nuclear complex in addition to the 

cerebellar cortex, receive their input, similarly to the granule cells, from mossy fibres (Martina, 

2016). However, one unipolar brush cell receives input from only one mossy fibre, via its short 

dendrite with a brush-like ending (Martina, 2016). Their axons do not leave the granule layer, 

and instead terminate at several mossy fibres, forming a feedforward amplification of mossy 

fibre signal (Mugnaini et al., 2011).

Lastly, the Lugaro cells lie just beneath the Purkinje cell layer, but still in the granule layer 

(Hirono, 2016). They receive input from a multitude of fibres and cells, including climbing fibres, 

mossy fibres, granule cells, Purkinje cells and Golgi cells (Miyazaki et al., 2021). They are also 

well interconnected with neighbouring Lugaro cells (Miyazaki et al., 2021). While they do not 

innervate Purkinje cells, they exert an inhibitory output towards basket and stellate cells in the 

molecular layer as well as towards Golgi cells (Lainé & Axelrad, 1998; Miyazaki et al., 2021).

Molecular layer

The most superficial layer, i.e., the molecular layer, contains the parallel fibres as well as 

stellate and basket cells. Both of these cell types are inhibitory interneurons, and both receive 

excitatory input from parallel fibres and climbing fibres (S. J. Liu & Dubois, 2016; Watanabe, 

2016). They are often collectively referred to as molecular layer interneurons. However, their 

function might differ, as they inhibitorily stimulate Purkinje cells at different points. Basket cells 

are located in the basal third of the molecular layer and stimulate the soma and axons of 

Purkinje cells (Watanabe, 2016). Thus, they can inhibit the spiking output of Purkinje cells (S. 

J. Liu & Dubois, 2016; Watanabe, 2016). Stellate cells on the other hand suppress Purkinje 

cell activity in a different way: they are located in the top 2/3 of the molecular layer and target 

the dendrites of Purkinje cells (Watanabe, 2016). As Purkinje cells also receive input from 

parallel fibres (Daniel & Crepel, 2022; Grangeray et al., 2016), stellate cells inhibit rather via 

counterbalancing the parallel fibre excitation without directly inhibiting the spiking output of 

Purkinje cells (Watanabe, 2016). This is often referred to as a feedforward inhibition.

Purkinje layer

Lastly, the much thinner Purkinje layer lies between the granule and molecular layer. It contains 

the Purkinje cells, but also the much smaller candelabrum cells (Grangeray et al., 2016; Lainé 

& Axelrad, 1994).

Purkinje cells are some of the most remarkable cells in the cerebellar cortex, having the largest 

dendritic tree out of all cells in the human brain (Busch & Hansel, 2024). They were first 
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described by Jan Evangeliska Purkynĕ in 1893 and famously characterised by Ramón y Cajal 

in 1899 (Grangeray et al., 2016). They receive excitatory input from the granule cells via the 

parallel fibres as well as from the climbing fibres. While one Purkinje cell receives input from 

an average of 200,000 parallel fibres, it is innervated by only one climbing fibre (Daniel & 

Crepel, 2022; Grangeray et al., 2016; Shinoda & Sugihara, 2022). Note that the latter 

information was strongly driven by findings in rodents, in which around 47.5 % of Purkinje cells 

have only one dendrite. Newer findings show that around 16.6 % of rodent Purkinje cells are 

polysynaptic, i.e., have several trunks emerge directly from the soma (Busch & Hansel, 2023). 

These numbers are strongly increased in humans, especially for the polysynaptic Purkinje cells 

(51.2 % instead of 16.6 %; Busch & Hansel, 2023), potentially hinting at inputs from more than 

one climbing fibre. Very recently it could be shown that indeed at least 1/10 of Purkinje cells 

receive input from more than one climbing fibre (Busch & Hansel, 2024). The Purkinje cells 

also receive inhibitory input from the molecular layer interneurons (see above). One single 

axons targeting the cerebellar nuclei constitutes the inhibitory, GABAergic output of the 

Purkinje cells (Grangeray et al., 2016). While stimulation of parallel fibres result in a simple 

spike output, stimulation of climbing fibres results in a complex spike output, which is a massive 

electrical output compared to the smaller and frequent simple spikes (Bauswein et al., 1983; 

Davie et al., 2008; Grangeray et al., 2016; Orozco et al., 2010).

The candelabrum cells form a part of an inhibitory loop between the molecular layer 

interneurons and Purkinje cells (Lainé & Axelrad, 1994; Osorno et al., 2022): They receive 

excitatory inputs from granule cells and mossy fibres, but also receive inhibitory inputs from 

Purkinje cells. Integrating these inputs, candelabrum cells project towards stellate and basket 

cells in the molecular layer. Nevertheless, their exact function is not yet well understood 

(Osorno et al., 2022).

Note that this unique neuroarchitecture of the cerebellum makes it a very suitable candidate 

for a supervised learner: the massive sensory input from the mossy fibres ensures sufficient 

input of information, while climbing fibre input has oftentimes been proposed as a teaching 

signal input, constituting the two main requirements for a supervised learner (Priddy & Keller, 

2005; Raymond & Medina, 2018).

Cerebellar nuclei neurons

Lastly, the cerebellar nuclei consist of several distinct types of neurons. The two best known 

projecting neurons are the large glutamatergic projection neurons which project to several 

areas outside the cerebellum and the midsize GABAergic projection neurons which project to 

the inferior olive (Hoshino et al., 2022; Kebschull et al., 2024). Additionally, there are several 

other types of neurons described for the cerebellar nuclei, including  glutamatergic, 

GABAergic, and glycinergic neurons (Bagnall et al., 2009; Uusisaari et al., 2007; Uusisaari & 
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De Schutter, 2011; Uusisaari & Knöpfel, 2010). Five types are found in all cerebellar nuclei, 

which are Class A and B glutamatergic projection neurons, GABAergic neurons projecting to 

the inferior olive, local GABAergic and glycinergic neurons, and GABA and glycinergic neurons 

projecting to the cerebellar cortex (Kebschull et al., 2024). However, so far, 14 types of 

excitatory cell types could be identified across all nuclei (Kebschull et al., 2024), showcasing 

a high complexity in cerebellar nuclei neurons. Knowledge on the neurons in the cerebellar 

nuclei and their function is however small in comparison to the cerebellar cortex (Kebschull et 

al., 2024; Uusisaari & De Schutter, 2011).

Connectivity with other brain areas

To understand the functionality of the cerebellum, it is helpful to know from which brain areas 

it receives projections and to which brain areas it projects (Strick et al., 2009). The cerebellum 

mostly connects with other brain areas in a closed-loop feedback system organised 

topologically (Chen et al., 2022), meaning that the areas towards which the cerebellum 

projects, project back to the same areas within the cerebellum. Thus, the function of brain 

areas with which a certain area of the cerebellum is connected might be indicative of the 

function of the cerebellar area.

Projections from and to the cerebellum pass via the three cerebellar peduncles, which are thick 

fibre bundles differentiated into the superior, middle, and inferior peduncle (Schmahmann, 

2016). 

The cerebellum receives all of its projections via either mossy fibres or climbing fibres (Ruigrok 

et al., 2015). The sources of mossy fibres are manyfold while the climbing fibres originate from 

the inferior olive. The sole output of the cerebellar cortex is the inhibitory output of the Purkinje 

cells. These project towards the cerebellar nuclei, which project towards a wide range of brain 

areas (Kebschull et al., 2024).

Cerebellar input via the mossy fibres mostly passes through four precerebellar nuclei: the 

pontine grey nucleus and reticulotegmental nucleus in the pons, the lateral reticular nucleus in 

the hindbrain, and the external cuneate nucleus in the medulla oblongata (Hoshino et al., 2022; 

Yamada & Hoshino, 2016). Input towards these nuclei stems from widespread areas within the 

frontal, parietal, temporal, and occipital lobe (Strick et al., 2009). Afferences from the pons 

mainly originate from the cerebral cortex, although the superior colliculus and other areas of 

the brain stem partially contribute (Glickstein, 2022). Some mossy fibre input also originates 

from the spinal trigeminal nucleus and Clark’s column in the spinal cord (Hoshino et al., 2022; 

Yamada & Hoshino, 2016) and mainly terminate in the anterior cerebellum, hinting at a primary 

motor function (Ruigrok et al., 2015). Historically, it was assumed that this large variety of 

inputs serves as a means of gaining as much sensory input as possible, to convey 
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sensorimotor information to the motor cortex (Strick et al., 2009). However, this view has 

changed since, following findings of outputs of the cerebellum to several other brain regions.

Initial problems arose from the circumstance that only monosynaptic projections could be 

traced. This problem could be overcome with the help of viral tracers, such as rabies virus 

(Kuypers & Ugolini, 1990). The group around Peter Strick could show via anterograde and 

retrograde tracing that the cerebellum is interconnected with both the primary motor cortex and 

prefrontal areas (R. M. Kelly & Strick, 2003; Middleton & Strick, 2001). The primary motor 

cortex projected mainly to cerebellar lobule IV-VI, which are primarily labelled as motor/pre-

motor lobule. On the other hand, several prefrontal areas they examined were found to 

exclusively project back towards cerebellar Crus II which is located in the posterior cerebellum. 

A study using diffusion weighted imaging could confirm these results in humans (Palesi et al., 

2017). They found that motor areas projected primarily to lobule I-VI (primarily the anterior 

lobe). However, projections from the cerebral cortex were primarily received by the largely non-

motor Crus I, II, lobule VIIb and lobule VIII (Palesi et al., 2017). Areas in the cerebral cortex 

that projected to the cerebellum were mainly within the temporal and frontal lobe (Palesi et al., 

2017). In total, around 70 % of the tracts seemed to involve cognitive cerebral and cerebellar 

areas, hinting towards non-motor functions of the cerebellum.

The cerebellum is widely interconnected with areas across all cerebral lobes. Tracing studies 

could show connections with the cerebellum via the pons from not only motor but also non-

motor frontal areas, such as ACC, dlPFC and anterior PFC (Glickstein et al., 1985; Ramnani, 

2012; Schmahmann & Pandya, 1997). Bidirectional connections between the cerebellum and 

parietal lobe, in particular the intraparietal sulcus and inferior parietal lobe, were shown in both 

tracing studies and functional connectivity in-vivo (Bostan & Strick, 2022; Clower et al., 2001; 

Habas, 2021; Prevosto et al., 2010; Ramnani, 2012). While Chen et al. (2022) found that a 

majority of projections into the cerebellum come from frontoparietal and subcortical networks, 

Palesi et al. (2017) found that the majority of projections originate from the temporal lobe. 

Within the temporal lobe, projections towards the cerebellum seems to mainly come from the 

superior temporal lobe via the pons (Schmahmann & Pandya, 1991, 1997). This connection 

could be shown to be functionally significant for auditory pattern discrimination (Stockert et al., 

2021). Diffusion-weighted imaging in humans could however also show projections from the 

hippocampus and amygdala to the cerebellum (Palesi et al., 2017). Last, bidirectional 

connections between the cerebellum and occipital lobe have been demonstrated as well 

(Glickstein et al., 1994; Schmahmann & Pandya, 1992, 1993), although seemingly more 

strongly for higher visual areas (van Es et al., 2019; Xue et al., 2021). Note that the cerebellum 

also forms at least two closed loops with the contralateral inferior olive, which is the only source 
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of input towards the cerebellum via the climbing fibres (Bengtsson & Hesslow, 2006; De Zeeuw 

et al., 1998; Loyola et al., 2022).

Importantly, the cerebellum is also connected to areas involved in reinforcement learning. 

Studies in rodents and macaques showed that the cerebellum is connected with the striatum 

via the thalamus as a di-synaptic pathway (Hoshi et al., 2005; Ichinohe et al., 2000). This was 

further supported by resting state functional connectivity in humans (for a meta-analysis see 

Cauda et al., 2011). Further evidence comes from diffusion tensor imaging, diseases involving 

either the basal ganglia or the cerebellum, and task-based functional connectivity (for a review, 

see Bostan & Strick, 2018). Concerning the SN, studies in rodents and cats could show that 

stimulation of the cerebellum affected dopamine release in the SN (Nieoullon et al., 1978), and 

lesion of the SNc affected glutamate release in the cerebellum (Gołembiowska et al., 2013). 

The corresponding pathway likely also runs through the thalamus (Faull & Carman, 1968). 

However, a very recent study could also show a monosynaptic projection from the cerebellum 

towards the SNc (Washburn et al., 2024). On a similar note, projections from the dentate 

nucleus towards the VTA have also been shown (Beier et al., 2015; Watabe-Uchida et al., 

2012). Lastly, the cerebellar lobule VI and Crus I have also been implicated in a salience 

network with the ACC (Habas et al., 2009). Resting-state functional connectivity between the 

ACC and cerebellum could further be shown in a recent meta-analysis (Kruithof et al., 2023). 

In sum, there is substantial evidence for a connectivity of the cerebellum with areas involved 

in reinforcement learning.

Cerebellar diseases

Cerebellar disorders (or ataxias) can be caused by focal cerebellar diseases (for example due 

to stroke) and cerebellar degeneration (which can have genetic, non-genetic or acquired 

causes). Cerebellar disorders differ based on their progression rate and age at onset (Palau & 

Arpa, 2016).

Cerebellar strokes

Focal cerebellar lesions are usually caused by ischemic or haemorrhagic stroke, tumour 

resections, abscesses, or demyelinating diseases such as multiple sclerosis (Palau & Arpa, 

2016). Cerebellar strokes occur seldom and account only for around 2-3% of total annual 

strokes in the US (Edlow et al., 2008; P. J. Kelly et al., 2001; Tohgi et al., 1993). A majority is 

ischemic (Shenkin & Zavala, 1982). Prognosis concerning recovery of motor functions is quite 

good for ischemic cerebellar strokes, with 2/3 of patients reaching functional independence at 

the time of discharge; this was the case for only 40% of patients with haemorrhage (P. J. Kelly 

et al., 2001). Note that cognitive function does not recover as well (Erdlenbruch et al., 2024). 

Acute symptoms are oftentimes vertigo, dizziness, and unsteadiness (Sarikaya & Steinlin, 

2018). Strokes in the anterior cerebellum up to lobule VI may lead to persistent motor deficits, 
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such as ataxia, while strokes in the posterior lobe do not seem to result in persistent motor 

deficits (Schmahmann et al., 2009; Stoodley et al., 2016). Instead, strokes in the posterior lobe 

have been associated with deficits in language, spatial and executive functions (Stoodley et 

al., 2016). Motor and non-motor symptoms have also been found after tumour resections 

in/near the cerebellum (De Smet et al., 2009; Konczak et al., 2005; Svaldi et al., 2024). 

Additionally, the connectivity to several cerebral areas is reduced acutely following cerebellar 

stroke (Fan et al., 2019), but differentially increased and decreased in chronic stroke, indicating 

reorganisational processes (Park et al., 2011).

Degenerative cerebellar disease

Degenerative cerebellar diseases can be acquired, sporadic, or due to genetic causes. 

Hereditary ataxias may be autosomal-dominant (e.g., spinocerebellar ataxias), autosomal-

recessive (e.g., Friedreich’s ataxia) or x-chromosomal (fragile X-associated tremor-ataxia 

syndrome) inheritance (Koeppen, 2001; Thieme & Timmann, 2022). Acquired ataxias may be 

infectious (such as cerebellitis, progressive multifocal leukoencephalopathy, Whipple’s 

disease; Manto, 2001b), autoimmune (such as multiple sclerosis, Miller Fisher syndrome; 

Duquette, 2001), paraneoplastic (Afzal et al., 2015), toxic (alcohol, antiepileptic drugs, and 

others; Manto & Jacquy, 2001b; Pentney, 2001; for a systematic review see van Gaalen et al., 

2014), or metabolic (hypothyroidism, hypomagnesemia, deficiency of vitamin E, and others; 

Koibuchi, 2001; Manto & Zulewski, 2001; Olmedo-Saura et al., 2023; Schuelke, 2005). 

Sporadic degenerative disorders include multiple system atrophy-cerebellar type (MSA-C) and 

sporadic adult onset ataxia of unknown aetiology (Berciano, 2001; Manto & Jacquy, 2001a). 

As such, there is a large variety in aetiology (Topka & Massaquoi, 2001) – however, symptoms 

are strongly influenced by the location of the damage rather than pathological characteristics 

(Manto, 2001a). An overview of genetics and phenotypes for different hereditary cerebellar 

ataxias is given at https://neuromuscular.wustl.edu/ataxia/aindex.html. A majority of these 

diseases also include involvement of extracerebellar areas (e.g., spinocerebellar ataxia types 

1,2 and 3 or MSA-C), making interpretations of cerebellar contributions more difficult. 

Currently, only a handful of cerebellar diseases are considered to primarily affect the 

cerebellum, most commonly spinocerebellar ataxia types 6, 14, and 27B (Rentiya et al., 2020; 

Satolli et al., 2024; Taron et al., 2022; Teive et al., 2011) as well as sporadic adult-onset ataxia 

of unknown aetiology (Abele et al., 2007). These disorders are thus especially suitable to 

investigate the effects of cerebellar degeneration on brain and behaviour.

Very rarely, cerebellar agenesis, i.e., the complete or partial absence of the cerebellum from 

birth, occurs (Romaniello & Borgatti, 2022). Realistically, even in patients with “no cerebellum”, 

some amount of cerebellar tissue can be found post-mortem (Gardner et al., 2001). 

Importantly, living without a cerebellum is indeed possible for these patients, although with 
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considerable deficits in not only the motor domain but also the cognitive and emotional domain 

(Romaniello & Borgatti, 2022). This further strengthens the theoretical basis for a 

complementary rather than a holistic role of the cerebellum in these domains (see below).

Motor deficits

Motor symptoms associated with cerebellar diseases have been divided into four major 

categories: 1) postural and gait disturbances, 2) limb ataxia, 3) dysarthria, and 4) oculomotor 

disorders. These have been implemented in the International Cooperative Ataxia Ratings 

Scale (ICARS; Manto, 2001a; Trouillas et al., 1997). 

1) Patients with cerebellar disorder may show an increased back-and-forth sway when 

standing still, known as titubation (Bodranghien et al., 2016). Their gait appears as “clumsy, 

staggering movements with a wide-based gait” (Bodranghien et al., 2016, p. 380).

2) Limb ataxia refers to a number of symptoms, including intention and other tremors, 

dysmetria, and diadochokinesis (Bodranghien et al., 2016; Holmes, 1917). Intention tremor is 

a tremor that increases when approaching a movement target (Bhatia et al., 2018). Note that 

other types of tremor, such as rest tremor (i.e., tremor occurring when at rest) and postural 

tremor (i.e., relating to tremor occurring when holding a body part, such as an arm, in a position 

against gravity) have also been described in connection with cerebellar disease (Holmes, 

1917; Lenka & Louis, 2019). Dysmetria refers to the over- (hypermetria) or undershoot 

(hypometria) of a movement towards a target (Holmes, 1917; Hore et al., 1991). Together with 

tremor and oculomotor deficits, it might result in severe difficulties with grasping movements 

(Bodranghien et al., 2016). 

3) Dysarthria describes symptoms related to deficits in speech production. These mainly relate 

to impairment of articulation and prosody (Darley et al., 1969a; Spencer & Slocomb, 2007). A 

slowness and slurring of speech is observed (Darley et al., 1969b; Manto, 2001a; Spencer & 

Slocomb, 2007), and, also noticeably, ‘scanning’ speech, which means excessive and equal 

stress of the syllables, disrupting the general rhythm (e.g., “won (pause) der (pause) ful”; 

Darley et al., 1969b; Kent et al., 2000). Further irregularities have been described for loudness, 

timing of breaks, and pitch (Spencer & Slocomb, 2007).

4) Oculomotor deficits comprise deficits in the slow eye movements, saccades, ocular 

alignment, gaze, and nystagmus (Bodranghien et al., 2016; Manto, 2001a; Salari et al., 2024). 

Concerning nystagmus, cerebellar disorders are often associated with a downbeat nystagmus 

(i.e., an upward drift of the eyes followed by a downward saccade; Hüfner et al., 2007; Yee, 

1989), but also other forms of nystagmus, such as gaze-evoked nystagmus (i.e., a drift towards 

the centre when looking to the periphery), rebound nystagmus (i.e., a drift towards the prior 

gaze towards the periphery when looking towards the centre), and others (for an overview, see 
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Bodranghien et al., 2016). For the slow eye movements, smooth pursuit may be impaired, and 

instead, corrective saccades can be observed when following a moving object with the gaze 

(for a review, see Sharpe, 2008). The vestibulo-ocular reflex, i.e., the reflex to adjust the gaze 

when the head is moved while fixating an object, can also be impaired in cerebellar disorders 

(Ito, 1998; Szmulewicz et al., 2011). Saccades may be hyper- or hypometric depending on 

damage location (Barash et al., 1999; Bodranghien et al., 2016; Bötzel et al., 1993).

Note that non-specific symptoms, such as dizziness and vertigo as described above might also 

occur episodically or chronically (Bodranghien et al., 2016). Sensory function, such as pitch 

discrimination and proprioception may also be reduced (Frings et al., 2004; Parsons et al., 

2009; Tinazzi et al., 2013; Weeks et al., 2017).

Cerebellar Cognitive Affective Syndrome

While researchers started to explore the role of the cerebellum in motor control more 

thoroughly in the 19th and 20th centuries, non-motor deficits in cerebellar disease have only 

been described sparsely in case reports. This might also have been the case because 

cognitive performance of adult patients with cerebellar damage lies in the lower normal range, 

with motor symptoms being more prominent (Leggio, 2016). The deficits are, in parallel to 

motor deficits, less in the fundamental inability to perform certain behaviours and more in the 

efficiency (Leggio, 2016). Notably, this still leads to relevant deficits in executive, language, 

and visuospatial function (Ahmadian et al., 2019). Previous evidence for a role of the 

cerebellum in non-motor function had mainly come from studies examining the connectivity of 

the cerebellum with cerebral non-motor areas (see above). In 1998, Schmahmann and 

colleagues described the “cerebellar cognitive affective syndrome” (CCAS; Schmahmann & 

Sherman, 1997, 1998) which they used as an umbrella term for several non-motor symptoms 

in patients with cerebellar damage. The syndrome was also closely connected to the proposed 

“Dysmetria of Thought” (Schmahmann, 1998): Schmahmann proposed that deficits in the non-

motor domain relating to cerebellar damage might present similar in form to deficits in the 

motor domain. The meaning of dysmetria, i.e., an over- or undershooting of a movement, is 

thus transferred to mean an over- or undershooting of a non-motor process, such as an 

emotional reaction. Non-motor symptoms described for the CCAS include deficits in the 

executive function (e.g., planning, working memory), spatial cognition, personality changes, 

and linguistic difficulties that cannot be ascribed to motor function (Schmahmann & Sherman, 

1998). While the initial study examined only 20 patients with mostly focal cerebellar damage 

(but also a number of cases with cerebellitis and cerebellar atrophy), the findings could be 

replicated in a much larger sample by Tedesco et al. (2011). Using a large subsample of 78 

patients with only focal cerebellar damage (through ischemic or haemorrhagic stroke or 

surgical tumour resection), they could further show that non-motor deficits occur in particular 
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when the posterior lobe is affected, especially Crus I and II. This was mostly the case after 

damage within the PICA territory. This finding also fits with the above-described connectivity of 

the posterior cerebellar lobe with cerebral brain areas encompassing non-motor functions.

To characterise non-motor deficits specific to cerebellar function in a clinical setting, the CCAS 

scale was invented as a bedside test by the Schmahmann group (Hoche et al., 2018) and 

subsequently translated into several languages (Chirino-Pérez et al., 2022; Maas et al., 2021; 

Naeije et al., 2020; Rodríguez-Labrada et al., 2022; Thieme et al., 2020, 2022). The scale tests 

the core domains of CCAS, including executive, linguistic, visuospatial, and neuropsychiatric 

functions. An additional verbal memory test item is not part of CCAS, but considered an 

indicator item for extracerebellar involvement (Hoche et al., 2018). Later work performed by 

Thieme et al. (2021) could show that age and education, and to a lesser degree sex affected 

test scores and need to be considered when examining patients for a CCAS. Notably, the 

CCAS scale has a weakness in identifying patients with only mild forms of CCAS (Q. Liu et al., 

2024). Nevertheless, the CCAS scale is as yet the only widely used assessment method to 

screen for CCAS which can be used to compare patient groups across studies and was 

proposed for clinical trials by an expert group (Klockgether et al., 2024).

Cerebellar involvement in other disorders

While there are diseases with predominantly cerebellar involvement (see above), these are 

oftentimes rather rare diseases. However, cerebellar involvement has also been described in 

more common disorders that had previously not been as closely associated with cerebellar 

function, such as anxiety disorders, autism spectrum disorder, schizophrenia/psychosis, and 

addiction (Andreasen & Pierson, 2008; Biswas et al., 2024; D’Mello & Stoodley, 2015; Miquel 

et al., 2016; Moulton et al., 2014; Schutter, 2021a; Y. Wang & Lan, 2023). For example, 

cerebellar activations towards threat and fear extinction have pointed towards a role of the 

cerebellum in fear and extinction learning, which is a form of reinforcement learning (Doubliez 

et al., 2023; Schutter, 2021a). Indeed, the connectivity between the cerebellum and amygdala 

as well as striatum is altered in several anxiety disorders, such as generalised and social 

anxiety disorder, post-traumatic stress disorder, and obsessive-compulsive disorder (Blithikioti 

et al., 2022; Etkin et al., 2009; Moreno-Rius, 2018; Roy et al., 2013; Shobeiri et al., 2024; Vaghi 

et al., 2017; H. Zhang et al., 2019; X. Zhang et al., 2022). Deficits in the non-motor domain 

were also related to cerebellar connectivity for autism spectrum disorder and psychosis, such 

as theory of mind, social cognition, executive function, and language in autism spectrum 

disorder (Biswas et al., 2024) and auditory hallucinations in psychosis (Pinheiro et al., 2021). 

Concerning addiction, findings have been less consistent but seem to relate the cerebellum to 

behavioural inhibition (Miquel et al., 2016). The involvement of the cerebellum in these 
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disorders highlights the need for further research concerning the cerebellum’s role in non-

motor processes.

Cerebellar function

Brief historical overview

Cerebellar function was characterised in several early works (Glickstein et al., 2009; Manto, 

2001a; Schmahmann, 2016). In 1809, Luigi Rolanda could show that the ablation of the 

cerebellum resulted in difficulties in posture and movements (Schmahmann, 2016). He 

concluded that the cerebellum is responsible for movement initiation (Glickstein et al., 2009). 

A few years later, Flourens could show that it is rather the coordination than the initiation of 

movement (Schmahmann, 2016). Animals were not paralysed but he observed that their 

movements were irregular and uncoordinated (Glickstein et al., 2009). The coordination 

deficits were later described in more detail by Luciani (1891), using more advanced methods; 

he also made first descriptions of intention tremor (Glickstein et al., 2009).

In the late 19th century and early 20th century, several hallmark symptoms of cerebellar motor 

deficits were described, such as dysmetria and diadochokinesis by Babinksi (Clarac et al., 

2009; Manto, 2001a), and ataxia by Gordon Holmes (1917). Holmes’ work was especially 

noteworthy, with terminology in many cases still used today (Bodranghien et al., 2016; Haines, 

2016; Manto, 2001a). To his avail was a large population of soldiers with gunshot or shrapnel 

wounds to the cerebellum due to poor helmet design in the first world war (Haines, 2016).

Descriptive models of cerebellar motor functions

While it is widely accepted that the cerebellum computes internal models for motor functions 

(Ishikawa et al., 2016), the exact nature of these models has been a matter of debate. Several 

proposals have been made to describe the function of the cerebellum in a way that generates 

predictions that can be tested. Internal models can be described as either forward or inverse 

models (Kawato et al., 2021).

According to the forward model, the cerebellum receives a copy of the motor command that is 

being sent to the muscle (Miall & Wolpert, 1996; Wolpert et al., 1998). From this command, it 

generates a prediction of the sensory outcome. For example, when grabbing a cup of coffee, 

the commands with the succession of movements is sent to the arm and hand. At the same 

time, it is being sent to the cerebellum. The cerebellum then predicts whether the cup of coffee 

will be grabbed or how far off we will be. When the movement has been executed, the actual 

sensory consequence will be sent back. For example, we might have been distracted due to 

speaking to another person and missed the cup slightly. This information can be compared to 

the predicted sensory consequences (“successfully grabbed the cup”), and an error signal can 
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be generated. This error signal can then be used as a learning signal to improve future 

predictions. 

In contrast, the inverse model assumes the opposite: instead of the motor signal, the planned 

sensory outcome is sent to the cerebellum. In turn, the cerebellum generates the necessary 

motor commands to reach this outcome (Popa & Ebner, 2022; Schweighofer et al., 1998; 

Shidara et al., 1993). Both models have the advantage that the movement is independent from 

subsequent (delayed) sensory information (Tanaka et al., 2021). 

Note that combinations of both models have been proposed (Wolpert & Kawato, 1998), 

oftentimes with the proposition that the forward model is more dominant early in the learning 

process and that the inverse model is more dominant late in the learning process (e.g., Olson 

et al., 2023). While there is good evidence that the cerebellum functions as a forward model, 

whether it also functions as an inverse model still requires evaluation (Popa & Ebner, 2022).

Several other models have been proposed as a basis for cerebellar function (see Manto, 2009 

for an overview). One of the most prominent ones is the Marr-Albus theory, proposed in close 

temporal proximity by Marr (1969) and Albus (1971). They proposed that mossy fibre input 

serves as the motor/sensory input. This input is then expanded by granule cells into orthogonal 

representations provided at the parallel fibres (Sanger et al., 2020). These representations can 

subsequently be thresholded by the Purkinje cells. Climbing fibre input from the inferior olive, 

on the other hand, serves as a teaching/error signal, by modulating the synapses between 

parallel fibres and Purkinje cells through long-term potentiation and depression (Albus, 1971; 

Kawato et al., 2021; Manto, 2009; Marr, 1969; Sanger et al., 2020). Importantly, while Masao 

Ito proposed a complementary role for the cerebellum, Marr and Albus attributed a holistic role 

to the cerebellum in motor control, meaning that the cerebellum can control movements by 

itself (Kawato et al., 2021).

Universal Transform Theory

As detailed above, cerebellar damage does not only result in deficits in the motor but also 

several non-motor domains. Jeremy Schmahmann (1998) had proposed that non-motor 

deficits might present similar to motor deficits, relating the motor symptom dysmetria to the 

cognitive domain (‘Dysmetria of Thought’). In terms of functionality, this would mean that the 

cerebellum generates and updates internal models for motor and non-motor functions in a 

similar way (Guell et al., 2018; Popa & Ebner, 2022). Several findings have supported this 

assumption. One main line of support for universal cerebellar transform comes from the 

relatively homogeneous cytoarchitecture: despite the finding that cerebellar areas show 

distinct functionality pertaining to modality (e.g., anterior cerebellum with more sensorimotor 

functions, posterior lobe with more cognitive functions), the cytoarchitecture in the cerebellum 
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proves relatively unchanging across these areas (Ashida et al., 2018; Guell et al., 2018; Popa 

& Ebner, 2022; Schutter, 2021b). Additionally, deficits resulting from damage to the cerebellum 

appear relatively similar across domains, as they do not hamper the execution of 

movements/cognitive processes themselves but instead make them less precise (Guell et al., 

2018; Schmahmann, 1998). 

Multiple Functionality Theory

However, Orban de Xivry & Diedrichsen (2024) could show that the input to the cerebellum via 

both mossy and climbing fibres as well as the cerebellar output could change based on task 

demands. They proposed that it might not be possible to relate the cerebellar function to a 

single model of computation. This further built on the hypothesis of multiple functionality of the 

cerebellum, proposed by Diedrichsen et al. (2019). Diedrichsen and colleagues proposed that 

while the cerebellum may have uniform circuits, the underlying computations might differ. They 

note important differences between domains in task-based activity and functional connectivity 

to the cerebrum and propose that instead of looking at non-motor functions through the lens 

of sensorimotor computations, it might be more productive to examine these functions 

separately. They thus do not exclude a universal transform (Diedrichsen et al., 2019).

Reinforcement Learning

Behavioural patterns in cerebellar disease/disruption

Not many studies have been conducted on the potential deficits of patients with cerebellar 

damage in reinforcement learning. As outlined in a recent review by Berlijn et al. (2024), some 

initial studies showed no deficits in patients with cerebellar damage (Berlijn et al., in press; 

Dirnberger et al., 2010; Rustemeier et al., 2016; Turner et al., 2007) while others did (Mak et 

al., 2016; Mukhopadhyay et al., 2007; Nicholas et al., 2024; Thoma et al., 2008). There is thus 

yet no sufficient evidence for a clear behavioural correlate of cerebellar damage/disruption in 

reinforcement learning.

Neuroimaging findings

A recent meta-analysis conducted by Kruithof et al. (2023) examined cerebellar activations 

associated with reward anticipation and reward outcome. They reported activations in the 

anterior lobe, lobule VI, left Crus I and the vermis for reward anticipation, in conformity with the 

suspected role of the cerebellum in predictive processes. A recent systematic review by Berlijn 

et al. (2024) examined findings with a focus on studies employing feedback learning 

paradigms, independently of whether they examined reward anticipation or outcome. This 

allowed for examination of more specific effect patterns. Consistent with the meta-analysis by 

Kruithof et al., they found that feedback/outcome valence is related to activations in lobule VI 

(Peterburs et al., 2018; Tricomi & Fiez, 2008). Crus I and II seemed to be specifically related 
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to feedback learning (Balsters et al., 2013; Balsters & Ramnani, 2011). Crus I also seemed to 

play a role in switching behaviour within a study using reversal learning in addition to simple 

reinforcement learning (Peterburs et al., 2018). As noted above, cerebellar activations were 

also found for unsigned RPE processing in a large meta-analysis examining RPE activations 

(Corlett et al., 2022). Notably, several difficulties present when examining the cerebellum using 

fMRI: cerebellar blood flow changes are dominated by synaptic mossy fibre input to the granule 

cells, which is input-related activity (Diedrichsen et al., 2019). fMRI studies examining the 

cerebellar cortex thus show mainly the input rather than the output of the cerebellar cortex 

(Diedrichsen et al., 2019). 

Figure 6. Feedback-locked grand-average ERPs for positive and negative feedback in the 
fractal task by Rustemeier et al. (2016). ERPs are given separately for patients with cerebellar 
stroke and healthy controls. Reproduced with permission from Springer Nature.

To my knowledge, there are yet no studies showing feedback processing in fMRI in patients 

with cerebellar damage. However, an initial study using EEG showed altered feedback 

processing in a small sample of patients with cerebellar stroke (Rustemeier et al., 2016). 

Rustemeier et al. (2016) employed a fractal task while measuring EEG in patients with 

cerebellar stroke and healthy controls. Within the fractal task, participants were able to choose 

between two fractals to receive a monetary reward or punishment. The chance to receive either 

feedback, was however at 50 % for all fractals, and learning was thus not possible. Examining 

the FRN, they found a differentiation between positive and negative feedback in the patients 

but not controls. The authors interpreted the effect as increased surprise in the patients: the 

differentiation between positive and negative feedback in FRN should be low as both feedback 

valences were of similar expectancy (following the hypothesis of Alexander & Brown, 2011). In 

the control group, this was likely the case, resulting in an overall non-significant difference in 

FRN. For the patients with cerebellar stroke, negative feedback resulted in a higher FRN than 
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positive feedback, indicating that the differentiation was stronger than in controls. The authors 

reasoned that feedback might have seemed more surprising for patients, resulting in an 

enhanced positive-negative differentiation in FRN. This argument is consistent with the 

dysmetria of thought hypothesis (Schmahmann, 1998), relating cerebellar dysfunction to an 

overshoot (hypermetria) of a cognitive action, i.e., in this case, salience/surprise. However, as 

no follow-up analyses or experiments regarding changes in feedback frequency/task 

progression were conducted, this conclusion remains unconfirmed.

Performance Monitoring Framework

The cerebellum has been implicated in reinforcement learning in terms of performance 

monitoring only rather recently, such as by Peterburs and Desmond (2016). Performance 

monitoring is an umbrella term capturing all processes necessary to enable flexible 

adjustments in constantly changing environments. This encompasses (1) feedback 

processing, (2) error detection, (3) inhibition of conflicting responses, (4) attentional control, 

and (5) emotional regulation (Peterburs & Desmond, 2016). Several lines of evidence support 

this argument: concerning (1), as detailed above, there have been several findings of 

cerebellar activation in feedback and RPE processing in fMRI, and initial studies showing 

deficits in reversal learning and feedback processing in patients with cerebellar stroke. 

Regarding (2), patients with cerebellar stroke and degeneration showed deficits in error 

processing in response conflict tasks (Peterburs et al., 2012, 2015). As for (3), patients with 

cerebellar lesions (stroke and surgical) showed deficits in response inhibition in Stroop and 

Go/Nogo tasks (Brunamonti et al., 2014; Neau et al., 2000). In regards to (4), patients with 

cerebellar lesions (stroke and surgical) also showed deficits in both attention and working 

memory tasks (Craig et al., 2021; Gottwald et al., 2003; Ilg et al., 2013; Ravizza et al., 2006). 

Concerning (5), patients with cerebellar lesions also showed mal-adjusted reactions towards 

(in particular negative) emotions, such as missing increases in flow velocity in the left middle 

cerebral artery towards negative stimuli (Adamaszek et al., 2017; Lupo et al., 2015), and 

deficits in the acquisition (in rats: Lopiano et al., 1990) and potentiation of startle response 

(Maschke et al., 2000). Taken together, there seems to be a strong basis for a role of the 

cerebellum in performance monitoring, including feedback processing/reinforcement learning 

(Peterburs & Desmond, 2016). 

Recent findings in rodents

In recent years, rodent and primate studies have investigated reward-related information 

processing in granule cells, climbing fibres and Purkinje cells more in-depth. Findings 

consistent with a coding of RPEs were reported in several complementary studies. Wagner et 

al. (2017) investigated this in granule cells of rodents using calcium imaging. They found that 

separate granule cell populations code reward delivery, reward omission, and reward 
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anticipation. The findings were not explainable with licking behaviour (that also increases upon 

reward anticipation and delivery) or sensory input. The signals also showed dynamics across 

the task that one would expect from reinforcement learning signals: in the beginning, more 

activity related to reward delivery was found, while later in the task – when expectancies had 

formed – activity related to reward anticipation and omission was found. The findings could 

also be replicated across classical and operant conditioning (M. J. Wagner et al., 2017). 

