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Summary

Midbrain dopamine neurons encode whether feedback is better or worse than
expected, sending this reinforcement learning signal to striatal and fronto-cortical
regions to provide a neural basis for learning and adaptive behavior. When feedback is
temporally delayed, processing appears to shift from the striatum to regions within the
medial temporal lobe (MTL). This dissertation set out to shed light on the question of
how the brain links feedback to specific events despite temporal gaps between them,
and whether the underlying mechanisms are altered in depression. In three consecutive
studies using electroencephalography, it was explored how feedback timing, different
association types, and depression influence two event-related potential components—
namely, the feedback-related negativity (FRN) and N170—which have been associated
with feedback processing in the striatum and MTL, respectively. Across all studies, both
components scaled with feedback that was better or worse than expected, interestingly
reflecting the full range of prediction errors. Contrary to previous views of a mutual
inhibition between striatum and MTL during feedback learning, results from Study 1
suggest that various brain regions giving rise to the FRN and N170 receive the same
reinforcement learning signal and work together to support immediate and delayed
feedback processing, as well as the formation of various types of associations. Study 2
further demonstrated that the N170 was especially pronounced when visual stimuli were
linked to delayed feedback. This suggests that, in addition to MTL activity, the N170
may also be driven by reactivations of visual areas, providing a mechanism for linking
feedback to previous events. Adding to earlier findings of an altered FRN in depression,
Study 3 indicates that the N170 may serve as an additional biomarker in future clinical
research. To conclude, this dissertation provides insights into fundamental mechanisms

of learning and their disruption in the context of mental disorders.
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1 INTRODUCTION

1.1 SUPERPOWER FEEDBACK LEARNING

As humans, we develop enormously throughout our lifetime. Born as small
creatures, completely dependent on other people, we learn who our primary caregivers
are and form interpersonal bonds in interaction with them. We learn that we can move
things with purpose and that our actions have consequences. We even learn to use tools
when our body alone is insufficient to reach a goal. At the same time, we learn that
there are words for nearly everything and how to use language to speak and write.
Throughout human history, we evolved to become a dominant species on Earth,
unfortunately with devastating consequences for non-human animals and their
environment. But what drives the progression of our abilities? A profoundly
foundational observation about our behavior is that its ultimate goal is to earn reward
and avoid punishment (Cohen & Blum, 2002). In other words, this implies that the
outcome of an action can be good or bad. We can use these good or bad outcomes, i.e.,
rewards and punishments, as feedback to learn from and guide future decisions. In fact,
we do not even need a real physical reward for this, but the verbal information whether
we have done something right or wrong can suffice as feedback. You could even go so
far as to claim that reward is enough to develop all kinds of abilities, including
knowledge formation and learning, social intelligence, and language—in other words,
learning from and maximizing rewards empowers intelligent behavior (Silver et al.,
2021). But what is the neuronal basis that enables us to learn from reward?
1.1.1 The Reward System of the Brain

At the core of the brain’s reward system are dopamine neurons with widespread
projections to much larger neuron populations in the brain (for a review see Schultz &

Dickinson, 2000) like for example the striatum (Oldehinkel et al., 2022), motor cortex
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(Hosp et al., 2011; Luft & Schwarz, 2009) or hippocampus (Gasbarri et al., 1997). Most
dopamine neurons are located in the substantia nigra and the ventral tegmental area
(VTA), therefore often referred to as the dopaminergic midbrain. Early fluorescence
studies suggested that their axons project to several brain regions, forming three distinct
dopaminergic pathways constituting the brain‘s reward system (for a review see
Bjorklund & Dunnett, 2007): The nigrostriatal pathway mainly projects to the dorsal
striatum (caudate nucleus and putamen), while the mesolimbic and mesocortical
pathways primarily project to the ventral striatum (nucleus accumbens) and cerebral
cortex, especially to fronto-cortical regions (for a review see Ayano, 2016 and
Glimcher, 2011). Although they are not the only dopaminergic pathways in the brain,
they form the basis of the brain’s reward system (Bjorklund & Dunnett, 2007; Haber &
Knutson, 2010).

As the central neurotransmitter of the reward system, dopamine is not only
involved in reward processing and approach behavior. Since the three pathways reach
various brain regions, dopamine is involved in diverse aspects of human experience and
behavior, like movements, cognition, and motivation (for a review see Schultz, 2002).
The importance of dopamine in the nigrostriatal pathway for smooth behavior is evident
in people who have Parkinson's disease, caused by the degeneration of dopamine
neurons in the substantia nigra (Damier et al., 1999; for a historical review see Parent &
Parent, 2010). Most prominent are motoric symptoms like bradykinesia, which is the
slowness of the initiation of voluntary movements and a progressive decline in both the
speed and amplitude of repetitive motor actions. Further symptoms are tremors,
muscular rigidity, and postural instability (Sveinbjornsdottir, 2016). However, the
degeneration of the nigrostriatal pathway also leads to alterations in feedback learning,

1.e., using outcome-based information, such as rewards or punishments, to optimize
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behavior over time: Shohamy et al. (2004) found that Parkinson's patients had problems
in a learning task involving feedback, but not in a task that did not contain feedback.
Another study by Frank et al. (2004) found that healthy seniors learn equally well from
positive vs. negative feedback, while Parkinson's patients off medication learn better
from negative than positive feedback. At the same time, this bias is reversed for
Parkinson’s patients on medication that elevates their dopamine levels, indicating that
the influence of dopamine on the striatum determines the preferred type of feedback
learning. To conclude, the nigrostriatal pathway is relevant for motor functions, but also
motivation, learning and choice (Collins & Frank, 2014; Hamid et al., 2016).

The mesolimbic pathway oversees the experience of pleasurable situations: The
nucleus accumbens is activated by primary reinforces like food (for a meta-analysis see
Tang et al., 2012), attractive faces (Cloutier et al., 2008), and sexual content (Hamann et
al., 2004), as well as secondary reinforcers such as money (Knutson et al., 2001;
Rademacher, 2014). In a clinical context, increased reward sensitivity in the nucleus
accumbens to food and sexual stimuli is associated with overeating, impulsive sexual
activity, and drug addiction (Demos et al., 2012; Di Chiara, 2002; for a review see
Pierce & Kumaresan, 2006).

The mesocortical pathway, targeting (prefrontal) cortical structures, mediates
cognitive and executive functions like working memory, behavioral flexibility, and
decision-making (for a review see Floresco & Magyar, 2006). Given the wide-ranging
and diverse functions of dopaminergic signals, the question arises which specific
information dopaminergic neurons in the midbrain encode in feedback learning.
Although the beforementioned studies suggest an encoding of outcome valence, i.e.,
good or bad outcomes, midbrain dopaminergic signals are way more refined (Schultz et

al., 1997).
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1.1.2 This Is Not What We Expected: The Prediction Error

In 1997, Schultz et al. summarized a series of findings from single-cell
recordings in monkeys while they performed behavioral acts and received rewards. The
studies revealed that midbrain dopaminergic neurons do not encode reward per se but
instead indicate whether an outcome is better or worse than expected, in other words,
they encode a prediction error. More precisely, they increase their action potential
frequency after unexpected rewards and decrease it when an expected reward does not
occur. This decrease happens exactly when the reward should have occurred—thus,
dopamine neurons carry information related to both, reward predictability and timing
(Schultz et al., 1997). For expected rewards, action potential frequency increases only in
response to a conditioned stimulus (CS) that announces the reward, not in response to
the reward itself. This phenomenon was already illustrated about a century ago through
Pavlov’s (1927) popular experiments on classical (pavlovian) conditioning: When
Pavlov’s dog first heard a bell ring (CS) and then was surprised with a snack, his
dopaminergic neurons probably fired in response to the food, a rewarding
unconditioned stimulus (US). However, after the dog frequently experienced that the
bell predicts food, his dopaminergic neurons probably already fired when hearing the
bell (accompanied by salivation). In contrast, if no food was provided although the
predictive bell rang, his dopaminergic neurons most likely decreased their activity. Until
the early 2000s, these dopaminergic firing patterns had only been observed in animal
studies, but in 2009, Zaghloul et al. provided evidence that dopaminergic neurons in the
human substantia nigra also encode a prediction error. They recorded single-cell activity
during deep brain stimulation surgery while patients with Parkinson's disease engaged
in a feedback-based learning task motivated by monetary rewards. The firing rate of

neurons in the substantia nigra was higher for gains than losses, but this difference was
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only seen for unexpected outcomes.

To conclude, reward-based learning is driven by predictions, or rather prediction
errors, i.e., reward-based learning occurs only when the actual outcome differs from the
prediction and the resulting prediction errors can be used to induce synaptic changes
(Bao et al., 2001; Glimcher, 2011; Reynolds et al., 2001; Schultz, 2000; Schultz &
Dickinson, 2000). Thus, synapses are formed or modified until an outcome can be
reliably predicted. If everything occurs as predicted, there is nothing left to be learned
and no need for further neuronal changes. The so-called blocking effect (Kamin, 1967)
in classical conditioning illustrates this: Once Pavlolv’s dog has learned that the bell
announces food, pairing the bell with an additional light stimulus repeatedly will not
cause the dog to salivate in response to the light when it is presented without the bell.
An association between the light and the food is blocked because the bell already
predicts the food. In conclusion, rewards that are better than predicted stimulate
learning, fully predicted rewards do not promote further learning, and rewards that are
worse than predicted result in the extinction of learned behavior (Tobler et al., 2006; for
areview see Schultz, 2002 and lordanova et al., 2021).

1.1.3 Reinforcement Learning

There are situations in which performing a certain action frequently, but not
always leads to a reward, i.e., the feedback is probabilistic, so that learning can only be
achieved through an accumulation of experiences (Fu & Anderson, 2008). Predictions
can be helpful for choosing between alternative stimuli or actions that lead to positive or
negative outcomes (Schultz et al., 1997) and reward strengthens the action that caused
it, known as the Law of Effect (Thorndike, 1927; Thorndike, 1933). Using positive and
negative prediction errors to make more accurate predictions about future reward and

also using predictions to choose actions that maximize reward form the core of
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reinforcement learning (Dayan & Balleine, 2002). Reinforcement learning theories are
used to explore how humans and non-human animals choose their actions. Besides
allowing to model animal behavior, they form abstract computational frameworks in
computer science, machine learning, artificial intelligence and deep neural networks
(Hougen & Shah, 2019; Sutton & Barto, 2018). Many of the basic reinforcement
learning algorithms were inspired by psychological theories, and vice versa, these
algorithms have helped to develop new animal learning models (Sutton & Barto, 2018).
One example is the Rescorla-Wagner Model (Rescorla & Wagner, 1972), which
describes an error-driven acquisition of associations between arbitrary stimuli, like the
ring of a bell and food in classical conditioning (for a review see Miller et al., 1995 and
Zhang et al., 2020). In the model, the experience with a stimulus (e.g., the ring of a bell)
and its related outcomes (e.g., food vs. no food) is represented by an expected value Q,
which is also an estimate of future rewards expected from the stimulus (for a review, see
Curtis and Lee, 2010). Q is updated based on the difference between the actual outcome
and the expected outcome, i.e., the prediction error, formulated as follows (Weber &
Bellebaum, 2024):
6y = 1. — Q¢

where 77 1s the outcome (negative or positive) in a given trial ¢, and Q; is the expected
stimulus value or outcome. Q is continuously adjusted according to experience: It
increases when the outcome for a given stimulus is better than expected and decreases
when the outcome is worse than expected (for a review, see Curtis & Lee, 2010).

Qt+1= Qr+a * &
In more detail, the prediction error is used to update the expected outcome for the next
trial, Q;,,, weighted with an estimated learning rate a (0 < a < 1) which reflects the

extent to which the prediction error is used to update the stimulus value (for similar
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approaches and practical applications see Burnside et al., 2019; Lefebvre et al., 2017,
Weber & Bellebaum, 2024). Thus, the Rescorla-Wagner Model describes that a human
or non-human animal only learns when events violate its predictions (Sutton & Barto,
2018). Just like the prediction error § in the Rescorla-Wagner Model, phasic dopamine
responses in the brain indicate whether an outcome is better or worse than expected.
This resemblance was the starting point leading to the idea that dopaminergic neurons
encode a prediction error that can be used for synaptic changes and that underlies
learning (Glimcher, 2011; Montague et al., 1996; Schultz, 2002; Schultz et al., 1997).
However, as outlined above, predictions of reward are only one side of the coin
of reinforcement learning. Predicting rewards is especially useful when we can
maximize them through our actions. While the Rescorla-Wagner Model focuses on
using prediction errors to strengthen associations between stimuli and outcomes in
classical conditioning, other reinforcement learning models focus on using prediction
errors to optimize choice behavior in instrumental learning contexts. Classical and
instrumental conditioning both have in common that animals learn to predict and
respond to rewarding and punishing events in their environment. However, in classical
conditioning, Pavlov’s dog cannot influence the occurrence of food through his
behavior, whereas in instrumental conditioning whether a reward or punishment is
received depends on the action the animal performs (Dayan & Balleine, 2002; Sutton &
Barto 2018). The Actor-Critic Model (Barto, 1995; for a review see Joel et al., 2002;
O'Doherty et al., 2004; Sutton & Barto, 2018) can explain such outcome-oriented
behavior in instrumental learning by distinguishing two learning processes: One
process, the critic, is about learning which situations, events or stimuli promise rewards.
The other process, the actor, is about learning to adjust actions to maximize rewards.

The critic can criticize the actor’s action choices via sending prediction errors, &, to the
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actor (Sutton & Barto, 2018). A positive § means that the action was good because it
led to an outcome better than expected; a negative § means that the action was bad
because it led to an outcome worse than expected (Sutton & Barto, 2018). These
critiques enable the actor to constantly update its policy (Sutton & Barto, 2018).
Learning by the critic is conceptionally similar to classical conditioning, i.e., using
prediction errors to improve predictive accuracy—learning by the actor shares aspects
with instrumental conditioning, trying to take actions that keep prediction errors as
positive as possible (Sutton & Barto, 2018).

By differentiating between stimulus-reward (classical) and stimulus-response-
reward (instrumental) learning tasks, O'Doherty et al. (2004) demonstrated that actor
and critic are distributed across different parts of the basal ganglia. While the ventral
striatum reflected prediction errors for stimulus-reward and stimulus-response-reward
tasks, the dorsal striatum encoded prediction errors only for stimulus-response-reward
tasks, in other words, tasks in which an action was required for obtaining a reward.
Therefore, the ventral striatum was linked to the critic and the dorsal striatum to the
actor component. In summary, the dopamine system is not only involved in the
prediction of reward but also in using this information to promote behaviors that will
make them more likely to occur in the future (for a review see Cohen & Blum, 2002 and
Schultz, 2002).

1.1.4 The FRN: An Icon Among Feedback-Driven ERPS

Event-related potentials (ERPs) reflect brain-generated electrical signals that are
triggered by specific internal or external events (Luck, 2023). These ERPs, recorded
through electroencephalography (EEG) using electrodes placed on the scalp, appear as a
series of positive- and negative-going waveforms (Luck, 2023). Each of these

waveforms or peaks represents distinct neural processes occurring in the brain (Luck,
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2023). The feedback-related negativity (FRN) is an ERP component specific to
feedback processing, peaking between 200 and 300 ms after feedback onset over
frontocentral electrode sites (Miltner et al., 1997). Its amplitude is pronounced in the
negative direction for negative feedback, while it appears to be reduced (i.e., more
positive) for positive feedback. However, recent studies suggest that the ERP response
to losses and breaking even (neither winning nor losing) can be understood as the
baseline response, while rewards evoke a relative positivity (Holroyd et al., 2006;
Kujawa et al., 2013). Accordingly, the ERP in the FRN time window is increasingly
understood as a signal that is determined by a reward positivity ([RewP]; for a review
see Proudfit, 2015). In the remainder of this work, both terms (FRN and RewP) refer to
the amplitude of the ERP in the time window about 200 to 300 ms after feedback. As
the amplitude of this component is sensitive to the valence of feedback, it is often
represented as the difference wave FRNuitr for negative minus positive feedback (for
example see Peterburs et al., 2016; Weismiiller & Bellebaum, 2016). With respect to its
origin, several studies point to an error processing and action adaptation system
encompassing posterior medial frontal cortex, striatum and anterior cingulate cortex
([ACC]; Becker et al., 2014; Bellebaum & Daum, 2008; Foti et al., 2011; Gehring &
Willoughby, 2002; Holroyd et al., 2004; Holroyd & Coles, 2002; Oerlemans et al.,
2025; for a review see Nieuwenhuis et al., 2004).

In 2002, Holroyd and Coles introduced the reinforcement learning theory of the
FRN, stating that this component reflects the influence of dopaminergic neurons on
neurons in the ACC: Increased activity of dopaminergic neurons, triggered by an
unexpected reward, leads to the inhibition of neurons in the ACC, whereby the
amplitude of the FRN becomes more positive. Conversely, reduced activity of

dopaminergic neurons, triggered by the absence of an expected reward, leads to the
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disinhibition of neurons in the ACC, which makes the amplitude of the FRN more
negative. To conclude, Holroyd and Coles proposed that the FRN is modulated by
prediction errors, the core of reinforcement learning, which has subsequently been
supported by several studies: To begin with, reward magnitude can impact prediction
errors because with higher rewards bigger deviations from the prediction can arise.
Accordingly, the FRN has been found to be sensitive to reward magnitude (Holroyd et
al., 2004). In addition, Hajcak et al. (2007) reported that the difference between negative
and positive feedback was particularly evident in the FRN when feedback was
unexpected. Moreover, like the prediction error, the amplitude difference between
negative and positive feedback (FRNifr) becomes smaller during learning (Bellebaum
& Colosio, 2014; Eppinger et al., 2008). Finally, more recent studies provided evidence
that the FRN is modulated by estimates of prediction errors that have been modeled
computationally (Burnside et al., 2019; Fischer & Ullsperger, 2013; Weber &
Bellebaum, 2024).
1.2 THE CREDIT ASSIGNMENT PROBLEM

The FRN is less sensitive to feedback valence when feedback is delayed by just
a few seconds in various task types, including declarative, probabilistic, and gambling
paradigms (Arbel et al., 2017; Peterburs et al., 2016; Weinberg et al., 2012; Weismiiller
& Bellebaum, 2016). Results of a functional magnetic resonance imaging (fMRI) study
by Foerde and Shohamy (2011) might explain why differences between negative and
positive feedback are less evident in the FRN when feedback is delayed: the (dorsal)
striatum, target of the nigrostriatal pathway and likely part of the FRN-generating
network (see above), shows stronger prediction error related activity for immediate than
delayed feedback. Furthermore, Foerde and Shohamy (2011) and Foerde et al. (2013)

found that the neurodegeneration of the nigrostriatal pathway in Parkinson’s disease
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patients leads to impaired learning from immediate, but not from delayed feedback. The
striatum thus seems to be particularly important for learning from immediate feedback.

Jocham et al. (2016) found that while the lateral orbitofrontal cortex reflected
causal relationships between outcomes and the choices that caused them, activity in
sensorimotor corticostriatal circuitry was related to learning based on temporal
proximity. Dopamine-dependent neuronal plasticity in the striatum seems to be limited
to a narrow time window of up to 2 seconds (Yagishita et al., 2014) which is supported
by the findings by Foerde and Shohamy (2011). If an action or stimulus is temporally
close to feedback, the two can be linked by the help of the dopamine reward system.
This idea is not exactly new: Aristotle declared temporal proximity as a fundamental
principle of association in his work De Memoria et Reminiscentia (for a translation see
Barnes, 2014). More than 2000 years later, Hebb (1949) suggested that synapses in the
brain are formed based on the same principle that is nowadays often simplified by the
popular phrase: Cells that fire together wire together. In this line, Schultz (2002)
suggests that cortical areas are activated by a reward-predicting event, while reward
itself broadcasts a signal from the dopaminergic midbrain to the cortex allowing
synapses to form between overlappingly activated cells. Accordingly, Bao et al. (2001)
were able to show that stimulating the VTA together with an auditory stimulus changes
the neural responses to that sound stimulus in the primary auditory cortex.

But if only cells that fire together wire together, how can humans still learn from
outcomes occurring seconds, minutes, days, or even years after a respective event? In
real-life situations, feedback is often temporally separated from our choices, creating a
temporal gap in neural processing. Additionally, we often perform a sequence of actions
but only receive feedback at the end. Imagine cooking a meal that turns out to taste

amazing. There are a lot of actions that you performed and ingredients that you used to
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obtain this rewarding outcome—but which of the actions or ingredients is responsible
for your success? Real-life situations therefore pose a challenge to the brain referred to
as the problem of delayed reinforcement (see Sutton & Barto, 2018) or the
temporal/distal credit-assignment problem (Curtis & Lee, 2010; for a review, see
Stolyarova, 2018). These synonymous concepts revolve around the following question:
If events and feedback are not temporally proximal, how can they still be associated
with each other. In the case of neuroscience, the question is how the brain knows which
event likely caused an outcome?

In general, credit for a reward can be assigned by establishing eligibility traces
that can be understood as memory of previous actions and experienced stimuli (Sutton
& Barto, 2018; for a review see Curtis & Lee, 2010 and Stolyarova, 2018). According
to Curtis and Lee (2010), persistent neural activity might enable the short-term storage
of information that is relevant for behavior, thereby supporting the computation of
expected values (Q). Furthermore, they point out that persistent activity in the prefrontal
cortex, posterior parietal cortex, and basal ganglia can be influenced by previous actions
over repeated experiences and may represent eligibility traces. However, it seems
implausible that persistent neural activity is the only way to form associations, given
temporal delays of several seconds, minutes, or days for feedback in the real world.

When a prediction error occurs, only eligible stimuli or actions can be assigned
credit or blame for it. Thereby, eligibility traces could help to bridge the gap between
events and feedback. They are a basic mechanism for temporal credit assignment and as
Sutton and Barto (2018, p. 317) formulated metaphorically “the first line of defense
against long-delayed rewards.” But how does a stimulus or action become eligible?
How are eligibility traces for long-delayed rewards implemented in the brain? When it

comes to delayed feedback and remembering which stimulus or action caused it, we
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need support from structures other than the striatum.
1.2.1 The Medial Temporal Lobe

The medial temporal lobe (MTL) includes the hippocampus, adjacent perirhinal,
entorhinal, and parahippocampal cortex (Raslau et al., 2015). Probably the most
prominent and dramatic example of MTL and particularly hippocampal (dys-)
functioning is patient H.M. In 1957, Scoville and Milner published an article in which
they described a case study of a patient who suffered from epileptic seizures. At the
time, a bilateral MTL resection was considered a justifiable treatment for his condition.
Unfortunately, the operation caused strong anterograde amnesia, i.e., a complete loss of
memory for events following the resection, combined with partial retrograde amnesia
for the three years before his operation, while early memories, as well as his personality
and general intelligence, were seemingly intact. In the following decades, the
hippocampus emerged as a central structure for declarative and episodic long-term
memory and learning (Eichenbaum et al., 1992; Knowlton et al., 1996; Squire et al.,
1989; Tulving & Markowitsch, 1998). Within the MTL, different types of information
are brought together to form cohesive memory episodes (Sugar & Moser, 2019),
contextual associations (Aminoff et al., 2013), and associations of events non-
overlapping in time (Qin et al., 2007). The MTL could therefore form a bridge between
events and feedback when they are separated in time (Qin et al., 2007; Staresina &
Davachi, 2009).

Supporting this, amnestic patients with hippocampal lesions can only learn via
classical conditioning when CS and US overlap, but not when there is a temporal gap
between them (Clark & Squire, 1998). Moreover, amnestic patients with lesions in the
hippocampus were able to learn from immediate but not from delayed feedback, thus

showing opposite deficits compared to Parkinson’s disease patients (Foerde et al.,
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2013). In accordance, Foerde and Shohamy (2011) found stronger prediction error
related activity in the hippocampus for delayed compared to immediate feedback. Thus,
while learning from immediate feedback involves the striatum, learning from delayed
feedback recruits the hippocampus. The hippocampus is innervated by midbrain
dopamine neurons (for a review, see Edelmann & Lessmann, 2018; Gasbarri et al.,
1994; Tsetsenis et al., 2021) and correlates of prediction error activity have been found
in regions receiving input from dopaminergic projections (Garrison et al., 2013).
Accordingly, Dickerson et al. (2011) reported prediction error related activity not only
within the striatum but also within the hippocampus during probabilistic feedback
learning. Therefore, it was suggested that prediction error signals in the hippocampus
might mirror phasic dopaminergic inputs, similar to the striatum (Foerde & Shohamy,
2011).
1.2.2 The N170: A Newcomer Among Feedback-Driven ERPs

Strengthening the picture of a shift away from fronto-striatal circuits toward
MTL involvement including the hippocampus with increasing feedback delay painted
by patient and imaging studies, EEG studies also suggest that a few seconds delay is
enough for feedback to be processed differently (Arbel et al., 2017; Kim & Arbel, 2019;
Peterburs et al., 2016). Offering the benefit of high temporal resolution, i.e., the
precision of milliseconds, EEG is a suitable method to provide insights into immediate
and delayed feedback processing (Kim & Arbel, 2019). The N170 is an ERP component
measured over occipitotemporal sites that is more pronounced following delayed than
immediate feedback (Arbel et al., 2017; Holtje & Mecklinger, 2020; Kim & Arbel,
2019). Consequently, it was hypothesized that while the FRN reflects striatal activity
evoked by immediate feedback, the N170 could reflect the involvement of the MTL in

delayed feedback processing (Arbel et al., 2017; Kim & Arbel, 2019). However,
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historically the N170 became popular in the context of higher-order visual processes; it
is for example particularly pronounced for faces (Bentin et al., 1996; Itier & Taylor,
2004; for a review see Yovel, 2016) and words (for a review see Carreiras et al., 2014),
but also other stimulus categories like for example cars (Kloth et al., 2013).

For the N170 peaking over the occipitotemporal cortex about 170 ms after face
presentation (for a review see Sigurdardottir et al., 2021), an origin in the fusiform
gyrus was found (Deffke et al., 2007; Gao et al., 2019; Iidaka et al., 2006). As part of
the ventral stream of visual information processing (Goodale & Milner, 1992), the
fusiform gyrus contains specialized regions for numerous visual stimuli (Hoffman &
Haxby, 2000; Kanwisher et al., 1997; Puce et al., 1995; for a review see Weiner &
Zilles, 2016). For example, the fusiform face area is specialized for face processing (for
areview see Kanwisher & Yovel, 2006). For the N170 following words, sources were
found near the left fusiform gyrus (Brem et al., 2006), which contains the visual word
form area (Cohen et al., 2002).

These source localization studies on the N170 in the context of visual processing
suggest that it represents activity in higher-order visual areas. However, studies
investigating the N170 in the context of navigational feedback learning found that it is
sensitive to the spatial location of reward stimuli in a maze and linked it to activity
within the right MTL, or more precisely, the right parahippocampal cortex (Baker &
Holroyd, 2009, 2013; Baker et al., 2015). As no source localization studies on the N170
in the context of feedback processing exist yet, there are only speculations regarding its
neural generator. It is, however, conceivable that the enhanced N170 following delayed
feedback also results from activity in higher-order visual areas. While it has previously
been hypothesized that the N170 results from a delayed reward signal transmitted to the

MTL to reinforce a memory representation of a stimulus stored there (Arbel et al., 2017;
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Kim & Arbel, 2019), visual areas might as well contribute to the memory representation
of a stimulus. Kim and Arbel (2019) found that pronounced N170 amplitudes following
delayed feedback are not specific to visual feedback stimuli, but also evident for
auditory feedback. If the N170 reflects activity in higher-order visual areas, it might be
generated by reactivating the visual stimuli that preceded the feedback. Reactivating
representations of previously chosen stimuli in higher-order visual areas when feedback
is delayed could be a way to solve the temporal credit assignment problem. Imagine a
man who enjoys eating bananas. One day, he peels a banana, discards the skin, eats the
fruit, and finds it exceptionally delicious. The image of the banana’s slightly green skin
lingers in his mind, and from that moment on, he only buys green bananas. While
savoring the fruit, his brain associates the delightful taste with the visual characteristics
of the banana’s skin—although it was no longer visible because it was in the trash
already. In this example, the image of the green skin was reactivated in the man’s brain,
linking it to the pleasure of the taste.
1.2.3 Sensory Reactivation as a Solution for the Credit Assignment Problem
Singer and Frank (2009) emphasize the importance of remembering experiences
that lead to reward for survival, yet the mechanisms linking specific experiences to
rewarding outcomes are poorly understood. The authors suggest that some kind of
reactivation triggered by reward might serve as a mechanism for linking rewarding
outcomes to preceding experiences. A form of neuronal reactivation has already been
discovered in the field of memory research: Sensory brain regions active during the
encoding of somatosensory, acoustic or visual stimuli become partially active again
when participants recall the stimuli (Wheeler et al., 2000; for a review see Danker &
Anderson, 2010). In addition, fMRI data revealed overlapping activation during melody

perception and imagery, involving secondary auditory areas (Herholz et al., 2012).
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Another fMRI study by Schiffer et al. (2014) suggests that a similar mechanism applies
to feedback processing. Their participants had to discriminate visual stimuli according
to their category (face vs. house). Later reward reactivated stimulus-specific
representations in visual association cortices, particularly in the fusiform face area.
They concluded that reactivating representations of rewarded stimuli in sensory cortices
upon reward presentation could represent eligibility traces for credit assignment.
Participants in an fMRI study by Pleger et al. (2008) had to discriminate somatosensory
stimuli regarding their frequency (high vs. low) and were rewarded for correct
judgments. Interestingly, the primary somatosensory cortex was reactivated when
reward was presented, without somatosensory input at that moment. Results from a
follow-up study indicate that the reactivation is mediated by dopamine (Pleger et al.,
2009): While levodopa (dopamine agonist) increased the somatosensory reactivation, it
was decreased under haloperidol (dopamine antagonist). Qin et al. (2007) identified
brain regions engaged in storing associations of events that do not overlap in time into
long-term memory using fMRI. They found that the prefrontal cortex and MTL,
especially the hippocampus, engaged in associative memory formation. Based on their
results, they suggest that signals from the MTL may initiate the reactivation of an
internal representation of an event, thus allowing it to be associated with a later event.
Taken together, findings on the involvement of MTL structures and sensory cortices in
(delayed) feedback processing suggest that the MTL might mediate a reactivation of
sensory areas to specifically link stimuli to delayed feedback.
1.2.4 The Underrated Role of Association Types

So far, this introduction has focused primarily on the influence of feedback
timing on learning from feedback, while another possibly important determinant has

been neglected: the type of association we learn. We can associate all kinds of events
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with feedback. Remember the example of cooking a meal, where both ingredients and
actions can lead to a delicious result. At this point it is important to emphasize that both
actions and stimuli can be linked to feedback. McDougle et al. (2016) illustrate this with
another vivid example: When a person reaches across the table and knocks over her
coffee, the omission of the anticipated rewarding taste of coffee should be attributed to
her action rather than reduce her love for coffee. But how is the action and not the
coffee be blamed for the mishap at the neuronal level? Could different neuronal
structures be involved in forming associations between actions or stimuli and feedback?
If we look at the structures involved in processing immediate and delayed feedback
more precisely, we might notice the following: The striatum has properties that
predestine it for linking actions with feedback, while the hippocampus could be helpful
for linking stimuli with feedback.

To begin, let us review empirical evidence for the anatomical and functional
proximity of the striatum to motor function, movement, and action execution during
feedback-based learning: In a study by Haruno and Kawato (2006), correlates of
stimulus-action-reward associations were located in parts of the striatum. Hiebert et al.
(2014) found that during stimulus-response learning, activity in the dorsal striatum
correlated with response selection, while ventral striatum activation correlated with
feedback. Reynolds et al. (2001) studied intracranial self-stimulation in rats, where each
rat learned to press a lever that delivered rewarding electrical stimulation to its own
substantia nigra. The stimulation of the substantia nigra caused a potentiation of
synapses between the cortex and the striatum and the extent of the potentiation was
linked to the time it took the rats to learn to press the lever. fMRI has shown that the
striatum gates sensory information transfer to the premotor cortex, potentially shaping

motor selection (den Ouden et al., 2010). Shohamy (2011) proposed that the striatum is
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part of a broader network that guides action selection based on predicted values, thereby
optimizing behavior. Furthermore, reward feedback has been found to enhance motor
learning (Nikooyan & Ahmed, 2015), with non-invasive striatal stimulation being able
to facilitate (Wessel et al., 2023) or impair it (Vassiliadis et al., 2024). In an ERP study,
valence-sensitive activity following feedback was found over the motor cortex (Cohen
& Ranganath, 2007), which might suggest a reactivation of a previous action during
striatum-based feedback learning. Moreover, a study by Yeung et al. (2005) found that
the FRNgifr was larger when a reward followed an own active choice instead of an
(automatic) random choice. However, it must be put to the test whether the FRN as a
potential reflection of striatal activity is indeed more pronounced when feedback refers
to an action as opposed to a stimulus.

After discussing a potentially distinct role of the striatum in action—feedback
associations, let us now briefly review why the MTL or hippocampus might be critical
for linking feedback to stimuli: As outlined earlier, the hippocampus may serve as a
bridge between temporally separated stimuli and feedback (Qin et al., 2007; Staresina &
Davachi, 2009) by reactivating internal representations of reward predicting events and
enabling their association with later outcomes (Qin et al., 2007). In other words, when
feedback is presented, the hippocampus may reactivate the representation of a preceding
stimulus. However, it is unclear whether the hippocampus itself contains representations
of stimuli across different sensory modalities or whether they are stored in modality-
specific sensory areas and reactivated by the MTL. The reactivation of higher-order
visual areas could play a role in generating the feedback-locked N170 to assign delayed
feedback to a previously selected stimulus. In a first more general step, it must be put to
the test whether the N170 is indeed more pronounced when feedback refers to a

stimulus as opposed to an action. Subsequently, the influence of the modality of a
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feedback-preceding stimulus on feedback processing needs to be investigated. The
question that arises is whether the N170 is particularly pronounced for feedback that
refers to visual stimuli.
1.3 CLINICAL ALTERATIONS IN FEEDBACK LEARNING
1.3.1 Modernity's Burden? A Society Struggling with Depression

On behalf of the World Health Organization, the Global Burden of Disease study
investigated mortality and disability caused by diseases and injuries all over the world
(Murray & Lopez, 1996). The study concluded that in developing regions of the world,
noninfectious diseases such as heart disease, but also mental disorders like depression
are expected to slowly replace infectious diseases and malnutrition as primary causes of
disability and premature death (Murray & Lopez, 1996). Today, mental disorders like
depression are one of the leading causes of years lived with disability, a measure used to
quantify the burden of disease (Vos et al., 2012). In Germany, for example, around one
in five to six adults is affected by depression at some point in their life (Jacobi et al.,
2004). With a prevalence between 8% and 9% (Busch et al., 2013; Hapke et al., 2019),
we can infer that right now, over six million adults are affected by depressive symptoms
in Germany alone. This poses a serious challenge for society: Depression is associated
with high healthcare utilization and spending and enormous economic costs, for
example due to sick leave and reduced productivity at work (for a review see Donohue
& Pincus, 2007 and Wang et al., 2003). But most importantly, depression is associated
with huge personal costs in terms of pain and suffering for those affected, their families
and friends.

According to the eleventh version of the International Classification of Diseases
([ICD-11], World Health Organization, 2019), depressive disorders “are characterized

by depressive mood (e.g., sad, irritable, empty) or loss of pleasure accompanied by
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other cognitive, behavioral, or neurovegetative symptoms that significantly affect the
individual’s ability to function.” In more detail, a depressive episode “is characterized
by a period of depressed mood or diminished interest in activities occurring most of the
day, nearly every day during a period lasting at least two weeks”, and is “accompanied
by other symptoms such as difficulty concentrating, feelings of worthlessness or
excessive or inappropriate guilt, hopelessness, recurrent thoughts of death or suicide,
changes in appetite or sleep, psychomotor agitation or retardation, and reduced energy
or fatigue.” Depressive symptoms have probably existed for as long as humans have
been around. Under the term melancholia, depressive moods were studied in ancient
medicine by Hippocrates (see Orfanos, 2007) and already considered an epidemic
disease in the 19th century (Burton, 1857). In a review from 2012, Hidaka concludes
that there is epidemiologic evidence that the prevalence of depression has increased
over the past century, and that modernization is linked to higher rates of depression. He
explains the problem in clear terms (p. 205): “Modern populations are increasingly
overfed, malnourished, sedentary, sunlight-deficient, sleep-deprived, and socially
isolated.” Therefore, modern lifestyle is blamed for fueling poor physical and mental
health and the increasing incidence of depression.
1.3.2 Anhedonia and Altered Feedback Learning in Depression

The term anhedonia comes from the Greek and means “without joy/pleasure”. It
was first introduced by Ribot (1896) as a loss of pleasure and linked to mental
conditions like depression. Today, diminished interest or diminished pleasure in all, or
almost all, activities is defined as a cardinal symptom of depression (American
Psychiatric Association, 2022). Anhedonia affects the experience of rewards, including
the formation of stimulus-reward associations, reward anticipation, hedonic responses

(i.e., enjoyment of reward), and the updating of reward values (Rizvi et al., 2016). Thus,
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anhedonia may account for learning deficits seen in depression in situations where
reward processing and utilization are essential, such as in reinforcement learning (Bakic
et al., 2017). Accordingly, studies by Kumar et al. (2018) and Admon et al. (2017)
indicated reduced reward learning in depressed participants. Huys et al. (2013)
performed a meta-analysis on behavioral data from probabilistic reward tasks and used
reinforcement learning models to isolate learning rate and reward sensitivity, i.e., the
subjective value of an external reward. They concluded that depression and anhedonia
did not strongly affect the learning rate per se, but specifically reduced reward
sensitivity. In this line, Kunisato et al. (2012) found that depressed participants seem to
have no learning deficits per se, but rather a diminished tendency to base their decisions
on the likelihood of receiving rewards. Besides hyposensitive responses to reward,
depressed individuals also show maladaptive responses to punishment (for a review see
Eshel & Roiser, 2010): As soon as depressed participants commit a mistake in a task,
their performance drops sharply, i.e., further mistakes become more likely (Elliott et al.,
1996, 1997). In their review, Eshel and Roiser (2010) provide two explanations for this
phenomenom: A hypersensitivity to negative feedback could trigger thoughts about
future failure and interfere with performance. Alternatively, depressed individuals might
be unable to use negative feedback to learn from it and adapt their behavior.
Furthermore, not only clinically depressed individuals (Pizzagalli et al., 2008), but also
non-clinical individuals with elevated depressive symptoms (Pizzagalli et al., 2005) and
remitted individuals (Pechtel et al., 2013) were impaired at modulating their behavior as
a function of previously received reinforcements in probabilistic tasks. Reviewing
computational research, Chen et al. (2015) concluded that depression is related to
altered brain signals of reward prediction errors and expected values and/or learning,

while the causality is unclear.
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1.3.3 Depression-Related Physiological Changes in Feedback Processing

The range of symptoms in depression implies that multiple synaptic circuits and
brain regions are affected because a single circuit cannot explain the entirety of the
depressed phenotype (for a review see Nestler et al., 2002 and Thompson, 2023). To
decompose complex neuropsychiatric diseases, Gottesman and Gould (2003) introduced
the concept of endophenotypes to psychiatry: Endophenotypes lie along the pathway
between a heterogenous disease and a distal, complex genotype, providing simpler
indications of the genetic basis than the disease syndrome itself. They are
neurobiological disease correlates that are stable over time, genetically influenced, and
inheritable (Zobel & Maier, 2004). Altered behavioral responses to rewards and
punishments in depression correspond to deviant functioning in fronto-striatal systems
(Eshel & Roiser, 2010), which might represent an insightful endophenotype for
depression (Luking et al., 2016).

In more detail, hypo-function of striatal regions in depression is consistently
observed across various reward-related processes, highlighting striatal hypo-function as
a key neural mediator underlying altered reward processing in depression (for a review
see Admon & Pizzagalli, 2015). While striatal activity in healthy individuals has been
found to increase in proportion to the size of monetary reward during reward
anticipation, depressed individuals showed less adjustment of neural responses for
variable amounts of reward (Takamura et al., 2017). Furthermore, in an fMRI study by
Kumar et al. (2018) depressed individuals showed deficits in reward learning, blunted
reward prediction error signaling in the striatum, and reduced VTA-striatal connectivity
to feedback relative to controls. In the same study, striatal reward prediction error
signals became more blunted with an increasing number of depressive episodes. In a

study by Pizzagalli et al. (2009) participants with major depression showed significantly



Introduction |24

reduced activation to reward in the left nucleus accumbens and the caudate nucleus
bilaterally compared to healthy comparison subjects. While under healthy conditions,
the nucleus accumbens and its dopaminergic inputs from the VTA are important for
mood regulation, they might also mediate symptoms like low mood in depression
(Nestler et al., 2002). Accordingly, the nucleus accumbens and VTA play an important
role in the pathophysiology and symptomatology of depression (Nestler & Carlezon,
20006), especially in the context of dysfunctional reward processing (Admon &
Pizzagalli, 2015) and reward learning (Admon et al., 2017) and may even be involved in
its etiology. The latter is supported by studies that investigated children of depressed
mothers, who are at increased risk for developing depression (for a review see Luking et
al., 2016): Without being depressed themselves, these children also show blunted
responses to reward within the dorsal and ventral striatum compared to less vulnerable
peers. This reduced striatal activation was found to precede the onset of depression in
adolescents (for a meta-analytic review see Keren et al., 2018). In addition, some
studies report that high-risk groups also showed enhanced responses to negative
feedback within similar regions (for a review see Luking et al., 2016). Luking et al.
(2016) conclude that alterations in feedback processing occurring prior to the onset of
depressive symptoms suggest that these changes may contribute to the etiology of
depression, rather than result from it.

In line with significantly reduced striatal activation in depressed compared to
healthy individuals during reward feedback in fMRI studies, EEG studies revealed that
the differentiation between gains and losses in the FRN amplitude was also significantly
reduced in depression, and that the blunting was stronger in individuals under age 18
compared to those 18 and older (Foti et al., 2014; for a meta-analytic review see Keren

et al., 2018). In several studies, the association between depression and altered FRN
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amplitudes was mainly driven by blunted neural response to reward (Bress et al., 2012,
2013, 2015; Brush et al., 2018; Foti et al., 2014). Bress et al. (2012) found that in
children, an increase in both self-rated and parent-rated depressive symptom scores was
linked to a reduction in the FRN following rewards. Furthermore, a blunted FRNifr in
healthy adolescent girls was able to predict the onset of new major depressive episodes
and depressive symptoms (Bress et al., 2013). Another longitudinal study of this group
found that the FRN for losses and the FRN for gains were stable over a timespan of
approximately two years, and moreover the relationship between a blunted FRNy;¢r and
more severe depression was reproduced after two years, and smaller FRNgisr amplitudes
at the first observation predicted more severe depressive symptomatology after two
years (Bress et al., 2015). To conclude, blunted FRN amplitudes following rewards may
be useful as a biomarker for depression (Proudfit, 2015; but see Hager et al., 2022).
Because depression is multifaceted, there is neither a single brain region that is
correlated with all facets, nor can one region be identified as their sole cause
(Greenberg, 2010). The heterogeneity of the clinical picture implies that other structures
apart from the dopaminergic midbrain and striatum also contribute to the various
symptoms seen in depression (for a review see Nestler et al., 2002): For example,
impaired hippocampal functioning might contribute to some of the cognitive deficits
seen in depression. Overlapping symptoms between Alzheimer’s disease and major
depressive episodes (e.g., difficulty thinking and concentrating) led to the birth of the
term depressive pseudodementia in the past (Caine, 1981; Raskind, 1998). Nowadays,
hippocampal atrophy accompanying depression is held responsible for the observed
memory deficits (Fairhall et al., 2010; Shah et al., 1998; for a review see Thompson,
2023). The atrophy could be caused by stress either from traumatic life events or

internal stressors like excessive rumination (for a review, see Thompson, 2023). The
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brain reacts to acute and chronic stress by activating the hypothalamic-pituitary-adrenal
axis, which under conditions of prolonged and severe stress may damage hippocampal
neurons (for a review see Nestler et al., 2002). Depressed individuals typically show
altered recollection with impaired memory for positive events, but enhanced memory
for negative events (for a review see Dillon & Pizzagalli, 2018). The hippocampus
sends information to and receives inputs from numerous brain regions in the reward
circuit, therefore, its role in feedback processing might also be affected by depression
(for a review see Heshmati & Russo, 2015). So far, research on depression has focused
on striatal changes and reduced FRNifr) amplitudes during feedback processing.
However, there is a lack of knowledge when it comes to delayed feedback processing
that involves the hippocampus (Foerde et al., 2013; Foerde & Shohamy, 2011) and
evokes pronounced N170 amplitudes (Arbel et al., 2017; Holtje & Mecklinger, 2020;
Kim & Arbel, 2019). Considering the reports of hippocampal atrophy, changes in the
processing of delayed feedback seem just as possible as those found for the processing
of immediate feedback. To complete the picture, it needs to be investigated whether
parallel to changes in the FRN following immediate feedback, there are also changes in
the N170 following delayed feedback in the context of depression.
1.4 RESEARCH QUESTIONS AND OBJECTIVES

Based on previous findings regarding effects of feedback timing on feedback
processing as measured by EEG, this dissertation aims to further investigate how
temporal aspects of feedback presentation influence neural responses in interaction with
other factors. In particular, it seeks to examine the role of different association types in
shaping feedback-related brain activity. Specifically, it will explore whether the FRN is
more closely linked to action-feedback associations, while the N170 component might

be more responsive to stimulus-feedback associations. A central focus will also be



Introduction |27

placed on further clarifying the functional significance of the N170 in the context of
feedback processing. One key question is whether the feedback-locked N170 could
reflect activity in visual areas as a mechanism to link visual stimuli to (delayed)
feedback. Finally, this dissertation addresses the broader relevance of feedback learning
and processing in the clinical context of depression. By aiming to replicate previously
reported alterations in FRN amplitudes following immediate feedback in individuals
experiencing depressive symptoms and exploring potential similar changes in the N170
following delayed feedback, this dissertation sets out to contribute to a more
differentiated understanding of the neural mechanisms underlying impaired feedback

learning and processing in depression.
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2 OVERVIEW OF STUDIES

This dissertation aims to deepen our understanding of the neural mechanisms
involved in processing immediate and delayed feedback and to explore their relevance
to the clinical condition of depression. The foundation for this is three experimental
studies using EEG to investigate the neural processing of immediate and delayed
feedback as reflected in the FRN and N170 in probabilistic learning tasks. Studies 1 and
2 were designed to gain insights into how the human brain deals with (and solves) the
credit assignment problem by investigating different types of associations. The first
study aimed to shed more light on differences in the neural processing of feedback
linked to actions compared to feedback linked to stimuli. In the second study, particular
attention was given to the hypothesis that the reactivation of higher-order visual areas
could play a role in generating the feedback-locked N170 to assign delayed feedback to
a previously selected (visual) stimulus. Therefore, the second study aimed to investigate
the extent to which the sensory modality of a stimulus (i.e., visual vs. auditory) that
needs to be associated with feedback influences the processing of feedback and
particularly whether the N170 is increased for feedback that refers to visual stimuli.
Study 3 focused on the potential clinical relevance of neural feedback processing in
depression and intended to extend findings of altered feedback processing reflected in
the FRN to the processing of delayed feedback and the N170. The following section
offers a concise overview of each of the three studies. A detailed description of the
studies is provided in the original research articles in Appendix C.

