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Neural Processing of Immediate versus Delayed Feedback
in Action–Feedback and Stimulus–Feedback Associations
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Abstract

■ The feedback-related negativity (FRN) or reward positivity

(RewP), reflecting striatal reward system activity, is reduced

with delayed feedback, whereas the N170, associated with

medial temporal lobe (MTL) activity, is increased. The type

of the learned association could also affect which system is

involved: We expected the striatal reward system to be adept

at learning action–feedback associations and the MTL to be pri-

marily involved in learning stimulus–feedback associations,

which should be reflected in stronger prediction error (PE)

representations in the FRN/RewP and N170, respectively. The

relative contributions of the striatum and MTL to feedback

learning and processing, however, also seem to be determined

by the feedback’s timing (immediate vs. delayed). We

recorded EEG while 40 participants learned in an action–

feedback condition or a stimulus–feedback condition with

immediate and delayed feedback. Replicating previous studies,

the FRN/RewP was most negative for unexpected negative

feedback and most positive for unexpected positive feedback.

Surprisingly, this PE × Feedback Valence interaction was more

pronounced for the stimulus–feedback condition than the

action–feedback condition. Interestingly, we found a PE ×

Feedback Valence interaction also in the N170, but with most

negative amplitudes for unexpected positive and expected

negative feedback. This interaction appeared across feedback

timings for the stimulus–feedback condition, but only for

immediate feedback for the action–feedback condition. The

results suggest that striatal and MTL systems cooperate across

feedback timings for stimulus–feedback associations, but not

for action–feedback associations learned with delayed

feedback. ■

INTRODUCTION

We can learn how to use a coffee machine either by read-

ing the manual or by trial-and-error learning. Reading the

manual would involve declarative learning, associated with

hippocampal activity within the medial temporal lobe

(MTL), resulting in flexible, factual knowledge (Myers

et al., 2003; Knowlton, Mangels, & Squire, 1996; Scoville

& Milner, 1957; for a review see Eichenbaum, Otto, &

Cohen, 1992). Learning by trial and error, or, in other

words, feedback learning, has been considered to be a

type of procedural learning resulting in habit-like, auto-

matically retrieved and inflexible knowledge associated

with striatal activity (Knowlton& Patterson, 2016; Knowlton

et al., 1996).

The striatum receives input from midbrain dopaminer-

gic neurons in the substantia nigra and ventral tegmental

area (Chuhma, Oh, & Rayport, 2023; Oldehinkel et al.,

2022; Steiner & Tseng, 2016; Zhang et al., 2015). These

neurons encode a reward prediction error (PE), indicating

whether an outcome is better or worse than expected

(Zaghloul et al., 2009; Schultz, 2000; Schultz & Dickinson,

2000; Schultz, Dayan, & Montague, 1997), thereby build-

ing a core component of the cortical–striatal circuit

described as the reward system (for a review, see Haber

& Knutson, 2010). Although the reward system has been

shown to underlie feedback learning (Vassiliadis et al.,

2024; Cooper, Dunne, Furey, & O’Doherty, 2012; for a

review, see Daniel & Pollmann, 2014), this type of learning

can also be supported by the MTL, or, more specifically,

the hippocampus, and thus presumably be declarative.

Plachti and colleagues (2019) linked the hippocampus to

associative memory, learning, and reinforcement, under-

lining its potential role for feedback processing. Along

similar lines, Dickerson, Li, and Delgado (2011) found

correlates of the PE in the striatum as well as the hippo-

campus in a feedback learning task.

One factor determining the relative contributions of the

striatum and MTL to feedback learning and processing

seems to be the timing of the feedback: Learning with

immediate feedback has been shown to be dependent

on the striatum, whereas learning from feedback with a

delay of only a few seconds was dependent on the hippo-

campus (Foerde, Race, Verfaellie, & Shohamy, 2013;

Foerde & Shohamy, 2011). In line with this, dopamine-

driven synaptic connections in the striatum, that is, rein-

forcement plasticity, was found to be limited to a narrow

timewindowof up to 2 sec (Yagishita et al., 2014), suggest-

ing that the striatum is involved in linking feedback to

directly preceding events (Jocham et al., 2016). The hip-

pocampus, on the other hand, can bridge representational

gaps in our experience (Staresina & Davachi, 2009), which
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is a prerequisite for linking feedback to preceding events

that are more distant in time.

Several studies investigating feedback processing by

means of electroencephalography (EEG) corroborate the

idea that feedback timing is important. They found that

the amplitudes of two ERP components, the feedback-

related negativity (FRN) and the N170, vary with feedback

delay (Höltje & Mecklinger, 2020; Kim & Arbel, 2019;

Arbel, Hong, Baker, & Holroyd, 2017; Peterburs, Kobza,

& Bellebaum, 2016). The FRN peaks between 230 and

330 msec after feedback onset (Miltner, Braun, & Coles,

1997) and is more negative for negative than for positive

feedback. However, it is likely that this difference is due to

a relative positivity after rewards, which has been labeled

reward positivity (RewP; Proudfit, 2015; Lukie, Montazer-

Hojat, & Holroyd, 2014; Holroyd, Krigolson, & Lee, 2011).

The FRN/RewP has been associated with the influence of

the mesencephalic dopamine system on the ACC (Foti,

Weinberg, Dien, & Hajcak, 2011; Bellebaum & Daum,

2008; Holroyd, Larsen, & Cohen, 2004; Holroyd & Coles,

2002), and striatum (Becker, Nitsch, Miltner, & Straube,

2014; Carlson, Foti, Mujica-Parodi, Harmon-Jones, &

Hajcak, 2011; Foti et al., 2011), and its amplitude has been

shown to reflect the PE (Weber & Bellebaum, 2024;

Burnside, Fischer, & Ullsperger, 2019; Sambrook &

Goslin, 2015; Fischer & Ullsperger, 2013). In line with

the reduced involvement of the striatum for delayed feed-

back (Foerde et al., 2013; Foerde & Shohamy, 2011), the

FRN/RewP amplitude difference between positive and

negative feedback is diminished when feedback is delayed

(Höltje & Mecklinger, 2020; Arbel et al., 2017; Peterburs

et al., 2016; Weismüller & Bellebaum, 2016; Weinberg,

Luhmann, Bress, & Hajcak, 2012).

In several more recent studies, the N170, a component

occurring over occipito-temporal cortex 100–200 msec

after stimulus onset, was found to be more pronounced

following delayed compared with immediate feedback

(Höltje &Mecklinger, 2020; Kim&Arbel, 2019; Arbel et al.,

2017; but see Albrecht, van de Vijver, & Bellebaum, 2023,

for the opposite pattern), suggesting that it reflects MTL

activity. However, the N170 has originally been linked to

visual processing of faces (Yovel, 2016; Rossion, 2014;

Rossion & Jacques, 2012; Bentin, Allison, Puce, Perez, &

McCarthy, 1996), and also other stimulus categories

(Kloth, Itier, & Schweinberger, 2013), with a source in

the fusiform gyrus (Gao, Conte, Richards, Xie, & Hanayik,

2019; Deffke et al., 2007). Therefore, the N170 following

delayed feedbackmay indicate the feedback-locked activa-

tion of higher-order visual areas. This may be interpreted

as a reactivation of those areas that processed the stimulus

associated with the feedback (Schiffer, Muller, Yeung, &

Waszak, 2014; Pleger et al., 2009; Pleger, Blankenburg,

Ruff, Driver, & Dolan, 2008), a process possibly mediated

by the hippocampus. Thus, the N170 might not directly

reflect hippocampal activity, but rather a mechanism to

link stimuli to feedback via reactivation of higher visual

areas, especially when feedback is delayed.

An important aspect possibly affecting the involvement

of the respective memory systems has so far been

neglected: We propose that the type of association that

is learned via feedback plays a significant part in feedback

processing. When a rewarding or punishing stimulus is

experienced, the problem of credit assignment arises,

which deals with the question how individuals know

which event the received feedback refers to and how this

is implemented in the brain (Fu & Anderson, 2008; for a

review, see Stolyarova, 2018). Feedback might be linked

to previous actions (e.g., pushing a respective button

leads to a cup of coffee) or to a previous stimulus (e.g.,

the display lighting up means that the machine is produc-

ing a cup of coffee). On the one hand, there is evidence

suggesting that action–feedback associations are likely to

be associated with striatal activity: The striatum is con-

nected to habit learning based on feedback (Shohamy

et al., 2004; Poldrack et al., 2001; Knowlton et al.,

1996). As part of the basal ganglia’s direct and indirect

pathways, the striatum is connected to action selection

and action inhibition, respectively (Aubert, Ghorayeb,

Normand, & Bloch, 2000; Hernández-López et al., 2000;

Calabresi, Picconi, Tozzi, Ghiglieri, & Di Filippo, 2014;

Hernández-López, Bargas, Surmeier, Reyes, & Galarraga,

1997; Gerfen, 1992). Along similar lines, Hiebert and

colleagues (2014) found that during stimulus–response

learning, activity in the dorsal striatum correlated with

response selection, whereas ventral striatum activation

correlated with feedback. Shohamy (2011) suggested that

the striatum is part of a distributed network that, aiming

to optimize behavior, learns to select actions based on

their predicted values. Valence-sensitive activity after

feedback, descriptively similar to an FRN/RewP response,

was found over motor cortex in an ERP study (Cohen &

Ranganath, 2007), which suggests an activation of the

previous action for striatum-based feedback learning. In

healthy participants, reward feedback can accelerate

motor learning (Nikooyan & Ahmed, 2015), with nonin-

vasive stimulation of the human striatum either improv-

ing motor skill learning (Wessel et al., 2023) or disrupting

reinforcement learning of motor skills (Vassiliadis et al.,

2024). In a study by Haruno and Kawato (2006), neuronal

correlates of stimulus–action–reward associations were

located in parts of the striatum. Finally, Jocham and

colleagues (2016) showed that cortico-striatal motor cir-

cuits are involved in linking choices to outcomes based

on temporal proximity. This suggests that the neural

mechanisms underlying the learning of action–feedback

associations may also interact with feedback timing. We

thus hypothesize that the striatum links motor activity

to feedback, especially if the two events are temporally

close. Given that the FRN/RewP has been linked to stria-

tal processing (Becker et al., 2014; Carlson et al., 2011;

Foti et al., 2011), the ERP signal in the respective time

window may be particularly pronounced when partici-

pants learn associations between actions and immediate

feedback.

2 Journal of Cognitive Neuroscience Volume X, Number Y



On the other hand, stimulus–feedback associations

might rather depend on the hippocampus: The hippo-

campus’ role in episodic memory is to bind different types

of sensory information together to form a memory epi-

sode (Sugar &Moser, 2019; Squire, Shimamura, & Amaral,

1989). From a study with rats, Singer and Frank (2009)

concluded that hippocampal reactivation at reward pre-

sentation could be a mechanism to bind rewarding out-

comes to the prior experiences. Several studies suggest

that the reactivation of sensory cortices may also play a

role for feedback processing in humans. For example, pri-

mary somatosensory cortex was reactivated at the point of

reward delivery in a somatosensory discrimination task

(Pleger et al., 2008, 2009). In a classification taskwith visual

stimuli, Schiffer and colleagues (2014) found that reward

activated stimulus-specific representations in visual

association cortices, possibly providing a solution for the

credit assignment problem. Qin and colleagues (2007)

suggested that top–down signals from the MTL may trig-

ger an internal representation of a previous event, thus

allowing it to be linked to a present event. We hypothesize

that the MTL might mediate the reactivation of sensory

areas to particularly link stimuli (rather than actions) to

feedback, especially when there is a delay between stimu-

lus and feedback.

To sum up, with the present work, we aimed to inves-

tigate the influence of feedback timing and association

type on feedback processing as reflected in the

FRN/RewP and N170, which can be considered measures

of striatal activity and MTL-initiated reactivations of visual

brain regions, respectively. We manipulated feedback

timing within participants by having each participant

complete a feedback learning task involving both imme-

diate and delayed feedback. We furthermore manipulated

the association type between participants by having one

group learn action–feedback and two other groups learn

stimulus–feedback associations (actively vs. passively; see

below). We hypothesized that the FRN/RewP, or rather

the differentiation between positive and negative feed-

back in the FRN/RewP (Arbel et al., 2017), would be

largest for immediate feedback in the action–feedback

condition (AFC). In contrast, we hypothesized that the

N170 is largest for delayed feedback when stimulus–

feedback associations are learned. Regarding PE effects,

we expected the strongest effect on FRN/RewP amplitude

for immediate feedback when action–feedback associa-

tions are learned. Furthermore, we hypothesized an

effect of the PE on N170 amplitude especially for delayed

feedback when stimulus–feedback associations are

learned.

METHODS

Participants

Our analysis strategy was based on the separate compar-

ison of two (out of three) experimental groups linked to

the between-subject factor association type (i.e., the type

of association that had to be learned, see below). We

aimed to acquire at least 25 participants per group, assum-

ing a 20% exclusion rate, as preregistered on the Open

Science Framework (https://doi.org/10.17605/OSF.IO

/GVMWP). The reasons for this were twofold: Previous

studies have shown that this sample size suffices to find

differences in the neural pattern of feedback processing

between two groups (Bellebaum & Colosio, 2014; Kobza

et al., 2012) and to determine ERP correlates of PE pro-

cessing (Weber & Bellebaum, 2024; Burnside et al.,

2019). Taking potential dropouts into account, overall,

78 healthy young adults (between 18 and 40 years old)

took part in the experiment, randomly assigned to one

of three experimental groups, between which the factor

association type was varied (see below for details). All par-

ticipants declared no history of neurological or psychiatric

disorders, no regular or acute consumption of substances

affecting the central nervous system, no knowledge about

Hiragana characters (as Hiragana-like characters were

used in the experiment, see below), and normal or

corrected-to-normal vision and normal hearing. Three

participants had to be excluded from the analyses due

to technical problems during the data acquisition and

two participants due to not paying enough attention in

the learning task (see below). Another participant was

excluded because the behavioral data contained a lot of

button presses that did not align with the task. Further-

more, 10 participants were excluded because of poor

EEG data quality. Water damage in the EEG system led

to noise in the EEG signal at the beginning of the recruit-

ment process, which was probably the reason for the bad

data quality of four out of the 10 excluded participants,

who were excluded immediately after initial visual inspec-

tion of the raw data. Another 4 out of the 10 were

excluded after the artifact rejection had removed more

than 20% of their data, indicating bad data quality. Two

out of the 10 participants were excluded because the

visual inspection revealed considerable alpha activity. This

left 62 participants (40 women, 21 men and 1 nonbinary

person, mean age = 23.66 years, SD = 3.87) for the

analyses. From these remaining participants, 18 (13

women, 5 men) were assigned to the AFC, 22 (14 women,

8 men) to the active stimulus–feedback condition (ASFC)

and 22 (13 women, 8 men, 1 nonbinary person) to the

passive stimulus–feedback condition (PSFC; see below).

The study was approved by the ethics committee of the

Faculty of Mathematics and Natural Sciences at

Heinrich-Heine-University, Düsseldorf, and complied

with the Declaration of Helsinki.

Experimental Task and Conditions

Figure 1 shows the structure of the probabilistic feedback

learning tasks. Participants were randomly assigned to one

of three between-subject conditions, in which different

types of associations could be learned (association

Röhlinger et al. 3



Figure 1. Experimental feedback-learning task. (A) PSFC and ASFC: Task in the PSFC and ASFC. (A1) Stimuli: Stimuli in the PSFC and ASFC. (A2)

Time course: Time course of events in a single trial in the PSFC and ASFC. Whereas in the ASFC, participants could choose between the two hiragana

characters themselves, in the PSFC, one stimulus was automatically highlighted in each learning trial. (A3) Catch trial: Catch trial in the PSFC and

ASFC. (B) AFC: Task in the AFC. (B1) Actions: Actions in the AFC. (B2) Time course: Time course of events in a single trial of the AFC. (B3) Catch

trial: Catch trial in the AFC.
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type conditions). One group learned action–feedback

associations (AFC; see below), whereas the other two

groups learned stimulus–feedback associations either

actively or passively (ASFC and PSFC; see below). All

participants could learn associations between events and

positive or negative monetary feedback (feedback

valence: +4 ct vs. −2 ct—because subjectively, losses

weigh about twice as much as gains; Tversky & Kahneman,

1992). For each of the three between-subject associa-

tion type conditions, the task comprised three within-

subject feedback timing conditions, in which the delay

between the event (stimulus or action) and the feed-

back was varied. In one condition, the feedback was

given immediately (immediate feedback; 1 sec after the

event), whereas in a second condition, it was given

delayed (delayed feedback; 7 sec after the event). To

control for effects of the reduced temporal predictability

of delayed feedback, a third condition entailed a

feedback delay of 7 sec with six regular tones presented

during the delay, one per second (Kimura & Kimura,

2016). Specifically, the first tone (700 msec long,

800 Hz) was presented exactly 1000 msec after the

choice, and the following tones (all with the same

acoustic characteristics as the first one) were presented

each 1 sec after the previous tone onset. We will thus

refer to the two conditions with delayed feedback as

delayed feedback without tone and delayed feedback

with tone. The order of the different feedback timing

conditions was counterbalanced across participants. In

all association type conditions, participants completed

six sessions, two per feedback timing condition. Each

session consisted of four blocks, and each block con-

tained 20 learning trials, followed by 20 test trials, in

which no feedback was presented. Participants were

instructed that during the test trials, monetary wins and

losses would still be counted as in the learning trials, but

not shown on the screen. With every new session, new

associations had to be learned (see below), and

participants were instructed that learning would start

anew.

PSFC

On every learning trial of the PSFC, a pair of visual stimuli

was presented on the computer screen, one on the left

and one on the right of a fixation cross. We used

Hiragana-like characters (see Figure 1A1) that cannot eas-

ily be verbalized (see Frank, Seeberger, & O’reilly, 2004).

Figure 1A2 shows the sequence of events in one learning

trial of the PSFC. Participants saw how one of the stimuli

was automatically highlighted by a red circle for 700 msec

(seeO’Doherty et al., 2004). Then, a fixation cross was pre-

sented for 300 msec (in the immediate feedback condi-

tion) or 6300 msec (in the delayed feedback conditions),

and, subsequently, positive or negative monetary feed-

back followed for 1000 msec. In each of the six different

sessions, new Hiragana-like characters were introduced,

and new stimulus–feedback associations had to be

learned. Thus, six different pairs of stimuli (randomly

paired for each participant) were used, with the screen

side on which each stimulus could appear being counter-

balanced. Unbeknown to the participants, in each session,

one stimulus was associated with reward in 65% of the

trials and with punishment in 35%, whereas probabilities

were reversed for the other stimulus. The participants’

task was to learn associations between stimuli and feed-

back. To make sure that participants paid attention to

the stimuli on the screen and to the highlighting, three

catch trials (see Figure 1A3) were included randomly along

the 20 learning trials of each block in each session. In the

catch trials, participants were asked which of the two stim-

uli was highlighted in the last trial. For the analyses, we

excluded all participants (n = 2) that seemed to pay not

enough attention, as suggested by their fulfillment of the

following two criteria: First, they answered wrong in more

than 20% of catch trials. Second, they chose the stimulus

associated with the higher reward probability in less than

55% of the test trials.

In test trials, participants actively chose between the two

stimuli by pressing the corresponding (left vs. right) but-

ton on a response box without receiving feedback. These

trials, in which participants were asked to choose the

“more rewarding” stimulus in each trial, were included

to measure if participants actually learned the stimulus–

feedback associations, which could not be measured in

the learning trials. However, wins and losses in both learn-

ing and test trials contributed to the overall earnings of the

participants.

To ensure that the stimulus highlighting in the learn-

ing trials of the PSFC reflected a realistic choice pattern,

we conducted a behavioral pilot experiment with 25

participants fulfilling the criteria described above in

the “Participants” section. The pilot experiment con-

tained the same Hiragana characters, but participants

selected one of the two presented stimuli in each learn-

ing trial themselves to learn from feedback. The

recorded choices of one pilot participant determined

which stimulus was highlighted on a particular learning

trial for one participant of the PSFC. Because RTs dif-

fered between the feedback timing conditions within

the pilot experiment, the mean RT of all participants

for one trial in the pilot experiment determined when

a Hiragana character was highlighted in one trial of

the PSFC.

AFC

In every learning trial of the AFC, participants were asked

to choose between two specific actions to press either

the left or right button of a response box (e.g., pressing

the right button with their right thumb vs. the left button

with their left thumb). Figure 1B1 shows the six different

pairs of actions that were used in the different sessions.

After the choice, participants received feedback for their

Röhlinger et al. 5



action, with the delay varying according to the feedback

timing condition assigned to the corresponding session,

and the participants’ task was to learn an association

between the chosen action and the feedback. In each

of the six different sessions, new actions were introduced

and participants had to learn new action–feedback

associations. The experimenter checked regularly

whether participants performed the actions as requested.

Figure 1B2 shows the sequence of events in one learning

trial of the AFC. On the screen, two rectangles to the left

and right of a fixation cross were shown. After participants

performed one of the actions, the rectangle on the side

of the chosen action was highlighted for 700 msec

indicating that the choice was recorded. Afterward, a

fixation cross and then feedback was presented with the

same durations as in the PSFC (see above). Participants

had maximally 3000 msec for their choice. If they did

not respond within this time window, the trial was

considered a “miss” and not included in any further

analysis, while an instruction to react faster was presented

on the screen. Unbeknown to the participants, in each

session, the choice of one action led to a reward in

65% of the trials and to a loss in 35%; for the other

action, the probabilities were reversed. Participants were

instructed to maximize reward. For comparability

between the conditions, test trials without feedback and

catch trials (see Figure 1B3) were included in an analogous

way to the PSFC.

ASFC

The ASFC was identical to the PSFC, with the only differ-

ence that stimuli were actively chosen by the participants

in the learning trials via button press. The ASFC was added

for two reasons. First, pilot testing had shown that learning

in the PSFC was difficult. Second, the trial-by-trial choices

in the ASFC allowed the application of a reinforcement

learning model to the choice data and thus modeling

PEs in the same way as for the AFC (see below). Like in

the AFC, participants had maximally 3000 msec for their

choice. Although this condition thus also entailed actions,

the instruction emphasized that feedback was only related

to the stimuli, not to the actions. This was secured by

counterbalancing the side on which the stimuli appeared.

To make the conditions as similar as possible, test trials

without feedback and catch trials were also included in

the ASFC.

To conclude, in the AFC, the motor response predicted

reward, whereas in both the PSFC and ASFC, stimulus

identity predicted reward. More in detail, in the AFC, visual

stimuli (rectangles to indicate the choice) were nonrele-

vant for learning, whereas actions were relevant; in the

ASFC, actions (choosing left or right) were nonrelevant

for learning (because stimuli sides were counterba-

lanced), whereas stimuli were relevant. The PSFC omitted

the nonrelevant actions altogether.

Procedure and Data Acquisition

Upon arrival in the laboratory, participants were informed

about the experimental procedure and gave written

informed consent to participate in the study. They were

then asked to fill in a demographic questionnaire. After-

ward, we attached the EEG electrodes (preparation time=

about 60 min), and then participants were placed in front

of a 27-in., 1920 × 1080 px W-LED monitor (BENQ

EW2740L) with a refresh rate of 50 Hz–76 Hz, and the

experimental task began. Auditory stimuli were presented

via dynamic stereo headphones (Sennheiser HD 201). The

software Presentation (Version 22; Neurobehavioral

Systems Inc., 2020) controlled the timing of stimulation

and the recording of responses. Responses were per-

formed on a Cedrus RB-844 response pad (www.cedrus

.com).

The experiment lasted about 75 min. Participants

were informed that the amount of money they would

earn during the feedback-learning task would be paid

out at the end. They received a starting amount of 7 A.

However, the sums earned by each participant were

rounded up at the end of the experiment, and all

received 25 A.

EEG Data

EEG was acquired from 60 scalp electrodes, fixed with an

actiCap (BrainProducts) textile softcap and evenly distrib-

uted on the scalp based on the extended 10–20 system.