Similarly, climbing fibre input into Purkinje cells as measured with complex spike activity was 

found to be consistent with unexpected reward delivery, omission, and anticipation (Heffley et 

al., 2018; Heffley & Hull, 2019; Kostadinov et al., 2019; Vignali et al., 2024). Interestingly, the 

signal increased toward both unexpected reward delivery (positive RPE) and omission 

(negative RPE), hinting at an unsigned RPE signal. However, a signed RPE in the cerebellum 

could be shown in at least one study using aversive instead of rewarding stimuli: Ohmae and 

Medina (2015) found that complex spike activity increased towards unexpected punishments 

(air puffs) but decreased below baseline towards unexpected punishment omission. This 

finding might indicate different RPE signalling in the cerebellum towards rewards and 

punishments.

These studies, however, all relate to the input of and internal processing within the cerebellum. 

What about the cerebellar output? Is the RPE input of the cerebellum used to drive RPE 

processing in cerebral areas? Initial studies in rodents showed that this might be indeed the 

case: projections from the cerebellum to the VTA and SN contain reward-related information 

(Carta et al., 2019; Washburn et al., 2024; J. Yoshida et al., 2022; T. Yoshida et al., 2024). 

Carta et al. (2019) could further show that stimulation of this (monosynaptic) pathway was 

suitable to induce short- and long-term place preference; optogenetic inhibition was, however, 

not aversive.

Regarding the wealth of new upcoming studies in rodents, the question emerges whether 

findings are indeed replicable in humans.

Research Objective 

The aim of this dissertation was to further comprehend the role of the cerebellum in 

performance monitoring, and in particular error and feedback processing. Causal evidence 

was gathered investigating whether the cerebellum is required for performance monitoring. In 

all studies, a lesion approach was combined with EEG recordings of the cerebrum to derive 

whether damage/disruption of the cerebellum results in deficits in performance and changes 

in neural processing. 

Feedback processing was investigated within a reinforcement learning task in Manuscript 1, 

using the FRN as an index of RPE processing within the cerebrum. Two parallel lesion 
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approaches were used: Experiment 1 used patients with chronic cerebellar stroke and 

matched controls; Experiment 2 applied cerebellar and control single-pulse transcranial 

magnetic stimulation (spTMS) in healthy young adults. TMS was used to induce ‘virtual 

lesions’: spTMS induces action potentials, and its effect has been characterised as excitatory 

or inhibitory depending on various factors, both on the neuron population and the single neuron 

level (Hannah et al., 2020; Romero et al., 2019). Its inhibitory effect on neuron populations is 

theoretically based on noise models, meaning that the TMS pulse induces noise in the target 

region (Harris et al., 2008). For the cerebellum, an inhibitory effect of spTMS has been 

assumed (Desmond et al., 2005; Schutter & van Honk, 2006; Viñas-Guasch et al., 2023; for a 

review see Fernandez et al., 2020).

 Manuscript 2 investigated error processing within reinforcement learning contexts. Data from 

Experiment 2 in Manuscript 1 were re-analysed, focussing on error instead of feedback 

processing. The ERN was thus analysed, as well as the error positivity (Pe) which is an ERP 

component in the error-related signal that peaks later – at around 200-400 ms – and 

predominantly at parietal sites (Falkenstein et al., 1991; Wessel, 2012). The Pe is more 

strongly related to conscious error processing and error awareness (Nieuwenhuis et al., 2001; 

Ridderinkhof et al., 2009). 

Last, Manuscript 3 dealt with the temporal aspect of disruption caused by cerebellar TMS in 

relation to cortical processing: spTMS was applied at a wider range of timings around individual 

ERN latencies in a response conflict paradigm (Go/Nogo Flanker task). The study aimed at 

finding differences in effectiveness of cortical disruption depending on TMS timing.
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Overview of Studies

Manuscript 1 – The cerebellum contributes to prediction error coding 
in reinforcement learning in humans

Introduction and hypotheses

A cerebellar role in reinforcement learning has been initially investigated in patients with 

chronic cerebellar stroke (Rustemeier et al., 2016; Thoma et al., 2008). Recent studies in 

rodents found further evidence for cerebellar involvement in reinforcement learning, with 

signals related to reward anticipation, omission, and RPEs (Kostadinov & Häusser, 2022). 

Further animal studies indicated that these signals are conveyed to the cerebrum (Washburn 

et al., 2024; J. Yoshida et al., 2022; T. Yoshida et al., 2024). However, this has not yet been 

shown in humans, and there is an additional need for causal evidence to answer the question 

whether the cerebellum is required for RPE processing in extra-cerebellar (cerebral) regions 

traditionally associated with reinforcement learning. Two previous studies could show deficits 

in behavioural flexibility in patients with cerebellar damage (Nicholas et al., 2024; Thoma et al., 

2008), and one study could show changes in neural processing of feedback in reinforcement 

learning in patients with chronic cerebellar stroke (Rustemeier et al., 2016).

Manuscript 1 aimed to contribute to the question whether the cerebellum is necessary for intact 

reinforcement learning and cortical RPE processing in humans. To this end, two separate 

experiments were conducted: in Experiment 1, patients with a chronic stroke restricted to the 

cerebellum and healthy controls performed a probabilistic feedback learning task while 

cerebral EEG was recorded. As detailed above, the frontocentral ERP component FRN can 

serve as a measure of cerebral RPE processing. In case the cerebellum contributes to cerebral 

RPE processing, RPE effects in FRN should be altered in patients with cerebellar damage (in 

this case, stroke) while it should be intact in the matched healthy controls. Experiment 2 was 

performed analogously in healthy young controls. In two separate sessions, they underwent 

single-pulse cerebellar TMS and control stimulation (i.e., TMS applied to the vertex) while 

performing the task. Following the same reasoning, participants should show deficits in RPE 

processing in FRN under cerebellar stimulation, while they should show intact RPE processing 

in FRN under control stimulation. In detail, the following was expected:

1) A general main effect in terms of increasing accuracy with task progression/ascending 

block number was expected (ME block). 

a. For Experiment 1, no differences between patients and controls were expected 

due to compensatory mechanisms available in chronic stroke, consistent with 

Rustemeier et al. (2016).
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b. For Experiment 2, worse learning was expected when participants received 

cerebellar compared to vertex TMS. This was due to long-term compensatory 

processes – such as for chronic cerebellar stroke patients – not being available 

in spTMS, as stimulation is instantaneous. Instead, it was expected that 

behavioural performance might rather follow the pattern observed in patients 

with cerebellar degeneration (i.e., decreased performance), such as in 

response conflict paradigms (Peterburs et al., 2015; IE block x stimulation site).

2) A general effect of RPE on FRN was expected in terms of a main effect of feedback 

valence and RPE, respectively, as well as an interaction between feedback valence 

and unsigned RPE. FRN should be enhanced with increasing negative RPEs and 

decreased with increasing positive RPEs (ME feedback valence; ME RPE; IE feedback 

valence × RPE).

a. For Experiment 1, it was expected that this effect is decreased in patients with 

cerebellar stroke, but intact in healthy controls (IE feedback valence × RPE × 

group).

b. For Experiment 2, it was expected that this effect is decreased when healthy 

participants received cerebellar TMS but intact when they received vertex TMS 

(IE feedback valence × RPE × stimulation site).

3) In Experiment 1, lesion symptom mapping was performed in patients to investigate 

whether deficits in processing or behaviour in the reinforcement learning task can be 

related to certain lesion locations in the cerebellum. A relation between deficits and 

more posterolateral regions, in particular Crus I and II was expected, as these areas 

are more strongly related to higher cognitive processes.

Method

Participants

Experiment 1 was conducted in patients with chronic cerebellar stroke. Data from twenty-six 

patients entered the analyses. On average, experiments were conducted 8.4 years post-stroke 

(SD = 6.0 years; range from 1.5 months to 22 years). The majority of patients were men (20 

men, 6 women) and middle-aged (M = 56.2 years, SD = 12.1 years). Patients with 

extracerebellar lesions, or who reported current psychiatric disease, current or past 

neurological disease, intake of medicine affecting the central nervous system, or alcohol or 

illicit drug abuse were excluded. Lesions were mostly in the posterolateral cerebellum, with 

most strokes within the PICA territory (PICA: 21 patients; SCA: 3 patients; PICA and SCA: 2 

patients). Twenty-six healthy controls were matched to patients in age, sex, education, 

handedness, IQ, and depression indices. To match three patients with a diagnosis of major 

depression and intake of antidepressants, three controls with a clinical diagnosis of major 
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depression, antidepressant medication, and a roughly matched depression index entered the 

analysis.

Experiment 2 was conducted in healthy young adults. Data from twenty-four participants 

entered the analysis. Participants were mostly female (17 women, 7 men) young adults (M = 

23.3 years, SD = 2.9 years), with an average IQ (M = 103.5, SD = 15.4) according to the 

Mehrfachwahl-Wortschatz-Test-B (Merz et al., 1975).

Procedure

Both Experiment 1 and 2 were conducted on two separate days. For Experiment 1, different 

task versions were tested in separate study sessions. For Experiment 2, different stimulation 

sites were targeted in separate study sessions.

In both experiments, a probabilistic feedback learning task was used (confer Bellebaum & 

Colosio, 2014; Eppinger et al., 2008). After a fixation cross, participants saw abstract stimuli 

and were instructed to press either the left or right button in response. The response time 

window in Experiment 1 was 3000 ms and 1000 ms in Experiment 2 (with the stimulus visible 

for half the duration). The higher response time window in Experiment 1 was due to the older 

age of the participants, as well as potential motor deficits in patients with cerebellar damage. 

The response was highlighted for 200 ms, followed by a feedback delay. The feedback was 

then presented for 1000 ms (‘+20 ct’ for positive feedback and ‘-10 ct’ for negative feedback). 

For Experiment 1, two versions of the task were conducted: one version with a feedback delay 

of 500 ms, and another version with a delay of 6500 ms. Experiment 2 only used the 500 ms 

delay. Feedback was provided probabilistically. Two stimuli had contingent feedback that was 

thus learnable for participants (90-10 contingency for Experiment 1 and 80-20 contingency for 

Experiment 2). This meant that when pressing the correct one of the two buttons, positive 

feedback was given with a higher chance than negative feedback, but not in 100 % of the 

cases (and vice-versa for incorrect responses). Two other stimuli had random feedback that 

was thus not learnable (50-50 contingency). Participants were instructed to learn by trial and 

error how to gain more positive and less negative feedback.

For Experiment 2, spTMS was added to the procedure. The motor threshold was determined 

before the experiment and based on motor-evoked potentials measured at the hand using 

electromyography. Stimulation was conducted at 120 % of the motor threshold, and at the left 

cerebellum (1 cm below and 3 cm to the inion) and at the vertex (electrode position Cz) in 

separate sessions. Vertex is a common control site, particularly in experiments using cerebellar 

stimulation (Gatti et al., 2023). A Magstim double cone coil and a Magstim BiStim2 unit 

(Magstim Co., Whitland, United Kingdom) were used for TMS.
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EEG recording

EEG was recorded in both experiments. In Experiment 1, EEG was recorded at 1,000 Hz from 

28 active Ag/AgCl electrodes (F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, 

CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8, PO9, O1, Oz, O2, PO10) using the 10-20 system 

(Chatrian et al., 1985). AFz was used as a ground electrode, and FCz served as the online 

reference. Electrodes were placed on the mastoids to be used later as offline references. An 

additional electrode was placed to the left outer canthus of the left eye as the horizontal 

electrooculogram (hEOG), and Fp1 was used as the vertical electrooculogram (vEOG). 

In Experiment 2, EEG was recorded at 1,000 Hz from 30 passive Multitrode electrodes (Fp1, 

Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CPz, CP2, CP6, 

P7, P3, Pz, P4, P8, O1, Oz, O2, Iz) using the 10-20 system. AFz was used as a ground 

electrode, and FCz served as the online reference.

EEG preprocessing

Preprocessing for Experiment 1 was conducted within Brain Vision Analyzer software (version 

2.2, Brain Products GmbH, Gilching, Germany). Data were first re-referenced to the mastoid 

electrodes, and FCz was restored as an active electrode. Next, a direct current drift correction 

was performed followed by a band-pass (high-pass: 1 Hz; low-pass: 30 Hz) and notch filter (50 

Hz). Vertical and horizontal eye movement artefacts were removed based on the vEOG and 

hEOG using the semi-automatic Ocular Correction ICA implemented in the Brain Vision 

Analyzer. Data were then segmented around feedback markers, beginning from 200 ms before 

and ending 600 ms after the marker. A baseline correction was performed using the 200 ms 

directly before the feedback. An automated artefact rejection followed, excluding segments 

with a voltage step above 50 µV/ms, an amplitude exceeding 100 µV or below -100 µV, or 

activity not exceeding 0.1 µV. On average, 1.1 % of segments (SD = 2.5 %) were rejected. 

Single-trial ERPs were then exported via a generic data export. 

Experiment 2 required a more extensive preprocessing due to artefacts from the TMS pulse. 

The ARTIST algorithm by Wu et al. (2018) was thus used. The algorithm included a direct 

current drift correction, removal of the TMS pulse artefact, removal of the pulse decay artefact 

via ICA, followed by a band-pass (high-pass: 1 Hz; low-pass: 30 Hz) and notch filter (50 Hz). 

After segmentation around the TMS pulse, ARTIST rejected segments containing movement 

artefacts (M = 2.8 % of segments, SD = 2.6 %) and interpolated bad channels (M = 0.96 

channels, SD = 1.15 channels). A second ICA was used to remove bad independent 

components, and the signal was re-referenced to an average reference, restoring FCz as an 

active electrode. The time window between 300 and 100 ms preceding the TMS pulse was 

used for a baseline correction. Further preprocessing was conducted within the Brain Vision 

Analyzer. Data were then segmented around the feedback onset starting from 200 ms 
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preceding to 500 ms after the feedback marker. An additional baseline-correction was 

conducted using the time window from 200 ms before to feedback onset. Single-trial ERPs 

were exported via a generic data export.

Peak detection for the FRN was conducted using MATLAB and performed on the individual 

averages per condition (for Experiment 1: feedback valence [negative, positive] × feedback 

delay [short, long]; for Experiment 2: feedback valence [negative, positive] × stimulation site 

[cerebellum, vertex] × TMS timing [post-stimulus, pre-feedback]). FRN was quantified as the 

local maximal negative peak in the time window between 200 and 350 ms post-feedback at 

FCz (Sambrook & Goslin, 2015). Within the single-trial data, the mean amplitude in the time 

window of 40 ms around the corresponding FRN latency was then extracted and used in the 

analyses (Meadows et al., 2016).

Prediction error estimation

Concurrent with previous studies (Fischer & Ullsperger, 2013; Ichikawa et al., 2010; McDougle 

et al., 2019), RPE were estimated based on participants’ responses and received feedback 

using a Rescorla-Wagner model (see general introduction for an in-depth explanation). 

Response probabilities were modelled using a softmax function (Boltzmann, 1868; Sutton & 

Barto, 2018c). The probability of the chosen action p was estimated using the estimated action 

value Q for action a and trial t:

𝑝𝑎1,𝑡 = 𝑒𝛽∗𝑄𝑎1,𝑡𝑒𝛽∗𝑄𝑎1,𝑡 + 𝑒𝛽∗𝑄𝑎2,𝑡
As parameters, a learning rate α per feedback valence, and an inverse temperature 

(exploration parameter) β were estimated using the function fmincon implemented in MATLAB.

Data analysis

Data were analysed in R (version 4.2.3). Only trials with learnable feedback (i.e., contingent 

feedback) were included in the analyses. Choice accuracy was analysed via ANOVAs with the 

within-subject factors feedback delay (short, long) and block (1-8) and the between-subject 

factor group (controls, patients) for Experiment 1 and the within-subject factors stimulation site 

(vertex, cerebellum), TMS timing (post-stimulus, pre-feedback), and block (1-6) for Experiment 

2. 

For all other choice switching and ERP analyses, linear mixed effects (LME) models were used 

via the packages lme4 (version 1.1-32; Bates et al., 2015) and lmertest (version 3.1-3; 

Kuznetsova et al., 2017). For choice switching in Experiment 1, the within-subject factors 

feedback valence (negative, positive), response type (false, correct), feedback delay (short, 

long), and block (1-8) as well as the between-subject factor group (controls, patients) were 
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included as fixed effects. For choice switching in Experiment 2, the within-subject factors 

feedback valence, response type, stimulation site (vertex, cerebellum), TMS timing (post-

stimulus, pre-feedback) and block (1-6) were included as fixed effects.

For the FRN in Experiment 1, the within-subject factors feedback valence, feedback delay, and 

the unsigned RPE as well as the between-subject factor group were included as fixed effects. 

For the FRN in Experiment 2, the within-subject factors feedback valence, stimulation site, 

TMS timing, and the unsigned RPE were included as fixed effects.

For random effects, a maximal fit was attempted including all within-subject factors and an 

intercept per subject but in case of singular fit, lower interaction levels were removed stepwise 

(starting with main effects) until fit and convergence was ensured. Outliers were detected using 

Cook’s distance (Cook, 1977) and subjects exceeding the criterion of 4/(n-p-1) were excluded. 

Interactions were resolved via simple slope analyses, using Bonferroni correction according to 

the number of slopes.

Lesion symptom mapping

For Experiment 1, an analysis of the additionally acquired structural MRI data was conducted. 

To this end, a 3D T1-weighted magnetisation-prepared rapid acquisition gradient-echo 

(MPRAGE) sequence was acquired on the first study session using a MAGNETOM Vida 3T 

system (Siemens Healthcare, Erlangen, Germany) and a 64-channel head coil (voxel size = 1 

× 1 × 1 mm). For 5 patients for whom an MR scan was not possible, existing structural MR 

images were used.

After confirming no extracerebellar lesions, cerebellar lesions were manually traced on non-

normalised T1 images previously aligned to the AC-PC line and saved as regions of interest 

within MRIcron (https://www.nitrc.org/projects/mricron). The cerebellum was subsequently 

isolated, and datasets were segmented using the function suit_isolate_seg provided by the 

spatially unbiased atlas template of the cerebellum (SUIT) toolbox 

(https://www.diedrichsenlab.org/imaging/suit.htm). Isolation masks were visually inspected 

and manually corrected if necessary. Next, datasets were normalised using the function 

suit_isolate_mask with the lesion mask as optional input, and lastly transformed into SUIT 

space using the function suit_reslice (Diedrichsen, 2006).

Voxel-based lesion symptom mapping (vbLSM) was performed via NPM which is implemented 

in MRIcron (Stoodley et al., 2016; Timmann et al., 2022). vbLSM tests for each voxel if there 

is a significant difference in a parameter of interest between patients with this voxel affected 

and patients with this voxel unaffected. As a parameter of interest, the difference FRN (high 

RPE – low RPE for negative valence) was chosen post-hoc, as differences between patients 

https://www.nitrc.org/projects/mricron
https://www.diedrichsenlab.org/imaging/suit.htm
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and controls were found. The probabilistic atlas of the human cerebellum (Diedrichsen et al., 

2009, 2011) was used to define affected lobule and nuclei.

Results and Discussion

As hypothesised, cerebellar lesions (Experiment 1) and cerebellar disruption (Experiment 2) 

decreased RPE coding in the FRN. While a significant effect of RPE for negative feedback 

could be found for the control group in Experiment 1 and the control stimulation in Experiment 

2, this effect was non-significant for patients with chronic cerebellar stroke (Experiment 1) and 

when healthy participants received cerebellar stimulation (Experiment 2). Concerning 

behaviour, only minor changes were found, which was expected for Experiment 1 but not 

Experiment 2.

RPE coding was found in healthy controls (Experiment 1) and control stimulation (Experiment 

2) only for negative feedback, consistent with previous studies that found RPE coding in FRN 

only or at least stronger for negative feedback (Chase et al., 2011; Hoy et al., 2021; Rawls & 

Lamm, 2021; but also see Cavanagh, 2015; Weber & Bellebaum, 2024). Importantly, RPE 

coding for patients (Experiment 1) and cerebellar stimulation (Experiment 2) was non-

significant. This finding closely followed our hypotheses. Previous studies in healthy adults had 

also found an enhanced FRN with increasing negative RPE (Burnside et al., 2019; Chase et 

al., 2011; Fischer & Ullsperger, 2013; Frömer et al., 2021; Hoy et al., 2021; Humann et al., 

2020; Kirschner et al., 2022; Rawls & Lamm, 2021). An absence of this RPE coding in FRN 

for cerebellar lesions/disruption indicates that the cerebellum is required for intact RPE coding. 

This is consistent with studies in animals that found signals appearing as RPE computation in 

the cerebellum as well as projections of such signals from the cerebellum to cerebral areas 

(Heffley et al., 2018; Heffley & Hull, 2019; Kostadinov et al., 2019; M. J. Wagner et al., 2017; 

Washburn et al., 2024).

Of note, the non-significant RPE effect in patients/cerebellar stimulation seemed to have 

resulted from an increase in FRN amplitude towards low RPEs instead of a decrease towards 

high RPEs. This points to an over-activation instead of an under-activation, potentially 

indicative of inappropriate surprise/salience towards expected feedback. This is consistent with 

a previous study (Rustemeier et al., 2016) that found increased negative-positive differentiation 

in the FRN in patients with cerebellar stroke, which was interpreted as an excessive surprise 

signal.

The vbLSM yielded that the decreased RPE differentiation in the FRN in Experiment 1 was 

connected to strokes within the posterolateral cerebellum, and in particular Crus I and II, lobule 

VIIb, and VIIIa. This is consistent with the hypothesis that deficits would be more strongly 

related to the posterolateral cerebellum and in particular Crus I and II. When comparing these 



47

regions to functional atlases of the cerebellum, they overlap with working memory, default 

mode network, and spatial rotation (Nettekoven et al., 2024), which are all functions relevant 

for the performed task.

Considering the strong effect that cerebellar damage/disruption had on RPE processing in 

FRN, it seems unexpected that only minor changes were found in behaviour, with no deficits 

in learning performance and minor differences in choice switching that, however, did not affect 

overall learning success. First, deficits in reinforcement learning under cerebellar 

damage/disruption do not appear to be common, with most studies reporting no deficits in 

acquisition learning (Kruithof et al., 2025; Rustemeier et al., 2016; Thoma et al., 2008). Deficits 

seem to be rather related to behavioural flexibility (Kruithof et al., 2025; Nicholas et al., 2024; 

Thoma et al., 2008) which is also the domain where we found minor changes (choice 

switching). Second, the FRN does not have a strong behavioural correlate (Ullsperger, 2024). 

The likely generator of the FRN, the ACC, was shown to be essential for action-outcome 

learning but not stimulus-outcome learning (Camille et al., 2011; Rudebeck et al., 2008). The 

presentation of choices on screen in addition to selection of actions via button press might 

have sufficed to enable stimulus-outcome learning via other brain areas. A potential candidate 

for these compensatory processes might be the OFC which was shown to be essential for 

stimulus-outcome learning but not action-outcome learning (Camille et al., 2011; Rudebeck et 

al., 2008). However, since we did not measure indices of OFC, this notion cannot be confirmed 

conclusively. The FRN itself was connected to behavioural flexibility in studies with a more 

dynamic environment (M. X. Cohen & Ranganath, 2007; Fischer & Ullsperger, 2013; Kirschner 

et al., 2022; but also see Chase et al., 2011). However, in an exploratory analysis, we were 

able to relate only P3 but not FRN to choice switching (see Table 11); the task might not have 

been dynamic enough in the current study.

While the RPE effect in controls in Experiment 1 followed the expected direction, i.e., an 

enhanced FRN for high negative compared to low negative RPEs (Sambrook & Goslin, 2015), 

the direction of the effect was unexpectedly reversed for the control stimulation in Experiment 

2. A likely explanation seems to be that vertex TMS affected processing, even though it is a 

common control site. At least one study (Jung et al., 2016) could show that vertex TMS reduced 

ACC activation. The control stimulation thus likely did not succeed as a control condition. 

Noteworthy, however, is that the findings in the cerebellar stimulation in Experiment 2 still 

replicated the findings in the patients in Experiment 1.

Conclusion

The findings point to a reliance of RPE processing in FRN on cerebellar output. Cerebellar 

damage and disruption led to non-significant RPE effects in FRN, while negative RPE was 

reflected in FRN for control participants and control stimulation. The pattern was consistent 
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across two studies with different lesion methods (stroke and spTMS). Behavioural performance 

was largely unaffected except for minor differences in behavioural flexibility. This study adds 

to a growing body of evidence indicating that the cerebellum processes RPEs and conveys 

these signals to other brain areas, further showing that this signal is required for RPE 

processing in FRN.
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Manuscript 2 – Cerebellar single-pulse TMS differentially affects 
early and late error processing in reinforcement learning

Introduction and hypotheses

Feedback processing is an important aspect of reinforcement learning, and essential for the 

updating of action values to make better decisions. However, similar to response conflict tasks, 

response errors can be processed already at the stage of the response, when the feedback in 

the trial has not yet been provided. This requires an understanding of whether a specific 

response is correct or an error, which usually happens in later stages of reinforcement learning. 

Previous studies could show a shift in processing through the course of learning, with 

feedback-dominant processing in initial stages and error-dominant processing in later learning 

stages (Bellebaum & Colosio, 2014; Eppinger et al., 2008). Naturally, participants need to rely 

on feedback processing in initial stages as the correct response is unknown and needs to be 

found out via trial and error. Errors are committed because the correct answer is unknown, 

requiring participants to wait for the feedback to know whether their response was correct. In 

later stages, after several repetitions, however, an understanding of correct responses and 

errors should be acquired. Error rates should decrease, and errors are committed less 

commonly due to uncertainty and more commonly by accident/slips of attention. Participants 

at this stage know the correctness of responses at the time of response instead of needing to 

wait for the feedback. Concurrent with this, stronger processing can be found in error 

processing indices at later learning stages, such as the ERN (Bellebaum & Colosio, 2014; 

Eppinger et al., 2008).

Following the finding in Manuscript 1 that cerebellar disruption impacts RPE processing in the 

FRN in reinforcement learning, the question arose whether this is also the case for error 

processing in the ERN in reinforcement learning. Importantly, while feedback processing in 

FRN was disrupted, reinforcement learning was unaffected by cerebellar TMS, enabling error 

processing in later stages of the task. The ERN and FRN are closely connected in their function 

in performance monitoring as well as the neural generator (Hauser et al., 2014; Herrmann et 

al., 2004; Holroyd & Coles, 2002; Miltner et al., 1997; Roger et al., 2010; San Martín, 2012; 

Wessel, 2012), making a similar impact of cerebellar disruption more likely. While previously, 

Peterburs et al. (2012, 2015) could show that cerebellar deficits impact error processing in the 

ERN in response conflict tasks, it is unclear whether this is also the case for error processing 

in reinforcement learning contexts. The ERN is not often investigated in reinforcement learning 

task (see, e.g., Chase et al., 2011; Höltje & Mecklinger, 2020; Peterburs et al., 2016; 

Rustemeier et al., 2016; Weismüller & Bellebaum, 2016).
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Manuscript 2 comprised a reanalysis of Experiment 2 of Manuscript 1: instead of feedback-

related signals, the response-locked signals in the probabilistic feedback learning task were 

investigated. This re-analysis followed the findings by Peterburs et al. (2012, 2015) in response 

conflict tasks, which found impaired error processing in patients with cerebellar stroke or 

degeneration in the ERN. A later component, the Pe, which is more closely related to error 

awareness, was also investigated (Falkenstein et al., 1991; Nieuwenhuis et al., 2001; 

Ridderinkhof et al., 2009; Wessel, 2012). In Manuscript 2, we addressed the question whether 

error processing would also be impaired in reinforcement learning tasks. ERN and Pe were 

analysed. Effects were expected to follow the findings of Peterburs et al. (2015) in patients with 

cerebellar degeneration. In detail, the following was expected:

1) The ERN was expected to be increased for errors over correct responses (ME 

response type). 

a. We expected this effect to become larger with progressing learning, i.e., with 

increasing trial number, as participants do not have a representation of choice 

correctness at the beginning of the task (IE response type × trial number).

b. We expected the interaction effect between response type and trial number to 

also be modulated by stimulation site: while the interaction effect should be 

intact for vertex TMS, the effect should be reduced for cerebellar TMS (IE 

response type × trial number × stimulation site).

2) The Pe was expected to be increased for errors over correct responses (ME response 

type).

a. We expected this effect to become larger with progressive learning, i.e., with 

increasing trial number (IE response type × trial number)

b. We did not expect any interactions between response type, trial type, and 

stimulation site. A change in Pe had previously been reported by Peterburs et 

al. (2012) for patients with chronic cerebellar stroke and interpreted as reflecting 

a compensatory mechanism. As spTMS only creates transient virtual lesion 

which should not allow for long-term compensatory mechanisms, we did not 

expect such a change under cerebellar TMS.

Method

As Manuscript 2 constituted a re-analysis of data from Experiment 2 in Manuscript 1, sample 

characteristics, procedure and EEG recording are given in the Methods section of Manuscript 

1.

EEG preprocessing

EEG preprocessing closely followed the description for Experiment 2 in Manuscript 1 up to the 

segmentation around the feedback markers. Instead, segmentation was placed around the 
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response markers, starting 200 ms before and ending 500 ms post-response. A baseline 

correction was performed based on the interval from 200 to 100 ms before the response. 

Single-trial data were exported using a generic data export.

Peak detection for the ERN and Pe was performed based on the individual averages per 

condition (response type [error, correct] × stimulation site [vertex, cerebellum] × TMS timing 

[post-stimulus, pre-feedback]). The ERN was defined as the maximal negative peak within the 

time window from response onset to 100 ms post-response at electrode FCz (Hajcak & Foti, 

2008). The Pe was defined as the maximal positive peak within the time window from 200 to 

400 ms post-response at electrode Pz (Larson et al., 2010). For the analysis, the mean 

amplitude in a time window around the determined latency was extracted from the single-trial 

data (20 ms for the ERN; 40 ms for the Pe; Albrecht & Bellebaum, 2023; Meadows et al., 2016).

Data analysis

Data analysis was conducted in R (version 4.2.3). LME analyses were conducted for both ERN 

and Pe, using the within-subject factors response type (error, correct), stimulation site (vertex, 

cerebellum), TMS timing (post-stimulus, pre-feedback), trial type and all interactions between 

these factors as fixed effects.

For random effects, a maximal fit was attempted including all within-subject factors and an 

intercept per subject but in case of singular fit, lower interaction levels were removed stepwise 

(starting with main effects) until fit and convergence was ensured. No outliers were detected 

using Cook’s distance (Cook, 1977) and a criterion of 4/(n-p-1). Interactions were resolved via 

simple slope analyses, using Bonferroni correction according to the number of slopes.

Results and Discussion

The expected effect of cerebellar TMS on ERN could be confirmed, with a non-significant error-

correct differentiation for cerebellar TMS while it was intact for vertex TMS late in the task. For 

the Pe, an unexpectedly increased error-correct differentiation could be found for post-stimulus 

cerebellar TMS compared to vertex TMS.

The effect pattern found in the ERN conforms to findings previously reported in patients with 

cerebellar stroke and degeneration in a response conflict task (Peterburs et al., 2012, 2015). 

This could indicate that the role of the cerebellum in error processing presents similar in 

response conflict and reinforcement learning contexts, further supporting its proposed function 

in overall performance monitoring (Peterburs & Desmond, 2016).

Unexpectedly, the result pattern closely followed the pattern reported in chronic stroke patients 

(Peterburs et al., 2012): while the ERN showed a decreased error-correct differentiation, the 

Pe showed an increased error-correct differentiation, and behavioural performance was intact. 
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This pattern was previously interpreted by Peterburs et al. (2012) as long-term compensation 

available to patients following stroke recovery. However, in the study at hand, spTMS was used 

to induce temporary disruption. This technique applies instantaneous disruption present for 

only a short duration, and, naturally, long-term compensation should thus not be possible. 

Instead, short-term compensation might seem plausible, as the learning performance was 

intact. Such compensation might come at the disadvantage of being more effortful or a problem 

in fast-paced environments. However, it cannot be established whether this was truly the case 

in the current study; compensation could have taken place at several other times within the 

task, such as the inter-trial interval. An alternative explanation for the increased error-correct 

differentiation in the Pe might be dysmetria (i.e., over- or undershooting of a goal-directed 

movement). Schmahmann (1998) proposed that dysmetria might not only occur in the motor 

domain but also the cognitive domain in terms of a dysmetria of thought. The Pe might thus 

display an exaggerated perception of errors or salience, in terms of a hypermetria/an 

overshoot. The differences in effects of cerebellar disruption on ERN and Pe might lie in the 

nature of their neural generators: while both components have shown to be generated by the 

ACC, additional generators seem to contribute to the Pe (Hester et al., 2005; Overbeek et al., 

2005). The spTMS applied to the cerebellum might affect these regions differently.

Notably, this was a re-analysis of data from Manuscript 1. Feedback processing in terms of 

RPE processing was therefore already impacted, and the question arises whether the 

disrupted feedback processing might have impacted error processing, e.g., via a misadjusted 

update of action values, leading to deficits in error recognition. However, the effect in both ERN 

and Pe appeared to be stronger after post-stimulus (i.e., pre-response) TMS (although only on 

trend level for ERN). This indicates that the disruption of error processing took place more 

locally at the response stage.

Of note, the Pe appeared to show a less pronounced positive peak in the grand averages 

compared to studies using response conflict tasks. While the Pe has oftentimes not been 

analysed in studies that employed reinforcement learning (Bellebaum & Colosio, 2014; 

Eppinger et al., 2008; Herbert et al., 2011; Pietschmann et al., 2008), it appeared to be less 

pronounced in studies that did (Unger et al., 2012; Zhuang et al., 2021); this might thus simply 

be a property of Pe in feedback-based tasks, potentially due to errors being more ambiguous 

compared to errors in response conflict tasks. However, a posterior positivity is clearly visible 

within the topographical plots of the difference signal for cerebellar post-stimulus TMS (see 

Supplementary Figure S3).

In parallel to Manuscript 1, problems with the vertex stimulation as a control condition need to 

be considered. While no impact on error processing was apparent in the analyses performed 

in Manuscript 2, the analyses in Manuscript 1 pointed to an effect of vertex TMS on FRN. FRN 
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and ERN are closely connected, both in function and neural generator (Balconi & Scioli, 2012; 

Herrmann et al., 2004; Oerlemans et al., 2025; Roger et al., 2010; San Martín, 2012; Wessel, 

2012). Further replication is thus necessary to make sure that the findings are valid, even 

though the findings in ERN and Pe under vertex stimulation appeared to be normal (Bellebaum 

& Colosio, 2014; Falkenstein et al., 1991; Miltner et al., 1997).

Conclusion

The expected deficits in error-correct differentiation in ERN when participants received 

cerebellar TMS could be confirmed, in accordance with previous studies using response 

conflict paradigms. The general result pattern with decreased error-correct differentiation in 

ERN, increased error-correct differentiation in Pe, and intact learning appeared to be 

consistent with a previous finding in chronic stroke patients. The study further supports that 

the cerebellum plays a role in performance monitoring and is required for error processing.
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Manuscript 3 – The effect of cerebellar TMS on error processing: A 
combined single-pulse TMS and ERP study

Introduction and hypotheses

Last, in Manuscript 3, the question of timing of cerebellar involvement was investigated. While 

in the motor domain, there is an established time window concerning communication from the 

cerebellum to the motor cortex (Ugawa et al., 1991), this is not established for the cognitive 

domain. TMS in Manuscript 1 and 2 was applied at 100 ms post-stimulus and 100 ms pre-

feedback. However, these stimulation time points are rather arbitrary, as they are not based 

on previous findings. To investigate this question, more timings need to be examined. 

Therefore, for the third study, instead of a reinforcement learning task, a Go/Nogo Flanker task 

was employed. The Flanker task required participants to press a left or right button in response 

to an arrow presented on screen. Shortly before the relevant arrow was presented, flanking 

arrows were presented which mostly pointed in the same direction but in a small number of 

trials in a different direction. This thus induced a response conflict, as the response towards 

the flanking arrow was prepared and needed to be suppressed when the relevant arrow 

pointed in the opposite direction. In Nogo trials, the response had to be inhibited altogether. 

The task thus did not require learning. This offered the advantage of a more flexible shift in 

stimulation timings while still avoiding an unnecessarily long task duration, as stimulation times 

did not need to be locked to certain stimuli in the task. Stimulation times were adjusted to the 

individual error latency which was the sum of the individual median error response times and 

mean ERN latencies (thus the estimated time point of the ERN peak). This was calculated 

based off data of a short version of the task previously conducted. Stimulation was then applied 

either 100 ms before, 50 ms before, at, or 50 ms after this individual error latency. We expected 

the following:

1) We expected increased error rates for cerebellar TMS compared to vertex TMS, but 

only when stimulation is applied before the response (IE stimulation site × TMS timing).

2) We expected an increased ERN towards errors compared to correct responses (ME 

response type).

a. We expected this effect to be reduced when receiving cerebellar TMS before 

the ERN (-100 and -50 ms TMS timing; IE response type × stimulation site × 

TMS timing).

3) We expected an increased Pe towards errors compared to correct responses (ME 

response type).

a. We did not expect this effect to be reduced when receiving cerebellar TMS 

compared to vertex TMS.
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Method

Participants

Data from sixteen participants entered the analysis. Participants were predominantly female 

(13 women, 3 men) young adults (M = 24.0 years, SD = 3.7 years) with an average IQ (M = 

98.75, SD = 10.88).

Procedure

The task analysed was part of a series of tasks performed within the same session. After EEG 

and TMS preparation (see Experiment 2 in Manuscript 1), a pre-task was performed to 

determine the individual ERN latency (see below for more details). Next, the probabilistic 

feedback learning task presented in Manuscript 1 (Experiment 2) was performed. Last, 

participants completed a Go/Nogo Flanker task while receiving spTMS, of which data was 

analysed for Manuscript 3. Go trials, in which participants needed to react to the presented 

stimuli made up 80 % of trials, while Nogo trials, in which participants needed to inhibit their 

response made up 20 % of trials, with a total of 600 trials. In the beginning of each Go trial, 

flanking arrows were presented above and below a fixation cross, both pointing either to the 

right or left. After 200 ms, the fixation cross was replaced by the target arrow which pointed in 

the same direction of the flanking arrows in 80 % of Go trials (congruent trials) or in the other 

direction in 20 % of Go trials (incongruent trials). Participants were instructed to react to the 

target arrow by indicating whether it pointed in the left or right direction by pressing one of two 

buttons on a response box within the response time window of 350 ms (alternatively 400 ms 

in case the miss rate was too high in the pre-task). In Nogo trials, the fixation cross was instead 

replaced by a circle, indicating that participants should not press a button using the same 

response time window as for Go trials. Afterwards, a fixation cross was presented for 500 ms. 

The inter-trial interval was jittered between 900 and 1300 ms. 

