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Summary

Bielliptic surfaces form one of the four classes of minimal surfaces of Kodaira dimension zero. Over
algebraically closed fields every bielliptic surface arises as a quotient of a product of two genus-one
curves by a finite commutative group scheme. We study the classification of bielliptic surfaces in an
arithmetic setting, i.e. over arbitrary ground fields. Our main result states that in this context not every
bielliptic surface is a quotient of a product of two curves. This can be attributed to an obstruction in a
second cohomology group. We furthermore construct concrete examples of bielliptic surfaces that are not
quotients of the above form.
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Introduction

The Enriques classification of minimal complex smooth, proper, minimal algebraic surfaces is a particularly
classical topic, whose study was initiated in the early 20th century in the larger framework of the Italian
school of algebraic geometry; for an exposition see e.g. [Băd01; Bea96; Sha96]. It was studied by
prominent mathematicians of the time, including Enriques, Severi and Castelnuovo. Their classification
is an elaborate collection of statements concerning many classes of surfaces, each determined by specific
numerical invariants. Only later did the concept of the Kodaira dimension provide a more natural
framework for the classification of surfaces. This invariant measures in some sense the ‘size’ of the
dualising sheaf. For surfaces it takes values in the set {−∞, 0, 1, 2}. Fixing the Kodaira dimension, we
obtain four classes of minimal surfaces. They are called: the rational and ruled surfaces, the surfaces of
Kodaira dimension 0, the honestly elliptic surfaces, and surfaces of general type, corresponding to Kodaira
dimensions −∞, 0, 1 and 2, respectively.

Our main interest lies with surfaces whose Kodaira dimension equals zero. Since elliptic curves also
have Kodaira dimension zero, these surfaces may be seen as their two-dimensional counterparts. One
of the results in the Enriques classification states that there are four subclasses of minimal surfaces,
distinguished by the second Betti number, namely K3 surfaces with b2 = 22, Enriques surfaces with
b2 = 10, abelian surfaces with b2 = 6, and bielliptic surfaces (also called hyperelliptic surfaces) with
b2 = 2; see Theorem 3.1.23. Each family has its own rich geometric theory.

Although this characterisation gives a natural and intrinsic definition of each of the classes, it does
not give much immediate insight into the geometric properties, nor does it unveil the interrelationships
between the four classes. For example, the Kummer construction produces a K3 surface from an abelian
surface. Additionally, the first two classes are inextricably linked: every complex Enriques surface is the
quotient of a K3 surface by a free involution.

The last family of bielliptic surfaces is often overshadowed by its three brothers, despite displaying
interesting properties that are not shared by the other classes. For example, fundamental groups of
bielliptic surfaces are noncommutative, related to the so-called crystallographic groups; see [Iit69]. The
other three families have an abelian fundamental group. Furthermore, bielliptic surfaces may possess
numerically trivial invertible sheaves that are not algebraically trivial.

Complex bielliptic surfaces are characterised as quotients of abelian surfaces by free actions of finite
commutative groups. In that sense they are to abelian surfaces what Enriques surfaces are to K3 surfaces.
Not every abelian variety arises as a cover of a complex bielliptic surface: a structure theorem states
that every bielliptic surface is the quotient of a product ˜︁C × ˜︁D of two elliptic curves, where the finite
commutative group G acts diagonally on the two factors, such that the action is by translation on the
first factor ˜︁C, but has fixed points on the second factor ˜︁D; see Theorem 3.4.1. We note the similarities
to ruled surfaces, which arise if we ask instead that ˜︁D ∼= P1, and abelian surfaces, which correspond to
G = 0, respectively.

In contrast to Enriques surfaces, where no concrete description of all free involutions on K3 surfaces is
known, the Bagnera–de Franchis classification gives a concrete and complete description of all bielliptic
surfaces. The assumptions on the actions on the two factors impose severe restrictions on the isomorphism
class of the group G. It turns out that there are seven isomorphism classes for the group G, whose actions
are listed in Theorem 3.4.4, but see also List VI.20 of [Bea96] or p. 339 of [BF08]. This partitions the set
of bielliptic surfaces into seven types, as follows.

Type (a1) (a2) (b1) (b2) (c1) (c2) (d)

G Z/2Z (Z/2Z)2 Z/3Z (Z/3Z)2 Z/4Z Z/4Z× Z/2Z Z/6Z

v



The above structure result implies that a complex bielliptic surface admits two elliptic fibrations,
to be defined in Definition 3.1.30, given by the two projections f : ( ˜︁C × ˜︁D)/G → ˜︁C/G = P and

g : ( ˜︁C × ˜︁D)/G→ ˜︁D/G = B; in a more general context see Sections 3.2 and 3.3. The two fibrations justify

the nomenclature bielliptic. Note that the apparent symmetry in the two factors ˜︁C ↔ ˜︁D is broken by
the different postulates in the action of the group scheme G. The curve P = ˜︁C/G is an elliptic curve,
being the quotient of an elliptic curve by a free action, whereas the existence of fixed points for the
action on ˜︁D is the cause for ramification in the quotient map ˜︁D → B, whence B ∼= P1 follows from the
Riemann–Hurwitz formula. Each of the two elliptic fibrations hence has its own characteristics: e.g. all
fibres of f are smooth, whereas for g has degenerate fibres.

The Enriques classification of surfaces was extended to algebraically closed fields of arbitrary char-
acteristic by Bombieri and Mumford in a series of articles [Mum69; BM77; BM76]. It turns out that
the classification remains intact in characteristic 0 and characteristic p ≥ 5. In order to include the
small characteristics 2 and 3, their marvellous insight is to allow actions by group schemes that may be
non-smooth. For example, an Enriques surface in characteristic 2 need not necessarily be the quotient of
a K3 surface by a Z/2Z-action: it may also be the quotient by µ2 or α2 of a so-called K3-like surface.
The K3-like surface should be thought of as a ‘non-smooth version of a K3 surface’. The non-smoothness
of the surface is, in some sense, compensated by the non-smoothness of the group scheme.

A similar adjustment is necessary for bielliptic surfaces. In the small characteristics p = 2 and p = 3,
the curve ˜︁D occurring in the structure theorem may cease to be smooth, instead being isomorphic to the
rational cuspidal curve. In this case, the product ˜︁C × ˜︁D should be thought of as a ‘non-smooth version
of an abelian surface’. Bielliptic surfaces for which ˜︁D is not smooth are referred to as quasi-bielliptic
surfaces. Note that we include quasi-bielliptic surfaces within the class of bielliptic surfaces, which is
natural in light of the Enriques classification. Nevertheless it is a non-standard convention; see the
discussion in Remark 3.2.18. Bombieri and Mumford extended the Bagnera–de Franchis classification
include quasi-bielliptic surfaces, giving a list of non-reduced finite commutative group schemes G and
actions such that the quotient ( ˜︁C × ˜︁D)/G is smooth; see Theorem 3.4.12.

The extension of the Enriques classification to positive characteristic of Bombieri and Mumford
provides a reasonable context for certain counterexamples in small characteristic. For example, the Igusa
surface is a notable ‘pathological’ surface in characteristic 2, being the first known example of a smooth,
proper scheme with a non-reduced Picard scheme; see [Igu55]. It also satisfies the curious property that
its tangent sheaf is trivial, even though it is not a twisted form of an abelian variety, which is impossible
in characteristic 0; see e.g. [MS87]. Both properties are elucidated by an Igusa surface being an bielliptic
surface in critical characteristic: in our terminology, an Igusa surface is nothing more than an example of
a bielliptic surface of type (a1).

Bielliptic surfaces also exhibit interesting behaviour from an arithmetic point of view. For instance,
the first known example of a smooth, proper scheme of finite type for which the Brauer–Manin obstruction
is insufficient to explain the failure of the Hasse principle for the existence of a rational point is a bielliptic
surface of type (a1) over Q, as given by Skorobogatov in [Sko99]; see also §8 of [Sko01]. The crucial feature
of bielliptic surfaces used in this construction is the noncommutativity of their geometric fundamental
group. A refinement of the Brauer–Manin obstruction, the so-called descent obstruction, is sufficient
to explain the failure of the Hasse principle; see Cor. 3.1 of [Sko09]. Related to this is the existence a
bielliptic surface X over Q with a curious property, as constructed in [CSS97]. The set of real points
X(R) equipped with the Euclidean topology has two connected components, and the set of rational points
X(Q) is dense in one component only. This provides a counterexample to a conjecture by Mazur; see
[Maz92; Maz95]

Bielliptic surfaces also form a natural class of examples. As a consequence of their similarity to abelian
surfaces, they often display non-trivial and interesting behaviour in various aspects of algebraic geometry.
On the other hand, the concrete description of the Bagnera–de Franchis classification regularly allows for
concrete insight. See for example the articles [Pot17; Nue25; Ree23; Tak20; CF03; Mar22].

This dissertation is concerned with the classification of bielliptic surfaces over arbitrary ground fields.
In critical characteristic, which can be either p = 2 or p = 3, we propose to partition the collection of
bielliptic surfaces into three classes: ordinary, classical and supersingular. This trichotomy aids in the
clarification of the critical behaviour that occurs in these low characteristics, for example non-smoothness
of the Picard scheme. This terminology is analogous to the trichotomy of Enriques surfaces in characteristic
2, as introduced by Bombieri and Mumford. Aided by the trichotomy, we propose an extension of the
definition of type to quasi-bielliptic surfaces; see Table 3.3.
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The main aim is to study bielliptic surfaces in an arithmetic setting, i.e. over arbitrary ground fields.
The ground field is in particular not assumed to be algebraically closed or even perfect. A central
question is to what extent the Bagnera–de Franchis classification holds over arbitrary ground fields. If the
Bagnera–de Franchis cover ˜︁Ckalg × ˜︁Dkalg → Xalg descends to a morphism over k, we say that there exists
a Bagnera–de Franchis cover Z → X. Provided it exists, it shares many properties with the Bagnera–de
Franchis cover over an algebraically closed field: for example, Z decomposes as the product Z = ˜︁C × ˜︁D
of two genus-one curves.

The finite commutative group scheme G arising from the Bagnera–de Franchis classification is intrinsic
to the bielliptic surface: we show that its Cartier dual can be recovered as a certain subgroup scheme of
the Picard scheme; see Proposition 4.1.28. If X admits a Bagnera–de Franchis cover, then a Bagnera–de
Franchis cover Z is canonically equipped with a G-action such that X ∼= Z/G. Even though the group
scheme G descends to an arbitrary ground field, our first main result states that the Bagnera–de Franchis
cover may not descend along with it.

Theorem A (See Theorem 4.1.30 and Corollary 4.3.13). Let X be a bielliptic surface over an arbitrary
ground field k. There is a cohomological obstruction α ∈ H2(k,G) in the second fppf-cohomology to the

existence of a Bagnera–de Franchis cover. If p ̸= 2, 3 and ˜︁Ckalg and ˜︁Dkalg are not isogenous, then the
non-vanishing of the obstruction furthermore implies that X is not isomorphic to the quotient of a product
of smooth genus-one curves by the free action of a finite group scheme.

We study the cohomological obstruction closely. Our second main result consequently states a number
of unrelated criteria under which the obstruction necessarily vanishes. Some depend only on arithmetic
properties of the ground field, whereas others take geometric properties of the bielliptic surface into
account.

Theorem B (See Sections 4.2 and 4.3). Let X be a bielliptic surface over an arbitrary ground field k.
The obstruction to the existence of a Bagnera–de Franchis cover vanishes if one of the following conditions
is met:

(i) Br(k)[2] = 0 and H2(k,Z/3Z) = 0;

(ii) k is a global field, the short exact sequence (4.1.4) splits, and for every place v of k the base-change
to the completion Xv = X ⊗ kv admits a Bagnera–de Franchis cover;

(iii) the Albanese P has a rational point;

(iv) f is smooth and there exists a canonical cover Y → X such that the Stein factor D of the composition
Y → X → B has a rational point.

(v) X is a quasi-bielliptic surface;

Condition (ii) is a local to global principle, cf. Corollary 4.2.14. Considering (i), we show that the
cohomology group H2(k,Z/3Z) vanishes if Br(k(ζ3)) = 0 (see Theorem 4.2.18). Both Brauer groups
vanish if e.g. k is quasi-algebraically closed (see Corollary 4.2.19). We also note that (iii) holds if X has a
rational point; in this case the original proof of Bombieri and Mumford generalises verbatim, as verified
in detail in [Tak20].

Our third main result concerns the construction of a bielliptic surface that does not admit a Bagnera–de
Franchis cover, ensuring that the above results are not vacuous. The construction requires a suitable
assumption on the Brauer group of the ground field, so that it can be seen as a partial converse to (i) of
the above result.

Theorem C. Let k be a ground field with p ̸= 2 and Br(k)[2] ̸= 0. Then the bielliptic surface constructed
in Chapter 5 does not admit a Bagnera–de Franchis cover.

In light of the cohomological obstruction, considering Bagnera–de Franchis covers is not an intrinsic
approach to classifying bielliptic surfaces in an arithmetic setting. Instead we propose that it is more
natural to regard a bielliptic surface as a quotient of its canonical cover, which over an algebraically closed
ground field is a certain intermediate cover of its Bagnera–de Franchis cover; see Section 3.5. In non-critical
characteristic the canonical cover is the minimal cover by an abelian surface. If X = ( ˜︁C × ˜︁D)/G and ˜︁D
is smooth, the canonical cover is described concretely as the quotient Y = ( ˜︁C × ˜︁D)/H, where H ⊂ G is

vii



the subgroup scheme that acts on ˜︁D by translation. For non-smooth ˜︁D we instead require that H act by
translation on the smooth locus of ˜︁D, which is isomorphic to a copy of A1; see Notation 3.5.1.

If the quotient map Y → X descends to the ground field k, we say that X admits a canonical
cover. In this case it turns out that there is no cohomological obstruction, which is well-known in tame
characteristic.

Theorem D (See Theorem 4.1.21). Every bielliptic surface admits a canonical cover.

Within the above study of covers of a bielliptic surface, the Picard scheme of X plays a central role.
We also study the orthogonally related Néron–Severi group scheme NSX/k of a bielliptic surface, whose
torsion subgroup scheme is closely related to other cohomological invariants of X. For example, over
the ground field of complex numbers there are isomorphisms NS(X)tors ∼= H1(X,Z)tors ∼= Br(X). By the
central result of [Suw83], the torsion group scheme NSτX/k encodes the Hodge numbers and de Rham
numbers of the bielliptic surface; see Theorem 7.2.2. This in particular allows us to compute these
cohomological invariants for Jacobian quasi-bielliptic surfaces in characteristic 2.

Theorem E (See Table 7.2). Let X be a quasi-bielliptic surface of type (d). Then h1dR = h2dR = 2, and
its Hodge diamond

1
1 1

0 2 0
1 1

1

coincides with the Hodge diamond of bielliptic surfaces over the complex numbers. Let X be a quasi-
bielliptic surface of type (c1). Then h1dR = 3 and h2dR = 4, and its Hodge diamond is as follows.

1
2 1

0 4 0
1 2

1

Even in the cases where we do not determine the Hodge and de Rham numbers definitively, we limit
the possibilities drastically. The result of Suwa also implies that degeneration of the Hodge-to-de Rham
spectral sequence may be read off from the Hodge diamond and the de Rham numbers. The possibilities
are limited sufficiently to classify the bielliptic surfaces whose Hodge-to-de Rham spectral sequence does
not degenerate.

Theorem F (See Corollary 7.2.7). Let X be a bielliptic surface. The Hodge-to-de Rham spectral sequence
does not degenerate if and only if

• X is supersingular of type (a1) or (a2); or

• X is ordinary of type (b1) or (c1).

Structure of the thesis

In Chapter 1 we briefly recall the theory of torsors, which arise throughout the remainder of the text,
and formulate a number of results for later reference. We specialise in Chapter 2 to torsors under abelian
varieties, that we call para-abelian varieties. From Chapter 3 onwards we study bielliptic surfaces. After
proving a number of fundamental properties of bielliptic surfaces such as the existence of the two fibrations,
we treat the theory of bielliptic surfaces over an algebraically closed ground field of arbitrary characteristic.
Chapter 4 is then concerned with generalising this theory to an arbitrary ground field, with a focus on the
Bagnera–de Franchis cover and canonical cover: we define and study the cohomological obstruction to the
existence of a BdF-cover. A bielliptic surface of type (a2) that does not admit a BdF-cover is constructed
in Chapter 5. It is assembled out of suitable para-elliptic curves that are constructed using the arithmetic
of para-elliptic curves as studied in Chapter 6. Finally Chapter 7 studies the torsion subgroup scheme
of the Néron–Severi group scheme. It consequently leads to the computation of most of the Hodge and
de Rham numbers of quasi-bielliptic surfaces and the classification of bielliptic surfaces for which the
Hodge-to-de Rham spectral sequence does not degenerate.
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Chapter 1

Torsors

Torsors arise ubiquitously throughout this dissertation. For example, we study bielliptic surfaces through
certain covers in Chapter 4. These covers turn out to be torsors. We also frequently encounter para-abelian
varieties, which are torsors under abelian varieties; cf. Chapters 2 and 6. We briefly treat the important
parts of the theory of torsors, to be referenced throughout the text. For a more thorough treatment of
the subject we refer to the literature, e.g. [Sko01; Mil80; Gir71].

1.1 Torsors and the first cohomology group

In this section we define and study torsors. We follow §2 of [Sko01]. Let S be a base scheme and let G be
a group scheme. Throughout this dissertation we work in the fppf-topology unless specified otherwise.
Here ‘fppf’ is the standard French abbreviation for fidèlement plate et de présentation finie, meaning
faithfully flat and of finite presentation.

A torsor is, roughly speaking, a twisted form of the action of a group scheme on itself by left
multiplication. We mostly consider commutative group schemes, in which case the distinction between
left and right multiplication is not important. We consider instead the following equivalent definition.

Definition 1.1.1. Let X be a faithfully flat scheme of finite presentation over S and let α : X×G→ X be
a left G-action on X. We say that X → S is a G-torsor (or: torsor under G) if the map prX×α : X×G→
X ×X is an isomorphism. A homomorphism of torsors is an equivariant morphism of schemes.

Example 1.1.2. The most basic example of a G-torsor is X = G, with action given by left multiplication.
This is called the trivial G-torsor.

It follows directly from the definition that every torsor is a twisted form of the trivial torsor. Indeed,
since X → S is itself an fppf-cover, the defining assumption states that the pullback of a torsor along
itself X ×X is isomorphic to the trivial torsor X ×G. The converse turns out to be true as well: every
G-scheme which is locally isomorphic to the trivial torsor is a torsor. Indeed, G ×X → X ×X is an
isomorphism locally on an fppf-cover, hence an isomorphism; see Prop. 2.7.1.viii of [EGA IV2].

Example 1.1.3 (Galois field extensions are torsors). Suppose S = Spec(k) is the spectrum of a ground
field k. Let k′/k be a finite Galois extension, whose Galois group G = Gal(k′/k) we consider as constant
group scheme. Let X = Spec(k′) equipped with the natural G-action.. Then the fibred product is

X ×S X = Spec(k′ ⊗k k′)
prk′×α←−−−−− Spec(k′)×G,

so that X is indeed a G-torsor.
There is a partial converse to the above. Let G be a finite abstract group, considered as constant group

scheme. A G-torsor is a finite étale cover of k, hence decomposes as a union of spectra of separable field
extensions. A connected G-torsor is hence isomorphic to Spec(k′), with k′/k a separable field extension
of degree |G|. Since G acts on Spec(k′), the cardinality of the automorphism group Aut(k′/k) is at least
its degree and therefore k′/k is Galois with Galois group G.

Example 1.1.4 (Line bundles). Let X be a Gm-torsor and consider the quotient L = (X × A1)/Gm,
where Gm acts diagonally on the product, and the action of Gm on A is given by scaling by the inverse
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(λ, x) ↦→ λ−1x, cf. Notation 1.1.13. Since H1(S,Gm) may equivalently be calculated in the Zariski topology,
we verify that L is locally isomorphic to (Gm ×A1)/Gm ∼= A1, hence L is a line bundle. Conversely let L
be a line bundle on S with zero section 0 ∈ L(S). Then the open subscheme X = L \ {0} is stable under
the natural Gm-action on L. Restricting to a Zariski open cover, we see similarly that X is a Gm-torsor.

Example 1.1.5. Torsors also arise as quotient maps of free group scheme actions. Let G be a group scheme
acting freely on a scheme X, such that the quotient S = X/G exists as a scheme: then the quotient map
X → S is a G-torsor.

Proposition 1.1.6. Let X and Y be two G-torsor. If there exists a G-equivariant morphism f : X → Y ,
then X and Y are isomorphic.

Proof. To verify that f is an isomorphism, we may by the theory of descent restrict to an fppf-cover
that trivialises both X and Y . Thus let f : G → G be a G-equivariant morphism of schemes. The
identity element e ∈ G(S) is mapped to a section f(e) ∈ G(S). By equivariance f is given on T -points by
g ↦→ g · f(e), which is an isomorphism.

Remark 1.1.7. The above result essentially states that every morphism in the category of G-torsors is an
isomorphism. This is the defining property for a category to be a groupoid.

Corollary 1.1.8. Let X be a G-torsor. If X(S) is nonempty, then X is isomorphic to the trivial torsor.

Proof. The choice of rational point x ∈ X(S) determines an equivariant morphism G→ X by g ↦→ g·x.

By varying the base scheme, we obtain another useful result. Let p : S′ → S be a morphism of base
schemes and let p∗G = G× S′ denote the pullback of G, considered as group scheme over S′; denote the
projection map by f : p∗G→ G. Let X ′ be a p∗G-torsor and let X be a G-torsor.

Definition 1.1.9. We say that F : X ′ → X is equivariant if

p∗G×X ′ X ′

G×X X

αX′

f×F F

αX

commutes; cf. Definition 1.2.1.

Lemma 1.1.10. Let G be a group scheme over S and let p : S′ → S be a morphism of base schemes. Let
X → S be a G-torsor and let X ′ → S′ be a p∗G-torsor. Let X ′ → X be an equivariant morphism such
that the square

X ′ X

S′ S
p

(1.1.1)

is commutative. Then (1.1.1) is Cartesian.

Proof. Let Y = S′ ×S X, then Y → S′ is a G-torsor by its action on X. The natural map X ′ → Y is
G-equivariant, hence a morphism of torsors and thus an isomorphism.

Isomorphism classes of G-torsors, being twisted forms of the trivial G-torsors, define cohomology
classes in a first non-abelian cohomology. Roughly speaking, it is a rule of thumb that H1(S,AutX)
classifies isomorphism classes of twisted forms of the object X. Here the first cohomology is computed in
the fppf-topology. We furthermore remark that it only has the structure of a pointed set instead of a
group, unless AutX/S is a commutative group scheme.

In our case the automorphism group scheme of the trivial torsor G is isomorphic to a copy of G by
left-multiplication. By general theory a G-torsor X defines a cohomology class [X] ∈ H1(S,G), as follows,
following Prop. III.4.6 of [Mil80]. Let (Ui → S)i be a fppf-covering such that X × Ui is the trivial torsor
and pick a global section xi ∈ Γ(Ui, X). On the overlaps Uij = Ui ∩ Uj the choices of xi differ up to a
unique element gij ∈ Γ(Uij , G). It is not difficult to show that gij satisfies the cocycle condition.

The converse is in general not true: not every cocycle class in H1(S,G) defines a torsor. That is
because the first cohomology H1(S,G) actually only classifies sheaves of G-torsors on the fppf-site of S,
which may or may not be representable by a scheme. Our group schemes will always fall into one of the
following two classes for which representability always holds; see Thm. III.4.3 of op. cit.
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Theorem 1.1.11. Let G be a commutative group scheme such that either

(i) G is affine over S; or

(ii) G is regular and smooth over S.

Then any sheaf of G-torsors is representable by a scheme. Therefore H1(S,G) classifies isomorphism
classes of G-torsors.

Example 1.1.12. Suppose S = Spec(k) where k is a field. Let G be a smooth commutative group scheme
over k. Then the fppf-cohomology H1(k,G) may be computed in the étale topology, which coincides
with the Galois cohomology H1(Gal(ksep/k), G(ksep)) for the Galois action of Gal(ksep/k) on G(ksep).
Let X be a G-torsor. The 1-cocycle φ : Gal(ksep/k) → G(ksep) can be described explicitly as follows.
Pick a geometric point x ∈ X(ksep), then for each σ ∈ Gal(ksep/k) there is a unique φ(σ) ∈ G(ksep) such
that σ · x = α(φ(σ), x). A short computation shows that φ : Gal(ksep/k)→ G(ksep) satisfies the cocycle
condition.

We now consider functoriality of cohomology. It is contravariant in the base and covariant in the
group scheme. Let p : S′ → S be a morphism of base scheme and let G′ = G×S S′, then the natural map
p∗ : H1(S′, G′)→ H1(S,G) should correspond to a certain construction on the level of torsors directly. It
is not difficult to see that the image of [X] is the cohomology class [X ′], where X ′ is the base change
X × S′. Similarly, let f : G1 → G2 be a morphism of group schemes, and consider

(X ×G2)/G1,

where the G1-action is anti-diagonal on X × G2. Letting G2 act on X ∧G1 G2 through the second
coordinate, it gets the structure of a torsor under G2. It turns out that f∗([X1]) = [X ∧G1 G2], where
f∗ : H1(S,G1)→ H1(S,G2) is the natural map.

Suppose now that G is an affine commutative group scheme, so that H1(S,G) is naturally equipped
with the structure of a group. We describe the group operation explicitly on the level of torsors.

Notation 1.1.13. Let G be an affine commutative group scheme and let X and Y be G-torsors. Then
the contracted product X ∧GS Y is the G-torsor

X ∧GS Y = (X ×S Y )/G,

where the G-action on X × Y is anti-diagonal: the action on X is as usual, but the action on Y is the
inverse action (g, y) ↦→ g−1y on Y .

Theorem 1.1.14. Let G be an affine commutative group scheme and let X and Y be two G-torsors.
Then [X] + [Y ] = [X ∧G Y ].

1.2 Morphisms of torsors and the long exact sequence

Let S be a base scheme. Having introduced torsors as objects, we now study morphisms between torsors
Recall that Proposition 1.1.6 states that any morphism of G-torsors is an isomorphism. The category of
G-torsors is hence a groupoid, and for our purposes not very interesting. We should instead allow the
group scheme G to change.

Definition 1.2.1. The category of torsors (Torsor) is defined as follows. Its objects are pairs (G,X),
where G is a group scheme and X is a G-torsor. A morphism (G1, X1)→ (G2, X2) is a pair of morphisms
f : G1 → G2 and F : X1 → X2, such that the following diagram is commutative:

G1 ×X1 X1

G2 ×X2 X2

α1

f×F F

α2

In this case, we say that F is equivariant (with respect to f).
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There is a cohomological criterion for the existence of a morphism of torsors (G1, X1) → (G2, X2)
extending a surjective underlying homomorphism of group schemes f : G1 → G2.

Lemma 1.2.2. Let f : G1 → G2 be a surjective morphism of group schemes with kernel K. Let X1 and
X2 be torsors for G1 and G2 respectively. Then there is an equivariant morphism F : X1 → X2 if and
only if f∗([X1]) = [X2], which is unique up to the action of G1.

Proof. Recall that f∗([X1]) denotes the isomorphism class of the contracted product

X1 ∧G1 G2 = (X1 ×G2)/G1
∼= X1/K,

where the isomorphism follows from the surjectivity of f . It remains to verify that the existence of a
G1-equivariant map X1/K

∼−→ X2 is equivalent to the existence of a G1-equivariant map F : X1 → X2.
IfX1/K

∼−→ X2 is such an isomorphism, then let F be the compositionX1 → X1/K
∼−→ X2. Conversely

the action of K on X2 is trivial, hence by the universal property of quotients the map F induces a map
X1/K → X2. This is an isomorphism by descent: a trivialising cover of X1 also trivialises X2, and
restricting to this cover we reduce to the isomorphism G1/K ∼= G2 induced by f .

Last of all, the map F : X1 → X2 depends only on the choice of isomorphism X1/K
∼−→ X2, which is

unique up to the G1-action.

In the setting of Lemma 1.2.2, there is a short exact sequence

0 −→ K −→ G1 −→ G2 −→ 0. (1.2.1)

This induces a long exact sequence in cohomology.

0 −→ Γ(X,K) −→ Γ(X,G1) −→ Γ(X,G2) −→ H1(X,K) −→ H1(X,G1) −→ H1(X,G2)
δ−−→ H2(X,K).

(1.2.2)

Proposition 1.2.3. Suppose that f : G1 → G2 is a surjective morphism of group schemes with kernel K.
Let X2 be a G2-torsor. The following are equivalent:

(i) there exists a G1-torsor X1 and an equivariant morphism F : X1 → X2;

(ii) there exists a G1-torsor X1 such that X1/K ∼= X2;

(iii) there exists a cohomology class [X1] ∈ H1(S,G1) such that f∗([X1]) = [X2];

(iv) δ([X2]) = 0, with δ as in (1.2.2).

Remark 1.2.4. Although the existence of the stated objects are equivalent, some contain more data than
others. For example a F : X1 → X2 as in case (i) induces an isomorphism X1/K

∼−→ X2, whereas in cases
(ii), (iii) and (iv) such an isomorphism exists but cannot be chosen canonically.

In that sense, the image δ([X2]) is an obstruction for X2 to arise from a G1-torsor.

1.3 Lifting property and Leray–Serre five-term exact sequence

Let S be a base scheme, and let p : X → S be a scheme. Let G be a commutative group scheme.. A
useful cohomological tool is the Leray–Serre spectral sequence Er,s2 = Hr(S,Rsp∗(p

∗G))⇒ Hr+s(X, p∗G).
Most of the useful information about the low degrees of the spectral sequence can be obtained through
the five-term exact sequence

0 −→ H1(S, p∗p
∗G)

p∗−−→ H1(X, p∗G)
t−−→ H0(S,R1p∗(p

∗G))
∂−−→ H2(S, p∗p

∗G) −→ H2(X, p∗G). (1.3.1)

Remark 1.3.1. If G is noncommutative, then there is an analogue of the above five-term exact sequence
in non-abelian cohomology, excluding the last term; see §V of [Gir71]. Recall that the ith cohomology
only has the structure of a pointed set for i = 1, 2.
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Since R1p∗(p
∗G) is the sheafification of the functor S′ ↦→ H1(p−1(S′), p∗G) in the fppf-topology, there

are canonical maps tS′ : H1(XS′ , p∗G) → Γ(S′, R1p∗p∗(p
∗G)) for every fppf S′ → S. Taking S′ = S

gives the map t of the five-term exact sequence above. The description of the boundary map ∂, called
transgression in op. cit., is more involved. In a sense, an element of H0(S,R1p∗(p

∗G)) describes a ‘descent
datum’ for a G-torsor over X, which may or may not be obstructed to exist by an element of H2(S,G).

The situation simplifies if the natural map G→ p∗p
∗G is an isomorphism. This happens in one of the

following cases; see Prop. 2.2.4 of [Sko01].

Proposition 1.3.2. Suppose that one of the following conditions is satisfied:

• the group scheme G is finite and S is geometrically connected;

• the group scheme G is of multiplicative type and h0(OX) = 1;

• the group scheme G is affine and X is projective.

Then the canonical map G→ p∗p
∗G is an isomorphism.

Suppose from now on that G satisfies G = p∗p
∗G. Then the five term exact sequence becomes the

simpler

0 −→ H1(S,G)
p∗−−→ H1(X, p∗G)

t−−→ H0(S,R1p∗(p
∗G))

∂−−→ H2(S,G) −→ H2(X, p∗G). (1.3.2)

Return to the setting of Section 1.2: let f : G1 → G2 be a surjective morphism of commutative group
schemes with kernel K = Ker(f) and let X1 be a torsor under G1. Restricting the G1-action to the
subgroup scheme K, let us consider X2 = X1/K. The induced action of G1/K = G2 on X2 gives it the
structure of a G2-torsor. Furthermore, the quotient map F : X1 → X2 canonically has the structure of a
K-torsor.

We are still interested in the converse question: given a G2-torsor X2 and a K-torsor X → X2, can
one equip X with the structure of a G1-torsor? A partial answer is given in Proposition 1.2.3. We use
the above five-term exact sequence to give another criterion. Thus fix a G2-torsor X2 with structure
morphism p : X2 → S. Our main source is §V.3.2.9.1 of [Gir71].

Following loc. cit., the cohomology H0(T2, R
1f∗G) contains a certain special cohomology class τ ,

corresponding to the central short exact sequence (1.2.1), which we will describe in more detail. An
element of H0(S,R1p∗(p

∗K)) informally describes a ‘descent datum’ for a p∗K-torsor over X on some
trivialising cover of X2; more precisely, pick isomorphisms X2

∼= G2 on some trivialising cover, then
on this cover τ describes the p∗K-torsors G1 → G1/K ∼= X2. In this way, one can view ∂(τ) as an
obstruction for the ‘descent datum’ of a p∗K-torsor to be effective.

We combine the exact sequences (1.2.2) and (1.3.2) into one diagram with exact rows.

0 H1(S,K) H1(X2, p
∗K) H0(S,R1p∗(p

∗K)) H2(S,K)

τ [X2]

· · · Γ(S,G2) H1(S,K) H1(S,G1) H1(S,G2) H2(S,K)

id

t ∂

id

∈

∈

f∗ δ

(1.3.3)

Although it is true that the above diagram is commutative, this is not particularly interesting, since
both compositions are 0 by exactness of the two rows. Nevertheless, the two exact sequences interact in
a particularly nice way, resulting in the so-called lifting property of torsors, as coined in Prop. 3.2.3 of
[Sko01]. We cite the following fundamental lemma from Prop. 3.2.9 of [Gir71].

Lemma 1.3.3 (Obstructions agree). There is an equality of obstructions δ([X2]) = ∂(τ).

The above Lemma is used throughout the dissertation. We frequently apply both exact sequences
(1.2.2) and (1.3.2). This result guarantees that the obstructions are equal.

We can interpret the above result as stating that the fibre of t over τ is empty if and only if the fibre
of f∗ over [X2] is empty. If the fibres are nonempty, we relate both of them by a map which is not quite
canonical. It follows directly from Lemma 1.3.3 and (1.3.3).
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Theorem 1.3.4 (Lifting property of torsors). The choice of elements of the fibres t−1(τ) and f−1
∗ ([X2])

determines a H1(S,K)-equivariant bijection

t−1(τ)/Γ(S,G2) −→ f−1
∗ ([X2]), (1.3.4)

where the Γ(S,G2)-action on H1(X2, p
∗K) is given by the natural pullback maps. In particular, the

existence of a G1-torsor X1 such that X1/K ∼= X2 is equivalent to the existence of a K-torsor X1 → X2

mapping to τ in H0(S,R1p∗(p
∗K)).

A more down-to-earth way of phrasing the same result is as follows; cf. Prop. 3.2.3 of [Sko01], whose
proof is more explicit in nature.

Theorem 1.3.5. Let X2 be a G2-torsor and let F : X1 → X2 be a K-torsor. Suppose that F maps to
τ ∈ H0(S,R1p∗(p

∗K)). Then we can equip X1 canonically with the structure of a G1-torsor which extends
the K-action.

Note in particular that the underlying scheme structure of X1 is the same, regardless of whether
we consider it as K-structure of G1-torsor. This is not so clear from our cohomological treatment of
Theorem 1.3.4.

Proposition 1.3.6. Suppose that p∗p
∗K = K. Then the statements of Proposition 1.2.3 are equivalent

to

(v) (Lifting Property of torsors) there exists a p∗K-torsor [Y ] ∈ H1(X2, p
∗K) which maps to the element

τ ∈ H0(S,R1p∗(p
∗K)).

Remark 1.3.7. Similarly to Remark 1.2.4, the data in the objects in the cases (iii) and (v) is not the
equivalent. For the implication (iii)⇒(v), if [X1] ∈ H1(S,G1), then the class [X1] ∈ H1(X2,K) depends
on a choice of isomorphism X1/K ∼= G2. Conversely, suppose [Y ] ∈ H1(X2, p

∗K) is a cohomology class
as in (v). Although Y can be equipped with the structure of a G1-torsor, this also really depends on a
choice.

The difficult term to describe explicitly in the five-term exact sequence (1.3.2) is H0(S,R1p∗(p
∗G)). A

fundamental result of Raynaud helps to describe the first derived pushforward sheaf more explicitly under
certain mild assumptions. Recall that a group scheme G is of multiplicative type if it is diagonalisable
locally in the fpqc-topology; see Tome II, Exp. IX, §1 of [SGA 3]. The following result is Prop. 6.2.1 of
[Ray70].

Theorem 1.3.8 (Raynaud Correspondence). Suppose p : X → Y is a proper, flat morphism of finite
type. Let G be a finite, flat group scheme of finite type and let G∨ = Hom(G,Gm) be its Cartier dual.
Then there is a canonical map

R1p∗(p
∗G) −→ Hom(G∨,PicX/Y ),

which is an isomorphism if either

(i) p∗OX = OY ; or

(ii) G is of multiplicative type.

Under this canonical isomorphism, the five-term exact sequence becomes as follows.

0 −→ H1(Y,G) −→ H1(X, p∗G) −→ Hom(G∨,PicX/Y )
∂−−→ H2(Y,G). (1.3.5)

Let Z → X be a p∗G-torsor. If the morphism G∨ → PicX/Y is trivial, then Z → X is the pullback of a
G-torsor over Y . The other extremity occurs when G∨ → PicX/Y is injective, in some sense indicating
non-triviality of Z → X as p∗G-torsor.

By the Raynaud correspondence, we associate to every p∗G-torsor Z → X over X a morphism
G∨ → PicX/Y of group schemes. By naturality we can locate the image of this morphism more precisely.
We state a notable property of the map G∨ → PicX/Y .
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Proposition 1.3.9. Let p : X → Y be a proper, flat morphism of finite type. Let π : Z → X be a
p∗G-torsor, such that p ◦ π : Z → Y satisfies the conditions of Theorem 1.3.8. Let G∨ → PicX/Y be the
associated homomorphism. The image of G∨ in PicX/Y is contained in the kernel of the pullback map
π∗ : PicX/Y → PicZ/Y .

Proof. Naturality of the Leray–Serre spectral sequence (1.3.5) implies the following diagram is commut-
ative:

H1(X, p∗G) Hom(G∨,PicX/Y )

H1(Z, π∗p∗G) Hom(G∨,PicZ/Y )

π∗
π∗◦−

Since Z → X is a torsor, the pullback π∗Z = Z ×X Z ∼= Z ×S G is the trivial torsor over Z, so the
cohomology class [Z] maps to the identity element of H1(Z, π∗p∗G). By commutativity, the composition

G∨ → PicX/Y
π∗

−→ PicZ/Y is constant.

Example 1.3.10. Let G be a finite subgroup scheme of Gm. Let Y be a G-torsor on X. Let χ : GT → Gm,T
be a T -valued point of the Cartier dual G∨. The pushforward χ∗([Y ]) = [Y ∧G Gm] defines a cohomology
class in H1(XT ,Gm,T ) = Pic(XT ). As such, this defines a morphism G∨ → PicX/S . According to Thm.

2.3.6 of [Sko01] this is a concrete description of the map H1(X, p∗G)→ Hom(G∨,PicX/S) defined above.

Examples for the above in case G is an abelian variety are given in Section 2.2.
The above provides motivation for Picard schemes. We often use the main result of Jensen to determine

the Picard scheme of a torsor. In order to state it, we introduce the following terminology, following
[Fog73].

Notation 1.3.11. Let X be a locally noetherian G-scheme. Define the fixed locus XG as the schematic
image of the coproduct

⨆︁
Z → X, taken over the inclusions Z → X of all closed and invariant subschemes

of X.

Under mild assumptions, the fixed locus is well-behaved. The following is a special case Thm. 2.3 of
op. cit., where it is stated over base schemes, though the separation assumption seems to be missing in
loc. cit.

Proposition 1.3.12. Let X be a locally noetherian and separated G-scheme. Then XG is a invariant
closed subscheme, whose functor of points equals S ↦→ X(S)G on the category of locally noetherian and
separated schemes with quasi-compact morphisms.

Example 1.3.13. The separation assumption is needed, as the following example shows. Let X be the
affine line with double origin, obtained from gluing two copies of A1 along the open subschemes A1 \ {0}.
Consider the Z/2Z-action by permuting the two affine charts. The closed point corresponding to any
nonzero x ∈ k is invariant under the G-action, so that XG contains A1 \ {0}. But the schematic image is
closed, from which it follows that XG = X. The two origins are however permuted non-trivially by Z/2Z,
and therefore XG is not invariant.

We now state a useful result to compute the Picard scheme of quotients. See Thm. 2.1 of [Jen87] for a
proof.

Theorem 1.3.14. Let k be a ground field, and let Y be a proper, geometrically integral scheme with
h0(OY ) = 1, so that its Picard scheme is representable. Let G be a finite group scheme acting freely on Y ,
such that the quotient X = Y/G exists. The G-action on Y determines a G-action on the Picard scheme
by pullback of invertible sheaves. Then there is a left-exact sequence

0 −→ G∨ −→ PicX/k −→ (PicY/k)
G.

Suppose that either

(i) G is a twisted form of the constant group scheme associated to a finite cyclic group;

(ii) G is reduced and G∨ is infinitesimal;

(iii) G is infinitesimal and G∨ is reduced;

(iv) G is local of height ≤ 1,

then the natural map PicY/k → (PicX/k)
G is surjective.
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1.4 Kummer theory

Let S be a base scheme. In this section we collect various perspectives on µn-torsors. The algebro-
geometric version of Kummer theory relates µn-torsors to n-torsion invertible sheaves with an explicit
choice of global non-vanishing section of their nth tensor power. We start however by considering more
general µn-actions on schemes, which are related to certain Z/nZ-gradings since µn is diagonalisable.
The relation to Kummer theory is made explicit by a result in Tome I, Exp. 1 of [SGA 3].

A diagonalisable group scheme is defined to be the Cartier dual of the constant group scheme of an
abelian group M : typical examples include the multiplicative group scheme Gm = Hom(Z,Gm) and
µn = Hom(Z/nZ,Gm); see Tome I, Exp. I, §4.4 of [SGA 3]. They have the remarkable property that
group scheme actions can be equivalently seen through M -gradings ; see §4.7 of op. cit., or §2.3 of [Ber23].
Let us state the main result. For a proof we refer the reader to ibid.

Proposition 1.4.1. The relative spectrum functor A ↦→ SpecA is an anti-equivalence from the category
of Z/nZ-graded OS-algebra’s to the category of affine schemes over S with a µn-action.

Let A be a Z/nZ-graded OS-algebra; we write A =
⨁︁

j∈Z/nZ Aj for the decomposition into its
homogeneous parts. There is a criterion when the µn-action induces a µn-torsor: we cite Prop. 4.1 of
Tome II of Exp. VIII of [SGA 3].

Proposition 1.4.2. The morphism SpecA → S is a µn-torsor if and only if the following two conditions
hold:

(i) Every Aj is an invertible sheaf on S;

(ii) The natural morphisms Ai ⊗Aj → Ai+j are isomorphisms.

Suppose that SpecA is a µn-torsor. Then (ii) implies that A0 ⊗ A0
∼= A0, and since A0 is an

invertible sheaf by (i) we conclude that A0
∼= OS . From (ii) it also follows by induction that A ⊗i

1
∼= Ai

for any i ∈ Z/nZ, where the isomorphism is given by i-fold multiplication. In other words, a µn-torsor
is essentially determined by an invertible sheaf L = A1, as long as we keep track of the identification
L ⊗n ∼= OS , amounting to the choice of a nonzero global section s ∈ Γ(S,L ⊗n).

This description of µn-torsors also arises from a cohomological viewpoint, namely through Kummer
theory. Originally developed in the study of Galois field extensions with Galois group Z/nZ of fields
containing a primitive nth root of unity, we recap it from the perspective of algebraic geometry. Let
R = H0(OS) and fix a positive integer n ≥ 1.

Proposition 1.4.3. There is a short exact sequence

1 −→ R∗/R∗n −→ H1(S, µn) −→ Pic(S)[n] −→ 0. (1.4.1)

Proof. Consider the Kummer short exact sequence

1 −→ µn −→ Gm
n−−→ Gm −→ 1, (1.4.2)

which is exact in the fppf-topology in any characteristic. Its long exact sequence

. . . −→ R∗ n−−→ R∗ −→ H1(S, µn) −→ Pic(S)
n−−→ Pic(S) −→ . . . . (1.4.3)

yields the above short exact sequence.

Remark 1.4.4. Recall that we work by default in the fppf-topology. This is important, since if µn is
non-smooth the sequence (1.4.2) fails to be short exact in the étale topology: there may not exist an nth
root of an element after an arbitrary étale base extension if n is divisible by the characteristic exponent.

The natural map H1(S, µn)→ Pic(S)[n] hence also maps a µn-torsor to an n-torsion invertible sheaf
L on S. There is a clear converse to this statement; see p. 125 of [Mil80].

Theorem 1.4.5 (Kummer Theory). The map

{(L , s) | L is an invertible sheaf on S and s : OS
∼−→ L ⊗n}/∼= −→ H1(S, µn);

[(L , s)] ↦−→ SpecS

(︄
n−1⨁︂
j=0

L ⊗−j

)︄
,
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is a bijection. Here, two pairs (L1, s1) and (L2, s2) are considered to be equivalent if there is an

isomorphism φ : L1
∼−→ L2 such that φ∗s2 = s1. The OS-algebra structure on

⨁︁n−1
j=0 L ⊗−j , is induced by

the natural maps L ⊗−i⊗L ⊗−j → L ⊗−(i+j) if i+j < n and L ⊗−i⊗L ⊗−j → L ⊗−(i+j) s−→ L ⊗−(i+j−n)

if i+ j ≥ n. The composition with the above map H1(S, µn) maps a pair (L , s) to L .

Example 1.4.6. Suppose S = Spec(k), in which case L is isomorphic to the structure sheaf. A nonzero
section of L ⊗n is simply an element λ ∈ k∗n. Denote 1 ∈ H0(S,L ) by x. Interpreting L as a k-module,
there is then an isomorphism of k-algebra’s⨁︂

j∈Z/nZ

L ⊗−j ∼=
k[x]

(xn − λ)
,

whose isomorphism class fundamentally depends on the class of λ in k∗/k∗n. We conclude that the
OS-algebra structure on

⨁︁
j∈Z/nZ L ⊗−j really depends on the choice of section s : OS

∼−→ L ⊗n. In fact,

the isomorphism class depends only on the choice of section: since Pic(k) = 0 it follows from the long
exact sequence (1.4.3) that the natural map k∗/k∗n → H1(k, µn) is an isomorphism. We use this natural
isomorphism freely throughout the dissertation.

We also recover the original statement from field theory.

Corollary 1.4.7 (Classical Kummer Theory). Let k be a field which contains a primitive nth root of
unity. Then any cyclic Galois extension k′/k of degree n is of the form k′ = k

(︁
n
√
λ
)︁
, for some λ ∈ k∗/k∗n.

Proof. A cyclic Galois extension k′/k of degree n torsor is nothing but a Z/nZ-torsor over Spec(k), but
note that in our case there is an isomorphism Z/nZ ∼= µn. Since Pic(k) = H1(k,Gm) by Hilbert 90
[Mil80, Prop. III.4.9], it follows that the natural map k∗/k∗n → H1(k, µn) is an isomorphism. Thus class
of the torsor Spec(k′)→ Spec(k) hence corresponds to some λ ∈ k∗, unique up to nth powers, which by
Example 1.4.6 satisfies k′ = k[x]/(xn − λ). The assumption that k′ is a field implies that λ is not an nth
power, so k′ = k

(︁
n
√
λ
)︁
.

Remark 1.4.8. The classic proof of this version of Kummer theory is constructive. Let σ be a generator
for Gal(k′/k). Since k′/k is separable, it is a primitive field extension may write k′ = k(α). Consider the
Lagrange resolvent

β =
∑︂

i∈Z/nZ

ζ−in σi(α).

of α, which is nonzero by the independence of characters [Stacks, Tag 0CKL]. The crucial property is
that σi(β) = ζin · β. From Galois theory it then follows that λ = βn is contained in k, but not in any
intermediate fields of k′. It is therefore a primitive element.

Proposition 1.4.9. Let π : X → S be a µn-torsor, mapping to the class of the invertible sheaf L of
order n. The kernel of π∗ : Pic(S)→ Pic(X) is cyclic of order n generated by the class of L .

Proof. By Theorem 1.3.14 there is a left-exact sequence

0 −→ Z/nZ −→ Pic(S) −→ Pic(X),

so that the kernel is indeed cyclic of order n. Since L has order n, it suffices to verify that π∗L ∼= OX .
Let Ui = SpecAi be an open affine cover of S trivialising L , and let fij ∈ Γ(Ui ∩ Uj ,OS) be a cocycle
representing L . The pre-image of π over Ui is isomorphic to SpecAi[xi]/(x

n
i − ai), where the gluing

is given by fijxj = xi. The ai hence satisfy fnijaj = ai. The pullback π∗L is still represented by the

cocycle fij ∈ Γ(π−1(Ui ∩ Uj),O∗
X), but it is a coboundary since it equals xi/xj , so its class in Pic(T ) is

trivial.

Conversely, the above property is essentially a universal property for µn-torsors. The following result
is essentially Prop. 0.2.14 of [CDL24]

Proposition 1.4.10. Let π : X → S be a finite morphism of proper schemes over a ground field k. Let
L be an invertible sheaf on S such that π∗L ∼= OX . Then there is a positive integer n and a section
s : OS

∼−→ L ⊗n of the nth tensor power, such that π factors over the µn-torsor determined by the pair
(L , s).

9

https://stacks.math.columbia.edu/tag/0CKL


Proof. Pick a nonzero global section t : OX
∼−→ π∗L . Any choice of s determines a non-vanishing global

section π∗s : OX
∼−→ π∗L ⊗n. The sections π∗s and t⊗n differ by a scalar λ ∈ k∗, i.e. λ = t⊗n/π∗s. A

difference choice of t multiplies λ by an nth power, so that λ is well-defined as element of k∗/k∗n. We
then have a chain of isomorphisms of OX -algebras

π∗

(︄
n−1⨁︂
i=0

L ⊗i

)︄
=

n−1⨁︂
i=0

π∗L ⊗i ∼=
n−1⨁︂
i=0

OX ∼=
OX [T ]

(Tn − λ)
.

The first isomorphism is determined in each degree by the choice of t⊗i, and the last isomorphism is
determined by the choice of t as OX -algebra generator. Note that t⊗n = λπ∗s indeed implies that t
satisfies the polynomial equation Tn − λ. Replacing without loss of generality s by λs, we may set λ = 1.
Since the polynomial Tm − 1 has a root, there is a surjection onto OX . By the functorial definition of the
relative spectrum [Stacks, Tag 01LQ], there is hence a morphism

X −→ SpecS

n−1⨁︂
i=0

L ⊗i

commuting with the morphisms to S.

We quantify the influence of the choice of section more precisely. Given λ ∈ k∗ let [λ] be its image in
H1(k, µn). By abuse of notation, we also use [λ] to denote its image in H1(S, µn).

Proposition 1.4.11. Let L be an invertible sheaf on S, and suppose that s : OS
∼−→ L ⊗n is an

isomorphism. Let T → S be the µn-torsor corresponding to the pair (L , s). Let λ ∈ k∗ and let Tλ be the
µn-torsor corresponding to (L , λs). Then there is an isomorphism

Tλ = T ∧µn [λ−1].

Conceptually, the fibre of H1(S, µn) → Pic(S)[n] over L equals [T ] + H1(k, µn) by the short exact
sequence (1.4.1), which contains Tλ. To see that the translate element really equals [λ−1], we calculate
the effects of choosing a different section through a concrete computation.

Proof. Let U = Spec(R) ⊂ S be an affine open subset on which LS is trivial, so there exists a local
section t : OU

∼−→ L |U . Since t⊗n and s are local trivializations of L ⊗n|U , there exists a µ ∈ R∗ such

that t⊗n = µ · s. Then the open subscheme of Y lying over U is isomorphic to Spec(
⨁︁n−1

j=0 Γ(U, ω⊗−j
S ) ∼=

Spec(R[x]/(xn − µ)). Similarly, the open subscheme of Tλ lying over U is Spec(R[x]/(xn − µλ−1)), in
view of the equality t⊗n = µλ−1 · λs. The µn-actions are inherited from the Z/nZ-gradings.

On the right hand side, we may calculate the contracted product locally over U , hence we consider
the quotient of

Spec

(︃
R[x1]

(xn1 − µ)

)︃
× Spec

(︃
k[x−1

2 ]

(x−n2 − λ−1)

)︃
= Spec

(︃
R[x1, x

−1
2 ]

(xn1 − µ, x
−n
2 − λ−1)

)︃
by the µn-action induced by the Z/nZ-grading. Here, we consider T1 and T−1

2 to be of degree 1 and
−1 respectively, since we consider the opposite action in one of the factors. By [Ber23, Lem. 2.3.8] the
quotient is isomorphic to the spectrum of the homogeneous part of degree 0 in the Z/nZ-grading, which
is clearly generated by T1T

−1
2 and isomorphic to Spec(R[T1T

−1
2 ]/((T1T

−1
2 )n − µλ−1) and thus by the

previous paragraph isomorphic to the open subscheme of Tλ over U . These isomorphisms glue to an
isomorphism Tλ ∼= T ∧µn [λ−1].

We emphasise that T and its twist Tλ are geometrically isomorphic. After base-change to an algebraic
closure, the element λ will be an nth power, so that the contracted product with the class of λ−1 yields
an isomorphic torsor.
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1.5 Cohomology of unipotent group schemes

Let k be a ground field. Where Kummer theory was concerned with torsors under the multiplicative
group schemes µn, which form the typical examples of diagonalisable group schemes, this section is
concerned with a certain statement on the cohomology of an ‘orthogonal’ class of group schemes, namely
the unipotent group schemes. Most interesting examples arise in characteristic p > 0. Our main source is
Tome II, Exp. XVII of [SGA 3].

Definition 1.5.1. A group scheme G is called unipotent if every finite dimensional representation
G→ GLV has a nonzero fixed vector, i.e. V G ̸= 0.

A list of equivalent characterisations of unipotence is given Thm. 3.5 of op. cit. We state the most
important points.

Theorem 1.5.2. Let G be a group scheme of finite type over a field. The following are equivalent:

(i) G is unipotent;

(ii) G is a subgroup scheme of the group scheme of strictly upper triangular matrices;

(iii) there is a filtration of G whose successive quotients are subgroup schemes of Ga.

Example 1.5.3. In light of (iii), typical examples of unipotent group schemes are Ga, in characteristic
p > 0 also αp and Z/pZ. Successive extensions of αp and Z/pZ are also unipotent, e.g. Z/pnZ, αpn , and
the p-torsion subgroup scheme of a supersingular elliptic curve.

Example 1.5.4. Let k be a field of characteristic p > 0 and let V be a Z/pZ-representation. That is, there
is an automorphism T of V such that T p = idV . In characteristic p, the Frobenius isomorphism then
implies that (T − idV )

p = 0, from which it follows that T − idV has a non-zero kernel, so that T has a
non-zero fixed point. This shows directly that Z/pZ is unipotent in characteristic p. An example of a
typical Z/pZ-representation is given by Z/pZ→ GL2; 1 ↦→ ( 1 1

0 1 ), whose fixed locus is generated by the
vector ( 10 ).

Lemma 1.5.5. Let G be a subgroup scheme of Ga. Then Hi(k,G) = 0 for i ≥ 2.

Proof. The subgroup scheme G is either finite or Ga. In the latter case Hi(k,Ga) = 0 for i ≥ 1 is
well-known, which essentially follows from the normal basis theorem; see Prop. X.1 of [Ser79]. Otherwise,
the quotient Ga/G is isomorphic to Ga; see Lem. 2.3 of Tome II, Exp. XVII of [SGA 3]. The short exact
sequence

0 −→ G −→ Ga −→ Ga −→ 0

then induces a long exact sequence

· · · −→ Hi−1(k,Ga) −→ Hi(k,G) −→ Hi(k,Ga) −→ · · · .

Since the cohomology groups Hi(k,Ga) vanish for i ≥ 1, it follows that Hi(k,G) = 0 for i ≥ 2.

Proposition 1.5.6. Let G be a commutative unipotent group scheme. Then Hi(k,G) = 0 for i ≥ 2.

Proof. The characterisation of Thm. 3.5 of Tome II, Exp. XVII of [SGA 3] states that a unipotent
group admits a filtration where the successive quotients are isomorphic to finite subgroup schemes of
Ga, i.e. copies of Ga, αpn , and twisted forms of (Z/pZ)r. The result follows now by induction, using
Lemma 1.5.5.
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Chapter 2

Para-abelian varieties

Abelian varieties are defined as smooth, proper and geometrically integral group schemes. They arise
naturally in many contexts of algebraic geometry. One-dimensional abelian varieties are referred to as
elliptic curves, and the study of their rational points is a central topic in number theory. The theory of
abelian varieties is well-studied in the literature. We point the reader to e.g. [EGM; Mum08].

