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Abstract
Intrinsically disordered proteins (IDPs) play a pivotal role in amyloid aggregation, a
process linked to neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Due
to their flexible structures, IDPs can transition from disordered to ordered states upon
interaction with molecular partners, often leading to the formation of amyloid fibrils. This
thesis examines the mechanisms of IDP conformation switching and aggregation using
molecular dynamics (MD) simulations and free energy surface (FES) analyses to elucidate
structural transitions, fibrillization pathways and early aggregation events, i.e. oligomer
formation. In this work, three IDPs involved in amyloid formation are studied: the
amyloid-β protein (Aβ42), a segment of the parathyroid hormone (PTH1−34), and the SH3
domain of the bovine phosphatidylinositol-3-kinase (PI3K-SH3). For Aβ42, we analyze its
configurational space in various molecular environments, highlighting its transition from
a disordered state to a toxic β-hairpin structure. By employing transition networks and
FES calculations, we reveal that Aβ42 as a monomer in solution exhibits a ’structurally
inverted folding funnel’, where disordered states dominate. Upon dimerization, the
FES resembles that of a folded protein, with a singular folding funnel and a β-hairpin
structure at the global minimum. A similar change in the FES is observed if Aβ42 interacts
with either a glycoseaminoglycan or lipids, which both promote the formation of intra-
peptide β-sheets. For PTH25−37, we study photoinduced reversible amyloid fibrillization by
incorporating a photoswitch, 3-[(4-aminomethyl)phenyl]diazenylbenzoic acid, at various
positions in the peptide. Through computational design, synthesis, and experimental
validation, we demonstrate how the mutation position impacts fibril formation and
develop a comprehensive fibril model for PTH25−37 and one of its mutants. In this study,
we demonstrate how light-induced switching between the cis and trans conformations of
the photoswitch enables controlled, reversible transitions between an amorphous state
(cis) and fibril formation (trans). These structural propensities are further explained
through comprehensive MD simulations. Lastly, we investigate pH-dependent amyloid
aggregation in the context of the PI3K-SH3 domain. Using extensive MD simulations,
we elucidate the structural transition from a folded state at neutral pH to a disordered
state at acidic pH, which drives amyloid formation. Our analysis identifies key features of
pH-driven unfolding and aggregation, providing a framework for future experimental
validation. In summary, this thesis offers insights into IDP behavior during amyloid
aggregation, focusing on disorder-to-order transitions and FES changes across different
environments. Additionally, we examine the role of pH and photo-controlled aggregation
in modulating fibril formation, shedding light on key features driving these processes.
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1Introduction

Proteins are fundamental molecules integral to the functioning of living systems,
playing a critical role in virtually every biological activity. From catalyzing metabolic
reactions to providing structural support, from mediating cell signaling to regulating
gene expression, the versatility and indispensability of proteins are unparalleled.
Understanding the structure, function, and dynamics of proteins is pivotal in fields
ranging from biochemistry and molecular biology to medicine and biotechnology.

Proteins are polymers composed of amino acids linked by peptide bonds, resulting
in complex three-dimensional structures that determine their function. Traditionally,
it is believed that the amino acid sequence of a protein dictates its unique folding and
conformation, which are crucial for its specific function. Specificity is often explained
by the lock-and-key mechanism, where the protein’s structure allows it to interact
precisely with its target molecules [1]. This intricate relationship between sequence,
structure, and function is a fundamental principle of molecular biology. Over the past
decade, efforts to predict protein structure from amino acid sequences have made
significant strides, culminating in the development of AlphaFold by DeepMind [2–
4], which received the Nobel price in Chemistry in 2024. By leveraging deep-
learning techniques, AlphaFold has achieved unprecedented accuracy in predicting
protein structures, revolutionizing the field and rivaling traditional methods such as
cryo-electron microscopy (cryo-EM), X-ray crystallography, and nuclear magnetic
resonance spectroscopy (NMR) [5].

However, not all proteins conform to this paradigm. Intrinsically disordered
proteins (IDPs) lack a unique three-dimensional structure under physiological con-
ditions, instead existing in a dynamic ensemble of conformations. This inherent
flexibility allows IDPs to engage in diverse and transient interactions with multiple
binding partners, thereby playing crucial roles in various cellular processes such as
signaling and regulation [6, 7]. However, their functional advantages sometimes
come with the tendency for amyloid aggregation. This phenomenon, where proteins
self-assemble into larger, often pathogenic structures, is a significant area of protein
research. Amyloid aggregation is implicated to play a pivotal role in numerous
neurodegenerative disorders, including Alzheimer’s disease (AD) [8, 9], Parkinson’s
disease (PD) [10], and type II diabetes [11, 12]. These disorders are character-
ized by the accumulation of amyloid proteins into neurotoxic oligomers and fibrils.
The process begins with the formation of soluble intermediate aggregates, such
as oligomers and protofibrils, which eventually mature into rigid amyloid fibrils
with rich inter-molecular β-sheet structures. It is widely believed that the smaller,
heterogeneous, and mobile oligomers are the most toxic species, capable of diffusing
across cells and interacting with cellular membranes, thereby disrupting cellular
functions [13].

1



The conformational heterogeneity of IDPs poses major challenges for their struc-
tural characterization using experimental techniques. Standard techniques for
studying molecular structures include NMR spectroscopy and cryo-EM. Small-angle
X-ray scattering (SAXS) is frequently employed to investigate the secondary structure
propensity and compactness of molecules. Additionally, atomic force microscopy
(AFM) is utilized as an imaging technique to examine larger aggregates and assem-
blies. However, most experimental techniques already struggle to resolve dynamics
that occur on short timescales (see Fig. 1.1) and in the case of IDPs, the diversity of
structures further complicates techniques that average over an ensemble of probe
molecules, making simulations all the more important [14, 15].

Molecular dynamics (MD) simulations offer a complementary approach for gain-
ing insights into the structural properties of IDPs. MD simulations enable the study
of IDPs in a dynamic and spatiotemporal manner by simulating the motion of in-
dividual atoms over time. This provides a molecular-level understanding of their
conformational changes, allowing researchers to explore the diverse conformational
landscapes of IDPs and their aggregation behaviors [5, 16–18]. Recent advance-
ments in technology, software, and simulation methodologies have made large-scale

Fig. 1.1.: Schematic overview over time- and length scales in biological methods. The
temporal and spatial resolution of the different simulation and experimental meth-
ods is indicated by colored boxes. The ranges are only approximate and meant
to highlight the broad applicability for each method. Methods include: Nuclear
magnetic resonance (NMR), single-particle electron cryo-microscopy (cryo-EM),
small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), all-atom
molecular dynamics simulations and quantum-mechanical (QM) Simulations. [14,
15]
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computer simulations feasible and established them as valuable tools for modeling
amyloid protein aggregation at the atomic level [19]. These advancements have
significantly enhanced our understanding of their mechanisms and structures on
picosecond to millisecond time scales. While simulations at the quantum mechan-
ical (QM) level would offer even higher accuracy, they remain computationally
infeasible for simulating entire molecules or oligomers. MD simulations, on the
other hand, provide a good balance between accuracy and computational feasibility,
capturing the kinetic behavior of molecules, while being executable on contemporary
hardware.

1.1 Aim of the Thesis
In this thesis, MD simulations are employed to investigate various IDPs and amyloid
aggregation prone peptides, notably the amyloid-β (Aβ) peptide, a sub-sequence
of the parathyroid hormone PTH25−37 and the Src-homology 3 (SH3) domain.
By utilizing transition networks, the configurational space of the Aβ42 peptide is
analyzed to study its disorder-to-order transitions upon binding and self-assembly,
leading to qualitative visualizations of the free energy landscapes that provide
valuable insights into aggregation mechanisms. Extending this analysis, the free
energy surface (FES) is thoroughly examined, alongside timescale analyses that
shed light on the dynamical properties of these systems. Additionally, the work
explores photoinduced reversible amyloid aggregation in the context of PTH25−37

and investigates pH-dependent amyloid aggregation using the SH3 domain as a
model system. Collectively, these approaches aim to deepen our understanding
of the conformational dynamics and aggregation kinetics of IDPs and amyloid-
forming peptides, contributing to the broader knowledge of amyloid aggregation
and structural transitions.

1.2 Intrinsically Disordered Proteins
In the past, proteins have been understood as molecules with well-defined three-
dimensional structures that are inseparably associated with their biological functions.
These "folded" proteins, which turn out to only make up about 50% of all proteins
in the human proteome [20], achieve their function through specific structural
conformations. Another 20% of proteins exhibit intrinsically disordered regions
longer than 30–40 consecutive residues that lack a well-defined structure, while a
total of 30% are considered completely IDPs. A protein is classified as an IDP if less
than 70% of its sequence can be identified with a unique folded structure.

In terms of their FES, IDPs differ significantly from folded proteins in their topolo-
gies. Folded proteins typically exhibit a singular folding funnel which drives the
protein towards the global minimum, corresponding to its unique tree-dimensional
structure (see Figure 1.2). In contrast, IDPs do not have a single equilibrium struc-
ture. Instead, they exist as flexible, heterogeneous ensembles of conformations
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resulting from relatively flat free energy landscapes with multiple competing funnels.
This flat multifunnel landscape consists of multiple local energy minima of similar
free energy separated by relatively small energy barriers, allowing for frequent and
rapid transitions between these minima [21]. These multifunnel landscapes enable
IDPs to interact with multiple partners and play versatile roles in cellular processes
such as signal transduction, gene regulation, and protein-protein interactions.

To facilitate these processes, IDPs exhibit a unique property known as "folding upon
binding," wherein they transition from a disordered state to a more ordered structure
upon interacting with specific binding partners [22, 23]. This process enables IDPs
to achieve high specificity in binding interactions without the necessity for strong
affinity, facilitating rapid association and dissociation rates crucial for regulatory
functions. Studies, such as those involving the measles virus nucleoprotein and its
interaction with the phosphoprotein X domain, revealed that folding often occurs
through induced-folding pathways [24]. This mechanism involves the formation
of inter-molecular contacts prior to or concurrent with the secondary structure
development of the IDP, suggesting a kinetic advantage of flexible, disordered states
in navigating binding pathways and enhancing interaction efficiency.

A common structural motive across IDPs is the relatively high abundance of
glutamic acids and serines in their amino acid sequence, resulting in low overall
hydrophobicity and large net charge [25, 26]. This unique composition distinguishes
them from folded proteins, which typically have hydrophobic cores that stabilize
their three-dimensional structures. The reduced hydrophobicity in IDPs prevents the
formation of such stable cores, contributing to their lack of a fixed structure. Despite
these properties, which generally reduce the propensity for beta-sheet formation,
several IDPs are notably involved in amyloid-related diseases. Proteins such as Aβ,
tau, and alpha-synuclein defy their structural predispositions and form amyloid

Fig. 1.2.: Schematic representation of the free energy landscape of a folded and disor-
dered protein.
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fibrils, playing critical roles in conditions like Alzheimer’s [27, 28] and Parkinson’s
diseases [10]. These proteins contain specific segments that are capable of forming
amyloid structures, highlighting the complex and dual nature of IDPs.

1.3 Amyloid Aggregation
The transition of soluble proteins to ordered, highly stable, and insoluble amyloid
aggregates has gained significant research interest in recent decades. While some
functional amyloids, such as the parathyroid hormone, can reversibly disintegrate
after aggregation [29], numerous common disorders are associated with irreversible
amyloid formation. Diseases linked to amyloid aggregation include Parkinson’s dis-
ease, Type 2 Diabetes Mellitus, Huntington’s disease, Amyotrophic Lateral Sclerosis,
Prion diseases, and Alzheimer’s disease. Alzheimer’s disease, in particular, is of
increasing importance in our aging society. It is estimated that by 2050, 150 million
people worldwide will be affected by Alzheimer’s disease [30].

The fibrillization pathway of amyloid fibrils is widely understood as a nucleated
growth polymerization process, which can be divided in three phases: nucleation,
elongation, and equilibrium (see Figure 1.3) [31–33]. The process begins when
individual monomeric polypeptides assemble into oligomeric aggregates, which

Fig. 1.3.: Schematic representation of amyloid aggregation phases. In the nucleated-
polymerization model, the aggregation pathway is divided into nucleation, elon-
gation, and equilibrium. During nucleation phase a critical nucleus is established,
which is a fibrillar/on-pathway oligomer. The nucleus grows to protofibrils during
the elongation phase and finally forms mature amyloid fibrils in the equilibrium
phase.
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transform into protofibrils and eventually form fibrils. Mature fibrils typically exhibit
highly ordered and rigid structures compared to their monomeric and oligomeric
predecessors, due to the formation of highly stable inter-protein β-sheet structures.
Compared to elongation, primary nucleation is a slower process due to the signifi-
cant free energy barrier associated with the required structural rearrangements [5].
Once this barrier is surpassed, the critical nucleus forms, representing the smallest
and least stable structure capable of promoting further aggregation [34, 35]. This
nucleus is characterized by a high free energy state [36]. Following the formation
of the critical nucleus, the addition of monomers or oligomers to the protofibril
becomes thermodynamically favorable, leading to rapid addition of monomers to
the established structure during the elongation phase. However, during elongation,
larger assemblies can still dissociate into smaller ones, which can then acceler-
ate the fibrilization by stimulating new fibril growth through the branched-chain
mechanism [37]. Studies in the lab of Tuomas Knowles and Christopher Dobsen
demonstrated that once a small but critical concentration of amyloid fibrils has
accumulated, toxic oligomeric species are predominantly formed from monomeric
peptide molecules through a fibril-catalyzed secondary nucleation reaction. In sec-
ondary nucleation, the surface of existing fibrils serves as a template, catalyzing
the formation of new toxic oligomers, accelerating the aggregation process and
increasing the overall toxicity [38, 39]. These processes continue until equilibrium
is reached and mature fibrils are formed. Environmental factors can influence each
phase of the aggregation process, significantly impacting the morphology of the
fibrils and the kinetics of their aggregation. Factors known to affect fibril formation
include increased polypeptide concentration, post-translational modifications, pH,
and interactions with lipid membranes [40–45]. Recently it has been suggested
that oligomers are in fact the most toxic species, which exhibit toxicity through
receptor-mediated, membrane-damaging, and intracellular mechanisms [46–48].
For example, it has been suggested that oligomeric Aβ can cause cell death by
interacting with the cell membrane disrupting Ca2+ homeostasis [49] or lead to
inflammation upon binding to microglia [50].

The primary challenges in studying amyloid aggregation lie in capturing the
rapid timescales associated with oligomerization [51–53]. Furthermore, the low
relative abundance of oligomers complicates their detection and characterization.
For example, soluble Aβ oligomers in buffered aqueous solution typically constitute
less than 1.5% of the total peptide concentration [54]. Consequently, the small
size (typically fewer than 10 proteins), low abundence and fast timescales present
significant difficulties for experimental studies, resulting in most research focusing on
the more stable, mature fibrils. Additionally, the polymorphism of amyloid aggregates
complicates both experimental and computational studies. Amyloid polymorphism
occurs when the same polypeptide can form different structural arrangements,
which can manifest at multiple levels, including various packing arrangements
of protofilaments, variations in the folds of specific protein regions, and different
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interfaces of interaction. Experimental techniques commonly employed to investigate
amyloid polymorphisms include cryo-EM [55], AFM, and NMR studies [56]. In this
context, MD simulations offer a valuable tool for addressing the presented challenges
by enabling the study of oligomerization and early aggregation events over short
timescales. Additionally, structural clustering of the configurational space explored
during MD simulations allows for the identification of oligomer polymorphisms and
their relative formation propensities.

1.4 Amyloid-β peptide
Amyloid-β (Aβ) is a soluble IDP, which is generated through the proteolytic cleav-
age of the transmembrane amyloid precursor protein (APP), by β-secretase and
γ-secretase enzymes in the human brain. APP can undergo proteolysis via two
distinct pathways involving either α- or β-secretase, resulting in non-amyloidogenic
or amyloidogenic pathways, respectively. In the amyloidogenic pathway, as depicted
in Figure 1.4, β-secretase cleaves APP into the membrane-bound C-terminal frag-
ment CTFβ and N-terminal sAPPβ. Subsequent cleavage of CTFβ by γ-secretases
produces extracellular Aβ and the intracellular APP domain AICD. The γ-secretases
cleavage can yield Aβ peptides of varying length ranging from 38–51 amino acids,
including the two most prevalent products of the amyloidogenic pathway: Aβ40

and Aβ42, containing 40 and 42 amino acids respectively [57]. Conversely, in the

Fig. 1.4.: Human APP proteolysis in the amyloidogenic pathway. In the amyloidogenic
pathway β-secretase cleaves APP into the membrane-bound C-terminal fragment
CTFβ and N-terminal sAPPβ. Subsequent cleavage of CTFβ by γ-secretases pro-
duces extracellular Aβ and the intracellular APP domain AICD.
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non-amyloidogenic pathway, APP is cleaved by α-secretase, which cuts within the
Aβ sequence, thereby preventing the formation of Aβ peptides [58, 59]. While
the Aβ fragments produced by the proteolysis of APP have been identified to be
involved in the development of AD, its role in the healthy human brain is less well
understood [60]. APP knockout studies in mice have shown reduced locomotor
activity and evntual reactive gliosis in their brains [61]. Furthermore, Aβ40 has
been suggested to act as an cellular antioxidant [62] and both Aβ40 and Aβ42 seem
to modulate potassium channels in neurons, counteracting the effects of secretase
inhibitors [63].

Both Aβ40 and Aβ42 are capable of forming amyloid plaques; however, while
Aβ40 is the most abundant species in the brain, Aβ42 is identified as the more toxic
variant and is widely considered the primary agent in AD pathogenesis [64]. The Aβ
sequences can be divided into four distinct regions: (1) a metal-binding region at
the N-terminus, primarily composed of hydrophilic amino acids and three histidine
residues H6, H13 and H14 (residues 1–15); (2) a hydrophobic core region in the
center of the peptide (residues 16–22); (3) a central polar region (residues 23–29);
and (4) a hydrophobic C-terminal region (residues 30–40). Notably, the C-terminal
region of Aβ42 is extended by two additional hydrophobic residues compared to Aβ40

(see Figure 1.5 A). The longer hydrophobic tail of Aβ42 facilitates the formation of a
double hairpin, or S-shaped structure (see Figure 1.5 B), in addition to the prominent
single β-hairpin structure (see Figure 1.5 C). A hairpin structure is a protein structural
motif, where adjacent regions of the sequence form an anti-parallel β-sheet, through
a loop invovling 2–5 amino acids between the two strands of the β-sheet. Studies
have shown that oligomeric β-hairpin structures may represent the more toxic species,

Fig. 1.5.: Sequence of the Aβ42 peptide and prominent structures. (A) The amino acids
are colored according to their primary attribute: orange: acidic, green: basic,
pink: polar, blue: non-polar/hydrophobic. Furthermore an example of (B) a
S-shape structure and (C) a β-hairpin structure are shown. Here, the N-/C-termini
are shown as blue and red spheres, respectively.
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highlighting their potential role in the pathogenesis of Alzheimer’s disease [36, 47,
65–67].

In chapter 3 and 4 of this thesis we will discuss the conformational space of
Aβ42 and the change of structural propensity, specifically the β-sheet and β-hairpin
propensity, in different environments. Furthermore, in chapter 5 we analyse the free
energy surface of the Aβ42 monomer/dimer and identify key features of the pathway
from a disordered to a β-hairpin state, using first passage time analysis.

1.5 Parathyroid Hormone
The parathyroid hormone (PTH) is a 84-amino acid hormone, which is capable
of reversible amyloid fibril formation. It plays a crucial role in regulating calcium
and phosphate balance in the human body [68]. The mature form, PTH1−84, is
stored as functional amyloids prior to secretion, with its N-terminal pro-sequence
possibly preventing premature aggregation [69]. The N-terminal fragment with
34 amino acids of PTH1−84 is well-studied, particularly its importance in activating
G-protein coupled receptors in bone and kidney cells and in maintaining calcium and
phosphate homeostasis in the nervous system [70]. The PTH1−34 sequence became
the first food and drug administration (FDA) approved drug for the treatment of
severe osteoporosis in 2002 [71]. However, there is still a gap in understanding the
fibrillization process and the characteristics of the resulting fibrils. Current research
suggests that under physiological conditions, the thermodynamic stability of PTH1−84

fibrils is low enough to permit dissociation when diluted, with the fibril-forming
sequence spanning amino acids R25 to L37 (see Figure 1.6 A). Previous studies
have examined the influence of the pro-sequence and environmental factors on the
fibrillization of PTH, yet detailed structural parameters governing fibril assembly
and disassembly remain largely unexplored [69].

Fig. 1.6.: Structural overview of the PTH25−37 peptide and AMPB photo switch. (A)
Sequence of the PTH25−37 peptide. The amino acids are colored according to
their primary attribute: orange: acidic, green: basic, pink: polar, blue: non-
polar/hydrophobic. (B) Chemical structure of AMPB photo switch in trans and cis
conformation (C) fibril model of PTH25−37. The N- and C-terminus are depicted as
blue and red spheres, respectively. The β-sheets are colored yellow and α-helices
are colored purple. In (C) the side chains of L28 and F34 are highlighted as black
and green sticks, respectively.
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In chapter 6 we study the aggregation behaviour of the PTH25−37 sequence using
MD simulations, coupled with the findings by our experimental collaboration part-
ners. In that study we investigate the light-induced transitions between aggregated
and non-aggregated states of the PTH25−37 sequence mutated with an artificial 3-
{[(4-aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) photo switch, which shows
to be a reversible process. The AMPB photoswitch can transition between two con-
formations: the open trans and closed cis states (see Figure 1.6 B), triggered by light
activation at specific wavelengths. This light-activated mechanism presents a promis-
ing method for targeted drug delivery by enabling controlled release of reversibly
fibrillating peptides. Finally, we develop a fibril model for the PTH25−37 sequence
and one mutated sequence, by combining both computational and experimental
efforts (see Figure 1.6 C).

1.6 SH3-domain
The bovine SH3 domain of the p85α subunit of PI3K (PI3K-SH3) is a small, well-
characterized protein module composed of 84 amino acid residues. SH3 domains are
known to play a key role in several cellular signaling-pathways due to their ability to
mediate protein-protein interactions and recognizing proline-rich motifs [72, 73]. In
the family of protein tyrosine kinases, for instance, SH3 domains play a crucial role
in catalyzing the phosphorylation of tyrosine residues on protein substrates, a vital
step in cellular signaling [74].

The structure of PI3K-SH3, shown in Figure 1.7 A, is a β-sheet core consisting of
two perpendicular, antiparallel β-sheets, with three and two strands, respectively.
This compact β-sheet structure lacks disulfide bridges, contributing to its flexibility
and functionality. Notably, the folding and unfolding transitions of PI3K-SH3 at
neutral pH are reversible and cooperative, with no significant accumulation of
intermediates, ensuring a smooth conformational transition [75]. At acidic pH values,
specifically below pH 4, the PI3K-SH3 domain undergoes significant conformational
changes leading to denaturation and subsequent fibrillization. In this denatured state,
the protein gradually aggregates into long fibrils that share many characteristics with
amyloid fibrils (see Figure 1.7 B), despite the SH3 domain not being linked to any
known disease [76]. Figure 1.7 C shows the sequence of the PI3K-SH3 domain along
with its secondary structure in the native fold and the amyloid fibril. To transition
from the folded structure to the fibril, the protein must undergo significant structural
changes, necessitating the complete unfolding of the native fold.

The ability of the PI3K-SH3 domain to switch between a folded state at pH∼7 and
an amyloid forming disordered state at low pH, as shown in Figure 1.2, makes it
a very well suited system to study amyloid aggregation. In chapter 7, we employ
several simulation techniques to study the structural and kinetic differences at pH=2
and pH=7 and investigate early aggregation events.
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Fig. 1.7.: Structural overview of the bovine PI3K-SH3 domain. (A) Folded structure of
the bovine PI3K-SH3 domain (PDB:1PKS) and (B) fibril structure of the PI3K-SH3
domain (PDB:6R4R). The N- and C-terminus are depicted as blue and red spheres,
respectively. The β-sheets are colored yellow and α-helices are colored purple.
(C) Sequence of the SH3-domain. The amino acids are colored according to
their primary attribute: orange: acidic, green: basic, pink: polar, blue: non-
polar/hydrophobic. Below the sequence the secondary structure in the native fold
and amyloid fibril is shown.
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2Methods
The Methods chapter outlines the models and algorithms utilized in the presented
work. First, the primary sampling tool, molecular dynamics (MD) simulations, is
introduced, followed by a discussion of enhanced sampling methods. Additionally,
various analysis methods to investigate the conformational space of molecules are
presented, including principle component analysis (PCA) and the transition network
(TN) methodology. The latter is further developed to produce a free energy surface
from an MD simulation. Finally, the first passage time (FPT) analysis method is
introduced, providing kinetic insights derived from the free energy surface.

2.1 Molecular Dynamics Simulation
MD simulations provide a powerful tool to study time and length scales of molecular
systems, that are challenging to access experimentally (see Figure 1.1). Starting from
an initial structure, the forces acting on all atoms are calculated, allowing the system
to be integrated over small discrete time steps in a Newtonian fashion. Repeating
the force calculation and integration ultimately yields a trajectory of the molecules’s
structural evolution over time. The accuracy, with which the simulation resembles a
molecule’s behavior in vivo, depends highly on the quality of the underlying potential
energy function, also called force field, which is used for the force calculations.

2.1.1 Force Field
The force field (FF) is the fundamental potential energy function employed to
describe all interaction energies and consequently forces in MD simulations. Force
fields are parameterized to approximate the true potential energy function, which
might vary on the application, resulting in multiple FFs optimized for different
scenarios. In MD simulations, a primary distinction is made between all-atom (AA)
and coarse-grained (CG) force fields, excluding QM level approaches. In coarse-
grained MD (CG MD), the number of the system’s degrees of freedom is significantly
reduced compared to all-atom MD (AA MD) simulations by mapping clusters of
atoms onto coarse-grained beads [77]. This coarse-graining approach extends
the accessible temporal and spatial scales of simulations by orders of magnitude
compared to AA MD, potentially covering biological scales, but at the cost of losing
detailed structural information. The degrees of freedom averaged out in the CG FF
may include critical structural information, as well as making fast transitions on the
picosecond timescale inaccessible altogether [78].

In this work, we employed AA MD simulations (henceforth referred to as MD sim-
ulations) to study early aggregation events and protein interactions at an atomistic
level. Although simulations at a quantum mechanical level would offer even higher
accuracy, the computational cost of simulating an entire protein or even oligomers is
currently not feasible. Future advancements in machine learning-based QM force
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fields may enable such simulations in upcoming studies [79–81]. As mentioned, the
choice of FF for an MD simulation depends on the application. The most popular
FFs to date include those from the assisted model building and energy refinement
(AMBER) and chemistry at Harvard macromolecular mechanics (CHARMM) families.
While AMBER force fields, specifically AMBER99SB-ILDN and AMBER14SB, are
well-suited for globular folded proteins and provide reasonable results for amy-
loid aggregation, they favor secondary-structure formation. Instead, we used the
CHARMM36m force field, which was demonstrated to provide good models for IDPs
and early peptide aggregation events [82, 83]. This FF includes a refined backbone
correction map (CMAP) potential and improved specific salt bridge interactions,
optimized for modeling IDPs.

The potential energy function Uff (R) is mostly the same for all FFs, only differing
in the parameters of the interaction terms. The types of interaction can be divided
into bonded and non-bonded interactions

Uff (R) = Ubonded(R) + Unon−bonded(R), (2.1)

which only depend on the position of all N atoms in the system with coordinates
R = (r(1)
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The bonded interactions describe intra-molecular two-, three- and four-body terms,
which describe bonds, angles and diheadral angles respectively:
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(2.2)

The bond vibration of two bonded atoms i and j is described by a harmonic potential

Ubond(rij) =
kb

ij(rij − b0
ij)2

2 , (2.3)

where rij is their inter-atomic distance. The stretching force constant kb
ij and the

equilibrium bond length b0
ij are specific to the atom type of i and j. It should be

noted, that the parametrization of the bond term by a harmonic potential precludes
the bond breaking in MD simulations.

The angle bending of three consecutively bound atoms i, j, and k, is characterized by
the harmonic potential

Uangle(θijk) =
kθ

ijk(θijk − θ0
ijk)2

2 , (2.4)

where kθ
ijk is the bending force constant and θ0

ijk the equilibrium angle.

The dihedral angle Φijkl is the angle between two planes, each defined by three of
the four atoms i, j, k and l. To describe the rotation around the bond-axis between

14 Chapter 2 Methods



atoms j and k. Most commonly the dihedral angle potential is modeled using
periodic cosine functions

Udihedral(Φijkl) = kΦ
ijkl[1 + cos(nΦijkl − Φ0

ijkl)], (2.5)

where kΦ
ijkl is the torsion force constant, Φ0

ijkl is the equilibrium angle, and n denotes
the periodicity factor (sometimes called multiplicity). Multiple cosine functions may
be combined to accurately describe cis/trans or gauche conformations, yielding a
sum of cosine functions for a single dihedral angle. Furthermore, a distinction is
made between proper and improper dihedral angles. Proper dihedral angles refer to
torsion angles between consecutive bonds in a molecule, while improper dihedral
angles involve three atoms bonded to a central atom, which are needed to model
molecular planarity or chirality.

Besides the intra-molecular bonded interactions, non-bonded interactions govern
the forces between all atoms whose interactions are not accounted for by the bonded
terms. The non bonded interactions are devided into van–der–Waals forces and
electrostatic forces

Unon−bonded(R) = +
∑︂

atom pairs

ULJ
ij +

∑︂
atom pairs

UCoul
ij . (2.6)

The van–der–Waals interaction is modeled by the Lennard-Jones (LJ) potential

ULJ
ij (rij) = 4ϵij

⎡⎣(︄σij

rij

)︄12

−
(︄
σij

rij

)︄6
⎤⎦ . (2.7)

The potential includes two components: a repulsive r−12 term that reflects the Pauli
exclusion principle and nuclear repulsion in close proximity, and an attractive r−6

term accounting for dispersion forces or London interactions over longer distances.
The parameters in the Lennard-Jones 12-6 potential, σij and ϵij , define the charac-
teristic length scale and depth of the potential well, respectively. At the minimum
distance rmin = 21/6σij , the potential energy ULJ(rij) reaches its lowest value −ϵij .

The electrostatic interactions between atoms i and j is modeled by Coulomb’s
(Coul) law

UCoul
ij (rij) = qiqj

4πϵ0ϵrrij
, (2.8)

based on their partial charges qi and qj and the distance rij between them. Here, ϵ0
denotes the vacuum permittivity, and ϵr is the relative permittivity (usually set to 1
in MD simulations). The Coulomb interactions decay slowly with 1/rij , classifying
them as long-range interactions within the length scales of MD simulations.

As non-bonded interactions need to be computed between each pair of atoms, the
computational cost scales as ∼ N2. Compared to bonded interactions, which only
scale with ∼ N , non-bonded interactions dominate the computational expense of
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MD simulations. Furthermore, MD simulations typically employ periodic boundary
conditions (PBC) to simulate an infinite environment and mitigate finite-size effects,
necessitating careful consideration of long-range electrostatic interactions.

The full potential energy function employed in MD simulations including bonded
and non-bonded interactions reads as:

Uff (R) =
∑︂

bonds

UBonds
ij +

∑︂
angles

UAngles
ijk +

∑︂
dihedrals

UDihedrals
ijkl

+
∑︂

improper

U Improper
ijkl +

∑︂
atom pairs

ULJ
ij +

∑︂
atom pairs

UCoul
ij .

(2.9)

2.1.2 The CHARMM36m Force Field
The CHARMM all-atom force field, originally developed by Martin Karplus’ lab at
Harvard University [84, 85], is extensively used for simulating biomolecules, includ-
ing lipids [86, 87], carbohydrates [88, 89], nucleic acids [90], IDPs [82], in addition
to folded proteins as the most common application. CHARMM’s parameterization
strategy involves fitting experimental and ab initio QM data at the HF/6-31(g) level
for small model compounds, which are transferable to larger molecules with further
optimization. Furthermore, the CHARMM General Force Field (CGenFF) [91] facili-
tates the parameterization of compounds not originally included in the force field,
such as drugs or other ligands [92].

