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ABSTRACT
Arabidopsis thaliana is a model species for uncovering genetic adaptation to alkaline calcareous soils (ACS). This species 
thrives in ACS, often occurring in dry marginal and urban environments. Existing research largely focused on vegetatively 
grown seedlings, with a notable lack of studies examining phenotypic variations across the life cycle. A valuable tool for un-
derstanding stress resilience is machine-aided phenotyping, as it is non-invasive, rapid, and accurate, but often unavailable 
to small plant labs. Here, we established and validated an affordable multispectral machine-aided phenotyping approach 
implementable by individual labs. We collected and correlated quantitative growth data across the entire plant life cycle in re-
sponse to ACS. We used an A. thaliana wildtype and the coumarin-deficient mutant f6'h1-1, exhibiting chlorosis under alka-
line conditions, to assess weekly morphological and leaf color data, both manually and using a multispectral 3D phenotyping 
scanner. Through correlation analysis, we selected machine parameters to differentiate size and leaf chlorosis phenotypes. 
The correlation analysis indicated a close connection between rosette size and multiple spectral parameters, highlighting the 
importance of rosette size for growth of A. thaliana in ACS. The most reliable phenotyping was at the beginning of the bolt-
ing stage. This methodology is further validated to detect novel leaf chlorosis phenotypes of known iron deficiency mutants 
across growth stages. Hence, our affordable machine-aided phenotyping procedure is suitable for high-throughput, accurate 
screening of small-grown rosette plants, including A. thaliana, and enables the discovery of novel genetic and phenotypic 
variations during the plant's life cycle for understanding plant resilience in challenging soil environments.

1   |   Introduction

More than 30% of the earth's soils are alkaline and/or calcar-
eous (Chen & Barak, Chen and Barak 1982), and the propor-
tion may rise with global warming and by human activities 
(Rengel  2011; Sun et  al.  2023). These soils impose several 

challenges for plant growth (Taalab et al. 2019), and hence it 
is important to understand which genetic factors help plants to 
better thrive under these conditions.

In calcareous soils, calcium carbonate (CaCO3) determines 
the main soil properties. Such soils are formed over calcareous 
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parent rocks or by irrigation with carbonate-rich water and 
often occur in arid or semiarid regions (Wahba et  al.  2019). 
The pH is typically high and buffered by carbonates between 
7.5 and 8.2 (Maulood et al. 2012; Wang et al. 2020). Besides cal-
cium (Ca), sodium (Na) is a relevant ion in calcareous soils and 
is additionally related to alkalinization (Hu et al. 2021). Soils in 
urban environments are typically alkaline and saline, especially 
in industrial and traffic areas, but also near residences (Horváth 
et al. 2015; Yang and Zhang 2015). Hence, model plant species 
growing naturally in urban and natural sites on alkaline and 
saline soil conditions can be highly informative for uncovering 
stress resilience mechanisms. Plant adaptation to urban envi-
ronments is increasingly important due to the rise in urban pop-
ulations and urbanized areas and the potential of urban ecology 
and gardening to positively affect human well-being, food se-
curity, and greenhouse gas emission reduction (McDonnell and 
MacGregor-Fors 2016; Ferreira et al. 2018; Tomatis et al. 2023; 
Zhang et al. 2023). Above all, Arabidopsis thaliana is the most 
widely used model plant species and a reference to many crops 
and wild plant species. It inhabits many edaphically different 
habitats, including urban, alkaline, and saline environments, 
indicating it has adaptive genetic mechanisms (Terés et al. 2019; 
Pérez-Martín et al. 2022; Schmitz et al. 2024). Although A. thali-
ana has been widely studied, there are still numerous open ques-
tions with regard to genetic mechanisms and genetic variation 
contributing to the success of this plant species in thriving in 
disturbed urban sites.

Plants may lack iron (Fe) in alkaline calcareous soil (ACS) con-
ditions as the bioavailability of Fe is low under high pH (Vélez-
Bermúdez and Schmidt  2023). A. thaliana iron homeostasis 
mutants often have stronger leaf chlorosis phenotypes than 
wildtypes on ACS (Long et  al.  2010; Schmid et  al.  2014; Zhang 
et al. 2015; Li et al. 2016; Lei et al. 2020). A key regulator for Fe acqui-
sition is the essential FER-LIKE IRON DEFICIENCY-INDUCED 
TRANSCRIPTION FACTOR (FIT). The severely growth-
compromised loss-of-function mutant fit-3 only grows upon Fe fer-
tilization (Jakoby et al. 2004; Schwarz and Bauer 2020). One of the 
FIT target genes encodes FERULOYL-COA 6'-HYDROXYLASE1 
(F6'H1) catalyzing the first enzymatic step in coumarin biosyn-
thesis (Schmid et al. 2014). Coumarins are important secondary 
compounds that allow A. thaliana to mobilize Fe and grow on ACS 
(Schmid et al. 2014; Terés et al. 2019; Gautam et al. 2021; Robe 
et al. 2021). f6'h1 loss of function mutant plants have slight Fe defi-
ciency and leaf chlorosis in alkaline conditions (Schmid et al. 2014; 
Robe et al. 2021). POPEYE (PYE) is another transcription factor 
(Long et al. 2010), and the E3 ligases BRUTUS-LIKE1 and BTSL2 
interact with transcription factors related to PYE and affect Fe 
utilization negatively (Rodríguez-Celma et  al.  2019; Lichtblau 
et  al.  2022). Loss-of-function mutants of pye and btsl1 btsl2 do 
not show leaf chlorosis but complete their life cycles in turf soils 
without Fe fertilization. Their phenotypes become visible in Fe-
limited or resupply conditions (Long et al. 2010; Rodríguez-Celma 
et al. 2019; Stanton et al. 2023). Many studies on Fe homeostasis in 
plants focused primarily on the investigation of seedlings on agar 
plates or in hydroponic solutions containing low Fe concentrations 
(e.g., Nguyen et al. 2022; Tabata et al. 2022) or they investigated 
germination on ACS (Wala et al. 2022).

Plant phenotyping is a powerful method to discriminate genetic 
diversity across the life cycle, particularly using non-invasive 

automated methods (Arvidsson et al. 2011; Vasseur et al. 2018). 
This has been performed in large high-throughput phenotyp-
ing pipelines including automatic moving and watering of the 
plants (Granier et  al.  2006; Arend et  al.  2016; Pieruschka and 
Schurr  2019). These platforms enable non-destructive, fast, 
standardized, and repeated measurements of single plants over 
time and can replace tedious manual plant phenotyping and de-
structive measurements (Poorter et  al.  2023). In multispectral 
scanning, 3D laser scanning provides physical information of 
an object and positions, while spectral analysis gives hints on 
plant characteristics like chlorophyll content, nutrient status, 
and water stress (Xia et al. 2023). The laser and near-infrared 
measurements do not affect photosynthetic performance of the 
scanned plants (Kjaer and Ottosen  2015). Despite the advan-
tages of large phenotyping facilities, less automated and smaller 
lab-based imaging devices would be of great benefit to small in-
dividual research units. They are affordable solutions, available 
for restricted budgets and spaces and can be flexibly used. One 
commercially available, non-destructive phenotyping device is 
the PlantEye (Vadez et al. 2015) offered in the small and portable 
format of a MicroScan (Phenospex, Heerlen, The Netherlands). 
It is an environmental light-independent 3D multispectral im-
aging system. However, a standardized procedure to use the 
MicroScan for studying stress resilience across the life cycle in 
the model species A. thaliana does not yet exist. Despite a num-
ber of studies on growth of A. thaliana in ACS conditions, the 
phenotypes determined were mainly manually measured phe-
notypes (Long et al. 2010; Schmid et al. 2014; Terés et al. 2019; 
Gautam et al. 2021). In our view, there is no systematic study ad-
dressing the accuracy of machine phenotyping for small rosette 
plant species like A. thaliana in stressful environments, causing 
leaf chlorosis, such as ACS. The PlantEye was used in studies of 
plant or plant community performance (Manavalan et al. 2021; 
Li et al. 2022; Yang et al. 2022; Gedif et al. 2023; Zieschank and 
Junker  2023). A. thaliana was to our knowledge only used in 
one of them (Yang et al. 2022), but no validation of the approach 
was shown. It is not clear whether machine phenotyping with a 
PlantEye device discriminates weak leaf chlorosis phenotypes of 
A. thaliana as they occur in ACS.