Our focus is directed mainly towards twisted forms of abelian varieties, which we refer to as para-abelian
varieties. This terminology was coined by Grothendieck in [Gro62] and has reappeared recently in a series
of articles by Schröer et al. [LS23; Sch23a; BDS24]. Similarly, twisted forms of elliptic curves are referred
to as para-elliptic curves. It turns out that any para-abelian variety can be equipped canonically with the
structure of a torsor under an abelian variety. In that sense, we specialise the theory of Chapter 1 to
abelian varieties. We study the so-called associated abelian variety of a para-abelian variety in Section 2.1
The functoriality of the associated abelian variety is the topic of Section 2.2. In Section 2.3 we study the
para-abelian surfaces that admit elliptic fibrations.

2.1 Para-abelian varieties and their associated abelian varieties

In this section we give a brief introduction to the theory of para-abelian varieties. We closely follow §4
and §5 of [LS23], where the theory is developed in the broader generality of algebraic spaces. We instead
summarise the theory over a ground field k within the category of schemes.

Recall that an abelian variety A is a proper, geometrically integral group scheme. The group scheme
structure places a large restriction on the scheme structure: an abelian variety is necessarily smooth
with trivial dualising sheaf. The group scheme axioms dictate that any abelian variety has a rational
point e ∈ A(k), which also poses an arithmetic restriction on the underlying scheme A. The class of
para-abelian varieties capture exactly the geometry of abelian varieties, without demanding the existence
of rational points.

Definition 2.1.1. A scheme X over a field k is called a para-abelian variety if there is a field extension
k′/k such that the base-change X ′ = X ⊗k k′ admits the structure of an abelian variety. A para-abelian
variety of dimension 1 is called a para-elliptic curve.

Example 2.1.2. A para-elliptic curve C is simply a smooth genus-one curve. Let k′/k be a field extension
and let C ′ = C ⊗ k′. If C has a k′-valued point, the choice of O ∈ C(k′) induces an isomorphism
C ′ → Pic0C′/k′ by P ↦→ OC′(P −O). In this way the base-change C ′ inherits the structure of an elliptic
curve.

Para-abelian varieties satisfy similar geometric properties: by fpqc-descent, a para-abelian variety is
smooth and proper with trivial dualising sheaf. By fpqc-descent, a para-abelian variety X is smooth and
proper with trivial dualising sheaf. From now on, let X denote a para-abelian variety. The following is
Prop. 4.3 of loc. cit., generalising Thm. 6.14 of [MFK94].

Proposition 2.1.3. For each e ∈ X(k) there is a unique group scheme structure on X with e as identity
section.
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A theorem of Matsumura and Oort states that for a proper scheme X the functor

(k-Alg) −→ (Set); R ↦−→ Aut(X ⊗R/R) = {ϕ : XR → XR | ϕ is an R-automorphism}

is representable; see Thm. 3.7 of [MO67]. We denote the scheme representing the above functor by
AutX/k, called the automorphism group scheme. Concretely, by identifying an automorphism ϕ with
its graph in X × X, it can be defined as an open subscheme of the Hilbert scheme HilbX×X/k. Also
representable for proper schemes is the Picard scheme PicX/k, due to a result of Murre, see [Mur64]. We
denote by PicτX/k the closed subscheme parametrising numerically trivial invertible sheaves.

Note that the automorphism group scheme AutX/k acts naturally on the Picard scheme PicX/k by
pullback of invertible sheaves. The numerically trivial sheaves are stable under this action, so we consider
the induced action of AutX/k on PicτX/k.

Definition 2.1.4. Let A ⊂ AutX/k be the inertia subgroup sheaf, which is the functor defined on R-valued
points by

A(R) = {ϕ ∈ AutP/k(R) | ϕ∗ : PicτP/k(R)→ PicτP/k(R) is the identity}.

We cite a number of critical results from our main source [LS23]. The following statements summarise
Prop. 5.1, 5.2, 5.5 and Thm. 5.3 of op. cit.

Proposition 2.1.5. Let X be a para-abelian variety. The functor A is representable by an abelian variety.
Its action on X is free and transitive, so that X has the structure of an A-torsor. Furthermore, there is a
canonical identification PicτX/k = PicτA/k.

Definition 2.1.6. Let X be a para-abelian variety. We call A the associated abelian variety of X.

Since X is canonically equipped with the structure of an A-torsor, it corresponds to a cohomology
class [X] in H1(k,A). The group H1(k,A) is called the Weil-Châtelet group. It is an important arithmetic
invariant associated to the abelian variety A. Since A is smooth, the cohomology may also be computed
through Galois cohomology

H1(k,A) = H1(Gal(ksep/k), A(ksep)) = lim−→
k′/k

H1(Gal(k′/k), A(k′)),

where the direct limit ranges over all finite Galois extensions k′/k. It follows that every cohomology class
has a finite order, which in this context is usually given a different name.

Definition 2.1.7. The period per(X) of a para-abelian variety X is the order of [X] in the Weil–Châtelet
group H1(k,A).

It turns out that the construction of the associated abelian variety is entirely functorial, see [LS23,
Prop. 5.4]. We study functoriality further in the upcoming section.

Proposition 2.1.8. Let F : X1 → X2 be a morphism of para-abelian varieties. There is a unique
homomorphism f = F∗ : A1 → A2 making F into an A1-equivariant morphism.

Remark 2.1.9. The functor induces a map on automorphism groups Aut(X) → Aut(A). In fact the
previous proposition holds in families, as shown in op. cit., so for any scheme T there are compatible maps
Aut(XT )→ Aut(AT ) which hence induce a map on automorphism group schemes AutX/k → AutA/k.

Remark 2.1.10. The maps F : X1 → X2 and f : A1 → A2 are twisted forms, in the sense that there is a
ground field extension k′/k and suitable isomorphisms X1 ⊗ k′ ∼= A1 ⊗ k′ and X2 ⊗ k′ ∼= A2 ⊗ k′ such
that F ⊗ k′ and f ⊗ k′ agree.

2.2 Morphisms between para-abelian varieties

In the previous section, we defined a functor from the full subcategory of para-abelian varieties to
the category of abelian varieties by mapping a para-abelian variety its associated abelian variety. In
this section we study surjective morphisms between para-abelian varieties and deduce a number of
important criteria. Throughout, let X1, X2 be para-abelian varieties with associated abelian variety A1,
A2 respectively.
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Since a para-abelian variety is canonically a torsor under its associated abelian variety, we may apply
the results of Section 1.2 to classify surjective morphisms F : X1 → X2 between para-abelian varieties.
This gives a number of useful cohomological criteria for the existence and non-existence for certain
morphisms between para-abelian varieties. For example, n-covers, sign involutions, or automorphisms
with a geometric fixpoint.

Let f : A1 → A2 be the morphism of associated abelian varieties and let K = Ker(f). In other words,
we have a short exact sequence

0 −→ K −→ A1 −→ A2 −→ 0. (2.2.1)

The action of A1 on X1 restricts to an action of K, which gives F the structure of a K-torsor. In this
setting hence Section 1.3 applies. We note that conversely, any torsor over a para-abelian variety X
under a finite commutative group scheme K can be thought of as coming from an isogeny. If G is finite
étale this is the Serre–Lang theorem; see Thm. 10.36 of [EGM], §18 of [Mum08], or [LS57]. In fact, an
analogous statement holds if G is possibly non-smooth and noncommutative; see [Nor83].

Recall that f : A1 → A2 is an isogeny if f is finite and surjective, or equivalently if f is finite and
dim(A1) = dim(A2); see Prop. 5.2 of [EGM]. We extend this notion by descent to para-abelian varieties.

Definition 2.2.1. A morphism of para-abelian varieties F : X1 → X2 is called an isogeny if one of the
following equivalent conditions is fulfilled:

(i) F is finite and dim(X1) = dim(X2);

(ii) after some base-change we can endow X1 and X2 with the structure of abelian varieties such that
F is an isogeny of abelian varieties;

(iii) the induced morphism f = F∗ on the associated abelian varieties is an isogeny.

Note indeed that the notion of finiteness and equidimensionality descend by Prop. 2.7.1 of [EGA
IV2]. The equivalence of the last two points follows since f and F are twisted forms in the sense of
Remark 2.1.10. Since isogenies are surjective, they satisfy the hypotheses of the cohomological criterion
Lemma 1.2.2. As such, we may use the Weil–Châtelet group to study the existence of isogenies. In that
light we also consider the expanded statements Propositions 1.2.3 and 1.3.6.

Proposition 2.2.2. Let A1, A2 be abelian varieties, let f : A1 → A2 be an isogeny with kernel K and let
X2 be an A2-torsor. Let p : X2 → Spec(k) denote the structure morphism. The following are equivalent:

(i) there exists an A1-torsor X1 and a morphism F : X1 → X2 inducing f ;

(ii) there exists an A1-torsor X1 such that X1/K ∼= X2;

(iii) there exists a cohomology class [X1] ∈ H1(k,A1) such that f∗([X1]) = [X2];

(iv) δ([X2]) = 0 in H2(k,K), where δ is the boundary map in the long exact sequence associated to
(2.2.1);

(v) (Lifting Property) there exists a cohomology class [X1] ∈ H1(X2,K) mapping to the element
τ ∈ H0(k,R1p∗(p

∗K)) of Section 1.3.

If the isogeny F of (i) exists, it is unique up to the action of A1(k).

In this list of equivalences, property (v) remains the most mysterious. In the case of para-abelian
varieties there is however a much more concrete description of the element τ using the Raynaud corres-
pondence, which applies since para-abelian varieties are proper. Note that the Raynaud correspondence
applies since abelian varieties are proper. We investigate what homomorphism corresponds to τ under
the canonical isomorphism H0(k,R1p∗(p

∗K)) ∼= Hom(K∨,PicτX2/k).
Note that PicτX2/k = PicτA2/k = A∨

2 is the dual abelian variety. The Néron–Severi group of an abelian

variety is torsion-free, so the dual variety may equivalently be defined as A∨
2 = Pic0A2/k. Duality is an

important tool in the study of abelian varieties; see e.g. §§6-7 of [EGM]. Taking the dual of an abelian
variety defines contravariant endofunctor on the category of abelian surfaces: an isogeny f : A1 → A2

induces a dual isogeny denoted f∨ : A∨
2 → A∨

1 by pullback of invertible sheaves. For any abelian variety
A, the double dual (A∨)∨ is naturally identified with A.
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If E is an elliptic curve with identity element ∞, then E∨ = Pic0E/k is canonically isomorphic to E.

The isomorphism E → Pic0E/k is given on T -points by P ↦→ O(P −∞). Since elliptic curves are self-dual,
we may make the identification E = E∨. Let f : E1 → E2 be an isogeny. Under this identification, the
dual isogeny is an isogeny f∨ : E2 → E1 in the other direction. There are certain cases in which it may
be helpful to not make this identification: for example, it aids in regulating the co- or contravariant
functoriality.

We study the kernel of the dual isogeny. By Thm. 7.5 of [EGM] or §15 of [Mum08], there is a canonical
isomorphism Ker(f∨) = K∨, where K∨ = Hom(K,Gm) denotes the Cartier dual of K. It hence sits in a
short exact sequence.

0 −→ K∨ −→ A∨
2 −→ A∨

1 −→ 0. (2.2.2)

Conversely, the dual isogeny f∨ : A∨
2 → A∨

1 is the quotient map by K∨ and may thus be recovered from the
subgroup scheme K∨ ⊂ A∨

2 only. This subgroup scheme also encodes the original isogeny f : A1 → A2. In
other words, the inclusion map K∨ → A∨

2 contains substantial information. The following correspondence
is well known and is shown in Prop. 2.3.11 under the assumption that K is of multiplicative type.

Lemma 2.2.3. Let f : A1 → A2 be an isogeny of abelian varieties with kernel K. Under the canonical
isomorphism H0(k,R1p∗(p

∗K)) ∼= Hom(K∨, A∨
2 ) of the Raynaud correspondence Theorem 1.3.8, the

element τ of Section 1.3 maps to the inclusion of the subgroup scheme K∨ → A∨
2 .

Proposition 2.2.4. In the setting of Proposition 2.2.2, the equivalent statements hold if and only if

(vi) (Lifting Property) there exists a cohomology class [X1] ∈ H1(X2,K) mapping to the canonical
inclusion K∨ → A∨

2 = Pic0X2/k ⊂ PicX2/k.

Remark 2.2.5. Let F : X1 → X2 be an isogeny and let K = Ker(F∗). We note that the implication
(i)⇒(v) of Proposition 2.2.4 is natural, in the sense that the K-torsor F maps to the inclusion K∨ ⊂ A∨

2 .
In general, one needs to be careful with these equivalences, as the objects in some cases contain more

data than others. For example, given an isogeny F : X1 → X2 as in (i), this induces an isomorphism
X1/K ∼= X2. From the data in case (iii) however, one can only deduce that such an isomorphism must
exist.

For later reference, let us state the relevant exact sequences of (1.3.3) in the context of abelian varieties
and para-abelian varieties.

0 −−−→H1(k,K) −→ H1(X2,K) −→ Hom(K∨, A∨
2 )

∂−−→ H2(k,K) −→ H2(X2,K) (2.2.3)

· · · −→ A2(k) −→H1(k,K) −→ H1(k,A1)
f∗

−−−−→ H1(k,A2) −−−→ H2(k,K) −−−−→ · · · (2.2.4)

This cohomological characterisation gives us a good understanding of when an isogeny F : X1 → X2

inducing a fixed f = F∗ exists. We specialise to different kinds of isogenies, but first note the following
useful criterion.

Lemma 2.2.6. In the setting of Proposition 2.2.4, if deg(f) and per(X2) are coprime, then the equivalent
conditions hold.

Proof. Since the order of K is deg(f), the cohomology group H2(k,K) is annihilated by deg(f). The
order of [X2] in H1(k,A2) is coprime to this, so δ([X2]) = 0.

First we investigate to what extent a ‘dual isogeny’ of para-abelian varieties exists, though in a sense
different than described above. Given an isogeny f : A1 → A2 of abelian varieties, there is an isogeny
g : A2 → A1 such that the compositions g ◦ f and f ◦ g are multiplication by deg(f) on A1 and A2,
respectively; see Prop. 5.12 of [EGM]. This follows roughly from the fact that the kernel of f is finite,
so it is contained in the n-torsion A[n], where n = |K| = h0(OK) is the order of K. If A1 = E1 and
A2 = E2 are elliptic curves, then by self-duality we may identify g with f∨.

Given an isogeny of para-abelian varieties F : X1 → X2, the following results explore to what extent a
G : X2 → X1 exists, with ‘similar’ properties, to be clarified below. First, we suppose that the composition
G ◦ F be a twisted form of multiplication by deg(F ) = deg(f).

Proposition 2.2.7 (Dual isogeny). Let F : X1 → X2 be an isogeny inducing f : A1 → A2. There is a
map G : X2 → X1 such that (G ◦ F )∗ is multiplication by deg(f) if and only if deg(f) ≡ 1 mod per(X1).
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Proof. By the existence of F , we have that f∗([X1]) = [X2]. Let g : A2 → A1 be the isogeny such that
g ◦ f is multiplication by deg(f). There is a G : X2 → X1 inducing g if and only if [X1] = g∗([X2]), where
the right hand side equals g∗(f∗([X1])) = deg(f) · [X1].

The above notion is stronger than if we had required that the composition G ◦ F be a twisted form of
multiplication by some (possibly larger) integer, although the two notions coincide for abelian surfaces.

Proposition 2.2.8 (A ‘weak’ dual isogeny). Let F : X1 → X2 be an isogeny inducing f : A1 → A2.
There is a map G : X2 → X1 such that (G ◦ F )∗ is multiplication by some integer if and only if deg(f)
and per(X1) are coprime.

Proof. Suppose first that (G ◦ F )∗ is multiplication by m ∈ N. Then m is divisible by deg(f) so set
n = m/deg(f). Now n deg(f)[X1] = [X1], so deg(f) is coprime to per(X1). The converse is similar: all
steps are reversible.

The statement of the following result seems quite unrelated, but can in fact be proven by a very
similar method. Let E be an elliptic curve and let C be an E-torsor. For any field extension k′/k, the
set of k′-valued points C(k′) is either empty, or in non-canonical bijection with E(k′) by Corollary 1.1.8.
The bijection E(k′)→ C(k′) depends on the choice of a point in C(k′). If C(k′) is nonempty, we call it a
splitting field for C. We show that in some cases, the set of splitting fields characterises the underlying
scheme of an E-torsor.

Proposition 2.2.9. Suppose E is an elliptic curve with End(E) = Z. Let C and D be E-torsors such
that for all field extensions k′/k the set of rational points C(k′) is empty if and only if D(k′) is empty.
Under the assumption that the period of C is 2, 3, 4 or 6, then C and D are isomorphic as schemes.

Proof. The case that C and D have k-points is trivial, so we suppose they have no k-points. Let K = κ(C)
be the function field of C. The inclusion Spec(K)→ C hence yields a K-rational point on D. Since C is
a smooth curve, it extends to a map F : C → D.

We show that F is non-constant. Suppose F maps the generic point Spec(K) to a closed point p ∈ D.
This yields a tower of field extensions k ⊂ κ(p) ⊂ K, where κ(p)/k is finite. Since h0(C) = 1 we know
that k is algebraically closed in K, so in fact κ(p) = k and D has a k-point.

Therefore F is a surjective map between equidimensional para-elliptic curves and hence an isogeny
of para-elliptic curves. By symmetry, there is also an isogeny G : D → C. Let f and g be the induced
endomorphisms of E, which by assumption can be interpreted as integers. Then f∗([C]) = [D] and
g∗([D]) = [C], so fg ≡ 1 mod per(C). By assumption on the period, we have that φ(per(C)) ≤ 2, where
φ denotes the Euler-phi function, hence it follows that f ≡ ±1 mod per(C). Then [D] = f∗([C]) is
isomorphic as torsor C or its pullback along the sign involution of E. In either case [D] is isomorphic to
[C] as a scheme.

Remark 2.2.10. Let E be an elliptic curve with complex multiplication, so End(E) is an order in a
imaginary quadratic number field. Given an isogeny ϕ of E which is not multiplication by some integer,
its norm is the composition ϕ∨ ◦ ϕ, which is (multiplication by) an integer. If the norm is 1 modulo the
period of C, then the cohomology class [D] = ϕ∗([C]) ∈ H1(k,E) satisfies ϕ∨∗ ([D]) = [C]. As such, there
are isogenies C → D and D → C, which are twisted forms of ϕ and ϕ∨, respectively. Then it is clear that
C and D have the same splitting fields.

We return to studying particular kinds of isogenies between para-abelian varieties. Consider now
the case where A1 = A2 = A and where f is multiplication by an integer n. We call an F : X1 → X2

such that F∗ is multiplication by n an n-covering, generalising the notion of Dfn. 3.3.1 of [Sko01]. The
following result follows immediately from the equivalence (i)⇔(iii) of Proposition 2.2.2.

Corollary 2.2.11 (n-coverings). Let F : X1 → X2 be an n-covering, then n · [X1] = [X2] Conversely,
for any cohomology class [X1] satisfying n · [X1] = [X2] there is an n-covering map F : X1 → X2. In
particular, if X2 has a rational point, then per(X1) divides n. And if X2

∼= X1, then per(X1) divides
n− 1.

Fix an integer n and fix a para-abelian variety X2 with associated abelian variety A. Consider the
five-term exact sequence of the Leray–Serre spectral sequence with the Raynayd correspondence of (1.3.5).

0 −→ H1(k,A[n]) −→ H1(X2, A[n])
t−−→ Hom(A[n]∨, A∨)

∂−−→ H2(k,A[n]) −→ · · · .
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From Lemma 2.2.3 it follows that the set of isomorphism classes of para-abelian varieties X1 that admit
an n-covering X1 → X2 is in bijection to the fibre of t over the inclusion A[n]∨ ⊂ A∨. Recall that this
bijection is not canonical and depends on the choice of n-covering X1 → X2. The fibre of t is nonempty
if and only if the image of the inclusion under ∂ is zero.

Setting X2 = A, the n-coverings X → A are classified by the cohomology group H1(k,A[n]). Given an
n-covering X → A the fibre over the identity element is a torsor under A[n], which defines a cohomology
class in H1(k,A[n]). Conversely, given an A[n]-torsor P we construct the contracted productX = A∧A[n]P .
The map n ◦ prA : A× P → A induces to an n-covering on the quotient X → A.

Heuristically, the cohomology group H1(k,A[n]) classifies twisted forms of objects with automorphism

group scheme A[n]. The multiplication by n morphism A
n−→ A in some sense has A[n] as ‘automorphism

group scheme’, since any dashed arrow making the diagram

A A

A Aid

nn

commute is translation by an n-torsion element.
We now explore endomorphisms of a given para-abelian variety, i.e. where A1 = A2 = A and

X1 = X2 = X are fixed.

Theorem 2.2.12 (Endomorphisms of A). Let f be an endomorphism of A and let H = Ker(1− f). The
following are equivalent:

(i) there exists an endomorphism F of X such that F∗ = f ;

(ii) the cohomology class [X] lies in the kernel of (1− f)∗;

(iii) there is an H-torsor T such that X ∼= A ∧H T .

Proof. From the equivalence (i)⇔(iii) of Proposition 2.2.2 it follows that such an endomorphism F exists
if and only if f∗([X]) = [X]. This happens if and only if f∗([X])− [X] = 0. Consider now the short exact
sequence

0 −→ H −→ A
1−f−−−→ A −→ 0,

which yields the long exact sequence

· · · −→ H1(k,H) −→ H1(k,A)
(1−f)∗−−−−−→ H1(k,A) −→ · · · .

Then [X] lies in the kernel of (1− f)∗ if and only if it lies in the image of H1(k,H), i.e. is of the form
X ∼= A ∧H T for some [T ] ∈ H1(k,H).

We recover a number of statements from the literature. For example, if f = ±n we recover Prop. 19
of [Cla06]. In the special case that f = −1 is the sign involution, we recover Thm. 1.2 of [BDS24], which
states the following.

Corollary 2.2.13 (sign involutions). The following are equivalent:

(i) X admits a sign involution;

(ii) 2[X] = 0 in H1(k,A);

(iii) there is an A[2]-torsor T such that X ∼= A ∧A[2] T .

Combining Corollary 2.2.11 with above result, it follows that a para-abelian variety has a sign
involution if and only if it has a 2-covering X → A. This equivalences arises naturally for elliptic curves
in the context of Section 6.1; see e.g. Remark 6.1.17 and Lemma 6.1.20.

There is also a concrete construction. If σ is a sign involution on X, then the composition

X
id×σ−−−→ X ×X ∼←−− A×X prA−−→ A
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is a two-covering. Conversely, if F : X → A is a two-covering, then

σ : X −→ X;x ↦−→ α(−F (x), x) (2.2.5)

is a sign involution, where α : A×X → X denotes the action of A on X. Indeed, after base changing to
a field k′/k such that X ⊗ k′ ∼= A′ by choice of point making F ′ : A→ A into multiplication by two, then
σ states x ↦→ ‘x− 2x′.

In [BDS24] the above result was shown using the so-called scheme of sign involutions InvsgnX/k, which

is a closed subscheme of AutX/k parametrising exactly the sign involutions. For existence we refer to op.
cit. The proof of above Corollary in op. cit. revelas that InvsgnX/k is a twisted form of A. We strengthen

Corollary 2.2.13 by describing the cohomology class in the Weil–Châtelet group in terms of the cohomology
class [X], following the spirit of the arguments in loc. cit.

Theorem 2.2.14. The scheme of sign involutions InvsgnX/k is the torsor under A corresponding to the

cohomology class 2[X] ∈ H1(k,A).

Proof. Since A is smooth, we may compute the cohomology group H1(k,A) in terms of Galois cohomology
H1(Gal(ksep/k), A(ksep)). The cohomology class [X] then corresponds to a 1-cocycle

φ : Gal(ksep/k) −→ A(ksep).

An explicit description of φ is given as follows: pick a point x ∈ X(ksep), then σ · x = φ(σ) + x, where
+: A×X → X denotes the canonical action of A on X by translation. The automorphism group scheme
AutX/k is a twisted form of AutA/k. The Galois action on Aut(A ⊗ ksep) corresponding to AutX/k is,
according to Lem. 3.1 of [ST23], induced by conjugation

σ · ψ : x ↦−→ σ · ψ(σ · x) = ψ(x+ φ(σ)) + φ(σ).

If ψ is a sign involution of A⊗ ksep, then it follows from (1) on p. 4 of [BDS24] that above expression
equals

ψ(x+ φ(σ)) + φ(σ) = ψ(x) + 2φ(σ).

Therefore 2φ is a 1-cocycle corresponding to [InvsgnX/k] ∈ H1(k,A).

We now consider other automorphisms of the abelian variety A, which are not necessarily the sign
involution. Recall that an abelian variety A is simple if it does not have non-trivial abelian subvarieties.
If A is simple, then End(A) does not have zero-divisors, see [EGM, Cor. 12.7].

Corollary 2.2.15. Let X be a para-abelian variety with an automorphism of order 6 with a geometric
fixpoint. If A is simple, then X has a rational point.

Proof. Let ω be the associated automorphism of order 6 on A. The subring Z[ω] ⊂ End(A) is an integral
domain in which ω has order 6 and hence is a root of the polynomial t2 − t+ 1 = 0. We rewrite this to
the equation 1− ω = ω−1. The existence of a stated automorphism of order 6 on X is equivalent with
0 = (1 − ω)∗([X]) = ω−1

∗ ([X]). Repeatedly applying ω−1
∗ , it follows that [X] = 0, so X has a rational

point.

Remark 2.2.16. The assumption on the simplicity of A is necessary: consider for example the product of
an elliptic curve with an automorphism of order 6 with any para-elliptic curve without rational point, the
latter equipped with the identity map. The product map has order 6 and plenty of geometric fixpoints,
but the factor without rational points obstructs the existence of rational points on the product.

Remark 2.2.17. This line of argument is special to (multiples of) 6. The argument relies on the fact that
1−ζ6 = ζ56 , but could work more generality if there are positive integers n and i < n such that 1−ζn = ζin.
We will show that if such integers exist, that n must be divisible by 6. Then the polynomials Xi +X − 1
and Xn − 1 over Z (or equivalently over Q, by primitivity) share an irreducible factor. The polynomial
Xi +X − 1 has been factorised by Selmer in [Sel56, Thm. 1]: it is irreducible unless i ≡ 5 mod 6, in
which case it is the product of X2 −X + 1 and an (explicit) irreducible polynomial, which can be defined
recursively through the identity

Xi+6 −X + 1 = Xi −X + 1 + (X2 −X + 1)(Xi+4 +Xi+3 −Xi+1 −Xi).
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First suppose that i ≡ 5 mod 6 and the irreducible factor X2 − X + 1 shares a root with Xn − 1.
Since X2−X +1 is the sixth cyclotomic polynomial, it follows directly that n is divisible by 6. The other
case is that the (other) irreducible factor Xi −X + 1 or (Xi −X + 1)/(X2 −X + 1) shares a root with
Xn − 1. By irreducibility it must be a divisor, from which it follows that it is a cyclotomic polynomial
and hence palindromic. This only happens for i = 2, which again yields the sixth cyclotomic polynomial
X2 −X + 1, so n is divisible by 6. (See also §3 of loc. cit.)

In fact, this last Corollary can be generalised to actions by étale group schemes of order 6 with a
geometric fixpoint. First, we state a helpful result from [BS04]; see its Prop. 2.

Lemma 2.2.18. Let G be an étale group scheme acting on X, which by Remark 2.1.9 naturally induces
an action on A. Let XG be the scheme of G-invariants of X, and let AG be the subgroup scheme of
G-invariants of A. If XG is nonempty, then the natural map H1(k,AG)→ H1(k,A) maps [XG] to [X].

We note that this proposition is in some sense similar to Theorem 2.2.12, where AG plays a similar
role as H, since they both give a criterion for the cohomology class of a group scheme to come from
H1(k,AG) or H1(k,H). In fact, in the special case that G is the constant group scheme associated to the
group Z, which acts on X by some automorphism F and hence on A by some automorphism f , then
AG = Ker(1− f) = H and both results state that [X] is the image of a class in H1(k,AG) = H1(k,H).
We can similarly draw the following corollary, which was noted in op. cit. under the assumption that A is
an elliptic curve; cf. its p. 33.

Proposition 2.2.19. Let X be a para-abelian variety with the action of an étale group scheme G of
order 6 with a geometric fixpoint. If A is simple, then X has a rational point.

Proof. This follows directly from Lemma 2.2.18 once we show that AG consists of a single point. To
prove this, we assume without loss of generality that k is algebraically closed. Let ω be a generator for
G(k), then by simplicity Z[ω] ⊂ End(A) is a domain and hence satisfies the relation ω2 − ω+ 1 = 0. This
implies that 1− ω = ω−1, so the ω-invariants are exactly the kernel of ω−1, which is 0.

2.3 Elliptic para-abelian surfaces

In this section we study so-called elliptic para-abelian surfaces, since we later encounter them naturally
in the study of canonical covers of bielliptic surfaces. Before treating the para-abelian case, let us first
explain the theory given the existence of rational points. Recall that an elliptic fibration is a proper
morphism in Stein factorisation such that the generic fibre is a smooth genus-one curve.

Definition 2.3.1. An abelian surface A is called elliptic if there is an elliptic fibration f : A→ E.

Remark 2.3.2. We postpone a more detailed discussion of elliptic fibrations to Section 3.1; e.g. for a
definition of elliptic fibration see Definition 3.1.30 below.

Remark 2.3.3. The elliptic fibration f is not part of the data. This is the natural definition in view of
Proposition 2.3.10.

The notation suggests that the codomain E should be an elliptic curve. Of course it is not surprising
that E is a curve, but it is perhaps not so clear why the genus should equal one. This remarkable fact
turns out to be a consequence of the powerful Blanchard’s Lemma. Let us first recall its statement: the
following is Thm. 7.2.1 of [Bri17].

Theorem 2.3.4 (Blanchard’s Lemma). Let G be a connected algebraic group. Let X be a scheme of
finite type with a G-action. Let Y be a scheme of finite type and let f : X → Y a proper morphism in
Stein factorisation. Then there exists a unique action of G on Y such that f is equivariant.

By abuse of terminology, we also refer to the following corollary, which is Cor. 7.2.2 in op. cit., as
Blanchard’s lemma.

Corollary 2.3.5 (Blanchard’s Lemma). Let f : X → Y be a morphism of proper schemes of finite
type in Stein factorisation. Then f induces a homomorphism f∗ : Aut0X/k → Aut0Y/k, such that f is

Aut0X/k-equivariant.
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Proof. Apply Theorem 2.3.4 to the action of Aut0X/k on X.

We specialise to abelian varieties. In this case, Blanchard’s lemma yields a substantial restriction on
the existence morphisms in Stein factorisation where the domain is an abelian variety.

Lemma 2.3.6. Let A be an abelian variety and let X be a proper scheme, such that f : A → X is in
Stein factorisation. If Aut0X/k is affine, then X is a point.

Proof. Since A = Aut0A/k is proper and Aut0X/k is affine, the induced homomorphism f∗ : Aut0A/k →
Aut0X/k obtained through the latter version of Blanchard’s lemma is constant. Since Aut0A/k acts
transitively on A and trivially on X through f∗, the only possibility is that f is constant. But a morphism
in Stein factorisation is surjective, hence X consists of a single point.

Although this may seem to be a reasonably specific criterion, we state two immediate and remarkable
consequences, in which we take advantage of the fact that the group scheme PGLn is affine.

Proposition 2.3.7. If f : A→ Pn is a morphism in Stein factorisation, then n = 0.

Proof. This is a special case of Lemma 2.3.6, since Aut0Pn/k = PGLn is affine.

Proposition 2.3.8. Let A be an abelian variety and let C be a proper curve of genus at least 2. There is
no morphism f : A→ C in Stein factorisation.

Proof. For curves of genus at least two, the dualising sheaf ωC is ample. Fix n ≥ 1 such that the tensor
power ω⊗n

C is very ample, inducing an embedding i : C → PΓ(C,ω⊗n
C ). The natural action of AutC/k

on C extends to a compatible action on PΓ(C,ω⊗n
C ) by the pullback of differentials. Thus there is an

injective morphism Aut0C/k → AutPΓ(C,ω⊗n
C ) = PGLN with N = h0(ω⊗n

C )− 1. Now Aut0C/k is a subgroup

scheme of an affine group scheme and hence affine. We conclude by Lemma 2.3.6.

Combining the above propositions completely classifies morphisms in Stein factorisation from abelian
varieties to curves.

Theorem 2.3.9. Let A be an abelian variety, let E be a curve and let f : A→ E be a proper morphism
in Stein factorisation. Then E is a genus-one curve.

Proof. Combine Propositions 2.3.7 and 2.3.8.

Suppose f is furthermore assumed to be an elliptic fibration. Then by definition, the codomain is
assumed to be smooth, hence can be given the structure of an elliptic curve. This justifies our choice of
notation. Note that since we have chosen a rational point on A, there is a rational point on E making f
into a homomorphism of abelian varieties. Since f is an elliptic fibration, the kernel ˜︁J = Ker(f) is an
elliptic curve. It follows that every fibre of f is smooth, so no degenerate fibres occur. Due to the short
exact sequence

0 −→ ˜︁J −→ A −→ E −→ 0, (2.3.1)

an elliptic abelian surface is an extension of two elliptic curves. The converse is true as well: recall that
an abelian variety is called simple if there are no non-trivial abelian subvarieties.

Proposition 2.3.10. Let A be an abelian surface. The following are equivalent:

(i) the abelian surface A is elliptic;

(ii) the abelian surface A has a subgroup scheme ˜︁J which is an elliptic curve;

(iii) the abelian surface A is not simple.

Proof. The implications (i)⇒(ii)⇒(iii) are clear from the above discussion. For the converse, we note

that for dimension reasons a non-trivial abelian subvariety ˜︁J of an abelian surface is an elliptic curve,
and that the quotient map A→ A/ ˜︁J is an elliptic fibration.
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Recall the Poincaré irreducibility theorem, which states that any abelian variety is isogenous to a
product of simple abelian varieties. Since an elliptic abelian variety is not simple, it is isogenous to a
product of elliptic curves. More precisely, it follows that there are elliptic curves ˜︁E ⊂ A and ˜︁J ⊂ A such
that the intersection H = ˜︁E ∩ ˜︁J is finite and the addition map ˜︁E × ˜︁J → A is an isogeny. It is for this
reason that elliptic abelian surfaces are sometimes called split abelian surfaces in the literature.

There is a natural isomorphism A = ( ˜︁E × ˜︁J)/H. Regarding H also as a subgroup scheme of ˜︁E, there

is a further isomorphism E = ˜︁E/H. For the sake of symmetry, we set J = ˜︁J/H: indeed, we may also
regard A as an elliptic surface through the fibration A→ J . These objects sit naturally in the following
diagram: ˜︁J ˜︁E × ˜︁J ˜︁E

J A E

□ □
(2.3.2)

The vertical maps are quotients by a free H-action, hence are H-torsors. By equivariance it follows
from Lemma 1.1.10 that both squares are Cartesian. Therefore the fibration F : A→ E is étale locally
isomorphic to a product

Combining the two fibrations, we find a morphism of abelian varieties A→ E × J . These morphisms
are compatible, in the following sense.

Proposition 2.3.11. The diagram

0

0 H ˜︁E × ˜︁J A 0

0 H2 ˜︁E × ˜︁J E × J 0

0 H A E × J 0

0

∆−

+

id

+ + idid

commutes, with exact rows and exact first column.

From the above short exact sequences, it follows that the quotient maps ˜︁E × ˜︁J → A and A→ E × J
naturally have the structure of H-torsors. The quotient maps ˜︁E → E and ˜︁J → J are also naturally
H-torsors. We describe these torsors in terms of the theory developed in Section 1.3, by considering the
Leray–Serre spectral sequences attached to the structure morphisms of E × J , and the factors E and J .

Proposition 2.3.12. The diagram

0
H1(k,H)
⊕

H1(k,H)

H1(E,H)
⊕

H1(J,H)

Hom(H∨, E∨)
⊕

Hom(H∨, J∨)
0

0 H1(k,H) H1(E × J,H) Hom(H∨, E∨ × J∨) 0

+ pr∗E+pr∗J ∼=

(2.3.3)

is a morphism of short exact sequences. In the top row, the pair of H-torsors ( ˜︁E → E, ˜︁J → J) maps to
the pair of inclusions (H∨ → E∨, H∨ → J∨). Consequently in the bottom row, the H-torsor A→ E × J
maps to the inclusion H∨ → E∨ × J∨.

Proof. The rows arise from the five-term exact sequences (2.2.3), which reduce to short exact sequences
due to the existence of rational points. Note that the boundary maps ∂E , ∂J and ∂E×J vanish due to the
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existence of rational points, so that the five-term exact sequences restrict to short exact sequences. The
morphisms between the rows follow from the naturality of the Leray–Serre spectral sequence.

The dual of the quotient map E → E/H is the H∨-torsor ˜︁E → E, which by Lemma 2.2.3 maps to

the inclusion H∨ → E∨. In a similar way, the H-torsor ˜︁J → J amps to the inclusion H∨ → J∨. The last
statement follows by commutativity, since

A = ( ˜︁E × ˜︁J)/H = (( ˜︁E × J)×E×J (E × ˜︁J))/H = ( ˜︁E × J) ∧HE×J (E × ˜︁J),
corresponding to the cohomology class pr∗E([

˜︁E → E]) + pr∗J([
˜︁J → J ]).

We now develop a similar theory for para-abelian surfaces. Throughout let X denote a para-abelian
surface. Let A be the associated abelian surface, so that X is an A-torsor.

Definition 2.3.13. A para-abelian surface X is called elliptic if there is an elliptic fibration F : X → C.

The base-change Xalg → Calg is then an elliptic fibration on an abelian surface, and we have seen that
hence Calg is an elliptic curve, so C is para-elliptic. Note that although X being an elliptic para-abelian
surface implies that Xalg is also an elliptic abelian surface, the converse does not hold.

Example 2.3.14. Examples over finite fields arise naturally in cryptography as Jacobians of certain
hyperelliptic curves. See for example [Sat09].

Instead, the connection between para-abelian surfaces and abelian surfaces should be sought through
the theory of the associated abelian variety.

Proposition 2.3.15. A para-abelian surface X is elliptic if and only if its associated abelian surface A
is elliptic.

Proof. If F : X → C is an elliptic fibration then f = F∗ is an elliptic fibration A → C. Conversely
consider f : A → E and let [C] = f∗([X]). Unravelling definitions, this means that C = X/ ˜︁J , where˜︁J = Ker(f). The quotient map X → C is a twisted form of f , hence is an elliptic fibration.

Let X be an elliptic para-abelian surface. Since the associated abelian surface A is elliptic, there are
elliptic curves E and J and an isogeny A→ E × J with kernel H. A similar statement still holds without
rational points. Note that H, as a subgroup scheme of A, acts freely on X.

Proposition 2.3.16. The quotient X/H is isomorphic to a product C ×D of para-elliptic curves.

Proof. The abelian surface A has two elliptic fibrations f : A→ E and g : A→ J . Define the para-elliptic
curve D through the cohomology class [D] = g∗([X]), which defines an elliptic fibration G : X → D.
Note that similarly [C] = f∗([X]), corresponding to the elliptic fibration F : X → C. The diagonal map
X → C × D is a twisted form of A → E × J . By the universal property of the quotient, there is an
induced map X/H → C ×D, which is a twisted form of the isomorphism A/H

∼−→ E × J and is hence an
isomorphism.

Although A is covered also by a product ˜︁E× ˜︁J , this is a lot more subtle in the context of para-abelian
surfaces. We show that there is a certain cohomological obstruction to the existence of a cover of an
elliptic para-abelian surface by a product of para-elliptic curves of a certain form. We treat this question
by considering H-torsors over C and D, in analogy to before. As before, we consider the Leray–Serre
spectral sequences corresponding to the structure morphisms of C × D, and the factors C and D, cf.
(2.2.3).

Proposition 2.3.17. The diagram

0
H1(k,H)
⊕

H1(k,H)

H1(C,H)
⊕

H1(D,H)

Hom(H∨, E∨)
⊕

Hom(H∨, J∨)

H2(k,H)
⊕

H2(k,H)

H2(C,H)
⊕

H2(D,H)

0 H1(k,H) H1(C ×D,H) Hom(H∨, E∨ × J∨) H2(k,H) H2(C ×D,H)

+ pr∗C+pr∗D

∂C⊕∂D

∼=

p∗C⊕p∗D

+

∂C×D

(2.3.4)

commutes, with exact rows. In the bottom row, the H-torsor X → C × D maps to the inclusion
H∨ → E∨ × J∨.
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The main difference with Proposition 2.3.12 is the potential non-vanishing of the boundary maps ∂E
and ∂J . If the images of the inclusion H∨ → E∨ and H∨ → J∨ vanish in the cohomology group H2(k,H),

then there are H-torsors ˜︁C → C and ˜︁D → D, which play the role of the covers ˜︁E → E and ˜︁J → J .
From commutativity of (2.3.4) it follows that there is an induced cover ˜︁C × ˜︁D → X, as a quotient by the
anti-diagonal H-action. However in general the boundary map of a para-elliptic curve will be nonzero; we
study the boundary map closely in Section 6.3 and refer to section for examples.

Let α = ∂C(H
∨ → E∨) be the obstruction in H2(k,H) for Y to arise as a quotient of a product. Note

that ∂J(H
∨ → J∨) = −α, since the diagonal embedding H∨ → E∨ × J∨ arises from the cohomology

class [X] ∈ H1(C ×D,H). Commutativity and exactness of (2.3.4) direct implies the following result.

Theorem 2.3.18. The following are equivalent:

(i) There are H-torsors ˜︁C → C and ˜︁D → D such that Y ∼= ( ˜︁C × ˜︁D)/H;

(ii) ∂C(H
∨ → E∨) = 0, where H∨ → E∨ denotes the inclusion;

(iii) ∂D(H
∨ → J∨) = 0, where H∨ → J∨ denotes the inclusion.

The cohomology classes [Y ] in H1(C ×D,H) which do not satisfy (i) forms a non-trivial element of
the cokernel of pr∗C + pr∗D. Through a more accurate diagram chase we may also phrase the following
more general form of the same result.

Proposition 2.3.19. The diagram (2.3.4), induces a natural isomorphism

Coker(pr∗C + pr∗D) = Ker(p∗C ⊕ p∗D) ∩∆−(H2(k,H)),

where ∆−(H2(k,H)) denote the anti-diagonal in H2(k,H)⊕H2(k,H).

Proof. This is a diagram chase. From the above diagram it is clear that an element of H1(C ×D,H)
maps to H2(k,H) ⊕ H2(k,H). By commutativity and exactness it lands within Ker(p∗C ⊕ p∗D) and
Ker(+) = ∆−(H2(k,H)).

Conversely, any element in the intersection of these two kernels comes from an element of H1(C×D,H),
which is unique up to elements of H1(C,H)⊕H1(D,H) and H1(k,H). Since + is surjective, this latter
element lifts to H1(k,H)⊕H1(k,H) and maps to H1(C,H)⊕H1(D,H). Whence this procedure defines
a unique element of the cokernel of pr∗C + pr∗D.

Theorem 2.3.20. Suppose that there is an isogeny C1 ×D1 → X, where C1 and D1 are para-elliptic
curves, such that the composition C1 ×D1 → X → C ×D is the product of two isogenies C1 → C and
D1 → D. Then there are H-torsors ˜︁C → C and ˜︁D → D such that X = ( ˜︁C × ˜︁D)/H, where H acts

anti-diagonally on the product ˜︁C × ˜︁D. In other words, the cohomology class α vanishes in H2(k,H).

Proof. The isogenies C1×D1 → X → C×D induce isogenies of abelian varieties, whose kernels sit inside
a short exact sequence

0 −→ K −→ GC ×GD −→ H −→ 0,

where C1 → C is a GC-torsor and D1 → D is a GD-torsor, such that X is isomorphic to the quotient
(C1 × C2)/K. In a cohomological language, this means that the natural map H1(C ×D,GC ×GD)→
H1(C ×D,H) maps the cohomology class of the GC ×GD-torsor C1 ×D1 → C ×D to the cohomology
class of the H-torsor X → C×D. The surjective map GC×GD → H induces a pair of maps GC → H and
GD → H, and hence also the map GC ×GD → H ×H, such that the following diagram is commutative.

GC ×GD H ×H

H
+

By naturality, the following square commutes.

H1(C,GC)×H1(D,GD) H1(C ×D,GC ×GD)

H1(C,H)×H1(D,H) H1(C ×D,H)
pr∗C+pr∗D
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The pair of cohomology classes ([C1 → C], [D1 → D]) in H1(C,GC) × H1(D,GD) maps to the

cohomology class [X → C ×D]. Letting [ ˜︁C → C] ∈ H1(C,H) and [ ˜︁D → D] ∈ H1(D,H) be the images of
[C1 → C] ∈ H1(C,GC) and [D1 → D] ∈ H1(D,GD), respectively, then

X = ( ˜︁C ×D) ∧HC×D (C × ˜︁D) = ( ˜︁C × ˜︁D)/H.

Since the cohomology class [ ˜︁C → C] in H1(C,H) maps to the inclusion H∨ → E∨, by exactness α = 0.

In this way, the cohomology class α ∈ H2(k,H) obstruct the existence of certain covers C1 ×D1 → X.
The main restriction is that the isogeny C1 × D1 → C × D is diagonal. In the generic case, we may
remove this assumption. For the purposes of Theorem 2.3.20, one may without loss of generality swap
the factors C1 and D1, in which case the following criterion is sufficient.

Proposition 2.3.21. Suppose that the elliptic curves E and J associated to C and D are non-isogenous.
Then an isogeny C1 ×D1 → C ×D is either the product of two isogenies C1 → C and D1 → D, or the
product of two isogenies C1 → D and D1 → C.

Proof. Let E1 and J1 be the associated elliptic curves of C and D. It suffices to treat the induced isogeny
on associated abelian surfaces E1 × J1 → E × J . It can be identified with a 2× 2-matrix

ϕ =

(︃
ϕEE ϕJE
ϕEJ ϕJJ

)︃
,

where each of the entries are homomorphisms of elliptic curves ϕEE : E1 → E, ϕEJ : E1 → J , ϕJE : J1 → E
and ϕJJ : J1 → J . If ϕEE is nonzero, then E and E1 are isogenous, so that ϕEJ and ϕJE are zero and ϕ
is diagonal. On the other hand if ϕEE is zero, then ϕJE must be nonzero, since ϕ is an isogeny, so J1 and
E are isogenous and by a similar argument it follows that ϕ is anti-diagonal.

Remark 2.3.22. One can also argue conceptually, using an argument similar to what we see in Section 3.3.
Under the assumption that E and J are non-isogenous, it follows that the Picard number ρ of the product
E × J equals 2. Therefore the Picard number of E1 × J1 is also 2. The Gram matrix of the intersection
product on Num(E1 × J1) is the hyperbolic plane ( 0 1

1 0 ), so there are two rays of effective divisor classes
satisfying D2 = 0 and the only fibrations of E1 × J1 are the projections onto the two factors. The Stein
factorisation of E1 × J1 → E is hence one of the two projections projection; the Stein factorisation of
E1 × J1 → J is the projection onto the other factor, since otherwise it violates surjectivity. It is now not
difficult to see that E1 × J1 → E × J is either the product of two induced maps E1 → E and J1 → J , or
of two maps E1 → J and J1 → E.

Corollary 2.3.23. If E and J are non-isogenous and α does not vanish in H2(k,H), then X is not
covered by a product of para-elliptic curves.
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Chapter 3

Bielliptic surfaces

3.1 The Enriques classification of surfaces

Much of 19th- and 20th-century algebraic geometry was concerned with the theory of algebraic surfaces,
at the time defined as smooth, two-dimensional complex algebraic varieties. The main collection of results
of the time is the Enriques classification of surfaces. The classification was extended in the 1970s by
Bombieri and Mumford in a series of papers [Mum69; BM77; BM76] to algebraically closed fields of
arbitrary characteristic. Adapting this classification to higher dimensions is an active area of research
relating to the minimal model programme.

Despite the added complexity, it is valuable to develop the theory in a general arithmetic context,
namely that of an arbitrary ground field. In particular, we do not assume k to be algebraically closed, or
even perfect, and no assumption on the characteristic is made.

We explain the relevance of imperfect ground fields. Consider a scheme X admitting a fibration to a
curve. Its geometry is heavily reflected in the generic fibre, which naturally lives over the function field of
the curve. Of course the function field may be non-perfect, even if the ground field is algebraically closed.
The inseparable field extensions of the function field then influence the geometry of X in a substantial way.
A prominent example of this phenomenon is constituted by schemes admitting a quasi-elliptic fibration,
i.e. a fibration whose generic fibre is a regular but non-smooth genus-one curve; see Example 3.1.36 and
the surrounding discussion. Quasi-elliptic fibrations play an important role in the adaptation of the
Enriques classification of surfaces to the small characteristics p = 2 and p = 3. This occurs for example in
the theory of bielliptic surfaces, where a certain otherwise elliptic fibration turns out to be quasi-elliptic;
see Definition 3.1.30. This indicates the importance of algebraic geometry over imperfect ground fields,
even for algebraic geometers who prefer to work in the context of an algebraically closed ground field of
positive characteristic.

In order to phrase a coarse version of the Enriques classification of surfaces, we first treat a number of
generalities about invertible sheaves on schemes that can be found in most standard references on the
classification of surfaces, e.g. [Băd01; Sha96; Bea96; Laz04a]. We swiftly locate four interesting classes of
surfaces that includes the main interest of this thesis: the so-called bielliptic surfaces. They are the focus
of our study for the remainder of this chapter.

Lemma 3.1.1. Let X be a proper equidimensional scheme of dimension d and let L be an invertible
sheaf on X. Then the function n ↦→ h0(L ⊗n) lies in O(nd) as n→∞.

Proof. Let L1 and L2 be ample invertible sheaves such that L = L1⊗L ∨
2 . There is a natural inclusion

H0(L ) ⊂ H0(L1), so without loss of generality we may assume that L is ample. Since the higher
cohomology of ample sheaves vanishes, it follows that h0(L ⊗n) = χ(L ⊗n). Now the result follows
directly from the asymptotic Riemann–Roch formula [Laz04a, Thm. 1.1.24].

This bounds the asymptotic growth of h0(L ⊗n), as a function of n. To quantify precisely how sharp
this bound is, we introduce the following invariant.

Definition 3.1.2. Let L be an invertible sheaf on a proper scheme X. The Iitaka dimension of L is
defined as

κ(L ) = κ(X,L ) = inf{m ∈ Z | n ↦→ h0(L ⊗n)/nm is bounded as n→∞}.
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The Iitaka dimension takes values in the finite set {−∞, 0, 1, · · · ,dim(X)}.
Example 3.1.3. Let X be a proper scheme and let L be an invertible sheaf on X.

• If L is anti-ample, it follows that h0(L ⊗n) = 0 for all n > 0, so that the Iitaka dimension is given
by κ(L ) = −∞;

• If L is ample, then from the asymptotic Riemann–Roch formula [Laz04a, Ex. 1.2.19] it follows that
the Iitaka dimension equals κ(L ) = dim(X);

• If L ∼= OX , then h0(L ⊗n) = 1 so the Iitaka dimension is κ(L ) = 0.

• We generalise the previous example. Suppose L is torsion in the Picard group with order m, so
that L ⊗m ∼= OX . Then

h0(L ⊗n) =

{︄
1 if n is divisible by m;

0 if n is not divisible by m,

is bounded with a (nonzero) constant subsequence, so the Iitaka dimension is κ(L ) = 0.

Under suitable assumptions, it turns out that the asymptotic growth of h0(L ⊗n) measures the
dimension of a certain scheme attached to X. Suppose that X is also normal. Consider the ring

R(L ) =

∞⨁︂
n=0

Γ(X,L ⊗n).

The following is well-known, see e.g. §14 of [Băd01] or Cor. 2.1.38 of [Laz04a].

Proposition 3.1.4. Suppose R(L ) is finitely generated, so that the homogeneous spectrum ProjR(L )
is a scheme of finite type. Then κ(L ) = dimProjR(L ).

Suppose that X is proper and Gorenstein, in which case there is a canonical choice of invertible sheaf
on X by the dualising sheaf ωX . The Iitaka dimension κ(ωX) is a useful invariant, since it is stable under
base-change. However, it is not a birational invariant.

Example 3.1.5. Let X be the rational cuspidal curve, defined by the homogeneous equation y2z = x3 in
P2. For a degree-three plane curve, the adjunction formula states that ωX ∼= OX , whence κ(ωX) = 0.
Note that X is birational to P1, as the normalisation map is P1 → X. Since ωP1 is anti-ample, it follows
that κ(ωP1) = −∞.

Nevertheless, restricting ourselves to smooth and proper schemes, the Iitaka dimension κ(ωX) does
turn out to be a birational invariant. This is because the plurigenera h0(ω⊗n

X ) are birational invariants
for smooth schemes [Băd01, Prop. 5.7] and the Iitaka dimension κ(ωX) simply captures their asymptotic
growth. We hence define the Kodaira dimension as a birational invariant for proper schemes that admit a
resolution of singularities.

Definition 3.1.6. Let X be a proper scheme. Assume that the base-change Xalg admits a resolution of
singularities ˜︁X → Xalg. Then we define the Kodaira dimension as

kod(X) = κ
(︁ ˜︁X,ω ˜︁X)︁.

Remark 3.1.7. This definition does not depend on the choice of resolution of singularities ˜︁X → Xalg,
since any two choices of ˜︁X are smooth, proper and birational to each other.

Remark 3.1.8. A resolution of singularities always exists in characteristic 0 by a celebrated result of
Hironaka; see [Hir64]. The existence of a resolution of singularities in positive characteristic is an open
problem, though results in low-dimensional cases (curves, surfaces and threefolds) have been established;
see the survey article [Hau10].

The Kodaira dimension forms a discrete invariant of the d-dimensional scheme X, which hence yields a
coarse classification of proper Gorenstein schemes. Though not strictly necessary, let us also assume that
X is smooth and geometrically integral. We will return to the case d = 2, but we can already investigate
the simpler case d = 1, comprising smooth curves.
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Example 3.1.9 (Classification of smooth curves). Let C be a smooth proper curve of genus g = h1(OC)
with h0(OC) = 1. Using Riemann–Roch and Serre duality we see that

kod(C) = −∞ ⇐⇒ g = 0, (C is a Brauer–Severi curve, i.e. Calg ∼= P1;)

kod(C) = 0 ⇐⇒ g = 1, (C is a para-elliptic curve, as in Chapter 2;)

kod(C) = 1 ⇐⇒ g ≥ 2, (C is of general type.)

Although this classification is coarser than the one obtained through the genus, the Kodaira dimension
is already able to distinguish interesting classes of smooth curves, namely Brauer–Severi curves and
para-elliptic curves. Note that curves of general type share the property that ωC is ample.

We now pursue the classification of surfaces, mostly following the notes of Shafarevich [Sha66]. Since
we do not assume the ground field k to be perfect, we have to make a distinction between regularity and
smoothness. It turns out that some statements are more naturally phrased in terms of regular surfaces.
Nevertheless, in most of the thesis we are interested in smooth surfaces specifically. For clarity, we recall
the definition or a surface in the context of their classification.

Definition 3.1.10. A surface is a proper, geometrically integral scheme of dimension 2.

The classification of regular surfaces is handled much better up to birational equivalence. The central
construction herein is that of the blow-up: let Z ⊂ X be a closed subscheme corresponding to the sheaf
of ideals I. Then the blow-up ˜︁X of X with centre Z is defined as the homogeneous spectrum of the
OX -algebra

⨁︁∞
n=0 In. The blow-up of a regular surface in a closed point is again regular (see pp. 15–16

of op. cit.) and the structural morphism ˜︁X → X is a proper, birational morphism. Conversely, it is a
deep fact in the classification of surfaces that any proper, birational morphism arises in this way: the
following ‘decomposition theorem’ can be found on p. 55 of op. cit.

Theorem 3.1.11 (Decomposition Theorem). A proper, birational morphism between regular surfaces
decomposes as a sequence of blow-ups in closed points.

Care is needed in the distinction between regular and smooth surfaces over imperfect fields. So far,
the notion of regularity is the correct one: it is, for example, not generally true that the blow-up of a
smooth surface in a closed point is smooth, as the following example illustrates.

Example 3.1.12. Suppose k has characteristic p > 1 and contains an element a that is not a pth power.
The standard affine open A1 × A1 = Spec k[S, T ] of P1 × P1 contains the closed point x corresponding to
the maximal ideal (S, T p − a), which has purely inseparable residue field k′ = k

(︁
p
√
a
)︁
. One chart of the

blow-up of A1 × A1 in x is given by

Spec k[S, T, (T p − a)/S] ∼= Spec k[S, T, U ]/(T p − SU − a).

Over an algebraic closure the defining equation becomes (T − p
√
a)p − SU = 0, which is the standard

equation of an Ap−1-singularity for the geometric point with T = p
√
a and S = U = 0.