2.1 STUDY 1
2.1.1 Research Question and Hypotheses
Learning from immediate feedback is associated with striatal activity,

presumably leading to pronounced differences between negative and positive feedback
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in the FRN—in contrast, the hippocampus becomes active when delayed feedback is
processed, and a more pronounced N170 can be observed (Arbel et al., 2017; Foerde et
al., 2013; Foerde & Shohamy, 2011; Holtje & Mecklinger, 2020; Kim & Arbel, 2019;
Peterburs et al., 2016). However, other factors besides feedback timing might also
modulate the involvement of striatum and hippocampus in feedback processing. Being
able to associate feedback with a specific stimulus we have sensed or an action we have
performed is crucial to predict rewards and enable adaptive behavior. Still, the
underlying neural processing might vary depending on the type of learned association.
The purpose of this study was to compare the processing of feedback related to a
stimulus with the processing of feedback related to an action. Ultimately, we wanted to
get closer to an answer to the question of how the human brain solves the credit
assignment problem. Therefore, we had participants learn different types of associations
(action-feedback and stimulus-feedback) with different feedback timings (immediate
feedback and delayed feedback) while recording EEG. Due to the central role of the
striatum for reward-based motor learning (Nikooyan & Ahmed, 2015; Vassiliadis et al.,
2024; Wessel et al., 2023) and immediate feedback processing (Foerde & Shohamy,
2011; Foerde et al., 2013) we expected that the assignment of feedback to actions rather
involves the striatal system, especially in the case of immediate feedback. On the other
hand, we expected the hippocampal system to be especially involved in linking
feedback to stimuli. More precisely, the MTL may reactivate an internal representation
of an earlier event, allowing it to be associated with a later event (Qin et al., 2007).
Thus, when a visual stimulus is followed by feedback, the MTL may help to reactivate
the representation of the stimulus when feedback is presented to bridge the temporal gap
caused by the delay. Combining the (potential) influences of feedback timing and

association type, we hypothesized the largest difference between negative and positive



Overview of Studies |30

feedback and the strongest reflection of the prediction error in the FRN (assumed to
reflect striatal activity) for immediate feedback that refers to actions. In contrast, we
hypothesized to see the largest N170 (assumed to reflect hippocampal and/or visual
activity) and the strongest prediction error reflection in the N170 for delayed feedback
that relates to stimuli.

2.1.2 Methods

78 healthy adults underwent a computer-based probabilistic feedback learning
task including monetary rewards (+ 4 cents) and punishments (- 2 cents). Due to
technical problems, poor learning performance and low EEG data quality, only 62
participants (40 women, 21 men, and 1 non-binary person, mean age = 23.66 years, SD
= 3.87 years) were included in the analyses. Participants were randomly assigned to one
of three experimental conditions, between which the type of association to be learned
was varied: 18 participants learned action-feedback associations, 22 learned stimulus-
feedback associations actively (by choosing between two stimuli themselves), and 22
learned stimulus-feedback associations passively (by observing how one stimulus was
automatically chosen to rule out motoric actions).

In more detail, participants in the action-feedback condition were asked to
choose between two specific actions in every trial to press either the left or right button
of a response box (e.g., pressing the right button with their right thumb vs. the left
button with their left thumb). The two actions were represented by two identical
rectangles on the screen's right and left side. After their choice, participants received
monetary feedback for their action. By forming action-feedback associations, their task
was to learn which action led to more frequent rewards and maximize their earnings.

In the active stimulus-feedback condition, participants were asked to choose

between two visual stimuli (hiragana-like characters) in each trial by pressing either the
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left or right button of a response box. After their choice, monetary feedback was
presented, and participants were instructed to learn which stimulus was rewarded more
frequently to maximize their earnings. Thus, this condition was similar to the action-
feedback condition, because it also contained actions, but the important difference was
that the feedback referred to the stimuli, not the actions. Therefore, participants had to
form stimulus-feedback associations.

The task for participants of the passive stimulus-feedback condition was similar
to the task for the active stimulus-feedback condition, with the only difference that
participants could not choose between the stimuli themselves. Instead, one of the stimuli
was automatically highlighted by a red circle to indicate a choice. Subsequently,
positive or negative monetary feedback was presented. Again, the participant’s task was
to form stimulus-feedback associations and to learn which stimulus was rewarded more
often. However, this task contained no actions and participants could only maximize
their earnings in subsequent test trials, in which they could choose between the two
stimuli themselves without receiving feedback. These test trials allowed us to assess
wether participants learned to choose the more rewarding stimulus more frequently over
time. For comparability reasons, test trials were also included in the action-feedback
condition and in the active stimulus-feedback condition.

To conclude, either motor aspects of the task (action-feedback condition) or
stimulus identity (active and passive stimulus-feedback condition) predicted reward.
Unbeknown to the participants, one action or stimulus of every pair presented was
slightly better than the other in the sense that it led to a reward in 65% of the trials and a
loss in 35%; for the other action or stimulus, the probabilities were reversed. Within
each association type condition, feedback timing was also manipulated: In one

condition, feedback was given immediately (immediate feedback; 1 s after the event),
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while in a second condition it was given delayed (delayed feedback; 7 s after the event).
To control for effects of reduced temporal predictability of delayed feedback, a third
condition contained a feedback delay of 7 seconds with six regular tones presented
during the delay, one per second (Kimura & Kimura, 2016). The two conditions with
delayed feedback will be referred to as delayed feedback without tone and delayed
feedback with tone.

In each of the three association type conditions, participants learned under the
three feedback timing conditions (immediate feedback, delayed feedback without tone,
and delayed feedback with tone). The order of these feedback timing conditions was
counterbalanced across participants to minimize sequence effects. Each participant
learned with a total of six pairs of actions or stimuli, with two pairs assigned to each
feedback timing condition. For each pair, participants completed four learning blocks,
with each block consisting of 20 learning trials, followed by 20 test trials (in which no
feedback was presented). Overall, participants completed 960 trials: 480 learning trials
(20 trials % 4 blocks x 6 pairs) and 480 test trials (20 trials x 4 blocks x 6 pairs).
Feedback timing remained constant within each pair but changed only when a new pair
of actions or stimuli was introduced. During the task, EEG was recorded from 60 scalp
electrodes evenly distributed across the head based on the extended 10-20 system.

We first analyzed the behavioral single trial data to see if participants
successfully learned to form action-feedback and stimulus-feedback associations. We
checked whether they learned to choose the more rewarding action or stimulus more
frequently by comparing their choices to the 50% chance level with a single-sample #-
test. Only in the passive stimulus-feedback condition, accuracy levels were not
significantly above chance level. Therefore, we focused all following analyses on the

comparison of the action-feedback and active stimulus-feedback condition and added an
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exploratory analysis comparing the action-feedback and passive-stimulus feedback
condition to the appendix. To explore differences in learning performance depending on
certain conditions, we applied a generalized linear mixed effects (GLME; Bates et al.,
2015) model suitable for binomial distributions in R (The R Foundation, 2021).
Specifically, we explored effects of feedback timing (immediate, delayed without tone,
delayed with tone), association type (action-feedback vs. active stimulus-feedback), and
learning block (1-4) on response accuracy, i.e., how often participants chose the more
rewarding stimulus. Furthermore, we used the behavioral data to model the prediction
error for each trial by computationally fitting a reinforcement learning model (similar to
the one described in the Introduction section 1.1.3) to the participants’ choices and their
received feedback.

To allow a meaningful analysis of the EEG data, we first ran a standard
preprocessing procedure in BrainVision Analyzer 2.2 (Brain Products GmbH, 2018)
that cleaned the data from artifacts. Afterwards, we extracted single trial amplitude
values for the FRN from electrodes Fz, FCz, Cz, FC1 and FC2 at the latency of the
maximum negative peak in the FRNuitr in a time-window ranging from 200 to 400 ms
post feedback and for the N170 from electrodes P7 and P8 between 140 and 250 ms
post feedback using MATLAB (R2021a, The MathWorks, Inc., 2021). Consequently,
FRN and N170 single trial amplitude values were separately analyzed as dependent
variables by applying linear mixed effects (LME) models in R (Bates et al., 2015; The R
Foundation, 2021). Specifically, we investigated effects of association type (action-
feedback vs. active stimulus-feedback), feedback timing (immediate, delayed with tone,
delayed without tone), feedback valence (negative vs. positive) and the unsigned
prediction error, which represents general surprise but in combination with feedback

valence enabled us to explore representations of the whole range of the prediction error,
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1.e., the signed prediction error (Weber & Bellebaum, 2024).
2.1.3 Results and Discussion

The GLME analysis of the behavioral data revealed that overall, participants
improved their response accuracy across the four learning blocks, i.e., they learned to
choose the more rewarding stimulus (active stimulus-feedback condition) or perform
the more rewarding action (action-feedback condition) more frequently through the
course of the experimental task. However, participants in the active stimulus-feedback
condition showed significantly enhanced response accuracies compared to participants
in the action-feedback condition.

For the FRN, the LME analysis replicated findings of more negative amplitudes
for negative than positive feedback, with this difference being larger for immediate than
delayed feedback (both with and without tone; for similar results, see Albrecht et al.,
2023; Arbel et al., 2017; Holtje & Mecklinger, 2020; Peterburs et al., 2016; Weinberg et
al., 2012; Weismiiller & Bellebaum, 2016). However, against our hypothesis, this
interaction between feedback valence and timing was not stronger for action-feedback
associations than stimulus-feedback associations. For the N170, we were able to
replicate more pronounced amplitudes following delayed compared to immediate
feedback (Arbel et a., 2017; Holtje & Mecklinger, 2020; Kim & Arbel, 2019). In
addition, we observed more pronounced amplitudes for negative than positive feedback
(see Kim & Arbel, 2019), but in contrast to the FRN, this difference was only
observable for delayed feedback. However, neither the effect of feedback timing, nor
the interaction between feedback valence and timing was affected by the association
type—in other words, we could not find evidence for our hypothesis that effects of
feedback timing should be more pronounced in the N170 for stimulus-feedback

associations.
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The hypothesized effects of the association type on feedback processing only
emerged in interaction with the prediction error. For both, FRN and N170, we expected
that the reflection of the prediction error (interaction between unsigned prediction error
and feedback valence) would depend on feedback timing and association type. For the
FRN following positive feedback, amplitudes became more positive with increasing
prediction errors, i.e., for more unexpected feedback. For negative feedback, the FRN
amplitudes became more negative the higher the prediction error was (for similar effects
see Burnside et al., 2019; Fischer & Ullsperger, 2013). Hence, the FRN reflected the
whole range of prediction error coding as suggested by the Reinforcement Learning
Theory (Holroyd & Coles, 2002). In contrast, previous studies found prediction error
reflections in the FRN especially for positive feedback (Kirsch et al., 2022; Weber &
Bellebaum, 2024). Interestingly, prediction error coding in our study was more
pronounced for immediate than delayed feedback (both with and without tone). Again,
this differed from findings by Weber and Bellebaum (2024) indicating similar
prediction error coding in the FRN following immediate and delayed feedback. Finally,
the interaction between feedback valence and prediction error was also more
pronounced for active stimulus-feedback associations compared to action-feedback
associations. More precisely, the FRN in the active stimulus-feedback condition
reflected the whole range of the prediction error (as described above), while in the
action-feedback condition it only scaled with positive prediction errors, similar to the
pattern reported by Kirsch et al. (2022) and Weber and Bellebaum (2024). Thus, for
action-feedback associations prediction error coding was restricted to positive feedback,
indicating that for negative feedback, it did not make a difference (at least in the FRN)
whether it was unexpected or not. Since prediction errors pose a bear necessity for

learning (Schultz & Dickinson, 2000), these findings in the action-feedback condition
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align with the typical observation that participants tend to learn better from positive than
negative feedback (see Weber & Bellebaum, 2024). Our results can be interpreted as
demonstrating that for reinforcement learning of actions, positive reinforcement is
particularly important. To conclude, reflections of the prediction error in the FRN were
indeed modulated by feedback timing and association type, but not as hypothesized by
an interaction of the two factors.

Regarding the N170, we also observed reflections of the prediction error in its
amplitude, but with a reversed pattern compared to the FRN. Here, higher prediction
error values, i.e., more unexpected feedback, led to more negative N170 (more
pronounced) amplitudes for positive feedback, while for negative feedback, higher
prediction error values led to more positive (reduced) amplitudes. This stresses the
relevance of the N170 as a feedback-locked signal to a new degree, as this ERP
component has not been linked to prediction errors in the context of feedback learning
so far. Enhanced N170 amplitudes for unexpected rewards may indicate that the MTL is
particularly active when it comes to reinforcing memories for events that led to positive
feedback. Likewise, enhanced amplitudes for expected negative feedback could reflect
an additional effort to reactivate events for which expectations about negative feedback
have been confirmed. As hypothesized, the MTL could initiate the reactivation of a
stimulus representation in visual areas to help remember which stimulus led to reward
and bind the two events together. Accordingly, we found that reflections of the
prediction error in the N170 were more pronounced for active stimulus-feedback
associations than for action-feedback associations (like for the FRN). Previous studies
further corroborate our hypothesis by finding post-reward reactivation in the
hippocampus (Singer & Frank, 2009), higher order visual areas (Schiffer et al., 2014)

and somatosensory regions (Pleger et al., 2008, 2009). Importantly, prediction error
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coding in the N170 was additionally modulated by feedback timing: For action-
feedback associations, prediction error coding emerged only following immediate
feedback, while it was present in all feedback timing conditions for stimulus-feedback
associations. Finding similarly pronounced prediction error reflections in the N170 for
both association types following immediate feedback seems contrary to our hypothesis
that we should find them especially following delayed feedback that refers to stimuli.
However, consistent with our expectations, for delayed feedback we found a stronger
prediction error effect on the N170 for stimulus-feedback compared to action-feedback
associations. Based on these results, we suppose that the N170 reflects a combination of
MTL activity (as suggested by Arbel et al., 2017) and visual reactivation (as we
hypothesized): For both association types, prediction error coding following immediate
feedback in the MTL might appear in parallel to prediction error coding in the striatum
and ACC. However, the need for reactivations in visual areas (potentially initiated by
the MTL) as a key to solving the temporal credit assignment problem should be stronger
for delayed feedback and would only happen for stimulus-feedback associations, not
action-feedback associations.

Combining results for the FRN and N170, the study provides evidence that the
involvement of diverse neural systems in feedback learning depends not only on
feedback timing, but also on the type of association learned. Superior learning of active
stimulus-feedback associations together with prediction error reflections for FRN and
N170 regardless of feedback timing led us to assume a better cooperation of the striatal
and the MTL/hippocampal system for stimulus-feedback associations. On the contrary,
for action-feedback associations the cooperation may have worked only for immediate
feedback. White and McDonald (2002) suggested that both the striatal and hippocampal

system receive the same information during learning—and indeed, there is evidence for
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dopaminergic projections to the striatum (Chuhma et al., 2023; Oldehinkel et al., 2022)
and shared information between midbrain dopamine neurons and the MTL (Lisman &
Grace, 2005; Schott et al., 2004, 2008). Additionally, both striatum and MTL reflect
prediction error signals during feedback-based learning (Dickerson et al., 2011).
However, they might specialize in encoding different types of associations (White &
McDonald, 2002) and interact by reinforcing memory for rewarding episodes to guide
future behaviour (Shohamy & Adcock, 2010).

In contrast to Kimura and Kimura (2016), who used a task where participants
could not learn, we overall found similar feedback timing effects for delayed feedback
with and without tone, indicating that feedback delay effects are not a function of
reduced temporal predictability, at least when feedback can be used for learning.

What limits our study is that participants struggled to learn passive stimulus-
feedback associations, which were intended to assess stimulus-feedback learning
without actions. However, despite inconsistent learning, participants in this condition
seemed to have formed (false) expectations while trying to choose the more rewarding
stimulus in test trials without feedback, allowing meaningful prediction error analyses,
and including the prediction error in the LME model partly accounts for differences in
learning performance between conditions. Therefore, findings from the analysis
comparing the action-feedback condition with the passive stimulus-feedback condition
reported in the appendix also contributed to the understanding of the role of the N170 in
feedback learning: For passive stimulus-feedback associations, we indeed found larger
N170 amplitudes for delayed than immediate feedback, as hypothesized. Nevertheless,
we primarily based our interpretations on the comparison of action-feedback
associations with the actively learned stimulus-feedback associations, which also

contained actions (i.e., button presses). However, feedback was only related to the
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chosen stimuli and not to the actions. Likewise, the action-feedback condition also
contained stimuli (i.e., rectangles on the screen), but the feedback referred only to the
actions and not to the stimuli. Therefore, the two conditions were similar but differed in
one crucial point: While in the active stimulus-feedback condition stimulus identity
predicted reward, motor aspects of the task predicted reward in the action-feedback
condition. As described above, superior learning of active stimulus-feedback
associations might be caused by the fact that this condition contained both actions and
stimuli, allowing the striatal and MTL systems to cooperate in the most effective way.
2.1.4 Conclusion

From this study investigating effects of the type of learned association on the
FRN and N170, two ERP components thought to represent feedback processing in the
striatal and MTL system, we derive two key findings: Remarkably, a reflection of the
whole range of the prediction error in the N170 provides new evidence that, alongside
the FRN, this is an important component reflecting feedback processing, especially for
delayed feedback. Furthermore, we drop our hypothesis that either the striatal or
MTL/hippocampal learning system takes over sole control under certain learning
conditions. Instead, the association type, together with feedback timing, seems to
modulate how well the systems can cooperate during learning.
2.2 STUDY 2
2.2.1 Research Question and Hypotheses

The study was based on the idea that delayed feedback could lead to the
reactivation of a selected stimulus in higher-order sensory areas, serving as a
mechanism to bridge the temporal gap between feedback and the stimulus that caused it.
Particularly, we assumed that the reactivation of higher-order visual areas could play a

role in generating the feedback-locked N170 to assign delayed feedback to a previously
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selected visual stimulus. Therefore, the study set out to investigate effects of the chosen
stimulus’ modality and feedback timing on feedback processing. We manipulated the
modality of the stimuli to choose from (visual and auditory) and the feedback timing
(immediate and delayed) while recording EEG. Based on studies on visual processing
where origins in higher-order visual areas were found (Deffke et al., 2007; Gao et al.,
2019; Iidaka et al., 2006), we assumed that the N170 specifically represents visual
activity and therefore hypothesized that its amplitude would be larger when feedback is
associated with visual compared to auditory stimuli. In addition, we expected this effect
to be stronger for delayed than immediate feedback, as the reactivation of a stimulus in
visual areas should especially be necessary in situations where a temporal gap needs to
be bridged between the stimulus and feedback. In addition, we explored prediction error
representations in the N170. Regarding the FRN, we aimed to replicate previous effects
found for the prediction error, the valence, and the timing of feedback. As the FRN is
understood as a modality unspecific reflection of striatal activity, we additionally aimed
to explore whether the modality of the stimulus associated with the feedback has an
effect.
2.2.2 Methods

40 healthy adults participated in the experiment, but after checking for exclusion
criteria (for example neurological diseases), data quality and technical problems, the
final sample included in the analyses consisted of 35 participants, 30 women and 5 men,
between 19 and 35 years with a mean age of 23.2 years (SD = 4.5 years). Participants
underwent a computer-based probabilistic feedback learning task, in which they could
learn associations between stimuli and positive or negative monetary feedback (+4 ct vs.
-2 ct). Each participant could choose between two visual stimuli (two hiragana

characters on the left and right side of the computer screen) in half of the learning
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blocks or two auditory stimuli (two melodies played by different instruments
simultaneously on the left and right ear via headphones) in the other half. Furthermore,
feedback appeared 1 s (immediate feedback) or 7 s (delayed feedback) after the
participants’ choice and was always presented visually on the screen. The experiment
was divided into two halves: one with visual stimuli and one with auditory stimuli.
Participants completed four learning phases in one modality (either visual or auditory)
before switching to the other modality, with the order of modalities counterbalanced
across participants. In each learning phase, a new stimulus pair was presented, and the
feedback timing (immediate or delayed) remained consistent throughout the phase.
Feedback timing changed when a new learning phase began, coinciding with the
presentation of a new stimulus pair. Each learning phase was further divided into 4
blocks of 20 trials, yielding 640 trials in total. One stimulus of each visual or auditory
pair was associated with reward in 65% of the trials and punishment in 35%, while
probabilities were reversed for the other stimulus. The participant’s task was to learn
which stimulus was more likely to be rewarded and maximize reward through their
choices. During the task, we recorded EEG from 60 scalp electrodes, evenly distributed
on the head according to the extended 10-20 system.

We analyzed behavioral single-trial data by applying a GLME model in R (Bates
et al., 2015; The R Foundation, 2021). We investigated effects of stimulus modality
(visual vs. auditory), feedback timing (immediate vs. delayed) and learning block (1-4)
on the response accuracy (i.e., how often a participant chose the more rewarding
stimulus). In addition, we used the behavioral data to computationally model the
prediction error for every single trial in MATLAB (R2021a, The MathWorks, Inc.,
2021; for similar approaches see Burnside et al., 2019; Lefebvre et al., 2017; Weber &

Bellebaum, 2024). For the analysis of the EEG data, we first preprocessed the EEG data
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using BrainVision Analyzer 2.2 (Brain Products GmbH, 2018) to clean it from artifacts
and prepare it for the analyses. Then, using MATLAB (R2021a, The MathWorks, Inc.,
2021), we extracted single trial amplitude values for the N170 from electrodes P7 and
P8 between 130 and 230 ms post feedback and operationalized the N170 as a peak-to-
peak amplitude by subtracting the preceding positive peak (P1). For the FRN, we
extracted single trial amplitude values from electrodes Fz, FCz, Cz, FC1 and FC2 at the
latency of the maximum negative peak in the FRNy;sr in a time-window ranging from
230 to 360 ms post feedback. Both ERP components were separately analyzed by
applying an LME analysis in R (Bates et al., 2015; The R Foundation, 2021). Precisely,
we investigated effects of stimulus modality (visual vs. auditory), feedback timing
(immediate vs. delayed), feedback valence (negative vs. positive) and the unsigned
prediction error (indicating general expectation violations or surprise) on N170 and
FRN. For the N170, we additionally investigated hemispheric differences between the
electrode sites (P7 vs. P8).
2.2.3 Results and Discussion

The behavioral data analysis revealed an increasing number of correct responses
across the four learning blocks, indicating that participants did learn to choose the more
rewarding stimulus more frequently throughout the experimental task. In addition, we
did not find differences in response accuracy between immediate and delayed feedback
or visual and auditory stimuli, suggesting that learning was comparable between these
conditions.

For the N170, we found that over the right hemisphere (P8), stimulus modality
affected the amplitude following delayed feedback, with larger N170 amplitudes for
feedback referring to visual compared to auditory stimuli. This is in line with our

hypothesis that the N170 reflects stimulus reactivations in higher-order visual areas,
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which may represent a mechanism to link visual stimuli to delayed feedback. Evidence
for this mechanism also comes from fMRI studies that revealed post-reward
reactivations in visual (Schiffer et al., 2014) and somatosensory brain regions (Pleger et
al., 2008, 2009) as a way to assign credit for a reward to a stimulus of a certain sensory
modality. The functional specialization of the right hemisphere for visuo-spatial
processing (Thiebaut de Schotten et al., 2011) combined with the visuo-spatial stimuli
used in our study (hiragana characters) could explain differences between the
hemispheres. Surprisingly, we found larger feedback-locked N170 amplitudes over the
right hemisphere for choices between auditory compared to visual stimuli following
immediate feedback. We explain this by suggesting that the N170 reflects both activity
in the MTL and extrastriate visual areas during feedback processing. Although the
hippocampus seems to be particularly important to process delayed feedback (Foerde et
al., 2013; Foerde & Shohamy, 2011), it is also involved in processing feedback with
relatively short delays (Dickerson et al., 2011). While for delayed feedback, the visual
cortex contribution to the N170 may have been particularly high, hippocampal
contributions following immediate feedback for auditory stimuli may have been high as
well: The auditory condition required cross-modal associations, which activates the
hippocampus more than unimodal associations (Butler & James, 2011).

Another surprising finding were effects of stimulus modality on the FRN: We
found larger FRN amplitudes following immediate feedback for the choice between
visual compared to auditory stimuli. However, effects of feedback valence and the
reflection of the prediction error in the FRN were not affected by stimulus modality,
therefore it did not seem to influence processes underlying the FRN generation.

Apart from effects of stimulus modality on N170 and FRN, the analyses made

the N170 appear as a kind of counterpart to the FRN: The N170 was sensitive to
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feedback valence only following delayed and not immediate feedback, while we could
replicate that the FRN is more sensitive to feedback valence when feedback is presented
immediately (Arbel et al., 2017; Holtje & Mecklinger, 2020; Peterburs et al., 2016;
Weinberg et al., 2012; Weismiiller & Bellebaum, 2016). This strengthens the notion that
sources underlying the FRN like the striatum are rather involved in processing
immediate feedback, while potential generators of the N170 like the MTL are more
important for delayed feedback processing (Foerde et al., 2013; Foerde & Shohamy,
2011).

Another finding that positioned the N170 as a counterpart to the FRN was the
interaction between prediction error and feedback valence that indicated a reflection of
the whole range of the prediction error in both ERP components: While the FRN, in line
with the reinforcement learning theory (Holroyd & Coles, 2002), became more negative
when negative feedback was unexpected and more positive when positive feedback was
unexpected, the N170 (especially over the right hemisphere) was enhanced (more
negative) for unexpected positive feedback and reduced (more positive) for unexpected
negative feedback. While previous studies reported more pronounced N170 amplitudes
for unpredictable compared to predictable stimuli during the perceptual processing of
visual stimuli, linking the N170 to surprise in general (Baker et al., 2021, 2023), this is
the first study to report reflections of reward prediction errors on the N170. Enhanced
amplitudes following unexpected positive feedback might indicate that it is especially
important to remember which stimulus led to a reward and strengthen that relationship
through reactivation mechanisms (Singer & Frank, 2009). Since the midbrain dopamine
system projects to various regions within the brain, it could send reinforcement learning
signals not only to the striatum and frontal cortex (Schultz, 2002), but also to the

hippocampus (Schott et al., 2004). Accordingly, prediction error related activity has
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been found within the hippocampus (Dickerson et al., 2011; Foerde & Shohamy, 2011),
which might be reflected in the N170. Nevertheless, the prediction error coding in the
N170 over the right hemisphere was particularly pronounced for the prior choice
between visual stimuli and especially for delayed feedback. Finally, this aligns with our
hypothesis that the N170 could specifically represent a reactivation of visual areas
during feedback processing.
2.2.4 Conclusion

The combination of finding a more pronounced N170 following delayed
feedback related to the choice of visual compared to auditory stimuli over the right
hemisphere, and a particularly strong representation of the prediction error under the
same conditions, adds weight to our hypothesis that this ERP component could reflect
activity within higher-order visual areas of the brain. However, signals from the MTL
may initiate the reactivation of an internal representation of a stimulus, allowing it to be
linked to temporally delayed feedback (Qin et al., 2007). Therefore, we propose that the
N170 reflects overlapping activity of MTL and reactivations in higher order visual
areas. A reactivation reflected in the N170 might be the bridge that is needed to connect
stimuli with delayed feedback in complex real-world situations and a key mechanism
for solving the credit assignment problem.
2.3 STUDY 3
2.3.1 Research Question and Hypotheses

While several studies have reported altered FRN amplitudes as predictors,
concomitants, or consequences of depression (Bress et al., 2012, 2013, 2015; Foti et al.,
2014; Klawohn et al., 2021; for a meta-analytic review see Keren et al., 2018), other
studies have failed to replicate these findings (Hager et al., 2022; Clayson et al., 2020;

Moran et al., 2017). With Study 3, we aimed to examine the connection between
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depression and blunted effects of feedback valence on the FRN amplitude. While the
FRN seemingly reflects influences of the dopaminergic midbrain on striatum and ACC
(Becker et al., 2014; Carlson et al., 2011; Foti et al., 2011; Hauser et al., 2014; Holroyd
& Coles, 2002; Nieuwenhuis et al., 2004; Oerlemans et al., 2025), other ERP
components could reflect slightly different processes that are also relevant during
feedback processing: For example, we suggest that the N170 reflects a reactivation of
visual brain regions potentially initiated by structures within the MTL—a mechanism to
link delayed feedback to the prior choice of a visual stimulus. In line with this, previous
studies found that the N170 is not only associated with visual activity (Deftke et al.,
2007; Gao et al., 2019; lidaka et al., 2006) but also with activity in the right MTL
including the hippocampus (Baker & Holroyd, 2009, 2013; Baker et al., 2015). As the
latter can be reduced in size and impaired or altered in function in depression (Fairhall
et al., 2010; Shah et al., 1998; for a review see Thompson, 2023), we aimed to explore
depression-related alterations in (delayed) feedback processing in the N170. In contrast
to earlier studies, we assessed and conceptualized currently experienced depressive
symptoms on a continuum rather than as a binary state (healthy vs. depressed) to avoid
a loss of information and increase statistical power (see Clayson et al., 2020; for a
similar approach see Hager et al., 2022). Our sample was recruited in both a non-
clinical and clinical setting in order to reach an adequate range of different symptom
severities. Since blunted reward processing has not only been found in currently
depressed individuals, but also in remitted individuals (McCabe et al., 2009) and those
at high risk for depression due to a familial vulnerability (Weinberg et al., 2015; for a
review see Luking et al., 2016), we additionally assessed past depressive episodes and
the familial history of depression to investigate their influence on feedback learning and

processing alongside currently experienced depressive symptoms. Participants
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performed a probabilistic feedback learning task with immediate and delayed feedback
while we recorded EEG. Based on previous studies, we anticipated that depression
(current symptom severity, past episodes and familial vulnerability) would be associated
with a diminished sensitivity of the FRN to feedback valence, particularly due to a
reduced neural response to rewards. Furthermore, we expected the association between
depression and the FRN to be most pronounced following immediate feedback.
Regarding the N170, we hypothesized to find blunted (less negative) N170 amplitudes
associated with depression, especially following delayed feedback, because
hippocampal atrophy in depression might cause alterations in delayed feedback
processing.
2.3.2 Methods

Instead of conducting a group comparison between individuals with depression
and healthy controls, we aimed to use the severity of depressive symptoms as a
continuous variable within a sample recruited in a non-clinical and clinical setting. To
achieve this, we advertised the study on the campus of Heinrich Heine University
Diisseldorf and at the outpatient psychotherapy unit of the LVR Clinic for
Psychosomatic Medicine and Psychotherapy in Diisseldorf, inviting participation from
both individuals experiencing depressive symptoms and those without. 50 adults
participated in the study, due to exclusion criteria (see below), data quality and technical
issues, only 45 of them were included in the statistical analysis (37 women and eight
men, 41 right-handed, three left-handed and one ambidextrous). The mean age was
24.87 years (SD = 5.54 years, Min = 18 years, Max = 39 years). All participants reported
no current or former neurological disorders, no acute psychotic conditions, and no
regular or acute consumption of substances affecting the central nervous system.

Depression is often accompanied by comorbid disorders like anxiety disorders,
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substance addiction disorders, eating disorders, obsessive-compulsive disorders, other
affective disorders, and suicidality (Jacobi et al., 2004; Lamers et al., 2011; Zimmerman
et al., 2002). We decided against defining these psychiatric disorders as exclusion
criteria and instead assessed them by conducting the short version of the Diagnostic
Interview for Psychological Disorders ([Mini-DIPS]; Margraf & Cwik, 2017; Margraf
et al., 2017; for a similar approach see Bress et al., 2013 and Foti et al., 2014). Since not
only depressed individuals but also remitted individuals (McCabe et al., 2009) and the
first-degree relatives of persons with major depression (Weinberg et al., 2015; for a
review see Luking et al., 2016) show blunted (more negative) FRN amplitudes or
striatal responses following rewards, we assessed all three aspects to study their
influence on feedback learning and processing separately: First, we asked participants
whether a first-degree relative, i.e., parent or sibling (excluding half-siblings), has ever
been diagnosed with depression. Afterward, we used a modified version of the mood
module of the Patient Health Questionnaire ([PHQ-9]; Kroenke et al., 2001; German
version: Griéfe et al., 2004) to evaluate past depressive episodes, based on the approach
by Bress et al. (2013). Finally, we used the Beck Depression Inventory ([BDI-II]; Beck
et al., 1996; German version: Hautzinger et al., 2006) as a measure for acute depression
severity (for a similar account, see Bress et al., 2013).

Participants underwent a computer-based probabilistic feedback learning task,
where in every trial they could choose between two visually presented stimuli and learn
associations between these stimuli and positive (+4 ct) or negative (-2 ct) monetary
feedback. Feedback appeared either 1 s (immediate feedback) or 7 s (delayed feedback)
after the participants’ choice. Unbeknown to the participants, one stimulus of each
presented pair was associated with reward in 65 % of the trials and with punishment in

35 %, while the probabilities were reversed for the other stimulus. Participants were
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instructed that wins and losses contribute to the compensation paid out at the end. Their
task was to maximize their earnings by learning which stimulus is more likely to be
rewarded. Participants completed four learning phases (two with immediate and two
with delayed feedback). In each learning phase, a new stimulus pair was presented, and
the feedback timing remained consistent throughout the phase. The feedback timing
changed only at the beginning of a new learning phase, coinciding with the presentation
of a new stimulus pair. Each learning phase was further divided into 4 blocks of 20
trials, yielding 320 trials in total. During the task, EEG was continuously acquired from
60 scalp electrodes, evenly distributed across the head based on the extended 10-20
system.

We analyzed the behavioral data by performing GLME analyses in R (version
1.1.34; Bates et al., 2015; The R Foundation, 2021). We aimed to investigate effects of
depression (BDI-II, modified PHQ-9 and familial vulnerability), feedback timing
(immediate vs. delayed) and block (1-4) on response accuracy (how often the more
rewarding stimulus was chosen) in the probabilistic feedback learning task. Precisely,
we calculated three separate models, one for each measure of depression as a predictor.
The first model contained the BDI (a measure for current severity of depressive
symptoms) as a predictor alongside the other factors mentioned above (feedback timing
and block), while the second model contained the PHQ (a measure of past depressive
episodes) and the third model familial vulnerability for depression (whether a first
degree relative has ever been diagnosed with depression) as a predictor. Additionally,
we utilized the behavioral data to computationally model the prediction error for every
single trial in MATLAB (R2021a, The MathWorks, Inc., 2021; for similar approaches
see Burnside et al., 2019; Lefebvre et al., 2017; Weber & Bellebaum, 2024). For EEG

data analyses, we performed a standard preprocessing procedure using BrainVision
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Analyzer 2.2 (Brain Products GmbH, 2018) to clean the signal from artifacts and
prepare it for the analyses. Then in MATLAB (R2021a, The MathWorks, Inc., 2021),
we extracted single trial amplitude values for the N170 from electrodes P7 and P8
between 130 and 230 ms post feedback and operationalized the N170 as a peak-to-peak
amplitude by subtracting the preceding positive peak (P1). For the FRN, we extracted
single trial amplitude data from electrodes Fz, FCz, Cz, FC1 and FC2 at the latency of
the maximum negative peak in the FRNgifr in a time-window ranging from 230 to 360
ms post feedback. Finally, we analyzed both ERP components separately with LME
analyses in R (Bates et al., 2015; The R Foundation, 2021). For the N170, we were
interested in effects of depression (BDI, PHQ and familial vulnerability), feedback
timing (immediate vs. delayed), feedback valence (negative vs. positive), unsigned
prediction error (general expectation violations or surprise) and electrode (left
hemisphere/P7 vs. right hemisphere/P8). Like for the behavioral data analysis, we built
three separate models, one for each of the three different depression variables as a
predictor. The first model contained the BDI as a measure of severity of current
depressive symptoms, alongside feedback timing, feedback valence, unsigned
prediction error and electrode as predictors. Similarly, we built the other two models,
with the only difference being the depression variable used as predictor. Thus, the
second model contained the PHQ as a measure of past depressive episodes and the third
model included familial vulnerability for depression (whether a first degree relative has
ever been diagnosed with depression) as a predictor. For the analyses of the FRN, we
followed the same approach as in the N170 analysis by building three models varying
only regarding the depression variable used as predictor (BDI, PHQ or familial
vulnerability) alongside feedback timing (immediate vs. delayed), feedback valence

(negative vs. positive), and the unsigned prediction error (indicating general expectation
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violations or surprise).
2.3.3 Results and Discussion

The behavioral data analysis revealed that participants currently experiencing
more severe depressive symptoms showed worse learning performance in the
probabilistic feedback learning task. Thus, as expected, learning from immediate and
delayed feedback was affected by depression, possibly due to altered striatal and
hippocampal functioning (Admon & Pizzagalli, 2015; Fairhall et al., 2010; Luking et
al., 2016; Nestler et al., 2002; Pizzagalli et al., 2009; Takamura et al., 2017; Thompson,
2023)—structures that are both relevant for feedback processing (Foerde et al., 2013;
Foerde & Shohamy, 2011).

For the FRN, we could not replicate the expected reduced feedback valence
sensitivity in participants currently experiencing depressive symptoms (Bress et al.,
2012, 2015; Foti et al., 2014; Klawohn et al., 2021), corroborating studies that reported
no or only weak, task-dependent relationships between the FRN and depression (Hager
et al., 2022; Clayson et al., 2020; Moran et al., 2017). However, it needs to be
considered that participants in our study had an average BDI score of 9.89 (SD = 9.34),
which is below the cut-off score for depression (von Glischinski et al., 2019). Moreover,
our sample lacked participants with more severe depressive symptoms: The highest
observed BDI score was 39, considerably below the theoretical maximum of 63. Prior
studies that found relationships between the FRN amplitude and self-rated depressive
symptoms in a non-clinical sample investigated 8- to 13-year-old children/adolescents
(Bress et al., 2012, 2015), a group in which depression-related changes in the FRN seem
to be particularly pronounced (Keren et al., 2018).

Although we could also not find the hypothesized pattern of reduced N170

amplitudes in participants currently experiencing more severe depressive symptoms—
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especially following delayed feedback—these symptoms still influenced prediction
error processing as reflected in the N170: More unexpected positive feedback was
associated with more pronounced N170 amplitudes, but only in participants showing
low levels of depressive symptoms and especially following (delayed) positive
feedback. Although we did not consider this pattern in our hypothesis, it aligns with our
assumption that structures and processes underlying the N170 are affected by
depression. In healthy individuals, interactions between midbrain dopamine regions and
the MTL may reinforce memory representations of rewarded stimuli to improve
behavior (Shohamy & Adcock, 2010). However, this process could be impaired in
individuals experiencing depressive symptoms, for example due to hippocampal
changes and altered memory functions (Dillon & Pizzagalli, 2018; Fairhall et al., 2010;
Nestler et al., 2002; Thompson, 2023). As altered feedback learning in depression is
typically marked by anhedonia and reduced reward responsiveness (Admon et al., 2017;
Bakic et al., 2017; Huys et al., 2013; Kumar et al., 2018; Kunisato et al., 2012; Rizvi et
al., 2016), this might explain reduced prediction error coding in the N170 particularly
following positive feedback in the present study.

In contrast to effects of currently experienced depressive symptoms, we did not
find any behavioral or neurophysiological effects of past depressive episodes as
measured via a modified version of the PHQ-9. Although this questionnaire was
intended to be a measure of lifetime depression (Cannon et al., 2007), we argue that a
high score is not necessarily reflective of past depressive episodes. For example,
symptoms assessed by the modified PHQ-9 like low mood, problems sleeping, changes
in appetite and difficulties concentrating also commonly appear in non-pathological
forms of grief (Shear et al., 2011; Zisook & Shear, 2009), making it hard to reliably and

validly assess clinically relevant past depressive episodes.
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Regarding the role of familial vulnerability, we did not find reduced behavioral
performance in the probabilistic feedback learning task with an increased familial risk
for depression. Neurophysiological responses to gains and losses in the FRN were also
not affected by a familial history of depression, but it affected the N170: The N170
(over the right hemisphere) was more pronounced following negative than positive
feedback (for similar results see Kim & Arbel, 2019), but this valence sensitivity was
not present in participants with a familial history of depression. Blunted hippocampal
activity could have caused the reduced differentiation between responses to gains and
losses in the N170 in our study.

An aspect that complicates the interpretation of our results is the prevalence of
other mental disorders apart from depression, which were identified during the Mini-
DIPS. For example, a notable proportion of 26% of our participants met the criteria for
a social anxiety disorder (currently or in the past) and anxiety has been found to also
affect the FRN (Aarts & Pourtois, 2012; Gu et al., 2010; Jiang et al., 2018; Takacs et al.,
2015; Tobias & Ito, 2021). Thus, inspired by Grabowska et al. (2024), we think that
because ERP components like the FRN and N170 are modulated by various
interindividual differences, investigating only a small set of them might be too simple:
Mental disorders like anxiety and depression are intertwined, influencing an individual's
way of processing feedback in complex ways.

2.3.4 Conclusion

In this study, we found that performance in a feedback learning task was reduced
in participants experiencing more severe depressive symptoms, irrespective of feedback
timing, but we found no depression-related effects on the FRN. However, currently
experienced depressive symptoms were associated with poorer encoding of prediction

errors in the N170 and a familial vulnerability for depression was related to a reduced
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differentiation between responses to rewards and punishments in the N170. We
conclude that the N170 has the potential to be considered a biomarker alongside the

FRN in clinical research on depression and feedback-based learning processes.
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3 GENERAL DISCUSSION
3.1 REVISITING RESEARCH QUESTIONS AND KEY FINDINGS

3.1.1 A Potential Solution for the Credit Assignment Problem

This dissertation set out to enhance our understanding of a core feature of human
behavior—namely, the pursuit of rewards and the avoidance of punishment—a process
fundamentally guided by our ability to employ feedback as a teacher that enables all
kinds of intelligent behavior (Cohen & Blum, 2002; Silver et al., 2021). Starting point
was the well-established insight that the dopaminergic reward system, originating in the
midbrain and projecting to subcortical regions, for example within the striatum, and to
fronto-cortical structures like the ACC, forms the central neuronal basis for feedback
processing (Bjorklund & Dunnett, 2007; Glimcher, 2011; Haber & Knutson, 2010;
Oldehinkel et al., 2022; Schultz & Dickinson, 2000). However, it was pointed out that
characteristics of the learning context like the temporal delay of feedback can influence
the neural sources involved in feedback processing in terms of a shift from striatal to
hippocampal/MTL regions (Foerde et al., 2013; Foerde & Shohamy, 2011). The
following questions arose: How can we associate feedback with events that occurred
several moments ago, and how do we know which particular event in a chain of
performed actions or seen stimuli deserves credit? From a cognitive neuroscientific
perspective, we faced the problem of credit assignment (Curtis & Lee, 2010;
Stolyarova, 2018; Sutton & Barto, 2018) and how it might be solved by the human
brain.

To deepen our understanding towards solving this problem and finding out
which factors might mediate the involvement of striatal and hippocampal learning
systems during immediate and delayed feedback processing, Study 1 examined both the

effects of feedback timing and the so far insufficiently explored impact of the
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association type on the electrophysiological processing of feedback. We expected that
the striatal system is not only important for immediate feedback processing, but also
particularly involved in linking feedback to actions, while the MTL system might be
especially helpful for linking delayed feedback to stimuli. We investigated modulations
of the FRN and N170, two ERP components thought to reflect feedback processing in
the striatal (Becker et al., 2014; Bellebaum & Daum, 2008; Foti et al., 2011; Gehring &
Willoughby, 2002; Holroyd et al., 2004; Holroyd & Coles, 2002; Oerlemans et al.,
2025; for a review see Nieuwenhuis et al., 2004) and MTL system, respectively (Arbel
et al., 2017; Baker & Holroyd, 2009, 2013; Kim & Arbel, 2019). The results suggested
that both feedback timing and association type modulated the involvement of striatal
and MTL systems during feedback learning, but we could not find evidence for our
hypothesis that each system operates independently and specifically under certain
feedback timing and association type conditions. A study by Weismiiller et al. (2018)
also speaks against a strict dissociation of neural correlates underlying immediate and
delayed feedback processing as dopamine depletion in unmedicated Parkinson’s disease
patients led to enhanced learning from both immediate and delayed negative feedback.
The combination of different association types and feedback timings in Study 1
appeared to modulate how well striatal and MTL learning systems were able to
cooperate during learning: Better learning combined with stronger prediction error
reflections in the FRN and N170 (following both immediate and delayed feedback) for
stimulus-feedback associations led us to assume a better cooperation for this association
type. Here, both actions and stimuli were present during the task and thus striatal and
MTL regions were assumedly both able to contribute to the formation of associations.
Regarding the problem of credit assignment, results from Study 1 suggest that the

striatal and hippocampal systems receive the same information (White & McDonald,
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2002), namely dopaminergic prediction error signals (Dickerson et al., 2011), and use it
to contribute to the formation of various types of associations together.