Several challenges need to be solved when establishing machine-
aided phenotyping for discriminating genetic diversity in ACS 
conditions in A. thaliana. One challenge with automated mul-
tispectral phenotyping is that the non-plant background must 
be excluded from analysis (Arvidsson et al. 2011; Li et al. 2014; 
Vasseur et al. 2018), so that plant leaf color shades can be distin-
guished (Matsuda et al. 2012; Ochogavía et al. 2014; Dobbels and 
Lorenz 2019). This is a particular challenge when small plants 
are to be grown, especially those developing a rosette of leaves 
close to the soil surface, as is the case in A. thaliana. Moreover, 
a suitable condition close to natural calcareous soil conditions 
must be imitated in the lab to screen for genetic diversity in-
volving transgenic lines (Msilini et al. 2009; Schmid et al. 2014; 
Murgia et al. 2015; Ben Abdallah et al. 2017; Terés et al. 2019; 
Ding et  al.  2020; Gautam et  al.  2021; Rosenkranz et  al.  2021; 
Pérez-Martín et al. 2022; Busoms et al. 2023). Much of the pub-
lished phenotypic screening in A. thaliana has been conducted at 
the seedling or early vegetative stage (Schmid et al. 2014; Satbhai 
et al. 2017; DeLoose et al. 2024), precluding observations of phe-
notypic diversity during reproduction. Hence, not all Fe defi-
ciency phenotypes have been fully exploited. Machine-driven 
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phenotyping would clearly be a benefit. The MicroScan system 
with the PlantEye device is affordable and hence is a small, 
portable, and cost-effective solution for plant phenotyping in a 
single lab setting. While not fully automated, the system allows 
rapid and frequent plant scanning, enabling time course data 
collection over the life cycle of individual plants with minimal 
effort.

This study aimed to establish an affordable innovative high-
throughput machine-aided phenotyping procedure using the 
PlantEye suited to detect genetic variation in standard labo-
ratory ACS stress resilience experiments in a non-destructive 
manner throughout the life cycle of A. thaliana. Being able to 
apply machine phenotyping throughout the plant life cycle will 
be useful for uncovering novel genetic diversity for adaptation 
in A. thaliana to stress conditions like ACS. Such findings can 
explain the success of this species in urban environments and be 
informative for translational research to crops.

2   |   Materials and Methods

2.1   |   Plant Material

Lines of A. thaliana (L.) Heynh. were multiplied in parallel at 
the Heinrich Heine University. They were wildtype (WT, Col-0) 
and four mutants in the Col-0 background, f6'h1-1 (Schmid 
et al. 2014), fit-3 (Jakoby et al. 2004), pye-1 (Long et al. 2010), and 
btsl1 btsl2 (Rodríguez-Celma et al. 2019).

2.2   |   Plant Growth Conditions

A detailed description of plant growth is provided in the 
Supporting Information Methods and Figure  S1. Three plant 
growth experiments were conducted (Figure  S1A,B). Briefly, 
seeds were surface-sterilized with a solution containing 6% 
NaOCl and 0.1% TritonX100, stratified in darkness at 4°C, 
and germinated on half upright Hoagland plates for 8 days 
(16 h light, on average 135 μmol m−2 s−1 (fluorescent tube light, 
ecolux F17 T8 17W 4100K), 21°C in light, 19°C in darkness 
and 50% relative humidity, CU-36L4/D, CLF Plant Climatics). 
On the eighth day, plants were transferred to soil. Pots filled 
with soil were covered with matt blue vinyl foil, leaving a hole 
for plants to grow (Figure  S2A). Plants were grown in plant 
cabinets with 16 h light (98–112 μmol m−2 s−1, Polyklima True 
Daylight + LED), 21°C during light, and 19°C during darkness. 
Humidity was not controlled. Eight pots fitted in one tray. 
Soil was prepared with a peat substrate supplemented with 
different amounts of CaCO3 (AppliChem), NaHCO3 (Fisher 
Scientific), and sand according to Figure S2B and as specified 
in the text, named control, ACS1-5, and ACS3-25% and −50% 
sand. In short, for ACS 1–5, 6, 8, 8, 31.6, and 30 g of CaCO3 and 
3, 4, 4, 13.7, and 20 g of NaHCO3, respectively, were added per 
liter peat-based soil. For ACS3-25% sand and ACS3-50% sand, 
the respective percentage of sand by volume was mixed with 
ACS3 soil. Control soil was peat-based soil without the addition 
of CaCO3, NaHCO3, or sand. Plants in ACS1 and ACS3 were 
watered with NaHCO3 solution. For details on watering, see 
Figure S2B and Supporting Information Methods. The pH was 
determined according to the procedure below. In Experiment 

3, the plants were moved to a walk-in growth chamber with 
16 h light (80–120 μmol m−2 s−1, BX120c4, VAYOLA), 21°C day 
temperature, 19°C night temperature, and 57% humidity after 
3 weeks in soil instead of being kept in a growth cabinet. Sixteen 
plants were grown per line and condition for Experiments 1 
and 2, eight for Experiment 3 (Figure S1A,B). Trays were reg-
ularly rotated.

2.3   |   Soil pH Determination

Deionized water was added to 15 g wet soil (5 g soil dry weight) 
to reach 50 mL in a Falcon tube, rotated for 30 min with 20 ro-
tations per min, and centrifuged for 10 min at 4000 g and 20°C 
(Heraeus Multifuge X1R, Thermo Fischer Scientific). The super-
natant was filtered through a paper filter (Folded filters, 322345, 
Schleicher & Schuell), and the pH was determined with a pH 
electrode (S20 Seven Easy, Mettler Toledo). An average was cal-
culated from two samples per condition.

2.4   |   Destructive Determination of the Chlorophyll 
Content

The chlorophyll content was determined from whole rosettes of 
plants. The rosettes were frozen ground in liquid nitrogen, and 
~100 mg of plant material was used and weighed before acetone 
extraction. After centrifugation at 15000 g for 10 min, the ab-
sorption was measured at 470, 642, and 662 nm (Shimadzu UV 
visible Spectrophotometer UVmini-1240 and Hellma OS 104-OS 
cuvette). The pigment contents per fresh weight were calcu-
lated according to the following formulas (Lichtenthaler 1987): 
Chlorophyll a: (μg ml−1) = (11.24*A662–2.04*A642) * dilu-
tion; Chlorophyll b: (μg ml−1) = (20.13*A642–4.19*A662) * 
dilution; Carotenoids: (μg ml−1) = [(1000*A470-1.90*Chla—
63.14*Chlb)/214] * dilution.