The setup of the TMS is detailed in Manuscript 1. Stimulation timings were determined based 

on the individual error latency. To this end, a pre-task without TMS was performed that 

contained 120 trials using the same ratios of Go, Nogo, and congruent/incongruent trials. While 

participants subsequently performed the probabilistic feedback learning task, the median error 

response time and the mean ERN latency in this pre-task were calculated. The summary of 

these values was used to determine stimulation timings for the main Go/Nogo Flanker task. 

Stimulation took place at four different timings: 100 ms before, 50 ms before, at, or 50 ms after 

the individually calculated ERN latency. This strategy followed the approach of Verleger et al. 

(2009) who applied it for lateralised readiness potentials and TMS of the motor cortex.
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EEG recording and preprocessing

EEG recording followed the procedure in Experiment 2 of Manuscript 1. Trials without a TMS 

pulse were manually removed before preprocessing. On average, 29.25 trials per subject and 

stimulation site were rejected due to missing TMS pulse (SD = 39.67 trials). Preprocessing 

then largely followed the explanations for Experiment 2 of Manuscript 1, using the ARTIST 

algorithm with the same settings. In artefact rejection, 14.88 trials per subject and stimulation 

site were rejected on average (SD = 14.72 trials). On average, 1.13 channels were interpolated 

(SD = 1.13 channels). Following preprocessing via ARTIST, data were exported to the 

BrainVision Analyzer and segmented around the response markers, starting 200 ms before 

and ending 600 ms after the marker. Data were averaged per condition (trial type [error, correct] 

× stimulation site [vertex, cerebellum] × TMS timing [early stimulation, late stimulation]) and 

the difference signal between the response types error and correct was formed (error – 

correct). Next, the peak detection was performed in the BrainVision Analyzer. ERN and Pe 

were quantified within the difference waveforms (error – correct responses). The ERN was 

extracted as the maximum negative peak at electrode FCz between response onset and 100 

ms following response onset while the Pe was extracted as the maximum positive peak at Pz 

between 200 and 400 ms after response onset. The peak amplitudes were then exported for 

statistical data analysis using R.

Data analysis

LME analyses were performed for error rates, response times, difference ERN (error – correct 

trials), and difference Pe (error – correct trials). For the difference ERN, a follow-up analysis 

with the original waveforms (correct and error separately) was performed.

For error rates, the within-subject factors stimulation site (vertex, cerebellum) and TMS timing 

(early stimulation, late stimulation) were included as fixed effects. For response times, the 

within-subject factors stimulation site, TMS timing, and trial type (error, correct) were included 

as fixed effects. For the difference ERN and Pe, the within-subject factors stimulation site and 

TMS timing were included as fixed effects.

For random effects, a maximal fit was attempted including all within-subject factors and an 

intercept per subject but in case of singular fit, interaction terms and main effects were removed 

until fit and convergence was ensured. Subjects exceeding a Cook’s distance (Cook, 1977) 

criterion of 4/n were excluded from the respective analysis. Interactions were resolved via 

simple slope analyses.

Results and Discussion

No effects of stimulation site could be found for accuracy or response time. The difference 

ERN (error – correct responses) was indeed reduced for cerebellar compared to vertex TMS, 
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as hypothesised. This pattern persisted only for the late stimulation (at calculated ERN latency 

or 50 ms post-ERN latency). Analyses of the original waveforms indicated that this effect was 

more strongly driven by the ERN for errors than correct responses. No significant effects arose 

for the difference Pe, consistent with the hypotheses.

The finding of a reduced difference ERN for cerebellar stimulation is consistent with previous 

findings in patients with chronic cerebellar stroke or degeneration (Peterburs et al., 2012, 

2015). However, the overall pattern with a reduced error-correct differentiation in ERN, 

unchanged error-correct differentiation in Pe, and unchanged behavioural performance does 

not fit with either of the studies performed by Peterburs et al. (2012, 2015). Peterburs et al. 

(2015) found reduced error-correct differentiation in ERN with unchanged error-correct 

differentiation in Pe together with decreased performance in patients with degenerative 

cerebellar disorders. In the study in 2012, they found reduced error-correct differentiation in 

ERN with increased error-correct differentiation in Pe together with unchanged performance, 

potentially indicating a compensation of processing in ERN by Pe in patients with chronic 

cerebellar stroke. The pattern in the current study might have a better fit to results reported by 

Tunc et al. (2019) who used a Flanker task which might fit more closely to the Go/Nogo Flanker 

task used in this study (instead of the antisaccade task used in the studies performed by 

Peterburs et al., 2012, 2015). Tunc et al. found no differences in error rates between healthy 

controls and patients with cerebellar degeneration, but also a decreased difference ERN for 

patients compared to controls, although only on trend level. The Pe was, however, overall 

increased for healthy controls compared to patients. 

Notably, cerebellar spTMS needs to be dissociated from investigations in cerebellar diseases, 

as effects might present differently. In this case, an interpretation in terms of facilitation cannot 

be excluded, potentially in terms of a decreased need of cognitive control that is reflected in 

the ERN amplitude. Unlike with cerebellar disease/damage, a disruption of the inhibitory output 

of the cerebellar cortex towards the deep cerebellar nuclei is a possibility with cerebellar TMS, 

potentially resulting in disinhibition of cerebellar output. However, this interpretation is limited 

to speculation. No differences in error rates and response times were found between cerebellar 

and vertex TMS, which might speak against facilitatory effects of cerebellar TMS.

An interesting pattern in Manuscript 3 was revealed via the manipulation of the TMS timing 

around the ERN latency: only late TMS reduced the difference ERN when stimulating the 

cerebellum, but not early TMS. This finding indicates that stimulation needs to occur in close 

temporal proximity to ERN to be effective. A necessity of such a close time point of stimulation 

might lie in the course of information exchange for the forward model computed within the 

cerebellum. Following the forward model, information on the performed action should reach 

the cerebellum in close temporal proximity to the execution of the action. It might be crucial to 
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stimulate closely to this time point, and earlier stimulation might leave enough time for 

cerebellar function to resume normal functionality.

Again, the potentially disruptive effect of vertex TMS on the ACC, the likely neural generator of 

the ERN, needs to be considered (Jung et al., 2016). Fortunately, recordings were made prior 

to the TMS, originally to compute the individual ERN latencies. These recordings were post-

hoc analysed to compare whether cerebellar TMS truly led to a decrease in error-correct 

differentiation or whether possibly vertex TMS led to an increase in error-correct differentiation. 

When comparing the difference ERN from the recordings with no TMS to the ERN under 

cerebellar and vertex TMS, the effect in the main task seems to be truly driven by a decrease 

in error-correct differentiation when using the cerebellar TMS and not an increase towards 

vertex TMS. While this does not restore vertex as a valid control condition, it seems to indicate 

that its disruptive effects on the ACC do not prove as severe for error processing as for 

feedback processing. Considering that two participants dropped out following cerebellar TMS 

during the task, it is nevertheless highly recommended to use an active control site when 

investigating cerebellar TMS, despite reservations concerning the use of vertex TMS as a 

control.

Conclusion

Manuscript 3 adds to a growing body of research implicating the cerebellum in error processing 

and performance monitoring. It replicates findings that cerebellar damage and disruption 

reduce the error-correct differentiation in the ERN, and further shows that a close temporal 

proximity in stimulation to the ERN is required to be effective, following previous studies that 

showed this in the motor domain.
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General Discussion
The aim of the studies presented within this dissertation was to better comprehend the role of 

the cerebellum within reinforcement learning, and performance monitoring in general. Previous 

work indicated that the cerebellum processes RPEs and is involved in performance monitoring, 

including both response inhibition and reinforcement learning (Berlijn et al., 2024; Kostadinov 

& Häusser, 2022). To investigate how this cerebellar computation interacts with cerebral 

performance monitoring, we conducted three studies using lesion methods to the cerebellum 

while recording EEG from the cerebrum. If cerebellar output is required for cerebral 

computations, cerebral computations should be altered when the cerebellum is 

damaged/disrupted. Manuscript 1 investigated RPE processing within a reinforcement learning 

paradigm in two parallel experiments: Experiment 1 involved patients with chronic cerebellar 

stroke, while Experiment 2 used cerebellar spTMS in healthy young adults. RPE processing 

was indeed found to be affected in FRN in both cerebellar groups/conditions but not in the 

control participants/under control stimulation. Reinforcement learning was unaffected. 

Manuscript 2 was a follow-up analysis of the data of Experiment 2 in Manuscript 1. Instead of 

feedback processing, error processing was investigated. Error processing was also affected 

under cerebellar TMS: while error processing in ERN was impaired, error processing in Pe was 

enhanced by cerebellar TMS compared to control stimulation to the vertex. Finally, in 

Manuscript 3, the cerebellar role in performance monitoring was investigated in a response 

conflict paradigm with a focus on TMS timing. Stimulation took place at four different timings, 

determined individually based on previously measured ERN latencies and response times. 

Similar to Manuscript 2, error processing in ERN was blunted, however, only when stimulation 

occurred close to the ERN latency. Behaviour was largely unaffected in all studies.

The cerebellum in reinforcement learning

Reward prediction error

In Manuscript 1, cerebellar lesions and disruption both led to an absent/decreased RPE coding 

in the FRN, indicating that cerebellar contribution is required for normal RPE coding in the 

FRN. This finding fits with previous studies in rodents and primates that found RPE-like signals 

and other signals consistent with reinforcement learning in the cerebellum (Heffley et al., 2018; 

Heffley & Hull, 2019; Kostadinov et al., 2019; Ohmae & Medina, 2015; Sendhilnathan et al., 

2020, 2021; Vignali et al., 2024; M. J. Wagner et al., 2017). The results reported in Manuscript 

1 indicate that the RPE signal found in the cerebellum in these studies is required for normal 

RPE coding in the forebrain; in particular in the neural generators of the FRN. This further 

converges with studies in rodents that found projections from the cerebellum to the VTA and 

SN conveying reward-related information (Carta et al., 2019; Washburn et al., 2024; J. Yoshida 
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et al., 2022; T. Yoshida et al., 2024). These two regions have been shown to be functionally 

connected to the ACC, one of the main neural generators of the FRN (Elston et al., 2018, 2019; 

Oerlemans et al., 2024, 2025; Y. Zhang et al., 2017). A connection via the SN or VTA might 

thus provide a potential pathway for RPE-related information from the cerebellum to the ACC. 

RPE effect in patients (Experiment 1)

In Experiment 1, the direction of the effect in patients might be of interest: we found that the 

FRN amplitude did not appear to be reduced for high negative RPEs but instead increased for 

low negative RPEs, amounting to the non-significant RPE effect. This finding might be 

indicative of inappropriately increased perception of salience. This would converge with the 

“dysmetria of thought” hypothesis, i.e., that dysmetria, a symptom oftentimes found in the 

motor domain with cerebellar dysfunction, can also occur in the cognitive domain 

(Schmahmann, 1998). In the FRN, the salience signal towards feedback with low RPEs should 

result in low salience, as the outcome was expected. However, for cerebellar dysfunction 

(lesion/disruption), a cognitive hypermetria/overshoot of this salience signal might occur, 

making the FRN towards low RPEs inappropriate high. This interpretation would also be 

consistent with the interpretation of the findings reported by Rustemeier et al. (2016). They did 

not examine RPE coding but valence effects in FRN in a sample of patients with chronic 

cerebellar stroke within a fractal task. In this task, participants were able to choose between 

two different fractals (i.e., abstract and unfamiliar visual stimuli) to receive a monetary reward 

or punishment. However, the chance for either feedback type was 50 % for all fractals, and 

learning was thus not possible. Across the task, they found valence coding for patients. In 

controls, however, the valence effect did not reach significance. They interpreted this finding 

of increased valence coding for patients compared to controls in terms of surprise/salience. In 

controls, the FRN should differentiate less between positive and negative feedback as 

feedback stimuli were of similar expectancy (Alexander & Brown, 2011), as 50-50 

contingencies were used. Rustemeier et al. speculated that the same effect did not occur for 

the patients, resulting in sustained surprise/salience towards feedback. RPE modelling was, 

however, not performed, making direct comparisons between the studies difficult.

The increased instead of decreased FRN in cerebellar damage points to a modulatory instead 

of a driving role of the cerebellum in RPE coding in the FRN. Many of the patients had lesions 

within the cerebellar cortex instead of the nuclei. Similarly, cerebellar TMS in Experiment 2 

likely reached the cerebellar cortex more strongly than deeper structures. Considering that the 

output of the cerebellar cortex via the Purkinje cells is largely inhibitory (Ito et al., 1970; Zheng 

& Raman, 2010), it appears conceivable that the damage/disruption in the cerebellar cortex 

led to a disinhibition of the DCN, and then as a consequence to increased cerebellar output.
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Considering the recent debate on RewP, an alternative explanation arises: if the valence and 

RPE effects we see within the time window of the FRN are in actuality not driven by a negativity 

but a positivity, the results concerning signal increase in the current study need to be 

interpreted differently. Namely, a more negative, thus less positive RewP would mean a 

decrease of signal towards low RPE, instead of an increase in signal, as interpreted above. In 

turn, this would be more fitting with a potentially driving role of the cerebellum within this 

process. However, this interpretation would result in an even stronger contradiction with 

behavioural findings, posing the question of how the signal can be strongly decreased when 

the behaviour is intact (see below for a discussion of the brain-behaviour disconnect). 

Considering recent observations and views, two deflections occur within the time window of 

the FRN: a negativity called N2 and a positivity referred to as RewP (Krigolson, 2018; Proudfit, 

2015; Ullsperger, 2024). The N2 is sensitive towards frequency and surprise (Patel & Azzam, 

2005; Ullsperger, 2024), while the RewP is more associated with RPE, in particular positive 

RPE (Ullsperger, 2024). However, it is difficult to separate the unsigned RPE from salience in 

the current study. The unsigned RPE represents surprise which involves salience. Thus, it 

cannot be excluded that the effect is more strongly driven by the negative component in the 

FRN time window, i.e., N2. Notably, it has been proposed that the negativity associated with 

FRN is in fact an N2 (Holroyd et al., 2008). However, without conducting an additional PCA to 

separate N2 and RewP in the data available, conclusions as to the contribution of N2 and 

RewP for the signal analysed cannot be drawn. Nevertheless, as one would expect a stronger 

signal for a highly relevant signal (high negative RPE) over one with lower relevance (low 

negative RPE), it might be more meaningful to interpret the signal as a negativity rather than 

positivity, although this interpretation remains speculative. 

RPE in healthy participants (Experiment 1 and 2)

A further point of discussion concerns why RPE coding in FRN was found only for negative 

feedback in healthy controls (Experiment 1) and for control stimulation (Experiment 2). Not 

many previous studies have examined RPE coding in FRN separately for positive and negative 

feedback. Instead, a signed RPE was examined (e.g., Burnside et al., 2019; Fischer & 

Ullsperger, 2013; Frömer et al., 2021; Humann et al., 2020; Kirschner et al., 2022) which is, 

however, highly correlated with valence. Considering studies which examined RPE coding in 

FRN separately for positive and negative valence, some studies found effects stronger or only 

for negative valence (Chase et al., 2011; Hoy et al., 2021; Rawls & Lamm, 2021), and some 

only for positive valence (Cavanagh, 2015; Weber & Bellebaum, 2024). Recordings of single 

cells in the ACC show that some neurons only react to negative feedback, while others only 

react to positive feedback, and again others show excitation to both negative and positive 

feedback (Amemori et al., 2015; Kawai et al., 2015; Monosov, 2017). A potential reason for the 

differences in valence preference in the (suspectedly ACC-generated) signal in FRN might be 
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differences in paradigms which draw more attention towards either of the valence types and 

thus preferentially activate the respective neurons in ACC. For example, tasks in which 

participants can learn more easily will have less negative feedback in the later course of the 

task and negative feedback will consequently have more salience due to the lower frequency. 

The FRN is sensitive to salience (Hauser et al., 2014; Stewardson & Sambrook, 2020; Talmi 

et al., 2013). As proposed by Alexander and Brown (2011), frequency also explains parts of 

the valence effects found in FRN. It might be sensible to use tasks which show robust effects 

for RPEs under both positive and negative feedback to examine cerebellar influences on 

signed and unsigned RPEs. This might require online control of accuracy, such as achieved 

by Hoy et al. (2021) in a time estimation task. However, even though Hoy et al. were able to 

show RPE effects in FRN for both positive and negative feedback, further studies are 

necessary to show whether these effects are robust.

Valence

For Manuscript 1, a control analysis was performed to investigate whether processing was 

disrupted in general or whether this was specifically related to unsigned RPE. Interestingly, 

valence processing in FRN was indeed intact for both groups in Experiment 1 and both 

stimulation sites in Experiment 2. This is consistent with the robust valence effect in FRN 

(Sambrook & Goslin, 2015). Of note, the valence effect in Experiment 1, where feedback delay 

was varied, was only found for short feedback delays. This is consistent with a wide variety of 

literature showing that the valence effect in the FRN is dependent upon feedback timing: 

valence effects generally presented as decreased when feedback was more delayed (for a 

review see Hinneberg & Hegele, 2022). As detailed in the introduction, this might be due to a 

shift in involvement of different brain areas, with the striatum showing stronger activation for 

immediate feedback and the medial temporal lobe showing stronger activation for delayed 

feedback (Foerde & Shohamy, 2011).

It is also worth noting that the intact valence effect in the current study is different from the 

findings of Rustemeier et al. (2016) who also examined patients with chronic cerebellar stroke. 

Differences in paradigm should be considered: the fractal task that Rustemeier et al. used only 

included 50-50 contingencies. Learning was thus not possible, unlike in the task in the study 

at hand. Interestingly, Rustemeier et al. reported the findings of a probabilistic feedback 

learning task – which was conducted in the same patient sample – in their supplement: here, 

they did not find differences in valence coding in FRN between patients and controls. Notably, 

they also did not specify whether a general valence effect was found (although supplementary 

grand averages appear to show valence differences in the FRN time window). Learning 

success in this secondary probabilistic feedback learning task presented as parallel to our 

findings: no differences between patients and controls emerged. Intact valence coding and 
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acquisition learning in FRN in patients with chronic cerebellar stroke thus appears consistent 

across studies.

Brain-behaviour disconnect

While the abnormalities in RPE coding in FRN were quite pronounced, this was not the case 

for behavioural deficits. Only minor differences between patients and controls (Experiment 1) 

and between cerebellar and vertex stimulation (Experiment 2) were found. This finding prompts 

two questions: 1) what does the cerebellum contribute to reinforcement learning, and 2) how 

does the FRN relate to behaviour?

Cerebellar contribution to reinforcement learning

Concerning the first question, our findings did not indicate behavioural deficits concurrent with 

cerebellar damage or disruption besides minor changes in choice switching. While the main 

take-away of this finding could be that the cerebellum is not essential for the specific learning 

processes necessary for acquisition learning, several factors need to be considered. The task 

we used required participants to observe and understand patterns between stimuli, actions, 

and outcomes. They were not given information on how the task was to be performed except 

for that they would be able to influence the outcomes they received and the general course of 

the task. While the task did not include any other features making it more difficult besides the 

probabilistic contingencies (Experiment 1: 90-10 for two stimuli and 50-50 for the other two 

stimuli; Experiment 2: 80-20 for two stimuli and 50-50 for the other two stimuli), the task was 

not easy considering average accuracy. Accuracy for learnable stimuli in the last block was at 

around 70 % for Experiment 1 and at around 60 % for Experiment 2. The results can thus not 

be explained by a simple ceiling effect.

When considering other studies that examined reinforcement learning under cerebellar 

damage/disruption, a pattern seems to emerge with intact acquisition learning but deficient 

behavioural flexibility (i.e., an aspect for which we found minor changes): Rustemeier et al. 

(2016) and Berlijn et al. (in press) could not find deficits in patients with cerebellar stroke and 

degeneration, respectively. Thoma et al. (2008) could demonstrate that while patients with a 

cerebellar stroke showed normal acquisition in reinforcement learning, reversal learning was 

decreased. The same pattern with intact acquisition and deficient reversal learning was 

observed when Kruithof et al. (2025) applied theta-burst stimulation to the cerebellum. 

Nicholas et al. (2024) also found deficits in reinforcement learning in patients with cerebellar 

degeneration in a task that required behavioural flexibility throughout the whole task. They 

used shifting reward probabilities, thus requiring participants to constantly adjust action values. 

A decisive factor for deficits under cerebellar damage/disruption might thus be behavioural 

flexibility rather than acquisition learning. Notably, however, as Berlijn et al. (2024) outline in 

their systematic review, studies including the Wisconsin Card Sorting Test (WCST) or a 
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modified version of it did not yield as clear of a result pattern. The WCST requires participants 

to sort cards according to a pattern unknown to them that also changes throughout the task. 

This thus also requires behavioural flexibility. While some studies found deficits in patients with 

cerebellar damage (applying an old rule even though the rule shifted; Mak et al., 2016; 

Mukhopadhyay et al., 2007), others did not (Dirnberger et al., 2010; Turner et al., 2007). There 

is thus as yet no sufficient evidence for a clear behavioural correlate of cerebellar 

damage/disruption in reinforcement learning, although it seems more likely that flexibility rather 

than pure acquisition learning is affected in these patients.

Future studies are required to characterise the reinforcement learning deficits associated with 

cerebellar damage/disruption more in-depth. There might be differences both in terms of 

paradigm as well as in terms of clinical population/cerebellar stimulation. Concerning the 

paradigms, a wide range of paradigms with a focus on behavioural flexibility but differences in 

other requirements should be tested. Differences might be examined in task domain, required 

working memory load, risk behaviour, attention, and others. For example, reversal learning 

tasks might require the sensing of a sudden shift in stimulus-/action-outcome contingencies, 

which might pose higher demands to salience networks. This would be reconcilable with the 

deficits in unsigned RPE coding in FRN, which might also be interpreted as a deficient salience 

signal. Constantly shifting reward probabilities might require the involvement of other brain-

areas involved in the computation of reward values, and should present as more difficult. In 

addition, more complex tasks such as two-step tasks requiring the performance of several 

actions instead of one have not yet been sufficiently explored within the framework of 

cerebellar dysfunction and might even require a different set of processes and brain areas. 

Balsters et al. (2013) could show initial evidence that the cerebellum, in particular Crus I and 

II, is active in higher-order rule learning (which is required for two-step tasks). In rodents, a 

deficit in the reversal but not acquisition stage concurrent with cerebellar Purkinje cell loss was 

also shown in a visual discrimination task and discussed in terms of higher- and lower-order 

rule learning (Dickson et al., 2017). Interestingly, while the task was framed as a visual 

discrimination task and results were mainly interpreted in terms of higher- and lower-order rule 

learning, mice were instrumentally conditioned to learn visual stimuli, thus constituting a 

reinforcement learning task. The study thus provides further evidence for a role of the 

cerebellum in behavioural flexibility. It might be beneficial to consider higher-order rule learning 

when investigating a cerebellar role in reinforcement learning in terms of behavioural flexibility.

Behavioural correlates of the FRN

Concerning the second question, previous studies indicated that the correlation between FRN 

and behaviour is not straightforward. An overview by Ullsperger (2024) shows that there is no 

strong basis for behavioural correlates for the FRN yet. A few studies showed a relation to 
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deficits within behavioural flexibility (Fischer & Ullsperger, 2013; Kirschner et al., 2022; but also 

see Chase et al., 2011) which is also the area where we found minor deficits in Experiment 1 

and 2. However, the task we used in these experiments does not require a particularly high 

demand on behavioural flexibility; only acquisition learning was required. More severe deficits 

could potentially be found in tasks which require more behavioural flexibility, such as reversal 

learning tasks or tasks with continuously changing contingencies. The question on what the 

FRN reflects nevertheless persists. The signal clearly reflects RPEs, as many previous studies 

have shown (Burnside et al., 2019; Cavanagh, 2015; Chase et al., 2011; Fischer & Ullsperger, 

2013; Frömer et al., 2021; Hoy et al., 2021; Humann et al., 2020; Kirschner et al., 2022; Rawls 

& Lamm, 2021; Weber & Bellebaum, 2024). Several explanations come to mind on why the 

deficient RPE processing represented in FRN does not result in a behavioural deficit in the 

present experiments.

First, it might be that the RPE signal in the FRN is simply not essential for acquisition learning. 

Instead, other regions besides the ACC, i.e., the likely neural generator of the FRN, might 

represent RPEs independently from ACC and are instead required for this type of learning. 

Several fMRI and electrophysiological studies in animals have shown that RPE is represented 

in SN, VTA, Striatum, OFC, and likely further other regions (J. Y. Cohen et al., 2012; D’Ardenne 

et al., 2008; Groman et al., 2021; Schultz et al., 1993, 1997; Takahashi et al., 2023). It thus 

seems that the RPE is widely represented in the brain, which seems adequate, as it is such a 

crucial value for the correct adjustment of action values, and consequently the reinforcement 

learning success in a wide variety of contexts. The RPE signal in the FRN seems to make up 

only a part of these representations. The FRN might not account for the complete distribution 

of RPE signals in the brain. Since the absent RPE coding in FRN in the cerebellar lesion 

patients and healthy participants under cerebellar TMS does not result in behavioural deficits, 

the RPE signal in FRN cannot be the only signal used for action value updating in acquisition 

learning in probabilistic feedback learning contexts. That would had to have resulted in 

behavioural deficits. Notably, this argumentation is not compatible with the reinforcement 

learning theory proposed by Holroyd and Coles (2002) which assumes that the ACC acts as a 

control filter for all reinforcement learning processes (and should thus represent all RPE 

signals). Following this theory, deficits in processing within ACC should have resulted in 

behavioural deficits, which was however not the case.

Second, RPE processing in FRN might be used for reinforcement learning in acquisition 

contexts but can be compensated by other brain areas. This could be, for example, a later, 

more effortful process. However, we examined later ERP components for Experiment 1 and 2, 

i.e., P3a and P3b, and could not find any effects consistent with such a conclusion. Several 

brain areas associated with RPE processing were, however, not captured, as there is no 
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straightforward ERP component reflecting their activity. It is very possible that these brain 

areas took over the function of the ACC. Importantly, these would have to be compensatory 

processes that are available on the short term, as the stimulation in Experiment 2 was 

instantaneous. Lesion studies could show that the ACC is necessary for action-outcome 

associations but not stimulus-outcome associations (Camille et al., 2011; Rudebeck et al., 

2008). Of note, these findings demonstrate that the ACC cannot be the only final processing 

stage for all reinforcement learning processes. Instead, it seems that the ACC has a tendency 

towards action-based reinforcement learning. For stimulus-based reinforcement learning, 

areas such as OFC seem to be more relevant. Lesion studies could show that OFC is required 

for stimulus-outcome learning but not action-outcome learning, thus showing a double 

dissociation (Camille et al., 2011; Rudebeck et al., 2008). This insight is highly relevant to our 

findings. In the paradigm for Experiment 1 and 2, we assumed that action-outcome learning 

would take place, as choices were made by pressing one of two buttons on a response box. 

Stimuli were only used to represent the context of the choice, such that for a given stimulus, 

different contingencies between responses and outcomes applied. However, responses were 

additionally represented on screen via rectangles. In the previously mentioned studies, which 

showed a necessity of ACC for action-outcome learning, responses were made by moving a 

joystick, without representation on screen. The button presses and rectangle representation 

might have enabled learning via stimulus-outcome learning to some degree, facilitating the 

compensation via regions such as OFC. The OFC, and also the closely associated vmPFC 

receive a wide range of information highly relevant to reinforcement learning (Groman et al., 

2021; Moneta et al., 2023, 2024) and might be suitable to compensate ACC function. However, 

we were not able to test this as no correlate of OFC/vmPFC activity was measured. It is also 

worth mentioning that ACC function has not been closely defined yet. Another suitable region 

to compensate ACC function might be dlPFC, a region which is able to modulate activity of the 

motor cortex and whose stimulation is able to cause shifts in reinforcement learning strategies 

(Morris et al., 2014; J. X. Wang et al., 2018).

While it will be helpful to investigate this more directly using a method with a higher spatial 

resolution, such as fMRI, within a reinforcement learning task, it might also be helpful to 

investigate the effect of cerebellar TMS at a more basic level. Applying cerebellar repetitive 

TMS (rTMS; and several control stimulations on different appointments) and measuring 

resting-state fMRI before and after would be insightful to understand the effects of cerebellar 

TMS on cerebellar connectivity with other brain areas. rTMS can be used off-line and increase 

or decrease excitability of the subjacent area depending on stimulation frequency (Klomjai et 

al., 2015). This approach could shed light on several speculative interpretations for the studies 

presented here. While it would be interesting to see to which degree connectivity to areas 

involved in reinforcement learning changes, the direction of the effect (increased or decreased 
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activation/connectivity) would help interpreting whether cerebellar over- or underactivation is 

causal for the differences found in FRN and ERN.

Cerebellar computation in reinforcement learning

A recent study investigated feedback processing in the FRN in patients with ACC lesions 

(Oerlemans et al., 2024), i.e., the main generator of the FRN. This appears highly relevant in 

relation to the results of Manuscript 1. If the results were similar to the findings in Manuscript 

1, this would speak for a driving role of the cerebellum in generating the FRN. However, 

Oerlemans et al. (2024) found a blunted valence effect in FRN for patients with lesions to the 

(right dorsal) ACC while we found intact valence coding in patients with cerebellar damage. On 

the other hand, we found deficits in RPE coding which is something that was not tested in the 

study by Oerlemans et al. (2024). This points towards a complementary role of the cerebellum. 

Instead of a loss of valence coding as with ACC lesions, cerebellar lesions did not result in 

deficits in valence coding and instead selectively seemed to affect RPE. This is in conformity 

with the general assumption that the cerebellar influence on the cerebrum is modulatory and 

does not drive processes directly (Kawato et al., 2021).

A crucial point of interest concerns whether cerebellar RPE processing is related to signed or 

unsigned RPE. The reflection of RPEs in FRN was decreased only for negative valence. For 

positive valence, we could not find RPE coding for either patients/cerebellar TMS or 

controls/vertex TMS. This makes an interpretation as to whether the cerebellum is required for 

signed or unsigned RPEs more complex. Notably, valence coding in FRN was unaffected in a 

control analysis, indicating that cerebellar damage/disruption affected valence to a smaller 

degree. This could indicate that the cerebellum is more associated with unsigned than signed 

RPE. The ACC, on the other hand was shown to display both signed and unsigned RPEs 

depending on the study (Amemori et al., 2015; Corlett et al., 2022; Kawai et al., 2015; Monosov, 

2017).  

The interpretation of our results as deficits within the processing of unsigned RPE fits well with 

recent findings in fMRI and rodents. A meta-analysis conducted by Corlett et al. (2022) yielded 

that cerebellar activations in reinforcement learning mainly relate to unsigned instead of signed 

RPE. Further supporting this interpretation, rodent studies found signal increases towards both 

positive and negative RPEs (Heffley et al., 2018; Heffley & Hull, 2019; Kostadinov et al., 2019; 

Vignali et al., 2024; M. J. Wagner et al., 2017). Only one study found signal decreases towards 

omission in punishment contexts (Ohmae & Medina, 2015). However, a study investigating the 

output of the cerebellum did indeed find signals consistent with a signed RPE (Washburn et 

al., 2024), although the signal overlapped with licking activity.
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Importantly, the finding that the cerebellum contributes towards reinforcement learning does 

not indicate that the computation within the cerebellum itself follows principles of reinforcement 

learning. Reinforcement learning algorithms can have subprocesses that provide information 

to the higher-level reinforcement learning process but do not constitute reinforcement learning 

themselves (Sutton & Barto, 2018a, 2018b). They might for instance instead be supervised or 

unsupervised learning processes. In fact, supervised learning has been proposed as a ruling 

principle for cerebellar computations (Raymond & Medina, 2018), although recent accounts 

have also proposed reinforcement learning as an alternative principle within the cerebellum 

(Kuriyama et al., 2024).

Cerebellar subregions

In addition to the general findings within FRN and learning success, further investigations were 

made into what subregions of the cerebellum might be most relevant for RPE processing within 

the FRN for Experiment 1. Stroke patients present with inhomogeneity in lesion location and 

(usually) clearly circumscribed lesions, enabling examination of relations between degrees of 

deficits and lesion location. Exploiting this characteristic of the sample, a vbLSM was 

performed for Experiment 1 of Manuscript 1 in order to relate the decreased RPE processing 

in FRN to cerebellar lesion location. 

Results of the vbLSM pointed to a special role of four subregions: a cluster in the transition 

between Crus II and lobule VIIb, one in medial Crus II, one in Crus I, and one in medial lobule 

VIIb/vermal lobule VIIIa. All these regions are part of the posterior cerebellum which is 

associated with higher cognitive functions (Stoodley et al., 2016; Tedesco et al., 2011). As 

functional boundaries present differently than anatomical boundaries, it can be helpful to 

consider where these regions lie in an atlas based on task data, such as the one by Nettekoven 

et al. (2024). Considering the statistically significant clusters against this atlas, several 

functions related to the task are apparent. The cluster in the transition between Crus II and 

lobule VIIb overlapped with region D2 in the Nettekoven atlas which is associated with working 

memory function. Working memory and reinforcement learning are closely intertwined, both in 

required brain areas and function (A. H. Yoo & Collins, 2022). It is thus not unexpected to find 

regions with such functions affected in patients with deficient RPE coding. The cluster in the 

medial Crus II corresponded to the region D1, which is also working memory (Nettekoven et 

al., 2024). The cluster in Crus I corresponded to S3, which is associated with the default mode 

network and theory of mind (Nettekoven et al., 2024). While it might seem surprising to find a 

region associated with theory of mind among the regions associated with deficient RPE 

processing, an interpretation concerning its function within the default mode network might be 

more sensible: a main purpose that has been suggested for the default mode network is 

reinforcement learning (Dohmatob et al., 2020). Lastly, the cluster in medial lobule VIIb/vermal 
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lobule VIIIa overlaps with region A1, that has been associated with spatial rotation and 

simulation (Nettekoven et al., 2024). While not specifically related to reinforcement learning, 

visual spatial skills have been related to the reading of Chinese characters which were used 

as visual stimuli in the task (D. Lin et al., 2016). It might thus be a second-tier function that is 

relevant for this task but likely not in general for reinforcement learning tasks.

Importantly, the parcellation by Nettekoven et al. (2024) did not include reinforcement learning 

tasks, making assumptions as to whether these regions overlap with areas relevant for 

reinforcement learning more difficult. However, considering that most clusters overlapped with 

regions with functionality closely related to or required for reinforcement learning, it seems 

likely that these are in fact regions that perform tasks in reinforcement learning. Future 

parcellations should use task batteries or data sets that also include reinforcement learning 

tasks to answer this question more directly.

It is further important to note that while we found these four clusters in connection to particularly 

reduced RPE processing in the FRN, the distribution of FRN difference amplitudes was overall 

shifted in patients compared to controls (see Figure 8C in Manuscript 1). It is therefore likely 

that several other regions besides the ones mentioned above are relevant for reinforcement 

learning. Lesions were predominantly in the posterior cerebellum. In the review of Berlijn et al. 

(2024), a wide range of regions was found to be active in reinforcement learning as revealed 

by studies using fMRI in healthy adults. It is possible that some of these activations are also 

task-specific, as it is presumably the case with the cluster in medial lobule VIIb/vermal lobule 

VIIIa found in Experiment 1. It would be useful to investigate a wider range of tasks in a larger 

patient sample; however, this would likely require a multi-site effort, as patients with strokes 

limited to the cerebellum are scarce and not always easy to recruit in the chronic state (as 

there is less necessity for visiting an inpatient clinic as compared to, e.g., patients with 

degenerative disease).

The stimulation site in Experiment 2 also allowed for conclusions concerning relevant brain 

regions: the initial reason for stimulating the left cerebellum was the finding that spatial 

processing is more strongly processed in the right cerebrum and left cerebellum (Corballis, 

2003; Petrosini et al., 1998). Parallels were drawn to the complex stimuli presented in the task 

(Chinese stimuli or radicals). However, stimulating the left site is also consistent with studies 

showing that cerebellar activity towards fear extinction learning (a form of classical 

conditioning) is found within the left cerebellar hemisphere (Doubliez et al., 2023; Ernst et al., 

2019; Nio et al., 2025; Yágüez et al., 2005).

Interestingly, a recent study found deficits in reversal learning when stimulating the medial 

cerebellum but not the right cerebellum or occipital lobe via rTMS (Kruithof et al., 2025). The 

reason for stimulating the medial cerebellum was based on a recent meta-analysis from the 
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same group that showed that reward is processed more strongly within the vermis (Kruithof et 

al., 2023). Deficits in reversal learning would be predicted when considering deficits in RPE 

coding in FRN, as behavioural flexibility is one of the few behavioural correlates for which some 

evidence points to the FRN (Fischer & Ullsperger, 2013; Kirschner et al., 2022; Ullsperger, 

2024; but also see Chase et al., 2011). It thus seems consistent that a stimulation of the 

cerebellum would result in both a reduction of RPE processing as in Manuscript 1 and a 

reduction in reversal learning as in the study by Kruithof et al. (2025). It initially seems 

incongruent that deficits were found in FRN for stimulation on the left site, and in reversal 

learning for stimulation on the medial cerebellum. However, cerebellar TMS is not very focal. 

Modelling and measurements of the electrical field for cerebellar TMS indicate that especially 

the double-cone coil we used in Experiment 2, but also the figure-of-8 coil that Kruithof et al. 

used, stimulates a rather large area (Çan et al., 2018). There thus seems to be considerable 

overlap between the electrical fields of the two stimulation sites. The actual regions that might 

be essential for eliciting deficits in the two studies might thus well lie within either or between 

the left hemisphere and vermis. However, the study performed by Kruithof et al. seems to 

indicate that the right cerebellum is not required even for reversal learning. This seems at odds 

with the findings of Experiment 1 in Manuscript 1 where around half of the lesions were on the 

left and half on the right side. There, the overall distribution of difference FRN was shifted in 

the whole patient sample compared to the control participants, and not selectively for patients 

with lesions to the left cerebellum. Cerebellar connectivity might be changed in the side 

contralateral to the stroke in terms of network-level changes; however, this alone is not 

sufficient to clearly explain the inconsistencies in findings. It thus still stands to question 

whether only the left hemisphere or vermis is required. It might be helpful to make use of newer 

brain stimulation techniques, such as transcranial ultrasound stimulation (TUS). TUS has been 

explored more recently as an alternative to more established NIBS methods. It offers the 

advantage of a much higher spatial resolution and is easily combinable with EEG and fMRI 

(Darmani et al., 2022). A more focal stimulation could offer a clearer picture on the cerebellar 

regions involved in reinforcement learning.