Electrodes were attached to the scalp sites AF3, AF4,

AF7, AF8, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4,

CP5, CP6, CPz, Cz, F1, F2, F3, F4, F5, F6, F7, F8, FC1,

FC2, FC3, FC4, FC5, FC6, FT10, FT7, FT8, FT9, Fz, O1,

O2, Oz, P1, P2, P3, P4, P5, P6, P7, P8, PO10, PO3, PO4,

PO7, PO8, PO9, POz, Pz, T7, T8, TP7, TP8. In addition,

the ground electrode was attached to the AFz position,

the online reference to the FCz position. Moreover, we

attached two electrodes on the mastoids behind the left

and right ear to cover as much of the scalp as possible

for the calculation of the average reference (see below).

For the monitoring of vertical eye movements and blinks,

two further electrodes (VEOG) were attached, one above

and one below the left eye, respectively. For data record-

ing, a BrainAmp DC amplifier and the Brain Vision

Recorder software (BrainProducts) were used, with a sam-

pling rate of 1000Hz and an online lowpass filter of 100Hz.

Impedances were kept below 15 kΩ.

Data Analysis

Behavioral Data Analysis

Learning check. Before the main behavioral data analy-

sis, we checked if participants learned on average in all

conditions. Participants conducted four test blocks in each

of the six learning sessions, one after each learning block.

The fourth test block of each learning session should
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indicate the maximum learning success of each partici-

pant. Therefore, we calculated both the mean accuracy

of all participants across all test trials as well as the mean

accuracy of participants only in Block 4 in percent, and

compared the accuracy rates of each condition to chance

level (50%) using single-sample t tests. Because we per-

formed six tests, we used a Bonferroni-corrected level of

α = .008 for statistical interpretation.

Comparison between conditions. For behavioral data

statistical analysis, the dependent variable was response

accuracy in learning and/or test trials, defined as 1 for cor-

rect responses and 0 for incorrect responses. Correct

responses were defined as the choice of the action/

stimulus associated with the higher reward probability.

Trials in which participants failed to answer (M = 0.25%,

SD = 0.61%) were excluded from all further (behavioral

and EEG) analyses. We applied generalized linear mixed-

effects (GLME) model analyses suitable for binomial

distributions and single-trial data by means of the lme4

package (Bates, Mächler, Bolker, & Walker, 2015) in

R (The R Foundation, 2021). Because learning in the

PSFC was impaired (see below), we based our analysis

primarily on the comparison between the AFC and ASFC

(see the Appendix, Section A2, for analyses including data

from the PSFC). The model comprised as fixed-effect

predictors association type (action–feedback [−0.5] vs.

active stimulus–feedback [0.5]), feedback timing (simple

coding contrast matrix with immediate feedback set

as baseline that was compared with delayed feedback

with tone and delayed without tone), and Block (1

[−0.5], 2 [−0.167], 3 [0.167], 4 [0.5]), together with all

two-way and three-way interactions. Random intercepts

were allowed per participant. For random slopes per

participant, we adhered to best practice (Meteyard &

Davies, 2020): All within-subject main and interaction

effects were included as random factors per participant,

as long as their inclusion did not lead to model over- or

underfit, using the buildmer function (Version 2.11;

Voeten, 2020). This procedure for random effects was

used for all mixed model analyses described in this

article. To sum up, the model for the GLME analysis of

behavioral data was:

Accuracy ∼ 1þ Block� Association Type

� Feedback Timing þ ð1þ Blockþ Feedback Timing

þ Block : Feedback Timing j SubjectÞ

PE modeling. As outlined above, we decided to primar-

ily focus our analysis on the comparison of the AFC and

ASFC. Therefore, modeling of the PE in each learning trial

of each participant was based on the participants’

responses in the learning trials. The Appendix, Section

A2, contains additional analyses involving the PSFC as well

as a description of the procedure for the PE calculation

based on the test trials for all the three conditions

(Bellebaum, Jokisch, Gizewski, Forsting, & Daum, 2012).

On the basis of the approach by Weber and Bellebaum

(2024), we derived single-trial values of the PE for each

participant by fitting a reinforcement learning model to

the behavioral data using MATLAB Version R2021a (The

MathWorks, Inc., 2021). The starting point was each partic-

ipants’ sequence of choices and the received feedback.

The PE δc,t was calculated as follows:

δc;t ¼ rt − Qc;t

where in a given trial t the reward rt is 1 for positive feed-

back and 0 for negative feedback, and Qc,t is the value of

the chosen action or stimulus in a given trial t. Qc,t was

updated using a reinforcement learning model (see

Rescorla & Wagner, 1972):

Qc;tþ1 ¼ Qc;t þ α� δc;t

where α is the participants’ individual learning rate.

Because the underlying model offers some degrees of

freedom (for an example, see Weber & Bellebaum, 2024;

Burnside et al., 2019), we tested four different models to

update action and stimulus values.

In the first model (M1), separately for each of the six

pairs of actions or stimuli (and therefore for each of the

three feedback timing conditions), both actions or stimuli

of a pair were initially assigned a value of 0.5, that was iter-

atively updated in every trial t in which the respective

action or stimulus was associated with feedback. The value

of the chosen action or stimulus, Qc, was updated based

on the deviation between the prior value and the received

outcome, that is, the PE δ, and a learning rate α, reflecting

the degree to which the PE was used to update the action

or stimulus value. The value of the unchosen stimulus or

action equaled 1-Qc and was therefore complementary to

Qc and updated accordingly. As both stimuli or actions

were always presented together, receiving feedback for

the chosen stimulus or action would automatically convey

some information about the unchosen stimulus.

For each trial, t1,…, ntrials
, the probability p that themodel

would choose the action or stimulus that was indeed cho-

sen by the participant was calculated using the softmax

function. This calculation was based on prior values of

both stimuli or actions that participants could choose

from, that is, values of the chosen action or stimulus, Qc,t,

and the unchosen action or stimulus in trial t, Qu,t (equaling

1-Qc,t). The calculation also included an exploration

parameter β:

pc;t ¼
eQc;t�β

eQc;t�β þ eQu;t�β

with β indicating the impact of prior action or stimulus

values on a participant’s choices. A larger β indicates that
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a participant utilized prior values (i.e., a larger impact of

prior values), whereas a smaller β indicates rather explor-

ative choice behavior (i.e., a smaller impact of prior values).

In a next step, the probabilities p were used to calculate

the negative summed log-likelihood (−LL) as measure for

the model’s goodness of fit:

−

X

log pc;t1;…;ntrials

� �

We used the optimization function fmincon from the

Optimization Toolbox of MATLAB to minimize the

−LL value by estimating values for the free parameters

(α, β) that result in the least deviation between the

model’s predicted choices and the participants’ behavior.

To reduce the risk of local minima, the model was fitted to

the participants’ behavior repeatedly (50 iterations). As

start values for the free parameters, we allowed random

numbers within the interval [0; 1]. Value constraints for

the free parameters were set to [0; 1] for the learning rate

α and to [0; 100] for the exploration parameter β.

For the second model (M2), we allowed different learn-

ing rates for learning from positive and negative feedback.

Thus, the action or stimulus value was updated with the

learning rate αcon for trials with positive feedback that con-

firmed the choice as follows:

Qc;tþ1 ¼ Qc;t þ αcon � δc;t

Analogously, for trials with negative feedback that dis-

confirmed the choice, the value was updated with the

learning rate αdis:

Qc;tþ1 ¼ Qc;t þ αdis � δc;t

For both learning rates, boundary constraints were set

to [0; 1] as for the one learning rate in M1. Everything else

remained unchanged.

For the third model (M3), we allowed two learning rates

just as in M2. However, we allowed each action or stimulus

an independentQt value: This means that the values for the

two actions or stimuli of a pair would no longer necessarily

add to 1. Because positive feedback for the chosen stimulus

can be interpreted as confirmation of both the choice of the

chosen stimulus and the nonchoice of the unchosen stim-

ulus, the update of the stimulus value for the unchosen

stimulus, Qu,t, was calculated for trials with positive feed-

back (i.e., reward for the chosen stimulus) as follows:

Qu;tþ1 ¼ Qu;t þ αcon � δu:t

The update in trials with negative feedback for the

chosen stimulus was done analogously with αdis. The PE

for the unchosen stimulus was computed as follows:

δu;t ¼ 1 − rt − Qu;t

Everything else remained unchanged compared with

M2.

For the last model (M4), we allowed one Qt value for

each pair as for M1 and M2. Regarding learning rates, we

allowed only one learning rate for learning from positive

and negative feedback as in M1, but it was allowed to differ

between the six pairs of actions or stimuli.

For a detailed comparison of the likelihoods of all four

models, see the Appendix, Section A3). Model fit was best

for M2, so this model was used for the PE calculation sub-

sequently used for the analyses.

EEG Data Analysis

Preprocessing. BrainVision Analyzer 2.2 software (Brain

Products GmbH, 2018) and MATLAB R2021a (The Math-

Works, Inc., 2021) were used for EEG data preprocessing.

After rereferencing to the average of all scalp electrodes

and the mastoids (and calculating the signal at the online

reference site FCz), data were 30 Hz low-pass and 0.1 Hz

high-pass filtered. To correct for blink artifacts, an inde-

pendent component analysis was performed on single-

subject EEG data. A component representing blinks

(determined via its topography and correspondence with

the VEOG signal) was then removed, and the EEG signal

was reconstructed from the remaining components. We

created segments from 200 msec before to 800 msec after

feedback onset and performed a baseline correction

relative to the first 200msec. Then, segments with artifacts

were removed (all segments containing voltage steps >

50 μV/msec, differences between values > 80 μV or <

0.1 μV within an interval of 100 msec or amplitudes >

80 μV or < −80 μV). This removed 1.69% of segments,

on average (SD = 3.88%, maximum per participant =

19.17%). Although the analysis was based on single-trial

data (see below), averages were also created. The

remaining segments were thus averaged for each of the

within-subject conditions (positive and negative immedi-

ate feedback, positive and negative delayed feedback

without tone, and positive and negative delayed feedback

with tone), yielding six averages per participant. Subse-

quently, all single-trial segment data as well as all averages

per condition and participant were exported for later

analysis. All further processing steps were performed in

MATLAB.

In previous studies, visual inspection of the frontocen-

tral electrodes showed that the FRN was maximal at FCz

(Kim& Arbel, 2019; Arbel et al., 2017). To account for indi-

vidual differences, we preregistered to measure FRN

amplitudes at a group of five frontocentral electrode sites

(for a similar approach, see Zottoli & Grose-Fifer, 2012),

including Fz, FC1, FCz, FC2, andCz (seeWeber&Bellebaum,

2024). As the FRN/RewP amplitude difference between

negative and positive feedback has been shown to reflect

feedback expectancy (Sambrook & Goslin, 2015; Hajcak,

Moser, Holroyd, & Simons, 2007), and single-trial ampli-

tudes based on the difference wave reflect a PE (Weber
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& Bellebaum, 2024) and have been linked to striatal pro-

cessing (see above; Becker et al., 2014; Carlson et al.,

2011), the time window for the single-trial analysis was

determined based on the peak of the difference wave.

Thus, for all three feedback timing conditions (immediate,

delayed with tone, and delayed without tone), the average

negative feedback − positive feedback difference wave

was created for each participant. Then, the maximum neg-

ative peak in the difference wave between 200 and

400 msec after feedback onset was determined as speci-

fied in the preregistration (for a similar approach, see Paul,

Vassena, Severo, & Pourtois, 2020). Through visual inspec-

tion, we ensured that the condition-specific difference

wave peaks for each participant lay in fact within this time

window. The latency of this peak in the respective feed-

back timing condition of each participant was then used

to extract single-trial amplitude data. More specifically,

the mean amplitude of a time window from 10 msec

before to 10 msec after the condition-specific difference

wave peak of each participant was calculated for each trial,

representing the FRN/RewP.

For the N170, the signal at electrodes P7 and P8 (see

Höltje & Mecklinger, 2020; Kim & Arbel, 2019; Arbel et al.,

2017) was considered and single-trial amplitudes were

derived with the help of the average ERPs at these elec-

trodes as specified in the preregistration. We did not con-

sider the hemisphere in the main analysis because we did

not expect any hemisphere effects and aimed to keep

model complexity low. We still determined the peaks sep-

arately for P7 and P8 because the electrodes, unlike the

electrode sites used for the FRN/RewP, were so far apart

that their signal was more independent. First, the latency

of the peak amplitude between 140 and 250 msec post-

feedback was determined in each participants’ average,

at both electrode sites and for all the six within-subject

conditions (see above). Originally, we intended to use

a time window of 140–200 msec like Höltje and

Mecklinger (2020), as stated in the preregistration. How-

ever, the visual inspection of the condition-specific aver-

ages per participant led us to extend the time window to

250 msec. Then, for each single trial, the mean amplitude

around (i.e., 10 msec before to 10 msec after) the

condition-specific peak was calculated.

Statistical analysis of the ERP data. The single-trial

amplitudes of the two ERP components were separately

analyzed as dependent variables by applying linear mixed

effect (LME; Bates et al., 2015) analyses in R (The R

Foundation, 2021). The model for FRN/RewP included

as fixed-effect predictors association type (between-

subject: action–feedback [−0.5] vs. active stimulus–

feedback [0.5]), feedback timing (within-subject with a

simple coding contrast matrix; see also above), feedback

valence (within-subject: negative [−0.5] vs. positive

[0.5]), and PE (scaled and mean-centered). Importantly,

PE in this analysis and in the analysis of the N170 (see

below) refers to the unsigned or absolute PE, which

represents general surprise. This was done because the

signed PE is confounded by feedback valence, which is

used as separate predictor in the model. A representation

of the full (signed) PE would be reflected in an interaction

between feedback valence and unsigned PE (see Weber &

Bellebaum, 2024). The unsigned PE values were mean

centered, yielding negative values for rather small PEs

that lie below the mean versus positive values for rather

high PE values above the mean. In addition, all possible

interactions between the fixed-effect predictors were

included. Random effects were determined as described

above. To sum up, the model for the FRN/RewP was as

follows:

FRN Amplitude ∼ 1þ Association Type

� Feedback Timing � Feedback Valence� PE

þ 1þ Feedback Timing þ Feedback Valenceð jSubjectÞ

The model for the N170 comprised the same fixed-

effect predictors as the one for the FRN/RewP described

above (Feedback Association, Feedback Timing, Feedback

Valence, PE, as well as all possible interactions). In addi-

tion, we added the Electrode as a random intercept to

account for differences in amplitude. Random slopes by

subject were determined as for the FRN/RewP model. To

sum up, the model for the N170 was as follows:

N170 Amplitude ∼ 1þ Association Type

� Feedback Timing � Feedback Valence� PE

þ 1þ Feedback Timing þ Feedback Valenceð jSubjectÞ
þ 1 j Electrodeð Þ

For both the FRN/RewP and the N170, we hypothesized

that PE effects (as interaction between unsigned PE and

Feedback Valence) were modulated by Feedback Timing

and Association Type. Our main interest was thus in

higher-order interactions of the different predictors

involving the factors Feedback Timing and/or Association

Type.

RESULTS

Behavioral Results

Learning Check

t Tests comparing the mean accuracy rates in the test tri-

als across all blocks of the AFC, ASFC, and PSFC to

chance level (50%) revealed that accuracy rates were sig-

nificantly above chance level (on a Bonferroni-corrected

alpha level of .008) in the AFC, t(17) = 6.95, p < .001

(M = 70.18%, SD = 12.31%), and ASFC, t(21) = 13.13,

p < .001 (M = 82.36%, SD = 11.56%), respectively. How-

ever, accuracy rates in the PSFC were not above chance

level, t(21) = 2.13, p = .045 (M = 52.60%, SD = 5.72%).

Interestingly, this pattern was even more pronounced in

the fourth test block: Again, accuracy rates were
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significantly above chance level in the AFC, t(17) = 6.65,

p < .001 (M = 71.74%, SD = 13.86%), and ASFC, t(21) =

12.46, p < .001 (M = 82.77%, SD = 12.33%), but not in

the PSFC, t(21) = 0.84, p = .41 (M = 52.59%, SD =

14.43%. A detailed illustration of the single-subject

accuracy in the test trials (Figure A1 in the Appendix)

as well as a statistical analysis of accuracy variation

between blocks (Section A1 in the Appendix) revealed

that accuracy varied more strongly from block to block

in the PSFC than in the other conditions: This means

that some participants’ accuracies fluctuated between

0% and 100% from block to block due to choosing

always the same stimulus in one block of test trials and

correspondingly only the other stimulus in the

following block of test trials. Although average accuracy

rates were at chance level, the variations between the

test blocks suggest that participants did form predictions

during the learning blocks, which led then also to PEs

that were modeled in our analyses. Nevertheless, the pre-

dictions and PEs in the PSFC, which were calculated

based on the test trials without feedback, seem less reli-

able (see Section A1 in the Appendix), because the accu-

racy in the test trials in the PSFC is more variable than in

the other learning conditions (see Section A1 in the

Appendix) and affects also the PEs (see the Appendix,

Section 4). We thus decided to focus mainly on the com-

parison of AFC and ASFC, whereas the analyses compar-

ing the AFC and PSFC are reported in the Appendix,

Section A2.

Comparison between Conditions

We compared learning performance between AFC and

ASFC. Figure 2 displays the descriptive data underlying

the GLME analysis on the accuracy in the learning trials

for the AFC and ASFC. Table A4.1 in the Appendix lists

b-estimates and effect-specific z tests. GLME analysis

revealed a significant main effect of association type,

z = 3.04, p = .002, b = 0.71. Participants of the ASFC

showed enhanced performance compared with partici-

pants of the AFC. We also found a significant main effect

of block, z = 3.46, p = .001, b = 0.50. Participants

improved their performance across the four blocks in

a learning session. All other effects were not significant

(all p ≥ .059). An additional post hoc analysis including

only the first and last block aimed to focus more clearly

on learning effects. This analysis also revealed a main

effect of association type, z = 2.71, p = .007, b = 1.06

(see above), whereas there was a trend effect of block,

z = 1.96, p = .050, b = 0.26. An interaction between

block, association type, and the contrast between imme-

diate feedback and delayed feedback without tones,

z = −1.99, p = .047, revealed that the association type

effect was present for both feedback timings in the first

and for immediate feedback in the last block (all p ≤

.05), but not for delayed feedback without tone in the

last block ( p = .683). Analyzing learning (i.e., Block)

effects separately for each condition, no significant block

effect emerged for any condition, only a trend for the

ASFC and delayed feedback without tone ( p = .097,

b = 0.81).

ERP Results

FRN/RewP

Grand averages and topographical maps of the ERPs

according to association type, feedback timing, and feed-

back valence can be found in Figure 3.

Descriptive data underlying the FRN/RewP analysis are

depicted in Figure 4. For F and p values of all main and

interaction effects, refer to Table 1. In the text, statistical

indices will only be reported for resolutions of interac-

tions. For b-estimates and effect-specific t tests concerning

the analysis of the FRN/RewP amplitude, see Table A4.2 of

the Appendix. In the main text, we will focus on those

results that are relevant regarding our hypotheses, that

is, effects of the factors association type and feedback tim-

ing in interaction with the other factors.

In accordance with known findings from the litera-

ture, we found more negative FRN/RewP amplitudes

for negative than positive feedback and this amplitude

difference was larger for immediate than delayed feed-

back, immediate: F(1, 205.56) = 102.25, p < .001, b =

1.85, delayed without tone: F(1, 210.11) = 41.17, p <

.001, b = 1.22 delayed with tone: F(1, 232.53) =

71.96, p < .001, b = 1.63 (for the two-way-interaction

between feedback timing and feedback valence, see

Tables 1 and A4.2).

Importantly, we also found a two-way interaction

between feedback valence and PE (see Tables 1 and

A4.2). For positive feedback, FRN/RewP amplitudes were

significantly more positive the higher the PE was, F(1,

11339.36) = 69.59, p < .001, b = 1.85. For negative feed-

back, FRN/RewP amplitudes were more negative the
Figure 2. Accuracy in the learning parts. Error margins indicate 95%

confidence intervals.
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higher the PE was, F(1, 13631.45) = 8.99, p = .003, b =

−0.67. For a display of this interaction, see Figure 5.

This interaction was further modulated by the factors of

main interest in our study. First, a significant three-way

interaction of feedback valence, PE, and feedback timing

emerged (see Tables 1 and A4.2), indicating that the

Feedback Valence × PE interaction with the above-

described pattern was stronger for immediate, F(1,

17546.57) = 40.88, p < .001; F(1, 15985.23) = 48.44,

p < .001, b = 2.58 for positive feedback; F(1, 16879.95) =

4.07, p = .024, b = −0.83 for negative feedback; than

delayed feedback without tones, F(1, 16919.16) = 22.22,

p < .001; positive feedback: F(1, 13411.40) = 18.27, p <

.001, b = 1.67; negative feedback: F(1, 17197.83) = 6.61,

Figure 3. Grand averages and topographical maps of the FRN/RewP. (A) Grand averages of the pooled signal of Fz, FCz, Cz, FC1, and FC2: The

dotted vertical lines represent the search window for the FRN/RewP peak of the difference wave. Error margins represent standard errors. (B)

Topographies of the difference signal at the respective peaks: distribution of activation within the FRN/RewP time window.

Röhlinger et al. 11



p = .010, b = −1.01; and delayed feedback with tones,

F(1,16732.41) = 7.03, p = .008; positive feedback: F(1,

15355.51) = 11.85, p< .001, b= 1.31; negative feedback:

p = .64.

Finally, the interaction between feedback valence and

PE was modulated by association type, as revealed

by another three-way interaction of the mentioned

factors (Tables 1 and A4.2). In follow-up analyses, a

Figure 4. Descriptive statistics for the FRN/RewP model. Error margins indicate 95% confidence intervals. PE = absolute (unsigned) PE.

Table 1. F and p Values for the LME Analysis on the FRN/RewP Amplitude in the AFC and ASFC

Effects Num DF Den DF F p

Association type 1.00 38.56 1.65 .207

Feedback timing 2.00 41.66 2.31 .112

Feedback valence 1.00 53.27 137.14 <.001

PE 1.00 6695.48 14.48 <.001

Association Type × Feedback Timing 2.00 41.66 2.20 .123

Association Type × Feedback Valence 1.00 53.27 3.18 .080

Feedback Timing × Feedback Valence 2.00 17801.32 4.50 .011

Association Type × PE 1.00 6695.48 3.77 .052

Feedback Timing × PE 2.00 17767.70 1.12 .325

Feedback Valence × PE 1.00 17851.58 61.73 <.001

Association Type × Feedback Timing × Feedback Valence 2.00 17801.32 0.67 .510

Association Type × Feedback Timing × PE 2.00 17767.70 1.48 .229

Association Type × Feedback Valence × PE 1.00 17851.58 4.85 .028

Feedback Timing × Feedback Valence × PE 2.00 16503.34 3.12 .044

Association Type × Feedback Timing × Feedback Valence x PE 2.00 16503.34 0.52 .594

df = degrees of freedom; Num DF = numerator degrees of freedom; Den DF = denominator degrees of freedom; association type = AFC versus
ASFC; feedback timing = immediate feedback, delayed feedback without tone, and delayed feedback with tone; feedback valence = negative versus
positive; PE = unsigned.

Bolded p values indicate statistical significance at p < .05.
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significant Feedback Valence × PE interaction emerged

for action–feedback associations, F(1, 17861.99) =

15.43, p < .001; for positive feedback, FRN/RewP ampli-

tudes were more positive the larger the PE was, F(1,

10918.30) = 31.95, p < .001, b = 1.80; and for negative

feedback, no effect of PE was found, F(1, 12702.16)

< 0.01, p = .96, b = −0.02. For stimulus–feedback asso-

ciations, the two-way interaction was more pronounced,

F(1, 17823.99) = 52.48, p < .001; for positive feedback,

higher PEs meant more positive FRN/RewP amplitudes,

F(1, 11774.27) = 37.86, p < .001, b = 1.90, and for

negative feedback, higher PEs meant more negative

FRN/RewP amplitudes, F(1, 14601.96) = 18.05, p <

.001, b = −1.33. Although thus effects of feedback

timing and association type did emerge in interaction

with feedback valence and PE, neither the three-way

interaction between feedback valence, feedback timing,

and association type, nor the four-way interaction includ-

ing the mentioned factors and the additional factor PE

reached significance, which was against our hypotheses

(see Table 1).

