From the Institute of Systems Neuroscience

at Heinrich Heine University Diisseldorf

Effective connectivity of task-evoked and resting-
state brain networks: Relationships to aging and

behavior

Dissertation

to obtain the academic title of Doctor of Philosophy (Ph.D.) in Medical Sciences from
the Faculty of Medicine at Heinrich Heine University Diisseldorf
submitted by

Shufei Zhang

(2025)



As an inaugural dissertation printed by permission of the Faculty of Medicine at

Heinrich Heine University Diisseldorf

signed:
Dean: Prof. Dr. Nikolaj Klocker
Examiner/s: PD Dr. Oleksandr Popovych, Prof. Dr. Esther Florin



To my parents and sister:
Your steadfast support has been my foundation.

1 will always be grateful.



Parts of this work have been published:

Zhang, S., Jung, K., Langner, R., Florin, E., Eickhoff, S. B., & Popovych, O. V. (2024).
Impact of data processing varieties on DCM estimates of effective connectivity from

task-ftMRI. Human Brain Mapping, 45(8), €26751. https://doi.org/10.1002/hbm.26751

Zhang, S., Jung, K., Langner, R., Florin, E., Eickhoff, S. B., & Popovych, O. V. (2025).
Predicting response speed and age from task-evoked effective connectivity. Network

Neuroscience, 9(2), 591-614. https://doi.org/10.1162/netn_a_00447

Zhang, S., Zheng, W., Li, Z., & Wu, H. (2025). Network Specificity in Predicting
Childhood Trauma Characteristics Using Effective Connectivity. Alpha Psychiatry,
26(3), 43988. https://doi.org/10.31083/AP43988



Zusammenfassung

Die Erforschung neuronaler Grundlagen menschlichen Verhaltens ist ein Kernziel der
Neurobildgebung. Traditionelle Methoden wie funktionelle Konnektivitét (FC)
basierend auf Pearson-Korrelationen in fMRT-Daten werden haufig zur Vorhersage
individueller Verhaltensunterschiede genutzt, erfassen jedoch keine dynamischen
kausalen Interaktionen. Effektive Konnektivitit (EC) quantifiziert dagegen gerichtete,
biologisch plausible Wechselwirkungen und ermdglicht tiefere Einblicke in Gehirn-
Verhaltens-Beziehungen. EC-Studien stehen jedoch vor Herausforderungen wie
methodischer Variabilitét, unerforschtem pradiktiven Nutzen zustandsspezifischer

Konnektivitiat und klinischer Anwendbarkeit.

Diese Arbeit adressiert diese Herausforderungen. Zunéchst untersucht sie, wie
Datenverarbeitungsmethoden (GLM in blockbasiertem vs. ereignisbezogenem Design)
und Aktivierungskontraste die EC-Schitzung wihrend einer Reiz-Reaktions-
Kompatibilititsaufgabe (SRC) beeinflussen. Ergebnisse zeigen deutliche Variationen in
EC-Stirke und -Zuverldssigkeit liber Parameterkonstellationen hinweg, mit einem
Kompromiss zwischen Sensitivitdt und Stabilitit. Die Parameterwahl muss an
Forschungsziele gekniipft werden. Basierend darauf vergleicht diese Arbeit den Nutzen
intrinsischer und aufgabenmodulierter Komponenten aufgabeninduzierter EC zur
Vorhersage von Alter und Reaktionszeit (RT) in der SRC-Aufgabe. Beide EC-
Modalitédten zeigen spezifische verhaltensbezogene Merkmale: Aufgabenmodulierte EC
korreliert starker mit RT, intrinsische EC sagt Alter besser vorher. Entscheidend ist die
GLM-Wahl: Nur ereignisbezogene Designs liefern statistisch signifikante Vorhersagen
fiir beide EC-Modalitdten. AbschlieBend wird Ruhezustands-EC hinzugezogen, um
deren Vorhersagekraft fiir den Schweregrad von Kindheitstraumata iiber groB3flachige
Netzwerke zu untersuchen. Das Default-Mode-Netzwerk erwies sich als robustester
Pridiktor, was dessen klinische Relevanz als moglicher Indikator fiir traumabedingte

Krankheitszustinde unterstreicht.

Zusammenfassend stellt diese Arbeit EC als vielversprechendes Mal} zur Modellierung
von Gehirn-Verhaltens-Beziehungen dar. Durch Evaluierung methodischer Variabilitét
und netzwerkiibergreifender Pradiktionsanalysen verbindet sie grundlagenorientierte

Neurobildgebung mit verhaltensbezogenen Anwendungen.



Summary

Understanding the neural basis of human behavior is a central goal of neuroimaging.
Traditional neuroimaging measures such as functional connectivity (FC), derived from
Pearson correlations in functional magnetic resonance imaging (fMRI) data, have been
widely utilized to predict individual variability in behaviors. However, FC fails to capture
the dynamic causal interactions between regions. In contrast, effective connectivity (EC)
quantifies directed and biologically plausible interactions between brain regions, offering
deeper mechanistic insights into the brain-behavior relationship. Despite its promise, EC
research has faced challenges involving methodological variability, underexplored

predictive utilities of brain state-specific connectivity, and clinical translation.

This thesis addresses these challenges by first evaluating how data processing choices,
such as general linear model (GLM) designs (block-based vs. event-related) and
activation contrasts, impact task-evoked EC estimates during a stimulus-response
compatibility (SRC) task. The results revealed evident variations in EC strength and
certainty across parameter selections, showing a trade-off between sensitivity and stability.
The results highlight the need to select parameters aligning with specific research
objectives. Building on these methodological insights, the thesis compared the predictive
utilities of intrinsic and task-modulated components of task-evoked EC for age and
reaction time (RT) during the SRC task. The results demonstrated that both EC modalities
captured unique behavioral variance: task-modulated EC shows stronger associations
with RT, while intrinsic EC exhibits higher predictive power for age. Notably, the
prediction pattern is significantly impacted by the types of GLM designs, showing that
only event-related designs yield statistically significant predictive power for both EC
modalities. Finally, the thesis extends to resting-state EC, examining the predictive power
for childhood maltreatment severity across large-scale networks. The results identify the
default mode network as the most robust predictor, highlighting its clinical relevance as

a potential biomarker for trauma-related disorders.

In summary, the thesis positions the EC as a promising measure for modeling brain-
behavior relationships. By addressing methodological variability in EC estimation and
examining its predictive power across networks, this work bridges the gap between

methodological neuroimaging research and behavioral applications.
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1. Introduction

Understanding how brain networks relate to human behavior requires methods beyond
correlational measures, such as functional connectivity (FC). FC quantifies
synchronized brain activities between regions, which has been pivotal in linking brain
connectivity to behaviors (Biswal et al., 2010). However, it fails to capture dynamic
causal interactions (Friston, 2011; Friston et al., 2003), limiting insights into how brain
networks dynamically influence behaviors. The limitation can be addressed by effective
connectivity (EC), which models directed causal interactions and provides
mechanistically deeper insights into the brain-behavior relationship (Friston, 2011).
Several generative embedding approaches have been developed to estimate brain EC,
such as the dynamic Bayesian networks (Rajapakse & Zhou, 2007), Granger causality
mapping (Roebroeck et al., 2005), and structural equation modeling (Biichel & Friston,
1997). Among these approaches, dynamic causal modeling (DCM) offers a biologically
meaningful framework for inferring brain EC (Friston et al., 2003). DCM
mathematically models brain intrinsic EC at baseline (matrix A) and task-modulated EC
induced by external stimuli (matrix B) (Marreiros et al., 2008; Zeidman, Jafarian,
Corbin, et al., 2019), which enables studies of both brain state-specific connectivity
components. Currently, DCM has been implemented to bridge brain connectivity with
individual behavioral and clinical outcomes (Kahan & Foltynie, 2013; Kahan et al.,
2019; Volz et al., 2015), demonstrating its potential to uncover brain-behavior

relationships.

Despite its promise, three significant challenges are hindering EC research, including
methodological variability, behavioral prediction, and clinical translation. First, the
methodological variability in data processing parameters substantially introduces
inconsistency in fMRI results (Botvinik-Nezer et al., 2020; Carp, 2012). While the
influence of analytical variability has been widely discussed in FC studies (Cole et al.,
2010; Power et al., 2017; Smith et al., 2013), EC research has received limited attention.
Although a recent study has investigated the effect of the global signal on resting-state
EC estimates, reporting a minor impact (Almgren et al., 2020), the broader issue of
analytical flexibility in EC research, particularly regarding task-evoked EC, has been
largely neglected. Addressing this gap systematically is critical to ensuring reliable and

robust estimations of EC parameters.



Second, while previous FC studies have demonstrated superior performance of task-
evoked FC over resting-state FC in predicting individual fluid intelligence (Greene et
al., 2018) and general cognitive ability (W. Zhao et al., 2023), and reading skills (Jiang
et al., 2020), the contradictory evidence persists (Kraljevi¢ et al., 2024). This
inconsistency raises a critical question of whether the connectivity of different states
differentially contributes to explaining individual variability in behaviors and
phenotypic traits. Here, DCM offers a unique opportunity to address this issue by
mathematically isolating the brain’s intrinsic and task-modulated components of task-
evoked EC (Zeidman, Jafarian, Corbin, et al., 2019). This approach enables direct
comparisons of how each brain state-specific connectivity profile independently

contributes to predicting individual differences in behavior and traits.

Third, resting-state fMRI is widely used in clinical research to map the brain’s intrinsic
functional architecture, owing to its simplicity and applicability in vulnerable
populations (O'Connor & Zeffiro, 2019). This approach has been proven particularly
valuable for studying how childhood maltreatment (CM), encompassing physical,
sexual, and emotional abuse, as well as neglect (Gilbert et al., 2009), influences the
brain’s intrinsic connectivity. CM experiences may increase the risk of developing mood
disorders, substance abuse, and suicidal behaviors (Fuller-Thomson et al., 2016; Green
et al., 2010; Merrick et al., 2017). Previous literature (Gerin et al., 2023; Goetschius et
al., 2020; Marusak et al., 2015) has linked these outcomes to resting-state FC alterations
involving the default mode network (DMN) and the salience network. However, such
work overlooks interregional dynamic influence inside brain networks, which can be
mechanistically complemented by EC (Friston, 2011). While EC has been utilized to
identify biomarkers of CM-related psychiatric disorders (Kessler et al., 2020), existing
studies are limited by small, hypothesis-driven node selections or computational
constraints of DCM (Fréssle et al., 2017). Additionally, accumulating evidence has
suggested that CM is associated with alterations in the complex and distributed brain
networks (Teicher & Samson, 2016). The absence of comprehensive EC analyses
hinders the understanding of how trauma impacts brain network dynamics and insights

into trauma-related biomarkers.

The overarching aim of this thesis is to characterize the EC of task-evoked and resting-

state brain networks and evaluate its relationship to aging and behavior. This work



advances EC from methodology to behaviors by integrating methodological, behavioral,
and clinical perspectives through three interconnected studies. The first study focuses on
methodological variability, systematically quantifying the impact of data-processing
parameters on task-evoked EC estimates, focusing on the stimulus-response
compatibility (SRC) (Fitts & Deininger, 1954) network. It provides a solid
methodological foundation for reliable and robust EC analyses for behavioral
predictions and clinical applications. Building on the methodological foundation, the
second study examines brain state-specific predictions in behavior. It compares
predictive utilities of brain state-specific EC components (intrinsic vs. task-modulated)
for individual differences in age and reaction time (RT) during the SRC task. This study
aims to determine whether state-specific EC differentially predicts behaviors, enhancing
understanding of the unique predictive roles of different brain states. The third study
extends EC research to clinical translation by identifying network-specific biomarkers
of childhood trauma using resting-state EC, which seeks to identify interpretable and
robust networks of trauma-related disorders. Based on the foundations and insights from
the first and second studies, this exploration examines the clinical application of resting-
state EC, providing insights into diagnosing and treating trauma-related disorders. By
systematically addressing methodological variability, brain state-specific effects, and
clinical biomarkers, this work bridges neuroimaging research with individual behaviors

and trauma-related outcomes.

The following introduction begins with an overview of brain functional networks
derived from task-evoked and resting-state fMRI paradigms. Next, it provides a detailed
discussion of EC, focusing on the models employed in task-evoked and resting-state
fMRI research, namely DCM for task-evoked EC and regression DCM (rDCM) for
resting-state EC. Then, it discusses the challenges of data processing variability on EC
estimates and explores the potential of EC for linking brain network dynamics with

individual behaviors and clinical outcomes.
1.1 Brain Functional Networks and Behaviors

A key approach to studying human brain organization is to divide brain regions into
spatially distinct but functionally connected networks, facilitating the exchange of
information among these regions (van den Heuvel & Hulshoff Pol, 2010). In the context

of resting-state fMRI, functional networks are typically identified using FC, defined by
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temporal correlations in blood-oxygen-level-dependent (BOLD) signal fluctuations
during rest, which reflects the brain’s intrinsic functional architecture (Biswal et al.,
1995; Biswal et al., 2010; Menon & Uddin, 2010). In contrast, task-evoked functional
networks are commonly defined by synchronized activation patterns in response to
specific stimuli (Dosenbach et al., 2008). Over the past decades, these two paradigms
have elucidated diverse networks, such as the triple-network model (default mode,
central executive, and salience networks), which underpin behaviors and
pathophysiological dysfunctions (Menon, 2011). This section generally discusses two
types of brain functional networks, exampled by an SRC task (Fitts & Deininger, 1954)
and large-scale resting-state networks (Schaefer et al., 2018; Yeo et al., 2011).

1.1.1 Task-Evoked Networks: The Stimulus-Response Compatibility Task

The SRC task is a psychological experiment paradigm designed to study cognitive
action control during conflict processing (Fitts & Deininger, 1954). This task involves
two conditions: compatible and incompatible. In the compatible condition, participants
respond to the stimulus on the same side; in the incompatible condition, they
respond to the stimulus on the opposite side (Langner et al., 2015). Psychologically,
the incompatible condition leads to slower RTs and a lower accuracy rate, reflecting the
incompatibility effect during the conflict processing (Eimer, 1995; Fitts & Deininger,
1954), which is influenced by age-related differences (Korsch et al., 2014; Langner et
al., 2015; Proctor et al., 2005). Neurally, this incompatibility activates a front-parietal-
insular network, which includes regions such as the anterior insula (Al), intraparietal
sulcus (IPS), dorsolateral prefrontal cortex (DLPFC), dorsal premotor cortex, pre-
supplementary motor area, mid-cingulate cortex, and temporoparietal junction (Cieslik
et al., 2010; Langner et al., 2015). This activation pattern underscores the task's utility in
investigating age-related changes in conflict processing and their neural correlates,
which enables the study of relationships between the SRC network and individual

variability in behaviors and aging.
1.1.2 Large-Scale Resting-State Networks

Large-scale resting-state networks are typically identified using data-driven approaches
that analyze brain spontaneous activity patterns without specific hypotheses. For
instance, Yeo et al. (2011) clustered resting-state FC to parcellate the entire cortex into 7

or 17 networks, identifying systems such as the visual network, somatosensory network,
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dorsal attention network, ventral attention network, limbic network, fronto-parietal
network, and DMN. Schaefer et al. (2018) expanded on this work by integrating the
gradient and similarity approaches to provide higher-resolution parcellation schemes
ranging from 100 to 1,000 parcels, thereby allowing for a more detailed understanding
of network organization at a finer spatial scale. This atlas (Schaefer et al., 2018; Yeo et
al., 2011) is crucial for capturing the brain's functional organization, as it allows for a
comprehensive examination of network connectivity, particularly in linking network

abnormalities to neurological and psychiatric disorders (Bruin et al., 2023).
1.2 Effective Connectivity (EC): From Theory to Methodology

Understanding how brain network dynamics shape human cognition and behaviors
remains a challenge in neuroscience. Traditional approaches, such as FC, have provided
valuable insights by identifying correlations between regions, but they overlook causal
interdependence (Friston, 2011). To address this limitation, EC, quantified by DCM,
modeled directed influences between regions (Friston et al., 2003), which offers a more
mechanistic insight into how brain network dynamics drive behaviors (Friston, 2011;
Friston et al., 2003). This approach enables researchers to investigate the directionality
of neural communication and link network dynamics to cognitive and behavioral
processes. This section discusses the concepts and methodologies of EC utilized in the

thesis.
1.2.1 Dynamic Causal Modeling (DCM): Theory and Applications

DCM, introduced by Friston, has provided an efficient framework for investigating task-
evoked EC (Friston et al., 2003). By modeling neural dynamics influenced by external
stimuli and internal neural processes, it has been widely utilized in tasks such as
working memory, resolving response conflicts, and aging-related studies (Boudrias et
al., 2012; Cieslik et al., 2011; Jung et al., 2018; Kahan et al., 2019; Loehrer et al., 2016;
Morken et al., 2017; Volz et al., 2015), underscoring its applicability in investigating

the neural mechanisms behind specific cognitive processes.

Mathematically, DCM separates neural dynamics into brain intrinsic (endogenous)

activity and task-modulated (exogenous) interactions (Friston et al., 2003):

% - (A + Zk B® uk(t)> z + Cu(t)



In this model, z represents neural states of regions of interest (ROI) across time points.
Matrix 4 encodes brain intrinsic connectivity, reflecting baseline directional connectivity
between brain regions in the absence of external influences. Matrix B represents task-
modulated connectivity, quantifying how experimental conditions (indexed by k)
modulate network interactions. The term wu(?) specifies the timing of condition 4, with
each k representing a distinct experimental condition. Finally, matrix C describes the
influence of all external experimental inputs (i.e., stimuli or task-related manipulations)

on the neural dynamics of the considered ROIs.

This framework of DCM explains how brain regions interact and respond to task-evoked
stimuli. However, the neural states z cannot be directly observed in fMRI data. To link
neural dynamics to the observable BOLD signals, DCM employs the observation

equation:
y() = h(z(t)) + €(t)

Here, y() denotes the observed BOLD signal at time ¢, while A(-) represents the
hemodynamic response function that maps neural activity to the BOLD signal, and €()
accounts for noise in the observed data. The model estimates the coupling parameters of
the connectivity matrices by optimizing them to ensure that the simulated BOLD signals

closely align with the variance observed in the empirical BOLD signals.
1.2.2 Regression DCM: Advancements and Applications

Traditional DCM typically limits the analysis to fewer than 10 network nodes as the
number of connections increases rapidly with network size, leading to a substantial
computational burden (Fréssle et al., 2017; Seghier & Friston, 2013). As a recent variant
of DCM, regression DCM (rDCM) addresses the computational challenge inherent in
the conventional DCM approach (Frissle et al., 2017). By reformulating the DCM
model in the frequency domain and employing Bayesian linear regression for model
inversion (Fréssle et al., 2017), rtDCM enables the estimation of EC in large-scale

networks, making it well adapted for resting-state fMRI (Fréssle, Harrison, et al., 2021).

In the original linear DCM model (Friston et al., 2003), neural dynamics are modeled in
the time domain and described by the following equation:

dx

” = Ax + Cu.



In this equation, x represents the neuronal states, matrix 4 encodes the endogenous

connectivity, and C denotes the external inputs u to neural activity.

The rDCM reformulates this model in the frequency domain:

A~

iwx = AX + C1u

Here, terms X and @ represent frequency-based representations of neural activity and
external inputs, respectively. By transforming the model into the domain of frequency,
rDCM captures EC in large-scale networks with greater computational efficiency
(Fréssle, Harrison, et al., 2021). Although initially designed for task data (Frissle et al.,
2017), rDCM has been extended to resting-state fMRI (Fréssle, Harrison, et al., 2021),
allowing for the quantification of intrinsic EC without external stimuli. This extension
underscores the flexibility and adaptability of rDCM, making it a valuable tool for

large-scale resting-state EC analyses.
1.3 Methodological Challenges in EC Estimation

Evaluating the impact of data processing variability on neuroimaging outcomes is
critical for the validity and reproducibility of fMRI research (Botvinik-Nezer et al.,
2020; Lindquist et al., 2019). While established pipelines exist for analyzing fMRI data,
there is still no consensus on data processing parameters across pipelines, which
considerably introduces variations in results (Botvinik-Nezer et al., 2020). Many
methodological studies have been conducted on FC (Cole et al., 2010; Power et al.,
2014; Smith et al., 2013), yet the impact of data processing choices on task-evoked EC
remains underexplored. This section discusses several parameters of interest that may

influence task-evoked EC estimations.
1.3.1 Impact of Data-Processing Variability on EC Estimates

Global signal regression (GSR) is a crucial preprocessing step for removing
psychological noise (Power et al., 2017). However, its application remains controversial
(Fox et al., 2009; Murphy & Fox, 2017; Power et al., 2017). While GSR improves the
sensitivity to detect significant connectivity measures (Varikuti et al., 2017), this may
also distort brain activations and connectivity measures in networks (Anderson et al.,
2011; Murphy et al., 2009). Recent work (Almgren et al., 2020) suggests GSR showed a
minor influence on resting-state EC estimates, while its impact on task-evoked EC

remains unclear.



The general linear model (GLM) design is an essential step in modeling brain BOLD
signals in response to task stimuli, utilizing the hemodynamic response function
(Buxton et al., 2004). The block-based design groups similar events into blocks,
optimizing the hemodynamic responses of the involved brain regions under the same
experimental conditions (Logothetis, 2008). In contrast, the event-related design treats
discrete events individually, analyzing brain responses to each event in

isolation (Huettel, 2012). These designs may differentially affect task-evoked activation
and FC (Friston et al., 1999; Liu et al., 2001) and DCM’s model selections (Daunizeau
et al., 2011). However, a direct comparison of task-evoked EC between these two

designs has not been evaluated.

Significance thresholding is a critical step in fMRI analyses, substantially contributing
to the variability of fMRI results (Botvinik-Nezer et al., 2020). Methodological
variability in thresholding approaches (e.g., voxel-wise vs. cluster-corrected) may
introduce uncertainty in generating task-evoked ROIs to estimate EC. For example, a
stricter method may reduce false-positive voxels but risk excluding meaningful signals.
However, the impact of thresholding variability on task-evoked EC estimates remains

unexplored.

The activation contrasts isolate brain activation in response to specific task conditions,
and its selection directly shapes task-evoked EC (Zeidman, Jafarian, Corbin, et al.,
2019). Contrasts define the neural processes modeled in DCM, emphasizing distinct
cognitive components. For instance, the incompatible contrast (Anti) isolates conflict-
related processes, while the combined contrast (Anti+Pro) captures a general
engagement during the SRC task. Varied contrasts define how experimental conditions
impact EC estimates, highlighting distinct cognitive components (Zeidman, Jafarian,
Corbin, et al., 2019). However, the selection of contrasts and its impact on task-evoked

EC remains unclear.

In sum, the thesis aims to evaluate how analytical flexibility impacts EC reproducibility

and provides evidence-based guidelines for robust network inference in task-fMRI.
1.4 Predictive Modeling of Brain-Behavior Relationships

A key goal of neuroimaging is to link individual brain dynamics to cognition, behaviors,

or even clinical outcomes (Biswal et al., 2010; Huth et al., 2016). To achieve this goal,



machine learning approaches such as connectome-based predictive modeling have been
applied to FC (Shen et al., 2017; Zhang et al., 2022; K. Zhao et al., 2023). These
approaches have advanced our understanding of brain-behavior relationships by
detecting stable connectivity fingerprints, which are predictive of individual differences
in both healthy and clinical populations (Zhang et al., 2022; K. Zhao et al., 2023).
However, while FC can capture undirected interdependencies between brain regions, its
correlational calculation limits insights into dynamic causal interactions (Friston, 2011).
This gap can be addressed by EC, which quantifies directed neural influences between
regions (Friston, 2011; Friston et al., 2003) and has emerged as a promising framework
for exploring brain-behavior relationships (Kahan & Foltynie, 2013; Zeidman, Jafarian,
Corbin, et al., 2019). Nevertheless, two critical questions remain: (1) Do brain state-
specific components of task-evoked EC (brain intrinsic vs. task-modulated)
differentially predict individual behaviors and phenotypic traits? (2) Can large-scale
resting-state EC analyses identify network-specific biomarkers for clinical outcomes?

This section discusses these two questions below.
1.4.1 Individual Differences in Task-Evoked EC: Behavioral Relevance

Previous FC literature has suggested that task-evoked states may promote better
prediction of individual traits and general cognitive abilities as compared to states
during resting (Greene et al., 2018; Jiang et al., 2020; W. Zhao et al., 2023). This
difference may be related to distinct characteristics between the two brain states (Greene
et al., 2018). Compared to the unconstrained resting state (Buckner et al., 2013), where
multiple brain states were jointly expressed (Leonardi et al., 2014), task-evoked states
may have lower variability and amplify individual differences through task-related
manipulation (Elton & Gao, 2015; Finn et al., 2017; Geerligs et al., 2015; Greene et al.,
2018). However, a recent study (Kraljevi¢ et al., 2024) has suggested that this
improvement may not be universal, raising a question about how specific brain states

contribute to predicting individual behaviors and traits.

To address this question, DCM (Friston et al., 2003) may provide a suitable framework
for analyzing state-specific (intrinsic and task-modulated) EC in task-evoked fMRI data.
Intrinsic EC refers to the brain's inherent connectivity at baseline, while task-modulated
EC reflects context-dependent connectivity driven by specific stimuli (Zeidman,

Jafarian, Corbin, et al., 2019). While two types of EC have demonstrated notable



prediction accuracy in predicting individual phenotypes and task performance (Beck et
al., 2021; Diersch et al., 2021), the lack of a direct comparison between the brain’s
intrinsic and task-modulated EC prevents determining whether state-specific neural
dynamics uniquely contribute to behavioral predictions. Isolating brain intrinsic and
task-modulated EC of task-evoked EC and examining their predictive performance may
help clarify whether do intrinsic and task-modulated EC differentially predict individual

behaviors and phenotypical traits?
1.4.2 Resting-State EC as a Biomarker for Childhood Maltreatment

Childhood maltreatment (CM), characterized by abuse modalities (physical, sexual,
emotional) and neglect, is recognized as a critical psychological stressor (Gilbert et
al., 2009). Individuals with a CM history exhibit a higher risk for psychiatric
disorders like mood disorders and suicidal behaviors (Fuller-Thomson et al., 2016;
Green et al., 2010; Merrick et al., 2017). To investigate the neurobiological effects
of CM experiences, resting-state fMRI has become a powerful tool due to its
simplicity in data acquisition, capacity to map multiple neural systems, and
applicability to vulnerable populations (O'Connor & Zeffiro, 2019). Previous resting-
state fMRI studies have identified aberrant FC in the salience network and DMN in
individuals exposed to CM experiences, suggesting an association with mental disorders
and socio-affective functioning (Gerin et al., 2023; Goetschius et al., 2020; Marusak et
al., 2015). However, the correlational calculation of FC cannot reveal causal interaction
information within networks, which can be addressed by EC (Friston, 2011). For
example, a previous study (Kessler et al., 2020) explored EC to demonstrate that CM
disrupted the inhibitory ability of the medial prefrontal cortex to the amygdala,
suggesting that EC may have the potential to identify biomarkers in psychiatric
disorders. Although EC can be used to reveal causal mechanisms, most EC studies
have constrained network nodes within a limited number of nodes due to the
computational demands of DCM (Fréssle et al., 2018; Frissle et al., 2017). This
approach may conflict with evidence that CM is associated with changes in complex
and distributed large-scale networks (Teicher & Samson, 2016). The lack of large-
scale network EC analyses may prohibit a comprehensive insight into large-scale

networks and their predictive specificity with childhood trauma experiences.
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1.5 Ethics Protocols

The study protocols for Studies 1 and 2 were approved by the ethics committee of the
University Duisburg-Essen, Germany (reference number: 11-4678). Data usage from the
1000BRAINS project was additionally approved by the ethics committee of the
University of Diisseldorf, Germany (reference number: 5193). The study protocol for
Study 3 was approved by the ethics committee of the Affiliated Brain Hospital,
Guangzhou Medical University, China (approval number: 2013 (074)). All studies were

conducted in accordance with the Declaration of Helsinki.
1.6 Aims of Thesis

The thesis advances the study of EC by addressing gaps in methodology and prediction
specificity between brain states and networks and formulating three research questions
for the thesis. First, despite the wide range of applications of DCM, the lack of consensus
on data processing pipelines and the impact on EC estimates remains poorly understood.
I investigate how data processing parameters influence task-evoked EC estimates within
the task-evoked SRC network. Second, given that distinct brain states (intrinsic vs. task-
evoked states) may capture unique attributes relevant to behavioral and phenotypic
prediction, I directly compare the predictive performance of intrinsic and task-modulated
EC derived from task-evoked DCM in explaining individual differences in age and RT
during the SRC task. Third, the computational constraints of traditional DCM limited
large-scale resting-state EC estimation and thereby precluded insights into network-
specific biomarkers of clinical outcomes such as childhood trauma exposure. I address
this by utilizing the rDCM to infer whole-brain and network-specific resting-state EC and
compare its ability to predict childhood trauma exposure across large-scale cortical

networks.