Two correction terms are included in the CHARMM force field to enhance accu-
racy: the Urey-Bradley (UB) term and the CMAP potential [93, 94]. The UB term,
estimated by a harmonic function, improves the description of angle bending by
accounting for the coupling between bond length and bond angle:

UUB(r) = kub,i(i+2)
(︂
ri(i+2) − r0

i(i+2)

)︂2
(2.10)

Here, the UB force constant kub,i(i+2) applies to atoms i and i + 2 connected by
two bonds. The CMAP potential, a grid-based energy correction factor, refines
protein backbone conformations by considering the correlation between backbone
dihedral angles ϕ and ψ. CHARMM also recommends using the modified TIP3P
water model for simulations, as its parameters for biomolecule-water interactions
are optimized for this model. Additionally, CHARMM employs force-based cutoffs to
smooth the force to zero at a distance of 1–1.2 nm, thus this cutoff has to be used
in simulations involving a CHARMM force field. Non-bonded interactions between
atoms separated by four bonds (1–4 interactions) are not scaled, necessitating an
iterative optimization process for dihedral potential parameters based on electrostatic
and Lennard-Jones parameters.

Especially the CHARMM36m force field represents a significant improvement for
simulating IDPs [95, 96]. It includes refinements such as a modified backbone CMAP
potential to better capture the conformational ensembles of IDPs, and an enhanced
description of specific salt bridge interactions. Validation using a comprehensive
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set of peptides and proteins demonstrated that CHARMM36m significantly reduces
the overrepresentation of left-handed α-helices seen in previous versions, aligning
more closely with experimental data. The force field also improves the accuracy of
predicted experimental observables, such as NMR scalar couplings and SAXS profiles.
Overall, CHARMM36m provides more reliable modeling of protein dynamics and
conformations, especially for systems with significant disorder [82].

2.1.3 TIP3P Water Model
Water is essential to all biological systems, acting as a solvent and reactant. Its
unique properties facilitate numerous biochemical processes. In MD simulations,
accurately modeling water is crucial for replicating these biological phenomena and
understanding biomolecular interactions. However, in explicit water MD simulations,
the majority of atoms are water molecules, driving up computational costs. Thus, a
balance between accuracy and efficiency is often necessary.

The development of accurate interaction potentials for water has been a focus for
decades. Various models, including TIP3P, TIP4P [97], TIP5P [98], and Berendsen’s
SPC/E [99], have been created. Although TIP4P offers a more accurate repre-
sentation by including an additional pseudo-atom for the two lone electron pairs
of the water oxygen atom, TIP3P remains widely used due to its lower computa-
tional cost and extensive optimization of parameters of various force fields, such as
CHARMM. The TIP3P model, reparameterized by Jorgensen et al., is a rigid, non-
polarizable three-site water model based on Transferable Inter-molecular Potential
functions [100, 101]. It uses 12-6-1 functions, combining Lennard-Jones potentials
for short-range interactions of oxygen atoms and Coulomb potentials for long-range
interactions. The dimerization energy of a pair of TIP3P water molecules m and n is
computed as:

ETIP3P
m,n = A

r12
OO

− C

r6
OO

+ 1
4πϵ0

on m∑︂
i

on n∑︂
j

qiqj

rij
(2.11)

where i and j represent the atoms of the water molecule with qi/ and qj being their
respective charges. A and C are Lennard-Jones interaction parameters, and rOO is
the distance between two oxygen atoms. In GROMACS the TIP3P model employs
holonomic constraints, restraining the bond lengths within water molecules, and
the SETTLE algorithm, adjusting the molecules velocities accordingly, to efficiently
manage solvent simulations.

2.1.4 Periodic Boundary Conditions and Cutoff Methods
Periodic boundary conditions (PBC) are utilized in MD simulations to model large-
volume systems and avoid artifacts at the simulation boundaries. PBCs work by
periodically replicating the system in all directions, forming an infinite lattice. When
a particle crosses the simulation box boundary, its position is updated according to
the minimum image convention: During the simulation, particles in periodic images
move identically to those in the original box; as a particle exits, its image enters
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from the opposite side. The minimum image convention ensures that each particle
interacts with its nearest neighbors, whether within the same box or in periodic
images. These image boxes are identical in shape and particle configuration to the
original box. While PBCs effectively handle short-range non-bonded interactions like
Lennard-Jones forces, which are truncated after a hard cutoff of 8–12 Å, they are
inadequate for long-range electrostatic interactions. Truncating these interactions
results in nonphysical distributions and discontinuous forces/energies at the cutoff
boundary. To address this, the particle mesh Ewald (PME) method is employed in
MD simulations. PME improves the contribution of Coulomb interactions to the
potential energy function by splitting the interaction into real space and reciprocal
space terms, both described by fast converging series.

The Coulomb interactions in the PME method can be expressed by three terms:

UCoul = Ureal + Ureciprocal − Uself . (2.12)

The potential Ureal calculates the short-range interaction in real space by treating the
charges qi as a sum of point charges and Gaussian charge densities of opposing sign.
The potential Ureciprocal computes the charge interaction as Gaussian densities in
reciprocal space using a Fourier transformation. The term Uself cancels spurious self-
interactions due to the summation of Ureal and Ureciprocal. The Ewald sum (Eq. 2.12)
is computed by mapping all charges onto a lattice, which reduces computational
cost and allows for solving the Poisson equation using fast Fourier transforms.
This approach results in a lattice sum of discrete charges, which, by construction,
converges relatively quickly.

2.1.5 Numerical Integration

In MD simulations the evolution of a system with time is described by solving the
equation of motion given by Newton’s second law of motion. This fundamental
equation of classical mechanics relates the net forces Fi acting on particle i with its
mass mi and acceleration ai:

Fi(R(t)) = mi · ai(t) = mi
∂2ri(t)
∂t2

. (2.13)

Here, R(t) = (r(1)
x , r

(1)
y , r

(1)
z , ..., r

(N)
x , r

(N)
y , r

(N)
z ) is the position of all particles at time

t. Furthermore, the force Fi can be calculated as the gradient of the potential energy
function Uff (R):

Fi(R(t)) = −∂Uff (R(t))
∂ri(t)

. (2.14)
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Using equation 2.13 and 2.14, the acceleration, which drives the evolution of
positions and velocities over time, can be linked to the gradient of the potential
energy function:

miai(t) = −∂Uff (R(t))
∂ri(t)

. (2.15)

To solve the equation of motion (Eq. 2.15) and generate a trajectory of frames illus-
trating the system’s movement over time in MD simulations, a numerical integration
approach is employed. This method computes new positions ri and velocities vi for
each atom i after a specific time step ∆t.

The Verlet Integrator One of the most common integration shemes in MD simu-
lations is the Verlet algorithm, named after the French physicist Loup Verlet [102].
The derivation of the new postions r(t + ∆t) relies on calculating the third-order
Taylor expansions for the positions, forward as well as backward in time:

r(t+ ∆t) = r(t) + v(t)∆t+ 1
2a(t)∆t2 + 1

6
∂3r(t)
∂t3

∆t3 (2.16)

r(t−∆t) = r(t)− v(t)∆t+ 1
2a(t)∆t2 − 1

6
∂3r(t)
∂t3

∆t3 (2.17)

Summation of both expansions yields an expression for the new positions:

r(t+ ∆t) = 2r(t)− r(t−∆t) + a(t)∆t2 +O(∆t4), (2.18)

which depends solely on the acceleration a(t) calculated from Eq. 2.15 and the
previous positions. Due to cancelling of the third term of the Taylor expansion, the
new coordinates are computed with an error of order O(∆t4). However, a limitation
of the Verlet algorithm is the indirect calculation of velocities, which must be derived
from the new positions r(t+ ∆t):

v(t) = r(t+ ∆t)− r(t−∆t)
2∆t +O(∆t2), (2.19)

resulting in an error of order O(∆t2). This necessitates very short time steps (e.g.,
∼ 1 fs), and the delayed computation of velocities complicates the implementation
of thermostats reliant on kinetic energy calculations at time t.

The Leapfrog Algorithm An algorithm which addresses the main shortcomings of
the Verlet algorithm is the Leap-Frog algorithm [103], which was used for simulations
in the frame of this work. In this method, velocities are first computed at half-integer
time steps t + ∆t

2 , which are subsequently used to calculate positions at t + ∆t.
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Following a similar derivation as before employing a Taylor expansion, the algorithm
yields:

v
(︃
t+ ∆t

2

)︃
= v

(︃
t− ∆t

2

)︃
+ a(t)∆t+O(∆t3) (2.20)

r(t+ ∆t) = r(t) + v
(︃
t+ ∆t

2

)︃
∆t+O(∆t4). (2.21)

This approach explicitly computes velocities, but they are not synchronized with
positions at the same time step t. Velocities at time t can be approximated by:

v(t) = 1
2

[︃
v
(︃
t− ∆t

2

)︃
+ v

(︃
t+ ∆t

2

)︃]︃
. (2.22)

Although the velocities at time t+ ∆t
2 must first be computed to obtain v(t), which

prevents the simultaneous calculation of kinetic and potential energy, the leapfrog
algorithm allows for the integration of temperature and pressure coupling schemes
in the MD code.

2.1.6 Thermodynamical Ensembles in MD Simulations
In MD simulations, the choice of thermodynamical ensemble is critical for accurately
modeling the physical properties and behaviors of systems. The ensemble dictates
the set of conditions under which the simulation is conducted, thereby influencing
the results’ comparability to processes in vivo and in vitro. The primary ensembles
employed in MD simulations include the microcanonical (NVE), canonical (NVT),
and isothermal-isobaric (NPT) ensembles.

Thermodynamical Ensembles

The microcanonical ensemble (NVE) maintains a constant number of particles (N),
volume (V ), and energy (E). It is used to simulate isolated systems with no energy
exchange with the surroundings. The system’s total energy is conserved, and time
averages of properties are equivalent to ensemble averages if the system explores
all accessible phase space regions with the given energy. In these simulations,
temperature fluctuations arise exclusively from exchanges between kinetic and
potential energy.

In the canonical ensemble (NVT), the number of particles (N), volume (V ), and
temperature (T ) are held constant, making it suitable for studying systems in thermal
equilibrium with a heat bath. The instantaneous temperature of a system can be
derived from the atomic velocities vi according to the equipartition theorem:

1
2NkBT = 1

2
∑︂

i

miv
2
i , (2.23)

where kB in the Boltzmann constant. Maintaining the system’s temperature at a de-
sired target is achieved by rescaling particle velocities. Common thermostats include
the velocity rescaling thermostat [104], the Nosé-Hoover thermostat [105, 106]
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and the Berendsen thermostat [107]. While the Berendsen and velocity rescaling
thermostats efficiently reach the target temperature, they do not produce a true
canonical ensemble. Therfore, the Nosé-Hoover thermostat is commonly used to
generate the canonical ensemble.

The isothermal-isobaric ensemble (NPT) keeps the number of particles (N), pres-
sure (P ), and temperature (T ) constant, making it ideal for simulating systems under
realistic conditions in experiments and in vivo where both temperature and pressure
are regulated. Barostats adjust the system’s volume to maintain the desired pressure.
Common barostats include the Berendsen barostat [107] and the Parrinello-Rahman
barostat [108]. In the MD simulations performed for this work, the Parrinello-
Rahman barostat is usually employed with the Nosé-Hoover thermostat to accurately
generate the NPT ensemble.

Nosé-Hoover Thermostat

The Nosé-Hoover thermostat was first introduced by Nosé [109] in 1984 and later
improved by Hoover [106] in 1985. This thermostat adds an additional degree of
freedom ζ, which couples the system to an external heat bath and effectively acts as
a friction parameter either accelerating or decelerating particles to meet the target
temperature T̄ . The Nosé-Hoover equations of motions read as:

mi
d2ri

dt2
= fi − ζmivi (2.24)

dζ(t)
dt

= 1
Q

[︄
1
2

N∑︂
i=1

miv2
i −

3N + 1
2 kBT̄

]︄
, (2.25)

where Q regulates the strength of the interaction with the external heat bath.
Furthermore, if dζ(t)

dt = 0 the equipartition theorem is recovered, only now with an
additional degree of freedom leading to ν = 3N + 1 degrees of freedom in total.

Parrinello-Rahman Barostat

Simulating a system at constant pressure is essential for characterizing the conditions
of the isothermal-isobaric ensemble in MD simulations. The pressure in a simulation
box can be related to the kinetic energy of all particles Ekin and the dispersion
forces fij the particles exert onto each other. Using Clausius theorem [110, 111] the
pressure p can be expressed as:

p = 2
3V (Ekin − Ξ) , (2.26)

where V is the volume of the system and Ξ is the inner virial tensor defined as:

Ξ = −1
2

N∑︂
i<j

rij · fij (2.27)

Keeping the pressure constant during an MD simulation can be achieved using a
barostat. The Parrinello-Rahman barostat [112, 113], in particular, theoretically
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reproduces the true NPT ensemble. Similar to the Nosé-Hoover thermostat, the
Parrinello-Rahman barostat modifies the system’s Hamiltonian by introducing an
additional degree of freedom, the volume V , enabling the simulation volume to
fluctuate during the simulation. The modified Hamiltonian is:

H = Ekin + Epot − pextV + 1
2W

∑︂
i,j

(︃
dhi,j

dt

)︃2
(2.28)

where W is a parameter determining the mass of a virtual piston (de-)compressing
the system, pext the external pressure and h = (b1, b2, b3) is the matrix of box vectors.
From this, the equation of motion for the particles in the box becomes:

d2ri

dt2
= fi

mi
h−1 −G−1Ġdri

dt
, (2.29)

where h−1 its reciprocal inverse of h, which is related to the volume as V = det(h).
G = hth is a metric tensor. The equation of motion of for the box vectors follows as:

d2hi,j

dt2
= 1
W

∑︂
k

(Πi,k − pδi,k)σk,j , (2.30)

where σi,j = V (h−1)j,i and Π is the internal stress tensor [114].

Selecting the appropriate thermodynamical ensemble and implementing ther-
mostats and barostats correctly are critical for accurately simulating physical systems
in MD simulations. By choosing the suitable ensemble and control mechanisms,
researchers can ensure that their simulations reflect realistic conditions, enabling
the study of various phenomena from molecular interactions to phase transitions.

2.2 Enhanced Sampling
Enhanced sampling techniques are essential in MD simulations to overcome the
limitations of conventional MD, which often fail to efficiently sample the com-
plete free-energy landscape within reasonable simulation timescales. Conventional
MD simulations model the system in thermal equilibrium, most commonly in the
isothermal-isobaric (NPT) ensemble, exploring the free energy landscape and config-
urational states freely. For ergodic sampling, meaning the ensemble average matches
the time average, the free energy G of a macrostate s can be determined using
Boltzmann’s constant kB, temperature T , and the probability p of finding the system
in state s:

G(s) = −kBT ln p(s). (2.31)

While theoretically, a sufficiently long runtime would sample the entire phase
space and achieve ergodicity, in reality, this is rarely feasible. Therefore, the calcula-
tion of free energy difference ∆G between two states must be considered cautiously,
as conventional MD simulations can become trapped in local energy minima, ex-
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haustively exploring that minima and skewing the free energy calculation. This
issue is particularly challenging for simulations involving "rare events" or complex
biomolecular systems such as intrinsically disordered proteins. To address these
issues, various advanced sampling techniques, such as metadynamics [115], um-
brella sampling [116], Gaussian accelerated molecular dynamics [117], and replica
exchange molecular dynamics (REMD) [118, 119], have been developed.

Here, we focus on REMD as an efficient algorithm for studying the structure and
dynamics of IDPs. In REMD, multiple copies (replicas) of the original system are
simulated in parallel, each at different temperatures or using different Hamiltonians.
Exchanges between neighbouring replicas are attempted at regular intervals, as
shown in Figure 2.1, based on the Metropolis-Hastings criterion [120]:

P (i↔ j) = min
(︄

1, exp
[︄
−
(︄

1
kBTi

− 1
kBTj

)︄
(Uj − Ui)

]︄)︄
, (2.32)

where Ti and Tj are the temperatures of replicas i and j, respectively, and Ui

and Uj are their corresponding energies. For an exchange to occur, the potential
energy distributions of both states must overlap. The overlap between adjacent
replicas is typically adjusted to achieve an exchange probability in the range of
P (i ↔ j) ∼ 0.2 − 0.4. This ratio is influenced by the desired temperature range
and the system size, as the number of required replicas to achieve the exchange
probability scales with ∼

√
N . REMD enhances sampling over the conformational

Fig. 2.1.: Replica exchange molecular dynamics simulation scheme. Replicas (shown in
different colors) start at various temperatures and periodically attempt exchanges
with adjacent replicas. Exchanges are either rejected (red) or accepted (green). If
accepted, the temperatures of the corresponding replicas are rescaled, and the
simulations continue at the new temperatures.
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landscape by facilitating the crossing of high-energy barriers at higher temperatures,
thereby enabling the accurate computation of thermodynamic properties without
prior selection of collective variables (CVs). Unlike CV-based methods (such as
umbrella sampling), which require prior knowledge of the system under study,
REMD alleviates this problem, making it particularly useful for studying IDPs and
their conformational ensembles.

2.2.1 Multistate Bennett Acceptance Ratio method

Enhanced sampling techniques like REMD efficiently sample equilibrium ensem-
bles at multiple states. However, combining these simulations could enhance the
precision of thermodynamic observables. The multistate Bennett acceptance ratio
(MBAR) [121, 122] method is a statistical estimator that facilitates accurate cal-
culations of free energy differences and thermodynamic expectations by utilizing
samples derived from multiple equilibrium states. Applicable in both simulation and
experimental contexts, MBAR provides a flexible approach well suited to combine the
data of multiple equilibrium samples from enhanced sampling methods, such as tra-
jectories at different temperatures in REMD simulations. Unlike multiple histogram
reweighting techniques [123], MBAR does not rely on energy binning, eliminating a
significant bias of such approaches. Furthermore, MBAR yields precise estimates of
free energy differences while also delivering statistical uncertainty estimates for all
calculated quantities.

Suppose we have K thermodynamic states, each sampled with N uncorrelated
equilibrium samples. In the isothermal–isobaric (NPT) ensemble, the reduced
potential energy function for state i is defined by:

ui(R) = βi [Ui(R) + piV (R)] , (2.33)

where R is the system’s configuration in the given configurational space, with V (R)
as its volume, and Ui(R) representing its potential energy. Here, βi denotes the
inverse temperature of state i, and pi the external pressure. MBAR is derived from
a set of K2 weighting functions, which is chosen to minimize variance within the
reweighting calculations across all states involved. Under Boltzmann statistics, this
leads to an equation for the dimensionless free energies f̂i

f̂i = − ln
K∑︂

j=1

N∑︂
n=1

exp [−ui(Rj,n)]∑︁K
k=1N exp

[︂
f̂k − uk(Rj,n)

]︂ , (2.34)

which is solved self-consistently. Here, free energies are defined up to an addi-
tive constant, thus only the free energy differences ∆f̂ij = f̂j − f̂i hold physical
significance.
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2.2.2 Principle Component Analysis
The high dimensionality of conformational data generated by MD simulations poses
significant challenges for analysis, often requiring dimensionality reduction tech-
niques to highlight key features within the dataset. Principal component analysis
(PCA) is a widely used method for systematically determining CVs of maximum
variance, thereby capturing the system’s most significant motions [124–126].

Suppose we have an ensemble of structures ri ∈ R with dim(R) = N , then their
covariance matrix can be written as:

Cij = ⟨(ri − ⟨ri⟩) · (rj − ⟨rj⟩)⟩ . (2.35)

Here, C is a symmetric N ×N matrix, which can be diagonalized by a matrix D,

DT CD = diag(λ1, . . . , λN ), (2.36)

where λi represents the eigenvalues of C, and the rows di of D are the eigenvectors,
known as principal components (PCs). The eigenvectors di build an orthonormal
basis set, spanning the priciple component space. Although this space has the same
dimensionality as the input space, only a few PCs are often required to describe most
of the systems motion, particularly those with the largest eigenvalues, which capture
the modes of highest amplitude.

In Chapter 7, we utilize PCA to visualize the FES of the SH3 domain, highlighting
the dominant motions observed in an REMD simulation. For increased accuracy,
the MBAR method is applied to combine the FES data across temperatures sampled
during the REMD simulation.

2.3 Transition Networks
Combining the conventional MD approach with network-based models, such as
Markov state models (MSMs) [127, 128] or conformational transition networks
(TNs) [129, 130], provides a comprehensive understanding of the structural be-
havior of IDPs. These networks reveal the underlying mechanisms of molecular
processes hidden within the vast amounts of MD simulation data by generating
human-interpretable networks that help illustrate the molecular processes under
investigation. The TN approach pursued by our group offers a solution for those
seeking a network model of protein motions captured by MD simulations, including
explicit modeling of the protein’s environment, without needing a method that
sets up a master equation for the dynamics. Instead, TNs rely purely on geometric
clustering to extract crucial features of protein conformational transitions.

To construct a TN, one must define a set of n features that describe the process un-
der study and discretize the frames of a given MD trajectory into macrostates. These
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features are evaluated by descriptor functions {fi} that act on a given conformation
r(t) and project the 3N -dimensional phase space onto an n-dimensional state S(t):

r(t) ↦→ S(t) = [f1(r(t)), f2(r(t)), . . . , fn(r(t))]. (2.37)

Here, r(t) is the conformation of an MD simulation at time t and N is the number of
particles within the system. The key step in TN analysis is selecting a set of descriptor
functions that optimally reflect the structures and dynamics of the system. A balance
between complexity and simplicity is crucial. While more descriptors might provide
a precise picture of the process, they may also make the network overly complex and
difficult to interpret intuitively. This balance is achieved by quantifying the quality
of descriptor combinations, choosing those with high sensitivity and low correlation.
Sensitivity is defined by how much of the theoretical value range of a descriptor is
sampled during the simulations. Correlation between two descriptors fi and fj is
defined by the correlation coefficient ccorr:

ccorr =
Σt(fi(r(t))− f i)(fj(r(t))− f j)√︂

Σt(fi(r(t))− f i)2
√︂

Σt(fj(r(t))− f j)2
(2.38)

where f i and f j are the arithmetic mean values of the corresponding descriptor
values along the trajectory. High correlation between two descriptors suggests that
using both would not add significant information to the TN but would increase its
complexity. Thus, it is recommended to use only one of the correlated descriptors in
generating the TN.

To describe the process of conformational switching of IDPs and the aggregation
propenisty of amyloid formers, we chose the descriptors: i) the number of residues
exhibiting α-helical secondary structure (Nα), ii) the number of residues adopting a
β-sheet structure (Nβ), and iii) the end-to-end distance (dNC, in Å) of the protein as
a measure of compactness in the studies presented in chapter 3 and 41.

2.4 Distribution of Reciprocal Interatomic Distances
A method to define microstates with reduced bias involves structural clustering,
rather than predefined descriptors. However, given the size of most molecular
systems, structure-based clustering in Cartesian coordinates becomes a challenging
task. One therefore usually relies on some form of dimensionality reduction, which
should preserve as much of the kinetics and structural features as possible. It has
been shown that the distribution of reciprocal interatomic distance (DRID) metric
is a good candidate to meet both of these criteria [132, 133]. A key feature of the
DRID metric is the use of the multiplicative inverse (reciprocal) distances, which
highlights the difference in short distances, while not neglecting changes in large
distances completely.

1Section 2.3 is largely taken from Schaeffler et al., 2022 [131].
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To apply the DRID metric, two essential atom sets are defined: a set of m cen-
troids C representing key structural elements, and a set of N reference atoms A
(excluding atoms that are covalently bound to the centroid). For a given structure,
the distribution of reciprocal interatomic distances for each centroid i ∈ C and the
first three moments of that distribution (µi,νi,ξi) are calculated, resulting in a 3m
dimensional vector for each structure (i.e., each frame of the MD trajectory). The
moments are defined as follows,

µi = 1
N − 1− nbi

N∑︂
i

1
dij
, (2.39)

νi =
[︄

1
N − 1− nbi

N∑︂
i

1
(dij − µi)2

]︄1/2

, (2.40)

ξi =
[︄

1
N − 1− nbi

N∑︂
i

1
(dij − µi)3

]︄1/3

, (2.41)

where dij denotes the distance of atom aj ∈ A to centroid ci ∈ C and nbi is the
number of covalent bonds of a centroid. The distance metric sjk between a pair of
conformations j and k in DRID space is defined as

sjk = 1
3m

m∑︂
i

[︂
(µj

i − µ
k
i )2 + (νj

i − ν
k
i )2 + (ξj

i − ξ
k
i )2
]︂1/2

. (2.42)

To group the structures into states, we performed regular space clustering in DRID
space, as implemented in the PyEMMA python package [134], using the sjk distance
metric2.

2.5 Free Energy Calculation

The free energy surface (FES) of a protein dictates its structural and dynamical
properties, making it crucial for understanding protein function. We calculate the
free energies associated with states identified by structural clustering in DRID space,
treating each state as a minimum in the FES. This method is applicable to any given
transition/rate matrix. The free energy of the minima Fi is calculated using their
occupation probability pi,

Fi = −kBT log(pi), (2.43)

where kB is the Boltzmann constant and T is the temperature of the system.

2Section 2.4 is largely taken from the Supporting Information of Schaeffler et al., 2024 [135].

2.5 Free Energy Calculation 27



The rate matrix R, which represents the transition rates rjk between minima j and
k observed in MD simulations, is used to estimate the transition state free energies
Fjk from the interconversion rates kjk between states,

Fjk = Fk − kBT log(kjk) + kBT log
(︃
kBT

h

)︃
, (2.44)

where h is the Planck constant. In a perfectly converged system, the transition state
free energies for both interconversion rates between minima j and k should be equal,
i.e. Fjk = Fkj . However, this equality is rarely achieved in finite MD trajectories. To
minimize the error, we average both rates,

F ts
jk = Fjk + Fkj

2 , (2.45)

providing an estimate for the transition state free energy F ts
jk between minima j and

k 3.

2.6 Disconnectivity Graphs

Disconnectivity graphs provide a powerful visualization of the connectivity within
an energy landscape by grouping minima, or basins, at different energy thresholds,
connected by transition states with energies below these specified thresholds (see
Figure 2.2). The energy difference between thresholds (∆E) should be chosen to
balance the resolution of structurally distinct energy basins and the grouping of
similar minima. In this study, ∆E was set to 0.5 kT for all presented FESs, where k
is the Boltzmann constant kB and T the temperature of the system (∼310 K). At each
threshold, minima are grouped into superbasins, creating a tree-like structure where
branches terminate at the energy of local minima, with the vertical scale representing
free energy. Going upwards in energy, branches converge at thresholds where the
free energy surpasses the highest transition state on the lowest path between them,
indicating sets of minima that can interconvert at a given energy level. This method
enables identification of folding funnels and a dimensionality-free visualization of
the hierarchical connectivity in the FES, independent of CVs [136, 137]. In this study,
each minimum represents an ensemble of structures, grouped either by clustering in
DRID space or through descriptor functions4.

3Section 2.5 is largely taken from the Supporting Information of Schaeffler et al., 2024 [135].
4Section 2.6 is largely taken from Schaeffler et al., 2024 [135].
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Fig. 2.2.: Schematic representation of a disconnectivity graph. Example of the con-
struction of a disconnectivity graph from a database of minima (A-C) of a free
energy landscape (blue). In the disconnectivity graph (red), each local minimum
is depicted by a vertical line starting at its energy. At a specified energy threshold
E + n∆E, where two or more minima are no longer separated by an energy
barrier, i.e. their transition state lies below that threshold, they are grouped into
disjoint sets and become part of the same superbasin with in the FES.

2.7 First Passage Times
While the FES dictates a molecule’s structural and dynamical properties, experiments
often measure the relaxation times associated with specific processes. Studying the
timescales for transitions between minima on the FES can bridge the gap between
simulation and experiment, providing insights into these processes. Interconversion
rates between minima, often quantified by the mean first passage time (MFPT),
reveal the average time for a system to transition between reactant and product
states. In the context of amyloid aggregation, the reactant state corresponds to
the IDP state, and the product state corresponds to oligomeric or fibril structures.
Analyzing the first passage time (FPT) distribution offers additional insights into
the organizational structure of the underlying energy landscape, identifying distinct
signatures linked to relaxation to different funnels in the FES [138–140].

For a given transition A ← B from reactant state B to product state A, the first
passage time probability distribution p(t) is obtained by treating the product state as
absorbing. By treating A as absorbing state all trajectories end in the product state,
but the dynamics are not changed until the absorbing event. The master equation
for the occupation probabilities Pα(t) of the joined set of intervening states I and
reactant states I ∪ B reads as:[︄

ṖI(t)
ṖB(t)

]︄
=
[︄
KII −DI KIB

KBI KBB −DB

]︄ [︄
PI(t)
PB(t)

]︄
= MPI∪B(t), (2.46)
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where KXY is the rate matrix for transitions between connected states, and DX is a
diagonal matrix containing the escape rates of each state in X, i.e., ⌈DX⌉ii =

∑︁
j Kji.

For an initial distribution PA(0) = 0A, the probability p(t)dt that the first passage
time lies between t and t + dt, which is the probability flux out of I ∪ B, can be
written as:

p(t)dt = −(1IṖI + 1BṖB)dt ≡ −1I∪BṖI∪Bdt, (2.47)

where 1X is a row vector of ones with dimension NX . Rewriting Equation 2.46 as
ṖI∪B(t) = MPI∪B(t), we get the formal solution:

PI∪B(t) = exp(Mt)PI∪B(0), (2.48)

and thus,
p(t) = −1I∪BM exp(Mt)PI∪B(0). (2.49)

Applying eigenvector decomposition to M, we can derive an analytic solution for
the first passage time distribution:

M = −
∑︂

l

νlwR
l ⊗wL

l , (2.50)

where wL
l and wR

l are the left and right eigenvectors, and ⊗ denotes the dyadic
(outer) product. Forthermore, the eigenvalues −νl < 0 are strictly negative for a
connected network. Using this expansion, we obtain:

exp(Mt) =
∑︂

l

exp(−νlt)wR
l ⊗wL

l . (2.51)

Together with Equation 2.49 we obtain the analytic equation for the first passage
time distribution:

p(t) =
∑︂

l

νle
−νlt1I∪B[wR

l ⊗wL
l ]PI∪B(0). (2.52)

which can be further simplified to:

p(t) =
∑︂

l

νle
−νltAl, (2.53)

where Al are amplitudes depending on the eigenvectors of M. The FPT can be
represented by the probability distribution P(y) for y = log(t):

P(y) =
∑︂

l

νle
y−νl exp(y)Al, (2.54)

which reveals distinct peaks corresponding to different features and relaxation time
scales in the FPT distribution 5.

5Section 2.7 is largely taken from the Supporting Information of Schaeffler et al., 2024 [135].
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3Automated Generation of
Transition Networks for the
Structural Characterization of
Intrinsically Disordered Proteins

Intrinsically disordered proteins (IDPs) lack a stable three-dimensional structure and
instead sample a diverse array of configurations influenced by their environment.
This structural heterogeneity presents challenges for characterization using exper-
imental techniques alone. Molecular dynamics (MD) simulations offer a valuable
complement, capturing the dynamic behavior of IDPs across multiple timescales.
However, the vast data generated by MD simulations necessitates sophisticated
post-processing to extract meaningful insights. In this chapter, we overview how
transition networks (TN), derived from MD trajectories, effectively reveal the configu-
rational ensemble and structural transitions of IDPs, using amyloid-β in complex with
1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids as a case study. We
also discuss the impact of molecular descriptor selection on the resulting transition
networks that were calculated with our own open-source Python script ATRANET.
This chapter provides an overview of the results published in:

ATRANET – Automated generation of transition networks for the structural
characterization of intrinsically disordered proteins.
Moritz Schäffler, Mohammed Khaled and Birgit Strodel
Methods, 206 (2022)

The full publication is provided in the appendix A.1. The contributions of the authors
are listed in Table 3.1.
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Author Contribution Tasks

Moritz Schäffler ∼60% Establishing the general methodology,

Writing the ATRANET software package,

Validation, Formal-analysis, Visualization,

Writing-original-draft

Mohammed Khaled ∼20% Contribution to the ATRANET software package,

Validation, Data-curation, Writing-original-draft

Birgit Strodel ∼20% Conceptualization, Methodology, Resources,

Writing-review-editing, Supervision,

Project-administration, Funding-acquisition
Tab. 3.1.: Contribution by author to Schäffler et al. 2022 [131].
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3.1 Methods
The methods discussed in this paper are presented in chapter 2.3. For convenience
they are summarized in condensed form in the following.