TMS timing

For Experiment 2 in Manuscript 1, the interaction between feedback valence, unsigned RPE, 

and stimulation site did not involve TMS timing. While non-significant effects are always difficult 

to interpret, this finding might indicate that 1) stimulation at both time points affected the same 

process, 2) stimulation at the different time points affected different subprocesses which were, 

however, both required for RPE coding, 3) a more general rTMS-like effect emerged via the 

prolonged single-pulse stimulation. For 1), outcome anticipation might be a fitting candidate. 

Outcome anticipation builds slowly starting from the response execution towards the outcome 

delivery (M. J. Wagner et al., 2017). While the time window in which the disruptive effect of the 
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TMS is effective is unknown, it might be that both stimulation time points disrupted this process. 

For 2), post-stimulus TMS might have disrupted error processing and pre-feedback TMS might 

have disrupted feedback processing. There is evidence that both of these processes are 

affected by cerebellar damage (Peterburs et al., 2012, 2015; Rustemeier et al., 2016). Error 

processing was also indeed affected in the data used for Experiment 2, as shown in Manuscript 

2. The disruption of error processing might have indirectly disrupted RPE processing, while the 

disruption of feedback processing might have had a direct influence. Lastly, for 3), disruption 

might have been induced via unintended low-frequency rTMS, with effects potentially 

developing across the course of the task (which was, however, not investigated). While low-

frequency rTMS is usually applied at 1 Hz (Klomjai et al., 2015), a few studies have also found 

decreased motor excitability and long-term depression for TMS at even lower frequencies such 

as 0.5 or 0.25 Hz (Gorsler et al., 2003; Zhuo et al., 1994). In Experiment 2, stimulation took 

place once per trial with a duration of ca. 4 seconds per trial, thus approximating 0.25 Hz in 

stimulation frequency. However, a study performed by Muller et al. (2014) was able to show 

that – at least for the motor domain – effects are strongest for stimulation at 1 Hz. Additionally, 

stimulation was varied between post-stimulus and pre-feedback TMS, and consequently no 

consistent rhythm was applied. It thus seems unlikely that an unintentional rTMS was 

responsible for the absent effects of stimulation timing on RPE coding in FRN.

The cerebellum in error detection

Result pattern in ERN

While Manuscript 1 focussed on the role of the cerebellum in feedback processing, Manuscript 

2 and 3 focussed on error processing. Interestingly, even though Manuscript 2 investigated 

error processing within a reinforcement learning paradigm and Manuscript 3 investigated error 

processing within a response conflict paradigm, the influence of cerebellar TMS on error 

processing in the ERN presented similarly: in both studies, the discrimination of errors and 

correct responses in the ERN was diminished when stimulating the cerebellum. These findings 

are further consistent with previous studies by Peterburs et al. (2012, 2015). In these studies, 

participants performed antisaccade tasks, another type of response conflict task. Participants 

needed to perform a saccade in the opposite direction of a peripheral stimulus. Both patients 

with chronic cerebellar stroke and patients with a degenerative cerebellar disease showed 

diminished discrimination between errors and correct responses in ERN. One other study 

performed by Tunc et al. (2019) in patients with cerebellar degeneration could not show this 

effect. In this study, a Flanker task was performed. Notably, the group difference in the 

difference ERN (errors – correct responses) showed a trend-level effect, indicating 

descriptively that the difference ERN was smaller in patients than in controls. Although the 

authors interpreted this effect strictly as non-significant, it would fit the general pattern of 
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studies presented above. The smaller effect in the study by Tunc et al. does not seem 

explainable purely by sample size (23 patients, 29 healthy controls) or time pressure (450 ms 

response time window vs. 350/400 ms in Manuscript 3). While they did use wider inclusion 

criteria, also including cerebellar disease with extracerebellar involvement, such as SCA 1, one 

would expect more severe rather than smaller deficits, as a wider range of brain areas is 

affected. In addition, there were some differences in preprocessing and the quantification of 

the ERN, although it is not apparent whether these are the reason for the differences in effect 

sizes. Nevertheless, the overall pattern with decreased discrimination between errors and 

correct responses in ERN in cerebellar disease or disruption is consistent across studies.

Result pattern in Pe

However, the result pattern for the Pe in Manuscript 2 presented much differently than for the 

ERN, with an increased error-correct differentiation. Differences in both neural generators and 

function have been proposed for the Pe. While it is suspected that the ACC contributes to 

generating the Pe, additional generators have been proposed, such as the parietal cortex 

(Hester et al., 2005). It is possible that these generators were not or differently affected by the 

cerebellar TMS. The function of the Pe is not as clear as for the ERN (van Veen & Carter, 

2006). A differentiation into an early and a late Pe has been proposed, with different 

functionality: while the early Pe should show a signal similar to and highly correlated with the 

ERN that is generated potentially by the same source (i.e., ACC), differences in functionality 

from ERN have been proposed for the late Pe (Wessel, 2012). For the late Pe and later ERP 

signal in general, error awareness has been suggested as a potential underlying process (Del 

Cul et al., 2007). While early and late Pe were not separately assessed and, instead, only the 

peak Pe was detected, the major differences between result patterns in ERN and Pe indicate 

that we might have captured a different process in Pe than in ERN.

The complementary effects in ERN and Pe in Manuscript 2 with no deficits in behaviour 

appeared to be highly similar to the findings reported by Peterburs et al. (2012) in a response 

conflict task in patients with chronic cerebellar stroke. Peterburs et al. quoted long-term 

compensatory mechanisms as a potential reason for this result pattern in chronic cerebellar 

stroke, with an increased error-correct differentiation in Pe compensating for the decreased 

error-correct differentiation in the earlier-peaking ERN, resulting in an intact performance. 

However, as TMS in Manuscript 2 was applied instantaneous, a long-term compensation does 

not seem fitting to explain the result pattern. Two other options stand to reason: first, the 

increased error-correct differentiation might yet constitute compensation, however, in a short-

term manner. In favour of this argument would be the indeed intact learning performance. Error 

processing might thus have been taken over by the Pe instead of ERN. This interpretation calls 

into question whether the findings shown by Peterburs et al. truly reflected long-term 



73

compensation, or whether these also showed a short-term compensation available 

instantaneously. Notably, the compensation in the two studies might differ, as 1) compensation 

available in reinforcement learning and response inhibition might differ, and 2), the 

manipulation applied via cerebellar spTMS might differ greatly from the effects of cerebellar 

degeneration and stroke. It thus cannot be excluded that Peterburs et al. observed long-term 

compensation and Manuscript 2 showed short-term compensation. It is important to note that 

late error processing (in Pe) might not result in intact performance in all contexts: it might prove 

more problematic in contexts that require a fast-paced line of action, such as in sports or the 

play of instruments. However, intact performance does not evidence that increased error-

correct differentiation in the Pe constitute compensation. Compensation could also have taken 

place at other stages of the task, such as feedback anticipation or processing, or even in the 

inter-trial-interval, and the changes to Pe might have a different underlying cause than 

compensation. For example, the increased error-correct differentiation in Pe might constitute 

a hypermetria, i.e., a maladjusted, overly high signal. A potential variable in which hypermetria 

might have occurred could be salience which is associated with Pe (Overbeek et al., 2005). 

This interpretation would be consistent with the dysmetria of thought hypothesis 

(Schmahmann, 1998), i.e., that dysmetria concurrent with cerebellar dysfunction occurs not 

only in the motor but also in the cognitive domain. This interpretation could be testable in 

settings with a wider range of error saliences.

Another important point of consideration is that results between Manuscript 2 and 3 were not 

consistent for the Pe: while for Manuscript 2, an increased error-correct differentiation in Pe 

was found for cerebellar TMS, no significant effects were observed in Pe in Manuscript 2. First, 

differences in sample or other external parameters do not offer an explanation for these 

differences, as samples were almost the same and data were acquired within the same session 

(first, the pre-test for Manuscript 3, followed by the probabilistic feedback learning study for 

Manuscript 2, then the Go/Nogo Flanker task for Manuscript 3). The only notable difference 

concerning the sample appears to be the smaller final sample size for Manuscript 3, as more 

subjects needed to be excluded. Besides sample size, reasons might lie within differences in 

the tasks: Manuscript 3 used a fast-paced response conflict task while Manuscript 2 used a 

slow-paced reinforcement learning task. Potential differences might be pace, task difficulty, or 

reliance on error awareness. Another reason might lie within the timing of the stimulation which 

took place much closer to the ERN (and also Pe) latency in Manuscript 3 compared to 

Manuscript 2. The stimulation in Manuscript 3 might have consequently been more effective 

than in Manuscript 2. Importantly, the absence of effects within Pe in Manuscript 3, with 

simultaneously no deficits within behavioural performance, prompts the question whether the 

interpretation of the increased error-correct differentiation in Pe in Manuscript 2 can truly be 

compensation. However, differences in reliance on processes reflected in Pe between 
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response conflict and reinforcement learning are also an important point of consideration. The 

Pe presented with a less pronounced peak in the grand average in Manuscript 2, consistent 

with studies that examined Pe in reinforcement learning paradigms (Unger et al., 2012; Zhuang 

et al., 2021). The Pe might present different in reinforcement learning task, potentially due to 

errors being more ambiguous than in response conflict tasks. This is also a question of basic 

research into the background of the Pe, which has been less extensively investigated than 

ERN.

Association of error and feedback processing

Manuscript 2 investigated the influence of cerebellar TMS onto error processing in a 

reinforcement learning task – importantly, in this data, the RPE coding in the FRN was blunted 

when receiving cerebellar TMS. This is an important consideration for the effects in the ERN, 

as deficits might thus also be caused by deficient feedback processing. Stimulation was 

applied at two time points (but only once per stimulus/trial): either at 100 ms after stimulus 

presentation (thus before the response) or 100 ms before the feedback presentation. 

Considering the processing deficits in ERN with cerebellar TMS, two potential explanations 

arise: 1) The deficit in ERN might have been caused by the blunted RPE coding in FRN. This 

would indicate that RPE coding and consequentially the updating of action values is essential 

for error detection in reinforcement learning. 2) The effect stems from the post-stimulus 

stimulation directly affecting error processing. While this interpretation indicates that the deficit 

in FRN did not affect ERN, the causality might be inverted: for example, a disruption of action 

value representation could affect both error detection and RPE processing, as action value 

representation is required for both. A trend-level interaction in ERN indicated a stronger 

blunting of the response type effect in ERN under post-stimulus cerebellar TMS. This finding 

supports a more direct effect of TMS on ERN, and not indirectly via blunted RPE coding during 

the feedback stage. Nevertheless, this alone does not allow for the conclusion that the deficit 

in ERN is causal for the deficit in FRN. It might yet be that both deficits are completely separate 

from each other. The finding in the FRN presented in Manuscript 1 did not show any interaction 

indicating that any of the stimulation time points resulted in stronger blunting of RPE coding in 

FRN. It might thus well be that the ERN is affected by only post-stimulus TMS while the FRN 

is affected by both post-stimulus and pre-feedback TMS.

The finding that both error coding in ERN and RPE coding in FRN is blunted while error coding 

in Pe and RPE coding in P300 is not, proves interesting in relation to the networks and 

functionality involved. The ACC, the likely neural generator of the ERN and FRN, has been 

implicated within both the salience and executive network (Carter et al., 1999; Ham et al., 

2013). While the Pe has been less well researched, the P300 has been implicated in the 

executive network and several sensory networks (Guerrero et al., 2022; Li et al., 2018). The 
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findings in Manuscript 1 and 2 taken together might thus indicate differences in functional 

significance of connectivity between the cerebellum and these networks in reinforcement 

learning or different capabilities of these networks to compensate cerebellar deficits.

TMS timing

While TMS timing in Manuscript 2 was rigidly set to 100 ms post-stimulus, the timing was more 

varied and individually adjusted in Manuscript 3. This followed the question of whether a clear 

time window could be established for an effect of cerebellar TMS towards a disruption of ERN. 

For the motor domain, this has been established more clearly in terms of cerebellar brain 

inhibition (Ugawa et al., 1991). Here, one coil is placed on the cerebellum and one over the 

contralateral motor cortex. It could be shown that cerebellar TMS around 5 ms before TMS 

over M1 results in decreased motor output (Fernandez et al., 2018). Considering the effects 

found in Manuscript 2, this time window needs to be larger for the cognitive domain, as the 

distance between stimulation and response/ERN latency varied depending on response time, 

and stimulation seemed to still be effective. In Manuscript 3, TMS timing was applied at four 

different stimulation time points: either 100 or 50 ms before, at the calculated ERN latency, or 

50 ms afterwards. However, to increase the number of trials per condition, stimulation timings 

were pooled for analysis: the stimulation at 100 or 50 ms before the ERN latency were pooled 

together as early stimulation and the stimulation at ERN latency or 50 ms afterwards were 

pooled together as late stimulation. The blunting of error-correct discrimination in ERN was, 

however, only found for the late stimulation. This appears to be inconsistent with the findings 

of Manuscript 2 which showed a blunting of the error-correct discrimination in ERN with a rather 

large temporal distance between stimulation and response/ERN (stimulation 100 ms post-

stimulus, median response time at 453.5 ms post-stimulus with an average individual standard 

deviation of 98.8 ms). A potential reason for this might be different requirements of the task. 

Reinforcement learning tasks rely strongly on the representation and updating of action values. 

However, there might be a difference in reliance on action values for response conflicts. It was 

previously shown that the ERN (but not the Pe) requires knowledge of which action is correct, 

i.e., the action value (Di Gregorio et al., 2018); however, it is conceivable that there is no 

necessity for an updating of these values. As detailed in the introduction, behaviour is not only 

regulated by action values but may also be directed by policy. There is a difference in brain 

regions associated with value- and policy-based functions, with VTA, ventral striatum, OFC, 

and vmPFC being more associated with value-based function and SNc, dorsal striatum, and 

dlPFC being more associated with policy-based functions (Araújo et al., 2024; Balleine et al., 

2007; Fraser et al., 2023; Groman et al., 2021; Lerner et al., 2021; Moneta et al., 2023, 2024; 

Morris et al., 2014; O’Doherty et al., 2004; Ott et al., 2011; Overman et al., 2023). It might be 

the case that response conflicts require a higher degree of policy updating and a lower degree 

of action value representation. As policy functions are more closely connected with motor 
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functions, processing might be faster, making cerebellar TMS only effective in this close range 

around the ERN latency while a wider time window works for more cognitive tasks.

In addition, the relation between response times and ERN latency in the pre-task (that was 

used to calculate the individual ERN latency for stimulation) and response times and ERN 

latency in the experimental task needs to be considered. With the median response time in the 

pre-task at around 250 ms and the mean ERN latency at around 50 ms, the average ERN 

latency should roughly be at 300 ms. The stimulation at 50 ms after this calculated time would 

thus happen after the ERN, and close to the end of the response time window (at 350 ms). An 

influence on the ERN via this stimulation time point is thus only conceivable if reaction times 

or ERN latency in the experimental task were higher – otherwise it would still occur after the 

ERN. While reaction times in the experimental task seemed to have been slightly lower than 

250 ms, the ERN latency appears to be higher in the experimental task compared to the pre-

task. The late stimulation time points thus seemed to occur closely before or at ERN latency 

in the experimental task.

More research is necessary concerning the temporal relation between cerebellar and cerebral 

error processing in the cognitive domain. Future studies might want to stimulate at a wider 

range of timings, but it would also be interesting to see whether error processing is deficient in 

response conflict tasks with cerebellar rTMS. Such a study would make an important 

contribution as to determine whether cerebellar TMS does not affect behavioural performance 

in general in response conflict tasks or whether cerebellar spTMS does not have a strong 

enough effect to see behavioural deficits.

Limitations

Vertex as a control condition

In all three manuscripts, vertex was used as a control site. Vertex is a commonly used control 

site for cerebellar stimulation (Gatti et al., 2023). A sham stimulation does not suffice as a 

control site, as the cerebellar stimulation is quite distracting. This does not only make 

differences between the stimulation site quite noticeable to participants but also creates 

problems when comparing performance parameters between stimulation sites, as the 

distraction might be causal for differences. In our study, vertex seemed to offer a good match 

in several parameters of side effects, such as inattentiveness, headaches, and discomfort (see 

Figure 5 in Manuscript 1).

However, in Study 2 of Manuscript 1, it is apparent that vertex TMS induced changes to the 

RPE effect within the FRN. Instead of finding enhanced FRN amplitudes for higher compared 

to lower RPEs as one would expect from previous studies (Burnside et al., 2019; Chase et al., 

2011; Fischer & Ullsperger, 2013; Frömer et al., 2021; Hoy et al., 2021; Humann et al., 2020; 
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Kirschner et al., 2022; Rawls & Lamm, 2021; Weber & Bellebaum, 2024), the pattern was 

reversed, with a decreased FRN amplitude for higher compared to lower RPEs. A likely reason 

seems to be a direct stimulation of the ACC. A study performed by Jung et al. (2016) could 

show a deactivation of the ACC concurrent with a series of 12 short 1 Hz TMS pulses. Vertex 

stimulation thus cannot serve as a true control stimulation, leaving Experiment 2 of Manuscript 

1 without a control condition. This makes comparisons in learning performance impossible. No 

learning differences between cerebellar and vertex TMS were found. However, it is not clear 

whether this is due to no influence of cerebellar TMS on learning, or due to a similar influence 

of vertex and cerebellar TMS on learning. Nevertheless, it is still meaningful to regard the 

cerebellar TMS in Experiment 2 as a comparison to the cerebellar patients in Experiment 1. 

Both showed the same pattern of a blunted RPE coding in the FRN.

Interestingly, no influence of vertex TMS was apparent for the ERN, for which the ACC also 

serves as the likely generator (Herrmann et al., 2004; Hochman et al., 2009; Ladouceur et al., 

2006; Roger et al., 2010). As detailed in both Manuscript 2 and 3, the expected error-correct 

differentiation was found.

Nevertheless, the present results speak against using vertex TMS as the sole control site, at 

least in reinforcement learning paradigms, but, if possible, also in other paradigms, as the ACC 

is involved a wide range of processes in the emotional, motor, and cognitive domain (Devinsky 

et al., 1995). Unfortunately, no alternative active control sites have been tested robustly. 

Kruithof et al. (2025) used the occipital cortex as a control site, which can, however, lead to 

problems in visual perception (Kammer, 1998). They used the right cerebellum as an additional 

stimulation site, which was useful in showing differences in effects within the same region 

(cerebellum). From the current status of the literature, it might be sensible to use several 

control sites, both to compare effects across control sites within studies and to potentially find 

a valid control site in the long term. For learning paradigms, this makes within-subject designs, 

such as the one in Experiment 2, difficult if not impossible, as repetition effects will increase 

with increasing repetition of the same paradigm. Instead, for healthy participants, between-

subject paradigms should be considered.

Lack of learning success

Even though pilots were conducted in elderly participants to assess whether task difficulty was 

appropriate, many participants in Experiment 1 of Manuscript 1 did not learn the stimulus 

contingency and did not increase their performance significantly above chance level. This 

made comparisons between pre- and post-learning, as originally pre-registered, impossible. 

Instead, an alternative approach using RPE modelling was applied. Of note, the learning 

success was not substantially lower than in the study of Rustemeier et al. (2016; ca. 75 % vs. 

ca. 70 % in the last block).
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A similar issue arose for Experiment 2, which was likely due to the distracting effect of the TMS. 

This was reported in spontaneous self-reports at the end of the sessions and was also 

apparent from the side effects questionnaire.

Alternatively, adaptive tasks might help ensure that most participants learn. This is particularly 

important when considering adding a reversal learning phase, where contingencies are 

reversed. For reversal to have a meaningful effect, participants need to understand how to 

correctly perform the task. Otherwise, the reversal might just further confuse participants and 

lead to decreased engagement with the task.

Conclusions

In summary, the presented studies showed that cerebellar function is required for cerebral 

processing in reinforcement learning as measured in the ERN and FRN. Both the processing 

of RPEs at the feedback stage and the processing of response errors at the response stage 

were affected under cerebellar dysfunction. Cerebellar disruption also affected response error 

processing in a response conflict task, substantiating the importance of cerebellar function in 

performance monitoring in its entirety. Behavioural deficits were absent or minor. The 

presented findings converge with previous initial studies in humans and a growing body of 

studies showing signals consistent with reinforcement learning in the rodent cerebellum. 

Future research should focus on determining behavioural deficits concurrent with cerebellar 

dysfunction and further comprehending the role of the cerebellum in disorders with abnormal 

reinforcement learning, such as addiction, anxiety disorders, and psychosis. Understanding 

the mechanisms in which the cerebellum is involved in the emergence of these diseases might 

prove particularly helpful in light of recent research into the cerebellum as a target for brain 

stimulation (Basavaraju et al., 2024). 
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Recent rodent data suggest that the cerebellum—a region typically associated with processing sensory prediction errors (PEs)—also

processes PEs in reinforcement learning (RL-PEs; i.e., learning from action outcomes). We tested whether cerebellar output is

necessary for RL-PE processing in regions more traditionally associated with action-outcome processing, such as the striatum

and anterior cingulate cortex. The feedback-related negativity (FRN) was measured as a proxy of cerebral RL-PE processing in a

probabilistic feedback learning task using electroencephalography. Two complementary experiments were performed in humans.

First, patients with chronic cerebellar stroke (20 male, 6 female) and matched healthy controls (19 male, 7 female) were tested.

Second, single-pulse cerebellar transcranial magnetic stimulation (TMS) was applied in healthy participants (7 male, 17 female),

thus implementing a virtual lesion approach. Consistent with previous studies, learning of action-outcome associations was intact

with only minor changes in behavioral flexibility. Importantly, no significant RL-PE processing was observed in the FRN in patients

with cerebellar stroke and in participants receiving cerebellar TMS. Findings in both experiments show that RL-PE processing in the

forebrain depends on cerebellar output in humans, complementing and extending previous findings in rodents.

Key words: cerebellum; event-related potentials (ERPs); executive functions; lesion; noninvasive brain stimulation; performance

monitoring

Significance Statement

While processing of prediction errors in reinforcement learning (RL-PEs) is usually attributed to midbrain and forebrain,

recent rodent studies have recorded RL-PE signals in the cerebellum. It is not yet clear whether these cerebellar RL-PE signals

contribute to RL-PE processing in the forebrain/midbrain. In the current study, we could show that forebrain RL-PE coding is

blunted when the cerebellum is affected across two complementary lesion models (patients with cerebellar stroke, cerebellar

TMS). Our results support direct involvement of the cerebellum in RL-PE processing. We can further show that the

cerebellum is necessary for RL-PE coding in the forebrain.
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Introduction
In our fast-paced world, we need to constantly monitor our envi-
ronment and our actions and choose according to the anticipated
consequences of our actions. In such reinforcement learning
contexts, we rely on external feedback (e.g., reward/success, pun-
ishment/failure) to acquire action-outcome associations and
thereby improve our behavior. Thus, we need to learn to predict
action outcomes, for which we rely heavily on processing predic-
tion errors, i.e., the difference between predicted and actual
outcomes.

Prediction errors in reinforcement learning contexts (RL-PEs)
havemainly been linked to basal ganglia, midbrain, and prefrontal
areas (Fouragnan et al., 2018). Predictive functions beyond the
motor domain have also been proposed for the cerebellum
(Ramnani, 2006; Sokolov et al., 2017). More recent studies have
shown cerebellar activation patterns consistent with RL-PEs in
both humans and rodents (Kostadinov and Häusser, 2022;
Manto et al., 2024; Berlijn et al., 2024b). Moreover, psychiatric
disorders with cerebellar involvement, such as schizophrenia,
autism spectrum disorder, and major depression (Phillips et al.,
2015), have been reliably associated with altered and/or impaired
reinforcement learning (Balsters et al., 2017; Halahakoon et al.,
2020; Katthagen et al., 2020). However, deficits cannot clearly
be attributed to cerebellar dysfunction, as multiple brain areas
are typically affected in these disorders. Causal evidence for cere-
bellar involvement in reinforcement learning in humans is scarce.
Patients with cerebellar damage showed deficits in reversal, but
not acquisition learning within reinforcement learning (Thoma
et al., 2008; Nicholas et al., 2024). An initial study using electroen-
cephalography (EEG) showed altered outcome/feedback process-
ing in patients with cerebellar stroke without impaired acquisition
learning (Rustemeier et al., 2016).

In humans, RL-PE processing is typically studied using feed-
back learning tasks. Here, participants have to learn through trial
and error that, for example, one of several response options leads
to a higher probability of monetary reward over punishment
(Eppinger et al., 2008). EEG can be used to measure an approx-
imation of activity in one of the main drivers of RL-PE process-
ing, the anterior cingulate cortex (ACC; Fouragnan et al., 2018):
the feedback-related negativity (FRN) is a frontocentral negative
deflection in the event-related potential (ERP) that emerges
∼250 ms after feedback onset (e.g., presentation of a reward or
punishment; Miltner et al., 1997; San Martín, 2012). Reflecting
the activity of dopaminergic target regions, such as the ACC
and striatum (Holroyd and Coles, 2002; Hauser et al., 2014;
Foti et al., 2015), FRN amplitudes covary with the estimated
RL-PE at the single-trial level (Fischer and Ullsperger, 2013;
Hoy et al., 2021; Rawls and Lamm, 2021).

Despite findings of RL-PE-like signals in the cerebellum in
rodents and initial accounts of altered reinforcement learning
in humans with cerebellar damage, acquisition learning seems
to be largely unaffected in cerebellar lesion patients (Thoma et
al., 2008; Rustemeier et al., 2016). In the present study, we there-
fore studied the interplay between the cerebellum and cerebral
cortex with respect to RL-PE processing more directly by inves-
tigating the impact of cerebellar damage/disruption on cortical
RL-PE coding in the FRN and learning success. This approach
extends previous observations of RL-PE signals in the cerebellum
toward the question whether these are necessary for intact cere-
bral RL-PE processing. In two experiments, we studied patients
with chronic cerebellar stroke and used single-pulse transcranial
magnetic stimulation (TMS) in healthy adults to create a “virtual

lesion.” Single-pulse TMS offers the advantage of examining
effects of deficits with a high temporal precision.
Reinforcement learning success was assessed using a probabilistic
feedback learning task. RL-PE processing was assessed using the
FRN on a trial-by-trial basis. If the cerebellum contributes to
reinforcement learning, RL-PE processing as reflected in the
FRN should be reduced in cerebellar stroke patients compared
with healthy controls (Experiment 1) and for cerebellar single-
pulse TMS (Experiment 2). Indeed, no significant RL-PE pro-
cessing as indexed by the FRN was found in cerebellar stroke
patients and for cerebellar TMS. Concerning behavior, only
minor abnormalities in behavioral flexibility were observed,
with reinforcement learning success generally preserved.

Materials and Methods
Experiment 1
Participants
Thirty-one adults with a chronic stroke restricted to the cerebellum were
recruited from the university hospitals Essen and Düsseldorf as well as
the Rhein-Ruhr Clinic in Essen-Kettwig, Germany. Only patients with
a postacute stroke, i.e., at least 6 months after the stroke event (with
one exception who was only 42 d poststroke), were included. Lesions
had to be confined to the cerebellum. Thirty-three adults without
stroke were recruited as controls. Inclusion criteria were no current psy-
chiatric and no current or past neurological disease, no use of medica-
tions affecting the central nervous system, and no alcohol or illicit
drug abuse. Five patients and four controls were excluded because they
did not meet these inclusion criteria. In total, data from 26 patients
(20 men and 6 women) and the 26 controls (19 men and 7 women)
who provided the best match regarding demographic parameters entered
the analyses. Three controls were excluded during matching to ensure
that nontask-related parameters (Table 1) did not result in group differ-
ences in task-related variables. Means and standard deviations on the
main demographic variables are listed in Table 1 (for details, see
Table 2 for patients and Table 3 for controls). Of note, three patients
with depression and antidepressant medication and three matched con-
trols (who also had a clinical diagnosis of depression and antidepressant
medication, roughly matched on BDI score) were included in the analy-
ses, as we could not exclude this to be part of a cerebellar cognitive affec-
tive symptom (CCAS; Schmahmann and Sherman, 1998), and to ensure
that target sample size was met.

Handedness was assessed with the Edinburgh Handedness Inventory
(EHI; Table 1; Oldfield, 1971). According to LQEHI, 19 patients and 21
controls were right-handed, 3 patients and 1 control were left-handed,
and 4 patients and 4 controls were ambidextrous. IQ estimates were
obtained using the Mehrfachwahl-Wortschatz-Test-B score (MWT-B;
multiple choice vocabulary test; Table 1; Merz et al., 1975). As depression
might affect feedback processing (Keren et al., 2018) and has a higher
incidence poststroke (Robinson and Jorge, 2016), we assessed depression
using the Beck Depression Inventory II (BDI; Beck et al., 1996).

Figure 1 shows the overlaid lesion regions for all 26 patients. Overall, 21
patients had a stroke in the posterior inferior cerebellar artery (PICA) ter-
ritory (9 left, 9 right, 3 bilateral), 3 patients had a stroke in the superior

Table 1. Demographic data for patients and controls as well as group comparisons

Variable Mcontrols (SD) Mpatients (SD) t df p

Age 56.4 (12.7) 56.2 (12.1) 0.04 49.86 0.964
Education (years) 13.5 (2.3) 14.1 (2.9) 0.90 47.44 0.371
LQEHI 70.9 (47.2) 56.6 (54.0) 1.01 49.11 0.316
MWT-B (IQ) 118.8 (16.1) 113.4 (13.9) 1.28 48.91 0.205
WML rating 0.31 (0.47) 0.69 (0.79) 2.14 40.81 0.039
BDI-II 5.3 (7.5) 6.3 (9.1) 0.42 48.17 0.679

ncontrols= 26, npatients= 26. M, mean; SD, standard deviation. Age and education are given in years. LQ, laterality
quotient; EHI, Edinburgh Handedness Inventory; MWT-B, Mehrfachwahl-Wortschatz-test B (a vocabulary-based
German intelligence test); WML, white matter lesion; BDI-II, Beck depression inventory II.
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cerebellar artery (SCA) territory (1 left, 2 right), and 2 patients had a stroke
in both the PICA and SCA territory (1 in the left PICA and right SCA ter-
ritory, 1 in the right PICA and left SCA territory). Lesions were thus uni-
lateral in all but five patients (Table 2). Images of individual lesions are
provided in Extended Data Figure 1-1. Mean time between cerebellar
infarct and participation in the experiment was 8.4 years (SD=6.0 years,
range from 1.5 months to 22 years; unknown in one case).

Both patients and controls were assessed for clinical neurological
symptoms. While patients showed overall higher scores on the scale
for the assessment and rating of ataxia (SARA; Schmitz-Hübsch et al.,
2006) than controls (t(47.01) = 2.74, p= 0.009), no participants showed
deficits in oculomotor function in the neurological examination (which
might have affected task performance).

All participants gave written informed consent prior to participation.
They received monetary compensation for participation and were reim-
bursed for travel costs. The experiment was preregistered on the Open
Science Framework (OSF; https://osf.io/rd3xb), conducted in accordance
with the ethical principles for medical research involving human subjects
outlined in the Declaration of Helsinki, and approved by the Ethics
Committees at the Faculty of Medicine of Heinrich-Heine-University
Düsseldorf and at the University Hospital Essen.

Procedure
The experiment usually took place on 2 consecutive days. The temporal
gap between sessions was longer for three patients (56, 29, and 43 d) and

two controls (9 and 2 d) due to participants’ time constraints or sched-
uling issues. The experimental task with EEG was conducted on both
days with different versions (short and long feedback delay version,
respectively; see below for details). On the first day, we initially obtained
informed consent and participants filled in a demographic questionnaire,
the EHI, the BDI-II, and the MWT-B. Following EEG preparations, par-
ticipants were informed about EEG artifacts and how to avoid them.

Subsequently, participants completed one of two feedback delay ver-
sions of a probabilistic feedback learning task as described by Eppinger
et al. (2008; see Fig. 2A for the experimental procedure), which was con-
ducted using Presentation software (version 20.0, Neurobehavioral
Systems). Order of the versions was counterbalanced among partici-
pants. Figure 2B illustrates the sequence and time course of stimulus pre-
sentation in one trial. The task consisted of 8 blocks of 40 trials, thus 320
trials in total. Five practice trials with different stimuli were provided.
Each trial began with a fixation cross presented for 500–1,500 ms.
Next, one of four abstract stimuli (Chinese characters and radicals)
was presented for 1,500 ms. Participants had to respond by pressing
the left or right button on a response box (Cedrus RB-740, Cedrus
Corporation) within a response time window of 3,000 ms. Choices
were highlighted on the screen for 200 ms, followed by a black screen
for 500 ms in the short delay condition and 6,500 ms in the long delay
condition. Different delay durations were used as previous studies had
shown differential involvement of cerebral brain areas depending on
feedback delay (Foerde and Shohamy, 2011). While immediate delay

Table 2. Patients’ and lesion characteristics

ID Age Sex Edu. Hnd. Vascular territory
Time since stroke
(years) Affected cerebellar regions Additional information

005 55–59 m 16–20 r PICA-L (lacunar) 0–5 Left Crus II, left Crus I, left VIIIa
011 45–49 m 16–20 r PICA-R 0–5 Right Crus II, right VIIIa, right VIIb, right VIIIb, right IX,

right Crus I
External MRI

012 30–34 m 16–20 r PICA-R 0–5 Right VIIIa, right VIIb, right VIIIb, right IX, right Crus II
014 65–69 m 11–15 a PICA-R 21–25 Right VIIb, right Crus II, right VIIIa, right VIIIb, right IX,

vermal VIIIa, vermal VIIIb
018 55–59 m 11–15 a PICA-L 11–15 Left Crus I, left Crus II, left VIIIa, left VIIb, left VIIIb, left VI
020 70–74 m 11–15 r SCA-R 11–15 Right I-IV, right V, right Dentate
023 55–59 f 11–15 l PICA-R 16–20 Right Crus I, right VIIIb, right IX, right Crus II, right VIIb, right

VIIIa
024 60–64 m 11–15 r PICA-L+R (lacunar) 6–10 Right VIIb, left VIIb
026 65–69 f 6–10 r PICA-R, PICA-L

(lacunar)
6–10 Right VIIIa, right VIIb, right IX, right Crus II, right VIIIb, left

VIIIa, left IX, left VIIIb
Migraine

029 50–54 m 16–20 a SCA-R 11–15 Right VI, right V, right Dentate, right Crus I Recent history of AD, negative BAI
031 45–49 m 11–15 r PICA-R (lacunar) 0–5 right Crus I, right Crus II, right VIIIa
033 50–54 f 11–15 r PICA-L, SCA-R

(lacunar)
6–10 Left Crus I, left Crus II, left VIIb, right Crus I, left VIIIa, vermal

Crus II
MDD, intake of antidepressants

035 60–64 m 16–20 a PICA-L 16–20 Left VIIIa, left VIIb, left VIIIb, left Crus II, left IX, left Crus I MDD, antidepressants
037 55–59 f 16–20 r PICA-L 0–5 Left IX, left VIIIb, left VIIb, left VIIIa, left Crus II, left Dentate External MRI
038 55–59 f 11–15 r PICA-L, PICA-R

(lacunar)
6–10 Left Crus II, left VIIb, left VIIIa, left IX, left Crus I, left VIIIb

039 60–64 m 16–20 l PICA-R (lacunar) n/aa Right Crus I External MRI
040 60–64 m 16–20 r PICA-L 0–5 Left Crus II, left VIIb, left VIIIa, left VIIIb, left Crus I, left IX Not a native German speaker
042 50–54 m 11–15 r PICA-R 6–10 Right Crus II, right VIIb, right Crus I, right VIIIa
046 18–24 m 11–15 r PICA-R 0–5 Right VIIb, right VIIIa, right VIIIb External MRI
047 65–69 m 16–20 r PICA-R 0–5 Right Crus II, right Crus I, right VIIb, right VIIIa, right VIIIb,

right IX
048 65–69 m 16–20 l PICA-L 6–10 Left Crus II, left VIIb, left VIIIa, left VIIIb, left Crus I, left IX, left

dentate
055 70–74 m 6–10 r PICA-L 6–10 Left Crus II, left Crus I
056 65–69 m 11–15 r SCA-L 6–10 Left V, left VI, left I-IV, left dentate
058 45–49 f 11–15 r PICA-L (lacunar) 0–5 Left VIIIb, left IX MDD, childhood diagnosis of ADD,

antidepressants
060 50–54 m 11–15 r SCA-L, PICA-R 16–20 Left V, left VI, right Crus II, left I-IV, right VIIb, left Dentate
061 55–59 m 16–20 r PICA-L 0–5 Left Crus II, left Crus I, left VIIb, left VIIIa, left VIIIb, left IX

Age is given in years. m, male; f, female; edu., years of education; hnd., handedness according to Edinburgh Handedness Inventory; l, left; r, right; a, ambidextrous; PICA, posterior inferior cerebellar artery; SCA, superior inferior artery;
SARA, scale for the assessment and rating of ataxia (maximum score = 40); MDD, major depressive disorder; AD, anxiety disorder; ADD, attention deficit disorder; BAI, Beck anxiety inventory (Beck et al., 1988). For affected regions, only
those that made out >1% of total lesion volume were included. Regions are sorted according to percentage of total lesion volume. Age, education, and time since stroke are given in ranges to comply with data protection requirements.
aTime since stroke was unknown in this case, as the lacunar stroke was an incidental finding.
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activated areas typically associated with reward processing, such as
the striatum, activations for delayed feedback shifted toward the
hippocampus (Foerde and Shohamy, 2011). This shift was also apparent
in FRN, with a decreased FRN amplitude with longer feedback
delays (Peterburs et al., 2016). This shift in activation could affect
potential deficits in cerebellar patients due to differences in connectivity
of these brain regions with the cerebellum. Finally, feedback was
displayed for 1,000 ms. Feedback consisted of either the display of
“+20 ct” in green font as positive feedback or “−10 ct” in red font as
negative feedback.

Two of the four stimuli were linked to random feedback (50% posi-
tive and 50% negative regardless of response), while the other two were
linked to contingent feedback. Here, correct responses were followed by
positive feedback 90% of the time and by negative feedback 10% of the
time (and vice versa for incorrect responses). Correctness was balanced
for the two response buttons, so that for one of these stimuli, the chance
of positive feedback was higher for the left button, while for the other sti-
mulus, the chance of positive feedback was higher for the right button. In
case a participant exceeded the learning criterion of 65% correct answers
by the second of eight blocks, a new stimulus set was provided to increase
the number of prelearning trials. This was the case for eight patients and
eight controls in one feedback delay condition/session (of which 1 and 5,

respectively, were second sessions) and for six patients and eight controls
in both conditions. In case a participant did not exceed the learning cri-
terion until the eighth and last block, a ninth block was added to increase
the number of postlearning trials. This was the case for three patients and
two controls in one of the two conditions.