1.6.1 Study 1: Impact of Data Processing Parameters on EC

The research first systematically evaluated how data-processing parameters affect task-
evoked EC estimates of DCM within the SRC network derived from the 1,000BRAINS
project (Caspers et al., 2014). Aligning with previous literature (Cieslik et al., 2010;
Langner et al., 2015), nine network nodes were defined based on incompatibility-related
activations (incompatible > compatible conditions): the anterior mid-cingulate cortex

(aMCC), and bilateral IPS, DLPFC, Al and premotor cortex (PMC). As
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aforementioned, we then specifically investigated four data-processing parameters: (1)
regression of global signals (with vs. without GSR), (2) GLM designs (event-related vs.
block-based), (3) activation contrasts (Anti vs. Anti+Pro), and (4) significance
thresholding (cluster-corrected vs. voxel-wise thresholds). Through comprehensive
comparisons of EC strength variations (Zeidman, Jafarian, Seghier, et al., 2019) and
parameter certainty (Zeidman, Kazan, et al., 2019) between conditions of each
parameter, our findings demonstrated that methodological variability significantly
modulates EC characteristics within an SRC network, providing methodological
recommendations for further EC analyses. By addressing these gaps through a
systematic approach, this thesis aims to provide a comprehensive empirical framework
for understanding the impact of analytical choices on EC and its utility in predicting

individual differences.
1.6.2 Study 2: Dissecting Brain State-Specific EC for Behavioral Prediction

Building on methodological perspectives, this study examines whether brain state-
specific connectivity differentially predicts individual behaviors. The research further
evaluated whether intrinsic and task-modulated EC better predict individual
characteristics, focusing on individual age and RT during an SRC task. Using task-evoked
DCM, we distinguished intrinsic EC (represented by matrix A) and task-modulated EC
(represented by matrix B) to assess their predictive capabilities. The analysis explored
how variations in GLM designs, cross-validation schemes, predictive models, and the
application of Bayesian model reduction influenced the comparative performance of these
EC components. Results reveal that intrinsic and task-modulated EC capture distinct
aspects of age and RT, with GLM design choices significantly impacting their predictive
performance. These findings remained robustly consistent across different cross-
validation schemes and predictive models and were less affected by the inclusion of the
Bayesian model reduction. The study highlights the significance of methodological
considerations in understanding the relationship between the brain’s intrinsic and task-

modulated connectivity patterns and individual characteristics.

1.6.3 Study 3: Identifying Network Biomarkers of Childhood Trauma via Resting-
State EC

This study shifts its focus to resting-state EC and networks, assessing the prediction

12



accuracy of whole-brain and network-specific EC in predicting individual
characteristics, particularly CM scores. Resting-state fMRI data were acquired for 8
minutes. The Schaefer atlas (100 parcels) (Schaefer et al., 2018; Yeo et al., 2011) is
utilized to reconstruct large-scale networks. Using rDCM within the Schaefer atlas
framework, whole-brain and network-specific resting-state EC is estimated, and its
predictive capabilities are evaluated. The research also examined how variations of
feature selection thresholds and predictive models impacted the comparative
performance of each prediction case. The results revealed that resting-state EC within
the DMN consistently demonstrated significant predictive power in CM scores,

indicating a critically important role of the DMN in CM.
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Abstract

Effective connectivity (EC) refers to directional or causal influences between interact-
ing neuronal populations or brain regions and can be estimated from functional mag-
netic resonance imaging (fMRI) data via dynamic causal modeling (DCM). In contrast
to functional connectivity, the impact of data processing varieties on DCM estimates
of task-evoked EC has hardly ever been addressed. We therefore investigated how
task-evoked EC is affected by choices made for data processing. In particular, we
considered the impact of global signal regression (GSR), block/event-related design
of the general linear model (GLM) used for the first-level task-evoked fMRI analysis,
type of activation contrast, and significance thresholding approach. Using DCM, we
estimated individual and group-averaged task-evoked EC within a brain network
related to spatial conflict processing for all the parameters considered and compared
the differences in task-evoked EC between any two data processing conditions via
between-group parametric empirical Bayes (PEB) analysis and Bayesian data compar-
ison (BDC). We observed strongly varying patterns of the group-averaged EC
depending on the data processing choices. In particular, task-evoked EC and parame-
ter certainty were strongly impacted by GLM design and type of activation contrast
as revealed by PEB and BDC, respectively, whereas they were little affected by GSR
and the type of significance thresholding. The event-related GLM design appears to
be more sensitive to task-evoked modulations of EC, but provides model parameters
with lower certainty than the block-based design, while the latter is more sensitive to
the type of activation contrast than is the event-related design. Our results demon-
strate that applying different reasonable data processing choices can substantially
alter task-evoked EC as estimated by DCM. Such choices should be made with care
and, whenever possible, varied across parallel analyses to evaluate their impact and

identify potential convergence for robust outcomes.
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analytical flexibility, global signal regression, MRI data processing, stimulus-response
compatibility, task-evoked effective connectivity
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1 | INTRODUCTION

One of the main approaches to studying the human brain consists in
representing it as a collection of complex networks involving sets of
brain areas engaged in different functions and continuously sharing
information within and between the networks (van den Heuvel &
Hulshoff Pol, 2010). In the framework of functional connectivity (FC),
brain areas showing high temporal co-activations are defined as func-
tional networks during tasks or resting state (Menon, 2011). Both
task-evoked and resting-state FC of functional magnetic resonance
imaging (fMRI) have shown high similarities to each other as reported
by several papers (Beheshtian et al., 2021; Cole et al., 2014; Cole
et al,, 2016; Heckner et al., 2021), see also a recent review (Bernstein-
Eliav & Tavor, 2024). Withal, the current FC studies frequently
focused on the resting state (Greene et al., 2018), which has widely
been used to investigate brain organization (Eickhoff et al., 2018; Yeo
et al., 2011) and brain-behavior relationships (Biswal et al., 2010;
Shen et al., 2017). However, the lack of external reference time points
(e.g., stimulus onsets) and the absence of control over mental pro-
cesses (Cole et al., 2016) as well as the typical FC calculation approach
(Pearson correlation) limit the application of resting-state FC to
dynamic interactions evoked by contextual modulation.

Task-evoked effective connectivity (EC) is supposed to estimate
the directional or causal information flow among network nodes mod-
ulated by task demands (Friston et al., 2003). For this purpose, the
dynamic causal modeling (DCM) approach was developed and is firmly
established in neuroimaging research (Frissle et al., 2017; Frassle
et al., 2018; Friston et al., 2014). Task-evoked EC estimated by DCM
was shown to reflect the interregional directional information flows
(Friston, 2011; Friston et al., 2003; Menon, 2011; Menon &
Uddin, 2010) and has been linked to human cognitive and executive
performance in tasks such as finger tapping, working memory,
response conflict resolution, reading, and so forth (Boudrias
et al., 2012; Cieslik et al., 2011; Jung et al., 2018; Kahan et al., 2019;
Loehrer et al., 2016; Morken et al., 2017; Volz et al., 2015).

Despite the success and relevance of DCM-based estimates of
EC, the impact of variations in data processing parameters on DCM
outcomes has not consistently been addressed. For task-evoked brain
activity, it has been demonstrated that the present analytical flexibility
in the field can have substantial effects on the reported results and,
thus, on the reproducibility of neuroimaging findings (Botvinik-Nezer
et al,, 2020; Carp, 2012). Similarly, the influence of data processing
varieties has also been a topic of intense discussion in studies on FC
(Cole et al., 2010; Power et al., 2014; Power et al, 2017; Smith
et al., 2013). However, issues and challenges of analytical flexibility in
estimating task-evoked EC have rather been neglected so far and call
for further investigation. Here we therefore focus on four important
aspects of data processing in a typical DCM analysis.

The preprocessing of fMRI data concentrates on the cleaning of
the acquired data from noise, which is essential for an appropriate
extraction of the signals (Churchill et al., 2015). Typically, the cleaning
includes several steps such as slice-timing correction (Parker &
Razlighi, 2019; Sladky et al., 2011), motion correction (Friston

et al,, 1996; Yan et al., 2013), nuisance regression (Liu et al., 2017,
Power et al., 2017), temporal filtering (Davey et al., 2013), and spatial
smoothing (Friston et al., 2000). Of these, global signal regression
(GSR) has received much attention as a nuisance variable with a sub-
stantial impact on estimates of FC (Murphy & Fox, 2017) and will
therefore be examined for its influence on task-evoked EC in this
study. In particular, GSR has been thought to remove physiological
noise (Power et al., 2017) and help to detect significant FC (Fox
et al., 2009; Varikuti et al., 2017). However, the application of GSR is
controversial and may potentially distort activation and connectivity
measures in the network-specific ways (Anderson et al., 2011; Glasser
et al., 2018; Murphy et al., 2009; Saad et al., 2012). Furthermore, the
impact of GSR on resting-state FC was often assumed to be major
(Murphy & Fox, 2017), while GSR was recently shown to have only a
minor influence on resting-state EC estimations (Almgren et al., 2020).
As its impact on task-evoked EC has remained unclear, we investi-
gated it in the present study.

Another important methodological issue pertains to the question
of which design of the general linear model (GLM) is optimal for sub-
sequently analyzing task-evoked EC. According to presentations and
types of task stimuli, block- and event-related designs have been used
to model brain blood-oxygen-level-dependent (BOLD) signals to task
events by convoluting the temporal function of their occurrence with
the hemodynamic response function (HRF) (Buxton et al., 2004). The
block-based design aggregates multiple (similar) events into blocks to
maximize hemodynamic responses of engaged brain regions during
the same experimental conditions (Logothetis, 2008). The event-
related design models discrete events separately from each other and
analyzes brain responses to individual events independently (Huet-
tel, 2012). The choice of GLM design has not only been shown to
impact task-evoked activation and FC (Friston et al., 1999; Liu
et al., 2001), but also the model selection in DCM (Daunizeau
et al., 2011). However, the immediate impact of GLM design type
(block- vs. event-related) on task-evoked EC has not been explored
yet, which is why we addressed it in this study.

Besides the type of design, there are at least two more factors in
the analysis of task-fMRI data that may influence EC estimates
derived from DCM: significance thresholding of voxels at the level of
individual subjects and the choice of activation contrast of interest.
The selection of significance thresholding methods at the group level
impacted the data-analytical stability of fMRI results (Botvinik-Nezer
et al,, 2020; Roels et al., 2015). However, the significance thresholding
at the individual level and its impact on task-evoked EC have not
appropriately been discussed yet. The activation contrast indicates
the brain activation driven by a specific task condition and reflects the
context-dependent task-evoked EC (Zeidman, Jafarian, Corbin,
et al., 2019). Previous studies have already demonstrated that DCM
estimated different task-evoked modulatory EC (M-EC) with selected
network nodes if various contrasts were specified as modulatory
inputs (Kuhnke et al, 2021; Ma et al, 2014). However, it is still
unknown how M-EC is statistically changed when different contrasts
are considered for time series extraction and used to define the mod-

ulatory inputs in DCM analyses.
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Based on these considerations, our study aimed to investigate the
impact of GSR, GLM design, significance thresholding, and activation
contrasts on task-evoked EC. The main objective was to illustrate how
important choices made during data processing can influence the
results of the task-evoked fMRI analysis and DCM estimations of
the task-based EC on an example of the stimulus-response compatibil-
ity (SRC) task (Fitts & Deininger, 1954). The workflow included several
steps: (1) preprocessing task-evoked images and reconstructing the
SRC network nodes with different conditions of data processing (GSR
and GLM designs); (2) extracting the respective BOLD time series from
the SRC network nodes for individual subjects under different condi-
tions with respect to GSR, GLM design, significance thresholding, and
activation contrasts; (3) calculating the individual and group-averaged
task-evoked EC patterns for each data processing condition; and
(4) evaluating between-group differences in task-evoked EC as well as
relative differences in EC parameter certainty between any two condi-
tions of the data processing (with vs. without GSR, event-
related vs. block-based designs, corrected vs. uncorrected thresholding,
and whole task vs. incompatible contrasts). We show that different
data processing choices result in substantially different task-evoked EC
at the group level, especially for the factors of GLM design and activa-
tion contrast. The obtained results could be of relevance for evaluating

analytical flexibility in task-evoked EC estimations.

2 | METHODS

21 | Participants and fMRI data
Our study included an initial sample of 271 subjects (148 males,
123 females, 18-85 years old, mean age: 52.3 + 16.6 years) recruited
from the subject pool of the 21000BRAINS project (Caspers
et al., 2014), which was conducted at the Research Centre Jilich.
Before MRI data collection, the written informed consent of each sub-
ject was acquired. The study protocol was approved by the health
care ethics committee of the University Duisburg-Essen (reference
number: 11-4678). The study was approved by the local ethics com-
mittee and performed in accordance with the declaration of Helsinki.
Details about fMRI data included in the 1000BRAINS project
can be found elsewhere (Caspers et al., 2014). In the present study,
only selected structural MRI (sMRI) and task-based fMRI (t-fMRI) data
were used for analyses. Both sMRI and fMRI datasets were acquired
on a 3-T Siemens scanner (Tim-TRIO, Siemens Medical System,
Erlangen, Germany). The sMRI scans were obtained using an anatomi-
cal 3D T1w MPRAGE sequence with the following parameters: repeti-
tion time (TR)=2.0s, echo time (TE) = 3.03 ms, flip angle = 9°,
176 sagittal slices, field of view =256 x 256 mm?, voxel resolu-
tion =1 x 1 x 1 mm?®. The t-fMRI dataset was scanned by gradient-
echo echo-planar imaging sequence with the following parameters:
TR =2.03s, TE = 30 ms, flip angle = 80°, field of view =200 mm,
33 axial slices (ascending), slice thickness = 3.3 mm, inter-slice
gap = 0.66 mm, voxel resolution = 3.1 x 3.1 x 3.3 mm?, acquisition

time = 27 min, and 10 s.

2.2 | Experimental protocol

The present study followed the standard spatial SRC paradigm (Fitts &
Deininger, 1954). In particular, participants were required to respond
to lateralized visual stimuli by pressing an ipsilateral or contralateral
button as correctly and fast as possible (Figure 1). The whole experi-
ment had 24 blocks and consisted of incompatible (Anti) and compati-
ble (Pro) conditions. The Anti-condition required participants to react
to the lateralized stimulus by pressing the opposite button, while the
Pro-condition required participants to press the ipsilateral button.
Before one block started, a 2-s instruction was presented to indicate
the condition (incompatible or compatible) of the following block.
Each block contained 13 to 16 trials, in which filled circles (see Fig-
ure 1) were presented for 0.2 s either on the left or right side of the
screen with an equal probability (50%) to be on either side. The time
intervals between event onsets were uniformly jittered from 2 to
4.5 s. The rest periods between blocks were randomly jittered by a
uniform distribution ranging from 15 to 19 s. Either experimental con-
dition was covered in 12 blocks, which were presented in a pseudo-

randomized order with a stochastic paradigm.

2.3 | Preprocessing

The sMRI and fMRI images were preprocessed using functions from
FSL (Jenkinson et al., 2012), ANTSs (Tustison et al., 2014), Workbench
(Glasser et al., 2013), and AFNI (Cox, 1996) software packages.

The sMRI preprocessing included the following steps: (1) reorien-
tation and cropping (functions fslreorient2std and robustfov) (Glasser
et al,, 2013), (2) AC-PC alignment (flirt) (Glasser et al., 2013), (3) brain
extraction (antsBrainExtraction) (Esteban et al., 2019; Tustison
et al,, 2010), (4) tissue segmentation of gray matter (GM), cerebrospi-
nal fluid (CSF), and white matter (WM) (fast) (Zhang et al., 2001), and
(6) nonlinear spatial normalization (antsRegistration) (Avants
et al.,, 2008).

The fMRI module included the following steps: (1) removal of four

dummy volumes (fslroi); (2) two-pass head-motion correction, which

Compatible (Pro) condition = Incompatible (Anti) condition

+ +

¥ ¥
= =

FIGURE 1 Schematic illustration of the spatial stimulus-response
compatibility (SRC) task. A lateral stimulus on the screen (blue circle)
called for a button press either on the ipsilateral or contralateral side,
which is referred to as compatible (Pro) or incompatible (Anti)
experimental condition, respectively.
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initially realigned all time points to the first volume, and subsequently
to the averaged realigned volumes (mcflirt) (Jenkinson et al., 2002);
(3) intensity normalization (scaled to 10,000; fsimaths); (4) co-registra-
tion between the averaged functional volume and structural images
(antsRegistration) (Avants et al., 2008); (5) functional normalization
using the structural normalization matrix (antsApplyTransForms);
(6) spatial smoothing with an 8-mm full-width at half-maximum
Gaussian kernel (wb_command) (Glasser et al., 2013); (7) regression of
27 nuisance regressors comprising 24 motion parameters (Friston
et al., 1996) as well as the global signal of the whole brain, WM, and
CSF (fsl_glm), and 8) high-pass temporal filtering (cut-off at 128 s,
fslmaths) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). To study the impact
of GSR, we applied an alternative pipeline without GSR in step 7 and
regressed out only the other 26 regressors.

Our pipeline of data preprocessing mainly included specific func-
tions of FSL, AFNI, and ANTSs software, and selected functions were
recommended by previous literature (Carp, 2012) as well as tested on
the used dataset for high-quality data processing. Our choice of struc-
tural and functional preprocessing modules was based on recommen-
dations of HCP and fMRlIprep pipelines (Esteban et al., 2019; Glasser
et al., 2013), and applied a FEAT-based statistical approach of FSL for
extracting activation contrasts (Woolrich et al., 2004).

After a quality check of all preprocessing steps, 5 subjects were
excluded because of bad quality in the spatial normalization, and
266 subjects were included in the subsequent analyses.

2.4 | First-level fMRI statistics

To model brain activation in response to task conditions as reflected
by the dynamics of BOLD signals, we considered both event-related
and block-based designs of the GLM (Woolrich et al., 2004) (FSL/
film_gls). Our experimental protocol was designed in a way such that
the BOLD signal could be modeled at the level of individual trials or
blocks, and the experimental conditions of interest were modeled in
the GLM in three different ways (1) event-related model using all trials
(All-Trials), (2) event-related model using only “successful” trials (i.e.,
trials with correct responses; S-Trials), or (3) blocked design (Blocks).
Thus, both All-Trials and S-Trials cases represent event-related
designs, but the S-Trials design excluded the error trials, where sub-
jects gave incorrect responses to stimuli (i.e., wrong response laterali-
zation) or responded too fast or too slowly (reaction time,
RT <150 ms or RT > 1500 ms) or did not respond at all. The
trials were considered in the framework of a given activation contrast
of the investigated compatible/incompatible experimental conditions,
see below. The explanatory variables of the event-related GLM
included the on-off step functions starting at the onset time of each
trial with a fixed “on” duration of 0.2s of the stimulus length
(an example can be seen in Supplementary Figure S1). The block-
based GLM, in turn, used the starting time and full length of each of
the 24 experimental blocks as onset and duration times, respectively,
of the step function of the explanatory variables. The event-related
design had four regressors of interest comprising compatible and
incompatible conditions with right- and left-sided stimulus

presentation, respectively, while the block-based design had only two
regressors representing compatible and incompatible blocks of trials.

After task designs had been specified, the double-gamma HRF
and their temporal derivatives were modeled to estimate whole-brain
voxel-wise BOLD responses to the abovementioned task events
(Woolrich et al., 2004). We also included temporal derivatives of the
task regressors in the GLM design matrix to accommodate slight varia-
tions in the timing of the HRF across the brain and improve the fit of
the data (Woolrich et al., 2004).

After model estimation, we computed four task contrasts:
incompatible condition (Anti), compatible condition (Pro), incompatible
versus compatible condition (Anti > Pro) (subtracted contrasts, Anti -
Pro), and incompatible + compatible condition (Anti + Pro) (sum con-
trasts) in all GLMs (an example can be seen in supplementary
Figure S1). The Anti - Pro contrast aims to detect brain regions that
are more sensitive to the Anti-condition than to the Pro-condition,
whereas the Anti + Pro contrast aims to detect brain regions respond-
ing to either experimental condition.

2.5 | Second-level fMRI statistics

To reconstruct the brain network activated during the SRC task at the
group level, we calculated second-level fMRI statistics for our differ-
ent experimental designs using the FSL/randomize tool. The SRC para-
digm aims to elucidate brain activity related to solving response
conflicts arising from spatial incompatibility, which is why the Anti-
Pro contrast would be the most appropriate for network detection
that was activated stronger at the spatial incompatibility condition, as
compared to the other contrasts discussed. For reconstructing the
incompatibility-related brain network, the following steps were per-
formed during the second-level analysis of the fMRI data: (1) Contrast
maps (Anti > Pro) of individual subjects were merged into 4D images
for all subjects, and a one-sample permutation test (Winkler
et al., 2014) was conducted 10,000 times for All-Trials, S-Trials, and
Blocks designs separately. (2) Threshold-free cluster enhancement
(TFCE) with family-wise error (FWE) correction (Smith &
Nichols, 2009) was applied for dealing with the issue of multiple com-
parisons (precesrwe < 0.05). This resulted in several clusters of brain
voxels demonstrating significantly stronger responses during the Anti-
condition than during the Pro-condition (significant positive differ-
ences between Anti and Pro conditions) across subjects. The second-
level statistical maps are illustrated in Figure 2 for all three GLM
designs with GSR; the cases without GSR are illustrated in Supple-
mentary Figure S2.

2.6 | Task-evoked network and individual time
series extraction

After the second-level fMRI statistics were completed, the local max-
ima of the group-level Anti-Pro contrast map were identified using
the SPM 12 (v7219) package (http://www: fil.ion.ucl.ac.uk/spm/).
Consistent with previous literature (Cieslik et al, 2010; Langner
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(a) All-Trials

FIGURE 2 Results of the second-level functional magnetic resonance imaging (FMRI) analysis with different general linear model (GLM)
designs: (a) All-Trials, (b) S-Trials, and (c) Blocks designs (see text for details). All maps illustrate the t-values (scaling is given in the color bar) of the
t tests reflecting the statistically significant voxels across all subjects (prrcerwe < 0.05) of the contrast difference between incompatible and
compatible experimental conditions (Anti > Pro contrast). For visualization, each thresholded statistical map was projected to fs_LR 32k surfaces
(https://www.humanconnectome.org/software/connectome-workbench). Used notations: L/R, left/right hemisphere; All-/S-Trials, experimental
designs with all/successful trials; Blocks, experimental designs modeled by blocks; TFCE, threshold-free cluster enhancement; FWE, family-wise

error.

TABLE 1  MNI peak coordinates (x, y, z) of the local maxima of t-values based on the second-level fMRI statistics of the Anti-Pro contrast with

global signal regression.

All-Trials S-Trials Blocks

Peak X y z t X z t X y z t
LDLPFC —40 22 28 7.2 —44 22 30 7.0 —40 22 28 6.9
RDLPFC 36 30 28 6.7 36 30 28 6.7 36 26 24 59
LPMC —24 -8 48 16.3 —24 -8 48 16.6 —24 -8 48 15.2
RPMC 24 -8 48 111 24 -8 48 114 24 -6 48 10.3
LIPS —-34 —46 38 111 —-34 —46 38 11.0 —-34 —46 38 10.9
RIPS 36 —44 40 10.7 36 —44 40 111 36 —44 40 10.2
LAl -30 18 -10 121 -30 18 -10 11.0 -32 18 -10 11.6
RAI 30 20 -4 13.5 30 20 -4 13.0 30 20 -6 12.6
AMCC -2 8 46 10.4 —4 6 46 10.0 0 8 48 9.7

Note: Used notations: All-/S-Trials, experimental designs with all trials or only successful trials; Blocks, experimental designs modeled by blocks. Bold

values are statistically significant.

Abbreviations: Al, anterior insula; AMCC, anterior midcingulate cortex; DLPFC, dorsolateral prefrontal cortex; IPS, intraparietal sulcus; L/R, left/right; PMC,

premotor cortex.

et al., 2015), we detected 9 regions of the task-evoked brain network
as major constituents: anterior midcingulate cortex (AMCC), bilateral
intraparietal sulcus (IPS), premotor cortex (PMC), dorsolateral prefron-
tal cortex (DLPFC), and anterior insula (Al). These brain regions were
selected to reconstruct the SRC network for the Anti-Pro contrast.
The Montreal Neurological Institute (MNI) peak coordinates of the
second-level statistical maps and the corresponding t-values are given
in Table 1 for all three GLM designs after GSR. Examples of the
spheres (10-mm radius) encircled around the corresponding peaks and

representing the SRC network nodes (regions of interest [ROI]) are
illustrated in Figure 3a.

MNI peak coordinates without GSR can be seen in Supplemen-
tary Table S1.

After SRC networks were reconstructed for the considered condi-
tions of GLM designs and GSR, we focused on the extraction of BOLD
signals of the network nodes reflecting the task-evoked activity of
individual subjects. The steps performed for time series extraction
were the following:
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(a) The SRC network

FIGURE 3

Driving-input E===)

Driving-input E====)

(b) The full-connection model

R.AI

lllustration of the stimulus-response compatibility (SRC) network. (a) An example SRC network with nine nodes for the event-

related general linear model design, where the peak coordinates from Table 1 are encircled by spheres of a 10-mm radius. (b) The corresponding
full-connection model used in dynamic causal modeling (DCM), see text for the node abbreviations. LIPS and RIPS are the driving-input nodes
receiving external (visual) stimuli of the task, while all connections inside the SRC network are bidirectional. Used notations: L/R, left/right;
DLPFC, dorsolateral prefrontal cortex; PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate cortex.

1. The group-level SRC network nodes (group-level node ROls:
spheres of 10 mm radius centered at the peak coordinates from
Table 1, see Figure 3a) were overlaid with thresholded contrast
maps of individual subjects.

2. The local maxima and the corresponding voxel coordinates of the
individual contrasts were searched for in the intersection between
the group-level node ROIs and individual thresholded maps.

3. For each network node, the detected coordinates of the individual
local maxima were selected as centers of individual spheres with a
4-mm radius, and these spheres were then considered as network
nodes for individual subjects (subject-level node ROIs).

4. Within every subject-level node ROI, only voxels masked accord-
ing to the individual thresholded contrast maps (see step 1) were
considered, while the other voxels under the threshold
were excluded. Then, the first eigenvariate was extracted from the
BOLD signals of the masked significant voxels for every individual
network ROI by using FSL/fsImeants and considered as time series

of individual network nodes.

In step 1, we did not use the fixed network ROls as observed at
the group level but overlaid them with the thresholded contrast maps
of individual subjects to ensure that the voxels used to summarize
individual signals represented the task effects rather than irrelevant
noise processes. If there was no overlap between individual thre-
sholded contrast maps and the group-level network ROls, the respec-
tive subject was excluded from further analyses, as an empty
intersection would lead to incomplete network reconstruction and
BOLD extraction for individual subjects. As expected, the selected
kind of significance thresholding of individual contrast maps strongly
influenced the amount of overlap between individual activation clus-
ters and group-level SRC network nodes, with stricter thresholding
reducing the sample size available for subsequent DCM analyses.
Here, we applied two thresholding approaches to the considered con-

trasts for individual subjects with different levels of strictness: voxel-

wise thresholding with uncorrected p < .05 and cluster-wise corrected
p < .05 approaches, which we subsequently refer to as uncorrected
and corrected thresholding, respectively. For the latter approach, clus-
ter-level inference was used to define contiguous voxels of individual
thresholded maps by using FSL/cluster.