Constructing a TN requires defining a set of descriptor functions {fi} that discretize
the MD trajectory. By applying these descriptor functions to each time point t within
the trajectory, a state trajectory S(t) is generated, capturing the descriptor values for
the molecular conformations r(t):

S(t) = [f1(r(t)), f2(r(t)), . . . , fn(r(t))] (3.1)

A critical step in TN analysis is the selection of descriptor functions that accurately
capture the system’s structural and dynamic properties. Choosing the type and
number of descriptor functions, it is essential to find a balance between complexity
and simplicity. In the present work we investigated how additional descriptors can
offer a more detailed representation of the dynamics, but they may also complicate
the network, rendering it less intuitive to interpret.
To address this, we generated TNs using two sets of descriptor functions. Initially,
we employed three descriptors: (i) the number of residues exhibiting α-helical
secondary structure (Nα), (ii) the number of residues adopting a β-sheet structure
(Nβ), and (iii) the end-to-end distance (dNC , in Å) This approach led to a state
space discretization defined by the parameters (Nα, Nβ, dNC). Subsequently, we
introduced a fourth descriptor, Np−l, which refers to the number of contacts formed
between the Aβ42 peptide and the POPC lipids, and examined the TN resulting from
the combined set of descriptors (Nα, Nβ, dNC , Np−l).

The primary insights provided by TNs are encoded in their visualization, making
this a critical component of the analysis. The transition matrices generated by
ATRANET were visualized using Gephi [141, 142]. The node sizes were scaled
proportionally to the population of the corresponding states, as computed by the
ATRANET script. Here, the population of a state is defined by its diagonal entry in
the transition matrix. This scaling enables the easy identification of predominant
and thus more stable states by comparing node sizes. The layout of a TN is crucial,
as an effective representation allows for the quick identification of node connectivity
and distinct clusters within the system. We utilized the Force Atlas 2 algorithm,
a force-driven approach that considers the connectivity of node pairs and their
relative degrees. Consequently, nodes with more frequent transitions between them
are positioned closer together, meaning strong spatial separation in the TN layout
indicates a high distance between the respective states in the high-dimensional phase
space. Given the potentially overwhelming number of states resulting from multiple
descriptors, we identified local communities within the network to highlight clusters
of states with high connectivity.
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The simulations were conducted using the GROMACS software package [143].
Since the CHARMM36mW force field only contains parameters for polypeptides, he
Aβ42 peptide was modeled with the CHARMM36mW force field [82], while the POPC
lipids were modeled with the CHARMM36 force field [144]. Initially, the peptide and
three lipid molecules were positioned apart in the simulation box, which was filled
with TIP3P water [97] and NaCl at a physiological concentration of 150 mM. After
equilibration, we performed four 1 µs simulations under NPT conditions, totaling 4
µs of simulation time. Pressure was regulated with the Parrinello-Rahman coupling
scheme [108] (p = 1 bar), and temperature was controlled using a Nosé–Hoover
thermostat [105, 106] (T = 310 K) for canonical sampling. Periodic boundary
conditions were applied in all directions, with the particle-mesh Ewald method [145]
used for electrostatic interactions, and cutoffs of 12 Å were set for both Coulomb
and van der Waals interactions.

3.2 Results
First, we generated a TN using three descriptors (Nα, Nβ, dNC) to characterize
the conformational preferences of Aβ42. The TN, shown in Fig. 3.1 A, includes
representative structures for each of the six communities, corresponding to the most
populated state within each cluster.

The TN is primarily dominated by a blue-colored community with average descrip-
tor values of (Nα=0.8, Nβ=7.7, dNC=2.0 Å), indicating more stable configurations
with a small end-to-end distance and a predominance of β-sheet structures. In
contrast, the orange-colored cluster, visited less frequently, represents configurations
with a larger end-to-end distance and mostly α-helical structures (Nα=16.0, Nβ=0.4,
dNC=20.2 Å). Intermediate clusters, such as the gray cluster (Nα=0.1, Nβ=7.3,
dNC=25.7 Å), display extended structures with larger end-to-end distances and
partial β-sheet formation. The transitions between these communities illustrate the
structural interconversions of Aβ42, with shifts from extended and mixed α/β states
to more compact β-sheet structures. However, the three descriptors used in this TN
do not capture the interactions between the peptide and lipids, which are crucial for
understanding structure formation in this context.

To address this, we extended our analysis by incorporating a fourth descriptor
(Np−l), representing the number of contacts between the Aβ42 peptide and POPC
lipids, in addition to the original three descriptors: (Nα, Nβ, dNC ,Np−l). This
modification resulted in a more distinct separation of clusters and clarified transitions
between them, as shown in Fig. 3.1 B. The TN largely retained the original cluster
structure, with the most significant change being the subdivision of the dominant
blue-colored cluster into two clusters, differentiated by their peptide–lipid contact
count. The newly defined TN highlights that structural transitions within the peptide
occur without detachment from the lipid cluster, providing insights that were not
captured in earlier analyses. This refined understanding emphasizes the role of
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Fig. 3.1.: Transition network of Aβ42 forming a complex with three POPC lipids. The
TNs are constructed using (A) three descriptors and (B) four descriptors. The
descriptors used are: (i) the number of residues with α-helical structure Nα, (ii)
the number of residues with β-sheet structure Nβ , (iii) the end-to-end distance
dNC and (iv) the number of peptide-lipid contacts Np−l. For (A) the descriptors
(i–iii) were used and for (B) the descriptors (i–iv). The nodes are colored based
on their community membership, with representative structures for the most
populated state of each community displayed within circles matching the cluster’s
color. Additionally, the average values for the descriptors are provided for each
community.
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peptide–lipid interactions in the conformational dynamics of Aβ42, particularly in
the context of amyloid aggregation.

3.3 Conclusion
Studying the structural characteristics of IDPs poses significant challenges due to
their lack of a unique three-dimensional structure and the complexity of their confor-
mational transitions. MD simulations offer a powerful complement to experimental
techniques for investigating these properties. In this study, we demonstrated the
utility of TNs derived from MD simulations to elucidate the structural changes of an
IDP, using Aβ42 in complex with POPC lipids as a model system.

We identified three key features of TNs: (i) the size of nodes indicates the most
stable polypeptide configurations, (ii) the spatial layout of nodes reflects the phase-
space distances between conformations, and (iii) clustering within the TN highlights
significant conformational transitions. These features were demonstrated using two
sets of descriptors: one with three descriptors (Nα, Nβ, dNC) and another adding
a fourth descriptor (Np−l) to capture peptide–lipid interactions. The inclusion
of the fourth descriptor provided a more detailed separation of clusters, making
the conformational transition pathways more apparent. It revealed that structural
transitions within the peptide occur without detachment from the lipid cluster.

While TNs provide valuable insights, they are inherently influenced by the a priori
selection of descriptors, which can impact both the network’s structure and the
conclusions derived from it. Nonetheless, the choice of descriptors is often guided
by the specific research question being addressed.

An intriguing aspect of TN is their similarity to FESs, as both represent the
configurational space explored by a system. For IDPs, the presence of distinct
clusters in TNs with similar occupation probabilities, as observed here, indicates an
underlying multifunnel structure in the FES. While FESs offer quantitative insights
into energy differences between states, they typically rely on projections onto one or
more collective variables, which can lead to inaccuracies in capturing energy barriers.
As an alternative, disconnectivity graphs, constructed from TN data, provide a more
comprehensive view of the multidimensional energy landscape without the need
for such projections. We will explore the insights gained from such an analysis in
chapter 5.
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4Transition Networks Reveal the
Conformational Switching of Aβ42

The aggregation of Aβ-peptides, particularly Aβ42, is closely associated with the
pathogenesis of Alzheimer’s disease. In this study, we investigate the conformational
changes of Aβ42 in the presence of the glycosaminoglycan (GAG) chondroitin-4-
sulfate with 8 sub units and three 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) lipids using MD simulations. Chapter 3 introduces an initial analysis of
Aβ42 with POPC lipids, which is extended here to illustrate changes in the sampled
configurational space relative to Aβ42 in solution. GAGs, polysaccharides found in
various tissues, are frequently associated with Aβ plaques and have been shown to
be associated with amyloid aggregation, although the precise molecular mechanisms
remain unclear [146]. By analyzing the key structural features of Aβ, we construct
transition networks (TNs) that highlight the shifts from intrinsically disordered
states, common in Aβ in solution, to more compact states characterized by stable
β-hairpin formation near GAG molecules, and even more compact structures ex-
hibiting α-helix or β-sheet formations upon interaction with POPC lipid clusters.
Our findings reveal distinct molecular mechanisms driving these transitions: the
hydrophobic environment provided by POPC lipids facilitates Aβ folding, whereas
GAGs, through the sequestration of sodium ions, enhance electrostatic interactions
within Aβ, stabilizing a β-hairpin structure. These insights deepen our understanding
of how GAGs and lipids influence the conformational preferences of Aβ peptides,
impacting their aggregation into toxic oligomers and amyloid fibrils.
This chapter provides an overview of the results published in:

Transition Networks Unveil Disorder-to-Order Transformations in Aβ Caused by
Glycosaminoglycans or Lipids.
Moritz Schäffler, Suman Samantray and Birgit Strodel
Int. J. Mol. Sci., 24 (2023)

The full publication is provided in the appendix A.1. The contributions of the authors
are listed in Table 4.1.
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Author Contribution Tasks

Moritz Schäffler ∼80% Methodology, Software, Investigation

Data-curation, Validation, Formal-analysis,

Visualization, Writing-original-draft,

Writing-review-editing

Suman Samantray ∼5% Data-curation, Writing-review-editing

Birgit Strodel ∼15% Conceptualization, Methodology, Resources,

Writing-review-editing, Supervision,

Project-administration, Funding-acquisition
Tab. 4.1.: Contribution by author to Schäffler et al. 2023 [147].
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4.1 Methods
The methods utilized in this study are outlined in Chapter 2.3 and 3.1. Here, we

briefly summarize the key concepts; for more detailed information, the reader is
referred to the Appendix A.1.

A critical aspect in constructing a TN is the selection of descriptor functions. As
highlighted in our previous work [131] and summarized in Chapter 3, both the
type and number of descriptors significantly influence the resulting TN. The type of
descriptors should be related to the specific process under investigation, whereas
determining the ideal number of descriptors often requires trial and error. Using
fewer descriptors simplifies the TN but may result in the loss of crucial information,
while using too many descriptors can make the TN overly complex and difficult
to interpret. Based on these considerations and the results provided in chapter 3
we decided to use the same three descriptor functions across all systems for ease
of comparison: i) the number of residues adopting an α-helical structure (Nα), ii)
the number of residues adopting a β-sheet structure (Nβ), and iii) the end-to-end
distance (dNC , in Å) as a measure of peptide compactness. The TNs were constructed
using ATRANET, a Python package developed by our group [131] and visualized
using Gephi [141, 142].

In all simulations, Aβ42 was modeled with neutral histidine residues and no
terminal capping, resulting in an overall peptide charge of q = −3. All three systems
variants, Aβ42 in solution, Aβ42 with GAG, and Aβ42 with three POPC lipids were
simulated using the GROMACS simulation package [143]. As two of the three
systems were adapted from previous studies (Aβ42 in solution and Aβ42 with three
POPC lipids), some of the MD simulation settings differ slightly. While this is
not ideal, these differences appear to be negligible compared to the remarkable
distinctions in the results presented below. In all simulations the CHARMM36m force
field [82] was used for modeling the Aβ42 peptide, with POPC lipids parameterized by
CHARMM36 [144] and GAG parameters provided by the Glycan Reader & Modeler
module [148–150] of the CHARMM-GUI web server [151]. The structure of the
simulated GAG molecule and POPC lipid is depicted in Figure 4.1.

All systems were prepared using a consistent protocol: solute(s) were placed in
the simulation box, which was filled with TIP3P water molecules [97] and NaCl
at a physiological concentration of 150 mM. After equilibration, simulations were
conducted under NPT conditions at 1 bar, using a Parrinello–Rahman pressure
coupling scheme [108]. The Aβ-GAG and Aβ-POPC simulations were run at 310 K
with a Nosé–Hoover thermostat [105, 106], while the Aβ-only system was run at
300 K with a velocity rescaling thermostat [104]. Simulation durations were as
follows: Aβ-GAG, 4 µs; Aβ-POPC, 2× 2 µs; and Aβ-only, 1× 6 µs. Simulations were
performed under periodic boundary conditions, with electrostatics computed via
the particle-mesh Ewald method [145], and cutoffs for van der Waals and Coulomb
interactions set to 12 Å.
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4.2 Results
In the following, we present the TNs of Aβ in solution, Aβ in complex with three
POPC lipids, and Aβ in the presence of a GAG. Additionally, we discuss the mode of
interaction between GAGs and the Aβ peptide.

4.2.1 Transition Network of Aβ in solution
Figure 4.2 shows the TN of the Aβ monomer in solution. The most populated
states are located in the orange and yellow communities along the horizontal
axis (x-axis), corresponding to primarily disordered conformations with varying
degrees of expansion and no significant secondary structure formation, as indicated
by descriptor values (0.8, 0.1, 21.5) and (0.1, 0.1, 49.6). States with increasing
amounts of β-sheets are represented by the black, blue, and pink communities
toward the upper part of the TN, while the green community at the bottom contains
states with α-helical structures. However, these more structured states are sparsely
populated compared to the random-coil states in orange and yellow.

The TN layout effectively illustrates the conformational landscape of the Aβ
monomer in solution, where the x-axis correlates with the NC-distance and the
y-axis reflects the degree of secondary structure. Unlike structured proteins, Aβ
shows a low propensity for forming α-helices or β-sheets. This analysis confirms the
classification of the Aβ monomer as an intrinsically disordered protein, characterized
by a flat free energy surface with many local minima separated by low energy
barriers. As discussed in chapter 5, the underlying FES can be described as an
"inverted folding funnel," where the global minimum corresponds to a disordered
state, while more structured, partly folded states occupy higher energy and can thus
be considered excited states.

Fig. 4.1.: Chemical structures of the glycosaminoglycan and lipid studied in
this work. (A) Chondroitin-4-sulfate (C4S) glycosaminoglycan, modeled
as an 8-subunit chain. The picture is reproduced from Samantray et al.
(2021) [83]. (B) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid,
simulated as a complex of three POPC molecules. The picture is taken from
https://en.wikipedia.org/wiki/POPC.
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Fig. 4.2.: Transition network of the Aβ monomer in solution. For state assignment, three
descriptors are used: i) the number of residues forming α-helical structure (Nα),
ii) the number of residues forming β-sheet structure (Nβ), iii) the NC-distance
(dNC). The layout of the TN is such that dNC increases from left to right along
the x-axis, Nβ increases in positive y-direction, and Nα increases with negative y-
direction. The nodes are colored according to their community membership, and
the average descriptor values (Nα, Nβ , dNC) of the communities are given. For
the highest-populated node per community a representative structures is shown
as cartoon (β-sheets in yellow, α-helices in purple) with the N- and C-termini
being indicated by blue and red spheres, respectively.
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4.2.2 Transition Network of Aβ-GAG
To investigate the conformational changes of Aβ in the presence of a sulfated GAG
compared to Aβ in solution, we calculated a TN using the same three descriptors as
before (see Figure 4.2). The color scheme for the communities was retained from
the Aβ in solution system, emphasizing the shift in population distribution. The
layout remains consistent, with increasing NC-distance along the horizontal axis,
while states with higher β-sheet content appear in the positive y-direction.

The TN for the Aβ-GAG system, shown in Figure 4.3 A, exhibits significant dif-
ferences compared to Aβ in solution. Disordered states, now represented by a
single yellow community (0.0, 0.3, 55.3), are scarcely populated. Instead, the most
populated states belong to the blue community (0.0, 10.5, 26.3), which contains
structures of intermediate compactness and notable β-sheet formation. Additional
β-sheet rich states are present in the black (0.0, 11.3, 7.8) and pink (0.0, 8.4, 44.0)
communities, indicating varying levels of compactness and NC-distance. At the
top of the TN, the purple community (0.9, 17.5, 27.6) contains states with up to
42% of the residues involved in β-sheet formation, forming a three-stranded β-sheet
structure.

In conclusion, the TN reveals a significant shift of the global minimum from
disordered to β-sheet rich states, driven by the formation of a stable β-hairpin
structures. This structural change is notable despite minimal direct contact between
Aβ and the GAG, due to electrostatic repulsion between them, which will be discussed
below, along with the reason for the conformational shift.

4.2.3 Transition Network of Aβ-POPC
To provide context for the conformational changes observed in the Aβ-GAG system,
this study also includes the TN for the interaction of Aβ with three POPC lipids
(see Figure 4.3 B), as discussed in Chapter 3. As demonstrated in a previous study
[42], Aβ undergoes a disorder-to-order transition in the presence of lipids, driven
by hydrophobic interactions between Aβ and lipid tails. In the Aβ-POPC system,
many conformational states that are not present in the Aβ-only system are sampled,
indicating significant differences in peptide dynamics. The TN for the Aβ-POPC
system reveals a shift towards more compact, β-sheet rich conformations, unlike
the extended disordered states dominant in the Aβ-only system. Furthermore, this
system also exhibits a distinct community of α-helical states, representing a local
minimum in the free energy landscape. The comparison highlights the shift of Aβ
towards more stable, folded states when interacting with lipids, suggesting a change
from a flat free energy surface (as seen in the Aβ-only and Aβ-GAG systems) to one
with distinct energy basins, corresponding to semi-folded Aβ conformations.
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Fig. 4.3.: Transition network of the Aβ peptide in the presence interaction partners.
TNs of the Aβ peptide in the presence of (A) a GAG molecule and (B) three POPC
lipids are shown. See the caption of Figure 4.2 for explanations of the graphical
representation of the TN.
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4.2.4 Aβ-GAG interaction
To investigate the conformational changes of Aβ in the presence of a GAG molecule,
we examined their molecular interactions and the effect of the GAG on water
dynamics and ion distribution around Aβ. Our findings show that while there is
minimal direct interaction between Aβ and the GAG (see Figure 4.4 C), the latter
induces a significant conformational shift in Aβ. This mode of interaction is distinct
from that observed in the Aβ-POPC system, where hydrophobic interactions with
lipid tails drive the conformational changes in Aβ [42].

Further analysis of the water structure and dynamics around Aβ indicated no
significant differences between the Aβ-only and Aβ-GAG systems, suggesting that
the GAG does not affect water-mediated interactions. Instead, the GAG’s influence
appears to stem from its effect on the ion distribution, particularly the dramatic
reduction in Na+ ions around Aβ. Panels A and B of Figure 4.4 display the radial
distribution of Na+ ions around the carboxyl groups of residues E22 and D23 in
Aβ for the Aβ-only and Aβ-GAG systems respectively, which show a decrease in
ion concentration of a factor 10 in presence of the GAG, since the Na+ ions are
strongly attracted by the highly negatively charged GAG. This ion redistribution
promotes the formation of salt bridges between E22/D23 and K28, leading to β-
hairpin formation. Intrapeptide contact maps confirmed the presence of these stable
intrapeptide interactions in the Aβ-GAG system (see Figure 4.4 D), in contrast to the
transient contacts observed in the Aβ-only system.

In summery, the GAG indirectly affects Aβ by attracting Na+ ions, which enhances
electrostatic interactions within the peptide and drives the formation of stable β-
hairpins. No significant direct GAG-Aβ interactions or effects on water dynamics
were observed to explain the conformational changes in Aβ.

4.3 Discussion
We constructed TNs to explore the conformational space and identify differences of
the amyloid β-peptide Aβ42 (referred to as Aβ) under three different conditions: Aβ
as a single peptide in solution, Aβ in the presence of the GAG chondroitin-4-sulfate
with 16 subunits, and Aβ in complex with three POPC lipids. To define the states
for each TN, we used the same three descriptors: i) the number of residues with
an α-helical structure, ii) the number of residues with a β-sheet structure, and iii)
the NC-distance of the peptide. This consistent descriptor selection allows for direct
comparison of the TNs and highlights changes in the underlying free energy surfaces
across the different systems.

The TN of Aβ in solution displayed characteristics typical of an IDP, with many
states, most of which were lowly populated and connected by numerous transitions.
The most populated states corresponded primarily to random-coil conformations
with varying degrees of spatial expansion. On the contrary, the TN for Aβ in the
presence of the GAG revealed a significant shift towards more compact and β-sheet-
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Fig. 4.4.: Contact analysis of Aβ with a GAG molecule. Radial distributions g(r) of Na+

(red) and Cl− (black) relative to the carboxyl groups of E22 and D23 of Aβ in
(A) the Aβ-only system and (B) the Aβ-GAG system. (C) Intermolecular contacts
between Aβ42 and the GAG molecule, and (D) intramolecular contacts between
Aβ42 residues in the Aβ-GAG system. Interaction partners were considered in
contact if they were closer than 10 Å. The number of contacts was normalized by
the total number of time frames, yielding contact probabilities.
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rich structures, highlighting the formation of a stable β-hairpin driven by changes
in sodium ion distribution rather than direct peptide-GAG interactions. Finally, the
TN of Aβ with POPC lipids demonstrated a transition towards both α-helical and β-
sheet structures, with compact configurations facilitated by hydrophobic interactions
between the peptide and the lipids. This interaction led to the formation of a free
energy landscape with multiple competing minima. Here, the TN can be interpreted
as a qualitative depiction of the underlying free energy landscape, as both represent
the accessible conformational space. The detailed free energy landscapes for all
systems will be discussed in chapter 5.

In conclusion, these analyses demonstrate how Aβ undergoes a disorder-to-order
transition when interacting with either GAGs or lipids, albeit through distinct modes
of interaction. Our findings contribute to the growing body of knowledge on the role
of GAGs and lipids in Aβ aggregation and the development of Alzheimer’s disease.
In humans, two Aβ fibril polymorphs, ‘type I’ and ‘type II’ filaments, are associated
with sporadic and familial Alzheimer’s disease, respectively [152]. Recent cryo-
EM studies in transgenic mouse models reveal a wide variety of fibril polymorphs
across different models, with additional unidentified electron densities on the fibril
surfaces [40]. Our analyses suggest that these polymorphic variations may be driven
by specific interaction partners influencing Aβ fibril formation, leading to distinct
structural outcomes.
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5Free Energy Surface and
Timescale Analysis of the Aβ42

peptide

In the previous chapter, we discussed how Aβ42 undergoes a disorder-to-order
transition upon interacting with suitable interaction partners. Utilizing TNs, this
analysis primarily focused on the shift in state populations, from disordered states
in solution to more secondary structure-forming states upon interaction with GAGs
or lipids. In this study, we aim to further explore this conformational change by
constructing the free energy surface (FES) of Aβ42.
The FES of intrinsically disordered proteins (IDPs) is typically flatter than that of
folded proteins, characterized by complex topographies with multiple competing
minima [5, 153, 154]. For amyloid aggregation, the FES is even more heterogeneous,
reflecting diverse on- and off-pathway states [155, 156]. In a previous study using
NMR-based metadynamics simulations of Aβ40, an ‘inverted landscape’ was observed,
where disordered structures occupy the global minimum, and higher-energy regions
contain transiently structured conformations, with increased structuring at higher
temperatures [157]. This stands in contrast to the traditional view of a rugged
energy landscape for IDPs, where numerous local minima are separated by energy
barriers that trap the system in metastable states. Here, we observe a similar FES
for Aβ42, where disordered states are the lowest in energy and conformations with
partial secondary structure are excited states (higher free energy minima). We
propose the term ‘structurally inverted funnel,’ as it is the structural aspect that is
inverted, not the funnel shape. In contrast, the lowest minima for the dimer feature
more ordered structures, predominantly β-hairpins, which form as Aβ42 folds upon
interacting with the hydrophobic regions of another Aβ42 peptide.
While the original work only included a comparison of the FES of Aβ42 in solution
and in a dimeric state, we now extend this analysis by incorporating the FES of
Aβ42 interacting with both GAGs and three POPC lipids. This approach extends our
analysis from a qualitative investigation of the configurational space using TNs in
chapter 4 to a quantitative assessment of the underlying FES.
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This chapter provides an overview of the results published in:

The energy landscape of Aβ42: a funnel to disorder for the monomer becomes a
folding funnel for self-assembly.
Moritz Schäffler, David Wales and Birgit Strodel
Chem. Commun., 60 (2024)

The full publication is provided in the appendix A.1. The contributions of the authors
are listed in Table 5.1.

Author Contribution Tasks

Moritz Schäffler ∼80% Methodology, Software, Investigation

Data-curation, Validation, Formal-analysis,

Visualization, Writing-original-draft,

Writing-review-editing, Funding-acquisition

David Wales ∼10% Methodology, Software, Investigation,

Writing-review-editing, Supervision

Birgit Strodel ∼10% Conceptualization, Methodology, Resources,

Writing-review-editing, Supervision,

Project-administration
Tab. 5.1.: Contribution by author to Schäffler et al. 2024 [135].
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5.1 Methods
The methods utilized in this study are outlined in Chapter 2.4 to 2.7. Here, we
briefly summarize the key concepts; for more detailed information, please refer to
the full publication in the Appendix A.1.

In contrast to previous studies, where states were determined using predefined
descriptor functions, we employed structural clustering for state determination. Due
to the high number of degrees of freedom in Cartesian coordinates (f = 3N ∼ 103)
and the large number of frames in the trajectory (∼ 105), direct structural clustering
is not feasible. Therefore, dimensionality reduction was applied. We utilized the
distribution of reciprocal interatomic distance (DRID) metric, which effectively
preserves system kinetics during dimensionality reduction. A set of reference atoms
was selected, from which the reciprocal interatomic distances to all other atoms in the
molecule were calculated. The first three moments (µi, νi, ξi) of these distributions
were then used for state descriptions. In this study, six key residues (D1, F19, D23,
K28, L34, A42) were chosen as reference atoms, resulting in an DRID space with
reduced dimensionality of 18. The state vectors can be written as:

S(t) = (µ1, ν1, ξ1, ..., µ6, ν6, ξ6)

Clustering these states enabled calculation of the transition rate matrix, from which
free energy minima and transition states were derived (see chapter 2.5). The
resulting FES was visualized using disconnectivity graphs, revealing the structural
landscape and folding funnels (see chapter 2.6). First-passage time (FPT) analysis
provided insights into the kinetics of conformational transitions between disordered
and β-sheet-rich states (see chapter 2.7).

In all four simulations of Aβ42, in solution, as a dimer, with a GAG molecule and
with three POPC lipids, the peptide was modeled with neutral histidine residues
and no terminal capping, resulting in an overall peptide charge of q = −3. The
simulations were performed using the GROMACS simulation package [143] with the
CHARMM36m force field [158] to model the Aβ42 peptide. The simulation details of
Aβ42 in solution, Aβ42-GAG and Aβ42-POPC are presented in chapter 4.1, however
all simulations were extended to an accumulated simulation time of 6 µs for each
system. For the dimer simulations, three runs were initiated, each starting from two
extended Aβ42 monomers with an initial separation of at least 2 nm. The peptides
were positioned within a simulation box with a minimum distance of 1.2 nm from
any box face or edge, then solvated with TIP3P water molecules [97] and NaCl
at a physiological concentration of 150 mM. After equilibration, simulations were
conducted under NPT conditions at 1 bar using the Parrinello–Rahman pressure
coupling scheme [108]. The dimer simulations were carried out at 298 K using a
Nosé–Hoover thermostat [105, 106]. Periodic boundary conditions were applied in
all dimensions, and electrostatic interactions were calculated with the particle-mesh
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Ewald method [145]. Real-space cutoffs for van der Waals and Coulomb interactions
were set to 1.2 nm. To minimize computational demands, the dimer simulation box
size was reduced after 2 µs, once dimer formation had been observed. Following
brief NPT equilibration, each dimer system was further simulated for an additional
6 µs, resulting in a total of 3× 8 µs for the Aβ42 dimer

5.2 Results
In the following we shortly present the FESs of the Aβ42 monomer and dimer as
discussed in the publication [135]. Furthermore, we include the FESs of Aβ42 with
POPC lipids and a GAG molecule, which has not been published to the present date.

5.2.1 Aβ42 Monomer
Figure 5.1 shows the FES of the Aβ42 monomer, visualized as a disconnectivity graph.
The FES displays a primary funnel leading to the global minimum. Unlike the FES
of folded proteins, the global minimum here corresponds to disordered states of
the Aβ42 monomer, denoted as state D (disordered). Conformations with partial
secondary structure, such as the β-hairpin, characteristic of Aβ oligomers [36], or
the S-shape conformation, a common building block of fibrils [159], appear as
excited states in the FES with free energy differences of ∆Fmon

H = 2.3 kT and
∆Fmon

S = 3.2 kT, respectively.

This arrangement of the FES, where (partially) folded states occupy higher posi-
tions in the funnel, with disordered states at the bottom, has been previously referred
to as an "inverted free energy landscape" [157]. We proposed the term "structurally
inverted funnel" or simply "disordered funnel," as it is the structure, not the funnel,
that is inverted.

5.2.2 Aβ42 Dimer
To compare the FES of the Aβ42 dimer with that of the monomer, we employed the
same DRID metric to calculate the states, treating the two chains in the dimer system
as individual peptides. Thus, the dimer disconnectivity graph represents the FES of
an Aβ42 peptide in the presence of another Aβ42 peptide. The resulting FES for the
Aβ42 dimer, shown in Figure 5.2, features the topology of a folding funnel leading to
a β-hairpin state with substantial β-sheet content (labeled state B).

Projecting the global minimum of the monomer FES (state D) onto the dimer FES
reveals that the disordered state appears as an excited state in the dimer FES, with
a free energy difference of ∆F dim

D = 3.9 kT. Similarly, the global minimum of the
dimer FES (state B) projected onto the monomer FES (Figure 5.1) appears as an
excited state there, with a free energy difference of ∆Fmon

B = 3.6 kT. It is important
to note that state D in the dimer FES does not correspond to a dimer but rather to
two disordered monomers, whereas the β-hairpin in state B of the dimer arises from
interpeptide interactions resulting from dimerization. This finding demonstrates that
the Aβ42 peptide can stabilize into a β-hairpin by interacting with the hydrophobic
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Fig. 5.1.: Free energy disconnectivity graph for the FES of the Aβ42 monomer. The
energies are given in units of kT (see scale bar on the right), with k the Boltzmann
constant and T the absolute temperature. The branches are colored according
to the average number of residues in β-sheet conformation in the ensemble of
structures belonging to the corresponding minimum, ranging from blue (no
β-sheets) to red (13 residues involved in β-sheets). Representative structures
of some minima are shown, where D (for ‘disordered’) is the global minimum
of the monomer FES and B (for ‘β-sheet’) is the global minimum of the dimer
FES projected onto the monomer FES. The structures are shown in the cartoon
representation, with β-sheets highlighted in yellow and the centroids used in the
DRID metric shown as spheres (blue for positive charge at the N-terminus and
K28 side chain, red for negative charge at the C-terminus and D23, magenta for
the hydrophobic F19 and L34).
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Fig. 5.2.: Free energy disconnectivity graph for the FES of the Aβ42 dimer. The energies
are given in units of kT (see scale bar on the right), with k the Boltzmann
constant, and T the absolute temperature. The branches are colored according
to the average number of residues in β-sheet conformation in the ensemble of
structures belonging to the respective minimum, ranging from blue (no β-sheets)
to red (19 residues involved in β-sheets). Representative structures of some
minima are shown, where B (for ‘β-sheet’) is the global minimum of the dimer
FES and D (for ‘disordered’) is the global minimum of the monomer FES projected
onto the dimer FES. The structures are shown in the cartoon representation, with
β-sheets highlighted in yellow and the centroids used in the DRID metric shown
as spheres (blue for positive charge at the N-terminus and K28 side chain, red for
negative charge at the C-terminus and D23, magenta for the hydrophobic F19
and L34). The second peptide of the dimer is only shown in faint color, and state
D is in fact a monomeric state ans thus shown as such.
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Fig. 5.3.: Fastest pathway from the Aβ42 dimer disordered state to the global minimum.
The states are labeled as presented in the disconnectivity graph of the Aβ42 dimer
in Figure 5.2. The spheres represent the centroids used in the DRID metric. The
first passage times associated with the fastest transition between the states are
shown above the arrows, which were calculated separately for each transition
and therefore do not add up to the total transition time associated with the full
pathway.

region of another Aβ42 peptide, emphasizing the role of hydrophobic partners in
facilitating folding during self-assembly.