Following this task on Day 1, participants underwent cranial MRI
and a clinical neurological examination.

On the second day, following EEG preparations, the remaining other
version (short or long feedback delay version) of the probabilistic feed-
back task was completed. Versions were counterbalanced between ses-
sions. Two different stimulus sets were used per session, and order was
counterbalanced. Responses (choice, choice accuracy) and response
times were recorded during the experiment.

EEG recording and preprocessing
EEG was recorded from 28 active Ag/AgCl electrodes (F7, F3, Fz, F4, F8,
FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz,
P4, P8, PO9, O1, Oz, O2, PO10) positioned on a BrainCap (Brain
Products) according to the 10–20 system. FCz was used as an on-line ref-
erence, and AFz was used as ground electrode. Fp1 was used as vertical
electrooculogram (vEOG) and an electrode was placed next to the outer
canthus of the left eye as horizontal electrooculogram (hEOG).
Impedances were kept below 25 kΩ. Data were amplified with a
BrainAmp DC amplifier and recorded at 1,000 Hz using BrainVision
Recorder 1.21 (Brain Products). Data preprocessing was performed using
BrainVision Analyzer 2 software (version 2.2, Brain Products) and
MATLAB (MathWorks).

First, data were rereferenced to the mastoid electrodes and FCz was
reestablished. Next, a DC detrend was applied and data were filtered
using zero phase shift Butterworth filters with a low cutoff of 1 Hz
and high cutoff of 30 Hz, as well as a notch filter at 50 Hz to remove
powerline artifacts. Subsequently, we removed vertical and horizontal
eye movement artifacts using a semiautomatic Ocular Correction
ICA as implemented in BrainVision Analyzer 2. vEOG was used for
blinks and vertical activity, and hEOG for horizontal activity. The
first 177.2 s were used for ICA. We then segmented data from the start
marker of the experiment to end of experiment, and segmented them
around the feedback markers, starting 200 ms before and ending
600 ms after each marker. Only feedback markers for learnable stimuli
were segmented. Baseline correction was performed based on the
200 ms preceding feedback onset, followed by automated artifact rejec-
tion. Segments with a voltage step exceeding 50 µV/ms, an amplitude
above 100 µV or below −100 µV, or activity not exceeding 0.1 µV
were excluded. Single-trial data were then exported via generic data
export. On average, 1.1% of segments (SD = 2.5%) were rejected.
Additionally, data for learnable stimuli were averaged and exported
according to feedback valence (positive, negative) and feedback delay
(short, long).

The EEG system had to be switched from an actiCAP system to a
newer actiCAP snap system after the first 27 participants due to a defect
in impedance measurement.

In MATLAB, peak detection was performed on the averaged data
separately for each condition [feedback valence (positive, negative) ×
feedback delay (short, long)]. The FRN was defined as the local maximal
negative peak within the time window between 200 and 350 ms at
electrode site FCz (Sambrook and Goslin, 2015). If no local maximum/
minimum could be detected, the corresponding single-trial segments
were excluded. For the single-trial data, the mean amplitude in a
time window of 40 ms around the respective FRN latency determined
by the peak detection on the averaged data was extracted (Meadows et
al., 2016).

Prediction error estimation
Prediction errors on each trial were estimated based on choices partici-
pants made and feedback they received using a reinforcement learning
model (Sutton and Barto, 2018) consistent with previous studies
(Ichikawa et al., 2010; Fischer and Ullsperger, 2013; McDougle et al.,
2019) which has been shown to be highly correlated with the gold stan-
dard (i.e., subjective ratings; Ichikawa et al., 2010). We modeled action
values Q and PEs δ based on the actually received feedback R and

Table 3. Characteristics of controls for Experiment 1 (patient study)

ID Age Sex
Handedness
(EHI)

Years of
education Additional information

001 55–59 f Right 11–15
002 75–79 m Right 16–20 Excluded (matching)
004 60–64 m Right 11–15 Excluded (developmental venous

anomaly)
006 70–74 m Right 11–15
007 55–59 f Right 11–15
008 55–59 m Right 6–10 MD, intake of antidepressants
009 70–74 m Right 11–15
010 50–54 f Right 11–15
013 55–59 m Right 16–20
017 70–74 f Right 11–15
019 60–64 m Right 11–15
021 50–54 m Right 16–20
022 55–59 f Right 16–20 MD, intake of antidepressants
025 55–59 m Right 11–15 Excluded (moderate brain

volume loss)
027 70–74 m Right 16–20
028 45–49 f Right 11–15 MD, intake of antidepressants
030 45–49 m Right 11–15
032 55–59 m Right 16–20 Excluded (matching)
034 55–59 m Right 11–15
036 25–29 m Right 6–10 Excluded (intake of

antidepressants)
043 18–24 m Right 11–15
044 55–59 m Left 11–15
045 65–69 m Ambidextrous 11–15
049 70–74 m Right 11–15 Not a native German speaker
050 50–54 f Right 6–10
051 50–54 m Right 11–15 MD, intake of antidepressants,

excluded (matching)
052 18–24 m Ambidextrous 6–10
054 55–59 m Ambidextrous 11–15
057 70–74 m Right 11–15 Excluded (extensive white

matter lesions)
059 55–59 m Ambidextrous 16–20
062 50–54 m Right 11–15
063 55–59 m Right 11–15
064 65–69 m Right 11–15

Age is given in years. m, male; f, female; EHI, Edinburgh Handedness Inventory; SARA, Scale for the Assessment
and Rating of Ataxia; MD, major depression. Age and education are given in ranges to comply with data protection
requirements.
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participants’ chosen response a, using a Rescorla–Wagner model
(Rescorla and Wagner, 1972; Wagner and Rescorla, 1972):

Qa,t+1 = Qa,t + a ∗ dt ,

dt = Ra,t − Qa,t .

To model response probabilities, we used a softmax function (Sutton

and Barto, 2018), which estimates the probability p of the chosen action

with the estimated action values Q per action a and time point t (in this

case, the trial):

pa1 ,t =
eb ∗Qa1 ,t

eb ∗Qa1 ,t + eb ∗Qa2 ,t
.

The function fmincon provided byMATLABwas used to fit this model to

the data via minimizing the negative sum of log-likelihoods minus a

gamma distribution of βwith a shape parameter of 2 and scale parameter

of 3 (as to penalize high β; McDougle et al., 2019). We estimated a learn-

ing rate a as well as an inverse temperature β for exploration behavior,

separately for each stimulus and reward and punishment. We allowed

α to assume any value between 0 and 1 and β to assume any value between

0 and 50.

Experimental design and statistical analysis
This study was preregistered to OSF (https://osf.io/rd3xb). Necessary
sample size was determined via power analysis to be N= 48, i.e., 24 per

group, as detailed in the preregistration. Required sample size was thus
matched (n= 26 per group). Raw data and code used for preprocessing
and analysis are available from https://osf.io/cqf97.

Analysis focused on differences in the FRN between controls and
patients (on group level), especially in relation to coding of RL-PEs. As
the signed RL-PE overlaps with feedback valence, we split the signed
RL-PE into the unsigned RL-PE (on a scale from 0/low to 1/high) and
feedback valence (positive, negative), which were used as separate predic-
tors in the analysis. We further examined learning success as reflected in
choice accuracy and choice switching as an index of behavioral flexibility.
The analysis was restricted to stimuli with a 90% contingency, as partic-
ipants were not able to learn in the 50% contingency condition.

Data were analyzed in R (version 4.2.3; R Core Team, 2023) using
RStudio (version 2023.3.0.386, Posit Team, 2023). Concerning choice
accuracy, the preregistered ANOVA was performed. For the FRN, since
only 14 patients and 12 controls exceeded the learning criterion of >65%
correct responses within at least one block of the task in either version,
the preregistered ANOVA analysis with learning phase (pre-/postlearn-
ing) as a factor was not feasible. With the factor learning phase, we had
aimed to investigate to what extent feedback processing changed over the
course of the task as participants learned which responses resulted in a
higher chance of reward/punishment. Instead, we decided to pursue a
single-trial–based analysis approach using LME models including the
trial-by-trial unsigned RL-PE. Analyses based on single trials have
increasingly been used in recent studies as they offer the possibility to
use variables that vary from trial to trial as factors in the statistical
analysis (Volpert-Esmond et al., 2021). LME analyses based on single-
trial data have also been shown to deliver less biased results compared

Figure 1. Overlap plot of all lesions in the patient group (n= 26) superimposed on (A) a cerebellar flatmap (Diedrichsen and Zotow, 2015) and in 2D (B) sagittal, (C) coronal, and (D) axial
views. Lesions on the right side were mirrored to the left side. Color code shown on the top right denotes total lesion overlap (from purple = 0 to red = 12). Individual lesions are depicted in
Extended Data Figure 1-1.

Figure 2. Experimental procedure of Experiment 1 (patient study). A, Experimental setup. EEG was recorded while participants performed the probabilistic feedback task. B, Time course and
sequence of stimulus presentation in one trial of the feedback learning task. After a fixation cross was presented for 500–1,000 ms, one of four stimuli was presented, toward which participants
were required to respond by pressing the left or right button on a response pad within 3,000 ms. The stimulus was only shown for the first 1,500 ms. After the response, the respective choice was
highlighted on screen for 200 ms, followed by either 500 or 6,500 ms of blank screen (depending on feedback delay version). Positive (“+20 ct”) or negative feedback (“−10 ct”) was then
presented on screen for 1,000 ms. Participants needed to learn by trial and error whether one of the choices was related to higher chance of positive/negative feedback depending on stimulus.
Feedback for two of the stimuli had a 90% contingency, while for the other two it had a 50% (random) contingency. A total of 320 trials were used in the task.
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with ANOVAs based on averaged data (Heise et al., 2022). The lme4
library (version 1.1-32; Bates et al., 2015) was used for LME modeling,
and the lmertest library (version 3.1-3; Kuznetsova et al., 2017) was
used to evaluate statistical significance. Significance was evaluated
using restricted maximum likelihood with p values computed using
Satterthwaite approximation, following the findings by Luke (Luke,
2017). While we initially tested a maximal fit for random effects, in
case of singular fit, we reduced the originally maximal random effects
structure up to the random intercept and highest-order interaction as
random slope per participant (Brauer and Curtin, 2018). For all LME
analyses, outliers were identified via Cook’s distance (Cook, 1977) using
the influence.ME package (version 0.9-9; Nieuwenhuis et al., 2012) and
an outlier criterion of 4/(n-p-1), where n is the number of subjects and
p is the number of fixed effects. Significant interactions were followed
up using simple slope analyses via the interactions library (version
1.1.5; Long, 2019). p values were Bonferroni-corrected according to the
number of simple slopes in the respective analysis.

Choice accuracy. We conducted a mixed ANOVA with the factors
group (patients, controls), feedback delay (short, long), and block (1–8).
Significant effects were followed up with Bonferroni-corrected t tests using
the emmeans_test function (Lenth, 2025). No participant exceeded the out-
lier criterion ofM± 2.5 SD per feedback delay/study session.

Choice switching. As an additional behavioral measure, we analyzed
whether choice switching following feedback was influenced by the cat-
egorical fixed effects feedback valence (−0.5: negative, 0.5: positive),
response type (−0.5: false, 0.5: correct), group (−0.5: control, 0.5:
patient), feedback delay (−0.5: short, 0.5: long), and the continuous
effect block which was scaled via the built-in scale function. Choice
switching for a given trial was defined as whether the choice for the cur-
rent stimulus was switched (choice switching = 1) or sustained (choice
switching = 0) in the next trial that the same stimulus was presented
in. The variable was scaled via the built-in scale function. We also
included all interactions of these factors as fixed effects. No participants
exceeded our Cook’s distance criterion. The model equation was as fol-
lows:

choice switching � 1+ feedback valence ∗ response type ∗ group

∗ feedback delay ∗ block + (1+ feedback valence:

response type:feedback delay:block|subject)

FRN. For FRN amplitudes, we again employed an LME model with
the fixed effects feedback valence (negative: −0.5, positive: 0.5), group
(−0.5: control, 0.5: patient), feedback delay (−0.5: short, 0.5: long), and
the continuous fixed effect unsigned RL-PE which was the absolute of
the signed RL-PE minus 0.5 (thus with minimal values of −0.5 and max-
imal values of 0.5). We also included all interactions of these factors as
fixed effects. Here, we deviated from the preregistration (which only
included the signed RL-PE), because analyzing the signed RL-PE in an
LME model is confounded by valence effects and disregards possible
U-shaped relations which are identifiable by separating feedback valence
and unsigned RL-PE (i.e., RL-PE magnitude). Initial convergence issues
were solved via changing the optimizer to bobyqa. Four controls were
excluded due to exceeding the Cook’s distance criterion. The model
equation was as follows:

FRN � 1+ unsigned PE ∗ feedback valence ∗ group ∗ feedback delay

+ (1+ unsigned PE:feedback valence:feedback delay+

unsigned PE:feedback valence+ unsigned PE:feedback delay

+ feedback valence:feedback delay|subject)

Structural MRI and lesion symptom mapping
For 21 patients and all controls, a 3D T1-weighted magnetization-
prepared rapid acquisition gradient-echo (MPRAGE) sequence was
acquired [176 slices, repetition time (TR), 2,530 ms; echo time (TE),
2.27 ms; inversion time (TI), 1,100 ms; flip angle (FA), 7°; voxel size,
1 × 1 × 1 mm; acceleration factor, 2 (GRAPPA); field of view, 256 ×

256 mm; acquisition time (TA), 6:03 min:s]. A MAGNETOM Vida 3T
system (Siemens Healthcare) with a 64-channel coil was used. For the
remaining five patients, an MR scan was not possible due to implants
(n= 4) or claustrophobia (n= 1), and instead, existing diagnostic
structural MR images were used.

We first confirmed that lesions were isolated to the cerebellum, which
was also reconfirmed by an experienced neuroradiologist (SGö).
T2-weighted images were also assessed for whitematter lesions (see below).

Non-normalized 3D T1 images were first manually aligned to the
AC-PC line. Cerebellar, postischemic lesions were then manually traced
and saved as regions of interest using MRIcron (https://www.nitrc.org/
projects/mricron). Next, the cerebellum was isolated, and datasets were
segmented using the suit_isolate_seg function provided by SUIT toolbox
(https://www.diedrichsenlab.org/imaging/suit.htm). Isolation masks
were manually corrected. Datasets were then normalized with the func-
tion suit_isolate_mask, using the lesion mask as optional input, thus
ignoring the respective area(s). Finally, lesion ROIs were transformed
via suit_reslice into the spatially unbiased atlas template of the cerebel-
lum (SUIT; Diedrichsen, 2006).

For statistical analysis of whether deficits corresponded to specific
lesion locations, voxel-based lesion symptom mapping (vbLSM) was
conducted using NPM as implemented with MRIcron (Stoodley et al.,
2016; Timmann et al., 2022). For this purpose, all lesion ROIs on the
right side were mirrored to the left side (in the five patients with bilateral
lesions, the side with the larger lesion was considered). For one subject
(sub-060) with bilateral lesions, the lesion of higher interest for our cog-
nitive task in posterolateral regions (Crus II, lobule VIIb) was mirrored
to the left side instead of the larger lesion in anterior cerebellar motor
regions. vbLSM compares for each voxel, whether patients with this voxel
affected differ from patients with this voxel unaffected within a variable
of interest. A Brunner–Munzel test was employed (Brunner and Munzel,
2000) with a statistical threshold of p < 0.05. Only variables with statisti-
cal differences between patients and controls were considered, which in
our case was the interaction effect between RL-PE, feedback valence,
and group onto FRN amplitude. We collapsed this effect into one vari-
able per participant by taking the difference between the mean FRN
amplitude for high RL-PE (≥−0.5) and low RL-PE (<0.5) for negative
feedback (because FRN amplitudes differed between high and low
RL-PE only for negative feedback valence in controls). Signs were
reversed for the analysis, as lower values are related to more dysfunction
in vbLSM (while in our case positive values were associated with more
dysfunction). Clusters of voxels with significant effects were extracted
using MRIcroGL (Brett et al., 2001), considering clusters larger than
32 mm3. Affected lobules and nuclei were defined based on the probabi-
listic atlases of the human cerebellum by Diedrichsen et al. (2009, 2011).

White matter lesion assessment
3D dark fluid T2-weighted spin-echo sequences [SPACE; 160 slices; TR,
7,000 ms; TE, 428 ms; TI, 2,050 ms; voxel size, 1 × 1× 1 mm; acceleration
factor, 2 (GRAPPA), field of view, 256× 256 mm; TA, 5:24 min:s] were
acquired and examined for whitematter lesions. Theywere rated following
Wahlund et al. (2001; Table 1). Even though we excluded patients with
particularly pronounced and widespread white matter lesions, we still
found higher white matter lesion ratings for cerebellar stroke patients
than controls.Whitematter lesions have previously been shown to contrib-
ute to deficits in cognition (Filley and Fields, 2016), although findings spe-
cifically concerning reinforcement learning appear as yet lacking. To
exclude effects of WMLs in our data, we checked our cognitive scores
(CCAS) and did not find any general cognitive deficits in patients com-
pared with controls (t(40.89)=1.03, p=0.310). Our finding concerning
RL-PE processing in stroke patients additionally coincides with our
findings for cerebellar TMS in Experiment 2, where cerebellar and control
stimulation was applied within-subject, excluding between-subject
factors like white matter lesions as a cause. It thus seems likely that the
deficits in RL-PE processing in our patients are caused by the cerebellar
stroke itself.

Quantitative susceptibility mapping
In an additional analysis, we examined whether lesions within the den-
tate nucleus had a special impact on RL-PE processing, as the dentate
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nucleus constitutes the main output of the cerebellum, with more than
half of its projection relating to non-motor functions (Palesi et al.,
2021). To identify the dentate nucleus based on its high iron levels
(Deistung et al., 2016), quantitative susceptibility mapping (QSM)
was conducted based on data collected using a multi-echo gradient-echo
scan [176 axial slices; TR, 27 ms; TE1–4, 3.66 ms/9.74 ms/15.83 ms/21.91 ms;
FA, 15°; voxel size, 0.9 × 0.9 × 0.9 mm; acceleration factor, 2 (GRAPPA);
field of view, 230 mm×230 mm; TA, 8:15 min:s] as described in
Deistung et al. (2022). Outlines of the dentate nucleus as well as dentate
nucleus lesion (if present) were manually drawn in ITK-SNAP
(Yushkevich et al., 2006). We identified six patients who had a lesion
in the dentate nucleus, with two of those previously classified as impaired
concerning the differentiation between negative low and high RL-PE
in FRN. We coregistered both dentate nucleus regions of interest and
lesions to the T1 images and then normalized and resliced them into
SUIT space. Functions included within the SUIT toolbox were used,
i.e., suit_normalize_dentate for normalization and suit_reslice_dartel
for reslicing. However, as overlaps between lesions were too few and
did not allow meaningful statistical analysis, we abstained from an addi-
tional analysis and instead provide images of the individual dentate
lesions in Figure 3.

Experiment 2
Participants
Twenty-nine healthy adults were recruited for participation. Four partici-
pants completed only one of two sessions and were thus excluded; one
participant was excluded due to stimulation at a false output strength in
one of the sessions. Thus, data from 24 participants (7 men, 17 women)
with a mean age of 23.3 years (SD=2.9 years, range from 19 to 30 years)
were analyzed. Handedness was assessed with the EHI (Oldfield, 1971),
with a mean LQ score of 62.3 (SD=53.3, range from −85.7 to 100.0).
According to LQEHI, 20 participants were right-handed, 2 left-handed,
and 2 ambidextrous. All participants reported no neurological or psychi-
atric diseases and no metal implants in or near their head. Further
exclusion criteria were pregnancy, alcohol or illicit substance abuse, and
intake of psychotropic medication. IQ estimates were obtained using the
MWT-B (Merz et al., 1975), yielding a mean IQ of 103.5 (SD=15.4).
Participants received monetary compensation for participation in
two sessions.

All participants gave written informed consent prior to participation.
The experiment was conducted in accordance with the ethical principles
for medical research involving human subjects outlined in the
Declaration of Helsinki and approved by the Ethics Committee at the
Faculty of Medicine of Heinrich-Heine-University Düsseldorf.

Procedure
The experiment took place on 2 separate days with at least 48 h in
between to decrease repetition effects (M = 101.6 d, SD = 152.1 d,
range from 2 to 448 d). Note that due to a technical defect of
the TMS system and a consequent pause of experiments, the
time between sessions was exceptionally long for five individuals
included in the analysis (362–448 d). Without these participants,
the average time between sessions was 26.6 d (SD = 28.0 d, range
from 2 to 98 d).

While one session of Experiment 2 comprised the experimental
task with vertex (control) stimulation, the other session comprised the
cerebellar stimulation. Order for stimulation site was counterbalanced.

After participants arrived in the lab, informed consent was
obtained and they filled in a demographic questionnaire, the EHI,
and the MWT-B. Following EEG and EMG preparations and the sub-
sequent motor threshold estimation, we placed the double cone TMS
coil on their head with a custom mounting and further secured it
with an elastic band (see below for a detailed description; Fig. 4A).
Before and after the experimental task, an additional Flanker task
was performed for which results are reported elsewhere (Berlijn
et al., 2024a).

Participants completed a probabilistic feedback learning task that
closely followed procedures as described for Experiment 1. Figure 4B
illustrates the sequence and time course of stimulus presentation in
each trial. The task consisted of six blocks of 56 trials, thus 336 trials

in total. Again, five practice trials with different stimuli were provided.
Due to the younger sample, stimulus presentation was reduced to
500 ms and the response time window was shortened to 1,000 ms.
Only short feedback delays (i.e., 500 ms) were used. Two stimuli were
again linked to random feedback while the other two stimuli were linked
to contingent feedback. For the contingent stimuli, correct responses
were followed by positive feedback in 80% of the cases and by negative
feedback in 20% of the cases (vice versa for incorrect responses). In
both contingency conditions, TMS was delivered 100 ms poststimulus
for one stimulus and 100 ms prefeedback for the other. In case a partic-
ipant had learnt so fast that they exceeded the learning criterion of 75%
correct answers by the second of six blocks, a new stimulus set was pro-
vided to increase the number of prelearning trials. This was the case for
seven participants in one condition (of which four were second sessions)
and for one participant in both conditions. In case a participant did not
exceed the learning criterion until the sixth and last block, a seventh

Figure 3. Individual, unmirrored dentate nucleus lesions for Experiment 1 (patient study),
normalized to SUIT space, are presented in sagittal (left column), coronal (middle
column), and axial view (right column) for patients with dentate lesions (sub-004, sub-005,
sub-019, sub-022, sub-026, and sub-036). Lesion are marked in red.
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block was added to increase the number of postlearning trials. This was
the case for three participants in one condition and for one participant in
both conditions.

TMS application and EMG recording
The complete experimental setup is depicted in Figure 4A. Stimulation
was applied at 120% of motor threshold (MT) as measured in the
first session. MT was measured again on the second session.
While there was a trend for a lower motor threshold on the second
(M = 36.8%, SD= 7.4%) compared with the first session (M= 37.8%,
SD= 7.4%; t(22)= 1.72, p= 0.100), there was no significant difference
in MT between cerebellar and vertex stimulation session (t(22)= 0.44,
p = 0.663).

MT was determined as the lowest intensity that still triggered
a motor-evoked potential in at least 5 of 10 stimulations. MEPs
were recorded by AgCl surface electrodes (Ambu) from the left
M. abductor pollicis brevis in resting condition. The signal was amplified
with a Digitimer D360 (Digitimer). The frequency band of the filter was
set to 100–5,000 Hz and digitized at a sampling rate of 5 kHz (Signal
version 6.02, Cambridge Electronic Design). We monitored for MEPs
during the experimental task as to avoid stimulating too close to
the brainstem.

TMS was applied via a Magstim Double Cone Coil using a Magstim
BiStim2 unit (Magstim). To enable a fast-paced task flow, we alternated
stimulation between two Bistim units. Stimulation was applied either
to the left lateral cerebellum (1 cm below and 3 cm to the left of the
inion; confer Hardwick et al., 2014) or vertex (at electrode position
Cz, Jung et al., 2016), both with inferior voltage flow. The coil was
wrapped in plastic wrap to reduce electrode motion artifacts caused by
direct contact between TMS and EEG. Participants were given earplugs
to reduce auditory artifacts. After the coil was positioned, we fixed it
with a custom stand and to the participant’s head via a fabric elastic
band over the participant’s forehead (cerebellar TMS) or chin (vertex
TMS). Coil position was constantly monitored and adjusted during the
breaks if necessary.

Vertex was chosen as a control site, as it is common choice of
control site (Gatti et al., 2023). We did not use sham cerebellar TMS
as it provides participants with a very different experience in terms
of vibrations, coil clicks, and magnetic field build-up (Duecker and
Sack, 2015).

Single-pulse TMS was chosen over rTMS due to its advantage of
examining effects of deficits with a high temporal resolution. Instead
of examining processing and task performance with a relatively
steady deficit across all processing stages, like with rTMS, single-pulse
TMS can be applied at different time points within the trial. This
offers the advantage of differentiating effects stemming from deficits
at different processing stages.

Side effects questionnaire
As participants spontaneously reported side effects after the
experiment, we introduced a postexperimental side effect questionnaire
halfway through the study in which participants were asked to rate
symptoms (headaches, neck pain, toothaches, inattentiveness, discom-
fort, phosphenes, others) associated with TMS on a scale from 1 to 5
(see Fig. 5 for a plot of the side effect ratings). Ten participants completed
this questionnaire in both of their sessions and five participants
completed it in one session. There were no significant differences
between vertex and cerebellar TMS (all p≥ 0.343) in terms of reported
side effects.

EEG recording and preprocessing
All EEG equipment used was explicitly suitable for concurrent TMS.
EEG was recorded from 30 passive Ag/AgCl Multitrode electrodes
(Fp1, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8,
CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, O2, Iz) positioned
on a BrainCap (Brain Products) according to the 10–20 system. FCz was
used as an on-line reference, and AFz was used as ground electrode.
Impedances were kept below 5 kΩ. Data were amplified with a
BrainAmp MR amplifier and recorded at 1,000 Hz using BrainVision
Recorder 1.21 (Brain Products).

Figure 4. Experimental procedure of Experiment 2 (TMS study). A, Experimental setup. A double cone coil was placed on either the left cerebellum (1 cm down and 3 cm to the left of the
inion) or vertex depending on session. Simultaneously, EEG and EMG were recorded. B, Time course and sequence of stimulus presentation and timing of TMS pulses in one trial in the exper-
imental task. After a fixation cross was presented for 500–1,000 ms, one of four stimuli was presented, toward which participants could respond by pressing the left or right button on a response
pad within 1,000 ms. The stimulus was only shown for the first 500 ms. After response, the respective choice was highlighted on screen for 200 ms, followed by 500 ms of blank screen. Positive
(“+20 ct”) or negative feedback (“−10 ct”) was then presented on screen for 1,000 ms. Participants needed to learn by trial and error whether one of the choices was related to a higher chance
of positive/negative feedback depending on stimulus. Feedback for two of the stimuli had an 80% contingency, while for the other two, it had a 50% contingency. TMS stimulation was applied
either 100 ms poststimulus presentation or 100 ms prefeedback stimulation. A total of 336 trials were used in the task.
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Preprocessing was conducted using the ARTIST algorithm by Wu et
al. (2018; see Bertazzoli et al., 2021 for a comparison of TMS-EEG pre-
processing methods) and Brain Vision Analyzer. Nevertheless, a remain-
der of the TMS pulse artifact was still seen in the ERP.

Data were initially checked for missing TMS pulses (TMS marker
was sent but pulse was not) both by visual inspection and via an
explorative artifact detection: first, trials were segmented around the
TMS marker (starting 100 ms before and ending 100 ms after it).
Since TMS pulses cause large spikes in the raw data, an automatic arti-
fact detection was employed on the ERP data to identify whether a
pulse was sent. Segments with an amplitude >400 or less than
−400 µV at electrode Fz were considered to contain a TMS artifact.
For all except one participant, all segments contained this artifact,
meaning that for each TMS marker in the ERP, a TMS pulse was trig-
gered. Segments in which the above criterion was not met were visually
confirmed to contain no TMS pulse artifact and were subsequently
excluded from analysis. Marker timings for delayed markers (due to
port conflicts) were adjusted in the marker files. This was the case
for one marker in 10 participants and two markers in one participant.
In two participants, one of these markers indicated a TMS pulse, thus
also indicating delay of the corresponding TMS trigger. We excluded
the corresponding segments as the TMS pulse had thus not been
sent at the correct time.

For preprocessing, we used the ARTIST algorithm by Wu et al.
(2018), which is based on EEGLAB (v2022.1; Delorme and Makeig,
2004). This algorithm is designed to decrease artifacts in the EEG signal
caused by TMS pulses. In a first step, the ARTIST algorithm corrected for
direct current drift, removed the TMS pulse artifact by interpolating the
EEG signal around the TMSmarker (here: 15 ms prior to until 5 ms after
the TMS marker), and removed the decay artifact via ICA. Data were
then notch-filtered (50 Hz) and bandpass filtered (high-pass filter:
1 Hz; low-pass filter: 30 Hz). Next, data were segmented into epochs
beginning 1,500 ms before and ending 2,200 ms after the TMS markers.
Following this, segments containing movement artifacts were rejected
(M= 2.8% of segments, SD= 2.6%) and bad channels were interpolated
(M= 0.96 channels, SD = 1.15 channels). In a final step, bad independent
components were removed via a second ICA, after which the signal was
rereferenced to an average reference. Deviating from the ARTIST algo-
rithm, we restored electrode FCz after this, because FCz was essential
for our data analysis. For baseline correction, the time window between
300 and 100 ms preceding the TMS pulse was used to avoid confounding
the baseline correction with the TMS pulse deflection. We always
excluded electrode Iz before any preprocessing because it was particu-
larly noisy in pilot testing. Data were then saved in the BrainVision
exchange format.

The segment size needed to be rather large, because initial segments
were created around the TMS pulse, while in a later step the ERPs needed
to be time locked to feedback onset. Therefore, some markers existed in
more than one segment (when they were overlapping). To correct this,
marker files were edited with a custom MATLAB script, deleting all
excess markers. In this step, segments with more than one response
were also excluded.

Data were then further preprocessed in BrainVision Analyzer 2.2.
Due to only 10 participants exceeding the learning criterion of 75% cor-
rect responses in both conditions, the planned data analysis using
ANOVA was not feasible. As a result, we pursued a single-trial analysis
approach in parallel to data analysis for Experiment 1 and thus deviated
from the preregistered procedures. We segmented data around feed-
back onset, starting 200 ms before and ending 500 ms after feedback
markers. Next, we performed an additional baseline correction using
the time window from 200 to 0 ms before feedback onset (thus includ-
ing parts of the remaining pulse artifact for those pulses that were
applied 100 ms before the feedback). We then exported single-trial
ERPs with a generic data export, on average resulting in 329.3 segments
(SD= 18.8 segments) per participant. Data were then exported via a
generic data export for further processing in MATLAB. We addition-
ally averaged data according to conditions (stimulation site, TMS tim-
ing, feedback valence) to extract FRN peak latencies. Only trials with
contingent feedback were included. Peak detection was performed in
parallel to Experiment 1.

Prediction error estimation
Prediction errors were again modeled as described in Experiment 1. Before
merging the behavioral, RL-PE, and EEG data, we excluded all trials in the
behavioral and RL-PE data that were not included in the preprocessed EEG
data. These were either trials that did not enter the segmentation in
ARTIST because the TMS marker/trigger had not been sent (e.g., when
participants did not respond in time and thus no feedback-locked TMS
trigger was sent) or trials/segments that ARTIST excluded during artifact
rejection. Behavioral, RL-PE, and EEG data were then merged.

Experimental design and statistical analysis
The study was preregistered to OSF (https://osf.io/a24rg). We had aimed
for a sample size of 20–25 participants (see preregistration for more
details). The targeted sample size was thus matched (n= 24). Raw data
and code used for preprocessing and analysis are available from
https://osf.io/9n7yp.

Data were again analyzed in R (version 4.2.3; R Core Team, 2023) using
RStudio (version 2023.3.0.386; Posit Team, 2023). Concerning choice
accuracy, the preregistered ANOVA analysis as well as an additional linear
mixed effects (LME) analysis were performed (see below). Since only 10
participants exceeded the learning criterion of >75% correct responses in
at least one block for both stimulation sites, the preregistered ANOVA
with learning (pre-/postlearning) as a factor was not possible for the
FRN analysis. We again decided to pursue a single-trial–based analysis
approach using LME models including the unsigned RL-PE instead.

Analyses were conducted to match procedures in Experiment 1, only
deviating within the Cook’s distance criterion for the choice switching
LME analysis where the original criterion was not applicable, so that
we instead used the criterion of 4/n (Nieuwenhuis et al., 2012).

Choice accuracy. We conducted a repeated-measures ANOVA
with the within-subjects factors stimulation site (cerebellum, vertex),
TMS timing (poststimulus, prefeedback), and block (1–6), as preregis-
tered. Significant effects were followed up with Bonferroni-corrected t
tests using the function emmeans_test. No participant exceeded the out-
lier criterion of M± 2.5 SD per stimulation site/study session.

Choice switching. We analyzed whether choice switching was
influenced by the categorical fixed effects feedback valence (−0.5: nega-
tive, 0.5: positive), response type (−0.5: false, 0.5: correct), stimulation
site (−0.5: vertex, 0.5: cerebellum), TMS timing (−0.5: poststimulus,
0.5: prefeedback), and the continuous effect block which was scaled
via the built-in scale function. We also included all interactions of
these factors as fixed effects. Three participants had to be excluded

Figure 5. Side effects reported in the postexperimental questionnaire in Experiment 2
(TMS study). Means and standard errors are shown in red, individual ratings are shown in
black.
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because they exceeded the Cook’s distance criterion. The model equation
was as follows:

choice switching � 1+ feedback valence ∗ response type ∗ stimulation site

∗TMS timing ∗ block + (1+ feedback valence:

response type:stimulation site:TMS timing:block|subject).

FRN. For FRN amplitudes, we again employed LME models with
the fixed effects feedback valence (negative: −0.5, positive: 0.5), stimula-
tion site (−0.5: vertex, 0.5: cerebellum), TMS timing (−0.5: poststimulus,
0.5: prefeedback), and the continuous fixed effect unsigned RL-PE which
was the absolute of the signed RL-PE minus 0.5 (thus with minimal val-
ues of −0.5 and maximal values of 0.5). We also included all interactions
of these factors as fixed effects. While we were initially also able to keep
random slopes up to third-level interactions, solving convergence issues
via changing the optimizer to bobyqa, due to singular fit after the subse-
quent exclusion of one Cook’s distance outlier, we had to revert to a ran-
dom effects structure with only the fourth-level interactions and random
intercept. Two outliers identified by Cook’s distance were excluded. The
model equation was as follows:

FRN � 1+ unsigned PE ∗ feedback valence ∗TMS condition ∗TMS timing

∗ learnability + (1+ unsigned PE:feedback valence:TMS condition:

TMS timing:learnability|subject).

Results
Experiment 1: RL-PE processing in cerebellar stroke patients
In Experiment 1, we studied patients with chronic cerebellar
stroke (n= 26) and a matched healthy control group (n= 26) to

investigate reinforcement learning success and RL-PE process-
ing, quantified by ACC-driven FRN amplitude. Participants per-
formed a probabilistic feedback learning task (Fig. 2A,B) in which
they had to optimize their behavior via trial and error to obtain a
monetary reward (“+20 ct” per trial) and avoid a monetary pun-
ishment (“−10 ct”). Responses were made by pressing one of two
buttons on a response pad. Two out of four stimuli were associ-
ated with a 90% reward contingency (i.e., pressing the “correct”
button resulted in a reward in 90% of the time and a punishment
10% of the time; vice versa for the “incorrect” button), while the
other two stimuli were associated with random feedback. As
learning was only possible for the 90% contingency stimuli, the
analysis was restricted to these (see Materials and Methods for
a more detailed description of the task). Two different feedback
delays were used (short, 500 ms; long, 6,500 ms), as previous
work has shown differences in FRN depending on feedback tim-
ing (Peterburs et al., 2016).

During task performance, EEG was recorded to analyze the
FRN (Fig. 2A). To see whether potential deficits were associated
with specific lesion locations, lesion symptom mapping was con-
ducted based on T1-weighted MR images in patients.

Choice accuracy
Mean choice accuracy by group (patients, controls), feedback delay
(short delay, long delay), and block (1–8) is shown in Figure 6A.
The effect of these factors on choice accuracy was analyzed within
an ANOVA. We expected no differences in accuracy between
groups and only a general learning effect. This expectation was
based on a previous study which did not find deficient learning

Figure 6. Accuracy for Experiments 1 (patient study) and 2 (TMS study). A, Left, Choice accuracy in the probabilistic feedback task in Experiment 1 (patient study) according to group (patients,
controls), feedback delay (short delay, long delay), and block (1–8). Red lines denote patients and blue lines controls. Opaque lines denote group means. Error bars indicate standard errors.
Translucent lines denote individual mean accuracy. Right, Choice accuracy according to block. Opaque lines denote means across groups and feedback delays. Error bars indicate standard errors.
Translucent dots denote individual mean accuracy. B, Left, Choice accuracy in the probabilistic feedback task in Experiment 2 (TMS study) according to stimulation site (cerebellum, vertex), TMS
timing (poststimulus, prefeedback), and block (1–6). Red lines denote vertex TMS and blue lines cerebellar TMS. Opaque lines denote means per stimulation site. Error bars indicate standard
errors. Translucent lines denote individual mean accuracy per stimulation site. Right, Choice accuracy according to block. Opaque lines denote means across TMS timings and stimulations sites.
Error bars indicate standard errors. Translucent dots denote individual mean accuracy. *p< 0.05. **p< 0.01. ***p< 0.001.
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in patients with cerebellar stroke (Rustemeier et al., 2016), which is
likely due to compensatory mechanisms in this patient group
(Peterburs et al., 2012). Overall, we found a significant main
effect of block, i.e., a learning effect, but none of the effects involving
the factor group (patients vs controls) reached significance.

Statistical analysis showed a main effect of block
(F(3.15,154.26)= 15.65, p < 0.001), indicating that subjects had
learned to optimize their behavior over the course of the task.
Post hoc t tests revealed that choice accuracy was significantly
higher in block 4 (t(823)= 3.97, p= 0.002), block 5 (t(823)= 3.91,
p < 0.001), block 6 (t(823)= 4.61, p < 0.001), block 7 (t(823)= 5.72,
p < 0.001), and block 8 (t(823)= 5.26, p < 0.001) compared with
that in block 1. Additionally, choice accuracy was higher in block
7 compared with that in block 2 (t(823)= 3.18, p= 0.042) and
block 3 (t(823)= 3.42, p= 0.018). All other pairwise comparisons
were nonsignificant (all p≥ 0.087). No other effects reached sign-
ificance (all p≥ 0.179; see Table 4 for the complete inferential
statistics).