For the extraction of individual BOLD signals, four contrasts were
considered in this study as candidates for voxel masking: Anti, Pro,
Anti + Pro, and Anti - Pro. Since the current study was focused on
task-evoked EC within the brain network showing incompatibility
effects, we discarded the Pro contrast. Although we observed strong
group-based incompatibility effects as reflected by high t-values of
the second-level statistics of the Anti-Pro contrast (Table 1 and Fig-
ure 2), individual Anti - Pro contrast maps did not display such a clear
and pronounced activation (an example can be seen in Supplementary
Figure S1). We found that individual Anti - Pro contrasts yielded
rather sparse and weak activation maps after significance thresholding
such that many subjects did not qualify for further analyses as their
individual thresholded Anti - Pro contrast maps failed to overlap with
the group-level SRC network nodes. Aimed at the consideration of
relatively large samples, we then discarded the Anti - Pro contrast
from further analysis. Hence, we applied the thresholding schemes
mentioned above to individual Anti and Anti 4+ Pro contrast maps for
time series extraction for individual subjects (see Supplementary
Figure S1). Therefore, four kinds of thresholded contrast maps were
considered for individual time series extraction in this study: corrected
Anti, corrected Anti + Pro, uncorrected Anti, and uncorrected Anti
+ Pro. Summary information on the participant samples that were
included in subsequent analyses, after subject exclusions discussed
above, can be found in Table 2 for the different contrasts and GLM
designs with GSR (see Supplementary Table S2 for conditions with-
out GSR).

The considered conditions of the data processing can be summa-
rized as follows: (1) two GSR conditions, where the whole-brain global

signal was either regressed out or not (i.e.,, with or without GSR);
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TABLE 2 Sample sizes for different conditions of the data processing with GSR.
All-Trials S-Trials Blocks
Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected
Anti 149/148 210/208 136/136 207/203 160/158 213/205
Anti + Pro 164/164 215/212 149/148 206/201 173/171 216/210

Note: The two subject numbers given in each table cell correspond to the subject samples qualified for BOLD signal extraction for SRC network nodes of
individual subjects/explained variance (EV) criterion of DCM, see Sec. 2.6/Sec. 2.7 for details. Used notations: GSR, global signal regression; All-/S-Trials,
experimental designs with all/successful trials; Blocks, experimental designs modeled by blocks; Anti, incompatible contrast; Anti + Pro, incompatible

+ compatible contrast.

(2) three GLM designs (i.e., All-Trials, S-Trials, and Blocks); (3) two indi-
vidual first-level brain activation contrasts of Anti and Anti + Pro used
for BOLD signal extraction for SRC network nodes of individual sub-
jects; and (4) two thresholding approaches for the individual contrasts
based on either voxel-level uncorrected pyncorr < 0.05 or on cluster-
wise corrected peor < 0.05 thresholding. These conditions resulted in
2x 3 x2x2=24 cases of data processing investigated in this
study.

2.7 | Dynamic causal modeling

The present study evaluated task-evoked EC within the SRC network
via a two-level DCM analysis (Zeidman, Jafarian, Seghier, et al., 2019)
as implemented in SPM 12 (https://www.fil.ion.ucl.ac.uk/spm/). The
DCM approach consists of approximating the neural mass dynamics z

(t) by the following system of differential equations:

dz

= (A+Y BYuct)z+cut)

where the matrices A and B stand for parameters of intrinsic and
task-modulated connectivity, respectively, and u(t) encodes the tim-
ing of the experimental condition k. Matrix C represents the influence
of all external experimental inputs (stimulation) u(t) on the neural
dynamics of the considered ROls.

At the first level, the DCM approach (Friston et al., 2003) was used
to estimate the network-based EC between the nodes of the SRC net-
works using the individual BOLD time series of the corresponding ROIs
of individual subjects. The standard DCM analysis involves several
parameters (Friston et al., 2003): (1) driving input that models external
(e.g., visual) input to the network and forces the activity of the network
nodes, and the input matrix C that defines the immediate influence of
the driving input on the selected network nodes; (2) intrinsic connec-
tivity (matrix A) that denotes task-independent baseline connections
among the nodes; and (3) modulatory connectivity (matrix B;) induced
by the experimental (task-dependent) condition decoded by variable u;
in the above equation and the respective cognitive processes. We also
note that the u-variables were not mean-centered in the model, which
allows us to interpret the A matrix as an intrinsic connectivity matrix,

whereas all modulatory effects on EC due to experimental conditions

are summarized in matrix B, as mentioned above (Zeidman, Jafarian,
Seghier, et al., 2019).

One may observe that GLM designs (event-related or block-
based) influence the activation contrast estimation and also the
formulation of driving and modulatory inputs in the DCM model spec-
ification. For a consistent formulation of the driving and modulatory
task-dependent inputs to DCM, we followed the same formulation
style throughout the GLM design, time series extraction for individual
subjects, and DCM analysis (Supplementary Figure S3). For example,
if the condition of the event-related design and Anti contrast were
considered for fMRI analysis and BOLD signal extraction, the driving
and modulatory stimuli of DCM would also be event-related, and the
task-evoked M-EC would be driven by Anti trials only.

For investigating the impact of data processing parameters on
task-evoked EC within the SRC network, a full-connection model was
considered to be a good candidate (Tuominen et al., 2023). In the SRC
network considered here, the IPS nodes were considered to act as
hubs of sensorimotor integration during visually guided actions
(Anderson et al., 2014), and the bilateral IPS nodes were thus selected
as the driving-input nodes receiving external (visual) input (Figure 3b).
To compare the impact of the data processing conditions introduced
above on the task-evoked EC, we considered 24 DCM cases for every
combination of data processing conditions mentioned above.

During the first-level DCM analysis, where EC was estimated for
individual subjects, we also evaluated the quality of the modeling and
calculated the fraction of variance of empirical BOLD signals that can
be explained by the variance of the simulated BOLD signals generated
by the optimized models (i.e., for optimized connectivity matrices
aimed at the best fit between empirical and simulated BOLD signals).
In line with the literature (Zeidman, Jafarian, Corbin, et al., 2019), we
applied a 10% threshold of the explained variance as a criterion for
our subjects to qualify for DCM analysis. As a result, up to nine sub-
jects had to be excluded from further analysis from those participants
already qualified for BOLD extraction from the SRC network nodes of
individual subjects, with the exact number depending on the selected
data processing condition (see Table 2 and Supplementary Table S2).

For the second-level DCM analysis, a parametric empirical Bayes
(PEB) framework (Zeidman, Jafarian, Seghier, et al., 2019) was used to
estimate the DCM parameters for group-level EC. The PEB model can
decompose the subject-wise variability of EC into group effects and

additive random effects (Friston et al., 2016). We adopted a two-step
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PEB scheme involving single-group and between-group analyses
(Zeidman, Jafarian, Seghier, et al., 2019). In the first step, we used the
single-group PEB analysis to investigate the group-mean EC (com-
monalities) for each processing condition. In the second step, we
applied the between-group PEB analysis to analyze the differences of
EC at the group level between the considered data processing condi-
tions (i.e., the EC differences resulted from the application of any two
different data processing conditions to the considered subject cohort).
For both single- and between-group PEB analyses, a 95% posterior
probability (PP > 95%) threshold was taken as a strong evidence
threshold rather than a statistical p-value (Zeidman, Jafarian, Seghier,
etal, 2019).

In parallel to PEB analyses, we also compared the relative differ-
ence in EC parameter certainty between any two processing condi-
tions using Bayesian data comparison (BDC) as implemented in
SPM12 v7771 (Zeidman, Kazan, Todd, et al., 2019). In contrast to
Bayesian model selection, BDC allows for a systematic comparison
between different datasets, such as those obtained from different
data processing approaches as in this study. BDC analysis helps to
make statistical inferences about the parameter certainty (reduction in
uncertainty) of coupling parameters estimated for a given data set
based on the relative entropy (Zeidman, Kazan, Todd, et al., 2019). A
difference in the entropy between two data sets in the range between
1.1 and 3 nats (natural units of information) and between 3 and 5 nats
can be considered as “positive evidence” and “strong evidence,”
respectively, that the estimated parameters are more certain for one
data set than for the other. A difference greater than 5 nats is indica-
tive of “very strong evidence” (Tuominen et al, 2023; Zeidman,
Kazan, Todd, et al., 2019). Based on this approach, we performed
BDC analyses between two considered conditions with common sub-
jects and extracted the relative differences in parameter certainty
between them.

In our study, we focused on the impact of data processing condi-
tions on the task-evoked M-EC (matrix B) within the SRC network.
Based on the single-group PEB analysis, we observed the group-mean
task-evoked M-EC for all conditions and identified varied EC patterns
corresponding to different selections of data processing parameters.
A systematic comparison was then performed directly between data

processing conditions via between-group PEB analysis.

3 | RESULTS

In this study, we investigated the task-evoked M-EC (matrix B)
depending on the condition of the data processing parameters (see
Section 2). We considered 24 data processing conditions involving
two GSR conditions, three GLM designs, two activation contrasts, and
two significance thresholding methods. We investigated the impact of
these conditions on the SRC network localization, analysis sample
size, DCM model fits, task-evoked M-EC of matrix B, and its certainty
as we illustrate below. Briefly, we observed that (1) variation of the
data processing parameters resulted in varied group-mean EC pat-
terns; (2) the GLM designs and activation contrasts largely influence

EC strength and parameter certainty; and (3) GSR and significance
thresholding have a rather little impact on EC.

3.1 | Task-evoked network localization

Based on the second-level fMRI analysis, the brain activation maps
were obtained at the group level (Figure 2 and Supplementary
Figure S2), and the peak coordinates of the SRC network nodes were
determined (Table 1 and Supplementary Table S1). The data proces-
sing conditions of GLM design (All-Trials, S-Trials, and Blocks) and
GSR (with/without) are relevant at this stage, and the remaining con-
ditions of the activation contrast and significance thresholding will be
applicable later at the time series extraction for the network nodes of
individual subjects. When applying GSR, the results of the second-
level fMRI analysis were very similar across the three GLM designs
with very high volumetric overlap as indicated by a large Dice coeffi-
cient D (Taha & Hanbury, 2015) (Supplementary Table S3). In particu-
lar, the overlap in the brain activation between the All-Trials and
Blocks cases was comparable with the overlap between All-Trials
and S-Trials, with D = 0.94, respectively. We did, however, detect
small differences in peak coordinates between GLM design types for
the L.DLPFC, R.DLPFC, R.PMC, L.Al, R.Al, and AMCC nodes (between
the All-/S-Trials and Blocks) and the L.DLPFC and AMCC nodes
(between All-Trials and S-Trials). The factor GSR (i.e., with/without
GSR) also showed a weak influence on the peak coordinates of the
SRC network nodes: variations were observed in the R.PMC and R.Al
nodes in Blocks, R.PMC, L.Al, and AMCC nodes in All-Trials, and L.
DLPFC, L.Al, and AMCC nodes in S-Trials (compare Table 1 and Sup-
plementary Table S1).

3.2 | Analysis samples

Next, we examined the effects of processing conditions on the sample
size of subjects available for subsequent DCM analysis. Different sub-
ject samples were qualified for individual time series extraction under
different conditions of data processing. The type of significance
thresholding (see Section 2) was found to be most relevant at this
stage, as compared to the other three processing parameters consid-
ered. The sizes of the qualified subject samples are listed in Table 2
(left-side numbers in the table cells), where the large impact of the sig-
nificance thresholding can be seen. In many cases, the cluster-cor-
rected thresholding entailed excluding 50 more subjects than the
uncorrected thresholding, which corresponded to more than 25% of
the relative sample reduction. The choice of contrast (i.e., Anti
vs. Anti + Pro) only slightly influenced the sample size in the range of
15 subjects. The factor of GLM design also weakly influenced the
sample size of the qualified (or excluded) subjects, although the rela-
tive difference here reached up to 15% when comparing Blocks and
S-Trials designs (Table 2). The Blocks design entailed the largest sam-
ple qualified for time series extraction and subsequent DCM analyses,

whereas the S-Trials design led to the smallest sample eligible for
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further analyses. We replicated the above findings for the case with-
out GSR (Supplementary Table S2).

3.3 | DCM model fits

The goodness-of-fit of DCM can be evaluated by the fraction of vari-
ance of empirical BOLD signals that can be explained by the variance
of the simulated BOLD signals generated by the model. Therefore, we
calculated the fractions of the explained variance for all subjects quali-
fied for BOLD signal extraction. We found that the DCM-simulated
BOLD signals can on average account for about 25% of the empirical
variance (Supplementary Table S4). Only a few subjects (0-8) fell
below 10% (Table 2). Varying the GSR condition (for other fixed con-
ditions) also weakly affected the sample size with the differences in
the range of nine subjects (Supplementary Table S2). Here, the differ-
ences between conditions were found to be statistically insignificant
after multiple-comparison corrections, and the modeling performed
well for all conditions and most subjects.

3.4 | Group-mean EC estimation
We estimated the averaged task-evoked EC for considered data pro-
cessing conditions (24 conditions) at the group level using the single-
group PEB analysis. We found that selecting one or another setup of
the data processing influenced the results of DCM calculations and
led to different group-mean task-evoked EC values. We first illustrate
this by counting the numbers of evident edges (PP > 95%, see Sec-
tion 2) of task-evoked EC without counting self-connections (Table 3).
The edge number (PP > 95%) of the task-evoked M-EC (matrix B) was
discovered to be varied depending on the selected approach of data
processing. For example, the number of evident edges within the SRC
network (in matrix B) may range from 42 (S-Trials, uncorrected Anti
+ Pro) to 13 (Blocks, corrected Anti), which corresponds to a variation
of the fraction of edges of the task-evoked M-EC of the SRC network
from 58% to 18%, respectively (Table 3 and Figure 4).

The choice of GLM design resulted in very different task-evoked
EC patterns, where the task-evoked M-EC of the Blocks-design is
much sparser than those of All-Trials and S-Trials designs (Figure 4
and Supplementary Figure S4). The uncorrected significance

thresholding led to a denser task-evoked EC compared with the cor-
rected condition for the Anti activation contrast. The Anti + Pro con-
trast resulted in more evident edges of the task-evoked EC than the
Anti contrast did, except for the uncorrected All-Trials-condition.
Without GSR application, small differences in task-evoked EC were
observed as compared to the case when GSR was applied (Figure 4,
Table 3, Supplementary Figure S4, and Supplementary Table S5). Nev-
ertheless, we corroborated the above conclusions also for the case
without GSR.

3.5 | Between-group differences in task-
evoked EC

To evaluate the differences in the task-evoked M-EC (matrix B)
between varied conditions of a given data processing parameter (i.e.,
All-Trials vs. Blocks; with-GSR vs. without-GSR; corrected
vs. uncorrected thresholding; Anti + Pro vs. Anti contrast), a
between-group PEB analysis (see Section 2) was applied. We found
that the considered data processing conditions of the GLM design and
activation contrast led to strongly different task-evoked EC values
(Figures 5 and 6, and Supplementary Figures S5 and Sé), while EC was
little affected by GSR application and thresholding approach (Supple-
mentary Figures S7 and S8). Moreover, some M-EC edges were dis-
covered to be consistently present when combining group-mean PEB
and between-group PEB analyses (Supplementary Figure S9). For
example, four edges were observed to be stable between conditions
of All-Trials and Block GLM designs, while 10 EC edges were found to

be stable between conditions of Anti + Pro and Anti contrasts.

3.6 | Differences between block- and event-
related GLM designs

We observed strongly different patterns of the task-evoked M-EC
(matrix B) between event-related (All-Trials and S-Trials) and block-
based GLM (Figure 5 for All-Trials vs. Blocks, Supplementary
Figure S5 for S-Trials vs. Blocks). All-Trials design showed stronger
positive modulation of the connections from the network nodes (L.IPS
and R.IPS) receiving external (visual) driving inputs to the rest of the

network. At the same time, these driving-input nodes received

TABLE 3 Numbers of the group-level evident edges showing a high posterior probability of task-evoked M-EC (matrix B) within the SRC
network.
All-Trials S-Trials Blocks
Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected
Anti 31 36 35 39 13 15
Anti + Pro 38 39 37 42 33 32

Note: All task-evoked EC exceeded the 95% posterior probability threshold (excluding self-connections) and was calculated by the single-group PEB
analysis for the considered conditions of the data processing with GSR (see Section 2 for details and notations). Used notations: SRC, stimulus-response
compatibility; All-/S-Trials, experimental designs with all/successful trials; Blocks, experimental designs modeled by blocks.
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stronger negative modulation of EC from the other network nodes for
the All-Trials design than for the Blocks design (Figure 5). The men-
tioned effects hold for both contrasts considered (Anti and Anti
+ Pro) and significance thresholding (corrected/uncorrected) condi-
tions. However, the matrices of the differences (All-Trials vs. Blocks)
of the task-evoked EC are sparser for the Anti contrast than for the
Anti + Pro contrast, which indicates that more edges were strongly
affected for the latter contrast by changing the GLM design between
event-related and block-based ones. The Anti + Pro contrast may
thus be considered as being more sensitive to the type of GLM design
than is the Anti contrast (Figure 5). Analogously, by comparing the

Corrected.Anti Corrected.Anti+Pro

corrected and uncorrected thresholding used for individual BOLD
extraction we found that the former (corrected) case appeared to be
somewhat less sensitive to the selection of the GLM design (Figure 5).

Similar conclusions can be drawn from the comparison between
S-Trials and Blocks GLM designs, as illustrated in Supplementary
Figure S5. Indeed, S-Trails and Blocks designs resulted in strongly dif-
ferent task-evoked M-EC, where the Anti + Pro contrast is more sen-
sitive to the variation of the GLM design than is the Anti contrast.
Likewise, the uncorrected thresholding might be more sensitive to the
GLM design for the Anti contrast, which is, however, not apparent for
the Anti 4 Pro case (Supplementary Figure S5). Finally, we found no

Uncorrected.Anti Uncorrected.Anti+Pro
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FIGURE 5

Comparison of task-evoked modulation of effective connectivity (M-EC) (matrix B) between the considered general linear model

(GLM) designs (All-Trials vs. Blocks). The results of PEB analyses at the group level are illustrated for the differences of B matrices, where the
latter of Block designs was subtracted from that of All-Trials designs (All-Trials-Blocks). The other considered conditions of the data processing
(contrast and thresholding) are indicated in the titles of the plots. In the circular network plots (upper row), the evident EC edges (PP > 95%) of
the difference All-Trials-Blocks are depicted. The lower (black) and the upper (green) network nodes correspond to the sources (“from”) and

destinations (“to”) of the illustrated directed connectivity, respectively (see

Section 2 for the nodes' abbreviations). The values of the M-EC are

reflected by color as indicated in the color bar. In the matrix plots (lower row), EC values are also depicted by color, and the values above

PP > 95% threshold are indicated by numbers in the corresponding cells. The network nodes indicated in the horizontal and vertical axes
correspond to the sources (“from”) and destinations (“to”) of the directed connectivity, respectively. Used notations: All-/S-Trials, experimental
designs with all/successful trials; Blocks, experimental designs modeled by blocks; Anti, incompatible contrast; Anti + Pro, incompatible +
compatible contrast; L/R, left/right; DLPFC, dorsolateral prefrontal cortex; PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula;

AMCC, anterior midcingulate cortex.

FIGURE 4 Group-mean task-evoked M-EC (matrix B) for the considered conditions of the data processing indicated on the top and left sides
of the circular plots with global signal regression (GSR) (see Section 2 for details and notations). The lower (black) and the upper (green) network
nodes correspond to the sources (“from”) and destinations (“to”) of the illustrated directed connectivity, respectively. The values of the

connectivity differences are reflected by color as indicated in the color bar.

Only the M-EC (PP > 95%) was displayed by connections in the

circular maps. Used notations: All-/S-Trials, experimental designs with all/successful trials; Blocks, experimental designs modeled by blocks; Anti,
incompatible contrast; Anti + Pro, incompatible + compatible contrast; L/R, left/right; DLPFC, dorsolateral prefrontal cortex; PMC, premotor
cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate cortex.
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FIGURE 6 Comparison of task-evoked M-EC (matrix B) between the considered contrasts Anti 4 Pro and Anti. The results of parametric
empirical Bayes (PEB) analyses at the group level are illustrated for the differences of B matrices, where the latter of the Anti contrast was
subtracted from that of Anti + Pro-contrast (Anti + Pro — Anti). The other considered conditions of the data processing (GLM design and
thresholding) are indicated in the titles of the plots. In the circular network plots (upper row), the evident EC edges (PP > 95%) of the difference
Anti + Pro — Anti are depicted. The lower (black) and the upper (green) network nodes correspond to the sources (“from”) and destinations (“to”)
of the illustrated directed connectivity, respectively. The values of the modulatory connectivity are reflected by color as indicated in the color bar.
In the matrix plots (lower row), EC values are also depicted by color, and the values above PP > 95% threshold are indicated by numbers in the
corresponding cells. The network nodes indicated in the horizontal and vertical axes correspond to the sources (“from”) and destinations (“to”) of
the directed connectivity, respectively. Used notations: All-/S-Trials, experimental designs with all/successful trials; Blocks, experimental designs
modeled by blocks; Anti, incompatible contrast; Anti + Pro, incompatible + compatible contrast; L/R, left/right; DLPFC, dorsolateral prefrontal
cortex; PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate cortex.

strong differences in group-level task-evoked EC between All-Trials
and S-Trials GLM designs (Supplementary Figure Sé). This is in con-
trast to the differences observed in the group-mean EC (Figure 4),
where the All-Trials and S-Trials GLM designs exhibited different con-
nectivity within the SRC network. However, a detailed statistical anal-
ysis using the between-group PEB analysis did not confirm the

differential impact of these conditions on task-evoked EC.

3.7 |
contrasts

Impact of the task-evoked activation

We observed strong effects of the considered contrasts (Anti and
Anti 4+ Pro) on task-evoked EC in the between-group PEB analysis
(Figure 6). The main differences in EC for these contrasts were found
in the edges coming from the rest of the network nodes to the driv-
ing-input nodes (L.IPS and R.IPS). This phenomenon seems to be most

pronounced for the Blocks design, whereas only one edge was
affected for the S-Trials design, which comes from the R.IPS node to
the “internal” node R.DLPFC (Figure 6, leftmost column). The Anti
+ Pro and Anti contrasts led to different modulations between driv-
ing-input nodes (L.IPS and R.IPS) and the rest of the network (Fig-
ure 6). The Blocks design appears to be more sensitive to the
selection of one or another contrast, whereas the event-related
design was less affected by the contrast. The task-evoked EC of the
“internal” edges within the SRC network (i.e., excluding the input-
driven nodes L.IPS and R.IPS) appeared to be not affected by the con-
trast variability for all other data processing conditions considered.

3.8 | Impact of GSR and significance thresholding

Different significance thresholding and GSR applications resulted in
varied patterns of evident edges (PP > 95%) of group-mean task-
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evoked EC as indicated by the single-group PEB analysis (Figure 4 and
Supplementary Figure S4). However, there were no strong differences
in the task-evoked EC when the between-group PEB analysis was
performed for a more sophisticated comparison between the condi-
tions of the significance thresholding and GSR (Supplementary
Figures S7 and S8). We therefore conclude that the task-evoked EC
can be stable with respect to variations of the significance threshold-
ing at the extraction of individual BOLD signals and the application
of GSR.

3.9 |
certainty

Between-group differences in parameter

The between-group BDC analyses demonstrated very strong evidence
for differences in parameter certainty between conditions of GLM
designs (Figure 7 and Supplementary Table S6) and between activa-
tion contrasts (Figure 7 and Supplementary Table S7). Block designs
showed much higher parameter certainty than the event-related
designs (differences from 58 to 67 nats), but there was practically no
evidence for a difference in parameter certainty between All-Trials
and S-Trials cases (<1.1 nats except for the corrected Anti + Pro con-
trast with 2.3 nats). The Anti contrast displayed higher parameter cer-
tainty (from 7 to 11 nats) than the Anti + Pro contrast. No evidence
was obtained for the certainty differences between GSR conditions
(Supplementary Table S8) and between significance thresholding con-
ditions (Supplementary Table S9), except for some evidence for the
corrected Anti + Pro contrast in the All-/S-Trials case between GSR
conditions (difference of 2.3 and 2.6 nats).

(a) Relative differences between All-Trials and Blocks
GLM designs (Block > Event)
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4 | DISCUSSION

Our study examined the impact of several important data processing
parameters on task-evoked M-EC within a brain network involved in
solving spatial incompatibility-induced response conflicts. In total, we
considered 24 data processing conditions resulting from the combina-
tion of four factors: GSR, GLM design, activation contrast, and signifi-
cance thresholding. In this study, we used the full-connection model
(i.e., with all connections between network nodes being equally
admissible) to evaluate the EC estimates resulting from different data
processing conditions, which ensured the same initial conditions for
each DCM analysis (Tuominen et al., 2023). Furthermore, different
data processing approaches investigated here can lead to altered time
series even for the same subject, which might thus result in different
optimal models for different cases. We therefore did not perform an
exhaustive DCM model selection among potential SRC network topol-
ogies (by removal of specific connections) to infer a sparser model
using Bayesian model reduction and selection approaches (Friston
et al., 2016; Stephan et al., 2009). Instead, EC was calculated for the
fully connected model of a network with nine nodes and then com-
pared between different data processing conditions. Our study
applied a two-level DCM analysis that involved single- and between-
group PEB analyses as well as BDC. The single-group PEB analysis
showed that task-evoked EC was sensitive to different choices of the
considered data processing. The between-group PEB analysis indi-
cated that varying the type of GLM design and activation contrast
may lead to strongly different task-evoked EC and parameter cer-
tainty, whereas the connectivity and parameter certainty were little

affected by GSR and significance thresholding.

(b) Relative differences between Anti and Anti+Pro (Anti

> Anti+Pro)
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FIGURE 7 The parameter certainty of Bayesian data comparison (BDC) for two specific conditions. In panels (a) and (b), we present the BDC
comparisons separately for (Block > All-Trials) and (Anti > Anti 4 Pro), respectively. The Supplementary materials provide additional comparisons
for conditions such as S-Trials > Block and Anti > Anti + Pro of S-Trials (Supplementary Table Sé and S7). The bar represents the relative

differences in parameter certainty (negative entropy) between the conditions. Notably, the Block design exhibits a significantly higher parameter
certainty compared to the All-/S-Trials design. Similarly, the Anti contrast demonstrates a notably stronger parameter certainty in comparison to

the Anti + Pro contrast.
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4.1 | Impact of GLM design

The fMRI analyses displayed consistent task-evoked activation pat-
terns (Figure 2 and Table 1) across considered GLM designs, while the
two event-related designs showed slightly higher peaks of t-values.
We note here that the employed event-related GLM resolved the
stimulus laterality of the experimental setup (Supplementary
Figure S1), which cannot be accomplished for the block-based design.
We however confirmed that the event-related GLM without modeling
the laterality condition resulted in practically the same results in the
second-level analysis.

The single-group PEB analysis showed that event-related designs
had a denser task-evoked M-EC than the block-based design (Figure 4
and Table 3), which is consistently manifested in the interactive con-
nections between driving-input nodes and the “internal” nodes of the
network. These connections may indicate that the experimental visual
inputs could effectively exert influences on “internal” nodes (Friston
et al., 2003). Although the event-related GLM designs showed more
strongly evident (with PP > 95%) modulatory connections than the
block-based design, the minimal number of evident EC edges in
the latter case can still reach 18% (compared to 58% for the event-
related case) of the network capacity with 13 connections in the task-
evoked modulatory component of EC (matrix B) from 72 possible
edges without self-connections (Table 3). This may suggest that both
types of GLM design can evoke M-EC within the SRC network driven
by task stimuli, although EC is more responsive to the task-induced
modulations for the even-related GLM.