In Study 2 we further investigated different association types, this time focusing
on the sensory modality of the stimuli that need to be associated with feedback. Again,
the aim was to unpack the cognitive and neural mechanisms involved in credit
assignment during feedback learning. One way to especially assign delayed feedback to
earlier encountered stimuli could be the reactivation of their representations in higher-
order sensory areas of the brain when feedback is presented (Pleger et al., 2008, 2009;
Schiffer et al., 2014). Particularly, we assumed that the reactivation of higher-order
visual areas could play a role in generating the N170 (Deftke et al., 2007; Gao et al.,
2019; lidaka et al., 2006) in situations where delayed feedback needs to be assigned to a
previously chosen visual stimulus. Thus, we focused on determining the nature of the
signal reflected by the feedback-evoked N170, which in this context has previously only
been hypothesized to reflect MTL activity (Arbel et a., 2017; Kim & Arbel 2019).
Therefore, Study 2 investigated effects of the chosen stimulus’ modality and feedback
timing on feedback processing. As hypothesized, we found a more pronounced N170
following delayed feedback related to the choice of visual compared to auditory stimuli
over the right hemisphere. In addition, the prediction error was most reflected in the
N170 under the same conditions. We concluded that the N170 might indeed reflect
reactivations within higher-order visual areas of the brain, possibly initiated by the MTL
(Qin et al., 2007), revealing a mechanism to assign credit for delayed feedback to a
previously chosen visual stimulus.

3.1.2 A Potential New Biomarker of Depression
While it is insightful to utilize ERP components such as the FRN and N170 for

investigating basic processes of learning and feedback processing under healthy
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conditions, prior research has also demonstrated that the FRN can serve as a valuable
biomarker or, more precisely, an endophenotype for a highly prevalent and debilitating
mental disorder, namely depression (Bress et al., 2012, 2013, 2015; Brush et al., 2018;
Foti et al., 2014, for a meta-analytic review see Keren et al., 2018). Building on the
findings from Studies 1 and 2, which showed that alongside the FRN the N170 also
reflects key processes involved in feedback processing, Study 3 aimed to examine
whether the N170 might also be altered in depression, especially in situations where
feedback is temporally delayed. We found that learning from immediate and delayed
feedback was impaired in participants experiencing more severe depressive symptoms.
While we could not replicate earlier findings of depression-related reduced responses to
gains and losses in the FRN (Bress et al., 2012, 2013, 2015; Brush et al., 2018; Foti et
al., 2014), a familial vulnerability for depression was linked to a reduced differentiation
between responses to gains and losses in the N170. Additionally, currently experienced
depressive symptoms came along with poorer encoding of prediction errors in the N170.
Therefore, we suggested to further explore the N170 as a potential biomarker alongside
the FRN in future clinical research on depression and feedback-based learning
processes.

As this was the first study to examine the N170 in the context of feedback
learning in depression, it remains to be tested whether the effects found can be
replicated in future studies. Since changes in the FRN were not found consistently in the
context of depression, replications may also prove difficult for the N170. However, all
three studies reported in this dissertation clearly showed that both ERP components,
FRN and N170, reflect feedback processing. In addition, results from Study 1 suggest
that the brain structures underlying these components may interact with each other

depending on the learning context. Thus, changes in feedback processing in depression
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might manifest in one of the two components depending on the learning context. It
could therefore be considered whether the N170 poses a potential new biomarker or
rather a different manifestation of the same underlying pathological reward processing
sometimes reflected in the FRN. For future research it could be useful to investigate
alterations in both components to uncover connections between complex phenomena

such as feedback processing in various contexts and depression.

3.2 INTEGRATION OF FINDINGS: THREE STUDIES ONE PICTURE

This dissertation benefits from the highly similar design of its three underlying
empirical studies. All studies employed a comparable paradigm—specifically, a
probabilistic feedback learning task. In each study, effects of feedback valence,
feedback timing, and the prediction error on feedback-based learning and the neural
processing of feedback, reflected in the FRN and N170, were investigated using
identical EEG setups. Each study then placed particular focus on an additional factor:
Studies 1 and 2 focused on different association types, and Study 3 on depression.
Moreover, all three studies used the same statistical approach, namely (G)LME models.
These models are particularly well-suited for single-trial data analyses in research
involving human participants, as their data often have a hierarchical structure (Meteyard
& Davies, 2020): For example, responses in a feedback learning task are likely
correlated within each participant and ERP signals for certain levels of a factor such as
immediate and delayed feedback are also likely correlated across participants. These
ways in which data can be grouped results in a hierarchical error structure, which can be
explicitly modeled in (G)LME models by including random intercepts and slopes
(Meteyard & Davies, 2020). Including random intercepts for participants accounts for
differences in general learning performance or ERP amplitudes across individuals.

Including random slopes allows the effect of an experimental factor to vary between
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participants, for example feedback valence may influence one participant’s
electrophysiological feedback processing more strongly than another’s. The
methodological consistencies across the three studies led to an accumulation of
converging evidence for specific effects:

In all conducted studies, we were able to replicate a well-established finding that
the FRN is more negative following losses than gains, and that this effect is stronger
when feedback is presented immediately after a choice than delayed (for similar results
see Arbel et al., 2017; Holtje & Mecklinger, 2020; Peterburs et al., 2016; Weinberg et
al., 2012; Weismiiller & Bellebaum, 2016). In addition, across all three studies, we
found that the FRN reflected the whole range of the prediction error by becoming more
negative for unexpected negative feedback and more positive for unexpected positive
feedback. In contrast, previous studies found that the prediction error was reflected in
FRN amplitudes following positive, but not negative feedback (Weber & Bellebaum,
2024; Kirsch et al., 2022), supporting the idea that the signal in this time window is
specifically shaped by positive feedback and thus reflects a RewP. However, our
findings are in line with the reinforcement learning theory of the FRN (Holroyd &
Coles, 2002), suggesting that feedback better than expected activates dopaminergic
neurons, which leads to the inhibition of the ACC and more positive FRN amplitudes,
while feedback worse than expected reduces activity of dopaminergic neurons,
disinhibiting the ACC and making the FRN more negative (Holroyd & Coles, 2002).
While much attention has traditionally been paid to the response of dopaminergic
neurons to reward and its omission, it is important to note that some dopamine neurons
(in monkeys) specifically show phasic activations in response to (conditioned) aversive
stimuli (Mirenowicz & Schultz, 1996). In addition, the human habenula has been found

to react to punishment prediction errors, not only when expected reward is omitted, but
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also when unexpected punishment is perceived (Lawson et al., 2014; Salas et al., 2010).
Thus, the habenula is referred to as the brain’s anti-reward center with connections to
the dopaminergic reward system (for reviews see Hu et al., 2020 and Metzger et al.,
2021). Our findings suggest that the frontocentral ERP component in the time window
about 200 to 400 ms post feedback is shaped by both, neural responses to (un)expected
rewards and punishments.

Regarding the N170, we were also able to demonstrate a sensitivity to the
valence of feedback (for similar results, see Kim & Arbel, 2019). However, the
distinction between positive and negative feedback in Studies 1 and 2 was more/only
pronounced for delayed feedback compared to immediate feedback—an opposite
pattern to that observed for the FRN. Moreover, Study 3 revealed that differences in the
N170 between positive and negative feedback were not detectable in individuals with a
family history—and thus an increased risk (Halligan et al., 2007; Raposa et al., 2014)—
of depression.

Importantly, we were primarily able to show consistently across all three studies
that the feedback-locked N170 also reflects the full range of prediction errors, with
increasingly negative amplitudes the more unexpected positive feedback was, and
increasingly positive amplitudes the more unexpected negative feedback was. This
finding provided new evidence that, alongside the FRN, the N170 is an important
component reflecting feedback processing. We suggested that pronounced (negative)
amplitudes in response to unexpected positive feedback might indicate that it is
especially important to remember—or reactivate—what led to an unexpected reward
(Singer & Frank, 2009). However, from an evolutionary perspective, one could argue
that it should also be important to remember what led to an unexpected loss, as

subjectively, losses weigh about twice as much as gains (Tversky & Kahneman, 1992).
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Nevertheless, previous findings of a so-called confirmation bias indicate that humans
particularly rely on positive feedback by showing higher learning rates for positive than
negative feedback (for example see Weber & Bellebaum, 2024), a bias we also
observed in our experiments. Thus, positive reinforcement may be more effective than
negative feedback and there seems to be some truth to the old saying that “you catch
more flies with honey than with vinegar”.

Overall, incorporating the prediction error as a predictor in our analyses proved
to be highly informative. Specifically, we used computational modeling of
reinforcement learning parameters to explore how dopaminergic prediction error coding
shapes brain activity during feedback learning (Glimcher, 2011). This allowed us to
account for the underlying processes involved in the generation of both the FRN and
N170. Interestingly, effects of association type (including stimulus modality) and
depression were mostly observed in interaction with the prediction error. When it comes
to learning, using computational modeling approaches to understand human behavior
and brain activity thus appears to be a promising approach for future research.

Another modulator of feedback processing investigated across all three studies—
enabling an integrated and comprehensive overview—was feedback timing. Previous
research has suggested a shift from striatal to MTL engagement with increasing
feedback delays (Foerde et al., 2013; Foerde & Shohamy, 2011). In line with this, our
findings of reduced feedback valence sensitivity in the FRN following delayed feedback
support the notion that the striatum is particularly involved in processing immediate
feedback (for similar results see Arbel et al., 2017; Holtje & Mecklinger, 2020;
Peterburs et al., 2016; Weinberg et al., 2012; Weismiiller & Bellebaum, 2016). While
we could replicate previously reported effects of generally larger N170 amplitudes

following delayed versus immediate feedback only in Study 1 (see Arbel et al., 2017;
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Kim & Arbel, 2019; Holtje & Mecklinger, 2020), the enhanced sensitivity to feedback
valence in delayed feedback conditions observed in Studies 1 and 2 aligns with the idea
that the MTL plays a prominent role in processing delayed feedback.

However, looking at prediction error signals in both ERP components, a more
nuanced picture emerges: For the FRN, more pronounced effects for immediate
feedback were only observed in Study 1, whereas prediction error coding was
independent of feedback timing in the other two studies. Similarly, the N170 did not
show a consistent pattern across studies: Depending on association types, stimulus
modalities or depressive symptom severity, prediction error signals were more
prominently reflected following either immediate or delayed feedback. This aligns with
previous findings that the hippocampus can be engaged in feedback processing even for
short feedback delays (Dickerson et al., 2011). Given the functional connections and
flow of information between striatal and MTL regions (Davidow et al., 2016; Dickerson
et al., 2011; Kahn & Shohamy, 2013), it seems plausible that there is no clear-cut
division or exclusive responsibility for either immediate or delayed feedback processing
where one system inhibits the other (but see Poldrack et al., 2001). Instead, we propose
that under healthy conditions, striatal and MTL-based learning systems interact
cooperatively for achieving best results (Shohamy & Adcock, 2010; Dickerson et al.,
2011; White & McDonald, 2002). Inspired by the framework of White and McDonald
(2002), we assume that both systems use dopaminergic prediction error signals to
contribute their respective strengths to the formation of different association types
depending on the nature of the learning context. Accordingly, it seems appropriate to
soften the dichotomy that associates the FRN and striatal processing with immediate
feedback, and the N170 and MTL-related activity with delayed feedback.

Much like the fluid functional boundaries in the brain, real life offers no clear-
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cut distinction between where immediate feedback ends and delayed feedback begins.
Across all three studies, participants were able to flexibly use both immediate and
delayed rewarding and punishing outcomes as learning signals to guide their behavior,
which is ecologically valid: In everyday life, we adapt and shape our (future) behavior
based on both immediate consequences (like instantly feeling pain after getting your
finger caught folding up a drying rack) and delayed outcomes (like seeing joy slowly
appear on someone’s face a few seconds after you have given them a gift and they have
unwrapped it).
3.3 CHALLENGES AND FUTURE RESEARCH AVENUES

One major advantage of EEG is its ability to measure changes in brain activity in
response to specific events with high temporal resolution (Luck, 2014). This makes
EEG particularly useful for investigating neural reactions and signals that occur within a
few hundred milliseconds after an event—such as dopaminergic prediction error coding
(Schultz et al., 1997; Zaghloul et al., 2009). In contrast, EEG has a poor spatial
resolution, making it unsuitable to assign specific neural signals to distinct anatomical
sources or measuring the operation of specific neural systems (Luck, 2014). Thus,
assumptions we drew from Studies 1, 2 and 3 about the involvement of striatal, MTL or
visual structures during feedback learning are only interpretations that cautiously need
to be tested in future studies. The EEG signal reflects multiplexed, temporally and
spatially overlapping neural signals, and it is difficult to trace these signals back to their
sources precisely (Ullsperger, 2024). For example, prediction error signals were found
in both striatal and hippocampal structures (Bellebaum et al., 2012; Davidow et al.,
2016; Dickerson et al., 2011; Foerde & Shohamy, 2011; O’Doherty et al., 2004).
Therefore, a methodologically sound approach is needed to draw conclusions about the

neural mechanisms underlying specific ERP components. Precisely, combining EEG
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with fMRI can provide insights about structures giving rise to the FRN and N170. For
the FRN, studies combining these two methods already exist, linking it to activity
within ventral striatum, midcingulate, and midfrontal cortices (for example see Becker
et al., 2014). In addition, a recent intracranial ERP study provided compelling evidence
that the signal in the time window of the FRN is generated by the ACC (Oerlemans et
al., 2025). For the N170, however, a combination of EEG and fMRI approaches have so
far only been applied in the context of face perception, identifying higher-order visual
areas as likely generators (Gao et al., 2019; lidaka et al., 2006). For the feedback-locked
N170, its topography has led to the assumption that it reflects activity within the MTL
(Arbel et al., 2017; Baker & Holroyd, 2009, 2013; Baker et al., 2015; Kim & Arbel,
2019). Future studies should employ fMRI to investigate whether the feedback-locked
N170, as proposed here, may in fact reflect reactivations of visual areas, potentially
initiated by the MTL. This would be particularly relevant, as the N170 represents a
promising ERP component that reflects feedback learning processes and may even hold
potential for identifying pathological alterations in feedback processing in disorders
such as depression.
3.4 FROM LAB TO LIFE: LEARNING FROM FEEDBACK IN THE WILD

In laboratory settings, researchers try to reduce complex phenomena to their
essential components and investigate them under highly standardized conditions,
minimizing the influence of potential confounding variables. While this reductionist
approach is valuable in terms of isolating specific mechanisms, it can sometimes lead us
to lose sight of the broader context—of what our research is ultimately good for, and
what value it may hold beyond the scientific bubble of our specific field. So, which role
do different feedback timings play in real-world scenarios? And why is it important to

investigate different association types in the context of feedback-based learning? Why
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does it matter whether the N170 reflects MTL activity or visual reactivation? And what
is the added value in knowing that certain EEG signals are altered in depression? Let us
take a step back and reflect on each of these questions in light of the broader relevance
of feedback-based learning, beginning with some applications of immediate and delayed

feedback in everyday life.

3.4.1 Immediate and Delayed Feedback

First of all, it should be noted that, unlike in our studies, real life examples of
feedback-based learning often contain situations in which feedback is delayed by more
than a few seconds. The findings we obtained from the three studies conducted as part
of this dissertation are limited to feedback that was delayed by a maximum of seven
seconds. It is questionable whether the neural mechanisms of feedback processing
remain consistent for longer delays. Thus, studying neural processes that underly
learning from feedback that is delayed by several minutes, days or even years remains a
challenge for future research.

An example for feedback-based learning that fits our studies, at least in terms of
temporal dimensions, relates to the world of sports: Hitting a tennis ball over the net
with the right technique and watching it land on a perfect spot in the opponent’s court
about a second later poses a form of immediate feedback that can be used to improve
motor skills. In contrast, when playing golf, the ball usually flies through the air in a
high arc for several seconds until it lands in the targeted hole, providing delayed
feedback to reinforce motor skills. Another prominent source of immediate and delayed
feedback in everyday life are parents: They can immediately praise their child after
observing prosocial behavior—such as helping a younger sibling—thereby positively
reinforcing the child’s social behavior. At the same time, delayed praise at home for a

good grade can reinforce earlier efforts in studying. When it comes to learning new
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linguistic structures in a foreign language, both immediate and delayed feedback have
been shown to support learning, although immediate feedback appears slightly more
effective—Ilikely due to its progressive use during the production of new sentences (Li
et al., 2016). However, a study by Butler et al. (2007) suggests that delayed feedback
following a multiple-choice test may be particularly beneficial, due to the temporally
distributed presentation of information. In the context of addiction, behavior such as
consuming a glass of champagne does not produce an immediate effect within seconds,
yet the delayed onset of a euphoric state can increase the likelihood of future
engagement in drinking. Early evidence that individuals are capable of forming
associations between aversive outcomes and prior events even after long delays of 24
hours comes from studies on conditioned taste aversion in rats (Smith & Roll, 1967) and
humans (Arwas et al., 1989). This phenomenon also has implications for understanding
chemotherapy-induced food aversions (Arwas et al., 1989). In addition, there are studies
investigating the impact of one-week delayed feedback in the form of website-delivered
information about one’s driving style (Dijksterhuis et al., 2015). Such feedback was
found to reduce undesirable driving behaviors, suggesting that pay-as-you-drive
insurance models may reinforce not only safer but also more eco-friendly driving
(Dijksterhuis et al., 2015). Finally, the growing availability of devices capable of
tracking hundreds of organic aspects and functions of the human body reflects the
demand for feedback in the pursuit of optimizing physical health. In these cases, effects
of behavioral changes like a particular diet or exercise routine do not manifest
immediately. Nonetheless, delayed feedback allows individuals to evaluate whether
their recent behavior has had positive or negative effects on their health and to maintain
or adjust it accordingly. Taken together, these examples underscore the fundamental

importance of both immediate and delayed feedback in shaping behavior across a wide
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range of everyday contexts. They highlight the areas of application that research on
feedback timing can offer outside the laboratory.
3.4.2 Clinical Implications

In general, studying basic learning principles in animals and humans like
classical or instrumental conditioning has the potential to explain psychopathology, for
example illustrated by the model of learned helplessness from Seligman (1974; Barnes-
Holmes et al., 2004). However, according to relational frame theory, animals learn
associations only in one direction, while humans form bidirectional relations—a
capacity thought to underlie the development of language, complex cognition, and thus
human dominance on the planet (Hayes, 2005). Barnes-Holmes et al. (2004) illustrate
the principle of bidirectional relations with a simple example: On the one hand, when
you hear the words “orange juice” you might mentally re-experience sensory qualities
like its smell or taste, even though no juice is actually present. On the other hand, when
you perceive the smell of oranges, the words “hmm, orange juice” might spontaneously
come to mind. In the first scenario, the words “orange juice” can reactivate its
pleasurable, rewarding taste. For the second scenario, the pleasurable smell of oranges
can reactivate the words “orange juice”. Our findings that especially rewarding stimuli
might reactivate preceding situations could be a mechanism underlying the human
ability to form bidirectional relations during feedback learning: In short, certain events
can make us anticipate feedback, but feedback can also make us remember certain
events. According to Hayes (2005), this capacity to relate anything to anything else is
also the reason why humans sometimes suffer: For instance, relaxing on vacation may
evoke memories of the stress experienced just prior—such as the pressure to complete
tasks at work before leaving—which may help explain why relaxation can,

paradoxically, trigger feelings of stress.
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Better understanding the neural mechanisms underlying feedback-based learning
may help develop interventions that support individuals who struggle with these
learning processes, like individuals experiencing depressive symptoms (see Study 3). If,
as our findings from Study 2 suggest, the reactivation of previously encountered stimuli
facilitates learning from delayed feedback, this insight could be applied in counseling or
therapeutic contexts. Humans can use affective experience in everyday life to initiate
motivated action (Wichers et al., 2015). Thus, it may be beneficial to encourage
individuals experiencing mental health issues like depression to actively recall, or
mentally visualize, the situations that preceded a given emotional state. This could for
example help to link low mood to earlier activities like lying alone on the couch, eating
junk food, and binge-watching a TV series. Instead, individuals could learn that they
may feel better after being physically active, engaging in social activities, eating
healthily, and getting enough sleep—and thus increase the likelihood of choosing these
behaviors more often. This is by no means to suggest that depression can simply be
overcome by, say, eating a salad or going for a walk. But raising awareness for the link
between these small steps and their effect on personal well-being might support the
process of building healthier habits over time.

In a clinical or counseling context, the concept of different association types
poses another relevant aspect: In clinical psychology and psychotherapy, it is crucial to
distinguish between different types of associations—such as those linking actions to
outcomes versus those linking stimuli to outcomes—when designing effective
therapeutic interventions. The key differentiation may be whether the goal is to
influence the likelihood of health-promoting or harmful behavior, or to modify the
evaluation of a particular stimulus or situation occurring in a patient’s environment.

When it comes to evaluating the effectiveness of therapeutic interventions—such
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as treatments for depression—physiological biomarkers like ERPs can serve as
objective measures. For example, increases in the RewP have been associated with
reductions in depressive symptoms following both cognitive-behavioral therapy and
pharmacological treatment (Burkhouse et al., 2018). However, the link between the
FRN and depression has been inconsistent across studies (see Study 3; Hager et al.,
2022; Clayson et al., 2020; Moran et al., 2017). Our findings suggest that the N170 may
represent a promising additional outcome measure for assessing the effect of therapeutic
interventions on feedback processing in depression. Moreover, ERPs are also well
suited as objective indicators to highlight the importance of preventive efforts regarding
mental health. On the one hand, findings of altered feedback processing before the onset
of depression (Bress et al., 2013) as well as evidence linking a familial history of
depression to impaired feedback processing and an increased risk for developing the
disorder (see Study 3; Halligan et al., 2007; Raposa et al., 2014; Weinberg et al., 2015)
may imply the presence of a latent pathology that will eventually manifest. On the other
hand, they can also serve to empower individuals to take early action and care for their
mental well-being proactively. Using insights from EEG studies on feedback-based

learning for psychoeducation and raising awareness is therefore essential.
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Neural Processing of Immediate versus Delayed Feedback
in Action-Feedback and Stimulus-Feedback Associations

Madita Ri')hlinger*, Christine Albrecht®, Marta Ghio, and Christian Bellebaum

Abstract

M The feedback-related negativity (FRN) or reward positivity
(RewP), reflecting striatal reward system activity, is reduced
with delayed feedback, whereas the N170, associated with
medial temporal lobe (MTL) activity, is increased. The type
of the learned association could also affect which system is
involved: We expected the striatal reward system to be adept
at learning action—feedback associations and the MTL to be pri-
marily involved in learning stimulus—feedback associations,
which should be reflected in stronger prediction error (PE)
representations in the FRN/RewP and N170, respectively. The
relative contributions of the striatum and MTL to feedback
learning and processing, however, also seem to be determined
by the feedback’s timing (immediate vs. delayed). We
recorded EEG while 40 participants learned in an action—
feedback condition or a stimulus—feedback condition with

INTRODUCTION

We can learn how to use a coffee machine either by read-
ing the manual or by trial-and-error learning. Reading the
manual would involve declarative learning, associated with
hippocampal activity within the medial temporal lobe
(MTL), resulting in flexible, factual knowledge (Myers
et al., 2003; Knowlton, Mangels, & Squire, 1996; Scoville
& Milner, 1957; for a review see Eichenbaum, Otto, &
Cohen, 1992). Learning by trial and error, or, in other
words, feedback learning, has been considered to be a
type of procedural learning resulting in habit-like, auto-
matically retrieved and inflexible knowledge associated
with striatal activity (Knowlton & Patterson, 2016; Knowlton
etal., 1996).

The striatum receives input from midbrain dopaminer-
gic neurons in the substantia nigra and ventral tegmental
area (Chuhma, Oh, & Rayport, 2023; Oldehinkel et al.,
2022; Steiner & Tseng, 2016; Zhang et al., 2015). These
neurons encode a reward prediction error (PE), indicating
whether an outcome is better or worse than expected
(Zaghloul et al., 2009; Schultz, 2000; Schultz & Dickinson,
2000; Schultz, Dayan, & Montague, 1997), thereby build-
ing a core component of the cortical-striatal circuit
described as the reward system (for a review, see Haber

Heinrich Heine University Dusseldorf
*Shared first authors.

© 2025 Massachusetts Institute of Technology

immediate and delayed feedback. Replicating previous studies,
the FRN/RewP was most negative for unexpected negative
feedback and most positive for unexpected positive feedback.
Surprisingly, this PE X Feedback Valence interaction was more
pronounced for the stimulus—feedback condition than the
action—feedback condition. Interestingly, we found a PE X
Feedback Valence interaction also in the N170, but with most
negative amplitudes for unexpected positive and expected
negative feedback. This interaction appeared across feedback
timings for the stimulus—feedback condition, but only for
immediate feedback for the action—feedback condition. The
results suggest that striatal and MTL systems cooperate across
feedback timings for stimulus—feedback associations, but not
for action-feedback associations learned with delayed
feedback. W

& Knutson, 2010). Although the reward system has been
shown to underlie feedback learning (Vassiliadis et al.,
2024; Cooper, Dunne, Furey, & O’Doherty, 2012; for a
review, see Daniel & Pollmann, 2014), this type of learning
can also be supported by the MTL, or, more specifically,
the hippocampus, and thus presumably be declarative.
Plachti and colleagues (2019) linked the hippocampus to
associative memory, learning, and reinforcement, under-
lining its potential role for feedback processing. Along
similar lines, Dickerson, Li, and Delgado (2011) found
correlates of the PE in the striatum as well as the hippo-
campus in a feedback learning task.

One factor determining the relative contributions of the
striatum and MTL to feedback learning and processing
seems to be the timing of the feedback: Learning with
immediate feedback has been shown to be dependent
on the striatum, whereas learning from feedback with a
delay of only a few seconds was dependent on the hippo-
campus (Foerde, Race, Verfaellie, & Shohamy, 2013;
Foerde & Shohamy, 2011). In line with this, dopamine-
driven synaptic connections in the striatum, that is, rein-
forcement plasticity, was found to be limited to a narrow
time window of up to 2 sec (Yagishita et al., 2014), suggest-
ing that the striatum is involved in linking feedback to
directly preceding events (Jocham et al., 2016). The hip-
pocampus, on the other hand, can bridge representational
gaps in our experience (Staresina & Davachi, 2009), which

Journal of Cognitive Neuroscience XY, pp. 1-35
btips://doi.org/10.1162/jocn.a.49
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is a prerequisite for linking feedback to preceding events
that are more distant in time.

Several studies investigating feedback processing by
means of electroencephalography (EEG) corroborate the
idea that feedback timing is important. They found that
the amplitudes of two ERP components, the feedback-
related negativity (FRN) and the N170, vary with feedback
delay (Holtje & Mecklinger, 2020; Kim & Arbel, 2019;
Arbel, Hong, Baker, & Holroyd, 2017; Peterburs, Kobza,
& Bellebaum, 2016). The FRN peaks between 230 and
330 msec after feedback onset (Miltner, Braun, & Coles,
1997) and is more negative for negative than for positive
feedback. However, it is likely that this difference is due to
a relative positivity after rewards, which has been labeled
reward positivity (RewP; Proudfit, 2015; Lukie, Montazer-
Hojat, & Holroyd, 2014; Holroyd, Krigolson, & Lee, 2011).
The FRN/RewP has been associated with the influence of
the mesencephalic dopamine system on the ACC (Foti,
Weinberg, Dien, & Hajcak, 2011; Bellebaum & Daum,
2008; Holroyd, Larsen, & Cohen, 2004; Holroyd & Coles,
2002), and striatum (Becker, Nitsch, Miltner, & Straube,
2014; Carlson, Foti, Mujica-Parodi, Harmon-Jones, &
Hajcak, 2011, Foti et al., 2011), and its amplitude has been
shown to reflect the PE (Weber & Bellebaum, 2024;
Burnside, Fischer, & Ullsperger, 2019; Sambrook &
Goslin, 2015; Fischer & Ullsperger, 2013). In line with
the reduced involvement of the striatum for delayed feed-
back (Foerde et al., 2013; Foerde & Shohamy, 2011), the
FRN/RewP amplitude difference between positive and
negative feedback is diminished when feedback is delayed
(Holtje & Mecklinger, 2020; Arbel et al., 2017; Peterburs
et al., 2016; Weismiller & Bellebaum, 2016; Weinberg,
Luhmann, Bress, & Hajcak, 2012).

In several more recent studies, the N170, a component
occurring over occipito-temporal cortex 100-200 msec
after stimulus onset, was found to be more pronounced
following delayed compared with immediate feedback
(Holtje & Mecklinger, 2020; Kim & Arbel, 2019; Arbel et al.,
2017, but see Albrecht, van de Vijver, & Bellebaum, 2023,
for the opposite pattern), suggesting that it reflects MTL
activity. However, the N170 has originally been linked to
visual processing of faces (Yovel, 2016; Rossion, 2014;
Rossion & Jacques, 2012; Bentin, Allison, Puce, Perez, &
McCarthy, 1996), and also other stimulus categories
(Kloth, Itier, & Schweinberger, 2013), with a source in
the fusiform gyrus (Gao, Conte, Richards, Xie, & Hanayik,
2019; Deffke et al., 2007). Therefore, the N170 following
delayed feedback may indicate the feedback-locked activa-
tion of higher-order visual areas. This may be interpreted
as a reactivation of those areas that processed the stimulus
associated with the feedback (Schiffer, Muller, Yeung, &
Waszak, 2014; Pleger et al., 2009; Pleger, Blankenburg,
Ruff, Driver, & Dolan, 2008), a process possibly mediated
by the hippocampus. Thus, the N170 might not directly
reflect hippocampal activity, but rather a mechanism to
link stimuli to feedback via reactivation of higher visual
areas, especially when feedback is delayed.

2 Journal of Cognitive Neuroscience

An important aspect possibly affecting the involvement
of the respective memory systems has so far been
neglected: We propose that the type of association that
is learned via feedback plays a significant part in feedback
processing. When a rewarding or punishing stimulus is
experienced, the problem of credit assignment arises,
which deals with the question how individuals know
which event the received feedback refers to and how this
is implemented in the brain (Fu & Anderson, 2008; for a
review, see Stolyarova, 2018). Feedback might be linked
to previous actions (e.g., pushing a respective button
leads to a cup of coffee) or to a previous stimulus (e.g.,
the display lighting up means that the machine is produc-
ing a cup of coffee). On the one hand, there is evidence
suggesting that action—feedback associations are likely to
be associated with striatal activity: The striatum is con-
nected to habit learning based on feedback (Shohamy
et al., 2004; Poldrack et al., 2001; Knowlton et al.,
1996). As part of the basal ganglia’s direct and indirect
pathways, the striatum is connected to action selection
and action inhibition, respectively (Aubert, Ghorayeb,
Normand, & Bloch, 2000; Herndndez-Lopez et al., 2000;
Calabresi, Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014;
Herndndez-Lopez, Bargas, Surmeier, Reyes, & Galarraga,
1997; Gerfen, 1992). Along similar lines, Hiebert and
colleagues (2014) found that during stimulus—response
learning, activity in the dorsal striatum correlated with
response selection, whereas ventral striatum activation
correlated with feedback. Shohamy (2011) suggested that
the striatum is part of a distributed network that, aiming
to optimize behavior, learns to select actions based on
their predicted values. Valence-sensitive activity after
feedback, descriptively similar to an FRN/RewP response,
was found over motor cortex in an ERP study (Cohen &
Ranganath, 2007), which suggests an activation of the
previous action for striatum-based feedback learning. In
healthy participants, reward feedback can accelerate
motor learning (Nikooyan & Ahmed, 2015), with nonin-
vasive stimulation of the human striatum either improv-
ing motor skill learning (Wessel et al., 2023) or disrupting
reinforcement learning of motor skills (Vassiliadis et al.,
2024). In a study by Haruno and Kawato (2006), neuronal
correlates of stimulus—action-reward associations were
located in parts of the striatum. Finally, Jocham and
colleagues (2016) showed that cortico-striatal motor cir-
cuits are involved in linking choices to outcomes based
on temporal proximity. This suggests that the neural
mechanisms underlying the learning of action—feedback
associations may also interact with feedback timing. We
thus hypothesize that the striatum links motor activity
to feedback, especially if the two events are temporally
close. Given that the FRN/RewP has been linked to stria-
tal processing (Becker et al., 2014; Carlson et al., 2011;
Foti et al., 2011), the ERP signal in the respective time
window may be particularly pronounced when partici-
pants learn associations between actions and immediate
feedback.

Volume X, Number Y

GZ0Z BUN[ 9| UO JOSN JEYISIOAIUN-OUIDH-UOLIUIBH ‘LOP|oSSNA %oUlol|qIqsapueT N -SIeysIanun Aq Jpd 6y B Uo0l/88ZSZSZ/6Y € Ud0lZg | L0L/10p/pd-ajo1lE/uoolnpa 1w 1081p//:dny wolj papeojumoq



On the other hand, stimulus—feedback associations
might rather depend on the hippocampus: The hippo-
campus’ role in episodic memory is to bind different types
of sensory information together to form a memory epi-
sode (Sugar & Moser, 2019; Squire, Shimamura, & Amaral,
1989). From a study with rats, Singer and Frank (2009)
concluded that hippocampal reactivation at reward pre-
sentation could be a mechanism to bind rewarding out-
comes to the prior experiences. Several studies suggest
that the reactivation of sensory cortices may also play a
role for feedback processing in humans. For example, pri-
mary somatosensory cortex was reactivated at the point of
reward delivery in a somatosensory discrimination task
(Pleger etal., 2008, 2009). In a classification task with visual
stimuli, Schiffer and colleagues (2014) found that reward
activated stimulus-specific representations in visual
association cortices, possibly providing a solution for the
credit assignment problem. Qin and colleagues (2007)
suggested that top—down signals from the MTL may trig-
ger an internal representation of a previous event, thus
allowing it to be linked to a present event. We hypothesize
that the MTL might mediate the reactivation of sensory
areas to particularly link stimuli (rather than actions) to
feedback, especially when there is a delay between stimu-
lus and feedback.

To sum up, with the present work, we aimed to inves-
tigate the influence of feedback timing and association
type on feedback processing as reflected in the
FRN/RewP and N170, which can be considered measures
of striatal activity and MTL-initiated reactivations of visual
brain regions, respectively. We manipulated feedback
timing within participants by having each participant
complete a feedback learning task involving both imme-
diate and delayed feedback. We furthermore manipulated
the association type between participants by having one
group learn action—feedback and two other groups learn
stimulus—feedback associations (actively vs. passively; see
below). We hypothesized that the FRN/RewP, or rather
the differentiation between positive and negative feed-
back in the FRN/RewP (Arbel et al., 2017), would be
largest for immediate feedback in the action—feedback
condition (AFC). In contrast, we hypothesized that the
N170 is largest for delayed feedback when stimulus—
feedback associations are learned. Regarding PE effects,
we expected the strongest effect on FRN/RewP amplitude
for immediate feedback when action—feedback associa-
tions are learned. Furthermore, we hypothesized an
effect of the PE on N170 amplitude especially for delayed
feedback when stimulus—feedback associations are
learned.

METHODS
Participants

Our analysis strategy was based on the separate compar-
ison of two (out of three) experimental groups linked to

the between-subject factor association type (i.e., the type
of association that had to be learned, see below). We
aimed to acquire at least 25 participants per group, assum-
ing a 20% exclusion rate, as preregistered on the Open
Science Framework (https://doi.org/10.17605/OSF.10
/GVMWP). The reasons for this were twofold: Previous
studies have shown that this sample size suffices to find
differences in the neural pattern of feedback processing
between two groups (Bellebaum & Colosio, 2014; Kobza
et al., 2012) and to determine ERP correlates of PE pro-
cessing (Weber & Bellebaum, 2024; Burnside et al.,
2019). Taking potential dropouts into account, overall,
78 healthy young adults (between 18 and 40 years old)
took part in the experiment, randomly assigned to one
of three experimental groups, between which the factor
association type was varied (see below for details). All par-
ticipants declared no history of neurological or psychiatric
disorders, no regular or acute consumption of substances
affecting the central nervous system, no knowledge about
Hiragana characters (as Hiragana-like characters were
used in the experiment, see below), and normal or
corrected-to-normal vision and normal hearing. Three
participants had to be excluded from the analyses due
to technical problems during the data acquisition and
two participants due to not paying enough attention in
the learning task (see below). Another participant was
excluded because the behavioral data contained a lot of
button presses that did not align with the task. Further-
more, 10 participants were excluded because of poor
EEG data quality. Water damage in the EEG system led
to noise in the EEG signal at the beginning of the recruit-
ment process, which was probably the reason for the bad
data quality of four out of the 10 excluded participants,
who were excluded immediately after initial visual inspec-
tion of the raw data. Another 4 out of the 10 were
excluded after the artifact rejection had removed more
than 20% of their data, indicating bad data quality. Two
out of the 10 participants were excluded because the
visual inspection revealed considerable alpha activity. This
left 62 participants (40 women, 21 men and 1 nonbinary
person, mean age = 23.66 years, SD = 3.87) for the
analyses. From these remaining participants, 18 (13
women, 5 men) were assigned to the AFC, 22 (14 women,
8 men) to the active stimulus—feedback condition (ASFC)
and 22 (13 women, 8 men, 1 nonbinary person) to the
passive stimulus—feedback condition (PSFC; see below).
The study was approved by the ethics committee of the
Faculty of Mathematics and Natural Sciences at
Heinrich-Heine-University, Disseldorf, and complied
with the Declaration of Helsinki.

Experimental Task and Conditions

Figure 1 shows the structure of the probabilistic feedback
learning tasks. Participants were randomly assigned to one
of three between-subject conditions, in which different
types of associations could be learned (association

Rohlinger et al. 3

GZ0Z BUN[ 9| UO JOSN JEYISIOAIUN-OUIDH-UOLIUIBH ‘LOP|oSSNA %oUlol|qIqsapueT N -SIeysIanun Aq Jpd 6y B Uo0l/88ZSZSZ/6Y € Ud0lZg | L0L/10p/pd-ajo1lE/uoolnpa 1w 1081p//:dny wolj papeojumoq



A | PSFC and ASFC B | AFC

A1 | Stimuli B1 | Actions

A2 | Time Course B2 | Time Course

500 msec

max. 3000 msec

700 msec

300 or 6300 msec

o -

A3 | Catch Trial B3 | Catch Trial

Which stimulus was highlighted in the previous trial? Which action was highlighted in the previous trial?

i

Figure 1. Experimental feedback-learning task. (A) PSFC and ASFC: Task in the PSFC and ASFC. (A1) Stimuli: Stimuli in the PSFC and ASFC. (A2)
Time course: Time course of events in a single trial in the PSFC and ASFC. Whereas in the ASFC, participants could choose between the two hiragana
characters themselves, in the PSFC, one stimulus was automatically highlighted in each learning trial. (A3) Catch trial: Catch trial in the PSFC and
ASFC. (B) AFC: Task in the AFC. (B1) Actions: Actions in the AFC. (B2) Time course: Time course of events in a single trial of the AFC. (B3) Catch
trial: Catch trial in the AFC.
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type conditions). One group learned action—feedback
associations (AFC; see below), whereas the other two
groups learned stimulus—feedback associations either
actively or passively (ASFC and PSFC; see below). All
participants could learn associations between events and
positive or negative monetary feedback (feedback
valence: +4 ct vs. —2 ct—because subjectively, losses
weigh about twice as much as gains; Tversky & Kahneman,
1992). For each of the three between-subject associa-
tion type conditions, the task comprised three within-
subject feedback timing conditions, in which the delay
between the event (stimulus or action) and the feed-
back was varied. In one condition, the feedback was
given immediately (immediate feedback; 1 sec after the
event), whereas in a second condition, it was given
delayed (delayed feedback; 7 sec after the event). To
control for effects of the reduced temporal predictability
of delayed feedback, a third condition entailed a
feedback delay of 7 sec with six regular tones presented
during the delay, one per second (Kimura & Kimura,
2016). Specifically, the first tone (700 msec long,
800 Hz) was presented exactly 1000 msec after the
choice, and the following tones (all with the same
acoustic characteristics as the first one) were presented
each 1 sec after the previous tone onset. We will thus
refer to the two conditions with delayed feedback as
delayed feedback without tone and delayed feedback
with tone. The order of the different feedback timing
conditions was counterbalanced across participants. In
all association type conditions, participants completed
six sessions, two per feedback timing condition. Each
session consisted of four blocks, and each block con-
tained 20 learning trials, followed by 20 test trials, in
which no feedback was presented. Participants were
instructed that during the test trials, monetary wins and
losses would still be counted as in the learning trials, but
not shown on the screen. With every new session, new
associations had to be learned (see below), and
participants were instructed that learning would start
anew.

PSFC

On every learning trial of the PSFC, a pair of visual stimuli
was presented on the computer screen, one on the left
and one on the right of a fixation cross. We used
Hiragana-like characters (see Figure 1A1) that cannot eas-
ily be verbalized (see Frank, Seeberger, & O’reilly, 2004).
Figure 1A2 shows the sequence of events in one learning
trial of the PSFC. Participants saw how one of the stimuli
was automatically highlighted by a red circle for 700 msec
(see O’Doherty et al., 2004). Then, a fixation cross was pre-
sented for 300 msec (in the immediate feedback condi-
tion) or 6300 msec (in the delayed feedback conditions),
and, subsequently, positive or negative monetary feed-
back followed for 1000 msec. In each of the six different
sessions, new Hiragana-like characters were introduced,

and new stimulus—feedback associations had to be
learned. Thus, six different pairs of stimuli (randomly
paired for each participant) were used, with the screen
side on which each stimulus could appear being counter-
balanced. Unbeknown to the participants, in each session,
one stimulus was associated with reward in 65% of the
trials and with punishment in 35%, whereas probabilities
were reversed for the other stimulus. The participants’
task was to learn associations between stimuli and feed-
back. To make sure that participants paid attention to
the stimuli on the screen and to the highlighting, three
catch trials (see Figure 1A3) were included randomly along
the 20 learning trials of each block in each session. In the
catch trials, participants were asked which of the two stim-
uli was highlighted in the last trial. For the analyses, we
excluded all participants (zz = 2) that seemed to pay not
enough attention, as suggested by their fulfillment of the
following two criteria: First, they answered wrong in more
than 20% of catch trials. Second, they chose the stimulus
associated with the higher reward probability in less than
55% of the test trials.

In test trials, participants actively chose between the two
stimuli by pressing the corresponding (left vs. right) but-
ton on a response box without receiving feedback. These
trials, in which participants were asked to choose the
“more rewarding” stimulus in each trial, were included
to measure if participants actually learned the stimulus—
feedback associations, which could not be measured in
the learning trials. However, wins and losses in both learn-
ing and test trials contributed to the overall earnings of the
participants.

To ensure that the stimulus highlighting in the learn-
ing trials of the PSFC reflected a realistic choice pattern,
we conducted a behavioral pilot experiment with 25
participants fulfilling the criteria described above in
the “Participants” section. The pilot experiment con-
tained the same Hiragana characters, but participants
selected one of the two presented stimuli in each learn-
ing trial themselves to learn from feedback. The
recorded choices of one pilot participant determined
which stimulus was highlighted on a particular learning
trial for one participant of the PSFC. Because RTs dif-
fered between the feedback timing conditions within
the pilot experiment, the mean RT of all participants
for one trial in the pilot experiment determined when
a Hiragana character was highlighted in one trial of
the PSFC.

AFC

In every learning trial of the AFC, participants were asked
to choose between two specific actions to press either
the left or right button of a response box (e.g., pressing
the right button with their right thumb vs. the left button
with their left thumb). Figure 1B1 shows the six different
pairs of actions that were used in the different sessions.
After the choice, participants received feedback for their
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action, with the delay varying according to the feedback
timing condition assigned to the corresponding session,
and the participants’ task was to learn an association
between the chosen action and the feedback. In each
of the six different sessions, new actions were introduced
and participants had to learn new action—-feedback
associations. The experimenter checked regularly
whether participants performed the actions as requested.
Figure 1B2 shows the sequence of events in one learning
trial of the AFC. On the screen, two rectangles to the left
and right of a fixation cross were shown. After participants
performed one of the actions, the rectangle on the side
of the chosen action was highlighted for 700 msec
indicating that the choice was recorded. Afterward, a
fixation cross and then feedback was presented with the
same durations as in the PSFC (see above). Participants
had maximally 3000 msec for their choice. If they did
not respond within this time window, the trial was
considered a “miss” and not included in any further
analysis, while an instruction to react faster was presented
on the screen. Unbeknown to the participants, in each
session, the choice of one action led to a reward in
65% of the trials and to a loss in 35%; for the other
action, the probabilities were reversed. Participants were
instructed to maximize reward. For comparability
between the conditions, test trials without feedback and
catch trials (see Figure 1B3) were included in an analogous
way to the PSFC.

ASFC

The ASFC was identical to the PSFC, with the only differ-
ence that stimuli were actively chosen by the participants
in the learning trials via button press. The ASFC was added
for two reasons. First, pilot testing had shown that learning
in the PSFC was difficult. Second, the trial-by-trial choices
in the ASFC allowed the application of a reinforcement
learning model to the choice data and thus modeling
PEs in the same way as for the AFC (see below). Like in
the AFC, participants had maximally 3000 msec for their
choice. Although this condition thus also entailed actions,
the instruction emphasized that feedback was only related
to the stimuli, not to the actions. This was secured by
counterbalancing the side on which the stimuli appeared.
To make the conditions as similar as possible, test trials
without feedback and catch trials were also included in
the ASFC.

To conclude, in the AFC, the motor response predicted
reward, whereas in both the PSFC and ASFC, stimulus
identity predicted reward. More in detail, in the AFC, visual
stimuli (rectangles to indicate the choice) were nonrele-
vant for learning, whereas actions were relevant; in the
ASFC, actions (choosing left or right) were nonrelevant
for learning (because stimuli sides were counterba-
lanced), whereas stimuli were relevant. The PSFC omitted
the nonrelevant actions altogether.
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Procedure and Data Acquisition

Upon arrival in the laboratory, participants were informed
about the experimental procedure and gave written
informed consent to participate in the study. They were
then asked to fill in a demographic questionnaire. After-
ward, we attached the EEG electrodes (preparation time =
about 60 min), and then participants were placed in front
of a 27-in., 1920 X 1080 px W-LED monitor (BENQ
EW2740L) with a refresh rate of 50 Hz—76 Hz, and the
experimental task began. Auditory stimuli were presented
via dynamic stereo headphones (Sennheiser HD 201). The
software Presentation (Version 22; Neurobehavioral
Systems Inc., 2020) controlled the timing of stimulation
and the recording of responses. Responses were per-
formed on a Cedrus RB-844 response pad (www.cedrus
.com).