Choice switching
The effects of response type, feedback valence, block, group, and
feedback delay on choice switching were analyzed using LME
analysis. We found the expected effects of increased choice
switching after negative feedback, false responses, short feedback
delays, as well as early in the experiment. Importantly, while in
controls, choice switching was increased for negative compared
with positive feedback for both short and long feedback delays,
in patients, this effect was present only for short but not for
long feedback delay (Fig. 7A).

Statistical analysis showed that choice switching was
increased after incorrect compared with correct responses
(β=−0.23, SE = 0.03, t(15,948.01)= 8.65, p < 0.001). The effect of
response type was further modulated by block (β=−0.10,
SE = 0.03, t(15,919.59)= 3.78, p < 0.001), such that the differentia-
tion between correct and false responses was stronger late in
the task (β=−0.33, SE = 0.04, t= 7.79, p < 0.001) but already pre-
sent early in the task (β=−0.14, SE = 0.04, t= 3.77, p < 0.001).

Choice switching was also increased after negative compared
with positive feedback (β=−0.20, SE = 0.03, t(15,920.60)= 7.60,
p < 0.001). This effect was further modulated by feedback delay
and group (β= 0.32, SE = 0.10, t(15,826.98)= 3.10, p= 0.002;
Fig. 7A). For controls, negative compared with positive feedback
resulted in increased choice switching for both short (β=−0.16,
SE = 0.05, t= 3.27, p= 0.004) and long feedback delay (β=−0.23,
SE = 0.05, t= 4.58, p < 0.001). For patients, negative compared
with positive feedback resulted in increased choice switching
for short (β=−0.34, SE = 0.05, t= 6.97, p < 0.001) but not for
long feedback delay (β=−0.11, SE = 0.05, t= 2.13, p= 0.134).

Choice switching was also reduced for the long compared with
the short feedback delay (β=−0.08, SE= 0.03, t(15,880.70)= 3.21,

p = 0.001) and across blocks (β=−0.08, SE = 0.01,
t(15,896.82) = 5.82, p < 0.001). Complete inferential statistics can
be found in Table 5.

FRN
The effects of (signed) RL-PE (reflected by the factors unsigned
RL-PE and feedback valence), group, and feedback delay on
FRN amplitude were analyzed using LME analysis. We expected
the FRN to be increased for high compared with low unsigned
RL-PEs for negative feedback and decreased for high compared
with low unsigned RL-PEs for positive feedback and expected
this effect to be reduced in the patient group. Grand averages of
the feedback-locked ERP at FCz show that the FRN amplitude
was increased (i.e., more negative) for high compared with low
RL-PEs for negative feedback for controls but not for patients
(Fig. 8A). This effect could also be confirmed in statistical analysis.
For grand average feedback-locked ERPs for all conditions, see
Figure 9A.

Statistical analysis showed that the FRN was enhanced for
negative compared with positive feedback (β=0.48, SE= 0.11,
t(1,535.59)=4.15, p< 0.001) and for high compared with low
RL-PEs (β=−0.39, SE= 0.18, t(769.27)=2.16, p=0.031).
Importantly, within an interaction between RL-PE, feedback
valence, and group (β=3.28, SE= 1.34, t(37.08)=2.44, p=0.020),
the FRN reflected the RL-PE for controls only in negative
(β=−2.10, SE= 0.44, t=4.78, p< 0.001), but not positive feedback
contexts (β=0.73, SE= 0.39, t=1.88, p=0.242; see Fig. 8B for sim-
ple slope plots). For patients, the RL-PE was not reflected for either
feedback valence, both p> 0.999.

Table 4. Inferential statistics for the ANOVA investigating the influence of group,

feedback delay, and block on accuracy in Experiment 1 (patient study)

Effect dfn dfd F p

Group 1.00 49.00 0.28 0.600
Feedback delay 1.00 49.00 0.50 0.484
Block 3.15 154.26 15.65 <0.001
Group × feedback delay 1.00 49.00 0.96 0.331
Group × block 3.15 154.26 1.64 0.179
Feedback delay × block 4.18 204.87 0.24 0.923
Group × feedback delay × block 4.18 204.87 1.24 0.295

n= 52.

Figure 7. Choice switching results for Experiments 1 (patient study) and 2 (TMS study).
A, Slope estimates for choice switching predicted by feedback valence and modulated by
feedback delay and group in Experiment 1 (patient study). pos., positive feedback valence;
neg., negative feedback valence. Red lines denote patients and blue lines controls. Colored
bands indicate 95% confidence intervals. *p< 0.05. **p< 0.01. ***p< 0.001. B, Mean
choice switching according to stimulation site in Experiment 2 (TMS study). Means per stim-
ulation site are displayed in cyan while individual means per stimulation site are displayed in
black. Error bars indicate standard errors.
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Within an interaction between feedback valence and feedback
delay (β=−1.09, SE = 0.27, t(73.82)= 4.04, p < 0.001), the FRN
was enhanced for negative compared with positive feedback
only for short (β= 0.89, SE = 0.16, t= 5.66, p < 0.001) but not
long feedback delay (β=−0.06, SE = 0.16, t= 0.37, p > 0.999).

It was also increased within a feedback delay main effect
for long over short feedback delay (β=−0.94, SE = 0.13,
t(2,765.36) = 7.24, p < 0.001). This effect was further modulated by
group within an interaction (β= 0.59, SE = 0.26, t(2,765.36)= 2.27,
p= 0.024). The FRN amplitude was more strongly increased for
long feedback delays for controls (β=−1.51, SE = 0.19, t= 7.93,
p < 0.001) than patients (β=−0.68, SE = 0.16, t= 4.15, p < 0.001).

Complete inferential statistics can be found in Table 6.

Lesion symptom mapping
Lesions were mainly located in posterolateral regions, with high-
est overlap in lobules Crus II, l, VIIb, VIIIa, and VIIIb (Fig. 1). Six
patients had a lesion extending into the dentate nucleus. Images
of individual lesions are displayed in Extended Data Figure 1-1.
For analysis, all lesions were mirrored to the left side (in case
of bilateral lesions, the side with the larger lesion was mirrored
to the left side if necessary).

To investigate whether the FRN changes were linked to
specific cerebellar lesion locations, voxel-based lesion symptom
mapping (vbLSM) was performed. While controls mostly
showed the expected coding of RL-PEs in the FRN in the antic-
ipated direction (i.e., increased/more negative FRN amplitude for
high over low RL-PEs), only few patients showed this pattern,
and some patients even showed the opposite (i.e., decreased/
more positive FRN for high over low RL-PE; Fig. 8C). We used
the difference FRN for negative feedback as a parameter for the
vbLSM (FRN for high RL-PEs [≥0.5] – FRN for low RL-PEs
[<0.5]). We expected aberrant processing to be associated with
damage to posterolateral regions, especially Crus I and II.
Indeed, a more aberrant difference FRN was associated with
more four posterior lesion clusters: in Crus II extending toward
lobule VIIb (peak z= 3.0, peak coordinates: x=−26 mm,
y =−78 mm, z=−51 mm, 535 mm3), medial Crus II (peak
z=2.6, peak coordinates: x=−5 mm, y=−79 mm, z=−35 mm,
37 mm3), Crus I (peak z=2.5, peak coordinates: x=−27 mm,
y=−86 mm, z=−34 mm, 149 mm3), and medial lobule VIIb/
vermal VIIIa (peak z=2.3, peak coordinates: x=−6 mm,
y=−68 mm, z=−45 mm, 550 mm3; Fig. 10).

In an additional step, we examined lesions in the dentate
nucleus (see Materials and Methods). There were only six
patients with lesions in the dentate nucleus (of which two
had been classified as impaired) with only minimal overlap.
Meaningful analyses could thus not be performed. Plots of
individual dentate nucleus lesions are shown in Figure 3.

Experiment 2: RL-PE processing in healthy young adults
receiving cerebellar TMS
In Experiment 2, we investigated reinforcement learning and
RL-PE processing in young healthy adults (n= 24) for cerebellar
and control (vertex) single-pulse TMS using the same probabilis-
tic feedback learning task as in Experiment 1 (Fig. 4A). Pulses
were applied once per trial and either at the response stage
(100 ms poststimulus onset) or at the feedback stage (100 ms
prefeedback; Fig. 4B). Single-pulse TMS has the advantage of
transient effects on behavior and neural processing (Gatti et al.,

Table 5. Inferential statistics for the LME analysis examining the effect of feedback

valence, response type, feedback delay, group, and block onto choice switching in

Experiment 1 (patient study)

Fixed effects

Est/β SE df t p

(Intercept) 0.08 0.04 58.56 1.96 0.055
Feedback valence −0.20 0.03 15,920.60 −7.60 <0.001
Response type −0.23 0.03 15,948.01 −8.65 <0.001
Feedback delay −0.08 0.03 15,880.70 −3.21 0.001
Group 0.00 0.08 58.56 −0.02 0.988
Block −0.08 0.01 15,896.82 −5.82 <0.001
Feedback valence × response type −0.07 0.05 15,895.70 −1.26 0.208
Feedback valence × feedback delay 0.09 0.05 15,826.98 1.77 0.076
Response type × feedback delay −0.10 0.05 15,926.76 −1.92 0.054
Feedback valence × group −0.05 0.05 15,920.60 −0.87 0.387
Response type × group −0.08 0.05 15,948.01 −1.45 0.148
Feedback delay × group 0.03 0.05 15,880.70 0.61 0.544
Feedback valence × block 0.02 0.03 15,528.96 0.61 0.542
Response type × block −0.10 0.03 15,919.59 −3.78 <0.001
Feedback delay × block 0.05 0.03 15,885.45 1.90 0.057
Group × block 0.04 0.03 15,896.82 1.67 0.095
Feedback valence × response type ×
feedback delay

−0.05 0.10 15,910.73 −0.46 0.648

Feedback valence × response type ×
group

0.09 0.10 15,895.70 0.85 0.396

Feedback valence × feedback delay ×
group

0.32 0.10 15,826.98 3.10 0.002

Response type × feedback delay ×
group

−0.11 0.10 15,926.76 −1.01 0.312

Feedback valence × response type ×
block

0.05 0.05 15,914.81 1.03 0.305

Feedback valence × feedback delay ×
block

−0.03 0.05 12,591.80 −0.62 0.535

Response type × feedback delay ×
block

−0.02 0.05 15,922.19 −0.43 0.670

Feedback valence × group × block −0.03 0.05 15,528.96 −0.61 0.540
Response type × group × block −0.06 0.05 15,919.59 −1.12 0.262
Feedback delay × group × block 0.05 0.05 15,885.45 1.02 0.309
Feedback valence × response type ×
feedback delay × group

−0.13 0.21 15,910.73 −0.64 0.522

Feedback valence × response type ×
feedback delay × block

−0.12 0.11 322.87 −1.09 0.276

Feedback valence × response type ×
group × block

−0.15 0.10 15,914.81 −1.44 0.149

Feedback valence × feedback delay ×
group × block

−0.16 0.10 12,591.80 −1.49 0.136

Response type × feedback delay ×
group × block

0.14 0.10 15,922.19 1.31 0.190

Feedback valence × response type ×
feedback delay × group × block

−0.12 0.22 322.87 −0.54 0.587

Random effects

Variance SD Corr

Subject (intercept) 0.07 0.26
Subject (feedback valence × response
type × feedback delay × block)

0.05 0.23 −0.62

Residual 0.86 0.93
Model fit

Marginal Conditional

R
2 0.05 0.12

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switch∼ 1 +
feedback valence* response type * feedback delay * group * block + (1 + feedback valence:response type:feedback
delay:block | subject). nsubjects= 52, nobservations= 16,001.
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2023) within-subject, excluding the possibility of long-term com-
pensation that may be present in chronic stroke patients
(Peterburs et al., 2012).

Choice accuracy
Mean choice accuracy as a function of stimulation site (cerebel-
lum, vertex), TMS timing (poststimulus, prefeedback), and
block (1–8) is shown in Figure 6B. The effects of these factors
on choice accuracy were analyzed using an ANOVA. We
expected a main effect of block, and participants to perform
worse when receiving cerebellar compared with vertex TMS,
as no long-term compensatory mechanisms should be available
due to the instantaneous effect of the TMS. Overall, we found
a main effect of block, i.e., a learning effect, while no effects
involving the stimulation site factor (cerebellum/vertex) reached
significance.

Statistical analysis showed a significant main effect of block
(F(3.18,73.05)= 6.21, p < 0.001) with higher choice accuracy in
block 4 (t(570)= 3.49, p= 0.008), block 5 (t(570)= 3.33, p= 0.014),
and block 6 (t(570)= 3.77, p= 0.003) compared with block 1. All
other effects were nonsignificant (all p≥ 0.461; see Table 7 for
complete inferential statistics).

Choice switching
The effects of response type, feedback valence, block, stimulation
site, and TMS timing on choice switching were analyzed using
LME analysis. We found the expected effects of increased choice
switching after negative feedback and false responses.
Importantly, choice switching was generally reduced for cerebel-
lar compared with vertex stimulation (Fig. 7B).

The main effect of stimulation site reached significance
(β=−0.11, SE=0.03, t(6,475.16)=3.67, p<0.001), with decreased
choice switching for cerebellar comparedwith vertexTMS (Fig. 7B).

Further, the main effect of response type was significant
(β=−0.39, SE = 0.03, t(6,502.49)= 12.64, p < 0.001), with more
choice switching after incorrect compared with correct choices.
This effect was further modulated by block (β=−0.15,
SE = 0.03, t(6,499.06) = 5.02, p < 0.001). Follow-up simple slope
analyses showed that while choice switching was significantly
increased both early (β=−0.22, SE = 0.04, t= 5.22, p < 0.001)
and late in the task (β=−0.54, SE = 0.05, t= 11.44, p < 0.001),
the effect was stronger late in the task.

Statistical analysis also showed a main effect of feedback valence
(β=−0.23, SE=0.03, t(6,489.74)=7.74, p<0.001), with more choice
switching after negative compared with positive feedback.

Figure 8. ERP results for Experiment 1 (patient study). A, Grand average feedback-locked ERPs at FCz according to unsigned RL-PE (low, high), feedback valence (positive, negative), and group
(patients, controls). Red lines denote high unsigned RL-PE (>0.5) and blue lines low unsigned RL-PE (≤0.5). Colored bands indicate standard errors. B, Slope estimates for FRN amplitude
predicted by unsigned RL-PE and modulated by feedback valence and group. Red lines denote positive feedback valence and blue lines negative feedback valence. Colored bands indicate 95%
confidence intervals. *p< 0.05. **p< 0.01. ***p< 0.001. C, Mean difference FRN (mean negative high RL-PE−mean negative low RL-PE) separately for groups (controls, patients). Group
means are displayed in cyan while individual means are displayed in black. Error bars indicate standard errors. Patients with a difference FRN above 1 µV (i.e., decreased/more positive difference
FRN) are marked in red who are used as impaired group in lesion symptom mapping.
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No other effects involving response type or feedback valence
with stimulation site or each other emerged (all p≥ 0.246).
Complete inferential statistics can be found in Table 8.

FRN
The effects of (signed) RL-PE (reflected in unsigned RL-PE
and feedback valence), stimulation site, and TMS timing on
FRN amplitude were analyzed using LME analysis. We
expected the FRN to be increased for higher unsigned
RL-PEs for negative feedback and decreased for higher
unsigned RL-PEs for positive feedback, and we expected this
effect to be reduced when stimulating the cerebellum com-
pared with the vertex. Grand averages for the feedback-locked
ERP at FCz are shown in Figure 11A. For grand average
feedback-locked ERPs for all conditions, see Figure 9B. FRN
amplitudes were reduced for high compared with low

RL-PEs for negative feedback only for control stimulation
but not for cerebellar stimulation.

Statistical analysis showed that FRN was enhanced for nega-
tive compared with positive feedback (β= 1.08, SE = 0.14,
t(7,116.94) = 7.90, p < 0.001). Feedback valence further interacted
significantly with the unsigned RL-PE, (β=−1.11, SE = 0.49,
t(6,506.98) = 2.28, p= 0.023). Follow-up simple slope analyses
revealed that while the unsigned RL-PE modulated the FRN
for negative feedback, with a reduced FRN with increasing
RL-PE at trend level (β= 0.70, SE = 0.32, t= 2.18, p= 0.058),
this was not the case for positive feedback (β=−0.12, SE = 0.29,
t= 0.42, p > 0.999). This interaction was further modulated by
stimulation site (β= 2.82, SE = 0.93, t(5,523.19)= 3.05, p= 0.002;
Fig. 11B). For vertex TMS, FRN was reduced with increasing
unsigned RL-PE for negative feedback (β= 1.57, SE = 0.43,
t= 3.69, p < 0.001) but not positive feedback (β=−0.56,

Figure 9. Grand average feedback-locked ERPs for all conditions and three RL-PE levels. A, Grand average feedback-locked ERPs for Experiment 1 (patient study) at FCz according to unsigned
RL-PE (low, medium, high), feedback valence (positive, negative), feedback delay (short delay, long delay), and group (patients, controls). Red lines denote low, blue lines denote medium, and
green lines denote high unsigned RL-PE. Colored bands indicate standard errors. B, Grand average feedback-locked ERPs for Experiment 2 (TMS study) at FCz according to unsigned RL-PE (low,
medium, high), feedback valence (positive, negative), TMS timing (poststimulus, prefeedback), and stimulation site (vertex, cerebellum). Red lines denote low, blue lines denote medium, and
green lines denote high unsigned RL-PE. Colored bands indicate standard errors.
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SE = 0.39, t= 1.45, p= 0.594). When stimulating the cerebellum,
the FRN was not significantly modulated by the unsigned
RL-PE (both p≥ 0.999).

No other effects involving feedback valence or the
unsigned RL-PE with stimulation site or each other emerged
(all p≥ 0.207). Complete inferential statistics can be found in
Table 9.

Control analysis
To explore whether feedback processingwas generally disrupted or
whether this was more specific to the processing of RL-PEs, we
performed a control analysis investigating whether patients with
cerebellar stroke (Experiment 1) and healthy controls receiving
cerebellar TMS (Experiment 2) showed preserved valence coding
in the FRN, as valence effects for short feedback delays are a
well-reported finding (Sambrook and Goslin, 2015; Hinneberg
and Hegele, 2022). This was investigated within the same LME
model reported above, resolving the (nonsignificant) interactions
between outcome valence, feedback delay, and group for
Experiment 1 and outcome valence, TMS timing, and stimulation
site for Experiment 2.

Indeed, result patterns were consistent with intact valence cod-
ing in FRN under short feedback delays for patients with cerebellar
stroke and healthy participants receiving cerebellar TMS. In
Experiment 1, the FRN was indeed more negative for negative
relative to positive feedback in both controls (β=0.81, SE= 0.23,
t= 3.54, p= 0.002) and patients (β=1.01, SE= 0.21, t= 4.79,
p< 0.001) in the short delay condition but not in the long delay
condition (both p≥ 0.103; Fig. 12A). In Experiment 2, where
only short delays were used, the FRN was consistently more
negative for negative over positive valence for both stimulation
sites and TMS timings (poststimulus vertex: β=1.12, SE=0.27,
t=4.13, p<0.001; poststimulus cerebellum: β=0.79, SE=0.27,
t=2.96, p=0.012; prefeedback vertex: β=1.47, SE= 0.27, t=5.54,
p< 0.001; prefeedback cerebellum: β=1.09, SE=0.27, t=4.07,
p< 0.001; Fig. 12B).

To further examine whether we could find evidence against an
effect of these interactions, model comparisons were performed
to extract an estimation of the Bayes factor. The full LMEmodels
were compared against a model without the interaction between
outcome valence, feedback delay, and group for Experiment 1
and outcome valence, TMS timing, and stimulation site for
Experiment 2. The Bayes factor was then estimated based on
the difference Bayesian Information Criterion, following Shen
and González (2021). In line with the control analyses, the

Table 6. Inferential statistics for the LME analysis examining the effect of unsigned

RL-PE, feedback valence, feedback delay, and group onto FRN amplitude in

Experiment 1 (patient study)

Fixed effects

Est/β SE df t p

(Intercept) 0.29 0.34 46.00 0.87 0.389
Unsigned PE −0.39 0.18 769.27 −2.16 0.031
Feedback valence 0.48 0.11 1,535.59 4.15 <0.001
Feedback delay −0.94 0.13 2,765.36 −7.24 <0.001
Group −0.48 0.67 46.00 −0.72 0.477
Unsigned PE × feedback valence 0.79 0.67 37.08 1.18 0.246
Unsigned PE × feedback delay 0.56 0.47 41.99 1.19 0.239
Feedback valence × feedback delay −1.09 0.27 73.82 −4.04 <0.001
Unsigned PE × group 0.67 0.37 769.27 1.83 0.068
Feedback valence × group 0.26 0.23 1,535.59 1.13 0.258
Feedback delay × group 0.59 0.26 2,765.36 2.27 0.024
Unsigned PE × feedback valence ×
feedback delay

−2.02 1.73 36.29 −1.17 0.250

Unsigned PE × feedback valence ×
group

−3.28 1.34 37.08 −2.44 0.020

Unsigned PE × feedback delay × group −0.99 0.94 41.99 −1.06 0.295
Feedback valence × feedback delay ×
group

0.09 0.54 73.82 0.16 0.872

Unsigned PE × feedback valence ×
feedback delay × group

−4.03 3.45 36.29 −1.17 0.251

Random effects

Variance SD Corr

Subject (intercept) 5.20 2.28
Subject (unsigned PE ×
feedback valence)

11.10 3.33 −0.07

Subject (unsigned PE ×
feedback delay)

4.16 2.04 0.42 0.65

Subject (feedback valence ×
feedback delay)

0.96 0.98 −0.07 −0.96 −0.70

Subject (unsigned PE ×
feedback valence ×
feedback delay)

104.57 10.23 −0.08 −0.52 −0.16 0.70

Residual 37.25 6.10

Model fit

Marginal Conditional

R
2 0.01 0.16

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: FRN∼ 1 +
unsigned PE * feedback valence * feedback delay * group + (1 + unsigned PE:feedback valence:feedback
delay + unsigned PE:feedback valence + unsigned PE:feedback delay + feedback valence:feedback delay|
subject). nsubjects= 48, nobservations= 15,034.

Figure 10. Lesion symptom mapping in Experiment 1 (patient study). Voxel-based lesion symptom mapping of lesion location comparing groups on (A) a cerebellar flatmap (Diedrichsen and
Zotow, 2015) and in 2D (B) sagittal, (C) coronal, and (D) axial views. Color code shown on the top right denotes z-scores (from purple = 1.7 to red = 3.0). r, right; l, left.
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estimated Bayes Factor indicated very strong evidence for an
absence of the triple interactions (BF = 90.02 for both experi-
ments/comparisons).

Exploratory analysis of predictability of choice switching by
ERP components
While differences in accuracy or choice switching between groups
(Experiment 1) and stimulation sites (Experiment 2) were either
not significant or not as severe, differences in RL-PE processing in
the FRNwere substantial. While the FRN does not seem to have a
strong behavioral correlate (Ullsperger, 2024), there is some evi-
dence linking it to behavioral flexibility (Cohen and Ranganath,
2007; Fischer and Ullsperger, 2013; Kirschner et al., 2022; but
also see Chase et al., 2011). In an exploratory analysis, we added
the FRN amplitude as an additional factor to the LME models
with choice switching as the dependent variable. However, the
respective LME models did not offer a better fit to the data than
the original models (Experiment 1: χ2(32)= 36.01, p= 0.286;
Experiment 2: χ2(32)= 24.82, p= 0.813) and neither did any effects
including the FRN amplitude and the group factor reach signifi-
cance within these models (all p≥ 0.079). In an additional
analysis for Experiment 1, we tried to relate the difference FRN
as presented in Figure 8C to choice switching using group-specific
correlations. However, this correlation did not reach significance
for controls (t(24)= 0.29, p= 0.773) or patients (t(23)= 0.28,
p= 0.784).

For completeness, we also added the P3a and P3b separately
to the choice switching model to see whether these would
improve model fit. P3a and P3b in the feedback-related ERP
peak at ∼300–500 ms postfeedback frontocentrally and parie-
tally, respectively (Hruby and Marsalek, 2003; Polich, 2007),
and have been more clearly associated with behavioral flexibil-
ity (Ullsperger, 2024). Indeed, including P3a/b in the model
significantly improved model fit for both P3a (χ2(32) = 58.19,
p = 0.003) and P3b (χ2(32) = 54.72, p = 0.007) in Experiment 1.
Full statistics for the model comparisons can be found in
Table 10. Several effects including both P3a and group reached
significance and one effect including both P3b and group
reached significance. The general effect patterns seem to indi-
cate that the P3a is generally predictive of choice switching
for healthy controls, but only under specific circumstances for
patients.

For the P3a LME model in Experiment 1, the interaction
between P3a and group reached significance (β= 0.01,
SE = 0.00, t(15,752.83)= 2.04, p= 0.042). P3a was predictive of
choice switching for controls (β=−0.01, SE = 0.00, t=−2.45,
p= 0.028), such that an increased P3a corresponded to decreased
choice switching. This effect did not reach significance in patients
(β= 0.00, SE = 0.00, t= 0.90, p= 0.734). This interaction was fur-
ther modulated by block (β= 0.01, SE = 0.00, t(15,710.76)= 2.05,

Table 7. Inferential statistics for the ANOVA investigating the influence of

stimulation site, TMS timing and block on accuracy in Experiment 2 (TMS study)

Effect dfn dfd F p

Stimulation site 1 23 0.01 0.938
TMS timing 1 23 0.13 0.717
Block 3.18 73.05 6.21 <0.001
Stimulation site × TMS timing 1 23 0.01 0.929
Stimulation site × block 3.12 71.87 0.88 0.461
TMS timing × block 3.33 76.65 0.62 0.619
Stimulation site × TMS timing × block 5 115 0.65 0.660

n= 24.

Table 8. Inferential statistics for the LME analysis examining the effect of feedback

valence, response type, stimulation site, TMS timing, and block onto choice

switching in Experiment 2 (TMS study)

Fixed effects

Est/β SE df t p

(Intercept) 0.07 0.04 22.60 1.91 0.069
Feedback valence −0.23 0.03 6,489.74 −7.74 <0.001
Response type −0.39 0.03 6,502.49 −12.64 <0.001
Stimulation site −0.11 0.03 6,475.16 −3.67 <0.001
TMS timing 0.00 0.03 6,477.69 0.06 0.954
Block 0.00 0.02 6,481.40 0.21 0.831
Feedback valence × response type 0.07 0.06 6,479.45 1.15 0.252
Feedback valence × stimulation site −0.01 0.06 6,487.20 −0.19 0.852
Response type × stimulation site −0.06 0.06 6,488.89 −1.07 0.286
Feedback valence × TMS timing 0.01 0.06 6,461.84 0.14 0.889
Response type × TMS timing 0.04 0.06 6,502.24 0.64 0.524
Stimulation site × TMS timing −0.03 0.06 6,479.64 −0.56 0.577
Feedback valence × block 0.01 0.03 6,327.19 0.36 0.720
Response type × block −0.15 0.03 6,499.06 −5.02 <0.001
Stimulation site × block −0.03 0.03 6,482.72 −0.87 0.387
TMS timing × block 0.01 0.03 6,483.30 0.31 0.758
Feedback valence × response type ×
stimulation site

0.13 0.12 6,481.54 1.04 0.298

Feedback valence × response type ×
TMS timing

0.04 0.12 6,489.48 0.35 0.727

Feedback valence × stimulation site ×
TMS timing

−0.12 0.12 6,436.24 −0.99 0.325

Response type × stimulation site ×
TMS timing

0.02 0.12 6,502.30 0.19 0.848

Feedback valence × response type ×
block

−0.07 0.06 6,484.86 −1.11 0.268

Feedback valence × stimulation site ×
block

0.00 0.06 6,107.47 −0.04 0.968

Response type × stimulation site ×
block

−0.02 0.06 6,490.12 −0.36 0.721

Feedback valence × TMS timing ×
block

0.13 0.06 6,384.46 2.08 0.037

Response type × TMS timing × block −0.03 0.06 6,485.44 −0.48 0.629
Stimulation site × TMS timing × block −0.07 0.06 6,479.98 −1.16 0.246
Feedback valence × response type ×
stimulation site × TMS timing

−0.03 0.24 6,489.04 −0.12 0.906

Feedback valence × response type ×
stimulation site × block

−0.04 0.12 6,485.43 −0.37 0.709

Feedback valence × response type ×
TMS timing × block

−0.27 0.12 6,489.30 −2.22 0.027

Feedback valence × stimulation site ×
TMS timing × block

0.03 0.12 4,922.33 0.21 0.833

Response type × stimulation site ×
TMS timing × block

0.13 0.12 6,489.78 1.10 0.271

Feedback valence × response type ×
stimulation site × TMS timing ×
block

0.01 0.25 48.64 0.04 0.971

Random effects

Variance SD Corr

Subject (intercept) 0.03 0.16
Subject (feedback valence × response
type × stimulation site × TMS
timing × block)

0.10 0.32 0.53

Residual 0.88 0.94

Model fit

Marginal Conditional

R
2 0.08 0.11

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switching

∼ 1 + feedback valence * response type * stimulation site * TMS timing * block + (1 + feedback valence:

response type:stimulation site:TMS timing:block | subject). nsubjects= 21, nobservations= 6,541.
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p= 0.041). Choice switching was increased with increasing P3a
for patients late in the task on trend level (β= 0.01, SE = 0.00,
t= 2.38, p= 0.068), but not early in the task, and not at all
for healthy controls (all p≥ 0.191). The interaction was further
modulated by outcome valence in a four-way interaction (β=
0.02, SE = 0.01, t(15,706.65)= 2.31, p= 0.021). Choice switching
was increased on trend level with increasing P3a for patients
late in the task only for positive feedback (β= 0.01, SE = 0.01,
t = 2.55, p= 0.087). No other simple slopes reached significance
when resolving the interaction (all p≥ 0.168).

A three-way interaction including P3a, group, and feedback
delay (β=−0.02, SE = 0.01, t(15,729.44)= 2.23, p= 0.026) showed
that P3a was predictive of choice switching only for controls in
the short feedback delay condition, however, only at trend level
(β=−0.01, SE = 0.00, t= 2.39, p= 0.067). Larger P3a amplitudes
led to reduced choice switching. The effect did not reach signifi-
cance for controls in the long feedback delay condition or for
patients at all (all p≥ 0.125). However, two higher-level interac-
tions indicated that a P3a-choice switching relation did exist for
patients under specific circumstances: The interaction between
P3a, group, and feedback delay was further modulated by
response type in a four-way interaction (β=−0.04, SE = 0.02,
t(15,712.02)= 2.37, p= 0.018). This four-way interaction revealed
that P3a was significantly predictive of choice switching only
for patients for short feedback delay when the choice was correct
(β= 0.02, SE = 0.00, t= 3.48, p= 0.004). In no other condition did
the effect reach significance (all p≥ 0.301). Finally, the four-way
interaction was further modulated by outcome valence in a
five-way interaction (β= 0.08, SE = 0.04, t(15,705.28)= 2.16,
p= 0.031). In this five-way interaction, P3a was predictive of
choice switching on trend level only for patients for the short
delay condition, when feedback was positive and the reaction
was correct, with larger P3a amplitudes predicting more choice
switching (β= 0.01, SE = 0.00, t= 2.77, p= 0.090). No other slope
reached significance (all p≥ 0.254). These effect patterns might

be due to a smaller, more general effect of P3a on choice switch-
ing in healthy controls, while for patients, the direction of the
effect was more dependent on the experimental condition. The
full statistical pattern is displayed in Table 11.

For P3b, a four-way interaction between P3b, outcome valence,
group, and block emerged (β=0.02, SE= 0.01, t(14,135.18)= 1.97,
p= 0.049). P3b amplitude was predictive of choice switching
only for patients when receiving positive feedback and only late
in the task (β= 0.02, SE= 0.01, t=3.97, p< 0.001; all other
p≥ 0.894).

Notably, we could not replicate these findings for Experiment
2. The stroke patient sample might have been more suitable to
explore such deficits, as the single-pulse TMS we used in
Experiment 2 creates a virtual lesion merely via inducing noise.
A brain–behavior connection might be clearer when using
rTMS protocols. Including the P3a/b in the model did not result
in significant improvements in model fit (P3a: χ2(32)= 44.42,
p= 0.071; P3b: χ2(32)= 45.47, p= 0.058).

Discussion
The current study aimed to investigate whether cerebellar output
is required for reinforcement learning-prediction error (RL-PE)
coding in the ACC-generated FRN. We studied this in two cere-
bellar lesion models (cerebellar stroke patients and single-pulse
cerebellar TMS) during a probabilistic feedback learning task.
While we found RL-PE coding in the FRN for healthy controls
and for control stimulation (vertex) in negative outcome/feed-
back contexts, it was largely absent for cerebellar stroke patients
and for cerebellar TMS. The results provide evidence that RL-PE
computation is dependent on cerebellar output. Behavioral defic-
its, however, were subtle. While overall learning success was
unaffected by cerebellar lesions or cerebellar TMS, behavioral
flexibility, as indexed by choice switching, was reduced. Subtle
deficits may be due to compensation by other brain areas within
the reinforcement learning network.

Figure 11. ERP results for Experiment 2 (TMS study). A, Grand average feedback-locked ERPs at FCz according to unsigned RL-PE (low, high), feedback valence (positive, negative), and
stimulation site (vertex, cerebellum). Red lines denote high unsigned RL-PE (>0.5) and blue lines low unsigned RL-PE (≤0.5). Colored bands indicate standard errors. B, Slope estimates for FRN
amplitude predicted by unsigned RL-PE and modulated by feedback valence and stimulation site. Red lines denote positive feedback valence and blue lines negative feedback valence. Colored
bands indicate 95% confidence intervals. *p< 0.05. **p< 0.01. ***p< 0.001.
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For healthy controls (Experiment 1) and control stimulation
(Experiment 2), RL-PE coding in the FRN was found only for
negative feedback. This is consistent with previous studies in
healthy participants that found the RL-PE reflected in the FRN
only, or at least more strongly, for negative outcomes/feedback
(Hoy et al., 2021; Rawls and Lamm, 2021). Note that the direction
of the effect was unexpectedly reversed for control stimulation in
Experiment 2, as discussed below. Importantly, patients with cer-
ebellar damage and healthy participants receiving cerebellar TMS
showed no significant RL-PE coding in the FRN. Activity consis-
tent with RL-PE has previously been described in the rodent cer-
ebellum, although mainly for reward contexts (Kostadinov and
Häusser, 2022). It is thus conceivable that RL-PE processing in
the cerebellum, as found in these previous studies, is necessary
for further RL-PE processing in connected areas classically asso-
ciated with reinforcement learning (i.e., forebrain and midbrain
areas). Of note, feedback processing was not deficient in general,
with an intact valence effect in the FRN under short feedback
delays in cerebellar patients and in healthy participants receiving
cerebellar TMS.

Closer inspection of Figure 7A reveals that the lack of differ-
entiation between low and high RL-PEs in the FRN in patients

was driven by an increase in FRN amplitudes for low RL-PEs
rather than a decrease in FRN amplitudes for high RL-PEs.
Thus, it appears that the effect is driven by over-activation
toward expected outcomes rather than underactivation for unex-
pected outcomes, which may be indicative of exaggerated per-
ceived salience of expected feedback.

The deficit in RL-PE coding in the FRNwas most pronounced
in patients with lesions at the border of Crus II and lobule VIIb
and to a smaller degree in medial Crus II, Crus I, lobule VIIb, and
VIIIa. Especially Crus I and II have previously been identified to
be involved in decision making and executive control (Berlijn et
al., 2024b) and are also connected to the reinforcement learning
network (Habas, 2021). The present cluster in Crus II/lobule
VIIb overlapped with regions associated with higher cognitive
functions, in particular working memory (region D2 in
Nettekoven et al., 2024), shown in cerebellar parcellations based
on functional magnetic resonance imaging (fMRI) data. The
cluster in Crus I, Crus II, and lobule VIIb/VIIIa seemed to be
related to default mode network/theory of mind, working mem-
ory, and spatial rotation/simulation (regions S3, D1, and A1 in
Nettekoven et al., 2024). Data on reinforcement learning tasks,
however, were not included in the fMRI data on which these par-
cellations are based. Notably, the cluster in Crus II/lobule VIIb in
the present study seems to match with a cluster found in relation
to behavioral changes in a feedback learning task very similar to
ours (Peterburs et al., 2018). While the abovementioned regions

Table 9. Inferential statistics for the LME analysis examining the effect of unsigned

RL-PE, feedback valence, stimulation site, and TMS timing onto FRN amplitude in

Experiment 2 (TMS study)

Fixed effects

Est/β SE df t p

(Intercept) 1.92 0.64 21.08 3.02 0.007
Unsigned PE 0.20 0.20 7,125.07 1.00 0.320
Feedback valence 1.08 0.14 7,116.94 7.90 <0.001
Stimulation site 0.08 0.14 5,953.65 0.56 0.577
TMS timing 3.38 0.15 5,521.83 22.99 <0.001
Unsigned PE × feedback valence −1.11 0.49 6,506.98 −2.28 0.023
Unsigned PE × stimulation site −0.46 0.40 7,120.14 −1.17 0.244
Feedback valence × stimulation site −0.27 0.27 7,123.63 −1.00 0.317
Unsigned PE × TMS timing 0.89 0.40 7,121.23 2.24 0.025
Feedback valence × TMS timing 0.49 0.27 7,122.51 1.80 0.071
Stimulation site × TMS timing 1.28 0.31 3,279.84 4.14 <0.001
Unsigned PE × feedback valence ×
stimulation site

2.82 0.93 5,523.19 3.05 0.002

Unsigned PE × feedback valence × TMS
timing

2.45 0.89 6,049.33 2.75 0.006

Unsigned PE × stimulation site × TMS
timing

0.38 0.80 7,124.94 0.48 0.632

Feedback valence × stimulation site ×
TMS timing

0.21 0.54 7,124.02 0.39 0.696

Unsigned PE × feedback valence ×
stimulation site × TMS timing

5.31 4.07 19.75 1.30 0.207

Random effects

Variance SD Corr

Subject (intercept) 8.82 2.97
Subject (unsigned PE × feedback
valence × stimulation site × TMS
timing)

287.19 16.95 0.03

Residual 29.10 5.39

Model fit

Marginal Conditional

R
2 0.08 0.30

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: FRN∼ 1 +
unsigned PE * feedback valence * stimulation site * TMS timing + (1 + unsigned PE:feedback valence:
stimulation site:TMS timing | subject). nsubjects= 22, nobservations= 7,162.