2.5   |   Manual Morphological Phenotyping

Plants were photographed (α 6000, Sony) weekly. Different 
phenotypical parameters were manually determined ei-
ther using the photos and performing measurements with 
ImageJ or by directly measuring the plants. Manual mea-
surements were performed to determine the following param-
eters: the rosette diameter (cm), manual rosette area (mm2), 
manual rosette convex hull (mm2), plant fresh weight (mg), 
rosette fresh weight (mg), plant height (cm), number of siliq-
ues, number of side branches, and flowering time (days after 
sowing, DAS) as outlined in Figure  S3 and described in the 
Supporting Information Methods. The plant fresh weight and 
rosette fresh weight were determined destructively using a 
scale (Secura225D, Sartorius Lob Instruments GmbH & Co. 
K). Whole plants were scanned with the PlantEye; then shoots 
were removed, and the remaining rosettes were scanned 
again. Afterwards, the shoots and rosettes were immediately 
weighed to prevent water loss before weighing. For whole 
plant fresh weight, the weight of shoots and rosettes was added 
for each plant. Plants used here were the same plants as those 
used for pigment content analysis and were afterwards no lon-
ger included in any measurements.
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2.6   |   Machine (PlantEye) Phenotyping

Machine phenotyping was performed with a MicroScan device 
with PlantEye F600 (Phenospex, Heerlen, The Netherlands) 
and the implemented software HortControl (Phena version 
2.0, HortControl version 3.85). Automated phenotyping re-
quires improved techniques to exclude non-plant background 
from the analysis (Arvidsson et  al.  2011; Li et  al.  2014; 
Vasseur et  al.  2018). Plant pots were therefore covered with 
blue foil and measured one by one by placing the pots in a 
blue holder that kept the plants at a fixed height and within 
the measured unit. Each plant was either measured four times 
(Experiments 1 and 2) or twice (Experiment 3) at each time 
point for technical replication of the measurements, except for 
the pigment extraction in Experiment 2, for which only one 
measurement was done. Plant pots were turned by 90° be-
tween the repeated measurements. The color hue range from 
values between 200° and 360° (blue to purple) was removed 
from all images that were used for calculations to remove the 
non-plant background and only use the plant areas for anal-
ysis. The PlantEye parameters were split into morphological 
parameters (Figure S4) and spectral parameters (Figure S5). 
Two of the morphological parameters describe the area of 
a plant. The 3D leaf area is the three-dimensional area of a 
plant in mm2, and the projected leaf area is the area covered 
by a plant seen from the top view in mm2. Three of the mor-
phological parameters are linked to plant height, namely the 
canopy light penetration depth, the plant height max, and the 
plant height averaged, all in mm. The canopy light penetra-
tion depth indicates how deep the laser reaches into the plant 
canopy, and the plant height max is the distance between the 
pot height and a plant's highest point. In the case of the plant 
height averaged, the highest point is replaced by the average 
of the highest 10% of points. The digital biomass is the prod-
uct of plant height averaged and 3D leaf area. Several of the 
morphological parameters focus on the convex hull, a con-
vex two-dimensional polygon drawn around the plant area. 
Among those are the convex hull area in mm2, the convex 
hull circumference in mm, and its maximum width in mm. 
The convex hull area coverage is the percentage of the con-
vex hull covered by the plant, while the convex hull aspect 
ratio is the quotient of the convex hull maximum width and 
the perpendicular line to it at its midpoint. The last two mor-
phological parameters are the surface angle average identify-
ing the average angles of all triangles forming a plant and the 
voxel volume total in mm3, estimating a plant's volume. Using 
non-invasive phenotyping methods like the PlantEye, plant 
leaf color shades can be distinguished (Matsuda et  al.  2012; 
Ochogavía et  al.  2014; Dobbels and Lorenz  2019). The spec-
tral parameters include the three values hue, saturation, and 
lightness of the HSL color space, with hue defining the color 
in°, the lightness ranging from 100% for white to 0% for black, 
and the saturation with 0% in the case of grey and 100% for 
bright colors. Further spectral indices are calculated by the 
reflection of different colors. These include the greenness leaf 
index (GLI) calculated using the reflection in green, red, and 
blue: (2·GREEN−RED−BLUE)/(2·GREEN + RED + BLUE) 
and the normalized pigment chlorophyll index (NPCI) relying 
on red and blue: (RED−BLUE)/(RED + BLUE). The other two 
indices additionally include reflection in near-infrared. The 
normalized difference vegetation index (NDVI) is calculated 

by the following formula: (NIR−RED)/(NIR + RED) and the 
plant senescence reflectance index (PSRI) by this one: (RED−
BLUE)/NIR. For all these parameters, the average per plant 
and the percentage of voxels within different definable ranges 
were calculated in the HortControl software implemented in 
the PlantEye using the pre-set values.

2.7   |   Statistical Analysis

For the comparison of several groups, two-way ANOVA and 
Tukey tests were performed in R (R 4.4.0). Figures were pre-
pared in the Statistical Package for Social Science (SPSS, 
International Business Machines Corporation, version 29.0.0.0, 
license version 5725-A54) or Microsoft Office 2016 Excel. 
Correlation analysis was done in SPSS. After testing for normal 
distribution (Kolmogorov–Smirnov) Spearman-Rho correlation 
and graph plotting were done in SPSS. Hierarchical clustering 
was done in R (R 4.4.0). The data were split between time points 
to avoid disturbance of the analysis by unavailable data. Data 
were z-score transformed by phenotypic parameters (scaler 
function, liver package, R). Then graphs were created using the 
functions dist (method: euclidean) and hclust (agglomeration 
method: complete; stats package). N indicates the number of 
individual plants, except in the case of correlation analysis of 
weekly measured manual traits (rosette diameter in cm, manual 
rosette area in mm2, manual rosette convex hull in mm2). Here 
N was the number of collected data points, including repeated 
measurements of single plants.

3   |   Results

3.1   |   Correlation Analysis of Manual 
and Machine-Derived Phenotypic Parameters 
for Plant Growth on ACS

First, we set out to validate the machine-aided MicroScan 
system (PlantEye, Phenospex) for its applicability for small 
rosette plant species and its effectiveness in high-throughput 
phenotyping under ACS conditions. We assumed that spe-
cific manually measured phenotypic parameters previously 
recorded in ACS could be replaced by PlantEye parameters, 
offering the many advantages associated with machine pheno-
typing, such as increased objectivity, efficiency, and reduced 
labor intensity (Akhtar et al. 2024). At first, we collected suit-
able manual and machine-derived plant growth data for A. 
thaliana wildtype (WT) and its coumarin-deficient mutant 
f6'h1-1 under control and up to seven ACS conditions, repre-
senting a range of pH values from pH 6.2 (control) up to in 
between 7.8 (intermediate ACS) and 8.3 (severe ACS; details in 
Figure S2B). Data were recorded throughout the growth cycle 
in two independent experimental series. They showed that the 
f6'h1-1 mutant indeed suffered more severe iron deficiency 
and chlorosis than the wildtype under alkaline conditions 
(overview in Figure  S1A; all plant growth phenotyping data 
in Table S1, details on parameters in Figures S3–S5). This has 
been expected (Schmid et  al.  2014). We also confirmed it in 
an additional experiment (Figure S6), showing that growth in 
ACS conditions was compromised. Plants had a reduced size, 
whereby f6'h1-1 plants had more intense visible leaf chlorosis 
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than WT, as revealed by manual measurements of the rosette 
diameters and SPAD values.