The experiment lasted about 75 min. Participants
were informed that the amount of money they would
earn during the feedback-learning task would be paid
out at the end. They received a starting amount of 7 €.
However, the sums earned by each participant were
rounded up at the end of the experiment, and all
received 25 €.

EEG Data

EEG was acquired from 60 scalp electrodes, fixed with an
actiCap (BrainProducts) textile softcap and evenly distrib-
uted on the scalp based on the extended 10-20 system.
Electrodes were attached to the scalp sites AF3, AF4,
AF7, AF8, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4,
CP5, CP6, CPz, Cz, F1, F2, F3, F4, F5, F6, F7, F8, FC1,
FC2, FC3, FC4, FC5, FC6, FT10, FT7, FT8, FT9, Fz, O1,
02, Oz, P1, P2, P3, P4, P5, P6, P7, P8, PO10, PO3, PO4,
PO7, PO8, PO9, POz, Pz, T7, T8, TP7, TP8. In addition,
the ground electrode was attached to the AFz position,
the online reference to the FCz position. Moreover, we
attached two electrodes on the mastoids behind the left
and right ear to cover as much of the scalp as possible
for the calculation of the average reference (see below).
For the monitoring of vertical eye movements and blinks,
two further electrodes (VEOG) were attached, one above
and one below the left eye, respectively. For data record-
ing, a BrainAmp DC amplifier and the Brain Vision
Recorder software (BrainProducts) were used, with a sam-
pling rate of 1000 Hz and an online lowpass filter of 100 Hz.
Impedances were kept below 15 kQ.

Data Analysis
Behavioral Data Analysis

Learning check. Before the main behavioral data analy-
sis, we checked if participants learned on average in all
conditions. Participants conducted four test blocks in each
of the six learning sessions, one after each learning block.
The fourth test block of each learning session should
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indicate the maximum learning success of each partici-
pant. Therefore, we calculated both the mean accuracy
of all participants across all test trials as well as the mean
accuracy of participants only in Block 4 in percent, and
compared the accuracy rates of each condition to chance
level (50%) using single-sample # tests. Because we per-
formed six tests, we used a Bonferroni-corrected level of
a = .008 for statistical interpretation.

Comparison between conditions. For behavioral data
statistical analysis, the dependent variable was response
accuracy in learning and/or test trials, defined as 1 for cor-
rect responses and 0 for incorrect responses. Correct
responses were defined as the choice of the action/
stimulus associated with the higher reward probability.
Trials in which participants failed to answer (M = 0.25%,
SD = 0.61%) were excluded from all further (behavioral
and EEG) analyses. We applied generalized linear mixed-
effects (GLME) model analyses suitable for binomial
distributions and single-trial data by means of the Ime4
package (Bates, Michler, Bolker, & Walker, 2015) in
R (The R Foundation, 2021). Because learning in the
PSFC was impaired (see below), we based our analysis
primarily on the comparison between the AFC and ASFC
(see the Appendix, Section A2, for analyses including data
from the PSFC). The model comprised as fixed-effect
predictors association type (action—feedback [—0.5] vs.
active stimulus—feedback [0.5]), feedback timing (simple
coding contrast matrix with immediate feedback set
as baseline that was compared with delayed feedback
with tone and delayed without tone), and Block (1
[—0.5], 2 [—0.167], 3 [0.167], 4 [0.5]), together with all
two-way and three-way interactions. Random intercepts
were allowed per participant. For random slopes per
participant, we adhered to best practice (Meteyard &
Davies, 2020): All within-subject main and interaction
effects were included as random factors per participant,
as long as their inclusion did not lead to model over- or
underfit, using the buildmer function (Version 2.11;
Voeten, 2020). This procedure for random effects was
used for all mixed model analyses described in this
article. To sum up, the model for the GLME analysis of
behavioral data was:

Accuracy ~ 1+ Block x Association Type
x Feedback Timing + (1 + Block + Feedback Timing
+ Block : Feedback Timing | Subject)

PE modeling.  As outlined above, we decided to primar-
ily focus our analysis on the comparison of the AFC and
ASFC. Therefore, modeling of the PE in each learning trial
of each participant was based on the participants’
responses in the learning trials. The Appendix, Section
A2, contains additional analyses involving the PSFC as well
as a description of the procedure for the PE calculation

based on the test trials for all the three conditions
(Bellebaum, Jokisch, Gizewski, Forsting, & Daum, 2012).

On the basis of the approach by Weber and Bellebaum
(2024), we derived single-trial values of the PE for each
participant by fitting a reinforcement learning model to
the behavioral data using MATLAB Version R2021a (The
MathWorks, Inc., 2021). The starting point was each partic-
ipants’ sequence of choices and the received feedback.
The PE &, was calculated as follows:

Scy =1, — Qc,t

where in a given trial ¢ the reward 7, is 1 for positive feed-
back and 0 for negative feedback, and Q. , is the value of
the chosen action or stimulus in a given trial 2. Q. , was
updated using a reinforcement learning model (see
Rescorla & Wagner, 1972):

Qcr+1 = Qcy + o X 8¢y

where a is the participants’ individual learning rate.
Because the underlying model offers some degrees of
freedom (for an example, see Weber & Bellebaum, 2024;
Burnside et al., 2019), we tested four different models to
update action and stimulus values.

In the first model (M;), separately for each of the six
pairs of actions or stimuli (and therefore for each of the
three feedback timing conditions), both actions or stimuli
of a pair were initially assigned a value of 0.5, that was iter-
atively updated in every trial # in which the respective
action or stimulus was associated with feedback. The value
of the chosen action or stimulus, Q., was updated based
on the deviation between the prior value and the received
outcome, that is, the PE 6, and a learning rate «, reflecting
the degree to which the PE was used to update the action
or stimulus value. The value of the unchosen stimulus or
action equaled 1-Q,. and was therefore complementary to
Q, and updated accordingly. As both stimuli or actions
were always presented together, receiving feedback for
the chosen stimulus or action would automatically convey
some information about the unchosen stimulus.
would choose the action or stimulus that was indeed cho-
sen by the participant was calculated using the softmax
function. This calculation was based on prior values of
both stimuli or actions that participants could choose
from, that is, values of the chosen action or stimulus, Q. ,
and the unchosen action or stimulus in trial z, Q,,, (equaling
1-Q. /). The calculation also included an exploration
parameter [3:

eQC,le
ber = eQcixpB | pQuixp

with B indicating the impact of prior action or stimulus
values on a participant’s choices. A larger B indicates that

Rohlinger et al. 7

GZ0Z BUN[ 9| UO JOSN JEYISIOAIUN-OUIDH-UOLIUIBH ‘LOP|oSSNA %oUlol|qIqsapueT N -SIeysIanun Aq Jpd 6y B Uo0l/88ZSZSZ/6Y € Ud0lZg | L0L/10p/pd-ajo1lE/uoolnpa 1w 1081p//:dny wolj papeojumoq



a participant utilized prior values (i.e., a larger impact of
prior values), whereas a smaller 3 indicates rather explor-
ative choice behavior (i.e., a smaller impact of prior values).

In a next step, the probabilities p were used to calculate
the negative summed log-likelihood (—LL) as measure for
the model’s goodness of fit:

_ Z log (pwl . ,n,m,zg)

We used the optimization function fimincon from the
Optimization Toolbox of MATLAB to minimize the
—LL value by estimating values for the free parameters
(o, P) that result in the least deviation between the
model’s predicted choices and the participants’ behavior.
To reduce the risk of local minima, the model was fitted to
the participants’ behavior repeatedly (50 iterations). As
start values for the free parameters, we allowed random
numbers within the interval [0; 1]. Value constraints for
the free parameters were set to [0; 1] for the learning rate
a and to [0; 100] for the exploration parameter .

For the second model (M,), we allowed different learn-
ing rates for learning from positive and negative feedback.
Thus, the action or stimulus value was updated with the
learning rate a,,,, for trials with positive feedback that con-
firmed the choice as follows:

Qc,t+1 = Qc,t + Qcon X 6c,t

Analogously, for trials with negative feedback that dis-
confirmed the choice, the value was updated with the
learning rate o

Qc,z+1 = Qc,/ + Quis X 8c,l

For both learning rates, boundary constraints were set
to [0; 1] as for the one learning rate in M1. Everything else
remained unchanged.

For the third model (M3), we allowed two learning rates
just as in M,. However, we allowed each action or stimulus
an independent Q, value: This means that the values for the
two actions or stimuli of a pair would no longer necessarily
add to 1. Because positive feedback for the chosen stimulus
can be interpreted as confirmation of both the choice of the
chosen stimulus and the nonchoice of the unchosen stim-
ulus, the update of the stimulus value for the unchosen
stimulus, Q,,,, was calculated for trials with positive feed-
back (i.e., reward for the chosen stimulus) as follows:

Qu,tJrl = Qu,t + Qeon X Oy

The update in trials with negative feedback for the
chosen stimulus was done analogously with « ;. The PE
for the unchosen stimulus was computed as follows:

Our = 1 =7 —Qu

8  Journal of Cognitive Neuroscience

Everything else remained unchanged compared with
M,.

For the last model (My), we allowed one Q, value for
each pair as for M; and M,. Regarding learning rates, we
allowed only one learning rate for learning from positive
and negative feedback as in M1, but it was allowed to differ
between the six pairs of actions or stimuli.

For a detailed comparison of the likelihoods of all four
models, see the Appendix, Section A3). Model fit was best
for M5, so this model was used for the PE calculation sub-
sequently used for the analyses.

EEG Data Analysis

Preprocessing.  BrainVision Analyzer 2.2 software (Brain
Products GmbH, 2018) and MATLAB R2021a (The Math-
Works, Inc., 2021) were used for EEG data preprocessing.
After rereferencing to the average of all scalp electrodes
and the mastoids (and calculating the signal at the online
reference site FCz), data were 30 Hz low-pass and 0.1 Hz
high-pass filtered. To correct for blink artifacts, an inde-
pendent component analysis was performed on single-
subject EEG data. A component representing blinks
(determined via its topography and correspondence with
the VEOG signal) was then removed, and the EEG signal
was reconstructed from the remaining components. We
created segments from 200 msec before to 800 msec after
feedback onset and performed a baseline correction
relative to the first 200 msec. Then, segments with artifacts
were removed (all segments containing voltage steps >
50 uV/msec, differences between values > 80 uV or <
0.1 pV within an interval of 100 msec or amplitudes >
80 pV or < —80 pV). This removed 1.69% of segments,
on average (SD = 3.88%, maximum per participant =
19.17%). Although the analysis was based on single-trial
data (see below), averages were also created. The
remaining segments were thus averaged for each of the
within-subject conditions (positive and negative immedi-
ate feedback, positive and negative delayed feedback
without tone, and positive and negative delayed feedback
with tone), yielding six averages per participant. Subse-
quently, all single-trial segment data as well as all averages
per condition and participant were exported for later
analysis. All further processing steps were performed in
MATILAB.

In previous studies, visual inspection of the frontocen-
tral electrodes showed that the FRN was maximal at FCz
(Kim & Arbel, 2019; Arbel et al., 2017). To account for indi-
vidual differences, we preregistered to measure FRN
amplitudes at a group of five frontocentral electrode sites
(for a similar approach, see Zottoli & Grose-Fifer, 2012),
including Fz, FC1, FCz, FC2, and Cz (see Weber & Bellebaum,
2024). As the FRN/RewP amplitude difference between
negative and positive feedback has been shown to reflect
feedback expectancy (Sambrook & Goslin, 2015; Hajcak,
Moser, Holroyd, & Simons, 2007), and single-trial ampli-
tudes based on the difference wave reflect a PE (Weber
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& Bellebaum, 2024) and have been linked to striatal pro-
cessing (see above; Becker et al., 2014; Carlson et al.,
2011), the time window for the single-trial analysis was
determined based on the peak of the difference wave.
Thus, for all three feedback timing conditions (immediate,
delayed with tone, and delayed without tone), the average
negative feedback — positive feedback difference wave
was created for each participant. Then, the maximum neg-
ative peak in the difference wave between 200 and
400 msec after feedback onset was determined as speci-
fied in the preregistration (for a similar approach, see Paul,
Vassena, Severo, & Pourtois, 2020). Through visual inspec-
tion, we ensured that the condition-specific difference
wave peaks for each participant lay in fact within this time
window. The latency of this peak in the respective feed-
back timing condition of each participant was then used
to extract single-trial amplitude data. More specifically,
the mean amplitude of a time window from 10 msec
before to 10 msec after the condition-specific difference
wave peak of each participant was calculated for each trial,
representing the FRN/RewP.

For the N170, the signal at electrodes P7 and P8 (see
Holtje & Mecklinger, 2020; Kim & Arbel, 2019; Arbel et al.,
2017) was considered and single-trial amplitudes were
derived with the help of the average ERPs at these elec-
trodes as specified in the preregistration. We did not con-
sider the hemisphere in the main analysis because we did
not expect any hemisphere effects and aimed to keep
model complexity low. We still determined the peaks sep-
arately for P7 and P8 because the electrodes, unlike the
electrode sites used for the FRN/RewP, were so far apart
that their signal was more independent. First, the latency
of the peak amplitude between 140 and 250 msec post-
feedback was determined in each participants’ average,
at both electrode sites and for all the six within-subject
conditions (see above). Originally, we intended to use
a time window of 140-200 msec like Holtje and
Mecklinger (2020), as stated in the preregistration. How-
ever, the visual inspection of the condition-specific aver-
ages per participant led us to extend the time window to
250 msec. Then, for each single trial, the mean amplitude
around (i.e., 10 msec before to 10 msec after) the
condition-specific peak was calculated.

Statistical analysis of the ERP data. The single-trial
amplitudes of the two ERP components were separately
analyzed as dependent variables by applying linear mixed
effect (LME; Bates et al., 2015) analyses in R (The R
Foundation, 2021). The model for FRN/RewP included
as fixed-effect predictors association type (between-
subject: action—-feedback [—0.5] vs. active stimulus—
feedback [0.5]), feedback timing (within-subject with a
simple coding contrast matrix; see also above), feedback
valence (within-subject: negative [—0.5] vs. positive
[0.5]), and PE (scaled and mean-centered). Importantly,
PE in this analysis and in the analysis of the N170 (see
below) refers to the unsigned or absolute PE, which

represents general surprise. This was done because the
signed PE is confounded by feedback valence, which is
used as separate predictor in the model. A representation
of the full (signed) PE would be reflected in an interaction
between feedback valence and unsigned PE (see Weber &
Bellebaum, 2024). The unsigned PE values were mean
centered, yielding negative values for rather small PEs
that lie below the mean versus positive values for rather
high PE values above the mean. In addition, all possible
interactions between the fixed-effect predictors were
included. Random effects were determined as described
above. To sum up, the model for the FRN/RewP was as
follows:

EFRN Amplitude ~ 1 + Association Type
x Feedback Timing x Feedback Valence x PE
+ (1+ Feedback Timing + Feedback Valence|Subject)

The model for the N170 comprised the same fixed-
effect predictors as the one for the FRN/RewP described
above (Feedback Association, Feedback Timing, Feedback
Valence, PE, as well as all possible interactions). In addi-
tion, we added the Electrode as a random intercept to
account for differences in amplitude. Random slopes by
subject were determined as for the FRN/RewP model. To
sum up, the model for the N170 was as follows:

N170 Amplitude ~ 1+ Association Type
x Feedback Timing x Feedback Valence x PE
+ (1+ Feedback Timing + Feedback Valence|Subject)
+ (1| Electrode)

For both the FRN/RewP and the N170, we hypothesized
that PE effects (as interaction between unsigned PE and
Feedback Valence) were modulated by Feedback Timing
and Association Type. Our main interest was thus in
higher-order interactions of the different predictors
involving the factors Feedback Timing and/or Association

Type.

RESULTS
Behavioral Results
Learning Check

t Tests comparing the mean accuracy rates in the test tri-
als across all blocks of the AFC, ASFC, and PSFC to
chance level (50%) revealed that accuracy rates were sig-
nificantly above chance level (on a Bonferroni-corrected
alpha level of .008) in the AFC, #(17) = 6.95, p < .001
M = 70.18%, SD = 12.31%), and ASFC, #(21) = 13.13,
p <.001 M = 82.36%, SD = 11.56%), respectively. How-
ever, accuracy rates in the PSFC were not above chance
level, ¢(21) = 2.13, p = .045 (M = 52.60%, SD = 5.72%).
Interestingly, this pattern was even more pronounced in
the fourth test block: Again, accuracy rates were
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significantly above chance level in the AFC, #(17) = 6.65,
p < .001 (M = 71.74%, SD = 13.86%), and ASFC, 1(21) =
12.46, p < .001 (M = 82.77%, SD = 12.33%), but not in
the PSFC, 1(21) = 0.84, p = .41 (M = 52.59%, SD =
14.43%. A detailed illustration of the single-subject
accuracy in the test trials (Figure Al in the Appendix)
as well as a statistical analysis of accuracy variation
between blocks (Section Al in the Appendix) revealed
that accuracy varied more strongly from block to block
in the PSFC than in the other conditions: This means
that some participants’ accuracies fluctuated between
0% and 100% from block to block due to choosing
always the same stimulus in one block of test trials and
correspondingly only the other stimulus in the
following block of test trials. Although average accuracy
rates were at chance level, the variations between the
test blocks suggest that participants did form predictions
during the learning blocks, which led then also to PEs
that were modeled in our analyses. Nevertheless, the pre-
dictions and PEs in the PSFC, which were calculated
based on the test trials without feedback, seem less reli-
able (see Section Al in the Appendix), because the accu-
racy in the test trials in the PSFC is more variable than in
the other learning conditions (see Section Al in the
Appendix) and affects also the PEs (see the Appendix,
Section 4). We thus decided to focus mainly on the com-
parison of AFC and ASFC, whereas the analyses compar-
ing the AFC and PSFC are reported in the Appendix,
Section A2.

Comparison between Conditions

We compared learning performance between AFC and
ASFC. Figure 2 displays the descriptive data underlying
the GLME analysis on the accuracy in the learning trials
for the AFC and ASFC. Table A4.1 in the Appendix lists
b-estimates and effect-specific z tests. GLME analysis
revealed a significant main effect of association type,

AFC ASFC
100%- 100%
Immediate Feedback

[l Delayed Feedback
Without Tone
[l Delayed Feedback

With Tone
75% 75%—.———/

B |
"

50% 50%
1 2 3 4 1 2 3 4
Block Block

Accuracy (%)

Figure 2. Accuracy in the learning parts. Error margins indicate 95%
confidence intervals.
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z = 3.04, p = .002, b = 0.71. Participants of the ASFC
showed enhanced performance compared with partici-
pants of the AFC. We also found a significant main effect
of block, z = 3.46, p = .001, b = 0.50. Participants
improved their performance across the four blocks in
a learning session. All other effects were not significant
@@l p = .059). An additional post hoc analysis including
only the first and last block aimed to focus more clearly
on learning effects. This analysis also revealed a main
effect of association type, z = 2.71, p = .007, b = 1.06
(see above), whereas there was a trend effect of block,
z = 196, p = .050, b = 0.26. An interaction between
block, association type, and the contrast between imme-
diate feedback and delayed feedback without tones,
z = —1.99, p = .047, revealed that the association type
effect was present for both feedback timings in the first
and for immediate feedback in the last block (all p <
.05), but not for delayed feedback without tone in the
last block (p = .683). Analyzing learning (i.e., Block)
effects separately for each condition, no significant block
effect emerged for any condition, only a trend for the
ASFC and delayed feedback without tone (p = .097,
b = 0.81).

ERP Results
FRN/RewP

Grand averages and topographical maps of the ERPs
according to association type, feedback timing, and feed-
back valence can be found in Figure 3.

Descriptive data underlying the FRN/RewP analysis are
depicted in Figure 4. For F and p values of all main and
interaction effects, refer to Table 1. In the text, statistical
indices will only be reported for resolutions of interac-
tions. For b-estimates and effect-specific ¢ tests concerning
the analysis of the FRN/RewP amplitude, see Table A4.2 of
the Appendix. In the main text, we will focus on those
results that are relevant regarding our hypotheses, that
is, effects of the factors association type and feedback tim-
ing in interaction with the other factors.

In accordance with known findings from the litera-
ture, we found more negative FRN/RewP amplitudes
for negative than positive feedback and this amplitude
difference was larger for immediate than delayed feed-
back, immediate: F(1, 205.56) = 102.25, p < .001, b =
1.85, delayed without tone: F(1, 210.11) = 41.17, p <
.001, b = 1.22 delayed with tone: F(1, 232.53) =
71.96, p < .001, b = 1.63 (for the two-way-interaction
between feedback timing and feedback valence, see
Tables 1 and A4.2).

Importantly, we also found a two-way interaction
between feedback valence and PE (see Tables 1 and
A4.2). For positive feedback, FRN/RewP amplitudes were
significantly more positive the higher the PE was, F(1,
11339.36) = 69.59, p < .001, b = 1.85. For negative feed-
back, FRN/RewP amplitudes were more negative the
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A Grand Averages of the pooled signal of Fz, FCz, Cz, FC1 and FC2
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Figure 3. Grand averages and topographical maps of the FRN/RewP. (A) Grand averages of the pooled signal of Fz, FCz, Cz, FC1, and FC2: The
dotted vertical lines represent the search window for the FRN/RewP peak of the difference wave. Error margins represent standard errors. (B)
Topographies of the difference signal at the respective peaks: distribution of activation within the FRN/RewP time window.

higher the PE was, F(1, 13631.45) = 8.99, p = .003, b = described pattern was stronger for immediate, F(1,
—0.67. For a display of this interaction, see Figure 5. 17546.57) = 40.88, p < .001; F(1, 15985.23) = 48.44,

This interaction was further modulated by the factors of ~ p < .001, b = 2.58 for positive feedback; F(1, 16879.95) =
main interest in our study. First, a significant three-way ~ 4.07, p = .024, b = —0.83 for negative feedback; than

interaction of feedback valence, PE, and feedback timing delayed feedback without tones, F(1, 16919.16) = 22.22
emerged (see Tables 1 and A4.2), indicating that the  p < .001; positive feedback: F(1, 13411.40) = 18.27,p <
Feedback Valence X PE interaction with the above- .001, b = 1.67; negative feedback: F(1, 17197.83) = 6.61,
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Figure 4. Descriptive statistics for the FRN/RewP model. Error margins indicate 95% confidence intervals. PE = absolute (unsigned) PE.

p = .010, b = —1.01; and delayed feedback with tones, Finally, the interaction between feedback valence and
F(1,16732.41) = 7.03, p = .008; positive feedback: F(1, PE was modulated by association type, as revealed
15355.51) = 11.85, p < .001, b = 1.31; negative feedback: by another three-way interaction of the mentioned
p = .64. factors (Tables 1 and A4.2). In follow-up analyses, a

Table 1. F and p Values for the LME Analysis on the FRN/RewP Amplitude in the AFC and ASFC

Effects Num DF Den DF F b

Association type 1.00 38.56 1.65 .207
Feedback timing 2.00 41.66 231 112
Feedback valence 1.00 53.27 137.14 <.001
PE 1.00 6695.48 14.48 <.001
Association Type X Feedback Timing 2.00 41.66 2.20 123
Association Type X Feedback Valence 1.00 53.27 3.18 .080
Feedback Timing X Feedback Valence 2.00 17801.32 4.50 .011
Association Type X PE 1.00 6695.48 3.77 .052
Feedback Timing X PE 2.00 17767.70 1.12 325
Feedback Valence X PE 1.00 17851.58 61.73 <.001
Association Type X Feedback Timing X Feedback Valence 2.00 17801.32 0.67 510
Association Type X Feedback Timing X PE 2.00 17767.70 1.48 229
Association Type X Feedback Valence X PE 1.00 17851.58 4.85 .028
Feedback Timing X Feedback Valence X PE 2.00 16503.34 3.12 .044
Association Type X Feedback Timing X Feedback Valence x PE 2.00 16503.34 0.52 594

df = degrees of freedom; Num DF = numerator degrees of freedom; Den DF = denominator degrees of freedom; association type = AFC versus
ASFC; feedback timing = immediate feedback, delayed feedback without tone, and delayed feedback with tone; feedback valence = negative versus
positive; PE = unsigned.

Bolded p values indicate statistical significance at p < .05.
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Figure 5. Descriptive statistics for the PE X Feedback Valence
interaction of the FRN/RewP. Error margins indicate 95% confidence
intervals. Absolute PE = absolute (unsigned) PE.

significant Feedback Valence X PE interaction emerged
for action—-feedback associations, F(1, 17861.99) =
15.43, p < .001; for positive feedback, FRN/RewP ampli-
tudes were more positive the larger the PE was, F(1,
10918.30) = 31.95, p < .001, b = 1.80; and for negative
feedback, no effect of PE was found, F(1, 12702.16)
< 0.01, p = .96, b = —0.02. For stimulus—feedback asso-
ciations, the two-way interaction was more pronounced,
F(1, 17823.99) = 52.48, p < .001; for positive feedback,
higher PEs meant more positive FRN/RewP amplitudes,
F(1, 11774.27) = 37.86, p < .001, b = 1.90, and for
negative feedback, higher PEs meant more negative
FRN/RewP amplitudes, F(1, 14601.96) = 18.05, p <
.001, b = —1.33. Although thus effects of feedback
timing and association type did emerge in interaction
with feedback valence and PE, neither the three-way
interaction between feedback valence, feedback timing,
and association type, nor the four-way interaction includ-
ing the mentioned factors and the additional factor PE
reached significance, which was against our hypotheses
(see Table 1).

N170

Grand averages and topographical maps of the ERPs
according to association type, feedback timing, and feed-
back valence can be found in Figure 6. Descriptive data
underlying the N170 analysis are depicted in Figure 7. In
Table 2, we report the F and p values of all main and inter-
action effects. For b-estimates and effect-specific ¢ tests
concerning the analysis of the N170 amplitude, see
Table A4.3 of the Appendix. Again, we include only the

effects that are most relevant for our research question
and report statistical indices in the text only for resolu-
tions of interactions.

Among other effects, we found larger N170 amplitudes
for delayed than immediate and for negative than positive
feedback (main effects of feedback timing [immediate vs.
delayed feedback with tone: p < .001, b = —1.22; imme-
diate vs. delayed feedback without tone: p = .38, b =
—0.28] and feedback valence [ = 0.62]; see Tables 2
and A4.3).

Interestingly, also for the N170, there was a significant
two-way interaction between feedback valence and PE
(see Tables 2 and A4.3). Significant effects of PE were
found for both positive feedback, F(1, 28404.85) =
27.75, p < .001, b = —1.00, and negative feedback, F(1,
31236.99) = 8.91, p = .003, b = 0.57; for positive feed-
back, higher PE values led to more negative N170 ampli-
tudes, and for negative feedback, higher PE values led to
more positive N170 amplitudes. See Figure 8 for a display
of this interaction.

As for the FRN, this interaction was modulated by asso-
ciation type, as shown by the three-way interaction
between feedback valence, PE, and association type (see
Tables 2 and A4.3). The resolution of this interaction
revealed that the two-way interaction effect between feed-
back valence and PE was more pronounced for stimulus—
feedback associations, F(1, 35660.91) = 37.31, p < .001,
than for action—feedback associations, F(1, 35104.91) =
4.51, p = .034. In both groups, higher PE values for posi-
tive feedback led to more negative N170 amplitudes, F(1,
28328.20) = 28.66, p < .001, b = —1.41, and F(1,
28387.10) = 4.60, p = .032, b = —0.58, respectively, but
the effect was more pronounced for stimulus—feedback
associations. An effect of PE for negative feedback
emerged for stimulus—feedback associations, F(1,
32484.84) = 11.28, p = .001, b = 0.89, with more positive
amplitudes the higher the PE, but not for action—feedback
associations (p = .37).

Finally, we also found a significant four-way interaction
between feedback valence, PE, association type, and
feedback timing (Tables 2 and A4.3), indicating that the
interaction between feedback valence and PE described
above was modulated by both, feedback timing and
association type. Resolving the four-way interaction by
association type, there was no significant interaction
between feedback timing, feedback valence, and PE for
stimulus—feedback associations, F(2, 23509.87) = 1.16,
p = .32. Irrespective of feedback timing, the pattern of
PE coding for positive and negative feedback described
above for stimulus—feedback associations emerged. How-
ever, there was an interaction effect for the action—
feedback associations, F(2, 18378.69) = 3.08, p = .046.
Further resolving by feedback timing, there was no signif-
icant interaction between feedback valence and PE for
action—feedback associations for delayed feedback with-
out tones, F(1, 21047.58) = 0.93, p = .33, or for delayed
feedback with tones, F(1, 18349.99) = 0.10, p = .76,
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A Grand Averages of the signal at P7 and P8 (pooled for the figure)
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Figure 6. Grand averages and topographical maps of the N170. (A) Grand averages of the signal at P7 and P8: The dotted vertical lines represent the
search window for the N170 negative peak. Error margins represent standard errors. (B) Topographies of the signal at the respective peaks:
distribution of activation within the N170 time window.
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indicating that the PE did not modulate the N170 ampli-
tude in these conditions. However, for immediate feed-
back, an interaction between PE and feedback valence
was found, F(1, 33400.93) = 10.48, p = .001. For imme-
diate negative feedback in action—feedback associations,
there was no significant effect of PE, F(1, 35059.21) =
2.14, p = .14, b = 0.65, but there was a PE effect for
immediate positive feedback in action—feedback associa-
tions, F(1, 29227.14) = 1035, p = .001, b = —1.42. The
higher the PE, the more negative the N170 amplitude.

To sum up, we found the PE effect on the N170 (as
interaction between the absolute PE and feedback
valence) to be modulated by both feedback timing and
association type, reflected in the significant four-way inter-
action, as hypothesized. However, the pattern underlying
this interaction differed from our hypothesis. Moreover,
we did not find the hypothesized two-way interaction
between feedback timing and association type with most
pronounced N170 amplitudes for delayed feedback for
stimulus feedback associations.

Table 2. Statistical Results for the LME Analysis on the N170 Amplitude in the AFC and ASFC

Effects Num DF Den DF F b

Association type 1.00 38.30 1.16 .289
Feedback timing 2.00 44.75 19.40 <.001
Feedback valence 1.00 44.32 13.06 .001
PE 1.00 21005.49 2.59 107
Association Type X Feedback Timing 2.00 44.75 0.72 493
Association Type X Feedback Valence 1.00 44.32 0.48 492
Feedback Timing X Feedback Valence 2.00 35710.36 4.43 .012
Association Type X PE 1.00 21005.60 0.12 732
Feedback Timing X PE 2.00 35673.87 3.90 .020
Feedback Valence X PE 1.00 35460.14 33.33 <.001
Association Type X Feedback Timing X Feedback Valence 2.00 35710.36 1.68 .186
Association Type X Feedback Timing X PE 2.00 35673.87 0.34 715
Association Type X Feedback Valence X PE 1.00 35460.08 7.40 .007
Feedback Timing X Feedback Valence X PE 2.00 20798.09 0.27 762
Association Type X Feedback Timing X Feedback Valence X PE 2.00 20797.69 4.03 .018

Bolded p values indicate statistical significance at p < .05.
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Figure 8. Descriptive statistics for the PE X Feedback Valence
interaction of the N170. Error margins indicate 95% confidence
intervals. Absolute PE = absolute (unsigned) PE.

DISCUSSION

Previous research indicates that delaying feedback leads to
a shift in the neural correlates of feedback processing:
Whereas the FRN/RewP difference between negative and
positive feedback, assumedly reflecting striatal reward sys-
tem activity (Becker et al., 2014; Foti et al., 2011), was
reduced for delayed feedback, the N170, possibly associ-
ated with MTL and/or extrastriate cortex activity, was
increased (Holtje & Mecklinger, 2020; Kim & Arbel,
2019; Arbel et al., 2017; Peterburs et al., 2016). We hypoth-
esized that also the type of the learned association
(action—feedback vs. stimulus—feedback associations)
could affect which system is involved in feedback process-
ing, potentially in interaction with feedback timing effects.
Consequently, we expected a stronger role of the
FRN/RewP in feedback processing for action—feedback
associations for immediate feedback and of the N170 in
learning stimulus—feedback associations for delayed feed-
back. To test this, participants learned either action—
feedback or stimulus—feedback associations with immedi-
ate and delayed feedback while we recorded EEG.
Stimulus—feedback associations were learned in two differ-
ent ways, either actively, involving active stimulus choices,
or passively, without active choices. Significant learning
was found only for action—feedback associations and for
the stimulus—feedback associations involving active
choices. Due to this, we focus the discussion on results
from these conditions, especially concerning effects of
the PE, which might be more meaningful when learning
has taken place.

Influences of Valence, Feedback Timing, and
Association Type on Feedback Processing

Regarding the FRN/RewP, we expected the largest valence
effect for immediate feedback for action-feedback

16 Journal of Cognitive Neuroscience

associations. Although we replicated previous findings of
amore pronounced feedback valence effect forimmediate
than delayed feedback (for similar results, see Albrecht
et al., 2023; Holtje & Mecklinger, 2020; Arbel et al., 2017;
Peterburs et al., 2016; Weismiiller & Bellebaum, 2016;
Weinberg et al., 2012), the interaction between feedback
valence and timing did not differ between type of learned
association, which was against our hypotheses. In con-
trast, in the analysis involving passive stimulus—feedback
associations reported in the Appendix, there was evidence
for a feedback valence effect on the FRN/RewP modulated
by both feedback timing and type of learned association.
The valence effect differed between passive stimulus—
feedback associations and action—feedback associations
only for immediate feedback, with smaller differences
for stimulus—feedback associations. This was partly in line
with our hypothesis, suggesting a slight preference for
action—feedback associations in immediate feedback
(although no difference between groups was found for
the delayed feedback conditions).

For the N170, we expected the largest amplitude for
delayed feedback for stimulus—feedback associations. Sim-
ilar as for the FRN/RewP, we found a feedback timing by
valence interaction, but in the opposite direction, such
that a feedback valence effect (as Kim & Arbel, 2019) with
more negative amplitudes following negative compared
with positive feedback was only found for delayed feed-
back. In contrast to our hypothesis, neither the effect of
feedback timing nor the reported interaction between
feedback valence and timing was affected by the associa-
tion type in our main analysis. However, in the analysis
involving passive stimulus—feedback associations, such
an effect did emerge. As hypothesized, we found larger
N170 amplitudes for delayed feedback, irrespective of
temporal predictability (i.e., with or without tone) only
for (passive) stimulus—feedback associations.

Reflections of the PE in the FRN/RewP

For our main analysis, effects of the type of the learned
association on feedback processing were only seen in
interaction with the PE. For both, the FRN/RewP and the
N170, we expected that the effect of the PE (as interaction
between unsigned or absolute PE and valence) would be
modulated by feedback timing and association type. For
the FRN/RewP, we found an interaction between feedback
valence and absolute PE, which is in line with PE coding by
the FRN/RewP as suggested by the Reinforcement Learn-
ing Theory (Holroyd & Coles, 2002) and with many other
studies (see Burnside et al., 2019; Fischer & Ullsperger,
2013): This two-way interaction reflecting PE processing
was further modulated by feedback timing, as it was stron-
gest for immediate feedback. This appears to contradict
the finding of a recent study by Weber and Bellebaum
(2024), in which the PE was similarly represented in the
FRN/RewP for immediate and delayed positive feedback,
and no PE effect was found for negative feedback. Finally,
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PE processing, again as reflected in the two-way inter-
action between valence and unsigned PE, was also
modulated by association type. The interaction was
more pronounced for stimulus—feedback associations,
for which the above-described pattern of PE effects for
both negative and positive feedback emerged. For
action—feedback associations, a PE effect was found only
for positive feedback, mirroring a pattern also described
by Weber and Bellebaum (2024). Similarly, Kirsch, Kirschner,
Fischer, Klein, and Ullsperger (2022) found stronger
expectancy coding in the FRN/RewP for positive com-
pared with negative feedback. Thus, the PE coding in
the FRN/RewP was indeed modulated by feedback timing
and association type, but not as hypothesized in interac-
tion of the two factors.

Of particular interest is the finding that for action—
feedback associations, PE coding is restricted to positive
feedback. This may indicate that for nonrewarded actions,
it does not matter how large the negative PE is. Because
PEs are a prerequisite for learning (Schultz & Dickinson,
2000), this aligns with findings of a confirmation bias with
higher learning rates from positive compared with nega-
tive feedback (Weber & Bellebaum, 2024). Furthermore,
people tend to be better at learning to achieve rewards
through active choice actions and avoid punishments by
remaining passive—for which the term paviovian bias
was coined (Peterburs, Albrecht, & Bellebaum, 2022;
Cavanagh, Eisenberg, Guitart-Masip, Huys, & Frank,
2013; Guitart-Masip et al., 2012). Studies on this bias chal-
lenge the existing view that neural representations in the
striatum are centered on valence, suggesting that the stri-
atum might rather encode a tendency toward action
(Guitart-Masip et al., 2011; for a review, see Guitart-Masip,
Duzel, Dolan, & Dayan, 2014). On this background, our
results might suggest that positive reinforcement is espe-
cially important for action learning.

Reflections of the PE in the N170

For the N170, we also observed PE coding, with the
reversed pattern compared with the FRN/RewP. This is a
novel finding, as the N170 has not been linked to PE pro-
cessing in the context of feedback learning before. The
finding supports not only the relevance of the N170 as a
feedback-locked signal, but it further sheds light on the
relationship between striatal and MTL learning systems.
Enhanced amplitudes following unexpected rewards may
indicate that the MTL is particularly involved in reinforcing
memories for affirming feedback. The MTL'’s function
could be to remember which stimulus resulted in a reward
by reactivating its representation in visual areas, thereby
strengthening the association. This would mean increas-
ing activity in the fusiform gyrus, which would lead to
enhanced N170 amplitudes (Gao et al., 2019; Deffke et al.,
2007). Previous studies have identified not only reward
representations in the hippocampus (Gauthier & Tank,
2018; Zeithamova, Gelman, Frank, & Preston, 2018) but

also postreward reactivation as a2 mechanism to link
rewarding outcomes to the preceding experiences (Singer
& Frank, 2009). In addition, fMRI studies revealed the
reactivation of stimulus-specific visual (Schiffer et al.,
2014) and somatosensory regions (Pleger et al., 2008,
2009) following reward. We found that the N170 was
more pronounced when negative feedback was expected
versus unexpected. As participants could choose between
two options in the current task, expected negative
feedback could be processed as confirming feedback for
the not-chosen stimulus or action, leading to additional
effort to reactivate the not-chosen stimulus or action
representation.

Importantly, the PE coding in the N170 was modulated
by both association type and feedback timing, as revealed
by a four-way interaction. The above-described PE coding
pattern in the N170 (as Feedback Valence X PE interac-
tion) emerged only for immediate feedback in action—
feedback associations, whereas it was present in all feed-
back timing conditions for stimulus—feedback associa-
tions. Although this pattern does not exactly match our
hypothesis, it is still consistent with our expectations that,
for delayed feedback, there is a stronger PE effect for
stimulus—feedback than action—feedback associations.
This is in line with a stronger role of hippocampally medi-
ated reactivations of visual stimuli associated with feed-
back in the stimulus—feedback condition during delayed
feedback. The enhanced N170 for delayed feedback found
for stimulus—feedback, but not action—feedback associa-
tions in the analysis involving the PSFC (see above), fur-
ther supports this notion. Unexpectedly, we observed a
(similarly pronounced) PE effect on the N170 for both
types of associations for immediate feedback, which is
contrary to our hypothesis that we should see PE effects
on the N170 especially for delayed feedback that refers
to stimuli. A possible explanation might be that the N170
reflects not only MTL activity (as suggested by Arbel et al.,
2017) or visual reactivation (as we suggest in the introduc-
tion), but both processes: PE coding in the MTL might
appear in parallel to PE coding in the striatum, irrespective
of association type only for immediate feedback. However,
visual reactivation in extrastriate cortex might be stronger
for delayed feedback (and influence the N170 more in this
condition) because of the need of credit assignment, and
would only happen for stimulus—feedback associations,
not action—feedback associations.

Integration of Findings for the FRN/RewP and
the N170

Looking at FRN/RewP and N170 results together, it is evi-
dent that the relative recruitment of different learning and
memory systems during feedback learning in the present
study depended on the type of association learned.
Post hoc, we suggest that the cooperation of the striatal
and the hippocampal system worked better for
stimulus—feedback associations, for which better learning
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was found, with PE coding for N170 and FRN/RewP in all
timing conditions. The cooperation may be less effective
for action—-feedback associations, where it may have
worked only for immediate feedback. In line with this,
Palombo, Hayes, Reid, and Verfaellie (2019) found signifi-
cantly impaired learning for patients with hippocampal
damage compared with healthy controls in a probabilistic
learning task involving stimulus—feedback associations
(although see Foerde et al., 2013, for comparable results
at least with immediate feedback). In 2002, White and
McDonald suggested that both the striatal and hippocam-
pal system share access to the same information, but they
specialize in encoding different types of relationships.
Indeed, midbrain dopamine neurons project to the stria-
tum (Chuhma et al., 2023; Oldehinkel et al., 2022; Schultz
etal., 1997) and also to the MTL (Schott et al., 2004, 2008;
Lisman & Grace, 2005). In line with this, both the striatum
and the hippocampus have been found to reflect a PE dur-
ing feedback learning (Dickerson et al., 2011). Shohamy
and Adcock (2010) suggest that the interactions between
midbrain dopamine regions and the MTL enhance mem-
ory for rewarding and novel episodes and build memory
representations that inform future decision-making.

Feedback Delay Effects and
Temporal Predictability

Kimura and Kimura (2016) proposed that feedback delay
effects on the FRN/RewP are a function of diminished tem-
poral predictability for delayed feedback and found
comparable patterns between immediate and delayed
feedback when delayed feedback was made similarly
predictable via a regular tone during the delay. In the
present study, we did not replicate this result and found
mostly similar feedback delay effects for temporally pre-
dictable and unpredictable delayed feedback. The partici-
pants in the study by Kimura and Kimura could not learn
during the study, so the FRN/RewP effect found might not
represent a learning signal, but specifically PEs about the
temporal characteristics of the feedback stimuli. In the
current study, learning was possible, and FRN/RewP and
N170 could thus represent learning signals, which might
explain the differences in the result pattern.

Limitations

The primary limitation of this study is that passive
stimulus—feedback associations were not learned consis-
tently. Participants of the PSFC, which aimed to assess
stimulus—feedback learning without actions, did not learn,
on average, leading to difficulties in comparing the respec-
tive EEG results from this condition with the AFC and
ASFC. Problems with learning might be attributed to a
number of reasons, for example, a potential need of higher
contingencies in passive (meaning no own actions were
conducted) compared with active learning (Bellebaum,
Brodmann, & Thoma, 2014) or difficulty in learning
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passively when the events to be learned from are not exe-
cuted by another human (differences in processing of
human and nonhuman actions have for example been
found by Fukushima & Hiraki, 2009). A closer look at
the accuracy rates in the PSFC revealed that although par-
ticipants did not choose the more rewarding stimulus
more frequently, on average, over the entire experiment,
they did choose it exclusively in the test trials of some
blocks. In some cases, accuracy rates fluctuated between
0% and 100% from block to block. The block design, in
which 20 learning trials are followed by 20 test trials, is
based on observational learning studies (e.g., Bellebaum
et al., 2014). This type of design, however, sometimes
leads to participants choosing only one stimulus within a
block. In the case of a false belief regarding the more
rewarding stimulus, this results in an accuracy of 0%.
Together with accuracy rates of 100% in other blocks, this
leads to an average accuracy of around 50%, which is what
we observed in the PSFC. We thus primarily base our inter-
pretations on the comparison of action—feedback associa-
tions with the stimulus—feedback associations learned in
the ASFC and not in the PSFC. Although the ASFC also con-
tained actions (i.e., button presses), feedback was only
related to the chosen stimuli and not to the actions. On
the contrary, in the AFC, visual stimuli (i.e., rectangles)
were presented on the screen, but the feedback referred
only to the actions and not to the stimuli. The two condi-
tions are therefore compatible but differ in one crucial
point: In the ASFC, stimulus identity predicted the reward,
whereas in the AFC, motor aspects of the task predicted
the reward. Better learning for active stimulus—feedback
associations compared with action—feedback associations
could indicate that this association type allowed the striatal
and MTL systems to cooperate in the most effective way.
However, findings from the PSFC also contributed to the
interpretation of the role of the N170 in feedback learning:
Despite overall inconsistent learning, participants in the
PSFC may nevertheless have formed a (false) expectation
regarding the stimuli’s feedback contingencies, allowing
meaningful PE analyses. In this sense, adding the PE to
the statistical model may, at least to some extent, take dif-
ferences in learning performance between the groups into
account. Indeed, data from the PSFC revealed larger N170
amplitudes for delayed than immediate feedback, as
hypothesized. Nevertheless, future studies should try to
separate action—feedback and stimulus—feedback associa-
tions even more by overcoming learning problems in the
PSFC. Due to our relatively small sample size, it would be
interesting to see whether the effects reported here can be
replicated.

Conclusion

In conclusion, our results suggest that the type of the
learned association, action—feedback or stimulus—
feedback, does play a role in feedback processing and
feedback learning. This was evident in both the
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FRN/RewP and N170 ERP components, which are thought
to represent feedback processing in the striatal or MTL sys-
tem. However, no clear-cut pattern was found in the sense
that one of the systems takes over sole control in specific
learning conditions. Instead, the learned association,
together with feedback timing, seems to modulate how
well the systems cooperate during learning. Furthermore,
amodulation of the N170 by the PE (reversed to that of the
RewP/FRN) provides new evidence that the component is
associated with feedback processing, especially for
delayed feedback. The study results challenge previous
views of a competitive relationship between MTL- and
striatal-based learning systems, suggesting a cooperation
that is modulated by learning contexts.