To elucidate the structural transitions from the disordered state D to the folded
β-hairpin state B in the Aβ42 dimer, we extracted the fastest pathways from the free
energy surface using the PATHSAMPLE program [160]. The transition pathway,
shown in Figure 5.3, includes three intermediate states (I1, I2, I3) marked on the
dimer FES in Figure 5.2.

The D→ I1 transition is characterized by a scissor motion, driven by the formation
of a D23–K28 salt bridge, followed by hydrophobic interactions between 17LVFFA21

and 30AIIGLMV36. This process occurs cooperatively with the formation of inter-
peptide contacts between the hydrophobic regions of both peptides. In the I1 → I2
transition, the key hydrophobic contact shifts from F19–L34 to F19–I32, facilitating
the formation of a short antiparallel β-sheet in I3. The final I3 → B transition further
stabilizes the β-sheet, as I3 is already located within the folding funnel towards the
global minimum.

This study confirms the significance of the D23–K28 salt bridge in initiating the
turn and subsequent β-hairpin formation, which is essential for Aβ oligomerization
and toxicity [36, 161]. Our findings align with recent NMR studies, which similarly
identified this salt bridge [162, 163] and hydrophobic interactions [164–166] as
crucial in driving amyloid formation and toxicity in both Aβ40 and Aβ42. Specifically,
Tycko and coworkers observed β-hairpin conformations with intra-peptide contacts
between the main hydrophobic segments in Aβ40 forming within 1 ms. The primary
hydrophobic interaction was found between the aromatic side chain of F19 and
aliphatic residues 30—35, consistent with structures in the dimer FES folding funnel
determined here [167].

5.2.3 Aβ42 with a GAG
In the previous chapter 4, we compared the configurational space of the Aβ42

monomer with that of Aβ42 in complex with GAG and POPC lipids using TNs. Here,
we extend this discussion by providing the FESs pf the Aβ42-POPC and Aβ42-GAG

5.2 Results 53



systems in terms of disconnectivity graphs and compare them to the Aβ42 monomer
and dimer FESs.

Figure 5.4 shows the FES of the Aβ42 monomer in the presence of a GAG. The
same DRID metric as for the monomer and dimer system was employed to calculate
the states, treating interactions between Aβ42 and the GAG only implicitly. Moreover,
our previous study has revealed that due to minimal contacts between Aβ42 and
the GAG molecule, there is no direct cooperative folding mechanism [147]. The
FES features a single main funnel with two competing β-hairpin structures at the
bottom. The global minimum BGAG consists of more compact β-hairpin structures,
where the D23–K28 salt bridge folds inward, interacting with the N-terminal and
hydrophobic regions. The competing β-hairpin structure is only slightly higher in
energy ∆FGAG = 0.2 kT and resembles a more extended structure, similar to the
global minimum of the dimer FES.

Projecting the global minimum of the dimer FES (state B) onto the Aβ42-GAG
FES reveals that, despite the structural similarity, it appears as an excited state
with a free energy difference of ∆FGAG

B = 4.2 kT. Similarly, the disordered state
from the monomer FES (state D) appears as an excited state in the Aβ42-GAG FES,
with ∆FGAG

D = 5.9 kT. Notably, this disordered state belongs to a side funnel of
intrinsically disordered states, where the local minimum has ∆FGAG

idp = 4.5 kT. As
observed in the dimer FES, the system must overcome an initial energy barrier to
escape the basin of disordered states and enter the main folding funnel.

The state with the highest β-sheet content can be identified as an S-shaped
structure (state SGAG), with ∆FGAG

S = 1.3 kT. Given that the S-shaped conformation
has been identified as a common building block of fibrils [159], and the relatively low
free energy in the Aβ42-GAG FES, this suggests that GAGs may accelerate amyloid
fibril formation.

Analysis of the Aβ42-GAG FES reveals significant similarity between the global
minimum of the dimer FES and the low-energy states in the presence of a GAG.
However, the state with the highest overlap with the dimer FES global minimum
appears more twisted, as a result of the interactions with the other Aβ42 molecule
composing the dimer (see Figure 5.2). The presence of GAGs may promote a more
ordered interaction pattern, warranting further investigation in future studies.

Compared to the TN analysis, the current FES yields similar conclusions. However,
the identification of structures associated with the global minimum is significantly
more precise, allowing us to distinguish two distinct β-hairpin structures that may
have been grouped into the same state in the corresponding TN. Additionally, the
dynamics from the initial disordered state to the folded β-hairpin state are more
clearly elucidated, and the comparison of free energies provides insights into the
relative propensities of these states, which could be tested experimentally. Biophysi-
cal studies have shown that GAGs promote the formation of amyloid fibrils [146],
which in the light of our analysis identifies the β-hairpin structures as key structural
motive in the process.
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Fig. 5.4.: Free energy disconnectivity graph for the FES of Aβ42 with a GAG. The
energies are given in units of kT (see scale bar on the right), with k the Boltzmann
constant, and T the absolute temperature. The branches are colored according
to the average number of residues in β-sheet conformation in the ensemble of
structures belonging to the respective minimum, ranging from blue (no β-sheets)
to red (21 residues involved in β-sheets). Representative structures of some
minima are shown, where B (for ‘β-sheet’) is the global minimum of the dimer
FES and D (for ‘disordered’) is the global minimum of the monomer FES projected
onto the Aβ42-GAG FES. Furthermore, the global minimum BGAG and state with
the highest β-sheet content SGAG are highlighted. The structures are shown in the
cartoon representation, with β-sheets highlighted in yellow and the centroids used
in the DRID metric shown as spheres (blue for positive charge at the N-terminus
and K28 side chain, red for negative charge at the C-terminus and D23, magenta
for the hydrophobic F19 and L34). The GAG molecule is not depicted as there are
only rarely contacts with the Aβ42 peptide.
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5.2.4 Aβ42 with POPC lipids
The conformational space of Aβ42 in complex with POPC lipids, investigated through
MD simulations, has been extensively analyzed in our previous studies [42, 131,
147]. Here, we extend this analysis by constructing the FES similarly to previous
systems. For consistency, we employed the same DRID metric as with other Aβ42

systems to calculate the states, treating Aβ42–POPC interactions implicitly.

As discussed in chapter 4, the mode of interaction of Aβ42 with POPC lipids differs
significantly from its interaction with GAGs. While almost no direct contacts are
observed between Aβ42 and GAGs, Aβ42 forms a compact complex with the POPC
cluster. In a previous study [42], Fatafta et al. demonstrated that Aβ42 undergoes a
disorder-to-order transition upon forming a complex with POPC lipids. At a 1:3 ratio,
Aβ42 exhibited either a random coil-to-helix or random coil-to-β-sheet transition. The
simulations revealed the formation of a stable helix-kink-helix structure in one run,
while β-sheet formation dominated in the other runs. The increase in α-helix content
was correlated with specific peptide-lipid interactions, particularly with residues L17,
A21, I32, and V36. Contacts between these residues and the lipid tails stabilized
the helix, while β-sheet structures emerged in regions with different peptide-lipid
interactions, indicating that structure formation in Aβ42 is driven by its interaction
with the surrounding lipids.

Figure 5.5 shows the FES of the Aβ42 monomer in the presence of three POPC
lipids, visualized as a disconnectivity graph. The FES reveals a singular funnel with
a β-sheet forming state at the global minimum (BPOPC), distinct from the typical β-
hairpin structure, discussed above. In addition, the FES appears shallower compared
to the previously discussed FESs, as indicated by the relatively small free energy
differences between key states.

Projecting the disordered state from the monomer FES (state D) onto the Aβ42-
POPC FES, shows that it appears as an excited state in the Aβ42-POPC FES, with
∆F POPC

D = 3.0 kT, which is ∼ 1 kT lower compared to the dimer and GAG systems,
indicating a flatter FES of Aβ42 in the presence of POPC. Note that the disordered
state D in the POPC FES shows the highest overlap with the ensemble of structures
belonging to state D in the monomer FES, however here Aβ42 forms a complex
with the POPC lipids. Projecting the global minimum of the dimer FES (state B)
onto the Aβ42-POPC FES reveals that the β-hairpin state is positioned very close to
the global minimum in the folding funnel, with a free energy difference of only
∆F POPC

B = 0.1 kT. While previous studies indicated a high β-sheet propensity for
Aβ42 in the presence of POPC lipids, the β-hairpin state had not been unambiguously
identified as the predominant structure. The low free energy further suggests that
this state is both likely to form and highly stable.

The state with the highest α-helical content can be identified as the helix-kink-
helix structure (state SA), which has been identified by Fatafta et al. [42], with
∆F POPC

A = 1.0 kT. Given that Aβ42 has shown very low propensity to form α-helicies
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Fig. 5.5.: Free energy disconnectivity graph for the FES of Aβ42 with three POPC lipids.
The energies are given in units of kT (see scale bar on the right), with k the
Boltzmann constant, and T the absolute temperature. The branches are colored
according to the average number of residues in β-sheet conformation in the
ensemble of structures belonging to the respective minimum, ranging from blue
(no β-sheets) to red (15 residues involved in β-sheets). Representative structures
of some minima are shown, where B (for ‘β-sheet’) is the global minimum of
the dimer FES and D (for ‘disordered’) is the global minimum of the monomer
FES projected onto the Aβ42-POPC FES. The structures are shown in the cartoon
representation, with β-sheets highlighted in yellow and the centroids used in the
DRID metric shown as spheres (blue for positive charge at the N-terminus and
K28 side chain, red for negative charge at the C-terminus and D23, magenta for
the hydrophobic F19 and L34). The POPC lipids are shown as translucent spheres.
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in the other systems, the low free energy of state A shows the distinct change on the
conformational space of Aβ42 by POPC lipids, as well as the flatness of the FES.

5.2.5 Timescale Analysis
To analyze the timescales associated with the interconversions between the disor-
dered state D and the β-hairpin state B, as previously determined from the monomer
and dimer FES respectively [135], we calculated the FPT distribution for these tran-
sitions in the presence of GAG and POPC. The resulting FPTs for all four systems, are
shown in Figure 5.6. For the Aβ42-GAG systems and Aβ42-POPC, the interconversion
timescales between state D and B, as well as between state D and the respective
global minimum are presented.

Focusing on the comparison between monomer and dimer, the transition times
for the monomer are τmon

D→B ∼ 15 ns and τmon
B→D ∼ 3 ns. While the transition from the

disordered state to the excited β-hairpin state is five times longer than the reverse
transition, it remains relatively fast. In contrast, for the dimer, the transition times
are τdim

D→B ∼ 4 ns and τdim
B→D ∼ 300 ns, with a ratio of about 75 for the transition from

the global minimum to the excited disordered state, relative to the reverse transition.
This reveals a clear separation of timescales in the dimer, which is absent in the

Fig. 5.6.: First passage time probability distributions for interconversions between
disordered and β-hairpin states. The probability distribution P(ln t) of the first
passage time t for transitions between the disordered state D and the β-hairpin
state B is shown on a logarithmic scale. The states D and B were determined
from the monomer and dimer FES, respectively, and projected onto the FES of
the other systems to identify the state with the highest overlap. For the Aβ42-GAG
and Aβ42-POPC systems, the FPTs between state D and the global minimum are
also presented.
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monomer, indicating a much flatter FES for the monomer compared to the dimer,
despite both FESs exhibiting a singular funnel structure.

Similar to the dimer, in the case of Aβ42-GAG, an even more pronounced separation
of timescales is observed between the interconversion times of states D and B. The
transition times are τGAG

D→B ∼ 32 ns and τGAG
B→D ∼ 2800 ns. The timescale for the

reverse transition, τGAG
B→D, is so high that practically no transition from B to D is

observed within common MD timescales, highlighting the strong disorder-to-order
transition of Aβ42 in the presence of a GAG. Furthermore, the timescale associated
with the transition to the global minimum, which is an alternative hairpin state, is
τGAG

D→BGAG
∼ 17 ns, making this transition twice as fast as the transition to state B. The

back transition from the global minimum to state D (τGAG
BGAG→D ∼ 2800 ns) is as slow

as the B → D transition, indicating that the disordered state D is positioned very
high in the Aβ42-GAG FES that returning to the disordered basin is highly improbable
under the simulated conditions.

The transition times between states D and B for the Aβ42-POPC system are τPOPC
D→B ∼

4 ns and τPOPC
B→D ∼ 86 ns. This indicates that the transition from the disordered to the

hairpin state is as fast as for the dimer, while the reverse transition is approximately
four times faster than τdim

B→D, suggesting an overall flatter FES with a less steep slope
toward the hairpin state. The transition times from the disordered state to the global
minimum BPOPC are τPOPC

D→BPOPC
∼ 6 ns and τPOPC

BPOPC→D ∼ 86 ns. While the transition to
the global minimum is slightly slower compared to τPOPC

D→B , the reverse transition
times are identical. This suggests that state B may serve as an intermediate on the
pathway D → BPOPC, with both states residing in the same basin at the bottom of
the FES.

5.3 Discussion
Through the analysis of free energy landscapes (FES) and first passage time (FPT)
probability distributions, we have identified key mechanisms underlying Aβ42’s
transition from a disordered state to a β-sheet-forming, hairpin-like structure. Our
results reveal distinctive features in the free energy landscapes of Aβ42 monomers
and dimers, highlighting the impact of the molecular environment on structural
stability and propensity for aggregation. Specifically, we observe that the FES of the
monomer resembles a structurally inverted folding funnel, where disordered states
are lowest in energy. In contrast, the lowest minima for the dimer are characterised
by more ordered structures, predominantly consisting of β-hairpins, which form as
Aβ42 folds upon binding to the hydrophobic region of another Aβ42 peptide.

Our analysis of first-passage times indicates that the FES of the monomer is
relatively flat, with excited states more readily accessible compared to the dimer.
For the disordered funnel of the monomer, local minima with higher energy are
readily accessible and the timescales of interconversions between them are of similar
magnitude, while transitions to excited states from the ordered global minimum of
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the dimer are relatively slow. Thus, while we characterize the monomer FES as a
funnel to disorder, the dimer FES is closer to the expected form for a folded protein.
Our FES and timescale analysis of Aβ42 further confirms the predictions made for
the energy landscapes of folded and disordered proteins based on the slope of the
free energy funnels. Chong and Ham determined the FESs of two folded proteins,
which exhibited steep folding funnels, and of an IDP, which has a gentler slope and
led to similar transition times to and from the global minimum [154].

The pathway analysis of the dimer FES identifies key intermediates and struc-
tural rearrangements involved in the transition from disordered to folded states,
providing mechanistic insights into the initial aggregation steps for Aβ42. Starting
from an extended conformation, the peptide chain undergoes a scissor-like motion,
establishing a salt bridge between residues D23 and K28, followed by the forma-
tion of hydrophobic contacts. Subsequently, these contacts reorganise, leading to
β-hairpin structures. Our results should contribute to a deeper understanding of the
molecular mechanisms underlying Alzheimer’s disease pathology, and may inform
the development of targeted therapeutic interventions.

In addition to the published results [135], we included an analysis of the FES of
Aβ42 in the presence of a GAG molecule and a lipid cluster formed by three POPC
lipids. For the Aβ42-GAG FES, we observe a significant similarity to the dimer FES. As
with the dimer, the FES reveals a folding funnel akin to that of a folded protein, with
two competing β-hairpin structures at the bottom of the FES. Similar to the global
minimum of the dimer, projecting state D onto the Aβ42-GAG FES identifies it as an
excited state. A closer inspection of the structures reveals that state B, characteristic
for the dimer, exhibits a more twisted conformation compared to BGAG, likely due to
the cooperative folding resulting from binding to an interaction partner, whereas
the GAG interacts indirectly with the Aβ42 peptide. Timescale analysis reveals that
the transition from the disordered state to the global minimum is slower compared
to the dimer FES, indicating a steeper folding funnel in the dimer. Additionally, the
back transition from the hairpin state to the disordered basin in the GAG system is
exceedingly slow, essentially inaccessible within MD timescales, which underscores
the stability of the hairpin structure in the presence of a GAG.

Our findings, which indicate a strong correlation between the presence of a GAG
molecule and the β-hairpin propensity of Abeta, elucidate the role of GAGs in the
development of Alzheimers disease. GAGs are major components of the extracellular
matrix, providing structural support to brain tissues [168]. They help maintain
the integrity and organization of neural tissue by forming a gel-like matrix that
surrounds neurons and glial cells. It has been observed a significant presence of
GAGs in Aβ aggregates sampled from Alzheimer’s disease affected patients [146] and
several biophysical studies have shown that GAGs promote aggregation, nucleation,
and formation of amyloid fibrils [169–171]. However, their role in Alzheimers
disease pathology and the molecular details are not yet fully understood.
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The FES in the presence of three POPC lipids exhibits significant differences
compared to the previously discussed FES. The overall landscape is flatter, with the
disordered state D still appearing as an excited state but about ∼ 1 kT lower in
energy relative to the GAG FES. Moreover, the structure associated with the global
minimum, while displaying a sheet-turn-sheet motif, lacks the D23-K28 salt bridge
that is a key feature of the β-hairpin structure in the dimer and in the presence of
GAG. Nonetheless, this structure (state B) resides in the same energy basin at the
bottom of the FES and is only slightly higher in energy than the global minimum.
Additionally, the helix-kink-helix structure, identified in previous studies, appears
as an excited state in the FES. Timescale analysis of the Aβ42-POPC FES reveals its
relative flatness, with transition timescales comparable to those observed in the
monomer FES, despite the high interaction propensity between Aβ42 and the POPC
lipids.

These findings highlight the disorder-to-order transition of Aβ42 upon lipid bind-
ing, reported in our previous studies [42, 147]. Lipids play a significant role in
Alzheimer’s disease pathology, particularly in the interaction of Aβ with lipid mem-
branes, which has been linked to neuronal membrane disruption [172]. While many
studies have examined Aβ solely in a lipid-membrane environment, recent work
suggests that complex formation with free lipids in the extracellular space may drive
membrane insertion, leading to pore formation and membrane thinning [173, 174].
Our results support this hypothesis, showing a conformational change in Aβ42 when
complexed with POPC, similar to that in the dimer or Aβ42-GAG systems, suggesting
a shared mechanism underlying toxicity. Furthermore, our findings underscore the
ability of Aβ to readily transition between α- and β-structures, supporting the hypoth-
esis that lipid-associated amyloid aggregation may proceed via a helical intermediate
state [175].
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6Photocontrolled Reversible
Amyloid Fibril Formation of PTH

Peptide fibrillization plays a critical role in biological processes such as amyloid-
related diseases and hormone storage, characterized by transitions between folded,
unfolded, and aggregated states. The parathyroid hormone (PTH) is of particular
interest due to its ability to undergo reversible amyloid fibril formation, while regulat-
ing calcium and phosphate balance in the human body [68]. The PTH1−34 sequence
was also the first FDA-approved drug for the treatment of severe osteoporosis [71]
and its therapeutic efficacy could be enhanced through controlled transitions be-
tween its stored fibril state and its active monomeric form. In this study, we leverage
light to induce reversible transitions between aggregated and non-aggregated states
of the PTH25−37 peptide segment, establishing a framework for targeted drug delivery
using the full PTH1−34 sequence. Specifically, we investigate the PTH25−37 peptide,
a segment central to the fibril of PTH and independently capable of fibril forma-
tion [69]. The light-responsive switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic
acid (AMPB) was incorporated into PTH25−37 to control aggregation, revealing
position-dependent effects (see Figure 6.1). Through a combined effort of in silico
design, synthesis, and experimental validation, we predicted and confirmed the
amyloid-forming potential of 11 novel AMPB-containing PTH25−37 mutants. Molecu-
lar dynamics (MD) simulations revealed structural and interaction pattern changes
based on AMPB positioning, emphasizing the importance of π-π interactions be-

Fig. 6.1.: Schematic representation of light-induced (de-)aggregation of PTH25−37
with embedded AMPB photoswitch. The artificial light-switch, 3-{[(4-
aminomethyl)phenyl]diazenyl}benzoic acid (cis/trans - AMPB), is incorporated at
various positions within the PTH peptide. Cis/trans isomerization regulates the
reversible fibril formation of the peptide. The figure was taken from Pascholt et
al. (2024) [176].
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tween AMPB segments. Together with solid-state NMR studies, fibril models were
developed for both PTH25−37 and an AMPB-containing variant. This multifaceted
approach enabled the identification of a peptide capable of phototriggered transi-
tions between fibrillated and defibrillated states, confirmed by various spectroscopic
techniques. Our strategy offers the first example of a photo-stimulus-responsive
hormone, unlocking the potential to manipulate PTH’s reversible switch between
active and inactive aggregated states.
This chapter is meant as an overview of the published results in:

Photocontrolled Reversible Amyloid Fibril Formation of Parathyroid Hormone-
Derived Peptides.
Andrè Paschold†, Moritz Schäffler†, Xincheng Miao, Luis Gardon, Stephanie Krüger,
Henrike Heise, Merle I. S. Röhr, Maria Ott, Birgit Strodel and Wolfgang H. Binder
Bioconjugate Chemistry, 35 7 (2024)

The full publication is provided in the appendix A.1. The contributions of the authors
are listed in Table 6.1.
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Writing-review-editing

André Pascholt ∼25% Methodology, Investigation (ThT-Essays,

Toxicity-Essays), Data-curation,

Validation, Formal-analysis,

Peptide Synthesis, Visualization,

Writing-original-draft,

Writing-review-editing
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Writing-review-editing
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Writing-review-editing
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6.1 Structural Analysis
First we studied the structural characteristics of the PTH25−37 peptide and one
mutant with an incorporated AMBP photoswitch (called P4). The PTH25−37 sequence
contains three positively charged residues (RKK) at the N-terminus, followed by a
combination of hydrophobic, polar, and one negatively charged residue (D30) in
the central region. The C-terminal residues are predominantly hydrophobic (see
Figure 1.5 and Table 6.2). This uneven distribution of physicochemical properties
is reflected in the electrostatic potential surface, which shows a highly positively
charged N-terminus and a more hydrophobic C-terminal half, with minor negative
charge accumulation beyond the first three residues (see Figure 6.2). Therfore we
hypothesized that amyloid aggregation of PTH25−37 is primarily driven by residues
following the initial RKK sequence.

The trans-P4 mutant, where V31 is substituted by AMPB, carries the photoswitch
in the central region of the peptide, resulting in accelerated amyloid fibril formation
within 10 hours, as opposed to 15 hours for the unmodified peptide. In contrast,
the cis-P4 mutant initially forms amorphous aggregates that convert into amyloid
fibrils after approximately 50 hours. The replacement of V31 with AMPB in the P4
mutant increases the overall hydrophobicity of the peptide, while the AMPB group
introduces a slight positive charge, partially offsetting the primarily negative charge
in the center (see Figure 6.2). These structural changes account for the enhanced
aggregation kinetics of trans-P4 relative to PTH25−37.

6.2 Peptide Simulations
To study the effects of the insertion of an AMPB photoswitch at different positions
of the PTH25−37 sequence on the peptides’ conformational space and aggregation

Fig. 6.2.: Electrostatic potential surface of PTH25−37 and trans-P4. Front and back views
of the structure with a transparent representation, showing the peptides backbone
structure. The color scale represents the electrostatic potential in units of kTe−1,
as indicated at the bottom.
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propensity, we performed MD simulations of various mutants and the original
sequence.

6.2.1 Simulation Details
MD simulations were run for the PTH25−37 peptide and five selected mutants from a
total of twelve designed variants, namely: P1, P3, P4, P8, and P12. These mutants
incorporate the AMBP modification at various positions within the peptide chain,
with variations including both full-chain insertions and deletions of existing residues.
An overview of the designed mutants is provided in Table 6.2. All MD simulations
were conducted using the GROMACS package. Given that PTH25−37 is classified
as an IDP, we employed the CHARMM36m force field. For the AMPB photoswitch,
parameters were derived using the cgenff protocol [91] and refined with QM/MM
data to reproduce the correct cis- and trans-state geometries [177].

AMPB position peptide primary sequence modification

PTH25−37
25RKKLQ30DVHNF35VAL -

Central
P1 25RKKLQ30D-AMPB-VHNF35VAL D30-AMPB-V31

P3 25RKKLQ-AMPB-VHNF35VAL D30→AMPB

P4 25RKKLQ30D-AMPB-HNF35VAL V31→AMPB

N-terminal P8 25RK-AMPB-KLQ30DVHNF35VAL K26-AMPB-K27

C-terminal P12 25RKKLQ30DVHNF-AMPB-VAL V35→AMPB
Tab. 6.2.: Designed PTH25−37 peptides containing the AMPB photoswitch

In the simulations, the ̸ CNNC dihedral was fixed to either the cis- or trans-state,
and transitions between the two states were not modeled. Peptides were placed
in a simulation box containing TIP3P water, Na+, and Cl− ions at a physiological
concentration of 150 mM. Simulations were run under NPT conditions at 300 K and 1
bar, using the Parrinello-Rahman barostat and Nosé-Hoover thermostat. A production
run of 10 µs per system was performed, with periodic boundary conditions applied
in all directions and electrostatic interactions calculated using the particle-mesh
Ewald method. In total, 285 µs of simulation time were generated across all systems.

6.2.2 Results
To understand the aggregation mechanisms and elucidate the structures that form
during oligomerization, we first focus on the MD simulations performed of the
monomer, dimer and hexamer for both PTH25−37 and P4, the latter simulated in the
trans- and cis-states. Simulating the P4 mutant in its cis-state, we aim to elucidate
the structural basis for its slower and reduced fibrillization. Figure 6.3 A shows the
average secondary structure elements formed during the simulations.

All monomers exhibit mainly a random coil structure, with on average less than
one residue forming secondary structure elements. Nevertheless, there a still subtle
differences between the peptides indicating their overall structural propensities.
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Notably, PTH25−37 shows a small tendency to form an α-helix. This helix is formed at
the N-terminal by residues K27 to D30, a feature that is reduced in the P4 mutants
when V31 is replaced with AMPB. Furthermore, the cis-isomer promotes intrapeptide
interactions, resulting in β-hairpin formation, while the trans-P4 favours a fully
extended conformation, thus the β-sheet content is highest for the cis-P4 structure.
Dimer simulations revealed an increase in β-sheet content for all three peptides,
likely due to aggregation. The highest β-sheet propensity is found in PTH25−37,
predominantly forming antiparallel β-sheet segments. The contact maps as observed
in the dimer simulations (see Figure 6.3 B) reveal interaction between the positively

Fig. 6.3.: Comparison between PTH25−37 and trans/cis-P4. (A) Average simulated sec-
ondary structure population of PTH25−37 and trans/cis-P4. The secondary struc-
ture propensity is categorized into α-helical, intrapeptide β-sheets, and interpep-
tide parallel and antiparallel β-sheets, as indicated by the color code. (B) Contact
map from dimer simulations for PTH25−37, trans-P4, and cis-P4. The rate of
contacts between pairs of inter-/intramolecular residues is shown, averaged over
the full simulation. Two residues are considered to be in contact if any pair of
atoms is closer than 6 Å.
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charged RKK N-terminal residues and the negatively charged C-terminus of the
adjacent peptides, promoting an anti-parallel alignment of the peptides.

Unexpectedly, despite the faster aggregation rates, trans-P4 displayed fewer β-sheets
at the oligomer level, where interactions were dominated by AMPB-AMPB con-
tacts, favoring an anti-parallel alignment. In contrast, cis-P4, forming intrapeptide
β-hairpins, mainly aggregated randomly, consistent with the amorphous structures
observed experimentally for larger aggregates. These differences between cis- and
trans-AMPB demonstrate molecular-level control over fibril formation through iso-
merization, paving the way for photoregulated amyloid formation.

The hexamer simulations for PTH25−37, trans-P4, and cis-P4 did not yield fibrillar
structures, suggesting that the system size or simulation time was insufficient. Inter-
estingly, the hexamers were less ordered than dimers, supporting the experimental
findings that PTH25−37 has lower amyloid-forming potential compared to other
peptides, such as Aβ16−22 [178]. Unlike Aβ16−22, which forms ordered hexamers
in MD simulations with identical conditions as applied here, both PTH25−37 and
P4 showed a decrease in interpeptide β-sheet content with increased system size,
likely due to the expansion of the conformational space. PTH25−37 hexamers also
exhibited greater helicity compared to their monomeric and dimeric forms, reflecting
the peptide’s inherent helical propensity, which is often stabilized by interpeptide
interactions in intrinsically disordered peptides [179].

To assess the effect of AMPB at different sequence positions on peptide aggrega-
tion, we additionally performed MD simulations of the P1, P3, P8, and P12 variants
(see Table 6.2), examining both cis- and trans-configurations as monomers and
dimers. Figure 6.4 shows the average secondary structure elements formed during
all simulations. Simulations of P1 revealed a tendency for β-sheet formation compa-
rable to that of P4, due to the similar AMPB positioning in the peptide sequence. In
P1, however, AMPB is inserted between D30 and V31, extending the hydrophobic
C-terminal region (see Figure 1.6), potentially explaining the more rapid aggregation
kinetics compared to P4. In P3, AMPB shifts one position toward the N-terminus
compared to P4, replacing D30, which enhances the peptides hydrophobicity, sup-
porting aggregation. On the contrary, the removal of D30’s negative charge increases
the net positive charge, potentially counteracting aggregation. The simulations
indicated that the hydrophobic effect outweighs the electrostatic repulsion, as we
observe random dimerization with primarily intra-peptide rather than inter-peptide
β-sheet formation in trans-P3. To probe the effect of a mutation by AMPB near the
N-terminus, we simulated the P8 mutant with AMPB inserted between K26 and K27.
Although, the peptide displays increased hydrophobicity due to AMPB insertion into
the positively charged N-terminal region, P8 favors α-helix over β-sheet structures,
in both cis- and trans-configurations, which may counteract amyloid fibrillization. In
P1, P3, and P4 α-helix formation seems to be largely suppressed, due to the central
positioning of the AMPB photoswitch in the peptide sequence. To examine the effects
of the AMPB mutation on the C-terminal region, we simulated the P12 mutant. Here,
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AMPB replaces V35 in the C-terminal aggregation-prone region, which substantially
reduces β-sheet formation relative to PTH25−37 and other variants. Similar to P8,
AMPB positioning in P12 favors α-helix formation, which may further inhibit amyloid
aggregation.

6.3 Fibril Model
To develop a comprehensive fibril model for PTH25−37 and trans-P4, we integrated
experimental data of our collaboration partners from wide-angle X-ray scatter-
ing (WAXS) and solid-state NMR measurements with structural insights from our
oligomer simulations. Based on the combined date we proposed multiple fibril
structures and assesed their stability using MD simulations.

6.3.1 Simulation Details
The system was prepared according to the standard protocol for MD simulations,
using the same parameters as described for the peptide simulations in section 6.2.1.
All fibril models containing 12 peptides were simulated for 1 µs.

6.3.2 Results
The amyloid fibrils of PTH25−37 and trans-P4 were characterized using WAXS and
solid-state NMR, with MD simulations employed to assess the stability of the resulting
structural models. WAXS results for PTH25−37 (see Figure 6.5 A/D) displayed a
typical β-sheet fibril pattern with reflections at 4.7 Å (inter-strand distance) and
10.3 Å (inter-sheet distance), indicating parallel β-sheets. In contrast, the trans-P4
fibrils exhibited broader peaks, indicating a less structured fibril arrangement, yet

Fig. 6.4.: Average simulated secondary structure population of PTH25−37 and simulated
mutants in trans/cis conformation. The secondary structure propensity is
categorized into α-helical, intrapeptide β-sheets, and interpeptide parallel and
antiparallel β-sheets, as indicated by the color code.
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retained dominant β-sheet spacing’s at 4.6 Å and 9.4 Å, consistent with antiparallel
alignment. Solid-state NMR cross-peaks between L28 and F34 further supported the
antiparallel arrangement of trans-P4 peptides within the fibrils, while the absence of
that cross-peak for PTH25−37 indicates a parallel alignment (see Figure 6.5 B/E).

Combining the experimental and computational efforts to characterize the struc-
tural properties PTH25−37/trans-P4 peptide interactions, we constructed several
potential fibril models for both systems. MD simulations of these models revealed
that the stable structure for PTH25−37 consisted of parallel, in-register β-sheets, ori-
ented antiparallel between sheets, stabilized by electrostatic interactions between
the N- and C-terminal charges. For trans-P4, the fibrils are stabilized by π-π stack-
ing interactions between the central AMPB groups, leading to shorter β-sheets and
consequently less structured fibrils. The MD-averaged structure displayed larger
deviations from idealized fibrils, which explains the broadness of the corresponding
WAXS signal. Both models are shown in Figure 6.5.