Then, we used the obtained growth data and conducted a 
correlation analysis between 12 manually measured and 20 
PlantEye-derived parameters. We detected many correlations 
in the datasets (Figure  1), which was a strong hint of the ac-
curacy of the phenotyping procedure. Very importantly, each 
of the manual parameters matched with at least four or more 
significantly correlating PlantEye values. Key findings included 
the correlation of manual parameters like rosette diameters, 
plant height, plant weight, and chlorophyll content with their 
PlantEye equivalents like 3D leaf area, plant height max, dig-
ital biomass, and spectral parameters including hue average, 
PSRI average, NDVI average, and lightness average (Figure 1). 
Surprisingly, one manual parameter, namely the rosette diam-
eter, significantly correlated with all 20 PlantEye parameters. 
All manual parameters related to rosette size, in addition to ro-
sette diameter, also manual rosette area, manual rosette convex 
hull, and rosette weight, correlated best with 20, 19, 19, and 17 
PlantEye parameters. This finding speaks in favor of the impor-
tance of the rosette size for A. thaliana growth physiology and 
development in ACS.

To study the accuracy of the correlation of the rosette size 
parameters in detail, we investigated three rosette size cor-
relations using scatterplot analysis of the data points of the 
rosette diameter, 3D leaf area, manual rosette area, convex 
hull area, and manual rosette convex hull collected at six 
time points (Figure 2A–C). First, initially during the growth 
cycle, the strong correlation between rosette diameter and 
3D leaf area (correlation coefficient 0.981) was rather square 
(R2 = 0.934) than linear (R2 = 0.887). However, starting 28 days 
after sowing, the scattering of the data points became stron-
ger (Figure 2A), when flowering began (Figure S7). Second, 
the manual rosette area correlated very strongly with the 
machine 3D leaf area (correlation coefficient 0.992). This 
correlation was linear (R2 = 0.964) up to 42 days after sowing 
(Figure  2B). Third, for the manual rosette convex hull, the 
strongest correlation was not found with the machine convex 
hull area (correlation coefficient 0.951), but with the machine 
3D leaf area and the machine projected leaf area (correlation 
coefficient 0.976; Figure 1). This can again be explained by an 
effect of inflorescence stem formation on the measurements, 
especially beyond 41 days after sowing, as indicated by the 
increased scattering at those time points (Figure 2C). Hence, 
the correlations are best at the rosette growth stage up to the 
bolting stage but diminish at the advanced reproductive stages 
with emerged and branched inflorescence stems and siliques. 
ACS treatments did not affect flowering time in the two exper-
iments (Figure S7A,B).

An interesting question was whether flowering time correlates 
with any PlantEye parameters and, if so, whether it can be es-
timated with the PlantEye. Hence, we subjected manual flow-
ering time data collected during two experiments using the 
above-described WT and f6'h-1 mutant data to correlation anal-
ysis with all PlantEye data collected throughout the life cycle. 
Notably, the three strongest negative correlations to the man-
ual flowering time were canopy light penetration depth, plant 
height averaged, and plant height max 28 days after sowing 

(Figure  S7C,D) coinciding with the average flowering time of 
27 days after sowing (Figure S7). Therefore, the PlantEye mea-
surements corresponding to a change in plant height right from 
the soil level reflect well the manual flowering time. As flow-
ering time and plant height are meaningful parameters reflect-
ing reproductive growth progression during the life cycle of A. 
thaliana, we also analyzed the plant height. Plant height aver-
aged and the light canopy penetration depth (correlation coef-
ficient 0.744; Figure 1) correlated equally well with the manual 
plant height, making both suitable to replace manual height 
measurements.

Next, we addressed the question of whether digital biomass was 
indeed the best parameter representing the plant weight in A. 
thaliana. We analyzed plants with and without inflorescence 
stems, imitating two growth stages. Surprisingly, while the 
whole plant weight indeed correlated best with the digital bio-
mass (correlation coefficient 0.788), the rosette fresh weight cor-
related better with seven other PlantEye parameters (Figure 1). 
The digital biomass was therefore the most suitable estimator for 
A. thaliana weight only after inflorescence stems were formed, 
while other PlantEye parameters, like the leaf area and convex 
hull area, were even more suitable for non-flowering plants.

Manual parameters related to reproductive success were the 
number of siliques and side branches. While the number of siliq-
ues correlated with 16 out of 20 PlantEye parameters, the number 
of side branches correlated with only six (Figure 1), indicating 
that the number of side branches was less connected to overall 
plant growth than the number of siliques. Those six parameters 
included lightness average, plant height averaged, canopy light 
penetration depth, plant height max, surface angle average, and 
the normalized difference vegetation index (NDVI) in that order 
of correlation strength. The correlation with the height parame-
ters can be due to longer plants having more side branches, but 
the negative correlation with the lightness remains unexplained. 
The comparably weak correlation of the manually determined 
number of side branches with the PlantEye parameters makes 
this manual parameter less suitable for being replaced by any 
PlantEye parameter, highlighting the need for additional man-
ual measurements to determine the number of side branches. 
A possible explanation could be that not all side branches were 
detected in the measurement, or the number of side branches 
is simply not related to overall plant growth and physiology in 
the tested growth conditions. To explore this further, we exam-
ined the data of the plant height max and the side branches more 
closely. We plotted the plant height max against the manual 
number of side branches obtained at 50 days, displaying the data 
of plants in control condition and conditions ACS1-4 visibly dis-
tinguishable (Figure 2D). There was an apparent linear relation 
between plant height and the number of side branches using the 
ACS data but not using the control soil data, indicating an effect 
of the soil condition on the correlation between plant height and 
the number of side branches.

Strikingly, convex hull aspect ratio was the only PlantEye pa-
rameter that hardly correlated with any manual parameters 
(Figure  1). Therefore, when examining ACS and control soil 
conditions, this parameter is not suitable for estimating mean-
ingful manual parameters in A. thaliana. As the convex hull 
aspect ratio determines the shape of the plants, it indicates that 

 13993054, 2025, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ppl.70427 by U

niversitäts- U
nd L

andesbibliothek D
üsseldorf, W

iley O
nline L

ibrary on [15/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



6 of 17 Physiologia Plantarum, 2025

FIGURE 1    |     Legend on next page.
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the shape of A. thaliana remains unchanged under the influence 
of ACS.

Due to the particular importance of chlorosis as a symptom 
in ACS, we were especially interested in PlantEye parameters 
useful for estimating chlorophyll content in A. thaliana. This 
aspect was examined in the rosettes of 38-day-old plants after 
their inflorescence stems were removed, by first conducting 
PlantEye measurements and then destructive pigment content 

analysis of WT and f6'h1-1 plants grown in four different soil 
conditions. The correlations of rosette leaf plant pigmenta-
tion to the PlantEye parameters were consistent among the 
chlorophyll a, chlorophyll b, carotenoid, and chlorophyll a + b 
content, but surprisingly not very high (Figure 1). The stron-
gest correlation for total chlorophyll content was found with 
the hue, PSRI, NDVI, and lightness (correlation coefficients 
0.687, −0.652, 0.579, and −0.533). There were not only signif-
icant correlations with the averages of spectral parameters, 

FIGURE 1    |    Correlation analysis of manual and machine-derived phenotypic parameters. Data of twelve manual and 20 machine-derived 
PlantEye parameters for Arabidopsis thaliana wildtype (WT) and its coumarin-deficient mutant f6'h1-1 under control and up to seven alkaline cal-
careous soil (ACS) conditions, representing a scale of differing pH values from pH 6.2 (control) up to 8.3 (severe ACS), were recorded during two ex-
periments and subjected to correlation analysis. Data were collected at the indicated time points. Rectangles around time points indicate two exper-
iments (pink: Experiment 1; lavender rounded corners: Experiment 2). As indicated, either rosettes (pigment content, rosette fresh weight) or whole 
plants (remaining parameters) were used. Spearman Rho analysis was conducted in SPSS (*p < 0.05, **p < 0.01). Heatmap color codes for correlation 
coefficients (−1 blue, 0 white, +1 red). The strongest correlation per manual parameter is marked with a box. N = number of data points as indicated.