APPENDIX
Section Al

Statistical Comparison of Accuracy Variance between
AFC, ASFC, and PSFC

To statistically investigate variability between blocks in the
three association type groups, we first calculated the mean
accuracy (in % correct responses) for each participant
across all blocks. In a next step, we calculated the (abso-
lute) accuracy deviation from this mean for each block
and used this as the accuracy variance measure for this
block. We then defined an LME model with accuracy vari-
ance as dependent variable and block (1-4, scaled to lie
between —0.5 and + 0.5), association type (AFC, ASFC,
and PSFC, modulated in a simple coding matrix with PSFC
as baseline), and feedback timing (modulated in a simple
coding matrix with immediate feedback as baseline). Fit-
ting the model with the procedure described in the main
articles resulted in the following model:

Variance ~ Block x Association Type
x Feedback Timing + (1|Subject)

We found a significant effect of association type, F(2,
59.01) = 23.02, p < .001. Variance was significantly higher
in the PSFC compared with both the AFC (t = —4.91,p <
001, b = —15.55) and ASFC (¢t = —6.45, p < .001, b =
—19.40). Recalculating the model with AFC as baseline
for the association type, we found no difference between
AFC and ASFC (p = .230). No other main or interaction
effects were significant (all p = .058). For descriptive data

Table A1.1. Mean, Standard Deviation, Minimum, and
Maximum of Block-wise Accuracy Variance (in %)

AssociationIype M SD Min Max
AFC 18.04 6.30 6.94 33.23
ASFC 14.17 8.82 0.40 31.88
PSFC 30.66 13.25 6.09 47.50

M = mean; SD = standard deviation; Min = minimum; Max =
maximum.

of the accuracy variance of the three association type
groups, see Table Al.1. Only five participants of the PSFC
had alower or equal mean accuracy variance than the over-
all mean of the AFC (only four PSFC participants had a
lower mean variance than the ASFC mean).

Section A2
Results for the AFC Compared with the PSFC

PE modeling. For comparability, we used the same
model constraints as for the PE calculation of the main
analysis, where we used the following model (M, in the
main text):

Qc,H—l = Qc,t + Qeon/dis X 8cA,t

Each action or stimulus was initially assigned a value of
0.5 that was iteratively updated in every trial # in which the
action or stimulus was chosen. The value of the unchosen
action or stimulus, Q,,, was updated as 1-Q. in each trial.
We allowed different learning rates for learning from pos-
itive (owos,) and negative feedback (o).

Because learning trials in the PSFC did not entail own
choice actions, the data from the learning trials could
not be used to calculate the model’s error term. Instead,
the error (i.e., the deviance between the model’s predic-
tions and the values measured, which is —LL in the PE cal-
culation for the main analysis) was calculated using the
probabilities derived from the test trials for both condi-
tions, AFC and PSFC: After the first learning block, the Q
values of the two stimuli should equal the frequency in
which they were chosen during the following test trials.
Frequency was calculated as the number of test trials in
which one stimulus was chosen divided by the total num-
ber of trials in the respective test block. We defined the
residual error as the absolute difference between the Q

Figure Al. Single-subject

representation of accuracy rates

across all 24 test blocks without — 106

feedback. Each line represents g\i 80

one participant of the > 60

respective association type g 40

group. 8 20
£ 0

1 5 9 13 17 21 1 5 9 13 17 21 1 65 9 13 17 21

Rohlinger et al. 19

GZ0Z BUN[ 9| UO JOSN JEYISIOAIUN-OUIDH-UOLIUIBH ‘LOP|oSSNA %oUlol|qIqsapueT N -SIeysIanun Aq Jpd 6y B Uo0l/88ZSZSZ/6Y € Ud0lZg | L0L/10p/pd-ajo1lE/uoolnpa 1w 1081p//:dny wolj papeojumoq



value calculated by the model of the “correct” stimulus or
action (the one that was more associated with wins) after
the last trial of each learning block and the frequency of its
choice during the following test block. We only used one
of the stimuli or actions of each block because, as the
values were inverted, using both would not add any infor-
mation. Note that this calculation of the residual error
term did not consider the exploration parameter 3. To fur-
theradapt the model to the one used for the main analysis,
we chose the minimum and maximum of o, and o
from the model of the main analysis of the AFC condition
as constraints for the respective values (opy,: [0.00-1],
ogzs: [0.00-0.62]). For the subsequent analyses, the abso-
lute values of the PE for each trial were used.

Bebavioral results. Because participants in the PSFC
did not make active choices during the learning trials,
we used the test trials to compare behavioral results
between the AFC and PSFC. We used a model including
block, association type, and feedback timing as fixed
effects and the main effects of block and feedback timing
as well as their interaction as random effects. See the
table of results (Table A2.1) as well as the descriptive data
(Figure A2.1) depicted below. There was a main effect of
association type (see Table A2.1) with higher accuracy in
the AFC than PFSC. All other effects were not significant.
Only including the first and last block for an additional
post hoc analysis focusing on learning effects in the dif-
ferent conditions, we also found a main effect of associ-
ation type, z = —3.60, p < .001, b = —0.94 (see above),
and again no significant main effect of block (p = .758).
However, there was a significant interaction between
block and association type, z = —2.01, p = .045. In both

the first block, z = —2.29, p = .022, b = —0.62, as well as
the last block, z = —3.76, p < .001, b = —1.26, partici-
pants in the AFC performed significantly better than in
the PSFC, but the effect was more pronounced in the last
block. Analyzing learning (i.e., block) effects separately
for the different conditions, there was a trend for imme-
diate feedback in the PSFC (p = .073, b = —0.73;
decreasing accuracy from Blocks 1-4) and for delayed
feedback without tones in the AFC (p = .091, b =
0.89; increasing accuracy from Blocks 1-4).

EEG results. Due to the differences in learning perfor-
mance between the PSFC and the AFC, differences in
the neural signals between the groups are difficult to inter-
pret. Although the inclusion of the PE in the statistical
model may, to some extent, account for learning differ-
ences, PE modeling for the observed behavioral learning
pattern in the PSFC (mainly 0% and 100% correct in the
test blocks) is not ideal. Nevertheless, the results give
some insight into the general influences of feedback
valence and feedback timing in the PSFC, and we can care-
fully compare effects of these between the groups.

FRN. For the analyses, we used a model including asso-
ciation type, feedback timing, feedback valence, and PE as
fixed effect factors, as well as the main effects of feedback
timing and feedback valence as random effects. The tables
of results for the model, the grand averages, and the
descriptive data are depicted below (Figures A2.2 and
A2.3, Tables A2.2 and A2.3). As for the analyses reported
in the main article, we will focus on effects of the factors
association type and feedback timing in interaction with
the other factors.

Table A2.1. b Values, Confidence Intervals, and #-test Results for the GLME Analysis on Accuracy for the AFC and PSFC

Effects b SE z p 25%Cl  97.5%CI
Intercept 0.63 0.09 6.70 <.001 0.45 0.82
Block —0.05 0.15 —0.33 .740 —0.33 0.27
Association type —0.97 0.19 -5.23 <.001 —1.34 —0.60
Delayed feedback with tone —0.23 0.17 —1.32 185 —0.59 0.15
Delayed feedback without tone —0.24 0.13 -1.85 .064 —0.49 0.03
Block X Association Type —0.37 0.31 —1.22 223 -0.95 0.22
Block X Delayed Feedback With Tone 0.46 0.42 1.10 273 —0.38 1.27
Block X Delayed Feedback Without Tone 0.71 0.49 1.44 150 -0.17 1.75
Association Type X Delayed Feedback With Tone —0.10 0.34 —0.28 776 -0.77 0.60
Association Type X Delayed Feedback Without Tone 0.13 0.26 0.49 .624 —0.41 0.70
Block X Association Type X Delayed Feedback With Tone -0.19 0.81 —0.23 .819 —1.99 1.58
Block X Association Type X Delayed Feedback Without Tone 1.45 0.95 1.54 125 -0.71 3.44
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The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors block (1 [—0.5], 2 [—0.167], 3 [0.167], 4 [0.5]),
association type (AFC [—0.5] vs. PSFC [0.5]), and feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is
compared with delayed feedback with tone and delayed feedback without tone).
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Figure A2.1. Accuracy in the
test parts for the AFC and PSFC.
Error margins represent 95%
confidence intervals.
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As for the analysis comparing AFC and ASFC in the main
text, there was a significant main effect of feedback valence
with more negative amplitudes for negative compared
with positive feedback (see Table A2.2 and A2.3). Instead
of an interaction between feedback timing and feedback
valence, as for the AFC — ASFC comparison, we found a
significant interaction involving these two factors and
the factor association type (feedback timing, feedback
valence, and association type; see Figure A2.4). Only for
immediate feedback, we found a significant interaction
between association type and feedback valence, F(1,
136.88) = 5.23, p = .024 (p = .118 for delayed feedback
without tones and p = .180 for delayed feedback with
tones). For immediate feedback, a significant valence
effect emerged for the AFC, F(1, 119.02) = 47.60, p <
.001, b = 2.04, and PSFC, F(1, 160.31) = 14.40, p < .001,

b = 1.09. In both association types, negative feedback led
to more negative FRN/RewP amplitudes, but the effect was
weaker for the PSFC.

As for theanalysis reported in the main article, there was
an interaction between feedback valence and PE, which
was further modulated by association type (interaction
between association type, feedback valence, and PE).
The underlying pattern differed, however. While a signif-
icant interaction between feedback valence and PE
showed for the AFC, F(1, 17782.20) = 13.43, p < .001,
indicating PE coding, as in the analysis in the main text,
FRN amplitude did not appear to vary with the PE for the
PSFC (p = .75 for the interaction between feedback
valence and PE). The pattern for the AFC was as reported
in the main text (note that the PE was modeled differ-
ently, see above): For negative feedback in the AFC, there

Figure A2.2. Grand averages of
the FRN for the AFC and PSFC.
Error margins represent
standard errors.

|
N

o

v

AFC
Amplitude (uV)
N

N

PSFC
Amplitude (uV)

N

Immediate Feedback

~ Negative Feedback
~— Positive Feedback

Delayed Feedback
Without Tone

Delayed Feedback
With Tone

A

6
-200 0 200 400 600 -200 O 200 400 600 -200 O 200 400 600
Time (msec)

Time (msec) Time (msec)

Rohlinger et al. 21

GZ0Z BUN[ 9| UO JOSN JEYISIOAIUN-OUIDH-UOLIUIBH ‘LOP|oSSNA %oUlol|qIqsapueT N -SIeysIanun Aq Jpd 6y B Uo0l/88ZSZSZ/6Y € Ud0lZg | L0L/10p/pd-ajo1lE/uoolnpa 1w 1081p//:dny wolj papeojumoq



Figure A2.3. Descriptive
statistics for the FRN model for
the AFC and PSFC. Error
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was no effect of PE (p = .92), but there was an effect for
positive feedback in the AFC, F(1, 15295.69) = 26.84, p <
.001, b = 1.67. Participants showed more negative ampli-
tudes for low PE values than for high PE values.

As hypothesized, we thus found that the effect of the
factor feedback valence was modulated by feedback tim-
ing and association type. Only for immediate feedback,
the valence effect (i.e., more negative amplitude for nega-
tive than positive feedback) was stronger for action—
feedback than for stimulus—feedback associations. This
pattern emerged, however, because the feedback valence

effect was reduced for stimulus—feedback associations for
immediate feedback compared with all other conditions
(see Figure A2.4).

N170. For the analysis of the N170, we used a model
including association type, feedback timing, feedback
valence, and PE as fixed effect factors, as well as the main
effects of hemisphere and feedback timing and their inter-
action as random effects. The tables of results for the
model, the grand averages, and the descriptive data are
depicted below (Figures A2.5 and A2.6, Tables A2.4 and

Table A2.2. F and p Values for the LME Analysis on the FRN/RewP Amplitude for the AFC and PSFC

Effects Num DF Den DF F b

Association type 1.00 38.48 1.40 244
Feedback timing 2.00 40.33 5.11 .011
Feedback valence 1.00 47.60 102.19 <.001
PE 1.00 9588.29 7.12 .008
Association Type X Feedback Timing 2.00 40.33 0.17 .840
Association Type X Feedback Valence 1.00 47.60 0.90 349
Feedback Timing X Feedback Valence 2.00 17734.65 0.72 489
Association Type X PE 1.00 9588.29 6.51 .011
Feedback Timing X PE 2.00 17712.54 0.08 926
Feedback Valence X PE 1.00 17785.19 8.09 .004
Association Type X Feedback Timing X Feedback Valence 2.00 17734.65 6.53 .001
Association Type X Feedback Timing X PE 2.00 17712.54 1.41 244
Association Type X Feedback Valence X PE 1.00 17785.19 5.75 .017
Feedback Timing X Feedback Valence X PE 2.00 16682.57 1.22 295
Association Type X Feedback Timing X Feedback Valence X PE 2.00 16682.57 0.04 957

Association type (AFC vs. PSFC), feedback timing (immediate, delayed without tone, delayed with tone), feedback valence (negative vs. positive), and

PE (unsigned PE)
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Table A2.3. b Values, Confidence Intervals, and ¢-test Results of the LME Analysis on the FRN/RewP Amplitude for the AFC and PSFC

Effects b SE daf t 2 25% Cl  97.5% CI
Intercept 2.67 0.34 38.48 775 <.001 2.01 3.37
Association type -0.82  0.09 38.48 1.18 244 —2.14 0.63
Delayed feedback with tone —-0.02 035 40.96  0.05 958 —0.67 0.59
Delayed feedback without tone 1.29 047 39.78 2.73 .009 0.45 2.28
Feedback valence 1.62  0.16 47.60 0.11 <.001 1.32 1.93
PE 0.42 0.16 9588.29  2.67 .008 0.11 0.76
Association Type X Delayed Feedback With Tone —-0.02  0.69 40.96  0.03 979 —-1.35 1.51
Association Type X Delayed Feedback Without Tone 0.47 095 39.78  0.50 .623 -1.29 2.46
Association Type X Feedback Valence —0.30 0.32 47.60 095 349 —0.93 0.30
Delayed Feedback With Tone X Feedback Valence 025 023 1773514 1.09 276 —0.20 0.73
Delayed Feedback Without Tone X Feedback Valence 0.03 023 1773212 0.11 913 —0.43 0.49
Association Type X PE -0.80 0.31 9588.29  2.55 .011 —1.40 —0.21
Delayed Feedback With Tone X PE 0.06 036 1772046 0.17 865 —0.61 0.78
Delayed Feedback Without Tone X PE -0.08 037 1772136 023 819 —0.87 0.69
Feedback Valence X PE 093 033 1778519 2.84 .004 0.30 1.61
Association Type X Delayed Feedback With Tone X 1.58 046 17735.14 3.47 .001 0.65 2.46
Feedback Valence
Association Type X Delayed Feedback Without Tone X 039 047 1773212 0.82 409 —0.52 1.32
Feedback Valence
Association Type X Delayed Feedback With Tone X PE 057 0.73 1772046 0.78 436 —1.09 2.04
Association Type x Delayed Feedback Without Tone X PE =0.68 0.73 1772136 093 354 —2.26 0.76
Association Type X Feedback Valence X PE —-156 0.65 17785.19 240 .017 —2.80 —0.19
Delayed Feedback With Tone X Feedback Valence X PE —-1.03 0.78 16213.38 1.33 .182 —2.58 0.48
Delayed Feedback Without Tone X Feedback Valence X PE —1.06 0.79 1747754 134 .180 —2.75 0.39
Association Type X Delayed Feedback With Tone X 0.07 155 16213.38 0.04 .966 —2.93 3.08
Feedback Valence X PE
Association Type X Delayed Feedback Without Tone X 044 158 1747754 0.28 779 —-2.83 3.40

Feedback Valence X PE

b = beta estimate; SE = standard error; CI = confidence interval. The sign of the b-estimates indicates the direction of main effects for the fixed-
effects predictors association type (action [—0.5] vs. stimuli active [0.5]), feedback timing (simple coding contrast matrix with immediate feedback
set as baseline that is compared with delayed feedback with tone and delayed feedback without tone), feedback valence (negative [—0.5] vs. positive

[0.5]), and mean centered unsigned PE.

A2.5). Again, we focus on the factors of main interest, asso-
ciation type, and feedback timing, in interaction with other
factors.

As for the analysis reported in the main text, there were
significant main effects of feedback timing, F(2, 43.53) =
24.88, p < .001, and feedback valence F(1, 47.82) = 10.56,
p = .002. However, there was a significant two-way inter-
action between association type and feedback timing,
F(2,43.53) = 10.63, p < .001, which did not emerge in
the analysis reported in the main article. For a display of
the interaction, see Figure A2.7 (A). Although there

was a main effect of feedback timing for the AFC, F(2,
42.25) = 5.49, p = .008, there was only a trend for the dif-
ference between delayed feedback with tone and immedi-
ate feedback in the AFC (p = .083, b = —0.89) and no
difference between delayed feedback without tone and
immediate feedback in the AFC (p = .890). For the PSFC,
the feedback timing effect was stronger, F(2, 45.11) =
32.56, p < .001, with significantly more negative ampli-
tudes for delayed feedback without tone compared with
immediate feedback in the PSFC (p < .001, b = —2.52)
and significantly more negative amplitudes for delayed

Rohlinger et al. 23
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Figure A2.4. Interaction between association type (AFC vs. PSFC),
feedback timing, and feedback valence on the FRN/RewP. Error bars
represent 95% confidence intervals.

feedback with tone compared with immediate feedback
in the PSFC (p < .001,b = —3.71).

This interaction could be further explained by a three-
way interaction between association type, feedback
timing, and feedback valence (see Figure A2.7, B). In the
resolution of this interaction, however, no differential pat-
tern of valence coding was found for any of the conditions
(p = .27 for the Feedback Timing X Feedback Valence
interaction in the PSFC, p = .054 in the AFC).

We additionally found a three-way interaction between
association type, feedback valence, and PE, as in the

analysis reported in the main text. A significant interaction
between feedback valence and PE emerged for both the
AFC, F(1, 35258.96) = 5.73, p = .017, and the PSFC, F(1,
34840.33) = 12.71, p < .001, but the effects were reversed
in the two groups: For the AFC, a PE effect emerged not for
negative (p = .28) but only for positive feedback, F(1,
24746.49) = 5.59, p = .018, b = —0.67. The higher the
PE, the more negative the N170 amplitude, which was
the same pattern as reported in the main analysis. For
the PSFC, there was a PE effect for negative feedback,
F(1,20122.58) = 6.51, p = .011, b = —0.71, and positive
feedback, F(1, 22965.52) = 6.66, p = .010, b = 0.73. For
negative feedback, higher PE values led to more negative
N170 amplitudes, but for positive feedback, higher PE
values led to more positive N170 amplitudes, thus resem-
bling the pattern described for the FRN/RewP.

Finally, the four-way interaction between association
type, feedback timing, feedback valence, and PE was signif-
icant, as in the analysis on the AFC and the ASFC in the
main article. For the AFC, there was (only) a trend for an
interaction between feedback timing, feedback valence,
and PE. Although the pattern of PE coding in the N170,
as described in the main article, was visible in all feedback
timing conditions, it seemed to be most pronounced for
immediate feedback for action—feedback associations, so
that the pattern, despite the nonsignificant interaction, is
roughly comparable between the results reported in the
main article and the ones reported here. For the PSFC,
however, there was a significant interaction between feed-
back timing, feedback valence, and PE, F(2, 15704.16) =
3.04, p = .048, in contrast to what was reported in the main
article. For the PSFC, with delayed feedback without tone,
there was no significant interaction between feedback
valence and PE (p = .92). Such an interaction did emerge
for delayed feedback with tone, F(1,17919.60) = 7.85,p =

Figure A2.5. Grand averages of
the N170 for the AFC and PSFC.
Error margins represent
standard errors.
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Figure A2.6. Descriptive
statistics for the N170 model for
the AFC and PSFC. Error
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.005, and immediate feedback, F(1, 33075.55) = 11.51,
p = .001. A significant main effect of PE showed for the
PSFC with positive delayed feedback with tone, F(1,
24266.87) = 7.18, p = .007, b = 1.28. The larger the PE,
the more positive the N170 amplitude. No PE effect
emerged for negative feedback (p = .15). For the PSFC
with positive immediate feedback, no PE effect emerged
(p = .133), but for negative feedback, F(1, 33451.01) =
11.57, p = .001, b = —1.56. The larger the PE, the more
negative the N170 amplitude.

To summarize, our analyses revealed the hypothesized
interaction between association type and feedback timing,
with higher N170 amplitudes for delayed than immediate
feedback in the PSEC, but not in the AFC. As in the analysis
reported in the main article, also the four-way interaction
reached significance, indicating that PE coding was modu-
lated by feedback timing and association type. Due to the
differences in learning and thus PE distribution between
the AFC and the PSFC, we will focus on the pattern found
in the analysis in the main article.

Table A2.4. F and p Values for the LME Analysis on the N170 Amplitude for the AFC and PSFC

Effects Num DF Den DF F p

Association type 1.00 38.27 1.84 183
Feedback timing 2.00 43.53 24.88 <.001
Feedback valence 1.00 47.82 10.56 .002
PE 1.00 11919.56 0.38 537
Association Type X Feedback Timing 2.00 43.53 10.63 <.001
Association Type X Feedback Valence 1.00 47.82 2.40 128
Feedback Timing X Feedback Valence 2.00 35495.17 0.25 .782
Association Type X PE 1.00 11919.60 0.48 488
Feedback Timing X PE 2.00 35223.42 1.97 139
Feedback Valence X PE 1.00 35091.40 0.64 425
Association Type X Feedback Timing X Feedback Valence 2.00 35495.16 3.97 .019
Association Type X Feedback Timing X PE 2.00 35223.43 1.17 310
Association Type X Feedback Valence X PE 1.00 35091.44 17.71 <.001
Feedback Timing X Feedback Valence X PE 2.00 18049.55 1.84 159
Association Type X Feedback Timing X Feedback Valence X PE 2.00 18049.69 3.96 .019

Association type (AFC vs. PSFC), feedback timing (immediate, delayed without tone, delayed with tone), feedback valence (negative vs. positive), and

PE (unsigned PE).
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Table A2.5. b Values, Confidence Intervals, and #-test Results for the LME Analysis on the N170 Amplitude for the AFC and PSFC

Effects b SE df t 2 2.5% CI  97.5% CI
Intercept -6.19 0.71 229 =871 .008 —7.59 —4.80
Association type 1.13  0.83 38.27 1.36 .183 —0.59 2.68
Delayed feedback with tone —1.23 0.28 4134 —436 <.001 —1.76 —0.67
Delayed feedback without tone —-230 034 40.72 —6.75 <.001 295 -1.63
Feedback valence 0.47 0.14 47.82 3.25 .002 0.20 0.75
PE —-0.09 0.14 1191956 —0.62 537 —0.39 0.20
Association Type X Delayed Feedback With Tone —-2.58 0.57 4134 —456 <.001 —3.63 —1.48
Association Type X Delayed Feedback Without Tone —2.81 0.68 40.72  —4.13 <.001 —4.19 —1.52
Association Type X Feedback Valence —0.44 0.29 47.82 —1.55 128 —0.98 0.10
Delayed Feedback With Tone X Feedback Valence 0.13  0.20 35547.34 0.63 .530 —-0.28 0.54
Delayed Feedback Without Tone X Feedback Valence 0.01 0.21 35469.87 0.04 964 —0.39 0.43
Association Type X PE 0.19 0.28 11919.60 0.69 488 —0.39 0.71
Delayed Feedback With Tone X PE 0.64 032 35208.39 1.98 .047  —0.03 1.30
Delayed Feedback Without Tone X PE 0.30 032 35277.54 0.93 351 —0.31 0.89
Feedback Valence X PE 023 029 35091.41 0.80 425 —0.33 0.77
Association Type X Delayed Feedback With Tone X —1.12 040 3554734 —2.78 .005 —1.97 —0.40
Feedback Valence
Association Type X Delayed Feedback Without Tone X —0.74 041 35469.85 —1.80 .072 -1.57 0.10
Feedback Valence
Association Type X Delayed Feedback With Tone X PE -0.07 0.65 3520842 —0.11 911 -1.30 1.12
Association Type X Delayed Feedback Without Tone X PE 0.83 0.65 35277.52 1.28 201 —0.49 2.26
Association Type X Feedback Valence X PE 242 0.57 35091.44 421 <.001 131 3.66
Delayed Feedback With Tone X Feedback Valence X PE -0.31 0.68 23113.18 —0.46 .646 -1.71 1.06
Delayed Feedback Without Tone X Feedback Valence X PE 098 0.69 27046.50 1.42 157 -0.35 2.32
Association Type X Delayed Feedback With Tone X —-3.76 137 2311339 —2.75 .006 —06.39 —-1.15
Feedback Valence X PE
Association Type X Delayed Feedback Without Tone X —2.54 139 2704644 —1.83 .067 —5.12 —0.11

Feedback Valence X PE

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors association type (action [—0.5] vs. stimuli active
[0.5]), feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is compared with delayed feedback with tone
and delayed without tone), feedback valence (negative [—0.5] vs. positive [0.5]), and mean centered unsigned PE.

Section A3
PE Model Comparisons

M, had the lowest Akaike information criterion (AIC)
value, AIC = 448.74. To determine whether the model
performed indeed significantly better as the other models,
we performed one-sided dependent-samples ¢ tests to
compare the negative log likelihood values of each partic-
ipant for each of the other three models with Model 2.
Because this meant three statistical tests, results were
interpreted on a Bonferroni-corrected alpha value of

26 Journal of Cognitive Neuroscience

.017. M, had significantly smaller negative log likelihood
values than all other models. For detailed statistical results,
see the table below.

Section A4

Statistical Comparison of the Reinforcement Learning
Models between AFC, ASFC, and PSFC

To determine if the enhanced accuracy variance in the test
trials that we found for the PSFC (see Section Al) also
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affects the reinforcement learning models and thus the
PEs, we compared the residual errors for the calculation
of the subjective values of the stimuli based on the test tri-
als (see Section A2 for details) between the three associa-
tion type conditions (across feedback timings) using a
one-factor ANOVA. Although the reinforcement learning
model could also be calculated based on the learning trials
in the ASFC and the AFC, these conditions also entailed
test trials without feedback so that the reinforcement
learning model could also be based on accuracy in the test

trials, as in the PSFC (see Section A2 of the Appendix). We
found a significant effect of association type on the resid-
ual errors of the reinforcement learning model, F(2, 58) =
33.60, p < .001. Bonferroni-corrected pairwise compari-
sons revealed that the error in the PSFC was significantly
higher than in the AFC (p < .001) and in the ASFC (p <
.001), but no difference could be observed between AFC
and ASFC (p > .999). The subjective stimulus values, and
with them the PEs, could thus be calculated less accurately
in the PSFC compared with the other conditions.

Table A3.1. Statistical Comparison of the Three Other Models to Model 2

Model AIC Mean Difference to M, daf t p
M, 448.74

M, 490.28 —21.77 39 —4.08 <.001
M 473.04 —12.15 39 —4.97 <.001
My 521.35 —32.31 39 —4.43 <.001
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Table A4.1. b Values, Confidence Intervals, and #-test Results for the GLME Analysis on Accuracy

Effects b SE z b 2.5% CI 97.5% CI
Intercept <.001 0.79 1.22
Block 0.50 0.14 3.46 <.001 0.21 0.77
Association type 0.71 0.23 3.04 .002 0.25 1.21
Delayed feedback without tone 0.01 0.13 0.12 907 —0.22 0.26
Delayed feedback with tone 0.06 0.09 0.68 497 —0.10 0.24
Block X Association Type 0.36 0.29 1.25 212 —0.20 0.89
Block X Delayed Feedback Without Tone 0.18 0.18 0.95 343 -0.29 0.64
Block X Delayed Feedback With Tone 0.09 0.25 0.35 725 —0.47 0.58
Association Type X Delayed Feedback Without Tone —0.02 0.25 —0.09 926 —0.49 0.39
Association Type X Delayed Feedback With Tone 0.04 0.19 0.23 .819 —0.40 0.36
Block X Association Type X Delayed Feedback Without Tone —0.68 0.36 —1.89 .059 —1.38 0.18
Block X Association Type X Delayed Feedback With Tone —0.33 0.50 —0.66 510 —1.37 1.00

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors block (1 [—0.5], 2 [—0.167], 3 [0.167], 4 [0.5]),
association type (AFC [—0.5] vs. ASFC [0.5]), and feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is
compared with delayed feedback with tone and delayed feedback without tone).

28  Journal of Cognitive Neuroscience
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Table A4.2. b Values, Confidence Intervals, and #-test Results of the LME Analysis on the FRN/RewP Amplitude

Effects b SE df t 2 25% CI  97.5% CI
Intercept 2.67 032 38.56 831 <.001 2.06 3.30
Association type —-0.82  0.64 38,56 —1.28 207 —2.12 0.39
Delayed feedback without tone 029 0.35 40.94 0.84 407 —0.45 0.87
Delayed feedback with tone 0.70 0.34 41.31 2.07 .045 0.04 1.36
Feedback valence 158 0.13 53.27 11.71 <.001 1.32 1.81
PE 0.59 0.15 6095.48 3.80 <.001 0.28 0.89
Association Type X Delayed Feedback Without Tone 0.56  0.70 40.94 0.80 427 —0.81 1.85
Association Type X Delayed Feedback With Tone -0.69 0.68 4131 -1.01 316 —-1.97 0.70
Association Type X Feedback Valence —-0.48 0.27 5327 —1.78 .080 —1.04 0.07
Delayed Feedback Without Tone X Feedback Valence -0.68 0.23 1779659 —3.00 .003 -—-1.15 —0.24
Delayed Feedback With Tone X Feedback Valence —-0.30 0.23 1779847 —1.30 192 -0.77 0.12
Association Type X PE -0.60 031 6695.48 —1.94 .052 —1.24 —0.01
Delayed Feedback Without Tone X PE —-0.55 037 17747.66  —1.49 136 —1.30 0.15
Delayed Feedback With Tone X PE -031 036 17781.7 —0.86 388 —1.04 0.40
Feedback Valence X PE 2,52 032 17851.58 7.86 <.001 1.94 3.18
Association Type X Delayed Feedback Without Tone X -0.53 046 1779659 —1.16 246 —1.49 0.31
Feedback Valence
Association Type X Delayed Feedback With Tone X —0.25 046 17798.47 —0.55 .584 -1.19 0.55
Feedback Valence
Association Type X Delayed Feedback Without Tone X PE -~ =111  0.74 17747.66 —1.51 130 —2.53 0.41
Association Type X Delayed Feedback With Tone X PE =1.05 0.73 17781.70 —1.44 149 —2.57 0.39
Association Type X Feedback Valence X PE 142  0.64 17851.58 2.20 .028 0.21 2.83
Delayed Feedback Without Tone x Feedback Valence X PE ~ —0.74 0.78 17165.48 —0.95 343 —2.32 0.82
Delayed Feedback With Tone X Feedback Valence X PE —-192 0.77 16844.95 —2.49 .013 —3.46 —0.33
Association Type X Delayed Feedback Without Tone X 0.27 156 17165.48 0.18 861 —2.48 3.30
Feedback Valence X PE
Association Type X Delayed Feedback With Tone X —1.24 155 1684495 —0.80 422 —4.15 1.90

Feedback Valence X PE

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors association type (AFC [—0.5] vs. ASFC [0.5]),
feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is compared with delayed feedback with tone and
delayed feedback without tone), feedback valence (negative [—0.5] vs. positive [0.5]), and mean centered unsigned PE.

Rohlinger et al.
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Table A4.3. b Values, Confidence Intervals, and #-test Results for the LME Analysis on the N170 Amplitude

Effects b SE daf t 2 25%CI  97.5% CI
Intercept —6.33  0.59 2.87 —10.80 002 747 —5.09
Association type 0.81 0.76 38.30 1.08 .289 -0.71 2.26
Delayed feedback without tone —-0.28 0.32 40.47 —0.88 384 -0.95 0.33
Delayed feedback with tone —-1.22 032 40.75 —3.82 .001 -—1.82 —0.64
Feedback valence 0.62  0.17 4432 3.01 .001 0.28 0.97
PE —-0.21 0.13 21005.49 -1.61 107 —0.47 0.05
Association Type X Delayed Feedback Without Tone —-0.77 0.64 40.47 —1.20 239 —2.00 0.58
Association Type X Delayed Feedback With Tone —0.69 0.64 40.75 —1.08 .285 —1.96 0.73
Association Type X Feedback Valence —-0.24 034 44.32 —0.69 492 —0.90 0.49
Delayed Feedback Without Tone X Feedback Valence 053 0.19 35716.30 2.75 .006 0.11 0.93
Delayed Feedback With Tone X Feedback Valence 0.07 0.20 35714.45 0.33 738 —0.32 0.47
Association Type X PE -0.09 0.27 21005.60 —0.34 732 —0.69 0.44
Delayed Feedback Without Tone X PE 0.84 031 35684.79 2.71 .007 0.23 1.44
Delayed Feedback With Tone X PE 0.22 031 3568195 0.73 467 —0.38 0.86
Feedback Valence X PE —-157 0.27 « 35460.14 =5.77 .001  -2.09 -1.05
Association Type X Delayed Feedback Without Tone X -0.37 039 35716.30 —0.95 340 -1.18 0.35
Feedback Valence
Association Type X Delayed Feedback With Tone X —0.72- 039 35714.45 -1.83 .067 —1.45 0.09
Feedback Valence
Association Type X Delayed Feedback Without Tone X PE 0.50 0.62 35684.79 0.80 421 —0.81 1.75
Association Type X Delayed Feedback With Tone X PE 032 0.62 35681.94 0.53 .599 —0.97 1.51
Association Type X Feedback Valence X PE —1.48 054 35460.08 —2.72 007 —2.54 —0.46
Delayed Feedback Without Tone X Feedback Valence X PE 0.24 0.65 27098.51 0.37 711 -0.92 1.40
Delayed Feedback With Tone X Feedback Valence X PE 048 0.65 27326.96 0.74 4601 -0.78 1.70
Association Type X Delayed Feedback Without Tone X —239 131 27098.28 —1.83 .068 —4.90 0.22
Feedback Valence X PE
Association Type X Delayed Feedback With Tone X —-3.64 130 27326.66 -2.79 .005 —6.14 -1.09

Feedback Valence X PE

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors association type (AFC [—0.5] vs. ASFC [0.5]),
feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is compared with delayed feedback with tone and

delayed without tone), feedback valence (negative [—0.5] vs. positive [0.5]), and mean centered unsigned PE.
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ABSTRACT

With increasing feedback delay, feedback processing appears to shift from the striatum to the hippocampus. In addition,
higher-order sensory areas might be involved in bridging a temporal gap between stimulus and feedback by reactivating the
representation of the feedback-predicting stimulus during feedback processing. We hypothesized that the feedback-locked N170,
an occipito-temporal event-related potential (ERP) component linked to higher-order visual processing, is more pronounced
when delayed feedback is provided for choices between visual compared to auditory stimuli. 35 subjects completed a probabilistic
feedback learning task with immediate (1s) and delayed (7s) monetary feedback for choices between visual or auditory stimuli.
Participants successfully learned to choose the more rewarding stimuli irrespective of stimulus modality. For the N170 amplitude
over the right hemisphere, we found an interaction between feedback timing and the modality of the chosen stimulus. Only for
delayed feedback, the N170 was more pronounced for choices between visual than auditory stimuli. Moreover, in this condition,
the N170 amplitude particularly reflected the reward prediction error (PE), with larger amplitudes for positive PEs and lower
amplitudes for negative PEs. This suggests that the N170 reflects feedback-locked reactivations in higher-order visual areas
mediated by the reward PE. While these effects need to be studied further, we discuss the N170 as a counterpart to the feedback-
related negativity (FRN) regarding interacting influences of feedback valence, feedback timing, and PE.

1 | Introduction

Numerous studies underpin the involvement of a dopaminer-
gic, striatal, mesocorticolimbic reward system in processing
performance feedback, that is, when human study partici-
pants receive positive or negative outcomes for their choice ac-
tions (for reviews, see Delgado 2007; Haber and Knutson 2010;
Wang et al. 2016). However, neural mechanisms involved in
feedback processing are affected by the temporal proximity of
an action and its outcome (Jocham et al. 2016). A study by
Foerde and Shohamy (2011) underlined the role of striatal ac-
tivity in processing immediate feedback but found pronounced

hippocampal activity in processing delayed feedback (after a
couple of seconds). Causal inferences concerning the neural
mechanisms of processing immediate and delayed feedback
could be drawn from lesion studies: Parkinson's disease pa-
tients suffering from striatal dysfunctions (Damier et al. 1999)
had problems learning from immediate, but not from delayed
feedback (Foerde and Shohamy 2011). Conversely, amnes-
tic patients with presumed lesions in the medial temporal
lobe (MTL) including the hippocampus had problems learn-
ing from delayed, but not from immediate feedback (Foerde
et al. 2013). Staresina and Davachi (2009) suggested that the
role of the hippocampus is to bind representations separated
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by space and time to bridge gaps in our experience. Several
researchers have suggested that, in the absence of immediate
feedback to the striatum, the MTL may be recruited to bind
an individual's response with the delayed feedback, despite
their separation in time (Arbel et al. 2017; Foerde et al. 2013;
Peterburs et al. 2016).

In studies assessing neural feedback processing by means
of electroencephalography (EEG), delays have been found
to differentially affect two event-related potential (ERP)
components that have been associated with the reward sys-
tem and the MTL, respectively (Arbel et al. 2017; Holtje and
Mecklinger 2020; Kim and Arbel 2019; Peterburs et al. 2016).
The feedback-related negativity (FRN) peaks around 250 to
300ms after feedback presentation at frontocentral elec-
trode sites and is more pronounced for negative than posi-
tive feedback (Becker et al. 2014; Bellebaum and Daum 2008;
Foti et al. 2011; Holroyd and Coles 2002; Miltner et al. 1997;
Nieuwenhuis et al. 2004), possibly because a positive compo-
nent referred to as Reward Positivity (RewP; for a review see
Proudfit 2015) drives the signal toward positive amplitudes for
positive feedback. The amplitude of the signalin the FRN/RewP
time window reflects a prediction error (PE) that indicates
whether feedback is better or worse than expected (Burnside
et al. 2019; Fischer and Ullsperger 2013; Kirsch et al. 2022;
Sambrook and Goslin 2015; Weber and Bellebaum 2024). A
PE is encoded by midbrain dopaminergic neurons, for in-
stance in the substantia nigra (Schultz et al. 1997; Zaghloul
et al. 2009), suggesting that the FRN indirectly reflects activ-
ity of the midbrain dopamine system (Foti et al. 2015; Hauser
et al. 2014; Holroyd and Coles 2002). Williams et al. (2020)
provide evidence that the FRN reflects an underlying learn-
ing process that drives behavioral adaptation based on PEs.
Having been linked to striatal activity (Becker et al. 2014;
Carlson et al. 2011; Foti et al. 2011), and thus a dopamine pro-
jection site (Chuhma et al. 2023; Oldehinkel et al. 2022; Zhang
et al. 2015), the FRN difference wave for negative —positive
feedback better differentiates feedback valence when feed-
back is presented immediately (Arbel et al. 2017; Holtje and
Mecklinger 2020; Peterburs et al. 2016; Weinberg et al. 2012;
Weismiiller and Bellebaum 2016). Evidence suggests, however,
that the FRN is not directly generated by the striatum (Cohen
et al. 2011), but by the medial prefrontal cortex, more specif-
ically, the anterior cingulate cortex (Nieuwenhuis et al. 2005;
Hauser et al. 2014; Becker et al. 2014; Oerlemans et al. 2025),
which in turn receives projections from the striatum (Chau
et al. 2018; Hauser et al. 2014).

In contrast, the N170, a negative deflection about 170 ms after
visual stimulus presentation at lateral temporal electrode
sites (Bentin et al. 1996), was repeatedly found to be more
pronounced for delayed than immediate feedback (Arbel
et al. 2017; Holtje and Mecklinger 2020; Kim and Arbel 2019;
but see Albrecht et al. 2023, for the opposite pattern). Arbel
et al. (2017) and Kim and Arbel (2019) hypothesized that the
N170 is generated by a delayed reward signal to reinforce a
memory representation of a stimulus stored in the MTL. In
this line, Baker and Holroyd (2009) demonstrated that the spa-
tial location of feedback stimuli elicited a pronounced N170
response associated with right MTL activation in a naviga-
tional feedback learning task. In subsequent studies, Baker

and Holroyd (2013) and Baker et al. (2015) localized the N170
in this task to the right parahippocampal region, proposing
that the parahippocampal cortex encodes salient information
essential for spatial navigation.

With the present work we aim to investigate an alternative
explanation regarding larger N170 amplitudes for delayed
feedback: The N170 is usually investigated in the context of
higher visual processing, being particularly pronounced for
faces (Bentin et al. 1996; Itier and Taylor 2004; for a review see
Yovel 2016) and words (for a review see Carreiras et al. 2014),
but also cars (Kloth et al. 2013). For faces and words, an ori-
gin in the fusiform gyrus was found (Brem et al. 2006; Deffke
et al. 2007; Gao et al. 2019; Iidaka et al. 2006), which contains
specialized regions for diverse stimulus categories (Cohen
et al. 2002; Kanwisher et al. 1997; for an overview see Weiner
and Zilles 2016). Thus, a pronounced N170 after delayed feed-
back may indicate the activation of higher-order visual areas
during the processing of (delayed) feedback, possibly medi-
ated by the MTL.

If feedback is delayed, a reactivation of the representations of
the associated stimulus might be the mechanism to bridge the
temporal gap between stimulus and feedback. Support for this
assumption comes from several fMRI studies: For example,
participants in a study by Pleger et al. (2008) had to discrimi-
nate somatosensory stimuli regarding their frequency (high vs.
low) and were rewarded for correct judgments. Notably, the pri-
mary somatosensory cortex was reactivated when reward was
presented, an effect mediated by dopamine (Pleger et al. 2009).
In a study by Schiffer et al. (2014), reward activated stimulus-
category-specific representations of reward-associated stimuli
in visual association cortices.

In the present study, we want to examine whether the N170
for delayed feedback represents a reactivation of a previously
selected visual stimulus to bridge the temporal gap and assign
credit to the stimulus. To test this, we manipulate the modal-
ity of the stimuli between which participants have to choose
in a feedback learning task. More specifically, participants re-
ceive visual feedback for choices between two visual or two
auditory stimuli. We hypothesize that the N170 has a larger
amplitude when the feedback is associated with visual than
with auditory stimuli and that this effect is stronger for de-
layed compared to immediate feedback. Given that the right
hemisphere plays a dominant role in processing certain vi-
sual stimuli, such as faces (Rossion 2014), and in N170 gen-
eration in different contexts (Baker and Holroyd 2009; Baker
and Holroyd 2013; Baker et al. 2015; Kim and Arbel 2019), we
were particularly interested in whether the effects would be
stronger over the right hemisphere. In addition, we explore
whether the PE is represented in the N170, possibly depend-
ing on stimulus modality, feedback timing, and hemisphere.
For this purpose, we will model trial-by-trial fluctuations of
the PE using the behavioral learning data. Given that the hip-
pocampus shows PE-related activity (Dickerson et al. 2011)
and that the N170 may be mediated by MTL processing, it is
conceivable that the PE is reflected in the N170 amplitude,
especially following delayed feedback for the choice between
visual stimuli and over the right hemisphere. Regarding the
FRN, we aimed to replicate previous effects for PE coding and
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effects of the timing of feedback and explore effects of the mo-
dality of the stimulus associated with the feedback in interac-
tion with these factors, without a specific hypothesis.

2 | Method
2.1 | Participants

The sample size was planned a priori and based on the num-
ber of participants in previous studies investigating the effects
of feedback timing on FRN and N170: Arbel et al. (2017) found
a significant effect of feedback timing on the N170 in a study
with 21 subjects. In the planned study, we were particularly in-
terested in the interaction between feedback timing and stim-
ulus modality and also in higher-order interactions (see Data
Analysis for details), which suggests that a larger sample size
was needed to reach adequate power. We thus preregistered to
recruit 40 healthy young adults (18-40years) for participation in
the experiment. Exclusion criteria were a history of neurologi-
cal or psychiatric disorders, the regular or acute consumption
of substances affecting the central nervous system, knowledge
about Hiragana-Characters, uncorrected impaired vision, and
impaired hearing. Of 40 acquired participants, we excluded five
participants, three of them because they fulfilled at least one of
our exclusion criteria, one because of bad EEG data quality due
to alpha waves, and one due to technical problems. The final
sample included in the analyses thus consisted of 35 partici-
pants, 30 women and 5 men, 2 left-handed and 33 right-handed.
The mean age was 23.2years (SD=4.5years, Min=19years,
Max=35years).

2.2 | Experimental Task and Conditions

Participants underwent a probabilistic feedback learning task,
in which they could learn associations between stimuli and
positive or negative monetary feedback (feedback valence:
+4 ct vs. =2 ct). The task comprised the two within-subject
factors Stimulus Modality and Feedback Timing: On every
trial, each participant could choose between two stimuli. In
half of the trials of the experiment, the choice was between
two visual stimuli; in the other half of the trials, the choice
was between two auditory stimuli (factor Stimulus Modality).
Figure 1A shows an exemplary trial for the choice between
visual and Figure 1B for the choice between auditory stimuli.
Furthermore, feedback appeared 1s (immediate feedback) or
7s (delayed feedback) after participants’ choice and was always
presented visually on the screen (factor Feedback Timing).
Participants completed four learning phases with stimuli of
one modality (either visual or auditory) before switching to
stimuli of the other modality, again for four learning phases,
with the order of modalities counterbalanced across partici-
pants. In each learning phase, a new stimulus pair was pre-
sented, and there were thus eight stimulus pairs in total, four
visual and four auditory pairs. Feedback timing (immediate or
delayed) remained consistent throughout the phase. The feed-
back timing changed only at the beginning of a new learn-
ing phase, coinciding with the presentation of a new stimulus
pair. Thus, feedback timing varied across phases, with the
starting condition counterbalanced across participants. Each

A | Feedback Learning Task with Visual Stimuli
500 ms

1000 ms or
7000 ms

max. 3000

1000 ms

B | Feedback Learning Task with Auditory Stimuli

500 ms

max. 3000

1000 ms or
7000 ms
1000 ms

C | Visual Stimuli

65% wins 35% wins
35% losses  65% losses

D | Auditory Stimuli

65% wins 35% wins
35% losses 65% losses

O

FIGURE 1 | Stimuli and time course of the probabilistic feedback
learning tasks. Participants were instructed that the red cross repre-
sented a loss of —2 ct while the green tick represented a gain of +4 ct. (A)
Feedback learning task with visual stimuli: The assignment of visual
stimuli to the left and right sides of the screen was counterbalanced. In
this way, feedback could clearly be associated with a stimulus and not
with a response side. (B) Feedback learning task with auditory stimuli:
The assignment of auditory stimuli to the left and right ears was coun-
terbalanced. In this way, feedback could clearly be associated with a
stimulus and not with a response side. (C) Visual stimuli: The neigh-
boring stimuli form the four pairs used for all participants. The more
rewarding stimulus (65% wins, 35% losses) was determined randomly
when a new stimulus pair was presented. (D) Auditory stimuli: The
neighboring stimuli form the four pairs used for all participants. The
more rewarding stimulus (65% wins, 35% losses) was determined ran-
domly when a new stimulus pair was presented.

learning phase consisted of 80 trials and was further divided
into 4 blocks of 20 trials. Overall, each participant thus com-
pleted 640 trials.