Fig. 6.5.: Fibril model of PTH25−37 and trans-P4. (A, D) WAXS measurements of PTH25−37
and trans-P4. (B, E) Solid-state NMR 2D 13C-13C proton driven spin diffusion
spectra close to rotational resonance (mixing time 1 s) of PTH25−37 and trans-P4
fibrils with uniformly 13 C-labeled L28 and F34. (C, F) Fibril models of PTH25−37
and trans-P4, initially (left) and at the end of MD simulations (right). Here,
β-sheets are shown in yellow, random coil in gray, the N- and C-termini as blue
and red spheres, respectively, AMPB in purple, and the side chains of L28 and F34
are highlighted as black and green sticks, respectively. Note that in panel F, the
structure on the right-hand side is rotated by 90° to better represent the fibrillar
arrangement. The figure was taken from Pascholt et al. (2024) [176].
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6.4 Conclusion
In the presented study, we achieved precise control over reversible peptide fibrilliza-
tion by embedding the photoswitch AMPB into the PTH25−37 peptide. Through a
combination of MD simulations, peptide synthesis, aggregation assays, and structural
analysis, we demonstrated that the positioning of AMPB significantly affects fibrilliza-
tion behavior. Peptides with AMPB embedded in the fibril-forming region, such as P4,
exhibited enhanced aggregation in the trans form, while fibrillization was reduced
in the cis form. MD simulations highlighted that AMPB facilitates π-π interactions,
promoting aggregation. Structural studies further confirmed that β-strands in P4
fibrils are arranged antiparallel, unlike the unmodified peptide. The experimental
and structural insights were used to construct fibril models of the PTH25−37 and P4
peptide, which proved stable in MD simulations. Notably, the strategic positioning
of the AMPB photoswitch was demonstrated to enable reversible control of amyloid
aggregation. Experimental results showed that phototriggered degradation of fibrils
in the trans-state is a reversible process, permitting repeated and controlled peptide
aggregation. This light-activated approach presents a promising method for con-
trolled drug delivery via the release of reversibly fibrillating peptides, particularly
given the nontoxic nature of the studied fibrils [176].
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7Influence of pH on the
Aggregation Behaviour of the SH3
Domain

7.1 Motivation
Understanding the factors influencing amyloid formation is crucial for advancing
our knowledge of neurodegenerative diseases such as Alzheimer’s disease (AD). One
of the critical factors in this context is the pH, which plays a pivotal role in the
aggregation behavior of amyloid-fibrils.

Previous research indicates that the ionization states of amino acid residues, which
are pH-dependent, significantly influence amyloidogenesis by either facilitating or
inhibiting protein aggregation through electrostatic interactions [180]. Specifically,
for amyloid-beta (Aβ), studies have shown that changes in net charge and the re-
duction of electrostatic repulsion at low pH levels greatly affect the self-association
of peptides during the initial nucleation phase, but they have low impact on fibril
elongation and nucleation on fibril surfaces [181, 182]. Additionally, in Alzheimer’s
pathology, the oligomeric form of Aβ has been identified as the primary neurotoxic
species. These metastable oligomers, exceeding 50 kDa, form a unique assembly
type, distinct from the intermediates in amyloid fibril formation. It has been shown
that Aβ oligomer formation is highly pH-dependent, with a massive acceleration
when transitioning from neutral to more acidic pH levels [183]. Consequently, under-
standing the early stages of amyloid aggregation and oligomerization, particularly
the role of pH, is vital for elucidating the mechanisms underlying related disease
pathologies.

The SH3 domain from the p85α subunit of bovine phosphatidylinositol-3-kinase
(PI3K-SH3) has been studied excessively and served as a model system for investi-
gating protein folding, aggregation, and fibril formation. Recent investigations have
examined the aggregation kinetics of the SH3 domain under low pH conditions using
a combination of solution NMR, high-resolution magic angle spinning (HR-MAS)
NMR, and solid-state NMR techniques [76]. These studies utilized recombinantly
expressed, low pH-denatured [13C, 15N] labeled bovine PI3K-SH3, employing a
fibrillization protocol similar to that for Aβ [184]. Similar to the aggregation of Aβ
peptides, the acidic conditions often accelerate the aggregation, leading to faster
fibril formation. For the SH3 domain, which is a folded protein at neutral pH,
experiments suggest that acidic conditions (pH ∼ 2), induce a structural change
leading to denaturation of the secondary structure. Thus, at pH 2 it behaves effec-
tively like an intrinsically disordered protein (IDP) and subsequently aggregates
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Fig. 7.1.: Overlay of bovine and human SH3-domains structure. The structure of the
human SH3 domain is shown in red, and the structure of the bovine SH3 domain
is shown in blue.

into amyloid fibrils. Recent studies have further shown that this process is highly
temperature-dependent and reversible with changes in temperature and pH.

In this study, we aim to elucidate the structural changes of the SH3 domain
following a pH change by manipulating the protonation states of titratable sidechains
and performing conventional MD simulations along with enhanced sampling REMD
simulations. Highlighting the difference between physiological and acidic conditions,
we compare simulations at pH ∼ 2 and pH ∼ 7. The focus is on investigating the
differences in kinetics and structure on short timescales, which are not observable in
experiments, thus providing insights into the early (un-)folding processes driving
amyloid aggregation.

7.2 Structure Preperation
Starting from the published structure of the human SH3 domain (PDB:1PKS), we
mutated the amino acid sequence to match that of the bovine SH3 domain used
in experiments by Luis Gardon, Melinda Jaspert, Magdalena Kuom, Nils Lakomek,
Lothar Grämer, and Henrike Heise, which also matches the sequence reported by
Röder et al. [185] (see Figure 1.7). The secondary structure of both the human and
bovine SH3 domains exhibits the same characteristics as described in Chapter 1.6.
Figure 7.1 presents an overlay of the mutated bovine 1PKS structure (red) with that
of the 1PNJ bovine structure (blue), both determined from solution-state NMR [186,
187]. Both structures display the characteristic β-sheet core structure with a flexible
region from residues A10 to D27, which is mostly in a random coil, and a α-helical
region from residue K34 to I53.

In conventional MD simulations, the pH is typically accounted for indirectly by as-
signing the protonation states of titratable residues to their presumed most probable
state of a given pH, at the start of the simulation. Since electrostatic interactions
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Fig. 7.2.: Charged sidechains of the SH3-domain at different pH. (A) shows the charged
sidechains at pH=2 and (B) at pH=7. Positively charged sidechains are colored
in blue and negatively charged ones are colored in red. The total charge of each
structure is shown in the lower right corner.

are strongly affected by the protonation state of residues, the pH can influence the
sampled conformational ensemble strongly. Therefore, simulations that only sample
the most probable protonation states at the start may not explore the full confor-
mational space. Furthermore, conformation can affect the proton affinity (pKa) of
residues, establishing a direct correlation between pH and conformational dynamics
that cannot be accurately captured if the protonation state remains fixed during the
simulation [188]. In recent years, several methods have been proposed to model the
influence of pH on the structural ensemble dynamically, by allowing the protonation
state of the sidechains to change during the course of the simulation [189]. This
approach has been improved to work for large systems and incorporated into the
GROMACS simulation package [188]. This method is particularly useful if a protein
has multiple sidechains with pKa values close to the desired pH of the simulation, as
these are similarly likely to be protonated or deprotonated.

In this study, we aim to investigate the differences in conformational propensity
in extreme conditions of very acidic solution (pH=2) and physiological conditions
(pH=7). Therefore, we fix the protonation states during the simulation, which
conserves resources and speeds up the process. The protonation state of the titrat-
able side chains was chosen according to the pKa values calculated with the H++
webserver [190]. The calculations of the individual pKa values are performed using
the standard continuum solvent methodology within the Poisson-Boltzmann (PB)
model framework [191, 192]. Figure 7.2 shows the structures of the SH3-domain
with their sidechains colored according to their net charge at pH 2 and pH 7. At
pH 2, all sidechains that were previously negative at pH 7 become protonated and
lose their net charge, namely: D13, E17, E19, E20, D23, D28, D44, E47, E51, E52,
E61, E65, D68 and E75. The salt bridges formed at pH 7 are shown in Figure 7.3 as
a contact map. The figure provides an overview of where these contacts are formed.
The contacts between R9 with D28 and E75 occur between neighboring β-sheets
in the β-sheet core structure. The positively charged residues K15, K16, R18, and
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Fig. 7.3.: Contact map of charged sidechains of the SH3-domain at pH 7. A contact
is assumed to be formed if two oppositely charged residues are closer than 4 Å,
excluding next neighbours. As the contact map of the native structure is displayed,
contacts occur only with a rate of 0% or 100%. Furthermore, the region involved
in the formation of specific contacts is highlighted.

H25 are part of the flexible loop region and primarily form contacts with negatively
charged residues in the same region, such as E17, E19, E20, D23, and D28. However,
the contact between K16 and E65 attaches the loop region to the backside of the
β-sheet core structure, resulting in an overall globular protein structure. Lastly,
the contacts between K34 and K49 with E47, E51, and E52 stabilize the α-helical
region. Structurally, the loss of these salt bridges should weaken both the β-sheet
core structure and the α-helical region.

7.3 Conventional MD - Monomer
Initially, we conducted a 10 µs MD simulation of the SH3 domain monomer at pH 2
and pH 7 to observe possible pH-induced conformational changes in the protein’s
structure. The experimental observation of unfolding at acidic pH, coupled with the
loss of stabilizing salt bridges, suggests significant structural changes at pH 2 to take
place.
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7.3.1 Simulation Methods
The simulations of the SH3-domain were performed usigng the GROMACS simulation
package [193]. In each simulation the protein was modeled using the CHARMM36m
force field [82] together with the TIP3P water model [97]. It has been found in
previous studies, that the CHARMM36m force field is best suited for modeling both
monomeric Aβ42 and other IDPs [96], but is also applicable to folded proteins [158,
194].

The systems were prepared according to the standard protocol for MD simula-
tions. Initially, proteins were placed in a simulation box of sufficient size to prevent
self-interaction across the PBCs, even in the event of partial unfolding. The simu-
lation box was then filled with TIP3P water molecules. Sodium (Na) and chloride
(Cl) ions were added to neutralize the system electrostatically. Following system
equilibration, we conducted simulations for 10 µs under NPT conditions at 1 bar,
using the Parrinello-Rahman pressure coupling scheme [195]. The temperature was
maintained at 308 K using the Nosé-Hoover thermostat [106]. For integration, the
leap-frog algorithm was used with an integration time step of 2 fs [103]. All simu-
lations were performed under PBCs in all directions, and the particle-mesh Ewald
method [145] was employed to calculate electrostatic interactions. The cutoffs for
van der Waals and Coulomb interactions calculated in real space were both set to
12 Å.

7.3.2 Results
Figure 7.4 shows the evolution of the secondary structure over time for the SH3-
domain at pH 2 and pH 7. During the simulation, structural changes occur primarily
in the α-helical region of the protein between residues K34 and G54. At pH 2, the
initial α-helical structure mostly unfolds, whereas at pH 7, it begins to form β-sheets
towards the end of the simulation. Outside the α-helical region, the rest of the
protein secondary-structure remains stable at both pH levels.

This is further supported by inspecting the intra-molecular contact rates of charged
residues and comparing them to the native contacts in Figure 7.3. Figure 7.5
shows the rate of contact between residues which are charged at pH 7, but become
neutral at pH2. The contacts formed in the β-sheet core between R9 and D28/E75
remain intact, which is consistent with the secondary structure plot in Figure 7.4.
Furthermore, the contacts in the α-helical region remain mostly intact at both pH 2
and pH 7, despite the secondary structure plot showing temporary reorganization
into β-sheet structures. Only the contacts between the loop region and the β-sheet
core structure, specifically between K16/R18 and E65/D68 as well as between R66
and E20, are broken at pH 2, indicating a dissociation of these two regions or at
least weaker binding.

Examining the full contact map of the native fold and comparing it to the contact
rates during the simulation can yield further insights into these structural changes.
Figure 7.6 displays the contact map of the initial NMR structure (PDB: 1pks), used for
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Fig. 7.4.: Secondary structure of the SH3 monomer at different pH. Secondary Structure
over time of the SH3 domain at (A) pH=2 and (B) pH=7. The y-axis shows all
residues in the SH3 protein, which are classified as either in random coil (blue),
forming an α-helix (pink) or forming a β-sheets (yellow).
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Fig. 7.5.: Contact rates of charged sidechains of the SH3 monomer from conventional
MD. The rate of contact for (A) pH 2 and (B) pH 7 is averaged over the full 10 µs
simulation. A contact is assumed to form if two oppositely charged residues are
closer than 4 Å. In (C) the crystal structure of the SH3 domain is shown from two
different angles. The two residues 65-GLU/68-ASP, which are negatively charged
at pH 7, are shown in red and the two positively charged residues 16-LYS/18-ARG
are shown in blue.

subsequent simulations. Examining the full contact map reveals the contacts formed
during a simulation and provides insights into the secondary structure present. In a
contact map, α-helices are identified by a trace of contacts parallel and close to the
diagonal, as these contacts are formed between residue i and its nearest neighbors
i + 2,i + 3 and i + 4. This is observed in the natively folded structure within the
central region from residue K34 to G54. Similarly, connected traces orthogonal to the
diagonal indicate interactions between neighboring antiparallel β-sheets. In Figure
7.6, all β-sheets comprising the β-sheet core structure can be identified by such traces.
Additionally, the contacts in the central region of the triangular matrix represent
interactions between the two stacked β-sheet regions, as well as interactions of the
flexible loop region with the β-sheet core region, maintaining the structure’s globular
form.

Figure 7.7 depicts the rate of contacts during the simulation at pH 2 and pH 7.
Here, the lower triangular matrix shows the contacts observed during the simulation,
while the upper triangular matrix highlights the deviations from the initial folded
structure. At both pH 2 and pH 7, most of the changes to the initial fold occur in
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the central α-helical region. The difference matrix clearly shows the loss of helix-
stabilizing contacts. However, at pH 7, these reorganize into a pattern resembling the
formation of an antiparallel β-sheet, indicative of a β-hairpin structure. In contrast,
at pH 2, the new contacts appear random, suggesting a compact disordered region.
The unfolding of the α-helical region is associated with the loss of contacts between
the regions around K49 and V74, disrupting its connection with the β-sheet core.
While at pH 2 these contacts reestablish differently, at pH 7 this region remains
detached, indicating the protrusion of the newly formed β-hairpin.

Another similarity observed between the two simulations is the reorientation of
the N-terminal region, which disrupts its initial contacts with the C-terminal and
the beginning of the loop region. At pH 7, the N-terminal does not appear to bind
with another region. In contrast, at pH 2, it "folds" inward, contacting the more
central part of the α-helical region. This folding possibly hinders the dissociation of
the formerly α-helical now flexible region and the subsequent formation of a β-sheet.

Lastly, at pH 7, we observe a significant loss of contacts between the flexible loop
region and the β-sheet core region, specifically the regions between residues Y59 to
F69, as well as between E19 to I29. Although these regions do not fully dissociate,
the loss of contacts that maintain the protein’s globular form is unexpected at this
pH, where it is generally considered most stable. This observation may be explained
by the relaxation of the structure into a more favorable orientation compared to the
NMR structure, where due to a sparsity of distance restraints for flexible regions, it
is difficult to determine the exact average representation of dynamic regions during
a standard NMR structure calculation.

7.3.3 Discussion
Overall, conventional MD simulation of the monomer did not replicate the unfolding
of the robust β-sheet core structure, even not at pH 2. Only the initial α-helical region
undergoes significant structural changes, mostly unfolding at pH 2 and forming a
β-hairpin at pH 7. Protonation of the titratable side chains alone does not appear
sufficient to destabilize the β-sheet structures. Thus, the unfolding pathway likely
involves additional environmental factors, such as interaction partners or excess ions
present in the experimental buffer conditions.
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Fig. 7.6.: Map of the native contacts of the SH3 monomer. Contacts in the NMR structure
(1pks), together with structures highlighting the respective contact region. Two
residues are considered to be in contact if any pair of atoms from the separate
residues are within a distance of 6 Å.
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Fig. 7.7.: Contact map of the SH3 monomer at different pH. The lower triangular matrix
shows the contacts present during the simulation, while the upper triangular
matrix indicates the difference from the initial fold. In the latter, positive rates
(red) denote the formation of new contacts, while negative rates (blue) indicate
the loss of contacts present in the initial structure. Two residues are considered to
be in contact if any pair of atoms from the separate residues are within a distance
of 6 Å.
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7.4 Conventional MD - Dimer
Since the monomer simulations did not reproduce the experimental results of the
SH3 domain unfolding at pH 2, we conducted a dimer simulation at pH 2. This
approach was used to investigate whether the unfolding pathway could be facilitated
through interactions with other SH3 proteins.

7.4.1 Simulation Methods
The system was prepared according to the standard protocol for MD simulations,
using the same parameters as described for the monomer simulations in section 7.3.1.
The monomers were placed in a simulation box with an initial minimum distance of
2 nm between them and with a box volume of V=1300 nm3, resulting in a protein
concentration of 2.6 mM. This relatively low protein concentration is necessary
to avoid artifacts due to interactions across the PBCs in the event of unfolding.
We conducted three simulations, each for 4 µs, resulting in a total accumulated
simulation time of 12 µs.

7.4.2 Results
Figure 7.8 displays the inter- and intra-molecular contact maps from the dimer
simulations. Interestingly, the two SH3 monomers exhibit very low interaction
propensity. Inter-molecular interactions were observed only in one of the three
simulations, specifically run 3. In this case, the interactions are primarily facilitated
by the α-helical region of the SH3 domain, which forms contacts mainly with the
α-helical region of the other monomer, as well as with the β-sheet region between
residues G64 to P70 and parts of the flexible loop region between residues Y14 to
E20.

Examining the intra-molecular contacts reveals a similar structural pattern as
observed in the monomer simulation. However, the contacts stabilizing the central
helix between residues K34 and A39 remain intact in all dimer simulations. Conse-
quently, the α-helix remains stable throughout the majority of all three simulations,
in contrast to the monomer simulation.

7.4.3 Discussion
Our simulations reveal a very low interaction propensity between two SH3 domain
proteins. Significant inter-molecular interactions were observed in only one of the
three simulations, primarily facilitated by the α-helical region of the SH3 domain.
Additionally, this region remained stable in all dimer simulations, even in the absence
of direct interactions. Although these simulations did not replicate the unfolding
of the SH3 domain at acidic pH, they emphasize the structural importance of the
α-helical region, which may play a crucial role in the oligomerization process.
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Fig. 7.8.: Contact maps of the SH3 dimer at pH 2. The intra- and inter-molecular contact
maps for all three runs are shown. For the intra-molecular contact map, the lower
triangular matrix shows the contacts present during the simulation, while the
upper triangular matrix indicates the difference from the initial fold. In the latter,
positive rates (red) denote the formation of new contacts, while negative rates
(blue) indicate the loss of contacts present in the initial structure. Two residues
are considered to be in contact if any pair of atoms from the separate residues
are within a distance of 6 Å. Note that the color scale for the inter-molecular
interactions is adjusted relative to the maximum rate of contacts in the respective
simulation.
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7.5 Replica Exchange MD
Conventional MD simulations did not demonstrate the unfolding of the SH3 domain
at acidic pH, as observed experimentally. Therefore, it is assumed that even at pH 2,
the folded state remains in a local free-energy minimum, which is sufficiently stable
to prevent major unfolding events in conventional MD simulations. To sample the
unfolding of the SH3 domain and observe the unfolding pathway, we performed
replica exchange MD (REMD) simulations. In REMD, multiple replicas of the system
are run in parallel at different temperatures, i.e. allowing to access conformational
states with higher energies (see Chapter 2.2). Thus, the system should acquire
enough energy in higher temperature replicas to escape the local minimum and
sample unfolding events.

7.5.1 Simulation Methods
The system was prepared following the standard protocol for MD simulations, using
the same structure and parameters as described for the monomer simulations in
section 7.3.1. The starting structure was identical for all replicas. A total of 98
replicas were simulated over a temperature range from 300 K to 450 K, achieving an
average acceptance rate for replica exchange of approximately 0.3. The simulations
were run for 500 ns and 450 ns at pH 2 and pH 7, respectively. The duration of the
REMD simulation was determined by the convergence of the sampling, as discussed
below.

7.5.2 Convergence
In an REMD simulation, each replica of the system explores both the configurational
space and the temperature space by exchanging temperatures with neighboring
replicas. This process should be ergodic, i.e. for a sufficiently long simulation, each
replica should assume each temperature state with equal likelihood, resulting in the
average state of Nreplica/2 = 54 for all replicas. Here, replicas are numbered 1, 2, ...,
Nreplica with increasing temperatures from 300 K to 450 K.

Figure 7.9 shows the average state per replica during the REMD simulation at
pH 2 and pH 7. Here, the average states are plotted for the full 500 ns simulation,
as well as for the first 100 ns and 300 ns. It can be observed that the states converge
reasonably well towards the average state of 49. However, comparing replicas
80-98 at 300 ns and 500 ns reveals that these states actually start diverging at pH 2.
Consequently, replicas 1-79 tend to populate lower energy states. The divergence
of the simulation can be explained by the unfolding of the SH3 domain at high
temperatures. When the structure unfolds, it becomes significantly different from its
folded structure, resulting in a large difference in the protein’s potential energy. This
leads to a low acceptance probability for exchanges between replicas across these
two regimes. Since folding is a much slower process compared to unfolding [196],
we do not expect the structure to return to its folded state during our simulation, thus
a longer simulation would not lead to better convergence of the REMD in this case.
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Fig. 7.9.: Average state per replica during an REMD simulation of the SH3 monomer.
The average state for each replica over the first 100 ns and 300 ns as well as
the full 500 ns is shown for the REMD simulation at pH 2 and pH 7. Absolute
convergence would be reached if all replicas acquire an average state of Nreplica/2
(red line). For comparison, in case of pH 2 the limits of the pH 7 figure are plotted
as gray lines.
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At pH7, however, better convergence is observed, reflecting fewer unfolding events,
consistent with experimental results. As the simulation is reasonably converged at
500 ns and shows first unfolding events, we decided to stop the simulation and use
it for consequent analysis.

7.5.3 Results
To visualize the high-dimensional configurational space and capture the most promi-
nent structural changes during the simulation, we performed a principal component
analysis (PCA) and calculated the FES in the space spanned by the first two principal
components. The PCA was conducted on the full dataset of trajectories from all 98
replicas at pH 2. We then projected the individual trajectories into this space to de-
termine which parts of the FES are explored at different temperatures. Additionally,
we employed the multistate Bennett acceptance ratio (MBAR) method [121, 122] to
include the information from all replicas at each temperature. The MBAR method,
similar to the weighted histogram analysis method (WHAM) [123], reweighs the
data from different temperatures based on their relative Boltzmann weights, thus
utilizing the full dataset to obtain the FES at a specific temperature.

Analysis of the first two principal components (PCs) reveals that the predominant
motion involves the turning and twisting of the region between residues K34 to
G54. This region corresponds to the initial α-helical segment, which unfolds in the
conventional monomer simulations and facilitates binding in the dimer simulations.
The resulting FES projected onto the first two PCs is shown in Figure 7.10. The
figure illustrates the changes in the FES with increasing temperature, ranging from
300 K to 400 K, for both pH 2 and pH 7.

At pH 2, distinct minima are observed in the FES, which broaden with increasing
temperature and eventually merge into a large basin at 400 K. In contrast, at pH 7,
only a single basin is observed at all temperatures, corresponding to the native fold
of the SH3 domain. The FES at pH 2 reveals more accessible states besides the
folded structure even at 300 K, indicating a less stable folded structure compared to
pH 7. Additionally, at 400 K, the protein explores a broader conformational space
away from the initial fold at pH 2 compared to pH 7. A closer inspection of the FES
at T=300 K for pH 2, as depicted in Figure 7.11, reveals the predominant motions
during the initial stages of the unfolding process. The PCs accounting for the highest
variance in the system primarily describe the movements of the α-helical region of
the SH3 domain, as evidenced by the structures representing the local minima. In
the following, we discuss the structural features of the minima in the FES, using
the contact maps of the ensemble of structures corresponding to these minima, as
shown in Figure 7.12.

Minima (1) is associated with the native fold of the SH3 domain. The contact
map shows, that the contacts stabilizing central α-helix between residues K34 to
A39 remains largely intact. Other than that, the contact map resembles that from
the conventional MD at pH 2, further supporting that during the former simulations
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Fig. 7.10.: Free energy surface of the SH3 domain at different temperatures obtained
from REMD simulations at pH 2 and pH 7. The PCs on which the FES are
projected were calculated from all replicas at pH2. Both the FES at pH 2 and
pH 7 are shown in the same PC space. For better sampling at each temperature,
the corresponding FES was reconstructed using the pymbar python package,
which employs the multistate Bennett acceptance ratio (MBAR) method [121].
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Fig. 7.11.: Free energy surface of the SH3 domain at T=300 K and pH 2 with reference
structures. The PCs on which the FES are projected were calculated from
all replicas at pH 2. For better sampling at each temperature the FES was
reconstructed using the pymbar method.

mostly the local minimum belonging to the native fold was explored. This can also
be seen from the projection of the conventional MD trajectory onto the FES obtained
from REMD (see Figure A1).

To the left of the central basin, minimum (2) is separated from the main basin
by an infinitely high energy barrier at T=300 K. In this state, the central α-helix
refolds into a β-hairpin structure, as indicated by the representative structure and
contact map. The contact map reveals this transition by showing a loss of contacts
stabilizing the helical fold and the appearance of a contact trace perpendicular to
the diagonal, between residues K34 to G54. Additionally, new contacts are formed
between the former α-helical region and the flexible loop region, primarily involving
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Fig. 7.12.: Contact map for the minima in the FES of the SH3 domain obtained from
REMD simulations. The lower triangular matrix shows the contacts present
during the simulation, while the upper triangular matrix indicates the difference
from the initial fold. In the latter, positive rates (red) denote the formation of
new contacts, while negative rates (blue) indicate the loss of contacts present in
the initial structure. Two residues are considered to be in contact if any pair of
atoms from the separate residues are within a distance of 6 Å.
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residues V38 and E19. This structural refolding resembles the changes observed in
the conventional MD simulation at pH 7, as further supported by the projection of
the conventional MD trajectory onto the FES shown in Figure A1. Together with the
high-energy barrier at T=300 K of that minimum, we conclude this minimum must
be off pathway for the unfolding and thus the subsequent amyloid formation.

Minima (3) and (4) are both directly connected to the global minimum (1)
and represent the initial steps in the unfolding of the α-helical region. Unlike
minimum (2), this region remains disordered. In minimum (3), new contacts
resemble a perpendicular trace to the diagonal but are not stable enough to facilitate
the formation of β-sheets. Additionally, the disordered region around A39 forms
a contact with the globular core region between F69 and V74, preventing the
protrusion and refolding of the former α-helical region. Minimum (4) exhibits fewer
contacts between the helical and core regions, although it maintains a high structural
similarity to minimum (3).

Finally, in minimum (5), the initially α-helical region becomes completely disor-
dered, as no clear pattern is visible in the corresponding region of the contact map.
Additionally, contacts with the core region are broken, and new contacts are only
formed sporadically. Here, the initially α-helical region protrudes from the globular
fold while being unfolded, probably marking the first step towards further unfolding.

7.5.4 Discussion
Even in the REMD simulation of the SH3 domain at acidic pH, we did not observe
complete unfolding at T=300 K. The REMD simulation primarily captures early
unfolding events, as it was terminated before significant divergence could occur,
due to the lack of exchanges between high-temperature unfolded replicas and
low-temperature mostly folded replicas.

At pH 2, the SH3 domain exhibits a flat FES with several competing minima at
T=300 K, which merge into one large basin at higher temperatures. At pH 7, the
FES shows a single minimum across the entire temperature range, corresponding
to the natively folded structure. Thus, the simulations indicate a similar loss of
structural stability of the SH3 domain at acidic pH 2, also observed experimentally.
As previously noted, the α-helical region of the initially folded structure seems crucial
in the early stages of the unfolding process, as here the most structural changes
occur. Consequently, the first two principal components predominantly describe the
motion of this region, while the rest of the protein remains relatively stable.

Examining the distinct minima in the FES at pH 2 reveals structures towards
further unfolding. The minimum separated by an infinitely high energy barrier from
the main basin, thus normally inaccessible at this temperature, probably hinders
further unfolding due to its refolding into a β-hairpin structure, which stabilizes the
β-sheet core structure. Therefore, we identify the states towards the bottom of the
FES as pathway to complete unfolding, where the α-helical region unfolds into a
protruding disordered region.
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7.6 Fibril Unfolding
The formation of mature amyloid fibrils typically takes multiple hours or even days,
which are timescales not accessible by MD simulations. However, studying the
reverse process of unfolding a fibril structure is feasible. The unfolding process
can identify which contacts in the fibril are the weakest, as they are broken first,
providing insights into the aggregation pathway itself.

7.6.1 Simulation Methods
The system was prepared following the standard protocol for MD simulations, using
mostly the same parameters as described for the monomer simulations in section
7.3.1. Only the temperature was set to T=400 K to facilitate unfolding of the
fibril. As starting structure we used the fibril structure obtained by Röder et al.
(PDB:6R4R) [185]. The complex is made up of 8 monomers, which are ordered into
two intertwined protofilaments sharing an interface and are stacked in four layers
(see Figure 7.13 at t = 0). Note that the sequence of the natively folded structure
discussed in sections 7.3, 7.4, and 7.5 differs slightly from the fibril structure
analyzed here. Specifically, the fibril structure includes three additional residues
at the N-terminus (M1, S2, and A3) but is two residues shorter at the C-terminus,
lacking G78 and R79 (see Figure 1.7 in chapter 1.6).

7.6.2 Results
Figure 7.13 shows the fibril structure at several point during the simulation. The
initial fibril structure is composed of two protofibrils, aligned in a point-symmetrical
manner relative to their interface. Within each protofibril (referred to as "sheets"),
the protein chains are stacked in register in a parallel alignment, forming a rigid
β-sheet structure. This parallel alignment is depicted as a trace along the diagonal
in the initial intra-sheet contact map in Figure 7.14. Within each protofibril, the
SH3 domain adopts a hairpin structure, observable as a trace perpendicular to the
diagonal in both intra-protein and intra-sheet contacts. These contacts, highlighting
the antiparallel alignment, occur within the protein chain and between neighboring
proteins in the sheet. The slight twist of the fibril shifts these antiparallel intra-
protein interactions to be visible in the intra-sheet contact map. Thus, the N-terminal
residues of one protein form primarily contacts with the C-terminal of their next
neighbour that further stabilize the protofibril. The interface between the two
protofibrils involves only a few contacts, specifically between the two C-terminal
regions spanning from G67 to T72, as well as hydrophobic interactions between
the region from L37 to F42 and the C-terminal region from F69 to I76. The latter
contact involves the central protein region, which is associated with the α-helical
region in the native folded structure.

After 100 ns, the fibril structure looks still relatively stable, however the N-terminal
region within the sheets dissociate and the hairpin structure opens slightly. However,
already in the initial structure the stacked N-terminal regions were only partly
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Fig. 7.13.: Fibril structure of the SH3 domain over time. Snapshots from a 1 µs simulation
at T=400 K. The N-/C-termini are shown as blue/red spheres respectively.
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identified to form β-sheets, thus a flexible structure seems likely even in the fibril
structure. Subsequently, the two protofibrils dissociate and are almost fully separated
at T=400 ns, while the hairpin structure and most of the β-sheets remain intact.
Towards the end of the simulation, the two protofibrils reassemble into a complex
with a new interface.

Throughout the simulation, the hairpin structure of the protofibrils, stabilized by
inter-protein β-sheets, remained largely intact. However, an analysis of the intra-
protein/sheet contacts, as shown in Figure 7.14, reveals key structural changes.
Both contact maps show a significant loss of antiparallel contacts that support the
hairpin structure. Some of these contacts shifted from neighboring proteins in the
intra-sheet contacts to intra-protein contacts, particularly the contacts between the
regions from I22 to T31 and from P50 to W55. This dissociation resolves the twist in
the fibril structure, resulting in a newly stacked sheet of hairpin structures primarily
stabilized by intra-protein contacts in the central region of the protein chain. At
the termini, the antiparallel contacts between neighboring proteins do not reform,
leading to an open hairpin structure with flexible termini.