The between-group PEB analysis further showed that strongly
altered task-evoked EC was associated with variations of GLM
design. Here, the event-related designs in most cases showed stron-
ger positive and negative connections than did the block-based
design at the group level and thus stronger responses to the experi-
ment (Figure 5). The strongly different edges mostly were the inter-
active connections between the driving-input and “internal” nodes.
This result agrees with other findings from the literature that experi-
mental manipulations can perturb the brain's neural activities and EC
parameters (Friston et al., 2003; Kahan & Foltynie, 2013). In contrast
to our study, previous research (Daunizeau et al., 2011) attempted to
find an optimized GLM design for a better model selection in DCM
using the Laplace-Chernoff risk, that is, a measure of model selection
error rates. In this case, within-subject experimental sessions were
conducted with a block (consecutive identical trials) and an event-
related (randomized trials) design, and block-based and event-related
Laplace-Chernoff risks were compared. Although the experimental
sessions included different trial-presenting paradigms, and task-
evoked EC values were not compared with each other, the reported
findings suggest that the type of GLM design can impact the DCM
analyses, at least for the model selection (Daunizeau et al., 2011).
The GLM design was also found to impact functional localizations in
task-evoked activation studies (Bihler et al., 2008; Tie et al., 2009),
when the two GLM design types were compared directly. In particu-
lar, the event-related design was found to lead to stronger activation
and functional localization in putative language areas (Tie
et al., 2009), while the block-based design exhibited more activation

in nonspecific areas (Bihler et al., 2008). The difference may have
been caused by different shapes of the hemodynamic responses,
when different GLM models were convolved with the HRF (Mechelli,
Henson, et al., 2003; Mechelli, Price, et al., 2003). Here, the variance
of the BOLD signal was better explained by GLM models of event-
related design, where the predicted hemodynamic responses reached
the peak earlier but returned to baseline later (Mechelli, Henson,
et al., 2003).

Our study analyzed data collected during an SRC task using a
mixed block/event experimental protocol (Fitts & Deininger, 1954;
Petersen & Dubis, 2012), which presents stimuli in a stochastic man-
ner within blocks of trials with the same task set (i.e., respond with
ipsilateral or contralateral button presses, respectively). On the one
hand, this protocol is fair to compare both block-based and event-
related GLMs. On the other hand, it reduced the anticipation effects
and was able to extract transient activities in event-related designs
(Dosenbach et al., 2006). As mentioned above, the event-related
design went along with stronger positive and negative connections
from the driving-input nodes to “internal” nodes and backward,
respectively, than what the block-based design did. When examining
the averaged absolute intensity of task-evoked M-EC (PP > 95%) for
each condition (Supplementary Table S10), both All-Trials and S-Trials
designs showed higher connectivity intensity than Blocks designs. The
driving-input connections may reflect the change rate of neural
responses induced by the task stimuli presented (Kahan & Folty-
nie, 2013; Zeidman, Jafarian, Corbin, et al., 2019; Zeidman, Jafarian,
Seghier, et al., 2019). The stronger positive and negative connections
involving driving-input nodes may suggest a higher responsivity of EC
to task modulations in the event-related designs than in the block-
based design. The EC sensitivity to the task-induced modulations can
be enhanced/reduced by other parameters of the data processing (see
Table 3 and Figure 4). For example, EC for the block-based design
appeared to be more responsive to the task-evoked modulations for
the Anti + Pro contrast than for the Anti contrast.

While small numerical differences in M-EC values were observed
at the group level between All-Trials and S-Trials designs (Table 3 and
Figure 4), no strong difference was detected by the two-group PEB
comparisons (Supplementary Figure S6). Comparing these GLM
designs aimed at revealing a possible impact of including error trials in
the analyses of task-evoked fMRI data and EC. Usually, incorrect trials
are regressed out or excluded from consideration before analysis (Ma
et al., 2014; Zeidman, Jafarian, Corbin, et al., 2019), because incorrect
trials are supposed to bring additional noise to the task-driven data
and may thus negatively affect the results. The small difference in EC
between the All-Trials and S-Trials designs observed in our study
might be due to the low rate of error trials of about 3% (Supplemen-
tary Figure S10) and the strict threshold for EC parame-
ters (PP > 95%).

Consistent with our findings from connectivity strength compari-
sons, the BDC analyses also suggested very strong differences (nats
>5) between event-related and block-based designs, but no difference
between the different cases of event-related designs (All-Trials vs. S-
Trials). The parameter certainty of BDC reflects the confidence that
we can place into estimated connections from a given model and is
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thought to be positively correlated to the signal-to-noise ratio (Zeid-
man, Kazan, Todd, et al., 2019). The stronger parameter certainty in
the block-based design may thus indicate a greater stability of EC esti-
mates than obtained with event-related designs. We also verified that
the event-related design resulted in broader posterior distributions of
the M-EC parameters, which, together with lower certainty, may indi-
cate an enhanced variability of the parameters and noise in the event-
related modeling approach. Nevertheless, it is interesting to observe
that the event-related GLM and DCM designs led to a larger number
of strongly evident (with PP > 95%) M-EC parameters and stronger
connectivity intensity than did the block-based design (Figure 4). In
our DCM model specification, block-based designs included a longer
time period of a constant experimental condition, which may reduce
the effect of data variability and noise and may thus contribute to
higher confidence about parameter estimates. On the other hand,
fewer evident connections and smaller total modulated connectivity
for the block-based GLM design may also indicate a reduced sensitiv-
ity of this condition to the task-evoked modulation of neuronal
dynamics and connectivity as compared to the event-related designs.
Furthermore, different GLM designs may better reflect different
cognitive substrates, where the event-related and block-based designs
can be more sensitive to transient and sustained brain activity, respec-
tively (Petersen & Dubis, 2012; Visscher et al., 2003). The mentioned
differences are, however, hardly reflected in the results of the neuro-
imaging analyses performed before DCM. For example, the brain acti-
vation maps strongly overlap for different processing conditions as
reflected by large Dice coefficients and small differences in a few peak
activation coordinates and their t-values (Table 1, and Supplementary
Tables S1 and S3). The task-evoked brain activity extracted for indi-
vidual subjects and used in DCM also exhibited a high similarity across
different processing conditions. For example, the correlation between
the BOLD signal time series of the event-related and block-based
designs is larger than 0.9 (Supplementary Figure S11). The DCM was
fitted equally well to these BOLD signals such that we cannot report
any significant difference in the variance of the empirical data
explained by DCM (Supplementary Table S4). Nevertheless, we found
noticeably different task-evoked EC estimates for different data pro-
cessing conditions, in particular, between even-related and block-
based GLM and DCM designs, which makes the reported results
intriguing. This may indicate an enhanced sensitivity of the DCM
approach, which seems to have picked up rather subtle differences in
the empirical brain activation data and DCM design (event-related
and block-based) and translated them to substantial EC differences.
The sensitivity of the DCM approach to the choice of design
(event-related vs. block-based) was confirmed by a brief examination
of the M-EC obtained for the same BOLD time series extracted for
individual subjects in the block-based GLM case for the uncorrected
Anti + Pro contrast (Supplementary Figure S12). We again observed
very different connectivity patterns for the event-related and block-
based DCM designs, which resemble the connectivity patterns illus-
trated in Supplementary Figure S4 for the group-mean M-EC and their
differences in Figure 5. The same applies to the differences in parame-

ter certainty as calculated by BDC (compare Figure 7a to

Supplementary Figure $12d), although the input data in the latter case
was the same, where we used the same BOLD time series but differ-
ent DCM designs.

Jointly considering our findings regarding connectivity strength
and parameter certainty, it is rather difficult to firmly conclude what
type of design may (generally) be better for DCM analysis if both
designs are equally reasonable to choose depending on the posed
neuroscientific questions of the study. However, we systematically
illustrated how different EC results can be for different GLM and
DCM designs, highlighting the need for a sound rationale behind this
impactful choice for any DCM analysis.

4.2 | Impact of activation contrasts

The PEB analyses showed strong differences in task-evoked EC
between the Anti and Anti + Pro contrasts. The BDC analyses also
revealed stronger parameter certainty (from 7.0 to 11.1 nats) for the
Anti contrast relative to the Anti + Pro contrast (Supplementary
Table S7). The Anti contrast reflects brain activation in response to
incompatible trials, while the Anti + Pro contrast reflects brain
responses to both incompatible and compatible trials. Psychologically,
both Anti and Anti + Pro contrasts reflect a range of SRC task-related
processes that comprise stimulus identification, attentional orienta-
tion, response selection including inhibition of the inadequate
response tendency elicited in incompatible trials, and response execu-
tion (Cieslik et al., 2010). In contrast to the Anti + Pro sum contrast,
the Anti contrast is more specifically focused on incompatibility-
related processes (Munoz & Everling, 2004; Nee et al., 2007; Reuter-
Lorenz & Park, 2010). M-EC is context-dependent, and the selection
of contrast in the DCM model can reflect the dynamics corresponding
to specific cognitive or executive processes (Kuhnke et al., 2021). In
our case, Anti + Pro and Anti contrasts showed different M-EC pat-
terns in group-mean EC (Figure 4 and supplementary Figure S4). We
further found that the Anti + Pro condition featured a stronger (posi-
tive and negative) modulatory connectivity between the driving-input
and “internal” nodes than did the Anti condition (Figure 6). Here, the
sensitivity of EC to the contrast selection was additionally influenced
by the type of GLM design, where the block-based condition
appeared to be more sensitive to the difference between Anti and
Anti 4+ Pro contrasts. The Anti + Pro contrast, in turn, featured an
enhanced sensitivity of task-evoked EC to the type of GLM design,
especially when comparing event-related and block-based designs
(see Figures 4 and 5). The difference in parameter certainty might be
related to differences in signal variability between the two contrasts.
As discussed above, the Anti + Pro contrast was assumed to reflect
the averaged level of cognitive demands across all experimental con-
ditions including compatible and incompatible cases (Figure 1),
whereas considering the Anti contrast only was supposed to reflect
states of higher cognitive demand arising from the need to solve
incompatibility-induced response conflicts. We may suspect that the
inclusion of the Pro contrast may lead to overall stronger data variabil-

ity and, thereby, lower certainty of the connectivity parameters.
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43 | GSR effects

We observed only small effects on the task-evoked brain activation
and group-level EC induced by the application of GSR (Supplementary
Figures S2 and S4). Accordingly, between-group PEB comparisons
found no strong differences in EC between the cases with/without
GSR (Supplementary Figure S8). The global signal is supposed to cap-
ture physiological and motion-related noise (Liu et al., 2017; Power
et al., 2017) and the removal of the global signal is known to strongly
influence resting-state FC (Anderson et al., 2011; Fox et al., 2009;
Murphy et al., 2009; Varikuti et al., 2017). However, regarding EC, a
recent study (Almgren et al., 2020) reported only minor differences in
within-network EC estimates during the resting state before and after
GSR. Our findings also agree with earlier studies in which the resting-
state FC retained its significant coupling (Chang et al., 2009; Weissen-
bacher et al., 2009), and task-evoked FC between functionally related
areas was not substantially affected (Mascali et al., 2021) when GSR
was applied. We also consistently observed a minor difference in
parameter certainty (from —2.6 to 1.6 nats) between the conditions
with and without GSR (Supplementary Table S8). However, the effect
of the global signal may be influenced by other factors such as inten-
sity normalization and spatial normalization methods. For instance,
some studies found that signal intensity normalization and GSR may
share a similar effect on fMRI data (Liu et al., 2017; Smith, 2004).
Although they are two distinct preprocessing steps, the intensity nor-
malization scales the signal to a common value that may potentially
remove global signals as GSR is assumed to do. In the present study,
we scaled images to a common value of 10,000, which may influence
the effect of GSR. It might be interesting to see if other data proces-
sing steps, for example, linear and nonlinear spatial normalization can
influence the impact of GSR on EC. Nevertheless, we observed a simi-
larly weak impact of GSR in line with the results of (Almgren
et al., 2020; Mascali et al., 2021), who used different data processing
pipelines. However, the effect of the global signal in task-evoked fMRI
still needs more specific and deeper investigation.

44 | Thresholding effects

The significance thresholding of the activation contrast maps influ-
enced both the extraction of the individual regional BOLD signals and
subject qualification for such a signal extraction. It was thus suspected
to be an important parameter also for the estimation of task-evoked
EC. Indeed, the choice of corrected versus uncorrected thresholding
strongly influenced the size of the sample available for subsequent
DCM analyses (see Table 2). Moreover, the density of the modulatory
components (matrix B) of task-evoked EC was altered depending on
the thresholding, especially for the Anti contrast, where the uncor-
rected thresholding led to more evident EC edges (Table 3 and Fig-
ure 4). Although sufficient sample sizes are important for the
robustness and statistical power of neuroimaging analyses (Button
et al., 2013), the proper sample size is not commonly determined (Guo
et al.,, 2014). At some point, it has been suggested that for reaching
sufficient statistical power, a sample size of 24 subjects would be

required for fMRI activation studies (Desmond & Glover, 2002), while
a sample size of at least 20 subjects was suggested for DCM studies
(Thirion et al., 2007). However, these numbers depend on the effect
size of interest, which in turn may be influenced by many factors
including tasks, acquisition parameters, and participants (Goulden
et al., 2012). From the side of reproducibility, the typical sample size
(n = 100) may reach a modest degree of replicability for task fMRI
studies (Turner et al., 2018), although the sample size for high repro-
ducibility varied across different tasks (Bossier et al., 2020).

The impact of sample size on EC estimation was not investigated
in our study, and we included samples of ~150 to 220 subjects,
mainly depending on the thresholding approach. The variation of
~25% of subjects was found to have little impact on task-evoked EC
according to the between-group PEB analysis. The first reason for this
insensitivity may be the high probability threshold (PP > 95%) of our
PEB analysis. We observed numerically different densities of group-
mean EC in conditions of corrected versus uncorrected contrasts, but
the difference was not large enough for direct comparisons via PEB
analysis to become strong (see Supplementary Figure S7). A second
reason may be related to the thresholding itself. During the SRC net-
work reconstructions for individual subjects, the cluster-corrected
(vs. uncorrected) thresholding resulted in fewer significant voxels,
leading to empty network nodes when overlapping individual maps
with the ROIs obtained from the second-level analysis and, thereby,
to subject disqualification for BOLD extraction. Different thresholding
may not affect the voxels in the vicinity of peak coordinates, and the
BOLD signals extracted for the subject samples qualified for both cor-
rected and uncorrected thresholding hardly differed from each other
(Supplementary Figure S4). This may be another reason why the
sophisticated between-group PEB analysis did not find any strong dif-
ferences in M-EC between these two conditions (Supplementary
Figure S7).

The results from BDC also showed a very minor difference rang-
ing from —0.2 to 1.1 nats in parameter certainty between corrected
and uncorrected thresholding approaches (Supplementary Table S9).
This was observed despite different sample sizes resulting from the
two thresholding approaches. Our findings thus indicate that
the choice of significance thresholding influenced the sample size but

did not much impact task-evoked EC.

45 | Limitations

Some limitations should be considered. First of all, the trade-off of
using multiple software applications, such as FSL, ANTs, AFNI, and
Workbench, instead of using a single software solution, such as SPM,
might be considered. While this approach can increase functionality
and flexibility and make it easier to be conducted in computational
clusters, it may also increase complexity and potentially impact com-
parisons to a literature that used SPM throughout. To address this
question, we used the spatially preprocessed images as described in
the Methods and then applied the SPM-based pipeline for the entire
analysis of the task-evoked fMRI data and EC calculation by DCM
(see also Arias et al, 2021; Hofmann & Straube, 2019; Park
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et al., 2018), which combined non-SPM pipelines for data processing,
but estimated EC using the SPM functions. The application of the
SPM pipeline largely confirmed our main conclusions with respect to
the differences between event-related and block-based GLM and
DCM designs with some quantitative distinctions (see Supplementary
Figure S13, Supplementary Tables S11 and S12, and the pertinent dis-
cussion in the supplementary material).

The second possible limitation can be that the present study was
initiated from the end-user perspective and focused on EC changes
when different data processing decisions were made. This may
impact interpretations of results because our study was not designed
to ask a statistically well-formed question or a specific hypothesis
testing, but focused on exploratory investigations. Third, the general-
ity of our findings may be limited to the specific task paradigm and
sample characteristics considered here, which may be evaluated in

further studies.

5 | CONCLUSION

This study investigated the impact of four important data processing
choices on the results of task-evoked fMRI analyses and EC estima-
tions via DCM in the framework of the SRC task. Our results showed
that the type of GLM design (event-related or block-based) and type
of activation contrast strongly affect task-dependent EC estimation.
In contrast, the other two processing factors examined here, GSR
application and significance thresholding, appear to have only a weak
influence on within-network task-evoked EC estimation. The event-
related design may confer a higher responsivity of EC to task stimuli,
while the block-based design featured a higher sensitivity of EC to the
type of activation contrast. Our findings showcase the differential
impact that various data processing choices may have on the estima-
tion of task-evoked EC, highlighting the importance of thoroughly
considering and further assessing these choices to help build better

models that allow for valid neuroscientific interpretations.
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Supplementary Figures
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Fig. 1. The case for FSL general linear model (GLM) and contrast maps from the event-
related design. A double gamma hemodynamic response function (odd columns) and
temporal derivatives (even columns) are presented in the (a). Four contrast maps are shown in
(b). The Pro or Anti contrast maps indicated the activated regions under congruent or
incongruent conditions. The Anti+Pro contrast map indicated the group-mean activated
regions under both conditions. The Anti > Pro contrast map indicated the activated regions
associated with the incompatibility effect.
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Fig. 2. Results of the second-level fMRI analysis for different GLM designs by considering
(a) All-Trials, (b) S-Trials, and (c) Blocks designs without GSR. All maps illustrate the #-
values (scaling of the color bar) of the t-tests reflecting the statistically significant voxels
across all subjects (prrce+rwe < 0.05, corrected by threshold-free cluster enhancement (TFCE)
and family-wise error (FWE) rate methods) of the contrast difference between incongruent
and congruent experimental conditions (Anti-Pro contrast). For better visualization, each
thresholded statistical map was projected to fs LR 32k surfaces.
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Fig. 3. The example of DCM model specifications from the block design (upper one) and
event-related design (lower one) with the Anti-contrast. The first 9 rows illustrate the

empirical BOLD signals of 9 nodes involved in the SRC network, while the last two rows
indicate the modulatory input (also for the contrast) and driving input (i.e., visual stimuli).
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Fig. 4. Group-mean modulatory EC (B matrices) for each considered condition of the data
processing indicated on the top and left sides of the plots with GSR (upper one) without GSR
(lower one). The color encodes the strength of EC ranging from blue (negative EC) to red
(positive EC), where the EC edges above the 95% posterior probability threshold are labeled
by the black numbers. The connectivity is directed from the network nodes indicated on the
horizontal axes to the network nodes indicated on the vertical axes. See Methods for details

and notations.
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Fig. 5. Comparison of the task-evoked EC (matrix B) between the considered GLM designs
(S-Trials vs. Blocks) using between-group PEB analyses. The other considered conditions of
the data processing (contrast and thresholding) are indicated in the titles of the plots. In the
circular network plots (upper row), the EC edges (exceeding the threshold of PP > 95%) at
the group level of the difference S-Trials - Blocks are depicted. The black and green network
nodes correspond to the sources (“from”) and destinations (“to”) of the illustrated directed
connectivity, respectively. In the matrix plots (lower row), EC differences are also depicted
by color, and numbers in the corresponding cells indicate values. The network nodes shown
in the horizontal and vertical axes correspond to the sources (“from”) and destinations (“t0”)
of the directed connectivity, respectively. See Methods of the nodes’ abbreviations.
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Fig. 6. Comparison of the task-evoked EC (matrix B) between the considered GLM designs
(All-Trials vs. S-Trials) using between-group PEB analyses. The other considered conditions
of the data processing (contrasts and thresholding) are indicated in the titles of the plots. The
values of the connectivity differences are reflected by color as shown in the color bar, but no
modulatory EC is above the 95% posterior probability threshold. See Methods of the nodes’

abbreviations.
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Fig. 7. Comparison of the task-evoked EC (matrix B) between the thresholding conditions
(Corrected vs. Uncorrected) using between-group PEB analyses. The other considered
conditions of the data processing (contrasts and GLM designs) are indicated in the titles of the
plots. The values of the connectivity differences are reflected by color as shown in the color
bar, but no modulatory EC is above the 95% posterior probability threshold. See Methods of
the nodes’ abbreviations.
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Fig. 8. Comparison of the task-evoked EC (matrix B) between the GSR conditions (With GSR
vs. Without GSR). The results of PEB analyses at the group level are illustrated for the
differences of B-matrices where the subtraction between conditions with and without GSR is
performed: With GSR - Without GSR. The other considered conditions of the data processing
(GLM designs, thresholding, and contrasts) are indicated in the titles of the plots. The values
of the connectivity differences are reflected by color as indicated in the color bar, but no
modulatory EC is above the threshold of 95% posterior probability. See Methods of the nodes’

abbreviations.
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Fig. 9. The stable effective connectivity (EC) edges between group-mean and between-group
PEB analyses for cases of (a) All-Trials > Black and (b) Anti+Pro > Anti. The calculation steps
included: (1) For simplification, we extracted common EC edges (posterior probability/PP >
95%) from group-mean PEB analyses including the conditions of significance thresholding,
All-Trials/Block GLM designs, and activation contrasts. This step offered EC edges that were
stable across the conditions above. (2) After common group-mean EC edges (PP > 95%) were
specified, we summed up EC edges showing strong evidence between-group PEB differences
from all All-Trials > Block and all Anti+Pro > Anti between-group PEB analyses, respectively.
(3) The stable EC edges of All-Trials > Block (Fig. 10a) were calculated by removing summed
EC edges of All-Trials > Block from the common group-mean EC edges, and the stable EC
edges of Anti+Pro > Anti (Fig. 10b) were calculated by removing summed EC edges of
Anti+Pro > Anti from the common group-mean EC edges.



0
= P o
= @
= 0.85
=~ -]
—
o )
-
la-]
Mean Correct Rate = 0.968
0.7
0 100 200 300

Subjects

Fig. 10. The correct rate distribution across subjects (n =266). The green dots indicate subjects,
and the mean correct rate is 0.968. The individual correct rate was calculated by 1 - ((erroneous
trials + non-response trials) / all trials).
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Fig. 11. Cross correlations (Pearson) between BOLD time series for any combined pair of
considered data-processing conditions indicated on the axes. The time series were extracted for
subject-level node ROIs for individual subjects from the same cohort of 90 subjects common
(intersection) across all conditions. Node-wise cross-condition correlations were calculated for



individual subjects and then averaged across nodes and subjects into one correlation value
depicted in color.
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Fig. 12. Results of DCM calculations of the task-modulated EC (M-EC, matrix B) and its
analysis for the case when the same BOLD signals extracted for the case of the block-based
GLM of the uncorrected Anti+Pro contrast were supplied for modeling by the event-related
and block-based DCM. (a) and (b) Connectivity patterns of the group-mean M-EC for event-
related and block-based DCM designs as indicated in the titles of the plots. (¢) and (d) The EC
difference and parameter certainty between event-related and block-based designs. The
strongly evident EC parameters (PP > 95%) are indicated by numbers in the matrix cells.
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Fig. 13 Results of second-level fMRI statistics and sequential DCM analyses of the task-
modulated EC (M-EC, matrix B) between event-related and block-based uncorrected Anti+Pro
cases using the processing of SPM. (a) Results of the second-level fMRI analysis with different
general linear model (GLM) designs, and were corrected by prrce < 0.05. (b) Connectivity
patterns of the group-mean M-EC for event-related and block-based DCM designs as indicated
in the titles of the plots. (c) The EC difference and parameter certainty between event-related
and block-based designs. The strongly evident EC parameters (PP > 95%) are indicated by
numbers in the matrix cells.

Supplementary Methods

SPM-based pipeline

Here we verified whether and how the reported results and derived conclusions can be
influenced if different pipelines for the processing and analysis of task-evoked fMRI data
would be used. We therefore repeated the investigation workflow and conducted the data
processing by SPM pipeline, and then compared the results of the task-fMRI data processing
and analyses as well as DCM-calculated task-evoked EC for event-related (AllTrials) and
block-based designs of the general linear model (GLM) and DCM for the uncorrected Anti+Pro
contrast. The SPM processing used spatially normalized and smoothed functional images

obtained as described in the Methods, where all data processing and analysis of the task-fMRI



data and DCM calculations were solely performed by SPM and included the following steps:

1.

High-pass temporal filtering (128 s) was performed, and 27 regressors were convolved
with hemodynamic response function during the first-level fMRI analysis by event-
related and block-based GLM. Activation contrasts of Pro, Anti, Anti+Pro, and Anti-
Pro were estimated.

A group-based activation as given by the Anti-Pro contrast was calculated and corrected
by p <0.05 with a family-wise error (FWE) rate (Supplementary Fig. S13a). The group-
level peak coordinates (local maxima) were generated as SRC network nodes

(Supplementary Table S11).

. Individual peak coordinates generation and BOLD time series extraction were realized

by the SPM volume-of-interest function that searched for the global maximal peak
inside the spheres (radius = 10 mm) centered at the group-level peak coordinates,
dilated the found individual peak of each regions of interest (ROI) into a sphere with a
radius = 4 mm, employed the Anti+Pro contrast (p < 0.05 uncorrected) to remove
insignificant voxels, and extracted the first eigenvariate as time series for DCM
estimation.

Individual DCM estimation, calculation and checking of the explained variance (EV),
evaluation of the group-mean EC by PEB, between-group PEB analysis, and Bayesian-

data comparison (BDC) were the same as performed in the main text (see Methods).

Because of different data processing of the task-evoked fMRI, we observed some quantitative

differences in results for the above SPM pipeline.

1.

For the second-level fMRI analysis, we observed similar activation patterns between
our analysis from the main text and the SPM pipeline (compare Fig. 2 and

Supplementary Fig. S13a). For the later pipeline the Dice coefficient between the



activation maps of the event-related and block-based GLM is 0.94 as before
(Supplementary Table S3), and the mean absolute difference between peak coordinates
is 0.3 mm vs. 0.7 mm as before (Supplementary Tables S1 and S11). There are small
differences of peak coordinates between the pipelines of 1.6 mm and and 2.1 mm for
the AllTrials and Block cases, respectively. The SPM pipeline in average led to
somewhat smaller t-values of the activation peaks of 10.0 vs. 11.0 for the AllTrials and
9.3 vs. 10.4 for Blocks, which might be indicative for statistical quality of the modeled
second-level activation maps (Supplementary Tables S1 and S11).

. The same number of subjects (216) were qualified for the signal extraction and DCM
analysis for the event-related case, while only 173 subjects (vs. 212) were approved by
the SPM pipeline for the block-based design. We also observed differences in the
modeling quality of DCM, where the pipeline from the main text offered a higher
explained variance (EV) of DCM than the SPM pipeline of 24.6% vs. 19.1% and 22.9%
vs.17.9% for the AllTrials and Block cases, respectively (Supplementary Tables S4 and
S12).

. Based on the group-mean PEB analysis, we observed fewer strongly evident M-EC
edges passing the threshold of the posterior probability (PP) > 95% for the SPM
pipeline of 25 vs. 39 (-36%) for AllTrials and 28 vs. 32 (-13%) for Blocks (Table 3 and
Supplementary Fig. S13b). At the same time, the average absolute connectivity
intensity was also reduced for the SPM pipeline for 0.33 vs. 0.56 (-41%) for AllTrials
and 0.23 vs 0.26 (-12%) for Blocks (Supplementary Table S10 and Fig. S13b).
Nevertheless, also for the SPM pipeline we still observed large differences in the group-
mean connectivity patterns between event-related and block-based GLM and DCM
designs (Supplementary Fig. S13b) as well as a larger connectivity intensity for the

former design, but no pronounced difference in the number of strongly evident M-EC



edges.

4. The between-group PEB analysis still found differences in M-EC (All-Trials > Block),
but only in 3 EC connections as compared to 14 edges reported for the pipeline used in
the main text (Fig. 5 and Supplementary Fig. S13c).

5. The BDC analysis consistently demonstrated higher parameter certainty (Block >
AllTrials GLM designs) also for the SPM pipeline (61 nats, Supplementary Fig. S13c¢)

comparable to our results presented in the main text (64 nats, Fig. 7).

In summary, application of the SPM pipeline largely confirmed our main conclusions, where
we can still observe that event-related and block-based GLM designs showed differences in
EC patterns in spite of the fact that the quality of the processed and analyzed data was affected.
We in particular observed lower statistics of the second-level analysis, a smaller subset of
participants qualified for the DCM analysis, a smaller fraction of the BOLD variance explained
by DCM, and a strong reduction of the M-EC density and intensity with PP > 95%, especially,

for the event-related GLM and DCM designs.

Supplementary Tables

Table 1. The MNI peak coordinates (X, y, z) of the local maxima of #-values of the second-
level analysis of the Anti-Pro contrast without GSR.