In the visual condition, in every trial a pair of visual stim-
uli was presented on screen for maximally 3000 ms, one on
the left and one on the right side of a centrally presented
fixation cross. As stimuli, we used Hiragana-like characters
(see Figure 1C) that cannot easily be verbalized (see Frank
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et al. 2004). Participants could choose one of the two stimuli
by pressing the corresponding (left vs. right) control key on a
computer keyboard. The assignment of visual stimuli to the
left and right side of the screen was counterbalanced. In this
way, feedback could clearly be associated with a stimulus and
not with a response side.

In the auditory condition, a pair of auditory stimuli was pre-
sented simultaneously via headphones for maximally 3000 ms,
one to the left and one to the right ear, while participants’ eyes
rested on a fixation cross on the screen. As stimuli, we used
different melodies played by different instruments to increase
distinctiveness (see Figure 1D and listen to an example https://
tinyurl.com/mrxtjvt2). Auditory stimuli were downloaded
from Pixabay (https://pixabay.com/) and edited with Audacity
(https://www.audacityteam.org/). Participants could choose
one of the two stimuli by pressing the corresponding (left vs.
right) control key on a computer keyboard. The assignment of
auditory stimuli to the left and right ear was counterbalanced.
In this way, feedback could clearly be associated with a stimulus
and not with a response side.

After their choice, feedback was presented. Unbeknown to the
participants, one stimulus of each pair was associated with re-
ward in 65% of the trials and with punishment in 35%, while
probabilities were reversed for the other stimulus. We chose
these contingencies to prevent ceiling effects, as learning with
just one stimulus pair at a time in an 80-trial learning phase
might be too easy with higher contingencies. Additionally, these
contingencies ensured relatively balanced frequencies of posi-
tive and negative feedback, minimizing the risk that one type
of feedback would elicit different ERPs simply due to its lower
occurrence frequency. The participants' task was to learn which
stimulus was more likely to be rewarded and thereby maximize
reward through their choices. Both wins and losses contributed
to the overall sum of money.

2.3 | Procedure and Data Acquisition

Upon arrival in the laboratory, participants were informed
about the experimental procedure and gave written informed
consent to participate in the study, followed by a demographic
questionnaire. Afterwards, we attached EEG electrodes and
placed participants in front of a 27 in, 1920 x 1080 px W-LED
monitor (BENQ EW2740L) with a refresh rate of 60 Hz, where
the experimental task began, lasting about 60 min. Auditory
stimuli were presented via dynamic stereo headphones
(Sennheiser HD 201). Participants were informed prior to
the experiment that they would receive 25 € or, in the case of
psychology students, course credit. The money earned in the
feedback learning task was thus not paid out in the end and
was only virtual. The study was approved by the ethics com-
mittee of the Faculty of Mathematics and Natural Sciences at
Heinrich Heine University Diisseldorf, Germany, and is in ac-
cordance with the declaration of Helsinki.

The software Presentation (Neurobehavioral Systems Inc
2020.) controlled the timing of stimulation and the record-
ing of responses. Responses were performed on a standard
computer keyboard (Logitech K120) where participants could

press the left and right control keys to choose between the
stimuli.

2.3.1 | EEG Data

EEG data was acquired from 60 active scalp electrodes, fixed
with an actiCap textile softcap (BrainProducts, Germany) and
evenly distributed on the scalp based on the extended 10-20 sys-
tem. Electrodes were attached to the scalp sites AF3, AF4, AF7,
AF8, C1, C2, C3, C4, C5, Co, CP1, CP2, CP3, CP4, CP5, CP6,
CPz, Cz, F1, F2, F3, F4, F5, F6, F7, F8, FC1, FC2, FC3, FC4,
FC5, FCe, FT10, FT7, FTS, FT9, Fz, O1, 02, Oz, P1, P2, P3, P4,
P5, P6, P7, P8, PO10, PO3, PO4, PO7, PO8, PO9, POz, Pz, T7,
T8, TP7, and TP8. The online reference was placed at the posi-
tion FCz. Two further electrodes were placed over the left and
right mastoids to cover as much of the scalp as possible for the
calculation of the average reference (see below). Two electrodes
(VEOG) were attached above (at Fpl position) and below the left
eye to measure vertical eye movements and blinks (yielding 65
electrodes in total). The ground electrode was attached to the
AFz position. For data recording, a BrainAmp DC amplifier
(BrainProducts, Germany) and the Brain Vision Recorder soft-
ware (BrainProducts, Germany) were used, with a sampling rate
of 1000Hz and an online lowpass filter of 100 Hz. Impedances
were kept below 15 kQ.

2.4 | Data Analysis
2.4.1 | Behavioral Data Analysis

The dependent variable for behavioral data analysis was re-
sponse accuracy, with correct responses coded as 1 and incor-
rect responses as 0 for the statistical analysis (see below). Correct
responses were defined as the choice of the stimulus associated
with the higher reward probability. We applied generalized lin-
ear mixed-effects models (GLME) suitable for binomial distribu-
tions and single-trial data by means of the Ime4 package (version
1.1.34; Bates et al. 2015) in R to analyze the behavioral data
(The R Foundation 2021). Descriptive data visualizations were
adapted with the assistance of OpenAlI's GPT-4 (OpenAlI 2023).
The model comprised fixed-effect predictors of the categorical
factors Stimulus Modality (visual [—0.5] vs. auditory [0.5]) and
Feedback Timing (immediate [-0.5] vs. delayed [0.5]), as well
as the continuous factor learning block (1 [-0.5], 2 [-0.167], 3
[0.167], 4 [0.5]) and all possible interactions between the factors.
Participants were included as random intercepts. For the inclu-
sion of random-effect slopes per participant, we followed best
practice (Meteyard and Davies 2020): all within-subject main
and interaction effects were included as random slopes, unless
their inclusion led to non-successful model fit. The best possi-
ble model was determined by using the buildmer (Version 2.11;
Voeten 2020) function and resulted in the model presented in
Table S1 of the Supporting Information.

2.4.2 | Modeling of PEs

We derived single-trial values of the PE for each participant
by fitting a reinforcement learning model to the behavioral
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data using MATLAB version R2021a (The MathWorks,
Inc 2021; for a similar approach see Burnside et al. 2019;
Lefebvre et al. 2017; Weber and Bellebaum 2024). Aiming for
a model whose predicted choices deviate the least from our
participants’ behavior, we compared two models of different
complexity. Starting point was each participants’ sequence
of choices and the received feedback. The PE 6., was calcu-
lated as:

Ocr =T —Qpy

where in a given trial ¢ the reward r, is 1 for positive feedback
and 0 for negative feedback, and Q,, is the value of the chosen
stimulus. Separately for each of the eight stimulus pairs (four
containing visual and four containing auditory stimuli), both
stimuli were initially assigned a stimulus value of 0.5, that was
iteratively updated in every trial ¢ in which the stimulus pair
was presented. In a first model (M,) the stimulus value of the
chosen stimulus, Q,, was updated based on the deviation be-
tween the prior value and the received outcome, i.e., the PE 6,
and a learning rate a (specific for each stimulus pair), which
indicates the extent to which the PE was used to update the
stimulus value.

Qc,t+1 = Qc,t +oa* 5c,t

As both stimuli of a pair were always presented together, we
expected participants to draw conclusions about the unchosen
stimulus from feedback for the chosen stimulus. Therefore, the
value of the unchosen stimulus, Q,, equaled 1 — Q, and was up-
dated accordingly.

For each trial, t; , , the probability p that the model would
choose the stlmulus wh1ch was indeed chosen by the participant
was calculated using the softmax function based on prior stim-
ulus values of the two stimuli that were available, i.e., values of
the chosen stimulus, Q. ,, and the unchosen stimulus in trial ¢,
Q,» and an exploration parameter f:

ch,t*ﬁ
Pet = SQciep 1 pQuird

with g indicating the impact of prior stimulus values on a sub-
ject'schoices. A larger findicates that a participant utilized prior
stimulus values (i.e., a larger impact of prior values), whereas
a smaller g indicates rather explorative choice behavior (i.e., a
smaller impact of prior values).

In a next step, the probabilities p were used to calculate the neg-
ative summed log-likelihood (—LL) as measure for the model's
goodness of fit:

— Z log(Pc,zl,u.,nmm)

We wused the optimization function fmincon from the
Optimization Toolbox of MATLAB (R2021a, The MathWorks,
Inc 2021) to minimize the — LL value by estimating values for the
free parameters (@, £)/(@.yn> %4i5> B- S€€ below) that result in the
least deviation between the model's predicted choices and the
participant's behavior. We fit the model repeatedly (50 iterations)
to the subjects’ behavior to avoid local minima. As start values

for the free parameters, we allowed random numbers within the
interval [0; 1]. We set value constraints for the free parameters
to [0; 1] for the learning rate, and to [0; 100] for the exploration
parameter f3.

In a second model (M,), we allowed different learning rates for
learning from positive feedback and negative feedback. The
stimulus value of the chosen stimulus was updated with the
learning rate a,,, for trials with positive feedback that confirms
the choice as follows:

Qc,t+1 = Qc,t + acon * 5c,t

Analogously, for trials with negative feedback that disconfirms
the choice, the stimulus value of the chosen stimulus was up-
dated with the learning rate a ;g

Qc,t+1 = Qc,t + Agis * 5c,t
Everything else stayed the same compared to M.

The two models were compared based on their negative
summed log-likelihood (—LL) by a paired samples t-test.
M, resulted in significantly lower —LL values (M =360.88,
SD=246.73) than M, (M =381.21, SD =242.18), £(34)=9.18,
p<0.001, indicating a better model fit. Furthermore, a lower
Bayesian Information Criterion (BIC) indicated that M,
(BIC=751.73) provides a better balance between model fit
and complexity compared to M; (BIC =782.40). Eventually,
M, was used to extract stimulus values and trial-by-trial PEs.
Single-subject —LL values are illustrated in Figure S1A of
the Supporting Information. Furthermore, we visualized the
learning rates for positive and negative feedback («,,, and a ;)
to ensure that they do not systematically converge to values of
0 or 1 (see Figures S1B and S2 of the Supporting Information).
Finally, we examined participants’ win-stay and lose-shift
behavior to determine whether participants were using the
PE to adapt their behavior. The results are presented in the
Supporting Information, in the section titled Win-stay vs.
lose-shift analysis accompanied by Figure S3. All visualiza-
tions and analyses supported that the PE modeling resulted in
meaningful data.

2.4.3 | EEG Data Analysis

BrainVision Analyzer 2.2 (Brain Products GmbH 2018),
MATLAB R2021a (The MathWorks, Inc 2021) and R (The R
Foundation 2021) were used for EEG data analysis. Trials in
which participants failed to answer (M=1.67%, SD=2.59%,
Min=0.16%, Max=13.44%) were excluded from any further
EEG analyses.

2.4.3.1 | Preprocessing. In a first step, we re-referenced
the data to the average of all 63 scalp electrodes including
the mastoids (see above; the signal at the online reference site
FCz was calculated; see Arbel et al. 2017; Holtje and Meck-
linger 2020, for similar procedures). The reduction of ERP
effects that can result as a consequence of using an average
reference (see Luck 2014) is minimized for high-density EEG
acquisition as in our study. In a second step, the data were
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filtered, using a 30 Hz low cut-off and a 0.1 Hz high cut-off filter
(as proposed by Luck 2014) as well as a 50Hz Notch Filter. In
order to correct for blink artifacts, an independent component
analysis (ICA) and reverse ICA was performed on single-subject
EEG data (see Peterburs et al. 2016; Weismiiller et al. 2019 for a
similar procedure). We created segments from 200 ms before to
800ms after feedback onset and performed a baseline correc-
tion relative to the first 200 ms. Then, segments with artifacts in
electrodes used to measure the FRN and N170 (see below) were
removed (for a similar approach see Albrecht et al. 2023; all seg-
ments containing voltage steps > 50 uV/ms, differences between
values >80 uV or <0.1 uV within an interval of 100 ms or ampli-
tudes >80uV or < —80uV; M=1.09%, SD =2.23%, Min=0.00%,
Max=12.97%). This way, we aimed to include as much data
as possible for our single-trial analysis, as linear mixed-effects
(LME) models that we applied for the analyses (see below)
are tailored for managing data variability (Bates et al. 2015;
Quené and Van den Bergh 2004). On average, per participant,
156.6 trials (SD = 5.2, Min = 130, Max = 160) from the visual task
with immediate feedback and 155.6 trials (SD =5.3, Min =136,
Max=160) with delayed feedback entered the analysis. From
the auditory task, on average 155.6 trials (SD=7.6, Min=122,
Max =160) with immediate feedback and 154.2 trials (SD=8.5,
Min =112, Max=160) with delayed feedback entered the analy-
sis per participant.

The remaining segments were grouped and averaged for each of
the eight conditions (positive and negative immediate feedback
and delayed feedback for the tasks involving visual and auditory
stimuli), yielding eight averages per participant. Subsequently,
all single-trial segment data as well as all averages per condi-
tion and participant were exported for later analysis. For further
preprocessing steps, MATLAB scripts (MathWorks, MA) were
utilized, which were adapted with the assistance of OpenAl's
GPT-4 (OpenAl 2023) to extract single-trial data.

For the N170, single-trial amplitudes (see Albrecht et al. 2023)
were derived from electrodes P7 and P8 (see Arbel et al. 2017;
Holtje and Mecklinger 2020; Kim and Arbel 2019), as outlined
in the preregistration for the study (osf.io/fu2gy). First, the max-
imum negative peak amplitude between 130 and 230ms post-
feedback was determined in each participant's average, at both
electrode sites and for all eight conditions separately (see above).
Then, for each single trial, the mean amplitude in a time win-
dow of £10ms around the condition-specific N170 peak latency
was calculated. Because grand averages revealed differences
between the conditions already in the preceding positive peak
(see Figure 3), we additionally extracted the single-trial mean
amplitude in a time window of £10ms around the preceding
positive peak (P1). As for the negative peak, the latency of the
P1 was determined based on the condition-specific average at
each electrode site. The P1 was determined as the maximum
positivity in a time window starting 80 ms after feedback onset
to the respective condition-specific negative peak. For the anal-
ysis, we used the N170 defined as the peak-to-peak amplitude by
subtracting the single-trial amplitude value of the preceding P1
from the single-trial value of the negative peak.

For the FRN, single-trial amplitudes were derived from an elec-
trode cluster consisting of Fz, FCz, Cz, FC1, and FC2, for which
the signal was pooled. Previous studies showed that the FRN

was maximal at FCz but also pronounced at neighboring chan-
nels (Arbel et al. 2017; Kim and Arbel 2019; Maurer et al. 2022;
Mushtaq et al. 2022). To account for individual differences, we
decided to measure FRN amplitudes in the pooled signal of a
group of five frontocentral electrode sites (for a similar approach
see Zottoli and Grose-Fifer 2012), including FCz and neighbor-
ing electrodes (see Weber and Bellebaum 2024). For each par-
ticipant, we used their mean waveform for both positive and
negative feedback separately for each of the four conditions
(immediate feedback in the visual task, delayed feedback in
the visual task, immediate feedback in the auditory task, and
delayed feedback in the auditory task). Then, we computed
the difference wave by subtracting the mean positive feedback
waveform from the mean negative feedback waveform for each
of these four conditions. For each participant, we identified the
maximum negative peak amplitude in each of the four differ-
ence waves within a time window of 230-360ms post-feedback,
i.e., the peak latency was determined separately for each con-
dition. Next, for each single trial, we extracted the mean am-
plitude within a+10ms window around the condition-specific
difference wave peak latency. It is important to emphasize that
our dependent variable is not derived from the difference wave
itself. Rather, the difference wave was only used to identify the
latency at which the difference between the processing of pos-
itive and negative feedback is maximal. This latency was then
used to extract the single-trial ERP data. Therefore, our actual
dependent variable was derived from the ERPs for positive and
negative feedback in each condition.

2.4.3.2 | Statistical Analysis

2.4.3.2.1 | N170. The single-trial N170 amplitude was ana-
lyzed as a dependent variable by applying an LME analysis in R
(Bates et al. 2015). The model comprised fixed-effect predictors
of the categorical factors feedback timing (immediate [—0.5] vs.
delayed [0.5]), stimulus modality (visual [—0.5] vs. auditory [0.5])
and feedback valence (negative [—0.5] vs. positive [0.5]). Further-
more, the PE was used as a continuous predictor. However, as
the signed PE is confounded by valence, we used the unsigned
or absolute PE (scaled and mean centered, yielding negative val-
ues for PE values below the mean vs. positive values for PE values
above the mean) indicating general expectation violations or sur-
prise. Finally, the factor electrode (P7 [-0.5] vs. P8 [0.5]) was added.
Furthermore, we added all possible interactions between the fac-
tors. Although this adds complexity to the model, we believe that
this is justified due to our hypotheses and the interrelated nature
of the predictors. Our hypothesis concerning the N170 already
involves an interaction between the factors stimulus modality,
feedback timing, and electrode, as we expected its amplitude to be
most pronounced for delayed feedback following choices between
visual stimuli and over the right hemisphere. The more explor-
atory analysis, whether the N170 encodes a PE, aims at the ques-
tion of whether there is an interaction between feedback valence
and the absolute PE. Moreover, this interaction may again be
modulated by the three factors Stimulus Modality, feedback tim-
ing, and electrode. Given that all of the predictors are thus closely
linked and may influence each other, we decided to include all
interactions when planning the study (as was also preregistered).
Participant was included as a random-effect factor. Random slopes
per participant were added as described for the behavioral GLME
above (see Table S1 of the Supporting Information for the resulting
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model). Simple slope analyses were performed to resolve signifi-
cant interactions, with Bonferroni-corrected p-values (multiplied
by the number of conducted tests).

2.4.3.2.2 | FRN. Thesingle-trial FRN amplitude was analyzed
as a dependent variable by applying an LME analysis in R (Bates
et al. 2015). The model comprised fixed-effect predictors of the cat-
egorical factors feedback timing (immediate [—0.5] vs. delayed
[0.5]), stimulus modality (visual [—0.5] vs. auditory [0.5]) and feed-
back valence (negative [—0.5] vs. positive [0.5]) and as a continu-
ous factor the mean centered unsigned PE, as well as all possible
interactions between the factors. For the FRN, it has been shown
that its amplitude reflects a (signed) PE, indicated by the inter-
action between the factors feedback valence and (unsigned) PE.
Moreover, effects of feedback timing have been found, which may
also interact with PE coding (Weber and Bellebaum 2024). In this
study, we aimed to explore whether stimulus modality affects
the FRN, alone or in interaction with the mentioned factors. Par-
ticipant was included as a random-effect factor. Random slopes
per participant were added as described for the behavioral GLME
above (see Table S1 of the Supporting Information for the result-
ing model). Significant interactions were resolved as described
for the N170 (see above).

3 | Results
3.1 | Behavioral Results

With the GLME analysis of the behavioral data, we first aimed
to determine whether participants learned to increasingly select
the more frequently rewarded stimulus across the four learning
blocks. Second, we examined whether there were any differ-
ences in learning between the tasks involving choices between
visual and auditory stimuli, or between the conditions with im-
mediate and delayed feedback, or between any combinations of
these two factors.

Descriptive data are presented in Figure 2. Table S2 in the
Supporting Information lists 3-estimates and effect-specific z-
tests for the GLME analysis investigating effects of feedback
timing, feedback valence, and stimulus modality on the behav-
ioral data. The analysis revealed a significant effect of Block
(p<0.001) on response accuracy, driven by an increasing num-
ber of correct responses across the four learning Blocks. Figure 2
suggests that this effect is due in particular to an increase in
correct responses from block 1 to block 2. No other significant
effects were observed (all ps>0.140), indicating that learning
was comparable for immediate and delayed feedback and for the
tasks involving choices between visual and auditory stimuli.

3.2 | EEG Results
3.2.1 | N170

With the LME analysis of the N170 single-trial data, we aimed to
test our hypothesis that the N170 is most pronounced for delayed
feedback referring to the choice of visual stimuli, with a possibly
more pronounced effect over the right hemisphere. This would be
reflected in an interaction between the factors stimulus modality,

Feedback Timing

Delayed Immediate

100%

90%

80%

70%

60%

Accuracy (% of correct responses)

50%

1 2 3 4 1 2 3 4

Block

Auditory Stimuli =e=\/isual Stimuli

FIGURE2 | Descriptive pattern of performance improvement during
the feedback learning task. Mean accuracy (% of correct responses) for
the four learning blocks of the probabilistic feedback learning task, sep-
arately for immediate and delayed feedback and for the tasks involving
choices between visual and auditory stimuli. Error bars represent 95%
confidence intervals.

feedback timing, and electrode. Moreover, we aimed to investigate
if the N170 reflects a signed PE, which would be reflected in an
interaction between feedback valence and the unsigned PE, and
whether this effect is modulated by the other factors stimulus mo-
dality, feedback timing, and electrode. The analyses thus focused
on interaction effects of the involved predictors, and main effects
will not be reported in the following. Grand averages for the ERPs
following positive and negative immediate and delayed feedback
for the choice between visual and auditory stimuli at electrode sites
P7 and P8 are presented in Figure 3. In addition, the Supporting
Information contains grand averages separately for low and high
absolute PE values (expected vs. unexpected; Figure S4). Table S3
in the Supporting Information lists $-estimates and effect-specific
t-tests for all effects of the LME analysis investigating the N170
amplitude. In the following, more negative N170 amplitudes are
described as more pronounced or larger, respectively.

Regarding our hypothesis, we indeed found a significant stim-
ulus modality x feedback timing interaction (p <0.001) that
was further explained by a significant stimulus modality X
feedback timing X electrode interaction (p <0.001) which we
thus resolved. The descriptive pattern behind the three-way
interaction is presented in Figure 4A. A simple slope analy-
sis revealed that for the P7, the effect of Stimulus Modality
was neither significant for immediate (§=-0.08, SE=0.33,
t=-0.23, p>0.999) nor for delayed feedback (f=0.72,
SE=0.42, t=1.72, p=0.363). For the P8, there was a signif-
icant effect of stimulus modality following immediate feed-
back with larger N170 amplitudes for auditory compared to
visual stimuli, §=-1.29, SE=0.33, t=-3.93, p<0.001. For
delayed feedback, this effect was reversed with significantly
larger N170 amplitudes for visual compared to auditory stim-
uli, =1.31, SE=0.42, t=3.14, p=0.010.
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A | Grand Averages of the signal at P7 and P8
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B | Topographies of the mean signal between the peaks at P7 and P8
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FIGURE 3 | Grand averages at P7 and P8 and topographical maps at the respective peaks. (A) Grand Averages: Dotted lines indicate the time
window used for the N170 peak detection. Shaded areas indicate standard errors. (B) Topographies: The maps are based on the condition-specific

N170 peaks.

With regard to more exploratory results, we found a significant
interaction between PE and feedback valence (p <0.001), indicat-
ing that the N170 indeed reflects the signed PE. As this interac-
tion was further explained by a significant three-way interaction
between PE, feedback valence, and electrode (p=0.001), we

decided to resolve the three-way interaction with simple slope
analyses. The underlying descriptive data are presented in
Figure 4B. For P7, the PE had no significant effect on the N170,
neither for negative (§=0.18, SE=0.40, t=0.46, p>0.999) nor
for positive feedback (§=-0.66, SE=0.41, t=-1.60, p=0.439).
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Feedback Timing & Electrode
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B | Interaction PE, Feedback Valence
& Electrode
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FIGURE4 | Descriptive data patterns underlying the N170 analysis. Error bars indicate a 95% confidence interval. Shaded areas indicate standard

errors.

For P8, the PE had a significant effect on the N170 following neg-
ative feedback, with larger amplitudes for expected compared
to unexpected feedback (=1.23, SE=0.40, t=3.11, p=0.008).
For positive feedback, the effect was reversed, with significantly
larger N170 amplitudes for unexpected compared to expected
feedback (8=-2.27, SE=0.41, t=-5.52, p<0.001).

While we found two further two-way interactions, one between
feedback valence and feedback timing (p =0.002, the underlying
descriptive data are presented in Figure 4C) and one between
PE and stimulus modality (p=0.026, the underlying descrip-
tive data are presented in Figure 4D), a significant five-way in-
teraction between all included predictors was of main interest
(p=0.042). The underlying descriptive pattern is presented in
Figure 5.

To resolve this interaction, we split the dataset based on the elec-
trode and repeated the LME analysis separately for P7 and P8.
There was a significant four-way interaction between the remain-
ing factors feedback timing, feedback valence, stimulus modality,
and PE for the P8 (8=4.88, SE=2.36, t(2251.33)=2.07, p=0.039),
but not for the P7 (B=-2.68, SE=2.18, (2767.86)=—1.23,
p=0.218). To resolve the four-way interaction at P8, we again split
the dataset, but this time according to Feedback Timing. For de-
layed feedback, the three-way interaction between feedback va-
lence, stimulus modality, and PE reached significance (§=5.07,
SE=1.76, #(7454.36)=2.87, p=0.004), unlike for immediate
feedback ($=0.98, SE=1.67, #(5272.01)=—0.58, p=0.560). To re-
solve the three-way interaction for delayed feedback, we finally
split the dataset according to stimulus modality. We found a sig-
nificant interaction between PE and feedback valence for visual
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FIGURES5 | Descriptive data pattern underlying the PE x Feedback Valence x Modality X Feedback Timing X Electrode interaction for the N170.

Shaded areas indicate standard errors.

stimuli (B=-7.12, SE=1.30, #(4870.20)=-5.45, p<0.001), but
not for auditory stimuli (§=-1.36, SE=1.23, #(4300.97)=-1.11,
p=0.267). We resolved the two-way interaction found for visual
stimuli with a simple slope analysis. For negative feedback, larger
PE values led to significantly less pronounced N170 amplitudes
(B=2.02, SE=0.87, t=2.32, p=0.046). For positive feedback,
larger PE values led to significantly more pronounced N170 am-
plitudes (8=-5.09, SE=0.93, t=-5.47, p<0.001). To conclude,
the five-way interaction is driven by a reflection of the PE in the
N170 measured over the right hemisphere, especially following
delayed feedback that refers to visual stimuli. In the Supporting
Information, the descriptive data underlying the N170 interaction
effects described in the main text are represented with a detailed
overview of data distribution and variance (see Figures S5 and S6).

3.2.2 | FRN

With the LME analysis of the FRN single-trial data, we aimed to
replicate that the FRN is sensitive to feedback valence, especially
following immediate feedback. Furthermore, we aimed to rep-
licate that the amplitude reflects a signed PE signal, reflected in
an interaction between (unsigned) PE and feedback valence. In
an exploratory manner, we were also interested in the effects of
stimulus modality, alone or in interaction with the other predic-
tors. Grand averages for the ERPs following positive and negative
immediate and delayed feedback for the choice between visual and
auditory stimuli pooled over the frontocentral cluster of electrodes
are presented in Figure 6. In addition, the Supporting Information
contains grand averages separately for expected and unexpected
feedback (Figure S7). For (-estimates of the LME analysis on
the FRN amplitude and effect-specific t-tests, see Table S4 in the
Supporting Information. Descriptive statistics can be found in
Figure 7A. In the following, more negative FRN amplitudes are
described as more pronounced or larger, respectively.

As expected, we could replicate previous findings of a signif-
icant main effect of feedback valence (more pronounced FRN

for negative compared to positive feedback, p<0.001) and a
significant feedback timing X feedback valence interaction
(p=0.006, see Figure 7B). Resolving this interaction using sim-
ple slope analyses showed a more pronounced FRN for nega-
tive compared to positive feedback for both immediate (§ =2.94,
SE=0.39, t=7.60, p<0.001) and delayed feedback (3=1.86,
SE=0.26, t=7.16, p<0.001), with a larger feedback valence ef-
fect for immediate feedback.

Another replication concerned a significant feedback valence x
PE interaction (p<0.001, see Figure 7C). Resolving this inter-
action via simple slope analyses resulted in a significant effect
of the PE for negative feedback (=-3.55, SE=0.63, t=-5.60,
p<0.001) with larger (i.e., more negative) FRN amplitudes for
unexpected feedback. For positive feedback, there was a signifi-
cant effect of the PE with smaller (i.e., more positive) amplitudes
for unexpected feedback (§=3.89, SE=0.58, t=6.73, p<0.001).

Regarding more exploratory results involving the factor stim-
ulus modality, the analysis revealed a significant main effect
(p=0.014), which was further explained by a significant feed-
back timing X stimulus modality interaction (p=0.002, see
Figure 7D). We resolved this interaction using a simple slope
analysis that yielded a significant effect of Stimulus Modality,
with larger amplitudes for visual than auditory stimuli, for
immediate (8=1.33, SE=0.31, t=4.33, p<0.001), but not for
delayed feedback (8=-0.04, SE=0.34, t=-0.13, p>0.999).
All other main and interaction effects were not significant (all
ps>0.171). In the Supporting Information, the descriptive data
underlying the FRN interaction effects described in the main
text are represented with a detailed overview of data distribution
and variance (see Figure S8).

4 | Discussion

The present study aimed to investigate whether the N170 ERP
component is modulated by the modality of the associated
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stimulus during feedback processing in a reinforcement learn-
ing task. While previous studies have examined the influence of
feedback modality (visual vs. auditory, see Kim and Arbel 2019),
our study is the first to manipulate the sensory modality of the
stimuli (visual vs. auditory) between which participants make
their choices before receiving visual feedback. More specifically,
we hypothesized that the N170 reflects a process that bridges
the temporal gap between the choice of a stimulus and feed-
back, especially for delayed feedback for visual stimuli that are
associated with the feedback and over the right hemisphere.
Indeed, we found that delayed feedback related to the choice of
visual stimuli led to significantly larger N170 amplitudes than

feedback following the choice of auditory stimuli over the right
lateral hemisphere. Furthermore, we found pronounced effects
of the PE on the N170 measured over the right hemisphere,
again especially for delayed feedback related to the choice of vi-
sual stimuli. For immediate feedback, however, an unexpected
pattern emerged, with larger N170 amplitudes for feedback fol-
lowing the choice between auditory compared to visual stimuli.
Regarding the FRN, we also found a modality effect, specifi-
cally for immediate feedback: it was more pronounced when
the feedback was related to the choice between visual stimuli
than auditory stimuli. Despite the differences in feedback pro-
cessing depending on Feedback Timing and Stimulus Modality,
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our participants appeared to learn equally well from immediate
and delayed feedback, as well as in the tasks involving visual or
auditory stimuli.

4.1 | The Role of the Modality of the Associated
Stimulus for Feedback Processing

Based on previous studies, a clear functional interpretation
of the N170 in the context of (delayed) feedback processing is
not yet possible. In studies investigating delayed feedback pro-
cessing, the stimuli associated with feedback were always vi-
sual (Arbel et al. 2017; Holtje and Mecklinger 2020; Kim and
Arbel 2019). We hypothesized that the modality of the stimulus
that is associated with the feedback modulates the amplitude
of the N170. Since this component has been linked to visual
processing in the extrastriate cortex (Brem et al. 2006; Deffke
et al. 2007; Gao et al. 2019; Iidaka et al. 2006), we assumed that
the N170 reflects a reactivation of a visual stimulus associated
with feedback and should be more pronounced when feedback
is given for a choice between visual stimuli, especially when
feedback is delayed. Given that the right hemisphere plays a
dominant role in processing certain visual stimuli, such as
faces (Rossion 2014), and in N170 generation in different con-
texts (Baker and Holroyd 2009, 2013; Baker et al. 2015; Kim and
Arbel 2019), we were particularly interested in whether the ef-
fects would be stronger over the right hemisphere.

The research question of the present study thus addresses the
implementation of the so-called credit assignment problem
within the brain. For immediate feedback, the temporal prox-
imity of the reward signal from the dopaminergic midbrain and
the activation of cortical areas representing, e.g., a visual stim-
ulus probably suffice to establish a connection. (Schultz 2002;
Jocham et al. 2016) found heuristic time-based learning mech-
anisms related to activity in circuits including the striatum.
Furthermore, reward signals coded by dopamine drive synaptic
connections—the molecular basis of learning—in the striatum
in a narrow time window of up to 2s (Yagishita et al. 2014).
However, if feedback is presented after a longer delay, the rep-
resentation of the selected stimulus might be reactivated at the
time of feedback presentation. The present study provides first
evidence that the modality of the associated stimulus affects the
N170: In the right hemisphere, we found larger N170 amplitudes
following delayed feedback for the choice of visual compared to
auditory stimuli. While a study by Herholz et al. (2012) found
an overlap of melody perception and imagery in secondary
auditory areas, supporting the existence of auditory reactiva-
tion processes, the N170 has been specifically linked to stim-
ulus processing in the visual domain (Bentin et al. 1996; Itier
and Taylor 2004; Kloth et al. 2013; for reviews see Yovel 2016;
Carreiras et al. 2014). Our results thus support the hypothesis
that the N170 reflects stimulus reactivations in higher-order
visual areas, which may mirror an association mechanism in
which reactivated representations of a selected stimulus are
used to bridge the temporal gap to delayed feedback. This inter-
pretation is in line with fMRI studies that revealed post-reward
reactivation mechanisms in visual (Schiffer et al. 2014) as well
as somatosensory areas (Pleger et al. 2008, 2009) as a way to as-
sign credit to a stimulus for an obtained reward. Finding this po-
tential reactivation for the N170 only over the right hemisphere

may be due to the functional specialization of the right hemi-
sphere for visuo-spatial processing (e.g., Thiebaut de Schotten
et al. 2011), as the visual stimuli used in our study (hiragana
characters) had a visuo-spatial character. Furthermore, studies
investigating the N170 in the context of navigational feedback
learning particularly linked it to activity within the right MTL,
or more precisely the right parahippocampal cortex (Baker and
Holroyd 2009, 2013; Baker et al. 2015). It is important to note
that the functional meaning of the N170 could be different in
contextually different tasks.

Against our expectation, we found a larger feedback-locked
N170 for choices between auditory than visual stimuli for imme-
diate feedback. One explanation could be that the N170 reflects
overlapping activity of MTL and extrastriate visual areas in
feedback processing. Indeed, the hippocampus has been found
to be involved in feedback processing even for short feedback
delays of only two seconds (Dickerson et al. 2011). Integrating
information about feedback and the associated stimulus, hippo-
campal processing demands for the auditory condition may have
been particularly high, as this condition required cross-modal
associations, which activates the hippocampus more than un-
imodal associations (Butler and James 2011). For delayed feed-
back, the extrastriate visual cortex contribution to the N170 may
have been higher.

For the FRN, which has been investigated much more exten-
sively in the context of feedback processing, the fact that we
found larger FRN amplitudes following immediate feedback for
the choice between visual compared to auditory stimuli was also
surprising. FRN effects are mainly interpreted with respect to
feedback valence and/or the PE. As stimulus modality did not
affect the effects of feedback valence or the reflection of the PE
in the FRN, it is questionable whether stimulus modality exerted
a significant influence on the processes underlying the FRN.

4.2 | Effects of Feedback Valence and PE
for Immediate and Delayed Feedback

In contrast to previous studies, we did not find a main effect of
feedback timing (Arbel et al. 2017; Kim and Arbel 2019; Holtje
and Mecklinger 2020) or feedback valence (Kim and Arbel 2019)
for the N170, but an interaction between the two: a valence ef-
fect was only detectable when feedback was delayed. In this
regard, the N170 formed a kind of counterpart to the FRN, for
which there was an enhanced differentiation between imme-
diate positive and negative feedback compared to delayed (for
similar results see Arbel et al. 2017; Holtje and Mecklinger 2020;
Peterburs et al. 2016; Weinberg et al. 2012; Weismiiller and
Bellebaum 2016).

This complementary processing is further evident considering
the PE effects on the two components. Effects of reward PEs
on the N170 have not been reported before. We found that the
N170 reflects the whole range of PEs, which is in line with re-
cent findings by Baker et al. (2021, 2023), who reported more
pronounced N170 amplitudes for unpredictable compared to
predictable stimuli during the perceptual processing of visual
stimuli, linking the N170 to surprise in general. While the FRN
also reflected the whole range of PEs in the present study, the
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N170, especially over the right hemisphere, was enhanced for
unexpected positive feedback and reduced for unexpected nega-
tive feedback, and the pattern of PE coding was reversed for the
FRN that became more negative when negative feedback was
unexpected and more positive when positive feedback was unex-
pected. Regarding the N170, enhanced amplitudes following un-
expected positive feedback might indicate that representations
of unexpectedly rewarded stimuli are especially reactivated. Put
simply, this means that it is especially important to remember
which stimulus brought the reward and strengthen that rela-
tionship. Remembering what led to the reward can be very help-
ful for survival, and a form of reactivation following rewards
could be a way to bind them to preceding situations (Singer and
Frank 2009).

Correlates of the PE in the N170 could be interpreted as reflect-
ing PE-related hippocampal activity (Dickerson et al. 2011;
Foerde and Shohamy 2011). The midbrain dopamine system
contains neurons that have widespread projections and could
send reinforcement signals not only to the striatum and fron-
tal cortex (Schultz 2002) but also to the hippocampus (Schott
et al. 2004). Zaghloul et al. (2009) observed that the firing rate
of neurons in the human substantia nigra was higher for unex-
pected gains compared to losses as early as 150ms after feed-
back presentation. This finding supports the possibility that the
PE effects observed in the N170, which had a latency of about
160ms to 180ms in the present study, could reflect the influ-
ence of the dopaminergic midbrain on the MTL, specifically in
the context of feedback-based learning. However, alternative
explanations are also possible. For instance, the locus coeru-
leus (LC), which plays a key role in norepinephrine release, also
reacts to unexpected events that evoke attention like rewards,
sending PE signals to other areas of the brain, for example via
axons diverging to the cerebral cortex (for a review see Schultz
and Dickinson 2000). Importantly, the LC also projects to the
hippocampus, where its norepinephrine projections have been
shown to modulate synaptic plasticity, playing a crucial role in
regulating behavioral control (for reviews, see Sara 2009, 2015;
Schultz and Dickinson 2000).

Nevertheless, finding a pronounced PE effect on the N170 for
the prior choice between visual and not auditory stimuli and es-
pecially for delayed feedback supports the role of the N170 in
the processing of visual stimuli and the idea that it specifically
represents a reactivation of visual areas during feedback pro-
cessing. Since signals from the MTL may evoke the reactivation
of an internal representation of an event, allowing it to be linked
to a later event such as the feedback in our task (Qin et al. 2007),
we propose that the N170 reflects overlapping activity of the
MTL and extrastriate visual areas.

For the signal in the FRN time window, accumulating evidence
suggests that it is specifically modulated by positive feedback.
Early studies showed that the ERP response to losses and break-
ing even (neither winning nor losing) can be understood as
the baseline response, while rewards evoke a relative positiv-
ity (Holroyd et al. 2006; Kujawa et al. 2013). This suggests the
unfolding of a positivity on gain trials more than a negativity
during loss trials, in accordance with the conception of the RewP
(Proudfit 2015). In line with this, it was reported that the PE af-
fected positive feedback, while no effect emerged for negative

feedback (Weber and Bellebaum 2024; Kirsch et al. 2022). In the
present study, however, the signal in the FRN/RewP time range
also reflected the full range of PEs, irrespective of feedback
delay. The differential contribution of PE signals reflected in
the FRN/RewP and the N170, and thus of the activity in neural
structures underlying these components, to learning remains to
be explored in future studies.

4.3 | Limitations

One aspect that limits the generalizability of our results is our
predominantly female sample. A previous study found, for ex-
ample, increased punishment sensitivity for women that might
lead to sex differences in negative feedback processing also in
our study (Santesso et al. 2011). However, the main interest in
our study was in how far the modality of the feedback-preceding
stimulus affects feedback processing in interaction with feed-
back timing, and we have no reason to believe that the effects re-
lated to this research question are affected by sex. Nevertheless,
potential sex differences could be investigated in future studies.

Another concern is that the reported valence effects may partly
be driven by perceptual differences between positive and neg-
ative feedback. The feedback color was not counterbalanced
across participants, and this difference in saliency may have
affected the FRN (Liu et al. 2014; Pfabigan et al. 2015) or, even
more likely, the N170, which is associated with visual process-
ing. However, the focus in our study was on interaction effects,
which can hardly be caused by perceptual differences between
negative and positive feedback. To rule out confounds of visual
processing, future studies could consider using abstract feed-
back stimuli that are not inherently associated with valence, as
implemented by Holtje and Mecklinger (2020), who used indoor
vs. outdoor pictures to signal positive and negative feedback.

4.4 | Conclusions

The fact that we can use feedback to adapt our behavior, even if
presented after a temporal delay, is crucial for learning and pro-
gression in our complex world. A more pronounced N170 follow-
ing delayed feedback related to the choice of visual compared
to auditory stimuli over the right hemisphere, combined with
a representation of the PE after delayed feedback for choices of
visual stimuli, supports our assumption that this component re-
flects modality-specific activity within higher-order visual areas
of the brain. The reactivation of the chosen stimulus’ represen-
tation in visual areas, possibly initiated by regions within the
MTL, could be a mechanism to establish an association between
the selection of a stimulus and the temporally delayed feedback.
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N170 FOLLOWING DELAYED FEEDBACK

Table S1

Supplementary Material

Maximal (G)LME models for the analysis of behavioral and EEG data

Analysis Model formula

GLME behavioral

analysis
Accuracy ~ 1 + Feedback Timing * Stimulus Modality * Block + (1 +
Feedback Timing * Stimulus Modality * Block | Subject)

LME N170 analysis
N170 ~ 1 + Feedback Timing * Feedback Valence * Stimulus
Modality * PE * Electrode + (1 + Electrode + Feedback Timing +
Stimulus Modality + Feedback Valence + Feedback Timing :
Electrode + Feedback Valence : Electrode + Feedback Timing :
Stimulus Modality + Feedback Timing : Feedback Valence | Subject)

LME FRN analysis

FRN ~ 1 + Feedback Timing * Feedback Valence * Stimulus Modality
* PE + (1 + Feedback Timing + Stimulus Modality + Feedback
Valence + Feedback Timing : Stimulus Modality + Feedback Timing :
Feedback Valence + PE + Feedback Valence : PE | Subject)

Note. GLME = (generalized) linear mixed effects. Feedback Timing (immediate [-0.5] vs. delayed
[0.5]), Feedback Valence (negative [-0.5] vs. positive [0.5]), Stimulus Modality (visual [-0.5] vs.
auditory [0.5]), PE (scaled and mean centered, yielding negative values for PE values below the
mean vs. positive values for PE values above the mean) and Electrode (P7 [-0.5] vs. P8 [0.5]).



N170 FOLLOWING DELAYED FEEDBACK

Table S2

Results for the GLME analysis on accuracy

Effect B-estimate SE z p
Block 141 0.21 6.71 <.001 wH*
Modality -0.14 020 -0.69 493
Timing 0.16 0.11 1.46 144
Block x Modality -040 027 -148 .140
Modality x Timing 025 0.25 0.99 324
Block x Timing 0.18 0.21 0.84 399
Block x Modality x Timing -052 048 -1.08 279

Note. GLME = generalized linear mixed effects, SE = standard error, Modality = Stimulus
Modality, Timing = Feedback Timing. The sign of the B-estimates indicates the direction of main
effects for the fixed-effects predictors Block (1 [-0.5], 2 [-0.167], 3 [0.167], 4 [0.5]), Stimulus
Modality (visual [-0.5] vs. auditory [0.5]) and Feedback Timing (immediate [-0.5] vs. delayed

[0.5]).
5% 1) < (.001



N170 FOLLOWING DELAYED FEEDBACK 3
Table S3

Results for the LME analysis on the N170 amplitude

Effect B- SE df t p
estimate
Timing 0.52 036 38.41 1.45 156
Valence -0.39  0.23 45.02  -1.66 .104
Modality 0.15 0.28 41.95 0.55 .583
PE -0.38  0.20 13196.94 -1.90 057 .
Electrode -1.67  0.58 3555  -2.85 007 *k*
Timing x Valence -0.91 0.28 68.40 -3.22 002 **
Timing x Modality 1.67  0.40 51.49 4.17 <.001 **x*
Valence x Modality 022  0.23  38090.27 0.92 356
Timing x PE 026  0.38 1842.60 0.69 491
Valence x PE -2.18 042 25580.32  -5.17 <.001 ***
Modality x PE 0.85 038 28767.85 2.23 026 *
Timing x Electrode 0.33  0.44 45.89 0.76 453
Valence x Electrode -0.75 043 4726 -1.75 .087
Modality x Electrode -0.33  0.23 4319893 -1.41 159
PE x Electrode -0.28  0.40 14337.18 -0.72 472
Timing x Valence x Modality 0.35 046 25994.03 0.77 444
Timing x Valence x PE -1.55  0.83 15617.27 -1.86 .063
Timing x Modality x PE 0.70  0.75 11251.67 0.93 351
Valence x Modality x PE 1.23  0.82 8791.51 1.50 135
Timing x Valence x Electrode -0.16  0.46 4297428  -0.35 730
Timing x Modality x Electrode 1.87 046 41676.48 4.03 <.001 ***
Valence x Modality x Electrode 027 046 41751.62 0.59 553
Timing x PE x Electrode -1.00  0.75 42470.22 -1.35 178
Valence x PE x Electrode -2.66  0.81 4114540 -3.28 .001 **
Modality x PE x Electrode -0.16  0.75 36239.92 -0.22 .828
Timing x Valence x Modality x PE 1.57 1.64 6468.07 0.96 339
Timing x Valence x Modality x Electrode -0.93  0.92 4320428 -1.01 313
Timing x Valence x PE x Electrode -0.35 1.59 13032.80 -0.22 .824
Timing x Modality x PE x Electrode 1.05 1.49 42818.31 0.71 480
Valence x Modality x PE x Electrode 0.52 1.53  42657.98 0.34 734
Timing x Valence x Modality x PE x Electrode 6.19  3.04 35302.83 2.04 042 *

Note. LME = linear mixed effects, SE = standard error, df = degrees of freedom, Timing = Feedback Timing,
Valence = Feedback Valence, Modality = Stimulus Modality, PE = PE. The sign of the B-estimates indicates the
direction of main effects for the fixed-effects predictors Feedback Timing (immediate [-0.5] vs. delayed [0.5]),
Feedback Valence (negative [-0.5] vs. positive [0.5]), Stimulus Modality (visual [-0.5] vs. auditory [0.5]), PE
(scaled and mean centered, yielding negative values for PE values below the mean vs. positive values for PE
values above the mean) and Electrode (P7 [-0.5] vs. P8 [0.5]).