Figure 12. Slope estimates for FRN amplitude predicted by feedback valence. A, Slope
estimates for FRN amplitude predicted by feedback valence and modulated by feedback delay
and group. Red lines denote patients and blue lines healthy controls. B, Slope estimates for
FRN amplitude predicted by feedback valence and modulated by TMS timing and stimulation
site. Red lines denote cerebellar TMS and blue lines vertex TMS. Colored bands indicate 95%
confidence intervals. *p< 0.05. **p< 0.01. ***p< 0.001.
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were associated with especially aberrant RL-PE coding, the distri-
bution of difference FRN was overall shifted for patients com-
pared with controls (Fig. 8C). Considering the overall lesion
distribution in patients, it is conceivable that other posterolateral
cerebellar regions also play a role in RL-PE processing.

It has to be noted that behavioral changes associated with cer-
ebellar lesions or cerebellar TMS were quite subtle which seems
unexpected given the substantial changes in the FRN. While
the FRN generator, ACC, is essential for action-outcome learning
(Rudebeck et al., 2008; Camille et al., 2011), the present experi-
ments used additional visual stimuli to represent choices
(i.e., button presses). It is therefore conceivable that areas
involved in stimulus-outcome learning, such as the orbitofrontal
cortex (OFC; Rudebeck et al., 2008; Camille et al., 2011), were
able to compensate for ACC-driven deficits. Action-outcome–
and stimulus-outcome–based learning might have redundancy
to accommodate different environmental requirements. While
both the ACC and the OFC receive a wide range of input
(Heilbronner and Hayden, 2016; Groman et al., 2021), they
might differ in relation to cerebellar input and dependency on
predictive information processed by the cerebellum (Peterburs
and Desmond, 2016). Previous studies in rodents showed that
the cerebellummodulates dopaminergic activity in the substantia
nigra (Washburn et al., 2024), and projections from the cerebel-
lum to the VTA were able to modulate place preference (Carta
et al., 2019). Both the substantia nigra and the VTA project
toward the ACC (Zhang et al., 2017; Elston et al., 2018, 2019).
The OFC, in turn, may bemore independent from cerebellar pro-
cessing. While there is some evidence for connections between
the cerebellum and OFC (Palesi et al., 2017), we did not measure
proxies of OFC activity and therefore cannot conclude whether
processing in the OFC was affected. Notably, there seems to be
a general pattern of reduced behavioral flexibility and intact
acquisition concomitant with cerebellar damage/disruption:
learning acquisition was shown to be intact in patients with
cerebellar stroke (Thoma et al., 2008; Rustemeier et al., 2016; pre-
sent Exp. 1) and cerebellar degeneration (A.M. Berlijn, D.M.
Huvermann, E. Bechler et al., unpublished observation) as well
as healthy participants receiving cerebellar single-pulse or
rTMS (present Exp.2, Kruithof et al., 2025). Nicholas et al.
(2024) showed deficits in behavioral flexibility in patients with
cerebellar degeneration using a task with constantly changing
drifting reward probabilities. In an additional exploratory
analysis, we were able to link deficits not in the FRN but in later
feedback processing (P3a) to deficits in choice switching, which
is consistent with the current conception that the P3 has

stronger behavioral correlates than the FRN (Ullsperger, 2024).
There is some evidence for a relation between FRN and beha-
vioral adjustment (Fischer and Ullsperger, 2013; Kirschner
et al., 2022; but also see Chase et al., 2011), which might not
have played a big enough role in the current study. FRN seems
to predict choice switching in highly adaptive environments
(Cohen and Ranganath, 2007). The FRN might thus be a readout
of a RL-PE that depends on cerebellar output but is not strictly
required for learning success in tasks which do not require
a high degree of behavioral flexibility. Thoma et al. (2008)
and Kruithof et al. (2025) showed that behavioral flexibility
required in reversal learning is indeed impaired in cerebellar
damage/disruption even in the presence of intact learning
acquisition.

In Experiment 2, we varied TMS pulse timing to test whether
the cerebellum is potentially involved in response and/or feedback
processing selectively. The variation in pulse timing did not appear
to modulate the effect of cerebellar TMS on RL-PE coding in the
FRN. While this might be related to differential contributions of
predictive effects (poststimulus TMS) and feedback processing
(prefeedback TMS), an absence of a timing effect might also result
from nonoptimal temporal placement of stimulation timings.

While in Experiment 1, the FRN reflected the RL-PE in the
expected direction in control participants (i.e., more negative
FRN amplitudes for higher RL-PEs), the direction was unexpect-
edly reversed for the control stimulation in Experiment 2. It thus
seems that even though vertex is a common site for control stim-
ulation, it did have an effect on feedback processing, challenging
its use as a control condition in Experiment 2. At least one study
(Jung et al., 2016) showed reduced activity in the ACC (i.e., the
generator of FRN; Hauser et al., 2014) with vertex TMS, although
not significantly with the inverted stimulation that we used.
Nevertheless, it is still noteworthy that findings for the cerebellar
TMS in Experiment 2 replicated the findings in Experiment 1 for
cerebellar stroke patients. Both showed a lack of RL-PE coding in
FRN. Even though the RL-PE was reflected in the FRN for vertex
TMS in the opposite direction, there was a significant RL-PE cod-
ing for vertex TMS, while it could not be found for the cerebellar
TMS, as well as no effect of stimulation site on learning, thus rep-
licating the overall result pattern in Experiment 1.

In summary, feedback processing, as indexed by the FRN, was
shown to be dependent on cerebellar output. While cerebellar
dysfunction or damage resulted in only subtle changes in beha-
vioral flexibility with reinforcement learning performance largely
intact, processing of RL-PEs as reflected in the FRN was substan-
tially blunted. Crucially, this pattern was consistent across two

Table 10. Model comparisons for the choice switching LME analysis with FRN, P3a, and P3b as additional predictors, respectively, for Experiments 1 and 2

Model nparameter AIC BIC Log likelihood Deviance

Model comparison

χ2 df p

Experiment 1
Standard model (data with valid FRN, P3a, and P3b) 36 42,815 43,091 −21,372 42,743
Model with FRN as an additional predictor 68 42,843 43,365 −21,354 42,707 36.01 32 0.286
Model with P3a as an additional predictor 68 42,821 43,343 −21,343 42,685 58.19 32 0.003
Model with P3b as an additional predictor 68 42,825 43,346 −21,344 42,689 54.72 32 0.007

Experiment 2
Standard model (data with valid FRN) 36 17,686 17,930 −8,807.1 17,614
Model with FRN as an additional predictor 68 17,725 18,186 −8,794.7 17,589 24.82 32 0.813
Standard model (data with valid P3a/b) 36 17,821 18,065 −8,874.4 17,749
Model with P3a as an additional predictor 68 17,841 18,302 −8,852.2 17,705 44.42 32 0.071
Model with P3b as an additional predictor 68 17,839 18,301 −8,851.7 17,703 45.47 32 0.058

Model comparisons based on deviance.
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Table 11. Inferential statistics for the LME analysis examining the effect of P3a, feedback valence, response type, feedback delay, group, and block onto choice switching in

Experiment 1 (patient study)

Fixed effects

Est/β SE df t p

(Intercept) 0.09 0.04 64.23 2.31 0.024
P3a 0.00 0.00 15,752.83 −1.38 0.167
Feedback valence −0.18 0.03 15,706.55 −5.87 <0.001
Response type −0.25 0.03 15,739.13 −8.04 <0.001
Feedback delay −0.09 0.03 15,714.33 −2.78 0.005
Group −0.04 0.08 64.23 −0.48 0.632
Block −0.08 0.02 15,707.24 −5.59 <0.001
P3a × feedback valence 0.00 0.00 15,709.07 −1.06 0.288
P3a × response type 0.01 0.00 15,713.92 1.80 0.072
Feedback valence × response type −0.13 0.06 15,704.73 −2.14 0.032
P3a × feedback delay 0.00 0.00 15,729.44 −0.82 0.412
Feedback valence × feedback delay 0.12 0.06 15,707.21 1.93 0.053
Response type × feedback delay −0.10 0.06 15,717.62 −1.61 0.108
P3a × group 0.01 0.00 15,752.83 2.04 0.042
Feedback type × group −0.08 0.06 15,706.55 −1.34 0.180
Response type × group −0.07 0.06 15,739.13 −1.09 0.275
Feedback delay × group 0.10 0.06 15,714.33 1.68 0.092
P3a × block 0.00 0.00 15,710.76 1.32 0.186
Feedback valence × block 0.01 0.03 15,706.32 0.33 0.738
Response type × block −0.10 0.03 15,715.07 −3.29 0.001
Feedback delay × block 0.06 0.03 15,704.81 2.12 0.034
Group × block 0.01 0.03 15,707.24 0.39 0.700
P3a × feedback valence × response type 0.02 0.01 15,707.98 1.78 0.075
P3a × feedback valence × feedback delay −0.01 0.01 15,708.47 −0.67 0.505
P3a × response type × feedback delay 0.00 0.01 15,712.02 −0.45 0.652
Feedback valence × response type × feedback delay −0.07 0.12 15,704.17 −0.58 0.565
P3a × feedback valence × group 0.01 0.01 15,709.07 1.18 0.240
P3a × response type × group 0.00 0.01 15,713.92 −0.06 0.951
Feedback valence × response type × group 0.23 0.12 15,704.73 1.87 0.061
P3a × feedback delay × group −0.02 0.01 15,729.44 −2.23 0.026
Feedback valence × feedback delay × group 0.26 0.12 15,707.21 2.14 0.033
Response type × feedback delay × group 0.03 0.12 15,717.62 0.22 0.829
P3a × feedback valence × block 0.00 0.00 15,706.65 0.33 0.740
P3a × response type × block 0.00 0.00 15,708.16 0.18 0.857
Feedback valence × response type × block 0.09 0.06 15,704.32 1.58 0.114
P3a × feedback delay × block −0.01 0.00 15,707.03 −1.29 0.199
Feedback valence × feedback delay × block 0.01 0.06 15,705.59 0.21 0.836
Response type × feedback delay × block −0.06 0.06 15,708.86 −0.92 0.357
P3a × group × block 0.01 0.00 15,710.76 2.05 0.041
Feedback valence × group × block −0.10 0.06 15,706.32 −1.69 0.092
Response type × group × block 0.00 0.06 15,715.07 0.02 0.983
Feedback delay × group × block 0.06 0.06 15,704.81 1.05 0.295
P3a × feedback valence × response type × feedback delay 0.02 0.02 15,705.28 0.89 0.374
P3a × feedback valence × response type × group −0.03 0.02 15,707.98 −1.85 0.065
P3a × feedback valence × feedback delay × group 0.02 0.02 15,708.47 1.23 0.219
P3a × response type × feedback delay × group −0.04 0.02 15,712.02 −2.37 0.018
Feedback valence × response type × feedback delay × group −0.43 0.25 15,704.17 −1.75 0.081
P3a × feedback valence × response type × block −0.01 0.01 15,706.99 −1.45 0.147
P3a × feedback valence × feedback delay × block −0.01 0.01 15,706.18 −1.11 0.268
P3a × response type × feedback delay × block 0.01 0.01 15,707.24 1.29 0.196
Feedback valence × response type × feedback delay × block −0.14 0.12 15,704.08 −1.13 0.257
P3a × feedback valence × group × block 0.02 0.01 15,706.65 2.31 0.021
P3a × response type × group × block −0.01 0.01 15,708.16 −1.51 0.132
Feedback valence × response type × group × block −0.06 0.12 15,704.32 −0.47 0.638
P3a × feedback delay × group × block −0.01 0.01 15,707.03 −1.13 0.257
Feedback valence × feedback delay × group × block −0.14 0.12 15,705.59 −1.16 0.246
Response type × feedback delay × group × block 0.07 0.12 15,708.86 0.62 0.533
P3a × feedback valence × response type × feedback delay × group 0.08 0.04 15,705.28 2.16 0.031
P3a × feedback valence × response type × feedback delay × block 0.00 0.02 15,705.60 −0.13 0.894
P3a × feedback valence × response type × group × block −0.03 0.02 15,706.99 −1.48 0.140
P3a × feedback valence × feedback delay × group × block −0.01 0.02 15,706.18 −0.36 0.720
P3a × response type × feedback delay × group × block 0.02 0.02 15,707.24 0.93 0.350
Feedback valence × response type × feedback delay × group × block −0.04 0.24 15,704.08 −0.15 0.883
P3a × feedback valence × response type × feedback delay × group × block −0.02 0.04 15,705.60 −0.52 0.606

(Table continues.)
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Table 11. Continued

Fixed effects

Est/β SE df t p

Random effects

Variance SD
Subject (intercept) 0.07 0.26
Residual 0.86 0.93

Model fit

R2 Marginal Conditional
0.06 0.13

Simple slope analyses

P3a × group Est/β SE t p

P3a slope for controls −0.01 0.00 2.45 0.028
P3a slope for patients 0.00 0.00 0.90 0.734

P3a × group × block Est/β SE t p

P3a slope for controls and early experiment (M− 1SD) −0.01 0.00 1.56 0.471
P3a slope for controls and late experiment (M+ 1SD) −0.01 0.00 1.98 0.191
P3a slope for patients and early experiment (M− 1SD) 0.00 0.00 1.09 >0.999
P3a slope for patients and late experiment (M+ 1SD) 0.01 0.00 2.38 0.068

P3a × group × block × feedback valence Est/β SE t p

P3a slope for controls, early experiment (M− 1SD), and negative feedback −0.01 0.01 1.20 >0.999
P3a slope for controls, early experiment (M− 1SD), and positive feedback 0.00 0.00 1.05 >0.999
P3a slope for controls, late experiment (M+ 1SD), and negative feedback 0.00 0.01 0.04 >0.999
P3a slope for controls, late experiment (M+ 1SD), and positive feedback −0.02 0.01 2.31 0.168
P3a slope for patients, early experiment (M− 1SD), and negative feedback 0.00 0.01 0.01 >0.999
P3a slope for patients, early experiment (M− 1SD), and positive feedback −0.01 0.00 1.57 >0.999
P3a slope for patients, late experiment (M+ 1SD), and negative feedback 0.01 0.01 0.76 >0.999
P3a slope for patients, late experiment (M+ 1SD), and positive feedback 0.01 0.01 2.55 0.087

P3a × group × feedback delay Est/β SE t p

P3a slope for controls and short feedback delays −0.01 0.00 2.39 0.067
P3a slope for controls and long feedback delays 0.00 0.00 1.06 >0.999
P3a slope for patients and short feedback delays 0.01 0.01 2.15 0.125
P3a slope for patients and long feedback delays −0.01 0.00 1.44 0.600

P3a × group × feedback delay × response type Est/β SE t p

P3a slope for controls, short feedback delays, and incorrect choices −0.01 0.01 1.49 >0.999
P3a slope for controls, short feedback delays, and correct choices −0.01 0.00 1.96 0.403
P3a slope for controls, long feedback delays, and incorrect choices −0.02 0.01 2.08 0.301
P3a slope for controls, long feedback delays, and correct choices 0.00 0.00 0.72 >0.999
P3a slope for patients, short feedback delays, and incorrect choices 0.00 0.01 0.03 >0.999
P3a slope for patients, short feedback delays, and correct choices 0.02 0.00 3.48 0.004
P3a slope for patients, long feedback delays, and incorrect choices 0.00 0.01 0.72 >0.999
P3a slope for patients, long feedback delays, and correct choices −0.01 0.00 1.28 >0.999

P3a × group × feedback delay × response type × feedback valence Est/β SE t p

P3a slope for controls, short feedback delays, incorrect choices, and negative feedback 0.00 0.01 0.07 >0.999
P3a slope for controls, short feedback delays, incorrect choices, and positive feedback −0.02 0.02 1.53 >0.999
P3a slope for controls, short feedback delays, correct choices, and negative feedback −0.02 0.01 1.76 >0.999
P3a slope for controls, short feedback delays, correct choices, and positive feedback 0.00 0.00 0.41 >0.999
P3a slope for controls, long feedback delays, incorrect choices, and negative feedback 0.00 0.00 0.64 >0.999
P3a slope for controls, long feedback delays, incorrect choices, and positive feedback −0.03 0.01 2.41 0.254
P3a slope for controls, long feedback delays, correct choices, and negative feedback 0.00 0.01 0.51 >0.999
P3a slope for controls, long feedback delays, correct choices, and positive feedback 0.00 0.00 0.77 >0.999
P3a slope for patients, short feedback delays, incorrect choices, and negative feedback −0.01 0.01 1.21 >0.999
P3a slope for patients, short feedback delays, incorrect choices, and positive feedback 0.01 0.02 0.50 >0.999
P3a slope for patients, short feedback delays, correct choices, and negative feedback 0.02 0.01 2.10 >0.999
P3a slope for patients, short feedback delays, correct choices, and positive feedback 0.01 0.00 2.77 0.090
P3a slope for patients, long feedback delays, incorrect choices, and negative feedback 0.00 0.00 0.33 >0.999
P3a slope for patients, long feedback delays, incorrect choices, and positive feedback −0.01 0.01 1.22 >0.999
P3a slope for patients, long feedback delays, correct choices, and negative feedback −0.02 0.01 1.46 >0.999
P3a slope for patients, long feedback delays, correct choices, and positive feedback 0.00 0.00 0.03 >0.999

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switching∼ 1 + P3a * feedback valence * response type * feedback delay * group * block + (1| subject). nsubjects= 52,

nobservations= 15,817.
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complementary lesion models (i.e., stroke patients and single-
pulse TMS). Furthermore, lesion symptom mapping in patients
showed that regions at the border of Crus II and Lobule VIIb,
medial Crus II, and Crus I were of particular importance.
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Research Article

1. INTRODUCTION

The cerebellum is assumed to be strongly involved in 

making predictions, processing error information, and 

adjusting behavior not only in the motor but also in the 

cognitive domain ( King  et al.,  2019;  Sokolov  et al.,  2017). 

Speci�cally, it has been suggested to generate internal 

models of movement and thought that are crucial for ef�-

ciency and precision in adaptive control ( Ito,  2008;  Koziol 

 et al.,  2014;  Wolpert  et al.,  1998). These internal models 

re�ect the process of error detection and correction in 
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ABSTRACT

The present study investigated temporal aspects of cerebellar contributions to the processing of performance errors 

as indexed by the error- related negativity (ERN) in the response- locked event- related potential (ERP). We co- registered 

EEG and applied single- pulse transcranial magnetic stimulation (spTMS) to the left posterolateral cerebellum and an 

extra- cerebellar control region (vertex) while healthy adult volunteers performed a Go/Nogo Flanker Task. In Go trials, 

TMS pulses were applied at four different time points, with temporal shifts of - 100 ms, - 50 ms, 0 ms, or +50 ms rela-

tive to the individual error latency (IEL, i.e., individual ERN peak latency + median error response time). These stimu-

lation timings were aggregated into early (- 100 ms, - 50 ms) and late (0 ms, +50 ms) stimulation for the analysis. In 

Nogo trials, TMS pulses occurred 0 ms, 100 ms, or 300 ms after stimulus onset. Mixed linear model analyses revealed 

that cerebellar stimulation did not affect error rates overall. No effects were found for response times. As hypothe-

sized, ERN amplitudes were decreased for cerebellar stimulation. No signi�cant differences were found for the error 

positivity (Pe). Similar to TMS application to probe cerebellar- brain inhibition in the motor domain, the inhibitory tone 

of the cerebellar cortex may have been disrupted by the pulses. Reduced inhibitory output of the cerebellar cortex 

may have facilitated the processing of error information for response selection, which is re�ected in a decreased ERN.

Keywords: Error processing, cerebellum, cognitive control, EEG, single pulse TMS, performance monitoring, executive 

functions
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which the cerebellum functions as a comparator, compar-

ing the actual and predicted outcomes of actions and 

adjusting the predictions accordingly. Along these lines, 

performance monitoring, which includes error and feed-

back processing, has been proposed to be an overarching 

function of the cerebellum ( Peterburs  &  Desmond,  2016).

Performance monitoring can be indexed by the error- 

related negativity (ERN) in the event- related potential 

(ERP) in the electroencephalogram (EEG). The ERN, a rel-

ative negativity that typically peaks within 100 ms after an 

erroneous response, is interpreted to re�ect processes 

related to the detection of errors ( Falkenstein  et al.,  1991; 

 Gehring  et al.,  1993) or response con�ict ( Botvinick  et al., 

 2001;  Yeung  et  al.,  2004). The ERN has a symmetric, 

frontocentral scalp distribution, and its neural generator 

is likely in the anterior cingulate cortex (ACC) or supple-

mentary motor area ( Dehaene  et  al.,  1994;  Herrmann 

 et al.,  2004). It has been proposed that the ACC is critical 

for detecting con�ict and conveying con�ict- related 

information to other brain regions such as the lateral pre-

frontal cortex ( Cohen  et al.,  2000). The ACC is also a key 

structure for evaluating actions and their outcomes, thus 

playing a critical role for reinforcement learning ( Holroyd 

 &  Yeung,  2011).

Findings from studies in patients with cerebellar dis-

eases suggest that the cerebellum contributes to the 

processing of errors and response con�ict. Speci�cally, 

the ERN was shown to be reduced in patients with focal 

post- acute vascular lesions of the cerebellum ( Peterburs 

 et  al.,  2012) and cerebellar degenerative disease 

( Peterburs  et  al.,  2015). The latter patient group also 

exhibited increased error rates, and the ERN reduction 

and behavioral impairment were linked to gray matter 

volume loss in posterolateral cerebellar regions 

( Peterburs  et al.,  2015). In contrast, patients with post- 

acute cerebellar lesions did not show altered behavior. 

However, another ERP component related to error pro-

cessing, the error positivity (Pe), a relative positivity 

occurring 200– 400  ms post- response that has been 

linked to more conscious aspects of error processing 

( Falkenstein  et al.,  1995), was increased ( Peterburs  et al., 

 2012). Interestingly, the Pe was unaffected in patients 

with progressive cerebellar degeneration ( Peterburs 

 et al.,  2015). This result pattern could be indicative of a 

compensatory mechanism that may help maintain 

behavioral performance in patients with longstanding 

lesions but is absent in patients with cerebellar degener-

ative disease. In contrast,  Tunc  et al.  (2019) investigated 

error processing in patients with different types of spi-

nocerebellar ataxia (SCA) and failed to �nd behavioral 

impairments beyond a slowing of response times. How-

ever, they did report a trend- level reduction of the ERN in 

patients compared with healthy controls, which con-

forms to previous �ndings ( Peterburs  et al.,  2015). The 

less pronounced neurophysiological differences and dis-

crepancy in behavioral results compared with the study 

by  Peterburs  et al.  (2015) may be attributed to sample 

differences (e.g., SCA subtypes with extra- cerebellar 

degeneration included in the study by Tunc et al., differ-

ences in extent and location of cerebellar degeneration). 

Cerebellar degeneration in Crus I, Crus II, and the deep 

cerebellar nuclei may cause stronger effects on error 

processing than the degeneration of other, more motor 

control related regions of the cerebellum, such as the 

anterior regions (see  King  et al.,  2019 for a detailed over-

view on different cognitive functions re�ected in different 

regions of the cerebellum).

While these patient studies provided strong evidence 

for a role of the cerebellum in error processing, testing 

patients is not the only option to probe such cerebellar 

involvement. An alternative approach that offers the pos-

sibility of direct manipulations of brain activity is to use 

non- invasive stimulation of the cerebellum. Transcranial 

magnetic stimulation (TMS) is a widely used non- invasive 

brain stimulation technique that can be applied to a vari-

ety of brain regions (for a review, see  Grimaldi  et al.,  2014) 

to establish causal links to behavior (see  Vaidya  et  al., 

 2019). Single- pulse TMS (spTMS) is assumed to be use-

ful for both facilitation ( Shirota  et al.,  2012) and disruption 

of neuronal processes ( Pascual- Leone,  1999) and can be 

used in fast- paced task designs ( Verleger  et al.,  2009). A 

number of studies have targeted the cerebellum with 

TMS, among other techniques, to investigate cerebellar- 

brain inhibition ( Ugawa  et al.,  1995; Fernandez et al., 2018). 

For instance,  Ugawa  et al.  (1995) demonstrated that the 

motor cortex could be in�uenced by stimulating the cer-

ebellum. The cerebellar cortex inhibits the deep cerebel-

lar nuclei, which are the only output source of cerebellar 

projections to higher cortical regions via the thalamus 

( Palesi  et al.,  2017). The TMS pulse triggers activity of the 

cerebellar cortex that suppresses motor cortical excit-

ability in M1 via increased inhibition of the cerebellar 

nuclei. Notably, effects of cerebellar TMS have also been 

reported in the non- motor domain. Stimulation of the 

right superior cerebellum led to increased response times 

in a verbal working memory task ( Desmond  et al.,  2005) 

and disrupted phonological prediction ( Sheu  et al.,  2019). 

We, thus, assume the in�uence of spTMS on the cerebel-

lum to be similarly disruptive for other cognitive domains 

like the processing of performance errors.
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 Mannarelli  et  al.  (2020) used cathodal transcranial 

direct current stimulation (tDCS) to the cerebellum before 

healthy participants performed a Go/Nogo task. In con-

trast to the facilitating effects of anodal tDCS, cathodal 

tDCS causes a hyperpolarization of neurons, making 

upcoming action potentials harder to trigger. After cere-

bellar tDCS compared with sham stimulation, the 

Nogo- N2, a negative ERP component peaking around 

250– 300 ms post stimulus onset ( Folstein  &  van  Petten, 

 2008), was reduced. The N2 has been linked to response 

inhibition and cognitive control, with decreased ampli-

tudes indicating improved performance monitoring in 

terms of cognitive �exibility ( Larson  &  Clayson,  2011). In 

addition, false alarm rates were increased. These results 

provide the �rst evidence that cerebellar neuromodula-

tion alters behavioral and ERP indices of performance 

monitoring and cognitive control. In particular, it has 

been suggested that the stimulus- locked N2 and the 

response- locked ERN may re�ect activity of the same 

underlying error monitoring system ( Ferdinand  et  al., 

 2008;  Folstein  &  van  Petten,  2008;  van  Veen  &  Carter, 

 2002). Hence, perturbing cerebellar function by non- 

invasive brain stimulation should also affect error pro-

cessing and the ERN, and this is what the present study 

aimed to demonstrate. However, it must be noted that 

�ndings on effects of cerebellar tDCS on cognition and 

motor behavior have been rather heterogeneous and 

inconsistent ( Jalali  et al.,  2017), and the exact mecha-

nisms on the cell or network level are still unclear ( van 

 Dun  et al.,  2017). TMS, on the other hand, allows for a 

more focal and controlled stimulation that can reach 

deeper regions in the brain by generating pulses in a 

time resolution of less than 1 ms ( Koponen  et al.,  2018). 

Therefore, the present study made use of cerebellar 

spTMS (and stimulation of vertex as a control site) in a 

Go/Nogo Flanker Task ( Voegler  et al.,  2018) to investi-

gate effects on error processing. Guided by the previous 

patient studies ( Peterburs  et al.,  2012,  2015), our main 

focus was on the response- locked ERP components 

ERN and Pe. The stimulus- locked ERP components 

Nogo- N2 and Nogo- P3 investigated in the previous 

tDCS study in healthy subjects ( Mannarelli  et al.,  2020) 

were not the focus of the present work, so data on and 

analyses of these components are only provided as 

Supplementary Material. For a more comprehensive 

neurophysiological account, we have also exploratively 

analyzed induced theta power in the time- frequency 

domain as an index of cognitive control (e.g.,  Cavanagh 

 &  Frank,  2014). Information on preprocessing, results, 

and discussion with respect to these dependent vari-

ables is provided in the Supplementary Material (see 

Figs. S11– S14).

We selected the left lateral cerebellum for stimulation 

with a double cone TMS coil because of several studies 

pointing towards the signi�cance of posterolateral cere-

bellar regions for executive functions, which also encom-

pass error processing ( King  et al.,  2019;  Sheu  et al.,  2019; 

 Stoodley  &  Schmahmann,  2009). The experiment was 

conducted on two different days resulting in a fully within- 

subject design (each participant underwent both cerebel-

lum and vertex stimulation). We followed the study design 

by  Verleger  et al.  (2009) in which an spTMS pulse was 

delivered in each trial of a Flanker Task. As outlined 

above, spTMS has a high temporal resolution, and it can 

thus help elucidate causal links between brain and 

behavior. Thus, spTMS can also help elucidate temporal 

aspects of cerebellar contributions to error processing. 

 Verleger  et  al.  (2009) temporally shifted the pulses 

depending on an individually estimated peak latency of 

the lateralized readiness potential, a potential re�ecting 

motor cortex activity leading up to voluntary movements, 

which was measured before the TMS blocks. In the pres-

ent study, pulses were delivered at four different time 

points relative to the individual error latency (IEL, i.e., 

individual ERN peak latency  +  median error response 

time) in Go trials, and at three different time points relative 

to stimulus onset in Nogo trials.

Similar to de�cits found in patients with cerebellar 

degeneration ( Peterburs  et  al.,  2015), we expected 

increased error rates in Go trials for cerebellar TMS 

compared to vertex TMS, but only when pulses were 

delivered before the responses, due to disturbance of 

the internal forward- model generated within the cere-

bellum (see  Ramnani,  2006). Concerning the ERN, 

patients with cerebellar damage showed reduced neg-

ativity in the error- correct difference signal in the typical 

ERN time window ( Peterburs  et al.,  2012,  2015). Con-

sequently, we expected a reduced ERN for cerebellar 

TMS compared to vertex for pulses that were applied 

100  ms and 50  ms before the IEL, since these time 

points should precede the onset of error processing. 

Since the Pe in patients with cerebellar lesions was 

interpreted to be the result of long- term compensatory 

processes of the brain ( Peterburs  et al.,  2012), we did 

not expect effects of cerebellar spTMS on the Pe. Fur-

ther, more exploratory hypotheses regarding response 

inhibition in Nogo trials as re�ected in Nogo- N2 and 

Nogo- P3 and an additional analysis on the induced 

theta power are provided and discussed in the Supple-

mentary Material.



4

A.M. Berlijn, D.M. Huvermann, S.J. Groiss et al. Imaging Neuroscience, Volume 2, 2024

2. METHODS

2.1. Sample

Twenty- �ve young and healthy participants were recruited 

through newspaper advertisements and postings at 

Heinrich- Heine- University Düsseldorf. Data from nine 

participants had to be excluded from the analyses: two 

participants attended only the �rst appointments neces-

sary for study completion, further two participants com-

plained of mild headaches during the task and dropped 

out, a miscalculated TMS onset value was used in another 

two participants, two participants made too few errors in 

the main task, and another misunderstood the task. Con-

cerning the pre- task, which was used to determine the 

individual error latency (IEL, see below), we aimed to 

repeat the Go/Nogo Flanker until participants who com-

mitted at least six errors in all conditions, because at 

least six error trials are needed to reliably measure the 

ERN (see  Olvet  &  Hajcak,  2009;  Pontifex  et al.,  2010). For 

one participant we only discovered post hoc, after trial 

inspection and removing double responses, that only �ve 

error trials in one condition remained (see Table S1 in the 

Supplementary Material). As the ERN was clearly visible 

after averaging the �ve error trials, we decided to include 

the participant in further data analysis. The �nal sample 

thus consisted of 16 participants. The required sample 

size was estimated based on studies which used cere-

bellar spTMS in a different task (n = 17,  Desmond  et al., 

 2005; n = 10,  Panouillères  et al.,  2012; n = 23,  Sheu  et al., 

 2019), or spTMS at another location in a Flanker task 

(n = 20,  Danielmeier  et al.,  2009; n = 21,  Klein  et al.,  2014; 

n = 8,  Soto  et al.,  2009; n = 12,  Verleger  et al.,  2009). Par-

ticipants were healthy adults (age range 19– 32  years, 

M = 24.00 years, SD = 3.70, n = 13 females, n = 12 right- 

handed and n  =  1 ambidextrous; for more details, see 

Table S1 in the Supplementary Material). As TMS uses 

electromagnetic pulses, exclusion criteria were metal 

parts within the body (e.g., implants, pacemakers, shards 

of metal, pumps for medication), spinal fractures, acute 

heart attacks, or pregnancy. Further exclusion criteria 

were current psychiatric disorders, neurological disor-

ders, alcohol or substance abuse, and intake of medica-

tion affecting the central nervous system. Participants 

were paid 40 Euros for participating in the two appoint-

ments. All participants gave written informed consent. 

The study was preregistered on the Open Science Frame-

work (OSF: https://osf . io / 6v9pa) and was approved by 

the Ethics Committee at the Faculty of Medicine of Hein-

rich Heine University Düsseldorf in accordance with the 

Declaration of Helsinki.

2.2. Questionnaires

Participants had to �ll in a demographic questionnaire as 

well as the “Mehrfachwahl- Wortschatz- Intelligenztest” 

(IQ: M = 98.75, SD = 10.88;  Lehrl  et al.,  1977), a multiple- 

choice vocabulary intelligence test.

2.3. Go/Nogo Flanker task

Participants completed a modi�ed Go/Nogo Flanker task 

coded in the software Presentation (version 20.0, Build 

02.20.17, Neurobehavioral Systems, Inc.). Figure 1 pro-

vides a schematic illustration of the time course and 

sequence of stimulus presentation in each trial. The main 

task consisted of 600 trials in four blocks. Go trials made 

up 80 % of all trials (480 trials), while Nogo trials made up 

20 % of all trials (120 trials). In 80 % of Go Trials (384 tri-

als), the �anker arrows aligned with the central target 

arrow (congruent trials), while in the other 20 % of Go tri-

als (96 trials), the �ankers pointed in the opposite direc-

tion (incongruent). Each trial started with the onset of 

arrow �ankers positioned above and below a �xation 

cross for 200 ms. During Go trials, the �xation cross was 

replaced by the central target arrow to which participants 

had to respond by pressing the corresponding (left or 

right) button on a response pad with the index or middle 

�nger of their right hand, respectively. Participants were 

instructed to respond as fast and as accurately as possi-

ble. If participants did not press one of the two buttons 

within the response time window of 350 ms (alternatively 

400 ms, when the miss rate was too high in the �anker 

pre- task), a reminder to respond faster was displayed. No 

feedback was provided concerning the correctness of the 

response. During Nogo trials, the �xation cross was 

replaced by a �lled circle, to which participants should 

suppress their response and not press a button. As in Go 

trials, the �ankers together with the circle were displayed 

in the response time window for 350/400 ms. Thereafter, 

a �xation cross without �ankers was displayed for 500 ms. 

During the subsequent inter- trial interval, the �xation 

cross was presented for a further 900– 1300 ms (jittered).

Since the aim of the present study was to disturb error 

processing on a trial- by- trial basis using TMS pulses 

applied to the cerebellum and to elucidate temporal 

aspects of cerebellar involvement in error processing, it 

was critical to determine the time point at which cerebel-

lar input was needed for error processing. More speci�-

cally, cerebellar input could be needed at the very onset 

of error processing or a bit later when error processing is 

already underway. To temporally approximate the onset 

of error processing individually for each participant, we 
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determined the IEL using a Flanker pre- task without 

pulses. This Flanker pre- task consisted of the same ratio 

of Go and Nogo Trials as the main task (120 trials in total, 

80 Go and 40 Nogo trials). The IEL was calculated by 

adding the median error response time to the latency of 

the ERN in the response- locked ERP. If a participant was 

unable to respond within the standard response time 

window of 350 ms in more than 25 % of trials in the pre- 

task, the task was repeated with an increased response 

time window of 400  ms. This was done to ensure that 

enough valid trials were recorded. In total, three partici-

pants required the longer response time window.

Throughout the Flanker main task, monophasic single 

TMS pulses were applied within each trial. The time 

points at which TMS was applied differed for Go and 

Nogo trials. In Go trials, TMS pulses were delivered at the 

IEL (0  ms) as well as 100  ms before (- 100  ms), 50  ms 

before (- 50 ms), and 50 ms after (+50 ms). In Nogo trials, 

TMS pulses were delivered at �xed time points, that is, at 

stimulus onset as well as 100 ms and 300 ms after stim-

ulus onset (+100 ms and +300 ms, respectively). Pulse 

timings relative to the IEL in Go and relative to stimulus 

onset in Nogo trials were randomized throughout the task 

but occurred an equal number of times per trial type and 

block.

2.4. Procedure

Upon arriving at the laboratory, the participants were 

seated in a brightly lit room in front of a laptop (DELL® 

Fig. 1. Schematic illustration of time course and sequence of stimulus presentation in a trial of the Go/Nogo Flanker 

Task. Go trials with congruent �ankers (A) and with incongruent �ankers (B) relative to the target arrow in the center. 

Only one single pulse was applied in each trial. TMS pulses were delivered for Go trials shortly before the IEL (- 100 ms, 

- 50 ms), at the IEL, or shortly after the IEL (+50 ms). (C) In Nogo Trials, the target stimulus indicating the need to inhibit the 

response was a circle. TMS pulses were delivered at stimulus onset or shortly after target onset (+100 ms or +300 ms).
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Precision M4800, 15.4 inch with a resolution of 1920 × 1080 

pixels and a refresh rate of 60 Hz) with a response box 

(Cedrus RB- 740, Science Plus Group, Groningen, NL) 

positioned before it. The distance between response box 

and laptop was kept constant. Only two keys were rele-

vant for the task and had to be pressed with the index (left 

key) and middle �nger (right key) of the right hand. A third 

key was used to navigate through pauses and instruction 

slides. After positioning the participants and putting ear-

plugs in their ears, the EEG cap was aligned on the head, 

and the scalp electrodes were prepared. The electrodes 

on the cap were further covered with a plastic wrap to 

avoid any direct contact between electrodes and the TMS 

coil which could cause artifacts ( Hernandez- Pavon  et al., 

 2023). EMG electrodes were attached to the left hand, and 

the TMS stimulators were started and triggered via the 

laptop so that pulses were sent for the determination of 

the individual motor threshold (IMT). After IMT determina-

tion, the coil was �rmly aligned and �xed with a custom 

mounting structure. Thereafter, the Flanker pre- task was 

started, in which no pulses occurred. Subsequently, 

another experimental task with spTMS was completed, 

which is not part of this manuscript. While participants 

were completing this task, we calculated the individual 

ERN peak latency and median response time for errors as 

described above. Subsequently, the IEL was calculated 

and used as an input value for the Flanker main task. After-

wards, the Flanker main task was performed. Participants 

underwent cerebellar and vertex stimulation in separate 

appointments. They were aware that both sessions 

included stimulation, but they were not explicitly informed 

about the speci�cs of the two stimulation sites. They were 

also naïve to the study’s intent. The two appointments 

took place with a temporal gap of at least 48  hours 

(M  =  82.13  days, SD  =  143.36  days, range from 2 to 

373 days). Due to a defect in the TMS stimulators, the sec-

ond measurement had to be postponed for a long time, 

resulting in time gaps of 362 to 373 days for 3 subjects. 