Remark 3.1.13. Note in particular that an Ap−1-singularity arises through the base-change of a regular
local ring. Some singularities cannot appear in this way. A complete list of types of rational double
points (according to Artin’s classification [Art77] including positive characteristic) that descend to regular
schemes is given in [Sch08].

Above decomposition theorem is of main importance in the classification of surfaces: since blow-ups
are reasonably well understood, one can approach many questions using a birational model. We hence
investigate whether a regular surface X arises as a blow-up of another surface in a closed point x
and, consequently, how to ‘undo’ the blow-up. It is key to consider the exceptional locus E, which
is the subscheme of ˜︁X on which ˜︁X → X is not an isomorphism, which is abstractly given by E =
Proj

⨁︁∞
n=0 In/In+1. Here E is isomorphic to a copy of P1 over the residue field κ(x) and satisfies the

numerical condition E · ωX = −[κ(x) : k].

Definition 3.1.14. A (−1)-curve (also called an exceptional curve) is an integral curve E ⊂ X abstractly
isomorphic to P1

R (where R = H0(OE)), that satisfies the numerical condition E · ωX = −dimk R.
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The terminology stems from the Italian school of algebraic geometry, where k is assumed to be
an algebraically closed field, say of characteristic 0. Under this assumption we have R = k, so that
E · ωX = −1 and E2 = −1 by the adjunction formula. Similarly, an integral curve C isomorphic to P1

satisfying C2 = −2 is called a (−2)-curve.
There are a number of equivalent formulations to this numerical condition. Through the adjunction

formula, one is that E2 = −[k′ : k], hence that the normal bundle NE/X has degree −1 when restricted
to E ∼= P1

k′ . Let I denote the ideal sheaf associated to E. Then one may equivalently assume that the
conormal sheaf I/I2 has degree 1 when restricted to E.

We have stated that the blow-up of a closed point produces a (−1)-curve. The converse is a classical
statement due to Castelnuovo and can be found in a general context e.g. on p. 102 of [Sha66] or in [Stacks,
Tag 0CEF], but see also Thm. V.5.7 of [Har13] for the statement over an algebraically closed ground field.

Theorem 3.1.15 (Castelnuovo’s contraction theorem). Let X be a regular surface and let E ⊂ X be a
(−1)-curve. There exist a unique regular surface Y and a unique proper, birational morphism f : X → Y ,
such that

• the image of E is a closed point;

• the morphism f : X → Y is the blow-up of Y at the closed point f(E).

We say that a morphism f satisfying the above properties is a contraction of the exceptional curve
E. One can also say that the (−1)-curve E is blown down. Repeatedly blowing down yields a sequence
of birational regular surfaces. Since the Picard rank ρ = rkNum(X) ∈ N is a decreasing invariant, this
process must terminate and we arrive at a surface which cannot be blown down further.

Definition 3.1.16. A regular surface X is called minimal (over the ground field k) if any proper birational
morphism X → Y to a regular surface is an isomorphism. A minimal model of a regular surface X is a
minimal surface birational to X.

As a corollary of the Castelnuovo contraction theorem, we find the following criterion for minimality.

Corollary 3.1.17. A regular surface is minimal if and only if it contains no (−1)-curves.

The minimal model need not be unique: a regular surface may admit non-isomorphic minimal models.
Nevertheless, it is shown in p. 141 of [Sha66] that if a regular, proper surface admits non-isomorphic
minimal models, then its plurigenera vanish and hence the Kodaira dimension equals −∞. This relates
to the fact that two (−1)-curves E1 and E2 may intersect: one may choose whether to blow down E1 or
E2, though the image of the other curve will cease to be exceptional.

π2(E1)

π2

E1 E2

π1

π1(E2)

Figure 3.1: Intersecting exceptional curves can be blown down individually

Example 3.1.18. The rational surfaces P2 and P1 × P1 are non-isomorphic minimal surfaces. It is well-
known that the blow-up of P1 × P1 in a point admits a birational morphism to P2; see e.g. Exc. 3.3.9 of
[CLS11].

We emphasise that the notion of minimality depends on the choice of ground field k. Fix a field
extension k′/k. First of all, the notion of regularity is not stable under base-change, so that X ′ = X ⊗ k′
may fail to be regular. But even if we sidestep this issue, perhaps by assuming that X is smooth, or even
that k is perfect, the base change of a minimal surface may cease to remain minimal. Suppose the situation
over k′ is as in Figure 3.1, where two exceptional curves intersect non-trivially. Suppose also that k′/k
is Galois and that the Galois group Gal(k′/k) permutes the curves E1 and E2. Over k, the subscheme
(E1 ∪ E2)/Gal(k′/k) ⊂ X is a curve, that is not exceptional since (E1 + E2)

2 = E2
1 + E2

2 + 2E1 · E2 = 0.
We illustrate this behaviour over a perfect ground field through the following example: the classification

of minimal geometrically rational surfaces. They form an interesting subclass of surfaces satisfying
kod(X) = −∞. The following classification result can be found in §3.4 of [Has09].
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Theorem 3.1.19 (Classification of minimal geometrically rational surfaces). Suppose the ground field k
is perfect. Let X be a smooth, minimal and geometrically rational surface. Then X is either

• isomorphic to P2;

• a smooth quadric in P3 with Pic(X) = Z;

• a smooth del Pezzo surface with Pic(X) = ZωX ;

• a conic bundle over a rational curve, with Pic(X) ∼= Z2.

If k is algebraically closed, then the classification of smooth, minimal, rational surfaces is treated
in [Băd01], see Thm. 12.8, where it is shown that the only possibilities are P2, P1 × P1, or a so-called
Hirzebruch surface, where the latter two cases are conic bundles over P1. We emphasise that del Pezzo
surfaces with Pic(X) = ZωX do not occur within the classification over an algebraically closed field, since
each such surface is geometrically isomorphic to the blow-up of P2 in at most nine points, or to the
product P1 × P1; see §13.3 of [Sha96]. In particular a smooth del Pezzo surface X over a perfect field
with degree ω2

X at most 8 is not geometrically minimal, even though it may be minimal.

Let us also consider the converse direction: if the base-change X ′ = X ⊗ k′ is minimal, then what can
be said about the minimality of X? This behaves nicely for separable field extensions.

Proposition 3.1.20. Let X be a geometrically regular surface and let k′/k be a separable field extension.
If the base-change X ′ = X ⊗ k′ is minimal, then X is minimal.

Proof. Let X → Y be a birational morphism, where Y is a regular surface. Since k′/k is a separable field
extension, it follows from Prop. 6.7.4 of [EGA IV2] that the base-change Y ′ = Y ⊗ k′ is regular as well.
By minimality the morphism X ′ → Y ′ is an isomorphism, so that X → Y is an isomorphism by étale
descent.

It seems like the situation for inseparable field extensions is quite restricted as well, but we do not
treat this case further. Instead let us state an argument which ensures that this subtlety is not be an issue
in the class of surfaces in which we are interested most, namely smooth surfaces of Kodaira dimension
0. For this, we apply a main structural theorem in the classification over an algebraically closed field,
conducted by Bombieri and Mumford in [BM77]. The following is Thm. 1 in op. cit.

Theorem 3.1.21. Suppose k is algebraically closed and let X be a minimal surface with kod(X) = 0.
Then ω⊗4

X
∼= OX or ω⊗6

X
∼= OX . In particular, ωX is torsion in Pic(X) and hence is a numerically trivial

invertible sheaf.

Corollary 3.1.22. Let X be a smooth surface.

• If kod(X) ≥ 0 and Xalg is minimal, then X is minimal.

• If kod(X) = 0, then Xalg is minimal if and only if X is minimal.

Proof. Suppose first that kod(X) ≥ 0 and that Xalg = X ⊗ kalg is minimal. It is well-known that ωXalg

is nef; see e.g. [BM77]. It follows that ωX is also nef, so that there are no (−1)-curves and indeed X is
minimal.

Now suppose that X is minimal. Let Xalg → Xalg
min be a birational morphism to a regular minimal

model. Its exceptional locus Ralg is encoded within the dualising sheaf, since by Theorem 3.1.21 we have
that

ω⊗12
Xalg
∼= ω⊗12

Xalg/Xalg
min

∼= O(−12Ralg)

is anti-effective. Let R be the reduced subscheme of the Weil divisor attached to the invertible sheaf
ω⊗−12
X . In order to show that R is contractible, we invoke the criterion Cor. 5.3 of [Sch00], which is a

generalisation of Castelnuovo’s contraction theorem. In this case we verify that R · ωX = R2 ≤ 0, since
it is a negative-definite curve after base-change. It follows that we can contract R, hence descending
Xalg → Xalg

min to the ground field k.
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With the discussion of minimality and base-change out of the way, we continue with the Enriques
classification of smooth surfaces performed by Bombieri and Mumford over an algebraically closed field in
a series of articles [Mum69; BM77; BM76]. Let X be a smooth surface; there are four classes, according
to whether the Kodaira dimension of X equals −∞, 0, 1 or 2. We are mainly interested in the case where
kod(X) = 0, which in the light of Example 3.1.9 can be viewed as generalisations of elliptic curves. We
cite the main structural result for the case kod(X) = 0, as on p. 25 of [BM77].

Theorem 3.1.23 (Tetrachotomy of minimal surfaces of Kodaira dimension 0). Suppose k is algebraically
closed. Let X be a smooth, minimal surface with kod(X) = 0. Then X falls into one of four classes, as
in Table 3.1.

Surface b2 b1 χ(OX) h2(OX) h1(OX) ∆ p

Bielliptic 2 2 0

{︃
0
1

1
2

0
2

any
2 or 3

Abelian 6 4 0 1 2 0 any

Enriques 10 0 1

{︃
0
1

0
1

0
2

any
2

K3 22 0 2 1 0 0 any

Table 3.1: Tetrachotomy of proper, smooth, minimal surfaces of Kodaira dimension kod(X) = 0 over an
algebraically closed field

Through the classification is stated over algebraically closed fields, we may without loss of generality
base-change a smooth minimal surface of Kodaira dimension 0 to an algebraic closure. It then falls into
one of the above four classes, distinguished by their second étale Betti number b2. This leads to the
following definition.

Definition 3.1.24. Let X be a smooth, minimal surface of Kodaira dimension 0. It is called

• a bielliptic surface if b2 = 2;

• a para-abelian surface if b2 = 6;

• an Enriques surface if b2 = 10;

• a K3 surface if b2 = 22.

Remark 3.1.25. The analysis performed in §5 of op. cit. shows that a smooth, minimal surface of
Kodaira dimension 0 with b2 = 6 with a rational point indeed admits the structure of an abelian surface.
Then para-abelian surfaces defined as above are their twisted forms, hence are indeed two-dimensional
para-abelian varieties in the sense of Definition 2.1.1.

Remark 3.1.26. A note on the terminology of ‘bielliptic surfaces’. In some sources, mainly those which
work in a complex analytic setting, bielliptic surfaces are referred to as hyperelliptic surfaces, which
historically stems from the Italian school of algebraic geometry. We emphasise that there is no relation
to hyperelliptic curves, i.e. the double covers over P1. We instead prefer the more modern terminology
bielliptic due to the relation with the geometry of the surface, cf. Sections 3.2 and 3.3. We also note that
in characteristics 2 and 3 some sources subdivide the class of bielliptic surfaces further, into bielliptic
surfaces and so-called quasi-bielliptic surfaces ; we postpone a discussion of terminology to Remark 3.2.18.

The invariant ∆ = 2h1(OX)− b1 of Table 3.1 is of importance in positive characteristic. It vanishes
in characteristic 0 since then b1 = 2h0,1 by Hodge theory. An equivalent definition over an algebraically
closed field is

∆ = 2
(︁
dimof tangent space of Pic0X/k − dimof tangent space of (Pic0X/k)red

)︁
; (3.1.1)

see pp. 24–25 of [BM77]. Note that the formuation of (Pic0X/k)red commutes with base-field extensions by

Lem. 3.3.7 of [Bri17], which applies since the Picard scheme Pic0X/k is proper, so that this expression
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makes sense over all ground fields. Since in characteristic 0 all group schemes are reduced, we again see
that ∆ = 0 unless p ≥ 2. The table in fact shows that ∆ = 0 for surfaces of Kodaira dimension zero,
unless p = 2, 3. This is special to Kodaira dimension zero: it turns out that surfaces of larger Kodaira
dimension may have an arbitrarily non-reduced Picard scheme in any positive characteristic; see Thm.
2.2 and Prop. 3.1 of [Lie09].

It turns out that most interesting characteristic p behaviour occurs whenever ∆ > 0. For later
reference, we observe the following characterisation.

Proposition 3.1.27. Let X be a bielliptic surface or an Enriques surface. The following are equivalent:

(i) X has a geometrically non-reduced Picard scheme;

(ii) X has a non-reduced Picard scheme;

(iii) ∆ > 0;

(iv) ∆ = 2;

(v) h2(OX) = 1;

(vi) ωX ∼= OX .

Proof. The Picard scheme Pic0X/k of a smooth, integral scheme is proper, so the equivalence of the first
two points follows from Lem. 3.3.7 of [Bri17]. The equivalence between the second and the third points
follows from (3.1.1). The numerical conditions are clear from Table 3.1. For the last two conditions, we
note that h2(OX) = h0(ωX) by Serre duality and that ωX is torsion due to Theorem 3.1.21.

Remark 3.1.28. In fact, the equivalence of (i) to (iii) only requires that the Picard scheme Pic0X/k be
proper. If kod(X) = 0 then there are equivalences amongst (i) to (iv), and between (v) and (vi). Only
the equivalence between (iv) and (v) requires the full assumption that X be either a bielliptic surface or
an Enriques surface.

For the sake of exposition assume that the ground field is algebraically closed for the remainder of
this discussion. The four classes of smooth, minimal surfaces of Kodaira dimension 0 are interrelated
by a number of standard constructions, except in certain small critical characteristics, as displayed
in Figure 3.2. In critical characteristics, we instead obtain ‘singular versions’ of the expected classes,
although the Kodaira dimension may decrease.

Abelian Surfaces

b2 = 6

Bielliptic Surfaces

b2 = 2

K3 Surfaces

b2 = 22

Enriques Surfaces

b2 = 10

Kummer Construction
(p ̸= 2)

Canonical Cover
(p ̸= 2, 3)

K3 Cover
(p ̸= 2)

Figure 3.2: The relations between minimal surfaces of Kodaira dimension 0 with k = kalg

Given an abelian surface A over a field with p ≠ 2, the Kummer construction creates a K3 surface as
the minimal resolution of the 16 rational double points of type A1 of the quotient A/{±1}, where −1
acts on A as the sign involution. In characteristic p = 2 the situation changes: there are fewer but more
complicated singularities on the quotient A/{±1}. If A is a supersingular abelian variety, there is only a
unique elliptic singularity. Then the minimal resolution turns out to be a rational surface, instead of a K3
surface. We briefly sketch the correct generalisation of the Kummer construction for p = 2: one replaces
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the abelian surface A by a non-smooth surface, namely the self-product of the rational cuspidal curve,
which can be equipped with the suitable action of an infinitesimal group scheme µ2 or α2. Remarkably,
the quotient has only mild singularities. A resolution of singularities then yields either a K3 surface or a
rational surface. In some sense, the singularities of the surface are ‘cancelled’ by the singularities coming
from the group scheme. A detailed explanation of the above, and more, can be found in e.g. [Sch07; KS21;
Ber23].

Another example is the K3 cover of an Enriques surface. If p ̸= 2, then any Enriques surface is a
quotient of a K3 surface by a free Z/2Z-action. The K3 cover coincides with the universal cover, since
a K3 surface is simply connected. Again, this construction breaks down in the critical characteristic
p = 2. The K3 cover in the critical characteristic p = 2 as defined by Bombieri and Mumford in [BM76]
exhibits an Enriques surface as the quotient of a so-called K3-like surface by a group scheme of order 2,
which may be either Z/2Z, µ2 or α2. A K3-like surface has the cohomology of a K3 surface, but may be
non-smooth. In some sense, the singularities on a K3-like surface are offset by the non-smoothness of the
group schemes µ2 and α2. For a detailed description of the theory of K3 covers in characteristic 2, we
refer to [CD89; Sch21a].

The last example is the canonical cover of bielliptic surfaces, which we discuss in more detail in
Section 3.5. In this case there are two critical characteristics p = 2 and p = 3. Outside of these
characteristics, any bielliptic surface is covered by an abelian surface. Analogously, it may be necessary
in critical characteristic to cover a bielliptic surface by a non-smooth surface that has the cohomology of
an abelian surface. The surfaces for which this is necessary are precisely the quasi-bielliptic surfaces. We
expand further on the similarities and analogies between the K3 cover of an Enriques surface and the
canonical cover of a bielliptic surface throughout Section 3.5.

We finish this section with a discussion about elliptic and quasi-elliptic fibrations, jointly referred to as
genus-one fibrations, since we encounter them extensively throughout our study of bielliptic surfaces. In
fact, they form a constant factor within the study of (subclasses of) smooth surfaces of Kodaira dimension
≤ 1. For example, within the class of surfaces with kod(X) = 0, it is a fact that any bielliptic or Enriques
surface admits a genus-one fibration; for Enriques surfaces see Thm. 5.7.1 of [CD89], for bielliptic surfaces
this is shown in the upcoming sections. We also note our study of elliptic abelian surfaces in Section 2.3.

Definition 3.1.29. A genus-one fibration is a proper morphism f : X → Y such that f∗OX = OY and
the generic fibre of f is a genus-one curve.

Note that in our definition we make no assumption on the smoothness of the generic fibre, but
smoothness of X implies that the generic fibre Xη is at least a regular genus-one curve over the function
field κ(Y ). Smoothness of X also implies that a geometric generic fibre Xalg

η is a reduced scheme over

an algebraic closure of the function field κ(Y )alg, as follows from Cor. 7.3 of [Băd01] since f is in Stein
factorisation.

Definition 3.1.30. Let X be a smooth surface and let f : X → Y be a genus-one fibration.

(i) If Xη is a smooth curve, then we say that f is an elliptic fibration;

(ii) If Xη is a regular but non-smooth curve, then we say that f is a quasi-elliptic fibration.

In the latter case, there is a field extension K/κ(Y ) such that the base-change Xη ⊗κ(Y ) K is not
regular. Since the base-change of a regular scheme by a separable field extension remains regular, the field
extension K/κ(Y ) is necessarily inseparable and we see that regular but non-smooth curves exist only
over imperfect ground fields. Note that the function field of Y may be imperfect, even if the ground field
k itself is algebraically closed with p > 0. In this sense, regular but non-smooth curves arise naturally as
generic fibres of suitable fibrations.

Definition 3.1.31. A quasi-elliptic curve is a proper, regular, geometrically reduced but non-smooth
curve of genus one.

Though the existence of quasi-elliptic curves may seem pathological, in the context of genus-one
fibrations they should actually be regarded as natural generalisations of para-elliptic curves. Indeed:
many phenomena in positive characteristic may be explained by regular but non-smooth curves. For
example, the existence of quasi-elliptic fibrations yields a natural counterexample to Bertini’s theorem on
the smoothness of a general member of a linear system Cor. 10.9 of [Har13].
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Proposition 3.1.32. Let C be a quasi-elliptic curve over a field K with h0(OC) = 1. Then K is imperfect
with p = 2 or 3. Furthermore C is a twisted form of the rational cuspidal curve, i.e. the base-change to
an algebraic closure C ⊗Kalg is a rational cuspidal curve.

Proof. To see that quasi-elliptic curves only exist over non-perfect fields of characteristics p = 2 and 3,
one can also invoke Tate’s genus change formula [Tat52]. If C is a regular curve over a field k and k′/k is
a purely inseparable field extension, then C ⊗ k′ may be non-regular. Let C ′ be the normalisation of
C ⊗ k′, then Tate’s formula states that h1(OC′)− h1(OC) is divisible by (p− 1)/2. If h1(OC) = 1, then
h1(OC′) = 0 and divisibility only holds for p = 2 and p = 3.

Since the base-change Calg = C ⊗ kalg is a non-smooth integral genus-one curve, there is a unique
non-smooth point, which is either a nodal singularity or a cuspidal singularity. Since C is regular, the
local ring of the singularity must be analytically irreducible by a theorem of Zariski [Zar45], which rules
out the nodal singularity.

Remark 3.1.33. If one drops the requirement that C is geometrically reduced, then there are a lot more
possibilities for regular but non-smooth genus-one curves. They are classified in [Sch22].

Remark 3.1.34. The quasi-elliptic curves in characteristics 2 and 3 occur naturally within a larger family
of curves of higher genus. In [HS24] the authors construct, for n ≥ 1 and p ≥ 2 prime, a collection of
non-smooth curves Xp,n of genus h1(OXp,n

) = (npn+1 − (n+ 2)pn + 2)/2, whose twisted forms can be
regular. If (p, n) = (2, 0) or (3, 1) then the curve Xp,n is indeed isomorphic to the rational cuspidal curve.

The above classification of quasi-elliptic curves aids our understanding of quasi-elliptic fibrations.

Corollary 3.1.35. Suppose k is algebraically closed, and let f : X → Y be a quasi-elliptic fibration. Then
for almost all y ∈ Y , the fibre f−1(y) is a rational cuspidal curve.

We give a local example of a quasi-elliptic fibration in characteristic p = 3. Though this example is quite
general, we refer to [Lan79] for a more complete description of quasi-elliptic fibrations in characteristic 3.
Examples in characteristic 2 can be given through the deformation theory of the rational cuspidal curve.
Explicit equations in characteristic p = 2 are given by Queen in [Que71; Que72].

Example 3.1.36. Consider the schemes Y = Spec kJtK, X = Spec kJtK[x, y]/(y2 − x3 − t) and the natural
map f : X → Y . The generic fibre Xη is given by by the equation y2 = x3 + t over the function field
k((t)). This curve is not geometrically regular and hence not smooth: since p = 3, over the field extension
k((t1/3)) the equation becomes y2 = (x+ t1/3)3, which is a rational, cuspidal curve.

The ideal (y) in kJtK[x, y]/(y2 − x3 − t) defines a closed subscheme Z ⊂ X, Z = Spec kJtK/(x3 + t).
The intersection with the closed fibre is the closed subscheme corresponding to the maximal ideal (x, y) of
k[x, y]/(y2−x3), which is the unique non-regular point of the fibre.We first make the following simplification.
The situation in the generic fibre is different: the intersection point is the closed point corresponding to
the maximal ideal (y) of k((t))[x, y]/(y2 − x3 − t), whose residue field is k((t))[x]/(x3 + t) ∼= k((t1/3)).

To verify that the curve Spec k((t))[x, y]/(y2 − x3 − t) is regular, we only have to check that the local
ring of the unique non-smooth point is regular. Let m be the maximal ideal (y). Then regularity follows
since m/m2 = y · k((t1/3)). Underlying this phenomenon is the observation that the residue field of the
non-smooth point k((t1/3)) is inseparable over the residue field k((t)).

Spec kJtK
Spec k Spec k((t))

k((t1/3))Z

Figure 3.3: An artistic impression of the quasi-elliptic fibration of Example 3.1.36
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3.2 The Albanese fibration

We now start with the study of bielliptic surfaces specifically. The word ‘bielliptic’ reflects a very
important property of the geometry, namely that a bielliptic surface X comes equipped with two distinct
genus-one fibrations, namely the Albanese morphism f : X → P to a para-elliptic curve and another
fibration g : X → B to a Brauer–Severi curve. Though the Albanese morphism can be either an elliptic
fibration or a quasi-elliptic fibration, with the latter of course only in characteristics 2 and 3, the other
fibration is always an elliptic fibration. In this section we construct and study the Albanese map. We
begin with a general background on the Albanese and then specialise to the case of bielliptic surfaces.

Classically, say over an algebraically closed ground field, the Albanese variety of a pointed scheme
(X,x0) is constructed as an abelian variety A equipped with a morphism f : X → A, where x0 maps to
the identity element of A. Over non-algebraically closed fields, the possible absence of rational points
suggests that we should instead work with para-abelian varieties, which has the additional advantage
that the choice of base points is not necessary.

The Albanese variety has been constructed in a large generality. By work of Brochard it is defined for
algebraic stacks; see §§7–8 of [Bro19]. In the context of open algebraic spaces it is constructed in [Sch23a],
extending the work in [LS23] over a base scheme. For proper varieties and schemes over a ground field,
the Albanese map was already defined by Matsusaka in [Mat52] and Grothendieck in [Gro62]. We refer
also to the treatment of [Wit08, App. A] for proper, geometrically integral schemes. Although it is not
strictly necessary, we assume for simplicity that X is a proper, geometrically integral and smooth scheme,
prior to restricting ourselves to bielliptic surfaces.

Definition 3.2.1. An Albanese morphism is a pair (P, f), where P is a para-abelian variety and
f : X → P is a morphism, such that for each pair (Q, g) satisfying the same assumptions, there is a
unique morphism h : P → Q such that g = h ◦ f .

X P

Q

f

g
∃!h

Remark 3.2.2. We refer to the scheme P as the Albanese variety. By abuse of terminology we may
mention the Albanese only when referring to either the morphism or the scheme.

Since the Albanese morphism is defined by a universal property, uniqueness is immediate, but existence
results can be rather subtle. In our context the existence of an Albanese morphism is well established.
We state the formulation as in Cor. 10.5 of [LS23] without proof.

Theorem 3.2.3. Over ground fields, an Albanese morphism f : X → P exists. It commutes with ground
field extensions, is equivariant with respect to group scheme actions, and is functorial in X.

Remark 3.2.4. The universal property essentially guarantees that the Albanese defines a left-adjoint
functor to the full inclusion functor (ParaAbVar/k)→ (Sch/k).

Example 3.2.5. Suppose k = C and let n > 0. The Albanese of projective n-space Pn is 0. Indeed,
consider any morphism to a g-dimensional abelian variety f : Pn → A. Since Pn is simply connected, the
analytification of f factors over the universal cover of a g-dimensional complex abelian variety, which is
isomorphic to Cg; but since CPn is compact, this lift must be constant. We later give an algebraic proof
that the Albanese of Pn is a point.

Although we do not expand upon the construction of the Albanese variety, we mention that it is
intimately connected to the existence of the maximal abelian subvariety of the Picard scheme, i.e. an
abelian subvariety containing all other subvarieties. The existence of maximal abelian subvarieties of
group schemes of finite type was shown in §7 of [LS23], using a functorial three-step filtration. Let PicτX/k
be the subgroup scheme that parametrises numerically trivial invertible schemes.

Definition 3.2.6. Let PicαX/k be the maximal abelian subvariety of PicτX/k.

Connectivity of abelian varieties gives an inclusion PicαX/k ⊂ Pic0X/k. If X is smooth and geometrically

integral, then the Picard scheme Pic0X/k is proper, although it may be non-reduced in positive character-
istics. Over a perfect ground field the reduced subscheme inherits the structure of a group scheme, which
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implies that the maximal abelian subvariety is given by PicαX/k = (Pic0X/k)red. One should take care over

imperfect ground fields: here, properness of PicτX/k implies that (Pic0X/k)red is still naturally equipped
with the structure of a group scheme; see Lem. 3.3.7 of [Bri17].

The concept of the maximal abelian subvariety allows us to state an equivalent definition for the
Albanese morphism, which is in fact the one used in [LS23]. The equivalence is a main result of op. cit.;
see §§8, 10 for a proof.

Theorem 3.2.7. A morphism of schemes f : X → P is an Albanese morphism for X if and only if the
induced map on Picard schemes induces an isomorphism f∗ : Pic0P/k → PicαX/k.

Example 3.2.8. Let C be a smooth curve of genus g = h1(OX). It is well-known that Pic0C/k is an abelian

variety of dimension g, so that the maximal abelian subvariety coincides with Pic0C/k. If X is the Albanese

of C, then it follows that Pic0X/k = Pic0C/k, so that X is a torsor under the dual abelian variety of Pic0C/k.
In particular the Albanese variety of C is g-dimensional. Note in particular that the Albanese map is not
surjective, by considering dimensions.

There is in fact a general dimension formula for the Albanese variety; see [BM77] for a proof.

Proposition 3.2.9. The dimension of the Albanese variety equals b1/2, where b1 denotes the first étale
Betti number.

Remark 3.2.10. If the Picard scheme is reduced, then 2h1(OX) = b1, so that the Albanese dimension
equals h1(OX). This follows from (3.1.1), since the invariant ∆ vanishes. Alternatively, it is a consequence
of the equivalent definition Theorem 3.2.7. Note that dimP = dimPic0P/k = dimPicαX/k = dimPic0X/k by
smoothness of the Picard scheme, whose dimension coincides with the dimension of the tangent space at
the identity element, which can be identified with H1(X,OX).

Example 3.2.11. Since the first étale Betti number of Pn vanishes, we see that the dimension of its
Albanese is 0. This generalises Example 3.2.5.

Example 3.2.12. According to Table 3.1, the first étale Betti number of K3 surfaces and Enriques surfaces
vanishes. We conclude similarly that their Albanese varieties vanish, so that there are no non-constant
morphisms from a K3 or Enriques surface to a para-abelian variety.

In preparation for the study of bielliptic surfaces, suppose X is a smooth, proper and geometrically
integral scheme with b1 = 2. Similarly to the above examples, this implies that the Albanese variety
is one-dimensional, hence a para-elliptic curve. The following proof is similar to that of Prop. V.15 of
[Bea96].

Proposition 3.2.13. Let X be a proper scheme with b1 = 2. Then the Albanese morphism f : X → P is
in Stein factorisation.

Proof. Let Y = SpecP f∗OX be the Stein factorisation of f , so that f factors as a composition of˜︁f : X → Y and u : Y → P . The hypothesis that b1 = 2 implies that P is a para-elliptic curve, so Y is
a curve since u is finite. The Stein factorisation coincides with the relative normalisation of P in X.
Thus Y is normal, whence smooth. Let g : Y → Q be the Albanese morphism of Y . We computed in
Example 3.2.8 that the dimension of Q equals the genus of Y .

We claim that the composition g ◦ ˜︁f : X → Q is an Albanese morphism for X. We verify the universal
property: let X → R be a morphism to a para-abelian variety, which by the universal property of P
factors as h ◦ f for a unique morphism h : P → R, then we show that there exists a unique ˜︁h : Q→ R
such that ˜︁h ◦ g = h ◦ u.

X P

R

Y Q

f

˜︁f
h

u

g

∃!˜︁h

By the universal property of the Albanese Q of Y , there is a unique ˜︁h : Q→ R such that ˜︁h ◦ g = h ◦ u.
Precomposing with ˜︁f gives ˜︁h ◦ g ◦ ˜︁f = h ◦ u ◦ ˜︁f = h ◦ f, which treats existence. For uniqueness of ˜︁h,
suppose that there is a second morphism ˜︁h′ : Q → R also satisfying ˜︁h′ ◦ g ◦ ˜︁f = h ◦ f . We thus find

37



that ˜︁h′ ◦ g ◦ ˜︁f = h ◦ u ◦ ˜︁f = ˜︁h ◦ g ◦ ˜︁f . Note that ˜︁f is an epimorphism, because it is proper and in Stein
factorisation, whence we conclude that ˜︁h ◦ g = h ◦ u = ˜︁h′ ◦ g. Then ˜︁h = ˜︁h′ follows from the uniqueness in
the universal property of the Albanese morphism of Q.

Because g ◦ ˜︁f : X → Q satisfies the universal property of the Albanese morphism, there is an
isomorphism of Albanese varieties P ∼= Q. Comparing dimensions we find that h1(OY ) = 1, so Y is a
para-elliptic curve. Again applying the universal property of the Albanese, we see that the map u is an
isomorphism. Hence f is in Stein factorisation.

Remark 3.2.14. The proof simplifies if ∆ = 0, which is automatic in characteristic 0, since then the
assumption b1 = 2 translates to h1(OX) = 1. There is a chain of inequalities

1 = h1(OP ) ≤ h1(OY ) ≤ h1(OX) = 1,

where the last inequality holds because ˜︁f is in Stein factorisation. This directly shows that h1(OY ) = 1.
See also p. 189 of [Sha96].

From now on let X be a bielliptic surface. Note that the defining assumption that b2 = 2 implies
through Table 3.1 that b1 = 2, so that the above Proposition applies. Note that the Albanese is
furthermore proper, because X is proper and P is separated. It is also flat, because f is surjective and
P is regular; see Prop. III.9.7 of [Har13]. We now study the fibres of f through the numerical group
Num(X) = Pic(X)/Picτ (X), where Picτ (X) comprises all numerically trivial invertible sheaves on X.
Recall that Num(X) is a finitely generated free abelian group, see e.g. Prop. 1.1.16 of [Laz04a], and that
its rank ρ is commonly referred to as the Picard number. The following result is very classical, tracing
back to Bagnera and de Franchis; see §9 of [BF10].

Proposition 3.2.15. Let X be a bielliptic surface. Its Picard number equals ρ = 2.

Proof. The Igusa–Severi inequality states that ρ ≤ b2 = 2; see [Igu60]. Let F be a fibre of f and let
L = O(H) be an ample invertible sheaf on X. Then clearly F 2 = 0 and H2 > 0 and H · F > 0, so that
F and H are linearly independent in Num(X).

Theorem 3.2.16. The closed fibres of f are irreducible genus-one curves. Therefore the Albanese
morphism of a bielliptic surface is a genus-one fibration.

Proof. Irreducible components of fibres would increase the Picard number ρ. Let F be any closed fibre.
By the adjunction formula we get

0 = ωX · F + F 2 = 2h1(OF )− 2,

whence h1(OF ) = 1. Since the fibre F is arbitrary, it follows from flatness of f that the genus of the
generic fibre also equals 1.

The Albanese of a bielliptic surface can hence either be an elliptic fibration or a quasi-elliptic fibration,
although the latter only occurs in characteristics p = 2 and p = 3. We introduce the following terminology.

Definition 3.2.17. A quasi-bielliptic surface is a bielliptic surface whose Albanese morphism is a
quasi-elliptic fibration.

Remark 3.2.18. In our terminology, a quasi-bielliptic surface is also a bielliptic surface. We warn the
reader that this seems to be non-standard: in the literature a bielliptic surface is often assumed to have
an elliptic Albanese fibration. The author is of the opinion that this separation is unnecessary and that it
is much more natural to view quasi-bielliptic surfaces as a subset of bielliptic surfaces. From the correct
perspective, many statements about bielliptic surfaces hold regardless of whether the Albanese morphism
is smooth.

Remark 3.2.19. We have now encountered critical behaviour in small characteristics p = 2 and p = 3
multiple times: first of all the Picard scheme Pic0X/k may be non-reduced and second of all the Albanese
map f may be a quasi-elliptic fibration. These two phenomena are independent of one another: a
quasi-bielliptic surface may or may not have a reduced Picard scheme and a bielliptic surface with a
non-reduced Picard scheme may or may not be quasi-bielliptic. We will see examples over algebraically
closed fields in Section 3.4, where in fact all possibilities of critical behaviour are tabulated; see Table 3.6.
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The study of elliptic fibrations is often pursued through its degenerate fibres. Supposing that the
Albanese map is an elliptic fibration, is extremely well-behaved in this regard.

Proposition 3.2.20.

(i) If f is an elliptic fibration, then all fibres are smooth genus-one curves.

(ii) If f is a quasi-elliptic fibration, then every fibre is a quasi-elliptic curve or a rational cuspidal
curve.

In either case f has no wild fibres, so R1f∗OX is an invertible sheaf.

Proof. The first part is Prop. 5 of [BM77]. For the second part, see p. 27 of op. cit. or §7.8 of [EGA
III2].

We state two immediate consequences.

Proposition 3.2.21. A bielliptic surface contains no curves C with C2 = −2.

Proof. Suppose otherwise. By the adjunction formula

−2 = C2 + ωX · C = 2g(C)− 2,

so g(C) = 0. By the Riemann–Hurwitz formula there is no surjective map C → P , so C is contained in a
fibre of f . But this is impossible since the fibres are irreducible with F 2 = 0.

Theorem 3.2.22. The invertible sheaves ωX and f∗(R1f∗OX)∨ are isomorphic.

Proof. This is a direct consequence of the canonical bundle formula for genus-one fibrations; see Thm. 2
of [BM77], using the fact that there are no multiple fibres and that ωP ∼= OP .

Especially the latter observation is frequently useful, culminating in the main application in Section 4.2.

3.3 The numerical group and the other fibration

A frequently reoccurring strategy in the study of surfaces is to investigate the numerical group Num(X) =
Pic(X)/Picτ (X) equipped with extra structure, such as the class of the canonical divisor, the intersection
pairing, and the cone of effective or even ample divisors. This often yields fundamental information about
the nature of the surface in question. This is for example part of the philosophy of Mori theory, which
provides a framework for generalising the Enriques classification of Section 3.1 to higher dimensions, by
regarding the classes of exceptional curves as extremal rays inside the numerical group. The Enriques
classification of surfaces from the perspective of Mori theory is treated in detail in [Cil20].

It sometimes possible to determine the isomorphism class of a surface from numerical invariants
together with knowledge of certain configuration of curves, the latter of which can be regarded as
computations of the intersection pairings in the numerical group. This strategy is for example used in
the determination of explicit equations for certain Hilbert modular surfaces, as in §VIII of [Gee88]. In
the case of bielliptic surfaces, the information encoded in the numerical group yields a second genus-one
fibration, which is in a sense ‘transversal’ to the Albanese fibration.

To this end, we first discuss in a general setting how invertible sheaves produce rational maps and
morphisms. In order to construct this morphism, we apply the theory of the homogeneous spectrum
Proj; our main source is §3.7 of [EGA II]. Let X be a proper, geometrically integral scheme and fix an
invertible sheaf L , which we assume to be semi-ample, i.e. a tensor power L ⊗d is basepoint-free for
some d > 0. Let R(L ) =

⨁︁∞
n=0 Γ(X,L

⊗n) denote its associated graded ring. Consider the rational
map ProjX

⨁︁∞
n=0 L ⊗n ‧‧➡ ProjR(L ) as in (3.7.1) of op. cit., where ProjX

⨁︁∞
n=0 L ⊗n is naturally

isomorphic to X by 3.1.7 and 3.1.8.iii of op. cit. The assumption that L is semi-ample guarantees that
this rational map is defined everywhere, i.e. is a morphism of schemes, denoted by rL : X → ProjR(L ).
This same assumption ensures also that R(L ) is a finitely generated algebra, allowing us to remain in
the realm of schemes of finite type; see Thm. 9.14 of [Băd01].

Proposition 3.3.1. Let L be a semi-ample invertible sheaf on X. The morphism rL is proper and is
in Stein factorisation.
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Proof. Properness follows since X is proper and a homogeneous spectrum is separated. Stein factorisation
is a local property on the codomain and may be verified through a simple computation on the basis of
standard affine opens D+(s), for s ∈ H0(X,L ⊗d).

Definition 3.3.2. A fibration is a proper morphism f : X → Y such that f∗OX = OY .

Remark 3.3.3. Note that this definition makes sense in light of Definition 3.1.29. Also note that a fibration
is by definition in Stein factorisation, so that its fibres are connected due to Zariski’s main theorem; see
Cor. 11.3. of [Har13].

Fibrations have the following desirable property.

Proposition 3.3.4. Let f : X → Y be a fibration. Then the induced map f∗ : Pic(Y ) → Pic(X) is
injective.

Proof. Let L be an invertible sheaf on Y such that f∗(L ) ∼= OX . Then

OY = f∗(OX ⊗ f∗(L )) ∼= f∗(OX)⊗L = L

by the projection formula.

From a classical perspective rL coincides with the morphism defined by the linear system |L ⊗d|
where d > 0 is sufficiently large; see Thm. 2.1.27 of [Laz04a]. This indicates that the morphism rL
depends only on to L up to its tensor powers: in fact, the natural map ProjR(L ⊗d)→ ProjR(L ) is an
isomorphism for d > 0 and

X ProjR(L ⊗d)

ProjR(L )

rL⊗d

rL
∼=

commutes, by Prop. 3.1.8.i of [EGA II].
We show that rL also depends only on the numerical equivalence class of L , hence on the ray R>0 ·L

in Num(X)R = Num(X)⊗Z R. We have to take care here with our assumption that L is semi-ample,
since semi-ampleness is not preserved by numerical equivalence; see e.g. Ex. 10.3.3 of [Laz04b]. This is
in contrast to the notion of ampleness, which can be verified through the numerical conditions of the
Nakai–Moishezon criterion, Thm. V.1.10 of [Har13].

Lemma 3.3.5. Suppose that L is semi-ample and let C ⊂ X be an integral proper curve. Then, the
following are equivalent

(i) The image rL (C) ⊂ ProjR(L ) is a point.

(ii) L |C ∈ Pic(C) is torsion;

(iii) The intersection product L · C equals 0;

(iv) For any positive integer n such that H0(C,L |⊗nC ) ̸= 0, the nth tensor power L |⊗nC is trivial on C.

Proof. Recalling that the intersection product L · C equals deg(L |C), the implications (ii)⇒(iii)⇒(iv)
are clear. For the converse (iv)⇒(ii) we note that there always exists a positive integer n satisfying the
condition, because L is semi-ample.

It remains to show the equivalence (i)⇔(ii). Suppose first that C ⊂ X contracts to a point, and let
x ∈ ProjR(L ) be its image. Let n ≥ 1 be an integer and let s ∈ Γ(X,L ⊗n) be a global section which
does not vanish at the generic point η of C. Then rL (η) = x lies in the distinguished open subset D+(s),
so s vanishes nowhere along the pre-image r−1

L (x) = C. We conclude that multiplication by s|C induces

an isomorphism of invertible sheaves OC
∼−→ L ⊗n

C .
Conversely, suppose that L |C is torsion. Since the morphism rL depends on L only up to tensor

powers, we may assume without loss of generality that L |C ∼= OC . The image rL (C) can be identified with
the homogeneous spectrum ProjR(L |C). But R(L |C) =

⨁︁∞
n=0 Γ(C,OC) = k′[T ] where k′ = Γ(C,OC)

is a finite field extension of k, which gives rL (C) = Spec k′.
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We emphasise the equivalence (i)⇔(iii), which states that the dimension of the image rL (C) depends
only on the vanishing of the intersection product L · C. If rL (C) is a point, we say that rL contracts
the curve C. The contraction behaviour of curves is therefore a numerical property.

Lemma 3.3.6. Let X be a proper, geometrically connected scheme. For every two points there is a
connected curve containing both.

Proof. By Chow’s lemma we may assume that X is projective. Without loss of generality we may assume
that X is irreducible. Pick a closed embedding X → PN and a hyperplane section H ⊂ PN passing
through x and y. The intersection X ∩H is connected by the lemma of Enriques–Severi–Zariski; see Cor.
7.9 of [Har13]. Proceed by induction on dim(X) until dim(X ∩H) = 1.

Lemma 3.3.7. Let X, Y , Z be proper, geometrically integral schemes and let f : X → Y and g : X → Z
be two fibrations. If f and g contract the same integral curves, then there exists an isomorphism ψ : Y

∼−→ Z
such that g = ψ ◦ f . In other words, the morphisms f and g can be identified.

Proof. We claim that f is constant on the fibres of g. Indeed, let G be any fibre of g, and let x, y be any
two closed points of G. By connectivity of G we may apply Lemma 3.3.6 to construct a curve C ⊂ G
containing x and y. Since g(C) is a point, the curve C is also contracted by f , hence f(x) = f(y). By
symmetry of the hypotheses we also conclude that g is constant on the fibres of f .

By Lemma 3.3.6, the main hypothesis implies that f is constant on the fibres of g and that similarly
g is constant on the fibres of f . The condition that f is a fibration implies by Lem. 8.11.1 of [EGA II]
that the map

Hom(Y,Z) −→ Hom(X,Z); ϕ ↦−→ ϕ ◦ f

is a bijection onto the collection of functions which are constant on the fibres of f . By surjectivity, there
is a morphism ˜︁g : Y → Z such that ˜︁g ◦ f = g. Due to the symmetry among f and g, we find in a similar
way that there is a morphism ˜︁f : Z → Y such that ˜︁f ◦ g = f . But then ˜︁f ◦ ˜︁g ◦ f = f , and we conclude
that ˜︁f ◦ ˜︁g = idY since fibrations are epimorphisms in the category of schemes. The equality ˜︁g ◦ ˜︁f = idZ
follows in a similar way.

Combining Lemmata 3.3.5 and 3.3.7 grants the following result.

Theorem 3.3.8. Let L and L ′ be numerically equivalent semi-ample invertible sheaves. Then there is
an isomorphism ψ : ProjR(L )→ ProjR(L ′) such that rL ′ = ψ ◦ rL .

In summary, the fibration rL is determined by the ray R>0 ·L in the numerical group Num(X)R =
Num(X)⊗Z R, by choosing a semi-ample representative from the numerical equivalence class.

For the remainder of this section, let X be a bielliptic surface. Recall that in this case the numerical
group Num(X) is a free abelian group of rank 2. We start by constructing a suitable Q-basis of
Num(X)Q = Num(X)⊗Q.

Lemma 3.3.9. Let X be a bielliptic surface. Let f : X → P be the Albanese fibration and let F be a
closed fibre of f . There is a divisor G on X such that G2 = 0 and F ·G > 0.

Proof. Let L = O(H) be an ample invertible sheaf on X and define G = 2(F ·H) ·H −H2 · F . An easy
computation shows that G2 = 0 and that G · F = 2(F ·H)2 > 0.

It is non-trivial to show that O(G) is numerically equivalent to a semi-ample invertible sheaf, so we
briefly touch upon the relevant literature if k is algebraically closed. It is shown in the proof of Thm. 3 of
[BM77] that G is numerically equivalent to an effective divisor, which we regard as curve C ⊂ X. From
the results of [Mum69], Steps (II) and (III) it follows that C is semi-ample and furthermore that O(C)
induces an elliptic fibration g = rO(C) : X → P1; cf. Thm. 7.11 of [Băd01]. Lemma 3.3.5 implies that G is
a fibre for g and is hence basepoint-free, so also semi-ample.

We conclude that G is also semi-ample over an arbitrary ground field. Lemmata 3.3.5 and 3.3.7 ensure
that the numerical equivalence between G and C does not create further technical issues, so that G
induces an elliptic fibration.

Theorem 3.3.10. Let X be a bielliptic surface. There is an elliptic fibration g : X → B, where B is a
Brauer–Severi curve, whose closed fibres are numerically equivalent to multiples of G. It is unique in the
sense of Lemma 3.3.7.
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Remark 3.3.11. The existence of g was also shown in a number theoretic setting in Prop. 5.6 of [CV18],
where the authors construct (a multiple of) G by Galois-descent.

Remark 3.3.12. Recall that the fibres F and G provide a Q-basis for Num(X), independently of the
choice of ground field. In other words, the Galois action on Num(Xalg) ∼= Z2 is trivial. In the language of
[Sch23b] this means that the numerical sheaf NumX/k = PicX/k /Pic

τ
X/k is constant. Therefore we may

also apply Thm. 1.3 of op. cit. to descend the elliptic fibration g from an algebraically closed ground field
to an arbitrary ground field. The proof of lod. cit. essentially combines the Galois descent argument of
[CV18] with a treatment of purely inseparable field extensions.

Notation 3.3.13. The fibration g : X → B is called the other fibration or the second fibration.

We emphasise that this fibration is always an elliptic fibration, i.e. that g is never quasi-elliptic. This
is in clear contrast to the Albanese fibration, which can be quasi-elliptic in small characteristics. A
further contrast is that g has degenerate fibres, as can be seen most easily from the Bagnera–de Franchis
classification of Section 3.4. There is a notable restriction on the non-smooth fibres: the low Picard
number ρ = 2 imposes that the fibres of g are irreducible, since any further irreducible components
contribute to the rank of the numerical group. An explicit description of the degenerate fibres of the
complex numbers is given in [Ser90], where they are used to construct elements generating the torsion
subgroup of the Néron–Severi group NS(X).

Remark 3.3.14. In the small characteristics 2 and 3 the elliptic fibration may have wildly ramified fibres. In
view of the canonical bundle formula of [BM77], the existence of wild fibres is related to the ‘unexpected
triviality of ωX ’ discussed in Remark 3.5.4 below. A complete description of the wild fibres for bielliptic
surfaces with smooth Albanese are listed on p. 38 of op. cit. There seems to be no explicit description for
quasi-bielliptic surfaces, although Thm. 8.16.iv of [Zim19] limits the possibilities.

To see that B is a Brauer–Severi curve, we may base-change to an algebraic closure and argue that
B ⊗ kalg ∼= P1

kalg , as follows from the results of [Mum69; BM77]. Alternatively, we can also argue directly.

Proposition 3.3.15. The curve B has genus zero.

Proof. By functoriality of the Albanese, there is an induced morphism P → Alb(B), which sits in the
following commutative square.

X P

B Alb(B)

f

g Alb(g)

Since the composition X → Alb(B) factors both over f and g, it must contract both of their fibres
and hence be constant. This is only possible if Alb(B) = 0. Then apply the dimension formula
Proposition 3.2.9, combined with the fact that b1(B)/2 = h1(OB) because the Picard scheme of a smooth
curves is smooth.

The terminology of Notation 3.3.13 presupposes that there are only two fibrations on a bielliptic
surface. This is indeed the case.

Proposition 3.3.16. Let X be a bielliptic surface and let C be a curve. Let h : X → C be a morphism
such that h∗OX = OC . Then there exists an isomorphism ψ : C → P or an isomorphism ψ : C → B such
that f = ψ ◦ h or g = ψ ◦ h respectively. In other words: f and g are the only fibrations of X to a curve.

Proof. The subset of Num(X)⊗Q of divisors satisfying D2 = 0 consists of the two lines through F and
G. If H is a closed fibre of h, then H2 = 0 and therefore H is linearly equivalent to a multiple of F or
G. Since the morphism defined by the linear system of a divisor only depends on the ray it generates in
Num(X), the result follows.

Remark 3.3.17. We can see the above quite visually in the context of Mori theory: the fibres F and G
span the extremal rays of the pseudo-effective cone NE(X). In two dimensions, it is clear that a closed
cone has at most two extremal rays.
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Remark 3.3.18. We have treated the existence of the two genus-one fibrations f and g in the setting of a
ground field k. In fact, much of the above holds over a Noetherian base scheme S. Let X be a family
of bielliptic surfaces over S and suppose that 6 is invertible on S. Then the Albanese fibration exists
by Thm. 10.2 of [LS23], considering that Pic0X /S ⊂ PicτX /S is a maximal abelian subvariety due to the
absence of critical behaviour; cf. Ch. 2, Prop. 1.17 of [Boa21]. The existence of the other fibration is more
subtle: as the proof of Lemma 3.3.9 indicates, one needs to assume that X admits an S-ample invertible
sheaf, see Lem. 1.6 of [Sei87].

Note that the fibres F and G are linearly independent in Num(X)Q, which is clear from the intersection
pairing F 2 = G2 = 0 while F ·G > 0. The Gram matrix is proportional to ( 0 1

1 0 ); in fact, it is shown in
Prop. 3.1 of [Boa21] that the lattice Num(X) is even and unimodular, hence isomorphic to the hyperbolic
plane. It thus follows that the intersection number F ·G measures how far F and G are removed from
spanning Num(X). To remove the dependence on the choice of F and G within the ray, we normalise
accordingly.

Notation 3.3.19. Let X be a bielliptic surface, with two fibrations f : X → P and g : X → B. Let
x ∈ P and y ∈ B be closed points, and let F = f−1(x) and G = g−1(y) be the corresponding fibres. We
define the intersection invariant γ as

γ =
F ·G

[κ(x) : k] · [κ(y) : k]
.

Remark 3.3.20. Note that the value of γ is independent of the choice of points x and y and is invariant
under base-change.

The intersection invariant γ is a fundamental discrete invariant of bielliptic surfaces, for which we
provide a suitable meaningful interpretation in the upcoming section. Consequently we see that γ > 1, so
that the fibres F and G turn out to never form a Z-basis for the numerical group Num(X). This can be
partly explained by the multiple fibres of g. A Z-basis for Num(X) in terms of F and G is given in Table
2 of [Ser90].

3.4 The Bagnera–de Franchis classification

The classification of complex bielliptic surfaces is a particularly classical topic, whose study was initiated
in the early 20th century in the larger framework of the Italian school of algebraic geometry. The main
object of this school was to classify complex algebraic surfaces, generalising the classification of curves
by genus. Although the tetrachotomy of surfaces of Kodaira dimension 0 had not yet been discovered,
bielliptic surfaces formed a notable subclass of surfaces with geometric genus pg = 0 and irregularity
q = 1. Valuing the importance of these surfaces, the Paris Academy of Science organised a competition
for the reputable Bordin prize in 1907, with the goal of classifying so-called hyperelliptic surfaces, which
at the time were defined to be quotients of abelian surfaces.

The first ‘team’ to participate in this competition consisted of the famous geometers Federigo Enriques
and Francesco Severi. In their 1907 manuscript [ES07], published in final form in 1909 as [ES09], they
treated the special case where the abelian surface is the Jacobian of a smooth genus-two curve. Their
partial classification notably excludes the surfaces which we nowadays call bielliptic, which instead arise
as a quotient of two elliptic curves by a finite group. Enriques and Severi addressed the general version in
1908 in their follow-up article [ES08]; however, by this time, the ‘other team’ in the competition had
already independently listed the full classification.

The competing team consisted of the Italian geometers Giuseppe Bagnera and Michele de Franchis.
They determined the full classification of complex bielliptic surfaces, called the Bagnera–de Franchis
classification in their honour, in terms of the possible groups acting on a product of two complex elliptic
curves. They announced their results in [BF07] in 1907 only after the deadline for the Bordin prize had
passed; the full manuscript was published in [BF08], with the list of bielliptic surfaces in §6. Part of the
delay was caused by a technical but superfluous assumption, which de Franchis only eliminated decades
later in 1936 in the short note [Fra36a] followed by the article [Fra36b] (both as cited in [Cil98; Cat03]).

The Bordin prize of 1907 was hence awarded to Enriques and Severi for their partial results. De
Franchis states in private correspondence with Guccia, the director of the at the time prestigious Circolo
Matematico di Palermo (Mathematical Circle of Palermo), that he had pointed out several flaws in a

43



draft that Enriques and Severi had submitted to the Paris Academy of Science. There was however
enough time to resubmit a version in which a number (but not all) of the suggestions of de Franchis were
adopted. According to de Franchis, the members of the Academy were unable to detect the remaining
mistakes. In the end, the Paris Academy of Science awarded the Bordin prize in 1909 on the same subject,
this time to Bagnera and de Franchis, for the considerable contributions made in e.g. [BF10].

The above history is part of the excellent historic article [Cil98], but see also [Cat03, p. 30], [OR]. As
a final introductory remark, we note that the classification of bielliptic surfaces to algebraically closed
fields of arbitrary characteristic is due to Bombieri and Mumford [BM77; BM76], as part of a series of
articles extending the entire Enriques classification of surfaces to positive characteristic; see also the first
part [Mum69].

In this section k denotes an algebraically closed ground field of arbitrary characteristic. We explore
how this theory generalises to arbitrary ground fields in Chapter 4. First, we state the classification over
algebraically closed fields in its modern form, subdividing bielliptic surfaces into seven different types. We
also propose terminology to control the critical behaviour that occurs in small characteristics p = 2 and
p = 3, mirroring the trichotomy of Enriques surfaces in characteristic 2 that was introduced in [BM76].

Let us start with a coarse version of the structure theorem for bielliptic surfaces, whose proof for
bielliptic surfaces can be found on pp. 33–35 of [BM77], though the proof generalises verbatim to quasi-
bielliptic surfaces; see Thm. 4 in loc. cit. and Thm. 1 of [BM76]. Our proposed notation is unfortunate
due to the cumbersome tildes, but is necessary for later consistency with Section 3.5, where C and D
should instead denote the Stein factors of the canonical cover.

Theorem 3.4.1 (Structure theorem for bielliptic surfaces). A bielliptic surface X over an algebraically

closed field is isomorphic to a quotient X ∼= ( ˜︁C × ˜︁D)/G, where

• ˜︁C is an elliptic curve;

• ˜︁D is a smooth genus-one curve, or the rational cuspidal curve;

• G is a finite subgroup scheme of ˜︁C, acting by translation;

• G acts faithfully on ˜︁D;

• the Albanese fibration f : X → P equals the projection ( ˜︁C × ˜︁D)/G→ ˜︁C/G;
• the second fibration g : X → P1 equals the projection ( ˜︁C × ˜︁D)/G→ ˜︁D/G.

The curve ˜︁D is the rational cuspidal curve if and only if X is a quasi-bielliptic surface.

The action of G on the product is free despite the fixed points of the G-action on ˜︁D, because the
action on ˜︁C is free. Therefore the quotient exists as a scheme and the quotient map ˜︁C × ˜︁D → X is
naturally a G-torsor. The proof in op. cit. shows that this description of X as a quotient only depends on
the choice of (reduced) closed fibres of the two fibrations f and g. We propose the following terminology

for the quotient map ˜︁C × ˜︁D → X.

Definition 3.4.2. Let X be a bielliptic surface. A G-torsor ˜︁C × ˜︁D → X is called the Bagnera–de
Franchis cover (or: BdF-cover) if it satisfies the conditions listed in Theorem 3.4.1.