*** p<0.001, ** p<0.01, * p<0.05,p<0.1
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Table S4

Results of the LME analysis on the FRN amplitude

Effect B-estimate ~ SE df t p
Timing 0.07 0.30 4271  0.23 .822
Valence 240 0.27 31.69 8.88 <.001 ***
Modality 0.62 0.24 48.93  2.55 014 *
PE 0.17 0.33 22.67 0.51 613
Timing x Valence -1.07 0.38 5733 -2.85 006 **
Timing x Modality -1.38 0.43 54.65 -3.20 002 **
Valence x Modality 032 0.27 13460.59 1.19 236
Timing x PE -0.19 045 2707.83 -0.43 .664
Valence x PE 7.44 1.01 2642 736 <.001 Hw*
Modality x PE 0.20 0.44 10712.29 0.46 .644
Timing x Valence x Modality 0.08 0.53 16207.28 0.16 .876
Timing x Valence x PE 1.18 097 1112041 1.22 222
Timing x Modality x PE -1.09 0.87 10237.58 -1.26 207
Valence x Modality x PE 1.32 096 6536.76 1.37 171
Timing x Valence x Modality x PE -238 190 6027.52 -1.25 212

Note. LME = linear mixed effects, SE = standard error, df = degrees of freedom, Timing =
Feedback Timing, Valence = Feedback Valence, Modality = Stimulus Modality, PE = PE. The

sign of the B-estimates indicates the direction of main effects for the fixed-effects predictors
Feedback Timing (immediate [-0.5] vs. delayed [0.5]), Feedback Valence (negative [-0.5] vs.

positive [0.5]), Stimulus Modality (visual [-0.5] vs. auditory [0.5]) and the PE (scaled and mean
centered, yielding negative values for PE values below the mean vs. positive values for PE values

above the mean).
*** p<0.001, ** p<0.01, * p<0.05
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Figure S1
Descriptive data for the computational prediction error modeling

A | Model fit per subject
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Figure S2
Estimated learning rates from computational prediction error modeling
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Win-stay vs. lose-shift analysis

Our participants generally tended to stick with their previous stimulus choice: In 80%
of trials, they selected the same stimulus as in the preceding trial and switched to the
alternative stimulus only 20% of the time. Notably, their behavior was influenced by prior
feedback: After losing, they maintained their choice in 72.62% of cases, whereas after
winning, this percentage increased to 86.28%, which means that they switched more often
after a loss or negative feedback. This effect was indeed significant, as revealed by a GLME
analysis on the probability of switch responses, including Feedback Valence and absolute PE
in the previous trial, as well as their interaction, as fixed factors (random effects were
specified as described for the GLME model of the behavioral data in the main text): main
effect of Feedback Valence, z =-11.23, p <.001, b =-2.30. There also was a significant main
effect of the absolute PE in the previous trial, z = -3.68, p <.001, b =-0.81, which was further
explained by a significant interaction between Feedback Valence and absolute PE in the
previous trial, z = 7,34, p < .001, b = 14.88. Figure S3 illustrates the underlying pattern in the
data: The more unexpected the negative feedback in the previous trial, the greater the
tendency of participants to persist with their previous choice. Conversely, the more

unexpected positive feedback in the previous trial, the higher the probability of a shift.
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Figure S3
Win-stay and lose-shift behavior
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Note. PE = prediction error. The y-axis indicates the probability of a shift. A shift value =0
means that participants stayed with the stimulus they had chosen in the previous trial, a
shift value = 1 means that they chose the other stimulus.
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Figure S4

Grand Averages for the N170 following Expected and Unexpected Feedback
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Note. Dotted lines indicate the time window used for the N170 peak detection. Shaded areas
indicate standard errors. Unexpected feedback corresponds to absolute PE values > 0.50,
while expected feedback corresponds to absolute PE values < 0.50.
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Figure S5

Descriptive data patterns and distributions underlying the N170 analysis
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Figure S6
Descriptive data pattern and distribution underlying the PE x Feedback Valence x Modality x

Feedback Timing x Electrode interaction for the N170
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Figure S7

Grand Averages for the FRN following Expected and Unexpected Feedback
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Note. Dotted lines indicate the time window used for the peak detection in the difference
wave (negative — positive feedback). Shaded areas indicate standard errors. Unexpected

feedback corresponds to absolute PE values > 0.50, while expected feedback corresponds to
absolute PE values < 0.50.
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Figure S8

Descriptive data patterns and distributions underlying the FRN analysis
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ALTERED FEEDBACK LEARNING IN DEPRESSION 1

Abstract
Blunted electrophysiological and striatal responses to reward have been suggested as
biomarkers or endophenotypes for depression. However, previous studies did not differentiate
between learning from immediate and learning from delayed feedback, which involves
different neural structures. The aim of the present study was to clarify whether depression
alters learning from both immediate and delayed feedback. We investigated the influence of
current and past depressive symptom severity and familial history of depression in a mixed
clinical and non-clinical sample of 45 individuals on two event-related potential (ERP)
components, namely the feedback-related negativity (FRN) and N170, which are associated
with immediate and delayed feedback processing, respectively. Performance in a probabilistic
feedback learning task with immediate and delayed feedback was reduced for more severe
depressive symptoms, regardless of feedback timing. Surprisingly, the FRN was not affected
by current or past depressive symptom severity or familial vulnerability to depression.
However, we found depression-related changes in the N170 for both immediate and delayed
feedback processing: currently experienced depressive symptoms were associated with
poorer encoding of prediction errors in the N170. In addition, a family history of depression
was associated with lower sensitivity to the valence of feedback in the N170. In summary, the
N170 may emerge as a novel, important biomarker in clinical research on depression and
feedback-based learning.

Keywords: Depression, N170, FRN/RewP, Delayed Feedback, Prediction Error
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Links between Altered Feedback Learning and Symptoms of Depression: Insights from
an EEG Study on FRN and N170

While modern living conditions seem to feed the incidence of depression, many
questions concerning its pathophysiology are still unresolved (Hidaka, 2012). Researchers try
to find structural and functional alterations in the brain that may help explain the underlying
mechanisms of depression. Given the heterogeneity of the symptoms, it is likely that multiple
brain regions and mechanisms are involved (Nestler et al., 2002, Thompson, 2023). The
etiological diversity of depression is so complex that it can hardly be studied in its entirety
(Kendler et al., 2002). Therefore, recent research has focused on identifying endophenotypes,
hoping to better understand biological mechanisms contributing to depression.
Endophenotypes are inheritable traits that allow linking observable symptoms with genetic
predispositions and thereby help to develop tailored interventions (Luking et al., 2016).

In this context, it was suggested that dysfunctional reward processing is a crucial
aspect in the pathophysiology of depression (Admon & Pizzagalli, 2015) and that blunted
neural responses to reward might be an endophenotype for depression (Bress et al., 2015;
Luking et al., 2016). The dopaminergic midbrain forms the core of the brain’s reward system
(Bjorklund & Dunnett, 2007; Glimcher, 2011; Haber & Knutson, 2010; Schultz & Dickinson,
2000). However, midbrain dopaminergic neurons do not signal reward itself; rather, they
reflect whether an outcome is better or worse than expected, encoding a prediction error
([PE]; Schultz et al., 1997). The PE signal has been found to be reflected in brain activity
measured via electroencephalography (EEG). More precisely, the feedback-related negativity
(FRN) is an event-related potential (ERP) component that peaks between 230 and 330 ms
after feedback onset (Miltner et al., 1997). While its amplitude was reported to be larger for
losses than gains, more recent research suggests that the negative going waveform is the

baseline response and that amplitude modulations of the component rather reflect a positivity
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following rewards, leading to the conceptualization of the reward positivity ([RewP]; for a
review see Proudfit, 2015). In this manuscript, however, we refer to the component within the
FRN/RewP time window as FRN. Undoubtedly the electrophysiological activity in this time
window distinguishes between positive and negative feedback, which is why it is often
presented as a difference wave for negative minus positive feedback-related ERP (FRNuifr).
Remarkably, the FRN is not only sensitive to the valence of feedback but is also modulated
by PEs (Burnside et al., 2019; Fischer & Ullsperger, 2013; Rohlinger et al., 2025; Weber &
Bellebaum, 2024). Accordingly, it is associated with the mesencephalic dopaminergic reward
system influencing the anterior cingulate cortex, which is a likely generator of the signal in
the FRN/RewP time window (Bellebaum & Daum, 2008; Foti et al., 2011; Holroyd et al.,
2004; Holroyd & Coles, 2002; Oerlemans et al., 2025).

Numerous studies describe a link between depression and reduced feedback valence
sensitivity in the FRN, driven by reduced (less positive) amplitudes following rewards (Bress
etal., 2012, 2013, 2015; Foti et al., 2014; Klawohn et al., 2021; for a meta-analytic review
see Keren et al., 2018), even in young preschool-age children (Belden et al., 2016). In line
with changes in the FRN, altered and mainly impaired feedback learning has been reported
for depressed individuals (Admon et al., 2017; Bakic et al., 2017; Kumar et al., 2018;
Kunisato et al., 2012; Macoveanu et al., 2014; Pechtel et al., 2013; Pizzagalli et al., 2005,
2008; for a review see Chen et al., 2015 and Eshel & Roiser, 2010). However, previous
studies did not differentiate between learning from immediate and learning from delayed
feedback, the processing of which involves different neuronal structures. The processing of
immediate feedback is based on the striatum (Foerde et al., 2013; Foerde & Shohamy, 2011),
and striatal hypo-functioning is decisive for dysfunctional reward processing in depression
(Pizzagalli et al., 2009; Takamura et al., 2017; for a review see Admon & Pizzagalli, 2015

and Luking et al., 2016). Within non-depressed and depressed individuals, The ERPs in the
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FRN time window and striatal activation were correlated, indicating convergence across the
two measures (Becker et al., 2014; Carlson et al., 2011; Foti et al., 2014).

In contrast, the processing of delayed feedback has been suggested to rely less on the
striatum (Foerde et al., 2013, Foerde & Shohamy, 2011). Several ERP studies (Arbel et al.,
2017; Holtje & Mecklinger, 2020; Peterburs et al., 2016, Weinberg et al., 2012; Weismiiller
& Bellebaum, 2016) support this by describing a decrease in the amplitude difference
between positive and negative feedback for the FRN following delayed feedback. At the
same time an increase in the amplitude of the N170 ERP component has been described with
increased feedback delay (Arbel et a., 2017; Holtje & Mecklinger, 2020; Kim & Arbel,
2019), which may be related to a stronger role of the hippocampus for delayed feedback
processing (Foerde et al., 2013, Foerde & Shohamy, 2011). The feedback-locked N170 is
most pronounced over the occipitotemporal cortex in a time window between 100 and 200 ms
and was therefore interpreted as reflecting processes in the medial temporal lobe ([MTL];
Arbel et a., 2017; Holtje & Mecklinger, 2020; Kim & Arbel, 2019). A recent study suggested
that the pronounced N170 following delayed feedback reflects the reactivation of visual
stimulus representations in visual brain areas, possibly initiated by regions within the MTL,
to link the selection of a visual stimulus to temporally delayed feedback (RShlinger et al.,
2025). The hippocampus, as part of the MTL, is a central structure for memory functions
(Scoville & Milner, 1957) but also receives information from and sends information to
several brain regions in the reward system (for a review see Heshmati & Russo, 2015).
Accordingly, in a previous study we found that the N170 reflects the whole range of the PE,
with more pronounced amplitudes for unexpected positive feedback and smaller amplitudes
following unexpected negative feedback (Rohlinger et al., 2025).

Interestingly, the hippocampus also plays a role in etiological models linking

depression to chronic stress: Stress, whether acute or chronic, activates the hypothalamic-
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pituitary-adrenal axis, and extreme or long-lasting stress can cause damage to the
hippocampus (for a review, see Nestler et al., 2002). Accordingly, depression can be
accompanied by hippocampal atrophy, which in turn is linked to memory impairment and
might contribute to some of the cognitive distortions seen in depression (Fairhall et al., 2010;
Nestler et al., 2002; Thompson, 2023). Besides weaknesses in recollection, depressed
individuals tend to have a reduced memory for positive events, while their memory for
negative events is increased (Shah et al., 1998; for a review see Dillon & Pizzagalli, 2018).
Findings by Hager et al. (2021) suggest that depression is associated with dysfunctional
source memory for rewards but not losses. Given the broad symptoms of depression, it is no
surprise that the pathophysiology involves a variety of brain regions, including the
hippocampus and striatum (Nestler et al., 2002).

Although the processing of immediate and delayed feedback seems to primarily rely
on different structures in the brain, it is conceivable that also for delayed feedback depression
is accompanied by behavioral and neurophysiological changes. Based on the changes in the
hippocampus and related functions, we expected that depressed individuals would also show
alterations in learning from and processing of delayed feedback, with the latter being
reflected in different neurophysiological signals compared to immediate feedback (see
above). With the present work, we aimed to investigate the link between depression and the
behavioral performance as well as the electrophysiological processing in a probabilistic
feedback learning task with immediate and delayed feedback.

It must be taken into account that endophenotypes are state-independent, i.e., they can
be detected in a person even if the disease is not active (Gottesman and Gould, 2003).
Accordingly, blunted striatal activity was found in remitted depressed individuals (McCabe et
al., 2009) as well as a blunted (more negative) FRN amplitudes following rewards in

“healthy” siblings of depressed individuals (Weinberg et al., 2015). There is also an increased
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risk of developing depression for the children of depressed mothers (Halligan et al., 2007;
Raposa et al., 2014), accompanied by blunted responses to reward within the dorsal and
ventral striatum, relative to children of non-depressed mothers (for an extensive review see
Luking et al., 2016). In summary, depressed individuals, remitted individuals and those at
high risk show blunted striatal responses to the receipt of (immediate) rewards. Therefore, we
assessed current depressive symptoms, past depression episodes, and the family history of
depression as predictors for feedback learning and processing. Since dichotomizing a
continuous variable leads to a loss of information and reduced statistical power (see Clayson
et al., 2020), we approach depression not as a binary state (healthy vs. depressed), but as a
dimensional construct, operationalized as a continuous variable (see also Hager et al., 2021)
in a mixed clinical and non-clinical sample.

Because there is evidence for a publication bias and only a weak relationship between
FRN and depression has been found in previous studies (Clayson et al., 2020; Moran et al.,
2017), the first aim of the planned study is to replicate findings of reduced learning
performance and FRN amplitude with immediate feedback in the context of depression. In
several studies, the association between depression and reduced feedback valence sensitivity
in the FRN was mainly driven by the response to reward (Belden et al., 2016; Bress et al.
2012, 2013, 2015; Brush et al., 2018; Foti et al., 2014). Therefore, we expected a reduced
sensitivity to feedback valence in the FRN in individuals with an increased familial
vulnerability for depression, individuals that have experienced depressive episodes in the past
and participants that currently experience depressive symptoms, especially in the immediate
feedback condition. In addition, we aimed to investigate whether these individuals also show
alterations like reduced amplitudes for the N170, especially following delayed feedback.
Finally, for both ERP components, we aimed to explore depression related changes in the

neural processing of the PE, possibly in interaction with feedback timing.
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Method

Participants

The sample size was based on the number of participants in previous studies. Bress et
al. (2015) found a significant, moderate to strong correlation (» = .41, p <.010) between
depressive symptomatology and the FRNg;sr in a sample of 41 individuals. Taking dropouts
due to EEG artifacts or exclusion criteria (see below) into account, we preregistered to recruit
50 participants (18 to 40 years). Exclusion criteria were current or former neurological
disorders, acute psychotic conditions, the regular or acute consumption of substances
affecting the central nervous system, knowledge about Hiragana-Characters, and uncorrected
impaired vision. To consider acute depressive symptoms as a continuous factor in the
analysis and therefore cover sufficient variance we promoted the study on the campus of the
Heinrich Heine University Diisseldorf, via social media platforms and at the Outpatient
Psychotherapy Unit of the LVR Clinic for Psychosomatic Medicine and Psychotherapy in
Diisseldorf. In total, we acquired data from 50 participants. We excluded five participants,
three of them because they fulfilled at least one of our exclusion criteria, one because of bad
EEG data quality determined during visual inspection of the raw data, and one due to
improper setup of the EEG system during the acquisition. The final sample included in the
analyses thus consisted of 45 participants: 37 reported being women and eight men; 41 were
right-handed, three left-handed and one ambidextrous. The mean age was 24.87 years (SD =
5.54 years, Min = 18 years, Max = 39 years).
Procedure

Upon arrival in the laboratory, participants were informed about the experimental
procedure and gave written informed consent to participate in the study, followed by a short
clinical interview (see below) lasting about 30 minutes. Afterwards, participants were placed

in front of a 27 in, 1920 * 1080 px W-LED monitor (BENQ EW2740L) with a refresh rate of
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60 Hz and filled in a demographic questionnaire that additionally contained questions about
past depressive episodes (see below) and whether a first-degree relative is or was affected by
depression (see below), followed by a questionnaire to assess the participants current
depressive symptoms (see below). Then we attached EEG electrodes and started the
experimental task (see below) which lasted about 45 minutes. Participation was compensated
with 5€ per 30 minutes or course credit for psychology students. Additionally, participants
received the money they earned during the feedback learning task (see below) rounded up to
6€. The study was approved by the ethics committee of the Faculty of Mathematics and
Natural Sciences at Heinrich Heine University Diisseldorf, Germany, and in accordance with
the declaration of Helsinki.
Preceding Interview

To detect psychiatric disorders apart from or comorbid with depression, a trained
experimenter conducted parts of the Mini-DIPS (Margraf & Cwik, 2017; Margraf et al.,
2017) with all participants (for a similar approach see Bress et al., 2013 and Foti et al., 2014).
The Mini-DIPS is an abbreviated version of the Diagnostic Interview for Psychological
Disorders (DIPS) and, according to Margraf and Cwik (2017), offers an efficient and reliable
diagnosis of psychological disorders according to DSM-5 and ICD-10 for research questions.
The interview begins with a set of questions designed to screen for symptoms, and if any are
affirmed, additional questions are asked to evaluate if the symptoms fulfill the necessary
criteria for a diagnosis. We used the Mini-DIPS to detect the following conditions: anxiety
disorders, substance addiction disorders, eating disorders, obsessive-compulsive disorders,
affective disorders, and suicidality. We decided to screen for these disorders because they
pose common comorbidities in depression (Jacobi et al., 2014; Lamers et al., 2011;
Zimmermann et al., 2002), were in some cases associated with the FRN (Aarts & Pourtois,

2012; Bellato et al., 2021; Forester et al., 2024; Gu et al., 2010; Jiang et al., 2018; Ryu et al.,
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2017; Sehrig et al., 2019; Takacs et al., 2015; Tobias & Ito, 2021) and are some of the most
common mental disorders in adulthood in Germany (Suhr, 2020).
Assessment of Depression
Familial vulnerability

We asked participants whether a first-degree relative, i.e., parent or sibling (excluding
half-siblings), has ever been diagnosed with depression, providing “yes”, “no” and “I’m not
sure” as response options.
Past depressive episodes

Adapted from the approach by Bress et al. (2013), we used a modified version of the
mood module of the Patient Health Questionnaire (PHQ-9; Kroenke et al., 2001; German
version: Gréfe et al., 2004) to evaluate past depressive episodes. The modified version by
Cannon et al. (2007) contains 9 items (e.g., Little interest or pleasure in doing things) that
can be rated on a 4-point-scale ((0) not at all to (3) almost every day). Importantly, the
modified version refers to the two weeks in the participants’ lives when they were feeling
most blue, sad, or depressed. The sum score can range from 0 to 27, with higher values
indicating more severe depressive symptoms. High correspondence with lifetime diagnosis
based on the Structured Clinical Interview for DSM-IV (SCID; First & Gibbon, 2004) makes
the modified PHQ-9 an efficient measure of lifetime depression (Cannon et al., 2007).
Current depressive symptoms

We used the Beck Depression Inventory ([BDI-II]; Beck et al., 1996; German version:
Hautzinger et al., 2006) as a measure for acute depression severity (for a similar account, see
Bress et al., 2013). It contains 21 items, each consisting of 4 statements reflecting values
from 0 to 3. For example, the first item addresses sadness with the following statements: (0) /

do not feel sad (1) 1 feel sad much of the time (2) I am sad all of the time (3) I am so sad or

unhappy that I can’t stand it. We asked participants to indicate which of the four statements
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has most likely been true for them in the past two weeks. The values of the ticked statements
were summed up and built a score ranging from 0 (no depressive symptomatology) to 63
(severe symptomatology).

Experimental Task and Conditions

Participants performed a probabilistic feedback learning task, where they could learn
associations between stimuli and positive (+4ct) or negative (-2ct) monetary feedback (see
Figure 1A). The task contained the within-subject factor feedback timing: Feedback appeared
either 1 s (immediate feedback) or 7 s (delayed feedback) after the participant’s choice. The
experiment consisted of four learning phases, two with immediate and two with delayed
feedback. Learning phases with immediate vs. delayed feedback alternated and it was
counterbalanced which feedback timing condition was presented first.

Figure 1A shows the temporal sequence of a trial, from the presentation of two
available stimuli to the selection and feedback. The software Presentation (Neurobehavioral
Systems Inc., Albany, CA, USA) controlled the timing of stimulation and the recording of
responses. Responses were performed on a standard computer keyboard (Logitech K120)
where participants could press the left and right control keys to choose between the stimuli.
One stimulus of each pair was associated with reward in 65 % of the trials and with
punishment in 35 %, while the probabilities were reversed for the other stimulus. The
participant's task was to learn which stimulus is more likely to be rewarded and thus
maximize the reward. Participants were instructed that wins and losses contribute to the total
amount of money paid out at the end. A new pair of stimuli was presented in each of the four
learning phases (see Figure 1B). Each learning phase consisted of 4 blocks of 20 trials with
short breaks in between, i.e., 80 trials per learning phase and 320 trials in total.

Figure 1

Stimuli and time course of the probabilistic feedback learning task
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A | Feedback Learning Task

+ % <3000 ms

or + 4 ct

O

B | Stimulus Pairs

Note. A Feedback Learning Task: The assignment of visual stimuli to the left and right side of
the screen, as well as the side on which the more rewarding stimulus was presented, was
counterbalanced to ensure that feedback could clearly be associated with a stimulus and not
with a response side. B Stimulus Pairs: The neighboring stimuli build the four pairs used for
all participants. The stimulus associated with higher reward probability was randomly
determined when a new pair was presented.
EEG Data Acquisition

We acquired EEG data from a total of 60 electrodes, fixed with an actiCap textile
softcap (BrainProducts, Germany), and evenly distributed on the scalp based on the extended
10-20 system. Electrodes were attached to the scalp sites AF3, AF4, AF7, AF8, C1, C2, C3,
C4, C5, Co, CP1, CP2, CP3, CP4, CP5, CP6, CPz, Cz, F1, F2, F3, F4, F5, F6, F7, F8, FCI,
FC2, FC3, FC4, FC5, FC6, FT10, FT7, FT8, FT9, Fz, O1, O2, Oz, P1, P2, P3, P4, PS5, P6, P7,

P8, PO10, PO3, PO4, PO7, POS8, PO9, POz, Pz, T7, T8, TP7, TPS. In addition, the ground
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electrode was attached to the AFz position and an online reference to the position FCz. We
placed two further electrodes over the left and right mastoids to cover as much of the scalp as
possible for the average reference (see below). Finally, we attached two more electrodes
(VEOG) above (at Fp1 position) and below the left eye to keep track of vertical eye
movements and blinks. A BrainAmp DC amplifier (BrainProducts, Germany) and the Brain
Vision Recorder software (BrainProducts, Germany) were used for data recording with a
sampling rate of 1000 Hz and an online lowpass filter of 100 Hz. We kept impedances below
15 kQ.
Data Analysis
Behavioral Analysis

We performed generalized linear mixed-effects models (GLME) analyses suitable for
binomial distributions and single-trial data using the lme4 package (version 1.1.34; Bates et
al., 2015) in R (The R Foundation, 2021). The dependent variable was response accuracy,
with correct responses (defined as the choice of the stimulus associated with the higher
reward probability) coded as 1 and incorrect responses as 0. We calculated three separate
models, one for each measure of depression as predictor. The first model comprised as fixed-
effect predictors the BDI (between-subjects: severity of current depressive symptoms
measured via the BDI-II), Feedback Timing (within-subjects: immediate vs. delayed) and
Block (1-4; because learning is indicated by an increase in the number of correct responses
within the same learning phase), together with all interactions. Participants were included as
random intercepts. For the inclusion of random-effect slopes per participant, we considered
best practice guidelines (Meteyard & Davies, 2020): we included all within-subject main and
interaction effects as random slopes, unless their inclusion compromised model fit. The
maximal model was determined by using the buildmer (Version 2.11; Voeten, 2020)

function.
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The other two models were constructed based on the same principle, with the only
difference being the depression measure used as fixed effect predictor. The second model
contained the PHQ (a measure of past depressive episodes assessed through the modified
PHQ-9) and the third model included Familial Vulnerability for depression as a predictor
(binary categorical variable indicating whether a first degree relative has ever been diagnosed
with depression). The resulting model formulas for all three models are presented in Table S1
of the Supporting Information.

Modelling of Prediction Errors

We inferred single trial values of the PE for each participant by fitting a reinforcement
learning model to the behavioral data in MATLAB (version R2021a, The MathWorks, Inc.,
2021; for a similar approach see Burnside et al., 2019; Lefebvre et al., 2017; Rohlinger et al.,
2025; Weber & Bellebaum, 2024). The basis for the application of the reinforcement learning
model was each participants’ sequence of choices and the feedback they received. The PE
8.+ was conceptualized as:

Oct = 1t — Qe
where in a given trial ¢ the reward 7; is 1 for positive feedback and 0 for negative feedback,
and Q. 1s the value of the stimulus the participant chose. Separately for each of the four
stimulus pairs, we primarily assigned both stimuli a stimulus value of 0.5, that was iteratively
adjusted in every trial t in which the stimulus pair was displayed. The stimulus value of the
chosen stimulus, Q., was adjusted based on the difference between the previous value and the
obtained outcome (the PE &), together with a learning rate a that mirrors how much the
participant used the PE to adjust the stimulus value. For each of the four stimulus pairs, we
modeled different learning rates for learning from positive feedback and negative feedback.
We adjusted the stimulus value of the chosen stimulus with the learning rate a,,, for trials

with positive feedback that confirms the choice as follows:
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Qctr1 = Qce+ Acon * Ot
For trials with negative feedback that disconfirms the choice, the stimulus value of the chosen
stimulus was adjusted with the learning rate a 4;,:

Qet+1 = Qct + Qais * Oy
As both stimuli of a pair were always displayed together, we expected that participants would
form assumptions about the unchosen stimulus from feedback for the chosen stimulus.
Therefore, the value of the unchosen stimulus, Q,,, was 1-Q. and was updated accordingly.

For each trial, t; _,, ., we calculated the probability p that the model would choose

the stimulus which was indeed chosen by the participant with the help of the softmax
function. This calculation was based on prior stimulus values of both stimuli that were
displayed, namely values of the chosen stimulus, Q. , and the unchosen stimulus in trial t,
Q..¢ , along with an exploration parameter £5:

eQCJt*ﬁ
Pet = Lact+B 1 gQut+p

with £ indicating how much prior stimulus values affected the participants choices. A larger
p indicates that a participant relied more on earlier stimulus values, whereas a smaller
indicates that the participant was more explorative in the choice behavior.

In a next step, we used the probabilities p to calculate the negative summed log-
likelihood (—LL) as measure for the model’s goodness of fit:

—2'log (Det,,...neriars)

The optimization function fmincon from the Optimization Toolbox of MATLAB (R2021a,
The MathWorks, Inc., 2021) minimized the —LL value by estimating values for the free
parameters (@con, Xqis, f) that led to the least difference between the model’s predicted
choices and the participant’s actual behavior. The model was fit repeatedly (50 iterations) to

the participants’ behavior to prevent convergence to local minima. We allowed random
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numbers within the interval [0; 1] as start values for the free parameters. We set boundaries
of [0; 1] for the learning rates (@ .on, @4is), and [0; 100] for the exploration parameter (f3).
EEG Data Analysis

BrainVision Analyzer 2.2 (Brain Products GmbH, 2018), MATLAB R2021a (The
MathWorks, Inc., 2021) and R (The R Foundation, 2021) were used for EEG data analysis.
Trials in which participants failed to answer (M = 1.00%, SD = 1.60%, Min = 0.00 %, Max =
8.44%) were excluded from any further EEG analyses.

Preprocessing. We first re-referenced the data to the average of all scalp electrodes
and calculated the signal at the online reference site FCz (for similar procedures see Arbel et
al., 2017; Holtje & Mecklinger, 2020; Rohlinger et al., 2025). To minimize the reduction of
ERP effects that can result by using an average reference (see Luck, 2014) we used high-
density EEG acquisition including data from 63 scalp electrodes (see above, including
mastoids) into the average reference. Afterwards, we filtered the data with a 30 Hz low cut-
off and a 0.1 Hz high cut-off filter (as proposed by Luck, 2014) as well as a 50 Hz Notch
Filter. Then, we performed an independent component analysis (ICA) followed by a reversed
ICA on single-subject EEG data to remove blinking artifacts. In a next step, we created
segments from 200 ms before to 800 ms after feedback onset followed by a baseline
correction relative to the first 200 ms of the segment. Then, we excluded segments with
artifacts in the electrodes of our interest (for similar approaches see Albrecht et al., 2023;
Rohlinger et al., 2025), i.e., electrodes used to measure the FRN (Fz, FCz, Cz, FC1 & FC2)
and N170 (P7 and P8). Precisely, all segments containing voltage steps > 50 pV/ms,
differences between values > 80 uV or < 0.1 pV within an interval of 100 ms or amplitudes >
80 uV or <-80 nV were removed (M = 1.25%, SD = 3.25%, Min = 0.00%, Max = 17.41%)).
We grouped and averaged the remaining segments according to the conditions (positive and

negative immediate feedback and delayed feedback), yielding four averages per participant.
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Eventually, we exported all single-trial segment data as well as all averages per condition and
participant for further analysis in MATLAB to extract single-trial ERP data (MathWorks,
MA).

For the N170, we retrieved single-trial amplitudes (see Albrecht et al., 2023) from
electrodes P7 and P8 (for similar approaches see Arbel et al., 2017; Holtje & Mecklinger,
2020; Kim & Arbel, 2019; Rohlinger et al., 2025) as preregistered. First, we identified the
maximum negative peak amplitude between 130 and 230 ms after feedback presentation in
each participant’s averages, at both electrode sites and for all four conditions separately (see
above). Then, for each single trial, we calculated the mean amplitude in a time window of =
10 ms around the condition- and electrode-specific N170 peak latency. In addition, we
extracted the mean amplitude in a time window of + 10 ms around the preceding positive
peak (P1). Similar to the approach used for the negative peak, P1 latency was determined
using the condition-specific average at each electrode site. We determined the P1 as the
maximum positivity in a time window starting 75 ms after feedback onset to the respective
condition-specific negative peak. As dependent variable for the analysis, we used the N170
defined as the peak-to-peak amplitude by subtracting the single-trial amplitude value
corresponding to the preceding P1 from the single-trial value corresponding to the negative
peak (for a similar approach see Rohlinger et al., 2025).

For the FRN, we retrieved single-trial amplitudes from the pooled signal of an
electrode cluster consisting of Fz, FCz, Cz, FC1, and FC2 (for a similar approach see
Rohlinger et al., 2025), as preregistered. First, we calculated the difference wave (FRNuifr) for
negative — positive feedback separately for immediate and delayed feedback for each
participant. We used the two difference waves to determine the maximum negative peak
amplitude latency between 230 and 360 ms post-feedback for each participant. Then, for each

single trial, we calculated the mean amplitude in a time window of + 10 ms around the
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condition-specific FRNd;s peak latency. Importantly, the difference waves were only used to
derive the latency of the time point when the difference between positive and negative
feedback was maximal, but single-trial values based on this latency were extracted from the
original waveforms.

Statistical Analysis.

N170. We analyzed the single-trial N170 amplitude as the dependent variable in an
LME analysis using R (Bates et al., 2015). Similar to the analysis of the behavioral data, we
constructed three separate models, one for each of the three different depression variables as
predictor (BDI, PHQ and Familial Vulnerability). The first model contained the fixed-effect
predictors BDI (severity of current depressive symptoms measured via the BDI-II), as well as
Feedback Timing (immediate vs. delayed), Feedback Valence (negative vs. positive) and the
unsigned PE (indicating general expectation violations or surprise, independent of feedback
valence). Because the N170 has been found to show hemispheric differences (see Rohlinger
et al., 2025), we also added Electrode (P7 vs. P8) as a fixed-effect predictor, in addition with
all possible interactions between the factors. As random effect factor, we included
Participant. Random slopes per participant were added as described for the behavioural
GLME above.

The other two models were created based on the same approach, with the only
variation being the depression measure used as a fixed effect predictor. The second model
contained the PHQ (a measure of past depressive episodes assessed through the modified
PHQ-9) and the third model included Familial Vulnerability for depression as a predictor
(binary categorical variable indicating whether a first degree relative has ever been diagnosed
with depression). The resulting model formulas for all three models are presented in Table S2
of the Supporting Information. To resolve significant interactions, simple slope analyses were

performed with Bonferroni corrected p-values (multiplied by the number of conducted tests).
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FRN. We analyzed the single-trial FRN amplitude as the dependent variable in an
LME analysis using R (Bates et al., 2015). We followed the same approach as in the N170
analysis (see above), building three models that varied only regarding the depression variable
used as fixed-effect predictor (BDI, PHQ or Familial Vulnerability). As additional fixed-
effect predictors in each of the three models we added Feedback Timing (immediate vs.
delayed), Feedback Valence (negative vs. positive), and the unsigned PE (indicating general
expectation violations or surprise, independent of feedback valence), as well as all possible
interactions between these factors. As random intercepts, we included Participant. Random
slopes per participant were added as described for the behavioral GLME above. The formulas
for the three resulting models are presented in Table S3 of the Supporting Information.
Significant interactions were resolved as described for the N170 (see above).

Results

Mini-Dips, BDI-II, modified PHQ-9 and Familial Vulnerability

According to the Mini-DIPS, depressive symptoms were the most frequent psychiatric
symptoms in our sample. Of the 45 participants in our sample, 18 met the diagnostic criteria
for a major depressive episode, either currently or in the past. 13 participants fulfilled the
criteria for social anxiety disorder, and 11 participants met the criteria for generalized anxiety
disorder, each either currently or in the past. Diagnostic criteria for other mental disorders
were met less frequently (see Table 1). Additionally, 9 participants reported having received
outpatient or inpatient psychotherapy either currently or in the past. Participants reached a
mean BDI score of 9.89 (SD = 9.34; Min = 0, Max = 39) and a mean PHQ score of 9.64 (SD
= 5.68, Min =0, Max = 26). Finally, 8 participants reported that a first degree relative has
been diagnosed with depression, while this was not the case for 29 participants and another 8
participants were not sure.

Table 1
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Descriptive statistics resulting from the Mini-DIPS

Diagnosis n Percent (%)
Anxiety Disorders
Panic Disorder 4 8
Agoraphobia 4 8
Social Anxiety Disorder 13 26
Specific Phobia 4 8
Gerneralized Anxiety Disorder 11 22
Affective Disorders
Manic Episode 0 0
Hypomanic Episode 6 12
Major Depression 18 36
Persistent Depressive Disorder 3 6
Eating Disorder
Anorexia Nervosa 3 6
Bulimia Nervosa 5 10
Binge Eating Disorder 3 6
Obsessive Compulsive Disorder 4 8
Substance Addiction 1 2
Suicidal Tendencies 2 4

Note. N = 45. Mini-Dips = abbreviated version of the Diagnostic Interview for
Psychological Disorders. Listed are the numbers of individuals who, according to their

own reports during the interview, met the criteria for the psychiatric disorders presented,

either currently or in the past.

Behavioral Results

19

Table S4 in the Supporting Information lists B-estimates and effect specific z-tests for

the three conducted GLME analyses, one for each depression measure (BDI, PHQ and

Familial Vulnerability). First, we report results from the GLME analysis including the BDI,

together with Block and Feedback Timing. The analysis revealed a significant effect of Block

(» <.001) on response accuracy, with an increasing number of correct responses (selection of

the more frequently rewarded stimulus) across the four learning Blocks. Descriptive data for

this effect are presented in Figure 2A. Furthermore, we found a significant effect of BDI (p

=.011) in the direction that higher BDI scores led to a reduced performance in the

experimental feedback learning task. Descriptive data underlying this effect are presented in

Figure 2B. No other significant effects were observed (all ps >.106). The models containing



ALTERED FEEDBACK LEARNING IN DEPRESSION 20

the PHQ and Familial Vulnerability both replicated the significant effect of Block (p <.001)
found in the analysis including the BDI, while they did not reveal other significant effects (all
ps > .073 for the analysis involving PHQ and all ps > .285 for the analysis involving Familial
Vulnerability).

Figure 2

Descriptive pattern of learning performance during the feedback learning task
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Note. The plots are based on descriptive data. A Performance by Block: Mean accuracy (% of
correct responses) for the four learning blocks of the probabilistic feedback learning task,
separately for immediate and delayed feedback. Error bars represent 95% confidence
intervals. B Performance by BDI: Mean accuracy (% of correct responses) in the probabilistic
feedback learning task depending on BDI-II Scores and Feedback Timing. Shaded areas
represent 95% confidence intervals.

EEG Results
NI170
Grand averages for the ERPs following positive and negative immediate and delayed

feedback at electrode sites P7 and P8 are presented in Figure 3. In the following, we describe

more negative N170 amplitudes as more pronounced or larger.
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Figure 3
Grand averages at P7 and P8 and topographical maps at the respective peaks
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constructed on the basis of the condition-specific N170 peaks.
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First, we report results from the LME analysis on the N170 including the BDI,
Feedback Timing, Feedback Valence, PE and Electrode as predictors. Table S5 in the
Supporting Information lists B-estimates and effect specific ¢-tests. The analysis revealed a
significant main effect of the Electrode (p = .009), with more pronounced amplitudes over the
right (P8) than the left hemisphere (P7). This main effect was further explained by a two-way
interaction between Electrode and Feedback Valence (p <.001), which we resolved with
simple slope analyses. The underlying descriptive data are presented in Figure 4A. We found
a significant effect of Feedback Valence only for P8 (B = 1.55, SE =0.33, t=4.67, p <.001)
with larger amplitudes following negative compared to positive feedback, but not for P7 (B =
-0.61, SE = 0.30, t = -2.02, p = .100). Furthermore, there was a significant interaction
between Feedback Valence and PE (p <.001), which we resolved with simple slope analyses.
The underlying descriptive data are presented in Figure 4B. For negative feedback, the PE
had a significant effect on the N170, with more pronounced amplitudes for expected
compared to unexpected feedback (B = 0.95, SE =0.35, t =2.69, p = .020). For positive
feedback, the effect was reversed, with significantly larger N170 amplitudes for unexpected
compared to expected feedback (f =-1.86, SE =0.36, t=-5.17, p <.001).

Figure 4

Descriptive data patterns underlying the N170 analyses



ALTERED FEEDBACK LEARNING IN DEPRESSION 23

A | Interaction between Feedback B | Interaction between PE and
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Note. The plots are based on descriptive data. A Feedback Valence x Electrode: n = 45. Error
bars represent 95% confidence intervals. B PE x Feedback Valence: n = 45. Shaded areas
represent 95% confidence intervals. C PE x Feedback Timing x BDI: n =45. The high BDI
graph represents data from participants with BDI-II scores > median, the low BDI graph
represents data from participants with BDI-II scores < the median. Shaded areas represent
95% confidence intervals. D Feedback Valence x Familial Vulnerability: » = 37. Low
Familial Vulnerability represents descriptive data from participants with first-degree relatives
without a history of depression, high Familial Vulnerability represents data from participants
with first-degree relatives with a depression diagnosis. Error bars represent 95% confidence

intervals.
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Regarding effects of the BDI, we found a significant three-way interaction between
BDI, Feedback Timing and PE (p = .047). The underlying descriptive data are presented in
Figure 4C. Simple slope analyses revealed that the PE only had a significant effect on the
N170 following delayed feedback in participants with low BDI values (i.e., BDI =-1SD; B =
-1.58, SE=0.48, t = -3.30, p = .012). In individuals with no or only minimal depressive
symptoms, the N170 amplitude increased for more unexpected delayed feedback. All other
simple slope analyses did not reach significance (all ps > .330; see Table S6 in the Supporting
Information for B-estimates and effect specific ¢-tests). The three-way interaction was further
explained by a significant five-way interaction between all predictors included in the analysis
(p = .041), which we resolved using simple slope analyses. Model plots for P7 and P8
separately are presented in Figure 5, Table S7 in the Supporting Information lists B-estimates
and effect specific #-tests. The simple slope analyses revealed a significant effect of the PE on
the N170 for the P7 in participants with low BDI scores after receiving delayed positive
feedback (B =-3.36, SE =0.92, t =-3.67, p = .004), with larger amplitudes for more
unexpected feedback. For the P8, the simple slope analysis also revealed a significant PE
effect on the N170, again in participants with low BDI scores and following positive
feedback, but this time for immediate feedback (B =-3.09, SE = 1.00, ¢ = -3.09, p = .034).
Again, more unexpected positive feedback was associated with larger N170 amplitudes.
Apart from these two significant slopes, the simple slope analyses did not reveal any further
significant effects (all ps >.051). All other main and interaction effects of the LME analysis
including the BDI did not reach significance (all ps > .063).
Figure 5
Model plots for the BDI x PE x Feedback Valence x Feedback Timing x Electrode interaction

for the N170
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For the analysis containing the PHQ instead of the BDI as a predictor, Table S8 in the
Supporting Information lists B-estimates and effect specific #-tests. To avoid redundancies, we
only focus on effects involving the PHQ, while other effects (mainly replications of effects that
were already described for the BDI analysis) are reported in the section titled N170 Analysis
Including PHQ of the Supporting Information. The analysis revealed neither a significant main
effect of PHQ, nor significant interactions involving PHQ (all ps > .054).

For the analysis containing Familial Vulnerability, Table S9 in the Supporting
Information lists B-estimates and effect specific #-tests. As above, here we only report effects
involving Familial Vulnerability, while other effects (again mainly replications already
described for the BDI model above) are reported in the Supporting Information under the
section titled N170 Analysis Including Familial Vulnerability. The analysis revealed a
significant interaction between Feedback Valence and Familial Vulnerability (p =.011). The
underlying descriptive data are presented in Figure 4D. Only participants without first-degree
relatives with a history of depression showed significantly larger amplitudes for negative
compared to positive feedback (f = 0.93, SE =0.29, t = 3.20, p = .006), while there was no
effect of Feedback Valence for participants with first-degree relatives with a diagnosed
depression (B =-0.74, SE = 0.54, t = -1.38, p = .358). Apart from that, there were no other
significant effects involving Familial Vulnerability (all ps > .064).

FRN

Grand averages for the ERPs following positive and negative immediate and delayed
feedback pooled over the frontocentral cluster of electrodes are presented in Figure 6.

Figure 6

Grand Averages and topographical maps of the FRN
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standard errors. B Topographies: The maps were constructed on the basis of the condition-
specific difference waves.

Similar to the results of the N170 analysis, we begin by reporting the results of the

LME analysis on the FRN, including BDI, Feedback Timing, Feedback Valence, and PE as
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predictors. Table S10 in the Supporting Information lists B-estimates and effect specific z-
tests. The analysis revealed a significant effect of Feedback Valence (p <.001), with more
negative amplitudes following negative compared to positive feedback. In addition, there was
a significant effect of Feedback Timing (p = .004), indicating more negative amplitudes
following immediate compared to delayed feedback. A significant interaction between
Feedback Valence and Feedback Timing (p = .008) explained these effects further: Negative
feedback was associated with more negative amplitudes for both immediate (f = 2.59, SE =
0.26, t=9.85, p <.001) and delayed feedback (B = 1.85, SE =0.27, 1= 6.80, p <.001), but
the effect was stronger for immediate feedback. Descriptive data underlying this interaction
are presented in Figure 7A. Furthermore, we found a significant effect of PE (p =.008) that
was further explained by a significant interaction between PE and Feedback Valence (p
<.001), which we thus resolved. Descriptive data underlying this interaction are presented in
Figure 7B. There was a significant effect of PE on the FRN amplitude for negative feedback,
with more negative amplitudes for more unexpected feedback (f =-1.98, SE=0.49, t =-4.01,
p =.001). For positive feedback, this effect was reversed with more positive amplitudes for
more unexpected feedback ( =3.75, SE=0.57, t = 6.56, p <.001). All other effects
(including effects involving the BDI) were not significant (all ps > .065).