A loss of intra-sheet contacts among the stacked proteins is also observed, shown
as a reduction in contacts along the diagonal in the contact map. This primarily
affects the region from L40 to P50, as well as the terminal regions from M1 to R9 and
G58 to I77. The most stable region, which remains intact throughout the simulation,
spans from L11 to D33. Notably, this region is associated with the disordered loop in
the native fold, containing a high number of aspartic and glutamic acids that are
negatively charged at pH 7 and become neutral at pH 2.

7.6.3 Discussion
The simulation of the SH3-domain fibril at T=400 K and pH 2 revealed partial
unfolding of the fibrillar structure, highlighting key structural features. The initial
contacts to break were those forming the interface between the two protofibrils, sup-
porting the widely accepted view that these interactions are part of a fibril-catalyzed
secondary nucleation reaction [38, 39]. Additionally, the involvement of the α-
helical region from the native fold in the interface supports previous observations
in section 7.4 that this region plays a role in facilitating complex formation of the
SH3 domain. While the overall hairpin structure of the protofibrils stayed intact, by
unbinding from the interface, the twist within the structure was reversed, shifting
the primary interaction partner in the U-bend from the neighbouring protein in the
sheet, to intra-protein contacts. Furthermore, the termini become more flexible with
increasing simulation time and unfold the β-sheet structure. Finally, we were able to
identify the region spanning from residue L11 to N33 as the most stable region of the
β-sheet structure within the protofibril, as this is the only region exhibiting almost
no breakage of contacts after 1 µs simulations. Notably, this region is associated with
the disordered loop region in the natively folded structure.
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Fig. 7.14.: Contact maps of SH3 fibril unfolding. The contact matrices are categorized into
intra-protein contacts (within single protein chains), intra-sheet contacts (formed
between proteins within the same protofibril forming β-sheets), and inter-sheet
contacts (formed at the interface between two protofibrils that constitute the
amyloid fibril). The contact map of the initial fibril and after 1 µs are shown.
In the latter, the lower triangular matrix displays the contacts present during
the simulation, while the upper triangular matrix shows the differences from
the initial fibril. Positive rates (red) indicate the formation of new contacts,
while negative rates (blue) represent the loss of contacts present in the initial
structure. Two residues are considered in contact if any pair of atoms from
separate residues are within a distance of 6 Å.
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7.7 Early Folding Events
Thus far, we have examined the unfolding of both the native SH3 domain structure
and its fibrillar form, identifying key structural features that destabilize the native
structure and stabilize the amyloid fibril. In this section, we shift our focus to the
aggregation pathway starting from the initially unfolded state rather than the reverse
process studied before. Experimental studies of the SH3 domain indicate that upon
reducing the pH to acidic conditions (approximately pH 2), the SH3 domain first
unfolds and subsequently aggregates into amyloid fibrils. This observation is further
supported from a structural perspective, as the secondary structure of the SH3
domain in its native state differs significantly from that in the amyloid fibril (Figure
1.7). To investigate the early stages of the aggregation pathway, we performed
simulations of the SH3 monomer, starting from a completely disordered extended
state, and monitored the propensity for intra-protein contact formation.

7.7.1 Simulation Methods
The system was prepared following the standard protocol for MD simulations, using
the same parameters as described for the monomer simulations in section 7.3.1.
The initial structure was modeled as a fully extended protein chain of the same
sequence as presented in the natively folded structure (PDB:1PKS), leading to a
large simulation box of 20,000 nm3 with 1,900,000 atoms.

To reduce computational costs, we conducted an initial short simulation of 100 ns,
allowing the extended protein chain to collapse into a globular, yet unfolded, struc-
ture as shown in Figure 7.15. After this initial simulation, the protein was resolvated
in a smaller simulation box, counter ions were added, and the system was equili-
brated with position restraints. This process significantly reduced the system size to
approximately 500,000 atoms, thereby decreasing the computational cost drastically.
The simulation was then extended for an additional 1 µs. This protocol was applied
to three simulations at pH 2 and pH7, resulting in a total simulation time of 3.3 µs
for each condition.

Fig. 7.15.: Initial structural collapse of the disordered SH3 domain. The structure
is shown in the beginning (t=0) and end (t=100 ns) of the simulation. The
N-/C-termini are shown as blue/red spheres respectively.
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7.7.2 Results
Figure 7.16 shows the combined contact maps of the three folding trajectories for
pH 2 and pH 7, respectively. To facilitate comparison of contacts formed during early
stages of the folding process with those in the native fold and fibril structure, we
show the contact map of these structures together with difference contact maps at
both pH values. In the difference contact maps, the lower triangular matrix displays
the contacts observed during the simulation, while the upper triangular matrix shows
the differences to the reference structure.

Comparing the contacts formed at pH 2 with those at pH 7 (focusing on the lower
triangular matrix of the contact maps) reveals significant differences in their contact
propensity. At pH 2 contacts are observed between the regions around E19 and
P70 as well as T31 and N57, which do not form at pH 7. Theses contacts roughly
correspond to the contacts formed between the β-sheet core regions and the flexible
loop-region (see Figure 7.6). However, the hairpin structure typically associated
with this β-sheet does not appear to fully form at pH 2.

Additionally, several contacts observed at pH 2 do not align with those in the
reference structures. Notably, there is a high interaction propensity between the
C-terminal region and the helical region in the native fold, as well as with the region
around N60. Furthermore, the contact between regions around K15 and G25 does
not correspond to any reference structure and appears to involve interactions within
the flexible loop region in the native fold. Lastly, the N-terminal region shows early
signs of forming a hairpin motif, akin to that in the fibrillar structure, although it
occurs in a different region. Here, the formation of a hairpin in a similar region to
the fibril structure may be hindered by the slight truncation of the N-terminus.

In the simulation at pH 7, the N-terminus does not form a hairpin structure. Instead,
it interacts with three distinct regions of the protein chain: the region around E20, the
region around K49, and the C-terminal region. None of these interactions align with
those observed in the reference structures. The interaction of the N-terminal region
with the region around E20 and the C-terminal may be promoted by electrostatic
interactions (compare with Figure 1.7). Another notable contact is observed between
the regions around R18 and E47, driven by electrostatic interactions. This includes
the interaction between E19 and K49, which is absent in both reference structures.
Finally, the hairpin structure of the β-sheet core in the native fold begins to emerge in
the region spanning from P50 to E61. Although the contacts appear slightly shifted,
resulting in a trace parallel to that of the original fold, this may represent an early
stage in the development of this specific structural motif.

7.7.3 Discussion
Studying the early folding at pH 2 and pH 7 by observing the intra-molecular inter-
actions during the conformational transition of the protein chain from an extended
to a globular structure, we identified key differences between the two conditions.
In both cases, the contact maps reveal minimal overlap with the reference struc-
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Fig. 7.16.: Contact map of SH3 early aggregation events. The contact maps of the folding
trajectories is compared to the contacts map in the SH3 domain fibrilar and
natively folded state. Here, the lower triangular matrix displays the contacts
present during the simulation, while the upper triangular matrix shows the
differences from the initial fibril. Positive rates (red) indicate the formation of
new contacts, while negative rates (blue) represent the loss of contacts present
in the reference structure. Two residues are considered in contact if any pair of
atoms from separate residues are within a distance of 6 Å.
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tures of the native fold or the fibril structure. The simulation at pH 7 underscores
the predominance of electrostatic interactions during the early stages of folding.
However, at short timescales as simulated here, these interactions may also lead to
misfolding. Consequently, at pH7, the SH3 domain exhibits a rugged FES character-
ized by numerous competing low-energy local minima, which act as kinetic traps.
Therefore, the folding process to achieve the natively folded structure may be slow
or could require additional interaction partners to facilitate the folding pathway.
At pH 2, where all negatively charged residues are protonated, these electrostatic
interactions cease to exist. Instead contacts which stabilize the globular form of
the native fold start appearing, which may also be an early stage of a hairpin motif
found in the fibril structure. Both simulations show a high propensity of forming
a short hairpin structure in the N-terminal region, which showed a high degree of
flexibility in previous regions as well.
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7.8 Conclusion
This chapter presents a summery of the SH3 domain’s structural dynamics under
various conditions, highlighting key differences between monomeric, dimeric, and
fibrillar forms, as well as the effects of pH on their behavior. Figure 7.17 offers an
overview of the structural motifs central to each simulation study.

Conventional MD simulations revealed that the SH3 domain’s robust β-sheet core
structure remains largely intact, even at pH 2, with only the initial α-helical region
showing significant structural changes. The α-helical region primarily unfolds at
pH 2 and forms a β-hairpin at pH 7. These results suggest that either the simulation
time might be to short or protonation alone is insufficient to destabilize the β-sheet
structures, indicating that additional factors, such as interaction partners or excess
ions, may play a crucial role in the unfolding process. For example the presence of
H3O

+ in experiments is typically ignored in MD simulations.

The dimer simulations demonstrated a low interaction propensity between folded
SH3 monomers, with significant inter-molecular interactions observed in only one of
the three simulations. These interactions were primarily mediated by the α-helical
region, which remained stable across all dimer simulations, emphasizing its potential
role in oligomerization. Despite not replicating the unfolding observed at acidic
pH in experiments, the simulations underscore the structural importance of the
α-helical region in the SH3 domain. The low interaction propensity between the two
SH3 monomers suggests that their aggregation leading to amyloid structures must
proceed through prior unfolding.

The REMD simulations predominantly captured early unfolding events, con-
strained by limited exchanges between high-temperature unfolded replicas and
low-temperature folded replicas. At pH 2, the SH3 domain exhibited a flat FES with
multiple competing minima at T = 300 K, merging into a single basin at higher tem-
peratures. In contrast, at pH 7, the FES displayed a single minimum corresponding
to the natively folded structure. Analyzing the different minima of the FES at pH 2
suggests that the α-helical region plays a critical role in the early stages of unfolding,
with the rest of the protein remaining relatively stable at T=300 K.

The simulation of the SH3-domain fibril at T=400 K and pH 2 provided insights
into the partial unfolding of the fibrillar structure. The initial breakage of contacts
at the protofibril interface supports the view that these interactions are part of
a secondary aggregation process. Additionally, the involvement of the α-helical
region in the interface aligns with previous observations of its role in SH3 domain
complex formation. Despite the overall retention of the hairpin structure within
the protofibrils, the unbinding from the interface reversed the twist within the fibril
structure, shifting the primary interactions to intra-protein contacts. The termini
became more flexible over time, leading to partial unfolding of the β-sheet structure.
The region spanning residues L11 to N33 emerged as the most stable within the
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β-sheet structure, showing minimal loss of contacts, and is notably associated with
the disordered loop region in the native folded structure.

Early folding effects were studied by observing intra-molecular interactions during
the conformational transition from an extended to a globular structure at pH 2
and pH 7. Significant differences were identified between the two conditions. At
pH 7, electrostatic interactions dominate the early stages of folding, but lead to
misfolding on short timescales as a result of a rugged FES with numerous competing
local minima that act as kinetic traps. At pH 2, where electrostatic interactions are
considerably reduced due to protonation of negatively charged residues, contacts
begin to form, which potentially mark the early stages of a hairpin motif observed
in the fibril structure. Both simulations revealed a strong tendency to form a short
hairpin structure in the N-terminal region, which can also be observed in the fibril
structure but was also previously identified as highly flexible.

In summary, we have identified the α-helical region as a key player in the early
stages of the SH3 domain unfolding pathway, with its functional role likely related
to mediating inter-protein interactions. Additionally, the disordered loop region
was found to be the most stable sequence within the β-sheet structure of the fibril,
suggesting it forms early in the aggregation process, potentially facilitated by the
formation of a hairpin structure in the disordered state of the SH3 domain. Finally,
our comprehensive analysis of contact propensities at acidic and neutral pH provides
a foundation for future studies, potentially in concert with complementary NMR
measurements, to verify our findings and further elucidate the full aggregation
pathway of the SH3 domain.

Fig. 7.17.: Structural motives and sequence of the bovine PI3K-SH3 domain. Each
structural motif is marked according to the simulation studies providing in-
sights into its structure or function. Amino acids are color-coded by primary
properties: orange for acidic, green for basic, pink for polar, and blue for
non-polar/hydrophobic residues. The native fold and amyloid fibril secondary
structures are displayed below the sequence.
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8Conclusion and Final Remarks

In this thesis, we investigated the free energy surface (FES) and conformational
switching of intrinsically disordered proteins (IDPs), as well as their aggregation into
amyloid fibrils. These different aspects of IDPs were studied considering tree differ-
ent proteins: Aβ42, a segment of the parathyroid hormone (PTH25−37), and bovine
phosphatidylinositol-3-kinase (PI3K-SH3). We utilized extensive all-atom molecular
dynamics (MD) simulations along with enhanced sampling techniques, such as
replica-exchange molecular dynamics (REMD), to thoroughly explore the conforma-
tional space of all systems. For the analysis, we combined established methodologies
with novel approaches, including our own software package ATRANET, to investigate
the configurational space of IDPs. Additionally, we calculated FESs and analyzed
transition timescales using first passage time (FPT) analysis. This comprehensive
approach allowed us to explore various stages of the amyloid pathway, from early
folding events to oligomerization and fibrillization, as well as elucidate the confor-
mational transitions that are closely coupled to the aggregation process.

Following the introduction of the thesis topic in Chapter 1 and the theoretical
methods in Chapter 2, in Chapter 3 we utilized transition networks (TNs) to explore
the configurational space of IDPs from MD simulations, as demonstrated in the case
of Aβ42 interacting with POPC lipids. The ATRANET software package, developed
for this purpose and available on GitHub1, facilitates the construction of TNs using
predefined descriptor functions from MD data. By comparing two TNs constructed
with different descriptor sets, one using three descriptors (Nα, Nβ, dNC) and the
other incorporating a fourth descriptor (Np−l) to account for peptide-lipid interac-
tions, we identified key aspects of the TN analysis. These include: (i) the node size
represents the stability of conformations, (ii) the spatial layout of the nodes reflects
the phase-space distances between conformations, and (iii) clustering within the TN
highlights significant conformational transitions. While TNs offer valuable structural
insights, they are heavily influenced by the choice of descriptors, emphasizing the
importance of aligning descriptor selection with the research objective.

Subsequently, we applied the TN methodology to Aβ42 to study its disorder-to-
order transition upon binding. In Chapter 4, we compared the TNs of Aβ42 as a single
peptide in solution, Aβ42 in the presence of a glycoseaminoglycan (GAG), and Aβ42 in
complex with three POPC lipids. The TN of Aβ42 in solution exhibited characteristics
typical of IDPs, with many low-population states connected by frequent transitions.
The most populated states corresponded to random-coil conformations of varying
spatial expansion. In contrast, the TN of Aβ42 in the presence of a GAG demonstrated
a shift towards more compact, β-sheet-rich structures. We uncovered that the

1https://github.com/strodel-group/ATRANET
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formation of this stable β-hairpin structure is driven by changes in local sodium ion
concentration, rather than originating from direct interactions with the GAG. The TN
of Aβ in complex with POPC lipids revealed transitions towards both α-helical and β-
sheet structures, driven by hydrophobic peptide-lipid interactions. These interactions
resulted in a rougher free energy landscape with multiple distinct minima.

We employed structural clustering in DRID space for state assignment and vi-
sualized the FESs as disconnectivity graphs. These graphs are a projection-free
representation of the FES based on the connectivity between minima.

We applied structural clustering in DRID space for state assignment, visualizing
the resulting FESs as disconnectivity graphs. These graphs represent the connectivity
within an energy landscape by grouping minima at various energy thresholds if
they are connected by transition states below these thresholds. Minima are split at
thresholds where their transition state surpasses the specified energy level, creating
a tree-like structure.

To further investigate the oligomerization pathway of Aβ42, in Chapter 5 we
compared the FES of the Aβ42 monomer and dimer, focusing on early aggregation
events. Here, we employed structural clustering in DRID space for state assignment
and visualized the FESs as disconnectivity graphs. These graphs are a projection-free
representation of the FES based on the connectivity between minima. Significant
differences were observed between the two FESs. The FES of Aβ42 in solution
exhibits a structurally inverted folding funnel, with disordered states at the bottom
of the FES. In contrast, the dimer FES resembles that of a folded protein, where the
global minimum corresponds to ordered structures forming a β-hairpin. FPT analysis
revealed the fastest transition pathway from the disordered state to the ordered
β-hairpin in the dimer FES, emphasizing the critical role of salt-bridge formation
between D23 and K28 and cooperative interactions between hydrophobic regions of
the Aβ42 peptides. Furthermore, we included the FESs of Aβ42 with a cluster of three
POPC lipids and Aβ42 in the presence of a GAG. Both of which exhibit significant
similarities to the dimer FES, with a similar β-hairpin state at their global minimum.

Our findings demonstrate the significant conformational heterogeneity of Aβ42,
which explores extensive regions of the FES even on short timescales in MD sim-
ulations due to relatively low energy barriers between states. Upon binding to
an interaction partner, the FES shifts, promoting a transition to more structured
conformations dependent on the partner involved. The interaction-specific con-
formational changes may elucidate the diverse fibril polymorphisms observed in
humans [152] and in various mouse models [40], potentially influenced by the
agent initiating the aggregation process. These findings contribute to a deeper
understanding of Alzheimer’s disease pathology and may guide the development of
targeted therapeutic strategies.

In Chapter 6, we investigated amyloid fibrillization using the PTH25−37 peptide.
By incorporating the photoswitch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid
(AMPB) into the sequence, we achieved precise control over reversible peptide fibril-
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lization. Through a combined effort of in silico design, synthesis, and experimental
validation, we demonstrated that fibrillization depends on the position of the muta-
tion within the peptide sequence. Extensive MD simulations, focusing on PTH25−37

and the P4 mutant (where the mutation is located in the central peptide region),
revealed that AMPB promotes π-π interactions, enhancing aggregation. Additionally,
we observed that β-strands in P4 fibrils adopt an antiparallel arrangement, in contrast
to the unmodified peptide. From these results, we constructed a fibril model for
both PTH25−37 and the P4 mutant, which agree with solid-state NMR data an proved
stable in MD simulations. This study presents a potential method for controlling
reversible amyloid aggregation and highlights applications in drug delivery using
light-triggered peptide systems.

Chapter 7 presents a comprehensive simulation study of the PI3K-SH3 domain,
focusing on pH-dependent unfolding and subsequent aggregation at acidic pH.
In addition to conventional MD simulations of the folded monomer and dimer,
we conducted REMD simulations and simulated both the full fibril and unfolded
dimer. Our analysis identified the α-helical region as a critical agent in the early
stages of SH3 domain unfolding, potentially mediating inter-peptide interactions.
Furthermore, we identified the disordered loop region in the native fold as the
most stable sequence within the β-sheet fibril structure, indicating it forms early
during aggregation, potentially facilitated by the formation of a hairpin structure
in the disordered state. Finally, a detailed analysis of contact propensities at both
acidic and neutral pH provides a foundation for future studies, potentially alongside
NMR experiments, to confirm our findings and further elucidate the full aggregation
pathway of the SH3 domain.

In summary, this study provides valuable insights into the roles of IDPs, with
a focus on amyloid aggregation. We employed a diverse range of simulation and
analysis methods to investigate IDPs of varying sizes, from the 12-residue PTH25−37

to the 75-residue SH3 domain. Specifically, we explored the configurational space
of IDPs using Aβ42 as a model system, focusing on the disorder-to-order transition
and the associated changes in the FES in response to different interaction partners.
Additionally, we investigated the pH-dependent aggregation of the SH3 domain,
which becomes disordered at acidic pH. Finally, we studied the full aggregation
pathway of PTH25−37, culminating in the successful development of fibril models.

In future work, expanding the analysis of FESs to various IDPs would provide
insights into the unique and shared features of these landscapes that may influence
amyloid disease progression. A promising direction would involve testing the hy-
pothesis that the topography and steepness of energy landscapes may be predictive
of the speed at which the diseases develop. For instance, in Alzheimer’s disease, a
prolonged latency precedes symptom onset by approximately 10–20 years, followed
by a gradual decline, suggesting a relatively shallow and less deterministic energy
landscape. In contrast, prion diseases like Creutzfeldt-Jakob disease exhibit rapid
progression [197, 198], potentially indicative of a steeper, more restrictive energy
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landscape that favors irreversible aggregation. Characterizing the energy landscape
of prion proteins, although challenging due to their structural stability and greater
sequence length, would enable comparative analyses. This could ultimately illu-
minate factors governing the progression rates of different amyloid diseases and
identify landscape features critical to aggregation pathways.

106 Chapter 8 Conclusion and Final Remarks



Bibliography

1. Fischer, E. Einfluss der Configuration auf die Wirkung der Enzyme. Berichte der
deutschen chemischen Gesellschaft 27, 2985–2993 (Oct. 1894) (cit. on p. 1).

2. Senior, A. W., Evans, R., Jumper, J., et al. Improved protein structure prediction using
potentials from deep learning. en. Nature 577, 706–710 (Jan. 2020) (cit. on p. 1).

3. Callaway, E. ’It will change everything’: DeepMind’s AI makes gigantic leap in solving
protein structures. en. Nature 588, 203–204 (Dec. 2020) (cit. on p. 1).

4. Jumper, J., Evans, R., Pritzel, A., et al. Highly accurate protein structure prediction
with AlphaFold. Nature 596, 583–589 (July 2021) (cit. on p. 1).

5. Strodel, B. Energy Landscapes of Protein Aggregation and Conformation Switching
in Intrinsically Disordered Proteins. Journal of Molecular Biology 433, 167182 (Oct.
2021) (cit. on pp. 1, 2, 6, 47).

6. Wright, P. E. & Dyson, H. Intrinsically disordered proteins in cellular signalling and
regulation. Nature Reviews Molecular Cell Biology 16, 18–29 (2014) (cit. on p. 1).

7. Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M. & Obradović, Z. Intrinsic
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AAppendix

A.1 Supplementary Figures

Fig. A1.: Free energy surface of the SH3 domain obtained from REMD with projected
trajectory from conventional MD at pH 2 and pH 7. The principal components
on which the FES is projected were calculated from all replicas at pH 2. For
improved sampling, the FES was reconstructed using the pymbar method. The
trajectories from conventional MD are projected into the same PC space and are
plotted on top of the FES. The projected frames are colored from dark to light blue
according to their appearance in the trajectory, from start to end, respectively.

121



Methods 206 (2022) 18–26

Available online 5 August 2022
1046-2023/© 2022 Elsevier Inc. All rights reserved.

ATRANET – Automated generation of transition networks for the structural 
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A B S T R A C T   

Intrinsically disordered proteins (IDPs) do not fold into a unique three-dimensional structure but sample different 
configurations of different probabilities that further change with the surrounding of the IDPs. The structural 
heterogeneity and dynamics of IDPs pose a challenge for the characterization of their structures by experimental 
techniques only. Molecular dynamics (MD) simulations provide a powerful complement to experimental ap
proaches for that purpose. However, MD simulations on the micro- to millisecond timescale generate a lot of data 
of protein motions, necessitating advanced post-processing techniques to extract the relevant information. Here, 
we demonstrate how transition networks created from MD trajectories allow revealing the configurational 
ensemble and structural interconversions of IDPs, using the amyloid-β peptide as example. The construction of 
transition networks relies on molecular descriptors as input, and we show how the choice of descriptors in
fluences the resulting transition network. The transition networks are generated with the open-source Python 
script ATRANET, and we explain the usage of ATRANET by providing a detailed workflow and exemplary 
analysis for amyloid-β, which can be easily generalized to other IDPs and even protein aggregation.   

1. Introduction 

A wide range of the human proteins belongs to the class of intrinsi
cally disordered proteins (IDPs) or contain intrinsically disordered re
gions [1,2]. IDPs are commonly found in all living organisms and are 
frequently involved in various biological processes, such as cell cycle 
control, protein–protein interaction, cell signaling, and disease path
ways, including neurodegenerative diseases [3]. These proteins are 
structurally and functionally different from folded proteins and usually 
lack a unique three-dimensional structure under physiological condi
tions [4]. Instead, IDPs adopt an ensemble of different conformations 
and can even undergo disordered-to-ordered transitions upon forming 
complexes with specific binding partners, thereby comprising structural 
plasticity needed for various functions of the same IDP [5,6]. The wide 
conformational heterogeneity of IDPs imposes difficulties in studying 
their structural characteristics in experiments [7]. Common experi
mental techniques for the investigation of protein structures include 
nuclear magnetic resonance (NMR) spectroscopy, small angle X-ray 
scattering (SAXS), cryo-electron microscopy, and single-molecule 
Förster resonance energy transfer (smFRET) spectroscopy [8]. Since 

these techniques usually average over a wide range of conformations, 
the obtained structural information is often limited in the case of IDPs. 
Consequently, special experimental and computational tools are 
required to identify and analyze the conformational ensembles of IDPs. 

In terms of computational approaches, the combination of molecular 
dynamics (MD) simulations and network models, such as Markov state 
models (MSMs) or conformational transition networks (TNs) provide 
advanced capabilities for elucidating structural preferences of IDPs and 
the kinetics of conformational transitions [9–11]. The advantage of 
applying network models to MD trajectories is that they can extract the 
mechanisms of the molecular processes hidden within the large amounts 
of MD simulation data, producing human-readable networks of the 
processes under study [12–16]. It should be noted that MSMs fall in the 
broader category of methods that aim to set up a master equation for the 
dynamics [17–19]. Although MSMs can help in revealing pathways of 
biological processes and the associated kinetics [12,14,15], fulfilling the 
requirements to calculate MSMs from MD data, like the detailed balance 
requirement, makes the MSM approach challenging for large biomole
cular systems that for this reason requires extensive MD simulations 
[20]. Alternatives to MD simulation-based techniques would be 
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approaches involving Monte Carlo methods [21] or geometry optimi
zation techniques such as discrete path sampling [22,23]. The latter 
method characterizes the energy landscape in terms of local minima and 
the transition states that connect them, thereby providing a direct way of 
coarse-graining the energy landscape, which can be compared to the 
identification of stable states from the MD simulations. Moreover, 
discrete path sampling also provides the framework to calculate rate 
constants from the database of local minima and transition states and 
master equation dynamics [22,23]. Both, Monte Carlo approaches as 
well as discrete path sampling have been successfully applied to IDPs 
[24,25]. They have the advantage of being able to sample processes 
beyond the MD time scale. However, they are typically only employed 
together with implicit solvent models, where the crucial and specific 
interactions between proteins and water molecules or between proteins 
and lipids when modeling protein–membrane interactions are being 
ignored [26,27]. 

If one does not request a method that aims at setting up a master 
equation for the dynamics but one nonetheless wants to have a network 
model of the protein motions sampled by MD simulations (with explicit 
modeling of the protein’s surroundings), TNs provide a solution. The TN 
approach is purely based on geometric clustering – and not on kinetic 
clustering as involved in Markov state modeling – to extract the essential 
features of protein conformational transitions, ranging from protein 
folding to IDP conformation switching and protein aggregation 
[16,28,9,29]. In order to construct a TN, one chooses a set of descriptor 
functions that characterize the process under study, such as the amount 
of specific secondary structure elements or the aggregate size and the 
number and type of intermolecular contacts if one studies protein ag
gregation. The descriptors are applied to each frame of the MD trajec
tory, thereby mapping the trajectory to a set of states with the 
information of the transitions between these states. This allows to 
construct a transition matrix, which can then be visualized. In our group, 
we have improved and successfully applied the TN approach for protein 
aggregation using our self-developed Python script ATRANET [29,30]. 

Here, we apply the TN approach to study conformation switching of 
the amyloid-β (Aβ) peptide. Aβ is an IDP that is being studied inten
sively, as it is strongly linked to the development of Alzheimer’s disease 
[31–33]. In solution, it mostly adopts expanded random-coil confor
mations with a very low tendency to form transient β-sheets or α-helices 
[11,34,35]. However, we recently showed that it undergoes a 
disordered-to-ordered transition upon forming a complex with three 1- 
palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids [36]. 
Here, we demonstrate how TNs can be used to identify the predominant 
states of the Aβ–POPC complex and illustrate how the complexity of the 
resulting network can be regulated by the choice of the molecular de
scriptors. However, before showcasing TNs in action, we provide the 
theory behind TNs and how to generate them with ATRANET (Auto
mated TRAnsition NETworks). 

2. Background 

2.1. Transition networks 

In order to construct a TN, one has to define a set of descriptor 
functions {fi} that discretize a given MD trajectory. Application of these 
descriptor functions to each time point t of the MD trajectory (also 
denoted as MD frame) generates a state S which contains the values of 
the descriptor functions for the molecular conformations x(t), 

S(t) = [f1(x(t)), f2(x(t)), …, fn(x(t))] (1)  

where n is the number of descriptor functions chosen. The key step in the 
TN analysis is to select a set of descriptor functions that optimally re
flects the structures and dynamics of the system. Here, a balance be
tween complexity and simplicity has to be found. While using more 
descriptors could provide a more precise picture of the process under 

study, it may also increase the complexity of the network to the point 
that humans no longer understand it intuitively. The balancing between 
these two aspects can be achieved by quantifying the quality of 
descriptor combinations. This requires the selection of descriptors with 
high sensitivity and no or only small correlation between them. The 
sensitivity of a descriptor is defined by how much of the theoretically 
possible value range of a descriptor is indeed sampled during the sim
ulations. A descriptor is highly sensitive toward the system if the com
plete theoretical value range is present in the data set. The correlation 
between two descriptors fi and fj is defined by the correlation coefficient 
ccorr 

ccorr =
Σt
(
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(
x
(
t
))

− f i
)(

fj
(
x
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t
))

− f j
)
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where f i and f j are arithmetic mean values of the corresponding 
descriptor values along the trajectory. If the correlation between two 
descriptors is high, using both of them would not add substantial in
formation to a TN yet would increase its complexity. Therefore, it is 
recommended to choose only one of the correlated descriptors to 
generate the TN. 

2.2. Descriptor functions 

In the following, we describe a number of descriptor functions that 
are typically used to characterize protein structures and aggregates and 
may thus be used to generate a TN. All descriptor functions explained 
are available in ATRANET. 

Secondary structure. One typically wants to know about the formation 
of α-helices, β-sheets, or other secondary structure elements during 
conformational transitions of a protein. In terms of a TN, this can be 
quantified by the number of residues adopting a specific secondary 
structure, which is calculated by the dictionary of protein secondary 
structures (DSSP) method [37,38]. 

Backbone torsion angles. For short peptides, such the Aβ16− 22 frag
ment of Aβ it can be advantageous to use the Ramachandran angles φ 
(C − Cα − N − C) and ψ (N − C − Cα − N) to assign the secondary structure 
of the peptide instead of applying DSSP. The angles φ and ψ allow to 
identify extended peptide structures belonging to the β-sheet basin of the 
Ramachandran space, which by DSSP would be assigned to the random 
coil state. Here, the peptide- and time-averaged Ramachandran plot is 
generated first for the MD trajectory under analysis and a k-means 
clustering is applied to cluster the (φ,ψ) data to a specified number of 
cluster centers. If Nres is the number of peptide residues and F is the 
number of frames in the MD trajectory, the Nres − 1 (φ,ψ)-tuples of the 
peptide are saved in the matrix A ∈ RF×Nres − 1: 

A =

⎛

⎜
⎜
⎝

(φ,ψ)11 (φ,ψ)12 … (φ,ψ)1(Nres − 1)
⋮ ⋱ ⋱ ⋮

(φ,ψ)F1 (φ,ψ)F1 … (φ,ψ)F(Nres − 1)

⎞

⎟
⎟
⎠ (3)  

This matrix is then being discretized, producing Ac, by assigning each 
element to its closest cluster center where whole numbers are used to 
denote the cluster centers, e.g., 0 for the β-sheet basin and 1 for the right- 
handed α-helical region. To assign an overall structural tendency to the 
peptide at the different time points t, the matrix entries along the rows 
are being summed up, producing one number per time frame: 

ai =
∑

j
(Ac)ij ≡ a

(

t

)

(4)  

It should be mentioned that the numbers chosen to denote the cluster 
centers need consideration. If one only wants to distinguish between 
β-strands and α-helices, one can use 0 and 1. Then, low values of ai 
correspond to extended peptide structures, while high values indicate 
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that a high amount of the dihedral angles are located in the α-helical 
area. If one wants to add random coil or right-handed helices to this 
analysis, the number for this new cluster needs to be larger than Nres − 1 
in order to avoid overlap with the case ai = Nres − 1 where all Nres − 1 
residues adopt an α-helical conformation. 