FIGURE 2    |    Scatterplot analysis of selected manual and machine-derived phenotypic parameters. Scatter plots of (A) rosette diameter with 
PlantEye 3D leaf area (N = 799 data points), (B) manual rosette area with PlantEye 3D leaf area (N = 179 data points), and (C) manual rosette convex 
hull with PlantEye convex hull area (N = 179 data points). Growth data for Arabidopsis thaliana wildtype (WT) and its coumarin-deficient mutant 
f6'h1-1 under control and alkaline calcareous soil (ACS) conditions, representing a scale of differing pH values from pH 6.2 (control) up to 8.3 (severe 
ACS) were recorded at six time points, that are color, and shape coded in the scatter plots (14/13, 20/21, 27/28, 34/35, 41/42 and 49/50 days after sow-
ing). (D) Manual number of side branches with PlantEye plant height max (N = 61 plants), 50 days after sowing. Colors and symbols indicate different 
growth conditions, control, and varying ACS conditions from ACS1 to ACS4 (details in Figure S2). Scatter plots were created in SPSS.
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8 of 17 Physiologia Plantarum, 2025

like the hue, NDVI, PSRI, and lightness, but also their bin 
values, further confirming their usefulness for chlorophyll es-
timation (Table S2). For example, the percentage of a plant's 
surface with a hue between 75° and 100°, a lightness between 
0% and 25%, and a NDVI between 0.3 and 0.45 were having 
the correlation coefficients 0.633, 0.420, and −0.601 with the 
chlorophyll a + b content, offering further options for non-
destructive pigment content determination.

Finally, we investigated the relatedness of parameters by hi-
erarchical clustering of manual and machine phenotyping pa-
rameters. Indeed, this approach highlighted the clustering of 
corresponding parameters (Figure 3). For example, the manual 
rosette size parameters rosette diameter, manual rosette area, 
and manual rosette convex hull were best clustered with all cor-
responding morphological machine parameters such as plant 
height max, convex hull area, convex hull circumference, con-
vex hull maximum width, voxel volume total, 3D leaf area, and 
projected leaf area (Figure 3A). Similar situations were seen for 
plant weight and plant height (Figure  3B,C). Remarkably, the 
chlorophyll a, b, and a + b contents clustered closest with the 
NDVI average and the carotenoid content with the hue average 
(Figure 3D). Again, the number of siliques and the number of 
side branches were not clustering closely together, and the num-
ber of side branches was found in a cluster separate from all ma-
chine parameters and also other manual parameters, indicating 
low similarity to those (Figure 3E).

In conclusion, machine-aided phenotyping with the PlantEye 
was found to deliver accurate and reliable data that were mean-
ingful for growth physiology in A. thaliana plants grown in ACS 
conditions. We identified optimal machine-aided parameters, 
such as 3D leaf area, hue average, NDVI average, PSRI average, 
and lightness average, covering well the manually phenotyped 
traits. The best time point for reliable machine phenotyping of 
A. thaliana was around the onset of inflorescence stem elonga-
tion at days 34–35. Rosette size was found to be a meaningful 
trait for overall plant performance of A. thaliana in ACS, cor-
relating with morphological and plant color traits. The number 
of siliques was more suited for correlation with machine param-
eters than the number of side branches.

3.2   |   Assessment of Machine-Aided Phenotypic 
Analysis of Wildtype and the Coumarin-Deficient 
Mutant f6'h1-1 in Seven Artificially Created ACS 
Conditions

Having established and validated machine phenotyping, we 
then inspected closely the obtained plant data at days 27–28 and 
34–35, focusing on the best suited machine-aided phenotyping 
parameters to assess differences in growth physiology between 
WT and f6'h1-1 plants in the ACS conditions described above 
and in Experiments 1 and 2 (Figures S1A, S2). Our aim was to 
identify one ACS condition that distinguishes the best WT and 
f6'h1-1 plants with machine phenotyping and that still allows 
plants to complete their life cycles. We predicted that this was 
the case for an intermediate ACS out of seven tested conditions 
(details in Figure  S2B and Supporting Information). Having 
such an ACS condition combined with meaningful PlantEye 
parameters will allow us in the future to investigate genetic 

adaptation to ACS in this species in clearly defined soil condi-
tions with reduced time expenses for phenotyping.

When we displayed the plant phenotyping data (Figures 4, S8), 
we excluded the strong ACS5 condition because plants had died 
at 28 days after sowing (DAS; Figures  4A, S8A). We also ex-
cluded the mild ACS2 condition due to the lack of phenotypes 
differing from control (Figures  4C–E, S8C–G) except for the 
number of siliques in f6'h1-1 (Figure 4F). Reduced plant size was 
found at 34–35 days in both WT and the f6'h1-1 lines in ACS1 
(Figure  4C), in ACS3 (Figure  4C,G), in ACS4 (Figure  4C), in 
ACS3-25% sand (Figure 4G) and in ACS3-50% sand (Figure 4G) 
It was also visible at 27–28 days in ACS3, ACS4, ACS3-25% sand, 
ACS3-50% sand (Figure  8C,H). Among the intermediate ACS 
conditions, leaf color changes and differences between f6'h1-1 
and WT were found in ACS1, ACS3, ACS4, ACS3-25% sand, 
and ACS3-50% sand (Figures 4D,E,H,I, S8D–G,I–L). The num-
ber of siliques was reduced in both lines in ACS1, ACS3, ACS4, 
ACS3-25% sand and ACS3-50% sand (Figure 4F,J). Based on the 
strongly impaired growth in ACS4 and variation of individual 
plant growth in ACS3-50% sand, we also excluded them from 
further analysis (Figure 4C,G). Since ACS3-grown f6'h1-1 plants 
frequently showed more strongly affected spectral parameters 
than in ACS1 and ACS3-25% sand, we finally opted for ACS3 
as the best condition for detecting genetic variations in future 
experiments (Figures 4H,I, S8J).

In sum, the established manual and machine phenotyping sys-
tem was suited to detect morphological and leaf color changes 
between control versus ACS and WT versus f6'h1-1, with the 
intermediate ACS3 condition selected as suitable for detecting 
genetic variations. This setup provides a clearly defined pipeline 
for plant growth and non-invasive phenotyping. It facilitates the 
detection of variations in A. thaliana lines with varying perfor-
mances in ACS or any treatment leading to similar effects. The 
findings also confirm the importance of coumarins produced 
with the help of F6'H1 for adaptation to ACS conditions.