Tables S11 and S12 in the Supporting Information list B-estimates and effect specific
t-tests for the two models in which BDI was replaced by either PHQ or Familial
Vulnerability. For both models, we could replicate the findings described for the BDI
model—they are reported in detail in the Supporting Information under the sections titled
FRN Analysis Including PHQ and FRN Analysis Including Familial Vulnerability,
respectively. Apart from that, we did not find significant effects, neither of PHQ nor of
Familial Vulnerability (all ps > .271 for the model including PHQ and all ps > .056 for the

model including Familial Vulnerability).
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Figure 7

Descriptive data patterns underlying the FRN analyses
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Note. The plots are based on descriptive data. A Feedback Valence x Feedback Timing: n =
45. Error bars represent 95% confidence intervals. B PE x Feedback Valence: n = 45. Shaded
areas represent 95% confidence intervals.
Discussion

The present study aimed to investigate links between depressive symptoms and
feedback learning and feedback processing using insights from two ERP components, FRN
and N 170, that have primarily been associated with immediate and delayed feedback
processing, respectively. Previous studies reported a reduced differentiation between
responses to gains and losses in FRN amplitudes in combination with reduced striatal
processing in depression (Bress et al., 2012, 2015; Foti et al., 2014; Klawohn et al., 2021;
Pizzagalli et al., 2009; Takamura et al., 2017; for reviews see Admon & Pizzagalli, 2015,
Keren et al., 2018 and Luking et al., 2016). However, the striatum seems to be particularly

important for immediate feedback processing, while for delayed feedback processing

hippocampal activity is increased, which has been linked to the N170 ERP component (Arbel
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etal., 2017; Foerde et al., 2013; Foerde & Shohamy, 2011; Holtje & Mecklinger, 2020; Kim
& Arbel, 2019; Peterburs et al., 2016, Weinberg et al., 2012; Weismiiller & Bellebaum,
2016). This is the first study to explicitly address effects of depressive symptoms on learning
from and processing of immediate and delayed feedback. Besides trying to replicate findings
of impaired learning (Admon et al., 2017; Bakic et al., 2017; Kumar et al., 2018; Kunisato et
al., 2012; Macoveanu et al., 2014; Pechtel et al., 2013; Pizzagalli et al., 2005, 2008) and
reduced differentiations between positive and negative feedback in FRN amplitudes
following immediate feedback in depression (Bress et al., 2012, 2015; Foti et al., 2014;
Klawohn et al., 2021), we hypothesized to find alterations for learning from delayed feedback
and also delayed feedback processing as measured via the N170. As hypothesized, we found
that learning performance decreased with more severe currently experienced depressive
symptoms, irrespective of feedback delay. While we could not replicate findings of a reduced
differentiation between responses to gains and losses in FRN amplitude for more severe
depressive symptoms, we found PE coding in the N170 only in participants with low BDI
scores, mainly driven by responses to (delayed) positive feedback. In addition, familial
vulnerability for depression was linked to a reduced sensitivity for feedback valence encoded
in the N170.
Effects of current depressive symptoms on feedback learning, FRN and N170

The ability to use positive and negative consequences of our actions to learn and
shape future decisions is fundamental for human intelligent behavior (Silver et al., 2021).
Accordingly, participants in our study successfully learned to choose the more rewarding out
of two stimuli throughout a probabilistic feedback learning task that required an accumulation
of experiences over time (Fu & Anderson, 2008). Previous studies indicated that depression
interferes with the ability to learn from feedback (Admon et al., 2017; Bakic et al., 2017;

Kumar et al., 2018; Kunisato et al., 2012; Macoveanu et al., 2014; Pechtel et al., 2013;
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Pizzagalli et al., 2005, 2008; for reviews see Chen et al., 2015 and Eshel & Roiser, 2010). In
line with this and our hypothesis, we found that participants currently experiencing more
severe depressive symptoms showed worse learning performance in the probabilistic
feedback learning task, regardless of feedback timing. This is in line with our assumption that
both, learning from immediate and delayed feedback, is affected by depression, possibly
caused by changes in the striatum and hippocampus (Admon & Pizzagalli, 2015; Fairhall et
al., 2010; Luking et al., 2016; Nestler et al., 2002; Pizzagalli et al., 2009; Takamura et al.,
2017; Thompson, 2023) that are both involved in feedback processing (Foerde et al., 2013;
Foerde & Shohamy, 2011).

However, these behavioral alterations were not reflected in the FRN: Against our
hypothesis, we did not find reduced feedback valence sensitivity in FRN amplitudes in
participants currently experiencing depressive symptoms, which is not in line with previous
findings (Bress et al., 2012, 2015; Foti et al., 2014; Klawohn et al., 2021). An explorative
investigation revealed that PE coding in the FRN was also not affected by the severity of
currently experienced depressive symptoms. In contrast, a study by Jackson and Cavanagh
(2023) indicated that low mood can influence reward learning via poorer prediction error
coding in the RewP. On the one hand, our results seem to support studies that found no or
only weak, task-dependent relationships between the FRN and depression (Hager et al., 2021;
Clayson et al., 2020; Moran et al., 2017). On the other hand, the EEG signal is influenced by
many cognitive processes, and their spatiotemporal overlaps can make it difficult to link
individual performance to ERP deflections (Ullsperger, 2024). Thus, dissociations between
the FRN and behavior are not an uncommon finding (Ullsperger, 2024), indicating that other
neural processes, reflected in other feedback-locked ERP components, might be more closely

linked to behavior.
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The present study is the first to investigate depression-related alterations in the
feedback-locked N170. Previous studies found more pronounced N170 amplitudes following
delayed feedback compared to immediate feedback (Arbel et al., 2017; Holtje & Mecklinger,
2020; Kim & Arbel, 2019). Because of the role of the hippocampus for delayed feedback
processing (Foerde et al., 2013; Foerde & Shohamy, 2011), the N170 has been interpreted to
reflect MTL activity (Arbel et a., 2017; Holtje & Mecklinger, 2020; Kim & Arbel, 2019).
Depression can be accompanied by changes in hippocampal structure and functioning,
possibly explaining memory impairments and some of the cognitive symptoms seen in
depression (Fairhall et al., 2010; Nestler et al., 2002; Thompson, 2023). Therefore, we
expected reduced N170 amplitudes for participants currently experiencing more severe
depressive symptoms, especially following delayed feedback. While we could not find the
hypothesized pattern, currently experienced depressive symptoms affected PE coding
reflected in the N170. More specifically, we found reflections of the PE in the N170
amplitude only in participants with low levels of depressive symptoms and especially
following (delayed) positive feedback. For these participants, more unexpected positive
feedback was linked to more pronounced N170 amplitudes. While this is not exactly what we
had hypothesized, it still matches our assumption that structures and processes that are
involved in generating the N170 are altered in depression.

For the feedback-locked N170, it was only once previously described that it reflects
the entire range of the PE (Rohlinger et al., 2025), with an opposite pattern compared to the
FRN (Burnside et al., 2019; Fischer & Ullsperger, 2013; Weber & Bellebaum, 2024): the
more unexpected positive feedback was, the more negative (pronounced) the N170 became
and the more unexpected negative feedback was, the more positive it became. In the present
study we could replicate this finding. Since midbrain dopamine neurons seem to send

information not only to striatal and fronto-cortical areas of the brain (Schultz, 2002), but also
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to the hippocampus (Calabresi et al., 2013; Tsetsenis et al., 2013), the described pattern could
mean that the MTL is especially involved in reactivating representations of unexpectedly
rewarded stimuli to link them to (temporally delayed) feedback (Rohlinger et al., 2025).
While in healthy individuals, midbrain dopamine regions and the MTL seem to enhance
memory representations of rewarded stimuli to adapt future behavior (Shohamy & Adcock,
2010), our results suggest that this process might be disrupted by acute depression. This
would be in line with findings of hippocampal atrophy and changes in cognitive functions
like memory (Fairhall et al., 2010; Nestler et al., 2002; Thompson, 2023). In addition, acute
depressive symptoms come along with anhedonia, reduced reward responsiveness and altered
feedback learning processes (Admon et al., 2017; Bakic et al., 2017; Huys et al., 2013;
Kumar et al., 2018; Kunisato et al., 2012; Rizvi et al., 2016), which might be related to the
reduced PE coding following positive feedback in the present study.
Effects of past depressive episodes on feedback learning, FRN and N170

Since individuals who have recovered from depression still show blunted responses to
reward in the striatum (McCabe et al., 2009), we intended to not only look at effects of
currently experienced depressive symptoms, but also investigate effects of past depressive
symptom severity on feedback learning and processing, with a new focus on delayed
feedback processing and potentially reduced N170 amplitudes. However, we did not find any
effects of past depressive episodes as measured via a modified version of the PHQ-9. The
modified version of the PHQ-9 was introduced as a measure of lifetime depression (Cannon
et al., 2007) in which participants rate how strongly they have experienced a list of depressive
symptoms in the two weeks in their life in which they have felt most sad or depressed.
However, scoring high on this questionnaire does not necessarily indicate that a person went
through a major depressive episode in the past. For example, losing a beloved person can

cause a feeling of sadness or emptiness, a loss of pleasure or interest in activities, or one of
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the other symptoms that are among the diagnostic criteria for a major depressive episode
according to the International Classification of Diseases (ICD-11, World Health
Organization, 2019) and that are assessed by the modified PHQ-9. Apparently, there is an
overlap of symptoms between grief and depression and although grief can culminate in a
major depression, it is usually not pathological (Shear et al., 2011; Zisook & Shear, 2009).
We assume that the modified PHQ-9 used in this study might have been unsuitable to reliably
and validly assess clinically relevant past depressive episodes.
Effects of familial vulnerability on feedback learning, FRN and N170

A familial history of depression, for example having a depressed mother, poses a risk
of developing depression (Halligan et al., 2007; Raposa et al., 2014). Accordingly, blunted
FRN amplitudes following rewards were found in siblings of depressed individuals who were
not depressed themselves (Weinberg et al., 2015). Blunted responses to reward within the
dorsal and ventral striatum relative to children of no-depressed mothers serve as
neurophysiological explanation for the increased risk and altered FRN amplitudes (for an
extensive review see Luking et al., 2016). We intended to find out whether familial
vulnerability for depression, besides affecting the FRN following immediate feedback, also
affects the processing of delayed feedback, for example indicated by reduced N170
amplitudes. First of all, familial vulnerability did not affect behavioral response accuracy in
the probabilistic feedback learning task and we did not find vulnerability-related changes in
the FRN in terms of a reduced sensitivity for feedback valence. However, we observed such
an effect for the N170, independent of feedback timing: In general, the N170 in this study
was more pronounced following negative than positive feedback (for similar results see Kim
& Arbel, 2019), but only over the right hemisphere. This sensitivity for feedback valence was
not found in participants with a familial history of depression. In other words, the amplitude

difference between positive and negative feedback in the N170 diminished for participants at
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increased risk for depression. In this line, an fMRI study on 10- to 14-year-old girls with a
familial history of depression found reduced striatal activity in response to rewards and
increased activation in the dorsal anterior cingulate cortex following losses (compared to
peers without such a family history) even before the onset of depressive symptoms (Gotlib et
al., 2010). Similar alterations in the activity of structures underlying the N170 could account
for the altered processing of positive and negative feedback observed in this study.
Limitations and Future Studies

While it seems to be justified to consider depression not as a dichotomous variable,
there are also limitations of this approach. The participants in our study reached a mean BDI
score of 9.89 (SD = 9.34), which is below the cut-off score for depression (von Glischinski et
al., 2019). Some participants scored really low (Min = 0) and the maximum score was 39 in
our sample (with respect to a theoretically possible score of 63), indicating that the variance
in currently experienced depressive symptomatology was limited. Even though Bress et al.
(2012, 2015) found correlations between the FRN amplitude and self-rated depressive
symptoms in a non-clinical sample, their sample cannot be compared to ours, as it consisted
of 8- to 13-year-old children/adolescents, and depression-related alterations in the FRN seem
to be most pronounced in individuals under age 18 (Keren et al., 2018). A lack of participants
with very high BDI scores may have prevented us from finding such a relationship in an adult
sample (Clayson et al., 2020). In addition, self-reported depression assessed via the BDI-II in
our mostly undergraduate academic participants may have been confounded by academic or
peer-related stressors and therefore less indicative of a major depressive disorder (Hager et
al., 2021). On the contrary, the variance in BDI scores in our sample was sufficient to detect
effects on behavioral response accuracy and the N170. Other studies that found effects of
depression on the FRN compared clinical samples, i.e., participants that met the criteria for a

clinical diagnosis of unipolar depression (and reached a BDI score > 13), with healthy
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controls (Foti et al., 2014; Klawohn et al., 2021). Future studies could try to overcome
variance issues by combining group designs (clinical vs. non-clinical sample) with the
inclusion of depression as a continuous variable in the analysis.

Another sample-related limitation of our results involves the prevalence of other
mental disorders apart from depression, which were identified by the Mini-DIPS. For
example, 26% of our participants met the criteria for a social anxiety disorder (currently or in
the past). Heightened responses to negative feedback in the FRN have been observed in
anxiety (Tobias & Ito, 2021), which may blur effects of depressive symptoms. Grabowska et
al. (2024) explain that due to evidence for ERP components being modulated by various
interindividual differences, focusing on a small set of them might be problematic: Mental
disorders like anxiety and depression are interconnected and their influence on an individual's
way of processing feedback may be either direct or indirect. Furthermore, depression
encompasses a wide variety of emotional, cognitive, behavioral and neurovegetative
symptoms (see ICD-11, World Health Organization, 2019) and understanding the complex
relationships between them and feedback processing requires further investigation. For
example, it is possible that only a specific subtype of depression—particularly characterized
by anhedonia—exhibits alterations at the level of the FRN. Finally, heterogeneity in the
etiology of depression (Kendler et al., 2002) may account for the difficulties of replicating
effects on feedback processing. Grabowska et al. (2024) suggest to tackle the challenges in
research on relationships between ERP components and psychopathologies with network
analysis techniques.

Conclusion

In the present study, we found that performance in a learning task decreased with

more severe depressive symptoms, for learning from both immediate and delayed feedback.

While the FRN was unaffected by acute depressive symptom severity, past depressive
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episodes, and familial vulnerability for depression, we found depression-related changes in
the N170, remarkably for both immediate and delayed feedback processing. Currently
experienced depressive symptoms were associated with poorer encoding of prediction errors
in the N 170, possibly explaining reduced learning performance. In addition, a family history
of depression was associated with reduced sensitivity to feedback valence in the N170. Thus,
the N170 emerges as a novel, important biomarker alongside the FRN in clinical research on
depression and feedback-based learning processes.
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Table S1

Maximal GLME models for the analysis of behavioral data

Model Formula

Current depressive  Accuracy ~ I + Block + BDI + Block:BDI + Timing + BDI:Timing +

symptoms Block: Timing + Block:BDI:Timing + (1 + Block + Timing + Timing:Block |
Participant)

Past depressive Accuracy ~ 1 + Block + PHQ + Block:PHQ + Timing + Block:Timing +

episodes PHQ:Timing + Block: PHQ: Timing + (1 + Block + Timing + Timing:Block |
Participant)

Familial Accuracy ~ 1 + Block + Vulnerability + Timing + Block: Timing +

vulnerability Vulnerability: Timing + Block: Vulnerability + Block: Vulnerability: Timing

+(1 + Block + Timing + Timing:Block | Participant)

Note. GLME = generalized linear mixed effects. BDI = BDI-II (mean centered, yielding negative
values for scores below the mean vs. positive values for scores above the mean), PHQ = modified
PHQ-9 (mean centered, yielding negative values for scores below the mean vs. positive values for
scores above the mean), Vulnerability = Familial Vulnerability (first-degree relatives without a
history of depression [—0.5] vs. first-degree relatives with a depression diagnosis [0.5]), Timing =
Feedback Timing (immediate [-0.5] vs. delayed [0.5]).



Table S2

Maximal LME models for the N170 analysis

Model Formula

Current N170 Amplitude ~ 1 + Timing + Valence + Timing:Valence +

depressive BDI + Timing:BDI + Valence:BDI + Timing:Valence:BDI + PE + Timing:PE +

symptoms Valence:PE + Timing:Valence:PE + BDI:PE + Timing:BDI:PE + Valence:BDI:PE

(BDI-II) + Timing:Valence:BDI:PE + Electrode + Timing:Electrode + Valence:Electrode +
Timing:Valence:Electrode + BDI:Electrode + Timing:BDI:Electrode +
Valence:BDI:Electrode + Timing:Valence:BDI:Electrode + PE:Electrode +
Timing: PE:Electrode + Valence:PE:Electrode + Timing:Valence:PE:Electrode +
BDI:PE:Electrode + Timing:BDI: PE:Electrode + Valence:BDI:PE:Electrode +
Timing:Valence:BDI:PE:Electrode + (1 + Electrode + Timing + Valence +
Valence:Electrode + Timing:Electrode + PE | Participant)

Past N170 amplitude ~ 1 + Timing + Valence + Timing:Valence + PHQ + Timing: PHQ

depressive + Valence:PHQ + Timing:Valence:PHQ + PE + Timing:PE + Valence:PE +

episodes Timing:Valence:PE + PHQ:PE + Timing:PHQ:PE + Valence:PHQ:PE +

(modified Timing:Valence:PHQ:PE + Electrode + Timing:Electrode + Valence:Electrode +

PHQ) Timing:Valence:Electrode + PHQ:Electrode + Timing:PHQ:Electrode +
Valence:PHQ:Electrode + Timing:Valence:PHQ:Electrode + PE:Electrode +
Timing:PE:Electrode + Valence: PE:Electrode + Timing:Valence:PE:Electrode +
PHQ:PE:Electrode + Timing:PHQ:PE:Electrode + Valence:PHQ:PE:Electrode +
Timing:Valence:PHQ:PE:Electrode + (1 + Electrode + Timing + Valence +
Valence:Electrode + Timing:Electrode + PE | Participant)

Familial N170 amplitude ~ 1 + Timing + Valence + Timing:Valence + Vulnerability +

vulnerability  Timing: Vulnerability + Valence:Vulnerability + Timing:Valence:Vulnerability + PE

+ Timing:PE + Valence: PE + Timing:Valence: PE + Vulnerability: PE +

Timing: Vulnerability: PE + Valence: Vulnerability: PE +

Timing:Valence: Vulnerability: PE + Electrode + Timing:FElectrode +
Valence:Electrode + Timing: Valence:Electrode + Vulnerability: Electrode +
Timing: Vulnerability: Electrode + Valence:Vulnerability: Electrode +

Timing: Valence:Vulnerability: Electrode + PE:Electrode + Timing:PE:Electrode +
Valence:PE:Electrode + Timing:Valence: PE:Electrode +
Vulnerability: PE: Electrode + Timing:Vulnerability: PE:Electrode +
Valence:Vulnerability: PE:Electrode + Timing: Valence. Vulnerability: PE:Electrode
+ (1 + Electrode + Timing + Valence + Valence:Electrode + Timing: Electrode +
PE + Valence:PE | Participant)

Note. LME = linear mixed effects. BDI = BDI-II (mean centered, yielding negative values for
scores below the mean vs. positive values for scores above the mean), PHQ = modified PHQ-9
(mean centered, yielding negative values for scores below the mean vs. positive values for scores
above the mean), Vulnerability = Familial Vulnerability (first-degree relatives without a history of
depression [—0.5] vs. first-degree relatives with a depression diagnosis [0.5]), Timing = Feedback
Timing (immediate [-0.5] vs. delayed [0.5]), Valence = Feedback Valence (negative [-0.5] vs.
positive [0.5]), PE = unsigned PE (scaled and mean centered, yielding negative values for PE values
below the mean vs. positive values for PE values above the mean), Electrode (P7 [-0.5] vs. P8

[0.5]).



Table S3

Maximal LME models for the FRN analysis

Model Formula

Current FRN Amplitdue ~ 1 + Timing + Valence + Timing:Valence + BDI + Timing:BDI +

depressive Valence:BDI + Timing:Valence:BDI + PE + Timing:PE + Valence: PE +

symptoms Timing:Valence:PE + BDI:PE + Timing:BDI:PE + Valence:BDI:PE +

(BDI-II) Timing:Valence:BDI:PE + (I + Timing + Valence + PE + Valence:PE |
Participant)

Past FRN Amplitdue ~ 1 + Timing + Valence + Timing:Valence + PHQ + Timing:PHQ

depressive + Valence:PHQ + Timing:Valence:PHQ + PE + Timing:PE + Valence:PE +

episodes Timing:Valence:PE + PHQ:PE + Timing:PHQ:PE + Valence:PHQ:PE +

(PHQ) Timing:Valence:PHQ:PE + (1 + Timing + Valence + PE + Valence:PE |
Participant)

Familial FRN amplitude ~ 1 + Timing + Valence + Timing:Valence + Vulnerability +

vulnerability  Timing: Vulnerability + Valence:Vulnerability + Timing:Valence:Vulnerability + PE

+ Timing:PE + Valence:PE + Timing:Valence: PE + Vulnerability: PE +
Timing: Vulnerability: PE + Valence: Vulnerability: PE +
Timing:Valence: Vulnerability:PE + (1 + Timing + Valence + PE | Participant)

Note. LME = linear mixed effects. BDI = BDI-II (mean centered, yielding negative values for
scores below the mean vs. positive values for scores above the mean), PHQ = modified PHQ-9 (
mean centered, yielding negative values for scores below the mean vs. positive values for scores
above the mean), Vulnerability = Familial Vulnerability (first-degree relatives without a history of
depression [—0.5] vs. first-degree relatives with a depression diagnosis [0.5]), Timing = Feedback
Timing (immediate [-0.5] vs. delayed [0.5]), Valence = Feedback Valence (negative [-0.5] vs.
positive [0.5]), PE = unsigned PE (scaled and mean centered, yielding negative values for PE values
below the mean vs. positive values for PE values above the mean).



Table S4

Results for the GLME analyses on accuracy

Model Effect B-estimate SE z p
Current Block 1.42 0.23 6.04 <.001 ***
depressive BDI -0.04 0.02  -255 011 *
?]fgll’)toms Timing 0.11 0.13 0.81 419
Block:BDI -0.04 0.02 -1.62 .106
BDI-II:Timing -0.02 0.01 -1.41 .160
Block:Timing -0.34 0.32 -1.08 .280
Block:BDI:Timing 0.01 0.03 0.16 .870
Past depressive Block 1.40 0.24 5.97 <.001 H**
episodes (PHQ) PHQ -0.05 0.03 -1.79 073
Timing 0.10 0.13 0.72 474
Block:PHQ -0.02 0.04 -0.54 593
Block: Timing -0.37 0.32 -1.18 239
PHQ:Timing 0.00 0.02 -0.01 .989
Block:PHQ:Timing 0.09 0.05 1.65 .099
Familial Block 1.24 0.33 3.76 <.001 ***
vulnerability  Vulnerability -0.48 0.45 -1.07 285
Timing -0.09 0.16 -0.56 573
Block:Timing -0.46 0.43 -1.05 294
Vulnerability: Timing -0.23 0.31 -0.73 467
Block:Vulnerability -0.55 0.65 -0.84 .399
Block:Vulnerability: Timing 0.48 0.85 0.57 .569

Note. n=45. GLME = generalized linear mixed effects, SE = standard error, Timing = Feedback

Timing, BDI = BDI-II, PHQ = modified PHQ-9, Vulnerability = Familial Vulnerability. The sign of

the B-estimates indicates the direction of main effects for the fixed-effects predictors BDI (mean

centered, yielding negative values for scores below the mean vs. positive values for scores above the

mean), PHQ (mean centered, yielding negative values for scores below the mean vs. positive values
for scores above the mean), Familial Vulnerability (first-degree relatives without a history of

depression [—0.5] vs. first-degree relatives with a depression diagnosis [0.5]), Block (1 [-0.5], 2 [-

0.167], 3 [0.167], 4 [0.5]), and Feedback Timing (immediate [-0.5] vs. delayed [0.5]).

w5 < 001, *p < .050



Table S5

Results for the LME analysis on the N170 amplitude including BDI

Effect B-estimate SE df t p
Timing 0.47 0.36 49.05 1.31 198
Valence 0.47 0.25 38.14 1.91 .063
BDI 0.03 0.06 43.34 0.46 .649
PE -0.45 0.26 15.42 -1.74 102
Electrode -2.49 0.90 43.95 -2.75 009 **
Timing:Valence 0.28 0.26 23157.78 1.06  0.291
Timing:BDI 0.03 0.04 46.99 0.65 518
Valence:BDI 0.01 0.03 35.96 0.48 .632
Timing:PE 0.09 0.42 24156.31 0.21 .832
Valence:PE -2.80 0.48 22604.02 -5.85 <001 ***
BDI:PE 0.06 0.03 16.94 1.89 077
Timing:Electrode -0.02 0.40 66.47 -0.06 954
Valence:Electrode 2.16 0.40 64.66 546 <001 ***
BDI:Electrode -0.09 0.10 43.64 -0.92 363
PE:Electrode -0.26 0.45 3464.48 -0.58 565
Timing:Valence:BDI 0.02 0.03 26194.06 0.83 404
Timing:Valence:PE -0.15 0.94 17003.06 -0.16 .870
Timing:BDI:PE 0.10 0.05 22050.20 1.98 047 *
Valence:BDI:PE 0.09 0.05 24532.31 1.68 .093
Timing:Valence:Electrode 0.03 0.52 27505.85 0.05 957
Timing:BDI:Electrode 0.00 0.04 59.16 -0.02 981
Valence:BDI:Electrode 0.04 0.04 57.95 0.90 370
Timing:PE:Electrode 0.12 0.84 26241.62 0.15 .884
Valence:PE:Electrode 1.10 0.95 25900.45 1.16 246
BDI:PE:Electrode 0.05 0.05 4822.82 0.91 364
Timing:Valence:BDI:PE -0.07 0.11 20110.07 -0.66 507
Timing: Valence:BDI:Electrode -0.03 0.05 27695.23 -0.61 .539
Timing:Valence:PE:Electrode -2.18 1.82 4225.98 -1.20 232
Timing:BDI:PE:Electrode -0.09 0.10 26779.66 -0.94 .345
Valence:BDI:PE:Electrode 0.03 0.11 26754.40 0.28 780
Timing:Valence:BDI:PE:Electrode -0.42 0.21 5828.78 -2.05 041 *

Note. n=45. LME = linear mixed effects, SE = standard error, df = degrees of freedom, Timing =
Feedback Timing, Valence = Feedback Valence, BDI = BDI-II, PE = unsigned PE. The sign of the j-
estimates indicates the direction of main effects for the fixed-effects predictors Feedback Timing
(immediate [-0.5] vs. delayed [0.5]), Feedback Valence (negative [-0.5] vs. positive [0.5]), BDI (mean
centered, yielding negative values for scores below the mean vs. positive values for scores above the
mean), PE (scaled and mean centered, yielding negative values for PE values below the mean vs.

positive values for PE values above the mean) and Electrode (P7 [-0.5] vs. P8 [0.5]).

w6k ) < 001, ** p <010, * p < .050



Table S6

Simple slope analyses for the interaction between BDI, Feedback Timing and PE

BDI Scores Feedback Timing p-estimate SE t p
Low (= -1 8D) Immediate -0.82 0.50 -1.64 .648
Delayed -1.58 0.48 -3.30 012 *
Medium (= Mean)  Immediate -0.68 0.35 -1.97 330
Delayed -0.60 0.33 -1.80 474
High (=+1 SD) Immediate -0.54 0.50 -1.07 >.999
Delayed 0.38 0.47 0.80 >.999

Note. n =45. PE = unsigned PE, BDI = BDI-II, SD = standard deviation, SE = standard error.
Presented p-values were Bonferroni-corrected. The sign of the B-estimates indicates the direction of
unsigned PE (scaled and mean centered, yielding negative values for PE values below the mean vs.
positive values for PE values above the mean) effects on N170 amplitudes in the respective

condition.
*p <.050



Table S7
Simple slope analyses for the interaction between Electrode, BDI, Feedback Timing, Feedback

Valence and PE found in the LME analysis on the N170

Electrode = BDI Timing Valence [B-estimate SE df t p
P7 High Delayed Positive -0.15 091 641.56 -0.16  >.999
Negative 1.41 0.89 55391 1.58 >.999
Immediate  Positive -2.58 0.98  745.34 -2.64 134
Negative 1.19 093 613.52 1.28 >.999
Low Delayed Positive -3.36 092 437.12  -3.67 004 **
Negative 0.86 0.94  626.81 091 >.999
Immediate Positive -1.92 0.99 688.34 -1.94 .853
Negative 1.95 0.95 563.98 2.05 .650
P8 High Delayed Positive -1.16 091 612.82 -1.28  >.999
Negative 2.04 0.90 530.50 2.26 .384
Immediate Positive 0.14 0.98  772.55 0.14 >.999
Negative -0.48 094 57524  -0.52  >.999
Low Delayed Positive -2.73 0.92 418.39 -2.97 .051
Negative -0.18 0.95 618.58 -0.19  >.999
Immediate  Positive -3.09 1.00  736.17 -3.09 .034 *
Negative 0.80 0.96 508.64 0.83 >999

Note. n=45. PE = unsigned PE, BDI = BDI-II, Timing = Feedback Timing, Valence = Feedback Valence, SE =
standard error, df = degrees of freedom. Presented p-values were Bonferroni-corrected. The sign of the -
estimates indicates the direction of unsigned PE (scaled and mean centered, yielding negative values for PE
values below the mean vs. positive values for PE values above the mean) effects on N170 amplitudes in the
respective condition.

**p <.010, *p <.050



Table S8

Results for the LME analysis on the N170 amplitude including PHQ

Effect B-estimate SE df t p
Timing 0.48 0.37 48.73 1.31 197
Valence 0.53 0.24 39.25 2.19 .034 *
PHQ 0.07  0.11 4352 0.66 516
PE -0.27 0.28 2256  -0.96 .348
Electrode -2.50 0.92 4388  -2.74 .009 **
Timing: Valence 0.33 0.26 24621.51 1.26 207
Timing:PHQ 0.01 0.07 49.02 0.14 .887
Valence:PHQ -0.06 0.04 40.42 -1.44 157
Timing:PE 0.06 0.42 24861.91 0.14 .891
Valence:PE -2.73 0.48 25107.91 -5.70 <001 ***
PHQ:PE 0.02  0.05 1929 050  .623
Timing:Electrode -0.07 0.40 65.51 -0.18 .861
Valence:Electrode 2.18 0.39 64.67 556  <.001 ***
PHQ:Electrode 0.06 0.16 43.91 0.35 .730
PE:Electrode -0.23 0.45 3181.98  -0.51 611
Timing:Valence:PHQ -0.02 0.05 24719.79 -0.37 714
Timing:Valence:PE -0.09 0.95 19006.54  -0.09 926
Timing:PHQ:PE -0.01 0.07 26354.21 -0.07 942
Valence:PHQ:PE 0.15 0.08 22986.82 1.93 .054
Timing:Valence:Electrode 0.00 0.52 27523.97 0.01 .993
Timing:PHQ:Electrode 0.02 0.07 67.95 0.25 .801
Valence:PHQ:Electrode 0.09 0.07 67.25 1.25 216
Timing:PE:Electrode 0.18 0.84 26131.73 0.22 .830
Valence:PE:Electrode 1.07 0.95 25862.22 1.13 258
PHQ:PE:Electrode 0.07 0.07 5801.38 0.90 .368
Timing:Valence:PHQ:PE 0.03 0.15 22968.14 0.21 .834
Timing: Valence:PHQ:Electrode -0.01 0.09 27680.67  -0.08 934
Timing: Valence:PE:Electrode -2.16 1.82 4002.55 -1.19 234
Timing:PHQ:PE:Electrode 0.01 0.14 27049.30 0.05 957
Valence:PHQ:PE:Electrode 0.24 0.15 27105.95 1.59 113
Timing: Valence:PHQ:PE:Electrode -0.13 0.30 7134.45 -0.43 .670

Note. n=45. LME = linear mixed effects, SE = standard error, df = degrees of freedom, Timing =
Feedback Timing, Valence = Feedback Valence, PHQ = modified PHQ-9, PE = unsigned PE. The sign
of the B-estimates indicates the direction of main effects for the fixed-effects predictors Feedback
Timing (immediate [-0.5] vs. delayed [0.5]), Feedback Valence (negative [-0.5] vs. positive [0.5]), PHQ
(mean centered, yielding negative values for scores below the mean vs. positive values for scores above

the mean), PE (scaled and mean centered, yielding negative values for PE values below the mean vs.
positive values for PE values above the mean) and Electrode (P7 [-0.5] vs. P8 [0.5]).

w6k ) < 001, ** p <010, * p < .050



N170 Analysis Including PHQ

The LME analysis on the N170 amplitude including PHQ as a predictor alongside
Feedback Timing, Feedback Valence, PE and Electrode replicated all of the effects described
for the model containing the BDI in the main text. Again, there was a significant effect of
electrode (p = .009) with more pronounced amplitudes over P8, as well as a significant two-
way interaction between Feedback Valence and Electrode (p < .001). As for the BDI model,
we resolved the interaction via simple slope analyses and found no significant effect of
Feedback Valence for P7 (B =-0.56, SE =0.29, t =-1.93, p = .118), but for P8 negative
feedback led to significantly larger N170 amplitudes than positive feedback (f = 1.62, SE =
0.33,£=4.90, p <.001). In addition, the analysis also replicated the significant interaction
between PE and Feedback Valence (p < .001), with amplitudes increasing for more
unexpected positive feedback (p =-1.64, SE =0.38, t =-4.36, p <.001) and decreasing for
more unexpected negative feedback (B = 1.09, SE =0.37, ¢t =2.97, p = .008). In addition, the
model revealed a significant effect of Feedback Valence (p = .034), with more pronounced
amplitudes for negative compared to positive feedback. All other effects were not significant

(all ps >.054, see Table S8 above for B-estimates and effect-specific ¢-tests).



Table S9

Results for the LME analysis on the N170 amplitude including Familial Vulnerability

Effect B-estimate SE df t )4
Timing 0.43 0.53 37.68  0.82 415
Valence 0.10 0.31 3062 034 739
Vulnerability 1.61 1.68 3489 096  .343
PE -0.82 0.40 20.55 -2.08 .050
Electrode -2.64 1.31 3545 -2.02 .051
Timing: Valence 0.18 0.34 2140896  0.54  .589
Timing: Vulnerability -0.45 1.05 37.68 -0.43 .669
Valence: Vulnerability -1.67 0.62 30.62 -2.71 011 *
Timing:PE -0.14 0.53 21449.25 -0.26 .799
Valence:PE -2.69 1.00 17.62 2770  .015 *
Vulnerability:PE -1.56 0.79 20.55 -1.96  .064
Timing:Electrode 0.68 0.49 49.16 .38 .173
Valence:Electrode 2.52 0.52 4741 484 <001 ***
Vulnerability:Electrode -0.11 2.62 3545 -0.04 967
PE:Electrode -0.04 0.56 4260.73  -0.08  .938
Timing: Valence: Vulnerability 0.38 0.67 2140896 0.57 .572
Timing:Valence:PE -0.24 1.18 16148.09 -0.20  .840
Timing: Vulnerability:PE -0.39 1.07 21449.25 -036  .716
Valence: Vulnerability:PE 1.17 2.00 17.62  0.59 .564
Timing:Valence:Electrode -0.04 0.67 22686.77 -0.06  .954
Timing: Vulnerability:Electrode 1.82 0.99 49.16 1.84  .072
Valence: Vulnerability:Electrode -0.39 1.04 4741 -037 711
Timing:PE:Electrode 0.62 1.06 21846.76  0.58  .560
Valence:PE:Electrode 0.99 1.18 21180.96 0.84  .400
Vulnerability:PE:Electrode -0.12 1.13 4260.73 -0.11 912
Timing:Valence: Vulnerability:PE -1.60 2.36 16148.10 -0.68  .498
Timing: Valence: Vulnerability:Electrode 0.67 1.34 22686.77 0.50 .616
Timing: Valence:PE:Electrode -1.55 2.25 3450.50 -0.69  .492
Timing: Vulnerability:PE:Electrode 2.54 2.13 21846.76 1.20 232
Valence: Vulnerability:PE:Electrode 0.92 236 21180.96  0.39 .696
Timing: Valence: Vulnerability:PE:Electrode 1.64 4.50 3450.50 036 .716

Note. n=37. LME = linear mixed effects, SE = standard error, df = degrees of freedom, Timing =
Feedback Timing, Valence = Feedback Valence, Vulnerability = Familial Vulnerability, PE = unsigned PE.
The sign of the B-estimates indicates the direction of main effects for the fixed-effects predictors Feedback
Timing (immediate [-0.5] vs. delayed [0.5]), Feedback Valence (negative [-0.5] vs. positive [0.5]),
Vulnerability (first-degree relatives without a history of depression [—0.5] vs. first-degree relatives with a
depression diagnosis [0.5]), PE (scaled and mean centered, yielding negative values for PE values below
the mean vs. positive values for PE values above the mean) and Electrode (P7 [-0.5] vs. P8 [0.5]).

**% p<.001, * p<.050



N170 Analysis Including Familial Vulnerability
The LME analysis on the N170 amplitude including Familial Vulnerability as a

predictor alongside Feedback Timing, Feedback Valence, PE and Electrode replicated the
significant interaction between Feedback Valence and Electrode (p < .001) that was also
described for the analysis involving the BDI reported in the main text. Simple slope analyses
revealed significantly larger amplitudes following negative compared to positive feedback for
P8 (B=1.88, SE=0.34, t=5.54, p <.001), but not for P7 ( =-0.75, SE = 0.33, t=-2.26, p
=.060). The analysis also replicated the significant interaction between PE and Feedback
Valence (p = .015), however, this time amplitudes significantly increased for more
unexpected positive feedback (p =-1.90, SE = 0.56, t =-3.36, p = .004), but did not
significantly decrease for more unexpected negative feedback (B =1.13, SE=0.52,t=2.18, p
=.086). All other effects (apart from the interaction between Feedback Valence and Familial
Vulnerability reported in the main text) did not reach significance (all ps > .050; see Table S9

above for B-estimates and effect-specific #-tests).



Table S10

Results for the LME analysis on the FRN amplitude including BDI

Effect B-estimate SE df t p
Timing 0.87 0.29 54.59 3.02 004 **
Valence 2.22 0.23 41.42 9.74 <.001 ***
BDI -0.07 0.05 42.15 -1.29 205
PE 0.89 0.31 25.44 2.90 .008 **
Timing:Valence -0.74 0.28 13417.45 -2.65 008 **
Timing:BDI -0.06 0.03 50.64 -1.89 .065
Valence:BDI 0.00 0.02 38.37 0.10 920
Timing:PE -0.28 0.45 13147.85 -0.63 528
Valence:PE 5.73 0.88 26.47 6.54 <.001 ***
BDI:PE 0.02 0.03 27.25 0.47 .643
Timing:Valence:BDI -0.01  0.03 13808.02 -0.32 749
Timing:Valence:PE 0.15 0.99 7036.57 0.15 .882
Timing:BDI:PE 0.01 0.05 12738.57 0.16 871
Valence:BDI:PE -0.10 0.10 26.87 -1.07 293
Timing:Valence:BDI:PE -0.12 0.11 8801.38 -1.04 .300

Note. n =45. LME = linear mixed effects, SE = standard error, df = degrees of freedom,
Timing = Feedback Timing, Valence = Feedback Valence, BDI = BDI-II, PE = unsigned PE.
The sign of the -estimates indicates the direction of main effects for the fixed-effects
predictors Feedback Timing (immediate [-0.5] vs. delayed [0.5]), Feedback Valence

(negative [-0.5] vs. positive [0.5]), BDI (mean centered, yielding negative values for scores
below the mean vs. positive values for scores above the mean) and PE (scaled and mean
centered, yielding negative values for PE values below the mean vs. positive values for PE

values above the mean).
*¥** p<.001, ** p<.010



Table S11

Results for the LME analysis on the FRN amplitude including PHQ

B-estimate SE df t P
Timing 0.85 0.29 53.93 291 005 **
Valence 2.22 0.23 40.65 9.83 <001 ***
PHQ -0.08 0.09 42.67 -0.90 374
PE 0.89 0.31 25.17 2.88 008 **
Timing:Valence -0.73 0.28 13469.55 -2.63 009 **
Timing:PHQ -0.06 0.05 54.60 -1.11 271
Valence:PHQ -0.02 0.04 42.34 -0.58 562
Timing:PE -0.30 0.45 13144.80 -0.67 504
Valence:PE 5.73 0.89 28.96 6.42 <001 ***
PHQ:PE -0.01 0.05 21.86 -0.10 924
Timing:Valence:PHQ -0.03 0.05 13466.57 -0.67 .503
Timing:Valence:PE 0.04 0.99 7177.33 0.04 971
Timing:PHQ:PE -0.03 0.07 13597.04 -0.34 737
Valence:PHQ:PE -0.12 0.15 26.12 -0.81 425
Timing:Valence:PHQ:PE -0.03 0.16 9540.55 -0.16 .873

Note. n =45. LME = linear mixed effects, SE = standard error, df = degrees of freedom, Timing =

Feedback Timing, Valence = Feedback Valence, PHQ = modified PHQ-9, PE = unsigned PE.

The sign of the -estimates indicates the direction of main effects for the fixed-effects predictors

Feedback Timing (immediate [-0.5] vs. delayed [0.5]), Feedback Valence (negative [-0.5] vs.

positive [0.5]), PHQ (mean centered, yielding negative values for scores below the mean vs.
positive values for scores above the mean), and PE (scaled and mean centered, yielding negative
values for PE values below the mean vs. positive values for PE values above the mean).

w5 1 < 001, ** p <010, * p < .050



FRN Analysis Including PHQ

The LME analysis on the FRN amplitude including PHQ as a predictor alongside
Feedback Timing, Feedback Valence and PE replicated all of the effects described for the
model containing the BDI in the main text. The analysis replicated the significant effect of
Feedback Valence (p <.001), with more negative amplitudes following negative compared to
positive feedback. In addition, the significant effect of Feedback Timing (p = .005), indicating
more negative amplitudes following immediate compared to delayed feedback, was
replicated. Again, a significant interaction between Feedback Valence and Feedback Timing
(p = .009) explained these effects further: Negative feedback was associated with more
negative amplitudes for both immediate (f = 2.59, SE = 0.26, t = 9.90, p <.001) and delayed
feedback (p =1.86, SE=0.27, t = 6.88, p <.001), but the effect was stronger for immediate
feedback. Furthermore, we could replicate a significant effect of PE (p = .008) that was again
further explained by a significant interaction between PE and Feedback Valence (p <.001),
which we thus resolved. There was a significant effect of PE on the FRN amplitude for
negative feedback, with more negative amplitudes for more unexpected feedback ( =-1.98,
SE=0.51,t=-3.91, p=.002). For positive feedback, this effect was reversed with more
positive amplitudes for more unexpected feedback (f =3.75, SE=0.58, t=6.51, p <.001).
All other effects (including effects involving the PHQ) were not significant (all ps > .271; see

Table S11 above for B-estimates and effect-specific #-tests).



Table S12

Results for the LME analysis on the FRN amplitude including Familial Vulnerability

Effect B-estimate SE df t 4
Timing 1.19 0.41 40.75 2.87 007 **
Valence 2.36 0.29 29.38 8.24 <.001 ***
Vulnerability 2.47 1.25 35.59 1.97 .056

PE 0.80 0.38 15.57 2.13 050 *
Timing:Valence -1.00 0.36 11014.83 -2.77 006 **
Timing: Vulnerability 1.31 0.83 40.75 1.58 122
Valence: Vulnerability -0.26 0.57 29.38 -0.46 647
Timing:PE -0.37 0.57 11135.99 -0.65 S18
Valence:PE 4.60 0.64 11259.45 7.22 <.001 ***
Vulnerability:PE -1.27 0.76 15.57 -1.69 A11
Timing: Valence: Vulnerability -0.92 0.72 11014.83 -1.28 202
Timing:Valence:PE 0.58 1.26 8485.11 0.46 645
Timing:Vulnerability:PE 0.20 1.15 11135.99 0.18 .859
Valence:Vulnerability:PE 0.84 1.27 11259.45 0.66 .509
Timing:Valence: Vulnerability:PE 1.72 2.51 8485.11 0.69 492

Note. n =37. LME = linear mixed effects, SE = standard error, df = degrees of freedom, Timing =
Feedback Timing, Valence = Feedback Valence, Vulnerability = Familial Vulnerability, PE = unsigned

PE. The sign of the B-estimates indicates the direction of main effects for the fixed-effects predictors
Feedback Timing (immediate [-0.5] vs. delayed [0.5]), Feedback Valence (negative [-0.5] vs. positive

[0.5]), Vulnerability (first-degree relatives without a history of depression [—0.5] vs. first-degree relatives

with a depression diagnosis [0.5]), and PE (scaled and mean centered, yielding negative values for PE

values below the mean vs. positive values for PE values above the mean).

% p<.001, * p<.050



FRN Analysis Including Familial Vulnerability

The LME analysis on the FRN amplitude including Familial Vulnerability as a
predictor alongside Feedback Timing, Feedback Valence and PE replicated all of the effects
described for the model containing the BDI in the main text. The analysis replicated the
significant effect of Feedback Valence (p <.001), with more negative amplitudes following
negative compared to positive feedback. In addition, the significant effect of Feedback
Timing (p = .007), indicating more negative amplitudes following immediate compared to
delayed feedback, was replicated. Again, a significant interaction between Feedback Valence
and Feedback Timing (p = .006) explained these effects further: Negative feedback was
associated with more negative amplitudes for both immediate (f =2.82, SE =0.28, = 10.03,
p <.001) and delayed feedback ( =2.08, SE =0.29, t =7.23, p <.001), but the effect was
stronger for immediate feedback. The effect of PE was at the threshold of significance (p
=.050), but we were able to replicate the significant interaction between PE and Feedback
Valence (p <.001), which we thus resolved. There was a significant effect of PE on the FRN
amplitude for negative feedback, with more negative amplitudes for more unexpected
feedback (p=-1.01, SE=0.43, t =-2.37, p = .044). For positive feedback, this effect was
reversed with more positive amplitudes for more unexpected feedback (f = 3.35, SE=0.43, ¢
=7.72, p <.001). All other effects (including effects involving Familial Vulnerability) were

not significant (all ps > .056; see Table S12 above for B-estimates and effect-specific 7-tests).