All-Trials S-Trials Blocks
Peak
X y z t X y z t x y z t
LDLPFC -40 22 28 73 -40 22 28 69 -40 22 28 7.0

RDLPFC 36 30 28 71 36 30 28 69 36 26 24 6.2

LPMC -24 -8 48 162 -24 -8 48 165 -24 -8 48 15.3



RPMC 24 -6 50 11.8 24 -8 48 122 24 -6 50 11.0

LIPS -34 46 38 108 -34 -46 38 107 -34 -46 38 10.7

RIPS 36 44 40 103 36 -44 40 106 36 -44 40 9.9

LAI -32 18 -10 11.8 -32 18 -10 106 -32 18 ~-10 11.4

RAI 30 20 -4 131 30 20 -4 125 30 20 4 12.1

AMCC 0 8 48 109 -2 6 48 105 O 8 48 10.3

The corresponding local maximal #-values are also indicated (in boldface) of all SRC network
nodes (first column), considered GLM designs (first row), and the case without GSR. SRC,
stimulus-response compatibility; GLM, general linear model; GSR, global signal regression;
All-/S-Trials, experimental designs with all trials or only successful trials; Blocks,
experimental designs modeled by blocks; L/R, left/right; DLPFC, dorsolateral prefrontal cortex;
PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior
midcingulate cortex.

Table 2. Sample sizes for different conditions of the data processing without GSR

All-Trials S-Trials Blocks

Corrected Uncorrected  Corrected  Uncorrected Corrected  Uncorrected

Anti 163/160 215/209 153/151 2117207 173/168 222/213

Anti+tPro  178/176 221/216 170/170 213/208 185/182 218/212

The two subject numbers given in each table cell correspond to the subject samples qualified
for BOLD signal extraction for SRC network nodes of individual subjects/explained variance
criterion of dynamic causal modeling, see Sec. 2.6 / Sec. 2.7 for details. Used notations: GSR,



global signal regression; All-/S-Trials, experimental designs with all/successful trials; Blocks,
experimental designs modeled by blocks; Anti, incompatible contrast; Anti+Pro,
incompatible+compatible contrast.

Table 3. Dice’s value across different GLM designs with GSR

Dice’s D All-Trials S-Trials Blocks
All-Trials 1 0.94 0.94
S-Trials 0.94 1 0.93
Block 0.94 0.93 1

Dice’s D is calculated by the following equation: D=2C/(A+B). C denotes overlapped voxels;
A and B denote voxels in the condition of A and B. All-Trials, general linear model (GLM)
design with all stimuli and responses; S-Trials, GLM design with successfully-responded
stimuli and responses; Blocks, GLM design coded by block onset and duration information.
GSR, global signal regression.

Table 4. Averaged explained variance (EV) and its standard deviation estimated for all
conditions.

All-Trials S-Trials Blocks
Corrected Uncorrected ~ Corrected ~ Uncorrected Corrected Uncorrected
Anti! 23.9+£7.1 22.6+7 23.1£6.3 21.6£6.4 23.7£7.6 22.6£7.5
Anti+Pro! 25.4£6.9 24.6+7 24.4+6.6 23.6£6.6 23.6£7 22.9+7

Anti? 24+7.7 23+7.4 23.447.1 22+46.9 23.7+7.8 22.8+7.9



Anti+Pro? 25.1£7.5 24.4+7.6 24.5+£7.4 23.8+7.3 23.6£7.7 23.3£7.6

Note: ! indicates the conditions with global signal regression (GSR), while 2 indicates the
conditions without GSR. All-/S-Trials, experimental designs with all/successful trials;
Blocks, experimental designs modeled by blocks; Anti, incompatible contrast; Anti+Pro,
incompatible+compatible contrast.

Table 5. Numbers of the group-level EC edges of modulatory (matrix B) EC (PP > 95%) within the

SRC network without GSR.
All-Trials S-Trials Blocks
Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected
Anti 34 40 32 43 12 18
Anti+Pro 36 40 37 40 33 35

All modulatory effective connectivity (EC) connections were exceeding 95% of the posterior
probability (excluding self-connections) calculated by Parametric Empirical Bayes (PEB) for
the considered conditions of the data processing without global signal regression (GSR). All-
/S-Trials, experimental designs with all/successful trials; Blocks, experimental designs

modeled by blocks; Anti, incompatible contrast; Anti+Pro, incompatible+compatible
contrast.

Table 6. Relative differences in parameter certainty between GLM designs estimated from
Bayesian Data Comparison (BDC)

GSR Block > All-Trials Block > S-Trials All-Trials > S-Trials




Anti Anti+Pro Anti Anti+Pro Anti Anti+Pro

Corrected 58.1 64.2 62.9 62.4 2.3 -1.1

Uncorrected 66.5 64.0 66.7 63.3 0.5 -0.9

Note: the number in each element indicates a relative difference in parameter certainty
estimated from the BDC analysis between conditions of different general linear model
(GLM) designs. Used notations are the same as in Table 5. The relative value was extracted
between two groups (same size) using Bayesian data comparison (spm_dcm_bdc.m), and
represents the relative levels of parameter certainty (nats) of the estimated model parameter.
A difference between two data sets in the range between 1.1 and 3 nats (natural units) and
between 3 and 5 nats can be considered as “positive evidence” and “strong evidence”,
respectively. The higher value indicates higher parameter certainty in one condition relative
to the other one. For example, Block-based designs showed very strong evidence in
parameter certainty compared to event-related designs.

Table 7. Relative differences in parameter certainty between activation contrasts (Anti > Anti+Pro)
estimated from Bayesian Data Comparison (BDC)

Activation AllTrials STrials Block
contrast

Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected
Value 9.7 7.9 7.2 7.0 10.4 11.1

Note: the number in each element indicates a relative difference in parameter certainty
between activation contrasts (Anti > AntiPro) estimated from the BDC analysis. Used
notations are the same as in Table 6.



Table 8. Relative differences in parameter certainty between conditions of GSR (with
GSR > without GSR) estimated from Bayesian Data Comparison (BDC)

GSR All-Trials S-Trials Block
Anti Anti+Pro Anti Anti+Pro Anti Anti+Pro
Corrected -0.3 -1.9 -0.7 -1.4 0.4 1.5
Uncorrected 0.4 -2.2 -0.3 -2.6 0.1 1.6

Note: the number in each element indicates a relative difference in parameter certainty
between conditions of with GSR and without GSR from the BDC analysis. Used notations
are the same as in Table 5.

Table 9. Relative differences in parameter certainty (Corrected > Uncorrected)

Significance All-Trials S-Trials Block

thresholding
Anti Anti+Pro Anti Anti+Pro Anti Anti+Pro

Value 1.1 0.4 0.03 0.7 -0.2 -0.2

Note: the number in each element indicates a relative difference in parameter certainty
between conditions of corrected and uncorrected from the BDC analysis. Used notations are
the same as in Table 5.

Table 10. Averaged absolute intensity of task-evoked modulatory EC (PP > 95%) of all
conditions

All-Trials S-Trials Blocks




Corrected Uncorrected Corrected Uncorrected Corrected Uncorrected

Anti! 0.48 0.46 0.49 0.46 0.34 0.33
Anti+Pro! 0.55 0.54 0.56 0.53 0.27 0.26
Anti? 0.47 0.45 0.49 0.44 0.33 0.30
Anti+Pro® 0.52 0.5 0.55 0.52 0.27 0.26

Note: ! indicates the conditions with GSR, while ? indicates the conditions without GSR.
Each element in this table indicates the averaged absolute value of effective connectivity
(EC) for each condition. All-Trials, general linear model (GLM) design with all stimuli and
responses; S-Trials, GLM design with successfully-responded stimuli and responses; Blocks,
GLM design coded by block onset and duration information. Corrected, the condition of

corrected significance thresholding; Uncorrected, the condition of uncorrected significance
thresholding.

Table 11. MNI peak coordinates (X, y, z) of the local maxima of #-values based on
the second-level fMRI statistics of the Anti-Pro contrast (from SPM processing)

All-Trials Blocks

Peak

LDLPFC -40 28 28 6.6 -40 28 28 6.4



RDLPFC 36 30 26 6.8 38 32 26 6.8

LPMC -24 -8 48 13.9 -24 -8 48 12.5
RPMC 24 -8 48 10.8 24 -8 48 9.7
LIPS -32 -46 38 9.6 -32 -46 38 9.8
RIPS 38 -48 42 8.9 38 -48 42 8.4
LAI -30 18 0 10.8 -30 18 0 9.8
RAI 30 18 0 12.3 30 18 0 11.1
AMCC -6 4 46 10.7 -4 6 46 9.5

The corresponding local maximal #-values are also indicated (in boldface) of all SRC network
nodes (first column), considered GLM designs (first row), and the case based on the SPM
processing. SRC, stimulus-response compatibility; GLM, general linear model; All-/S-Trials,
experimental designs with all trials or only successful trials; Blocks, experimental designs
modeled by blocks; L/R, left/right; DLPFC, dorsolateral prefrontal cortex; PMC, premotor
cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate cortex.

Table 12. Summary of subject cohort size qualified for signal extraction and DCM analyses,
variance of BOLD signals explained by DCM, and connectivity intensity for the SPM
processing

GLM designs Subjects Explained variance Absolute intensity

All-Trials 258/216 19.1£7.4 % 0.33

Blocks 256/173 17.9+8.8 % 0.23




The two subject numbers given in “Subjects” cells correspond to the subject samples qualified for
BOLD signal extraction for SRC network nodes of individual subjects/explained variance criterion of
DCM,. The two numbers given in “Explained variance” cells correspond to average and standard
deviation of explained variance for event-related and block-based GLM cases. The absolute intensity
was calculated by average absolute intensity value of evident EC (posterior probability > 95%).
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ABSTRACT

Recent neuroimaging studies demonstrated that task-evoked functional connectivity (FC) may
better predict individual traits than resting-state FC. However, the prediction properties of
task-evoked effective connectivity (EC) remain unexplored. We investigated this by predicting
individual reaction time (RT) performance in the stimulus-response compatibility task and age,
using intrinsic EC (I-EC; calculated at baseline) and task-modulated EC (M-EC; induced by
experimental conditions) with dynamic causal modeling (DCM) across various data processing
conditions, including different general linear model (GLM) designs, Bayesian model reduction,
and different cross-validation schemes and prediction models. We report evident differences
in predicting RT and age between I-EC and M-EC, as well as between event-related and
block-based GLM and DCM designs. M-EC outperformed both I-EC and task-evoked FC

in RT prediction, while all types of connectivity performed similarly for age. Event-related
GLM and DCM designs performed better than block-based designs. Our findings suggest
that task-evoked I-EC and M-EC may capture different phenotypic attributes, with performance
influenced by data processing and modeling choices, particularly the GLM-DCM design.
This evaluation of methods for behavior prediction from brain EC may contribute to a
meta-scientific understanding of how data processing and modeling frameworks influence
neuroimaging-based predictions, offering insights for improving their robustness and efficacy.

AUTHOR SUMMARY

We investigated how brain task-evoked effective connectivity (EC) can predict individual
differences in behavior and age. We examined two types of EC: intrinsic EC (calculated at
baseline) and task-modulated EC (induced by experimental conditions) calculated by dynamic
causal modeling across various data processing conditions. We found that the task-modulated
EC outperformed intrinsic EC in predicting reaction time measured during a stimulus-response
task, while both EC types performed similarly in age prediction. Our findings may suggest that
different EC types could capture distinct phenotypic traits, with performance influenced by
data processing and modeling choices. This evaluation may further promote the application of
model-based approaches to behavior prediction from brain connectivity and enhance our
understanding of the impact of data processing on the prediction results.
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Predicting response speed and age from task effective connectivity

Functional connectivity (FC):
Statistical correlations between brain
regions’ activity, indicating their
functional relationships.

Dynamic causal modeling (DCM):
A computational approach for
inferring directed interactions
between brain regions from
neuroimaging data.

Effective connectivity (EC):

The influence one brain region exerts
over another, estimated using causal
models like DCM.

Intrinsic effective connectivity (I-EC):
EC reflecting baseline interactions in
the absence of task-related
modulations.

Task-modulated effective
connectivity (M-EC):

EC connections driven by specific
task conditions.

Network Neuroscience

INTRODUCTION

Linking individual differences in behavior with individual brain properties is one of the main
goals of cognitive neuroscience ( ; ). Functional magnetic
resonance imaging (fMRI) has been instrumental in predicting individual behavior and pheno-
types by modeling brain activation and connectivity patterns ( ;

; ). Functional connectivity (FC), the correlation between
blood-oxygen-level-dependent (BOLD) signal fluctuations of two brain regions, reveals task-
evoked and resting-state coactivation patterns ( ; ). Although
resting-state FC has been widely studied for predicting behaviors and phenotypes (

; ; ), accumulating evidence indicates that
task-evoked FC may better capture intersubject differences than resting-state FC (

), with studies showing improved

), fluid intelligence ( ), and

but see for contradictory

predictions for reading skills (
general cognitive ability ( )—
evidence.

The correlational nature of FC is agnostic to the causal interdependencies between brain
regions. These causal aspects of interregional coupling may however be especially informative
about individual differences in behavior when studying connectivity patterns during task
states. Recent achievements in generative embedding methods have provided powerful frame-
works for capturing causal interdependence. Among a few generative embedding methods
( ; ; ), dynamic causal
modeling (DCM) ( ) offers a biologically meaningful approach to estimating
brain effective connectivity (EC) from task-evoked fMRI. Within this framework, EC is inferred
from DCM in order to estimate the directional influence of a given brain region on another
( ) and is intended to provide deeper, mechanistic insights by explicitly
modeling such causal influences ( ). This characteristic may contribute more dis-
criminative features to EC to better identify individual “fingerprints” ( ). In
DCM, intrinsic EC (I-EC) corresponds to the A matrix in the DCM equation (see the
section), representing baseline connectivity in the absence of task modulation, while task-
modulated EC (M-EC) corresponds to the B matrix, capturing changes in connectivity driven
by specific experimental conditions ( ). These compo-
nents thus reflect brain connectivity at baseline and in task-modulated states, respectively.

Building on this, we aimed to explore whether I-EC and M-EC can display such differential
roles in prediction. Both of them have been investigated with respect to a range of human
cognitive functions such as working memory, finger tapping, response conflict resolution,
and reading as well as aging at the level of group-average effects ( ;

). With regard to interindividual differences, recent studies have begun to uti-
lize EC modeling approaches to predict individual behaviors and phenotypes including age
differences and task performance either from I-EC or M-EC ( ;

; ; ). However, in contrast to extensive compar-
isons of predictive performance between different types of FC ( ), prediction
performance based on task-evoked EC features and, in particular, the difference between fea-
tures derived from I-EC versus M-EC components remains unexplored.

We addressed this by using task-evoked EC modeled via DCM for the prediction of (a) indi-
vidual average reaction time (RT) of incongruent conditions during a spatial stimulus-response
compatibility (SRC) task ( ; ) and (b) age as two
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Cross-validation (CV):

A method for evaluating model
performance by partitioning data into
training and testing subsets.

General linear model (GLM):

A statistical framework for modeling
and testing linear relationships in
neuroimaging data.

Bayesian model reduction (BMR):
A Bayesian inference technique for
optimizing model evidence by
simplifying parameters.

Lasso:

A regression technique using L1
regularization for feature selection
and prediction accuracy.

Ridge regression:

A regression method employing L2
regularization at the estimation of
model parameters.

Network Neuroscience

different (behavioral and demographic) individual characteristics. The spatial SRC task is
designed to probe cognitive action control during response conflict processing, associated
with an increase of RT in the incongruent condition, relative to the congruent one (

), and this incongruency effect was found to be further enhanced in advanced age
( ). These characteristics have motivated our endeavor to predict individual
age and cognitive action control, as reflected in the incompatibility effects measured by RT.
Predicting the distinct characteristics such as age and RT is also important for understanding
changes in brain neural dynamics during the SRC task by contrasting the prediction perfor-
mances for these different behavioral/phenotypic scores.

In this study, we compared the prediction results for individual RT and age using I-EC and
M-EC components derived from fMRI data obtained during SRC task performance. Although
the I-EC component inferred from task-evoked functional data is not entirely independent of
the task-related contexts, it is still considered to reflect brain intrinsic connectivity dynamics by
mathematically removing task-relevant variance ( ;

). This makes it a reasonable candidate for comparison with M-EC compo-
nents in predictions. Our approach included the following steps: (a) We extracted nodes of the
SRC network and estimated I-EC and M-EC for each participant. (b) We calculated the predic-
tion accuracy of I-EC and M-EC for RT and age predictions using 5-fold cross-validation (CV)
and conducted sensitivity analyses to examine the impact of various factors. These factors
included different general linear model (GLM) and DCM designs ( ;

), multiple CV schemes consisting of a 10-fold CV and leave-one-out CV (LOOCV), as
well as the Bayesian model reduction (BMR) approach ( ). (c) We compared
the prediction accuracy of the task-evoked EC and FC. Since EC patterns may depend on the
sample size ( ), we applied our prediction analyses to a relatively large
group of participants (n > 200). We in particular show that the type of GLM/DCM design
(event-related vs. block-based) and EC modality (intrinsic at baseline vs. task-modulated) have
a crucial influence on prediction performance, while the other conditions considered have a
rather weak impact. Furthermore, task-evoked EC was found to outperform FC in RT predic-
tion, but not in age prediction.

METHODS

This study investigated the application of task-evoked EC calculated by the DCM approach to
the prediction of behavioral data of individual subjects by using a machine-learning approach.
We considered the spatial SRC task ( ), calculated the task-evoked EC of
the respective task-evoked SRC brain network, and used linear regression with the least abso-
lute shrinkage and selection operator (LASSO) regularization ( ) to predict RT
and age of individual subjects. This was replicated using ridge regression and compared with
prediction results based on task-evoked FC features. Furthermore, we considered typical points
of analytical flexibility and investigated the impact of data processing, EC calculation, feature
extraction, and prediction procedure as explained in detail below.

Experimental Protocol

The present study used fMRI data recorded while participants performed a spatial SRC task
( ; ). This two-choice reaction task consisted of
24 blocks of trials with response requirements that were either spatially compatible (“Pro”)
or incompatible (“Anti”) with a visual stimulus ( ). In partic-
ular, participants were instructed to respond to lateralized visual stimuli by accurately and
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rapidly pressing an ipsilateral (Pro) or contralateral button (Anti), respectively. Before each
block, a 2-s instruction was presented to indicate the upcoming condition (Pro or Anti), and
each block contained 13 to 16 trials, in which the stimulus was presented for 0.2 s at the
beginning of each trial on either the left or right side of the screen with equal probability
(50%,) for each side. The intervals between trial onsets randomly varied from 2 to 4.5 s accord-
ing to a uniform distribution, and rest periods between blocks ranging from 15 to 19 s were
also randomly jittered according to a uniform distribution. Each task condition (Pro and Anti)
was repeated 12 times, with conditions (blocks) and stimuli within each condition being
presented in a pseudorandomized order. Trials with responses being too fast or too slow
(RT < 150 ms or RT > 1,500 ms) were excluded, and individual average RT of incongruent
(Anti) conditions was extracted as the prediction target.

Participants

Our study included an initial sample of 271 subjects (148 males, 123 females, 18-85 years
old, Myge = 52.3 + 16.6 years) recruited from the subject pool of the TO00BRAINS project
( ), which was conducted at the Research Centre Julich. Before entering
the study, the written informed consent of each subject was acquired. The study protocol
was approved by the ethics committee of the University Duisburg-Essen (reference number:
11-4678) and performed in accordance with the declaration of Helsinki.

MRI Data Acquisition

Details about MRI data included in the TOOOBRAINS project can be found elsewhere (

). Structural MRI scans were obtained using an anatomical 3D T1w MPRAGE
sequence (Magnetization Prepared Rapid Gradient Echo) with the following parameters: rep-
etition time (TR) = 2.0 s, echo time (TE) = 3.03 ms, flip angle = 9°, 176 sagittal slices, field of
view = 256 mm, voxel resolution = 1 x 1 x 1T mm?>.

The task fMRI scans were obtained by a gradient-echo echo-planar imaging sequence with
the following parameters: TR = 2.03 s, TE = 30 ms, flip angle = 80°, field of view = 200 mm, 33
axial slices (ascending), slice thickness = 3.3 mm, interslice gap = 0.66 mm, voxel resolution =
3.1 x 3.1 x 3.3 mm?, acquisition time = 27 min and 10 s.

Data Processing

In our previous study ( ), several data processing and EC calculation condi-
tions were considered with a particular focus on the type of GLM design. The present study
aimed to investigate the prediction performance of I-EC and M-EC by considering two different
GLM designs (event-related vs. block-based). Briefly, the preprocessing steps ( )
included dummy-volume exclusion, head-motion correction, intensity normalization, co-
registration, spatial normalization, smoothing (8-mm Gaussian kernel), covariance regression
(24 head-motion parameters, and regressors of white-matter, cerebrospinal-fluid, and global
signals), and high-pass temporal filtering (128 s). The individual BOLD signals were modeled
through the utilization of two distinct GLM designs: event-related and block-based designs
( and ). In the event-related design, a step function with
a specific onset time of an individual stimulus and a fixed “on” duration of 0.2 s were used for
each stimulus. The block-based design incorporated each block’s starting time and full dura-
tion as the onset time and duration, respectively. Then, the second-level GLM analyses were
used to derive activation maps specifically related to stimulus-response incompatibility (i.e.,
Anti > Pro condition contrasts; and 2b) for block-based and event-related designs
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Figure 1. Flow chart for the stimulus-response compatibility task-evoked network node selection. The dashed arrows indicate the processing
flow. Abbreviations: ROI, regions of interest; GLM, general linear model.

Network Neuroscience

using FSL (Version 6.0) ( ). Afterward, nine regions of interest
(ROIs;10 mm radius) of brain activation were defined based on the observed activation peaks
leading to the group-level SRC-related brain network ( ): anterior midcingulate cortex

(AMCQ), bilateral intraparietal sulcus (IPS), premotor cortex (PMC), dorsolateral prefrontal
cortex (DLPFC), and anterior insula (Al). The selection of ROls agrees with previous literature
on SRC tasks, where both the aging and incompatibility effects on them have been reported
( ; ). These ROIs were then overlaid with the first-level

F

Figure 2. The general DCM workflow. (a, b) Second-level fMRI statistics computed from the
incompatible (Anti) > compatible (Pro) activation contrasts. Maps illustrate the t values (scaling
given in the color bar) of the t tests reflecting the statistically significant voxels across all subjects
with the threshold-free cluster-enhancement (TFCE) and family-wise error rate (FWE) methods
(Prece+rwe < 0.05). (c) Example of SRC nodes extracted from the maps illustrated in plots (a, b).
(d) Schematic illustration of the full-connection DCM model that was implemented in the analysis
of effective connectivity (EC). Abbreviations: L/R, left/right; DLPFC, dorsolateral prefrontal cortex;
PMC, premotor cortex; IPS, intraparietal sulcus; Al, anterior insula; AMCC, anterior midcingulate
cortex. Events, experimental designs with all trials; Block, experimental designs modeled by blocks;
TFCE, threshold-free cluster enhancement; FWE, family-wise error.
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GLM-derived activation map related to performing the Anti condition of each subject thre-
sholded at p < 0.05 and to search for subject-specific activation peaks within the group-level
ROlIs and dilate these peaks into spheres with a 4-mm radius. Finally, the BOLD time series for
all nine individual ROIs (first eigenvariate of all significant voxels within a sphere) were esti-
mated for each subject, which was then modeled by DCM for the full-connection model. For
the event-related and block-based GLM and DCM designs, 210 and 213 participants, respec-
tively, were qualified for the extraction of individual BOLD signals of the SRC network,
because not all individual ROIs contained significant voxels for some subjects. More details
about fMRI data processing as well as extraction of the task-evoked BOLD signals of the SRC
network of individual subjects for DCM calculation can be found in and in
the

DCM Specification and Analysis

The DCM analysis ( ) was conducted based on the following model:

% _ (A N Zk3<k>uk(t))z + Cu(b).

Here, z represents the neural states of network ROIs across time points, the matrices A and B
stand for parameters of intrinsic and task-modulated connectivity, respectively, and u(t)
encodes the timing of the experimental condition k. Matrix C represents the influence of all
external experimental inputs (stimulation) u() on the neural dynamics of the considered ROls.
The observed BOLD response y(f) is modeled by the observation equation:

y(t) = h(z(t) + (1))

where h(-) represents the hemodynamic response function and £(#) indicates the noise. The
model was used to infer the coupling parameters of the above matrices such that the
simulated BOLD signals best explained the variance of the empirical BOLD signals.

Several DCM parameters are therefore defined as follows: (a) Driving input (matrix C) that
defines external visual input to the network. Given that IPS nodes were identified as pivotal
hubs for sensorimotor integration during visually guided actions ( ), we
designated the bilateral IPS nodes as the primary driving-input nodes, responsible for receiving
external (visual) input in our DCM model ( ). (b) I-EC as given by the connectivity
matrix A denotes the unmodulated EC that exists among the network nodes at baseline, that
is, in the absence of any experimental task and its modulations. Although I-EC was inferred
from our SRC task-related fMRI data, it captures the intrinsic coupling between brain network
nodes by mathematically removing task-related variance ( ;

). (¢) Modulatory EC (M-EC) as given by the connectivity matrix
B that reflects the modulation of EC connections in response to a certain task condition. The
interpretation of the connectivity matrices A and B as representing I-EC and M-EC, respec-
tively, depends on how the experimental input u; is handled. In this study, we considered u;
to vary between 0 and 1, corresponding to the task conditions being off (0) or on (1), instead of
mean-centering u;.. When u; is not mean-centered, as in our case, matrix A reflects the EC
parameters of the unmodelled baseline, and matrix B represents the EC parameters modulated

by task conditions ( ). Otherwise, if u; is mean-centered,
matrices A and B will represent the averaged EC across all task conditions (on and off) and EC
deviations from this overall mean, respectively ( ).

In this study, the timing of the stimulus presentation in the Anti task blocks was selected as
the timing of the modulatory input, and the respective contrast was modeled by DCM, which

596

d-ajo1ie/UleU/NPa W I08IIP//:dNY WOy papeojumod

B UIdU/90GE0SZ/ L 6G/2/6/3P!

Gz0z dunr 61 uo Bueyz 18ynys Aq ypd- #1400



Predicting response speed and age from task effective connectivity

Network Neuroscience

may represent the connections modulated by individual incompatible responses of the SRC
task. In comparison with the Pro condition, the Anti condition is expected to pose higher cog-
nitive demands due to the requirement to resolve spatial incompatibility-induced response
conflicts. Consequently, individual performance and estimated EC of the Anti condition can
be considered robust indicators reflecting the individual capability to execute and control a
complex cognitive action. This way, the DCM design corresponded to that of the GLM used for
analyzing the task fMRI data, that is, event-related and block-based designs were simulta-
neously used for both GLM and DCM. For the event-related design, driving stimuli of all events
and modulatory stimuli of the Anti condition were encoded by separate trials, whereas, for the
block-based design, driving stimuli of all events and modulatory stimuli of the Anti condition
were encoded by blocks. The detailed information can be found in

A full-connection model was implemented for estimating I-EC and M-EC ( ). After
individual I-EC and M-EC were inferred, subjects with a low fraction (<10%) of variance
explained by DCM were excluded, after which 208 and 205 participants for event-related
and block-based designs, respectively, remained for subsequent analyses. Parametric Empiri-
cal Bayes (PEB) is a hierarchical modeling approach that can in particular be used to relate
brain EC to behaviorally relevant characteristics, allowing for inferences on intersubject differ-
ences at the second level ( ). With PEB, one can also
estimate brain EC patterns that best explain the average connection across subjects as well as
the interindividual EC differences modulated by individual RT or age by utilizing a GLM design
matrix. In this context, the design matrix consists of two columns, where the first column con-
tains all ones for the group-mean effects, while the second column includes mean-centered RT
or age scores to estimate RT- or age-modulated effects. Such a design matrix enables assessing
how individual differences in EC are associated with other individual (e.g., behavioral)
characteristics.

As mentioned above, the estimated EC parameters were used as features to predict both
individual age and RT averaged over all trials of the incongruent SRC task condition. To keep
the number of covariates at a minimum (

), we adopted a two-column design matrix of PEB analysis, which only
contained all ones and mean-centered RT or age separately. Additionally, a threshold of pos-
terior probability (PP > 95%) was used to extract I-EC and M-EC parameters that were strongly
modulated by RT or age.