3.3   |   Validation of Manual and Machine-Aided 
Phenotypic Analysis Using Known Regulatory Iron 
Homeostasis Mutants

In the final step, the chosen ACS3 condition and the selected 
phenotyping parameters were applied to validate the proce-
dure using iron (Fe) homeostasis mutants with the additional 
aim of identifying potentially novel phenotypes appearing 
during the life cycle of A. thaliana plants (all phenotyping data 
in Table  S3). The mutants were selected to have differing Fe 
deficiency-induced leaf chlorosis symptoms, namely the se-
verely chlorotic loss of function mutant fit-3 (Jakoby et al. 2004), 
the pye-1 mutant turning chlorotic on ACS (Long et al.  2010), 
and the Fe-accumulating double mutant btsl1 btsl2 (Hindt 
et al. 2017; Rodríguez-Celma et al. 2019; Lichtblau et al. 2022). 
The growth phases and the influences of nutrient deficiencies 
on the growth cycle have not yet been completely shown for any 
of the three mutants in quantitative phenotyping experiments in 
an ACS condition. We expected that the mutants might differ in 
their growth curves on ACS in comparison to the wildtype, re-
vealing novel phenotypes allowing us to resolve their functional 
context during the life cycle.
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FIGURE 3    |     Legend on next page.
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First, we analyzed the fit-3 mutant. It showed visibly reduced 
growth in control and ACS3 conditions 14 days after sowing 
as compared to the WT (Figure  5A). Reduced NDVI was vis-
ible in plant images (Figure 5A) and quantitatively confirmed 
(Figure 5B). Interestingly, in the fit-3 mutant, there was no in-
crease in the 3D leaf area at all during the experiment in either 
condition, while there was a strong increase for the WT from 
15 to 42 days after sowing in control condition and less pro-
nounced in ACS3 (Figure 5C). The halting of rosette growth of 
fit-3 clearly shows a growth reduction caused by the inability to 
take up nutrients like Fe in any growth condition. Next, pye-1 
showed a growth curve similar to the WT in control condition. 
Growth of pye-1 in ACS was much reduced compared to the WT 
(Figure 5D,E) and it also had a reduced NDVI average at 28 days 
compared with other lines and conditions (Figure 5F). Strikingly, 
the btsl1 btsl2 double mutant remained slightly smaller than the 
WT in control and similarly large to WT in ACS3 condition at 
earlier growth phases, before it increased its 3D leaf area in 
both conditions between 28 and 35 days after sowing and then 
grew to an even bigger size than the WT (Figure 5D). This ele-
vated growth performance of btsl1 btsl2 versus WT happened at 
an earlier time point in ACS3 than in control (Figure 5D). The 
NDVI of the btsl1 btsl2 double mutant was unchanged compared 
to the WT at 28 days (Figure 5F).

In conclusion, among the investigated mutants, fit-3 and pye-1 
showed growth reduction and chlorosis, while the btsl1 btsl2 
mutant displayed a growth increase in ACS versus WT. These 
phenotypes could be detected by machine phenotyping during 
the plants life cycle. This validates the use of rapid, precise, and 
reliable machine phenotyping on ACS3 for investigating genetic 
adaptation of A. thaliana plants on ACSs. Since fit-3, pye-1, and 
btsl1 btsl2 mutants are Fe homeostasis mutants, growth on ACS3 
is influenced by their capacities to manage Fe homeostasis.

4   |   Discussion

This study established reliable and accurate procedures for 
growing A. thaliana in ACS and phenotyping plants using both 
manual and machine-aided methods across their life cycle. We 
identified an optimal ACS condition (ACS3), enabling clear dif-
ferentiation of leaf color changes and growth patterns between 
WT and Fe homeostasis mutants using machine-aided pheno-
typing (PlantEye). Our here-established machine phenotyping 
pipeline is applicable to support even small plant research labs 
with limited space and budget in their endeavors to uncover the 
molecular-physiological and developmental phenotypes in the 
model species A. thaliana.

4.1   |   Machine-Aided Phenotyping Across the Life 
Cycle of A. thaliana Plants Growing on ACS Is 
Reliable and Accurate

Reliable phenotyping requires broad phenotype testing, treat-
ment differentiation, and ground-truth validation (Nguyen 
et al. 2016; Ziamtsov and Navlakha 2019; Manavalan et al. 2021). 
PlantEye data effectively distinguished ACS and control plants, 
matching manual measurements in plant size and leaf color 
(Figure 4 and Figure S6). Notably, the PlantEye performed con-
sistently across two independent experiments (Figure 4D,H), un-
derlining reliability. 3D leaf area showed high correlation with 
ground-truth manual rosette measurements, especially before 
inflorescence formation (Figure  2A,B). Remarkably, although 
chlorophyll-spectral parameter correlations were not as strong 
as for rosette size, pre-bolting and round-bolting measurements 
(27/28 and 34/35 days) were already sufficient to differentiate 
growth conditions and genotypes based on spectral parameters 
(Figure 4, Figure S8). Analysis of the development of the 3D leaf 
area at 15–50 days and the NDVI at 15–35 days additionally indi-
cated that judging from the growth curves, differences between 
lines and conditions were visible earlier in the NDVI than in the 
3D leaf area (Figure S9A–E).

4.2   |   Different Machine Parameters 
of the PlantEye Correlated With Manually 
Determined Parameters

The key PlantEye parameter 3D leaf area accurately replaced 
manual measurements of rosette diameter and area until 42 days 
after sowing (Figure  2A,B). Spectral parameters—hue, NDVI, 
PSRI, and lightness—correlated with chlorophyll content, re-
ducing the effort for manual assessment. Additional correla-
tions were observed with siliques, plant weight, and flowering 
time (Figure  1). Rosette diameter strongly correlated with 3D 
leaf area (R2 = 0.934), which also correlated with manual rosette 
area (R2 = 0.964; Figure 2A,B), consistent with similar findings 
in crops like soybean and peanut (Vadez et al. 2015; Manavalan 
et  al.  2021). Due to potential diurnal leaf movement (Poorter 
et  al.  2023), 3D leaf area is more reliable than projected leaf 
area. Whole plant weight also correlated with digital biomass 
(R2 = 0.881) after inflorescence stem formation, similar to wheat 
and rye studies (Bazhenov et al. 2023).

Notably, while no previous studies linked PlantEye param-
eters to the number of siliques and side branches, we found a 
correlation between the number of siliques and the plant area 
(e.g., convex hull area and 3D leaf area) that also correlated 

FIGURE 3    |    Hierarchical clustering of manual and machine-derived phenotypic parameters. Arabidopsis thaliana wildtype (WT) and the 
coumarin-deficient mutant f6'h1-1 were grown in seven alkaline calcareous soil (ACS) conditions with varying pH values in two experiments to 
collect manual and machine-derived (PlantEye) data. Manual parameters were clustered with machine parameters collected at the same time points. 
(A) Weekly determined rosette size parameters (rosette diameter, manual rosette area, manual rosette convex hull). (B) Plant weight at 38 days after 
sowing (DAS; rosette weight, shoot weight and whole plant weight). (C) Manual plant height at 44 DAS. (D) Rosette pigment content at 38 DAS (chlo-
rophyll a, chlorophyll b, chlorophyll a + b, carotenoids) and (E) Number of siliques and side branches at 50 DAS. Hierarchical clustering was done 
using the hclust function in R (stats package). Colored rectangles around boxes indicate two different experiments (Experiment 1: Pink, Experiment 
2: Lavender with rounded corners). Manually determined parameters are marked with a grey box. Splitting into six clusters is highlighted by black 
rectangles. N = 23–799 data points.
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FIGURE 4    |    Machine-aided phenotypic analysis of wildtype and the coumarin-deficient mutant f6'h1-1 in seven artificially created ACS condi-
tions. Arabidopsis thaliana wildtype (WT) and the coumarin-deficient mutant f6'h1-1 were grown in seven alkaline calcareous soil (ACS) conditions 
with varying pH values in two experiments to determine an intermediate condition differentiating the phenotypes of lines. Selected phenotypic pa-
rameters are shown. (A, B) Photos of plants in ACS conditions. Scale bar = 1 cm. Plants in ACS5 had died at that time point. (C) 3D leaf area, (D) nor-
malized difference vegetation index (NDVI) average, (E) plant senescence reflectance index (PSRI) average, and (F) manual number of siliques of the 
plants in Experiment 1 at 34 and 50 days after sowing (DAS). Conditions from left to right were control and ACS1-5. (G) 3D leaf area, (H) NDVI aver-
age, (I) PSRI average, and (J) manual number of siliques of the plants in Experiment 2 at 35 DAS and 50 DAS. Conditions from left to right were, con-
trol, ACS3, ACS3-25% sand, and ACS3-50% sand. Letters indicate statistical differences (Two-way ANOVA, Tukey test in R, p = 0.05, N = 9–16 plants).
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FIGURE 5    |     Legend on next page.
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with the rosette diameter, suggesting a link between rosette size 
and reproductive fitness (Clauss and Aarssen 1994). This may 
be genotype- and environment-dependent and requires further 
characterization. Side branch correlations were weak, though 
data hinted at condition-dependent correlations (Figure  2D). 
Our study showed fewer side branches in higher control plants 
than in smaller ACS plants. This observation was contradictory 
to a study in melon plants reporting reduced shoot branching 
under alkaline conditions (Ulas et al. 2019). Further investiga-
tion would be needed.