Intra- or interprotein contacts. Protein structure formation or aggre
gation are driven by favorable residue–residue contacts, in particular by 
hydrophobic contacts. Such contacts are monitored by the descriptor 
that counts the number of intra- or interprotein contacts. For instance, in 
the case of hydrophobic contacts, amino acids A, F, I, L, M, V, W, and Y 
are included in the contact calculations. To this end, the minimum dis
tances between all possible hydrophobic residue pairings are deter
mined, and two residues are considered to be in contact with each other 
if their minimum distance is within the pre-defined cutoff distance. The 
readout value is the total number of the contacts under consideration for 
each MD frame. 

Salt-bridge contacts. A special case of contacts are salt bridges that 
form between oppositely charged amino acids or protein termini. The 
descriptor that reports on the number of salt bridges counts the number 
of intra- or interpeptide attractive Coulomb interactions using the dis
tance between the oppositely charged groups, which has to fall below a 
defined cutoff distance to be counted as a salt bridge. 

End-to-end distance. This descriptor measures the spatial proximity 
between the termini of the protein. For each MD frame, the distance 
between the N atom of the first amino-acid residue and the C atom of the 
last residue of the protein is calculated and assigned to the bin it falls 
into. For the binning of the distances, a user-defined bin width is used. In 
order to provide a sensible bin width, one should first identify the 
minimum and maximum end-to-end distance. 

Compactness. The compactness measures how compact or extended a 
protein or protein aggregate is. It is defined as the ratio between the 
lowest and largest moment of inertia, multiplied by 10 and rounded to 
the nearest integer. Thereby, the descriptor’s theoretical value range is 
between 0 and 10, corresponding to a completely extended structure (a 
stick as the extreme case of a prolate spheroid) and a globular structure 
(a sphere), respectively. 

Aggregate size. The aggregate size is the number of proteins that 
assembled into a higher-order complex. To determine this quantity, it is 
assessed which of the proteins are in contact with each other and are 
thus neighbors. All proteins that are direct or indirect neighbors form 
one aggregate. Two proteins are considered to be in contact if any two 
atoms of them are within a certain cutoff. In the case of a monomer, the 
descriptor function returns the value 1, for a dimer it is 2, etc. During an 
aggregation process, monomers and oligomers of different sizes can be 
present in the system. By default, the descriptor function reports the 
largest aggregate size present at a particular MD time point. 

Spatial orientation of β-strands. If one studies the aggregation of pro
teins into amyloid structures, which are characterized by β-sheet layers 
that form fibrils, one is usually interested to know whether these are 
parallel or antiparallel β-sheets. This information can be deduced from 
the polar and nematic order parameters P1 and P2, respectively, that 
characterize the spatial orientation of the β-strands [39,40]. These two 
order parameters complement each other. P2 describes the systems’ 
orientational order and distinguishes between ordered and disordered 
conformations, while P1 indicates the polarity of the system and dis
criminates between parallel, antiparallel, and mixed conformations. The 
descriptor function returns values of +1 for parallel β-strands, − 1 for 
antiparallel alignments, and 0 or neither of them, including mixed 
parallel and antiparallel alignments as well as disordered β-strands: 

f =

⎧
⎨

⎩

1, P2⩾0.7 and P1⩾0.7
− 1, P2⩾0.7 and P1⩽ − 0.7
0, else

(5)  

2.3. ATRANET software for transition-network calculation 

Transition networks based on a combination of the descriptor func
tions explained in the previous section can be calculated with ATRANET, 
which is a Python script developed for this purpose by our group [29]. 
The script is designed in a way that it allows the user to easily add 
further descriptor functions if needed, that is if they seem to be bene
ficial for the system under investigation. To perform a TN analysis using 
ATRANET, the topology and trajectory files of all-atom MD simulations 
containing any number of polypeptide chains have to be provided. In its 
current version, these input files have to be in Gromacs format (.gro and . 
xtc) [41], but in the future this will be extended so that trajectory files 
originating from other MD software can be directly processed too. The 
ATRANET script invokes the MD trajectory analysis software MDTraj 
[42] and MDAnalysis [43] to calculate the descriptors specified by the 
user. It then produces a file that contains the transition matrix, including 
the states’ populations and the number of transitions between the states. 
The transition matrix is saved as a .gexf file, which can be visualized by 
the network visualization software Gephi [44]. The ATRANET script is 
available at https://github.com/strodel-group/ATRANET. 

2.4. Gephi software for transition-network visualization 

The visualization of the transition matrix creates a plot that shows 
the states as circles of different sizes according to their population and 
edges between the nodes. The edges can be shown with different 
thickness reflecting the underlying transition probability and arrows to 
indicate the direction of the transition from one node to another node. In 
addition to visualizing the transition matrix, the open-source software 
Gephi [45] also provides a number of powerful tools to further analyze 
some basic properties of TNs. One often used analysis function is the 
calculation of the in-/out-degree of the nodes. The degree of a node in a 
network is the number of edges the node shares with other nodes. If a 
network is directed, the in-degree corresponds to the number of 
incoming edges, and the out-degree is the number of outgoing edges. 
Gephi further allows to visualize the network based on the calculated 
properties, e.g., to color the nodes according to their modularity class 
and choose the node size with respect to their degree or population. 
Lastly, one can choose different algorithms to get a layout of the network 
based on internal parameters, such as the Yifan Hu or ForceAtlas 2 
algorithm. 

3. Materials and methods 

In order to demonstrate the use of TNs in studying the conforma
tional transitions of IDPs, we apply the transition-network procedure 
explained above to 4× 1μs MD trajectories of Aβ42 in complex with three 
POPC lipid molecules. 

3.1. Molecular dynamics simulations 

The MD simulations were originally performed in the framework of 
another study that unraveled a disorder-to-order transition of Aβ42 
following its binding to individual lipid molecules [36]. The simulations 
were performed using the Gromacs 2018 software [41]. The Aβ42 pep
tide was modeled using the CHARMM36mW force field [46], as it was 
found to be suitable for modeling both monomeric Aβ42 [11] as well as 
amyloid aggregation [47]. As CHARMM36mW only contains parameters 
for polypeptides, we used the original force field CHARMM36 [48] for 
modeling the POPC lipids. The peptide and three lipid molecules were 
initially placed away from each other in the simulation box, which was 
filled with TIP3P water molecules [49] and NaCl at a physiological salt 
concentration of 150 mM. After appropriate equilibration of the system 
it was simulated four times under NpT conditions (i.e., a constant 
number of atoms N, a constant pressure p of 1 bar, and a constant 
temperature of 310 K) for 1 μs each, amounting to a total of 4 μs of 
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simulation time. Data was written out every 100 ps, resulting in 40,000 
MD frames for analysis. For pressure regulation the Parrinello-Rahman 
pressure coupling scheme [50] was used, while the temperature was 
controlled via a velocity-rescaling thermostat allowing for canonical 
sampling [51]. Simulations were carried out under periodic boundary 
conditions in all directions using the particle-mesh Ewald method [52] 
for calculating the electrostatic interactions. Cutoffs for the Coulomb 
interactions calculated in real space and the van der Waals interactions 
were both set to 12 Å. 

3.2. Transition networks 

The TNs of Aβ42 in the presence of three POPC lipids were calculated 
with the ATRANET Python script. To demonstrate the influence of the 
choice of descriptor functions on the resulting networks, two descriptor 
sets were used. First, we chose three descriptors to characterize the 
conformations of Aβ42: i) the number of residues exhibiting α-helical 
secondary structure, ii) the number of residues adopting a β-sheet 
structure, and iii) the end-to-end distance. For the latter we used a bin 
size of 5 Å to transform the continuous distance into a discrete variable. 
For the second choice of descriptors, we used the same three descriptors 
as before and added a fourth one, which is the number of Aβ42 residues 
being in contact with any of the three POPC lipids. We defined a residue 
to be in contact if any of its atoms is within a cutoff of 6 Å of a lipid. 

To better understand how these descriptors lead to the assignment of 
a particular Aβ42 conformation to a node, we provide an example. Let us 
assume we sampled an Aβ42 structure with a short α-helix involving only 
five residues in the N-terminal part of the peptide and a β-hairpin in the 
C-terminal peptide half where in total eight of the residues are in a 
β-sheet conformation. The two peptide ends are rather close to each 
other, having a distance of 7.8 Å from each other. The three descriptors 
thus are (5,8,7.8). Since the end-to-end distances are assigned to 5 Å- 
wide bins, which can be understood as coarse-graining, this Aβ42 
conformation will belong to the node with descriptors (5,8,[5,10[), since 
5⩽7.8 < 10 Å, and all structures with these three descriptors will belong 
to that node. If we take the fourth descriptor, the number of pepti
de–lipid contacts into account and let us suppose that Aβ42 formed 43 
atomic contacts with the lipid, the node description changes to (5,8, [5,
10[,43). 

3.3. Visualization using Gephi 

The transition matrices calculated by ATRANET were then visualized 
using Gephi. Here, we briefly present our choice of TN visualization to 
give the reader a rough guideline for useful Gephi functionality selec
tions; however, the optimal TN representation depends on the system 
under study and research question being addressed. 

For the size of the nodes we chose it to be proportional to the pop
ulation of the corresponding state, which is calculated by the ATRANET 
script. This allows to easily identify predominant and therefore more 
stable states by their relative size compared to those of the other nodes. 
This Gephi setting is being accomplished via the Size → Ranking tab and 
selecting the attribute Size. 

The layout of a TN is important as a good representation allows to 
quickly grasp the connectedness of the nodes and identify the different 
clusters of the system. When the transition-matrix data is loaded into 
Gephi, the nodes are initially randomly placed. In order to give the 
relative placement of each node meaning, one can choose between 
different algorithms that determine the relative placement of the nodes 
based on their interconnectedness. The algorithms can be executed by 
selecting them in the Layout window and pressing Run. Here, we first ran 
the Yifan Hu Proportional algorithm to get a rough outline of the 
network, followed by the Force Atlas 2 algorithm together with the 
Prevent Overlap option, which expands the network and makes sure that 
there are no nodes hidden behind one another. 

Depending on the number of descriptors used, the resulting number 

of nodes can be quite overwhelming. For this reason, we used the 
Modularity feature in the Statistics tab of Gephi to identify clusters of 
nodes. This clustering method, which is known as the Louvain method, 
orders the nodes into communities (called clusters herein) based on their 
connectedness and a user-defined resolution. Details of this method can 
be found in [53]. In a nutshell, the algorithm is divided into two phases 
that are repeated iteratively. It starts with the weighted network of N 
nodes and initially, each node is assigned to a different community. 
Then, for each node i it is checked if the modularity increases if it is 
considered to form a community with another node j. The modularity is 
a measure of the density of links inside communities as compared to 
links between communities. It ranges between − 1 and 1 (optimal) and 
can thus be used as an objective function to be maximized. Node i is 
placed in the community for which the gain in modularity is maximal. 
The process of the assignment of nodes to communities is applied 
sequentially to all nodes and repeated until no further improvement can 
be achieved, finishing the first phase. The second phase of the algorithm 
consists in building a new network whose nodes are now the commu
nities found during the first phase. To this end, the weights of the links 
between the new nodes have to be determined, which are the sums of the 
weights of the links between nodes of two communities. Once this sec
ond phase is completed, one can reapply the first phase of the algorithm 
to the resulting weighted network and iterate. With each such iteration 
the number of communities decreases, resulting in a coarser clustering. 
In Gephi, the number of iterations is controlled by (but is not identical 
to) the user-defined resolution, which we chose as ≈1 for the TN based 
on three descriptors and ≈5 when four descriptors were used, as this 
choice led to six clusters per network, allowing for a direct comparison 
between them. The nodes were then colored according to their cluster 
(or community) membership. This can be achieved via the Color → 
Partition tab, selecting there the attribute Modularity Class. 

4. Results and discussion 

4.1. Disorder-to-order transition of Aβ42 upon lipid binding 

In our previous study [36] we demonstrated that Aβ42 becomes fol
ded when it forms a complex with more than one lipid. At a 1:1 ration 
the peptide remained mainly disordered, yet at peptide:lipid ratio of 1:3, 
Aβ42 underwent a random coil-to–helix transition or a random coil-to- 
β-sheet transition (Fig. 1a). That study was based on 3× 1μs MD simu
lations of 1:3 complexes. In all three simulations (denoted as run 1 to run 
3) 1:3 complex formation readily occurred within the first 50 ns, and the 
complexes did not disintegrate in the remainder of the simulations. In 
run 1 we observed a high α-helix content, where about 45% of the Aβ42 
residues adopted a helical conformation after ≈800 ns of simulation 
time. Inspection of the helical conformation that formed reveals that it is 
a helix-kink-helix structure (Fig. 1b), which was stable in the last 200 ns 
of the simulation. In the other two runs, transient helix formation was 
observed too, especially in the first 500 ns of run 2, yet in the end the 
dominating secondary structure were β-sheets (Fig. 1b). We thus 
concluded that, when Aβ42 is surrounded by a sufficient number of 
lipids, it undergoes a disorder-to-order transition, which is a charac
teristic of IDPs, which commonly adopt more ordered states upon 
binding with their targets. 

In order to understand the driving force behind the folding of Aβ42, 
we calculated the number of contacts formed between the peptide and 
the POPC lipids. The number of these contacts is correlated with the 
structure formation in Aβ42 (Fig. 1c). For run 1, one can clearly see that 
the more residues adopt a helical structure, the more contacts between 
Aβ42 and the lipids exist. However, a large number of Aβ42–POPC con
tacts is not a guarantee for an α-helix to be formed, as for the other two 
runs, where the helical content did not increase beyond 20%, a similar 
amount of peptide–lipid contacts were formed. We thus assumed that 
the α-helix content is likely to be correlated with specific residue–POPC 
contacts, rather than the total number of contacts. This hypothesis was 
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tested by further analysis, and indeed we found that the stability of the 
helix-kink-helix structure formed in run 1 results from contacts between 
the POPC lipids and residues Leu17, Ala21, Ile32, and Val36. This can be 
seen from the plot of the evolution of the number of atom–atom contacts 
formed between POPC and Leu17, Ala21, Ile32, and Val36 along with 
the evolution of the α-helix content (Fig. 1a). For run 1 we notice that the 
helical structure is only stable when the mentioned residues are simul
taneously in contact with the lipids. This is also highlighted in the 
representative helix-kink-helix structure that is shown in Fig. 1b. It 
shows the interactions between the lipid tails and Leu17 and Ala21 of 
the first helix as well as Ile32 and Val36 of the second helix. In run 2, the 
amount of these contacts initially rises, leading to a transient increase in 
the helical content, yet at ≈500 ns both the number of these contacts and 
the helical content drop. Instead, β-sheet structures developed in runs 2 
and 3, for which representative structures are shown in Fig. 1b. One can 
see that β-sheets can develop in different parts of the peptide. Visuali
zation of the trajectories and analysis of the time evolution of the sec
ondary structure on a per-residue basis further revealed that the 
formation of β-sheets at different time points of the same trajectory 
seems to be indepent of each other, but it is highly correlated with 
intrapeptide and peptide–lipid interactions. 

Here, we revisited the complex formed by one Aβ42 peptide and three 
POPC lipids. First, we ran an additional 1 μs simulation and then 
analyzed the concatenated trajectories based on TNs using either three 
or four descriptors for characterizing Aβ42. By concatenating the tra
jectories, we obtain three spurious transitions, where the previous tra
jectory ends and the next trajectory begins. One can manually remove 
these extra transitions from the transition matrix calculated by ATRA
NET. However, as these are only three extra transitions, they will either 
show up as faint edges in the TN visualized by Gephi when not sampled 
otherwise, or, if the same kind of transitions also occurred naturally, 
then the corresponding transition counts are only increased by one 
transition. Thus, even if one decides not to remove these spurious 

transitions from the transition matrix, the appearance of the resulting 
TN will not be affected. 

4.2. Transition network using three descriptors for Aβ42 

First, we produced a TN using three descriptors to describe the 
conformational preferences of Aβ42: i) the number of residues exhibiting 
α-helical secondary structure (Nα), ii) the number of residues adopting a 
β-sheet structure (Nβ), and iii) the end-to-end distance (dNC, in Å). The 
resulting TN is shown in Fig. 2 together with a representative structure 
for each of the six clusters, for which the most populated state per cluster 
was used. The TN is dominated by the cluster colored in blue. Other 
noteworthy clusters are the ones shown in orange and lime, while the 
three other clusters seem to be intermediate states that partly overlap 
and are not well separated in this TN representation. 

The cluster shown in blue includes the nodes with the largest size, 
which means they correspond to more stable configurations that are 
visited more often compared to the other states. With average descriptor 
values of (Nα = 0.8,Nβ = 7.7, dNC = 2.0 Å) the cluster encompasses 
states with a small end-to-end distances that exhibit predominantly 
β-sheet structures. On the contrary, the other distinct cluster shown in 
orange, is visited less frequently and with average descriptor values of 
(Nα = 16.0,Nβ = 0.4, dNC = 20.2 Å) the configurations exhibit a rather 
large end-to-end distance with mostly α-helical structures. The other 
clusters seem to be intermediate states between the ones colored in blue 
and orange, like the one shown in gray with average values of 
(Nα = 0.1,Nβ = 7.3, dNC = 25.7 Å). While it is similar to the blue- 
colored cluster in terms of secondary structure, the configurations 
within the gray cluster are more extended with larger end-to-end dis
tances. Thus, a transition from the blue- to the gray-colored cluster 
happens when the termini move away from each other while there is still 
a β-sheet present in the peptide. A transition from the gray- to the 
orange-colored cluster involves the intermediate clusters colored in red 

a

b

c

Fig. 1. Disorder-to-order transition of Aβ42 following 
its binding to three POPC lipids. (a) Evolution of the 
β-sheet (blue) and helix content (red) as well as the 
number of atom–atom contacts formed between the 
POPC lipids and Aβ42 residues Leu17, Ala21, Ile32, 
and Val36 obtained from the three simulations of 1:3 
Aβ42–POPC complexes. The dashed vertical lines 
mark time when all three POPC lipids had bound to 
Aβ42. (b) Representative snapshots showing the helix- 
kink-helix structure that formed at the end of run 1 
and β-sheet structures sampled in runs 2 and 3. The 
peptide is shown as cartoon and the sidechains of 
Leu17, Ala21, Ile32, and Val36 are explicitly shown. 
The lipid headgroups are indicated by blue and red 
spheres, and the oleoyl and palmitoyl chains are 
represented as ball-and-stick model in green and yel
low color, respectively. (c) Two-dimensional histo
grams of the number of Aβ42–POPC contacts plotted 
against the α-helix content. The darker the color of a 
bin, the more likely this contact-helix combination is. 
This figure was reproduced from Ref. [36] with 
permission from Elsevier.   
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and magenta. The red-colored states exhibit a mixture of α-helical and 
β-sheet structures and can lead to the lime-colored cluster with average 
descriptor values of (Nα = 9.7,Nβ = 6.8, dNC = 23.4 Å) where on the one 
end of the peptide a helix is present and a β-hairpin dominates the 
structure at the other peptide end. The alternative route implies the 
complete dissolution of the β-sheet, giving rise to an intermediate cluster 
colored in magenta where Aβ42 is in a random-coil state with (Nα = 3.6,
Nβ = 0.0, dNC = 18.9 Å), which eventually leads to alpha-helical struc
ture represented by the orange-colored cluster. 

In summary, the TN based on three descriptors nicely reveals the 
different structures that Aβ42 adopts when being bound to a small lipid 
cluster formed by three POPC lipids, how these structures can inter
convert, and that the β-sheet structure is the favored one. With the three 

descriptors chosen, it is however not possible to unveil the interplay 
between structure formation and peptide–lipid interactions. This be
comes only possible when including a descriptor for the peptide–lipid 
interactions, which is therefore added to the three existing descriptors. 
The resulting TN based on these four descriptors is discussed next. 

4.3. Transition network using four descriptors of Aβ42 

We performed the same analysis for the four descriptors (Nα,Nβ,dNC,

Np− l) where Np− l refers to the number of contacts formed between the 
Aβ42 peptide and the POPC lipids. As before, the clusters were calculated 
using the modularity class feature of Gephi and the coloring of the 
cluster was chosen to be directly comparable to that of the clusters in 

Fig. 2. Transition network of Aβ42 forming a complex 
with three POPC lipids using three descriptors: i) the 
number of residues having an α-helical structure, ii) 
the number of residues having a β-sheet structure, iii) 
the end-to-end distance. The nodes are colored ac
cording to their cluster membership. Representative 
structures for the most populated state of each cluster 
are shown within circles of the same color as used for 
the corresponding cluster. The average descriptor 
values (Nα,Nβ, dNC) per cluster are provided too.   

Fig. 3. Transition network of Aβ42 forming a complex 
with three POPC lipids using four descriptors: i) the 
number of residues having an α-helical structure, ii) 
the number of residues having a β-sheet structure, iii) 
the end-to-end distance, iv) the number of pepti
de–lipid contacts. The nodes are colored according to 
their cluster membership. Representative structures 
for the most populated state of each cluster are shown 
within circles of the same color as used for the cor
responding cluster. The average descriptor values (Nα,

Nβ, dNC,Np− l) per cluster are provided too.   
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Fig. 2; however, the cluster membership of a specific configuration 
might have changed due to the new definition of states. Fig. 3 shows the 
resulting TN together with representative structures taken from the most 
populated state of each cluster. 

A first look at this TN reveals that, thanks to the additional fourth 
descriptor, the clusters have become better separated from each other 
and the transitions between them are clearer. This implies that this extra 
descriptor Np− l contains additional information not included yet in the 
first three descriptors (Nα, Nβ, dNC). Nonetheless, the clusters remain 
largely the same when using the four instead of only three descriptors. 
Only the former lime-colored cluster has become part of the red-colored 
cluster, while the most populated blue-colored cluster has split into two 
clusters: one dominant cluster (still shown in blue) as well as a smaller 
cluster (shown in green). The main difference between them is the 
number of peptide–lipid contacts, which is almost half the size in the 
green-colored cluster compared to the blue-colored cluster: Np− l = 34.9 
and Np− l = 63.7, respectively. The other three descriptors have very 
similar values in these two clusters and correspond to a compact β-sheet 
structure where the N- and C-terminus are close to each other. The 
connectedness of the green-colored cluster reveals that dissociation of 
the peptide from the lipid cluster does not lead to states with more 
α-helical or random coil structures, as the green-colored cluster is almost 
exclusively connected to the blue-colored cluster. Transitions to these 
other states start from the blue-colored cluster, either leading to the 
magenta-colored cluster harboring random coil conformations of Aβ42 
or to the gray-colored cluster where the β-sheet is still present and 
attached to the lipid cluster, while the N-terminus has detached from the 
rest of the peptide and the lipids. Mixed α-helical/β-sheet structures, 
which are represented by the red-colored cluster, can be formed from 
both the magenta- and gray-colored cluster, while the helix-only struc
ture contained within the orange-colored cluster evolves mainly from 
the random-coil conformation represented by the magenta-colored 
cluster or, to a lesser degree, via a transient mixture of both α-helix 
and β-sheet (red-colored cluster). 

With the extra descriptor Np− l, the different pathways between the 
clusters have become much better visible. Another important finding is 
that the helix-only state (orange-colored cluster) has the highest average 
number of contacts with the lipids. The representative structure shows 
that in this case the peptide wraps around the lipids, whereas the β-sheet 
is rather formed on the surface of the lipid cluster. This observation 
confirms the observations from our previous study [36] and might be of 
relevance for the process of amyloid aggregation in the presence of lipid 
membranes. Another important finding is that the structural transitions 
within the peptide can take place without the peptide needing to detach 
from the lipid cluster. This finding was not uncovered previously from 
our more standard analysis of the behavior of Aβ42 in complex with 
POPC lipids [36]. 

5. Conclusions 

Studying the structural characteristics of IDPs remains challenging to 
the present date. Compared to folded proteins, IPDs do not exhibit a 
unique three-dimensional structure. The absence of a well-defined 
structure in combination with the conformational transitions spanning 
several time scales makes it difficult to study the corresponding char
acteristics of IDPs in experiments. A complement to experiments is 
provided by MD simulations. Here, we demonstrated how the structural 
changes of an IDP sampled during all-atom MD simulations can be 
elucidated by calculating transition networks (TNs) from the MD data. 

We identified three main features of TNs by analyzing 4 μs of MD 
trajectories of Aβ42 in complex with three POPC lipids. Firstly, from the 
size of the nodes one can directly identify the most stable polypeptide 
configurations, which are represented by the largest nodes. Secondly, 
one can directly comprehend the connectedness between adjacent 
nodes. We chose the layout of the TNs such that, when there are fewer 

transitions between them, they were placed further away in the network. 
This also extends to the cases where the shortest pathway between two 
nodes requires the system to visit many intermediate nodes, which are 
then also located further away from each other. Thus, the spatial dis
tance between nodes in the TN is directly related to the phase-space 
distance between the corresponding configuration of the polypeptide. 
Lastly, one can generate a coarser view of a TN by identifying clusters 
within the TN, making the TN and the underlying dynamics more 
comprehensible. The transition from one cluster to another one entails 
significant conformational changes in the polypeptide, whereas the 
conformations represented by nodes of the same cluster are relatively 
similar. 

The choice of the descriptors to characterize the polypeptide in
fluences the features of the resulting TN. We demonstrated this by 
creating TNs of Aβ42 for two different sets of descriptors. First we used 
three descriptors, namely the numbers of residues exhibiting α-helical 
secondary structure, the number of residues forming β-sheets, and the 
end-to-end distance. Then, we generated the TN for a second set of de
scriptors where we used the same descriptors as before and added a 
fourth one, which is the number of contacts between Aβ42 and the lipids. 
The additional descriptor yielded a more granular network, implying a 
generally lower population per node. On the other hand, this additional 
descriptor turned out to be advantageous, as it helped to separate the 
clusters from each other and thus made the conformational transition 
pathways better visible. 

Limitations of the analysis using TNs are founded in the assumptions 
one imposes on the system by the choice of the descriptors. As demon
strated, that choice might influence the appearance of the TN and 
therefore the conclusions drawn from it. On the other hand, considering 
the research questions surrounding structural changes in IPDs, it is 
necessary to use descriptors that characterize the polypeptide configu
rations, such as the secondary structure or some measure of the poly
peptide compactness. Moreover, since the calculation of a TN with 
ATRANET is rather straightforward and computationally not expensive, 
the user can try various descriptor combinations until they are satisfied 
with the resulting TN. ATRANET further helps in assessing the quality of 
the chosen descriptor combinations by quantifying the sensitivity of the 
descriptors and the correlation between them [29]. Another constraint 
of TNs is that, when they are based on insufficient sampling of the phase 
space, the resulting TN has limited meaning. However, one can also 
consider the possibility of creating TNs from incomplete phase-space 
sampling as an advantage, as this is not possible for Markov state 
modeling and allows early insight into molecular processes tested by MD 
simulations. 

An interesting feature of TNs are their parallels to free energy sur
faces (FESs). The reader might have noticed the similarities between 
analyzing a TN and how one would interpret the FES of a polypeptide, 
for the reason that they are both representations of the visited config
urational space. In the case of IDPs, the presence of multiple distinct 
clusters in the TN with similar occupation probabilities, as found here 
for Aβ42, corresponds to an underlying multifunnel structure for the 
energy landscape [24]. FESs have the advantage of containing infor
mation about the actual energy difference between states, which is a 
quantitative measure of the underlying dynamics. They usually rely on a 
projection of the free energy onto one or more (collective) variables, 
which are similar to the descriptors used in our TN analysis. However, 
the projection on one or two dimensions has the danger that minima or 
the transitions between them are not properly resolved, leading to an 
under- or overestimation of the free energy barrier for configurational 
transitions. An alternative is to use disconnectivity graphs to visualize 
the multidimensional free energy landscape of polypeptides [54–56]. 
They have the advantage that they do not rely on projecting the free 
energy on (collective) variables. In one of our earlier works we also 
showed how disconnectivity graphs can be created from TNs, using the 
node and edge data from the TNs [28]. Moreover, disconnectivity graphs 
created for IDPs are able to nicely reveal the multifunnel structure of 
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their energy landscapes [24]. Further analysis that can be extracted from 
TNs is information regarding the kinetics through first passage time 
distributions for reaching the most populated states. In our future work, 
we will implement the possibility of such additional free-energy and 
kinetics analysis into our ATRANET software. 
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Moritz Schäffler: Methodology, Software, Validation, Formal- 
analysis, Investigation, Data-curation, Writing-original-draft, Visuali
zation. Mohammed Khaled: Software, Validation, Data-curation, 
Writing-original-draft. Birgit Strodel: Conceptualization, Methodol
ogy, Resources, Writing-review-editing, Supervision, Project- 
administration, Funding-acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors thank Dr. Hebah Fatafta for providing some of the MD 
simulation data and Dr. Batuhan Kav for fruitful discussions. M.K. and B. 
S. acknowledge funding for this project from the Palestinian-German 
Science Bridge financed by the German Federal Ministry of Education 
and Research (BMBF). 

References 

[1] V.N. Uversky, P. Kulkarni, Intrinsically disordered proteins: Chronology of a 
discovery, Biophys. Chem. 279 (2021), 106694, https://doi.org/10.1016/j. 
bpc.2021.106694. 

[2] N. Perdigão, J. Heinrich, C. Stolte, K. Sabir, M. Buckley, B. Tabor, B. Signal, 
B. Gloss, C. Hammang, B. Rost, A. Schafferhans, S. O’ Donoghue, Unexpected 
features of the dark proteome, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 
15898–15903, https://doi.org/10.1073/pnas.1508380112. 

[3] S. DeForte, V.N. Uversky, Order, disorder, and everything in between, Molecules 
21 (8). doi:10.3390/molecules21081090. 

[4] A. Deiana, S. Forcelloni, A. Porrello, A. Giansanti, Intrinsically disordered proteins 
and structured proteins with intrinsically disordered regions have different 
functional roles in the cell, PLOS ONE 14 (2019), e0217889, https://doi.org/ 
10.1371/journal.pone.0217889. 

[5] V. Uversky, Functional roles of transiently and intrinsically disordered regions 
within proteins, FEBS J. 282 (2015) 1182–1189, https://doi.org/10.1111/ 
febs.13202. 

[6] V. Uversky, Intrinsically disordered proteins and their ”mysterious” (meta)physics, 
Front. Phys. 7 (2019) 10, https://doi.org/10.3389/fphy.2019.00010. 

[7] D. Eliezer, Biophysical characterization of intrinsically disordered proteins, Curr. 
Opin. Struct. Biol. 19 (1) (2009) 23–30. 

[8] B.B. Kragelund, K. Skriver, Intrinsically Disordered Proteins: Methods and 
Protocols, Springer, 2020. 

[9] B. Strodel, Energy landscapes of protein aggregation and conformation switching 
in intrinsically disordered proteins, J. Mol. Biol. 433 (20) (2021), 167182, https:// 
doi.org/10.1016/j.jmb.2021.167182. 

[10] H. Fatafta, S. Samantray, A. Sayyed-Ahmad, O. Coskuner-Weber, B. Strodel, 
Chapter five - molecular simulations of idps: From ensemble generation to idp 
interactions leading to disorder-to-order transitions, in: V.N. Uversky (Ed.), 
Dancing Protein Clouds: Intrinsically Disordered Proteins in the Norm and 
Pathology, Part C, Vol. 183 of Progress in Molecular Biology and Translational 
Science, Academic Press, 2021, pp. 135–185. doi: 10.1016/bs.pmbts.2021.06.003. 