Machine-Learning Prediction Analysis

The main goal of this study was to compare the prediction accuracy of task-evoked EC of the
SRC task network (defined via block-based vs. event-related GLM and DCM designs) with
respect to age as well as individual performance level as given by RT. I-EC and M-EC matrices
were selected as candidate features, and individual age and RT of the incompatible task con-
dition were chosen as target characteristics to be predicted. An approach to feature selection
by masking the features at the group level is widely used in prediction analyses, see, for exam-
ple, the connectome-based predictive modeling (CPM) approach ( ). In our
study, we considered EC and thus used PEB for the feature selection, since the latter was rec-
ommended in the literature for group-level EC analyses (

). We applied a linear regression model with the LASSO regularization (

) to predict individual differences (RT and age) using the k-fold CV scheme. LASSO
was chosen for its ability to reduce overfitting, especially in high-dimensional data. By penal-
izing features with less importance, LASSO ensures that the prediction model focuses on
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predictive EC parameters, which improves the model’s accuracy and generalizability. In such
a way, we randomly split the subject sample into five groups, where four groups were united
into a set for model training, whereas the fifth group was kept for model testing and prediction
of individual target scores ( ).

To select EC parameters to be used as features for prediction, a group-level PEB (

) framework of DCM was employed. During the PEB analysis on
the training sets, a PEB design matrix with two columns was used, as mentioned above, to
extract the connectivity patterns of strongly evident (with PP > 95%) group-mean EC param-
eters as well as EC parameters modulated by mean-centered individual age or RT ( ).
These modulated EC parameters at the second-level (PP > 95%) were selected as a mask to
extract subject-level EC parameters without any refitting procedures for individuals, which
were then used as features to train the prediction model on the training sets and to predict
individual RT or age for the testing sets of unseen subjects ( and 3d). One prediction
round included testing all five subject groups of the 5-fold CV split by selecting them one after
another as a testing set (and the respective remainder of the sample as a training set), where all
test subjects obtained predicted scores that were compared (correlated) with the empirical
ones across subjects ( ). This procedure was repeated 100 times with different random
splits of the sample into five groups, and we obtained a distribution of 100 values of prediction
accuracy (i.e., Pearson correlations between empirical and predicted values), which were sub-
sequently averaged to obtain a metric for assessing the prediction performance of the models
under the different conditions of data processing and modeling considered here.

To test for the statistical significance of our prediction results, we employed a label-shuffled
permutation test ( ) within the framework of a 5-fold CV 500 times. For each
iteration of the permutation test, the behavioral scores were randomly shuffled among sub-
jects, and then a 5-fold CV procedure was conducted based on the shuffled scores. This
way, chance-level prediction distributions (i.e., empirical null distributions) were generated,

(a) Data splitting ~ (b) PEB on training set () Feature selection (d) Model training (e) Correlation
with LASSO

Individual ~ Behaviors PEB modulated PEB (PP > 95%) linear regression model Pearson correlation

ECs by behaviors ~
- ] - ]
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Figure 3. The workflow for prediction of individual behavioral characteristics based on task-evoked EC and PEB results as outlined by Steps
(a)-(e). (a) The subjects and their corresponding behavioral characteristics (RT and age) were randomly split into k groups according to the k-
fold cross-validation (CV) approach and then united into training and testing sets within CV loops. (b) Individual EC and behavior scores from
the training set were analyzed by a PEB analysis to estimate behavior-modulated EC at the group level. (c) EC features are masked based on a
high posterior probability (PP > 95%) obtained from PEB or Bayesian model reduction (BMR) analysis. (d) A linear regression model with
LASSO regularization was trained on the training set and then applied to predict the behavioral/phenotypic scores of the unseen testing
set. (e) Pearson correlation was used to evaluate the similarity between the empirical and predicted values of the testing sets and to indicate
the prediction accuracy of the model’s performance by averaging the correlation across all testing sets of the CV loop. The procedures (a)—(e)
were repeated for several random splits of subjects into k groups to obtain a distribution of the prediction accuracies.

Network Neuroscience 598

Gz0z aunr 6| uo Bueyz 19ynys Aq Jpd-Lyp00 B UIU/90GE0SZ/ L 6S/2/6/4Pd-BI0IE/UJOU/NPS W IOBIP//:d)Y WOl) papeojuUMOQ



Predicting response speed and age from task effective connectivity

Network Neuroscience

which were subsequently used for comparison with the observed prediction accuracies (cor-
relations) under each data processing condition, using a significance threshold of p < 0.05. We
also compared the prediction performance between I-EC and M-EC features, and a sample-
dependent Cohen’s d value was calculated to assess the effect size.

As the number of features used for prediction may influence the discriminative power
and model complexity of a machine-learning approach ( ), we estimated the
number of features that were frequently selected for model training and prediction across
CV loops. This may also help to evaluate the contribution of every feature to the prediction
results. During the prediction procedure, the PEB analysis was performed on each CV iter-
ation for every subject training set, where different patterns of EC edges can be obtained.
We followed such variability and calculated the relative frequencies of the features
selected for predicting individual RT and age using repeated 5-fold CV. To better visualize
feature contribution maps for each case, only EC parameters covarying with RT or age
scores and selected by PEB with frequency > 80% across all CV trials were presented.
In parallel with extracting prediction contributions of EC features with the frequency of
feature selection, we also estimated the average number of EC features selected by PEB
across all CV iterations.

GIM and DCM Designs

The types of event-related and block-based GLM designs ( ; )
were found to influence DCM parameter estimation ( ) and model selection
( ). Although the event-related design is currently more recommended
for modeling brain activity ( ), the impact that the type of GLM used in
task fMRI data analysis has on the prediction results has not been clarified. Thus, we utilized a
LASSO-regularized linear regression model to compare prediction correlations between
GLM/DCM designs.

CV Schemes and Predictive Models

Given the reported impact of CV schemes on prediction results in machine-learning studies
( ), we performed another two analyses in parallel to the repeated 5-fold
CV (see the section): repeated 10-fold CV and LOOCV
analyses. Furthermore, a ridge-regularized linear regression model ( ) was
employed as an alternative machine-learning algorithm to validate our prediction results
obtained by the LASSO regression model. These parallel analyses were intended to help us
evaluate the influence of CV schemes on the prediction results.

BMR

BMR is an approach of DCM that compares evidence from different reduced models with cer-
tain combinations of coupling parameters (network edges) switched off (see the

section) ( ). This approach can be used to identify the
“best” reduced model instead of incorporating a “full” model, where all network edges are
allowed to exist and will be optimized by DCM ( ). This

BMR approach has largely been applied in data-driven DCM prediction studies (

; ), while its impact on prediction outcomes has not been well
documented. To assess a possible improvement in individual predictions produced by
BMR, an exhaustive search (spm_dcm_peb_bmc.m) was included in our prediction work-
flow ( ). This automatically evaluated all parameters of the full-connection
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model by analyzing PEB files generated from the training set. This algorithm explored
different reduced models by selectively removing parameters and retaining those that
contribute most significantly to model evidence ( ). When a reduced
model was determined, a threshold of PP > 95% was utilized to mask and extract indi-
vidual EC features used for prediction.

FC

To investigate prediction accuracies obtained from task-evoked FC, we considered both full
task-evoked and task-residual FC ( ). The former type of FC was estimated by
the pairwise correlation of the preprocessed task-evoked BOLD time series extracted for
individual subjects from ROls of the SRC network, which were the same as those time series
specified for EC calculation by DCM. The latter type of FC was estimated by the pairwise
correlation between the SRC ROIl-based time series of individual subjects after regressing
the timing of the experimental event sequence from the BOLD signals ( ;

).

To predict individual performance or age from FC, we adapted the widely used
connectome-based CPM approach ( ). In particular, we applied a sparse fea-
ture selection and created two FC masks out of the top 10% of FC edges that were highly
positively or negatively correlated with the prediction targets of RT or age (

). These two masks were then merged into one and used for fea-
ture extraction for individual subjects. The selected individual features were then submitted to
the LASSO-regularized linear regression model to predict individual age and RT according to
the previously described 5-fold CV scheme. Note that, for a better comparison between pre-
diction results for FC and EC, we did not sum up the selected individual FC features as in the
default CPM approach ( ). Rather, we simultaneously used all masked FC
edges of individual subjects as separate features.

RESULTS

In this study, we investigated how the task-evoked EC can be used to predict
behavioral/phenotypic characteristics (RT performance and age) of individual subjects and
how it could be influenced by conditions of fMRI data processing and the respective decisions
that the researcher would have to make before and during the prediction analysis. We thus
evaluated the influence of (a) using intrinsic (I-EC) or task-modulated (M-EC) EC as given by
the DCM-derived connectivity matrices A and B, respectively (see the section), (b)
using event-related versus block-based GLM and DCM designs, (c) and applying BMR for
DCM. Furthermore, we examined the influence of other methodological aspects of the predic-
tion analysis. In particular, we evaluated the influence of different CV schemes and the pre-
diction algorithm used (LASSO regularized linear regression utilized vs. ridge regression).
Finally, we compared our EC-based prediction results with those obtained from using task-
evoked FC as predictive features. Briefly, we observed that (a) different modalities of EC dem-
onstrated different prediction accuracy for age and RT, where M-EC showed higher prediction
accuracy for individual RT, but lower prediction accuracy for individual age than did I-EC; (b)
the event-related GLM and DCM designs displayed higher accuracy in predictions than did
the block-based designs; (c) employing BMR did not largely improve prediction accuracy; (d)
repeated 10-fold CV and LOOCV analyses presented similar prediction patterns to that of
repeated 5-fold CV, and the results obtained using LASSO were largely confirmed by using
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ridge regression; and (e) task-evoked FC showed higher prediction accuracy for age than did
EC, but limited prediction performance for RT.

Task-Evoked EC and Its Relation to Behavior

Task-evoked EC investigated in this study was inferred using DCM within the SRC task-related
brain network ( ) for all individual subjects. The individual DCM estimations were then
summarized to analyze group-level EC by the PEB technique. To illustrate the EC patterns at
the group level for the whole subject sample, we calculated the I-EC and M-EC parameters
(network edges) with a high PP of > 95% ( ). The
group-mean EC reflecting the connectivity averaged over all subjects and the behavior-related
EC reflecting the connectivity covariance with behavioral/phenotypic scores (see the
section) are illustrated in for RT- and age-related PEB analyses. For both PEB analyses,
the group-mean I-EC featured similar connectivity intensity (0.13 in and 0.12 in
) as given by the absolute average of the connectivity parameters with PP > 95%.
The group-mean M-EC also showed a similar connectivity intensity for both RT and age
(0.33 in for RT and 0.34 in for age), which was higher overall than that
of I-EC (compared with and ).

Together with the group-mean EC, by the PEB approach, we also calculated the EC param-
eters that strongly covaried (PP > 95%) with individual RT or age ( ), where we
again observed a higher connectivity intensity of M-EC than I-EC (for RT: 1.9 for M-EC and
0.72 for I-EC; for age: 0.01 for M-EC and 0.004 for I-EC). In summary, M-EC parameters exhib-
ited stronger connectivity intensities associated with both individual RT and age, as compared
with I-EC parameters.

Predicting Individual RT and Age by Task-Evoked EC

Based on the observed connectivity patterns of I-EC and M-EC ( ), we evaluated how
well the task-evoked EC predicts individual phenotypical and behavioral characteristics. We
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Figure 4. Examples of the group-mean and the behavior-related EC within the SRC task network derived from the event-related design. Panels
a—d depict the group-mean EC, I-EC, and M-EC, and panels e-h depict behavior-related EC matrices A and B when either mean-centered RT or
mean-centered age was used as the second column in the PEB design matrix (see the section). The SRC task-related network nodes
(group-level ROIs) are indicated on the axes (for abbreviations, see ). The color bars in panels a-d represent the magnitude range of the
group-mean EC parameters, while the color bars in panels e-h indicate the magnitude range of behavior-related EC parameters (either for
mean-centered RT or mean-centered age). These values depict the strength of the I-EC and M-EC, respectively, within the SRC task-related
brain network.
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calculated prediction accuracy (correlation between empirical and predicted values) for the
prediction of RT and age and plot the respective distributions obtained after 100 repetitions
of the 5-fold CV (see the section) in for the considered cases of the event-
related and block-based GLM and DCM designs for both I-EC and M-EC (see also
). Our results revealed that, in the case of choosing an event-related GLM
and DCM design, much better performance in predicting RT was achieved with M-EC features
as compared with I-EC features (mean correlation r = 0.26 vs. r = 0.09, Cohen’s d = 3.2;
). On the other hand, I-EC (vs. M-EC) showed higher accu-
racy in predicting subjects’ age (mean r = 0.28 vs. r = 0.22, Cohen’s d = 1.1;
). For the block-based GLM and DCM design, both M-EC and I-EC
showed rather low prediction performance for age (mean r = 0.19 and r = 0.2, Cohen’s d =
0.2) and even less so for RT (mean r = 0.17 and r = 0.1, Cohen’s d = 1; see

).

From the eight prediction conditions illustrated in , we found that only three cases
of the event-related GLM design appeared to be statistically significant ( , indicated by
asterisks), which were evaluated based on the permutation tests (see

and ). The features of both I-EC and M-EC were
predictive for subjects’ age, but only M-EC was predictive for individual RT if derived from
the event-related GLM and DCM design. Interestingly, all considered conditions of the
block-based design led to insignificant prediction results ( ). These findings suggest that
focusing on the event-related design may improve the prediction accuracy related to interin-
dividual variability and behavioral characteristics when using task-evoked EC. Furthermore,
our findings may also suggest focusing on M-EC when task-related behavioral characteristics
(RT) are to be predicted, as it strongly outperformed I-EC. While both M-EC and I-EC were
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Figure 5. Accuracy distributions of prediction results derived from 100 repetitions of 5-fold CV
using LASSO-regularized linear regression for event-related GLM designs (left panel, denoted in
green) and block-based designs (right panel, denoted in blue). The correlations between observed
and predicted RT and age, based on features from intrinsic effective connectivity (I-EC) and
task-modulated effective connectivity (M-EC) matrices, are illustrated as violin plots, with the
corresponding labels displayed on the horizontal axis. The mean correlation (r) is calculated by
averaging across all repetitions, while each dot represents a single repetition of the prediction
correlation derived from one 5-fold CV instance. Asterisks (*) indicate statistical significance in com-
parisons between the averaged correlations across the 100 repetitions and those from the
corresponding 500-times permutation test (see ).
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able to predict age to a moderate degree, the latter showed a somewhat better prediction
performance.

We also evaluated how different features (edges of EC) were used in the prediction process.
This way, we estimated how frequently one or another feature was selected for the model
training and prediction and considered the frequently selected features participating with a
frequency > 80% across all CV loops ( and 6b). The number of such active features
highly contributing to prediction can be compared with an average number of features pro-
vided by PEB for model training and prediction at CV instances ( ).

(a) Feature contributions for event-related designs

I AMce L\?E‘

RT_I-EC Age M-EC Age 1I-EC
2 5 2 5 2 5
2 R oa % 5w % R o
o &0 2 G, Do & SO S T
T B o, BTy & o,’-\\s
> 4, \‘o S 'A"c \ S /o% ¥ &

‘sd\"\ AMce I
I Amce L-\‘""

\sa\" AMce I
I AMece \,.\PS‘

] #, 5 el £ ] 2,
X \ /,'%c < /’?"ﬁfc < e ¥ Mo
+ Vo’ < + Yoy s®? < P e’ P
Yoz o o2 % Yog - 2 % A = Yo o 2 %

s 5 9 5 2 < g 2 € o g

5003 5 3 5 3 =X
8 @ a o} a [ 2 [l
(b) Feature contributions for block-based designs
z B 28 26
b ] = T
G b B L Al o BAZ
% = £ s - =
e S o N
S & L2y 9&«5 »%C \" N

©

Figure 6.

0.2

&
=

Average Prediction correlation

\sc\"‘ AMce

\sé\" AMCCI
I Amce L-\PS‘

AMee P I AMce
5 2, >
K < P4 /’ e oS \\ ,Qp/”c
-’ < %, ¥ S’
T or 2 & T F 2 % Yoz e 2 &
& © 2 & C 2 < C 2
=4 = o o o Cat
5 05 5005 5 5
A ° A e 3 @
mm Fdge number ~4-Correlation 29 30
Event-related designs Block-based designs
24
w
2
S
20 ° 2
R
2&
=]
E
QD
10 g3
5
o
> =
<

RT_M-EC RT_I-EC Age M-EC Age I-EC RT_M-EC RT_I-EC Age M-EC Age_I-EC

Feature contributions of specific EC edges frequently selected (panels a and b) and the average number of selected features (panel c)

across all CV training loops with 100 repetitions for predicting behavioral scores. Panels a and b highlight individual EC edges selected as
informative features during predictive modeling with a high frequency (=80%) for event-related and block-based designs, showcasing the
specific connections that contribute most significantly to the predictions. In panels a and b, black nodes denote “From” regions, while green
nodes indicate “To” regions. The plot titles indicate the prediction target score (RT or age) and EC modality (I-EC or M-EC). In contrast, panel ¢
presents the average number of EC features selected in each prediction loop, regardless of selection frequency, illustrating the overall rela-
tionship between prediction correlation (solid green line, left axis) and the average number of EC features (black bars, right axis) across all CV
training loops. The numbers above the bars represent the average number of EC features selected by PEB analysis for model training and

prediction.
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For the event-related GLM and DCM design, we found that the I-EC versus M-EC subnet-
works actively contributing to prediction were different for RT prediction including nine and
six edges, respectively ( ). The corresponding average numbers of I-EC and M-EC
parameters selected by PEB for RT prediction were 19 and 15, accordingly ( ). The
larger number of the active features (EC parameters) did not, however, consistently positively
contribute to prediction accuracy, and more RT-related features of the denser I-EC failed to

significantly predict RT measured in the SRC task ( ). The discussed behavior-related
SRC subnetworks also existed for the age prediction and were different from those for RT pre-
diction as well as for both I-EC and M-EC ( ). Here, in contrast, we observed a slight

trend that the larger number of EC parameters selected for the age prediction positively con-
tributed to prediction quality. Notably, the features of M-EC resulted in a somewhat weaker
age prediction accuracy than those of I-EC ( and 6¢).

For the block-based GLM and DCM design, similar observations can be reported, where
very different subnetworks of the SRC network actively participated in RT and age prediction
by I-EC and M-EC. In particular, only 4 and 12 edges were frequently selected for RT predic-
tion out of 10 and 24 features that on average were suggested by PEB from all M-EC and I-EC
connections, respectively ( and 6c¢). Again, a smaller M-EC subnetwork can lead to
somewhat better RT prediction than the larger I-EC subnetwork. The EC connectivity patterns
frequently employed for prediction are also very different between the two considered GLM
and DCM designs of the event-related and block-based types.

In summary, the stability, density, and connectivity pattern of the behavior-related SRC sub-
network frequently selected for model training and prediction could not immediately be
assigned to the observed prediction accuracy and might need additional investigation. Nev-
ertheless, by such a 5-fold CV subsampling, we found EC connections of the SRC network that
robustly covaried with the considered behavioral scores and can be used for their
investigation.

Predicting RT and Age From Task-Evoked FC

We also applied our approach to the prediction of RT and age based on task-evoked FC fea-
tures calculated by Pearson correlations between task-evoked BOLD time series extracted
from the SRC-related network nodes. Despite methodological differences between the EC-
and FC-based approaches, we found that the two types of FC (full task-evoked and task-
residual; see the section) performed relatively well in the prediction of individual
age (r = 0.29 ~ 0.31). However, FC succeeded much less in predicting RT for both GLM
designs (r = 0.07 ~ 0.13), where the task-evoked EC, especially M-EC for the event-related
GLM-DCM design, outperformed the task-related FC (see and compare

and ).

Table 1.  Performance of functional connectivity (FC) features in predicting individual reaction time
(RT) and age.

Event Block
GLM design full res full res
RT 0.11 £ 0.04 0.13 = 0.04 0.07 £ 0.04 0.10 £ 0.05
Age 0.29 £ 0.03 0.30 £ 0.04 0.31T £ 0.04 0.31T £ 0.04
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Individual RT and age were separately predicted by individual FC using CPM implemented
in a 5-fold CV scheme and repeating the predictive model for each target 100 times to derive
an averaged correlation between empirical and predicted values. Considering empty edges in
feature selection procedures, we used a sparsity function that selected the top 10% positively
and negatively target-correlated edges, respectively, rather than a fixed p value for thresh-
olding, in every training set for modeling.

CV Analysis
We calculated prediction accuracies for different CV schemes for the event-related GLM-DCM
design, including a repeated 10-fold CV ( and

) and LOOCV ( and ). The

10-fold CV revealed a pattern similar to the 5-fold CV, where we still observed that M-EC pre-
dicted RT much better than did I-EC (mean r = 0.28 vs. r = 0.14). On the other hand, I-EC
manifested a somewhat better correlation in predicting individual age than did M-EC (mean
r=0.29 vs. r=0.23).

For the LOOCV, we also found a similar pattern of prediction results, where M-EC presented
a much better correlation than I-EC in predicting individual RT (mean r=0.34 vs. r=0.11) but
lower prediction accuracy for age (mean r= 0.2 vs. r = 0.28).

Despite the prediction correlations were somewhat varying among different CV schemes,
we nevertheless observed robust prediction results related to M-EC and I-EC across different
CV schemes (see ). Indeed, M-EC much outperformed I-EC in predicting RT for all
cases considered. EC connectivity may also be used for age prediction, where I-EC demon-
strated somewhat better prediction accuracy than did M-EC.

Model Reduction Analysis

We also examined the case when the full DCM model employed above was replaced by a
reduced model based on the BMR approach. The prediction performances of I-EC and
M-EC for individual RT and age using BMR-extracted features (PP > 95%) are displayed in

, , and . The results

(a) Cross-validation schemes (b) Model reduction and ridge
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Figure 7. Overview of the mean prediction accuracy of all considered conditions in predicting
individual RT and age under the event-related (Event) GLM design with features selected by
behavior-related PEB analyses from EC modalities of M-EC and I-EC indicated on the horizontal
axis. Plots (a) and (b) indicated the conditions involving cross-validation schemes including 5-fold
CV, 10-fold CV, and LOOCYV, and applications of the BMR and ridge-regularized regression. Except
for LOOCYV, the prediction accuracies of all conditions were represented by averaged correlations
between empirical and predicted behavioral scores from the repeated k-fold cross-validation
analyses.

605

Gz0z aunr 6| uo Bueyz 19ynys Aq Jpd-Lyp00 B UIU/90GE0SZ/ L 6S/2/6/4Pd-BI0IE/UJOU/NPS W IOBIP//:d)Y WOl) papeojuUMOQ



Predicting response speed and age from task effective connectivity

Network Neuroscience

obtained were similar to our previous observations for the full DCM model. In particular, as
before, M-EC showed a much higher prediction accuracy (correlation) for RT than did I-EC (r=
0.31 vs. r=0.08), and I-EC showed a stronger prediction correlation for age than did M-EC (r=
0.27 vs. r = 0.2). These findings indicate that considering the DCM-reduced models via BMR
hardly influenced the prediction results and conclusions derived for the full model (see

).

Predictive Models

The prediction analysis using ridge-regularized linear regression in a 5-fold CV scheme
yielded similar results ( and ), which validated our
LASSO-regularized prediction model. For the event-related cases, M-EC (vs. I-EC) showed
higher prediction accuracy for RT (r = 0.24 and r = 0.04), but lower accuracy for age (r =
0.21 and r=0.27).

DISCUSSION

In this study, we investigated and compared the prediction performance of intrinsic and
task-modulatory EC patterns obtained from DCM of task fMRI data. For this, we explored
machine-learning-based predictions of individual age and RT performance by LASSO- and
ridge-regularized linear regression using two types of task-evoked EC: I-EC as given by matrix
A of the DCM model and task-modulatory EC (M-EC, matrix B). We adopted a CV-based PEB
analytical strategy to extract I-EC or M-EC parameters as predictive features to avoid data leak-
age in predicting individual behavioral or phenotypical scores. We compared the prediction
results for two different GLM and DCM designs of task fMRI processing and EC estimation, the
event-related and block-based designs. We also calculated and compared the prediction results for
different CV schemes, when BMR was applied to DCM, as well as when using ridge regression as
an alternative machine-learning model and task-evoked FC patterns as feature space.

Our results demonstrated that (a) the event-related GLM-DCM design performed better at
predicting individual phenotypes than did the block-based GLM design; (b) using M-EC led to
a higher prediction accuracy (correlation) for RT prediction, while I-EC was better for the age
prediction in the case of an event-related design; (c) employing BMR did not largely affect
prediction accuracy; (d) different CV schemes showed similar prediction patterns, where
LOOCV was showing more optimistic results than the 5-fold CV scheme in some cases; (e)
the results obtained for the LASSO-based predictive model were largely confirmed by models
using ridge regression; (f) task-evoked FC (vs. EC) showed a higher prediction accuracy for
age, but a lower accuracy for RT, where the event-related M-EC outperformed FC.

SRC Network

The SRC task is a well-established experimental paradigm to study cognitive action control
during conflict processing by employing measures such as RT and error rates in response to
task stimuli ( ), where shorter RT and higher accuracy is typically
observed in a congruent condition, as compared with the incongruent one. In contrast to
RT, previous studies also reported an age-related difference in both behavioral performance
and connectivity among brain regions ( ; ). In line with
these studies, our findings demonstrated that both age and RT can be predicted by brain EC,
albeit the prediction accuracy ranged from weak to moderate (see ). Moreover, our
findings revealed distinct EC patterns that contributed to predicting individual RT and age,
as indicated by feature contributions of EC ( and 6b). Although we selected nodes
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within the SRC network, where the incompatibility effects were present, the connections
among these regions exhibited varying degrees of contribution to age and RT prediction.
The dissociation of the entire SRC network into different subnetworks actively contributing
to age and RT prediction could reveal differently weighted roles of the network nodes (brain
regions) and their connectivity for various prediction targets. This could help to evaluate
potentially distinct associations to, for example, individual age and RT within the SRC network.

I-EC and M-EC

To our knowledge, the differential roles underlying the prediction performance of I-EC and
M-EC extracted from task-evoked fMRI have not been previously investigated. Although I-
EC is derived from task fMRI data, it shares similarities with intrinsic connectivity, as I-EC is
mathematically freed from task-related variance, allowing it to reflect condition-invariant,
spontaneous baseline activity during task-evoked brain states ( ;

). However, it is important to note that I-EC retains some influ-
ences from the task context, making it an imperfect analogy to resting-state data. Despite
this shortcoming, I-EC still captures intrinsic connectivity dynamics akin to resting-state con-
nectivity, making it a useful tool for studying intrinsic connectivity even in task-evoked data.

For the event-related GLM design, we found that M-EC exhibited a higher prediction cor-
relation for individual RT than did I-EC. This finding is comparable with the literature on the
predictiveness of task-evoked versus resting-state FC, which suggests that task-evoked connec-
tivity may better capture task-specific behavioral differences and variability than does resting-
state connectivity and thereby lead to superior prediction results ( ;

). This advantage may stem from task manipulations that accentuate brain func-
tional correlation patterns relevant to behavior ( ; ). Com-
pared with resting-state connectivity, the specificity of a given task, constrained nature, and
reduced variability of task-evoked connectivity may allow for better capturing some individual
behavioral differences ( ; ; ;

).

We found that I-EC (vs. M-EC) exhibited a slightly higher accuracy in predicting individual
age in the event-related GLM design. This is a different pattern of prediction based on I-EC
versus M-EC as we observed for RT prediction in spite of some moderate correlation between
RT and age. Both types of EC have been identified as decent predictors of individual age

( ; ). For instance, predicted
individual age (r > 0.3) using resting-state EC parameters estimated within and between the
brain’s main networks. Similarly, demonstrated that hippocampal excit-

ability of the task-evoked EC was influenced by aging (r = 0.29), showing the capability to
classify participants into younger and older groups. These findings suggest that both I-EC
and M-EC can be influenced by individual age, which justifies their consideration as features
for age prediction. The advance of resting-state connectivity for age prediction also aligns with
previous studies ( ; ; ). For instance,
evidence from a multimodal MRI study for brain age prediction ( ) has shown
a modality-specific prediction difference between the resting-state and task-evoked datasets,
where the former outperformed the latter. This difference may relate to the dissociation of
BOLD variability between them, where the resting-state BOLD variability may capture differ-
ent sources of variance and be more sensitive to global age-related (e.g., vascular and white
matter) factors than is task-evoked variability ( ). In line with previous litera-
ture, our findings suggest that brain I-EC and M-EC may contribute differently to predicting
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individual RT and age. Although we noticed that M-EC and I-EC components in the block-
based designs failed to predict individual RT and age (p > 0.05), the observed patterns suggest
a potential tendency between M-EC and I-EC components in their predictive performance for
age and RT.