Remark 3.4.3. We may abuse terminology and refer to the surface ˜︁C × ˜︁D as the Bagnera–de Franchis
cover.

The natural follow-up question for refining the classification of bielliptic surfaces is to classify the
possible subgroup schemes G of an elliptic curve acting on a genus-one curve, such that the conditions of
Theorem 3.4.1 are satisfied. Bagnera and de Franchis showed that, over the field of complex numbers,
the only possible group schemes are the constant group schemes Z/nZ× Z/dZ subject to the conditions
that n is a non-trivial divisor of 12, d | n, and nd ≤ 9. This amounts to seven isomorphism classes, each
referred to by a different type, which is either (a1), (a2), (b1), (b2), (c1), (c2), or (d). We consider type
(a) to indicate the union of types (a1) and (a2), and similarly for types (b) and (c).

Type (a1) (a2) (b1) (b2) (c1) (c2) (d)

G Z/2Z (Z/2Z)2 Z/3Z (Z/3Z)2 Z/4Z Z/4Z× Z/2Z Z/6Z

Table 3.2: The groups occurring the Bagnera–de Franchis classification over C
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Remarkably, this list remains the same over algebraically closed fields of characteristics not equal to 2
or 3, while in characteristics 2 and 3 only small adjustments are needed to deal with bielliptic surfaces
with smooth Albanese. A more elaborate treatment is necessary in order to include the quasi-bielliptic
surfaces as well. First we treat the case where ˜︁D is smooth, following pp. 35–37 of [BM77].

Theorem 3.4.4 (Bagnera–de Franchis classification; smooth Albanese). Let G ⊂ ˜︁C be a finite subgroup

scheme that acts on a smooth genus-one curve ˜︁D, as in Theorem 3.4.1. With a suitable choice of rational
point on ˜︁D giving it the structure of an elliptic curve ˜︁J , we have either

(a1) G ∼= Z/2Z with action x ↦→ −x;

(a2) G ∼= Z/2Z× µ2 where Z/2Z acts by x ↦→ −x and where µ2 acts by translation;

(b1) G ∼= Z/3Z with action x ↦→ ωx, where ω : ˜︁J → ˜︁J is an elliptic curve automorphism of order 3;

(b2) G ∼= (Z/3Z)2 (with p ̸= 3) with action x ↦→ ωx and x ↦→ x+ a for some a ∈ ˜︁J [3] satisfying ωa = a;

(c1) G ∼= Z/4Z with action x ↦→ ix, where i : ˜︁J → ˜︁J is an elliptic curve automorphism of order 4;

(c2) G ∼= Z/4Z× Z/2Z (with p ̸= 2) with action x ↦→ ix and x ↦→ x+ a for some a ∈ ˜︁J [2] with ia = a;

(d) G ∼= Z/6Z with action x ↦→ −ωx, where ω is as in case (b1).

Proof. The isomorphism group scheme of ˜︁D decomposes as a semidirect product

Aut ˜︁D/k = ˜︁J ⋊Aut ˜︁J/k, (3.4.1)

where the latter factor parametrises the automorphisms of the elliptic curve, and is isomorphic to either
Z/2Z, Z/4Z, Z/6Z, Z/3Z⋊Z/4Z, or Q8 ⋊Z/3Z, where Q8 denotes the quaternion group of order 8. The
latter two cases occur only in characteristics 3 and 2, respectively.

Denote the action of G by ϕ : G→ Aut ˜︁D/k and consider the projection π : Aut ˜︁D/k → Aut ˜︁J/k. Since
G is abelian, the image of π ◦ ϕ is contained within an abelian subgroup of Aut ˜︁J/k, which is a cyclic

group, even in the last two noncommutative cases. Furthermore Imπ ◦ ϕ cannot be trivial, since then the
image of ϕ would be contained entirely within the first factor ˜︁J , and the quotient ˜︁D/G would have genus
one.

Choose an element g ∈ G such that π(ϕ(g)) generates its image. The automorphism ϕ(g) has a fixed

point since ϕ(g) /∈ ˜︁J . We replace the distinguished point of ˜︁J by this fixed point, so that Imϕ is itself a

direct product G ∼= Imϕ = H ×N , where H ⊂ G is the maximal subgroup scheme that acts on ˜︁D by
translations and where N ⊂ Aut ˜︁J/k is cyclic of order n. The possible values of n are 2, 3, 4 or 6.

The subscheme H ⊂ ˜︁D is invariant under the action of N by commutativity of G. The set of fixed
points of ϕ(g) ∈ N is well-known for each possible value of n, and can be deduced from the explicit
formulas of automorphisms of elliptic curves of e.g. App. A of [Sil09]. This leads to a case distinction.

(a) Suppose n = 2. The automorphism ϕ(g) is the sign involution on ˜︁J . Therefore H ⊂ ˜︁J [2]. Since

G ∼= H ×Z/2Z ⊂ ˜︁J is also two-torsion, we see that either H = 0 or H = µ2, corresponding to cases
(a1) or (a2), respectively.

(b) Suppose n = 3. The existence of an elliptic curve automorphism ω of order 3 implies that the

j-invariant of ˜︁J equals 0. If p ̸= 3 then the fixed locus of ω is a subgroup scheme isomorphic to
Z/3Z, so that either H = 0 or H = Z/3Z, leading to cases (b1) and (b2) respectively. If p = 3 then

the fixed locus of ω is the subgroup scheme α3 ⊂ ˜︁J , so either H = 0 or H = α3. The latter case is
not possible, since G ∼= α3 × Z/3Z is not a subgroup scheme of an elliptic curve.

(c) Suppose n = 2. Similarly, the existence of an elliptic curve automorphism i of order 4 implies that

the j-invariant of ˜︁J is 1728. The fixed locus for i is isomorphic to Z/2Z if p ̸= 2, and α2 if p = 2.
As before, the case of H = α2 does not occur, so H = 0, or H = Z/2Z if p ̸= 2, corresponding to
cases (c1) and (c2) respectively.
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(d) Suppose n = 6, so ˜︁J is the elliptic curve with j-invariant 0 and automorphism ω of order 3. The
automorphism ϕ(g) is given by −ω, which has order 6. Its fixed locus consists of only the identity

element of ˜︁J , so that H = 0 is the only possibility.

Remark 3.4.5. The existence of an elliptic curve automorphism of order 3 or 4 puts a restriction on the
j-invariant of ˜︁D, namely j( ˜︁D) = 0 and j( ˜︁D) = 1728, respectively.

Remark 3.4.6. Different proposals for the labels of the type can be found in the literature: for example,
some sources use (1), (2), . . . , (7) for (a1), (a2), . . . , (d), respectively. Our labelling convention is more
structural, since a bielliptic surface of type (a1) shares similarity with one of type (a2). It traces back to
Bombieri and Mumford in [BM77], although we have made a slight adjustment. Many sources, including
op. cit., separate the type (a2) into two types: one for p ≠ 2 in which case G is the constant group
scheme (Z/2Z)2, and an additional case denoted (a3) in characteristic p = 2, where the group scheme
G = Z/2Z × µ2 is non-smooth. The author is of the opinion that this distinction is unnatural and
unnecessary, wherefore we include type (a3) within type (a2).

This treats the classification of bielliptic surfaces with a smooth Albanese, i.e. all except for the
quasi-bielliptic surfaces. The case where ˜︁D is a rational cuspidal curve requires a separate analysis,
which rests upon the description of the automorphism group scheme of the rational cuspidal curve as a
semidirect product of three factors

Aut ˜︁D/k = Ga ⋊A⋊Gm. (3.4.2)

Here A is an infinitesimal group scheme that vanishes outside of characteristics 2 and 3; see Prop. 6 of
[BM76] and the natural generalisation Thm. 8.1 of [HS24]. The non-vanishing of A in some sense permits

the existence of quasi-bielliptic surfaces, since the quotient of ˜︁C × ˜︁D by a subgroup scheme of Ga⋊Gm is
non-smooth; see p. 212 of [BM76]. Determining explicitly the list of group schemes G with action on ˜︁D is,
in the words of Bombieri and Mumford, ‘a tedious problem’, so we state the classification without proof.

To do this in a satisfactory manner, we first introduce helpful terminology. This is necessary, since the
possibilities for G at first sight seem to be quite arbitrary. The author believes that they can nevertheless
been seen as degenerations of one of the above seven classical types. Our terminology quantifies the
possible kinds of degenerations by creating a trichotomy for bielliptic surfaces in critical characteristics.
This is analogous to the established trichotomy of Enriques surfaces in the critical characteristic p = 2.
For bielliptic surfaces there are two possible critical characteristics, namely p = 2 and p = 3.

Definition 3.4.7. Let X be a bielliptic surface over a field of characteristic exponent p ≥ 1. The
characteristic is tame if p is coprime to the intersection invariant γ of Notation 3.3.19; otherwise the
characteristic is critical.

We show in Proposition 3.4.17 that the intersection invariant γ equals the order of the group scheme
G. This motivates our choice of terminology: if the order of G is coprime to the characteristic exponent,
we should expect tame behaviour. In case the Albanese is smooth, it follows from Theorem 3.4.4 that the
characteristic p = 2 is critical for types (a), (c) and (d), and that the characteristic p = 3 is critical for
types (b) and (d). There are no other critical characteristics. This should make sense, since a quotient by
e.g. Z/pZ should only be critical in characteristic p.

Remark 3.4.8. We phrase the above definition in terms of the intersection invariant γ, since it depends
only on intrinsic data, i.e. it does not reference the objects introduced in Theorem 3.4.1. Therefore
Definition 3.4.7 remains a valid definition over an arbitrary ground field.

Definition 3.4.9 (Trichotomy of bielliptic surfaces). Let X be a bielliptic surface in critical characteristic.
We say that

• X is ordinary if the Albanese map f is smooth, i.e. if X is not quasi-bielliptic;

• X is classical if X is quasi-bielliptic and P is ordinary;

• X is supersingular if P is supersingular.

Remark 3.4.10. By the structure theorem Theorem 3.4.1, the Albanese P is isogenous to ˜︁C, so that one
is ordinary if and only if the other is ordinary. If X is an ordinary bielliptic surface, then the existence of
a non-trivial étale subgroup scheme N whose order is divisible by the characteristic p implies that ˜︁C and
hence P is ordinary. We conclude that the three classes in the trichotomy are mutually disjoint.
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Remark 3.4.11. The first half of the Bagnera–de Franchis classification Theorem 3.4.4 also handles some
bielliptic surfaces in critical characteristic, namely the ordinary bielliptic surfaces. These surfaces arise
as notable counterexamples. For example, an ordinary bielliptic surface of type (a1) is also referred to
as an Igusa surface, cf. [Igu55]. It is the first known example of a smooth, proper scheme whose Picard
scheme is non-smooth. This seemingly pathological behaviour is quite natural in the context of the other
bielliptic surfaces; see Table 3.6 below.

At first sight it may seem to be more natural to swap the definitions of ‘ordinary’ and ‘classical’
bielliptic surfaces, but we reassure the reader that the above definition is correct in analogy with the
trichotomy of Enriques surfaces in characteristic 2. Recall from Table 3.1 and Proposition 3.1.27 that
Enriques surfaces exhibit similar critical behaviour if p = 2. It is well-established to separate them into
three different classes, also called ordinary, classical and supersingular.

The trichotomy of bielliptic surfaces shares a lot of similarities to that of Enriques surfaces, except for
notably the definition. For an Enriques surfaces Y , the trichotomy is defined by investigating the possible
isomorphism classes for the group scheme PicτY/k, which has order 2 by Thm. 1.2.1 of [CD89]. Then

PicτY/k
∼=

⎧⎪⎨⎪⎩
µ2 if Y is ordinary;

Z/2Z if Y is classical;

α2 if Y is supersingular.

In case of bielliptic surfaces, the group scheme PicτX/k contains an elliptic curve PicαX/k, so this classification
breaks down. That is the main reason that Definition 3.4.9 is much more involved compared to Enriques
surfaces. However, there are still similarities to the Cartier dual N∨ of the group scheme N defined below;
see Table 3.8.

Despite the name, classical Enriques surfaces are not necessarily better behaved than the other classes;
in fact, in many cases the ordinary Enriques surfaces behave most like their counterparts in characteristic
p ̸= 2. It much depend on the properties of interest. In a similar way for bielliptic surfaces, some
properties are well-behaved for ordinary surfaces, wheras others are better behaved for classical surfaces;
see also Remark 3.4.22 below. In general, it seems like the class of supersingular surfaces satisfy most
critical behaviour.

We are now in a position to list systematically the possible group schemes G and group scheme actions
on the rational cuspidal curve ˜︁D satisfying the properties of Theorem 3.4.1, as given on p. 214 of [BM76].
The detailed description of the action is not important for the moment, but we list it in full detail for
later use. We simultaneously propose a new definition of the type of a quasi-bielliptic surface through our
indexing, which naturally extends the types as given in Theorem 3.4.4.

Theorem 3.4.12 (Bagnera–de Franchis classification; quasi-bielliptic surfaces). Let G ⊂ ˜︁C be a subgroup

scheme, that acts on the rational cuspidal curve ˜︁D = Spec k[t] ∪ Spec k[t−2, t−3], as in Theorem 3.4.1. If
X is classical, we have either

(a1) p = 2 and G ∼= µ2 acting by t ↦→ at+ λ(a+ 1)t2 + (a+ 1)t4 where a2 = 1, for some λ ∈ k;

(a2) p = 2 and G ∼= µ2 × Z/2Z acting as in (a1), plus t ↦→ t+ ξ, where ξ satisfies ξ4 + λξ2 + ξ = 0;

(b1) p = 3 and G ∼= µ3 acting by t ↦→ at+ (1− a)t3 where a3 = 1;

(b2) p = 3 and G ∼= µ3 × Z/3Z acting as in (b1), plus t ↦→ t+ 1;

(c1) p = 2 and G ∼= µ4 acting by t ↦→ at+ (a+ a2)t2 + (1 + a2)t4 where a4 = 1;

(c2) p = 2 and G ∼= µ4 × Z/2Z acting as in (c1), plus t ↦→ t+ 1;

(d) p = 2 and G ∼= µ6 = µ2 × µ3, where µ2 acts as in (a1) with λ = 0, plus t ↦→ ζt where ζ3 = 1;

(d) p = 3 and G ∼= µ6 = µ3 × µ2, where µ3 acts as in (b1), plus t ↦→ −t.

If X is supersingular, we have either

(a1) p = 2 and G ∼= α2 acting by t ↦→ t+ λat2 + at4 where a2 = 0, with λ = 0 or 1;
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(a2) p = 2 and G ∼= M2, which is the two-torsion subgroup scheme of a supersingular elliptic curve,
acting by t ↦→ t+ a+ λa2t2 + a2t4 where a4 = 0;

(b1) p = 3 and G ∼= α3 acting by t ↦→ t+ at3 where a3 = 0;

(d) p = 2 and G ∼= α2 × µ3, where α2 acts as in (a1), plus t ↦→ ζt for ζ3 = 1;

(d) p = 3 and G ∼= α3 × µ2, where α3 acts as in (b1), plus t ↦→ −t.

Aside from notational differences, our list still differs slightly from the one given by Bombieri and
Mumford in the case of quasi-bielliptic surfaces. We explain the differences in the following remarks.

Remark 3.4.13. As was mentioned in p. 489 of [Lan79] and Rk. 5.12, p. 15 of [Mar22], the group scheme
of order 9 of maps t ↦→ t+ a+ a3t3 (with a9 = 0) mentioned by Bombieri and Mumford does not occur, as
it is not isomorphic to a subgroup scheme of any elliptic curve. Indeed, from Dieudonné theory it follows
that it is a twisted form of α9, which is not a subgroup scheme of an elliptic curve, since its Cartier
dual has embedding dimension 2; see (15.5) of [Oor66]. In our notation, this causes the non-existence of
supersingular quasi-bielliptic surfaces of type (b2). Note that supersingular quasi-bielliptic surfaces of
type (a2) do exist, where the group G is M2, the two-torsion subgroup of a supersingular elliptic curve.

Remark 3.4.14. As explained in Rk. 5.13, p. 17 of [Mar22] we may take λ = 0 or 1 without loss of
generality, since all actions with nonzero λ are conjugate.

In summary, Theorems 3.4.4 and 3.4.12 classify the possible group schemes and group scheme actions
that can occur in the structure theorem of bielliptic surfaces Theorem 3.4.1. They are jointly referred to
as the Bagnera–de Franchis classification. For clarity we tabulate the possible isomorphism classes of G
according to type; see Table 3.3. The group schemes arising in the last three columns indicate occurrences
in critical characteristic, as listed in the third column.

Type Tame Char. Crit. Chars Ordinary Bielliptic Classical Q.-Biell. Supersing. Q.-Biell.

(a1) µ2 2 Z/2Z µ2 α2

(a2) µ2 × Z/2Z 2 Z/2Z× µ2 µ2 × Z/2Z M2

(b1) µ3 3 Z/3Z µ3 α3

(b2) µ3 × Z/3Z 3 ∄ µ3 × Z/3Z ∄
(c1) µ4 2 Z/4Z µ4 ∄
(c2) µ4 × Z/2Z 2 ∄ µ4 × Z/2Z ∄
(d) µ6 2, 3 Z/6Z = Z/pZ× µ6/p µ6 αp × µ6/p

Table 3.3: The group scheme G in all cases of the Bagnera–de Franchis classification

Remark 3.4.15. Only after applying the isomorphism µn ∼= Z/nZ in tame characteristic does Table 3.2
agree with the ‘tame characteristic’ column of Table 3.3. The use of multiplicative group schemes is
preferred: first of all, because it turns out to be more accurate in the context of non-algebraically closed
fields, c.f. Table 3.8 and Proposition 4.1.24; another reason comes from Remark 3.4.20.

Remark 3.4.16. Note that not all entries in the table are filled: there is no ordinary bielliptic surface of
type (b2) or (c2), and there is no supersingular quasi-bielliptic surface of type (b2), (c1) or (c2). The
author is not aware of conceptual justification of this fact; cf. the concluding remarks in the introduction
of [Lan79].

There are a number of reasons why our proposed extension of the definition of ‘type’ for quasi-bielliptic
surfaces is the natural one. First of all, note that the order of the group scheme G is constant among
bielliptic surfaces of the same type. For example for type (a1), the group schemes Z/2Z, µ2 and α2 all
have order 2. Looking row by row, the group schemes occurring for quasi-bielliptic surfaces indeed seem
to be infinitesimal degenerations of the groups occurring over C as listed in Table 3.2: a copy of Z/pZ
may be replaced by the multiplicative group scheme µp in the classical case, or the unipotent group
scheme αp in the supersingular case.

This is analogous to the trichotomy of Enriques surfaces in characteristic 2. Enriques surfaces can
similarly be described naturally as a quotient by a group scheme G of order 2. The isomorphism class
of G distinguishes the three classes of Enriques surfaces in characteristic 2: ordinary entails G = Z/2Z,
classical entails G = µ2, and supersingular entails G = α2.
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A consequence of this explicit description of bielliptic surfaces is that we can compute a number
of numerical invariants explicitly in terms of the group scheme G and the action. This adheres to the
philosophy that a bielliptic surface is studied best through its covers, as discussed in Chapter 4. We first
compute the invariant γ of Notation 3.3.19. Recall that the order of G is defined as |G| = h0(OG).

Proposition 3.4.17. The intersection invariant γ equals the order |G|.

Proof. Without loss of generality suppose that k is algebraically closed. Consider a closed fibre F of
f and a closed fibre G of g, as elements of the numerical group Num(X). Consider the product map
f × g : X → P × P1. Then the fibres F and G are the pullbacks of Spec(k) × P1 and P × Spec(k)
respectively, so from the naturality of the intersection form it follows that

F ·G = deg(f × g)
(︁
(Spec(k)× P1) · (P × Spec(k)

)︁
= deg(f × g),

since the intersection on P × P1 has multiplicity 1. The map ˜︁C × ˜︁D → X has degree |G| and the

composition ˜︁C × ˜︁D → X → P × P1 has degree |G|2, being quotients by the free action of G and G2,
respectively. This yields γ = |G|.

This explains a posteriori our definition of tame and critical characteristic: if the order of the group
scheme is coprime with the characteristic exponential, we can expect tame behaviour. As a corollary, we
see from Table 3.3 that the only possible tame characteristics are 2 and 3.

Type (a1) (a2) (b1) (b2) (c1) (c2) (d)

γ 2 4 3 9 4 8 6

Table 3.4: The intersection invariant γ by type

Recall from Theorem 3.1.21 that the canonical sheaf ωX has finite order in the Picard group Pic(X).
Its order is an important invariant intrinsic to the bielliptic surface, so let us fix notation for it.

Notation 3.4.18. The order of ωX in the Picard group is denoted m.

Proposition 3.4.19. The order m is tabulated according to the type of X in Table 3.5.

Proof. The integer m is minimal such that G acts trivially on ω⊗m˜︁C ⊗ ω⊗m˜︁D . Since G acts by translations

on ˜︁C, we only consider the action of G on ω⊗m˜︁D . This is a case-by-case computation using the actions

listed in Theorems 3.4.4 and 3.4.12; cf. [BM77, p. 37], [BM76, p. 214]. Note however that the only group
schemes that act non-trivially on ω ˜︁D are the copies of µm that do not act by translations.

Type Tame Char. Ordinary Biell. Classical Q.-Biell. Supersingular Q.-Biell.

(a) 2 1 2 1
(b) 3 1 3 1
(c) 4 1 4 ∄
(d) 6 6/p 6 6/p

Table 3.5: The order m of the canonical sheaf ωX in the Picard group of X, according to type

Remark 3.4.20. Comparing Tables 3.3 and 3.5 we note that m is the order of the maximal multiplicative
subgroup scheme of G which does not act by translation. An explanation for this phenomenon is provided
in Remark 3.5.4.

Recall from Remark 3.2.19 that there are two independent kinds of critical behaviour in characteristics
2 and 3: the quasi-ellipticity of the Albanese and the non-reducedness of the Picard scheme. We are
now in a position to tabulate for which types of bielliptic surface which behaviour occurs. Recall from
Proposition 3.1.27 that the Picard scheme of a bielliptic surface is non-reduced if and only if ωX ∼= OX ,
i.e. if and only if m = 1, and that Table 3.5 indicates exactly for which types of bielliptic surface this
happens. We tabulate all four possibilities for critical behaviour in Table 3.6. Note that a form of critical
behaviour always occurs in critical characteristic, except for ordinary bielliptic surfaces of type (d).
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Reduced Picard scheme Non-reduced Picard scheme

Smooth Albanese Tame characteristic,
Type (d) ordinary bielliptic

Type (a), (b), (c) ordinary bielliptic

Quasi-bielliptic Classical quasi-bielliptic,
Type (d) supersingular bielliptic

Type (a), (b) supersingular quasi-bielliptic

Table 3.6: The critical behaviour in characteristics 2 and 3

Example 3.4.21. Non-reducedness of the Picard scheme is explained by the canonical sheaf ωX being
‘unexpectedly’ trivial. Although ωX is non-trivial for a bielliptic surface of type (d), its dualising sheaf
does have an ‘unexpectedly small’ order m = 6/p if it is ordinary or supersingular compared to tame
characteristics where m = 6. By the Bagnera–de Franchis classification, a bielliptic surface of type (d)
can be described as a further quotient of a bielliptic surface, which is of type (a1) if p ̸= 3, of type (b1) if
p ̸= 2, and both occur if the Albanese of X is smooth. This consequently produces examples of bielliptic
surfaces with smooth Picard scheme that are canonically covered by bielliptic surfaces with non-smooth
Picard scheme.

Remark 3.4.22. At first sight, ordinary bielliptic surfaces seem to be the best behaved among bielliptic
surfaces in critical characteristic, since they admit an étale cover by an abelian surface and due to the
absence of a quasi-elliptic fibration. On the other hand, the Picard scheme of an ordinary bielliptic surface
is often non-smooth due to an ‘unexpected triviality’ of the canonical divisor. In that regard, the classical
bielliptic surfaces seem to be better behaved: Table 3.5 shows that the order of the canonical sheaf agrees
with tame characteristic, so that the Picard scheme is smooth. Supersingular bielliptic surfaces display
bad behaviour in both aspects.

For the remainder of this section, we study geometric properties of the Bagnera–de Franchis cover˜︁C × ˜︁D. We continue to work in the context of an algebraically closed field. The following properties
are of use in Chapter 4, where we generalise the theory to arbitrary ground fields. Recall that the
quotient map ˜︁C × ˜︁D → X naturally admits the structure of a G-torsor. This has a number of direct
consequences, the first one pertaining to the Albanese map. Recall that the conditions of Theorem 3.4.1
impose that the fibrations f : X → P and g : X → P1 coincide with the projections ( ˜︁C × ˜︁D)/G→ ˜︁C/G
and ( ˜︁C × ˜︁D)/G→ ˜︁D/G, respectively. In other words, the following diagram is commutative.

˜︁D ˜︁C × ˜︁D ˜︁C
P1 X P

□

g f

(3.4.3)

Here, all vertical arrows are quotients by the action of the group scheme G. Since the action of G
on ˜︁C is free, the middle and rightmost vertical arrows are in fact G-torsors. This contrasts with the
leftmost vertical arrow, which is not a G-torsor since the action on ˜︁D is not free. As a consequence of
Lemma 1.1.10, we directly obtain the following result.

Proposition 3.4.23. The square on the right in (3.4.3) is Cartesian.

This Lemma does not apply to the left square since ˜︁D → P1 is not a G-torsor. The left square is
in fact never Cartesian: otherwise all closed fibres of g would be isomorphic to copies of ˜︁C, but g has
singular fibres. In contrast, if ˜︁D is smooth then all fibres of f are smooth by Proposition 3.2.20. Despite
its simplicity and apparent innocence, it turns out that the above Proposition is quite fundamental to the
theory we develop in Chapter 4.

The Bagnera–de Franchis cover can detect whether the bielliptic surface X is quasi-bielliptic or not.

Proposition 3.4.24. The following are equivalent:

(i) the Albanese map f : X → P is smooth;

(ii) the curve ˜︁D is an elliptic curve;

(iii) the Bagnera–de Franchis cover ˜︁C × ˜︁D is an abelian surface;
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(iv) the Bagnera–de Franchis cover ˜︁C × ˜︁D is smooth;

(v) the group scheme G is smooth.

Proof. The implication (i)⇒(ii) holds because a closed fibre of f is isomorphic to a copy of ˜︁D, which one
can see either from the structure theorem Theorem 3.4.1 or from Proposition 3.4.23. The implications
(ii)⇒(iii)⇒(iv) are trivial. Recall that ˜︁C × ˜︁D → X is a G-torsor, so (iv)⇒(v) holds by fppf-descent; see
[Stacks, Tag 02VL]. Last of all (v)⇒(i) follows from Table 3.3.

We observe the following easy fact for later reference.

Proposition 3.4.25. The projections ˜︁C × ˜︁D → ˜︁C and ˜︁C × ˜︁D → ˜︁D are in Stein factorisation.

3.5 The canonical cover

The Bagnera–de Franchis classification is a central tool in the analysis of bielliptic surfaces, since it allows
us to regard a bielliptic surface as a quotient of a product of two genus-one curves. These curves are
furthermore smooth in tame characteristics, thereby rendering bielliptic surfaces as quotients of abelian
surfaces; q.v. Proposition 3.4.24. As a consequence, many questions about bielliptic surfaces in tame
characteristic can be answered using the theory of abelian surfaces by passing to the Bagnera–de Franchis
cover. This approach is used in some sense in virtually all articles about bielliptic surfaces; see e.g. [Tak20;
Mar22; Ser90; CF03], and it appears implicitly in many more.

Aside from the Bagnera–de Franchis cover, there is a second cover that fulfils a similar job, called the
canonical cover. In tame characteristic it is the minimal covering of a bielliptic surface by an abelian
surface, making it in some sense more intrinsic to the bielliptic surface. It occurs frequently in the
literature; see e.g. [Pot17; HLT20; Nue25; BM90; Ree23; Fer+22]. In critical characteristic the Bagnera–de
Franchis cover and canonical cover may cease to be abelian surfaces, but should instead be considered to
be ‘non-smooth versions of abelian surfaces’.

In the reoccurring analogy between Enriques surfaces and bielliptic surfaces, the canonical cover
should be thought of as the K3 cover; cf. Figure 3.2. Indeed, the K3 cover of an Enriques surface in
characteristic 2 may be a non-smooth K3-like surface, similar to how the canonical cover may be a
non-smooth abelian-like surface. This abelian-like surface may or may not then be isomorphic to a
product of genus-one curves.

In this section k remains an algebraically closed field of arbitrary characteristic. Fix a bielliptic surface
X ∼= ( ˜︁C × ˜︁D)/G as in Theorem 3.4.1. Denote the action of G on ˜︁D by ϕ : G → Aut ˜︁D/k. Our starting

point is a certain decomposition of the group scheme G.
For simplicity let us discuss first the case where ˜︁D is smooth. In the course of the proof of Theorem 3.4.4

we encountered a subgroup scheme H ⊂ G that acts on ˜︁D by translations. Under the semidirect product
decomposition (3.4.1) of the automorphism group scheme of ˜︁D, it equals the pre-image H = ϕ−1( ˜︁J),
where ˜︁J is the associated elliptic curve. The possible isomorphism classes of H and its quotient N = G/H
are then used to distinguish the possible cases in the Bagnera–de Franchis classification.

If X is quasi-bielliptic, we consider in a similar way the threefold semidirect product decomposition
(3.4.2) of the automorphism group scheme of the rational cuspidal curve. The role of ˜︁J is taken over by
the normal subgroup scheme Ga, since it acts on the smooth locus A1 = Spec k[t] by translations. It is
hence clear how to extend the definition of H to the quasi-bielliptic case.

Notation 3.5.1. Let H ⊂ G be the inverse image

H =

{︄
ϕ−1( ˜︁J) if ˜︁D is smooth;

ϕ−1(Ga) if ˜︁D is the rational cuspidal curve,

which acts freely on the smooth locus of ˜︁D. Also let N = G/H denote the quotient group scheme.

Since the action of G on ˜︁D is described explicitly in the Bagnera–de Franchis classification, it is
not difficult to compute H and hence N by type. We tabulate the isomorphism classes of H and N in
Tables 3.7 and 3.8, respectively.

There are a number of interesting patterns to observe. First of all note that the isomorphism class
of N is the same for types (a1) and (a2), types (b1) and (b2) and types (c1) and (c2). We have taken
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Type Tame Char. Crit. Chars Ordinary Biell. Classical Q.-Biell. Supersing. Q.-Biell.

(a1) 0 p = 2 0 0 0
(a2) Z/2Z p = 2 µ2 Z/2Z α2

(b1) 0 p = 3 0 0 0
(b2) Z/3Z p = 3 ∄ Z/3Z ∄
(c1) 0 p = 2 0 0 ∄
(c2) Z/2Z p = 2 ∄ Z/2Z ∄
(d) 0 p = 2, 3 0 0 0

Table 3.7: The group scheme H in all cases of the Bagnera–de Franchis classification

Type Tame Char. Crit. Chars Ordinary Biell. Classical Q.-Biell. Supersing. Q.-Biell.

(a) µ2 p = 2 Z/2Z µ2 α2

(b) µ3 p = 3 Z/3Z µ3 α3

(c) µ4 p = 2 Z/4Z µ4 ∄
(d) µ6 p = 2, 3 Z/6Z µ6 αp

Table 3.8: The group scheme N in all cases of the Bagnera–de Franchis classification

advantage of this fact to save space in Table 3.8. On the other hand, note that H = 0 for types (a1),
(b1), (c1) and (d). Also note that the orders of H and N only depend on the type. This produces new
numerical invariants.

Notation 3.5.2. Let n = h0(ON ) and d = h0(OH) denote the orders of N and H, respectively.

Type (a1) (a2) (b1) (b2) (c1) (c2) (d)

γ 2 4 3 9 4 8 6
n 2 2 3 3 4 4 6
d 1 2 1 2 1 2 1

Table 3.9: The numerical invariants γ, n and d by type

Remark 3.5.3. Note that each type is determined uniquely by the pair of natural numbers (n, d). It
is hence also possible to determine the type through Table 3.9, which one can argue is more intrinsic
than the case-by-case definition given implicitly in the Bagnera–de Franchis classification Theorems 3.4.4
and 3.4.12.

By comparing Tables 3.5 and 3.9 we see that n = m in tame characteristic: we hence refer to n as
the expected order of ωX . The actual order m may be strictly smaller than the expected order, so the
quotient n/m is a measure of certain critical behaviour.

Remark 3.5.4. The discrepancy between n and m in critical characteristic can be interpreted in the
context of the proof of Proposition 3.4.19. Recall that m is minimal such that G acts trivially on ω⊗m˜︁D .
Note that certain subgroups of G already act trivially on ω ˜︁D. In tame characteristic the kernel of this
action is H, so that N = G/H ∼= µn results in the order m being equal to n. In critical characteristic,
however, the induced action N on ω ˜︁D may have a non-trivial kernel and the further quotient is isomorphic
to a copy of µm for m|n a proper divisor.

The extreme case with m = 1 occurs if and only if the Picard scheme of X is reduced by Proposi-
tion 3.1.27; cf. Table 3.6. A more modest type of critical behaviour occurs for ordinary and supersingular
bielliptic surfaces of type (d), since they satisfy n ̸= m even though m ≠ 1; cf. Example 3.4.21. Note that
n/m is always a power of p, so it makes sense to consider the following invariant, tabulated in Table 3.10.

Notation 3.5.5. We set i = logp(n/m).

We return to Table 3.9. The identity γ = nd follows easily from the short exact sequence

0 −→ H −→ G −→ N −→ 0. (3.5.1)
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Type Tame Char. Ordinary Biell. Classical Q.-Biell. Supersingular Q.-Biell.

(a) 0 1 0 1
(b) 0 1 0 1
(c) 0 2 0 ∄
(d) 0 1 0 1

Table 3.10: The invariant i in all cases of the Bagnera–de Franchis classification

We observe from the Bagnera–de Franchis classification that this short exact sequence is split, unless X
is a supersingular quasi-bielliptic surface of type (a2), in which case G =M2 is a non-split extension of

N = α2 by H = α2. Recall that in case ˜︁D is smooth, we already noted during the course of the proof of
Theorem 3.4.4 that G = H ×N if ˜︁D is smooth.

Example 3.5.6. A splitting of (3.5.1) induces an N -action on the product ˜︁C × ˜︁D. One can check that in

each case the quotient ˜︁X = ( ˜︁C × ˜︁D)/N is a bielliptic surface lying over X = ( ˜︁C × ˜︁D)/G. The invariants

of ˜︁X are γ( ˜︁X) = n( ˜︁X) = n(X) and d( ˜︁X) = 1. This construction is non-trivial only if the type of X is

(a2), (b2) or (c2), in which case the type of ˜︁X is (a1), (b1), or (c1), respectively. In characteristic 0 this
construction appears explicitly in Lem. 2.3.ii of [Fer+22] and Lem. 2.5 of [Nue25].

The class bielliptic surfaces with the properties of Example 3.5.6 is given a special name. The
terminology is motivated by e.g. Cor. 3.5 of [Boa21], which states that over an algebraically closed field
of tame characteristic, the Albanese fibration f : X → P admits a section if and only if X has type (a1),
(b1), (c1) or (d). We do not give a proof, but one direction is easy: if X is a bielliptic surface with

d = 1, then the action of G = N on ˜︁D has rational fixed points and the choice of rational point of ˜︁DG(k)

defines a section for f : ( ˜︁C × ˜︁D)/G→ ˜︁C/G. Since elliptic fibrations with a section are called Jacobian,
we introduce the following terminology.

Definition 3.5.7. A bielliptic surface X is called of Jacobian type if d = 1, i.e. if its type is (a1), (b1),
(c1) or (d).

We emphasise that above result only holds over algebraically closed ground fields: if k is not
algebraically closed then the Albanese fibration f : X → P may only admit a section after a finite ground
field extension. In light of Chapter 4 where we develop the theory of bielliptic surfaces over arbitrary
ground fields, we elect to use this terminology instead of the more common Jacobian bielliptic surfaces,
which suggests that f would have a section over the ground field.

In a similar but complementary fashion to Example 3.5.6 we consider the quotient of ˜︁C × ˜︁D by the
group scheme H. This quotient is of fundamental importance.

Definition 3.5.8. The canonical cover of a bielliptic surface X = ( ˜︁C× ˜︁D)/G is the map π : ( ˜︁C× ˜︁D)/H →
( ˜︁C × ˜︁D)/G. We denote the total space by Y = ( ˜︁C × ˜︁D)/H.

Remark 3.5.9. As with the Bagnera–de Franchis cover, we may abuse terminology and refer to the surface
Y as the canonical cover.

The induced N -action on the quotient Y is free, so it gives the canonical cover the structure of an
N -torsor. Note that the canonical cover and BdF-cover coincide for a bielliptic surface of Jacobian type.

The remainder of this section is dedicated to the study of Y as scheme, i.e. without its canonical
action by N Most of its properties are invariant under base-change and hence still applicable in the more
general setting of Chapter 4, where the ground field is no longer assumed to be algebraically closed. We
first investigate smoothness of Y , in analogy to Proposition 3.4.24.

Proposition 3.5.10. The following are equivalent:

(i) the Albanese fibration f is smooth;

(ii) the canonical cover Y can be given the structure of an abelian surface;

(iii) the canonical cover Y is smooth;

(iv) the group scheme N is smooth.

53



Proof. If f is smooth, then ˜︁D is a smooth genus-one curve and ˜︁C × ˜︁D is an abelian surface. By definition
H acts by translations, so the choice of rational point makes the quotient ( ˜︁C × ˜︁D)/H into an abelian
surface. The implication (ii)⇒(iii) is trivial. It thus remains to show (iii)⇒(iv)⇒(i). Since π : Y → X is
an N -torsor, by fppf-descent it then follows that the group scheme N is smooth, which by Table 3.8 only
occurs if X is not quasi-bielliptic.

Remark 3.5.11. Comparing Proposition 3.5.10 with Proposition 3.4.24, we see in particular that the
canonical cover is smooth if and only if the BdF-cover is smooth. Therefore N is smooth if and only if G
is smooth, which can also be observed by comparing Table 3.3 and Table 3.8.

In the quasi-bielliptic case, one can think of the surface Y as a ‘non-smooth version of an abelian
surface’. This fits with the analogy of the K3 cover of an Enriques surface: in the critical characteristic
p = 2, the K3 cover of an Enriques surface can be a “non-smooth version of a K3 surface”, whence it
is referred to as a K3-like surface; see [BM76; CD89; Sch21a]. Instead of smoothness, we will have to
content ourselves with the weaker property of being Gorenstein, which is also shared with non-smooth
K3 covers, cf. [BM76, p. 221] or [CD89, Prop. 1.3.1].

Lemma 3.5.12. The surface Y is Gorenstein.

Proof. Although the group scheme N may not be smooth, it is always Gorenstein since any group scheme
over a field is a complete intersection; see Exp. VIIB, Cor. 5.5.1 of [SGA 3]. Alternatively, we can simply
observe that all group schemes occurring in Table 3.8 are Gorenstein. Since π : Y → X is an N -torsor, it
follows from [Stacks, Tag 0C05] and [Stacks, Tag 0C03] that this morphism is Gorenstein. Because X is
smooth, and hence Gorenstein, it follows that Y is Gorenstein as well.

Therefore the dualising sheaf ωY exists and is an invertible sheaf. Again in analogy with the dualising
sheaf of a K3 cover, this sheaf turns out not to be very complicated. See Prop. 1.3.1 of [CD89] for the
corresponding statement in the context of Enriques surfaces.

Proposition 3.5.13. The invertible sheaves ωY and OY are isomorphic.

Proof. The group scheme G acts trivially on ω ˜︁C and its subgroup scheme H acts trivially on ω ˜︁D since it
restricts to translations on the smooth locus. Since H acts trivially on the tensor product ω ˜︁C ⊗ ω ˜︁D, it
follows that ωY ∼= OY .

Corollary 3.5.14. The surface Y has cohomology

h0(OY ) = 1, h1(OY ) = 2, h2(OY ) = 1.

Proof. The fact that h0(OY ) = 1 is clear. By Serre duality we also see that h2(OY ) = h0(ωY ) = h0(OY ) =
1. Since ˜︁C × ˜︁D → Y is an H-torsor, we calculate its Euler characteristic using 0 = χ(O ˜︁C× ˜︁D) = d · χ(OY )
through Thm. 2 of §15 of [Mum08]. It follows that h1(OY ) = 2.

Remark 3.5.15. A weaker version of Thm. 2 of op. cit., in which we assume the group scheme to be
étale, is also sufficient in the proof of Corollary 3.5.14. Note that Y sits in the middle of a composition˜︁C× ˜︁D → Y → X, where Z → Y is an H-torsor, Y → X is an N -torsor and where χ(O ˜︁C× ˜︁D) = χ(OX) = 0.
Observe from Tables 3.7 and 3.8 that in each case either N or H is étale. Depending on these two cases,
we argue either by χ(OY ) = n · χ(OX) = 0 or 0 = χ(O ˜︁C× ˜︁D) = d · χ(OY ).

In other words, the canonical cover Y has the cohomology of an abelian surface. This serves as
justification for our earlier comments on regarding Y as a non-smooth version of an abelian surface. In
the reoccurring analogy with Enriques surfaces, we note that the K3-like cover has the cohomology of a
K3-surface; see Prop. 9 of [BM76], Prop. 5.2 of [Sch21a], or Prop. 1.3.1 of [CD89].

The projections of ˜︁C × ˜︁D onto the two factors induce maps Y → ˜︁C/H and Y → ˜︁D/H.

Notation 3.5.16. We denote the quotients by C = ˜︁C/H and D = ˜︁D/H.

Note that, as before, there is an induced action of N = G/H on the quotient C = ˜︁C/H. Since the

action of G on ˜︁C is free, it follows that the natural map C → P is an N -torsor. The situation for D is
different: although D does inherit an N -action, it never acts freely and ramification occurs in the map
D → B. One can see this by a comparison of genera: the curve B is isomorphic to P1, but we see next
that D is a genus-one curve.
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Proposition 3.5.17. The curve C is smooth of genus one.

Proof. This is immediate, since ˜︁C is an elliptic curve and H is a subgroup of translations.

Proposition 3.5.18. The genus of the curve D equals one. Furthermore, the following are equivalent:

(i) the Albanese fibration f is smooth;

(ii) D is a smooth genus-one curve.

Proof. Recall that f is smooth if and only if ˜︁D is smooth. The only potentially difficult case is the one
where ˜︁D is the rational cuspidal curve. We show by computation that if ˜︁D is a rational cuspidal curve
and H ∼= Z/pZ or αp acts as in the Bagnera–de Franchis classification, then ˜︁D/H is also isomorphic to
the rational cuspidal curve.

Suppose first that H = Z/pZ acts on A1 = Spec k[t] by t ↦→ t+1. the ring of invariants equals k[tp− t]:
note first of all that tp− t =

∏︁
i∈Z/pZ(t− i) is invariant, and conversely if f ∈ k[t] satisfies f(t) = f(t+1),

then its roots form orbits α, α+ 1, . . . , α+ p− 1, so that f is a product of polynomials of the form∏︂
i∈Z/pZ

(t− α− i) = (t− α)p − t+ α = tp − t+ α− αp,

which are all contained in k[tp − t]. Denote s = t−1 in k(t). Consider the open subscheme A1 \ (Z/pZ) =
Spec k[t, (tp − t)−1] = Spec k[s, (sp−1 − 1)−1], which forms a Z/pZ-stable affine subscheme. Concretely,
the action is given by t ↦→ t+ 1 and hence by s ↦→ (s−1 − 1)−1 = s/(1 − s). This time, the subring of
invariants is generated by (tp− t)−1 = sp/(1− sp−1). Since the rational cuspidal curve is the union of the
Z/pZ-stable affine subschemes Spec k[t] and Spec k[s2, s3, (1− sp−1)−1], the quotient map is the canonical
map

Spec k[t] ∪ Spec k[s2, s3, (1− sp−1)−1] −→ Spec k[tp − t] ∪ Spec k[s2p/(1− sp−1)2, s3p/(1− sp−1)3].

The codomain is hence a rational cuspidal curve.
Now suppose that H = αp, in which case the action on A1 = Spec k[t] is given on R-points by either

t ↦→ t + a or t ↦→ t + atp, where ap = 0. In either case the ring of invariants R[t]αp(R) equals R[tp]
if αp(R) ̸= 0, so the quotient A1/αp equals Spec k[tp]. Letting s = t−1 again, we find similarly that
Spec k[s2, s3](s2,s3)/αp = Spec k[s2p, s3p](s2p,s3p). Considering that the rational cuspidal curve is the union
Spec k[t] ∪ Spec k[s2, s3](s2,s3), we may glue the two quotient maps together on the two αp-stable affine
charts, resulting in the relative Frobenius map of the rational cuspidal curve to itself.

Extending the diagram (3.4.3), we consider the following commutative diagram. We note that the
horizontal maps in the top two rows are equivariant, where we equip the top row with the natural G-action
and the middle row with the natural N -action.

D C ×D C

D/H X = (C ×D)/H C/H

D/G Y = (C ×D)/G C/G

□

π □

g f

(3.5.2)

Proposition 3.5.19. The squares on the right in (3.5.2) are Cartesian. The top left square is Cartesian

if ˜︁D is smooth.

Proof. It suffices to treat the top squares, as then the bottom right square follows from Proposition 3.4.23.
Note that the action of N on ˜︁C is free, and the action of ˜︁D is free if ˜︁D is smooth. In these cases the
diagrams are Cartesian by applying Lemma 1.1.10.

We finish this section with a number of generally useful results for later reference.

Proposition 3.5.20. The maps Y → C and Y → D are in Stein factorisation.
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Proof. This follows directly from Cor. 7.8.8 of [EGA III2], since the maps are proper and flat and the
geometric fibres are integral.

In critical characteristics, the Picard scheme of the quotient X = ( ˜︁C × ˜︁D)/G may be non-reduced,
which happens exactly if ωX ∼= OX , see Proposition 3.1.27. The canonical cover does not exhibit this
particular critical behaviour.

Proposition 3.5.21. The Picard scheme of the canonical cover Y is reduced.

Proof. The top right Cartesian square of (3.5.2) induces the commutative square on Picard schemes.

PicC/k Pic ˜︁C/k

PicY/k Pic ˜︁C/k ×Pic ˜︁D/k
By Theorem 1.3.14, which applies since the order of H∨ is at most 3, the kernels of the horizontal arrows
are both isomorphic to H∨. This gives us a morphism of short exact sequences:

0 H∨ PicC/k Pic ˜︁C/k 0

0 H∨ PicY/k Pic ˜︁C/k ×Pic ˜︁D/k 0

Since Y → C is a fibration, the induced map on Picard schemes is injective, cf. Proposition 3.3.4. The
induced map H∨ → H∨ is hence an isomorphism. The snake lemma now implies that there is a short
exact sequence

0 −→ PicC/k −→ PicY/k −→ Pic ˜︁D/k −→ 0. (3.5.3)

The outer terms are smooth, hence the middle term is smooth as well.

Remark 3.5.22. In almost all cases of the Bagnera–de Franchis classification, smoothness of the Picard
scheme of Y can be observed directly. For example, if X is ordinary, then the Albanese f is smooth, so
Y can be given the structure of an abelian surface, which has a smooth Picard scheme. Alternatively
if H = 0 then the natural map ˜︁C × ˜︁D → Y is an isomorphism, so PicY/k = Pic ˜︁C/k ×Pic ˜︁D/k, which is

also smooth. Since classical bielliptic surfaces do not have a reduced Picard scheme, this covers all cases
except for the supersingular bielliptic surfaces of type (a2), for which above proof seems to be necessary.
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Chapter 4

The two covers of a bielliptic surface

A bielliptic surface over an algebraically closed field can be seen as a certain quotient of a product of two
genus-one curves, by the Bagnera–de Franchis classification of Section 3.4. This provides a potent strategy
to study bielliptic surfaces over algebraically closed ground fields: it reduces their study to products of
genus-one curves and general results about quotients by finite, commutative group schemes. So far, our
study of bielliptic surfaces in Sections 3.4 and 3.5 has relied mostly on this approach.

This approach breaks down over arbitrary ground fields, i.e. without the assumption that the ground
field is algebraically closed, since the Bagnera–de Franchis classification is not applicable. We instead
start from a slightly different philosophy, in which the bielliptic surface X remains the central object:
instead of regarding X as a quotient, we study the various torsors over X. This leads to a more intrinsic
description of the Bagnera–de Franchis covers and canonical covers of X – of course provided that they
exist. Although we show that a canonical cover always exists, our main result states that there may be
a cohomological obstruction to the existence of a Bagnera–de Franchis cover. An explicit example of a
bielliptic surface of type (a2) with non-vanishing obstruction is constructed in characteristic not 2 in
Chapter 5.

A note on the notation and terminology introduced in Sections 3.4 and 3.5: although the Bagnera–de
Franchis classification is not applicable here, most of the notation and terminology naturally extend to
the context of an arbitrary ground field. For example, we define invariants like γ, n, d and i simply as
the corresponding invariants of the base-change Xalg = X ⊗ kalg. A number of their definitions as given
in Sections 3.4 and 3.5 actually work verbatim in this more general setting. For example, the definition of
the intersection invariant γ in terms of the intersection multiplicity of the two fibres does not require
the ground field to be algebraically closed. Also the definition of critical characteristic (Definition 3.4.7)
and the trichotomy of bielliptic surface (Definition 3.4.9) are phrased to extend verbatim over arbitrary
ground fields. The type of X may be defined either as the type of Xalg or, as in Remark 3.5.3, through
the invariants n and d using Table 3.9.

Fix an arbitrary ground field k. We emphasise that k is not assumed to be algebraically closed and
may even be imperfect. Therefore fix an algebraic closure kalg. Throughout, let X be a bielliptic surface.

4.1 The covers as torsors

The main non-trivial part in generalising the theory of Sections 3.4 and 3.5 concerns Bagnera–de Franchis
covers and canonical covers. We first clarify our notion of these two covers over non-algebraically closed
fields.

Definition 4.1.1.

• A cover Z → X is called a Bagnera–de Franchis cover (abbreviated: a BdF-cover) if the base-change
Zalg → Xalg is the Bagnera–de Franchis cover in the sense of Definition 3.4.2.

• A cover Y → X is called a canonical cover if the base-change Y alg → Xalg is the canonical cover in
the sense of Definition 3.5.8.

In other words, we define the coverings to be twisted forms of their analogues over an algebraically
closed field.
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Remark 4.1.2. A note about terminology: in Sections 3.4 and 3.5 we spoke about ‘the’ Bagnera–de
Franchis cover and ‘the’ canonical cover. This is justified over an algebraically closed ground field, since
the covers exist and are unique up to isomorphism. In the context of an arbitrary ground field however,
it turns out that uniqueness usually fails: the different covers become isomorphic only after base-change
to kalg and can thus be twisted forms of one another. The question of existence is a delicate one and is
studied in the upcoming sections. Due to failure of uniqueness, we instead speak about a Bagnera–de
Franchis cover and a canonical cover.

Assuming the existence of a BdF-cover or a canonical cover, many of the properties described in
Sections 3.4 and 3.5 descend directly to arbitrary ground fields. For example Propositions 3.4.24 and 3.5.10
are concerned with the smoothness of a BdF-cover and a canonical cover, respectively, which is a property
that may be verified without loss of generality over an algebraic closure. It turns out that more structure
descends than one may expect.

Proposition 4.1.3. Suppose Z is a BdF-cover for X. Let ˜︁C and ˜︁D be the Stein factors of the compositions
Z → X → P and Z → X → B respectively. The natural map Z → ˜︁C × ˜︁D is an isomorphism.

Proof. The natural map Z → ˜︁C × ˜︁D is an isomorphism after base-change to kalg; see Proposition 3.4.25.
By descent, it is an isomorphism over k; see Prop. 2.7.1.viii of [EGA IV2].

Proposition 4.1.4. Suppose Z = ˜︁C × ˜︁D is a BdF-cover for X. Then the map Z → X is canonically a
G-torsor, where G is the kernel of the associated map on elliptic curves of ˜︁C → P , as in Section 2.1.

Proof. The map of para-elliptic curves ˜︁C → P is canonically a G-torsor. Since Z = X ×P ˜︁C by
Proposition 3.4.23, the pullback inherits the structure of a torsor.

In other words, a BdF-cover retains canonically the structure of a product of two curves, as well
as the structure of a G-torsor. A canonical cover does not always decompose as a product, even over
an algebraically closed ground field. However, it retains the fibrations to the curves C and D by
Proposition 3.5.20.

Notation 4.1.5. Suppose that π : Y → X is a canonical cover. We let C and D be the Stein factors of
the compositions f ◦ π and g ◦ π, respectively.

We emphasise that the curves C and D depend substantially on the choice of canonical cover, if it
exists. Similarly to a BdF-cover, the N -torsor structure on a canonical cover descends similarly in light
of Proposition 3.5.19.

Proposition 4.1.6. If X has a canonical cover, then the map Y → X is canonically an N -torsor, where
N is the kernel of the associated map on elliptic curves of C → P .

For context, it is not true in general that a Galg-torsor Zalg → Xalg descends in any sense to a G-torsor
Z → X, since the group scheme action may only be defined after a field extension. It may also occur that
a variety becomes isomorphic to a product only after a base-change, for example due to a non-trivial
Galois action permuting the two factors; cf. Example 2.3.14.

Over an algebraically closed field there is a clear quotient map ˜︁C × ˜︁D → Y from the BdF-cover to the
canonical cover. The situation over an arbitrary ground field is not much different, as the following result
indicates.

Proposition 4.1.7. If X admits a BdF-cover Z = ˜︁C × ˜︁D then it also admits a canonical cover Y .
Concretely, Y is given by the quotient of Z by a subgroup scheme H ⊂ G that acts freely on the smooth
locus of ˜︁D.

Proof. Recall that ˜︁C × ˜︁D → X is canonically a G-torsor. We aim to define the subgroup scheme H ⊂ G
in a similar way to Notation 3.5.1. Since the ground field k is not assumed to be perfect, the curve ˜︁D
may be a regular twisted form of the rational cuspidal curve. Its automorphism group scheme Aut ˜︁D/k
is a twisted form of the automorphism group scheme of the rational cuspidal curve Ga ⋊A⋊Gm, by a
conjugation action, as follows from Lem. 3.1. of [ST23]. The subgroup scheme Ga is normal in Aut ˜︁D/k,
hence stable under the conjugation action. Therefore it defines a twisted normal subgroup scheme ˜︁Ga in
Aut ˜︁D/k. We define H to be pre-image of ˜︁Ga under the group scheme action, similar to Notation 3.5.1. It

is hence clear that the base-change H ⊗ kalg coincides with this definition over an algebraically closed
field. Setting Y = ( ˜︁C × ˜︁D)/H, the further quotient map Y → X by N = G/H is a canonical cover.
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Definition 4.1.8. A BdF-cover Z → X is said to be a BdF-cover over Y if Z/H ∼= Y .

A substantial downside of Definition 4.1.1 is the rather extrinsic nature of the definitions of covers due
to the reliance on a base-change to an algebraic closure. A consequence is that existence is not clear over
arbitrary ground fields. A more intrinsic approach is to study the covers as torsors over X. We hence
apply the theory covered in Chapter 1, most notably Section 1.3.

Let K be a finite commutative group scheme. Recall that the first cohomology group H1(X,K)
classifies isomorphism classes of K-torsors over X, since K is affine. We repeat the five-term exact
sequence (1.3.5), obtained from the five-term exact sequence of the Leray–Serre spectral sequence by
invoking the Raynaud correspondence Theorem 1.3.8:

0 −→ H1(k,K) −→ H1(X,K) −→ Hom(K∨,PicX/k) −→ H2(k,K) −→ · · · . (4.1.1)

Taking K = G to be the group scheme described in Proposition 4.1.4, a BdF-cover Z → X defines a
group scheme homomorphism G∨ → PicX/k. Similarly, taking K = N as in Proposition 4.1.6, a canonical
cover defines a homomorphism N∨ → PicX/k. Therefore a BdF-cover (resp. canonical cover) is nothing
more than a G-torsor (resp. N -torsor) over X that maps to this distinguished homomorphism.

This perspective allows us to address the non-uniqueness of a BdF-cover and a canonical cover directly.
Let Z → X be a BdF-cover and let P be a G-torsor over k. Then the contracted product Z ∧G P → X is
a twisted form of Z → X and therefore again a BdF-cover. This is referred to as twisting by the G-torsor
P . Since the cohomology classes of Z → X and its twist in H1(X,G) are translates by an element of
H1(k,G), exactness of (4.1.1) implies that they map to the same homomorphism G∨ → PicX/k. The
converse also holds by exactness: a torsor that maps to a given homomorphism G∨ → PicX/k is unique
up to twists by G-torsors over k. Note that in the context of an algebraically closed ground field all
torsors over k are trivial since H1(k,K) = 0, from which we recover the uniqueness of the BdF-cover in
this setting.

The above paragraph is of course also valid for canonical covers after replacing the group scheme
G by N . For context, let us note that the twists of a canonical cover by N -torsors play a substantial
role in [BS04] in the construction of a bielliptic surface over a number field for which the Brauer–Manin
obstruction is not sufficient to explain the failure of the Hasse principle.