Since chlorosis is a key iron deficiency symptom in ACS 
(Abadía et  al.  2011) spectral parameters such as hue, PSRI, 
NDVI, and lightness are important traits for chlorophyll esti-
mates. Despite that, the correlations to PlantEye parameters 
were weaker than those of rosette area measurements to re-
spective PlantEye parameters. One reason could be that the 
color parameters are not optimal for single plant analysis, 
but rather suited for overall plant health in a field or given 
area (Merzlyak et  al.  1999; Huang et  al.  2021; Hassan and 
Gutub 2022). The correlation of hue, PSRI, NDVI, and light-
ness with chlorophyll content aligns with previous reports 
(Merzlyak et  al.  1999; Castro and Sanchez-Azofeifa  2008; 
Wu et al. 2008; Sass et al. 2012; Chen et al. 2021). Less cor-
relating indices, like NPCI and GLI, have a high applicabil-
ity in different contexts, like estimation of nutrient status 
(Peñuelas et al. 1994), automatic differentiation of wheat and 
soil for quantification of plant damage in fields (Louhaichi 
et  al.  2001), nutritional value of plants (Andressa Alves 
et al. 2023), or stress in A. thaliana (Yang et al. 2022). For our 
specific purpose and technique, however, GLI was not suitable 
for pigment content estimation.

Flowering time correlated negatively (R = −0.83 to −0.84) with 
canopy light penetration depth and plant height just around 
bolting (Figure S7), because plants taller at that time point had 
flowered earlier. With repeated measurements around the flow-
ering time, the PlantEye could be used to estimate flowering 
time based on inflorescence stem length. Other definition meth-
ods of flowering time, like first visible bud, number of leaves, 
or flower opening, were not tested due to the need for higher 
resolution for the distinction of separate, possibly overlapping, 
leaves. The convex hull aspect ratio was also not suitable for 
analyzing A. thaliana in ACS. It can be used for other applica-
tions like species or growth stage determination (Choudhury 
et al. 2016; Haque and Haque 2018).

Ultimately, NDVI, lightness, hue, and PSRI proved effective for 
chlorosis detection, while 3D leaf area was the best parameter 
for manual rosette size estimation, supporting the idea that the 

PlantEye is a valuable tool for machine-aided A. thaliana phe-
notyping in ACS.

There were also limitations in phenotyping A. thaliana with 
the PlantEye. While PlantEye data correlated with reproductive 
traits, the system cannot directly spot siliques or side branches 
in 3D models of growing plants, limiting its reliability for silique 
counts. Moreover, alkaline conditions reduce silique size (Jain 
and Schmidt  2024), complicating reproductive fitness assess-
ments. Inflorescence stem growth also introduced measurement 
inaccuracies. Fixing shoots in an upright position might improve 
precision. Nevertheless, 3D leaf area measurements remained 
reliable until 41/42 days to assess the rosette size and thereby es-
timate plant performance (Figure 2B,C). The best measurement 
window was at 34/35 days, around a week after bolting, when 
ACS and control differences were most pronounced (Figures 4, 
5C, and S8). After that, the data started scattering (Figure 2) and 
inflorescence stems overshadowed the rosette. Future studies 
should examine correlations between spectral parameters and 
chlorophyll content over time for improved assessments. Also, 
to assess the full versatility of the PlantEye system, it would 
be very interesting to compare other nutrient deficiencies and 
stress effects.

4.3   |   The Machine Phenotyping of WT and Fe 
Homeostasis Mutants Detected Expected and New 
Leaf Chlorosis Phenotypes on a Suited ACS 
Condition

The selected condition ACS3 produced a consistent size reduc-
tion of WT, one Fe deficiency and one Fe homeostasis mutant, 
f6'h1-1 and pye-1, comparable to the reduced size of A. thali-
ana lines in natural ACS (Terés et al. 2019), and was consistent 
across three experiments (Figures 4A,B and 5E). It was shown 
that upon iron deficiency treatment, rosette growth can arrest 
(Truong et al. 2024), and this is most pronounced in young leaves 
(Ngigi et al. 2025). However, we did not observe a complete ar-
rest in rosette growth of the WT, but rather a reduced growth as 
observed in natural ACS (Terés et al. 2019). Complete growth 
arrest was only the case in fit-3 (Figure 5C) and partly in pye-1 
(Figure 5D). Future studies could investigate the reasons behind 
reduced rosette growth and especially the role of Fe availability. 
The difference in size between WT, f6'h1-1 (Figure S9A–E), fit-3 
(Figure 5C), and pye-1 (Figure 5D) occurred after a visible dif-
ference was detected in the NDVI (Figure S9B–G). One likely 
explanation is that leaf chlorosis can be picked up rapidly by the 
PlantEye, while the diminished leaf growth affected the rosette 
size only with a delay. An alternative explanation is that leaf pig-
mentation and rosette size follow different dynamics.

FIGURE 5    |    Machine-aided phenotypic analysis using known regulatory iron homeostasis mutants. The chosen alkaline calcareous soil (ACS3) 
condition and the selected phenotyping parameters were applied to validate the procedure using the iron (Fe) homeostasis mutants fit-3, pye-1, and 
btsl1 btsl2. (A) Photos and normalized difference vegetation (NDVI) images (PlantEye) of wildtype (WT) and fit-3 mutant 14/15 days after sowing 
(DAS). Scale bar photos = 1 cm, scale bar NDVI images = 25 mm. Scale of the NDVI ranging from purple −1 to red +1. (B) Quantification of the NDVI 
of the WT and fit-3 at 15 DAS. N = 4–8 plants. (C) Development of the 3D leaf area of WT and fit-3 (arrow) in control soil and ACS3 soil over the exper-
iment. N = 4–8 plants. (D) Development of the 3D leaf area of WT, btsl1 btsl2, and pye-1 over the time of the experiment. N = 4–8 plants. (E) Photos of 
WT, btsl1 btsl2, and pye-1 in control and ACS3 at 29 DAS. (F) NDVI of WT, btsl1 btsl2, and pye-1 at 28 DAS, N = 7–8 plants. Letters indicate statistical 
differences (Two-way ANOVA, Tukey test in R, p = 0.05, N = 7–8 plants).
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The affected spectral parameters in f6'h1-1 in ACS aligned 
with previous reports on chlorosis in alkaline soils (Schmid 
et al. 2014) similar to some natural lines in natural ACS (Terés 
et al. 2019). The reproducibility and effect on plant growth make 
ACS3 a reliable tool for growing and phenotyping A. thali-
ana lines.