N170

Grand averages and topographical maps of the ERPs

according to association type, feedback timing, and feed-

back valence can be found in Figure 6. Descriptive data

underlying the N170 analysis are depicted in Figure 7. In

Table 2, we report the F and p values of all main and inter-

action effects. For b-estimates and effect-specific t tests

concerning the analysis of the N170 amplitude, see

Table A4.3 of the Appendix. Again, we include only the

effects that are most relevant for our research question

and report statistical indices in the text only for resolu-

tions of interactions.

Among other effects, we found larger N170 amplitudes

for delayed than immediate and for negative than positive

feedback (main effects of feedback timing [immediate vs.

delayed feedback with tone: p < .001, b = −1.22; imme-

diate vs. delayed feedback without tone: p = .38, b =

−0.28] and feedback valence [b = 0.62]; see Tables 2

and A4.3).

Interestingly, also for the N170, there was a significant

two-way interaction between feedback valence and PE

(see Tables 2 and A4.3). Significant effects of PE were

found for both positive feedback, F(1, 28404.85) =

27.75, p < .001, b = −1.00, and negative feedback, F(1,

31236.99) = 8.91, p = .003, b = 0.57; for positive feed-

back, higher PE values led to more negative N170 ampli-

tudes, and for negative feedback, higher PE values led to

more positive N170 amplitudes. See Figure 8 for a display

of this interaction.

As for the FRN, this interaction was modulated by asso-

ciation type, as shown by the three-way interaction

between feedback valence, PE, and association type (see

Tables 2 and A4.3). The resolution of this interaction

revealed that the two-way interaction effect between feed-

back valence and PE was more pronounced for stimulus–

feedback associations, F(1, 35660.91) = 37.31, p < .001,

than for action–feedback associations, F(1, 35104.91) =

4.51, p = .034. In both groups, higher PE values for posi-

tive feedback led to more negative N170 amplitudes, F(1,

28328.20) = 28.66, p < .001, b = −1.41, and F(1,

28387.10) = 4.60, p = .032, b = −0.58, respectively, but

the effect was more pronounced for stimulus–feedback

associations. An effect of PE for negative feedback

emerged for stimulus–feedback associations, F(1,

32484.84) = 11.28, p= .001, b= 0.89, with more positive

amplitudes the higher the PE, but not for action–feedback

associations ( p = .37).

Finally, we also found a significant four-way interaction

between feedback valence, PE, association type, and

feedback timing (Tables 2 and A4.3), indicating that the

interaction between feedback valence and PE described

above was modulated by both, feedback timing and

association type. Resolving the four-way interaction by

association type, there was no significant interaction

between feedback timing, feedback valence, and PE for

stimulus–feedback associations, F(2, 23509.87) = 1.16,

p = .32. Irrespective of feedback timing, the pattern of

PE coding for positive and negative feedback described

above for stimulus–feedback associations emerged. How-

ever, there was an interaction effect for the action–

feedback associations, F(2, 18378.69) = 3.08, p = .046.

Further resolving by feedback timing, there was no signif-

icant interaction between feedback valence and PE for

action–feedback associations for delayed feedback with-

out tones, F(1, 21047.58) = 0.93, p = .33, or for delayed

feedback with tones, F(1, 18349.99) = 0.10, p = .76,

Figure 5. Descriptive statistics for the PE × Feedback Valence

interaction of the FRN/RewP. Error margins indicate 95% confidence

intervals. Absolute PE = absolute (unsigned) PE.
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Figure 6. Grand averages and topographical maps of the N170. (A) Grand averages of the signal at P7 and P8: The dotted vertical lines represent the

search window for the N170 negative peak. Error margins represent standard errors. (B) Topographies of the signal at the respective peaks:

distribution of activation within the N170 time window.
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indicating that the PE did not modulate the N170 ampli-

tude in these conditions. However, for immediate feed-

back, an interaction between PE and feedback valence

was found, F(1, 33400.93) = 10.48, p = .001. For imme-

diate negative feedback in action–feedback associations,

there was no significant effect of PE, F(1, 35059.21) =

2.14, p = .14, b = 0.65, but there was a PE effect for

immediate positive feedback in action–feedback associa-

tions, F(1, 29227.14) = 10.35, p = .001, b = −1.42. The

higher the PE, the more negative the N170 amplitude.

To sum up, we found the PE effect on the N170 (as

interaction between the absolute PE and feedback

valence) to be modulated by both feedback timing and

association type, reflected in the significant four-way inter-

action, as hypothesized. However, the pattern underlying

this interaction differed from our hypothesis. Moreover,

we did not find the hypothesized two-way interaction

between feedback timing and association type with most

pronounced N170 amplitudes for delayed feedback for

stimulus feedback associations.

Figure 7. Descriptive statistics

of the N170 model. Error

margins indicate 95%

confidence intervals. PE =

absolute (unsigned) PE.

Table 2. Statistical Results for the LME Analysis on the N170 Amplitude in the AFC and ASFC

Effects Num DF Den DF F p

Association type 1.00 38.30 1.16 .289

Feedback timing 2.00 44.75 19.40 <.001

Feedback valence 1.00 44.32 13.06 .001

PE 1.00 21005.49 2.59 .107

Association Type × Feedback Timing 2.00 44.75 0.72 .493

Association Type × Feedback Valence 1.00 44.32 0.48 .492

Feedback Timing × Feedback Valence 2.00 35710.36 4.43 .012

Association Type × PE 1.00 21005.60 0.12 .732

Feedback Timing × PE 2.00 35673.87 3.90 .020

Feedback Valence × PE 1.00 35460.14 33.33 <.001

Association Type × Feedback Timing × Feedback Valence 2.00 35710.36 1.68 .186

Association Type × Feedback Timing × PE 2.00 35673.87 0.34 .715

Association Type × Feedback Valence × PE 1.00 35460.08 7.40 .007

Feedback Timing × Feedback Valence × PE 2.00 20798.09 0.27 .762

Association Type × Feedback Timing × Feedback Valence × PE 2.00 20797.69 4.03 .018

Bolded p values indicate statistical significance at p < .05.
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DISCUSSION

Previous research indicates that delaying feedback leads to

a shift in the neural correlates of feedback processing:

Whereas the FRN/RewP difference between negative and

positive feedback, assumedly reflecting striatal reward sys-

tem activity (Becker et al., 2014; Foti et al., 2011), was

reduced for delayed feedback, the N170, possibly associ-

ated with MTL and/or extrastriate cortex activity, was

increased (Höltje & Mecklinger, 2020; Kim & Arbel,

2019; Arbel et al., 2017; Peterburs et al., 2016). We hypoth-

esized that also the type of the learned association

(action–feedback vs. stimulus–feedback associations)

could affect which system is involved in feedback process-

ing, potentially in interaction with feedback timing effects.

Consequently, we expected a stronger role of the

FRN/RewP in feedback processing for action–feedback

associations for immediate feedback and of the N170 in

learning stimulus–feedback associations for delayed feed-

back. To test this, participants learned either action–

feedback or stimulus–feedback associations with immedi-

ate and delayed feedback while we recorded EEG.

Stimulus–feedback associations were learned in two differ-

ent ways, either actively, involving active stimulus choices,

or passively, without active choices. Significant learning

was found only for action–feedback associations and for

the stimulus–feedback associations involving active

choices. Due to this, we focus the discussion on results

from these conditions, especially concerning effects of

the PE, which might be more meaningful when learning

has taken place.

Influences of Valence, Feedback Timing, and

Association Type on Feedback Processing

Regarding the FRN/RewP, we expected the largest valence

effect for immediate feedback for action–feedback

associations. Although we replicated previous findings of

amore pronounced feedback valence effect for immediate

than delayed feedback (for similar results, see Albrecht

et al., 2023; Höltje & Mecklinger, 2020; Arbel et al., 2017;

Peterburs et al., 2016; Weismüller & Bellebaum, 2016;

Weinberg et al., 2012), the interaction between feedback

valence and timing did not differ between type of learned

association, which was against our hypotheses. In con-

trast, in the analysis involving passive stimulus–feedback

associations reported in the Appendix, there was evidence

for a feedback valence effect on the FRN/RewP modulated

by both feedback timing and type of learned association.

The valence effect differed between passive stimulus–

feedback associations and action–feedback associations

only for immediate feedback, with smaller differences

for stimulus–feedback associations. This was partly in line

with our hypothesis, suggesting a slight preference for

action–feedback associations in immediate feedback

(although no difference between groups was found for

the delayed feedback conditions).

For the N170, we expected the largest amplitude for

delayed feedback for stimulus–feedback associations. Sim-

ilar as for the FRN/RewP, we found a feedback timing by

valence interaction, but in the opposite direction, such

that a feedback valence effect (as Kim & Arbel, 2019) with

more negative amplitudes following negative compared

with positive feedback was only found for delayed feed-

back. In contrast to our hypothesis, neither the effect of

feedback timing nor the reported interaction between

feedback valence and timing was affected by the associa-

tion type in our main analysis. However, in the analysis

involving passive stimulus–feedback associations, such

an effect did emerge. As hypothesized, we found larger

N170 amplitudes for delayed feedback, irrespective of

temporal predictability (i.e., with or without tone) only

for (passive) stimulus–feedback associations.

Reflections of the PE in the FRN/RewP

For our main analysis, effects of the type of the learned

association on feedback processing were only seen in

interaction with the PE. For both, the FRN/RewP and the

N170, we expected that the effect of the PE (as interaction

between unsigned or absolute PE and valence) would be

modulated by feedback timing and association type. For

the FRN/RewP, we found an interaction between feedback

valence and absolute PE, which is in line with PE coding by

the FRN/RewP as suggested by the Reinforcement Learn-

ing Theory (Holroyd & Coles, 2002) and with many other

studies (see Burnside et al., 2019; Fischer & Ullsperger,

2013): This two-way interaction reflecting PE processing

was further modulated by feedback timing, as it was stron-

gest for immediate feedback. This appears to contradict

the finding of a recent study by Weber and Bellebaum

(2024), in which the PE was similarly represented in the

FRN/RewP for immediate and delayed positive feedback,

and no PE effect was found for negative feedback. Finally,

Figure 8. Descriptive statistics for the PE × Feedback Valence

interaction of the N170. Error margins indicate 95% confidence

intervals. Absolute PE = absolute (unsigned) PE.
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PE processing, again as reflected in the two-way inter-

action between valence and unsigned PE, was also

modulated by association type. The interaction was

more pronounced for stimulus–feedback associations,

for which the above-described pattern of PE effects for

both negative and positive feedback emerged. For

action–feedback associations, a PE effect was found only

for positive feedback, mirroring a pattern also described

byWeber and Bellebaum (2024). Similarly, Kirsch, Kirschner,

Fischer, Klein, and Ullsperger (2022) found stronger

expectancy coding in the FRN/RewP for positive com-

pared with negative feedback. Thus, the PE coding in

the FRN/RewP was indeed modulated by feedback timing

and association type, but not as hypothesized in interac-

tion of the two factors.

Of particular interest is the finding that for action–

feedback associations, PE coding is restricted to positive

feedback. This may indicate that for nonrewarded actions,

it does not matter how large the negative PE is. Because

PEs are a prerequisite for learning (Schultz & Dickinson,

2000), this aligns with findings of a confirmation bias with

higher learning rates from positive compared with nega-

tive feedback (Weber & Bellebaum, 2024). Furthermore,

people tend to be better at learning to achieve rewards

through active choice actions and avoid punishments by

remaining passive—for which the term pavlovian bias

was coined (Peterburs, Albrecht, & Bellebaum, 2022;

Cavanagh, Eisenberg, Guitart-Masip, Huys, & Frank,

2013; Guitart-Masip et al., 2012). Studies on this bias chal-

lenge the existing view that neural representations in the

striatum are centered on valence, suggesting that the stri-

atum might rather encode a tendency toward action

(Guitart-Masip et al., 2011; for a review, see Guitart-Masip,

Duzel, Dolan, & Dayan, 2014). On this background, our

results might suggest that positive reinforcement is espe-

cially important for action learning.

Reflections of the PE in the N170

For the N170, we also observed PE coding, with the

reversed pattern compared with the FRN/RewP. This is a

novel finding, as the N170 has not been linked to PE pro-

cessing in the context of feedback learning before. The

finding supports not only the relevance of the N170 as a

feedback-locked signal, but it further sheds light on the

relationship between striatal and MTL learning systems.

Enhanced amplitudes following unexpected rewards may

indicate that the MTL is particularly involved in reinforcing

memories for affirming feedback. The MTL’s function

could be to remember which stimulus resulted in a reward

by reactivating its representation in visual areas, thereby

strengthening the association. This would mean increas-

ing activity in the fusiform gyrus, which would lead to

enhanced N170 amplitudes (Gao et al., 2019; Deffke et al.,

2007). Previous studies have identified not only reward

representations in the hippocampus (Gauthier & Tank,

2018; Zeithamova, Gelman, Frank, & Preston, 2018) but

also postreward reactivation as a mechanism to link

rewarding outcomes to the preceding experiences (Singer

& Frank, 2009). In addition, fMRI studies revealed the

reactivation of stimulus-specific visual (Schiffer et al.,

2014) and somatosensory regions (Pleger et al., 2008,

2009) following reward. We found that the N170 was

more pronounced when negative feedback was expected

versus unexpected. As participants could choose between

two options in the current task, expected negative

feedback could be processed as confirming feedback for

the not-chosen stimulus or action, leading to additional

effort to reactivate the not-chosen stimulus or action

representation.

Importantly, the PE coding in the N170 was modulated

by both association type and feedback timing, as revealed

by a four-way interaction. The above-described PE coding

pattern in the N170 (as Feedback Valence × PE interac-

tion) emerged only for immediate feedback in action–

feedback associations, whereas it was present in all feed-

back timing conditions for stimulus–feedback associa-

tions. Although this pattern does not exactly match our

hypothesis, it is still consistent with our expectations that,

for delayed feedback, there is a stronger PE effect for

stimulus–feedback than action–feedback associations.

This is in line with a stronger role of hippocampally medi-

ated reactivations of visual stimuli associated with feed-

back in the stimulus–feedback condition during delayed

feedback. The enhanced N170 for delayed feedback found

for stimulus–feedback, but not action–feedback associa-

tions in the analysis involving the PSFC (see above), fur-

ther supports this notion. Unexpectedly, we observed a

(similarly pronounced) PE effect on the N170 for both

types of associations for immediate feedback, which is

contrary to our hypothesis that we should see PE effects

on the N170 especially for delayed feedback that refers

to stimuli. A possible explanation might be that the N170

reflects not only MTL activity (as suggested by Arbel et al.,

2017) or visual reactivation (as we suggest in the introduc-

tion), but both processes: PE coding in the MTL might

appear in parallel to PE coding in the striatum, irrespective

of association type only for immediate feedback. However,

visual reactivation in extrastriate cortex might be stronger

for delayed feedback (and influence the N170 more in this

condition) because of the need of credit assignment, and

would only happen for stimulus–feedback associations,

not action–feedback associations.

Integration of Findings for the FRN/RewP and

the N170

Looking at FRN/RewP and N170 results together, it is evi-

dent that the relative recruitment of different learning and

memory systems during feedback learning in the present

study depended on the type of association learned.

Post hoc, we suggest that the cooperation of the striatal

and the hippocampal system worked better for

stimulus–feedback associations, for which better learning
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was found, with PE coding for N170 and FRN/RewP in all

timing conditions. The cooperation may be less effective

for action–feedback associations, where it may have

worked only for immediate feedback. In line with this,

Palombo, Hayes, Reid, and Verfaellie (2019) found signifi-

cantly impaired learning for patients with hippocampal

damage compared with healthy controls in a probabilistic

learning task involving stimulus–feedback associations

(although see Foerde et al., 2013, for comparable results

at least with immediate feedback). In 2002, White and

McDonald suggested that both the striatal and hippocam-

pal system share access to the same information, but they

specialize in encoding different types of relationships.

Indeed, midbrain dopamine neurons project to the stria-

tum (Chuhma et al., 2023; Oldehinkel et al., 2022; Schultz

et al., 1997) and also to the MTL (Schott et al., 2004, 2008;

Lisman & Grace, 2005). In line with this, both the striatum

and the hippocampus have been found to reflect a PE dur-

ing feedback learning (Dickerson et al., 2011). Shohamy

and Adcock (2010) suggest that the interactions between

midbrain dopamine regions and the MTL enhance mem-

ory for rewarding and novel episodes and build memory

representations that inform future decision-making.

Feedback Delay Effects and

Temporal Predictability

Kimura and Kimura (2016) proposed that feedback delay

effects on the FRN/RewP are a function of diminished tem-

poral predictability for delayed feedback and found

comparable patterns between immediate and delayed

feedback when delayed feedback was made similarly

predictable via a regular tone during the delay. In the

present study, we did not replicate this result and found

mostly similar feedback delay effects for temporally pre-

dictable and unpredictable delayed feedback. The partici-

pants in the study by Kimura and Kimura could not learn

during the study, so the FRN/RewP effect found might not

represent a learning signal, but specifically PEs about the

temporal characteristics of the feedback stimuli. In the

current study, learning was possible, and FRN/RewP and

N170 could thus represent learning signals, which might

explain the differences in the result pattern.

Limitations

The primary limitation of this study is that passive

stimulus–feedback associations were not learned consis-

tently. Participants of the PSFC, which aimed to assess

stimulus–feedback learning without actions, did not learn,

on average, leading to difficulties in comparing the respec-

tive EEG results from this condition with the AFC and

ASFC. Problems with learning might be attributed to a

number of reasons, for example, a potential need of higher

contingencies in passive (meaning no own actions were

conducted) compared with active learning (Bellebaum,

Brodmann, & Thoma, 2014) or difficulty in learning

passively when the events to be learned from are not exe-

cuted by another human (differences in processing of

human and nonhuman actions have for example been

found by Fukushima & Hiraki, 2009). A closer look at

the accuracy rates in the PSFC revealed that although par-

ticipants did not choose the more rewarding stimulus

more frequently, on average, over the entire experiment,

they did choose it exclusively in the test trials of some

blocks. In some cases, accuracy rates fluctuated between

0% and 100% from block to block. The block design, in

which 20 learning trials are followed by 20 test trials, is

based on observational learning studies (e.g., Bellebaum

et al., 2014). This type of design, however, sometimes

leads to participants choosing only one stimulus within a

block. In the case of a false belief regarding the more

rewarding stimulus, this results in an accuracy of 0%.

Together with accuracy rates of 100% in other blocks, this

leads to an average accuracy of around 50%, which is what

we observed in the PSFC.We thus primarily base our inter-

pretations on the comparison of action–feedback associa-

tions with the stimulus–feedback associations learned in

the ASFC and not in the PSFC. Although the ASFC also con-

tained actions (i.e., button presses), feedback was only

related to the chosen stimuli and not to the actions. On

the contrary, in the AFC, visual stimuli (i.e., rectangles)

were presented on the screen, but the feedback referred

only to the actions and not to the stimuli. The two condi-

tions are therefore compatible but differ in one crucial

point: In the ASFC, stimulus identity predicted the reward,

whereas in the AFC, motor aspects of the task predicted

the reward. Better learning for active stimulus–feedback

associations compared with action–feedback associations

could indicate that this association type allowed the striatal

and MTL systems to cooperate in the most effective way.

However, findings from the PSFC also contributed to the

interpretation of the role of the N170 in feedback learning:

Despite overall inconsistent learning, participants in the

PSFC may nevertheless have formed a (false) expectation

regarding the stimuli’s feedback contingencies, allowing

meaningful PE analyses. In this sense, adding the PE to

the statistical model may, at least to some extent, take dif-

ferences in learning performance between the groups into

account. Indeed, data from the PSFC revealed larger N170

amplitudes for delayed than immediate feedback, as

hypothesized. Nevertheless, future studies should try to

separate action–feedback and stimulus–feedback associa-

tions even more by overcoming learning problems in the

PSFC. Due to our relatively small sample size, it would be

interesting to seewhether the effects reported here can be

replicated.

Conclusion

In conclusion, our results suggest that the type of the

learned association, action–feedback or stimulus–

feedback, does play a role in feedback processing and

feedback learning. This was evident in both the
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FRN/RewP and N170 ERP components, which are thought

to represent feedback processing in the striatal or MTL sys-

tem. However, no clear-cut pattern was found in the sense

that one of the systems takes over sole control in specific

learning conditions. Instead, the learned association,

together with feedback timing, seems to modulate how

well the systems cooperate during learning. Furthermore,

amodulation of the N170 by the PE (reversed to that of the

RewP/FRN) provides new evidence that the component is

associated with feedback processing, especially for

delayed feedback. The study results challenge previous

views of a competitive relationship between MTL- and

striatal-based learning systems, suggesting a cooperation

that is modulated by learning contexts.

APPENDIX
Section A1

Statistical Comparison of Accuracy Variance between

AFC, ASFC, and PSFC

To statistically investigate variability between blocks in the

three association type groups, we first calculated themean

accuracy (in % correct responses) for each participant

across all blocks. In a next step, we calculated the (abso-

lute) accuracy deviation from this mean for each block

and used this as the accuracy variance measure for this

block. We then defined an LME model with accuracy vari-

ance as dependent variable and block (1–4, scaled to lie

between −0.5 and + 0.5), association type (AFC, ASFC,

and PSFC, modulated in a simple coding matrix with PSFC

as baseline), and feedback timing (modulated in a simple

coding matrix with immediate feedback as baseline). Fit-

ting the model with the procedure described in the main

articles resulted in the following model:

Variance ∼ Block� Association Type

� Feedback Timing þ 1jSubjectð Þ

We found a significant effect of association type, F(2,

59.01) = 23.02, p< .001. Variance was significantly higher

in the PSFC compared with both the AFC (t=−4.91, p<

.001, b = −15.55) and ASFC (t = −6.45, p < .001, b =

−19.40). Recalculating the model with AFC as baseline

for the association type, we found no difference between

AFC and ASFC ( p = .230). No other main or interaction

effects were significant (all p ≥ .058). For descriptive data

of the accuracy variance of the three association type

groups, see Table A1.1. Only five participants of the PSFC

had a lower or equalmean accuracy variance than the over-

all mean of the AFC (only four PSFC participants had a

lower mean variance than the ASFC mean).

Section A2

Results for the AFC Compared with the PSFC

PE modeling. For comparability, we used the same

model constraints as for the PE calculation of the main

analysis, where we used the following model (M2 in the

main text):

Qc;tþ1 ¼ Qc;t þ αcon=dis � δc;t

Each action or stimulus was initially assigned a value of

0.5 that was iteratively updated in every trial t in which the

action or stimulus was chosen. The value of the unchosen

action or stimulus, Qu, was updated as 1-Qc in each trial.

We allowed different learning rates for learning from pos-

itive (αcon) and negative feedback (αdis).

Because learning trials in the PSFC did not entail own

choice actions, the data from the learning trials could

not be used to calculate the model’s error term. Instead,

the error (i.e., the deviance between the model’s predic-

tions and the values measured, which is−LL in the PE cal-

culation for the main analysis) was calculated using the

probabilities derived from the test trials for both condi-

tions, AFC and PSFC: After the first learning block, the Q

values of the two stimuli should equal the frequency in

which they were chosen during the following test trials.

Frequency was calculated as the number of test trials in

which one stimulus was chosen divided by the total num-

ber of trials in the respective test block. We defined the

residual error as the absolute difference between the Q

Figure A1. Single-subject

representation of accuracy rates

across all 24 test blocks without

feedback. Each line represents

one participant of the

respective association type

group.