Remark 4.1.9. Setting K = µℓ brings us back to the setting of Kummer theory. There the choice of
µℓ-torsor depends on the choice of a section s, which is unique up to an element of k∗/k∗ℓ = H1(k, µℓ); cf.
Theorem 1.4.5.

The conclusion of above discussion is that all BdF-covers map to the same homomorphismG∨ → PicX/k.
Once we have an intrinsic definition of this homomorphism, we may redefine a BdF-cover to be any torsor
that maps to this given homomorphism. For the canonical cover we similarly search an intrinsic definition
of N∨ → PicX/k.

Proposition 4.1.10. Suppose that X has a BdF-cover, hence also a canonical cover. Let G and N be
the finite commutative group schemes of Propositions 4.1.4 and 4.1.6. The corresponding maps to the
Picard scheme G∨ → PicX/k and N∨ → PicX/k are injective with images contained in PicαX/k. The latter
map factors over the former via the inclusion N∨ ⊂ G∨. In other words, we may regard N∨ and G∨ as
subgroup schemes N∨ ⊂ G∨ ⊂ PicαX/k.

Proof. Consider first the homomorphism G∨ → PicX/k. Since G∨ is finite, its image lies inside the
numerically trivial part PicτX/k. Recall that f : X → P denotes the Albanese fibration, and that

PicτP/k = Pic0P/k since P is a para-elliptic curve. Consider the five-term exact sequences obtained from
the Leray–Serre spectral sequence (1.3.5) applied to P → Spec(k) and X → Spec(k) by invoking the
Raynaud correspondence Theorem 1.3.8. By naturality the following diagram is commutative with exact
rows.

0 H1(k,G) H1(P,G) Hom(G∨,Pic0P/k) H2(k,G) · · ·

0 H1(k,G) H1(X,G) Hom(G∨,PicτX/k) H2(k,G) · · ·

id f∗
f∗◦− id (4.1.2)

Since a BdF-cover Z → X is the pullback of a G-torsor ˜︁C → P along the Albanese f : X → P ,
since it holds after base change to an algebraic closure kalg by Proposition 3.4.23, it follows that
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f∗([ ˜︁C → P ]) = [Z → X]. Therefore, the commutativity of the second square implies that the map
G∨ → PicτX/k factors over f∗ : Pic0P/k → PicτX/k. Recall that f

∗ is an isomorphism when restricting the
codomain to the maximal abelian subvariety PicαX/k.

The map G∨ → Pic0P/k corresponding to the G-torsor ˜︁C → P is injective, since the latter is an isogeny
of para-elliptic curves. We conclude that G∨ → PicαX/k is injective; cf. Lemma 2.2.3. From now on, we
regard it as the inclusion of a subgroup scheme. Arguing in a similar way, we conclude that N∨ → PicαX/k
is also injective.

Let H ⊂ G be the subgroup scheme that acts by translation on the smooth locus of ˜︁D, as in
Proposition 4.1.7. Then Y = Z/H is a canonical cover, from which we can conclude that N ∼= G/H.
Furthermore

Z ∧G N = (Z ×N)/G ∼= Z/H = Y,

so the cohomology class of a BdF-cover [Z → X] ∈ H1(X,G) maps to the cohomology class [Y → X] ∈
H1(X,N) of a canonical cover under the quotient map G→ N . Note that by Cartier duality the quotient
map induces an inclusion i : N∨ → G∨. By naturality of the Leray–Serre spectral sequence, the following
diagram is commutative with exact rows

0 H1(k,G) H1(X,G) Hom(G∨,PicτX/k) H2(k,G) · · ·

0 H1(k,N) H1(X,N) Hom(N∨,PicτX/k) H2(k,N) · · ·

−◦i

Commutativity of the second square implies that the inclusion N∨ ⊂ PicαX/k indeed factors over the
inclusion G∨ ⊂ PicαX/k via the inclusion N∨ ⊂ G∨. In other words, it follows that N∨ ⊂ G∨ ⊂ PicαX/k.

Remark 4.1.11. Restricting to subgroup schemes of PicαX/k instead of PicτX/k is helpful in limiting
the search for the subgroup schemes N∨ and G∨. We do not exclude many covers by considering
onlysubgroup schemes of the maximal abelian subvariety PicαX/k, in the following sense. We study
the quotient PicτX/k /Pic

α
X/k = NSτX/k in PicτX/k /Pic

α
X/k = NSτX/k in Chapter 7. From Table 7.1

and Proposition 7.1.22 we read off that the quotient group scheme is quite small: its order is at most 4.

The above does not directly yield an intrinsic description of the canonical covers and BdF-covers.
This is because the subgroup schemes N∨ ⊂ G∨ ⊂ PicαX/k are so far only defined for bielliptic surfaces
admitting a canonical cover or a BdF-cover, respectively, and an intrinsic definition is lacking. We redefine
these subgroup schemes for all bielliptic surfaces in the following subsections, without assumption on
the existence of either of the covers. In order to achieve this in a consistent matter, we first study the
subgroup schemes defined by the covers, if they exist, as explicitly as possible. These descriptions will
then serve as redefinitions; see Notations 4.1.16 and 4.1.27.

Remark 4.1.12. Suppose X is an Enriques surface. In the reoccurring analogy between the canonical cover
and the K3 cover of an Enriques surface, the issue of finding the correct subgroup scheme G∨ ⊂ PicτX/k
does not arise for Enriques surfaces: since PicτX/k has order 2, one should simply take the entire group
scheme G∨ = PicτX/k, which may be isomorphic to either µ2, Z/2Z or α2. The situation is not as easy if
X is a bielliptic surface, since then PicαX/k is an elliptic curve, which has infinitely many finite subgroup
schemes.

We begin with canonical covers, followed by BdF-covers.

4.1.1 Canonical cover

Suppose X is a bielliptic surface that admits a canonical cover. Information about the subgroup scheme
N∨ ⊂ PicαX/k of Proposition 4.1.10 can be obtained by using properties of the canonical cover over an
algebraically closed ground field, e.g. those of Section 3.5. For example, the following is a consequence of
Proposition 3.5.13, which states that ωY ∼= OY .

Lemma 4.1.13. Suppose X has a canonical cover and let N∨ ⊂ PicαX/k be the subgroup scheme of
Proposition 4.1.10. Then ωX ∈ N∨(k).
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Proof. In Proposition 1.3.9 we have seen that the image of the map N∨ → PicτX/k is contained in the
kernel of the pullback map π∗ : PicτX/k → PicτY/k. By Theorem 1.3.14 this kernel is isomorphic to a copy of
N∨, which is hence induced by the inclusion N∨ → PicτX/k. Now it suffices to note that π∗ωX ∼= ωY ∼= OY ,
where the first isomorphism is as in pp. 221–222 of [BM76], and the second isomorphism follows from
Proposition 3.5.13.

It follows that the subgroup scheme isomorphic to Z/mZ generated by ωX is contained in N∨. It
turns out to be quite an important subgroup scheme.

Notation 4.1.14. Let M∨ ⊂ PicαX/k be the subgroup scheme isomorphic to Z/mZ generated by the
class of the invertible sheaf ωX .

Lemma 4.1.15. Suppose X has a canonical cover. Then M∨ is the maximal étale subgroup scheme of
N∨.

Proof. It is clear that M∨ is an étale subgroup scheme of N∨. It suffices to check after base-change to
an algebraic closure that M∨ ⊗ kalg is the maximal étale subgroup scheme of N∨ ⊗ kalg. This can be
verified in all cases of the Bagnera–de Franchis classification using Tables 3.5 and 3.8.

The inclusion M∨ ⊆ N∨ is a group-scheme-theoretic analogue of the fact that the invariant m divides
n. This latter fact follows from the former by comparing orders. Note in particular that m = n if and
only if M∨ = N∨. The failure of m and n to coincide (cf. Remark 3.5.4) measures exactly the failure
of the inclusion M∨ ⊂ N∨ to be an equality. In tame characteristics we may hence characterise N∨

as M∨ = ⟨ωX⟩. In this case, the canonical cover is determined by the canonical bundle. In critical
characteristics, however, the dualising sheaf ωX does not contain sufficient information to determine
a canonical cover. This happens when the dualising sheaf is trivial, in which case the Picard scheme
is non-reduced, or when the order is ‘unexpectedly small’, as in Example 3.4.21. Since the quotient
N∨/M∨ is an infinitesimal group scheme, this suggests that N∨ is obtained from M∨ by ‘enlarging
by’ an infinitesimal group scheme of order pi, with the invariant i as in Notation 3.5.5. We introduce
infinitesimal group schemes using Frobenius kernels, as follows.

Notation 4.1.16. Let N∨ ⊂ PicαX/k be the group scheme defined by N∨ = M∨ + PicαX/k[F
i] and let

N = Hom(N∨,Gm) be its Cartier dual.

With this definition, the quotient N∨/M∨ is isomorphic to the ith iterated Frobenius kernel PicαX/k[F
i],

which is infinitesimal. Over an algebraically closed field, the quotient is isomorphic to µpi if P is ordinary
and to αp if P is supersingular, since in the latter case i = 1 by Table 3.10. In either case the description of
N∨/M∨ matches that as expected from Table 3.8. To avoid further notational confusion, we immediately
show that this description of N∨ coincides with the subgroup scheme N∨ ⊂ PicαX/k obtained from a
canonical cover.

Proposition 4.1.17. Let X be a bielliptic surface that admits a canonical cover. As N-torsor the
canonical cover Y → X corresponds to the subgroup scheme N∨ ⊂ PicαX/k of Notation 4.1.16. In other
words, the subgroup scheme N∨ ⊂ PicαX/k of Proposition 4.1.10 coincides with that of Notation 4.1.16.

Proof. LetN∨ be the subgroup scheme in sense of Proposition 4.1.10. The quotientN∨/M∨ is infinitesimal
by Lemma 4.1.15, so is annihilated by some power of the Frobenius. It follows that that N∨ =
M∨ +PicαX/k[F

j ] for some j ≥ 0. The order equals n = mpj , c.f. Lemma 4.1.19 below. This identity only
holds for j = i.

The assumption on the existence of a canonical cover turns out to be vacuous: we may use the above
description of N∨ =M∨ +PicαX/k[F

i] to show that a canonical cover exists for any bielliptic surface. We
treat a slightly more general case: consider instead the following family of subgroup schemes.

Notation 4.1.18. For any j ≥ 0, we define the subgroup scheme N∨
j of PicαX/k by N∨

j =M∨+PicαX/k[F
j ].

Denote its Cartier dual by Nj = Hom(N∨
j ,Gm).

Lemma 4.1.19. For any j ≥ 0, the addition map M∨ × PicαX/k[F
j ]→ N∨

j is an isomorphism.
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Proof. Note that M∨ ∩ PicαX/k[F
j ] = 0, since M∨ is étale and the Frobenius kernel is infinitesimal. The

result now follows from the short exact sequence

0 −→ G ∩H ∆−

−−→ G×H +−−→ G+H −→ 0

for any two subgroup schemes G and H of a common commutative group scheme.

For j ≥ 0 consider K = Nj in the five-term exact sequence of the Leray–Serre spectral sequence
(4.1.1).

0 −→ H1(k,Nj) −→ H1(X,Nj) −→ Hom(N∨
j ,PicX/k) −→ H2(k,Nj) −→ · · ·

The inclusion N∨
j ⊂ PicX/k maps to a cohomology class in H2(k,Nj), which is the obstruction to the

existence of a corresponding Nj-torsor Yj → X.

Proposition 4.1.20. For any j ≥ 0, the image of the inclusion N∨
j → PicX/k in H2(k,Nj) is zero.

Proof. Take Cartier duals of the group schemes in Lemma 4.1.19, so that Nj =M × PicαX/k[V
j ], where

V denotes the Verschiebung. Whence H2(k,Nj) = H2(k,M)×H2(k,PicαX/k[V
j ]) naturally. For the first

factor, consider the boundary map Hom(M∨,PicτX/k)→ H2(k,M). Since M ∼= µm we are in the realm of
Kummer theory. The boundary map can be identified with the obstruction map PicτX/k[m]→ Br(k)[m].
Since the class of ωX ∈ PicX/k(k) comes from an invertible sheaf, its image in the Brauer group vanishes.
For the second factor we note that PicαX/k[V

j ] is a unipotent group scheme, so that its second cohomology
vanishes by Proposition 1.5.6.

We conclude that for any j ≥ 0, the inclusion of N∨
j into PicτX/k comes from an Nj-torsor, which is

uniquely determined up to an element of H1(k,Nj). The existence of these covers in the special case
j = i directly gives us the existence of a canonical cover.

Theorem 4.1.21. Every bielliptic surface admits a canonical cover.

For each j ≥ 0 we pick a N∨
j -torsor Yj → X. Although this notation depends fundamentally on

choices of elements in H1(k,Nj), for each j the possible choices for Yj are geometrically isomorphic. It
thus makes sense to consider properties which are preserved by and descend under field extensions: for
example, we may state that ωYj

∼= OYj , which follows from M∨ ⊂ N∨
j .

Proposition 4.1.22. The surfaces Yj have cohomology

h0(OYj
) = 1, h1(OYj

) = 2, h2(OYj
) = 1.

Proof. The identity h0(OYj ) = 1 follows since the Nj-torsor Yj → X is non-trivial and h2(OYj ) = 1
follows by Serre duality from ωYj

∼= OYj . The Euler characteristic equals χ(OYj ) = npj · χ(OX) = 0 by
Thm. 2 of §15 of [Mum08]. We conclude that h1(OX) = 1.

In other words, the surfaces Yj have the cohomology of an abelian surface. Note that it is a direct
generalisation of Corollary 3.5.14. Compare their proofs: in the former proof we computed the Euler
characteristic of the canonical cover χ(OY ) over an algebraically closed field using a BdF-cover Z → Y ,
wheras over an arbitrary ground field we resort to using the more intrinsic Ni-torsor Yi → X.

We use the Nj-torsors Yj to give an intrinsic description of the invariant i ∈ {0, 1, 2}, which is otherwise
quite mysterious.

Proposition 4.1.23. The integer i is minimal such that the cover Yi has a reduced Picard scheme.

Proof. We may suppose without loss of generality that k is algebraically closed: indeed, since Pic0Y/k
is proper, the notions of reducedness and geometric reducedness coincide by Lem. 3.3.7 of [Bri17]; cf.
Proposition 3.1.27. Let j be the minimal integer such that Yj has a reduced Picard scheme. The inequality
j ≤ i follows from Proposition 3.5.21. The surface Yj is the quotient of Y by the Verschiebung kernel
Pic0P/k[V

i−j ], acting as a subgroup scheme of N . We observe that in all cases of the Bagnera–de Franchis

classification Theorems 3.4.4 and 3.4.12 the quotient of Y = ( ˜︁C× ˜︁D)/H by a non-trivial subgroup scheme
of N is a bielliptic surface. Therefore Yj is a bielliptic surface with trivial dualising sheaf, whose Picard
scheme is hence non-reduced.
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This completes the search for an intrinsic definition for all major invariants of the bielliptic surface
that are introduced in Chapter 3; by ‘intrinsic’ we mean specifically without reference to the Bagnera–de
Franchis classification Theorems 3.4.4 and 3.4.12. Indeed, combining this description of i withm = ord(ωX)
gives us the value of n = mpi. Since the intersection invariant γ is defined in Notation 3.3.19 as the
normalised intersection of the two fibres, we can also compute d = γ/n.

The possibilities for the isomorphism class of the group scheme N∨ as defined in Notation 4.1.16 are
quite limited.

Proposition 4.1.24. The description of the isomorphism classes of the group scheme N as depicted in
Table 3.8 remains accurate over arbitrary ground fields, except for the column indicating ordinary bielliptic
surfaces, where twisted forms may occur.

Proof. Suppose first that X is either a bielliptic surface in tame characteristic or a classical quasi-
bielliptic surface, which share the property that i = 0. This implies that N∨ = M∨ ∼= Z/mZ, so that
N ∼= µm. If X is instead a supersingular quasi-bielliptic surface, then N∨ ∼= µm × PicαX/k[F ]. Since
PicαX/k is supersingular, its Frobenius kernel is isomorphic to αp and no twisted forms arise because

H1(k,Autαp/k) = H1(k,Gm) = 0 by Hilbert 90. Therefore N ∼= µm × αp in this case.

Remark 4.1.25. Suppose that X is an ordinary bielliptic surface and consider N∨ = Z/mZ× PicαX/k[F
i].

Since PicαX/k is an ordinary elliptic curve in this case, the (iterated) Frobenius kernel is a twisted form of

Z/piZ. We do not have much control over the twisted forms of Z/piZ: although the induced action of N
on the smooth genus-one curve D implies that N∨ ⊂ AutD/k, and although it is possible to argue that in
fact N∨ ⊂ AutJ/k, this latter automorphism group scheme may contain twisted forms of Z/piZ if the
j-invariant of J is 0. Since there are no twisted forms of Z/2Z, we can only deduce that the tabulation
remains accurate in characteristic 2 for types (a) and (d).

Let us consider the case j = 0, when the Z/mZ-torsor Y0 → X is in some sense a ‘naive canonical
cover’, since it ignores the infinitesimal group scheme at play. The following classification clarifies why it
cannot serve as canonical cover in critical characteristics.

Proposition 4.1.26. The surface Y0 is

(i) a para-abelian surface if and only if the characteristic is tame;

(ii) a non-smooth surface if and only if X is a classical quasi-bielliptic surface;

(iii) a bielliptic surface with non-reduced Picard scheme if and only if X is an ordinary bielliptic surface
or a supersingular quasi-bielliptic surface.

Proof. Let p ≥ 1 denote the characteristic exponent of k. Note from Table 3.5 that X is classical if and
only if p ≥ 2 divides m. On the other hand i = 0 and gcd(m, p) happens only in tame characteristics,
whereas i > 1 occurs only for ordinary bielliptic surfaces and supersingular quasi-bielliptic surfaces.

If m is divisible by the characteristic exponent p ≥ 2, then the group scheme M ∼= µm is Gorenstein
but non-smooth, therefore so is the surface Y0, corresponding to case (ii). Thus suppose that m is coprime
to p. Since µm is smooth we also see that Y0 is smooth. We show that it is a geometrically minimal and
hence minimal surface. The image of a (−1)-curve Y0 is a curve on X must remain a curve, which must
still be a rational curve by the Riemann–Hurwitz formula. But Proposition 3.2.21 indicates that there
are no rational curves on a bielliptic surface; see its proof. Therefore Y0 must fall into one of the four
cases of the Enriques classification Theorem 3.1.23.

The vanishing of the Euler characteristic reveals that Y0 is either a bielliptic surface or an abelian
surface; this can alternatively be deduced from the non-vanishing of the Albanese due to the surjective
map Y0 → X → P . If i > 0 then the Picard scheme of Y0 is non-reduced by Proposition 4.1.23, so that
Y0 is a bielliptic surface. If i = 0 then the reducedness of the Picard scheme similarly implies that Y0 is
para-abelian. Finally, we note that i = 0 and gcd(m, p) = 1 happens only in tame characteristic, whereas
i > 1 happens only for ordinary bielliptic surfaces and supersingular quasi-bielliptic surfaces.

Especially case (iii) is undesirable. This case includes all bielliptic surfaces with m = 1, in which case
the torsor Y0 → X is simply the identity. As such, in general nothing is gained by considering X as a
quotient of Y0. We remark that Table 3.10 displays how the invariant i contributes only in case (iii).
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4.1.2 Bagnera–de Franchis covers

Now that we have a description of the subgroup scheme N∨ ⊂ PicαX/k. We use its description to construct
the group scheme G∨ ⊃ N∨.

Notation 4.1.27. Let G∨ = N∨ + PicαX/k[d] as subgroup scheme of PicαX/k.

In case X has a BdF-cover, this definition is consistent with our earlier treatment of the subgroup
scheme G∨ ⊂ PicαX/k.

Proposition 4.1.28. Let X be a bielliptic surface that admits a BdF-cover. As G-torsor, a BdF-cover
Z → X corresponds to the subgroup scheme G∨ ⊂ PicαX/k of Notation 4.1.27. In other words, the subgroup
scheme G∨ ⊂ PicαX/k of Proposition 4.1.10 coincides with that of Notation 4.1.27.

Proof. We first consider the G-torsor ˜︁C → P between para-elliptic curves, which induces an isogeny of
associated elliptic curves. Since this is a quotient by ˜︁E[V i] + ˜︁E[d], as can be verified after base-change to
an algebraic closure from the Bagnera–de Franchis classification Theorem 3.4.1 and Table 3.3, the cover
corresponds to the Cartier dual subgroup scheme Pic0P/k[F

i] + Pic0P/k[d] of Pic
0
P/k. Because (3.4.3) is

Cartesian, we see that a BdF-cover corresponds to the subgroup scheme

G∨ = f∗(Pic0P/k[F
i] + Pic0P/k[d]) = PicαX/k[F

i] + PicαX/k[d] = N∨ + PicαX/k[d]

of PicαX/k, considering that the Albanese f induces an isomorphism f∗ : Pic0P/k
∼−→ PicαX/k.

Recall that there is a five-term exact sequence

0 −→ H1(k,G) −→ H1(X,G) −→ Hom(G∨,PicτX/k) −→ H2(k,G) −→ · · · (4.1.3)

by taking K = G in (4.1.1). The analogue of Proposition 4.1.20 does not hold for the subgroup scheme
G∨: it may occur that the inclusion G∨ → PicτX/k maps to a nonzero element of H2(k,G). Consequently,
there is a cohomological obstruction for a bielliptic surface to admit a Bagnera–de Franchis cover. The
vanishing of this obstruction is both necessary and sufficient for X to admit a Bagnera–de Franchis cover.

Notation 4.1.29. The obstruction (for X to admit a BdF-cover) α is the image of the inclusion
G∨ → PicτX/k in H2(k,G) along map of the five-term exact sequence (4.1.3).

Theorem 4.1.30. A bielliptic surface X admits a Bagnera–de Franchis cover if and only if its obstruction
vanishes in H2(k,G).

We construct an example of a bielliptic surface where the obstruction is nonzero in Chapter 5. In a
few cases the obstruction vanishes trivially.

Example 4.1.31. If k is algebraically closed then H2(k,G) = 0. The vanishing of the obstruction
corresponds to the structure theorem of bielliptic surfaces Theorem 3.4.1 stating in essence that a
Bagnera–de Franchis cover exists over an algebraically closed ground field.

Example 4.1.32. Suppose that X has a rational point. In this case the proof of Bombieri and Mumford
[BM77; BM76] of the Bagnera–de Franchis classification generalises without issues. This is done in detail
in [Tak20]; see its Lem. 2.2. Alternatively, the choice of rational point on X determines a section for the
H2(k,G)→ H2(X,G), so the boundary map Hom(G∨,PicτX/k)→ H2(k,G) is 0.

In Section 4.2 we study the obstruction further and formulate a number of more powerful criteria for
the obstruction to vanish.

If k is algebraically closed, or more generally if X has a BdF-cover, we define the subgroup scheme
H ⊂ G as the maximal subgroup scheme which acts freely on the smooth locus of ˜︁D. It sits inside a short
exact sequence

0 −→ H −→ G −→ N −→ 0 (4.1.4)

similar to the short exact sequence (3.5.1) of the previous chapter. We recall that it is almost always
geometrically split, except for supersingular quasi-bielliptic surfaces of type (a2). There is also a dual
short exact sequence

0 −→ N∨ −→ G∨ −→ H∨ −→ 0. (4.1.5)

Over an arbitrary ground field we may hence recover the group scheme H through its Cartier dual. It
clearly coincides with the earlier definition by Proposition 4.1.7.
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Notation 4.1.33. Define the group scheme H∨ as the quotient H∨ = G∨/N∨ and denote its Cartier
dual by H = Hom(H∨,Gm).

Theorem 4.1.34. The description of the isomorphism classes of the group scheme H as depicted in
Table 3.7 remains accurate over arbitrary ground fields.

Proof. Since groups of order at most 2 do not admit twisted forms, the only interesting case consists of
bielliptic surfaces of type (b2). In this case G∨ = PicαX/k[3] contains the normal subgroup N∨ ∼= Z/3Z.
By self-duality of elliptic curves, the quotient H∨ = G∨/N∨ is hence isomorphic to the Cartier dual
(Z/3Z)∨ = µ3, so that H ∼= Z/3Z.

Remark 4.1.35. Even if the group schemes H and N are exactly as described in Tables 3.7 and 3.8, the
group scheme G may still be a twisted form of its entry listed in Table 3.3. From the perspective of
the short exact sequence (4.1.4), there may be different extensions of N by H that are geometrically
isomorphic.

The group schemes N∨ ⊂ G∨ are canonically subgroup schemes of PicαX/k. For any choice of canonical
cover π : Y → X, there is a short exact sequence

0 −→ N∨ −→ PicτX/k
π∗

−−→ PicτY/k −→ 0,

by Theorem 1.3.14, where we use that N acts by translations on Y and hence trivially on the Picard
scheme. The image of G∨ ⊂ PicτX/k along the pullback π∗ is thus a subgroup scheme isomorphic to
G∨/N∨ = H∨. The Leray–Serre spectral sequence associated to Y → Spec(k) yields the five-term exact
sequence

0 −→ H1(k,H) −→ H1(Y,H) −→ Hom(H∨,PicτY/k) −→ H2(k,H) −→ H2(Y,H) −→ · · · . (4.1.6)

By naturality, the set of H-torsors over Y mapping to the above inclusion H∨ ⊂ PicτY/k corresponds
bijectively to the set of BdF-covers Z → X such that Z/Y ∼= H, i.e. the set of BdF-covers over Y . The
five-term exact sequence reveals that for each choice of canonical cover there is an obstruction in H2(k,H)
for the existence of a BdF-cover over Y . We emphasise that this obstruction depends on the choice of
canonical covers: it is possible that some canonical cover admit a BdF-cover over it, whereas another
canonical cover may not. We clarify the situation in the upcoming section.

4.2 Pullback along the Albanese

The starting point of this section is the observation that we may study canonical covers and BdF-coves
as pullbacks of covers over the Albanese P , as follows from Proposition 3.5.19 stating that the right-hand
squares of (3.5.2) are Cartesian. This has been used previously, e.g. in the proofs of Propositions 4.1.10
and 4.1.28: the above observation corresponds directly to the fact that N∨ and G∨ are subgroup
schemes of the maximal abelian subvariety PicαX/k, in light of the isomorphism f∗ : Pic0P/k

∼−→ PicαX/k. A

cohomological study of torsors over P reveals an equivalent description of the obstruction α ∈ H2(k,G) of
a bielliptic surface to admit a Bagnera–de Franchis cover, purely in terms of the Albanese P . The study
of torsors over a given para-elliptic curve is manageable in light of the theory developed in Sections 1.3
and 2.2; we crucially use the lifting property. We correspondingly state a number of criteria for the
obstruction α to vanish, depending on properties of the ground field or the bielliptic surface. This
cohomological perspective further clarifies the relations between canonical covers and BdF-covers.

Let us first return to the observation above that the Albanese map f : X → P induces an isomorphism
f∗ : Pic0P/k

∼−→ PicαX/k. We may hence recover the torsors of interest over X as certain torsors over P . By

abuse of notation we also consider the group schemes M∨, N∨ and G∨ as subgroup schemes of Pic0P/k.

Example 4.2.1. Recall that M∨ is the subgroup scheme of PicαX/k isomorphic to Z/mZ that is generated

by ⟨ωX⟩. Since ωX = f∗(R1f∗OX)∨ by Theorem 3.2.22, we identify M∨ with the subgroup scheme of
PicτX/k isomorphic to Z/mZ generated by R1f∗OX .

This perspective allows us to improve upon Example 4.1.32.

Theorem 4.2.2. Let X be a bielliptic surface whose Albanese variety has a rational point. Then X
admits a Bagnera–de Franchis cover.
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Proof. By the commutativity of (4.1.2), the obstructions for the inclusionsG∨ → PicαX/k andG
∨ → Pic0P/k

coincide. A rational point of P determines a section for the map H2(k,G) → H2(P,G), which is thus
injective. This implies that the boundary map Hom(G∨,Pic0P/k)→ H2(k,G) is zero. The obstruction α
lies in the image, hence is 0.

Notation 4.2.3. We further let F be the associated elliptic curve to P and F∨ = Pic0F/k its dual elliptic
curve.

Although elliptic curves are self-dual (i.e. there is a canonical isomorphism F ∼= Pic0F/k = F∨), we
refrain from making this identification. In this context, the author is of the opinion that the omission of
this identification aids in keeping track of the direction of the natural quotient maps between various
elliptic curves and morphisms between them. To that end, consider the following elliptic curves.

Notation 4.2.4. Denote E∨ = F∨/N∨ and ˜︁E∨ = F∨/G∨. Let E and ˜︁E denote their respective dual
elliptic curves.

The motivation for introducing the elliptic curve E, is that the Stein factor C is naturally an E-torsor.
Indeed, the N -torsor C → P is a twisted form of the isogeny E → F with kernel N , since both correspond
to the subgroup scheme N∨ ⊂ Pic0P/k = Pic0E/k = E∨. In a similar way, the para-elliptic curve ˜︁C, if it
exists, is a torsor under the elliptic curve ˜︁E. In some sense, the associated elliptic curve ˜︁E is intrinsically
defined, even though the para-elliptic curve ˜︁C may not exist.

Again we refrain from making the canonical identifications E = E∨ and ˜︁E = ˜︁E∨. This helps to
distinguish the canonical isogenies F∨ → E∨ → ˜︁E∨, from their dual isogenies ˜︁E → E → F . The quotient
maps F∨ → E∨ → ˜︁E∨ fit in the following diagram, that has exact rows and exact first column:

0

0 N∨ F∨ E∨ 0

0 G∨ F∨ ˜︁E∨ 0

0 H∨ E∨ ˜︁E∨ 0

0

id

idid

(4.2.1)

We consider the dual diagram. That is to say: we consider the dual elliptic curves with dual isogenies.
The kernels are subsequently given by their Cartier duals; see e.g. Thm. 7.5 of [EGM].

0

0 H ˜︁E E 0

0 G ˜︁E F 0

0 N E F 0

0

id

idid

(4.2.2)

In the following we apply the lifting property of Section 1.3 to the rows of (4.2.2). Viewing this
diagram as a composition of morphisms between short exact sequences, we consider the induced maps
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between the long exact sequences. As such, the following diagram is commutative with exact rows and
some exact columns.

...
...

· · · H1(k,H) H1(k, ˜︁E) H1(k,E) H2(k,H) · · ·

· · · H1(k,G) H1(k, ˜︁E) H1(k, F ) H2(k,G) · · ·

· · · H1(k,N) H1(k,E) H1(k, F ) H2(k,N) · · ·

...
...

id

id
id

(4.2.3)

Of course, the only columns that are exact are those that are part of the long exact sequence of (4.1.4).
The above diagram is clearly not quite complete: it is natural to extend it with the boundary map
δ : Hi(k,N)→ Hi+1(k,H) induced by this short exact sequence.

Lemma 4.2.5. The following diagram is commutative:

...

· · · H1(k,H) H1(k, ˜︁E) H1(k,E) H2(k,H) · · ·

· · · H1(k,G) H1(k, ˜︁E) H1(k, F ) H2(k,G) · · ·

· · · H1(k,N) H1(k,E) H1(k, F ) H2(k,N) · · ·

...

id

id

δ

id

(4.2.4)

Proof. We verify that δ equals the composition H1(k,N)→ H1(k,E)→ H2(k,H). Consider the following
morphism of short exact sequences induced by (4.2.2)

0 H G N 0

0 H ˜︁E E 0

id

which yields a morphism of long exact sequences, part of which is the following commutative square

Hi(k,N) Hi+1(k,H)

Hi(k,E) Hi+1(k,H)

δ

id

in which the horizontal maps are the boundary maps.
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The study of torsors over P is related to the above diagram by the lifting property of torsors of
Theorem 1.3.4. Applied to the bottom two exact rows of (4.2.2), the choice of isomorphisms P ∼= C/N ∼=
C/G determines H1(k,N)-equivariant bijections:

{C → P |N -torsor corr. toN∨⊂ F∨}/F (k) ∼−−→ {C | E-torsor, mapping to [P ] ∈ H1(k, F )}; (4.2.5)

{ ˜︁C → P | G-torsor corr. to G∨⊂ F∨}/F (k) ∼−−→ { ˜︁C | ˜︁E-torsor, mapping to [P ] ∈ H1(k, F )}. (4.2.6)

The action of the abstract group F (k) on the set of isomorphism classes of torsors is induced by the

translation action of F on P . The choice of isomorphisms P ∼= C/N ∼= ˜︁C/G of F -torsors is not so
important to us, so we mostly ignore the F (k)-action.

The bijections (4.2.5) and (4.2.6) allow us to study the existence of canonical covers and BdF-covers
through the existence of certain torsors over P : we are essentially asking when (4.2.6) is the empty
bijection. This question is then answered fully by the diagram (4.2.4), as it contains all information
regarding these torsors, so also regarding the coverings up to the F (k)-action on P . We observe a number
of immediate consequences: the following result is a result of Lemma 1.3.3.

Theorem 4.2.6. The existence of a Bagnera–de Franchis cover is equivalent to the existence of a
cohomology class [ ˜︁C] ∈ H1(k, ˜︁E) mapping to [P ] ∈ H1(k, F ). The obstruction to the existence of a
Bagnera–de Franchis cover α equals the image of [P ] in H2(k,G) along the boundary map.

The obstruction is, in essence, an obstruction to the existence of a para-elliptic curve ˜︁C. This
makes sense in view of Proposition 3.4.23. It is notable that its associated elliptic curve ˜︁E is, however,
intrinsically defined in Notation 4.2.4 due to the existence of a rational point on E.

Corollary 4.2.7. If n = d, then a Bagnera–de Franchis cover exists if and only if the cohomology class
[P ] ∈ H1(k, F ) is divisible by n.

Proof. In light of the definition of G∨, of Notation 4.1.27, the assumption implies that G∨ = Pic0P/k[n]

because N∨ ⊂ Pic0P/k[n]. Therefore, there is an isomorphism ˜︁E ∼= F such that the natural map ˜︁E → F

is multiplication by n. A pre-image in H1(k, ˜︁E) hence corresponds to an element H1(k, F ) whose n-fold
multiple equals [P ]. Alternatively, the choice of a Bagnera–de Franchis cover is equivalent with the choice

of an n-cover ˜︁C → P , so we may apply Corollary 2.2.11.

We locate the obstruction more precisely within H2(k,G).

Proposition 4.2.8. The obstruction α ∈ H2(k,G) is contained in the subgroup Ker(H2(k,G) →
H2(k,N)) = Im(H2(k,H)→ H2(k,G)).

Proof. This follows from commutativity of (4.2.3), since the image of [P ] in H2(k,N) vanishes by virtue
of Proposition 4.1.20 and Lemma 1.3.3.

The obstruction α arises as the image of an element of H2(k,H). By commutativity of (4.2.4), such a
lift is the image of a cohomology class [C] ∈ H1(k,E) corresponding to a canonical cover of X. A lift of
the obstruction has a geometric interpretation in terms of the chosen canonical cover Y . Recall that if Z
is a BdF-cover, then H ⊂ G acts naturally on Z and the quotient Z/H is a canonical cover.

Theorem 4.2.9. Let Y → X be a fixed canonical cover of X and let C denote the Stein factor of the
Albanese fibration. There exists a BdF-cover Z → X over Y if and only if [C] maps to 0 in H2(k,H).

Proof. In a similar way to (4.2.5) and (4.2.6), the lifting property Theorem 1.3.4 yields a H1(k,E)-
equivariant bijection

{ ˜︁C → C | H-torsor, corr. to H∨⊂ E∨}/E(k)
∼−−→ { ˜︁C | ˜︁E-torsor, mapping to C ∈ H1(k,E)}. (4.2.7)

The domain is nonempty if and only if there is a BdF-cover factoring over Y , by Proposition 3.5.19,
whereas the codomain is nonempty if and only if [C] maps to 0 in H2(k,H) in (4.2.4).

Notation 4.2.10. Fix a canonical cover Y → X with Stein factors C and D. The image of [C] ∈ H1(k,E)
in H2(k,H) along the boundary map is referred to as the obstruction for X to admit a BdF-cover over Y .
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The obstruction for X to admit a BdF-cover over Y depends measurably on the choice of canonical
cover. The latter is only unique up to an element of H1(k,N). Let Y1 → X and Y2 → X be two canonical
covers of X, that differ by an element λ of H1(k,N). We describe how the obstructions of [C1] and [C2]
in H2(k,H) are related.

Proposition 4.2.11. Let λ ∈ H1(k,N) such that [C1] − [C2] = λ. Then the obstructions of [C1] and
[C2] in H2(k,H) differ by the boundary map δ(λ).

Proof. Commutativity with the snake map directly states that the difference between the obstructions of
[C1] and [C2] in H2(k,H) equals the boundary δ(λ).

According to Theorem 4.1.34, the isomorphism class of H over arbitrary ground fields is displayed
in Table 3.7. The number of possibilities for H are limited; thus, so are the possibilities for the second
cohomology group H2(k,H). If H is unipotent, e.g. αp or Z/pZ in characteristic p, then H2(k,H) = 0,
q.v. Proposition 1.5.6. We observe that H is always unipotent if X is a quasi-bielliptic surface. Therefore
Proposition 4.2.8

Corollary 4.2.12. A quasi-bielliptic surface admits a Bagnera–de Franchis cover.

Corollary 4.2.13. If Br(k)[2] = 0 and H2(k,Z/3Z) = 0 then any bielliptic surface admits a Bagnera–de
Franchis cover.

Proof. By Theorem 4.1.34 we observe from Table 3.7 that H is isomorphic to 0 or µ2 or Z/3Z if X is not
quasi-bielliptic.

Above, we used in characteristic not 2 that H2(k,Z/Z) = H2(k, µ2) ∼= Br(k)[2], which is non-zero for
e.g. k = R. A similar isomorphism Z/3Z ∼= µ3 holds outside of characteristic 3 only if the ground field
contains a primitive cube root of unity ζ3 ∈ kalg. This has an amusing consequence.

Corollary 4.2.14 (A local-to-global principle). Suppose that k is a global field containing a primitive
cube root of unity. We denote a place of k by v, and its completion by kv. Let X be a bielliptic surface
and fix a canonical cover Y → X. Suppose that X ⊗ kv admits a BdF-cover over the canonical cover
Y ⊗ kv for every place. Then X also admits a BdF-cover over Y .

In particular, if the cohomology class [C] ∈ H1(k,E) of the Stein factor C of a canonical cover Y lies
in the Tate–Shafarevich group X(E/k) = Ker(H1(k,E)→

∏︁
v H

1(kv, Ev)), then X admits a BdF-cover
over Y .

Proof. Since H = Z/dZ ∼= µd, the obstruction for X to admit a BdF-cover over Y lies in the image of
H2(k,H) ∼= Br(k)[d]. By the Albert–Brauer–Hasse–Noether theorem (originally [AH32; HBN32] over a
number field; see [Hür92] for a proof in the general case) the natural map Br(k)→

∏︁
v Br(kv) is injective.

Therefore triviality of the obstruction in all Br(kv)[d] implies that the obstruction vanishes in Br(k)[d].

Remark 4.2.15. The assumption that k contains a primitive cube root of unity is necessary in case X is
a bielliptic surface of type (b), since otherwise H = Z/3Z may not be isomorphic to µ3. As far as the
author is aware, there is no similar local-to-global principle for the cohomology groups H2(k,Z/3Z), in
the sense that the natural map H2(k,Z/3Z)→

∏︁
v H

2(kv,Z/3Z) may not be injective.

From the above result it does not follow that the existence of a BdF-cover at every completion
implies the existence of a BdF-cover over k. Indeed, there may not be a local-to-global principle for the
group scheme G similar to the Albert–Brauer–Hasse–Noether theorem. The situation is elucidated by
considering the following morphism of long exact sequences.

· · · H1(k,N) H2(k,H) H2(k,G) H2(k,N) · · ·

· · ·
∏︁
v H

1(kv, N)
∏︁
v H

2(kv, H)
∏︁
v H

2(kv, G)
∏︁
v H

2(kv, N) · · ·

δ

(4.2.8)

Without additional assumptions one cannot use the injectivity of H2(k,H)→
∏︁
v H

2(kv, H) to conclude
anything about the injectivity of H2(k,G)→ H2(kv, G), even when restricting to elements that map to

69



0 in H2(k,N) and
∏︁
v H

2(kv, N), respectively. E.g. the four lemma requires injectivity of H2(k,N) →∏︁
v H

2(kv, Nv) and surjectivity of H1(k,N)→
∏︁
v H

1(kv, Nv).
We consider the additional assumption that (4.1.4) is split. Recall that the it is usually geometrically

split, except in the case of supersingular quasi-bielliptic surfaces of type (a2). But even if it split after
a field extension, it may not be split over the ground field. For example, if X is an ordinary bielliptic
surface then G is isomorphic to the two-torsion of an elliptic curve, .

Corollary 4.2.16. Let k be a global field containing a cube root of unity. Let X be a bielliptic surface
such that the short exact sequence (4.1.4) is split. If the base-change X ⊗ kv admits a BdF-cover for
every place, then X also admits a BdF-cover.

Thus, if the cohomology class of the Albanese [P ] lies in the Tate–Shafarevich group X(F/k) of F ,
then X admits a BdF-cover.

Proof. The consequence of the short exact sequence being split is that the boundary maps in (4.2.8)
are zero. By Proposition 4.2.11 there is an element in H2(k,H) mapping to the obstruction α in
H2(k,G), which is unique because of injectivity. Applying this to the completions, it follows that the
obstructions in H2(kv, H) for X ⊗ kv to admit a BdF-cover over some canonical cover are all zero. Now
the Albert–Brauer–Hasse–Noether theorem implies that the obstruction in H2(k,H) vanishes.

Example 4.2.17. Suppose that the short exact sequence (4.1.4) is split. The choice of a section N → G
determines a retraction G→ H and dually yields a splitting H∨ → G∨ of the dual short exact sequence
(4.1.5). In this way H∨ can be seen also as a subgroup scheme of PicαX/k. Naturality yields the following
commutative diagram with exact rows, in which the downward vertical arrows are injective due the
dashed retractions.

· · · H1(X,H) Hom(H∨,PicτX/k) H2(k,H) · · ·

· · · H1(X,G) Hom(G∨,PicτX/k) H2(k,G) · · ·

The H-torsor over X corresponding to the inclusion H∨ ⊂ G∨ ⊂ PicαX/k is hence also obstructed by

α ∈ H2(k,H) to exist. Suppose the obstruction vanishes and choose a BdF-cover for X. Consider the

quotient ˜︁X = ( ˜︁C × ˜︁D)/N where N acts on a Bagnera–de Franchis cover as a subgroup scheme of G by

choice of section of (4.1.4), as in Example 3.5.6. The further quotient map ˜︁X → X is an H-torsor over X.

Its cohomology class is the image of [ ˜︁C × ˜︁D → X] under the above dashed retraction. We conclude that

the existence of ˜︁X depends both on the short exact sequence (4.1.4) being split, as well as the obstruction
to admit a BdF-cover.

Up to now we assumed the existence of a primitive cube root of unity in k, since Z/3Z and µ3 only
become isomorphic after base-change to k(ζ3). We may instead apply the theory of the Weil restriction
of scalars to relate H2(k,Z/3Z) with Br(k)[3]: we refer to Lemma 4.2.21 below. Let us first state its
consequence.

Theorem 4.2.18. Let k be a ground field for which Br(k)[2] = 0 and Br(k(ζ3))[3] = 0. Then any bielliptic
surface admits a BdF-cover.

Proof. Let X be a bielliptic surface. We only need to treat the case H = Z/dZ for d = 2, 3. As before we
may exclude the case where d = p, since then Z/dZ is unipotent and H2(k,H) = 0. If H = Z/2Z outside
of characteristic 2, then the isomorphism Z/2Z ∼= µ2 yields an isomorphism H2(k,Z/2Z) ∼= Br(k)[2],
which vanishes by assumption. If H = Z/3Z over a field with p ≠ 3 containing a primitive cube root of
unity then we similarly find H2(k,Z/3Z) ∼= Br(k)[3], which is similarly 0 since k = k(ζ3). If k does not
contain a primitive cube root of unity then Lemma 4.2.21 below with j = 2 implies that H2(k,Z/3Z) is
the kernel of the norm map Br(k(ζ3))[3]→ Br(k), which is trivial by assumption.

A number of examples of fields with trivial Brauer group are listed on p. 162 of [Ser79]. We mention
in particular the quasi-algebraically closed fields, also called C1 fields, whose defining property is that for
every N ≥ 2, any hypersurface in PN of degree N − 2 needs to have a rational point. Quasi-algebraically
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closed fields have trivial Brauer group by e.g.
Prop. 10 of op. cit. Examples of C1-fields include algebraically closed fields, finite fields by the Chevalley–
Warning theorem (Cor. 1 in §I.2 of [Ser73]), and function fields of curves over algebraically closed fields
by Tsen’s theorem (Thm. 1.2.14 of [SC21]). For finite fields one may also argue that the Brauer group is
zero through Wedderburn’s little theorem; see Thm. 1.2.13 of [CS21].

Corollary 4.2.19. A bielliptic surface over a quasi-algebraically closed field admits a BdF-cover.

Proof. If k is quasi-algebraically closed, then so is the finite extension k(ζ3). Therefore, both Brauer
groups vanish.

Remark 4.2.20. There is an alternative argument for bielliptic surfaces over a finite field whose Albanese
morphism is smooth. Since a canonical cover is a para-abelian surface, it has a rational point by Lang’s
Theorem; q.v. Thm. 2 of [Lan56]. It follows that X also has a rational point, so that Example 4.1.32 applies.
Alternatively, the para-elliptic curve P has a rational point by Lang’s theorem, so that Theorem 4.2.2
applies. See also Thm. 3.1 of [Ryb16], correcting the earlier version Thm. 2.3 of [Ryb08].

The proof of Theorem 4.2.18 relied on the fact that H2(k,Z/3Z) is isomorphic to the kernel of the
norm map Br(k′)[3] → Br(k)[3], where k′ = k[t]/(t2 + t + 1), as shown in the following lemma. It is
inspired by the results of §1 of [LS10] concerning twisted forms of µp in characteristic p > 0, though the
philosophy mostly applies also outside of critical characteristic. In fact, it is possible to generalise to
twisted forms of group schemes with constant and cyclic automorphism group scheme. For the sake of
simplicity we state it for µ3 only.

Lemma 4.2.21. Let k be a ground field in which 3 is invertible. Let k′ = k[t]/(t2 + t + 1), so that
k′ = k(ζ3) if k contains no primitive cube root of unity, and k′ ∼= k × k otherwise. The choice of t ∈ k′
induces a morphism Z/3Z⊗ k′ → µ3 ⊗ k′; hence, by the universal property of the restriction of scalars, a
morphism Z/3Z→ Resk′/k µ3,k′ . It sits inside a short exact sequence

0 −→ Z/3Z −→ Resk′/k µ3,k′ −→ µ3 −→ 1, (4.2.9)

where Resk′/k µ3,k′ → µ3 denotes the norm map. This induces an isomorphism

Hj(k,Z/3Z) ∼= Ker(Normk′/k : Hj(k′, µ3,k′)→ Hj(k, µ3)).

Proof. We may verify exactness after base-change to an algebraic closure. Assume without loss of generality
that k contains a primitive cube root of unity ζ3. The two choices of primitive root of unity induce an
isomorphism k′ ∼= k × k, so Resk′/k µ3,k′

∼= µ3 × µ3. The composition Z/3Z→ Resk′/k µ3,k′
∼= µ3 × µ3 is

then given by sending a generator to the pair (ζ3, ζ
2
3 ). Its norm indeed equals 1, showing that the image

is contained within the kernel. Equality then follows by comparing orders.
The identity µ3 ⊗ k′ → µ3 ⊗ k′ induces a map µ3 → Resk′/k µ3,k′ , such that the composition

µ3 → Resk′/k µ3,k′ → µ3 is the automorphism x ↦→ x2 of µ3; cf. [Stacks, Tag 03SH]. Thus pre-composing
µ3 → Resk′/k µ3,k′ with the automorphism x ↦→ x2 yields a splitting of the short exact sequence.

This yields short exact sequences in cohomology

0 −→ Hj(k,Z/3Z) −→ Hj(k,Resk′/k µ3,k′)
Normk′/k−−−−−−→ Hj(k, µ3) −→ 0

for each j ≥ 0. Since µ3 is smooth, we may compute the cohomology in the étale topology, in which case
there is a natural isomorphism Hj(k,Resk′/k µ3,k′) = Hj(k′, µ3,k′). Indeed, the restriction of scalars is
the pushforward functor on sheaves along the structure morphism Spec(k′)→ Spec(k), which is exact in
the étale topology by [Stacks, Tag 03QP].

We note that for j = 1, the group H1(k,Z/3Z) classifies Z/3Z-torsors over the ground field. Non-trivial
torsors correspond to Galois extensions with Galois group Z/3Z. We investigate in the following example.

Example 4.2.22. Let k be a ground field with p ̸= 3. If it contains a primitive cube root of unity,
then every Z/3Z Galois-extension of k is of the form k( 3

√
λ) for some λ ∈ k by Kummer theory; see

Corollary 1.4.7. Suppose instead that k contains no primitive cube root of unity and let k(α)/k be a
cubic Galois extension and let σ ∈ Gal(k(α)/k) be a generator of the Galois group. By Kummer theory,
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there is an element λ ∈ k(ζ3), defined uniquely up to cubes, such that k(ζ3, α) = k(ζ3,
3
√
λ). Since the

classic proof of Kummer theory is constructive, we can describe λ explicitly through

3
√
λ = α+ ζ3σ(α) + ζ23σ

2(α).

We then compute that

Normk(ζ3)/k(λ) = Normk(ζ3)/k(Normk(ζ3,α)/k(ζ3)(
3
√
λ))

= Normk(ζ3,α)/k(
3
√
λ)

= Normk(α)/k(Normk(ζ3,α)/k(α)(α+ ζ3σ(α) + ζ23σ
2(α)))

= Normk(α)/k((α+ ζ3σ(α) + ζ23σ
2(α))(α+ ζ23σ(α) + ζ3σ

2(α))

= Normk(α)/k(α
2 + σ(α2) + σ2(α2)− ασ(α)− σ(α)σ2(α)− σ2(α)α)

= Normk(α)/k(Trk(α)/k(α
2 − ασ(α)))

= (Trk(α)/k(α
2 − ασ(α)))3

is a cube in k. Since λ, considered as element of k(ζ3)
∗/k(ζ3)

∗3, lies in the kernel of the norm map
k(ζ3)

∗/k(ζ3)
∗3 → k∗/k∗3, it is likely that the class of λ corresponds to the field extension k(α)/k under

the isomorphism of Lemma 4.2.21 with j = 1, although we do not verify that this agrees with the maps
induced on the cohomological groups. To conclude, we note that Normk(ζ3)/k(a+ bζ3) = a2 − ab+ b2, so
that elements of the kernel of the norm map k(ζ3)

∗ → k∗/k∗3 correspond to non-trivial solutions of the
equation

a2 − ab+ b2 = c3, (a, b, c ∈ k).
In case k = Q one can classify the solutions to this equation using standard techniques in algebraic
number theory, using the fact that Q(ζ3) has class number 1.

4.3 Bielliptic surfaces with smooth Albanese

Since any quasi-bielliptic surface admits a Bagnera–de Franchis cover, we restrict our study throughout
this section to bielliptic surfaces with smooth Albanese. We fix a canonical cover π : Y → X with
Stein factors C and D. Our assumption implies that Y is a para-abelian surface and that C and D are
para-elliptic curves. Let A be the associated abelian surface of Y and let E and J be the associated
elliptic curves of C and D, respectively.

The fibration Y → C is an elliptic fibration, making Y into an elliptic para-abelian surface, as studied
in Section 2.3. One main result of that section is the existence of a cohomological obstruction to the
existence of a certain isogeny ˜︁C × ˜︁D → Y . This closely mirrors the cohomological obstruction to the
existence of a BdF-cover over Y . Our first aim is to show that these potential covers coincide and that
their obstructions in H2(k,H) are equal.

We first treat the situation for the associated abelian varieties, which is slightly simpler due to the
existence of rational points. We use notation of the previous section: we define ˜︁E as the dual elliptic
curve of the quotient ˜︁E∨ = E∨/H∨.

Consider that since the pullback map π∗ : PicτX/k → A∨ has kernel N∨ by Theorem 1.3.14. The image
of G∨ ⊂ PicαX/k maps to a subgroup scheme H∨ ⊂ A∨, providing the data for a potential BdF-cover
through the five-term exact sequence (4.1.6). In a similar way, the image of the subgroup scheme
G∨ ⊂ Pic0P/k → E∨ is isomorphic to a copy of H∨ ⊂ E∨, which provides the data for the coverings˜︁E → E and ˜︁C → C, for the latter provided that it exists. Since Y → C is in Stein factorisation, the
induced map E∨ → A∨ is injective. The two copies of H∨ ⊂ A∨ coincide by commutativity of the
following square.

A∨ E∨

PicαX/k Pic0P/k

π∗

f∗

Proposition 4.3.1. There exists an elliptic curve ˜︁J with subgroup scheme H such that J = ˜︁J/H and

A = ( ˜︁E × ˜︁J)/H, where H is considered as anti-diagonal subgroup scheme.
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Proof. The subgroup scheme H∨ ⊂ A∨ = Pic0Y/k determines the data of a BdF-cover over Y , which may

or may not be obstructed to exist. If we instead consider A∨ as Pic0A/k, it instead determines the data of
a cover B → A, which is unobstructed due to the existence of a rational point on A. Let B∨ = A∨/H∨,
then the dual abelian variety B = Pic0B/k has a subgroup scheme isomorphic to H such that B/H ∼= A
and such that the quotient map B → A is an H-torsor corresponding to this data; see Lemma 2.2.3. The
base change Balg to an algebraic closure is a BdF-cover of Xalg over Y alg.

Similarly, the subgroup scheme H∨ ⊂ E∨ provides the data for the isogeny ˜︁E → E of elliptic curves.
Since H∨ ⊂ E∨ ⊂ A∨, it follows from naturality that there is a morphism B → ˜︁E. Let ˜︁J be its kernel.
Then B = ˜︁E × ˜︁J , since the natural comparison map is an isomorphism after base change to an algebraic
closure. By construction we have ( ˜︁E × ˜︁J)/H ∼= A.

The H-torsor ˜︁J → J subsequently defines a subgroup scheme H∨ ⊂ J∨, which arose from the subgroup
scheme H∨ ⊂ A∨.

Lemma 4.3.2. The subgroup scheme H∨ ⊂ A∨ is the image of a subgroup scheme H∨ ⊂ J∨ under the
pullback map J∨ → A∨ of the fibration Y → D.

Proof. From ( ˜︁E × ˜︁J)/H = A it follows dually that A∨/H∨ ∼= ˜︁E∨ × ˜︁J∨. The map J∨ → ˜︁J∨ has degree

d, since ˜︁Dalg → Dalg is an Halg-torsor after base-change to kalg. The kernel of A∨ → ˜︁E∨ × ˜︁J∨ also has
order d, so from the commutativity of the square

J∨ A∨

˜︁J∨ ˜︁E∨ × ˜︁J∨

it follows that H∨ is contained in the image of J∨ in A∨.

Notation 4.3.3. Let ˜︁J∨ = Pic0˜︁J/k = J∨/H∨, which are equal by Theorem 1.3.14.

The situation is much more symmetric than in the quasi-bielliptic case: both E∨ and J∨ have a
subgroup isomorphic to H∨. If X is a bielliptic surface with smooth Albanese, then the description of
Y = ( ˜︁C × ˜︁D)/H is indeed symmetric in the two factors, since both ˜︁C and ˜︁D are smooth curves acted
upon by a finite subgroup of translations. Dually, there is a different way to recover the subgroup scheme
H∨ ⊂ E∨ × J∨.

Proposition 4.3.4. There is a canonical isomorphism A∨ = (E∨ × J∨)/H∨, where H∨ is embedded
anti-diagonally. Dually, the kernel of A→ E × J is isomorphic to H.

Proof. Consider the subgroup scheme H∨×H∨ ⊂ E∨×J∨. Then the anti-diagonally embedded subgroup
scheme H∨ ⊂ H∨ → H∨ lies in the kernel of the map E∨ × J∨ → A∨. Since both have order d = |H|,
it follows that H∨ is the kernel and hence that A∨ = (E∨ × J∨)/H∨. The dual version states that the
kernel of A→ E × J is isomorphic to H; see e.g. §15 of [Mum08].

The images of the subgroup schemes H∨ ⊂ E∨ and H∨ ⊂ J∨ are equal in A∨, as foreshadowed in
Lemma 4.3.2. Similarly, the fact that A∨ = ˜︁E∨ × ˜︁J∨ implies that A = ( ˜︁E × ˜︁J)/H. It follows that ˜︁E and˜︁J are the elliptic curves of Section 2.3 such that A = ( ˜︁E × ˜︁J)/H.