The fit-3 mutant is severely iron deficient (Jakoby et  al.  2004) 
and failed to grow in both control and ACS3 conditions, em-
phasizing FIT's crucial role in iron homeostasis overriding any 
growth condition effect (Connorton et  al.  2017; Schwarz and 
Bauer 2020). The FIT transcription factor is a master regulator 
controlling multiple downstream genes, including F6'H1. The 
downstream genes perform various reactions in Fe acquisition 
and metal homeostasis under Fe deficiency in the root (Schwarz 
et al. 2020). The pye-1 mutant, previously reported to arrest at 
the cotyledon stage in alkaline soil (Long et al. 2010), remained 
growth-impaired even when transplanted to ACS3 at day eight, 
suggesting persistent sensitivity beyond early development. 
Single plants did not survive in ACS3 with death occurring be-
tween 28 and 35 days. This was well visible when NDVI aver-
age data of single plants were displayed (Figure S9G). The leaf 
chlorosis, seemingly more prevalent in the oldest leaves of pye-1 
plants (Figure 5E,F), may indicate the mutants' inability to mo-
bilize Fe or control proper levels of other heavy metals like zinc 
and manganese. This observation coincides with a previous re-
port on differing roles of old and young leaves in metal ion ho-
meostasis in A. thaliana (Ngigi et al. 2025). The btsl1 btsl2 mutant 
(Hindt et al. 2017) had not been tested in ACS before. It initially 
showed reduced growth but later surpassed WT in both condi-
tions, with an earlier growth recovery in ACS3 (Figure 5D). This 
is highly interesting as it might suggest a potential advantage of 
the btsl1 btsl2 loss of function in alkaline conditions while main-
taining normal growth in iron-sufficient environments. That 
aligns with previous reports of improved growth in iron-limited 
conditions without iron toxicity symptoms under iron-sufficient 
conditions (Hindt et al. 2017). In agreement with a functional 
model proposed by Lichtblau et al. 2022, the better growth of the 
btsl1 btsl2 mutant can be explained by reduced downregulation 
of transcription factors of the group IVc, including bHLH104, 
ILR3, bHLH115, and bHLH34, which promote the Fe uptake 
response when BTSL1 and BTSL2 proteins are not present 
(Hindt et al. 2017; Lichtblau et al. 2022). Overexpression of those 
bHLH transcription factors like bHLH104 has likely a similar 
effect as btsl1 btsl2 knockout to stimulate Fe uptake (Zhang 
et al. 2015; Liang et al. 2017; Wang et al. 2017). Normally, the 
BTS (L)-type E3 ligase proteins may bind bHLH transcription 
factors like FIT, PYE, ILR3, and bHLH104 and prepare them for 
degradation through protein ubiquitination (Selote et al. 2014; 
Rodríguez-Celma et al. 2019; Spielmann et al. 2023). Clearly, the 
here-presented phenotyping pipeline is suitable to detect plant 
phenotypes of novel Fe homeostasis mutants reliably. The study 
highlights the benefits of multi-stage phenotyping to capture dy-
namic growth patterns. Future studies should replicate findings 
for pye-1 and btsl1 btsl2 mutant interactions and explore addi-
tional iron-regulatory mutants to better understand ACS toler-
ance mechanisms in A. thaliana.

A limitation of the ACS soil recipe is the possible variability of 
the peat composition. Using reference lines of A. thaliana with 
a known reaction across experiments can help mitigate this 

potential effect. Uncontrolled humidity and blue foil may have 
influenced the plant responses to water availability. While artifi-
cial ACS conditions offer higher controllability and consistency 
across labs, they do not fully reflect the natural ACS structure. 
Future studies could explore the comparability of artificial ACS 
with different natural ACS conditions to further validate the 
system.

In conclusion, this study outlines the preparation of several ACS 
conditions, with ACS3 emerging as an effective tool for detect-
ing phenotypic differences in A. thaliana wildtype (Col-0) and 
Fe homeostasis mutants. Importantly, in the future, this growth 
condition will serve as an assessment tool for growth pheno-
types of mutants that help to further depict the intricacies of Fe 
regulatory mechanisms.

5   |   Conclusions

This study achieved multiple key objectives: (1) demonstrat-
ing an affordable, reliable, and accurate non-invasive high-
throughput phenotyping pipeline to be applied by a single lab 
working with a small rosette plant species like A. thaliana; (2) 
identifying optimal phenotyping parameters for A. thaliana in 
ACS using the PlantEye; (3) defining ACS3 as a condition that 
effectively differentiates wildtype from f6'h1-1, and (4) iden-
tifying new growth phenotypes of Fe homeostasis mutants 
using this established pipeline. These findings lay a founda-
tion for further research on plant adaptation to ACS and nu-
merous other stress factors. The successful application of the 
PlantEye highlights its potential for large-scale non-invasive 
studies on plant stress responses to ACS, opening up new op-
portunities for future research on A. thaliana mutants and 
natural accessions. Beyond that, provided some adjustments, 
this procedure is easily applicable to any plant species of a 
comparable size that can be assessed by the MicroScan device 
with the PlantEye.
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Supporting Information

Additional supporting information can be found online in the Supporting 
Information section. Table  S1: All Phenotypic Data Collected 
Manually and Machine-aided (PlantEye) for Correlation 
Analysis. Data of twelve suitable manual and 20 machine-derived 
PlantEye parameters for A. thaliana wildtype (WT) and its coumarin-
deficient mutant f6’h1-1 under control and up to seven alkaline calcar-
eous soil (ACS) conditions, representing a scale of differing pH values 
from pH 6.2 (control) up to 8.3 (severe ACS) were recorded during two 
experiments. Manual parameters and PlantEye were determined at the 
indicated time points in days after sowing (DAS). Both whole plants 
or rosettes only were used for the determination of the parameters as 
indicated in the table. For details on the parameters see the material 
and methods section. For the PlantEye data, averages of repeated mea-
surements per time point are shown. Block ID of plants are unique iden-
tifiers within the experiments. In case of empty fields, data were not 
available for the parameters at the time point for the plant. Table S2: 
Results of Correlation Analysis of All Manually Determined and 
All Machine-derived PlantEye Parameters. Data of twelve suitable 
manual and 20 machine-derived PlantEye parameters for A. thaliana 
wildtype (WT) and its coumarin-deficient mutant f6’h1-1 under control 
and up to seven alkaline calcareous soil (ACS) conditions, representing 
a scale of differing pH values from pH 6.2 (control) up to 8.3 (severe ACS) 
were recorded during two experiments and subjected to correlation 
analysis. Plant weight, rosette fresh weight, and pigment contents were 
determined 38 days after sowing. Plant height was determined 44 days 
after sowing. Rosette diameter, manual rosette area, and manual rosette 
convex hull were measured weekly during six weeks. N depended on pa-
rameters; if several time points were measured, plants were measured 
repeatedly. N (plant weight, rosette fresh weight, plant height) = 24, N 
(Rosette diameter) = 799, N (manual rosette area, manual convex hull 
area) = 179, N (Number of siliques and side branches) = 61, N (pigment 
contents) = 23. Only rosettes were used for chlorophyll content mea-
surement in acetone. For details on parameters see materials and meth-
ods section. Spearman Rho Correlation was done in SPSS. Significant 
correlations are marked (* < 0.05, ** < 0.01). Table S3: All Machine-
Derived Data for Phenotypic Analysis Using Known Regulatory 
Iron Homeostasis Mutants. The ACS3 condition and the selected 
phenotyping parameters were applied to validate the procedure using 
iron (Fe) homeostasis mutants with the additional aim of identifying po-
tentially novel phenotypes appearing during the life cycle. The iron ho-
meostasis mutants fit-3, pye-1, and btsl1 btsl2 were phenotyped in ACS3 
weekly. Eight plants per line were planted. The data were obtained at 
the time points indicated in the column days after sowing. The Block 
ID served as a unique identifier for each plant. Note that some mutant 
plants did not survive. Data S1: Supporting Information Containing 
Supplemental Figures and Supplemental Methods. 
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