Table A1.1. Mean, Standard Deviation, Minimum, and

Maximum of Block-wise Accuracy Variance (in %)

AssociationType M SD Min Max

AFC 18.04 6.30 6.94 33.23

ASFC 14.17 8.82 0.40 31.88

PSFC 30.66 13.25 6.09 47.50

M = mean; SD = standard deviation; Min = minimum; Max =
maximum.
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value calculated by the model of the “correct” stimulus or

action (the one that was more associated with wins) after

the last trial of each learning block and the frequency of its

choice during the following test block. We only used one

of the stimuli or actions of each block because, as the

values were inverted, using both would not add any infor-

mation. Note that this calculation of the residual error

term did not consider the exploration parameter β. To fur-

ther adapt themodel to the one used for themain analysis,

we chose the minimum and maximum of αcon and αdis
from the model of the main analysis of the AFC condition

as constraints for the respective values (αcon: [0.00–1],

αdis: [0.00–0.62]). For the subsequent analyses, the abso-

lute values of the PE for each trial were used.

Behavioral results. Because participants in the PSFC

did not make active choices during the learning trials,

we used the test trials to compare behavioral results

between the AFC and PSFC. We used a model including

block, association type, and feedback timing as fixed

effects and the main effects of block and feedback timing

as well as their interaction as random effects. See the

table of results (Table A2.1) as well as the descriptive data

(Figure A2.1) depicted below. There was a main effect of

association type (see Table A2.1) with higher accuracy in

the AFC than PFSC. All other effects were not significant.

Only including the first and last block for an additional

post hoc analysis focusing on learning effects in the dif-

ferent conditions, we also found a main effect of associ-

ation type, z = −3.60, p < .001, b = −0.94 (see above),

and again no significant main effect of block ( p = .758).

However, there was a significant interaction between

block and association type, z = −2.01, p = .045. In both

the first block, z = −2.29, p = .022, b = −0.62, as well as

the last block, z = −3.76, p < .001, b = −1.26, partici-

pants in the AFC performed significantly better than in

the PSFC, but the effect was more pronounced in the last

block. Analyzing learning (i.e., block) effects separately

for the different conditions, there was a trend for imme-

diate feedback in the PSFC ( p = .073, b = −0.73;

decreasing accuracy from Blocks 1–4) and for delayed

feedback without tones in the AFC ( p = .091, b =

0.89; increasing accuracy from Blocks 1–4).

EEG results. Due to the differences in learning perfor-

mance between the PSFC and the AFC, differences in

the neural signals between the groups are difficult to inter-

pret. Although the inclusion of the PE in the statistical

model may, to some extent, account for learning differ-

ences, PE modeling for the observed behavioral learning

pattern in the PSFC (mainly 0% and 100% correct in the

test blocks) is not ideal. Nevertheless, the results give

some insight into the general influences of feedback

valence and feedback timing in the PSFC, and we can care-

fully compare effects of these between the groups.

FRN. For the analyses, we used a model including asso-

ciation type, feedback timing, feedback valence, and PE as

fixed effect factors, as well as the main effects of feedback

timing and feedback valence as random effects. The tables

of results for the model, the grand averages, and the

descriptive data are depicted below (Figures A2.2 and

A2.3, Tables A2.2 and A2.3). As for the analyses reported

in the main article, we will focus on effects of the factors

association type and feedback timing in interaction with

the other factors.

Table A2.1. b Values, Confidence Intervals, and t-test Results for the GLME Analysis on Accuracy for the AFC and PSFC

Effects b SE z p 2.5% CI 97.5% CI

Intercept 0.63 0.09 6.70 <.001 0.45 0.82

Block −0.05 0.15 −0.33 .740 −0.33 0.27

Association type −0.97 0.19 −5.23 <.001 −1.34 −0.60

Delayed feedback with tone −0.23 0.17 −1.32 .185 −0.59 0.15

Delayed feedback without tone −0.24 0.13 −1.85 .064 −0.49 0.03

Block × Association Type −0.37 0.31 −1.22 .223 −0.95 0.22

Block × Delayed Feedback With Tone 0.46 0.42 1.10 .273 −0.38 1.27

Block × Delayed Feedback Without Tone 0.71 0.49 1.44 .150 −0.17 1.75

Association Type × Delayed Feedback With Tone −0.10 0.34 −0.28 .776 −0.77 0.60

Association Type × Delayed Feedback Without Tone 0.13 0.26 0.49 .624 −0.41 0.70

Block × Association Type × Delayed Feedback With Tone −0.19 0.81 −0.23 .819 −1.99 1.58

Block × Association Type × Delayed Feedback Without Tone 1.45 0.95 1.54 .125 −0.71 3.44

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors block (1 [−0.5], 2 [−0.167], 3 [0.167], 4 [0.5]),
association type (AFC [−0.5] vs. PSFC [0.5]), and feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is
compared with delayed feedback with tone and delayed feedback without tone).
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As for the analysis comparing AFC and ASFC in the main

text, there was a significantmain effect of feedback valence

with more negative amplitudes for negative compared

with positive feedback (see Table A2.2 and A2.3). Instead

of an interaction between feedback timing and feedback

valence, as for the AFC – ASFC comparison, we found a

significant interaction involving these two factors and

the factor association type (feedback timing, feedback

valence, and association type; see Figure A2.4). Only for

immediate feedback, we found a significant interaction

between association type and feedback valence, F(1,

136.88) = 5.23, p = .024 ( p = .118 for delayed feedback

without tones and p = .180 for delayed feedback with

tones). For immediate feedback, a significant valence

effect emerged for the AFC, F(1, 119.02) = 47.60, p <

.001, b = 2.04, and PSFC, F(1, 160.31) = 14.40, p < .001,

b= 1.09. In both association types, negative feedback led

tomore negative FRN/RewP amplitudes, but the effect was

weaker for the PSFC.

As for the analysis reported in themain article, there was

an interaction between feedback valence and PE, which

was further modulated by association type (interaction

between association type, feedback valence, and PE).

The underlying pattern differed, however. While a signif-

icant interaction between feedback valence and PE

showed for the AFC, F(1, 17782.20) = 13.43, p < .001,

indicating PE coding, as in the analysis in the main text,

FRN amplitude did not appear to vary with the PE for the

PSFC ( p = .75 for the interaction between feedback

valence and PE). The pattern for the AFC was as reported

in the main text (note that the PE was modeled differ-

ently, see above): For negative feedback in the AFC, there

Figure A2.2. Grand averages of

the FRN for the AFC and PSFC.

Error margins represent

standard errors.

Figure A2.1. Accuracy in the

test parts for the AFC and PSFC.

Error margins represent 95%

confidence intervals.
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was no effect of PE ( p = .92), but there was an effect for

positive feedback in the AFC, F(1, 15295.69) = 26.84, p<

.001, b = 1.67. Participants showed more negative ampli-

tudes for low PE values than for high PE values.

As hypothesized, we thus found that the effect of the

factor feedback valence was modulated by feedback tim-

ing and association type. Only for immediate feedback,

the valence effect (i.e., more negative amplitude for nega-

tive than positive feedback) was stronger for action–

feedback than for stimulus–feedback associations. This

pattern emerged, however, because the feedback valence

effect was reduced for stimulus–feedback associations for

immediate feedback compared with all other conditions

(see Figure A2.4).

N170. For the analysis of the N170, we used a model

including association type, feedback timing, feedback

valence, and PE as fixed effect factors, as well as the main

effects of hemisphere and feedback timing and their inter-

action as random effects. The tables of results for the

model, the grand averages, and the descriptive data are

depicted below (Figures A2.5 and A2.6, Tables A2.4 and

Table A2.2. F and p Values for the LME Analysis on the FRN/RewP Amplitude for the AFC and PSFC

Effects Num DF Den DF F p

Association type 1.00 38.48 1.40 .244

Feedback timing 2.00 40.33 5.11 .011

Feedback valence 1.00 47.60 102.19 <.001

PE 1.00 9588.29 7.12 .008

Association Type × Feedback Timing 2.00 40.33 0.17 .840

Association Type × Feedback Valence 1.00 47.60 0.90 .349

Feedback Timing × Feedback Valence 2.00 17734.65 0.72 .489

Association Type × PE 1.00 9588.29 6.51 .011

Feedback Timing × PE 2.00 17712.54 0.08 .926

Feedback Valence × PE 1.00 17785.19 8.09 .004

Association Type × Feedback Timing × Feedback Valence 2.00 17734.65 6.53 .001

Association Type × Feedback Timing × PE 2.00 17712.54 1.41 .244

Association Type × Feedback Valence × PE 1.00 17785.19 5.75 .017

Feedback Timing × Feedback Valence × PE 2.00 16682.57 1.22 .295

Association Type × Feedback Timing × Feedback Valence × PE 2.00 16682.57 0.04 .957

Association type (AFC vs. PSFC), feedback timing (immediate, delayed without tone, delayed with tone), feedback valence (negative vs. positive), and
PE (unsigned PE)

Figure A2.3. Descriptive

statistics for the FRN model for

the AFC and PSFC. Error

margins represent 95%

confidence intervals. Absolute

PE = absolute (unsigned) PE.
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A2.5). Again, we focus on the factors of main interest, asso-

ciation type, and feedback timing, in interactionwith other

factors.

As for the analysis reported in the main text, there were

significant main effects of feedback timing, F(2, 43.53) =

24.88, p< .001, and feedback valence F(1, 47.82) = 10.56,

p = .002. However, there was a significant two-way inter-

action between association type and feedback timing,

F(2, 43.53) = 10.63, p < .001, which did not emerge in

the analysis reported in the main article. For a display of

the interaction, see Figure A2.7 (A). Although there

was a main effect of feedback timing for the AFC, F(2,

42.25) = 5.49, p= .008, there was only a trend for the dif-

ference between delayed feedback with tone and immedi-

ate feedback in the AFC ( p = .083, b = −0.89) and no

difference between delayed feedback without tone and

immediate feedback in the AFC ( p= .890). For the PSFC,

the feedback timing effect was stronger, F(2, 45.11) =

32.56, p < .001, with significantly more negative ampli-

tudes for delayed feedback without tone compared with

immediate feedback in the PSFC ( p < .001, b = −2.52)

and significantly more negative amplitudes for delayed

Table A2.3. b Values, Confidence Intervals, and t-test Results of the LME Analysis on the FRN/RewP Amplitude for the AFC and PSFC

Effects b SE df t p 2.5% CI 97.5% CI

Intercept 2.67 0.34 38.48 7.75 <.001 2.01 3.37

Association type −0.82 0.69 38.48 1.18 .244 −2.14 0.63

Delayed feedback with tone −0.02 0.35 40.96 0.05 .958 −0.67 0.59

Delayed feedback without tone 1.29 0.47 39.78 2.73 .009 0.45 2.28

Feedback valence 1.62 0.16 47.60 0.11 <.001 1.32 1.93

PE 0.42 0.16 9588.29 2.67 .008 0.11 0.76

Association Type × Delayed Feedback With Tone −0.02 0.69 40.96 0.03 .979 −1.35 1.51

Association Type × Delayed Feedback Without Tone 0.47 0.95 39.78 0.50 .623 −1.29 2.46

Association Type × Feedback Valence −0.30 0.32 47.60 0.95 .349 −0.93 0.30

Delayed Feedback With Tone × Feedback Valence 0.25 0.23 17735.14 1.09 .276 −0.20 0.73

Delayed Feedback Without Tone × Feedback Valence 0.03 0.23 17732.12 0.11 .913 −0.43 0.49

Association Type × PE −0.80 0.31 9588.29 2.55 .011 −1.40 −0.21

Delayed Feedback With Tone × PE 0.06 0.36 17720.46 0.17 .865 −0.61 0.78

Delayed Feedback Without Tone × PE −0.08 0.37 17721.36 0.23 .819 −0.87 0.69

Feedback Valence × PE 0.93 0.33 17785.19 2.84 .004 0.30 1.61

Association Type × Delayed Feedback With Tone ×

Feedback Valence

1.58 0.46 17735.14 3.47 .001 0.65 2.46

Association Type × Delayed Feedback Without Tone ×

Feedback Valence

0.39 0.47 17732.12 0.82 .409 −0.52 1.32

Association Type × Delayed Feedback With Tone × PE 0.57 0.73 17720.46 0.78 .436 −1.09 2.04

Association Type x Delayed Feedback Without Tone × PE −0.68 0.73 17721.36 0.93 .354 −2.26 0.76

Association Type × Feedback Valence × PE −1.56 0.65 17785.19 2.40 .017 −2.80 −0.19

Delayed Feedback With Tone × Feedback Valence × PE −1.03 0.78 16213.38 1.33 .182 −2.58 0.48

Delayed Feedback Without Tone × Feedback Valence × PE −1.06 0.79 17477.54 1.34 .180 −2.75 0.39

Association Type × Delayed Feedback With Tone ×

Feedback Valence × PE

0.07 1.55 16213.38 0.04 .966 −2.93 3.08

Association Type × Delayed Feedback Without Tone ×

Feedback Valence × PE

0.44 1.58 17477.54 0.28 .779 −2.83 3.40

b = beta estimate; SE = standard error; CI = confidence interval. The sign of the b-estimates indicates the direction of main effects for the fixed-
effects predictors association type (action [−0.5] vs. stimuli active [0.5]), feedback timing (simple coding contrast matrix with immediate feedback
set as baseline that is compared with delayed feedback with tone and delayed feedback without tone), feedback valence (negative [−0.5] vs. positive
[0.5]), and mean centered unsigned PE.
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feedback with tone compared with immediate feedback

in the PSFC ( p < .001, b = −3.71).

This interaction could be further explained by a three-

way interaction between association type, feedback

timing, and feedback valence (see Figure A2.7, B). In the

resolution of this interaction, however, no differential pat-

tern of valence coding was found for any of the conditions

( p = .27 for the Feedback Timing × Feedback Valence

interaction in the PSFC, p = .054 in the AFC).

We additionally found a three-way interaction between

association type, feedback valence, and PE, as in the

analysis reported in the main text. A significant interaction

between feedback valence and PE emerged for both the

AFC, F(1, 35258.96) = 5.73, p = .017, and the PSFC, F(1,

34840.33) = 12.71, p< .001, but the effects were reversed

in the two groups: For the AFC, a PE effect emerged not for

negative ( p = .28) but only for positive feedback, F(1,

24746.49) = 5.59, p = .018, b = −0.67. The higher the

PE, the more negative the N170 amplitude, which was

the same pattern as reported in the main analysis. For

the PSFC, there was a PE effect for negative feedback,

F(1, 20122.58) = 6.51, p = .011, b = −0.71, and positive

feedback, F(1, 22965.52) = 6.66, p = .010, b = 0.73. For

negative feedback, higher PE values led to more negative

N170 amplitudes, but for positive feedback, higher PE

values led to more positive N170 amplitudes, thus resem-

bling the pattern described for the FRN/RewP.

Finally, the four-way interaction between association

type, feedback timing, feedback valence, and PEwas signif-

icant, as in the analysis on the AFC and the ASFC in the

main article. For the AFC, there was (only) a trend for an

interaction between feedback timing, feedback valence,

and PE. Although the pattern of PE coding in the N170,

as described in the main article, was visible in all feedback

timing conditions, it seemed to be most pronounced for

immediate feedback for action–feedback associations, so

that the pattern, despite the nonsignificant interaction, is

roughly comparable between the results reported in the

main article and the ones reported here. For the PSFC,

however, there was a significant interaction between feed-

back timing, feedback valence, and PE, F(2, 15704.16) =

3.04, p= .048, in contrast to what was reported in themain

article. For the PSFC, with delayed feedback without tone,

there was no significant interaction between feedback

valence and PE ( p= .92). Such an interaction did emerge

for delayed feedback with tone, F(1, 17919.60) = 7.85, p=

Figure A2.4. Interaction between association type (AFC vs. PSFC),

feedback timing, and feedback valence on the FRN/RewP. Error bars

represent 95% confidence intervals.

Figure A2.5. Grand averages of

the N170 for the AFC and PSFC.

Error margins represent

standard errors.
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.005, and immediate feedback, F(1, 33075.55) = 11.51,

p = .001. A significant main effect of PE showed for the

PSFC with positive delayed feedback with tone, F(1,

24266.87) = 7.18, p = .007, b = 1.28. The larger the PE,

the more positive the N170 amplitude. No PE effect

emerged for negative feedback ( p = .15). For the PSFC

with positive immediate feedback, no PE effect emerged

( p = .133), but for negative feedback, F(1, 33451.01) =

11.57, p = .001, b = −1.56. The larger the PE, the more

negative the N170 amplitude.

To summarize, our analyses revealed the hypothesized

interaction between association type and feedback timing,

with higher N170 amplitudes for delayed than immediate

feedback in the PSFC, but not in the AFC. As in the analysis

reported in the main article, also the four-way interaction

reached significance, indicating that PE coding was modu-

lated by feedback timing and association type. Due to the

differences in learning and thus PE distribution between

the AFC and the PSFC, we will focus on the pattern found

in the analysis in the main article.

Figure A2.6. Descriptive

statistics for the N170 model for

the AFC and PSFC. Error

margins represent 95%

confidence intervals. Absolute

PE = absolute (unsigned) PE.

Table A2.4. F and p Values for the LME Analysis on the N170 Amplitude for the AFC and PSFC

Effects Num DF Den DF F p

Association type 1.00 38.27 1.84 .183

Feedback timing 2.00 43.53 24.88 <.001

Feedback valence 1.00 47.82 10.56 .002

PE 1.00 11919.56 0.38 .537

Association Type × Feedback Timing 2.00 43.53 10.63 <.001

Association Type × Feedback Valence 1.00 47.82 2.40 .128

Feedback Timing × Feedback Valence 2.00 35495.17 0.25 .782

Association Type × PE 1.00 11919.60 0.48 .488

Feedback Timing × PE 2.00 35223.42 1.97 .139

Feedback Valence × PE 1.00 35091.40 0.64 .425

Association Type × Feedback Timing × Feedback Valence 2.00 35495.16 3.97 .019

Association Type × Feedback Timing × PE 2.00 35223.43 1.17 .310

Association Type × Feedback Valence × PE 1.00 35091.44 17.71 <.001

Feedback Timing × Feedback Valence × PE 2.00 18049.55 1.84 .159

Association Type × Feedback Timing × Feedback Valence × PE 2.00 18049.69 3.96 .019

Association type (AFC vs. PSFC), feedback timing (immediate, delayed without tone, delayed with tone), feedback valence (negative vs. positive), and
PE (unsigned PE).
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Section A3

PE Model Comparisons

M2 had the lowest Akaike information criterion (AIC)

value, AIC = 448.74. To determine whether the model

performed indeed significantly better as the other models,

we performed one-sided dependent-samples t tests to

compare the negative log likelihood values of each partic-

ipant for each of the other three models with Model 2.

Because this meant three statistical tests, results were

interpreted on a Bonferroni-corrected alpha value of

.017. M2 had significantly smaller negative log likelihood

values than all othermodels. For detailed statistical results,

see the table below.

Section A4

Statistical Comparison of the Reinforcement Learning

Models between AFC, ASFC, and PSFC

To determine if the enhanced accuracy variance in the test

trials that we found for the PSFC (see Section A1) also

Table A2.5. b Values, Confidence Intervals, and t-test Results for the LME Analysis on the N170 Amplitude for the AFC and PSFC

Effects b SE df t p 2.5% CI 97.5% CI

Intercept −6.19 0.71 2.29 −8.71 .008 −7.59 −4.80

Association type 1.13 0.83 38.27 1.36 .183 −0.59 2.68

Delayed feedback with tone −1.23 0.28 41.34 −4.36 <.001 −1.76 −0.67

Delayed feedback without tone −2.30 0.34 40.72 −6.75 <.001 −2.95 −1.63

Feedback valence 0.47 0.14 47.82 3.25 .002 0.20 0.75

PE −0.09 0.14 11919.56 −0.62 .537 −0.39 0.20

Association Type × Delayed Feedback With Tone −2.58 0.57 41.34 −4.56 <.001 −3.63 −1.48

Association Type × Delayed Feedback Without Tone −2.81 0.68 40.72 −4.13 <.001 −4.19 −1.52

Association Type × Feedback Valence −0.44 0.29 47.82 −1.55 .128 −0.98 0.10

Delayed Feedback With Tone × Feedback Valence 0.13 0.20 35547.34 0.63 .530 −0.28 0.54

Delayed Feedback Without Tone × Feedback Valence 0.01 0.21 35469.87 0.04 .964 −0.39 0.43

Association Type × PE 0.19 0.28 11919.60 0.69 .488 −0.39 0.71

Delayed Feedback With Tone × PE 0.64 0.32 35208.39 1.98 .047 −0.03 1.30

Delayed Feedback Without Tone × PE 0.30 0.32 35277.54 0.93 .351 −0.31 0.89

Feedback Valence × PE 0.23 0.29 35091.41 0.80 .425 −0.33 0.77

Association Type × Delayed Feedback With Tone ×

Feedback Valence

−1.12 0.40 35547.34 −2.78 .005 −1.97 −0.40

Association Type × Delayed Feedback Without Tone ×

Feedback Valence

−0.74 0.41 35469.85 −1.80 .072 −1.57 0.10

Association Type × Delayed Feedback With Tone × PE −0.07 0.65 35208.42 −0.11 .911 −1.30 1.12

Association Type × Delayed Feedback Without Tone × PE 0.83 0.65 35277.52 1.28 .201 −0.49 2.26

Association Type × Feedback Valence × PE 2.42 0.57 35091.44 4.21 <.001 1.31 3.66

Delayed Feedback With Tone × Feedback Valence × PE −0.31 0.68 23113.18 −0.46 .646 −1.71 1.06

Delayed Feedback Without Tone × Feedback Valence × PE 0.98 0.69 27046.50 1.42 .157 −0.35 2.32

Association Type × Delayed Feedback With Tone ×

Feedback Valence × PE

−3.76 1.37 23113.39 −2.75 .006 −6.39 −1.15

Association Type × Delayed Feedback Without Tone ×

Feedback Valence × PE

−2.54 1.39 27046.44 −1.83 .067 −5.12 −0.11

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors association type (action [−0.5] vs. stimuli active
[0.5]), feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is compared with delayed feedback with tone
and delayed without tone), feedback valence (negative [−0.5] vs. positive [0.5]), and mean centered unsigned PE.
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affects the reinforcement learning models and thus the

PEs, we compared the residual errors for the calculation

of the subjective values of the stimuli based on the test tri-

als (see Section A2 for details) between the three associa-

tion type conditions (across feedback timings) using a

one-factor ANOVA. Although the reinforcement learning

model could also be calculated based on the learning trials

in the ASFC and the AFC, these conditions also entailed

test trials without feedback so that the reinforcement

learning model could also be based on accuracy in the test

trials, as in the PSFC (see Section A2 of the Appendix). We

found a significant effect of association type on the resid-

ual errors of the reinforcement learning model, F(2, 58) =

33.60, p < .001. Bonferroni-corrected pairwise compari-

sons revealed that the error in the PSFC was significantly

higher than in the AFC ( p < .001) and in the ASFC ( p <

.001), but no difference could be observed between AFC

and ASFC ( p> .999). The subjective stimulus values, and

with them the PEs, could thus be calculated less accurately

in the PSFC compared with the other conditions.

Figure A2.7. Significant

interactions involving

association type (AFC vs. PSFC)

on the FRN/RewP. Error bars

represent 95% confidence

intervals.