Let us return to the elliptic para-abelian surface Y . Since the isogeny Y → C ×D is a twisted form
of A→ E × J , it is naturally equipped with the structure of an H-torsor.

Remark 4.3.5. From this it follows that the degree of Y → C ×D is d. This also follows easily from a
direct argument, which does not use the assumption on the smoothness of the Albanese f : consider the
following commutative square, in which the integers next to the arrows denote the degrees.

Y C ×D

X P ×B

n n2

γ

Then deg(Y → C ×D) = γ/n, which equals d in view of the short exact sequence (4.1.4).
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Both Theorem 4.2.9 and Proposition 2.3.17 describe a cohomological obstruction in H2(k,H) to the

existence of a certain covering ˜︁C× ˜︁D → Y . The above indicates that the two covers coincide, if they exist.
The obstructions for existence are equal in view of the lifting property of torsors (4.2.7), by Lemma 1.3.3.
As a consequence, we find the following result extending Theorem 4.2.2. Recall the following commutative
diagram with exact rows from (2.3.4).

0
H1(k,H)
⊕

H1(k,H)

H1(C,H)
⊕

H1(D,H)

Hom(H∨, E∨)
⊕

Hom(H∨, J∨)

H2(k,H)
⊕

H2(k,H)

H2(C,H)
⊕

H2(D,H)

0 H1(k,H) H1(C ×D,H) Hom(H∨, E∨ × J∨) H2(k,H) H2(C ×D,H)

+ pr∗C+pr∗D

∂C⊕∂D

∼=

p∗C⊕p∗D

+

∂C×D

Corollary 4.3.6. Let X be a bielliptic surface with smooth Albanese and fix a canonical cover Y → X.
The obstruction for X to admit a Bagnera–de Franchis cover over Y is contained in Ker(p∗C) ∩Ker(p∗D).
Therefore C or D having a rational point, implies that X admits a BdF-cover over Y .

Remark 4.3.7. With above methods, the existence of a rational point on B should not be enough to
conclude the existence of a BdF-cover. This boils down to the failure of the bottom left square of (3.5.2)
to be Cartesian. Recall that B is a Brauer–Severi curve, so the existence of a rational point implies that
B ∼= P1.

Example 4.3.8. In some cases, conversely, the existence of a BdF-cover implies that B has a rational point.
Let X be a bielliptic surface of type (a2) with smooth Albanese that admits a BdF-cover such that the
short exact sequence (4.1.4) is split. Carrying out the construction of Example 3.5.6, we find a bielliptic

surface ˜︁X = ( ˜︁C × ˜︁D)/N , such that the further quotient by H ∼= µ2 is isomorphic to X. Let ˜︁g : ˜︁X → ˜︁B
be the second fibration of ˜︁X. The quotient ˜︁B/H being isomorphic to B. This results in double cover of
Brauer–Severi curves, in which case the following lemma applies.

Lemma 4.3.9. Let f : B2 → B1 be a morphism of degree two between Brauer–Severi curves. Then
B1
∼= P1.

Proof. By [Lie17] a morphism to a Brauer–Severi curve is determined by a point on the Picard scheme
of B2, corresponding to the pullback L = f∗(OB1

(1)) ∈ PicB2/k(k). Since the degree of L is 2, it is
isomorphic to ω∨

B1
and is thus representable by an invertible sheaf. This implies that B1 is the trivial

Brauer–Severi curve, hence has a rational point.

Remark 4.3.10. We sketch an alternative argument, omitting some details. The pushforward E = f∗OB2

is locally free of rank 2. By the Grothendieck decomposition theorem, the base-change E ⊗ kalg is a direct
sum of invertible sheaves. In the language of [Nov24], E is said to be absolutely split. By Thm. 5.1 of
op. cit. it is the direct sum of locally free sheaves on B1, where the individual summands are tensor
products of copies of ωB2

and, in the notation of loc. cit., the unique non-split extension W1 of ωB1

by OB1
; compare to Cor. 1.54 and the more general Cor. 1.46 of [Nov14]. Note that if B1

∼= P1 then
W1
∼= O(−1)⊕2. The sheaf cohomology of E is

hi(B1, E) = hi(B2,OB2) =

{︄
1 if i = 0;

0 if i ̸= 0.

This puts a restriction on the possible decompositions of E : computing the cohomology of the individual
summands, one finds that E ∼= OB1 ⊕W⊗n

1 for some n ≥ 0. We omit the details. But then the rank of E
is odd, which is a contradiction.

Even if the bielliptic surface X may be obstructed to admit a BdF-cover, it could be possible to
exhibit X as a quotient of a product of two para-elliptic curves, for example by allowing the degree of the
cover to be increased. The non-existence of a BdF-cover nevertheless places a strong restriction on the
existence of these more general covers, in some cases also leading to a non-existence result for them. To
be more precise, we consider products of para-elliptic curves C1 ×D1 equipped with a free group scheme
action, such that the quotient is our given bielliptic surface X.

In tame characteristics we can reduce the situation to a canonical cover, so that all surfaces involved
are para-abelian. The following can also be seen as a corollary of Prop. 0.2.14 of [CDL24].
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Proposition 4.3.11. Suppose X is a bielliptic surface in tame characteristic. Then any torsor ψ : C1 ×
D1 → X factors over some canonical cover C1 ×D1 → Y .

Proof. Since ψ is a torsor, the pullback ψ∗ωX is trivial, cf. p. 222 of [BM76]. From the universal property
of µn-torsors Proposition 1.4.10 it then follows that there is a choice of section s : OX

∼−→ ω⊗n
X such that

ψ factors over the µn-torsor π : Y → X determined by the pair (ωX , s). Since i = 0 this is simply the
canonical cover.

Remark 4.3.12. Suppose X is an ordinary bielliptic surface. In the notation of Section 4.1.1, the proof
shows that any such ψ factors over the cover Y0 → X, but there seems to be no apparent reason for it to
factor also over the torsor Y → Y0 under PicαX/k[V

i] = Z/piZ.

Corollary 4.3.13. Let X be a bielliptic surface in tame characteristic. Suppose that E and J are
geometrically non-isogenous elliptic curves. If there is a torsor C1 × D1 → X, where C1 and D1 are
para-elliptic curves, then X admits a BdF-cover.

Proof. Let C1 ×D1 → X be a torsor. By Proposition 4.3.11 it factors over some torsor C1 ×D1 → Y ,
where Y is a canonical cover. Let C and D be the Stein factors of Y , which are not isogenous because E
and J are not geometrically isogenous. Then Corollary 2.3.23 implies that the obstruction for X to admit
a BdF-cover over Y vanishes. In particular, X admits a BdF-cover.

The contrapositive is a non-existence result for covers over X that is stronger than the non-existence
of a BdF-cover. It states: let X be a bielliptic surface that does not admit a BdF-cover, and assume that
E and J are geometrically non-isogenous elliptic curves. Then there are no torsors C1 ×D1 → X, where
C1 and D1 are para-elliptic curves. In this sense, the obstruction for X to admit a BdF-cover in fact also
obstructs more general covers of X.

Remark 4.3.14. It does not suffice to assume only that E and J are not isogenous over the ground field.
They are only defined up to twisted forms, since they depend on Y , which is unique only up to twisted
forms. It is possible that for some choice of canonical cover Y , the curves E and J are not isogenous,
whereas for another choice of canonical cover they are isogenous, as discussed below.

Consider elliptic curves with affine equation Ed : y
2 = x3 + d, for d ∈ k. The j-invariant is 0 and

hence they are geometrically isomorphic. We describe different approaches to show that they can be
non-isogenous, at least over number fields.

Example 4.3.15. If k = Q, then §X.6 of [Sil09] computes the Mordell–Weil rank of a number of those
elliptic curves, which can be either 0, 1 or 2. Since the Mordell–Weil rank is an isogeny invariant of
elliptic curves, this distinguishes at least three classes of non-isogenous but geometrically isomorphic
elliptic curves.

Example 4.3.16. Let k be a number field. We give a nice non-constructive proof of the existence of
non-isogenous, geometrically isomorphic elliptic curves. Note that the elliptic curves Ed and Ed′ are
isomorphic if and only if d/d′ is a square in k, hence the collection of Ed indexed by k∗/k∗2 forms an
infinite family of pairwise non-isomorphic elliptic curves. By a corollary of Shafarevich’s Theorem, §1.4,
p. IV-7 of [Ser97] only finitely many of them can be isogenous to a given Ed.

Example 4.3.17. Suppose again k = Q. In this case, the argument of Example 4.3.16 can be refined. By
§IV.1.3 of op. cit., the locus of bad reduction is an isogeny invariant of elliptic curves. For the elliptic
curve Ed, this locus consists of the prime 2 as well as all the primes such that the valuation of d is odd.
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Chapter 5

An obstructed bielliptic surface

In this section we construct bielliptic surfaces over fields of characteristic not 2 whose obstructions to
admit Bagnera–de Franchis covers do not vanish. Since the obstruction vanishes for quasi-bielliptic
surfaces, throughout this section we consider only bielliptic surfaces with a smooth Albanese map. We
furthermore should not consider bielliptic surfaces of type (a1), (b1), (c1) or (d), since they also always
admit a Bagnera–de Franchis cover. We focus on the simplest non-trivial type (a2). Then the group
scheme H is isomorphic to µ2, so that a potential obstruction lies in the two-torsion of the Brauer group
Br(k)[2]. Its non-vanishing is hence necessary for the existence of a bielliptic surface of type (a2) without
Bagnera–de Franchis cover. Our construction can be seen as a converse statement: a non-split quaternion
algebra determines a bielliptic surface of type (a2) without Bagnera–de Franchis cover. This is the main
result of this chapter.

Theorem 5.0.1. Let k be a ground field with p ̸= 2. There exists a bielliptic surface of type (a2) which
does not admit a Bagnera–de Franchis cover if and only if Br(k)[2] ̸= 0.

We refrain from making an assumption on the characteristic of the ground field insofar as possible:
ordinary bielliptic surfaces in characteristic p = 2 are included in the majority of the following analysis.
We consequently distinguish the group schemes µ2 and Z/2Z. The bottleneck for including the critical
characteristic arises from an insufficient understanding of the theory of two-descent in characteristic 2, e.g.
the construction of a para-elliptic curve of period 2 with a given obstruction in Br(k)[2] of Section 6.1.

How to construct a bielliptic surface? Any bielliptic surface X of type (a2) with smooth Albanese sits
in a diagram of the following form. ˜︁C × ˜︁D

Y C ×D

X

µ2

µ2

Z/2Z

Here Y is a canonical cover for X and C and D are the Stein factors of the two elliptic fibrations, as in
Notation 4.1.5. Each morphism is a quotient by a certain finite group scheme, indicated alongside the
arrow. The dashed arrow indicates that the scheme ˜︁C × ˜︁D, and hence the morphism to Y , exists if and
only if X admits a Bagnera–de Franchis cover. The usual way of constructing a bielliptic surface is by
taking a suitable quotient of a product ˜︁C× ˜︁D. With this method however the obstruction always vanishes.
Instead, we should consider a quotient of a para-abelian surface Y directly, where Y is isogenous to a
product C×D but not covered by a product ˜︁C× ˜︁D, as in Section 2.3. We briefly outline the construction
in more detail.

Step 1. Constructing the µ2-cover Y → C ×D. We first construct a para-abelian surface Y as an
appropriate µ2-cover of the product C ×D, with the auxilary property that a further cover by a product˜︁C × ˜︁D should not exist. By Kummer theory a µ2-cover of C ×D is determined up to isomorphism by
an invertible sheaf L of order 2 and a nowhere vanishing section s : OC×D

∼−→ L ⊗2. The invertible
sheaf L defines a k-point of the Picard scheme PicC×D/k[2], hence two classes of invertible sheaves
LC ∈ PicC/k[2](k) and LD ∈ PicD/k[2](k). We require that LC and LD are obstructed to come from
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invertible sheaves, since otherwise they determine covers of the factors ˜︁C → C and ˜︁D → D such that
Y = ( ˜︁C × ˜︁D)/µ2. The obstruction for L coming from an invertible sheaf is the sum of the obstructions
of LC and LD, causing the individual obstructions to be inverses. We note the similarities to Section 2.3.

Step 2. Constructing the involution on Y . We then construct a certain Z/2Z-action on Y , such
that the quotient surface X is a bielliptic surface not admitting a BdF-cover over the canonical cover Y .
Suppose for the sake of exposition that the obstruction α vanishes, so that the cover ˜︁C × ˜︁D exists. Then
the Z/2Z-action on Y should be induced by a Z/2Z-action on ˜︁C × ˜︁D of the form (x, y) ↦→ (x+ a, ψ(y)),

where ψ is a sign involution on ˜︁D. Note that we may replace the function in the second coordinate
y ↦→ ψ(y) without loss of generality by y ↦→ ψ(y) + b, as the latter function still is an involution with a
geometric fixpoint. We subdivide the construction into two steps. We construct:

• Step 2.1. a translation-involution on Y , corresponding to (x, y) ↦→ (x+ a, y + b) on ˜︁C × ˜︁D; and

• Step 2.2. a family of sign involution of Y over C, corresponding to (x, y) ↦→ (x, ψ(y)) on ˜︁C × ˜︁D.

The above description is of course meaningless if the obstruction α does not vanish. Nevertheless, we
construct the automorphisms of Y which are ‘twisted forms’ of automorphisms of the above form, i.e.
after base-change to an algebraic closure kalg, when the cover ˜︁Ckalg × ˜︁Dkalg of Y alg does exist, they are
induced by an automorphisms of the above form; cf. Proposition 5.2.1.

Step 3. Verifying that X has no BdF-cover. A routine verification shows that the quotient
X = Y/(Z/2Z) is indeed a bielliptic surface and that Y is a canonical cover of X. So far, this construction
yields that X admits no BdF-cover over Y . It may still be possible for X to admit a BdF-cover over a
different canonical cover. We show that X may be constructed so that it admits no Bagnera–de Franchis
cover at all.

Step 4. = Step 0. Constructing the para-elliptic curves C and D. Each step in the
construction has placed additional restraints on the para-elliptic curves C and D, and it is a-priori not
clear that curves with the given properties exist. We construct explicit examples using the arithmetic
theory of descent in the upcoming section; see Chapter 6.

For the sake of clarity, let us state the data to be used throughout the construction. It consists of

• a (nonzero) Brauer class α ∈ Br(k)[2];

• an elliptic curve E, together with a torsor [C] ∈ H1(k,E) and a rational point P ∈ E[2](k);

• an elliptic curve J , together with a torsor [D] ∈ H1(k, J) and a rational point Q ∈ J [2](k).

In order to state the necessary assumptions, we first interpose the following definitions. Let Z/2Z
be the subgroup of E generated by P and set ˜︁E = E/(Z/2Z). The dual isogeny ˜︁E → E is a µ2-cover
corresponding to the invertible sheaf OE(P −∞) ∈ Pic0(E). Similarly, let Z/2Z be the subgroup scheme

of J generated by Q and set ˜︁J = J/(Z/2Z), which is both a quotient and a cover of J . We postulate:

(I) the images of P ∈ E(k) and Q ∈ J(k) in Br(k)[2] under boundary maps ∂C and ∂D (see (5.1.1)
below or (6.3.1) below), respectively, are equal to α;

(II.1) the images of P ∈ E(k) and Q ∈ J(k) in k∗/k∗2 under the boundary maps δE and δJ (see (5.2.2)
below or Section 6.2 below), respectively, are equal and denoted β;

(II.2) the ˜︁J-torsor D/(Z/2Z) has a rational point, where Z/2Z ⊂ J acts by translation;

(III) the elliptic curve ˜︁E has full two-torsion, i.e. ˜︁E[2](k) = ˜︁E[2](kalg);

Each assumption is needed critically in one of the outlined steps. The above enumeration corresponds
directly to the associated step. For example, assumption (II.2) will be necessary in Step 2.2. The optional
additional assumption that E and J are non-isogenous yields a stronger non-existence result, in view of
Corollary 4.3.13.
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5.1 Constructing the µ2-cover Y → C ×D

Self-duality of elliptic curves yields the natural identification Pic0C/k = Pic0E/k = E. The rational

point P ∈ E[2](k) corresponds to the class of an invertible sheaf LC ∈ Pic0C/k[2](k). Similarly, let

LD ∈ Pic0D/k[2](k) be the class of the invertible sheaf corresponding to Q ∈ J [2](k). The pair (P,Q) ∈
Pic0C/k(k) × Pic0D/k(k) = Pic0C×D/k(k) considered as datum of an invertible sheaf is denoted pr∗CLC ⊗
pr∗DLD. Recall the commutative diagram (2.3.4) with exact rows, in which we set H = µ2.

0
k∗/k∗2

⊕
k∗/k∗2

H1(C, µ2)
⊕

H1(D,µ2)

E[2](k)
⊕

J [2](k)

Br(k)[2]
⊕

Br(k)[2]

H2(C, µ2)
⊕

H2(D,µ2)

0 k∗/k∗2 H1(C ×D,µ2) (E × J)[2](k) Br(k)[2] H2(C ×D,µ2)

mult pr∗C+pr∗D

∂E⊕∂J

∼= +

(5.1.1)

The cokernel of k∗/k∗2 → H1(X,µ2) is canonically isomorphic to the Picard group Pic(X), cf. Kummer
theory of Section 1.4, which we apply to X = C, D and C×D. The obstruction in Br(k)[2] then measures
whether the point on the Picard scheme comes from an actual invertible sheaf. If so, the choice of
global nowhere vanishing section of its second tensor power determines the µ2-torsor, corresponding to a
pre-image in H1(X,µ2). Since the obstructions for LC and LD are equal by virtue of assumption (I), the
contribution from the two factors cancel and the obstruction vanishes on the product.

Lemma 5.1.1. L = pr∗CLC ⊗ pr∗DLD is an invertible sheaf of order 2 on C ×D.

Notation 5.1.2. Pick a global section OY
∼−→ L ⊗2. Let Y → C ×D be a µ2-torsor corresponding to

the pair (L , s).

If α is trivial, then we can argue similarly on the factors that there are µ2-torsors ˜︁C → C and ˜︁D → D,
by choice of sections of L⊗2

C and L⊗2
D . Choosing the sections correctly, we can exhibit Y as the quotient

Y ∼= ( ˜︁C × ˜︁D)/µ2, cf. Theorem 2.3.18. Conversely, non-vanishing of α prohibits Y being a quotient of this
form. The stronger results Theorem 2.3.20 and Corollary 2.3.23 eliminate further possibilities for Y to be
isomorphic to a quotient of a product of two para-elliptic curves, the latter relying on the assumption
that E and J are non-isogenous.

Let A be the associated abelian surface of Y . Then the sequence

1 −→ µ2 −→ A −→ E × J −→ 0,

is short exact. The obstruction plays no role in the setting of abelian varieties, due to the existence of
rational points, cf. Proposition 2.3.12. We thus define covers ˜︁E → E and ˜︁J → J such that A is the
quotient A = ( ˜︁E × ˜︁J)/µ2. In some sense, although the para-elliptic curves ˜︁C and ˜︁D may not exist, their
associated elliptic curves do exist. For later reference we recall from Proposition 2.3.11 that the following
diagram is commutative with exact rows and exact first column.

1

1 µ2
˜︁E × ˜︁J A 0

1 µ2 × µ2
˜︁E × ˜︁J E × J 0

1 µ2 A E × J 0

1

∆ id

mult idid

(5.1.2)
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5.2 Constructing the involution on Y

In this step we construct two involutions on Y , the first being a translation involution σtransl, and the
second being a family of sign involutions σsgn over C; see the corresponding subsections below. Let σ be
the composition σ = σtransl ◦ σsgn on Y . Taking for granted that the description over an algebraically
closed field is as in the introduction, we can already formulate the following result.

Proposition 5.2.1. The automorphism σ is an involution on Y . After base-change to an algebraic
closure it lifts to an involution

(x, y) ↦−→ (x+ ˜︁P , ψ(y) + ˜︁Q), (5.2.1)

on ˜︁C × ˜︁D, where ˜︁P ∈ ˜︁E[2](kalg) and ˜︁Q ∈ ˜︁J [2](kalg), and where ψ is a sign involution on ˜︁Dalg.

Proof. Suppose without loss of generality that k = kalg. Since then the obstruction α vanishes, we regard
Y as a quotient of ˜︁C × ˜︁D. The involutions σtransl and σsgn lift to the cover ˜︁C × ˜︁D by construction, and σ
is of the form as described above; see Proposition 5.2.4 and Theorem 5.2.12 below.

From this it follows that σ indeed defines a Z/2Z-action on Y , whose properties we study in the next
step. First we study two involutions σtrans and σsgn in more detail.

5.2.1 A translation automorphism

The automorphisms which ‘act by translation’ on a para-abelian variety correspond directly to the rational
points on the associated abelian variety A of Y ; therefore this step is essentially concerned with the
existence of a suitable rational two-torsion point on A. Note that diagram (5.1.2) contains a multitude of
short exact sequences, with maps between them. By naturality, there are morphisms between the long
exact sequences, as follows.

1 µ2(k) ˜︁E(k)× ˜︁J(k) A(k) k∗/k∗2 · · ·

1 µ2(k)× µ2(k) ˜︁E(k)× ˜︁J(k) E(k)× J(k) k∗/k∗2 × k∗/k∗2 · · ·

1 µ2(k) A(k) E(k)× J(k) k∗/k∗2 · · ·

∆ id ∆

mult

δE×δJ

id multid

(5.2.2)

Our interest is directed to the boundary maps δE and δJ . Recall that assumption (II.1) states that
δE(P ) = δJ(Q) = β in k∗/k∗2. Multiplied together the obstruction equals β2, which equals the trivial
element of k∗/k∗2. From (5.2.2) we can directly conclude that there is a pre-image in A(k).

Lemma 5.2.2. There is an element R ∈ A(k) mapping to (P,Q) ∈ E(k)× J(k).

The abelian variety A acts freely and transitively on Y . The element R ∈ A(k) hence defines a
automorphism of Y , which after base-change to an algebraic closure and choice of a rational point
determining an isomorphism Y ∼= A corresponds to the translation map x ↦→ x+R. The following result
is important to have a well-defined Z/2Z-action.

Lemma 5.2.3. The rational point R is two-torsion.

Proof. This can be verified after base-change to an algebraic closure. Consider the diagram (5.2.2) with

kalg-points instead. Then there is a pre-image ( ˜︁P , ˜︁Q) ∈ ˜︁E(kalg)× ˜︁J(kalg) of (P,Q) that maps to R. It

suffices to verify that ˜︁P and ˜︁Q are two-torsion. This follows from considering a pre-image of ˜︁P under the
dual isogeny E → ˜︁E, which hence doubles to P . Since P lies in the kernel of this dual isogeny, it indeed
follows that 2 ˜︁P = 0. The argument for ˜︁Q is analogous.

Translation by R hence defines an involution on Y , which we denote by σtransl. The following result is
clear.

Proposition 5.2.4. If α = 0 and β = 1, then σtransl lifts to an involution on ˜︁C × ˜︁D of the form
(x, y) ↦→ (x+ ˜︁P , y + ˜︁Q), for ( ˜︁P , ˜︁Q) ∈ ˜︁E(k)× ˜︁J(k).
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We note the similarities between this step and Step 1: the bottom two rows of (5.2.2) in some sense
resemble (5.1.1). In both cases, there are cohomological obstructions in Hi(k, µ2) for i = 1, 2 on the two
factors. Because the sum is trivial, the obstruction vanishes on the product C ×D, which yields the
existence of some object, i.e. either a rational point in A(k) or an invertible sheaf on C ×D.

Although for our purposes it would be sufficient to treat the case where β = 1 in k∗/k∗2 is trivial,
the added generality of a non-vanishing β can be potentially helpful, since there can be non-trivial
relationships between the cohomology classes of α and β, cf. Remark 6.3.29. The explicit example we
construct in Section 5.4 does admittedly have β = 1.

5.2.2 A family of sign involutions

We now construct a family of sign involutions on Y , considered as family of para-elliptic curves over
C. Throughout we treat C as base scheme. Although we developed the theory of para-abelian varieties
and the associated abelian variety in Section 2.1 over a field, it is treated in §4 of [LS23] over general
base schemes. Note that op. cit. is set in the context of algebraic spaces, which is convenient for the
representability of Picard schemes and automorphism group schemes. In our context, we stay in the
realm of schemes, since separated group algebraic spaces (i.e. group objects in the category of algebraic
spaces) over a noetherian base of dimension 1 are schematic by Thm. 4.B. of [Ana73].

The para-abelian surface Y is elliptic in the sense of Section 2.3 because of the morphism Y → C. On
the level of associated abelian varieties, there is hence a short exact sequence

0 −→ ˜︁J −→ A −→ E −→ 0,

see (2.3.1). Therefore ˜︁J acts on Y through its inclusion in A. The action is by translation and preserves

the fibres of the morphism Y → C. Let ˜︁JC be the base-change ˜︁J × C, considered as scheme over C.
Then ˜︁JC acts on Y → C, also considered as scheme over C. This action gives Y → C the structure of
a ˜︁JC-torsor, hence defines a cohomology class [Y/C] ∈ H1(C, ˜︁JC). We generalise the notion of a sign
involution to the setting where C is a base scheme.

Definition 5.2.5. An involution of Y over C is a family of sign involutions if it restricts to a sign
involution in every fibre.

We first show that we may consider only the generic fibres without loss of generalisation. Let K = κ(C)
be the function field and let η = Spec(K) denote the generic point of C. Let Yη denote the generic fibre,

which is a para-elliptic curve over K. It is a torsor under ˜︁JK = ˜︁J × Spec(K).

Proposition 5.2.6. A sign involution on the generic fibre Yη extends to a family of sign involutions on
Y over C.

Proof. Let k′/k be a finite separable field extension such that Y and hence C have k′-valued points. They
admit the structure of abelian varieties over k′. From Prop. 8 on p. 15 of [BLR90] it follows that the base
change Y ′ → C ′ is the Néron model of its generic fibre. Furthermore Thm. 1 on p. 176 of op. cit. asserts
that the Néron model of Yη → Spec(K) exists. Let Z → C denote the Néron model, then the natural
map Y → Z is an isomorphism after base change to k′ by loc. cit.

Since the generic fibre Yη is a para-elliptic curve over the function field K, the existence of sign

involutions is governed by whether the cohomology class of Yη in the Weil–Châtlet group H1(K, ˜︁JK) is
two-torsion; see Corollary 2.2.13.

Remark 5.2.7. The weaker fact that the existence of a sign involution on the generic fibre implies the
existence of a family of sign involutions may be shown using a cohomological argument. Suppose that the
period of Yη is 2. Note that the restriction map H1(C, ˜︁JC)→ H1(K, ˜︁JK) is injective, because a rational

point on the generic fibre of a ˜︁JC-torsor Z over C induces a rational map C ‧‧➡ Z that extends to a
morphism by the valuative criterion of properness. Then the cohomology class [Y/C] ∈ H1(C, ˜︁JC) is
two-torsion. The equality [Y/C] = −[Y/C] determines a scheme theoretic isomorphism ψ : Y

∼−→ Y such

ψ(x+ y) = ψ(x)− y, for x ∈ Y (S) and y ∈ ˜︁J(S), and S a scheme over C. One can then verify fppf-locally
that ψ indeed determines a family of sign involutions.
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We control the order of [Yη] in H1(K, ˜︁JK) using the µ2-torsor Y → C×D, or its generic fibre Yη → DK .

It turns out that, although the cover ˜︁D → D may be obstructed to exist by the cohomology class α, the
para-elliptic curve Yη plays the role of ˜︁DK over the function field K, in the following sense.

Lemma 5.2.8. Under the natural map ˜︁JK → JK , the cohomology class [Yη] in H1(K, ˜︁JK) maps to the
cohomology class [DK ] in H1(K,JK).

Proof. Note that the µ2-action of the torsor Y → C × D coincides with the translation action of
µ2 ⊂ ˜︁J ⊂ A. Since Y/µ2

∼= C ×D, it follows on the level of generic fibres of the canonical morphisms to

C that DK
∼= Yη/µ2,K = Yη ∧µ2,K ˜︁JK as JK-torsors.

The existence of such a cohomology class is explained by the following fact, which can also be seen as
a consequence, though we provide a separate proof.

Proposition 5.2.9. The Brauer class α vanishes in Br(K).

Proof. The Brauer class α as element of Br(k) is assumed to obstruct the existence of an invertible sheaf
on C; see assumption (I). Consider the five term exact sequence (1.3.5) associated to the Leray–Serre
spectral sequence for C with coefficients in Gm:

0 −→ Pic(C) −→ PicC/k(k) −→ Br(k) −→ Br(C).

Exactness implies that α lies in the kernel of the natural map Br(k)→ Br(C). Since Br(C) ⊂ Br(K), it
follows indeed that α vanishes in the Brauer group of the function field of C.

The vanishing of α in Br(K) means that the classes LC ⊗K and LD ⊗K define invertible sheaves of
period 2 on CK and DK respectively. Therefore the their corresponding µ2-covers can also be defined,
uniquely up to an element of K∗/K∗2. We rephrase Lemma 5.2.8 in a different way, which is equivalent

in light of the lifting property: for any choice of µ2-torsor ˜︁D → D, the curve ˜︁D is para-elliptic and can
be equipped with the structure of a ˜︁J-torsor, whose cohomology class maps to [DK ] ∈ H1(K,JK); see
Theorems 1.3.4 and 1.3.5. The following formulation allows us to give a more concrete proof.

Lemma 5.2.10. The µ2,K-torsor Yη → DK corresponds to the invertible sheaf LD ⊗K.

Proof. Consider the following Cartesian square:

Yη DK

Y C ×D

πη

iY iD

π

Note that π∗OY = OC×D ⊕L , since π : Y → C ×D is a µ2-torsor attached to L . Restricting to the
generic fibres, we also find that

πη,∗OYη = πη,∗i
∗
YOY ∼= i∗Dπ∗OY = i∗D(OC×D ⊕L ) = ODK

⊕ i∗DL .

Here the isomorphism follows from Prop. III.9.3 of [Har13], since π is proper and the open immersion
iD is flat. It hence suffices to show that there is an isomorphism i∗DL ∼= LD ⊗K. To this end, we may
without loss of generality base-change the ground field and suppose that k is algebraically closed. Then
the obstruction α vanishes, so L is isomorphic to a tensor product L = pr∗CLC ⊗ pr∗DLD, where LC and
LD are invertible sheaves on C and D, respectively. Since

DK Spec(K)

C ×D C

pDK

iD iη

prC

is commutative, it follows that

i∗DL = i∗Dpr
∗
CLC ⊕ i∗Dpr∗DLD = p∗DK

i∗ηLC ⊕ (LD ⊗K) = LD ⊗K.
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Instead of choosing a single sign involution on Yη = ˜︁DK over K, for technical reasons we need to pick

a sign involution on ˜︁Dk′ for each field extension k′/k where α vanishes in Br(k′), but in a consistent

manner. For each such k′/k, pick a µ2-torsor ˜︁Dk′ → D′ corresponding to Q ∈ J [2](k′). In some sense,˜︁Dk′ should be thought of as the base change of the scheme ‘ ˜︁D’, even though the latter is obstructed from
existing as a torsor. The lifting property then equips it with the structure of a ˜︁J ′-torsor, extending the
action of µ2; see Theorem 1.3.5.

Proposition 5.2.11. Let k′/k be a field extension such that α vanishes in Br(k′). The cohomology

class [ ˜︁Dk′ ] ∈ H1(k′, ˜︁J ′) maps to [D] ∈ H1(k′, J ′) under the natural map induced by ˜︁J ′ → J . Therefore,

assumption (II.2) implies that 2[ ˜︁Dk′ ] = 0 in H1(k, ˜︁J ′), so that it admits a sign-involution.

Proof. The first statement follows from the lifting property Theorem 1.3.4. The composition of the dual
isogenies ˜︁J → J → ˜︁J is multiplication by 2. Therefore 2[ ˜︁Dk′ ] is the image of [D′] under the natural

map H1(k′, J ′)→ H1(k′, ˜︁J ′). This image is the cohomology class of the quotient D′/(Z/2Z), which has a
rational point by (II.2). The existence of a sign involution then follows from Corollary 2.2.13.

To construct the sign involutions in a consistent manner, we fix an isomorphism D/(Z/2Z) ∼= ˜︁J
over k by choice of rational point. Then, for any k′/k such that α vanishes in Br(k′), the composition˜︁Dk′ → ˜︁D′ → ˜︁J is a two-covering, which induces a sign involution on ˜︁Dk′ through (2.2.5) of Section 2.2.

If k′′/k′ is a further field extension, then the sign involution on ˜︁Dk′′ constructed in this manner is the

base-change of the sign involution on ˜︁Dk′ .

Theorem 5.2.12. There exists a family of sign involutions σsgn on Y over C may be chosen satisfying

the following property. Let k′/k be a field extension such that α vanishes in Br(k′) and pick curves ˜︁C ′

and ˜︁D′ such that Y ′ = ( ˜︁C ′ × ˜︁D′)/µ2. Then there is a sign involution ψ on ˜︁D′ such that the following
diagram is commutative. ˜︁C ′ × ˜︁D′ ˜︁C ′ × ˜︁D′

Y ′ Y ′

id×ψ

σ′
sign

Proof. Consider the sign involution constructed above on the generic fibre Yη = ˜︁DK . It extends to a
family of sign involutions σsgn on Y by Proposition 5.2.6.

Let k′/k be a field extension such that α vanishes in Br(k′), so that the factors ˜︁Ck′ and ˜︁Dk′ exist over
k′.

We consider Y ′ as a scheme over C ′, as before. The base-change along ˜︁Ck′ → C ′ is the cover˜︁Ck′ ×C′ Y ′ = ˜︁Ck′ × ˜︁Dk′ , hence the base-change of σ′
sgn determines a morphism Ψ: ˜︁Ck′ × ˜︁Dk′ → ˜︁Ck′ × ˜︁Dk′

over ˜︁Ck′ such that the required diagram is commutative. Restricting Ψ to the generic fibre determines a
sign involution on ˜︁D ˜︁K′ over the function field ˜︁K ′ = κ( ˜︁Ck′). By construction, it is the base change of a

sign involution ψ on ˜︁Dk′ over k
′.

Remark 5.2.13. The choice of isomorphism D/(Z/2Z) ∼= ˜︁J in sense determines a sign involution on

‘ ˜︁D’, except that this scheme is obstructed from existing by the non-vanishing of α. Instead, fixing the
isomorphism determines consistent sign involutions on each ˜︁Dk′ .

The choice of consistent sign involutions is crucial in above proof to assert that Ψ is of the form id×ψ.
It is in general not true that a family of sign involutions on a product ˜︁C × ˜︁D over ˜︁C is of the form id× ψ
for a sign involution on ˜︁D: consider for example the case where ˜︁C = ˜︁D = E are elliptic curves, then the
involution (x, y) ↦→ (x, x− y) is not of the required form. Such an involution would cause the proof of
Proposition 5.2.1 to break, as then (x, y) ↦→ (x+ P, x− y +Q) would no longer be an involution.

This problem disappears if we assume that C and D are not geometrically isogenous. This can be seen
using the scheme of sign involutions of [BDS24], cf. the discussion surrounding Theorem 2.2.14. Let E be
an elliptic curve and let K = κ(E) be its function field. Restricting above problematic involution to the
generic fibre EK , it corresponds to a K-point on the scheme of sign involutions InvsgnEK/K

= InvsgnE/k ⊗ k,
namely the base-change to K of the inclusion of the generic point of E. If C and D are geometrically
not isogenous, then a κ( ˜︁C)′-point on Invsgn˜︁Dk′/k′

⊗ κ( ˜︁C)′ comes from a closed point on the scheme of sign

involutions.
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5.3 Constructing the bielliptic surface

We equip Y with the Z/2Z-action determined by the involution σ.

Proposition 5.3.1. The quotient X = Y/(Z/2Z) is a bielliptic surface of type (a2), and Y → X is a
canonical cover.

Proof. We base-change to an algebraic closure. The µ2-action on ˜︁C × ˜︁D determined by the covering˜︁C× ˜︁D → Y commutes with the action of Z/2Z determined by σ. It follows that X = ( ˜︁C× ˜︁D)/(µ2×Z/2Z).
The action of Z/2Z is given by (5.2.1), and the action of µ2 is by translation. We see that the action of
µ2 × Z/2Z coincides with type (a2) of the BdF-classification Theorem 3.4.4, so indeed X is a bielliptic
surface, and Y → X is a choice of canonical cover.

There are compatible actions on the factors C and D. Equip C with the Z/2Z-action given by
translation by P ∈ E[2](k), and equip D with the Z/2Z-action given by translation by Q ∈ J [2](k),
composed with the sign involution. Note that the maps Y → C and Y → D are Z/2Z-equivariant. Let
P = C/(Z/2Z) and B = D/(Z/2Z). Note that P is a torsor under E/(Z/2Z) = ˜︁E.

Proposition 5.3.2. The induced maps X → P and X → B are the Albanese fibration and the other
fibration, respectively.

Proof. This is clear after base-change to an algebraic closure. Indeed, the involutions x ↦→ x+ ˜︁P and
y ↦→ ψ+ ˜︁Q on the factors ˜︁C and ˜︁D induce above involutions on the quotients P and B, respectively. And
from the structure theorem Theorem 3.4.1 it follows that the two fibrations are given by the projections

˜︁C/(µ2 × Z/2Z) C/(Z/2Z) P

˜︁C × ˜︁D
µ2 × Z/2Z

˜︁D/(µ2 × Z/2Z) D/(Z/2Z) B

This finishes the proof.

Given our construction of the bielliptic surface X, it should not be surprising that it admits no
BdF-cover over the canonical cover Y . In order to show this rigorously, we return to the fundamental
diagram of the lifting property of Section 4.2. In this context, we identify ˜︁E = F = PicαX/k, so the
diagram (4.2.4) becomes

...

· · · k∗/k∗2 H1(k, ˜︁E) H1(k,E) Br(k)[2] · · ·

· · · H1(k, ˜︁E[2]) H1(k, ˜︁E) H1(k, ˜︁E) H2(k, ˜︁E[2]) · · ·

· · · H1(k,Z/2Z) H1(k,E) H1(k, ˜︁E) H2(k,Z/2Z) · · ·

...

id

id

δ

id

2

(5.3.1)

Theorem 5.3.3. The bielliptic surface X is obstructed to have a BdF-cover over Y by α.
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Proof. The choice of canonical cover Y → X is equivalent to the choice of [C] ∈ H1(k,E) mapping to

[P ] ∈ H1(k, ˜︁E). By Lemma 1.3.3, its image in Br(k)[2] equals ∂C(P ) ∈ Br(k)[2], which is α.

Of course, it may still be possible that X admits a BdF-cover over a different choice of canonical cover.
The obstruction for a different choice of canonical cover differs by the image of an element of H1(k,Z/2Z)
under the boundary map δ, so that X nevertheless admits a BdF-cover if and only if α is contained in
the image of δ. As such, we invoke the last unused assumption.

Corollary 5.3.4. If α ̸= 0 then the bielliptic surface X does not admit a Bagnera–de Franchis cover.

Proof. Assumption (III) states that E has full two-torsion. This implies that the short exact sequence

0 → µ2 → ˜︁E[2] → Z/2Z → 0 splits, so that the boundary map δ is 0. By injectivity of Br(k)[2] →
H2(k, ˜︁E[2]) the image of [P ] ∈ H2(k,E[2]) is also nonzero.

5.4 Constructing the building blocks

The construction of the bielliptic surface X depends on elliptic curves E and J , with torsors C and D
and rational points P and Q, respectively, satisfying suitable properties. As a fourth or zeroth step, we
construct suitable examples of these building blocks, under the assumption that the characteristic is not
2. This construction relies on a detailed study of para-elliptic curves and certain boundary maps if p ̸= 2,
which we postpone to Chapter 6. We briefly describe the main results that we invoke from the upcoming
chapter.

• Corollary 6.1.22: an explicit description of a para-elliptic curve of period two;

• Proposition 6.2.1: an explicit formula of the boundary maps δE and δJ ;

• Corollary 6.3.19: the calculation of the boundary maps ∂C and ∂D on two-torsion points.

Proof of Theorem 5.0.1. Suppose that Br(k)[2] ̸= 0. By the Merkurjev–Suslin theorem [Mer81; Wad86]
the two-torsion of the Brauer group is generated by cohomology classes of quaternion algebra’s. Pick a
non-trivial quaternion algebra α = (λ, µ)k. Without loss of generality suppose that λ ̸= −1, by multiplying
λ by a nonzero square, if necessary.

Let a = λ+ λ−1 and define the elliptic curve E by the affine equation

E : y2 = x3 + ax2 + x

= x(x+ λ)(x+ λ−1).
(5.4.1)

The requirement that λ ≠ −1 is necessary for E to be an elliptic curve. We enumerate the roots of the
right hand side cubic polynomial as α1 = 1, α2 = −λ, α3 = −λ−1.

Consider the rational two-torsion point P = (0, 0). We define the E-torsor C = E ∧µ2 k(
√
µ), where

µ2 acts on E by translation by (0, λ). In other words, the cohomology class [C] in H1(k,E)[2] is the
image of µ ∈ k∗/k∗2 under the natural map H1(k, µ2)→ H1(k,E[2])→ H1(k,E)[2], where µ2

∼= Z/2Z is
considered as a subgroup scheme of E[2] through the 2-torsion point (0, λ). In notation of Section 6.1,
the cohomology class of [C] equals v(µ, 1, µ). By Corollary 6.1.22 below, we can describe C explicitly
through the system of equations {︄

−λt20 − µt21 + t22 = 0;

−λ−1t20 − µt21 + µt23 = 0,

in P4. Alternatively, since C is the twist of E by a quadratic Galois extension along translation by a
two-torsion point, we are in the situation of Example 6.1.24, at least after translating P to the origin
(0, 0) by applying the substitution x ↦→ x− λ. Then the elliptic curve E has affine Weierstraß equation
given by y2 = x3 − (2λ+ λ−1)x2 + (λ2 + 1)x, so that an explicit affine equation of C is given by

µW 2 = λ2Z4 − 2(2λ+ λ−1)µZ2 + µ2.

There is a considerable amount of choice for the elliptic curve J . Let J be an elliptic curve of the form

J : y2 = x3 + µ(1 + b2)x2 + µ2b2x

= x(x+ µ)(x+ µb2),
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where b ̸= 0, 1 is an otherwise arbitrary element of k. By choosing b sufficiently general, it should
be possible for the elliptic curves J and E to not be geometrically isogenous. Consider the rational
two-torsion point Q = (0, 0). Now define the J-torsor D as D = J ∧Z/2Z k(

√
λ), where Z/2Z acts on J

by translation by the two-torsion point (0,−µ). Similarly to C, it can be described by the system of
equations {︄

−λt20 − µt21 + t22 = 0;

−λ−1t20 − µt21 + µt23 = 0,

in P4, or by the affine equation

λW 2 = µ2b4Z4 − 2λµ(b2 − 2)Z2 + λ2.

We verify that this datum satisfies the assumptions (I), (II.1), (II.2), and (III), in this order. For the
computation of the Brauer classes associated to P and Q we invoke Corollary 6.3.19 below: it follows
directly that

∂C((0, 0)) = (λ, µ)k + (λ−1, 1)k = (λ, µ)k;

∂D((0, 0)) = (µ, λ)k + (b2µ, 1)k = (µ, λ)k = (λ, µ)k.

For the computations of the images of P and Q in k∗/k∗2 under the boundary maps δE and δJ ,
respectively, we invoke Proposition 6.2.1 to see that

δE((0, 0)) = 1 and δJ((0, 0)) = b2µ2,

which are both squares and hence equal β = 1 in k∗/k∗2.
We now verify assumption (II.2). By construction, the cohomology class [D] in H1(k, J) is the image

of the cohomology class [Spec k(
√
µ)/ Spec k] in H1(k,Z/2Z) under the natural map determined by the

inclusion of the subgroup scheme Z/2Z ⊂ J through Q ∈ J [2](k). In fact, the short exact sequence

0→ Z/2Z→ J → ˜︁J → 0 induces a long exact sequence

· · · −→ H1(k,Z/2Z) −→ H1(k, J) −→ H1(k, ˜︁J) −→ · · · ,
so that [D] is contained in the kernel. This shows that D ∧J ˜︁J = D/(Z/2Z) ∼= ˜︁J has a rational point.

Finally consider assumption (III). Following Section 6.2, equations for ˜︁E are well-known, see (6.2.1).

In our case ˜︁E is the elliptic curve given by˜︁E : y2 = x3 − 2ax2 + (a2 − 4)x

= x(x− a− 2)(x− a+ 2),

which has full two-torsion.

Remark 5.4.1. We verify concretely that in the above construction, the boundary map δ of (5.3.1) vanishes,
as is key in the proof of Corollary 5.3.4. Enumerating the roots of f = x3 + ax2 + x by α1 = 0, α2 = −λ,
α3 = −λ−1, then in the notation of Corollary 6.1.22 the cohomology class [C] ∈ H1(k,E) equals v(µ, 1, µ)
as in above proof. Let [Cν ] denote its translate by the image of [ν] ∈ k∗/k∗2 = H1(k,Z/2Z) in H1(k,E),
where Z/2Z → E is induced by the two-torsion point (0, 0) ∈ E(k). Then [Cν ] = v(µ, ν, νµ), so we
calculate its obstruction for (0, 0) ∈ E[2](k) through Corollary 6.3.19: it equals

(λ, νµ)k + (λ−1, ν)k = (λ, νµ)k + (λ, ν)k = (λ, µ)k = α.

Note that this does not depend on the choice of λ, corresponding to the fact that δ = 0; see Proposi-
tion 4.2.11.

Remark 5.4.2. The theory of two-descent of Chapter 6 breaks down in characteristic 2. A technical
obstacle is that the two-torsion group scheme of an elliptic curve E is no longer étale, so that E[2] cannot
be seen as a restriction of scalars of µ2. Nevertheless, it could very well be possible to produce examples
of para-elliptic curves with a given quaternion algebra as obstruction. (For a definition and discussion of
quaternion algebras in characteristic two, see §6 of [Voi21].) If so, then it seems likely that Theorem 5.0.1
extends to characteristic 2 as well.
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Chapter 6

The arithmetic of para-elliptic curves

In the previous chapter we constructed a bielliptic surface of type (a2) over a field with p ̸= 2 that does
not admit a Bagnera–de Franchis cover. This construction relies on para-elliptic curves C and D as
‘building blocks’, with certain assumptions regarding their cohomological obstructions. We postponed the
justification of the construction. In this Chapter we develop the theory of the arithmetic of para-elliptic
curves from an algebro-geometric perspective sufficiently to obtain the required results, as alluded to at
the start of Section 5.4. All results in this chapter are known to the expert in number theory.

In Section 6.1 we develop the theory of two-descent if p ̸= 2 and use it to give explicit descriptions
of para-elliptic curves of period 2. We discuss the relation to the theory of descent by two-isogeny and
describe the boundary map δE in Section 6.2. Finally Section 6.3 is concerned with the boundary map
∂C .

6.1 Two-descent on elliptic curves

In this section we summarise the arithmetic theory of descent on elliptic curves from the perspective of
algebraic geometry. We warn the reader that the only similarity with Grothendiecks theory of descent
(including Galois descent, étale descent and fppf-descent) is the similar name. Historically, it arose from
attempts to compute the group of rational points of elliptic curves over number fields. Geometrically,
it concerns the study of torsors under elliptic curves of a given period n > 1. We first motivate the
theory from the perspective of number theory, then treat the theory of two-descent in more detail from
an algebro-geometric perspective.

Let E be an elliptic curve over a number field k. The celebrated Mordell–Weil theorem states that
the group of rational points E(k) is finitely generated. It is therefore isomorphic as an abstract group
to Zr ⊕ E(k)tors; see Thm. VIII.6.7 of [Sil09]. The integer r ≥ 0 is called the rank of the elliptic curve
E over k. It is an important invariant in the arithmetic of elliptic curves, arising, for example, in the
famous Birch–Swinnterton-Dyer conjecture. Determining the rank is in general a difficult computational
problem, which is in some sense equivalent to solving the Diophantine equation set out by the Weierstraß
equation of E. Indeed, the torsion part can be computed effectively using the Nagell–Lutz theorem; see
e.g. Cor. VIII.7.2 of op. cit. The theory of n-descent provides a strategy for computing the rank.

The proof of the Mordell–Weil theorem depends crucially on the following fact: for any n > 1, the
quotient E(k)/nE(k) is finitely generated; see §VIII.3.2 of op. cit. This fact is often referred to as the
weak Mordell–Weil theorem. The proof of the Mordell–Weil theorem is constructive given generators of
E(k)/nE(k): knowledge of the latter is sufficient to compute generators of E(k) algorithmically. We
study the quotient with cohomological methods. In analogy to Kummer theory, consider the short exact
sequence

0 −→ E[n] −→ E
n−−→ E −→ 0. (6.1.1)

Its long exact sequence yields the short exact sequence

0 −→ E(k)/nE(k) −→ H1(k,E[n]) −→ H1(k,E)[n] −→ 0. (6.1.2)

We can therefore identify the quotient E(k)/nE(k) with the kernel of the natural map H1(k,E[n]) →
H1(k,E). This is the starting point of the theory of n-descent, but the description is too abstract for
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many computational purposes: we are instead interested in a more concrete description of this abstract
group. The theory of n-descent attempts to find an explicit isomorphism between H1(k,E[n]) and a
sufficiently concrete abstract group, and to describe the image of any element in the Weil–Châtelet group
H1(k,E).

We warm the reader that theory of n-descent, though related, is ultimately different from the theory
called called descent by n-isogeny, despite the similar sounding names. We briefly describe the latter: let
f : E1 → E2 be an isogeny of elliptic curves of degree n with kernel K. Consider the short exact sequence

0 −→ K −→ E1 −→ E2 −→ 0,

whose long exact sequence yields

0 −→ E2/f(E1(k)) −→ H1(k,K) −→ H1(k,E1)[f∗] −→ 0.

This short exact sequence refines the short exact sequence (6.1.2). We briefly summarise the theory of
descent by two-isogeny in Section 6.2.

So far, the short exact sequences can be constructed over any ground field. In a number theoretic
context, the ground field k is often assumed to be a number field. Then one usually refines the short
exact sequence (6.1.2) by taking the Hasse principle into account. It wrongly states that a para-elliptic
curve has a rational point if and only if it has a point over all completions kv. Many counterexamples are
known, the most famous of which is due to Selmer and is described by the cubic curve 3x3+4y3+5z3 = 0
in P2 over Q; see [Sel51]. For other examples, see e.g. §18 of [Cas91] or pp. 331–334 of [SC21]. The short
exact sequence (6.1.2) can be refined by considering only those cohomology classes that violate the Hasse
principle. To that end, we define the Tate–Shafarevich group and the n-Selmer group as

X(E/k) := Ker
(︂
H1(k,E) −→

∏︂
v

H1(kv, Ev)
)︂
;

Sel(n)(E/k) := Ker
(︂
H1(k,E[n]) −→

∏︂
v

H1(kv, Ev)
)︂
,

respectively, where v ranges over all places of k and where Ev = E ⊗ kv. Note that an element of the
Shafarevich group determines a para-elliptic curve that has a rational point over every completion, hence
produces a counterexample to the Hasse principle. Then the short exact sequence (6.1.2) is often replaced
by the short exact sequence

0 −→ E(k)/nE(k) −→ Sel(n)(E/k) −→X(E/k)[n] −→ 0.

In the following sections we work in a more general setting, where the ground field may not be global, so
we do not consider the Shafarevich and Selmer groups further.

From now on we treat the case of two-descent only, corresponding to setting n = 2. Descent by
n-isogeny for n > 2 has been studied in the literature: for a non-exhaustive list, we refer to [GT22] for
n = 3, [Fis01] for n = 5 and 7, and [DSS00; SS04] for arbitrary prime numbers. The theory is considerably
more technical if n > 2.

We cover the theory of two-descent from an algebro-geometric perspective, where we work over a
general base scheme on which 2 is invertible for as long as possible. From a certain point onwards, we work
over fields of characteristic not 2 only, we restrict ourselves to a ground field. The theory of two-descent
is well-known topic in number theory. Most number theoretic books with an interest in computing the
group of rational points contain elementary expositions: see for example §X of [Sil09] or §8 of [Hus04].
We note that the theory of two-descent seems to generalise quite well to Jacobians of hyperelliptic curves,
as for example in [Sch95; CV15]. The remainder of this section essentially follows and expand upon App.
A of [Cre16].

The assumption that 2 is invertible seems to be necessary for our approach. It would be interesting
to additionally generalise the theory to characteristic 2 as well, since it could potentially be used in
constructing construct an ordinary bielliptic surface of type (a2) with a nonzero obstruction to admit a
Bagnera–de Franchis cover, cf. Chapter 5.

Let S be a locally noetherian base scheme on which 2 is invertible. Let E be an elliptic curve over S.
Let X be the relatively affine open subscheme of E[2] by removing the identity section and let i : X → E[2]
be the inclusion. Recall the Weil pairing, which on two-torsion points is a perfect alternating pairing

e2 : E[2]× E[2] −→ µ2,
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with e2(P, P ) = 1 for all P ∈ E[2](T ) and all schemes T ; see e.g. §2.8 of [KM85] for the definition over a
base scheme. For each scheme T , we define a map

E[2](T )×Hom(T,X) −→ µ2(T );

(P,φ) ↦−→ e2(P, i ◦ φ).

This defines a morphism E[2]×X → µ2, so by the universal property of the restriction of scalars also a
map E[2]→ ResX/S µ2,X .

Example 6.1.1 (Universal two-torsion point). Suppose S = Spec(k) and E : y2 = f(x) is given in a short
Weierstraß form. Then the two-torsion subgroup scheme is Spec(k) ⊔ Spec(A), where A = k[x]/(f). Let
θ denote the image of x in A. Then the A-valued two-torsion point i ◦ φ is given in coordinates by (θ, 0).

Example 6.1.2. Suppose that P ∈ E[2](S) is nonzero, defining a subgroup scheme Z/2Z ⊂ E[2]. Let
Y = E[2] \ (Z/2Z), so that X = Spec(S) ⊔ Y as a scheme. Then the natural map E[2]→ ResX/S µ2,X =
µ2 × ResY/S µ2,Y is induced by the pair of maps

E[2] −→ µ2, Q ↦−→ e2(Q,P ); and

E[2]× Y −→ µ2, (Q,ϕ) ↦−→ e2(Q, j ◦ ϕ),

where j : Y → E[2] denotes the inclusion. In particular, the composition Z/2Z→ E[2]→ µ2×ResY/S µ2,Y

is given by P ↦→ (1,−1).

Example 6.1.3. If E[2] ∼= (Z/2Z)2, then X consists of the disjoint union of three copies of Spec(S),
corresponding to the three non-identity points P1, P2, P3 of E[2]. It follows that in this case the map
E[2]→ ResX/S µ2,X = µ3

2 is given by Pi ↦→ (e2(Pi, Pj))
3
j=1, where e2(Pi, Pj) = 1 if and only if i = j and

that e2(Pi, Pj) = −1 otherwise.

Recall that there is a norm map ResX/S µ2,X → µ2, sometimes called a trace map; see [Stacks, Tag
03SH]. If U → S is fppf such that the base-change XU → S is a disjoint union of copies of U , then the
restrictions of scalars ResXU/U µ2,XU

is isomorphic to a product of copies of µ2,U and the norm map is
given by multiplication

∏︁
µ2,U → µ2,U . Taking this as defining property, the norm map may then be

constructed by fppf-descent. Alternatively, the norm map is a consequence of p∗ being left adjoing to p∗

since p : X → S is finite étale; see loc. cit.

Proposition 6.1.4. The sequence

0 −→ E[2] −→ ResX/S µ2,X −→ µ2 −→ 1 (6.1.3)

is short exact.

Proof. Exactness can be verified on the geometric points of S. Thus suppose without loss of generality
that S = Spec(k) for an algebraically closed field k. We choose an enumeration P1, P2, P3 of non-trivial
elements of E[2](k), which induces isomorphisms X ∼= Spec(k3) and ResX/S µ2,X

∼= µ3
2. Since all group

schemes in question are finite étale, we identify them with finite abstract groups.

Under these isomorphisms, the map E[2]→ ResX/S µ2,X
∼= {±1}3 maps the point Pi to (e2(Pi, Pj))

3
j=1.

Since e2(Pi, Pj) = 1 if and only if i = j, this map is injective and the image is the subgroup of elements
having an odd number of positive entries. The norm map ResX/S µ2,X → µ2 is the multiplication map
{±1}3 → {±1}, which indeed has the desired kernel.

Remark 6.1.5. Let n > 2 and let k be a field whose characteristic exponent p is coprime to n. Let
X = E[n] \ {0} and let A = Γ(X,OX). Although one can define an injective map E[n]→ ResA/k µn,A
through the Weil-paring in an entirely analogous way, it is not true that the cokernel is isomorphic to µn,
as one can see by comparing orders. This already indicates that the theory of n-descent for n > 2 is of a
more technical nature than the theory of two-descent.