GLM and DCM Designs

Despite minor differences, the LOOCV and k-fold CV prediction results have shown higher
prediction correlations for the event-related design compared with the block-based design
( ). Both I-EC and M-EC estimated from the block-based design resulted in lower and
insignificant prediction correlations with individual RT and age, as compared with EC esti-
mated for the event-related design. Previous studies ( ; ) have
compared the impact of GLM designs on task-evoked activations and reported that the block-
based design resulted in more widespread brain activations that were not specifically involved
in the task compared with the event-related design ( ). This difference may be
attributed to different hemodynamic response shapes modeled by GLM designs (

; ). The event-related design was found to
explain the signal variance better, with predicted hemodynamic responses peaking earlier
and returning to the baseline later ( ). In addition, our previous
study ( ) reported an overall higher M-EC strength for the event-related
design, relative to the block-based design. Taking these results together, the higher prediction
correlations with individual performance in the event-related GLM-DCM design may be
related to its stronger sensitivity to individual task events. This makes the event-related design
a promising modeling approach for better prediction and understanding of behavioral charac-
teristics related to the tasks, for example, RT, as in this study.

CV Schemes and Machine-learning Algorithms

The present study employed a CV-based PEB analytical strategy, which enabled us to estimate
behavior-modulated EC efficiently and avoided possible data leakage in prediction. In partic-
ular, extracting EC edges with PP > 95% as features from the entire sample, instead of extract-
ing them from every CV loop for the training set, may lead to overoptimistic prediction results
( ). Additionally, despite the instability and bias reported for LOOCV
( ), our k-fold CV scheme (repeated 100 times) has still displayed a nota-
bly consistent prediction pattern also with LOOCV ( ). In some cases, we, however,
observed an enhanced prediction correlation for LOOCYV, relative to the 5-fold CV scheme, for
example, for M-EC in RT prediction ( and S3). Furthermore,
the ridge-regularized machine-learning analysis confirmed our results obtained from the
LASSO-regularized analysis ( ). The relatively consistent pre-
diction patterns obtained across various CV schemes and machine-learning algorithms support
the robustness and stability of our findings.

BMR

We explored the possible benefits of employing BMR of DCM for predicting individual RT and
age with both types of EC ( ). However, we observed that the impact of BMR on pre-
diction results was relatively small ( ). BMR refers to the pro-
cedure of comparing different reduced models initiated from a prespecified model using
Bayesian inversion to find a “winning” model that fits the neural data best (

). This procedure iteratively switches off the connectivity parameters and
compares the PP of these reduced models until the “best” model is captured (
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). Several studies have applied BMR to remove connectivity parameters from the full
model and to predict individual differences based on the EC of the reduced model (

; ). However, the impact of BMR on prediction results has remained
unclear without direct comparisons. In our study, we did observe a slightly higher prediction
accuracy with BMR in the case of RT prediction using M-EC features ( ). However,
there was still a notably consistent prediction pattern across the cases with BMR and those
using the full DCM model. The current findings thus indicate that the impact of BMR on the
prediction results is relatively small. More detailed and comprehensive investigations are
needed to evaluate the role and significance of BMR in DCM-based prediction analyses.

Joint EC Analysis of I-EC and M-EC

Considering that both I-EC and M-EC components can contribute to changes in neuronal
states, we conducted additional prediction analyses with combined features including both
I-EC and M-EC components together, and compared the results with those using each compo-
nent separately ( ). In the event-related design, the combined
EC model predicted age with a mean correlation of 0.28 and RT with 0.26. For the block
design, age prediction had a correlation of 0.20, while for RT, it was 0.15. Across different
CV schemes, the combined analyses showed prediction correlations ranging from 0.28 to
0.33 for RT and from 0.29 to 0.31 for age. When using BMR and ridge-regularized linear
regression, the BMR model achieved a prediction correlation of 0.29 for both RT and age,
whereas the ridge regression model showed a prediction of 0.24 for RT and 0.28 for age. These
results were not significantly different from predictions using I-EC or M-EC alone, indicating
that isolating I-EC and M-EC provides comparable prediction accuracy. Additionally, this
approach offers more specific insights into which aspect of task-evoked EC is involved in
the respective brain-behavior relationships.

FC

We examined task-evoked FC and compared its prediction performance with task-evoked EC.
Our findings revealed that task-evoked FC was more predictive of age than was EC, whereas it
was less predictive of RT than was task-evoked M-EC (see and

). Consistent with previous literature ( ; ;

), which demonstrated that FC could predict individual task performance and age
with a correlation generally greater than 0.2, our results show a comparable prediction of age
and RT using task-evoked FC from the SRC network, although RT prediction was lower.
Furthermore, although EC was thought to be more discriminative than FC in identifying brain
“fingerprints” from a previous resting-state fMRI study ( ), the moderate
improvement in age prediction by task-evoked FC highlights a sophisticated role of
task-evoked connectivity measures. This may suggest that FC provides valuable insights in
task-evoked contexts, especially for age prediction. Of note, we should also consider method-
ological variations in the prediction pipeline between EC- and FC-based predictions. These
methodological differences in feature selection methods and selected feature numbers might
be another source of the observed differences in prediction performance.

Limitations

Some limitations of our approach should be considered and possibly addressed in future
research. First of all, as in other task-related studies, also in this study, we extracted group-
based ROlIs of brain activation based on the entire sample, which may be subject to the risk
of data leakage in subsequent prediction analysis. The possible data leakage problem might be
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due to the whole-sample second-level fMRI analyses applied to training and test sets together
instead of performing them separately for the given training set in each CV loop (

; ). The impact of this problem on prediction results,
however, is not immediately evident and has to be investigated in a dedicated separate study,
which is computationally expensive and would require large computational resources. Here,
we nevertheless verified that the second-level fMRI analysis applied to the training sets within
CV loops did not lead to notably different ROls, as compared with the whole-sample case
( ). It is therefore reasonable to assume that the discussed
potential data leakage did not have any notable impact on our prediction results and the
reported conclusions. Second, while I-EC might approximate resting-state connectivity to a
large extent by removing task-related variance, it still retains some influences from the task
context, which makes it an imperfect analogy to resting-state connectivity. This partial similar-
ity may affect the comparability of I-EC and resting-state connectivity in capturing spontaneous
brain activity. Future research could benefit from estimating I-EC directly from resting-state
data and comparing its predictive performance with task-related M-EC to better understand
their relative effectiveness and implications for behavioral prediction. Third, we employed a
LASSO-regularized linear regression model, which might face problems in case of high collin-
earity in the data and cannot well account for (non)linear relations between the features of
brain EC used for the prediction of behavioral characteristics. Although we confirmed our
results using ridge regression, additional investigations are warranted to better clarify this lim-
itation. Finally, while our study provides interesting insights into task-evoked EC within the
SRC-related brain network, it is limited by its focus on a specific task paradigm, and a possible
generalization of the reported results to other tasks or even to the whole-brain connectome is
important. Future research could address these limitations to offer a more comprehensive
understanding of brain dynamics and connectivity across different cognitive states and their
relations to behavior.

Conclusion

Our study aimed to predict individual RT and age from I-EC and M-EC and investigated the
impact of a variety of data processing conditions, including types of DCM-GLM designs, appli-
cation of BMR as well as diverse CV schemes. Our findings suggest that I-EC and M-EC may
capture different phenotypic attributes, in spite of relatively low prediction accuracies
observed for both task-evoked EC and FC regarding the prediction of RT or age. Here, M-EC
demonstrated higher prediction accuracy for individual RT, whereas I-EC was better predictive
of individual age. Furthermore, task-evoked EC outperformed FC in predicting individual RT
but presented a slightly lower accuracy for individual age. Notably, prediction performance
was significantly affected by the choice of GLM-DCM design, but only slightly influenced
by other considered conditions of data processing and analysis, and using the event-related
GLM-DCM design may improve prediction accuracy of task-evoked EC for individual RT and
age. The presented results can contribute to better applicability of effective brain connectivity
to the investigation of interindividual variability in brain-behavior relationships.
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Supplementary Figures

(a) Stimulus-response compatibility (SRC) task
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Fig. S1 The overview of the stimulus-response compatibility (SRC) task and general linear
model (GLM) designs for event-related and block-based designs. (a) The SRC task includes
two conditions: compatible (Pro) and incompatible (Anti) conditions. During the task,
participants were instructed to respond to lateralized visual stimuli by accurately and rapidly
pressing an ipsilateral (Pro) or contralateral button (Anti), respectively. (b/c) The event-
related and block-based GLM designs were implemented in the task-evoked first-level fMRI



analyses, where double-gamma and temporal derivatives were utilized to model individual
BOLD signals.
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Fig. S2. A summary of label-shuffled permutation tests (500 times) obtained from block/event-
related designs and intrinsic/task-modulated effective connectivity (I-EC/M-EC) for reaction
time (RT) and age. The orange dot in the figure represents the prediction correlation derived
from one fixed 5-fold cross-validation splitting scheme where the behavioral labels were
shuffled randomly. Note, that the fixed-5-fold cross-validation splitting scheme was the one
showing the highest prediction correlation in the repeating 5-fold analysis.
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Fig. S3. A summary of prediction results obtained from the event-related design and
intrinsic/modulatory effective connectivity (I-EC/M-EC) in predicting individual reaction time
(RT) and age using a 5-fold (the left penal) and10-fold (the right penal) cross-validation
approach. The orange dot in the figure represents the prediction correlations derived from one
randomly sampled cross-validation instance.
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Fig. S4. A summary of prediction results obtained from the event-related design and
intrinsic/modulatory effective connectivity (I-EC/M-EC) incorporating prediction cases
without (the left panel) and those with Bayesian model reduction (BMR) procedure (the right
penal) in predicting individual reaction time (RT) and age using a 5-fold cross-validation
approach. The orange dot in the figure represents the prediction correlations derived from one
randomly sampled 5-fold cross-validation instance.
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Fig. S5 Overview of the mean prediction accuracy (Pearson’s r) across all conditions for
predicting individual reaction time (RT) and age in various prediction scenarios. Each model
combines intrinsic and task-modulated effective connectivity (EC) parameters, with
prediction correlations calculated between empirical and predicted values. The correlations
were averaged across 100 iterations of random subject splits for cross-validation (CV)
analyses, except for the leave-one-out CV (LOOCYV) cases. The horizontal axis represents
different prediction conditions involving CV schemes including 5-fold, 10-fold, and LOOCYV,
applications of Bayesian model reduction (BMR), and ridge-regularized regression. The

vertical axis shows the prediction correlations (7).
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Fig. S6 Variations in Group-Level Peak Coordinates of Regions of Interest (ROIs) During 5-
Fold Cross-Validation. The entire sample was split into training and testing sets using a 5-
fold cross-validation (CV) approach. For each fold, second-level fMRI analyses were
conducted on the training set, and ROIs were identified based on the peak coordinates
derived from these analyses. The Euclidean distance between the peak coordinates of ROIs
selected from each fold and the ROIs obtained from the full sample was calculated. This

process was repeated 20 times, resulting in 100 points per network node. These differences



were visualized as violin plots to illustrate the distribution of variations in ROI coordinates,

with the mean value for each violin shown.

Supplementary Tables

Table 1. Prediction performance of the features extracted from intrinsic EC (I-EC) and
task-modulated EC (M-EC) for individual reaction time (RT) and age obtained by
LASSO regression with 5-fold cross-validation

Predictors Event Block
M-EC I-EC M-EC I-EC
RT r=0.26+0.04 * r=0.09+0.05 r=0.17+£0.05 r=0.10%£0.04
Age r=0.22+0.04 * r=028+0.03* r=0.19+£0.05 »=0.20=+0.04

The prediction correlations were estimated from a 100-time 5-fold CV, which employed the
LASSO-regularized linear regression model. The upper number in the table cells indicates the



averaged correlation 7 and its standard deviation across repetitions. Asterisks (*) indicate a
statistically significant difference (p < 0.05) between averaged prediction correlations and
label-shuffled permutation tests (500 times), which are displayed in Supplementary Fig. S2.

Table 2. 10-fold prediction performances of M-EC and I-EC in individual RT and age

Predictors Event
M-EC I-EC
RT 0.28 £ 0.04 0.14 £ 0.04
Age 0.23 £0.04 0.29 +0.03

The prediction correlations were estimated from a 100-time 10-fold CV, which employed the
Lasso-regularized linear regression model. The number in the element shows the averaged
correlation between empirical and predicted values, and the second one indicates the standard
deviation. M-EC: task-modulated effective connectivity; I-EC: intrinsic effective connectivity;
RT: reaction time.

Table 3. LOOCYV prediction performances of M-EC and I-EC in individual RT and age

Predictors Event
M-EC I-EC
RT 0.34 0.11
Age 0.20 0.28

The prediction correlations were estimated from a Leave-one-out cross-validation (LOOCYV)
scheme, which employed the Lasso-regularized linear regression model. The number in the
elements represents the prediction correlation between empirical and predicted values. M-EC:
task-modulated effective connectivity; [-EC: intrinsic effective connectivity; RT: reaction time.



Table 4. Prediction performances of M-EC and I-EC in individual RT and age with
reduced models

Predictors Event
M-EC I-EC
RT 0.31+0.04 0.08 £ 0.05
Age 0.20+0.05 0.27 £0.03

The prediction correlations were estimated from a 100-time 5-fold CV, which extracted EC
connections from reduced models (Bayesian model reduction) and employed the Lasso-
regularized linear regression model for prediction. The number in the element shows the
averaged correlation between empirical and predicted values, and the second one indicates the
standard deviation. M-EC: task-modulated effective connectivity; I-EC: intrinsic effective
connectivity; RT: reaction time.



Table 5. The 5-fold prediction performances of M-EC and I-EC in individual RT and age
using ridge-regularized linear regression

Predictors Event
M-EC I-EC
RT 0.24 +£0.04 0.04 +£0.05
Age 0.21 +£0.04 0.27 £0.03

The prediction correlations were estimated from a 100-time 5-fold CV, which employed the
ridge-regularized linear regression model. The number in the element shows the averaged
correlation between empirical and predicted values, and the second one indicates the standard
deviation. M-EC: task-modulated effective connectivity; I-EC: intrinsic effective connectivity;
RT: reaction time.
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Abstract

Background: Childhood maltreatment (CM) has become one of the leading psychological stressors, adversely impacting brain devel-
opment during adolescence and into adulthood. Although previous studies have extensively explored functional connectivity associated
with CM, the dynamic interaction of brain effective connectivity (EC) is not well documented. Methods: Resting-state functional mag-
netic resonance imaging data were collected from 215 adults with an assessment using the Childhood Trauma Questionnaire (CTQ).
Whole-brain EC was estimated by regression dynamic causal modeling and subsequently down-resampled into seven networks. To pre-
dict CTQ total scores, repeated cross-validated ridge-regularized linear regression was employed, with whole-brain and network-specific
EC features selected at thresholds of 5% of the strongest positive and negative correlations between EC and scores, as well as 10%
and 20% thresholds. Additionally, a least absolute shrinkage and selection operator (LASSO)-regularized linear regression model was
utilized as validation analysis. Results: Our findings revealed that whole-brain EC showed a marginal association with predicting CTQ
total scores, and EC within the default mode network (DMN) significantly predicted these scores. EC features from other networks did
not yield significant predictive results. Notably, across varying feature selection thresholds, DMN features consistently demonstrated
significant predictive power, comparable to results from LASSO-regularized predictions. Conclusions: These findings suggested that
brain EC can capture individual differences in CM severity, with the DMN potentially serving as an important predictor related to CM.

Keywords: effective connectivity; childhood maltreatment; regression dynamic causal modeling; default mode network; feature selec-
tion

Main points sential for creating preventive measures for individuals and
offering therapeutic insights for treating psychiatric disor-
ders.

Brain connectivity inferred from resting-state func-
tional magnetic resonance imaging (rs-fMRI) has been
widely used to explore the brain-behavior relationship.
Functional connectivity (FC), one of the most commonly
used connectivity measures, is defined by the pairwise cor-
relation between distant brain regions and is considered
a potential biomarker for human brain development and
psychological processes [6]. A recent review [7] demon-
strated that altered FC in brain regions such as the insula,

1. Effective connectivity (EC) can capture individual
differences in childhood maltreatment severity.

2. The EC features within the default mode net-
work (DMN) showed the highest prediction correlation
over other networks.

3. The DMN may serve as an important predictor as-
sociated with childhood maltreatment.

1. Introduction

Childhood maltreatment (CM), which encompasses
different forms of maltreatment such as neglect and phys-
ical, sexual, and emotional abuse, has become one of the
leading psychological stressors, negatively affecting brain
development during adolescence and into adulthood [1].
Childhood experiences of adversity are significantly re-
lated to the first onset of psychiatric disorders with social-
affective disturbances [2]. Individuals with CM may have a
higher risk of developing bipolar disorder, depression, sub-
stance abuse, and suicidal behaviors [3—5]. Thus, under-
standing the neural substrate influenced by CM may be es-

amygdala, hippocampus, cingulate cortex, and prefrontal
cortex is associated with exposure to individual maltreat-
ment. Furthermore, accumulating evidence [8,9] indicates
that FC alterations within networks of the default mode net-
work (DMN) and the salience network (SN) contribute to
the pathophysiology of mental health disorders and social-
affective functioning in individuals with maltreatment ex-
posures. However, these studies [7-9] primarily focused
on bidirectional connections and overlooked the dynamic
influence that one region has on another [10].

Copyright: © 2025 The Author(s). Published by IMR Press.
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Conversely, effective connectivity (EC), estimated by
dynamic causal modeling (DCM), measures directional
causal influences among brain regions [11]. This comple-
ments FC by a mechanistic explanation of the causal in-
teractions through the modeling of directional causal influ-
ences [10] and may offer higher sensitivity than FC in psy-
chopathology [12]. Although EC research related to the CM
topic is sparse, a recent study [13] found that CM experi-
ences impaired the medial prefrontal cortex’s ability to in-
hibit the amygdala during emotional processing, suggesting
that EC could serve as a potential biomarker for psychiatric
disorders. Additionally, unlike FC studies, many EC stud-
ies are driven by hypotheses and have typically limited their
analyses to fewer than 10 nodes [13,14], exploring the infor-
mation flow directionality among specific network nodes.
Additionally, due to the computational limitations, infer-
ring EC at a whole-brain or large-scale level is challenging
[15], leading to a restriction in the analysis of whole-brain
and large-scale EC patterns. As emerging evidence sug-
gests that CM is related to altered complex and distributed
network architectures [16], examining whole-brain EC al-
lows us to capture dynamic influences across widespread
regions. This approach provides a more comprehensive
view of how maltreatment experiences may disrupt func-
tional network coupling, enhancing our understanding of
CM’s neurobiological impact on broad connectivity dynam-
ics.

In this study, we aim to evaluate whole-brain EC in
individuals with CM and assess its potential for predicting
CM severity. We measured individual CM severity using
the Childhood Trauma Questionnaire (CTQ) Short Form
[17] and estimated EC for all participants using regression
DCM (rDCM) [14], which is a new variant of DCM. We
then applied a cross-validated linear regression model to
examine the relationship between whole-brain or network-
specific EC profiles and CM severity.

2. Methods
2.1 Subjects

We recruited 215 healthy adult participants from
Guangzhou Medical University and the surrounding com-
munity between July, 2013 and August, 2019. To ensure
eligibility, we administered the Structured Clinical Inter-
view for the Diagnostic and Statistical Manual of Mental
Disorders—IV Edition (DSM- IV) Non-Patient Edition to all
participants, confirming that they had no history of Axis I
disorders. Additionally, we excluded anyone with a fam-
ily history of psychiatric illness among first- to third-degree
biological relatives, as well as individuals with a history of
seizures, head trauma, significant surgeries or medical con-
ditions, substance abuse or dependence, or contraindica-
tions for magnetic resonance imaging (MRI). We excluded
nine subjects due to quality control issues of head motion
and spatial normalization, leaving 206 subjects eligible for
subsequent analysis (Table 1).

All participants were right-handed and provided writ-
ten informed consent before their involvement in the study.
The study protocol received ethical approval from the In-
stitute Research Board of the Affiliated Brain Hospital,
Guangzhou Medical University.

2.2 Childhood Maltreatment Assessment

Before MRI scanning sessions, we conducted a thor-
ough assessment of CM severity for all participants using
the Chinese version of the CTQ Short Form [17,18]. This
self-report scale comprises 28 items, encompassing five
distinct dimensions: emotional abuse, physical abuse, sex-
ual abuse, emotional neglect, and physical neglect, and each
item is scored from 1 (“never”) to 5 (“very often”). This
scale has been widely applied in clinical and non-clinical
populations [ 18], and its Chinese version has shown strong
reliability and validity [17]. A detailed assessment of the
CTQ scale and subscales for all qualified subjects (N =206)
can be seen in Table 1.

2.3 Imaging Protocols

All MRI datasets for all participants were acquired uti-
lizing a 3T Philips Achieva X-series MRI scanner, equipped
with an eight-channel phased-array head coil in the Affili-
ated Brain Hospital, Guangzhou Medical University.

The resting-state fMRI datasets were collected using a
gradient-echo echo-planar imaging sequence, with param-
eters as follows: repetition time (TR) =2000 ms, echo time
(TE) = 30 ms, flip angle = 90°, field of view (FOV) = 220
mm X 220 mm, and acquisition matrix = 64 x 64. The
scan consisted of 33 transverse interleaved slices, each with
a thickness of 4 mm and a gap of 0.6 mm. Throughout the
scanning process, participants were instructed to remain at
rest with their eyes closed, and none of them reported falling
asleep upon being queried immediately after the scan.

A T1-weighted 3D turbo field-echo sequence was em-
ployed to acquire the structural datasets, with parameters as
follows: TR = 8.2 ms, TE = 3.7 ms, inversion time = 1100
ms, flip angle = 7°, FOV =256 mm x 256 mm, acquisition
matrix = 256 x 256, and voxel size=1 x 1 x 1 mm?. The
scan encompassed continuous 188 sagittal slices covering
the brain.

2.4 Imaging Preprocessing

The resting-state fMRI images were preprocessed
by the Data Processing and Analysis for Brain Imaging
(DPABI) pipeline (http://rfmri.org/dpabi), as implemented
in the Matlab (v 2016a, Mathworks, Natick, MA, USA)
platform.

The preprocessing pipeline included the following
steps: (1) removal of the first 10 volumes; (2) slice-timing
and head-motion correction; (3) co-registration of func-
tional images to structural space; (4) regression of whole-
brain, cerebrospinal fluid, and white matter signals, as well
as linear trends and Friston-24 head-motion parameters; (5)
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non-linear normalization to Montreal Neurological Insti-
tute (MNI) space; (6) smoothing with a 5-mm full-width-
at-half-maximum; and (7) temporal filtering within a fre-
quency range of 0.01 to 0.1 Hz.

After preprocessing, nine participants were excluded
due to quality control issues of the head motion and spatial
normalization, and 206 participants were kept for further
analyses.

For the estimation of individual EC, we applied the
Schaefer atlas [19] (100 parcels, Fig. 1a) to cover the cortex
and extracted the first eigenvariate for each region from the
preprocessed functional images using fslmeants/FSL. This
eigenvariate served as the time series data, which was then
utilized in the calculation of EC.

2.5 Effective Connectivity Estimation

As a recently developed variant of DCM, rDCM was
utilized to estimate individual whole-brain EC efficiently
[14]. This method transforms conventional linear DCM
into the frequency domain, making it a special case of
the Bayesian linear regression model [14]. Using this ap-
proach, we specified a full-connection model to estimate
EC, where a 100-by-100 matrix was built for each sub-
ject (Fig. 1b). Additionally, to examine the prediction
performance from separate networks, we down-resampled
the whole-brain EC matrix into seven networks including
the visual network (Vis), somatosensory network (SMN),
dorsal attentional network (DAN), ventral attentional net-
work (VAN), limbic network (Lim), fronto-parietal network
(FPN), and DMN. This down-sampling grouped parcels
based on the Schaefer atlas [19,20], aligning each of the 100
parcels with one of seven networks. We extracted within-
network connectivity for each network by selecting matrix
entries where nodes shared the same network label. This
approach enabled a targeted comparison of whole-brain and
network-specific EC predictions.

2.6 Machine Learning

To explore the relationship between whole-brain and
network-specific EC and CM severity, we employed a
ridge-regularized linear regression model within a 10-fold
cross-validation scheme, where EC was specified as fea-
tures and the total scores summing from all CTQ subscales
were used for targets. The cross-validation process in-
volved splitting samples into training and testing sets. In
the training set, EC features were correlated with CTQ to-
tal scores, and the top 5% of features were extracted based
on the highest positive and negative correlations, respec-
tively. A ridge-regularized linear regression model was
then trained on the training set, which was subsequently
used to predict scores in the testing set, calculating the cor-
relations between predicted and actual scores. An aver-
age prediction correlation was calculated across all cross-
validation folds.
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To improve the stability of prediction performance, we
repeated this prediction process 100 times and obtained an
average prediction correlation across all iterations for each
prediction case. To assess the statistical performance of the
prediction model with the feature selection threshold of 5%,
we applied a label-shuffled permutation (n =500 times) test,
where CTQ total scores were randomly shuffled before each
cross-validation loop. The permutation process serves to
evaluate the robustness of our model by generating a null
distribution of prediction correlations. By comparing the
empirical prediction performance against this null distribu-
tion, we can determine the statistical significance of our ob-
served results with a threshold of p = 0.05. Given that pre-
dictions were conducted for the whole brain and each of
the seven networks, we additionally applied a Bonferroni-
corrected threshold of p =0.0063 (0.05/8) for multiple com-
parisons to the uncorrected p-values obtained from each
permutation test. This provides both uncorrected and cor-
rected interpretations, offering a more comprehensive view
of our findings.

Considering that feature selection thresholds may im-
pact prediction performance, we repeated our prediction
processes with the feature selection conditions of 10%
and 20%, which enabled us to confirm the consistency of
prediction performance patterns among whole-brain and
network-specific predictions. Additionally, to verify our
findings, we employed a least absolute shrinkage and selec-
tion operator (LASSO)-regularized linear regression model
and compared its results with those of the ridge-regularized
model at a 5% feature selection threshold.

3. Results
3.1 Demographic Information and CTQ Scores

Table 1 summarizes the demographic characteristics
and CTQ scores for the 206 participants included in the
study after imaging preprocessing. The sample comprised
91 males and 115 females, with an average age of 25.3
years. Participants had an average of 14 years of educa-
tion. The mean CTQ total score was 34.7, with subscale
averages as follows: emotional abuse, 6.6; physical abuse,
5.8; sexual abuse, 5.3; emotional neglect, 9.6; and physical
neglect, 7.3.

3.2 Prediction Results

In this study, we examined the prediction correla-
tion between CTQ total scores and EC features selected
from the whole brain and separated networks using a ridge-
regularized linear regression model, where a feature selec-
tion threshold of 5% was applied. Then, to improve the
robustness and consistency of the above predictions, we
also employed 10% and 20% feature selection thresholds to
examine whole-brain and network-specific EC predictions.
Additionally, a LASSO-regularized model was employed
to validate the prediction results.
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(a) Schaefer parcellations

(b) Effective connectivity matrix
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Fig. 1. The Schaefer atlas and effective connectivity (EC) matrix averaged across all participants. (a) shows the utilized Schaefer

atlas (100 parcels) used for extracting individual timeseries and the color indicates the different parcellations. (b) illustrates averaged EC

across subjects and the color bar indicates the EC magnitude.

Table 1. Demographic information and CTQ scores.