Table A3.1. Statistical Comparison of the Three Other Models to Model 2

Model AIC Mean Difference to M2 df t p

M2 448.74

M1 490.28 −21.77 39 −4.08 <.001

M3 473.04 −12.15 39 −4.97 <.001

M4 521.35 −32.31 39 −4.43 <.001
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Table A4.1. b Values, Confidence Intervals, and t-test Results for the GLME Analysis on Accuracy

Effects b SE z p 2.5% CI 97.5% CI

Intercept <.001 0.79 1.22

Block 0.50 0.14 3.46 <.001 0.21 0.77

Association type 0.71 0.23 3.04 .002 0.25 1.21

Delayed feedback without tone 0.01 0.13 0.12 .907 −0.22 0.26

Delayed feedback with tone 0.06 0.09 0.68 .497 −0.10 0.24

Block × Association Type 0.36 0.29 1.25 .212 −0.20 0.89

Block × Delayed Feedback Without Tone 0.18 0.18 0.95 .343 −0.29 0.64

Block × Delayed Feedback With Tone 0.09 0.25 0.35 .725 −0.47 0.58

Association Type × Delayed Feedback Without Tone −0.02 0.25 −0.09 .926 −0.49 0.39

Association Type × Delayed Feedback With Tone 0.04 0.19 0.23 .819 −0.40 0.36

Block × Association Type × Delayed Feedback Without Tone −0.68 0.36 −1.89 .059 −1.38 0.18

Block × Association Type × Delayed Feedback With Tone −0.33 0.50 −0.66 .510 −1.37 1.00

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors block (1 [−0.5], 2 [−0.167], 3 [0.167], 4 [0.5]),
association type (AFC [−0.5] vs. ASFC [0.5]), and feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is
compared with delayed feedback with tone and delayed feedback without tone).
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Table A4.2. b Values, Confidence Intervals, and t-test Results of the LME Analysis on the FRN/RewP Amplitude

Effects b SE df t p 2.5% CI 97.5% CI

Intercept 2.67 0.32 38.56 8.31 <.001 2.06 3.30

Association type −0.82 0.64 38.56 −1.28 .207 −2.12 0.39

Delayed feedback without tone 0.29 0.35 40.94 0.84 .407 −0.45 0.87

Delayed feedback with tone 0.70 0.34 41.31 2.07 .045 0.04 1.36

Feedback valence 1.58 0.13 53.27 11.71 <.001 1.32 1.81

PE 0.59 0.15 6695.48 3.80 <.001 0.28 0.89

Association Type × Delayed Feedback Without Tone 0.56 0.70 40.94 0.80 .427 −0.81 1.85

Association Type × Delayed Feedback With Tone −0.69 0.68 41.31 −1.01 .316 −1.97 0.70

Association Type × Feedback Valence −0.48 0.27 53.27 −1.78 .080 −1.04 0.07

Delayed Feedback Without Tone × Feedback Valence −0.68 0.23 17796.59 −3.00 .003 −1.15 −0.24

Delayed Feedback With Tone × Feedback Valence −0.30 0.23 17798.47 −1.30 .192 −0.77 0.12

Association Type × PE −0.60 0.31 6695.48 −1.94 .052 −1.24 −0.01

Delayed Feedback Without Tone × PE −0.55 0.37 17747.66 −1.49 .136 −1.30 0.15

Delayed Feedback With Tone × PE −0.31 0.36 17781.7 −0.86 .388 −1.04 0.40

Feedback Valence × PE 2.52 0.32 17851.58 7.86 <.001 1.94 3.18

Association Type × Delayed Feedback Without Tone ×

Feedback Valence

−0.53 0.46 17796.59 −1.16 .246 −1.49 0.31

Association Type × Delayed Feedback With Tone ×

Feedback Valence

−0.25 0.46 17798.47 −0.55 .584 −1.19 0.55

Association Type × Delayed Feedback Without Tone × PE −1.11 0.74 17747.66 −1.51 .130 −2.53 0.41

Association Type × Delayed Feedback With Tone × PE −1.05 0.73 17781.70 −1.44 .149 −2.57 0.39

Association Type × Feedback Valence × PE 1.42 0.64 17851.58 2.20 .028 0.21 2.83

Delayed Feedback Without Tone x Feedback Valence × PE −0.74 0.78 17165.48 −0.95 .343 −2.32 0.82

Delayed Feedback With Tone × Feedback Valence × PE −1.92 0.77 16844.95 −2.49 .013 −3.46 −0.33

Association Type × Delayed Feedback Without Tone ×

Feedback Valence × PE

0.27 1.56 17165.48 0.18 .861 −2.48 3.30

Association Type × Delayed Feedback With Tone ×

Feedback Valence × PE

−1.24 1.55 16844.95 −0.80 .422 −4.15 1.90

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors association type (AFC [−0.5] vs. ASFC [0.5]),
feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is compared with delayed feedback with tone and
delayed feedback without tone), feedback valence (negative [−0.5] vs. positive [0.5]), and mean centered unsigned PE.

Röhlinger et al. 29



Table A4.3. b Values, Confidence Intervals, and t-test Results for the LME Analysis on the N170 Amplitude

Effects b SE df t p 2.5% CI 97.5% CI

Intercept −6.33 0.59 2.87 −10.80 .002 −7.47 −5.09

Association type 0.81 0.76 38.30 1.08 .289 −0.71 2.26

Delayed feedback without tone −0.28 0.32 40.47 −0.88 .384 −0.95 0.33

Delayed feedback with tone −1.22 0.32 40.75 −3.82 <.001 −1.82 −0.64

Feedback valence 0.62 0.17 44.32 3.61 .001 0.28 0.97

PE −0.21 0.13 21005.49 −1.61 .107 −0.47 0.05

Association Type × Delayed Feedback Without Tone −0.77 0.64 40.47 −1.20 .239 −2.00 0.58

Association Type × Delayed Feedback With Tone −0.69 0.64 40.75 −1.08 .285 −1.96 0.73

Association Type × Feedback Valence −0.24 0.34 44.32 −0.69 .492 −0.90 0.49

Delayed Feedback Without Tone × Feedback Valence 0.53 0.19 35716.30 2.75 .006 0.11 0.93

Delayed Feedback With Tone × Feedback Valence 0.07 0.20 35714.45 0.33 .738 −0.32 0.47

Association Type × PE −0.09 0.27 21005.60 −0.34 .732 −0.69 0.44

Delayed Feedback Without Tone × PE 0.84 0.31 35684.79 2.71 .007 0.23 1.44

Delayed Feedback With Tone × PE 0.22 0.31 35681.95 0.73 .467 −0.38 0.86

Feedback Valence × PE −1.57 0.27 35460.14 −5.77 <.001 −2.09 −1.05

Association Type × Delayed Feedback Without Tone ×

Feedback Valence

−0.37 0.39 35716.30 −0.95 .340 −1.18 0.35

Association Type × Delayed Feedback With Tone ×

Feedback Valence

−0.72 0.39 35714.45 −1.83 .067 −1.45 0.09

Association Type × Delayed Feedback Without Tone × PE 0.50 0.62 35684.79 0.80 .421 −0.81 1.75

Association Type × Delayed Feedback With Tone × PE 0.32 0.62 35681.94 0.53 .599 −0.97 1.51

Association Type × Feedback Valence × PE −1.48 0.54 35460.08 −2.72 .007 −2.54 −0.46

Delayed Feedback Without Tone × Feedback Valence × PE 0.24 0.65 27098.51 0.37 .711 −0.92 1.40

Delayed Feedback With Tone × Feedback Valence × PE 0.48 0.65 27326.96 0.74 .461 −0.78 1.70

Association Type × Delayed Feedback Without Tone ×

Feedback Valence × PE

−2.39 1.31 27098.28 −1.83 .068 −4.90 0.22

Association Type × Delayed Feedback With Tone ×

Feedback Valence × PE

−3.64 1.30 27326.66 −2.79 .005 −6.14 −1.09

The sign of the b-estimates indicates the direction of main effects for the fixed-effects predictors association type (AFC [−0.5] vs. ASFC [0.5]),
feedback timing (simple coding contrast matrix with immediate feedback set as baseline that is compared with delayed feedback with tone and
delayed without tone), feedback valence (negative [−0.5] vs. positive [0.5]), and mean centered unsigned PE.
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by space and time to bridge gaps in our experience. Several 

researchers have suggested that, in the absence of immediate 

feedback to the striatum, the MTL may be recruited to bind 

an individual's response with the delayed feedback, despite 

their separation in time (Arbel et al. 2017; Foerde et al. 2013; 

Peterburs et al. 2016).

In studies assessing neural feedback processing by means 

of electroencephalography (EEG), delays have been found 

to differentially affect two event- related potential (ERP) 

components that have been associated with the reward sys-

tem and the MTL, respectively (Arbel et al. 2017; Höltje and 

Mecklinger 2020; Kim and Arbel 2019; Peterburs et al. 2016). 

The feedback- related negativity (FRN) peaks around 250 to 

300 ms after feedback presentation at frontocentral elec-

trode sites and is more pronounced for negative than posi-

tive feedback (Becker et al. 2014; Bellebaum and Daum 2008; 

Foti et al. 2011; Holroyd and Coles 2002; Miltner et al. 1997; 

Nieuwenhuis et al. 2004), possibly because a positive compo-

nent referred to as Reward Positivity (RewP; for a review see 

Proudfit 2015) drives the signal toward positive amplitudes for 

positive feedback. The amplitude of the signal in the FRN/RewP 

time window reflects a prediction error (PE) that indicates 

whether feedback is better or worse than expected (Burnside 

et  al.  2019; Fischer and Ullsperger  2013; Kirsch et  al.  2022; 

Sambrook and Goslin  2015; Weber and Bellebaum  2024). A 

PE is encoded by midbrain dopaminergic neurons, for in-

stance in the substantia nigra (Schultz et  al.  1997; Zaghloul 

et al. 2009), suggesting that the FRN indirectly reflects activ-

ity of the midbrain dopamine system (Foti et al. 2015; Hauser 

et  al.  2014; Holroyd and Coles  2002). Williams et  al.  (2020) 

provide evidence that the FRN reflects an underlying learn-

ing process that drives behavioral adaptation based on PEs. 

Having been linked to striatal activity (Becker et  al.  2014; 

Carlson et al. 2011; Foti et al. 2011), and thus a dopamine pro-

jection site (Chuhma et al. 2023; Oldehinkel et al. 2022; Zhang 

et  al.  2015), the FRN difference wave for negative –positive 

feedback better differentiates feedback valence when feed-

back is presented immediately (Arbel et  al.  2017; Höltje and 

Mecklinger 2020; Peterburs et al. 2016; Weinberg et al. 2012; 

Weismüller and Bellebaum 2016). Evidence suggests, however, 

that the FRN is not directly generated by the striatum (Cohen 

et al. 2011), but by the medial prefrontal cortex, more specif-

ically, the anterior cingulate cortex (Nieuwenhuis et al. 2005; 

Hauser et al. 2014; Becker et al. 2014; Oerlemans et al. 2025), 

which in turn receives projections from the striatum (Chau 

et al. 2018; Hauser et al. 2014).

In contrast, the N170, a negative deflection about 170 ms after 

visual stimulus presentation at lateral temporal electrode 

sites (Bentin et  al.  1996), was repeatedly found to be more 

pronounced for delayed than immediate feedback (Arbel 

et al. 2017; Höltje and Mecklinger 2020; Kim and Arbel 2019; 

but see Albrecht et  al.  2023, for the opposite pattern). Arbel 

et al. (2017) and Kim and Arbel (2019) hypothesized that the 

N170 is generated by a delayed reward signal to reinforce a 

memory representation of a stimulus stored in the MTL. In 

this line, Baker and Holroyd (2009) demonstrated that the spa-

tial location of feedback stimuli elicited a pronounced N170 

response associated with right MTL activation in a naviga-

tional feedback learning task. In subsequent studies, Baker 

and Holroyd (2013) and Baker et al. (2015) localized the N170 

in this task to the right parahippocampal region, proposing 

that the parahippocampal cortex encodes salient information 

essential for spatial navigation.

With the present work we aim to investigate an alternative 

explanation regarding larger N170 amplitudes for delayed 

feedback: The N170 is usually investigated in the context of 

higher visual processing, being particularly pronounced for 

faces (Bentin et al. 1996; Itier and Taylor 2004; for a review see 

Yovel 2016) and words (for a review see Carreiras et al. 2014), 

but also cars (Kloth et al. 2013). For faces and words, an ori-

gin in the fusiform gyrus was found (Brem et al. 2006; Deffke 

et al. 2007; Gao et al. 2019; Iidaka et al. 2006), which contains 

specialized regions for diverse stimulus categories (Cohen 

et al. 2002; Kanwisher et al. 1997; for an overview see Weiner 

and Zilles 2016). Thus, a pronounced N170 after delayed feed-

back may indicate the activation of higher- order visual areas 

during the processing of (delayed) feedback, possibly medi-

ated by the MTL.

If feedback is delayed, a reactivation of the representations of 

the associated stimulus might be the mechanism to bridge the 

temporal gap between stimulus and feedback. Support for this 

assumption comes from several fMRI studies: For example, 

participants in a study by Pleger et al.  (2008) had to discrimi-

nate somatosensory stimuli regarding their frequency (high vs. 

low) and were rewarded for correct judgments. Notably, the pri-

mary somatosensory cortex was reactivated when reward was 

presented, an effect mediated by dopamine (Pleger et al. 2009). 

In a study by Schiffer et al.  (2014), reward activated stimulus- 

category- specific representations of reward- associated stimuli 

in visual association cortices.

In the present study, we want to examine whether the N170 

for delayed feedback represents a reactivation of a previously 

selected visual stimulus to bridge the temporal gap and assign 

credit to the stimulus. To test this, we manipulate the modal-

ity of the stimuli between which participants have to choose 

in a feedback learning task. More specifically, participants re-

ceive visual feedback for choices between two visual or two 

auditory stimuli. We hypothesize that the N170 has a larger 

amplitude when the feedback is associated with visual than 

with auditory stimuli and that this effect is stronger for de-

layed compared to immediate feedback. Given that the right 

hemisphere plays a dominant role in processing certain vi-

sual stimuli, such as faces (Rossion  2014), and in N170 gen-

eration in different contexts (Baker and Holroyd 2009; Baker 

and Holroyd 2013; Baker et al. 2015; Kim and Arbel 2019), we 

were particularly interested in whether the effects would be 

stronger over the right hemisphere. In addition, we explore 

whether the PE is represented in the N170, possibly depend-

ing on stimulus modality, feedback timing, and hemisphere. 

For this purpose, we will model trial- by- trial fluctuations of 

the PE using the behavioral learning data. Given that the hip-

pocampus shows PE- related activity (Dickerson et  al.  2011) 

and that the N170 may be mediated by MTL processing, it is 

conceivable that the PE is reflected in the N170 amplitude, 

especially following delayed feedback for the choice between 

visual stimuli and over the right hemisphere. Regarding the 

FRN, we aimed to replicate previous effects for PE coding and 
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effects of the timing of feedback and explore effects of the mo-

dality of the stimulus associated with the feedback in interac-

tion with these factors, without a specific hypothesis.

2   |   Method

2.1   |   Participants

The sample size was planned a priori and based on the num-

ber of participants in previous studies investigating the effects 

of feedback timing on FRN and N170: Arbel et al. (2017) found 

a significant effect of feedback timing on the N170 in a study 

with 21 subjects. In the planned study, we were particularly in-

terested in the interaction between feedback timing and stim-

ulus modality and also in higher- order interactions (see Data 

Analysis for details), which suggests that a larger sample size 

was needed to reach adequate power. We thus preregistered to 

recruit 40 healthy young adults (18–40 years) for participation in 

the experiment. Exclusion criteria were a history of neurologi-

cal or psychiatric disorders, the regular or acute consumption 

of substances affecting the central nervous system, knowledge 

about Hiragana- Characters, uncorrected impaired vision, and 

impaired hearing. Of 40 acquired participants, we excluded five 

participants, three of them because they fulfilled at least one of 

our exclusion criteria, one because of bad EEG data quality due 

to alpha waves, and one due to technical problems. The final 

sample included in the analyses thus consisted of 35 partici-

pants, 30 women and 5 men, 2 left- handed and 33 right- handed. 

The mean age was 23.2 years (SD = 4.5 years, Min = 19 years, 

Max = 35 years).

2.2   |   Experimental Task and Conditions

Participants underwent a probabilistic feedback learning task, 

in which they could learn associations between stimuli and 

positive or negative monetary feedback (feedback valence: 

+4 ct vs. −2 ct). The task comprised the two within- subject 

factors Stimulus Modality and Feedback Timing: On every 

trial, each participant could choose between two stimuli. In 

half of the trials of the experiment, the choice was between 

two visual stimuli; in the other half of the trials, the choice 

was between two auditory stimuli (factor Stimulus Modality). 

Figure  1A shows an exemplary trial for the choice between 

visual and Figure 1B for the choice between auditory stimuli. 

Furthermore, feedback appeared 1 s (immediate feedback) or 

7 s (delayed feedback) after participants' choice and was always 

presented visually on the screen (factor Feedback Timing). 

Participants completed four learning phases with stimuli of 

one modality (either visual or auditory) before switching to 

stimuli of the other modality, again for four learning phases, 

with the order of modalities counterbalanced across partici-

pants. In each learning phase, a new stimulus pair was pre-

sented, and there were thus eight stimulus pairs in total, four 

visual and four auditory pairs. Feedback timing (immediate or 

delayed) remained consistent throughout the phase. The feed-

back timing changed only at the beginning of a new learn-

ing phase, coinciding with the presentation of a new stimulus 

pair. Thus, feedback timing varied across phases, with the 

starting condition counterbalanced across participants. Each 

learning phase consisted of 80 trials and was further divided 

into 4 blocks of 20 trials. Overall, each participant thus com-

pleted 640 trials.

In the visual condition, in every trial a pair of visual stim-

uli was presented on screen for maximally 3000 ms, one on 

the left and one on the right side of a centrally presented 

fixation cross. As stimuli, we used Hiragana- like characters 

(see Figure  1C) that cannot easily be verbalized (see Frank 

FIGURE 1    |    Stimuli and time course of the probabilistic feedback 

learning tasks. Participants were instructed that the red cross repre-

sented a loss of −2 ct while the green tick represented a gain of +4 ct. (A) 

Feedback learning task with visual stimuli: The assignment of visual 

stimuli to the left and right sides of the screen was counterbalanced. In 

this way, feedback could clearly be associated with a stimulus and not 

with a response side. (B) Feedback learning task with auditory stimuli: 

The assignment of auditory stimuli to the left and right ears was coun-

terbalanced. In this way, feedback could clearly be associated with a 

stimulus and not with a response side. (C) Visual stimuli: The neigh-

boring stimuli form the four pairs used for all participants. The more 

rewarding stimulus (65% wins, 35% losses) was determined randomly 

when a new stimulus pair was presented. (D) Auditory stimuli: The 

neighboring stimuli form the four pairs used for all participants. The 

more rewarding stimulus (65% wins, 35% losses) was determined ran-

domly when a new stimulus pair was presented.
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et al. 2004). Participants could choose one of the two stimuli 

by pressing the corresponding (left vs. right) control key on a 

computer keyboard. The assignment of visual stimuli to the 

left and right side of the screen was counterbalanced. In this 

way, feedback could clearly be associated with a stimulus and 

not with a response side.

In the auditory condition, a pair of auditory stimuli was pre-

sented simultaneously via headphones for maximally 3000 ms, 

one to the left and one to the right ear, while participants' eyes 

rested on a fixation cross on the screen. As stimuli, we used 

different melodies played by different instruments to increase 

distinctiveness (see Figure 1D and listen to an example https:// 

tinyu rl. com/ mrxtjvt2). Auditory stimuli were downloaded 

from Pixabay (https:// pixab ay. com/ ) and edited with Audacity 

(https:// www. audac ityte am. org/ ). Participants could choose 

one of the two stimuli by pressing the corresponding (left vs. 

right) control key on a computer keyboard. The assignment of 

auditory stimuli to the left and right ear was counterbalanced. 

In this way, feedback could clearly be associated with a stimulus 

and not with a response side.

After their choice, feedback was presented. Unbeknown to the 

participants, one stimulus of each pair was associated with re-

ward in 65% of the trials and with punishment in 35%, while 

probabilities were reversed for the other stimulus. We chose 

these contingencies to prevent ceiling effects, as learning with 

just one stimulus pair at a time in an 80- trial learning phase 

might be too easy with higher contingencies. Additionally, these 

contingencies ensured relatively balanced frequencies of posi-

tive and negative feedback, minimizing the risk that one type 

of feedback would elicit different ERPs simply due to its lower 

occurrence frequency. The participants' task was to learn which 

stimulus was more likely to be rewarded and thereby maximize 

reward through their choices. Both wins and losses contributed 

to the overall sum of money.

2.3   |   Procedure and Data Acquisition

Upon arrival in the laboratory, participants were informed 

about the experimental procedure and gave written informed 

consent to participate in the study, followed by a demographic 

questionnaire. Afterwards, we attached EEG electrodes and 

placed participants in front of a 27 in, 1920 × 1080 px W- LED 

monitor (BENQ EW2740L) with a refresh rate of 60 Hz, where 

the experimental task began, lasting about 60 min. Auditory 

stimuli were presented via dynamic stereo headphones 

(Sennheiser HD 201). Participants were informed prior to 

the experiment that they would receive 25 € or, in the case of 

psychology students, course credit. The money earned in the 

feedback learning task was thus not paid out in the end and 

was only virtual. The study was approved by the ethics com-

mittee of the Faculty of Mathematics and Natural Sciences at 

Heinrich Heine University Düsseldorf, Germany, and is in ac-

cordance with the declaration of Helsinki.

The software Presentation (Neurobehavioral Systems Inc 

2020.) controlled the timing of stimulation and the record-

ing of responses. Responses were performed on a standard 

computer keyboard (Logitech K120) where participants could 

press the left and right control keys to choose between the 

stimuli.

2.3.1   |   EEG Data

EEG data was acquired from 60 active scalp electrodes, fixed 

with an actiCap textile softcap (BrainProducts, Germany) and 

evenly distributed on the scalp based on the extended 10–20 sys-

tem. Electrodes were attached to the scalp sites AF3, AF4, AF7, 

AF8, C1, C2, C3, C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, 

CPz, Cz, F1, F2, F3, F4, F5, F6, F7, F8, FC1, FC2, FC3, FC4, 

FC5, FC6, FT10, FT7, FT8, FT9, Fz, O1, O2, Oz, P1, P2, P3, P4, 

P5, P6, P7, P8, PO10, PO3, PO4, PO7, PO8, PO9, POz, Pz, T7, 

T8, TP7, and TP8. The online reference was placed at the posi-

tion FCz. Two further electrodes were placed over the left and 

right mastoids to cover as much of the scalp as possible for the 

calculation of the average reference (see below). Two electrodes 

(vEOG) were attached above (at Fp1 position) and below the left 

eye to measure vertical eye movements and blinks (yielding 65 

electrodes in total). The ground electrode was attached to the 

AFz position. For data recording, a BrainAmp DC amplifier 

(BrainProducts, Germany) and the Brain Vision Recorder soft-

ware (BrainProducts, Germany) were used, with a sampling rate 

of 1000 Hz and an online lowpass filter of 100 Hz. Impedances 

were kept below 15 kΩ.

2.4   |   Data Analysis

2.4.1   |   Behavioral Data Analysis

The dependent variable for behavioral data analysis was re-

sponse accuracy, with correct responses coded as 1 and incor-

rect responses as 0 for the statistical analysis (see below). Correct 

responses were defined as the choice of the stimulus associated 

with the higher reward probability. We applied generalized lin-

ear mixed- effects models (GLME) suitable for binomial distribu-

tions and single- trial data by means of the lme4 package (version 

1.1.34; Bates et  al.  2015) in R to analyze the behavioral data 

(The R Foundation 2021). Descriptive data visualizations were 

adapted with the assistance of OpenAI's GPT- 4 (OpenAI 2023). 

The model comprised fixed- effect predictors of the categorical 

factors Stimulus Modality (visual [−0.5] vs. auditory [0.5]) and 

Feedback Timing (immediate [−0.5] vs. delayed [0.5]), as well 

as the continuous factor learning block (1 [−0.5], 2 [−0.167], 3 

[0.167], 4 [0.5]) and all possible interactions between the factors. 

Participants were included as random intercepts. For the inclu-

sion of random- effect slopes per participant, we followed best 

practice (Meteyard and Davies  2020): all within- subject main 

and interaction effects were included as random slopes, unless 

their inclusion led to non- successful model fit. The best possi-

ble model was determined by using the buildmer (Version 2.11; 

Voeten 2020) function and resulted in the model presented in 

Table S1 of the Supporting Information.