Lemma 6.1.6. The short exact sequence (6.1.3) induces a short exact sequence

0 −→ H1(S,E[2]) −→ H1(X,µ2,X) −→ H1(S, µ2) −→ 0. (6.1.4)
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Proof. Since all group schemes in question are smooth, we may compute their cohomology in the étale
topology. The long exact sequence associated to the short exact sequence (6.1.3) is

· · · −→ µ2(X)
NormX/S−−−−−−→ µ2(S) −→ H1(S,E[2]) −→ H1(S,ResX/S µ2,X)

NormX/S,∗−−−−−−−→ H1(S, µ2) −→ · · ·

Since the compositions Hi(S, µ2)→ Hi(S,ResX/S µ2,X)→ Hi(S, µ2) is multiplication by 3, which is an
isomorphism, it follows that the norm maps are surjective. This is refered to as the ‘méthode de la trace’;
see [Stacks, Tag 03SH]. We obtain the short exact sequence.

0 −→ H1(S,E[2]) −→ H1(S,ResX/S µ2,X)
NormX/S,∗−−−−−−−→ H1(S, µ2) −→ 0.

We conclude by the natural isomorphism H1(S,ResX/S µ2,X) = H1(X,µ2,X). Indeed, if p : X → S is
the structure morphism, then the Weil restriction ResX/S equals the push-forward p∗ on abelian sheaves
in the étale topology. Note that p∗ is an exact functor in the étale topology; see [Stacks, Tag 03QP]. It
follows directly that H1(S, p∗F ) = H1(X,F ) for all sheaves F on X in the étale topology.

The cohomology groups H1(S, µ2) and H1(X,µ2,X) are studied through Kummer theory; see Section 1.4.
Let R = Γ(S,OS) and let A = Γ(X,OX). The Kummer sequences of S and X are related by the norm
map, in the sense that the following diagram is a morphism of short exact sequences:

1 ResX/S µ2,X ResX/S Gm,X ResX/S Gm,X 1

1 µ2 Gm Gm 1

NormX/S

2

NormX/S NormX/S

2

The long exact sequences are hence compatible through the norm maps. It follows that the following
diagram is a morphism of short exact sequences.

1 A∗/A∗2 H1(X,µ2,X) Pic(X)[2] 0

1 R∗/R∗2 H1(S, µ2) Pic(S)[2] 0

NormX/S NormX/S,∗ NormX/S,∗ (6.1.5)

Proposition 6.1.7. If Pic(X)[2] = 0 then Pic(S)[2] = 0. Furthermore the short exact sequence (6.1.4) is
isomorphic to the short exact sequence

0 −→ H1(S,E[2]) −→ A∗/A∗2 NormA/R−−−−−−→ R∗/R∗2 −→ 1. (6.1.6)

Proof. Recall from the proof of Lemma 6.1.6 that the norm map NormX/S,∗ : H1(X,µ2,X)→ H1(S, µ2) is
surjective by the méthode de la trace. The snake lemma applied to (6.1.5) hence implies that Pic(S)[2] = 0.
Therefore the natural maps A∗/A∗2 → H1(X,µ2,X) and R∗/R∗2 → H1(S, µ2) are isomorphisms.

Example 6.1.8. We continue in the setting of Example 6.1.2. Let B = Γ(Y,OY ), so that A ∼= R × B.
Since the composition Z/2Z → E[2] → µ2 × ResY/S µ2,Y is given by P ↦→ (1,−1), it follows that the

composition in cohomology R∗/R∗2 = H1(S,Z/2Z) → H1(S,E[2]) → A∗/A∗2 ∼= R∗/R∗2 × B∗/B∗2 is
given by d ↦→ (1, d). This provides an explicit description of the image of all elements in the image of
H1(S,Z/2Z)→ H1(S,E[2]).

Remark 6.1.9. If E[2](S) = (Z/2Z)2 then there is an isomorphism A ∼= R3. The norm map A∗/A∗2 →
R∗/R∗2 corresponds to the multiplication map (R∗/R∗2)3 → R∗/R∗2.

Under the assumption that Pic(X)[2] = 0, the short exact sequence (6.1.6) hence concretely describes
the cohomology group H1(S,E[2]) in terms of the units of A and R. In order to take this assumption
into account, from now on we suppose that S = Spec(k) is the spectrum of a field of characteristic not 2.
Then Pic(A) = H1(k,ResA/k Gm,A) equals the Galois cohomology H1(k,A∗), which vanishes by a version
of Hilbert theorem 90; see Exc. 2, p. 152 of [Ser79].

Working over a base field, E now admits an affine Weierstraß equation of the form E : y2 = f(x) for
some separable monic degree 3 polynomial f ∈ k[x], so that A = k[x]/(f) and X = Spec(A). We let θ
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denote the image of x in A. We substitute the middle term in the fundamental short exact sequence
(6.1.2). An explicit description of the inclusion E(k)/2E(k) → A∗/A∗2 is computed in e.g. Thm. 1.1
of [Sch95], where a similar statement is shown in the context of hyperelliptic curves. We omit the
computation of the composition E(k)/2E(k)→ H1(k,E[2])→ A∗/A∗2; we instead refer to loc. cit. for a
proof of the following result.

Theorem 6.1.10 (Two-descent). Above isomorphism of H1(k,E[2]) ∼= Ker(NormA/k) induces an iso-
morphism of short exact sequences between (6.1.2) and

0 −→ E(k)/2E(k)
x−θ−−−→ Ker

(︁
NormA/k : A

∗/A∗2 → k∗/k∗2
)︁ v−−→ H1(k,E)[2] −→ 0. (6.1.7)

The map x− θ is given as follows. Outside of the rational two-torsion points it is induced by

E(k) \ E[2](k) −→ A∗; (x, y) ↦−→ x− θ.

For any root α of f , write f(x) = (x− α) · g(x) for some separable quadratic polynomial g ∈ k[x]. Let
B = k[x]/(g), so that A = k ×A by the Chinese remainder theorem. Denote the image of x in B by ϑ.

The image of (α, 0) under the composition E(k)/2E(k)
x−θ−−−→ A∗/A∗2 ∼= k∗/k∗2 ×B∗/B∗2 is represented

by (NormB/k(α− ϑ), α− ϑ).
Remark 6.1.11. Let α1, α2, α3 be the distinct roots of f in some algebraic closure of k. The norm of the
element x− θ is the product

NormA/k(x− θ) = (x− α1)(x− α2)(x− α3) = f(x) = y2,

which is indeed a nonzero square if (x, y) /∈ E[2](k). Similarly, if (x, y) ∈ E[2](k), then the norm of x− θ
is 0. Another way to see this is under the isomorphism A∗/A∗2 ∼= k∗/k∗2 ×B∗/B∗2, whence the element
x− θ maps to (0, x− ϑ). The description of the map x− θ is different on the rational two-torsion of E
for this reason. Instead replace the first component of (0, x− θ) by any element of k∗ such that the norm
is a square. Indeed, NormB/k(x− ϑ) is a canonical choice satisfying this property.

Example 6.1.12. Suppose that f factors as a product of linear polynomials f = (x− α1)(x− α2)(x− α3),
for certain α1, α2, α3 in k. By evaluating θ at the three dinstinct roots of f , we obtain an isomorphism
Ker(Norm: A∗/A∗2 → k∗/k∗2) ∼= Ker(mult : (k∗/k∗2)3 → k∗/k∗2). Under this isomorphism, the image of
any non two-torsion P = (x, y) in E(k) under the x− θ map is the tuple (x−α1, x−α2, x−α3). Suppose
P = (αi, 0) is a rational two-torsion point. Without loss of generality set i = 1. We determine its image
in (k∗/k∗2)3 through Theorem 6.1.10 without computing the norm NormB/k(x− ϑ). Indeed, we only use
that the entries corresponding to α2 and α3 are equal to x−α2 and α3, respectively. The first entry then
needs to be well-chosen such that their product is a square: for example, we may choose

(x− θ)(P ) =
(︃
α1 − α2

α1 − α3
, α1 − α2, α1 − α3

)︃
in (k∗/k∗2)3; cf. Prop. X.1.4 of [Sil09].

Example 6.1.13. Suppose α is a root of f . Factor f(x) = (x−α) · g(x) and define B as in Theorem 6.1.10,
so that A = k × B. Let d ∈ k∗/k∗2 and note that elements of the form (1, d) ∈ k∗/k∗2 × B∗/B∗2 have
square norm. We describe the map v explicitly on elements of the above form: by Example 6.1.8, the
para-elliptic curve is the contracted product C = E ∧Z/2Z k(

√
d), where Z/2Z acts on E by translation

by (α, 0).

More generally, any element a ∈ A∗ of square norm determines a para-elliptic curve Ca of period 2,
defined abstractly through the cohomology class v(a). It is valuable to have a more concrete description
of the para-elliptic curve: we describe explicit equations for Ca as an intersection of two quadrics in P4.
This description is very classical, tracing back to at least Mordell in §16 of [Mor69]. We mentioned these
descriptions in the proof of Theorem 5.0.1. We expand upon the proof of Thm. A.1 in [Cre16].

Theorem 6.1.14. Let a ∈ A∗ be an element of square norm. For i = 0, 1, 2 define the quadratic forms
Qi by

∑︁2
i=0Qi(z0, z1, z2)θ

i = a · (z0 + z1θ+ z2θ
2)2. Then the underlying scheme of the para-elliptic curve

v(a) is described by the intersection of two quadrics Ca{︄
Q1(z0, z1, z2) + z23 = 0;

Q2(z0, z1, z2) = 0,
(6.1.8)

in P3.
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Heuristically, this system of equations for Ca is directly related to the short exact sequence (6.1.7).
Note that Ca has a rational point if and only if the element a lies in the image of the map x − θ. If
we ignore the subtleties surrounding the rational two-torsion points and assume that there is a point
(x, y) ∈ E(k) with y ̸= 0 such that az2 = x − θ has a solution in z, then writing z = z0 + z1θ + z2θ

2

yields a solution to Q1(z0, z1, z2) = −1 and Q2(z0, z1, z2) = 0, hence a solution to the system (6.1.8) with
z3 = 1. The converse is heuristically true as well: any rational point on (6.1.8) with z3 = 1 defines an
element z = z0 + z1θ + z2θ

2 such that az2 = x − θ for some x ∈ k. Let y = cNormA/k(z), then from
Remark 6.1.11 it follows out that (x, y) is a rational point on E. If z is invertible then y ≠ 0, so it maps
to the element a under the map x− θ.

Of course this heuristic argument does not suffice. There are two technical problems, the most obvious
one being issues concerning the closed subschemes of E and C with y = 0 and z3 = 0, respectively. A more
substantial issue is that two non-isomorphic E-torsors may have the same set of splitting fields, meaning
that they obtain rational points over the same set of extension fields. This is explored in Section 2.2
under the assumption that End(E) = Z; see Proposition 2.2.9.

Lemma 6.1.15. For each ℓ ∈ A∗ there is an isomorphism ϕℓ : Ca
∼−→ Caℓ2 , satisfying ϕℓ1·ℓ2 = ϕℓ1 ◦ ϕℓ2 .

Proof. Multiplication by ℓ yields a linear bijection A→ A. Identifying A = k3 through the basis 1, θ, θ2,
the element ℓ defines an invertible 3× 3 matrix, which induces an automorphism of P2 equipped with
homogeneous coordinates z0, z1, z2. Extend this automorphism to P3 by z3 ↦→ z3. By construction this
automorphism maps the curve Caℓ2 to Ca. Let ϕℓ be its inverse.

Remark 6.1.16. If ℓ2 = 1 then ϕℓ defines an involution on Ca. In fact, since the above Lemma is functorial,
this defines an action of ResA/k µ2,A on Ca. We return to this action during the course of the proof of
Lemma 6.1.21.

Remark 6.1.17. Consider the natural map from Ca to the conic Q2(z0, z1, z2) = 0 in P2. It is the quotient
by the involution z3 ↦→ −z3. Note that there are geometric fixpoints, either by noting that ramification
occurs due to Riemann–Hurwitz formula, or by setting z3 = 0 and noting that the intersection of the two
quadrics Q1(z0, z1, z2) = Q2(z0, z1, z2) = 0 is nonempty. This again shows that any para-elliptic curve of
period 2 admits a sign involution; cf. Corollary 2.2.13.

If k is algebraically closed then there is an isomorphism A ∼= k3 of rings, so every element is a square.
This allows us to identify Ca with C1. In this case we may also drop the subscript from the notation and
simply denote the scheme by C.

Lemma 6.1.18. The scheme Ca described by the system of equations (6.1.8) is a smooth genus-one
curve.

Proof. Without loss of generality suppose that k is an algebraically closed field and that a = 1. We use
the Jacobi criterion to verify that C is smooth. The partial derivatives of the quadratic forms Qi can be
calculated through

2∑︂
i=0

∂Qi
∂zj

θi =
∂(z0 + z1θ + z2θ

2)2

∂zj
= 2(z0 + z1θ + z2θ

2)θj , (j = 0, 1, 2). (6.1.9)

Let (z0 : z1 : z2 : z3) be a rational point of C. It obeys the quadratic equations Q1(z0, z1, z2) = −z23 and
Q2(z0, z1, z2) = 0. We define x = Q0(z0, z1, z2). The Jacobi matrix is⎛⎜⎜⎝

∂Q1

∂z0
(z0, z1, z2)

∂Q1

∂z1
(z0, z1, z2)

∂Q1

∂z2
(z0, z1, z2) 2z3

∂Q2

∂z0
(z0, z1, z2)

∂Q2

∂z1
(z0, z1, z2)

∂Q2

∂z2
(z0, z1, z2) 0

⎞⎟⎟⎠ . (6.1.10)

We show that it has rank 2.
First suppose that z is invertible. Since {1, θ, θ2} forms a basis of A as a k-vector space, so do the

elements of (6.1.9) for j = 0, 1, 2. Therefore the 3× 3 matrix(︃
∂Qi
∂zj

(z0, z1, z2)

)︃2

i,j=0
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is invertible. Disregarding the last column of (6.1.10), it follows that the remaining 2× 3 submatrix is a
submatrix of an invertible matrix and hence has full rank.

Suppose now that z3 = 1. If (6.1.10) does not have full rank, then the bottom row vanishes and
∂Q2/∂zj(z0, z1, z2) = 0 for j = 0, 1, 2. From (6.1.9) it follows that the θ2-coefficient of 2zθj is 0 for j = 0,
1, and 2. This successively implies that 0 = z2 = z1 = z0, which violates (6.1.8).

The two cases treated above are sufficient. Indeed, if z3 = 0 then z2 = x is an element of k, which
follows from Q1(z0, z1, z2) = Q2(z0, z1, z2) = 0. Since z is nonzero and A is reduced, it follows that z2 is
also nonzero, hence is an invertible element of k. Note that z is invertible if and only if z2 is.

Now we show that C indeed is one-dimensional, for which we assume without loss of generality
that k is algebraically closed. By dimension theory it is clear that dimC ≥ 1. The intersection with
the hyperplane z3 = 0 yields the intersection of two quadrics Q1(z0, z1, z2) = Q2(z0, z1, z2) = 0 in P2.
Then we have seen that z = z0 + z1θ + z2θ

2 satisfies z2 ∈ k∗. By the ring isomorphism A ∼= k3, those
elements are determined up to k∗-action by the four elements (1,±1,±1) ∈ k3. Therefore C ∩ {z3 = 0} is
zero-dimensional, meaning that C is at most 1-dimensional.

In summary, we have shown that C is a smooth complete intersection. By the adjunction formula it
follows that the dualizing sheaf is ωC ∼= OC so indeed the genus of C equals one.

Remark 6.1.19. During the course of the proof, we have seen that the locus where z3 = 0 consists of four
geometric points. The locus where z is not invertible consists of the points where z3 = 1 and Q0(z0, z1, z2)
is a root of f . Outside of these finitely many points, z is invertible and z3 ̸= 0 happen simultaneously.

Lemma 6.1.20. Let a ∈ A∗ be an element of square norm. Let c ∈ k∗ such that NormA/k(a) = c2. The
map Ca → E defined by

(z0 : z1 : z2 : 1) ↦−→ (Q0(z0, z1, z2), cNormA/k(z0 + z1θ + z2θ
2)) = (x, y),

is a twisted form of the multiplication by 2 map E → E.

Proof. To see that this map is well-defined on the open neighbourhood of Ca where z3 = 1, we note that
a(z0 + z1θ + z2θ

2)2 = Q0(z0, z1, z2)− θ and taking norms on both sides yields

y2 = (cNormA/k(z0 + z1θ + z2θ
2))2

= NormA/k(a(z0 + z1θ + z2θ
2)2)

= NormA/k(Q0(z0, z1, z2)− θ)

=

3∏︂
i=1

(Q0(z0, z1, z2)− αi)

= f(Q0(z0, z1, z2)) = f(x),

where αi denote the three roots of f , cf. Remark 6.1.11.
Since Ca is a smooth curve, the above rational map extends to a surjective morphism Ca → E

between genus-one curves, which is an isogeny of para-elliptic curves. On the level of function fields,
the element x ∈ κ(E) maps to Q0 ∈ k[z0, z1, z2] considered as rational function on Ca ⊂ P3. The
unique pole of x is the point at infinity ∞, whereas the poles of Q0 arise whenever z3 = 0. Therefore
the fibre of Ca → E over the point at infinity is the hyperplane section Ca ∩ {z3 = 0}. In the proof
of Lemma 6.1.18 we have seen that the intersection Ca ∩ {z3 = 0} consists of four geometric points.
Moreover, the (scheme theoretic) intersection has length four, since it is the intersection of the two
quadrics Q1(z0, z1, z2) = Q2(z0, z1, z2) = 0, by Bézout’s theorem. It follows that Ca ∩ {z3 = 0} is étale of
length four, from which we deduce that Ca → E is étale of degree 4.

Base-change to an algebraic closure and fix a rational point of C with z3 = 0, e.g. the point (1 : 0 : 0 : 0),
making C → E into an isogeny of elliptic curves. Its kernel consists of the hyperplane C ∩ {z3 = 0}, but
by the definition of the group law, the points in a hyperplane section add up to 0. This eliminates the
case that the kernel is cyclic of order 4, thus it must be isomorphic to the Klein four-group and therefore

C → E is isomorphic to E
2−→ E after base change to kalg.

In the terminology of Section 2.2, we have shown that Ca → E is a two-covering of E. The 2-
coverings are classified by the cohomology group H1(k,E[2]), so Lemma 6.1.20 associates to any a ∈
Ker(NormA/k : A

∗/A∗2 → k∗/k∗2) a cohomology class in H1(k,E[2]). In order to prove Theorem 6.1.14,
we show that this is inverse to the isomorphism determined by Proposition 6.1.7.
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Lemma 6.1.21. Under the above isomorphism H1(k,E[2]) ∼= Ker(NormA/k : A
∗/A∗2 → k∗/k∗2), the

cohomology class [Ca → E] maps to a. Therefore [Ca] = v(a) in H1(k,E)[2].

From this, Theorem 6.1.14 follows directly. Indeed, the map H1(k,E[2]) → H1(k,E)[2] is simply
induced by the forgetful map, that maps a cohomology class [Ca → E] to the cohomology class of a
para-elliptic curve [Ca].

Proof. We chase the following isomorphisms:

[Ca → E] H1(k,E[2])

[P ] = {Q1 = Q2 = 0} H1(k,Ker(NormA/k : ResA/k µ2,A → µ2))

[R] = Spec
k[z0, z1, z2]

(Q0 − 1, Q1, Q2)
Ker

(︁
NormA/k,∗ : H1(k,ResA/k µ2,A)→ H1(k, µ2)

)︁

Spec
A[z]

(az2 − 1)
Ker

(︁
NormA/k,∗ : H1(A,µ2,A)→ H1(k, µ2)

)︁

a−1 ≡ a Ker
(︁
NormA/k : A

∗/A∗2 → k∗/k∗2
)︁

∈

∼=

∈

∼=

∈

∼=

∈

∼=

∈

We start at the top and work downwards. Although we can indeed consider a 2-covering [Ca → E] as a
cohomology class in H1(k,E[2]), the corresponding E[2]-torsor is actually the fibre over the identity element
of E. In this case it is described by the intersection of two quadrics Q1(z0, z1, z2) = Q2(z0, z1, z2) = 0,
denoted P . Note that E[2] and Ker(NormA/k : ResA/k µ2,A → µ2) both act freely and transitively on P
with their respective actions, as can be verified after base-change to an algebraic closure. There one sees
also that these two actions agree under the isomorphism E[2]

∼−→ Ker(NormA/k : ResA/k µ2,A → µ2) of
(6.1.3).

Consider the affine scheme

R = Spec
k[z0, z1, z2]

(Q0(z0, z1, z2)− 1, Q1(z0, z1, z2), Q2(z0, z1, z2)
,

equipped with a transitive action by ResA/k µ2,A. It parametrises elements z ∈ A satisfying az2 = 1.
Note the difference with the scheme P , whose set of k′-points for an arbitrary field extension k′/k
consists of the nonzero elements z ∈ A⊗ k′ such that az2 ∈ k′, up to rescaling by (k′)∗. In this latter
case however x = az2 is square in k′, since taking norms results in c2 NormA⊗k′/k′(z)

2 = x3, so that
x = (cNorm(z)/x)2. One can thus always find a representative of z, unique up to multiplication by ±1,
such that az2 = 1. This defines a morphism P → R, which is equivariant with respect to the action of
Ker(NormA/k : ResA/k µ2,A → µ2). It follows that also the cohomology class [P ] maps to [R].

Note that R is isomorphic to ResA/k SpecA[z]/(az
2− 1), by the explicit construction of the restriction

of scalars of affine schemes. This isomorphism clearly respects the action of ResA/k µ2,A. Last of all, by
Kummer theory the torsor A[z]/(az2 − 1) over A corresponds to the element a−1 ∈ A∗/A∗2, which equals
a modulo squares.

We also investigate the special case where f is completely reducible, meaning that the elliptic curve E
has full two-torsion. The equations for this case are also very classical, see e.g. Eqtn. 24.10 of [Cas66] or
p. 70 of the more modern [Cas91].

Corollary 6.1.22. Suppose f factors as a product f = (x − α1)(x − α2)(x − α3) for certain αi ∈ k.
Suppose the ring isomorphism A

∼−→ k3 by evaluating θ at αi maps a to the triple (a1, a2, a3), so the
product a1a2a3 is a square in k. Then the para-elliptic curve v(a) is described by the system of equations{︄

(α2 − α1)t
2
0 − a1t21 + a2t

2
2 = 0;

(α3 − α1)t
2
0 − a1t21 + a3t

2
3 = 0.

(6.1.11)
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Proof. The system (6.1.8) can be summarized as a(z0 + z1θ + z2θ
2)2 = Q0(z0, z1, z2)− z23θ + 0 · θ2 in A.

We apply the ring isomorphism A
∼−→ k3 by evaluating at θ ↦→ αi for i = 1, 2, 3 to find the system of

equations
ai(z0 + z1αi + z2α

2
i )

2 = Q0(z0, z1, z2)− z23αi. (i = 1, 2, 3)

Taking differences of equations, we find the system{︄
a2(z0 + z1α2 + z2α

2
2)

2 − a1(z0 + z1α1 + z2α
2
1)

2 = −z23(α2 − α1);

a3(z0 + z1α3 + z2α
2
3)

2 − a1(z0 + z1α1 + z2α
2
1)

2 = −z23(α3 − α1),
(6.1.12)

We show that conversely any solution to (6.1.12) also satisfies (6.1.8). Indeed applying the identity∑︁2
j=0Qj(z0, z1, z2)·α

j
i = ai(z0+z1αi+z2α

2
i )

2 twice per equation, the above system is written equivalently
as

Q1(z0, z1, z2) · (αi − α1) +Q2(z0, z1, z2) · (α2
i − α2

1) = −z23(αi − α1). (i = 2, 3)

Dividing by αi − α1, it follows that Q2(z0, z1, z2) · (αi + α1) = −z23 − Q1(z0, z1, z2) for i = 2, 3. Note
that the right hand side is independent of i. Since the roots of f are distinct, this is only possible if
Q2(z0, z1, z2) = 0. Then Q1(z0, z1, z2) = −z23 follows directly.

Since the Vandermonde matrix (αji )
3,2
i,j=1,0 is invertible, we can perform a change of basis in (6.1.12)

by setting ti = z0+ z1αi+ z2α
2
i for i = 1, 2, 3. Also letting t0 = z3 we arrive at the equations (6.1.11).

Remark 6.1.23. In Section 6.3 below we use visually more appealing notation. Let E be an ellliptic curve
with affine Weierstraß equation of the form E : y2 = x(x− α)(x− β) and let (u, v, w) ∈ (k∗)3 be a triple
such that the product uvw is square. In this notation, the system (6.1.11) becomes{︄

αt20 − ut21 + vt22 = 0;

βt20 − ut21 + wt23 = 0.
(6.1.13)

Example 6.1.24. We continue in the setting of Example 6.1.13, where we set α = 0. Then f(x) = x · g(x),
where g is a quadratic polynomial of the form g(x) = x2+ax+b for certain a, b ∈ k. Recall that the element
a ∈ A corresponds to the pair (1, d) under the isomorphism A = k×B. The curve Ca is described by the
equation (6.1.8), which parametrises solutions to a(z0 + z1θ + z2θ

2)2 = Q0(z0, z1, z2)− z23θ + 0 · θ2 in A.
Since A = k×B by substituting 0 and ϑ for θ, this is equivalent to the system given by z20 = Q0(z0, z1, z2)
and

d(z0 + z1ϑ+ z2ϑ
2)2 = Q0(z0, z1, z2)− z23ϑ.

The first equation is vacuous: Q0(z0, z1, z2) = z20 is clear from the definition because f(x) = x3+ ax2+ bx
is divisible by x. Since ϑ2 = −aϑ − b, the equation becomes d(z0 − bz2 + (z1 − az2)ϑ)2 = z20 − z23ϑ.
Consider the coordinates w0 = z0/d and w1 = z1 − az2 and w2 = z0 − bz2 and w3 = z2/d. Comparing
coefficients results in the system of equations{︄

dw2
0 = w2

2 − bw2
1;

dw2
3 = 2w1w2 + aw2

1.

Multiplying the top equation by 4w2
1, we substitute the bottom equation into it to find the equation

4dw2
0w

2
1 = (dw2

3 − aw2
1)

2 − 4bw4
1

= (a2 − 4b)w4
1 − 2adw2

1w
2
3 + d2w4

3.

Setting w3 = 1 and W = w0w1 and Z = w1, this coincides with the quartic affine equation

dW 2 = (a2 − 4b)Z4 − 2adZ2 + d2, (6.1.14)

which is very classical; see e.g. Ex. III.4.5 of [Sil09]. It can be obtained much more directly using the
description of C = E ∧Z/2Z k(

√
d) by computing the quotient through invariant theory. We illustrate on

the affine patch of E obtained by removing the point at infinity and the two-torsion point (0, 0). The
translation involution is given by

x ↦−→ b

x
and y ↦−→ −by

x2
.
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Thus C is the quotient of E ⊗ k(
√
d) by the involution x ↦→

√
db/x and y ↦→ −b

√
dy/x2. Note that the

following elements are invariant, and in fact generate the invariant ring

Z =
√
d · x

y
and W =

√
d
(︂
x− b

x

)︂(︂x
y

)︂2
, (6.1.15)

and they indeed satisfy the relation (6.1.14). After base-change to k(
√
d), the equations (6.1.15) determine

an isomorphism E ⊗ k(
√
d)

∼−→ C ⊗ k(
√
d).

6.2 Descent by two-isogeny

Let k be a ground field in which 2 is invertible. Suppose that E has a rational two-torsion point, in which
case it is described by an affine Weierstraß equation of the form

E : y2 = x3 + ax2 + bx,

having the rational point (0, 0) of order 2. This point defines a subgroup scheme Z/2Z ⊂ E[2]. The

quotient ˜︁E = E/(Z/2Z) is an elliptic curve isogenous to E. An affine Weierstraß equation for ˜︁E is
well-known: it is given by

˜︁E : y2 = x3 + a′x2 + b′x, (6.2.1)

where a′ = −2a and b′ = a2 − 4b; see for example Ex. III.4.5 of [Sil09]. Let ϕ : E → ˜︁E be the isogeny,

and let ϕ∨ : ˜︁E → E be the dual isogeny.

We refine the theory of two-descent by replacing the short exact sequence (6.1.1) by the short exact
sequence

0 −→ Z/2Z −→ E
ϕ−−→ ˜︁E −→ 0.

There is a similar short exact sequence for the dual isogeny ϕ∨. These two short exact sequences are
explicitly related to the short exact sequence (6.1.1) for n = 2, as follows: they sit inside a 3 × 3
commutative diagram with exact rows and exact first column.

0

0 Z/2Z E ˜︁E 0

0 E[2] E E 0

1 µ2
˜︁E E 0

1

ϕ

ϕ∨

ϕ

id

id

ϕ∨

id

2

Taking long exact sequences, the following diagram is commutative with exact rows and exact middle
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column.

...

· · · E(k) ˜︁E(k) k∗/k∗2 H1(k,E) H1(k, ˜︁E) · · ·

· · · E(k) E(k) H1(k,E[2]) H1(k,E) H1(k,E) · · ·

· · · ˜︁E(k) E(k) k∗/k∗2 H1(k, ˜︁E) H1(k,E) · · ·

...

ϕ

id

δ ˜︁E ϕ∗

id

id idid

ϕ∨ δE

id

ϕ∨
∗

2 2 (6.2.2)

The middle exact row has been studied in Section 6.1, where we established an explicit isomorphism
H1(k,E[2]) ∼= Ker(A∗/A∗2 → k∗/k∗2) as described in Theorem 6.1.10. An equally concrete description of
the boundary map δE follows.

Proposition 6.2.1 (Descent by two-isogeny). The boundary map δE is given by

δE(P ) =

⎧⎪⎨⎪⎩
x if P = (x, y) with x ̸= 0;

b if P = (0, 0);

1 if P is the identity element.

Proof. We use the commutativity of (6.2.2) and the explicit description of the x−θ map of Theorem 6.1.10
to compute the boundary map δE . Let A

∗/A∗2 → k∗/k∗2 be induced by the point (0, 0). The following
diagram is commutative:

E(k) Ker(NormA/k : A
∗/A∗2 → k∗/k∗2)

E(k) k∗/k∗2

x−θ

id

δE

We use exactness of the middle column of (6.2.2) to compute the vertical map H1(k,E[2]) → k∗/k∗2:
it suffices to describe the image of k∗/k∗2 → H1(k,E[2]) under above isomorphisms. This is done in
Example 6.1.8: with its notation, we have seen that the composition k∗/k∗2 → H1(k,E[2])→ A∗/A∗2 →
k∗/k∗2 ×B∗/B∗2 is given by d ↦→ (1, d), so that by exactness the map to k∗/k∗2 is projection onto the
first factor. Recall here that B = k[x]/(x2 + ax+ b); let ϑ be the image of x in B.

If P = (x, y) is a non two-torsion point, meaning y ̸= 0, then (x− θ)(P ) = x− θ, and the projection to
k∗/k∗2 simply evaluates θ at 0. If P = (0, 0) then (x−θ)(P ) equals (NormB/k(ϑ),−ϑ) in k∗/k∗2×B∗/B∗2,
which maps to NormB/k(−ϑ) = b. The last case is P = (α, 0), where α = α1 is a nonzero root of x2+ax+b.
The other roots of f are given by α2 = −a− α and α3 = 0. Under the isomorphism A∗/A∗2 ∼= (k∗/k∗2)3,
we have computed in Example 6.1.12 that x− θ maps the rational point (α, 0) to a tuple(︃

α1 − α2

α1 − α3
, α1 − α2, α1 − α3

)︃
=

(︃
α− b/α

α
, α− b/α, α

)︃
in (k∗/k∗2)3. Its image in k∗/k∗2 is the third entry α, which is indeed the x-coordinate of P .

Note that the setup is symmetrical: by interchanging the elliptic curves E and ˜︁E, and the isogenies
ϕ and ϕ∨, we conclude with an analogous description of the boundary map δ ˜︁E , cf. Ex. X.4.8 and Prop.
X.4.9 of [Sil09].

Corollary 6.2.2. The boundary map δ ˜︁E is given by

δ ˜︁E(P ) =
⎧⎪⎨⎪⎩
x if P = (x, y) with x ̸= 0;

b′ = b2 − 4a if P = (0, 0);

1 if P is the point at infinity.
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6.3 The relative Brauer group

Let k be a ground field. Let X be a scheme such that the Picard functor PicX/k is representable. It does
not quite represent the functor T ↦→ Pic(X × T ), since it does not satisfy the sheaf property; instead,
the Picard scheme represents its sheafification in, say, the fppf-topology. As a consequence, there is a
discrepancy between the k-points of the Picard scheme and the Picard group of X. This discrepancy is
measured through the seven-term exact sequence of the Leray–Serre spectral sequence:

0 −→ Pic(X) −→ PicX/k(k)
∂X−−→ Br(k) −→ Br1(X) −→ H1(k,PicX/k) −→ H3(k,Gm), (6.3.1)

cf. Section 1.3. Here Br1(X) := Ker(Br(X)→ Br(Xalg)) is called the algebraic Brauer group.

In this section we study the boundary map ∂C , where C is a para-elliptic curve. As motivation, we
note that the non-vanishing of ∂X is an obstruction to the existence of a rational point on X, since the
choice of point provides a splitting Br(X)→ Br(k). There is also a close connection to the period-index
problem. We follow the article [ÇK12] closely. The approach is based on a number of closely related
bilinear pairings, some of which are mostly applicable in a theoretical setting, while others allow for
concrete computations. Much of the theory seems to generalise naturally to the case where X is a torsor
under the Jacobian of a hyperelliptic curve; see [CV15; Cre16]. Although we do not work in this generality,
we occasionally reference the statements contained in ibid.

Definition 6.3.1. Let Y → X be a morphism of schemes. The relative Brauer group is defined as

Br(X/Y ) = Ker(Br(Y ) −→ Br(X)).

By exactness of (6.3.1), the relative Brauer group equals the image of ∂X .

Let D ∈ PicX/k(k) be a k-point on the Picard scheme such that ∂X(D) is a nonzero element of Br(k).
Then D is obstructed to arise from an invertible sheaf on X. It is possible to make sense of the linear
system |D| as a Brauer–Severi variety, whose Brauer class equals ∂X(D); see Lem. 2.2 of [Cre16]. Note
that if D arises from an invertible sheaf, then the linear system is isomorphic to projective space, and the
rational points parametrise effective Cartier divisors linearly equivalent to D. The lack of rational points
indicates that D does not arise from an invertible sheaf.

Example 6.3.2. Let E be an elliptic curve. Since E has a rational point, the boundary map ∂E vanishes
and all k-points on PicE/k arise from invertible sheaves. On the other hand, if C is an E-torsor, then
alghough there is a natural isomorphism of Picard schemes PicC/k = PicE/k, the boundary map ∂C may
be nonzero, so the relative Brauer group Br(C/k) is non-trivial.

We now specialise to the above case where X = C is a para-elliptic curve, with associated elliptic
curve E. Then the above seven-term exact sequence simplifies.

Proposition 6.3.3. The sequence

0 −→ Pic(C) −→ PicE/k(k)
∂C−−→ Br(k) −→ Br(C)

rC−−→ H1(k,E) −→ H3(k,Gm). (6.3.2)

is exact.

Proof. This is the seven-term exact sequence (6.3.1), but with two adjustments. First of all, since
dim(C) = 1 it follows from Tsen’s theorem (see [Gro66b, Cor. 1.2] or [CS21, Thm. 1.2.14]) that
Br(Calg) = 0, so that Br1(C) = Br(C). Furthermore in this case, the long exact sequence of the split
short exact sequence

0 −→ E −→ PicE/k −→ Z −→ 0

implies that H1(k,PicE/k) is naturally isomorphic to the Weil–Châtelet group H1(k,E).

Example 6.3.4. Let Ca be the para-elliptic curve given by the system of equations (6.1.8). As was shown
in Remark 6.1.17, there is a morphism from the para-elliptic curve Ca maps to the Brauer–Severi curve
determined by the quadric Q2(z0, z1, z2) = 0 in P2. By Thm. 3.4 of [Lie17], the Brauer class of this
quadric is an element of the relative Brauer group of Ca.
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The image of E(k) = Pic0E/k(k) under ∂C is a subgroup of the relative Brauer group Br(C/k).
Although in some cases there is an equality ∂C(E(k)) = Br(C/k), in general it defines a strict subgroup,
whose index is an interesting arithmetic invariant of C pertaining to the so-called period-index problem.
Recall that the period per(C) of C is defined as the order of the cohomology class [C] in the Weil–Châtelet
group H1(k,E).

Notation 6.3.5. The index ind(C) of a para-elliptic curve C is

ind(C) = gcd{[κ(P ) : k] | P is a closed point of C}.

Remark 6.3.6. One can similarly consider the so-called separable index, which is defined analogously with
the additional restraint that the residue field of P be separable over k. In our context the two notions
coincide: Thm. 4 of [Lic68] states that the separable index equals the index for para-elliptic curves.

The discrepancy between the period and the index measures the surjectivity of ∂C when restricted to
E(k) = Pic0C/k(k), in the following sense; see Rk. 2.2 of [ÇK12] or Prop. 2.4 of [Cla04].

Proposition 6.3.7. The period per(C) divides the index ind(C). Furthermore, the sequence

0 −→ Pic0(C) −→ Pic0C/k(k)
∂C−−→ Br(C/k) −→ per(C)Z

ind(C)Z
−→ 0

is exact.

In fact, although the period and the index certainly do not have to be equal, there are a number of
results in the direction that they cannot be ‘too different’. This can be thought of as a ‘near surjectivity’
of ∂C : Pic0C/k(k)→ Br(C/k).

Proposition 6.3.8. The period and the index have the same set of prime divisors. In fact, ind(C) divides
per(C)2.

Remark 6.3.9. For higher dimensional para-abelian varieties it is still true that per(X) divides ind(X), at
least if the period is coprime to the characteristic exponent. We note that Cor. 11 of [Cla04] states that
ind(X) divides per(X)2g, where g = dim(X).

Above bound is sharp for para-elliptic curves, although it is not particularly easy to construct examples
where equality ind(C) = per(C)2 holds. The first examples were constructed by Lang and Tate in [LT58],
but see also the short paper [Cas63] for an example of a para-elliptic curve of period 2 and index 4 over a
number field.

It turns out that the most fruitful method for studying the map ∂C is through a number of bilinear
pairings, as explained in the exposition §3 of [ÇK12], which contains the relevant pairings and sketches
their connections. We start with a seemingly unrelated bilinear pairing, called the evaluation pairing.

Definition 6.3.10. The evaluation pairing is the bilinear pairing

⟨·, ·⟩eval : Br(E)× E(k) −→ Br(k),

defined through the pullback ⟨α, P ⟩ = P ∗(α), where we regard P as a morphism P : Spec(k)→ E.

The evaluation pairing is usually quite concrete. If the Brauer group coincides with the cohomological
Brauer group, then any Brauer class α is represented by an Azumaya algebra A, up to Morita equivalence.
Then the pullback P ∗(α) corresponds to the central simple algebra A ⊗ κ(P ) over κ(P ) = k. In the
context of regular schemes of dimension at most 2, the two Brauer groups are naturally isomorphic, as
follows from Cor. 2.2 of [Gro66a]. We may of course also apply the well-known result by Gabber, that
the Brauer group equals the cohomological Brauer group if there exists an ample invertible sheaf; for a
proof we refer to [Jon]. For more details on the coincidence of the Brauer group and the cohomological
Brauer group we mention the doctoral thesis [Fis21].

If C = E, then the map r = rE in (6.3.2) relates the Brauer group Br(E) with the Weil–Châtelet
group H1(k,E). In fact, it is ‘nearly’ an isomorphism, in the following sense.

Definition 6.3.11. Given P ∈ E(k), define

Br(E,P ) = Ker(⟨·, P ⟩eval : Br(E) −→ Br(k)).
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Of course E has a distinguished rational point, namely the point at infinity ∞ ∈ E(k) that serves as
the identity element for the group operation.

Proposition 6.3.12. The map r induces an isomorphism Br(E,∞)→ H1(k,E).

Proof. The evaluation map ⟨·,∞⟩eval : Br(E)→ Br(k) is a retraction of the natural map Br(k)→ Br(E),
which is hence injective. Therefore r restricts to an injective map Br(E,∞)→ H1(k,E) with the same
image.

The surjectivity of r follows from a computation using the Leray–Serre spectral sequence Er,s2 =
Hr(k,Rsp∗Gm) ⇒ Hr+s(E,Gm), where p : E → Spec(k) is the structure morphism. The existence of
the rational point ∞ again yields retractions to the maps Hn(k,Gm)→ Hn(E,Gm), which are injective.
It follows that En,02 = En,0∞ and therefore that dn,12 = 0 for all n. This implies that E2,0

∞ = E2,0
2 and

E1,1
∞ = E1,1

2 . We saw before that E0,2
2 = 0 by Tsen’s Theorem, so also E0,2

∞ = 0. The filtration of
H2(E,Gm) now directly gives the short exact sequence

0 −→ H2(k,Gm) −→ H2(E,Gm) −→ H1(k,R1p∗Gm) −→ 0,

which is the desired surjectivity.

This induces a pairing between the Weil–Châtelet group and the Brauer group of k.

Definition 6.3.13. The Tate pairing (sometimes called the Tate–Lichtenbaum or Lichtenbaum–Tate
pairing) is the bilinear pairing H1(k,E)× E(k)→ Br(k) defined by

⟨[C], P ⟩Tate = ⟨α, P ⟩eval,

where α ∈ Br(E,∞) is a Brauer class such that r(α) = [C].

A precise description of Tate’s original definition [Tat58] and its relation with the above definition can
be found in §3.1 and §3.2 of [ÇK12]. The above bilinear pairings surprisingly capture the boundary map
δC . This is originally due to Lichtenbaum in §of [Lic68] by a cocycle computation. The following is Thm.
3.1 of [ÇK12].

Theorem 6.3.14. Let E be an elliptic curve with rational point P ∈ E(k) and let C be an E-torsor.
Then

⟨[C], P ⟩Tate = ∂C(P ). (6.3.3)

That is: the Tate pairing coincides with the boundary map ∂C .

Remark 6.3.15. Bilinearity of the Tate pairing implies that

∂C1∧EC2
(P ) = ∂C1

(P ) + ∂C2
(P ),

for [C1], [C2] ∈ H1(k,E).

In contrast to the boundary map ∂C , the evaluation pairing is reasonably simple to compute if one is
given an explicit description of an Azumaya algebra A corresponding to the Brauer class α ∈ Br(E,∞).
This motivates a further study of the Brauer class A attached to an explicit C by the inverse of r,
especially in the case where C is a para-elliptic curve of period 2, as described in Section 6.1. Fix
a ∈ A∗/A∗2 having square norm and suppose the cohomology class v(a) ∈ H1(k,E)[2] of (6.1.7) equals
[C]. In [CV15] the authors give the following explicit description for A as a certain corestriction, relying
on a cocycle computation. For an elementary background on corestrictions of central simple algebras, see
[Tig87].

Proposition 6.3.16. The corestriction

Corκ(E)⊗A/κ(E)(x− θ, a)κ(E)⊗A. (6.3.4)

defines a class in Br(E,∞), which maps to the cohomology class [C] under r.

Proof. By Thm. 1.1 of loc. cit., (6.3.4) defines a class in Br(C)[2] and hence defines a map γ : A∗/A∗2 →
Br(C)[2]. As was remarked in the proof of Prop. 5.1 of op. cit., the composition A∗/A∗2 γ−→ Br(C)[2]

r−→
H1(k,E) equals A∗/A∗2 v−→ H1(k,E)[2] ⊂ H1(k,E), by comparing their Prop. 3.2 and Lem. 4.6. (Note
that the Υ in loc. cit. is 0 in our context.)
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Applying the evaluation pairing yields the boundary map ∂C . Under the condition that P = (x, y) ∈
E(k) is not two-torsion, the element x− θ is invertible in A and hence (x− θ, a)A defines a quaternion
algebra over A. Thus in this case, the evaluation pairing is simply given by substituting the desired
x-coordinate.

Corollary 6.3.17. Let a ∈ A∗/A∗2 such that v(a) = [C], and let P = (x, y) ∈ E(k) \ E[2](k). Then

∂C(P ) = CorA/k(x− θ, a)A

It can be helpful to have an explicit description of this corestriction as a tensor product of quaternion
algebras. This is possible using Rosset–Tate reciprocity; see Prop. 2.4 of [CV15]. For sake of notation, let
K = κ(E) denote the function field of E.

Theorem 6.3.18. Suppose a ∈ A∗ \ k∗. Let g ∈ k[x] be the polynomial of minimal degree such that
g(θ) = a. Set r0 = f and r1 = g. Then inductively define ri+2 as the remainder of ri upon division by
ri+1, i.e. the polynomial such that ri+2 ≡ ri mod ri+1 with deg(ri+2) < deg(ri+1). Let ci be the leading
coefficient of ri and let n be the smallest positive integer such that rn+2 = 0. Then

CorK⊗A/K
(︁
(x− θ, a)K⊗A

)︁
=

(︄
n∑︂
i=0

(ri+1, ri)K

)︄
+

(︄
n∑︂
i=0

(ci+1, ci)K

)︄
.

The above allows us to algorithmically calculate the obstructions ∂C of k-points of E, as follows.
Let (f1, f2)K be a quaternion algebra in Br(E), where f1, f2 ∈ K, and let P ∈ E be a rational point
such that f1 and f2 are regular at P , i.e. f1, f2 ∈ OE,P . The evaluation pairing is computed by
⟨(f1, f2)K , P ⟩eval = (f1(P ), f2(P ))k in Br(k).

We return to the context of Remark 6.1.23, where we do not necessarily need the full strength of
Theorem 6.3.18. The following Brauer classes are also computed in §6.2 of [Cre16].

Corollary 6.3.19 (Obstructions of two-torsion points of para-elliptic curves of period two). Suppose
that E has an affine Weierstraß equation of the form y2 = x(x − α)(x − β) for certain α, β ∈ k. Let
(u, v, w) ∈ (k∗)3 such that the product uvw is a square. Let C be the para-elliptic curve corresponding to
the cohomology class v(a), cf. Corollary 6.1.22. Then the obstructions of the 2-torsion points of E equal

∂C((0, 0)) = (−α,w)k + (−β, v)k
∂C((α, 0)) = (α,w)k + (α− β, u)k
∂C((β, 0)) = (β, v)k + (β − α, u)k.

Proof. In this case evaluation of θ at 0, α and β determines an isomorphism A
∼−→ k3. As such, the

corestriction of Proposition 6.3.16 equals the tensor product A = (x, u)K ⊗ (x−α, v)K ⊗ (x− β,w)K , see
Lem. 2.2 of [Kra10]. From the equation y2 = x(x−α)(x−β) it follows that (x, u)K ∼= ((x−α)(x−β), u)K .
This yields Brauer equivalences

A ∼= ((x− α)(x− β), u)K ⊗K (x− α, v)K ⊗K (x− β, uv)K ∼ (x− α, uv)K ⊗K (x− β, v)K .

In a similar way, we find Brauer equivalences

A ∼ (x, uv)K ⊗K (x− β, u)K ;

A ∼ (x, v)K ⊗K (x− α, u)K .

By Theorem 6.3.14, the value of ∂C(P ) evaluated a the two-torsion point P is computed by substituting
the x-coordinate of P into one of the above expressions.

In a similar way we treat the case where f decomposes as a linear factor times an irreducible quadratic,
as in Example 6.1.24.

Corollary 6.3.20. Suppose that E has an affine Weierstraß equation of the form y2 = x3 +Ax2 +Bx
for certain A,B ∈ k. Let a ∈ A∗/A∗2 be an element of square norm mapping to the pair (u, d). Assume
that d ∈ k∗, so that u is a square. Let C be the para-elliptic curve corresponding to the cohomology class
v(a) of Corollary 6.1.22. The k-rational point (0, 0) ∈ E[2](k) is 2-torsion, and its obstruction is

∂C((0, 0)) = (B, d)k.
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Proof. The assumption that a has square norm implies that ud2 is square, hence u is a square. Thus
without loss of generality we may assume that u = 1. The corestriction of Proposition 6.3.16 equals the
tensor product

A = (x, u)K ⊗K Cor K[θ]

(θ2+Aθ+B)

/︁
K
(x− θ, d) ∼ (x2 +Ax+B, d)K ,

in which the first tensor factor vanishes, and the equivalence of the second tensor factor follows from the
so-called projection formula; see Thm. 3.2 of [Tig87]. By Theorem 6.3.14 we may calculate ∂C((0, 0)) by
substituting x = 0.

Example 6.3.21. We also compute the corestriction using the description of Theorem 6.3.18 if E has
an affine Weierstraß equation of the form y2 = x3 +B. Under the isomorphism A = k[x]/(x3 +Bx) =
k × k[x]/(x2 +B) the element a = 1−d

B θ2 + 1 maps to the pair (1, d). Let [C] = v(a). We thus iteratively
calculate

r0 = x3 +B, c0 = 1;

r1 =
1− d
B

x2 + 1, c1 =
1− d
B

;

r2 =
−Bd
1− d

x, c2 =
−Bd
1− d

;

r3 = 1, c3 = 1.

Then the corestriction is the sum of the quaternion algebra’s (r0, r1) + (r1, r2) + (c1, c2). We calculate
∂C((0, 0)) by substituting x = 0. Note that r1(0) = 1, so the first two terms vanish. Since (α, (1− α))k ∼=
(α,−α)k ∼= Mat2×2(k), it follows that

∂C((0, 0)) = ((1− d)B,−(1− d)B · d)k = ((1− d)B, d)k = (B, d)k.

This particular special case can also be treated in a completely elementary fashion, i.e. without the
use of cohomology. We continue in the setting of Example 6.1.24, i.e. for a curve C = E ∧Z/2Z k(

√
d),

for a non-square d ∈ k∗/k∗2 and a subgroup scheme Z/2Z ⊂ E, without loss of generality generated by
(0, 0) ∈ E(k).

Lemma 6.3.22. In terms of the equation (6.1.14), the curve C admits the sign involutions σ1 : (Z,W ) ↦→
(−Z,W ) and σ2 : (Z,W ) ↦→ (Z,−W ). They differ by translation by the 2-torsion point (0, 0) ∈ E[2](k).

Proof. Both involutions are indeed sign involutions, since fixed points occur Z = 0 andW = 0, respectively.
We need to show that the composition of the sign involutions (Z,W ) ↦→ (−Z,−W ) equals translation by
(0, 0) ∈ E(k). Conceptually this follows from the description C = E ∧Z/2Z k(

√
d), since translation by

(0, 0) equals the Galois involution in the second factor, so the equations (6.1.15) show that Z and W both
get mapped to their negatives. Alternatively it follows by a short computation, since after base-change to
k(
√
d) we may apply the isomorphism E ⊗ k(

√
d)

∼−→ C ⊗ k(
√
d) of (6.1.15). Translation by (0, 0) on E

is given by

x ↦−→ b

x
, y ↦−→ −by

x2
,

thus Z = x/y and W = x− b/x get mapped to

x

y
↦−→ b/x

−by/x2
= −x

y
and x− b

x
↦−→ b

x
− x = −

(︂
x− b

x

)︂
.

Therefore translation by (0, 0) corresponds to mapping Z and W to their negatives.

Proposition 6.3.23. The rational 2-torsion point (0, 0) on the genus-one curve (6.1.14) is obstructed by
the Brauer class α = (d,B)k to come from an element of Pic(C).

Remark 6.3.24. In the special case that E is of the form y2 = x3 − 4abx with torsor y2 = ax4 + b the
associated quaternion algebra is (a, b)k, as also calculated using a different method in Ex. 5.2.1 of [ÇK12]
and [Han03].
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Proof. Each sign involution on C defines a morphism to a Brauer–Severi curve, given by the quotient
map. The quotient by (Z,W ) ↦→ (Z,−W ) defines a map from C to the curve with equation w =
A2−4B

d z4 − 2Az2 + d, which is isomorphic to P1. The other sign involution may produce a non-trivial

Brauer–Severi curve: it induces a map from C to the conic B : w2 = A2−4B
d z2 − 2Az + d. We perform a

change of variables: let X = z − Ad
A2−4B and Y = w, so that B is also described by the equation

Y 2 =
A2 − 4B

d

(︂
X +

Ad

A2 − 4B

)︂2
− 2A

(︂
X +

Ad

A2 − 4B

)︂
+ d

=
A2 − 4B

d
X2 + 2AX +

A2d

A2 − 4B
− 2aX − 2A2d

A2 − 4B
+ d

=
A2 − 4B

d
X2 + d− A2d

A2 − 4B
.

Recall that any Brauer–Severi variety has a corresponding element in the Brauer group, called its Brauer
class, cf. [Lie17]. Since the equation for B is in a standard form, we read off that the Brauer class of

B is given by the quaternion algebra
(︁
A2−4B

d , d− A2d
A2−4B

)︁
k
. Although performing variable changes for

the Brauer–Severi curve is equivalent to constructing isomorphisms between quaternion algebra’s, the
latter are computationally more convenient, hence we restrict our calculations to those. We recall that
for α, β, β′ ∈ k∗ there is an isomorphism of quaternion algebra’s (α, β)k ∼= (α, β′)k if and only if β/β′ is
of the form x2 − αy2 for certain x, y ∈ k; see Exc. 5.19 of [Voi21] or Thm. 5.1 of [Con]. As a special
case, there is an isomorphism (α, β)k ∼= (α,−αβ)k. Furthermore for α, β, γ ∈ k∗ there is an isomorphism
(α, β)k ∼= (α, γ2β)k. It therefore follows that(︂A2 − 4B

d
, d− A2d

A2 − 4B

)︂
k
= (d(A2 − 4B), d((A2 − 4B)2 −A2(A2 − 4B)))k

= (d(A2 − 4B),−4Bd(A2 − 4B))k

= (d(A2 − 4B), B)k (by (α,−4αβ)k ∼= (α,−αβ)k ∼= (α, β)k);

= (d,B)k (since A2 − 4B is of the form x2 −By2).

Let L be the pullback of OB(1) along the quotient map C → B and let N be the pullback of OP1(1)
along C → P1, both considered as element of PicC/k(k). According to Thm. 3.4 of [Lie17], the obstruction
of L to come from Pic(C) is the Brauer class (d,B)k ∈ Br(k)[2], whereas N is an actual invertible sheaf.
Let L = L⊗N ∨ ∈ Pic0C/k(k), which maps to

δ(L⊗N ∨) = δ(L)− δ(N ) = (d,B)k ∈ Br(k)[2].

It thus suffices to show that L is 2-torsion and maps to (0, 0) ∈ E(k) under the isomorphism Pic0C/k(k) =
E(k). Without loss of generality suppose that k is algebraically closed. Let P and Q be closed fixed points
for the sign involutions σ1 and σ2 respectively, so that L = OC(2P ) and N = OC(2Q). Let r ∈ E(k) be
any point such that 2r = (0, 0), then

σ2(P + r) = σ1(P + r) + (0, 0) = σ1(P ) + r + (0, 0) = P + r,

so L = L⊗N ∨ = OC(2P − 2Q) corresponds to 2r = (0, 0) ∈ E(k).

Remark 6.3.25. Alternatively, to compute that OC(2P−2Q) corresponds to (0, 0) ∈ E(k), one may use the

isomorphism of (6.1.15). We pick the k(
√
d)-valued points P = (0,−

√
d) and Q =

(︁√︂
d/(A+ 2

√
B), 0

)︁
on

C, that map to the k(
√
d)-valued points p = (0, 0) and q =

(︁√
B,
√︁
B
√
B +A

√
B +B

)︁
of E respectively.

Diligent elliptic curve arithmetic one verifies that 2q = p = (0, 0).

The study of the boundary map ∂C through the Tate pairing and the evaluation pairing has been
quite fruitful: the above results certainly suffice in the context of the computation of Section 5.4. For
completeness, we briefly mention a third pairing related to the Tate and evaluation pairing. Let n be a
positive integer coprime to the characteristic exponent p, which should be thought of as the period of the
para-elliptic curve C.

103



Definition 6.3.26. The cup product ⌣ and the Weil pairing en : E[n]⊗ E[n]→ µn induce a bilinear
pairing

(·, ·)n : H1(k,E[n])×H1(k,E[n])
⌣−−→ H2(k,E[n]⊗ E[n])

en,∗−−−→ H2(k, µn) = Br(k)[n].

Remark 6.3.27. The Weil pairing depends substantially on n: Prop. 8.1.e of [Sil09] states that the Weil
pairings satisfy the compatibility law for the Weil pairing enm(P,Q) = en(P,mQ), where P ∈ E[n](k)
and Q ∈ E[nm](k), where n and m are positive integers coprime to the characteristic exponent. Letting
i : E[n] → E[nm] be the inclusion, then the above pairing inherits the compatibility (i∗γ, δ)nm =
(γ1,mγ2)n, where γ ∈ H1(k,E[n]) and δ ∈ H1(k,E[nm]).

The above pairing is related to the Tate pairing. This was shown in Prop. 9 of [Bas72]. Given an
elliptic curve E, recall that we have the natural map in cohomology H1(k,E[n])→ H1(k,E)[n], as well
as the boundary map δn : E(k)→ H1(k,E[n]).