Correcting for the delay of these subjects, the time interval 

between the two appointments was on average only 

16.00 days (SD = 20.52 days, range from 2 to 74 days). 

The order of the stimulation sites was counterbalanced.

2.5. TMS- EEG- EMG interface

2.5.1. EEG system

A TMS compatible ampli�er (BrainAmp MR plus, Brain-

Products GmbH, Munich, Germany) was used with a cap 

containing 32 �at multitrodes. The �at electrodes mini-

mize the distance between the coil and the skull surface. 

The following electrode sites were used: Fp1, Fp2, Fz, F3, 

F4, F7, F8, FCz, FC1, FC2, FC5, FC6, Cz, C3, C4, CPz, 

CP1, CP2, CP5, CP6, T7, T8, Pz, P3, P4, P7, P8, Oz, O1, 

and O2. BrainVision Recorder software, version 1.21 

(BrainProducts, Munich, Germany) was used for record-

ing. Impedances were kept below 5 kΩ. Data were sam-

pled at 1000 Hz.

2.5.2. EMG system

Two surface EMG Ag/AgCl- electrodes (20  ×  15  mm, 

Ambu, Ballerup, Denmark) were placed on the left M. 

abductor pollicis brevis in resting condition to record the 

muscle activity in terms of motor evoked potentials 

(MEPs) that re�ect the corticospinal excitability through-

out the estimation period of the IMT. This also allowed us 

to check that no MEPs would be triggered by the TMS 

pulses during the tasks. The signal was ampli�ed with a 

Digitimer D360 (Digitimer Ltd, Hertfordshire, UK). The fre-

quency band of the �lter was 100– 5000 Hz and digitized 

at a sampling rate of 5 kHz (Signal version 6.02, Cam-

bridge Electronic Design Ltd., Cambridge, UK).

2.5.3. TMS system

We estimated the IMT with a custom script in Presenta-

tion that sent a code to a single TMS stimulator (Mags-

tim® 200²) every 10 seconds to elicit a pulse. The double 

cone coil was aligned so that we could stimulate the right 

motor cortex (region M1). After an MEP was detected in 

the EMG signal using the independent trigger mode in 

the software Signal, 5 consecutive trials (out of 10) were 

counted to determine whether the position also clearly 

stimulated the motor cortex. The output power of the 

device was then reduced until only 5 out of 10 trials elic-

ited an MEP. The estimated IMT with additional 20 % 

power (corresponding to 120 % motor threshold) was 

used as the output power for the TMS system for both 

appointments. Nevertheless, we measured the motor- 

threshold on both appointments to see if there was any 

variability. Checking the IMT revealed no signi�cant dif-

ference between the �rst (M = 38.20 %, SD = 7.84 %) and 

second appointment (M  =  37.68 %, SD  =  7.97 %), 

t(37)  =  0.20, p  =  .840, and no signi�cant difference 

between the cerebellar (M = 37.80 %, SD = 8.15 %) and 

vertex (M = 38.11 %, SD = 7.64 %) stimulation appoint-

ments t(37) =  - 0.12, p =  .905. The TMS coil was either 

placed at the level of the left lateral cerebellum (3 cm left 

and 1 cm inferior to the inion;  Hardwick  et al.,  2014) or at 
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the vertex position which corresponds to electrode posi-

tion Cz of the international 10– 20 system ( Pizem  et al., 

 2022, see Fig. 2 for an illustration, and Figs. S15 and S16 

for real photographs in the Supplementary Material) with 

the voltage �ow in the inferior direction. After the coil was 

correctly aligned, it was �xed with a custom stand so that 

the same position was maintained over the course of the 

session. In addition, we used a fabric elastic band to 

ensure that the coil- to- head distance was kept constant 

(forehead for the cerebellar TMS or chin for the vertex 

TMS). The distance of the coil to the head surface was 

observed during the task and adjusted during the pause 

between the individual, since even small changes lead to 

a decrease in the induced magnetic �eld strength 

( Hernandez- Pavon  et al.,  2023).

The BiStim TMS stimulators were manually charged 

before the �rst trial, and the independent trigger mode 

was selected in Signal for the subsequent tasks to trigger 

the stimulators. Then, the single- pulses were observed in 

the EMG- signal to ensure that no MEPs were evoked, 

particularly when stimulating the cerebellum. If MEPs had 

occurred, the session would have been interrupted, and 

the coil would be realigned, in order to avoid co- 

stimulating the brainstem. However, this did not occur 

during our study. Additionally, the coil position was con-

stantly monitored and readjusted between the blocks 

and tasks if substantial movement had occurred to 

ensure that the distance between coil and scalp was con-

sistent. Since the recharge period of a single Magstim® 

200² stimulator exceeded the duration of a single trial, we 

alternated activation of two BiStim stimulators. Unfortu-

nately, due to overheating of the stimulators, trials were 

lost in 3 participants towards the end of the task, for the 

TMS system no longer sent any pulses while the task and 

EEG measurements were still running. The time of termi-

nation was checked in the EEG signal, so that all trials 

without TMS pulses were excluded from analysis. The 

heat development in the stimulators was related to both 

Fig. 2. Illustration of the TMS- EEG Setup for cerebellar and vertex stimulation. Top left circle shows the placement of 

the electrodes for recording of the EMG signal. Below, the TMS pulse is shown in the EMG signal. Bottom left, continuous 

measures of the EEG signal. Top right, TMS generators are shown. Below, the TMS coil orientation for vertex stimulation 

is shown and, in the bottom, right, the coil alignment for the cerebellar stimulation is presented. The voltage �ow indicated 

by the arrows is aligned inferiorly. A double- cone coil was used for stimulation.
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the high number of single pulses and the output power 

which varied greatly among the participants (see Table S1 

in the Supplementary Material).

In case of a port con�ict due to close proximity of two 

marker codes sent by the presentation laptop to the EEG 

system (i.e., codes sent within 5 ms), which may be the 

case for the response codes and matching TMS pulse 

codes, the later code was delayed until the port con�ict 

no longer arose. The respective code timings were cor-

rected in the EEG marker �le using a custom script in 

MATLAB. Time points were not changed for the TMS 

pulse codes because the timing in the marker �le always 

�tted the timing of the real TMS pulse. Instead, trials with 

a TMS pulse differently timed than the planned onset due 

to marker code delay were excluded.

2.6. Individual error latency estimation based  

on the �anker pre- task

ERN latency was determined by peak detection per-

formed in BrainVision Analyzer software, version 2.1 

(BrainProducts, Munich, Germany). All trials containing 

two or more responses were removed beforehand. Pre-

processing for peak detection was performed as follows: 

First, data were re- referenced to the average signal of all 

electrodes, and the signal at FCz was re- established. 

Next, a DC detrend was performed, followed by low- pass 

�ltering with a cut- off of 30 Hz and a slope of 12 dB/oct, 

high- pass �ltering with a cut- off of 0.1 Hz and a slope of 

12 dB/oct, and a notch �lter set to 50 Hz. Subsequently, 

automatic ocular correction ICA was performed, and 

data were segmented into epochs of 600  ms, starting 

200  ms before and ending 400  ms after erroneous 

responses. The baseline- corrected data (with the 200 ms 

period preceding response onset as baseline) underwent 

artifact rejection (only 3 trials were rejected across all par-

ticipants and sessions) with the following settings: maxi-

mum difference of values over 100 µV or activity lower 

than 0.1 µV within an interval of 100 ms, voltage steps 

exceeding 50 µV/ms, or values above 100 µV or below 

- 100 µV. Segments were then averaged, and peak detec-

tion was performed on a time window of 100 ms after the 

response, searching for a negative peak at site FCz.

2.7. Dependent variables

Behavioral outcome variables were error rates and 

response times in Go trials. For the EEG data, we ana-

lyzed the ERN for Go Trials in the response- locked ERP. 

In an exploratory analysis, the Pe (Go trials) was also ana-

lyzed. The ERN was de�ned as the local maximal nega-

tive peak in the error- correct difference signal within a 

time window of 100 ms post- response at site FCz (see 

 Hajcak  &  Foti,  2008). The Pe was de�ned as the maxi-

mum positive peak in the difference signal within the time 

window between 200 and 400 ms post- response at Pz 

(see  Larson  et  al.,  2010). Follow- up analyses with the 

original waveforms were conducted to further elucidate if 

effects were speci�cally driven by altered ERP ampli-

tudes for errors or correct responses. In addition, analy-

ses of false alarm rates and Nogo- N2 and Nogo- P3 ERP 

components as well as analyses of induced theta power 

in the time- frequency domain are provided in the Supple-

mentary Material.

2.8. Preprocessing of the TMS- EEG data

Preprocessing of the spTMS- EEG co- registered EEG raw 

data was conducted using the EEGLAB Toolbox (version 

2021.1) in MATLAB (version R2021a) (MathWorks, Natick, 

Massachusetts, USA) and the Automated aRTIfact rejec-

tion for Single- pulse TMS- EEG Data (ARTIST) algorithm 

created by  Wu  et al.  (2018). This algorithm provides an 

ef�cient and objective approach to preprocess raw EEG 

data and has proven to be superior to manual artifact 

rejection by experts and other algorithms such as TESA 

( Rogasch  et  al.,  2017;  Wu  et  al.,  2018). Some of the 

default settings were adapted because the signal at elec-

trode FCz, which had been used as online reference 

during EEG recording, needed to be re- established. In 

addition, the high pass �lter of 1 Hz was kept, and the low 

pass �lter was changed from 100 Hz to 30 Hz. The notch 

�lter was changed from 60 Hz to 50 Hz. Electrode Iz was 

removed before applying the ARTIST algorithm because 

of low signal quality. The ARTIST algorithm creates seg-

ments around a given code which marks the onset of the 

TMS pulse. Here, segments were created with a length of 

2500 ms, spanning 1000 ms before and 1500 ms after 

TMS pulse onset. Next, response onsets were checked 

by a custom script using MATLAB to ensure that only 

valid trials were included into the analysis (see above, 

some responses and therefore the respective response 

codes had overlapped with other codes within trials and 

were therefore delayed). In addition, we manually rejected 

trials without a TMS pulse (due to overheating or close 

proximity of two TMS pulses, see above) before re- 

referencing and segmenting the data. Following this, the 

ARTIST algorithm preprocessed the data in three distinct 

stages. In the �rst stage, large- amplitude artifacts were 

removed by applying DC drift correction, the removal and 
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interpolation of the TMS pulse artifact (15 ms prior to the 

TMS marker code onset until 5 ms after), downsampling 

of the data, and the removal of the TMS decay artifacts in 

a �rst ICA run. In the second stage, the AC line noise was 

removed, and the band- pass �lter was applied. Then, the 

signal was segmented around the TMS pulse onset, and 

segments that exceeded the default thresholds were 

removed. The �nal step within the second stage was the 

removal and interpolation of poor channels. ARTIST 

interpolated on average 1.13 channels (SD  =  1.13) per 

participant and stimulation site. In addition, on average, 

44.13 trials (SD = 50.93) were rejected, including both tri-

als which were manually rejected due to overheating 

(M = 29.25, SD = 39.67, range = 5– 169) and trials which 

ARTIST rejected (M = 14.88, SD = 14.72, range = 1– 63), 

with slightly more excluded trials in total for cerebellar 

(M = 47.56, SD = 54.69) compared to vertex (M = 40.69, 

SD = 48.41) stimulation (N = 16). In the third stage, poor 

independent components were removed in a second ICA 

run. The data average was referenced, and the baseline 

was corrected. The output data were imported into Bra-

inVision Analyzer 2.1, and further segmentation was per-

formed according to trial type (Go/Nogo). For Go trials, 

segmentation was done for response and stimulus onset 

separately for error and correct trials. The adapted scripts 

and raw data can be found in the following OSF folder: 

https://osf . io / jwfn9/

2.9. Statistical models

We deviated from our preregistration and ran mixed linear 

model (MLMs) analyses in R (R Core Team, version 4.0.3) 

using RStudio Team (2020: version 1.3.959) and the lme4 

package (version: 1.1.25,  Bates  et al.,  2014) in place of 

traditional repeated- measures ANOVA. This enabled us 

to analyze factors with missing values and use the partic-

ipant as a random factor to further explain variance in the 

data.  Meteyard  and  Davies  (2020) proposed in their best 

practice guidelines for MLMs that the maximum model 

should be chosen, including all within- subject main and 

interaction effects as random effects. The maximum 

model should be only chosen if no errors in the model �t, 

in terms of converging errors or singular �ts, appear, 

which would cause an over�tting of the model. To avoid 

this, the models were checked using an iterative process 

in which the within- subject highest order interaction was 

�rst included as random factor and the random slopes 

rejected subsequently in case of model �t errors. All our 

models included stimulation site and stimulation timing 

as �xed effects, but for some models, these factors were 

additionally included as random slopes depending on the 

model �t. In addition, Cooks distance ( Cook,  1977) was 

calculated to identify potential outlier subjects before 

running the MLM analysis using the in�uence.ME pack-

age (version 0.9– 9;   Nieuwenhuis  et al.,  2012).

Before setting up our models for ERP analysis in Go 

trials, we grouped the four stimulation timings into a two- 

level factor, resulting in “early” and “late” stimulation. For 

this purpose, the - 100 ms and - 50 ms trials were combined 

into “early” and the 0 ms (at IEL) and +50 ms trials into 

“late.” This allowed us to pool more error trials together, to 

better take into account the variability of the IEL within and 

across participants, and to compare the effect of stimula-

tion timing on error processing over a broader time period.

To check for baseline performance differences 

between the two sessions in the Flanker pre- task, we cal-

culated Linear models (LMs) comparing error rates (Go 

trials) and ERN amplitude between the cerebellar stimu-

lation and vertex stimulation session (see Fig.  S1 and 

Table S3 in the Supplementary Material).

To analyze behavioral performance in the Flanker main 

task for Go trials, we set up an MLMs for error rates includ-

ing stimulation site (cerebellum, vertex), stimulation timing 

(early, late), and the interaction between these factors as 

�xed effects and added stimulation site and the interaction 

with stimulation site and stimulation timing as random 

slopes and participant as random effect in the model.

 

Error rate ~ site * timing +

  1 + site + site : timing | participant  

For response times, we included all responses to see 

whether there was a difference in response times between 

correct and error trials. In the �nal model, we included 

trial type (correct trials, error trials) as �xed effect and as 

random slope into the model equation.

 

R e s p o n s e  ti m e  ~  s i te  *  ti m i n g  *  tri a l  ty p e  +

  1  +  s i te  *  tri a l  ty p e  |  p a rti c i p a n t  

In a third MLM, we analyzed error responses by their 

timing relative to TMS onset to identify a possible in�u-

ence of the pulse itself on the error rates independent of 

the trial type. Here, the model was speci�ed using the 

error rates as the dependent variable, stimulation site 

(cerebellum, vertex) and TMS timing (response preTMS, 

response postTMS) as �xed effects and random slopes:

 

E rr o r ra te  ~  s i te  *  T M S ti m i n g  +  

1  +  s i te  +  s i te  : T M S  ti m i n g  |  p a rti c i p a n t  
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For ERP analyses for Go trials, we analyzed the ERN 

and Pe peak amplitudes obtained from the difference 

wave as the dependent variables.

 

E R N _ d i ff a m p  ~  s i te  *  ti m i n g  +

  1  +  s i te  +  ti m i n g  |  p a rti c i p a n t  

 P e _ d i ff a m p  ~  s i te  *  ti m i n g  +   1  +  s i te  |  p a rti c i p a n t

In addition, we analyzed the original waveforms, enter-

ing the amplitudes at the time points corresponding to 

the ERN latency in the difference signal. We added �xed 

effects of stimulation site (cerebellum, vertex) and timing 

(early, late) and trial type (correct trials, error trials) for the 

analysis as well as the interaction between the �xed 

effects as well as the three factors as random slopes and 

participant as a random effect. In addition, the optimizer 

was changed from the default to Nelder- mead to cope 

with an occurring convergence error as suggested by the 

best practice guideline by  Meteyard  and  Davies  (2020).

The �nal, maximum model speci�cation was as fol-

lows:

 

E R N  a m p  ~  s i te  *  ti m i n g  *  tri a l  ty p e  +

  1  +  s i te  +  ti m i n g  +  tri a l  ty p e  +  s i te  : ti m i n g  |  p a rti c i p a n t

We simple- coded the categorical predictors stimula-

tion site (0.5 = cerebellum, −0.5 = vertex), stimulation tim-

ing (0.5 = early, −0.5 = late), and trial type (0.5 = correct, 

−0.5 = error). Also, TMS- timing (response pre- TMS = 0.5, 

response post- TMS  =  −0.5) was simple- coded for the 

additional analysis of the error rate. We used the lmerTest 

package (version: 3.1.3,  Kuznetsova  et  al.,  2017) in R 

using Satterthwaite’s method to estimate the degrees of 

freedom and to generate p- values for MLMs. We consid-

ered p- values below .05 as statistically signi�cant. Statis-

tical models for the analyses of false alarms, Nogo- N2, 

and Nogo- P3 are provided in the Supplementary Material.

3. RESULTS

3.1. Error rates

MLM analysis revealed no signi�cant effects of stimula-

tion site or timing on error rates (all p ≥ .384, n = 15, see 

Fig. 3A). However, exploring the in�uence of TMS timing 

relative to response execution (i.e., whether a pulse had 

occurred prior to a response on a given trial or after the 

response) revealed a highly signi�cant main effect of TMS 

timing (β = 5.02, t(15.00) = 13.30, p < .001, see Fig. 3B). 

Error rates were higher in trials in which pulses had 

occurred after the response (i.e., response pre- TMS: 

M = 13.69 %, SD = 4.47 %) compared to trials in which 

pulses had occurred prior to the response (i.e., response 

post- TMS: M  =  8.66 %, SD  =  4.59 %), irrespective of 

stimulation site. The main effect of stimulation site was 

only marginally signi�cant (β  =  −1.11, t(15.00)  =  −2.03, 

p =  .061). The interaction between stimulation site and 

TMS timing relative to response was not signi�cant 

(β = −0.79, t(15.00) = −0.80, p = .437 N = 16, see Fig. 3B).

3.2. Response times

For response times, there was a signi�cant main effect of 

trial type (β  =  25.66, t(14)  =  10.05, p  <  .001). Overall, 

responses were faster in error trials (M  =  239.40  ms, 

SD = 19.53 ms) compared to correct trials (M = 265.07 ms, 

SD = 18.41 ms). The main effects of site and stimulation 

timing as well as the interaction between these factors 

were not signi�cant (all p- values  ≥  .119, n  =  15, see 

Fig. 3C).

3.3. EEG results

3.3.1. ERN based on the difference wave (ERN- diff)

Figure 4A provides response- locked grand- average ERP 

difference waves (error minus correct) at electrode FCz 

according to stimulation site (cerebellum, vertex) and 

stimulation timing (early, late), along with scalp topogra-

phies for the time points of maximum negativity in the 

ERN time window. Figure  4B displays corresponding 

response- locked grand- average ERPs for errors and cor-

rect responses.

There was a signi�cant main effect of stimulation site 

(β = 0.93, t(13.00) = 2.82, p = .015). The ERN was less 

negative for cerebellar (M = −5.56 µV, SD = 2.81 µV) com-

pared to vertex stimulation (M = −6.49 µV, SD = 2.98 µV). 

The main effect of timing was non- signi�cant (β = −0.02, 

t(13.00) = −0.05, p = .962). The interaction of stimulation 

site and timing was signi�cant (β = −1.36, t(12.99) = −2.52, 

p = .026). Simple slope analyses of the stimulation site for 

early and late stimulation timing yielded a signi�cant 

slope (see Fig. S4 in the Supplementary Material) for late 

stimulation (β = 1.61, t = 3.78, p < .001). For early stimu-

lation, the slope was non- signi�cant (β = 0.25, t = 0.59, 

p = .563). The interaction between site and timing seemed 

to be driven by the late stimulation: for cerebellar TMS, 

the negativity was reduced for late (M  =  −5.21  µV, 

SD = 2.72 µV) compared to early stimulation (M = −5.90 µV, 
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SD = 2.97 µV), and in contrast, vertex stimulation led to 

increased negativity for late (M = −6.82 µV, SD = 2.85 µV) 

compared to early stimulation (M = −6.16 µV, SD = 3.17 µV; 

see Fig. 5A for the boxplots of the ERN amplitudes as 

well as Fig. S4 for the interaction plot in the Supplemen-

tary Material).

3.3.2. ERN in the original waveforms

To elucidate whether the decreased negativity in the dif-

ference waves for cerebellar compared to vertex stimula-

tion was speci�cally driven by altered neural responses 

to errors or correct responses, the original waveforms 

were analyzed (see Fig. 6). We found a signi�cant main 

effect of trial type (β = 6.01, t(12.99) = 8.18, p > .001), with 

increased negativity for errors (M = −5.46 µV, SD = 3.98 µV) 

compared to correct responses (M = 0.55 µV, SD = 3.30 

µV). All other main effects were non- signi�cant (all p ≥ 

.079). The interaction between trial type, and site was 

signi�cant (β = −0.93, t(38.99) = −2.95, p =  .005). Cru-

cially, the three- way interaction between site, timing, and 

trial type was also signi�cant (β = 1.36, t(38.99) = 2.16, 

p = .037). To resolve this interaction, we performed sim-

ple slope analysis. Results showed only a marginal signif-

icant slope for error trials on the stimulation sites and 

during late stimulation (β = 0.98, t = 2.06, p = .052). The 

slope was positive, indicating that the ERN was more 

negative in vertex (M = −5.78 µV, SD = 4.23 µV) compared 

to cerebellar stimulation (M = −5.13 µV, SD = 3.76 µV).

All other simple slopes for trial type, stimulation site, 

and stimulation timing were not signi�cant (all p ≥ .200).

3.3.3. Pe- diff

Analysis of the Pe in the difference waves did not yield 

any signi�cant effects (all p ≥  .198; see Fig. 5B for the 

boxplots of the Pe amplitudes).

4. DISCUSSION

This study investigated the role of the cerebellum in error 

processing using spTMS to stimulate the cerebellum 

while co- registering EEG. With the help of a Flanker pre- 

task, we estimated individual ERN peak latencies and 

Fig. 3. (A) Mean error rates in Go trials according to stimulation site and stimulation timing. The analysis did not yield 

any signi�cant effects of stimulation site or stimulation timing on error rates. (B) Mean error rates in Go trials according to 

stimulation site and pulse timing relative to response onset (i.e., whether a pulse had occurred prior to a response on a 

given trial or after the response). Asterisks indicate the signi�cant main effect of pulse timing relative to response onset: 

error rates were higher in trials in which pulses had occurred after the response compared to trials in which pulses had 

occurred prior to response. (C) Mean response times in Go trials according to stimulation site and stimulation timing. 

Asterisks indicate the signi�cant main effect of trial type: response times were shorter for errors compared to correct 

responses. The dots were jittered horizontally, the central line re�ects the median and the whisker the �rst and third 

quartiles (the 25th and 75th percentiles) in all plots.
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Fig. 4. (A) Response- locked grand- average ERP difference wave (error minus correct) at electrode FCz according to 

stimulation site (cerebellum, vertex) and stimulation timing (early, late), along with scalp topographies for the time points of 

maximum negativity in the ERN time window. (B) Response- locked grand- average ERPs for errors and correct responses 

at electrode FCz according to stimulation site (cerebellum, vertex) and stimulation timing (early, late) and trial type (correct, 

error). Smoothing around the lines in panel (A) and (B) indicate the standard error. The shaded area indicates time window 

for ERN quanti�cation (0– 100 ms post- response).



13

A.M. Berlijn, D.M. Huvermann, S.J. Groiss et al. Imaging Neuroscience, Volume 2, 2024

median error response times to calculate the Individual 

Error Latency (IEL) as an approximation of the onset of 

error processing for each study participant. TMS pulses 

were then applied at different time points around the IEL 

in each trial of the subsequent Flanker main task. We 

expected to observe differences in error rates as well as 

in response- locked ERP components (speci�cally ERN, 

Pe) for cerebellar compared to vertex stimulation.

In line with our predictions, analysis of the ERP differ-

ence waves revealed that the ERN was reduced for cere-

bellar compared to vertex stimulation. This difference 

was also modulated by the timing of stimulation, with 

blunting particularly present for late compared to early 

stimulation. Analysis of the original ERP waveforms to 

determine whether the reduced negativity in the differ-

ence signal was particularly driven by altered neural 

responses to either errors or correct responses revealed 

that this effect was not speci�c to either response type.

Importantly, ERN magnitude in the Flanker pre- task was 

comparable between the day of cerebellar (M = −6.37 µV, 

SD  =  2.09 μV) and vertex stimulation (M  =  −5.97  µV, 

SD = 2.18 µV, see Table S3 in the Supplementary Material). 

While we cannot exclude that active vertex stimulation 

Fig. 5. (A) ERN peak amplitudes in the difference wave (error –  correct) at electrode FCz as a function of stimulation site 

(cerebellum/vertex) and stimulation timing (early/late). Asterisks indicate the signi�cant interaction effect between site and 

stimulation timing with the highly signi�cant slope for late stimulation timing only. (B) Pe peak amplitudes in the difference 

wave (error –  correct) at electrode Pz as a function of stimulation site (cerebellum/vertex) and stimulation timing (early/late). 

The dots were jittered horizontally. The central line re�ects the median and the whisker the �rst and third quartiles (the 25th 

and 75th percentiles).

Fig. 6. ERN peak amplitudes as derived from the 

original waveforms at electrode FCz as a function of trial 

type (correct, error), stimulation site (cerebellum, vertex), 

and timing (early, late). Asterisks indicate signi�cant 

main effects of trial type in both, cerebellar and vertex 

stimulation. All dots were jittered horizontally. The central 

line re�ects the median and the whisker the �rst and third 

quartiles (the 25th and 75th percentiles).
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slightly increased the ERN (M = −6.49 µV, SD = 2.98 µV), 

ERN magnitude was substantially reduced for cerebellar 

stimulation (M = −5.56 µV, SD = 2.81 µV). Thus, the reduc-

tion of the ERN magnitude appeared to be driven mostly by 

spTMS applied to the cerebellum and not the vertex region, 

although vertex contributions cannot be fully excluded.

In general, the observed effect of stimulation site may 

indicate that monophasic single- pulse TMS disrupted 

inhibitory functions of the cerebellar cortex towards the 

deep cerebellar nuclei. This may have caused disinhibi-

tion, thereby facilitating information exchange with higher 

cortical structures through the cerebello- thalamo- cortical 

loop ( Palesi  et al.,  2017). Here, the anterior cingulate cor-

tex (ACC,  Rubia  et al.,  2007), which is highly involved in 

the generation of the ERN ( Dehaene  et al.,  1994;  Holroyd 

 &  Coles,  2002), may be of particular interest. According 

to the reinforcement learning theory ( Holroyd  &  Coles, 

 2002), the ERN is generated when a reduction of dopami-

nergic input from the VTA, possibly re�ecting prediction 

errors, disinhibits deep cingulate cortical neurons. Recent 

�ndings show that the cerebellum may contribute to the 

generation of prediction errors. For instance, electro-

physiological �ndings in mammals show that different 

cerebellar cell populations are sensitive to reward predic-

tions and prediction violations ( Hef�ey  et al.,  2018;  Hull, 

 2020), and by the presence of direct cerebellar projec-

tions to the VTA that can modulate dopamine release in 

the striatum ( Yoshida  et al.,  2022). Regarding the present 

results, with facilitated cerebello- cerebral information 

exchange, less phasic dopaminergic input towards the 

ACC may have reduced the cognitive demand for error 

processing ( Holroyd  &  Coles,  2002).

In the con�ict- monitoring theory ( Botvinick  et  al., 

 2001,  2004), the ACC is seen as a monitoring system 

detecting con�icts (such as between opposing response 

options) and signaling the need for cognitive control. 

Here, facilitated cerebello- cerebral information exchange 

may have promoted con�ict detection, leading to a 

reduced need for cognitive control that could be re�ected 

in a reduced ERN. Adjustments in cognitive control 

related to con�ict adaptation have previously been asso-

ciated with increased functional interaction between pre-

frontal regions, superior temporal regions, and the 

anterior cerebellum ( Egner  &  Hirsch,  2005). In addition, 

right cerebellar activation along with frontal and parietal 

activations were observed in the presence of persistent 

con�ict leading to the interpretation that the cerebellum 

is involved in visuospatial attention processes during 

con�ict to maintain high activation ( Casey  et al.,  2000). 

However, somewhat contrary to both interpretations, 

error rates in the present study were not affected by cer-

ebellar spTMS, and it could be argued that reduced cog-

nitive demand or facilitated con�ict detection should 

have led to increased accuracy/decreased error rates.

By taking advantage of the temporal resolution of 

spTMS, the present study addressed the question when 

cerebellar input is used during error processing. Our 

results show that late TMS pulses, that is, pulses that 

were applied to the cerebellum at IEL onset or shortly 

after, were more effective in that they were associated 

with a decrease in ERN magnitude in the error- correct 

difference signal. Early pulses, that is, pulses applied 

within 100 ms prior to IEL onset, left the ERN unaffected. 

A possible explanation for this pattern could be that the 

cerebellum receives information about the action through 

sensory input pathways and compares the actual infor-

mation with the predicted outcome as stated in the for-

ward model ( Sokolov  et  al.,  2017). Along these lines, 

cerebellar input for error processing is needed as this 

process is already underway. The peak of the ERN might 

correspond with the reconciliation of the predicted and 

actual action representation, that is., the use of the cere-

bellar input. Cerebellar spTMS may facilitate continuous 

information exchange with frontal regions by disinhibiting 

the cerebellar output signal. Thus, ERN generation would 

depend on this interplay of multiple regions, extending 

the existing framework ( Falkenstein  et al.,  1991;  Gehring 

 et al.,  1993) towards involvement of the cerebellum.

Analysis of the Pe in the difference signal did not reveal 

any signi�cant effects of stimulation site or timing, which 

is in line with our hypothesis (see Fig.  S5 of the grand 

averages in the Supplementary Material). The Pe likely 

re�ects the conscious detection of an error ( Endrass  et al., 

 2007;  Orr  &  Carrasco,  2011), and it is conceivable that 

error awareness might have been low due to the lack of 

feedback information in our rapid Go/Nogo Flanker task. 

Unfortunately, we did not implement any assessment of 

error awareness in the present study, so this notion 

remains speculative. Regardless of this, Pe alterations in 

the context of cerebellar damage were found in one previ-

ous study ( Peterburs  et al.,  2012) in which patients with 

chronic cerebellar lesions were investigated. Here, an 

increase in Pe amplitudes— in concert with decreased 

ERN and preserved performance accuracy— was inter-

preted to re�ect a compensatory mechanism. Importantly, 

spTMS to the cerebellum elicits a temporary effect while a 

stroke is associated with permanent tissue damage. 

Therefore, we can only roughly compare spTMS- induced 

“virtual lesions” of the  cerebellum with degenerative or 

focal cerebellar diseases ( Çan et al., 2018).
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Analysis of the behavioral data showed no signi�cant 

effects of site or timing. The lack of a site effect was 

unexpected, given that we had hypothesized an increase 

in error rates for cerebellar stimulation based on results 

observed in patients with cerebellar degeneration in an 

antisaccade task ( Peterburs  et  al.,  2015). However, 

another previous study also failed to �nd altered error 

rates in patients with cerebellar degeneration using a 

more comparable �anker task ( Tunc  et  al.,  2019). The 

present �ndings also resemble to some extent results 

obtained in patients with basal ganglia lesions, in whom 

the ERN was reduced in the absence of behavioral de�-

cits in a �anker task (Ullsperger & von Cramon, 2006). In 

general, altered neural responses despite preserved 

behavior therefore are not particularly unusual. Interest-

ingly, such a pattern of results has also been reported for 

feedback- based learning ( Rustemeier  et al.,  2016) and in 

the acquisition phase of learning stimulus related contin-

gencies in cerebellar lesion patients ( Thoma  et al.,  2008), 

However, impaired learning performance in these patients 

was present when the task required reversal of learned 

stimulus- response- outcome contingencies ( Thoma  et al., 

 2008). Based on these observations, it could be specu-

lated that the simple Flanker task used in the present 

study may not have been sensitive enough to detect 

more subtle performance differences as a function of 

stimulation site. It is conceivable that impaired cerebellar 

function may speci�cally affect behavioral �exibility, as 

suggested by �ndings of impaired feedback- based learn-

ing in cerebellar lesion patients only when the task 

involved reversal learning ( Thoma  et  al.,  2008). Behav-

ioral �exibility is not tested in the Flanker task. Future 

studies could therefore investigate feedback- based 

learning and/or reversal learning in the context of cere-

bellar TMS.

When analyzing error rates according to TMS timing 

relative to response execution, we observed increased 

error rates in trials in which pulses had occurred after the 

response compared to trials in which pulses had occurred 

prior to response, irrespective of stimulation site. Thus, 

this effect is not informative about cerebellar contribu-

tions to error processing. Given that there were no base-

line differences in error rates (based on �anker pre- task 

runs, see Fig. S1), this effect cannot be attributed to dif-

ferences in baseline performance. It could, however, be 

speculated that the pulses themselves (regardless of 

where they were delivered) may have elicited a small star-

tle response that could have slowed down subsequent 

responses. Along these lines, decreased error rates for 

trials in which pulses had occurred prior to the response 

could re�ect a speed- accuracy trade- off, if increased 

accuracy after pre- response pulses coincided with 

increased response times. Unfortunately, response times 

could not be meaningfully analyzed according to TMS 

timing relative to response onset because stimulation 

timing was determined based on the IEL.

4.1. Limitations

This complex and technically advanced procedure led to 

some unique challenges and limitations that are relevant 

when interpreting the present results.

To begin, stimulation location was based on anatomi-

cal landmarks and not neuro- navigated. Moreover, the 

pulses were generated using two Magstim 200² in the 

Bistim con�guration to overcome the challenge of the 

recharge period of the individual stimulators that is deter-

mined by the used output power, which varied greatly 

across the participants (see Table S1 in the Supplemen-

tary Material). Nevertheless, individual trials still had to be 

removed before analysis because no pulse had occurred. 

This was mostly due to the development of heat in the 

coil which caused the system to shut down so that the 

task was still running, and EEG was still recorded but no 

pulses were delivered. Here, the number of trials and 

breaks between the blocks need to be considered when 

planning a similarly fast- paced task in which monophasic 

single pulses are delivered across several hundreds of 

trials. Monophasic pulses are more likely to cause over-

heating due to the higher electrical charge compared to 

biphasic pulses (see  Klomjai  et al.,  2015). Here, an exter-

nal cooling system could help reduce heating issues.

Furthermore, the stimulation sites were the cerebel-

lum and the vertex region, but we cannot exclude the 

possibility that stimulation also affected other brain 

regions. The direction of the magnetic �eld lines of the 

double cone coil are well- established to target deeper 

brain layers ( Çan et al., 2018), but at the expense of a 

less focal stimulation in comparison to a �gure- of- eight 

coil. Therefore, it may have caused stimulation of other, 

adjacent regions. This has been shown to be especially 

critical for vertex stimulation, which caused decreases in 

the BOLD signal in the default- mode network (see  Jung 

 et al.,  2016). Regardless, we expected vertex stimulation 

to be a better control condition than sham because of a 

more comparable experience for participants regarding 

vibrations, coil click sounds, magnetic �eld build 

( Duecker  &  Sack,  2015), and discomfort. Some of the 

participants told us that they experienced the stimulation 

as uncomfortable, and that focusing on the task was 
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dif�cult because of the frequency of the pulses. Two 

 participants dropped out in the cerebellar stimulation 

condition after the �rst block because they found the 

stimulation very unpleasant. The short trial period and 

jitter as well as the total number of trials might have con-

tributed to this. Nevertheless, no systematic differences 

in ratings of these side effects were present between the 

two sessions, demonstrating that TMS pulses were per-

ceived as similar for the stimulation sites (see Table S2 in 

the Supplementary Material).

In addition, Nogo trials and the analysis of response 

inhibition related ERP components were not the main 

focus of this work. This was partially due to the unexpect-

edly strong impact of TMS- induced EEG artifacts that 

hampered data analysis and result interpretation. In the 

grand- average ERPs for Nogo trials, the TMS induced 

artifacts did not completely disappear after preprocess-

ing (see Fig. S7 in the Supplementary Material), and ERP 

components of interest, especially the Nogo- N2, occurred 

in close temporal proximity to pulses. We were able to 

identify the Nogo- N2 and Nogo- P3 to a certain degree, 

with grand- average patterns resembling those described 

in the literature (e.g.,  Rietdijk  et al.,  2014). The pulse arti-

fact itself was cut out of the segment by the ARTIST algo-

rithm, but there was still noise present that was likely 

caused by aftereffects (e.g., decay artifact) superimposed 

on the signal. Visual inspection of the grand- averages 

showed that the artifact was temporally shifted depend-

ing on pulse timing and more visible for vertex compared 

to cerebellar TMS, likely due to spatial proximity to ana-

lyzed electrode sites. Nevertheless, the grand- averages 

were also very similar to those obtained in the Go/Nogo 

pre- task without TMS pulses (see Fig.  S2 for Go and 

Fig. S3 for Nogo ERPs in the Supplementary Material).

5. CONCLUSION

The present study investigated the role of the cerebellum 

for error processing using spTMS to stimulate the cere-

bellum while co- registering EEG. Applying cerebellar 

TMS caused a blunting of the ERN, directly supporting 

cerebellar involvement in performance monitoring. Of 

note, this effect was not speci�c to erroneous responses 

but generalized also to correct responses. Most impor-

tantly, our study also provides a �rst glimpse into tempo-

ral aspects of cerebellar contributions to error processing. 

The effect of cerebellar TMS on the ERN depended on 

pulse timing and was evident only when stimulation 

occurred around the onset of the IEL or shortly after. 

Finally, Pe as an index of late, more cognitive, awareness- 

related aspects of error processing, was not affected by 

cerebellar TMS.

In general, the present study adds to a growing body 

of research supporting cerebellar involvement in error 

processing and performance monitoring. More studies 

applying brain stimulation techniques are needed to fur-

ther develop this line of research and investigate other 

aspects of performance monitoring such as feedback 

processing and feedback- based learning to better under-

stand the role of the cerebellum for adaptive control of 

(non- motor) behavior.
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