2.4.2   |   Modeling of PEs

We derived single- trial values of the PE for each participant 

by fitting a reinforcement learning model to the behavioral 
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data using MATLAB version R2021a (The MathWorks, 

Inc  2021; for a similar approach see Burnside et  al.  2019; 

Lefebvre et al. 2017; Weber and Bellebaum 2024). Aiming for 

a model whose predicted choices deviate the least from our 

participants' behavior, we compared two models of different 

complexity. Starting point was each participants' sequence 

of choices and the received feedback. The PE �c,t was calcu-

lated as:

where in a given trial t  the reward rt is 1 for positive feedback 

and 0 for negative feedback, and Qc,t is the value of the chosen 

stimulus. Separately for each of the eight stimulus pairs (four 

containing visual and four containing auditory stimuli), both 

stimuli were initially assigned a stimulus value of 0.5, that was 

iteratively updated in every trial t  in which the stimulus pair 

was presented. In a first model (M1) the stimulus value of the 

chosen stimulus, Qc, was updated based on the deviation be-

tween the prior value and the received outcome, i.e., the PE �,  

and a learning rate � (specific for each stimulus pair), which 

indicates the extent to which the PE was used to update the 

stimulus value.

As both stimuli of a pair were always presented together, we 

expected participants to draw conclusions about the unchosen 

stimulus from feedback for the chosen stimulus. Therefore, the 

value of the unchosen stimulus, Qu, equaled 1 − Qc and was up-

dated accordingly.

For each trial, t1,…,ntrials
, the probability p that the model would 

choose the stimulus which was indeed chosen by the participant 

was calculated using the softmax function based on prior stim-

ulus values of the two stimuli that were available, i.e., values of 

the chosen stimulus, Qc,t, and the unchosen stimulus in trial t , 

Qu,t, and an exploration parameter �:

with � indicating the impact of prior stimulus values on a sub-

ject's choices. A larger � indicates that a participant utilized prior 

stimulus values (i.e., a larger impact of prior values), whereas 

a smaller � indicates rather explorative choice behavior (i.e., a 

smaller impact of prior values).

In a next step, the probabilities p were used to calculate the neg-

ative summed log- likelihood (−LL) as measure for the model's 

goodness of fit:

We used the optimization function fmincon from the 

Optimization Toolbox of MATLAB (R2021a, The MathWorks, 

Inc 2021) to minimize the −LL value by estimating values for the 

free parameters (�, �)/(�con, �dis, �, see below) that result in the 

least deviation between the model's predicted choices and the 

participant's behavior. We fit the model repeatedly (50 iterations) 

to the subjects' behavior to avoid local minima. As start values 

for the free parameters, we allowed random numbers within the 

interval [0; 1]. We set value constraints for the free parameters 

to [0; 1] for the learning rate, and to [0; 100] for the exploration 

parameter β.

In a second model (M2), we allowed different learning rates for 

learning from positive feedback and negative feedback. The 

stimulus value of the chosen stimulus was updated with the 

learning rate �con for trials with positive feedback that confirms 

the choice as follows:

Analogously, for trials with negative feedback that disconfirms 

the choice, the stimulus value of the chosen stimulus was up-

dated with the learning rate �dis:

Everything else stayed the same compared to M1.

The two models were compared based on their negative 

summed log- likelihood (−LL) by a paired samples t- test. 

M2 resulted in significantly lower −LL values (M = 360.88, 

SD = 246.73) than M1 (M = 381.21, SD = 242.18), t(34) = 9.18, 

p < 0.001, indicating a better model fit. Furthermore, a lower 

Bayesian Information Criterion (BIC) indicated that M2 

(BIC = 751.73) provides a better balance between model fit 

and complexity compared to M1 (BIC = 782.40). Eventually, 

M2 was used to extract stimulus values and trial- by- trial PEs. 

Single- subject −LL values are illustrated in Figure  S1A of 

the Supporting Information. Furthermore, we visualized the 

learning rates for positive and negative feedback (�con and �dis) 

to ensure that they do not systematically converge to values of 

0 or 1 (see Figures S1B and S2 of the Supporting Information). 

Finally, we examined participants' win- stay and lose- shift 

behavior to determine whether participants were using the 

PE to adapt their behavior. The results are presented in the 

Supporting Information, in the section titled Win- stay vs. 

lose- shift analysis accompanied by Figure  S3. All visualiza-

tions and analyses supported that the PE modeling resulted in 

meaningful data.

2.4.3   |   EEG Data Analysis

BrainVision Analyzer 2.2 (Brain Products GmbH  2018), 

MATLAB R2021a (The MathWorks, Inc  2021) and R (The R 

Foundation  2021) were used for EEG data analysis. Trials in 

which participants failed to answer (M = 1.67%, SD = 2.59%, 

Min = 0.16%, Max = 13.44%) were excluded from any further 

EEG analyses.

2.4.3.1   |   Preprocessing. In a first step, we re- referenced 

the data to the average of all 63 scalp electrodes including 

the mastoids (see above; the signal at the online reference site 

FCz was calculated; see Arbel et  al.  2017; Höltje and Meck-

linger  2020, for similar procedures). The reduction of ERP 

effects that can result as a consequence of using an average 

reference (see Luck  2014) is minimized for high- density EEG 

acquisition as in our study. In a second step, the data were 

�c,t = rt − Qc,t

Qc,t+1 = Qc,t + � ∗ �c,t

pc,t =
eQc,t∗�

eQc,t∗� + eQu,t∗�

−

∑

log
(

pc,t1 ,…,ntrials

)

Qc,t+1 = Qc,t + �con ∗ �c,t

Qc,t+1 = Qc,t + �dis ∗ �c,t
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filtered, using a 30 Hz low cut- off and a 0.1 Hz high cut- off filter 

(as proposed by Luck 2014) as well as a 50 Hz Notch Filter. In 

order to correct for blink artifacts, an independent component 

analysis (ICA) and reverse ICA was performed on single- subject 

EEG data (see Peterburs et al. 2016; Weismüller et al. 2019 for a 

similar procedure). We created segments from 200 ms before to 

800 ms after feedback onset and performed a baseline correc-

tion relative to the first 200 ms. Then, segments with artifacts in 

electrodes used to measure the FRN and N170 (see below) were 

removed (for a similar approach see Albrecht et al. 2023; all seg-

ments containing voltage steps > 50 μV/ms, differences between 

values > 80 μV or < 0.1 μV within an interval of 100 ms or ampli-

tudes > 80 μV or < −80 μV; M = 1.09%, SD = 2.23%, Min = 0.00%, 

Max = 12.97%). This way, we aimed to include as much data 

as possible for our single- trial analysis, as linear mixed- effects 

(LME) models that we applied for the analyses (see below) 

are tailored for managing data variability (Bates et  al.  2015; 

Quené and Van den Bergh 2004). On average, per participant, 

156.6 trials (SD = 5.2, Min = 130, Max = 160) from the visual task 

with immediate feedback and 155.6 trials (SD = 5.3, Min = 136, 

Max = 160) with delayed feedback entered the analysis. From 

the auditory task, on average 155.6 trials (SD = 7.6, Min = 122, 

Max = 160) with immediate feedback and 154.2 trials (SD = 8.5, 

Min = 112, Max = 160) with delayed feedback entered the analy-

sis per participant.

The remaining segments were grouped and averaged for each of 

the eight conditions (positive and negative immediate feedback 

and delayed feedback for the tasks involving visual and auditory 

stimuli), yielding eight averages per participant. Subsequently, 

all single- trial segment data as well as all averages per condi-

tion and participant were exported for later analysis. For further 

preprocessing steps, MATLAB scripts (MathWorks, MA) were 

utilized, which were adapted with the assistance of OpenAI's 

GPT- 4 (OpenAI 2023) to extract single- trial data.

For the N170, single- trial amplitudes (see Albrecht et al. 2023) 

were derived from electrodes P7 and P8 (see Arbel et al. 2017; 

Höltje and Mecklinger 2020; Kim and Arbel 2019), as outlined 

in the preregistration for the study (osf.io/fu2gy). First, the max-

imum negative peak amplitude between 130 and 230 ms post- 

feedback was determined in each participant's average, at both 

electrode sites and for all eight conditions separately (see above). 

Then, for each single trial, the mean amplitude in a time win-

dow of ±10 ms around the condition- specific N170 peak latency 

was calculated. Because grand averages revealed differences 

between the conditions already in the preceding positive peak 

(see Figure 3), we additionally extracted the single- trial mean 

amplitude in a time window of ±10 ms around the preceding 

positive peak (P1). As for the negative peak, the latency of the 

P1 was determined based on the condition- specific average at 

each electrode site. The P1 was determined as the maximum 

positivity in a time window starting 80 ms after feedback onset 

to the respective condition- specific negative peak. For the anal-

ysis, we used the N170 defined as the peak- to- peak amplitude by 

subtracting the single- trial amplitude value of the preceding P1 

from the single- trial value of the negative peak.

For the FRN, single- trial amplitudes were derived from an elec-

trode cluster consisting of Fz, FCz, Cz, FC1, and FC2, for which 

the signal was pooled. Previous studies showed that the FRN 

was maximal at FCz but also pronounced at neighboring chan-

nels (Arbel et al. 2017; Kim and Arbel 2019; Maurer et al. 2022; 

Mushtaq et al. 2022). To account for individual differences, we 

decided to measure FRN amplitudes in the pooled signal of a 

group of five frontocentral electrode sites (for a similar approach 

see Zottoli and Grose- Fifer 2012), including FCz and neighbor-

ing electrodes (see Weber and Bellebaum 2024). For each par-

ticipant, we used their mean waveform for both positive and 

negative feedback separately for each of the four conditions 

(immediate feedback in the visual task, delayed feedback in 

the visual task, immediate feedback in the auditory task, and 

delayed feedback in the auditory task). Then, we computed 

the difference wave by subtracting the mean positive feedback 

waveform from the mean negative feedback waveform for each 

of these four conditions. For each participant, we identified the 

maximum negative peak amplitude in each of the four differ-

ence waves within a time window of 230–360 ms post- feedback, 

i.e., the peak latency was determined separately for each con-

dition. Next, for each single trial, we extracted the mean am-

plitude within a ±10 ms window around the condition- specific 

difference wave peak latency. It is important to emphasize that 

our dependent variable is not derived from the difference wave 

itself. Rather, the difference wave was only used to identify the 

latency at which the difference between the processing of pos-

itive and negative feedback is maximal. This latency was then 

used to extract the single- trial ERP data. Therefore, our actual 

dependent variable was derived from the ERPs for positive and 

negative feedback in each condition.

2.4.3.2   |   Statistical Analysis

2.4.3.2.1   |   N170. The single- trial N170 amplitude was ana-

lyzed as a dependent variable by applying an LME analysis in R 

(Bates et  al.  2015). The model comprised fixed- effect predictors 

of the categorical factors feedback timing (immediate [−0.5] vs. 

delayed [0.5]), stimulus modality (visual [−0.5] vs. auditory [0.5]) 

and feedback valence (negative [−0.5] vs. positive [0.5]). Further-

more, the PE was used as a continuous predictor. However, as 

the signed PE is confounded by valence, we used the unsigned 

or absolute PE (scaled and mean centered, yielding negative val-

ues for PE values below the mean vs. positive values for PE values 

above the mean) indicating general expectation violations or sur-

prise. Finally, the factor electrode (P7 [−0.5] vs. P8 [0.5]) was added. 

Furthermore, we added all possible interactions between the fac-

tors. Although this adds complexity to the model, we believe that 

this is justified due to our hypotheses and the interrelated nature 

of the predictors. Our hypothesis concerning the N170 already 

involves an interaction between the factors stimulus modality, 

feedback timing, and electrode, as we expected its amplitude to be 

most pronounced for delayed feedback following choices between 

visual stimuli and over the right hemisphere. The more explor-

atory analysis, whether the N170 encodes a PE, aims at the ques-

tion of whether there is an interaction between feedback valence 

and the absolute PE. Moreover, this interaction may again be 

modulated by the three factors Stimulus Modality, feedback tim-

ing, and electrode. Given that all of the predictors are thus closely 

linked and may influence each other, we decided to include all 

interactions when planning the study (as was also preregistered). 

Participant was included as a random- effect factor. Random slopes 

per participant were added as described for the behavioral GLME 

above (see Table S1 of the Supporting Information for the resulting 
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model). Simple slope analyses were performed to resolve signifi-

cant interactions, with Bonferroni- corrected p- values (multiplied 

by the number of conducted tests).

2.4.3.2.2   |   FRN. The single- trial FRN amplitude was analyzed 

as a dependent variable by applying an LME analysis in R (Bates 

et al. 2015). The model comprised fixed- effect predictors of the cat-

egorical factors feedback timing (immediate [−0.5] vs. delayed 

[0.5]), stimulus modality (visual [−0.5] vs. auditory [0.5]) and feed-

back valence (negative [−0.5] vs. positive [0.5]) and as a continu-

ous factor the mean centered unsigned PE, as well as all possible 

interactions between the factors. For the FRN, it has been shown 

that its amplitude reflects a (signed) PE, indicated by the inter-

action between the factors feedback valence and (unsigned) PE. 

Moreover, effects of feedback timing have been found, which may 

also interact with PE coding (Weber and Bellebaum 2024). In this 

study, we aimed to explore whether stimulus modality affects 

the FRN, alone or in interaction with the mentioned factors. Par-

ticipant was included as a random- effect factor. Random slopes 

per participant were added as described for the behavioral GLME 

above (see Table S1 of the Supporting Information for the result-

ing model). Significant interactions were resolved as described 

for the N170 (see above).

3   |   Results

3.1   |   Behavioral Results

With the GLME analysis of the behavioral data, we first aimed 

to determine whether participants learned to increasingly select 

the more frequently rewarded stimulus across the four learning 

blocks. Second, we examined whether there were any differ-

ences in learning between the tasks involving choices between 

visual and auditory stimuli, or between the conditions with im-

mediate and delayed feedback, or between any combinations of 

these two factors.

Descriptive data are presented in Figure  2. Table  S2 in the 

Supporting Information lists β- estimates and effect- specific z- 

tests for the GLME analysis investigating effects of feedback 

timing, feedback valence, and stimulus modality on the behav-

ioral data. The analysis revealed a significant effect of Block 

(p < 0.001) on response accuracy, driven by an increasing num-

ber of correct responses across the four learning Blocks. Figure 2 

suggests that this effect is due in particular to an increase in 

correct responses from block 1 to block 2. No other significant 

effects were observed (all ps ≥ 0.140), indicating that learning 

was comparable for immediate and delayed feedback and for the 

tasks involving choices between visual and auditory stimuli.

3.2   |   EEG Results

3.2.1   |   N170

With the LME analysis of the N170 single- trial data, we aimed to 

test our hypothesis that the N170 is most pronounced for delayed 

feedback referring to the choice of visual stimuli, with a possibly 

more pronounced effect over the right hemisphere. This would be 

reflected in an interaction between the factors stimulus modality, 

feedback timing, and electrode. Moreover, we aimed to investigate 

if the N170 reflects a signed PE, which would be reflected in an 

interaction between feedback valence and the unsigned PE, and 

whether this effect is modulated by the other factors stimulus mo-

dality, feedback timing, and electrode. The analyses thus focused 

on interaction effects of the involved predictors, and main effects 

will not be reported in the following. Grand averages for the ERPs 

following positive and negative immediate and delayed feedback 

for the choice between visual and auditory stimuli at electrode sites 

P7 and P8 are presented in Figure 3. In addition, the Supporting 

Information contains grand averages separately for low and high 

absolute PE values (expected vs. unexpected; Figure S4). Table S3 

in the Supporting Information lists β- estimates and effect- specific 

t- tests for all effects of the LME analysis investigating the N170 

amplitude. In the following, more negative N170 amplitudes are 

described as more pronounced or larger, respectively.

Regarding our hypothesis, we indeed found a significant stim-

ulus modality × feedback timing interaction (p < 0.001) that 

was further explained by a significant stimulus modality × 

feedback timing × electrode interaction (p < 0.001) which we 

thus resolved. The descriptive pattern behind the three- way 

interaction is presented in Figure  4A. A simple slope analy-

sis revealed that for the P7, the effect of Stimulus Modality 

was neither significant for immediate (β = −0.08, SE = 0.33, 

t = −0.23, p > 0.999) nor for delayed feedback (β = 0.72, 

SE = 0.42, t = 1.72, p = 0.363). For the P8, there was a signif-

icant effect of stimulus modality following immediate feed-

back with larger N170 amplitudes for auditory compared to 

visual stimuli, β = −1.29, SE = 0.33, t = −3.93, p < 0.001. For 

delayed feedback, this effect was reversed with significantly 

larger N170 amplitudes for visual compared to auditory stim-

uli, β = 1.31, SE = 0.42, t = 3.14, p = 0.010.

FIGURE 2    |    Descriptive pattern of performance improvement during 

the feedback learning task. Mean accuracy (% of correct responses) for 

the four learning blocks of the probabilistic feedback learning task, sep-

arately for immediate and delayed feedback and for the tasks involving 

choices between visual and auditory stimuli. Error bars represent 95% 

confidence intervals.
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With regard to more exploratory results, we found a significant 

interaction between PE and feedback valence (p < 0.001), indicat-

ing that the N170 indeed reflects the signed PE. As this interac-

tion was further explained by a significant three- way interaction 

between PE, feedback valence, and electrode (p = 0.001), we 

decided to resolve the three- way interaction with simple slope 

analyses. The underlying descriptive data are presented in 

Figure 4B. For P7, the PE had no significant effect on the N170, 

neither for negative (β = 0.18, SE = 0.40, t = 0.46, p > 0.999) nor 

for positive feedback (β = −0.66, SE = 0.41, t = −1.60, p = 0.439). 

FIGURE 3    |    Grand averages at P7 and P8 and topographical maps at the respective peaks. (A) Grand Averages: Dotted lines indicate the time 

window used for the N170 peak detection. Shaded areas indicate standard errors. (B) Topographies: The maps are based on the condition- specific 

N170 peaks.
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For P8, the PE had a significant effect on the N170 following neg-

ative feedback, with larger amplitudes for expected compared 

to unexpected feedback (β = 1.23, SE = 0.40, t = 3.11, p = 0.008). 

For positive feedback, the effect was reversed, with significantly 

larger N170 amplitudes for unexpected compared to expected 

feedback (β = −2.27, SE = 0.41, t = −5.52, p < 0.001).

While we found two further two- way interactions, one between 

feedback valence and feedback timing (p = 0.002, the underlying 

descriptive data are presented in Figure 4C) and one between 

PE and stimulus modality (p = 0.026, the underlying descrip-

tive data are presented in Figure 4D), a significant five- way in-

teraction between all included predictors was of main interest 

(p = 0.042). The underlying descriptive pattern is presented in 

Figure 5.

To resolve this interaction, we split the dataset based on the elec-

trode and repeated the LME analysis separately for P7 and P8. 

There was a significant four- way interaction between the remain-

ing factors feedback timing, feedback valence, stimulus modality, 

and PE for the P8 (β = 4.88, SE = 2.36, t(2251.33) = 2.07, p = 0.039), 

but not for the P7 (β = −2.68, SE = 2.18, t(2767.86) = −1.23, 

p = 0.218). To resolve the four- way interaction at P8, we again split 

the dataset, but this time according to Feedback Timing. For de-

layed feedback, the three- way interaction between feedback va-

lence, stimulus modality, and PE reached significance (β = 5.07, 

SE = 1.76, t(7454.36) = 2.87, p = 0.004), unlike for immediate 

feedback (β = 0.98, SE = 1.67, t(5272.01) = −0.58, p = 0.560). To re-

solve the three- way interaction for delayed feedback, we finally 

split the dataset according to stimulus modality. We found a sig-

nificant interaction between PE and feedback valence for visual 

FIGURE 4    |    Descriptive data patterns underlying the N170 analysis. Error bars indicate a 95% confidence interval. Shaded areas indicate standard 

errors.
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stimuli (β = −7.12, SE = 1.30, t(4870.20) = −5.45, p < 0.001), but 

not for auditory stimuli (β = −1.36, SE = 1.23, t(4300.97) = −1.11, 

p = 0.267). We resolved the two- way interaction found for visual 

stimuli with a simple slope analysis. For negative feedback, larger 

PE values led to significantly less pronounced N170 amplitudes 

(β = 2.02, SE = 0.87, t = 2.32, p = 0.046). For positive feedback, 

larger PE values led to significantly more pronounced N170 am-

plitudes (β = −5.09, SE = 0.93, t = −5.47, p < 0.001). To conclude, 

the five- way interaction is driven by a reflection of the PE in the 

N170 measured over the right hemisphere, especially following 

delayed feedback that refers to visual stimuli. In the Supporting 

Information, the descriptive data underlying the N170 interaction 

effects described in the main text are represented with a detailed 

overview of data distribution and variance (see Figures S5 and S6).

3.2.2   |   FRN

With the LME analysis of the FRN single- trial data, we aimed to 

replicate that the FRN is sensitive to feedback valence, especially 

following immediate feedback. Furthermore, we aimed to rep-

licate that the amplitude reflects a signed PE signal, reflected in 

an interaction between (unsigned) PE and feedback valence. In 

an exploratory manner, we were also interested in the effects of 

stimulus modality, alone or in interaction with the other predic-

tors. Grand averages for the ERPs following positive and negative 

immediate and delayed feedback for the choice between visual and 

auditory stimuli pooled over the frontocentral cluster of electrodes 

are presented in Figure 6. In addition, the Supporting Information 

contains grand averages separately for expected and unexpected 

feedback (Figure  S7). For β- estimates of the LME analysis on 

the FRN amplitude and effect- specific t- tests, see Table S4 in the 

Supporting Information. Descriptive statistics can be found in 

Figure 7A. In the following, more negative FRN amplitudes are 

described as more pronounced or larger, respectively.

As expected, we could replicate previous findings of a signif-

icant main effect of feedback valence (more pronounced FRN 

for negative compared to positive feedback, p < 0.001) and a 

significant feedback timing × feedback valence interaction 

(p = 0.006, see Figure 7B). Resolving this interaction using sim-

ple slope analyses showed a more pronounced FRN for nega-

tive compared to positive feedback for both immediate (β = 2.94, 

SE = 0.39, t = 7.60, p < 0.001) and delayed feedback (β = 1.86, 

SE = 0.26, t = 7.16, p < 0.001), with a larger feedback valence ef-

fect for immediate feedback.

Another replication concerned a significant feedback valence × 

PE interaction (p < 0.001, see Figure 7C). Resolving this inter-

action via simple slope analyses resulted in a significant effect 

of the PE for negative feedback (β = −3.55, SE = 0.63, t = −5.60, 

p < 0.001) with larger (i.e., more negative) FRN amplitudes for 

unexpected feedback. For positive feedback, there was a signifi-

cant effect of the PE with smaller (i.e., more positive) amplitudes 

for unexpected feedback (β = 3.89, SE = 0.58, t = 6.73, p < 0.001).

Regarding more exploratory results involving the factor stim-

ulus modality, the analysis revealed a significant main effect 

(p = 0.014), which was further explained by a significant feed-

back timing × stimulus modality interaction (p = 0.002, see 

Figure  7D). We resolved this interaction using a simple slope 

analysis that yielded a significant effect of Stimulus Modality, 

with larger amplitudes for visual than auditory stimuli, for 

immediate (β = 1.33, SE = 0.31, t = 4.33, p < 0.001), but not for 

delayed feedback (β = −0.04, SE = 0.34, t = −0.13, p > 0.999). 

All other main and interaction effects were not significant (all 

ps ≥ 0.171). In the Supporting Information, the descriptive data 

underlying the FRN interaction effects described in the main 

text are represented with a detailed overview of data distribution 

and variance (see Figure S8).

4   |   Discussion

The present study aimed to investigate whether the N170 ERP 

component is modulated by the modality of the associated 

FIGURE 5    |    Descriptive data pattern underlying the PE × Feedback Valence × Modality × Feedback Timing × Electrode interaction for the N170. 

Shaded areas indicate standard errors.
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stimulus during feedback processing in a reinforcement learn-

ing task. While previous studies have examined the influence of 

feedback modality (visual vs. auditory, see Kim and Arbel 2019), 

our study is the first to manipulate the sensory modality of the 

stimuli (visual vs. auditory) between which participants make 

their choices before receiving visual feedback. More specifically, 

we hypothesized that the N170 reflects a process that bridges 

the temporal gap between the choice of a stimulus and feed-

back, especially for delayed feedback for visual stimuli that are 

associated with the feedback and over the right hemisphere. 