Theorem 6.3.28. Let [C] ∈ H1(k,E)[n] be the cohomology class of a para-elliptic curve with a lift
γ ∈ H1(k,E[n]). Furthermore, let P ∈ E(k) be a rational point. Then

⟨[C], P ⟩Tate = (γ, δn(P ))n.

Remark 6.3.29 (Refinement to cyclic isogenies). Suppose Z/nZ ⊂ E[n] is a subgroup scheme, whose
quotient E[n]/(Z/nZ) is isomorphic to µn by self-duality of elliptic curves. Suppose that the cohomology
class γ lies in the image of H1(k,Z/nZ)→ H1(k,E[n]). It is not difficult to see that in this case the pairing
(γ, δn(P ))n only depends on the image of δn(P ) under the natural map H1(k,E[n])→ H1(k, µn), which
is δE(P ) by the obvious generalisation of (6.2.2). The Weil pairing restricts to en : Z/nZ⊗ µn

∼−→ µn, in
which case we have

⟨[C], P ⟩Tate = en(γ ∪ δE(P ));

see Prop. 4.1 of [ÇK12].

Let n = 2, so also assume p ̸= 2. This tool allows us to give another proof of Corollary 6.3.17.
The main idea is the standard fact that the cup product H1(k, µ2) × H1(k, µ2) → H2(k, µ2) maps a
pair of elements α, β ∈ k∗/k∗2 to the quaternion algebra (α, β)k. We fix an isomorphism µ2

∼= Z/2Z.
Multiplication provides an isomorphism Z/2Z⊗Z/2Z ∼−→ Z/2Z. We let ⋆ denote the induced isomorphism
µ2 ⊗ µ2

∼−→ µ2, which is given on ksep-points by

1 ⋆ 1 = 1, 1 ⋆−1 = 1, −1 ⋆ 1 = 1, −1 ⋆−1 = −1.

Lemma 6.3.30. Recall the map E[2]→ ResA/k µ2,A of Section 6.2. The following diagram is commutative.

H1(k,E[2])×H1(k,E[2]) H1(k,ResA/k µ2,A)×H1(k,ResA/k µ2,A)

H2(k,E[2]⊗ E[2]) H2(k,ResA/k µ2,A ⊗ ResA/k µ2,A)

H2(k, µ2) H2(k,ResA/k µ2,A)

⌣ ⌣

e2,∗ ⋆A,∗

NormA/k,∗

(6.3.5)

Proof. Since all group schemes in question are smooth, we may calculate all cohomology groups in the étale
cohomology, which is simply the Galois cohomology of the field k. We verify the statement by a cocycle
computation in Galois cohomology. Fix a separable closure ksep. We let σ and τ denote arbitrary elements
of the absolute Galois group Gal(ksep/k). Represent an arbitrary element of H1(k,E[2])×H1(k,E[2]) by
the pair of 1-cocycles (ψ,φ) with values in E[n].

We first calculate the downward composition, not involving A. The cup-product is represented by the
2-cocycle (σ, τ) ↦→ ψ(σ)⊗ σ(φ(τ)), which under the Weil pairing maps to the 2-cocycle with values in µ2

given by

(σ, τ) ↦−→ e2(ψ(σ), σ(φ(τ))) =

{︄
+1 if σ−1(ψ(σ)) = φ(τ),

−1 otherwise.
(6.3.6)
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Recall that the map E[2]→ ResA/k µ2,A is given on ksep-points by P ↦→ e2((θ, 0), P ), where (θ, 0) ∈
E(A); see Example 6.1.1. As such, the cup-product is represented by the 2-cocycle with values in
µ2(A⊗ ksep)⊗ µ2(A⊗ ksep) given by

(σ, τ) ↦−→ e2((θ, 0), ψ(σ))⊗ e2((θ, 0), σ(φ(τ))). (6.3.7)

Let P1, P2, P3 ∈ E[2](ksep) be the three non-identity two-torsion points. Recall that, under the canonical
isomorphism µ2(A⊗ksep) ∼= µ2(k

sep)3, the Weil pairing e2((θ, 0), Pi) is given by a permutation of the tuple
(+1,−1,−1), where the positive entry is in the ith index, q.v. Example 6.1.3. Applying the pushforward
of ⋆A corresponds to applying ⋆ componentwise. We calculate that

(+1,−1,−1) ⋆ (+1,−1,−1) = (+1,−1,−1) has norm +1; and,

(+1,−1,−1) ⋆ (−1,+1,−1) = (+1,+1,−1) has norm −1.

The other possibilities for ⋆ follow by permutations. We conclude that the norm of e2((θ, 0), Pi) ⊗
e2((θ, 0), Pj) equals 1 if and only if i = j. In other words, (6.3.7) maps to the 2-cocycle (6.3.6), as
desired.

Proof of Corollary 6.3.17. Let γ ∈ H1(k,E[2]) mapping to [C] = v(a). Then ∂C(P ) = (γ, δn(P ))n. By
definition, the composition H1(k,E[2])×H1(k,E[2])→ H2(k, µ2) of Lemma 6.3.30 is the pairing (·, ·)n.
We therefore chase the diagram (6.3.5) along the rightward composition.

Under the isomorphisms H1(k,ResA/k µ2,A) ∼= H1(A,µ2,A) ∼= A∗/A∗2, the elements γ and δn(P )
map to a and (x− θ)(P ), respectively, by Theorem 6.1.10. The cup-product map A∗/A∗2 ×A∗/A∗2 →
H2(A,µ2,A) maps a pair (u, v) to the quaternion algebra (u, v)A. Hence in our case, the image in
H2(A,µ2,A) is the quaternion algebra ((x − θ)(P ), a)A. The norm map corresponds directly to the
corestriction. Finally, since P = (x, y) is not a two-torsion point, we have (x− θ)(P ) = x− θ.
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Chapter 7

Cohomological invariants through the
Néron–Severi group scheme

7.1 The torsion of the Néron–Severi group scheme

Let X be a proper geometrically integral and geometrically normal scheme X, so that the Picard scheme
PicX/k is representable by a proper scheme. The Néron–Severi group is defined as the quotient group

NS(X) = Pic(X)/Pic0(X). It is a theorem of Severi, called the theorem of the base, that NS(X) is
finitely generated as abstract group. We study a group scheme theoretic version by replacing the Picard
group by the Picard scheme.

Notation 7.1.1. The étale Néron–Severi group scheme NSétX/k is the quotient NSétX/k = PicX/k /Pic
0
X/k.

In the literature this quotient is sometimes instead called the Néron–Severi group scheme. Our choice
of terminology is motivated by the following property.

Proposition 7.1.2. The group scheme NSétX/k is étale.

Proof. Note that NSétX/k = PicX/k /Pic
0
X/k = π0(PicX/k) is naturally the group scheme of connected

components of the Picard scheme, which is étale by Thm. 2.4.1 of [Bri17].

Although this may seem to be a desirable property for a Néron–Severi group scheme, we are on the
contrary unable to observe certain essential infinitesimal parts. The Picard scheme PicX/k may be non-
reduced in positive characteristic. In the quotient, the non-reducedness is offset by the non-reducedness
of the connected component Pic0X/k, which explains why NSétX/k is reduced. We are therefore unable to
observe the infinitesimal remnants in the étale Néron–Severi group scheme. We instead consider the
quotient PicX/k /Pic

α
X/k, where PicαX/k denotes the maximal abelian subvariety. Recall that we may

identify PicαX/k with the reduced subscheme (Pic0X/k)red by Lem. 3.3.7 of [Bri17], using the fact that
the Picard scheme is proper; cf. Section 3.2. The reduced subscheme of a group scheme in general does
not inherit the structure of a group scheme over imperfect ground fields. Since the maximal abelian
subvariety does not have these flaws, it is for this reason that it is more natural to work with it instead.

Definition 7.1.3. The Néron–Severi group scheme NSX/k is the quotient NSX/k = PicX/k /Pic
α
X/k.

Remark 7.1.4. Since the formation of the Picard scheme and its maximal abelian subvariety commute
with base change, so does the Néron–Severi group scheme.

Remark 7.1.5. The third isomorphism theorem implies that NSétX/k = NSX/k /NS0X/k. Therefore the
étale Néron–Severi group scheme is naturally isomorphic to the group scheme of connected components
π0(NSX/k) of the Néron–Severi group scheme, justifying our earlier statement regarding the unobserved
infinitesimal parts.

A related definition is that of the numerical group scheme. Following §3 of [LS23] we define it as
the quotient NumX/k = PicX/k /Pic

τ
X/k. The most essential difference between the numerical group

scheme and the Néron–Severi group scheme is that NumX/k(k
′) is free group for every field extension
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k′/k, whereas NSX/k(k
′) may contain torsion elements. Otherwise they are closely related: the groups

of k′-points are both finitely generated abstract groups, whose ranks of the free parts are both equal
to the Picard number ρ of X, and furthermore the cardinality of the torsion subgroup of NSX/k(k

′) is
bounded in k′; see Exp. XIII, Thm. 5.1 of [SGA 6]. It follows that the torsion part of NSτX/k is finite. An
explicit bound for the order of NSτX/k is given in Thm. 5.10 of [Kwe22]. Note that NSτX/k is the kernel of
the quotient map NSX/k → NumX/k, and by the third isomorphism theorem is hence isomorphic to the
quotient PicτX/k /Pic

α
X/k. Throughout this chapter we consider the following shorthand notation.

Notation 7.1.6. Let Γ = NSτX/k = PicτX/k /Pic
α
X/k be the torsion subgroup scheme of NSX/k.

The group scheme Γ is also particularly interesting in the study of the group scheme PicτX/k from
a structural perspective. In the theory of algebraic groups, one often studies a group scheme (resp. an
algebraic group) G through its affinisation Gaff = Spec Γ(G,OG), which inherits the structure of a group
scheme (resp. an algebraic group); see for example the theory as developed in [Bri17; Mil17], but see
also §7 of [LS23]. Note that there is a natural morphism G→ Gaff , which is a surjective group scheme
homomorphism. Its kernel, often denoted Gant, is often called the anti-affinisation, which is anti-affine,
i.e. (Gant)

aff = 0. In this way, any group scheme is an extension of an affine group scheme by an anti-affine
group scheme. Applying this to the group scheme G = PicτX/k, the following result further motivates the
study of Γ.

Proposition 7.1.7. The anti-affinisation (PicτX/k)ant coincides with the maximal abelian subvariety

PicαX/k. Therefore the quotients (PicτX/k)
aff and Γ are isomorphic.

Proof. We crucially use the standing assumption that PicτX/k is proper. It follows that the affinisation is
proper and anti-affine, so also smooth and connected by Lem. 3.3.2 of [Bri17]. We conclude that there is
an inclusion (PicτX/k)ant ⊂ PicαX/k. The other inclusion holds generally, since the canonical morphism

PicαX/k → (PicτX/k)
aff from a proper scheme to an affine scheme is constant; cf. p. 24 of [LS23].

We now specialise to bielliptic surfaces. Remarkably, they are the only class within the tetrachotomy of
minimal smooth surfaces of kod(X) = 0 where torsion in the Néron–Severi group scheme may occur. We
motivate the importance of the torsion of the Néron–Severi group scheme for bielliptic surfaces especially.

For exposition, suppose first that k = C. Then there is a chain of isomorphisms

NS(X)tors = Picτ (X)/Pic0(X) ∼= H1(X,Z)tors ∼= H2(X,Z)tors ∼= Br(X)tors, (7.1.1)

where the first and last isomorphisms rely on the long exact sequence associated to the exponential short

exact sequence 0→ Z→ OX
exp−−→ O∗

X → 1 and vanishing of h2(OX), whereas the middle isomorphism
follows from the Universal Coefficient Theorem, cf. §1 of [Fer+22] and §2.1 of [Boa21]. Note that NS(X)tors
is hence also a topological invariant of the analytification of X.

The torsion subgroup H1(X,Z)tors was determined over the field of complex numbers in [Ser90]
according to the type of the bielliptic surface X. Explicit generators of H2(Xan,Z)tors can be found in
[Fer+22]: for later reference we note that the generators are differences of multiple fibres of the elliptic
fibration g : X → P1

C. Over arbitrary ground fields, a chain of isomorphisms comparable to (7.1.1) hold in
étale and crystalline cohomology; q.v. Ch. 1, §2 of [Boa21].

Let k again be an arbitrary ground field. We compute the torsion subgroup scheme of NSX/k in a
large number of cases of the Bagnera–de Franchis classification of bielliptic surfaces. Namely, the bielliptic
surfaces with a smooth Albanese, and the quasi-bielliptic surfaces of Jacobian type.

This is of importance for the algebraic de Rham cohomology of those bielliptic surfaces in view of
[Suw83], in which the author determines the Hodge and de Rham numbers for surfaces for which the
Albanese dimension equals h1(OX)− h2(OX) in terms of NSτX/k. The Hodge and de Rham numbers were
previously computed for bielliptic surfaces with smooth Albanese, quasi-bielliptic surfaces in characteristic
3 (both §4 of [Lan79]), and quasi-bielliptic surfaces in characteristic 2 of type (a1) (see §9 of [Sch21b]).
To this list we add the four other Jacobian quasi-bielliptic surfaces in characteristic 2, which are classical
or supersingular of type (c1) or (d).

As discussed in Chapter 4, it is a general principle that a bielliptic surface is studied best through its
canonical covers and its BdF-covers. We apply this strategy to the torsion of its Néron–Severi group
scheme. We state the critical lemma in a general form, which applies to both situations at once.
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Lemma 7.1.8. Let X be a proper geometrically integral surface with Albanese f : X → P . Let ˜︁P → P
be an isogeny of para-abelian varieties with kernel K and let ˜︁X = X ×P ˜︁P → X be the pullback torsor.
Consider the induced K-action on the Picard scheme Picτ˜︁X/k by pullback of invertible sheaves. Then the

pullback map PicτX/k → Picτ˜︁X/k induces an inclusion Γ→ Coker(Picτ˜︁P/k → (Picτ˜︁X/k)K). Furthermore, it

is an isomorphism if K satisfies one of the additional assumptions of Theorem 1.3.14.

Proof. The pullback square for ˜︁X induces a commutative square on Picard schemes.

PicτP/k Picτ˜︁P/k

PicτX/k Picτ˜︁X/k
f∗

Recall that f∗ induces an isomorphism PicτP/k
∼−→ PicαX/k. The kernels of the horizontal arrows are

isomorphic to K∨ due to Theorem 1.3.14. The induced map between kernels K∨ → K∨ is injective by
injectivity of f∗. Since the group schemes are finite of the same order, it is therefore an isomorphism.
The images of the horizontal maps are contained inside (Picτ˜︁P/k)K and (Picτ˜︁X/k)K , respectively. The

group scheme K acts by translations on ˜︁P , so its induced action on the Picard scheme is trivial. The
map on K-invariants is hence PicτP/k → Picτ˜︁P/k, which is an isogeny of abelian varieties, hence surjective.

We conclude that the following diagram is commutative.

0 K∨ PicτP/k Picτ˜︁P/k 0

0 K∨ PicτX/k (Picτ˜︁X/k)K
∼= f∗

Functoriality of cokernels of the horizontal maps yields Γ = Coker(f∗)→ Coker(Picτ˜︁P/k → (Picτ˜︁X/k)K),

which is injective by the snake lemma. Surjectivity holds under one of the additional assumptions of
Theorem 1.3.14, since then the map PicτX/k → (Picτ˜︁X/k)K is surjective.

We apply the above Lemma successively to a canonical cover and a BdF-cover of a bielliptic surface,
for the latter assuming it exists. First fix a canonical cover π : Y → X, with Stein factors C and D. The
Picard schemes A∨ = PicτY/k, E

∨ = PicτC/k and J∨ = PicτD/k inherit N -actions through the pullback
of invertible sheaves on Y , C and D, respectively. Note that, since N acts by translations on C, the
resulting action on E∨ is trivial.

Proposition 7.1.9. Suppose X is not a supersingular quasi-bielliptic surface of type (d). Then the
pullback map π∗ : PicτX/k → A∨ induces an isomorphism

Γ
∼−−→ Coker(E∨ → (A∨)N ).

If X is supersingular quasi-bielliptic of type (d), then the induced map Γ → Coker(E∨ → (A∨)N ) is
injective.

Remark 7.1.10. We show below that for supersingular quasi-bielliptic surfaces of type (d) both the domain
and codomain are trivial, hence the map is is also an isomorphism in this case.

Proof. Apply Lemma 7.1.8 to a canonical cover π : Y → X. The natural map Γ→ Coker(E∨ → (A∨)N )
is always injective. If X is not a supersingular quasi-bielliptic surface of type (d), then N is isomorphic to
either Z/nZ, µn or αp, each of which satisfies the additional assumptions of Theorem 1.3.14. Therefore
surjectivity also holds.

Even though this cokernel can be quite mysterious, we relate it naturally to ˜︁J∨ through the following
short exact sequence, that we proved in the coarse of Proposition 3.5.21 in the setting of an algebraically
closed ground field, but whose proof used only the existence of a BdF-cover; cf. (3.5.3). We also note the
similarity to the dual short exact sequence (2.3.1) if X has a smooth Albanese.
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Lemma 7.1.11. Suppose that X admits a BdF-cover. Then the sequence

0 −→ E∨ −→ A∨ −→ ˜︁J∨ −→ 0 (7.1.2)

induced by the natural maps A→ E and ˜︁J → A, is short exact.

This results in the following morphism of short exact sequences.

0 E∨ (A∨)N Γ 0

0 E∨ A∨ ˜︁J∨ 0

id

The natural map Γ→ ˜︁J is injective as a consequence of the snake lemma. Applying Lemma 7.1.8 to a
Bagnera–de Franchis cover of X actually yields a stronger result.

Proposition 7.1.12. Suppose that X admits a Bagnera–de Franchis cover ˜︁C × ˜︁D → X. The pullback
map PicτX/k → ˜︁E∨ × ˜︁J∨ induces an injective morphism Γ→ ( ˜︁J∨)G.

Proof. A BdF-cover Z → X is the pullback of a G-cover ˜︁C → P . Then Lemma 7.1.8 yields an injective
map Γ→ Coker(Picτ˜︁C/k → (Picτ˜︁C× ˜︁D/k)G) = ( ˜︁J∨)G.

The above statements, in particular Proposition 7.1.9, allow us to Γ concretely in most cases of the
Bagnera–de Franchis classification. We cover two special cases, the first being bielliptic surfaces with
d = 1, in which case the notions of canonical cover and BdF-cover coincide. The following resulted is
stated in Prop. 4.1 of [Lan79] for bielliptic surfaces with a smooth Albanese; see also Lem. 8.1.2 of [Sko01]
for the specific case of tame characteristic (a1). We emphasise that our statement uniformly holds for all
bielliptic surfaces of Jacobian type, including quasi-bielliptic surfaces.

Theorem 7.1.13. Let X be bielliptic surface with d = 1. Then Γ = (J∨)N .

Proof. The condition that d = 1 implies that G = N , and that a canonical cover Y → X is a BdF-cover,
because the natural map Y → C ×D is an isomorphism. On the level of Picard schemes, this means that
A∨ = E∨ × J∨, so Γ = Coker(E∨ → (A∨)N ) = (J∨)N .

We now treat the second special case, namely where the bielliptic surface X is assumed to have a
smooth Albanese. This special case is manageable due to the absence of certain critical behaviour, as
discussed in Section 4.3. For example, the map Y → C ×D is an isogeny of para-abelian varieties, the
associated map of abelian surfaces A→ E × J has kernel H, hence Y → C ×D is an H-torsor, and the
quotient map ˜︁D → D is an H-torsor.

Recall that we have equipped A∨, E∨ and J∨ with the N -action arising form the pullback of invertible
sheaves on Y , C and D, respectively. Since X may not have a BdF-cover, we cannot equip ˜︁E∨ and ˜︁J∨

with a G-action in a similar way. However, ˜︁E∨ and ˜︁J∨ are quotients of E∨ and J∨, respectively, by the
N -stable subgroup scheme H∨. In this way, we still equip them with a canonical N -action, which can
then be extended trivially to a G-action. Note that if X does admit a BdF-cover then the two actions
agree: this is clear for ˜︁E since the G-action is trivial; for ˜︁J this relies on the fact that ˜︁D → D is an
H-torsor, so the induced map Pic0D/k → Pic0˜︁D/k agrees with the quotient map by Theorem 1.3.14.

Theorem 7.1.14. Let X be a bielliptic surface with smooth Albanese. Suppose that it admits a Bagnera–de
Franchis cover. Then there is a natural isomorphism

Γ = (J∨)N/H∨.

Proof. Consider the short exact sequence (7.1.2). The latter term ˜︁J∨ is defined to be the quotient J∨/H∨.
Since the Albanese map is smooth, it follows from Proposition 4.3.4 that A∨ = (E∨ × J∨)/H∨, where
H∨ ⊂ E∨ × J∨ is the anti-diagonal embedding of the subgroup schemes H∨ ⊂ E∨ and H∨ ⊂ J∨. In
particular, taking the quotient commutes with the projection to J∨, so that the following diagram is
commutative.

E∨ × J∨ J∨

A∨ ˜︁J∨
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Note that all maps are surjective. Consider hence the kernels: the above diagram extends to the following
commutative diagram, with exact rows and columns.

0 0

H∨ H∨

0 E∨ E∨ × J∨ J∨ 0

0 E∨ A∨ ˜︁J∨ 0

0 0

id

id

We note that the maps in the above diagram are N -equivariant; consider the induced diagram of N -
invariants. Since the N -action on the kernels E∨ and H∨ is trivial, Lemma 7.3.3 applies in the top
row and the left column, which results in the surjectivity of the maps E∨ × (J∨)N → (J∨)N and
E∨ × (J∨)N → (A∨)N . (For the former map, this is quite clear.) The other maps may not be surjective

on N -invariants, so consider the cokernels of (A∨)N → ( ˜︁J∨)N and (J∨)N → ( ˜︁J∨)N , denoted ∂ and δ,
respectively. Thus the following diagram is commutative with exact rows and columns.

0 0

H∨ H∨

0 E∨ E∨ × (J∨)N (J∨)N 0

0 E∨ (A∨)N ( ˜︁J∨)N Coker

0 Coker

id

id

∂

δ

(7.1.3)

Note that the cokernel of E∨ → (A∨)N is isomorphic to Ker(∂). Now a simple diagram chase shows that
Ker(∂) = Ker(δ), which is canonically isomorphic to (J∨)N/H∨ = (J∨)N/H∨.

Remark 7.1.15. Note that Theorems 7.1.13 and 7.1.14 agree whenever both are applicable: if X is a
bielliptic surface with smooth Albanese and d = 1, then ˜︁J∨ = J∨ and H = 0.

In the two cases described above, a concrete application of Theorem 7.1.13 or 7.1.14 requires an
explicit description of the invariants of J∨. If the ground field k is algebraically closed, this fixed locus is
computable using the explicit description of the action of G on ˜︁D of the Bagnera–de Franchis classification
of Section 3.4. We postpone the computations to Section 7.3, but already state the results here. Although
our method is unable to compute Γ for a supersingular bielliptic surface of type (b2), this case was treated
by Lang in [Lan79] through a detailed study of quasi-elliptic fibrations in characteristic 3; see Thm. 3.2
and the comments on its p. 489.

Theorem 7.1.16. Let k be an algebraically closed ground field. The different isomorphism classes of the
torsion of the Néron–Severi group scheme Γ are tabulated in Table 7.1. The variable λ arising for supersin-
gular quasi-bielliptic surfaces of type (a1) refers to the corresponding variable in the Bagnera–de Franchis
classification Theorem 3.4.12. The values with a question mark are conjectural; see Conjecture 7.1.23.

Remark 7.1.17. Note that the order of the group scheme Γ seems to be constant among bielliptic surfaces
of the same type, at least in all cases that we can confirm. This would not have been the case if we had
considered the torsion part of the étale Neron–Severi group scheme NSét,τX/k, because non-smooth group

schemes occur in Table 7.1.
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Type Tame Char. Ordinary Biell. Classical Q.-Biell. Supersing. Q.-Biell.

(a1) (Z/2Z)2 J∨[2] =

{︃
µ2 × Z/2Z

M2
(Z/2Z)2

{︃
α2 × Z/2Z if λ ̸= 0;

α4 if λ = 0;
(a2) Z/2Z µ2 Z/2Z? α2?
(b1) Z/3Z α3 Z/3Z α3

(b2) 0 ∄ 0 ∄
(c1) Z/2Z α2 Z/2Z ∄
(c2) 0 ∄ 0? ∄
(d) 0 0 0 0

Table 7.1: The group scheme Γ = NSτX/k in all cases of the Bagnera–de Franchis classification

Example 7.1.18. The failure of the fixed locus functor to be right-exact can be observed explicitly for
bielliptic surfaces of non-Jacobian type with a smooth Albanese. For example: let X be a bielliptic
surface with smooth Albanese of type (a2). Then the action of N ∼= Z/2Z on J∨ and ˜︁J∨ is by the sign
involution, hence the N -invariants comprises the two-torsion. Then J∨[2]/H∨ ̸= (J∨/H∨)[2], due to the
discrepancy in the orders. In general, we note that if ∂ vanishes if and only if δ vanishes in (7.1.3), as can
be shown by a small diagram chase.

Example 7.1.19. We return to the case where k = C the field of complex numbers, where there is an
isomorphism NS(X)tors ∼= H1(X,Z)tors. Since this is a topological invariant, the above table separates a
number of types up to homeomorphism. It in fact turns out that bielliptic surfaces of different types are
not homeomorphic: they can be further distinguished by the abelianisation of the inner automorphism
group of the fundamental group; see Table II of [Iit69].

Example 7.1.20. Suppose again k = C. The torsion subgroup of H1(X,Z) is computed by Serrano in
[Ser90]. Explicit generators correspond to differences of multiple fibres of the other elliptic fibration
g : X → P1

C, as was shown in [Fer+22]. It is noteworthy that these multiple fibres correspond exactly to
the non-singular points of D (which in this context can be identified with J∨) that are invariant under
the action of N .

In the above case distinction we have treated most cases in the Bagnera–de Franchis classification of
bielliptic surfaces over an algebraically closed field, but it notably does not apply to the quasi-bielliptic
surfaces of types (a2), (b2) and (c2), i.e. the quasi-bielliptic surfaces of non-Jacobian type. The argument

crucially breaks down due to the failure of the quotient map ˜︁D → ˜︁D/H = D to be an H-torsor, since the
action is not free around the cusp. We thus cannot apply Theorem 1.3.14 to conclude that there is a
short exact sequence

0 −→ H∨ −→ J∨ −→ ˜︁J∨ −→ 0,

where the map J∨ → ˜︁J∨ is induced by the quotient map ˜︁D → D. Indeed, this conclusion is in general
simply false.

Proposition 7.1.21. Let X be a quasi-bielliptic surface with d > 1. The induced map J∨ → ˜︁J∨ is zero.

Proof. Without loss of generality suppose that the ground field is algebraically closed. By assumption˜︁D is a rational cuspidal curve. From the proof of Proposition 3.5.18, we observe that the quotient map˜︁D → D factors over the normalisation P1 → D. The induced map on the Picard schemes factors over
Pic0P1/k = 0.

Although the isomorphism class of Γ remains open in the remaining cases of non-Jacobian quasi-
bielliptic surfaces in characteristic 2, we do limit the possible options, at least up to twisted forms.

Proposition 7.1.22. Suppose the ground field k is algebraically closed.

• If X is classical quasi-bielliptic of type (a2), then Γ ∼= 0 or Z/2Z or (Z/2Z)2.

• If X is supersingular quasi-bielliptic of type (a2), then Γ ∼= α2 or α2 × Z/2Z;

• If X is quasi-bielliptic of type (c2), necessarily classical, then Γ = 0 or Z/2Z.

112



Proof. In each case this follows from Proposition 7.1.12, which states that Γ is a subgroup scheme of the
finite group scheme (J∨)N . We again postpone the computation of the fixed locus to Section 7.3. We see
in Section 7.2 that if X is a supersingular quasi-bielliptic surface of type (a2), then Γ has a non-trivial
Frobenius kernel, since in this case PicX/k is non-reduced; see Corollary 7.2.5. This limits the possible
subgroup schemes of α2 × Z/2Z to the two cases listed.

Under the assumption that the order of Γ is constant among bielliptic surfaces of the same type,
there is only one isomorphism class for Γ. We thus conjecture the following, indicated in Table 7.1 by a
question mark.

Conjecture 7.1.23.

• If X is classical quasi-bielliptic of type (a2), then Γ = Z/2Z;

• If X is supersingular quasi-bielliptic of type (a2), then Γ = α2;

• If X is quasi-bielliptic of type (c2), necessarily classical, then Γ = 0.

7.2 Hodge numbers and de Rham numbers

Let k be an algebraically closed ground field. In this section we investigate the dimension of the Hodge
cohomology groups and algebraic de Rham cohomology groups of a bielliptic surface X, originally
considered by Grothendieck in [Gro66c]. We also refer to the Stacks project [Stacks, Tag 0FK4].

Both cohomology groups pertain to the sheaf of differentials ΩiX/k, defined as the ith exterior power

∧iΩ1
X/k of the sheaf of Kähler differentials. They sit in the de Rham complex

Ω•
X/k = [Ω0

X/k −→ Ω1
X/k −→ Ω2

X/k −→ · · · ],

where the boundary map is defined on local sections by the usual formula d(f0 ∧ df1 ∧ · · · ∧ dfi) =
df0 ∧ df1 ∧ · · · ∧ dfi. The de Rham cohomology is defined as the hypercohomology of this complex, i.e.
through the cohomology groups

HidR(X) = Hi(RΓ(X,Ω•
X/k)).

Let hidR = dimHidR(X) be the de Rham numbers of X. The Hodge cohomology groups Hj(X,ΩiX/k) are
obtained by considering the sheaf cohomology of the individual constituents of the de Rham complex. The
dimensions hij = dimHj(X,ΩiX/k) are called the Hodge numbers of X. These two cohomology groups

are related by the Hodge-to-de Rham spectral sequence (sometimes called the Hodge spectral sequence)
Eij1 = Hj(X,ΩiX/k)⇒ Hi+jdR (X,Ω•

X/k), as in [Stacks, Tag 0FM6].
The Hodge cohomology and de Rham cohomology originally arise from the theory of real and complex

manifolds. If X is a regular scheme over C, then the above is a natural generalisation: there are
natural isomorphisms HidR(X) ∼= HidR(X

an) and Hj(X,ΩiX/k)
∼= Hj(Xan,ΩiXan); see [Gro66c]. Thus in

this context Hodge symmetry hij = hji holds. Furthermore the Hodge-to-de Rham spectral sequence
degenerates at the E1-page, which consequently implies the identity hidR =

∑︁i
j=0 h

j,i−j . In positive
characteristic neither Hodge symmetry nor the degeneration of the Hodge-to-de Rham spectral sequence
holds generally. Only the relation hij = hn−i,n−j obtained form Serre duality generalises to positive
characteristic; see [Dob21].

In this section we deduce the Hodge numbers and de Rham numbers of most types of bielliptic surfaces
X from the group scheme Γ by invoking the results of [Suw83]. Before we state the main result of op.
cit., we introduce the following notation. We denote by Γ[F ] and Γ[V ] the kernels of Frobenius and
Verschiebung respectively; in characteristic 0 our convention is that both are equal to 0. We also introduce
the following measure of size for a p-group scheme.

Definition 7.2.1. The rank of a finite p-group scheme G is defined as

rkG = logp dimH0(G,OG).

Note that this differs from the order |G| = dimH0(G,OG) by a base p logarithm. For example,
rkαp = rkZ/pZ = rkµp = 1. The rank is a natural number exactly by the assumption that G is a
p-group scheme. We now state Thm. 1 and Thm. 2 from op. cit.
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Theorem 7.2.2. Let X be a smooth proper surface whose Albanese dimension equals 1− χ(OX). Then
the Hodge numbers of X are given by⎛⎝h02 h12 h22

h01 h11 h21

h00 h10 h20

⎞⎠ =

⎛⎝0 1 1
1 2 1
1 1 0

⎞⎠+

⎛⎝rk Γ[F ] rk Γ[V ] 0
rk Γ[F ] 2 rk Γ[V ] rk Γ[F ]

0 rk Γ[V ] rk Γ[F ]

⎞⎠ . (7.2.1)

Furthermore, the de Rham numbers of X are given by

hndR =

⎧⎪⎨⎪⎩
1 if n = 0 or 4;

2 + rkΓ[p] if n = 1 or 3;

2 + 2 rkΓ[p] if n = 2.

Furthermore, the Hodge-to-de Rham spectral sequence Ers1 = Hs(X,ΩrX)⇒ Hr+s(X,Ω•
X) degenerates at

the E1-page if and only if rk Γ[F ] + rkΓ[V ] = rkΓ[p].

The Hodge numbers are traditionally displayed in the shape of a diamond, the so-called Hodge diamond.
Below we present the Hodge diamond together with the de Rham numbers of bielliptic surfaces in the
following configuration:

h00

h10 h01

h20 h11 h02

h21 h12

h22

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
⃓

h0dR

h1dR

h2dR

h3dR

h4dR

Conventions differ in the precise positioning of the Hodge numbers in the diamond: for example, some
authors apply the symmetry hij ↔ hji. In a context where Hodge symmetry holds (e.g. over the field of
complex numbers) this causes no ambiguity. For us, Hodge symmetry holds if and only if rk Γ[F ] = rk Γ[V ],
as follows from (7.2.1). We note that for a surface satisfying the conditions of Theorem 7.2.2, the Hodge-to

de Rham spectral sequence degenerates if and only if each Hodge number hidR equals
∑︁i
j=0 h

j,i−j , which
is the sum of the corresponding row in the Hodge diamond.

From now on let X be a bielliptic surface. To see that the Theorem of Suwa applies, we simply verify
the following, which is clear from Table 3.1.

Lemma 7.2.3. Let X be a bielliptic surface. Its Albanese dimension equals h1(OX)− h2(OX).

We compute the remaining Hodge numbers and de Rham numbers for all cases where the isomorphism
class of Γ is known, by applying the formulæ of Theorem 7.2.2 to Table 7.1 describing the isomorphism
classses of Γ. The result is displayed in Table 7.2. As usual, conjectural values are displayed with a
question mark.

The tabulation extends the results of [Lan79], in which the author determines the Hodge and de
Rham numbers of bielliptic surfaces with a smooth Albanese, and quasi-bielliptic surfaces in characteristic
3. Furthermore the Hodge and de Rham numbers of quasi-bielliptic surfaces of type (a1), necessarily
in characteristic 2, are determined in §9 of [Sch23a] through a careful analysis of the multiple fibres of
the other fibration g : X → P1. It is remarkable that Example 7.1.20 also outlines a connection between
the multiple fibres and the group scheme Γ, indicating that there is perhaps a deeper connection. As
far as the author is aware, it is still an open question to compute the Hodge and de Rham numbers of
non-Jacobian quasi-bielliptic surfaces in characteristic 2.

Remark 7.2.4. Suppose X is an ordinary bielliptic surface of type (a1), (b1) or (c1) over an algebraically
closed field. The invertible sheaf Ω1

X/k may be computed with a similar approach to Proposition 3.4.19.

Since the action of G is trivial on both Ω1˜︁C/k = O ˜︁C and Ω1˜︁D/k = O ˜︁D, it follows that Ω1
X/k is a free sheaf

of rank 2. This explains the Hodge diamond.

1
2 2

1 4 1
2 2

1
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Type Tame Char. Ordinary Biell. Classical Q.-Biell. Supersing. Q.-Biell.

(a1)

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

1
2 2

1 4 1
2 2

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
4
6
4
1

1
3 1

0 6 0
1 3

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
4
6
4
1

1
3 2

1 6 1
2 3

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
4
6
4
1

(a2)

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

1
1 2

1 2 1
2 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3
4
3
1

1
2? 1

0 4? 0
1 2?

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3?
4?
3?
1

1
2? 2

1 4? 1
2 2?

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3?
4?
3?
1

(b1)

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

1
2 2

1 4 1
2 2

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3
4
3
1

1
2 1

0 4 0
1 2

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3
4
3
1

1
2 2

1 4 1
2 2

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3
4
3
1

(b2)

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

∄

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

∄

(c1)

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

1
2 2

1 4 1
2 2

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3
4
3
1

1
2 1

0 4 0
1 2

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3
4
3
1

∄

(c2)

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

∄

1
1? 1

0 2? 0
1 1?

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2?
2?
2?
1

∄

(d)

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

1
1 1

0 2 0
1 1

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
2
2
2
1

Table 7.2: The Hodge diamonds and de Rham numbers of bielliptic surfaces

The author does not know whether supersingular quasi-bielliptic surfaces of types (b2) and (c1) also have
free Ω1

X/k.

A direct consequence of Theorem 7.2.2 regarding the de Rham number h02 pertains to the reducedness
of PicτX/k. Since Γ is a quotient of PicτX/k, the following result extending Proposition 3.1.27 should not
be too surprising.

Corollary 7.2.5. Let X be a bielliptic surface. The Picard scheme PicτX/k is reduced if and only if
Γ[F ] = 0.

Proof. Recall that m denotes the order of ωX in Pic(X). By Serre duality we see that

rk Γ[F ] = h02 = dimH2(X,OX) = dimH0(X,ωX) =

{︄
0 if m > 1;

1 if m = 1.
(7.2.2)

We recall from Proposition 3.1.27 that m = 1 if and only if PicτX/k is non-reduced.

Remark 7.2.6. It follows that a tabulation of rk Γ[F ] is implicit in Table 3.5 describing m. Alternatively,
we can read off whether m = 1 from the leftmost entry, or, equivalently by Serre duality, the rightmost
entry in the Hodge diamonds of Table 7.2.
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Corollary 7.2.7. Let X be a bielliptic surface. The Hodge-to-de Rham spectral sequence does not
degenerate at the E1-page if and only if

• X is supersingular of type (a1) or (a2); or

• X is ordinary of type (b1) or (c1).

Proof. Recall that the Hodge-to-de Rham spectral sequence of a bielliptic surface degenerates if and only
if the sum of the ith row of the Hodge diamond equals the ith de Rham number hidR. For the types
of bielliptic surfaces where Γ is known, the result follows from a direct observation of Table 7.2. If the
isomorphism class of Γ is not known, we may use Proposition 7.1.22 to limit the possible isomorphism
classes, each giving a potential Hodge diamond. For example, if X is supersingular of type (a2) then it
follows that the Hodge diamond equals either

1
2 2

1 4 1
2 2

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
3
4
3
1

or

1
3 2

1 6 1
2 3

1

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓
1
4
6
4
1.

In either case, the Hodge-to-de Rham spectral sequence does not degenerate. The other cases are
similar.

The non-degeneration of the Hodge-to-de Rham spectral sequence has consequences for the liftability
of these types of bielliptic surfaces to the second truncation W2 = W/p2W of the ring of Witt vectors
W =W (k), by invoking the following famous result of Deligne and Illusie; see [DI87].

Theorem 7.2.8. Let X be a smooth, proper scheme over a perfect field k with p > 0 and dim(X) ≤ p.
If X lifts to W2(k), then the Hodge-to-de Rham spectral sequence Eij1 = Hj(X,ΩiX/k)⇒ Hi+jdR (X,Ω•

X/k)
degenerates at the E1-page.

Alternatively, to prove the weaker result that these classes of bielliptic surfaces are non-liftable to
the ring of Witt vectors W , we may apply the criterion Thm. 5.3 of [Sch21b], for which we only need to
verify that the connected component Γ0 contains a copy of αpN as a direct summand, for some N ≥ 1,
and that h1(OX)− h2(OX) = 1. A brief inspection of Table 7.1 shows that the first condition holds, and
the second condition holds because the given expression equals 1− χ(OX); see Table 3.1.

Nevertheless, the above discussion does not inhibit the existence of liftings to characteristic 0 in any
way: in fact any bielliptic surface with a smooth Albanese admits a projective lifting to characteristic 0
due to Cor. 1.8.9 of [Par10]. On p. xv of op. cit. it is remarked that the same is true for quasi-bielliptic
surfaces.

7.3 The fixed locus: a lemma and computations

In course of the proof of Theorem 7.1.14 we postponed proof of surjectivity of certain arrows in (7.1.3).

Definition 7.3.1. A G-module is a commutative group scheme M equipped with a G-action by group
scheme homomorphisms.

Categorically, this means that the diagram

G×M ×M G×G×M ×M ∼= G×M ×G×M M ×M

G×M M

∆G×idM×M

idG×+

α×α

+

α

is commutative. Equivalently, the G(S)-action on M(S) is required to be by group homomorphisms, for
every scheme S. A homomorphism of G-modules is defined to be an equivariant homomorphism of group
schemes. We note that the category of G-modules is abelian.
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Example 7.3.2. Let G be an abstract abelian group and let M be an abstract G-module, i.e. an abstract
abelian group equipped with a G-action. Then the constant group scheme Mk is naturally a Gk-module
for the constant group scheme Gk.

Lemma 7.3.3. Let

0 −→M ′ i−−→M1 ×M2 −→M ′′ −→ 0

be a short exact sequence of G-modules. Suppose that prM1
◦ i is injective, and that the G-action on M1

is trivial. Then the induced map on G-invariants M1 × (M2)
G → (M ′′)G is surjective.

Proof. Consider an fppf-morphism S → Spec(k), and note that S is locally noetherian. Let m′′ ∈
(M ′′)G(S) ⊂M ′′(S) be an arbitrary element. By surjectivity, there is an fppf-cover S′ → S such that m′′

lifts to some (m1,m2) ∈ (M1×M2)(S
′), which by exactness is unique up to translation by a unique element

of M ′(S′). We show that m2 is fixed by the action of GS′ . Let S′′ → S′ be an arbitrary fppf-cover, and let
g ∈ G(S′′) be any element. Since m′′ is fixed under the G-action, it follows that g · (m1,m2) = (m1, g ·m2)
maps to m′′, so that there is a unique element m′ ∈ M ′(S′′) such that(m1, g ·m2) = i(m′) + (m1,m2).
It follows that the image of i(m′) in M1 vanishes, from which we conclude that m′ = 0. Whence
g · (x, y) = (x, y), as required.

Remark 7.3.4. Consider the special case where G is a constant group scheme, and where M ′, M1, M2

and M ′′ are constant G-modules. We may treat G as an abstract group, and the G-modules as abstract
G-modules. Then the above result can also be proven using group cohomology, as follows. There is a
long exact sequence

0 −→M ′ −→M1 × (M2)
G −→ (M ′′)G −→ H1(G,M ′) −→ H1(G,M1 ×M2) −→ · · · .

Since the G-action on M ′ is trivial, we can identify H1(G,M ′) = Hom(G,M ′). Similarly, we find
H1(G,M1 ×M2) = Hom(G,M1) × H1(G,M2). Since the natural map Hom(G,M ′) → Hom(G,M1) ×
H1(G,M2) is injective, it follows by exactness that M1 × (M2)

G → (M ′′)G is surjective.

From now on let k be an algebraically closed ground field and let X be a bielliptic surface. For the
remainder of this section we compute the fixed locus of the action of N on the Picard scheme J∨ = Pic0D/k.
This proves Theorem 7.1.16, by invoking Theorems 7.1.13 and 7.1.14. It also completes the proof of
Proposition 7.1.22.

Proposition 7.3.5. The fixed locus (J∨)N is tabulated in Table 7.3.

Type Tame Char. Ordinary Biell. Classical Q.-Biell. Supersingular Q.-Biell.

(a) J∨[2] J∨[2] (Z/2Z)2
{︃
α2 × Z/2Z if λ ̸= 0;

α4 if λ = 0;
(b) Z/3Z α3 Z/3Z α3

(c) Z/2Z α2 Z/2Z ∄
(d) 0 0 0 0

Table 7.3: The fixed locus (J∨)N in all cases of the Bagnera–de Franchis classification

The proof uses the Bagnera–de Franchis classification of bielliptic surfaces Theorems 3.4.4 and 3.4.12.
The possible N -actions on D may be read off from the G-actions on the curve ˜︁D. In effect, we may
assume without loss of generality that X is of Jacobian type, i.e. of type (a1), (b1), (c1) or (d).

Let us first treat the case where X has a smooth Albanese; in this case Theorem 7.1.14 is applicable
to deduce the isomorphism class of the group scheme Γ. The following result is clear from Theorem 3.4.4.

Lemma 7.3.6. Suppose X has a smooth Albanese. Then there is an isomorphism N ∼= Z/nZ, and the
action of N on J∨ is an elliptic curve automorphism ω of order n. Then (J∨)N = J∨[1 − ω] so that
Γ = J∨[1− ω]/H∨.

117



To compute the isomorphism class of J∨[1− ω] in all different cases in an elementary fashion, apply
§III.10 and App. §A of [Sil09], as done in §5.1 of [Mar22]. Note that the order of J∨[1− ω] equals

⃓⃓
J∨[1− ω]

⃓⃓
= deg(1− ω) = (1− ζn)(1− ζ−1

n ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4 if n = 2;

3 if n = 3;

2 if n = 4;

1 if n = 6,

where ζn ∈ C denotes a primitive nth root of unity. We describe the group scheme Γ in all cases in more
detail.

Example 7.3.7 (Type (a1)). In this case N ∼= Z/2Z and H = 0. Since ω is the sign involution on ˜︁J∨ = J∨,
it follows that Γ ∼= J∨[2]. In tame characteristics p ̸= 2 it is indeed true that J∨[2] is isomorphic to
(Z/2Z)2.

Example 7.3.8 (Type (a2)). In this case N ∼= Z/2Z and H ∼= µ2, so Γ ∼= ˜︁J∨[2]/(Z/2Z) ∼= µ2. In the tame
characteristics p ̸= 2 this is indeed coincides with Z/2Z; see Table 7.1.

Example 7.3.9 (Type (b1)). Here N ∼= Z/3Z and H ∼= 0, so Γ ∼= ˜︁J∨[1− ω]. According to §5.1 of [Mar22]
this is isomorphic to Z/3Z if p ̸= 3 and isomorphic to α3 if p = 3.

Example 7.3.10 (Type (b2)). Here N ∼= Z/3Z and H ∼= µ3, so Γ ∼= ˜︁J∨[1 − ω]/(Z/3Z) = 0. Note that

Z/3Z is only a subgroup scheme of ˜︁J∨[1− ω] if p ̸= 3, which is consistent with the fact that there exists
no ordinary bielliptic surface of type (b2).

Example 7.3.11 (Type (c1)). Here N ∼= Z/4Z and H = 0, so Γ ∼= ˜︁J∨[1− ω], which by §5.1 of [Mar22] is
isomorphic to Z/2Z if p ̸= 2 or α2 if p = 2.

Example 7.3.12 (Type (c2)). Here N ∼= Z/4Z and H ∼= µ2, so Γ ∼= ˜︁J∨[1 − ω]/(Z/2Z) = 0. Note that
Z/2Z is only a subgroup scheme of J∨[1−ω] if p ̸= 2, but similarly to type (b2), this example only occurs
in tame characteristic.

Example 7.3.13 (Type (d)). Here N ∼= Z/6Z and H = 0. We have seen above that the order of ˜︁J∨[1− ω]
is 1, hence it is the trivial group scheme. Therefore Γ = 0.

We now treat quasi-bielliptic surfaces. Since the group scheme G may be infinitesimal, we will
calculate certain invariant loci of group scheme actions by an infinitesimal group scheme. For height one
infinitesimal group schemes, there is an equivalence of categories with p-Lie algebra’s and derivations;
see for example §2 of [Sch21a] or §1 of [Sch07]. One can characterise the fixed point locus using this
perspective, as is done for two cases quasi-elliptic cases of type (a1) in characteristic 2 in [Sch21b]. We
instead perform a more direct calculation, also since the group scheme G may not be of height 1 in
characteristic 2: we observe from Table 3.8 that a µ4 appears.

Note that G = Spec(A) is affine. On the side of Hopf algebras, its action on Ga hence corresponds to
a co-action α♯ : k[t]→ A⊗ k[t]. Let I ⊂ k[t] be an ideal. The closed subscheme Z = Spec k[t]/I is stable
if α♯ induces a map k[t]/I → A ⊗ k[t]/I. Furthermore Z is invariant if this map equals the inclusion
z ↦→ 1⊗ z. Recall that the fixed locus (J∨)G is the closure of the union of invariant subschemes. We note
also that, since G acts on J∨ ∼= Ga by group scheme homomorphisms, the fixed locus naturally inherits
the structure of a subgroup scheme.

Lemma 7.3.14. Let k be algebraically closed and suppose X is a classical quasi-bielliptic surface of type
(a1) or (a2). Then (J∨)N = (Z/2Z)2. If X is of type (a1), then it follows that Γ ∼= (Z/2Z)2.

Proof. If X is of type (a2), then the induced N -action on the rational cuspidal curve D = ˜︁D/H is as
for a classical quasi-bielliptic surface of type (a1), as follows from the actions listed in the Bagnera–de
Franchis classification Theorem 3.4.12. Thus assume without loss of generality that X is of type (a1).
The action of µ2 on J∨ ∼= Ga, whose underlying scheme is a copy of Spec k[t], is induced by the co-action
α♯ : k[t]→ k[a]/(a2 − 1)⊗ k[t] given by

t ↦−→a⊗ t+ λ(a+ 1)⊗ t2 + (a+ 1)⊗ t4

=1⊗ (λt2 + t4) + a⊗ (t+ λt2 + t4).
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for some λ ∈ k. It is not difficult to see that any closed subscheme Z = Spec k[t]/I is stable. Write
I = (f) for some polynomial f . The image of t lies in 1⊗ k[t]/(f) if and only if t+ λt2 + t4 ≡ 0 mod f ;
in other words if and only if f divides t+ λt2 + t4. It follows that (J∨)G ∼= Spec k[t]/(t+ λt2 + t4) ⊂ Ga.
Since t+ λt2 + t4 is separable, this subgroup scheme is isomorphic to a copy of (Z/2Z)2.

Lemma 7.3.15. Let k be algebraically closed and suppose X is classical quasi-bielliptic of type (b1) or
(b2). Then (J∨)N = Z/3Z. If X is of type (b1), then Γ ∼= Z/3Z.
Proof. Similarly to the proof of Lemma 7.3.14, assume without loss of generality that X is of type (b1).
The action of µ3 on J∨ ∼= Ga is induced by the co-action α♯ : k[t]→ k[a]/(a3 − 1)⊗ k[t] given by

t ↦−→ a⊗ t+ (1− a)⊗ t3 = 1⊗ t3 + a⊗ (t− t3).

Again, any closed subscheme Z = Spec k[t]/(f) is stable, and invariant if and only if f is a divisor of
t− t3. Thus (J∨)G is Spec k[t]/(t− t3) ⊂ Ga, which is the copy of Z/3Z generated by 1.

Lemma 7.3.16. Let X be a classical quasi-bielliptic surface of type (c1) or (c2). Then (J∨)N = Z/2Z.
If X is of type (c1), then Γ ∼= Z/2Z.
Proof. Assume without loss of generality that X is of type (c1). The action of µ4 on J∨ ∼= Ga is induced
by the co-action α♯ : k[t]→ k[a]/(a4 − 1)⊗ k[t] given by

t ↦−→ 1⊗ t4 + a⊗ (t+ t2) + a2 ⊗ (t2 + t4).

The fixed locus is hence Spec k[t]/I ⊂ Ga, where I = (t+ t2, t+ t4) = (t+ t2) since k has characteristic 2.
This is the copy of Z/2Z generated by 1.

Lemma 7.3.17. Let X be a classical quasi-bielliptic surface of type (d). Then Γ = (J∨)N = 0.

Proof. Without loss of generality let k be algebraically closed. Suppose first that p = 2. The action of µ6

of is given by the action of µ2 of (a1), combined with the action of µ3 by t ↦→ ζ3t. The invariant locus
(J∨)N hence equals the maximal subgroup scheme of Spec k[t]/(t + λt2 + t4) invariant under t ↦→ ζ3t,
which is 0.

The case that p = 3 is similar: in this case the action of µ6 decomposes as the action of µ3 of (b1),
combined with the action of µ2 by t ↦→ −t. The maximal subgroup scheme of Spec k[t]/(t− t3) invariant
under t ↦→ −t is 0.

Lemma 7.3.18. Let k be algebraically closed and suppose X is supersingular quasi-bielliptic of type (a1)
or (a2). Let λ ∈ k be as in the Bagnera–de Franchis classification Theorem 3.4.12. Then Γ ∼= α2 × Z/2Z
if λ ̸= 0, and Γ ∼= α4 if λ = 0.

Proof. Suppose without loss of generality that X is of type (a1). The action of α2 of J∨ ∼= Ga is induced
by the co-action α♯ : k[t]→ k[a]/(a2)⊗ k[t] given by

t ↦−→ 1⊗ t+ a⊗ (λt2 + t4).

Again, any closed subscheme Z = k[t]/(f) is stable. It is invariant if and only if f is a divisor of
λt2 + t4 = t2(λ + t2). If λ = 0 this defines the subgroup scheme α4 ⊂ Ga, and if λ ̸= 0 this defines a
subgroup scheme isomorphic to α2 × Z/2Z.

Lemma 7.3.19. Let k be algebraically closed and suppose X is supersingular quasi-bielliptic of type (b1).
Then Γ ∼= α3.

Proof. The action of α3 is induced by the co-action α♯ : k[t]→ k[a]/(a3)⊗ k[t] given by

t ↦−→ 1⊗ t+ a⊗ t3.

The maximal invariant locus is k[t]/(t3), which is the subgroup scheme α3 ⊂ Ga.

Lemma 7.3.20. Let X be a supersingular quasi-bielliptic surface of type (d). Then Γ = 0.

Proof. Without loss of generality suppose k is algebraically closed. Suppose first that p = 2. The action
of α2 × µ3 is given by the action of α2 in the supersingular (a1) case, combined with the action of µ3

given by t ↦→ ζt, where ζ is a primitive third root of unity. The maximal invariant locus of the action
of µ3 on Spec k[t]/(t4) is 0. The case p = 3 is similar. In this case the action of µ2 on Spec k[t]/(t3) by
t ↦→ −t, whose fixed locus is 0.
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[ES09] Federigo Enriques and Francesco Severi. ‘Mémoire sur les surfaces hyperelliptiques’. In: Acta
Mathematica 32 (1909), pp. 238–392. doi: 10.1007/BF02403219. And in: Acta Mathematica
33 (1910), pp. 321–403. doi: 10.1007/BF02393217.

[Fer+22] Eugenia Ferrari, Sofia Tirabassi, Magnus Vodrup and Jonas Bergström. ‘On the Brauer
group of bielliptic surfaces’. In: Documenta Mathematica 27 (2022), pp. 383–425. doi:
10.4171/DM/873.

[Fis21] Johannes Fischer. ‘Pinching Azumaya Algebras’. PhD thesis. Heinrich-Heine-Universität
Düsseldorf, Nov. 2021. URN: nbn:de:hbz:061-20220301-110713-0.

[Fis01] Tom Fischer. ‘Some examples of 5 and 7 descent for elliptic curves over Q’. In: Journal of
the European Mathematical Society 3 (2001), pp. 169–201. doi: 10.1007/s100970100030.

[Fog73] John Fogarty. ‘Fixed Point Schemes’. In: American Journal of Mathematics 95.1 (1973),
pp. 35–51. doi: 10.2307/2373642.

[Fra36a] Michele de Franchis. ‘Dimostrazione del teorema fondamentale sulle superficie iperellittiche’.
In: Rend. Accad. Lincei 24 (1936), pp. 3–6.

[Fra36b] Michele de Franchis. ‘Sulla classificazione delle superficie iperellittiche’. In: Scritti in onore
di Berzolari. 1936, pp. 613–615.

123

https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
https://dept.math.lsa.umich.edu/~idolga/EnriquesOne.pdf
https://dept.math.lsa.umich.edu/~idolga/EnriquesOne.pdf
https://doi.org/10.1016/j.jalgebra.2016.03.034
https://doi.org/10.1007/s00229-014-0721-7
https://doi.org/10.2140/ant.2018.12.2445
https://eudml.org/doc/143480
https://eudml.org/doc/143480
https://doi.org/10.1090/S0002-9947-00-02535-6
https://doi.org/10.2140/ant.2021.15.729
http://operedigitali.lincei.it/rendicontiFMN/rol/visabs.php?lang=it&type=mat&fileId=2565
http://operedigitali.lincei.it/rendicontiFMN/rol/visabs.php?lang=it&type=mat&fileId=2565
http://operedigitali.lincei.it/rendicontiFMN/rol/visabs.php?lang=it&type=mat&fileId=2762
http://operedigitali.lincei.it/rendicontiFMN/rol/visabs.php?lang=it&type=mat&fileId=2762
https://doi.org/10.1007/BF02403219
https://doi.org/10.1007/BF02393217
https://doi.org/10.4171/DM/873
http://www.nbn-resolving.org/nbn:de:hbz:061-20220301-110713-0
https://doi.org/10.1007/s100970100030
https://doi.org/10.2307/2373642


[Gee88] Gerard van der Geer. Hilbert modular surfaces. Ergebnisse der Mathematik und ihrer
Grenzgebiete. Berlin Heidelberg: Springer, 1988. isbn: 3540176012.
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