Variable Subjects (N =206)
Sex (M/F) 91/115
Age (years) 253 £ 6.2 (18~44)
Education (years) 14.0 £ 2.6 (4~22)
Education Level

0~6 years 1.5%

6~9 years 4.9%

9~ 12 years 22.3%

>12 years 71.4%
CTQ Total Score 34.7 + 7.8 (25~61)
Emotional Abuse 6.6 +2.1(5~17)
Physical Abuse 5.8+ 1.5(5~13)

Sexual Abuse
Emotional Neglect
Physical Neglect

53408 (5~11)
9.6 & 4.0 (5~24)
73 £2.5 (5~16)

Note: The percentage of education levels may
not sum to 100% due to rounding. Val-
ues are presented as means =+ standard devia-
tions. Ranges for each variable are indicated in
parentheses. Abbreviations: CTQ, Childhood
Trauma Questionnaire; M/F, male/female.

When considering a feature selection threshold of 5%
(Fig. 2 and Table 2), we found that whole-brain EC features
marginally predicted CTQ total scores, with a correlation
coefficient of » = 0.16. However, when predictions were
examined at the network-specific level, only EC features
from the DMN successfully predicted CTQ total scores,

yielding a stronger correlation of » = 0.25 (p < 0.05). In
contrast, EC features from other networks, including the
Vis, SMN, DAN, VAN, Lim, and FPN, failed to be sta-
tistically significant in prediction (p > 0.05). Their pre-
diction correlations ranged from 0.1 to 0.15. Notably, EC
features from the DMN outperformed those from all other
cases in predicting CTQ total scores, exhibiting the highest
prediction correlation compared with both the whole-brain
and other network-specific predictions. However, when in-
cluding a multiple-comparison corrected threshold of p =
0.0063 (Bonferroni corrected), none of them were statisti-
cally significant.

3.3 Feature Selection Thresholds Analysis

To examine the impact of feature selection thresholds
on prediction correlations for CTQ total scores, we varied
the feature selection thresholds from 5% to 10% and 20%
(Table 3). We observed that the significance level of whole-
brain EC prediction did not vary across different thresholds,
with no significant predictions for CTQ total scores at the
10% or 20% thresholds (p > 0.05). In contrast, EC fea-
tures from the DMN remained statistically significant (p <
0.05) even after applying a multiple-comparison correction
(» < 0.0063) with these thresholds. Importantly, varying
the feature selection thresholds did not affect the statistical
significance (p > 0.05) of EC features in the other networks.

3.4 Validity Analysis

To validate our prediction results obtained from the
ridge-regularized linear regression model, we then exam-
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Fig. 2. Violin plot showing the distribution of prediction correlations for whole-brain and network-specific EC features derived

from 100 repetitions with a 5% feature selection threshold. The x-axis represents the EC feature sources used to predict the CTQ

total scores, while the y-axis indicates the correlation between the empirical and predicted scores. Each dot represents an individual

prediction correlation. Abbreviations: WB, whole brain; Vis, visual network; SMN, somatosensory network; DAN, dorsal attentional

network; VAN, ventral attentional network; Lim, limbic network; FPN, fronto-parietal network; DMN, default mode network.

Table 2. Correlation coefficients (r) for predicting CTQ total scores using WB and network-specific EC features at a 5% feature

selection threshold.

Prediction Correlation

EC feature

WB Vis SMN DAN VAN Lim FPN DMN
r 0.16 0.15 0.12 0.10 0.12  0.11  0.15 0.25
p 0.05 033 059 0.67 0.58 0.68 041 0.02 *

Note: An asterisk (*) indicates statistical significance with a p-value below the threshold for

significance (p < 0.05) based on permutation testing.

Table 3. Correlation coefficients (r) for predicting CTQ total scores using WB and network-specific EC features at 10% and
20% feature selection thresholds.

Features WB Vis SMN DAN VAN Lim FPN DMN
10% 0.15 0.16 0.12 0.12 0.11 0.12 0.17 0.24
0.07 030 0.56 049 0.66 0.67 0.27 0.00 **
20% 0.15 0.15 0.12 0.12 0.11 0.12 0.17 0.23
p 008 0.12 049 0.56 0.66 0.57 0.21 0.00 **

Note: Double asterisks (**) indicate statistical significance based on the permuta-

tion test with a p-value below the Bonferroni-corrected threshold of p = 0.0063 for

multiple comparisons.

ined the prediction correlations using a LASSO-regularized
model (Fig. 3). Our findings were consistent with those
of the ridge-regularized model, and EC features within the
DMN demonstrated the highest prediction correlation com-

pared with other networks.
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4. Discussion

To our knowledge, this study is the first to investi-
gate large-scale network EC for predicting CM severity,
employing whole-brain and network-specific EC to pre-
dict individual CM severity using a ridge-regularized linear
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Fig. 3. Violin plot displaying the prediction distributions for whole-brain and network-specific EC features, derived from 100

repetitions at a 5% feature selection threshold using the LASSO-regularized linear regression model. The x-axis represents the

EC feature sources used to predict CTQ total scores, while the y-axis shows the correlation between empirical and predicted CTQ total

scores. Abbreviations: LASSO, least absolute shrinkage and selection operator.

regression model. Our results suggested that (i) EC fea-
tures from the DMN show the best prediction performance
over other prediction cases and (i) varying feature selection
thresholds may not evidently impact the statistical signifi-
cance of predictions. Notably, the DMN’s predictive valid-
ity was further supported by the LASSO-regularized linear
regression model. This suggested that the EC features of
the DMN may play a crucial role in capturing individual
differences in CM severity, which highlighted the potential
of DMN connectivity as a more reliable predictor of clinical
outcomes compared with connectivity of other large-scale
networks.

4.1 Effective Connectivity Prediction

The present study has shown that EC was predictive
of individual differences in CM severity. This aligns with
previous literature reporting that the EC feature can clas-
sify clinical patients from healthy controls well and predict
treatment outcomes and behavioral domains [21-23]. This
supports the utility of EC as a promising feature in under-
standing and predicting clinical and behavioral variations.

Our study further demonstrated that EC features
within the DMN were superior to those within other net-
works. The DMN structure primarily includes regions of
the medial prefrontal cortex, posterior cingulate cortex,
precuneus, and lateral parietal cortex [24]. This network
is known to be engaged in internally-focused mental pro-
cesses such as self-reflection, mind wandering, daydream-
ing, autobiographical memory retrieval, and future plan-

ning [25-27]. Aberrant activities in the DMN may con-
tribute to multiple dysfunctional psychological processes in
self-referential thinking and working memory, and atten-
tional impairments [28,29]. Given that the DMN is cru-
cial in self-referential cognitive functions, it is of great
importance in the study of CM [30]. Altered connec-
tivity of the DMN is linked to various psychopathologi-
cal symptoms in transdiagnostic samples including post-
trauma stress disorder (PTSD), major depressive disorder
(MDD), and schizophrenia [30—32]. In schizophrenia, the
experiences of CM were associated with connectivity vari-
ations in the DMN [33]. In MDD, the altered functional
coupling within the DMN may contribute to developing de-
pression in individuals with CM [34]. In PTSD, reduced
FC within the DMN may lead to self-perception distur-
bance and link traumatic experiences to the sense of self
[35]. Accumulating evidence shows that traumatic expo-
sure adversely impacts DMN connectivity, which in turn
leads to psychopathological symptoms associated with mal-
adaptive self-referential processes [30,36]. Additionally,
previous reviews have highlighted the DMN as a network
of particular interest in non-clinical individuals exposed
to CM [7,36,37]. Numerous studies [38—42] have docu-
mented altered connectivity within the DMN, as well as
between the DMN and other networks, in individuals with
CM compared with those without. For instance, Lu et
al. [38] observed abnormal FC within the DMN and in
its connections with the cerebellum and insula in individ-
uals with CM, while Zhao et al. [39] reported increased
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connectivity within the anterior DMN and reduced con-
nectivity between the posterior DMN and other networks
in non-clinical adults with CM. Moreover, DMN connec-
tivity has demonstrated strong predictive contributions for
CTQ scores in non-clinical individuals [43], underscoring
the DMN’s role as a potential biomarker of trauma. Col-
lectively, these findings, together with existing literature
on early-life stress [36,44,45], suggested that alterations in
DMN connectivity may serve as important neural correlates
of early-life adversity. Although research regarding EC and
CM is sparse, several studies utilized prior-defined regions
of interest to explore EC between the amygdala and medial
prefrontal cortex, reporting that traumatic exposures impact
the inhibition of the amygdala by the medial prefrontal cor-
tex [13,46]. This may potentially reflect dysfunction in the
DMN, contributing to maladaptive emotional responses im-
pacted by traumatic exposures [46]. Consistent with these
studies, our findings demonstrated that EC features within
the DMN better predicted CM scores than those from other
networks, suggesting that the DMN may play a crucial role
in influencing CM effects on self-referential and emotional
regulation.

4.2 Feature Selection Thresholds and Predictive Models

This study further evaluated the stability of our pre-
diction findings by varying the feature selection thresh-
olds. Although the p-values for the statistical significance
of EC prediction were impacted by different feature selec-
tion thresholds, the significance of most prediction cases
was little influenced. This aligns with previous literature
[47,48] suggesting that varying feature selection thresholds
(e.g., stricter p values) in selecting correlation-based fea-
tures may not significantly impact prediction. While those
studies primarily used p-values rather than a fixed percent-
age of connectivity features, our validation analysis across
different thresholds demonstrated relatively consistent and
robust prediction results, particularly for DMN EC fea-
tures, where the predictions remained stable across differ-
ent thresholds. Furthermore, the prediction results obtained
from the ridge-regularized model were comparable to those
from the LASSO model, showing similar stability of EC
features within the DMN.

5. Limitations

Several limitations should be addressed in future stud-
ies. First, a key limitation of our study is the relatively low
CTQ total and subscale scores reported in Table 1, with
a limited number of participants reporting experiences of
sexual, physical, or emotional abuse. This distribution sug-
gests that our findings may be more strongly influenced by
neglect-related experiences. This outcome may be partly
related to the characteristics of our sample, as higher ed-
ucational levels among participants could potentially im-
pact reporting patterns, with fewer cases of abuse reported
relative to neglect. Additionally, the narrow range of sub-
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scale scores reduced their predictive power, leading us to
focus on the CTQ total score. Future studies including
more diverse samples could help examine the distinct im-
pacts of different types of CM. Second, this study assessed
the CM severity in healthy participants without measuring
psychopathological traits or symptoms such as anxiety or
depression. The following studies may incorporate these
assessments to better understand their potential influence
on CM severity in healthy participants. Third, while our
study highlighted the strong predictive correlation of DMN-
based EC features in capturing individual differences in CM
severity, the choice of performance metrics may influence
model comparisons. Future studies should explore more
metrics to better understand the relative predictive roles of
different networks. Ultimately, the Schaefer atlas may im-
pact network definitions, as it assigns different numbers
of parcels to various networks. This variation could in-
fluence the predictive power of networks, potentially af-
fecting our findings related to CM severity. Future studies
could benefit from exploring alternative atlases or parcella-
tion schemes, which may lead to a more comprehensive as-
sessment of how different networks relate to CM and other
forms of childhood adversity.

6. Conclusions

In conclusion, our study suggests that EC can effec-
tively capture individual differences in CM severity, par-
ticularly within the DMN, which demonstrated the high-
est prediction correlations. These findings highlight the
DMN’’s significant potential as a neuroimaging biomarker
for the underlying mechanisms of CM.
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5. Discussion

The overarching objective of this thesis is to systematically investigate and characterize
the EC in task-evoked and resting-state networks and its relationship with aging and
behavior. By employing well-established and sophisticated methodological approaches
in task-evoked and resting-state EC estimations and machine-learning approaches, this
research advances the model-based analysis of brain connectivity by quantifying the
impact of data analytical variability and demonstrating its applications across behaviors
and clinical domains. Three interconnected studies advance this object by addressing
critical gaps and integrating methodological, behavioral, and clinical perspectives. The
first study introduces a novel workflow to investigate how data-processing parameters
influence task-evoked EC estimates within the SRC network, quantifying their impact
on EC strength and certainty, a critical methodological gap in prior research. Based on
these methodological insights, the second study contrasts brain intrinsic and task-
modulated EC to predict individual age and RT during the SRC task, demonstrating that
distinct state-specific connectivity captures different aspects of individual variability.
The third study expands the scope to resting-state networks, systematically comparing
predictive utilities of resting-state EC features across large-scale networks for childhood
trauma. It novelly identifies the DMN as a critical correlate of long-term effects of
early-life adversity, highlighting its importance over other networks. Together, these
findings not only bridge methodological rigor, behavioral relevance, and clinical
insights but also offer new tools and frameworks to link brain connectivity to behaviors
across states and populations. The thesis provides a comprehensive perspective on how
EC correlates with individual variability in behaviors and clinical outcomes, potentially

influencing the direction of future research.
5.1 Data Processing Effects on Task-Evoked EC

Study 1 systematically evaluated how data processing parameters, such as GLM
designs, GSR, activation contrasts, and significance thresholding, influence task-evoked
EC within the SRC network. Unlike prior studies focusing on isolated parameters
(Almgren et al., 2020; Daunizeau et al., 2011), the study introduces a novel workflow to
quantify how data processing parameters impact parameter strength and certainty of

task-evoked EC estimates across a broader range of parameters. It reveals a unique
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trade-off between sensitivity and stability in parameter selection, offering new insights

into the methodological variability in EC research.

The results mainly revealed that the GLM designs and activation contrasts impacted the
EC strength and parameter certainty, while the GSR and significance thresholding had a
minor impact. In detail, event-related GLM designs demonstrate stronger EC
connections between the driving input (bilateral IPS nodes) and “internal” nodes within
the SRC network compared to block-based designs. It suggests that event-related
designs are more sensitive to task-induced modulations, aligning with prior task-evoked
fMRI studies (Biihler et al., 2008; Tie et al., 2009), where event-related designs
achieved stronger activation and more precise functional localization of putative
regions. The difference in sensitivity may relate to variations in the hemodynamic
response shapes of GLM designs, where event-related designs better explain the BOLD
signal variance, with the modeled hemodynamic responses peaking earlier and returning
to baseline more slowly (Mechelli, Henson, et al., 2003; Mechelli, Price, et al., 2003).
Conversely, block-based GLM designs exhibit greater certainty in EC parameters. The
difference in parameter certainty relates to noise levels (Zeidman, Kazan, et al., 2019),

suggesting greater stability in EC estimates modeled by block-based designs.

The selection of activation contrasts strongly influenced EC patterns and parameter
certainty. Since task-modulated EC of DCM is context-dependent, the contrast selection
reflects the network dynamics related to a specific cognitive process (Kuhnke et al.,
2021). Here, this study compared two different contrasts (Anti and Anti+Pro) to assess
their impact on EC estimates. The SRC task includes two opposite conditions: Pro
(compatible) and Anti (incompatible). The Pro contrast requires participants to respond
ipsilaterally, while the Anti demands participants to respond contralaterally, involving a
more indirect response selection process that inhibits the automatic response, redirecting
attention to the opposite side and initiating a voluntary response (Cieslik et al., 2010).
The Anti contrast isolates task-induced modulation in response to incompatible stimuli,
while the Anti+Pro contrast combines task-induced modulations in response to both
incompatible and compatible events. The former contrast was assumed to be more
specific in incompatibility-driven processes (e.g., resolving response conflicts), while
the latter aggregates activities across different stimulus types and reflects a general task

engagement. The different EC patterns between them may reflect their distinct cognitive
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processes and task demands. Additionally, the Anti contrast showed higher data
certainty than the Anti+Pro contrast, potentially due to the difference in signal
variability. Including the Pro contrast into the Anti+Pro contrast may introduce higher
variability by combining low-demand cognitive processes, and thereby lower data

certainty in EC estimates.

In summary, data processing parameters, particularly the GLM designs and activation
contrasts, strongly influence the parameter strength and certainty of the task-evoked EC
estimates. The research underscores the trade-off between sensitivity and stability in
parameter selection, highlighting the necessity of evaluating data processing and
modeling choices to ensure a robust, reproducible, and biologically meaningful

understanding of cognitive processes.
5.2 Behavioral Prediction: Brain State-Specific EC

Having specified how data processing parameters influence task-evoked EC estimates,
the thesis explored the behavioral relevance of brain states (intrinsic vs. task-evoked
states), specifically investigating how brain intrinsic and task-modulated EC predict
individual age and RT. A cross-validated prediction workflow was developed that
avoids potential data leakage problems (Rosenblatt et al., 2024). The workflow
addresses a critical limitation in prior DCM research (Zeidman, Jafarian, Seghier, et al.,

2019), which often extracts features from the entire cohort before cross-validation.

With this workflow, this study revealed that EC from different brain states captures
distinct aspects of individual phenotypical and behavioral characteristics. This effect
was significantly impacted by GLM design types, aligning with the findings of Study 1.
The results demonstrated that task-modulated EC can successfully predict individual RT
during the SRC task, whereas the intrinsic EC failed to predict RT. These findings
extend the previous literature, which suggests that task-evoked connectivity better
captures task-related behavioral variability than resting-state connectivity (Gbadeyan et
al., 2022; W. Zhao et al., 2023) by highlighting that this advantage largely depends on
GLM designs, a factor not systematically examined in prior work. This improvement
may relate to task manipulations that amplify behaviorally relevant functional
correlations (Greene et al., 2018). Unlike brain intrinsic connectivity, task-evoked
connectivity—with its enhanced specificity, experimental constraints, and lower

variability—may more reliably capture individual behavioral differences (Buckner et
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al., 2013; Elton & Gao, 2015; Finn et al., 2017; Geerligs et al., 2015).

Additionally, the results revealed that both components of task-evoked EC could
successfully predict age, while intrinsic EC showed higher prediction accuracy. These
findings align with previous literature, which suggests that both intrinsic and task-
modulated EC can predict age (Beck et al., 2021; Diersch et al., 2021; Tsvetanov et al.,
2016). The study further identifies divergent EC feature patterns contributing to age
prediction between intrinsic and task-modulated EC, indicating that these two states
may capture unique aspects of age-related differences in connectivity. Moreover, this
finding is consistent with a recent study (Xiong et al., 2023), which reported superior
prediction results in resting-state fMRI datasets compared to task-evoked datasets. This
improvement may reflect distinct BOLD variability profiles, where the resting-state
BOLD variability is more sensitive to age-related factors such as vascular or white
matter changes (Millar et al., 2020; Tsvetanov et al., 2016). Notably, the study
introduces a novel comparison by examining predictions between intrinsic and task-
modulated connectivity in the same dataset, which potentially eliminates confounds
from session-specific noise and allows for a rigorous comparison of state-specific

effects on prediction.

Interestingly, the study reveals a novel insight in prediction: when considering different
GLM designs, both intrinsic and task-modulated EC from block-based designs failed to
predict individual age and RT. As discussed in Study 1, the enhanced sensitivity to task
modulations may explain the prediction difference between GLM designs, which may
be associated with their distinct hemodynamic response shapes (Mechelli, Henson, et
al., 2003; Mechelli, Price, et al., 2003). This finding recommends a preference for
event-related GLM designs in studies aimed at linking task-evoked connectivity features

to behaviors.

In summary, this study advances our understanding of brain state-specific connectivity
associated with different types of prediction targets. The results demonstrate that the
connectivity modalities of distinct brain states capture distinct aspects of individual
variability (e.g., age and RT), and their predictive utilities vary with methodological
choices, specifically the GLM designs. This assessment for predicting behaviors from
brain EC supports the use of state-specific connectivity frameworks to reliably link

brain connectivity to behaviors in future research.
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5.3 Default Mode Network as a Trauma Biomarker in Resting-State EC

Building upon the methodological insights from Studies 1 and 2, Study 3 expands the
EC research to the resting-state paradigm, focusing on whole-brain and network-
specific resting-state EC to predict clinical outcomes, such as CM severity. Unlike the
traditional DCM approach used in Studies 1 and 2, which is ideal for task-evoked EC
within a network with a limited number of nodes, the computational efficiency of rDCM
(Fréssle, Manjaly, et al., 2021) makes it particularly suitable for the large-scale resting-
state fMRI analysis. Therefore, this study innovatively utilizes rDCM to estimate
resting-state EC in large-scale networks and identifies the most robust network
biomarker for CM severity across all networks. Despite this methodological difference,

both approaches share the core aim of quantifying directed neural influences.

The results revealed that whole-brain EC marginally predicts Childhood Trauma
Questionnaire (CTQ) scores, while the EC features of the DMN consistently and
robustly predicted CTQ scores, outperforming other networks. These findings are
consistent with previous studies (Galioulline et al., 2023; Geng et al., 2018), suggesting
that resting-state EC could be a promising measure in predicting individual clinical

characteristics.

Furthermore, this study highlights the important role of DMN in shaping CM’s effect.
The DMN is believed to be involved in internal mental processes, such as mind-
wandering, daydreaming, and self-reflection (Menon, 2023; Raichle et al., 2001). Its
abnormalities are implicated in aberrant psychological processes such as self-referential
thinking and impairments in working memory and attention (Broyd et al., 2009;
Whitfield-Gabrieli & Ford, 2012). Due to its crucial role in self-referential mental
activities, the DMN’s importance was well acknowledged in CM’s studies (Valencia et
al., 2024). Aberrant DMN connectivity has been linked to multiple psychopathological
symptoms in transdiagnostic clinical populations, such as major depressive disorder,
post-traumatic stress disorder, and schizophrenia (Doucet et al., 2020; Sha et al., 2019;
Valencia et al., 2024). These findings indicate that traumatic experiences impacted
DMN’s connectivity adversely, which may lead to maladaptive self-referential
psychopathological symptoms (Holz et al., 2023; Valencia et al., 2024). Moreover, in
line with previous literature on non-clinical participants, abnormal DMN connectivity

has been particularly highlighted in individuals with CM exposure (Lu et al., 2016;
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Zhao et al., 2021). Moreover, DMN’s connectivity features have demonstrated a critical
contribution in predicting individual CM severity, emphasizing the DMN as a
neuroimaging biomarker for traumatic experiences (Zhang et al., 2022). Collectively,
the changes in the DMN connectivity may be an important neural correlate of early-life

stress.

The results underscored the pivotal role of the DMN in predicting clinical measures like
CM severity, highlighting its potential as a key neuroimaging biomarker for traumatic
experiences. This study reinforced the idea that alterations in DMN’s connectivity,
particularly in individuals with early-life adversity, could serve as a crucial neural
correlate of childhood trauma. By comparing predictions across large-scale networks,
the thesis offers a comprehensive, whole-brain perspective on EC and its clinical

relevance.
5.4 Limitations and Future Directions

While the thesis advances the methodology and prediction applications of EC in
linking brain network dynamics to behaviors, a few limitations highlight future
implications for refining EC’s theoretical and clinical utilities.

The first limitation involves paradigm specificity. The thesis estimated task-evoked EC
from an SRC network, which is strongly tied to the incompatibility effect during
conflict processing. This specificity may limit the generalizability of both
methodological findings and behavioral predictions. Future studies could extend the
framework to diverse task paradigms, such as emotion regulation or decision-making
processes, to determine whether the methodological choices recommended by the
thesis improve EC inference across different task-evoked networks and whether EC
demonstrates predictive utilities for other cognitive processes or clinical traits.
Second, sample constraints limit the findings on predicting childhood trauma. The
thesis analyzed resting-state EC in a healthy cohort with limited variability in
childhood trauma exposure. The relatively low CTQ total scores and narrow ranges
may attenuate the association between EC and trauma exposure. Furthermore, the
absence of clinically diagnosed trauma-related psychiatric disorders (e.g.,
depression) limits the generalizability of DMN’s EC as a neuroimaging biomarker to
clinical populations. Future work may benefit from validating this neuroimaging

biomarker in samples with a broader range of childhood trauma severity by
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including individuals with significant trauma exposure or trauma-related disorders
(e.g., high scores in CTQ total and subscales or depression diagnosis). Additionally,
a comparison between sub-clinical and clinical populations helps clarify whether
dysfunctional DMN connectivity serves as the neuroimaging biomarker for trauma-
related disorders. Integrating resting-state EC with trauma-related symptoms such as
depressive rumination or anhedonia may further improve its predictive utility for
relapse risks and treatment responses.

Third, methodological limitations arise from the reliance on linear predictive models.
The thesis relied on linear models (e.g., Lasso and ridge regression) to predict
individual differences in task performance, age, and clinical outcomes, which
provided interpretable associations between EC and behaviors. However, these
linear predictive algorithms may overlook the complex and non-linear relationships
between EC parameters and behaviors or clinical outcomes. Future work may adopt
non-linear predictive models (e.g., support vector regression or neural network
models) to better capture the complex and non-linear relationship between the brain
and behaviors.

Fourth, a lack of explicit psychological interpretation related to the SRC task presents
an interpretative challenge. The cognitive processes underlying the SRC task were not
explicitly investigated, limiting the interpretation. Future studies may consider
exploring cognitive processes such as bottom-up, top-down, conflict detection, and
response selection processes and describe how specific processes shape task-evoked
EC parameters, which may help bridge the gap between network dynamics and
psychology.

Finally, the fifth point concerns cross-state comparisons. The thesis has inferred EC
from both task-evoked and resting-state fMRI paradigms, which were obtained from
separate cohorts with distinct prediction targets. It precludes a direct evaluation for
comparisons of predictive power between two paradigms. Although the thesis has
compared the predictive utilities between the brain’s intrinsic and task-modulated
EC and suggests brain state-specific contributions to behaviors, a within-subject
comparison between task-evoked and resting-state EC may further validate the

modality-specific predictive utilities between them.
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5.5 Conclusion

The thesis aimed to investigate the EC of task-evoked and resting-state networks and their
relationship to aging and behavior. It addressed three critical gaps: (1) the impact of
methodological variability on EC estimates, (2) the underexplored predictive utility of
brain state-specific EC (intrinsic vs. task-modulated) for individual differences in
behavior and aging, and (3) the clinical potential of resting-state EC for identifying

trauma-related biomarkers.

A key insight is that methodological variability, such as event-related versus block-based
GLM designs, strongly influences EC estimates and their interpretation. This finding
directly addresses the concern regarding the methodological variability in EC estimations,
demonstrating that the present work provides an empirical framework for understanding
this variability rather than a simple recommendation. For example, event-related designs
enhance sensitivity to task-evoked neural dynamics, whereas block-based designs
improve parameter stability. A fundamental trade-off is revealed: sensitivity versus
stability. Critically, the trade-off also extends to behavioral predictions: event-related
designs better capture individual variability in task-relevant behaviors and aging
compared to block-based designs. These findings emphasize that methodological choices

should align with research goals rather than seeking a universal "optimal" pipeline.

Building on these methodological insights, a cross-validation machine learning
framework demonstrates differential predictive roles of brain state-specific EC. By
dissecting the unique contributions of brain intrinsic and task-modulated connectivity,
this thesis offers a synthesized perspective on how different brain states contribute to
behaviors. Task-modulated EC shows greater relevance to behavioral measures, such as
RT, reflecting its sensitivity to context-dependent neural dynamics. In contrast, intrinsic
EC better predicts age-related differences, reflecting stable, inherent connectivity patterns
that are fundamental to the brain’s functional architecture. This divergence indicates that
distinct EC components capture unique attributes of behavior and brain organization,
underscoring the importance of considering state-specific frameworks when investigating

the relationship between brain connectivity and behaviors.

The thesis further extended these insights to the translational potential of EC across large-
scale resting-state networks. Despite methodological differences in DCM methods, the

consistent theme across all studies is the exploration of EC’s utilities in predicting
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individual differences, including behaviors or clinical traits. Building on the distinction
between task-modulated and intrinsic connectivity, EC at rest may capture stable
connectivity patterns of the brain's functional architecture, which are relevant for
identifying the long-term effects of early-life adversity. Specifically, DMN’s EC emerged
as a neural biomarker associated with CM. Due to its central role in self-referential mental
activity, altered intrinsic connectivity of the DMN may reflect maladaptive internal states

linked to trauma-related psychopathology.

Collectively, this work bridges methodological neuroimaging research with behavioral
and clinical applications. While it is recognized that the predictive performance was
modest in some instances, the primary contribution of this thesis lies in its systematic
establishment of a methodological and conceptual foundation for reliably estimating and
interpreting EC. By providing a robust framework for future brain-behavior research, this
work advances a cohesive understanding of how EC relates to behavior, aging, and
clinical outcomes and enhances both methodological rigor and translational relevance in

studies of brain task-evoked and resting-state functional networks.
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