Indeed, we found that delayed feedback related to the choice of 

visual stimuli led to significantly larger N170 amplitudes than 

feedback following the choice of auditory stimuli over the right 

lateral hemisphere. Furthermore, we found pronounced effects 

of the PE on the N170 measured over the right hemisphere, 

again especially for delayed feedback related to the choice of vi-

sual stimuli. For immediate feedback, however, an unexpected 

pattern emerged, with larger N170 amplitudes for feedback fol-

lowing the choice between auditory compared to visual stimuli. 

Regarding the FRN, we also found a modality effect, specifi-

cally for immediate feedback: it was more pronounced when 

the feedback was related to the choice between visual stimuli 

than auditory stimuli. Despite the differences in feedback pro-

cessing depending on Feedback Timing and Stimulus Modality, 

FIGURE 7    |    Descriptive data patterns underlying the FRN analysis. Error bars indicate a 95% confidence interval. Shaded areas indicate standard 

errors.
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our participants appeared to learn equally well from immediate 

and delayed feedback, as well as in the tasks involving visual or 

auditory stimuli.

4.1   |   The Role of the Modality of the Associated 
Stimulus for Feedback Processing

Based on previous studies, a clear functional interpretation 

of the N170 in the context of (delayed) feedback processing is 

not yet possible. In studies investigating delayed feedback pro-

cessing, the stimuli associated with feedback were always vi-

sual (Arbel et  al.  2017; Höltje and Mecklinger  2020; Kim and 

Arbel 2019). We hypothesized that the modality of the stimulus 

that is associated with the feedback modulates the amplitude 

of the N170. Since this component has been linked to visual 

processing in the extrastriate cortex (Brem et al. 2006; Deffke 

et al. 2007; Gao et al. 2019; Iidaka et al. 2006), we assumed that 

the N170 reflects a reactivation of a visual stimulus associated 

with feedback and should be more pronounced when feedback 

is given for a choice between visual stimuli, especially when 

feedback is delayed. Given that the right hemisphere plays a 

dominant role in processing certain visual stimuli, such as 

faces (Rossion 2014), and in N170 generation in different con-

texts (Baker and Holroyd 2009, 2013; Baker et al. 2015; Kim and 

Arbel 2019), we were particularly interested in whether the ef-

fects would be stronger over the right hemisphere.

The research question of the present study thus addresses the 

implementation of the so- called credit assignment problem 

within the brain. For immediate feedback, the temporal prox-

imity of the reward signal from the dopaminergic midbrain and 

the activation of cortical areas representing, e.g., a visual stim-

ulus probably suffice to establish a connection. (Schultz 2002; 

Jocham et al. 2016) found heuristic time- based learning mech-

anisms related to activity in circuits including the striatum. 

Furthermore, reward signals coded by dopamine drive synaptic 

connections—the molecular basis of learning—in the striatum 

in a narrow time window of up to 2 s (Yagishita et  al.  2014). 

However, if feedback is presented after a longer delay, the rep-

resentation of the selected stimulus might be reactivated at the 

time of feedback presentation. The present study provides first 

evidence that the modality of the associated stimulus affects the 

N170: In the right hemisphere, we found larger N170 amplitudes 

following delayed feedback for the choice of visual compared to 

auditory stimuli. While a study by Herholz et al.  (2012) found 

an overlap of melody perception and imagery in secondary 

auditory areas, supporting the existence of auditory reactiva-

tion processes, the N170 has been specifically linked to stim-

ulus processing in the visual domain (Bentin et  al.  1996; Itier 

and Taylor 2004; Kloth et al. 2013; for reviews see Yovel 2016; 

Carreiras et al. 2014). Our results thus support the hypothesis 

that the N170 reflects stimulus reactivations in higher- order 

visual areas, which may mirror an association mechanism in 

which reactivated representations of a selected stimulus are 

used to bridge the temporal gap to delayed feedback. This inter-

pretation is in line with fMRI studies that revealed post- reward 

reactivation mechanisms in visual (Schiffer et al. 2014) as well 

as somatosensory areas (Pleger et al. 2008, 2009) as a way to as-

sign credit to a stimulus for an obtained reward. Finding this po-

tential reactivation for the N170 only over the right hemisphere 

may be due to the functional specialization of the right hemi-

sphere for visuo- spatial processing (e.g., Thiebaut de Schotten 

et  al.  2011), as the visual stimuli used in our study (hiragana 

characters) had a visuo- spatial character. Furthermore, studies 

investigating the N170 in the context of navigational feedback 

learning particularly linked it to activity within the right MTL, 

or more precisely the right parahippocampal cortex (Baker and 

Holroyd 2009, 2013; Baker et al. 2015). It is important to note 

that the functional meaning of the N170 could be different in 

contextually different tasks.

Against our expectation, we found a larger feedback- locked 

N170 for choices between auditory than visual stimuli for imme-

diate feedback. One explanation could be that the N170 reflects 

overlapping activity of MTL and extrastriate visual areas in 

feedback processing. Indeed, the hippocampus has been found 

to be involved in feedback processing even for short feedback 

delays of only two seconds (Dickerson et al. 2011). Integrating 

information about feedback and the associated stimulus, hippo-

campal processing demands for the auditory condition may have 

been particularly high, as this condition required cross- modal 

associations, which activates the hippocampus more than un-

imodal associations (Butler and James 2011). For delayed feed-

back, the extrastriate visual cortex contribution to the N170 may 

have been higher.

For the FRN, which has been investigated much more exten-

sively in the context of feedback processing, the fact that we 

found larger FRN amplitudes following immediate feedback for 

the choice between visual compared to auditory stimuli was also 

surprising. FRN effects are mainly interpreted with respect to 

feedback valence and/or the PE. As stimulus modality did not 

affect the effects of feedback valence or the reflection of the PE 

in the FRN, it is questionable whether stimulus modality exerted 

a significant influence on the processes underlying the FRN.

4.2   |   Effects of Feedback Valence and PE 
for Immediate and Delayed Feedback

In contrast to previous studies, we did not find a main effect of 

feedback timing (Arbel et al. 2017; Kim and Arbel 2019; Höltje 

and Mecklinger 2020) or feedback valence (Kim and Arbel 2019) 

for the N170, but an interaction between the two: a valence ef-

fect was only detectable when feedback was delayed. In this 

regard, the N170 formed a kind of counterpart to the FRN, for 

which there was an enhanced differentiation between imme-

diate positive and negative feedback compared to delayed (for 

similar results see Arbel et al. 2017; Höltje and Mecklinger 2020; 

Peterburs et  al.  2016; Weinberg et  al.  2012; Weismüller and 

Bellebaum 2016).

This complementary processing is further evident considering 

the PE effects on the two components. Effects of reward PEs 

on the N170 have not been reported before. We found that the 

N170 reflects the whole range of PEs, which is in line with re-

cent findings by Baker et  al.  (2021, 2023), who reported more 

pronounced N170 amplitudes for unpredictable compared to 

predictable stimuli during the perceptual processing of visual 

stimuli, linking the N170 to surprise in general. While the FRN 

also reflected the whole range of PEs in the present study, the 
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N170, especially over the right hemisphere, was enhanced for 

unexpected positive feedback and reduced for unexpected nega-

tive feedback, and the pattern of PE coding was reversed for the 

FRN that became more negative when negative feedback was 

unexpected and more positive when positive feedback was unex-

pected. Regarding the N170, enhanced amplitudes following un-

expected positive feedback might indicate that representations 

of unexpectedly rewarded stimuli are especially reactivated. Put 

simply, this means that it is especially important to remember 

which stimulus brought the reward and strengthen that rela-

tionship. Remembering what led to the reward can be very help-

ful for survival, and a form of reactivation following rewards 

could be a way to bind them to preceding situations (Singer and 

Frank 2009).

Correlates of the PE in the N170 could be interpreted as reflect-

ing PE- related hippocampal activity (Dickerson et  al.  2011; 

Foerde and Shohamy  2011). The midbrain dopamine system 

contains neurons that have widespread projections and could 

send reinforcement signals not only to the striatum and fron-

tal cortex (Schultz  2002) but also to the hippocampus (Schott 

et al. 2004). Zaghloul et al. (2009) observed that the firing rate 

of neurons in the human substantia nigra was higher for unex-

pected gains compared to losses as early as 150 ms after feed-

back presentation. This finding supports the possibility that the 

PE effects observed in the N170, which had a latency of about 

160 ms to 180 ms in the present study, could reflect the influ-

ence of the dopaminergic midbrain on the MTL, specifically in 

the context of feedback- based learning. However, alternative 

explanations are also possible. For instance, the locus coeru-

leus (LC), which plays a key role in norepinephrine release, also 

reacts to unexpected events that evoke attention like rewards, 

sending PE signals to other areas of the brain, for example via 

axons diverging to the cerebral cortex (for a review see Schultz 

and Dickinson 2000). Importantly, the LC also projects to the 

hippocampus, where its norepinephrine projections have been 

shown to modulate synaptic plasticity, playing a crucial role in 

regulating behavioral control (for reviews, see Sara 2009, 2015; 

Schultz and Dickinson 2000).

Nevertheless, finding a pronounced PE effect on the N170 for 

the prior choice between visual and not auditory stimuli and es-

pecially for delayed feedback supports the role of the N170 in 

the processing of visual stimuli and the idea that it specifically 

represents a reactivation of visual areas during feedback pro-

cessing. Since signals from the MTL may evoke the reactivation 

of an internal representation of an event, allowing it to be linked 

to a later event such as the feedback in our task (Qin et al. 2007), 

we propose that the N170 reflects overlapping activity of the 

MTL and extrastriate visual areas.

For the signal in the FRN time window, accumulating evidence 

suggests that it is specifically modulated by positive feedback. 

Early studies showed that the ERP response to losses and break-

ing even (neither winning nor losing) can be understood as 

the baseline response, while rewards evoke a relative positiv-

ity (Holroyd et al. 2006; Kujawa et al. 2013). This suggests the 

unfolding of a positivity on gain trials more than a negativity 

during loss trials, in accordance with the conception of the RewP 

(Proudfit 2015). In line with this, it was reported that the PE af-

fected positive feedback, while no effect emerged for negative 

feedback (Weber and Bellebaum 2024; Kirsch et al. 2022). In the 

present study, however, the signal in the FRN/RewP time range 

also reflected the full range of PEs, irrespective of feedback 

delay. The differential contribution of PE signals reflected in 

the FRN/RewP and the N170, and thus of the activity in neural 

structures underlying these components, to learning remains to 

be explored in future studies.

4.3   |   Limitations

One aspect that limits the generalizability of our results is our 

predominantly female sample. A previous study found, for ex-

ample, increased punishment sensitivity for women that might 

lead to sex differences in negative feedback processing also in 

our study (Santesso et al. 2011). However, the main interest in 

our study was in how far the modality of the feedback- preceding 

stimulus affects feedback processing in interaction with feed-

back timing, and we have no reason to believe that the effects re-

lated to this research question are affected by sex. Nevertheless, 

potential sex differences could be investigated in future studies.

Another concern is that the reported valence effects may partly 

be driven by perceptual differences between positive and neg-

ative feedback. The feedback color was not counterbalanced 

across participants, and this difference in saliency may have 

affected the FRN (Liu et al. 2014; Pfabigan et al. 2015) or, even 

more likely, the N170, which is associated with visual process-

ing. However, the focus in our study was on interaction effects, 

which can hardly be caused by perceptual differences between 

negative and positive feedback. To rule out confounds of visual 

processing, future studies could consider using abstract feed-

back stimuli that are not inherently associated with valence, as 

implemented by Höltje and Mecklinger (2020), who used indoor 

vs. outdoor pictures to signal positive and negative feedback.

4.4   |   Conclusions

The fact that we can use feedback to adapt our behavior, even if 

presented after a temporal delay, is crucial for learning and pro-

gression in our complex world. A more pronounced N170 follow-

ing delayed feedback related to the choice of visual compared 

to auditory stimuli over the right hemisphere, combined with 

a representation of the PE after delayed feedback for choices of 

visual stimuli, supports our assumption that this component re-

flects modality- specific activity within higher- order visual areas 

of the brain. The reactivation of the chosen stimulus' represen-

tation in visual areas, possibly initiated by regions within the 

MTL, could be a mechanism to establish an association between 

the selection of a stimulus and the temporally delayed feedback.

Author Contributions

Madita Röhlinger: conceptualization, data curation, formal analysis, 
investigation, methodology, project administration, visualization, writ-
ing – original draft, writing – review and editing. Christine Albrecht: 
data curation, methodology, supervision, validation, writing – review 
and editing. Christian Bellebaum: conceptualization, funding acqui-
sition, project administration, resources, supervision, validation, writ-
ing – review and editing.

 1
4
6
9
8
9
8
6
, 2

0
2
5
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/p

sy
p
.7

0
0
5
0
 b

y
 U

n
iv

ersitäts- U
n
d
 L

an
d
esb

ib
lio

th
ek

 D
ü
sseld

o
rf, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



15 of 18

Acknowledgments

The study was preregistered on osf. org (osf.io/fu2gy). The authors thank 
Anna Pfeiffer for her help in data acquisition and Jürgen Seidel for pro-
gramming the feedback learning task. Open Access funding was en-
abled and organized by Project DEAL. Open Access funding enabled 
and organized by Projekt DEAL.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

All data supporting the findings are openly accessible through the Open 
Science Framework at https:// osf. io/ brpy7/ ? view_ only= 117f8 3d7d4 
b4444 8aa6a a8d7e 02913d2.

References

Albrecht, C., R. van de Vijver, and C. Bellebaum. 2023. “Learning New 
Words via Feedback- Association Between Feedback- Locked ERPs 
and Recall Performance- An Exploratory Study.” Psychophysiology 60: 
e14324. https:// doi. org/ 10. 1111/ psyp. 14324 .

Arbel, Y., L. Hong, T. E. Baker, and C. B. Holroyd. 2017. “It's All About 
Timing: An Electrophysiological Examination of Feedback- Based 
Learning With Immediate and Delayed Feedback.” Neuropsychologia 
99: 179–186. https:// doi. org/ 10. 1016/j. neuro psych ologia. 2017. 03. 003.

Baker, K. S., P. Johnston, N. Yamamoto, and A. J. Pegna. 2023. “Event- 
Related Potentials Index Prediction Error Signalling During Perceptual 
Processing of Emotional Facial Expressions.” Brain Topography 36, no. 
3: 419–432. https:// doi. org/ 10. 1007/ s1054 8-  023-  00951 -  2.

Baker, K. S., A. J. Pegna, N. Yamamoto, and P. Johnston. 2021. “Attention 
and Prediction Modulations in Expected and Unexpected Visuospatial 
Trajectories.” PLoS One 16, no. 10: e0242753. https:// doi. org/ 10. 1371/ 
journ al. pone. 0242753.

Baker, T. E., and C. B. Holroyd. 2009. “Which Way Do I Go? Neural 
Activation in Response to Feedback and Spatial Processing in a Virtual 
T- Maze.” Cerebral Cortex 19, no. 8: 1708–1722. https:// doi. org/ 10. 1093/ 
cercor/ bhn223.

Baker, T. E., and C. B. Holroyd. 2013. “The Topographical N170: 
Electrophysiological Evidence of a Neural Mechanism for Human 
Spatial Navigation.” Biological Psychology 94, no. 1: 90–105. https:// doi. 
org/ 10. 1016/j. biops ycho. 2013. 05. 004.

Baker, T. E., A. Umemoto, A. Krawitz, and C. B. Holroyd. 2015. 
“Rightward- Biased Hemodynamic Response of the Parahippocampal 
System During Virtual Navigation.” Scientific Reports 5, no. 1: 9063. 
https:// doi. org/ 10. 1038/ srep0 9063.

Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. “Fitting Linear 
Mixed- Effects Models Using lme4.” Journal of Statistical Software 67, 
no. 1: 1–48. https:// doi. org/ 10. 18637/  jss. v067. i01.

Becker, M. P. I., A. M. Nitsch, W. H. R. Miltner, and T. Straube. 2014. 
“A Single- Trial Estimation of the Feedback- Related Negativity and 
Its Relation to BOLD Responses in a Time- Estimation Task.” Journal 
of Neuroscience 34, no. 8: 3005–3012. https:// doi. org/ 10. 1523/ JNEUR 
OSCI. 3684-  13. 2014.

Bellebaum, C., and I. Daum. 2008. “Learning- Related Changes in 
Reward Expectancy Are Reflected in the Feedback- Related Negativity.” 
European Journal of Neuroscience 27, no. 7: 1823–1835. https:// doi. org/ 
10. 1111/j. 1460-  9568. 2008. 06138. x.

Bentin, S., T. Allison, A. Puce, E. Perez, and G. McCarthy. 1996. 
“Electrophysiological Studies of Face Perception in Humans.” Journal 
of Cognitive Neuroscience 8, no. 6: 551–565. https:// doi. org/ 10. 1162/ jocn. 
1996.8. 6. 551.

Brain Products GmbH. 2018. BrainVision Analyzer 2.2 [Computer 
Software]. Brain Products GmbH.

Brem, S., K. Bucher, P. Halder, et al. 2006. “Evidence for Developmental 
Changes in the Visual Word Processing Network Beyond Adolescence.” 
NeuroImage 29, no. 3: 822–837. https:// doi. org/ 10. 1016/j. neuro image. 
2005. 09. 023.

Burnside, R., A. G. Fischer, and M. Ullsperger. 2019. “The Feedback- 
Related Negativity Indexes PE in Active but Not Observational 
Learning.” Psychophysiology 56, no. 9: e13389. https:// doi. org/ 10. 1111/ 
psyp. 13389 .

Butler, A. J., and K. H. James. 2011. “Cross- Modal Versus Within- Modal 
Recall: Differences in Behavioral and Brain Responses.” Behavioural 
Brain Research 224, no. 2: 387–396. https:// doi. org/ 10. 1016/j. bbr. 2011. 
06. 017.

Carlson, J. M., D. Foti, L. R. Mujica- Parodi, E. Harmon- Jones, and 
G. Hajcak. 2011. “Ventral Striatal and Medial Prefrontal BOLD 
Activation Is Correlated With Reward- Related Electrocortical Activity: 
A Combined ERP and fMRI Study.” NeuroImage 57, no. 4: 1608–1616. 
https:// doi. org/ 10. 1016/j. neuro image. 2011. 05. 037.

Carreiras, M., B. C. Armstrong, M. Perea, and R. Frost. 2014. “The 
What, When, Where, and How of Visual Word Recognition.” Trends in 
Cognitive Sciences 18, no. 2: 90–98. https:// doi. org/ 10. 1016/j. tics. 2013. 
11. 005.

Chau, B. K., H. Jarvis, C. K. Law, and T. T. J. Chong. 2018. “Dopamine 
and Reward: A View From the Prefrontal Cortex.” Behavioural 
Pharmacology 29, no. 7: 569–583. https:// doi. org/ 10. 1097/ FBP. 00000 
00000 000424.

Chuhma, N., S. J. Oh, and S. Rayport. 2023. “The Dopamine Neuron 
Synaptic Map in the Striatum.” Cell Reports 42, no. 3: 112204. https:// 
doi. org/ 10. 1016/j. celrep. 2023. 112204.

Cohen, L., S. Lehéricy, F. Chochon, C. Lemer, S. Rivaud, and S. Dehaene. 
2002. “Language- Specific Tuning of Visual Cortex? Functional 
Properties of the Visual Word Form Area.” Brain 125, no. 5: 1054–1069. 
https:// doi. org/ 10. 1093/ brain/  awf094.

Cohen, M. X., J. F. Cavanagh, and H. A. Slagter. 2011. “Event- Related 
Potential Activity in the Basal Ganglia Differentiates Rewards From 
Nonrewards: Temporospatial Principal Components Analysis and 
Source Localization of the Feedback Negativity: Commentary.” Human 
Brain Mapping 32, no. 12: 2270–2271. https:// doi. org/ 10. 1002/ hbm. 
21358 .

Damier, P., E. C. Hirsch, Y. Agid, and A. M. Graybiel. 1999. “The 
Substantia Nigra of the Human Brain. II. Patterns of Loss of Dopamine- 
Containing Neurons in Parkinson's Disease.” Brain 122, no. 8: 1437–
1448. https:// doi. org/ 10. 1093/ brain/  122.8. 1437.

Deffke, I., T. Sander, J. Heidenreich, et al. 2007. “Meg/Eeg Sources of the 
170- Ms Response to Faces Are Co- Localized in the Fusiform Gyrus.” 
NeuroImage 35, no. 4: 1495–1501. https:// doi. org/ 10. 1016/j. neuro image. 
2007. 01. 034.

Delgado, M. R. 2007. “Reward- Related Responses in the Human 
Striatum.” Annals of the New York Academy of Sciences 1104, no. 1: 70–
88. https:// doi. org/ 10. 1196/ annals. 1390. 002.

Dickerson, K. C., J. Li, and M. R. Delgado. 2011. “Parallel Contributions 
of Distinct Human Memory Systems During Probabilistic Learning.” 
NeuroImage 55, no. 1: 266–276. https:// doi. org/ 10. 1016/j. neuro image. 
2010. 10. 080.

Fischer, A. G., and M. Ullsperger. 2013. “Real and Fictive Outcomes 
Are Processed Differently but Converge on a Common Adaptive 
Mechanism.” Neuron 79, no. 6: 1243–1255. https:// doi. org/ 10. 1016/j. 
neuron. 2013. 07. 006.

Foerde, K., E. Race, M. Verfaellie, and D. Shohamy. 2013. “A Role for the 
Medial Temporal Lobe in Feedback- Driven Learning: Evidence From 

 1
4
6
9
8
9
8
6
, 2

0
2
5
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/p

sy
p
.7

0
0
5
0
 b

y
 U

n
iv

ersitäts- U
n
d
 L

an
d
esb

ib
lio

th
ek

 D
ü
sseld

o
rf, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



16 of 18 Psychophysiology, 2025

Amnesia.” Journal of Neuroscience 33, no. 13: 5698–5704. https:// doi. 
org/ 10. 1523/ JNEUR OSCI. 5217-  12. 2013.

Foerde, K., and D. Shohamy. 2011. “Feedback Timing Modulates Brain 
Systems for Learning in Humans.” Journal of Neuroscience 31, no. 37: 
13157–13167. https:// doi. org/ 10. 1523/ JNEUR OSCI. 2701-  11. 2011.

Foti, D., A. Weinberg, E. M. Bernat, and G. H. Proudfit. 2015. “Anterior 
Cingulate Activity to Monetary Loss and Basal Ganglia Activity to 
Monetary Gain Uniquely Contribute to the Feedback Negativity.” 
Clinical Neurophysiology 126, no. 7: 1338–1347. https:// doi. org/ 10. 
1016/j. clinph. 2014. 08. 025.

Foti, D., A. Weinberg, J. Dien, and G. Hajcak. 2011. “Event- Related 
Potential Activity in the Basal Ganglia Differentiates Rewards From 
Nonrewards: Temporospatial Principal Components Analysis and 
Source Localization of the Feedback Negativity.” Human Brain Mapping 
32, no. 12: 2207–2216. https:// doi. org/ 10. 1002/ hbm. 21182 .

Frank, M. J., L. C. Seeberger, and R. C. O'reilly. 2004. “By Carrot or 
by Stick: Cognitive Reinforcement Learning in Parkinsonism.” Science 
306, no. 5703: 1940–1943. https:// doi. org/ 10. 1126/ scien ce. 1102941.

Gao, C., S. Conte, J. E. Richards, W. Xie, and T. Hanayik. 2019. “The 
Neural Sources of N170: Understanding Timing of Activation in Face- 
Selective Areas.” Psychophysiology 56, no. 6: e13336. https:// doi. org/ 10. 
1111/ psyp. 13336 .

Haber, S. N., and B. Knutson. 2010. “The Reward Circuit: Linking 
Primate Anatomy and Human Imaging.” Neuropsychopharmacology 
35, no. 1: 4–26. https:// doi. org/ 10. 1038/ npp. 2009. 129.

Hauser, T. U., R. Iannaccone, P. Stämpfli, et al. 2014. “The Feedback- 
Related Negativity (FRN) Revisited: New Insights Into the Localization, 
Meaning and Network Organization.” NeuroImage 84: 159–168. https:// 
doi. org/ 10. 1016/j. neuro image. 2013. 08. 028.

Herholz, S. C., A. R. Halpern, and R. J. Zatorre. 2012. “Neuronal 
Correlates of Perception, Imagery, and Memory for Familiar Tunes.” 
Journal of Cognitive Neuroscience 24, no. 6: 1382–1397. https:// doi. org/ 
10. 1162/ jocn_a_ 00216 .

Holroyd, C. B., and M. G. H. Coles. 2002. “The Neural Basis of Human 
Error Processing: Reinforcement Learning, Dopamine, and the Error- 
Related Negativity.” Psychological Review 109, no. 4: 679–709. https:// 
doi. org/ 10. 1037/ 0033-  295X. 109.4. 679.

Holroyd, C. B., G. Hajcak, and J. T. Larsen. 2006. “The Good, the Bad 
and the Neutral: Electrophysiological Responses to Feedback Stimuli.” 
Brain Research 1105: 93–101. https:// doi. org/ 10. 1016/j. brain res. 2005. 
12. 015.

Höltje, G., and A. Mecklinger. 2020. “Feedback Timing Modulates 
Interactions Between Feedback Processing and Memory Encoding: 
Evidence From Event- Related Potentials.” Cognitive, Affective, & 
Behavioral Neuroscience 20, no. 2: 250–264. https:// doi. org/ 10. 3758/ 
s1341 5-  019-  00765 -  5.

Iidaka, T., A. Matsumoto, K. Haneda, T. Okada, and N. Sadato. 2006. 
“Hemodynamic and Electrophysiological Relationship Involved in 
Human Face Processing: Evidence From a Combined fMRI- ERP 
Study.” Brain and Cognition 60, no. 2: 176–186. https:// doi. org/ 10. 1016/j. 
bandc. 2005. 11. 004.

Itier, R. J., and M. J. Taylor. 2004. “N170 or N1? Spatiotemporal 
Differences Between Object and Face Processing Using ERPs.” Cerebral 
Cortex 14, no. 2: 132–142. https:// doi. org/ 10. 1093/ cercor/ bhg111.

Jocham, G., K. H. Brodersen, A. O. Constantinescu, et al. 2016. “Reward- 
Guided Learning With and Without Causal Attribution.” Neuron 90, no. 
1: 177–190. https:// doi. org/ 10. 1016/j. neuron. 2016. 02. 018.

Kanwisher, N., J. McDermott, and M. M. Chun. 1997. “The Fusiform 
Face Area: A Module in Human Extrastriate Cortex Specialized for 
Face Perception.” Journal of Neuroscience 17, no. 11: 4302–4311. https:// 
doi. org/ 10. 1523/ JNEUR OSCI. 17-  11-  04302. 1997.

Kim, S., and Y. Arbel. 2019. “Immediate and Delayed Auditory Feedback 
in Declarative Learning: An Examination of the Feedback Related 
Event Related Potentials.” Neuropsychologia 129: 255–262. https:// doi. 
org/ 10. 1016/j. neuro psych ologia. 2019. 04. 001.

Kirsch, F., H. Kirschner, A. G. Fischer, T. A. Klein, and M. Ullsperger. 
2022. “Disentangling Performance- Monitoring Signals Encoded in 
Feedback- Related EEG Dynamics.” NeuroImage 257: 119322. https:// 
doi. org/ 10. 1016/j. neuro image. 2022. 119322.

Kloth, N., R. J. Itier, and S. R. Schweinberger. 2013. “Combined Effects 
of Inversion and Feature Removal on N170 Responses Elicited by Faces 
and Car Fronts.” Brain and Cognition 81, no. 3: 321–328. https:// doi. org/ 
10. 1016/j. bandc. 2013. 01. 002.

Kujawa, A., E. Smith, C. Luhmann, and G. Hajcak. 2013. “The Feedback 
Negativity Reflects Favorable Compared to Nonfavorable Outcomes 
Based on Global, Not Local, Alternatives.” Psychophysiology 50: 134–
138. https:// doi. org/ 10. 1111/ psyp. 12002 .

Lefebvre, G., M. Lebreton, F. Meyniel, S. Bourgeois- Gironde, and 
S. Palminteri. 2017. “Behavioural and Neural Characterization of 
Optimistic Reinforcement Learning.” Nature Human Behaviour 1, no. 
4: 0067. https:// doi. org/ 10. 1038/ s4156 2-  017-  0067.

Liu, Y., L. D. Nelson, E. M. Bernat, and W. J. Gehring. 2014. “Perceptual 
Properties of Feedback Stimuli Influence the Feedback- Related 
Negativity in the Flanker Gambling Task.” Psychophysiology 51, no. 8: 
782–788. https:// doi. org/ 10. 1111/ psyp. 12216 .

Luck, S. J. 2014. An Introduction to the Event- Related Potential 
Technique. MIT Press.

Maurer, L. K., M. Joch, M. Hegele, H. Maurer, and H. Müller. 2022. 
“Relevance of Predictive and Postdictive Error Information in the 
Course of Motor Learning.” Neuroscience 486: 77–90. https:// doi. org/ 10. 
1016/j. neuro scien ce. 2021. 05. 007.

Meteyard, L., and R. A. Davies. 2020. “Best Practice Guidance for Linear 
Mixed- Effects Models in Psychological Science.” Journal of Memory and 
Language 112: 104092. https:// doi. org/ 10. 1016/j. jml. 2020. 104092.

Miltner, W. H., C. H. Braun, and M. G. Coles. 1997. “Event- Related 
Brain Potentials Following Incorrect Feedback in a Time- Estimation 
Task: Evidence for a “Generic” Neural System for Error Detection.” 
Journal of Cognitive Neuroscience 9, no. 6: 788–798. https:// doi. org/ 10. 
1162/ jocn. 1997.9. 6. 788.

Mushtaq, F., S. D. McDougle, M. P. Craddock, et  al. 2022. “Distinct 
Neural Signatures of Outcome Monitoring After Selection and 
Execution Errors.” Journal of Cognitive Neuroscience 34, no. 5: 748–765. 
https:// doi. org/ 10. 1162/ jocn_a_ 01824 .

Neurobehavioral Systems Inc. 2020. Presentation (Version 22) [Computer 
Software]. Neurobehavioral Systems Inc. https:// www. neuro bs. com/ .

Nieuwenhuis, S., C. B. Holroyd, N. Mol, and M. G. H. Coles. 2004. 
“Reinforcement- Related Brain Potentials From Medial Frontal Cortex: 
Origins and Functional Significance.” Neuroscience and Biobehavioral 
Reviews 28, no. 4: 441–448. https:// doi. org/ 10. 1016/j. neubi orev. 2004. 
05. 003.

Nieuwenhuis, S., H. A. Slagter, N. J. A. Von Geusau, D. J. Heslenfeld, and 
C. B. Holroyd. 2005. “Knowing Good From Bad: Differential Activation 
of Human Cortical Areas by Positive and Negative Outcomes.” European 
Journal of Neuroscience 21, no. 11: 3161–3168. https:// doi. org/ 10. 1111/j. 
1460-  9568. 2005. 04152. x.

Oerlemans, J., R. J. Alejandro, D. Van Roost, et al. 2025. “Unravelling 
the Origin of Reward Positivity: A Human Intracranial Event- Related 
Brain Potential Study.” Brain 148, no. 1: 199–211. https:// doi. org/ 10. 
1093/ brain/  awae259.

Oldehinkel, M., A. Llera, M. Faber, et al. 2022. “Mapping Dopaminergic 
Projections in the Human Brain With Resting- State fMRI.” eLife 11: 
e71846. https:// doi. org/ 10. 7554/ eLife. 71846 .

 1
4
6
9
8
9
8
6
, 2

0
2
5
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/p

sy
p
.7

0
0
5
0
 b

y
 U

n
iv

ersitäts- U
n
d
 L

an
d
esb

ib
lio

th
ek

 D
ü
sseld

o
rf, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



17 of 18

OpenAI. 2023. GPT- 4 [Large Language Model]. https:// openai. com/ 
gpt-  4.

Peterburs, J., S. Kobza, and C. Bellebaum. 2016. “Feedback Delay 
Gradually Affects Amplitude and Valence Specificity of the Feedback- 
Related Negativity (FRN).” Psychophysiology 53, no. 2: 209–215. https:// 
doi. org/ 10. 1111/ psyp. 12560 .

Pfabigan, D. M., U. Sailer, and C. Lamm. 2015. “Size Does Matter! 
Perceptual Stimulus Properties Affect Event- Related Potentials During 
Feedback Processing.” Psychophysiology 52, no. 9: 1238–1247. https:// 
doi. org/ 10. 1111/ psyp. 12458 .

Pleger, B., F. Blankenburg, C. C. Ruff, J. Driver, and R. J. Dolan. 2008. 
“Reward Facilitates Tactile Judgments and Modulates Hemodynamic 
Responses in Human Primary Somatosensory Cortex.” Journal of 
Neuroscience 28, no. 33: 8161–8168. https:// doi. org/ 10. 1523/ JNEUR 
OSCI. 1093-  08. 2008.

Pleger, B., C. C. Ruff, F. Blankenburg, S. Klöppel, J. Driver, and R. J. 
Dolan. 2009. “Influence of Dopaminergically Mediated Reward on 
Somatosensory Decision- Making.” PLoS Biology 7, no. 7: e1000164. 
https:// doi. org/ 10. 1371/ journ al. pbio. 1000164.

Proudfit, G. H. 2015. “The Reward Positivity: From Basic Research on 
Reward to a Biomarker for Depression.” Psychophysiology 52, no. 4: 
449–459. https:// doi. org/ 10. 1111/ psyp. 12370 .

Qin, S., C. Piekema, K. M. Petersson, B. Han, J. Luo, and G. Fernández. 
2007. “Probing the Transformation of Discontinuous Associations Into 
Episodic Memory: An Event- Related fMRI Study.” NeuroImage 38, no. 
1: 212–222. https:// doi. org/ 10. 1016/j. neuro image. 2007. 07. 020.

Quené, H., and H. Van den Bergh. 2004. “On Multi- Level Modeling 
of Data From Repeated Measures Designs: A Tutorial.” Speech 
Communication 43, no. 1–2: 103–121. https:// doi. org/ 10. 1016/j. specom. 
2004. 02. 004.

Rossion, B. 2014. “Understanding Face Perception by Means of Human 
Electrophysiology.” Trends in Cognitive Sciences 18, no. 6: 310–318. 
https:// doi. org/ 10. 1016/j. tics. 2014. 02. 013.

Sambrook, T. D., and J. Goslin. 2015. “A Neural Reward Prediction Error 
Revealed by a Meta- Analysis of ERPs Using Great Grand Averages.” 
Psychological Bulletin 141, no. 1: 213–235. https:// doi. org/ 10. 1037/ bul00 
00006 .

Santesso, D. L., A. Dzyundzyak, and S. J. Segalowitz. 2011. “Age, 
Sex and Individual Differences in Punishment Sensitivity: Factors 
Influencing the Feedback- Related Negativity.” Psychophysiology 48, no. 
11: 1481–1489. https:// doi. org/ 10. 1111/j. 1469-  8986. 2011. 01229. x.

Sara, S. J. 2009. “The Locus Coeruleus and Noradrenergic Modulation 
of Cognition.” Nature Reviews Neuroscience 10, no. 3: 211–223. https:// 
doi. org/ 10. 1038/ nrn2573.

Sara, S. J. 2015. “Locus Coeruleus in Time With the Making of 
Memories.” Current Opinion in Neurobiology 35: 87–94. https:// doi. org/ 
10. 1016/j. conb. 2015. 07. 004.

Schiffer, A. M., T. Muller, N. Yeung, and F. Waszak. 2014. “Reward 
Activates Stimulus- Specific and Task- Dependent Representations in 
Visual Association Cortices.” Journal of Neuroscience 34, no. 47: 15610–
15620. https:// doi. org/ 10. 1523/ JNEUR OSCI. 1640-  14. 2014.

Schott, B. H., D. B. Sellner, C.- J. Lauer, et  al. 2004. “Activation of 
Midbrain Structures by Associative Novelty and the Formation of 
Explicit Memory in Humans.” Learning & Memory (Cold Spring Harbor, 
N.Y.) 11, no. 4: 383–387. https:// doi. org/ 10. 1101/ lm. 75004 .

Schultz, W. 2002. “Getting Formal With Dopamine and Reward.” 
Neuron 36, no. 2: 241–263. https:// doi. org/ 10. 1016/ S0896 -  6273(02) 
00967 -  4.

Schultz, W., P. Dayan, and P. R. Montague. 1997. “A Neural Substrate of 
Prediction and Reward.” Science 275, no. 5306: 1593–1599. https:// doi. 
org/ 10. 1126/ scien ce. 275. 5306. 1593.

Schultz, W., and A. Dickinson. 2000. “Neuronal Coding of Prediction 
Errors.” Annual Review of Neuroscience 23, no. 1: 473–500. https:// doi. 
org/ 10. 1146/ annur ev. neuro. 23.1. 473.

Singer, A. C., and L. M. Frank. 2009. “Rewarded Outcomes Enhance 
Reactivation of Experience in the Hippocampus.” Neuron 64, no. 6: 
910–921. https:// doi. org/ 10. 1016/j. neuron. 2009. 11. 016.

Staresina, B. P., and L. Davachi. 2009. “Mind the Gap: Binding 
Experiences Across Space and Time in the Human Hippocampus.” 
Neuron 63, no. 2: 267–276. https:// doi. org/ 10. 1016/j. neuron. 2009. 06. 024.

The MathWorks, Inc. 2021. MATLAB R2021a [Computer Software]. 
MathWorks, Inc.

The R Foundation. 2021. R: A Language and Environment for Statistical 
Computing (Version 4.2.2) [Computer Software]. R Foundation for 
Statistical Computing. https:// www. R-  proje ct. org/ .

Thiebaut de Schotten, M., F. Dell'Acqua, S. Forkel, et  al. 2011. “A 
Lateralized Brain Network for Visuo- Spatial Attention.” Nature 
Neuroscience 14, no. 10: 1245–1246. https:// doi. org/ 10. 1038/ npre. 2011. 
5549. 1.

Voeten, C. 2020. Using ‘Buildmer’ to Automatically Find & Compare 
Maximal (Mixed) Models.

Wang, K. S., D. V. Smith, and M. R. Delgado. 2016. “Using fMRI to Study 
Reward Processing in Humans: Past, Present, and Future.” Journal 
of Neurophysiology 115, no. 3: 1664–1678. https:// doi. org/ 10. 1152/ jn. 
00333. 2015.

Weber, C., and C. Bellebaum. 2024. “Prediction- Error- Dependent 
Processing of Immediate and Delayed Positive Feedback.” Scientific 
Reports 14, no. 1: 9674. https:// doi. org/ 10. 1038/ s4159 8-  024-  60328 -  8.

Weinberg, A., C. C. Luhmann, J. N. Bress, and G. Hajcak. 2012. “Better 
Late Than Never? The Effect of Feedback Delay on ERP Indices of 
Reward Processing.” Cognitive, Affective, & Behavioral Neuroscience 12, 
no. 4: 671–677. https:// doi. org/ 10. 3758/ s1341 5-  012-  0104-  z.

Weiner, K. S., and K. Zilles. 2016. “The Anatomical and Functional 
Specialization of the Fusiform Gyrus.” Neuropsychologia 83: 48–62. 
https:// doi. org/ 10. 1016/j. neuro psych ologia. 2015. 06. 033.

Weismüller, B., and C. Bellebaum. 2016. “Expectancy Affects 
the Feedback- Related Negativity (FRN) for Delayed Feedback in 
Probabilistic Learning.” Psychophysiology 53, no. 11: 1739–1750. https:// 
doi. org/ 10. 1111/ psyp. 12738 .

Weismüller, B., J. Kullmann, M. Hoenen, and C. Bellebaum. 2019. 
“Effects of Feedback Delay and Agency on Feedback- Locked Beta and 
Theta Power During Reinforcement Learning.” Psychophysiology 56, 
no. 10: e13428. https:// doi. org/ 10. 1111/ psyp. 13428 .

Williams, C. C., C. D. Hassall, T. Lindenbach, and O. E. Krigolson. 2020. 
“Reward Prediction Errors Reflect an Underlying Learning Process 
That Parallels Behavioural Adaptations: A Trial- To- Trial Analysis.” 
Computational Brain & Behavior 3: 189–199. https:// doi. org/ 10. 1007/ 
s4211 3-  019-  00069 -  4.

Yagishita, S., A. Hayashi- Takagi, G. C. Ellis- Davies, H. Urakubo, 
S. Ishii, and H. Kasai. 2014. “A Critical Time Window for Dopamine 
Actions on the Structural Plasticity of Dendritic Spines.” Science 345, 
no. 6204: 1616–1620. https:// doi. org/ 10. 1126/ scien ce. 1255514.

Yovel, G. 2016. “Neural and Cognitive Face- Selective Markers: An 
Integrative Review.” Neuropsychologia 83: 5–13. https:// doi. org/ 10. 
1016/j. neuro psych ologia. 2015. 09. 026.

Zaghloul, K. A., J. A. Blanco, C. T. Weidemann, et al. 2009. “Human 
Substantia Nigra Neurons Encode Unexpected Financial Rewards.” 
Science 323, no. 5920: 1496–1499. https:// doi. org/ 10. 1126/ scien ce. 
1167342.

Zhang, Y., I. W. Wu, S. Buckley, et al. 2015. “Diffusion Tensor Imaging of 
the Nigrostriatal Fibers in Parkinson's Disease: DTI of the Nigrostriatal 

 1
4
6
9
8
9
8
6
, 2

0
2
5
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/p

sy
p
.7

0
0
5
0
 b

y
 U

n
iv

ersitäts- U
n
d
 L

an
d
esb

ib
lio

th
ek

 D
ü
sseld

o
rf, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se



18 of 18 Psychophysiology, 2025

Fibers in PD.” Movement Disorders 30, no. 9: 1229–1236. https:// doi. org/ 
10. 1002/ mds. 26251 .

Zottoli, T. M., and J. Grose- Fifer. 2012. “The Feedback- Related 
Negativity (FRN) in Adolescents.” Psychophysiology 49, no. 3: 413–420. 
https:// doi. org/ 10. 1111/j. 1469-  8986. 2011. 01312. x.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section.

 1
4
6
9
8
9
8
6
, 2

0
2
5
, 4

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

1
1
1
/p

sy
p
.7

0
0
5
0
 b

y
 U

n
iv

ersitäts- U
n
d
 L

an
d
esb

ib
lio

th
ek

 D
ü
sseld

o
rf, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

6
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y
 th

e ap
p
licab

le C
reativ

e C
o
m

m
o
n
s L

icen
se





β

Modality, Timing = Feedback Timing. The sign of the β



β

Valence = Feedback Valence, Modality = Stimulus Modality, PE = PE. The sign of the β



β

sign of the β



−𝐿𝐿 likelihood as measure for the model’s 𝛼𝑐𝑜𝑛𝛼𝑑𝑖𝑠



𝛼𝑐𝑜𝑛) 𝛼𝑑𝑖𝑠











while expected feedback corresponds to absolute PE values ≤ 0.50.











–

absolute PE values ≤ 0.50.









re of the brain’s reward system 







“healthy” siblings of depressed 







with 5€ per 30 minutes or course credit for psychology students. Additionally, participant

€



, providing “yes”, “no” and “I’m not 

sure” as

the participants’

–

unhappy that I can’t stand it



participant’s choice. The 



–



15 kΩ.



was each participants’ sequence of choices and the 𝛿𝑐,𝑡 𝛿𝑐,𝑡  =  𝑟𝑡 − 𝑄𝑐,𝑡𝑡 𝑟𝑡𝑄𝑐,𝑡
𝑡𝑄𝑐 𝛿 𝛼

𝛼𝑐𝑜𝑛



𝑄𝑐,𝑡+1 =  𝑄𝑐,𝑡 + 𝛼𝑐𝑜𝑛 ∗  𝛿𝑐,𝑡
𝛼𝑑𝑖𝑠𝑄𝑐,𝑡+1 =  𝑄𝑐,𝑡 +  𝛼𝑑𝑖𝑠 ∗  𝛿𝑐,𝑡

𝑄𝑢, 𝑄𝑐𝑡1,…,𝑛𝑡𝑟𝑖𝑎𝑙𝑠 𝑝

𝑄𝑐,𝑡 𝑡𝑄𝑢,𝑡 𝛽
𝑝𝑐,𝑡 =  𝑒𝑄𝑐,𝑡 ∗ 𝛽𝑒𝑄𝑐,𝑡 ∗ 𝛽 +  𝑒𝑄𝑢,𝑡 ∗ 𝛽𝛽𝛽 𝛽

𝑝(−𝐿𝐿) as measure for the model’s goodness of fit:−𝛴 log (𝑝𝑐,𝑡1,…,𝑛𝑡𝑟𝑖𝑎𝑙𝑠)
−𝐿𝐿 𝛼𝑐𝑜𝑛, 𝛼𝑑𝑖𝑠, 𝛽 between the model’s predicted 

choices and the participant’s

’ behavior



𝛼𝑐𝑜𝑛, 𝛼𝑑𝑖𝑠 𝛽)

voltage steps > 50 μV/ms, 

differences between values > 80 μV or < 0.1 μV within an interval of 100 ms or amplitudes > 

80 μV or < 80 μV



participant’s

–







Table S4 in the Supporting Information lists β

≥



≥ ≥





Supporting Information lists β

β

β

β

β



≥



β = 

≥

β

lists β

β = 

(β = 

≥

≥





Supporting Information lists β

≥ .

Information lists β

β = 

β = 

≥ .064).



–



β

β =

β = 

β = 

β = 3.75, 

≥ .065). 

in the Supporting Information list β

—

≥ . ≥ .056 for the 















≥



—

—







–

–

B. (2017). It’s all about timing: An 

–

–

. “Fitting Linear Mixed

Using lme4.” –



–

Bellebaum, C., & Daum, I. (2008). Learning‐related changes in reward expectancy are 

d in the feedback‐related negativity. 



–

–



–

–

–

–

–



–

–

–

Event‐related potential activity in the 

C., & O’reilly,

–



–

dem “Gesun D)“. 



–

–

–

–

–



(2014). Twelve‐month prevalence, comorbidity and correlates of mental disorders in 

Examination Survey for Adults (DEGS1‐MH). 

H., O’Callaghan,

–

–



Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ‐9: validity of a brief 

–

–



–

–

–

estimation task: Evidence for a “generic” neural system 



–

–

–

–



–

L., & O’Shea,

–

–

—



–

Decision‐and feedback‐related 

‐

–



–

–



Voeten, C. Using ‘buildmer’ to automatically find & compare maximal (mixed) models

“depressed”? A systematic review and diagnostic meta

–

–

–







history of depression [−0.5] vs. first



depression [−0.5] vs. first



depression [−0.5] vs. first



β

the β

depression [−0.5] vs. first



β

β



β

β



β

β



β

β



Feedback Valence for P7 (β = 

feedback led to significantly larger N170 amplitudes than positive feedback (β = 1.62, 

unexpected positive feedback (β = 

unexpected negative feedback (β = 1.09, 

≥ .054, see Table S8 above for β



β

β

degree relatives without a history of depression [−0.5] vs. first



P8 (β = 1.88, < .001), but not for P7 (β = 

unexpected positive feedback (β = 

significantly decrease for more unexpected negative feedback (β = 1.13, 

Vulnerability reported in the main text) did not reach significance (all ps ≥ .050; 

above for β



β

β



β

β



β = 2.59, 

β = 1.86, 

negative feedback, with more negative amplitudes for more unexpected feedback (β = 

positive amplitudes for more unexpected feedback (β = 3.75, 

≥ .

Table S11 above for β



β

β

degree relatives without a history of depression [−0.5] vs. first



β = 2.82, 

β = 2.08, 

feedback (β = 

reversed with more positive amplitudes for more unexpected feedback (β = 3.35, 

≥ .056; see Table S12 above for β