[11] A. Paul, S. Samantray, M. Anteghini, M. Khaled, B. Strodel, Thermodynamics and 
kinetics of the amyloid-β) peptide revealed by markov state models based on md 
data in agreement with experiment, Chem. Sci. 12 (2021) 6652–6669, https://doi. 
org/10.1039/D0SC04657D. 
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[17] F. Noé, S. Fischer, Transition networks for modeling the kinetics of conformational 
change in macromolecules, Curr. Opin. Struct. Biol. 18 (2) (2008) 154–162, 
https://doi.org/10.1016/j.sbi.2008.01.008. 
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Abstract: The aggregation of amyloid-β (Aβ) peptides, particularly of Aβ1−42, has been linked to the
pathogenesis of Alzheimer’s disease. In this study, we focus on the conformational change of Aβ1−42

in the presence of glycosaminoglycans (GAGs) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine
(POPC) lipids using molecular dynamics simulations. We analyze the conformational changes that
occur in Aβ by extracting the key structural features that are then used to generate transition networks.
Using the same three features per network highlights the transitions from intrinsically disordered
states ubiquitous in Aβ1−42 in solution to more compact states arising from stable β-hairpin formation
when Aβ1−42 is in the vicinity of a GAG molecule, and even more compact states characterized
by a α-helix or β-sheet structures when Aβ1−42 interacts with a POPC lipid cluster. We show that
the molecular mechanisms underlying these transitions from disorder to order are different for the
Aβ1−42/GAG and Aβ1−42/POPC systems. While in the latter the hydrophobicity provided by the
lipid tails facilitates the folding of Aβ1−42, in the case of GAG there are hardly any intermolecular
Aβ1−42–GAG interactions. Instead, GAG removes sodium ions from the peptide, allowing stronger
electrostatic interactions within the peptide that stabilize a β-hairpin. Our results contribute to the
growing knowledge of the role of GAGs and lipids in the conformational preferences of the Aβ

peptide, which in turn influences its aggregation into toxic oligomers and amyloid fibrils.

Keywords: intrinsically disordered proteins; molecular dynamics simulations; transition networks;
amyloid-β; disorder-to-order transition

1. Introduction

Intrinsically disordered proteins (IDPs) are a class of proteins that do not exhibit a well-
defined three-dimensional structure in their native state. Instead, IDPs adopt an ensemble
of different conformations, which allows them to perform a variety of functions, such as
cell signaling, cell cycle control, and protein–protein interaction, but are also associated
with a variety of disease pathways. IDPs are able to bind to a wide range of interaction
partners and often undergo a disorder-to-order transition upon binding, which can lead
to the formation of new structures and the initiation of interaction-specific functions [1,2].
One heavily studied example of an IDP is the amyloid-β peptide (Aβ), which is involved in
the development of Alzheimer’s disease [3,4]. Aβ is a peptide that can form aggregates
called amyloid plaques in the brain, which are thought to contribute to the cognitive decline
associated with Alzheimer’s disease. As typical for an IDP, Aβ is able to bind to various
interaction partners, resulting in conformational changes in Aβ. For example, in a previous
study we showed that Aβ undergoes a disorder-to-order transition when in complex with
three 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids [5].

Molecular examination of Aβ aggregate samples from Alzheimer’s disease affected
patients have revealed a significant presence of charged polyelectrolytes, especially polysac-
charides, belonging to the class of glycosaminoglycans (GAGs) [6]. GAGs are long chains
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of repeating disaccharide units and are found in various tissues, including cartilage and the
extracellular matrix. They play a critical role in maintaining the structural integrity of these
tissues and also act as lubricants and shock absorbers [7–9]. Their elevated presence in Aβ
amyloid deposits suggests that GAGs may be involved in the formation and stability of
Aβ plaques. Biophysical studies have shown that GAGs promote aggregation, nucleation,
and formation of amyloid fibrils; however, the molecular details are not yet known [6].

Due to the wide conformational heterogeneity of IDPs such as Aβ, the experimental
characterization of their structures is a challenging task [10,11]. Experimental techniques
that can be applied to this goal usually average over a wide range of conformations,
e.g., nuclear magnetic resonance (NMR) spectroscopy, small angle X-ray scattering (SAXS),
cryo-electron microscopy, or single-molecule Förster resonance energy transfer (smFRET)
spectroscopy. Consequently, the structural information obtained by these techniques is
limited in the case of IDPs. Molecular dynamics (MD) simulations offer a complementary
approach for gaining insights into the structural properties of IDPs, as they allow for
the study of IDPs in a dynamic and spatiotemporal manner by simulating the motion
of individual atoms over time, thus providing a molecular-level understanding of their
conformational changes. Moreover, combining the MD approach with network-based
models, such as Markov state models (MSMs) or conformational transition networks (TNs),
yields a comprehensive understanding of the structural behavior of IDPs [12–16], as the
networks reveal the underlying mechanisms of molecular processes that are hidden within
the vast amounts of MD simulation data by generating human-interpretable networks that
help to illustrate the molecular processes under investigation [17–19]. The TN approach
pursued by our group is a solution for those who want a network model of protein motions
captured by MD simulations, including explicit modeling of the protein’s environment,
but do not need a method that sets up a master equation for the dynamics, since TNs rely
purely on geometric clustering to extract the crucial features of protein conformational
transitions (and not on kinetic clustering as in Markov state modeling) [20].

In this study we compare the conformational ensembles of Aβ under different external
conditions: Aβ alone in solution [15], Aβ in contact with a small lipid cluster consisting
of three POPC lipids [5], and Aβ in interaction with a GAG. For the GAG, we chose
a polymer involving sixteen chondroitin-4-sulfate subunits, which are the alternating
monosaccharides D-galactosamine (GalNAc) sulfated at position 4 and D-glucuronic acid
(GlcUA), resulting in -GalNAc(4S)-β(1→4)-GlcUA-β(1→3)-. In all simulations, Aβ was
modeled as the alloform having 42 amino acid residues (known as Aβ1−42). To compare
the conformational ensembles of Aβ under the different conditions, we created TNs based
on 4 or 6 µs MD data per system. In order to obtain TNs that are comparable with each
other, we used the same molecular features (or descriptors) to define the states of the
underlying transition matrix. To capture the conformational changes and identify possible
disorder-to-order transitions, we used the number of residues forming α-helical or β-sheet
structures as well as the N-to-C distance of the peptide. The resulting TNs confirmed that
Aβ in solution is an IDP that undergoes an unstructured-to-structured transition upon
interaction with either the POPC cluster or the GAG. However, the causes of the emergence
of structural order in Aβ are completely different, as shown here.

2. Results and Discussion
2.1. Transition Network of Aβ in Solution

The Aβ monomer in solution classifies as an IDP [21], thus its kinetics can be described
by a flat free-energy surface that consists of many local minima that are separated by
low-energy barriers [13,15]. In other words, the peptide does not exhibit a unique three-
dimensional folded structure that would be connected to a surface-dominating minimum
of low free energy, but has a low propensity towards forming α-helices or β-sheets. This
behavior is very well reflected by the TN in Figure 1. The most populated states belong
to the community of states colored in orange and yellow, which are aligned along the
horizontal axis (called x-axis in the following). These two communities represent states that
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are primarily disordered with average descriptor values of (0.8, 0.1, 21.5) and (0.1, 0.1, 49.6),
respectively, which means that there are neither α-helices nor β-sheets present in these
Aβ conformations (first two descriptors) and the N-to-C distance varies, on average, be-
tween 21 and 50 Å. Thus, the most populated states only vary in their expansion, which
increases from left to right in the TN, while they adopt random coil structures, reflecting
the intrinsically disordered nature of the Aβ monomer in solution.

Figure 1. Transition network of the Aβ monomer in solution. For state assignment, three descriptors
are used: (i) the number of residues forming α-helical structure (Nα), (ii) the number of residues
forming β-sheet structure (Nβ), (iii) the N-to-C distance (dNC). The layout of the TN is such that dNC

increases from left to right along the x-axis, Nβ increases in positive y-direction, and Nα increases
with negative y-direction. The nodes are colored according to their community membership, and the
average descriptor values (Nα, Nβ, dNC) of the communities are given. For the highest-populated
node per community, a representative structures is shown as cartoon (β-sheets in yellow, α-helices in
purple) with the N- and C-termini being indicated by blue and red spheres, respectively.

Communities shown in black with descriptor values (0.1, 6.7, 6.5), blue with (0.1, 5.5, 25.2),
and pink with (0.1, 4.1, 45.3) represent the states with increasing amounts of β-sheets
(second descriptor value) as they move toward the top of the network. In contrast, the states
exhibiting α-helical structures are located towards the bottom of the network, and are
contained within the community shown in green with descriptor values (6.1, 0.1, 48.7).
However, the states containing β-sheets or α-helices are only sparsely populated compared
to the completely random-coil communities shown in orange and yellow. This is even better
seen from the distribution of the descriptor values, which are shown in Figure S1 along with
the averages and variances in Table S1 in the Supplementary Materials. The population of
the different communities is provided in Table S2.

In summary, the arrangement of the states of the TN allows to impose a coordinate
system onto its layout, where the N-to-C distance is on the x-axis with increasing values
from left to right, and the secondary structure is resolved along the y-axis, with disordered
states at y ≈ 0, increasing amounts of β-sheet structures for y > 0, and increasing α-helical
structures for y < 0. It has to be stressed that this layout mainly arose from the Force Atlas 2
optimization and was only slightly adjusted for visualization.
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2.2. Transition Network of Aβ in the Presence of a GAG Molecule

In order to study the conformational change of Aβ in the presence of a sulfated
GAG compared to Aβ alone, we calculated the TN using the same three descriptors as
before. The resulting TN is shown in Figure 2. Also the coloring of the communities
has been chosen as for the Aβ monomer in solution to highlight the shift in community
population. Thus, nodes that were displayed in a certain color in Figure 2 are displayed in
that color again, with the descriptor values serving as the basis for the color assignment.
However, depending on the existence and population of the various states, the relevant
communities may appear in somewhat different parts of the TN than in the TN of the
Aβ-only system. Nonetheless, the coordinate system is still the same, i.e., increasing N-to-C
distances correspond to an increase along the horizontal axis, while states with increasing
amounts of β-sheets are found in the positive y-direction, and in the opposite direction,
there are very few sparsely populated states exhibiting α-helical structures.

Figure 2. Transition network of the Aβ in the presence of a GAG molecule. The nodes are colored
according to their community membership, and the average descriptor values (Nα, Nβ, dNC) of the
communities and a representative snapshot are provided. The color of the communities was chosen
as in Figure 1, so that states with the same or similar descriptor values are represented with the same
color as in the Aβ-only system. See the caption of Figure 1 for further explanations of the graphical
representation of the TN.

The TN for the Aβ-GAG system looks quite different from that for the Aβ-only system.
First, there is a drastic shift in the state population away from the disordered states,
which are now presented by only one community, shown in yellow and with average
descriptor values of (0.0, 0.3, 55.3). These disordered states are hardly populated with
Aβ-GAG. Instead, the most populated states belong to the community shown in blue,
which has average descriptor values of (0.0, 10.5, 26.3) and thus contains structures of
intermediate compactness and a substantial amount of β-sheets. The community to the
left shown in black with average descriptor values of (0.0, 11.3, 7.8) represents states
with comparable β-sheet propensity, yet higher compactness. However, these states are
only sparsely populated (Table S2). To the right of the blue-colored community, there is
the community shown in pink with average descriptor values of (0.0, 8.4, 44.0), which
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also harbors β-sheet rich states, yet with large N-to-C distances. The population of this
community is between those of the highest populated community shown in blue and the
black-colored community. All three communities involve Aβ structures where about one
fourth of the residues is part of a β-hairpin structure, as the representative structures in
Figure 2 show, which mainly differ in the orientation of the N- and C-terminals with respect
to each other. At the very top of the TN, mainly above the blue community, there are
states combined into the community shown in purple, which are not present in the Aβ-only
system. With average descriptor values of (0.9, 17.5, 27.6), these are states with even higher
amounts of β-sheet structures. Here, about 42% of the Aβ residues are involved in β-sheet
formation, which is accomplished by a β-sheet with three strands, where the third strand
aligns with the previously mentioned β-hairpin.

In summary, compared to the TN of the Aβ-only system, there is a significant pop-
ulation shift away from disordered states, towards states with considerable amounts of
β-sheets (Figure S1 and Table S1), which results from the formation of a stable β-hairpin.
This drastic change in secondary structure is astonishing, as Aβ was rarely in direct contact
with the GAG, as the time-averaged distance matrix in Figure 3A shows. This molecular
avoidance is understandable, given that both molecules are negatively charged (3− and
16−, respectively). Nevertheless, the contact map of Aβ-GAG interactions with populations
shown only up to the maximum value of ≈8.5% (Figure S2) identify the positively charged
Aβ residues Arg5 (in particular) and Lys16 as preferred binding sites for GAG. All other
interactions that appear in the contact matrix simply result from their proximity to Arg5 and
Lys16. The preference of GAG binding to arginine compared to lysine has been reported
previously for other proteins [22]. However, these sparsely populated interactions are not
sufficient to explain the GAG-induced structural changes in Aβ, and further reasons are
given below.

Figure 3. Intermolecular contact maps for Aβ interacting with (A) a GAG molecule and (B) three
POPC lipids. The interactions are separated into residue–monosaccharide interactions for the Aβ-
GAG system and residue–lipid interactions for the Aβ-POPC system. Two interaction partners were
considered to be in contact if in a given frame of the trajectory they are closer than 10 Å. The resulting
number of contacts were normalized with respect to the total number of time frames per trajectory,
yielding a contact probability (see color scale on the right).

2.3. Transition Network of Aβ Interacting with a POPC Cluster

To put the TN of the Aβ-GAG system into perspective, we also generated the TN of Aβ
in interaction with three POPC lipids. In our previous study, we showed that under these
conditions the Aβ monomer undergoes a disorder-to-order transition, which is facilitated
by interactions between hydrophobic residues of Aβ and the lipid tails (Figure 3B) [5]. Here
we use the simulations of that study to calculate the TN using the same three descriptors
as before, resulting in the TN shown in Figure 4. The structures of the Aβ peptide in
contact with POPC differ significantly from those of the Aβ-only system, resulting in many
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new states. For this reason, direct mapping of the color code of the communities was
not possible. Nevertheless, the coloration was chosen to be as close as possible to the
previous representations. Again, the communities were distributed along the three axes
dNC (positive x-axis), Nβ (positive y-axis), and Nα (negative y-axis).

Figure 4. Transition network of Aβ in complex with three POPC lipids. The color of the communities
was chosen as in Figure 1, so that states with the same or similar descriptor values are represented
with the same color as in the Aβ-only system. However, the communities shown here in pink and
green are not found in either the Aβ-only or Aβ-GAG systems. See the caption of Figure 1 for further
explanations of the graphical representation of the TN.

As for the Aβ-only system, there is a community colored orange that harbors disor-
dered states with average descriptor values of (2.1, 0.1, 24.8). The underlying states have
slight deviations in their N-to-C distance, with increasing values from left to right. How-
ever, they are less expanded than the states of the yellow-colored community found for the
Aβ-only and Aβ-GAG systems, which is not present here. Moreover, some of the Aβ-POPC
states belonging to the orange-colored community feature some α-helical structure, which
is also different from the corresponding Aβ-only community. These states are located
towards the bottom of the community, since, as before, the y-axis distinguishes between
α-helical and β-sheet structures. Another difference is that the disordered states are only
sparsely populated in the Aβ-POPC system. Here, the two most populated communities
are the ones colored black and blue, which have average descriptor values of (0.6, 8.7, 3.1)
and (0.3, 4.9, 21.3), respectively, and thus mainly contain compact states with considerable
β-sheet content. On the opposite side along the y-axis, at the bottom of the TN, there is a
distinct cluster of states shown in green with average descriptor values of (15.7, 0.3, 24.6).
This community exhibits high amounts of α-helical structures. These states are infrequently
visited, but their spatial separation, determined using the Force Atlas 2 algorithm based on
their low connectivity with other communities, suggests that this community corresponds
to a local minimum in the free-energy landscape, separated from the other communities by
a high-energy barrier. The rightmost community along the x-axis, colored pink, exhibits the
states with the largest N-to-C distance of the peptide in the Aβ-POPC system, as indicated
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by the average descriptor values of (8.4, 5.0, 33.0). The first two descriptors indicate that the
states of this community feature both an α-helix and a β-sheet. This structural finding, as
also the location of this community in the TN, suggests that these states are intermediates
between the β-sheet-rich states of the blue community and the α-helical-rich states of the
green community. The fact that the pink community is also next to the orange community
results from the projection of the TN onto a two-dimensional plane. In a third dimension,
the orange community would appear closer to the viewer.

Comparison of this TN to the TN of the Aβ-only system highlights the conformational
change of Aβ towards folded states when in complex with lipids, as also revealed by the
descriptor distributions (Figure S1 and Table S1) and community populations (Table S2).
One can see a notable shift in the state population towards more compact states; the
current TN has its maximum extension in the y-direction, while for the Aβ-only system
the maximum TN extension is in the x-direction. Such a change in TN geometry did
not occur in the Aβ-GAG system where Aβ remained very expanded and only adopted
β-sheet structures but not α-helices. The change of TN geometry for the Aβ-POPC system
also reveals a change in the underlying free-energy surface, from being rather flat with
many local minima (Aβ-only and Aβ-GAG) towards multiple definite energy basins of
(semi-)folded Aβ conformations.

2.4. Interactions in the Aβ-GAG System

In order to understand the conformation switching of Aβ in presence of the GAG, we
investigated their molecular interactions as well as the impact of the GAG on the water
dynamics and Na+ distribution. As already mentioned, the GAG induces the structural
change in Aβ with hardly any direct interactions between the peptide and the GAG.
Thus, the mode of interaction differs notably to that of the Aβ–POPC interactions, as the
comparison between the two contact maps in Figure 3 shows. In the case of the Aβ-GAG
system, only some of the positively charged side chains of Aβ, in particular Arg5 and
the neighbored residue His6, are in direct contact with the GAG for about 9% of the time.
In contrast, the contact map of the Aβ-POPC system shows that some of the hydrophobic
residues interact with POPC during the whole course of the simulation, which causes the
conformation switching in Aβ [5].

Since Aβ and the GAG do not interact directly with each other, the effect of the GAG on
the peptide must therefore be indirect. We considered two possibilities for this, which both
could arise due to the high negative charge of the GAG: (i) a change in the water ordering
and dynamics, and (ii) a change in the Na+ ion distribution. To address (i), we determined
the water structure in close proximity to Aβ using the translational and orientational order
parameters T and Q (see Equations (2) and (3)). Table 1 shows the ensemble and time
average for both quantities considering all water molecules in the vicinity (i.e., within 10 Å)
of the Aβ peptide. As one can see, the order parameters for the water surrounding Aβ
show no significant difference between the Aβ-only and Aβ-GAG simulations. This also
applies to the water around the GAG molecule. Furthermore, the results did also not
change considerably when reducing the radius of the water molecules to be considered
in the calculation to 5 Åwithin the solutes. To probe the dynamics of the water molecules,
we used the lifetimes of the H-bonds formed between water and either Aβ or the GAG
(see Equations (4) and (5)). The results, also listed in Table 1, show that in either system
and for either molecule, the values for the stretching exponent β are about 0.5, reflecting
that the relaxation of the H-bonds deviates from exponential behavior, which is caused
by interactions between water and Aβ or the GAG. The deviation is strongest for the
GAG and smallest for Aβ in the Aβ-GAG system, which suggests that the presence of
the GAG molecule weakens the Aβ-water interactions. However, the differences in the
water dynamics between the molecules are only minor, as confirmed by the lifetimes of the
H-bonds. Interestingly, the lifetime of the H-bonds formed between the GAG and water is
an intermediate of that of Aβ in different environments, i.e., the high negative charge of the
GAG does not slow down the water dynamics. Overall, we did not find noteworthy effects
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of the GAG on the water structure and dynamics around Aβ that would explain its drastic
change in conformation.

Table 1. Translational and rotational order parameters T and Q of water in the vicinity (<10 Å) of
Aβ and the GAG molecule, as well as the average stretching exponents β and mean lifetimes 〈τ〉 of
H-bonds formed between water and Aβ or the GAG.

Molecule T Q β 〈τ〉/[ps]

Aβ-only 0.37 0.44 0.555 16.45

Aβ in Aβ-GAG 0.34 0.44 0.565 14.54

GAG in Aβ-GAG 0.34 0.38 0.499 15.39

To assess whether the negative charge has considerable effects on the distribution of
the ions in the system, we calculated the radial distributions, g(r), of Na+ and Cl− with
respect to the negatively and positively charged Aβ residues in the Aβ-only and Aβ-GAG
system. For the latter, we also determined the ion distribution around the GAG molecule.
While the Cl− distributions are not noteworthily affected by the GAG, the Na+ distribution
changed dramatically. Panels A and B of Figure 5 show the results for the carboxyl groups
of residues Glu22 and Asp23 for Aβ in the two systems, while all other distributions are
shown in Figures S3–S6 in the Supplementary Materials. Comparison of these distributions
reveals that in the Aβ-GAG system, the interaction between these two residues and the
surrounding sodium ions is an order of magnitude smaller compared to the simulation of
Aβ alone. This is a result of the strong attraction between the negatively charged COO−

and OSO−3 groups of the GAG and Na+ (Figure S7, discussed in detail in our previous work
on GAGs [23]), making the peptide a less favorable interaction partner. The withdrawal
of Na+ from Aβ descreens the electrostatic interactions between the peptide residues,
which enables a strong attraction between Glu22/Asp23 and Lys28. This is visible from
intrapeptide residue–residue contact maps shown in Figure 5C,D for the Aβ-only and
Aβ-GAG system, respectively. The salt bridge between Glu22/Asp23 and Lys28 in the
Aβ-GAG system results in a β-hairpin, which was already mentioned when discussing the
TN of that system, which shows as strong contacts perpendicular to the diagonal that reflect
the neighboring contacts along the sequence. In the Aβ-only system, such a perpendicular
trace of contacts is only slightly visible, resulting from short-lived interactions. Otherwise
the peptide is devoid of interactions beyond i, i + 3 along the sequence (i referring to the
residue number), which is in line with the observation from the TN of the Aβ-only system.

In summary, the effect of the GAG on Aβ results from notably changing the distribution
of the sodium ions in the vicinity of the peptide, as these ions are strongly attracted by the
GAG. As a consequence, the formation of intrapeptide salt bridges is facilitated, in particular
between residues Glu22/Asp23 and Lys28, which is further stabilized by subsequent β-
hairpin formation. There are no notable direct interactions between the GAG and Aβ
nor relevant effects of the GAG on the water order and dynamics, which could serve as
alternative explanations for the conformational changes in Aβ in the presence of the GAG.
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Figure 5. The radial distributions g(r) of Na+ (red) and Cl− (black) relative to the carboxyl groups of
the side chains of Glu22 and Asp23 of Aβ in (A) the Aβ-only system and (B) the Aβ-GAG system.
The intrapeptide contacts between the Aβ residues in (C) the Aβ-only system and (D) the Aβ-GAG
system. Two interaction partners were considered to be in contact if in a given frame of the trajectory
they are closer than 10 Å. The resulting number of contacts were normalized with respect to the total
number of time frames per trajectory, yielding a contact probability.

2.5. Discussion

First, we discuss the TN of the Aβ-only system, which is a prime example of what
one would expect the TN of an IDP to look like. This TN is characterized by the presence
of many states, most of which have small populations and many connections to other
states, corresponding to a broad but flat free-energy landscape. Furthermore, the vast
majority of states belongs to Aβ conformations that are purely random coils and vary
only in their spatial expansion. Upon running the Force Atlas 2 optimization algorithm of
Gephi, the states differing mainly in their N-to-C distance aligned along one axis, which we
assigned as the x-axis. The second axis in our TN representation, the y-axis, turned out to
represent the change in secondary structure, with positive y-values being associated with
more β-sheet structure and negative y-values with more α-helical structures. Translating
the TN to a free-energy surface, one can conclude that the peptide populates a shallow
energy basin corresponding to random-coil structures and large N-to-C distance variations.
Free-energy states with a defined secondary structure are rarely visited and quickly return
to the disordered states.

The TN of Aβ together with a GAG differs significantly from that of Aβ alone. The TN
was calculated using the same three descriptors as before, and the automatically assigned
layout of the nodes along the x- and y-axes did not change either. The TN clearly revealed
that Aβ undergoes a structural change in the presence of the GAG. While Aβ can still
adopt fully extended structures in the presence of the GAG, the most populated states are
found for more compact and more β-sheet rich structures. These structures contain a very
stable β-hairpin maintained by the presence of a salt bridge between Glu22/Arg23 and
Lys28, which is made possible by a descreening of the electrostatic interaction between
these residues due to a shift in the local sodium ion concentration away from the peptide.
These ions are instead attracted to the strongly negatively charged GAG. This distinct
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structural switching of Aβ in the presence of a GAG agrees with the experimental finding
that in the presence of GAGs, the random-coil to amyloidogenic β-sheet transition of Aβ is
accelerated, leading to a more rapid fibril formation [6]. This observation is of biological
relevance because GAGs are important components of the extracellular space, where they
can be located on the cell surface or within the extracellular matrix. There, they exist in
two forms: covalently attached to the protein core of proteoglycans or as independent
macromolecules. Studies have revealed a close connection between GAGs and amyloid
fibrils extracted from humans. Evidence indicates that GAGs actively participate in the
formation and stabilization of amyloid fibrils [9,24,25]. Here, we show for the first time
how GAGs can cause a structural change in Aβ from a random coil to a β-sheet structure.
This structural change is even more remarkable considering that Aβ and the GAG show
almost no direct interaction with each other and only GAG-induced changes in the local
peptide environment trigger a conformational change in Aβ.

Some of these observations should be investigated in further studies. We chose the
protonation state of Aβ to correspond to the physiological conditions of the extracellular
space, i.e., about pH 7.4. At this pH, the three histidine residues of Aβ can be assumed to
be neutral (the pKa value of the free His is 6.0). On the other hand, the local environment
of His6, His13, and His14 can change their pKa value. Moreover, it is known that aging
and Alzheimer’s disease can decrease the pH of the extracellular brain space to below
7 [26]. Therefore, it would be justified to simulate other protonation states of Aβ as we have
already carried out for Aβ in solution [27,28], which resulted in random coil to β-sheet
formation at the isoelectric point of Aβ (pI of 5.3) due to altered intrapeptide electrostatics.
We expect that modeling the histidine residues as His+, which would yield neutral Aβ,
would increase the interaction between the GAG and Aβ. This in turn would increase
the local Na+ concentration around Aβ since it would now be in close proximity to the
GAG molecule, while neutral Aβ would have a higher preference to form β-sheets. It
will therefore be interesting to observe how these different forces affect the behavior of
the peptide. Moreover, the observation that the GAG-induced decrease in sodium ion
concentration near Aβ leads to structural changes in the peptide should also be further
investigated by a titration simulation in which the concentration (and also the type of salt)
is gradually increased, starting at zero, to determine the dependence of the Aβ structure
on the salt. It is known from experiments that both the type and concentration of salts,
particularly the type of cation, have significant effects on the rate of aggregation and the
morphology of the resulting Aβ fibrils [29,30], but the effects of the salts on the peptide
monomer are still unknown.

The TN of Aβ interacting with three POPC lipids also revealed a disordered-to-ordered
transition in Aβ. However, certain differences exist compared to the Aβ-GAG system. First,
Aβ forms a complex with the lipids over the whole time of the simulation. This leads to
more compact peptide structures; fully extended structures did not occur anymore. Second,
Aβ can also adopt α-helical structures and not only β-sheet-rich states. Either folded state is
facilitated by hydrophobic interactions between the peptide and the lipids. The TN revealed
that the α-helical structures populate a community that is somewhat separated from the
other communities, which allowed us to conclude that the α-helical states correspond to a
separate local minimum in a multi-funnel free-energy landscape. Thus the interaction with
the POPC lipids not only shifts the main energy basin towards more compact configurations
with structure formation, but also leads to a rougher free-energy landscape. The results
of these simulations are consistent with a large body of experimental studies that attest to
a central role for lipids in amyloid aggregation and disease development. Lipids are an
integral component of many amyloid deposits in vivo, where their presence can influence
fibril nucleation, morphology, and mechanical properties [31]. It was demonstrated that
the toxicity of Aβ aggregates correlates with the amount of their β-sheet content, which,
in turn, is increased by lipids present during Aβ aggregation [32]. With respect to helical Aβ
structures, this appears to be the prerequisite for membrane incorporation of Aβ [33–37].
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3. Materials and Methods
3.1. Molecular Dynamics Simulations

In all simulations, Aβ was simulated as Aβ1−42 with the histidine residues modeled
as neutral and no terminal capping groups, leading to an overall peptide charge of 3−.
The three systems of only Aβ, Aβ plus GAG, and Aβ with three POPC lipids (henceforth
called Aβ-only, Aβ-GAG, and Aβ-POPC, respectively) were simulated using the GRO-
MACS simulation package [38]. Since two of the three systems were originally part of
different studies [5,15,19], some of the MD simulation settings (but not the force field
parameters and ion concentration) differ slightly between the simulations. While this
is not ideal, these differences appear to be negligible given the remarkable results pre-
sented below. In each simulation, the Aβ peptide was modeled using the CHARMM36m
force field [39]. It has been found in previous studies that the CHARMM36m force field
is best suited for modeling both monomeric Aβ [15] as well as amyloid aggregation [40].
CHARMM36m is a polypeptide force field that can be combined with the original force field
CHARMM36 [41] for modeling the POPC lipids. For the GAGs, we used the parameters
as available through the Glycan Reader & Modeler module [42–44] of the CHARMM-GUI
web server [45], as in our previous studies of GAGs alone and in interaction with multiple
Aβ16−22 peptides [23,46]. The preparation of the systems followed the same standard
protocol: First the solute(s) were placed in the simulation box, which was then filled with
TIP3P water molecules [47] together with Na+ and Cl− ions to neutralize the systems and
achieve a physiological salt concentration of 150 mM. After equilibration of the systems,
each of them was simulated under NpT conditions at 1 bar, which was accomplished using
a Parrinello–Rahman pressure coupling scheme [48]. The simulations of Aβ-GAG and
Aβ-POPC were carried out at 310 K using a Nosé–Hoover thermostat [49,50], while the Aβ
system was simulated at 300 K using a velocity rescaling thermostat [51]. In the case of the
Aβ-GAG and Aβ-POPC, the simulations were carried out for 4 µs involving 1 × 4 µs and
2 × 2 µs, respectively, while the Aβ system was simulated for 1 × 6 µs. All simulations
were achieved under periodic boundary conditions in all directions and the particle-mesh
Ewald method [52] was used for calculating the electrostatic interactions. The cutoffs for
van der Waals and Coulomb interaction calculations in real space were both set to 12 Å.
The minimum distance between any solute atom and any face or edge of the simulation
box was set to 12 Å. All MD simulations were run on the supercomputer JURECA [53].

3.2. Transition Networks

In order to construct a TN, one chooses a set of n features that describe the process
under study. These features are evaluated by descriptor functions { fi} that act on a given
conformation x(t) and project the 3N-dimensional phase space onto an n-dimensional state
S(t)

x(t) 7→ S(t) = [ f1(x(t)), f2(x(t)), . . . , fn(x(t))]. (1)

Here, x(t) is the conformation of an MD simulation at time t and N is the number of
particles within the conformation. A crucial point in constructing a TN is the choice of
descriptor functions. As discussed in our previous work [19,20], the number and type
of descriptors have a huge impact on the resulting TN. While the choice of the type of
descriptor functions is closely related to the process under study, the ideal number of
descriptors is often up to trial and error. Choosing fewer descriptors yields a simpler
TN, though more information is lost due to the projection onto a low-dimensional space.
On the contrary, choosing more descriptors might yield a TN that is too complex to be
intuitively interpreted. Here we decided to use the same three descriptor functions for the
studied systems, which allows easy comparison between them. To describe the process of
conformation switching of Aβ, we chose (i) the number of residues adopting an α-helical
structure (Nα), (ii) the number of residues adopting a β-sheet structure (Nβ), and (iii) the
distance between N- and C-terminus, called the N-to-C distance (dNC, in Å) as a measure
of compactness of the peptide. The TNs were calculated with ATRANET, which is a Python
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package developed by our group. The software has been optimized to handle large amounts
of MD data with many different descriptor functions to choose from, while still providing
a dynamic framework to easily add custom descriptor functions [19,20]. ATRANET is
available at https://github.com/strodel-group/ATRANET (accessed on 1 May 2023).

The transition matrix created by ATRANET can be visualized with the network analy-
sis and visualization software Gephi 0.10 [54,55]. For the layout of the networks we chose
the Force Atlas 2 algorithm, which is a force-driven algorithm that takes into account the
connectivity of pairs of nodes and their relative degree. As a result, nodes that have more
transitions between them are displayed closer to each other. Thus, a large spacial separation
in the layout of the TN corresponds to a large distance between the respective states in the
high-dimensional phase space. Additionally, we chose the size of the nodes to be propor-
tional to their diagonal entries in the transition matrix as a state with more self-transitions
is more stable (i.e., has a lower free energy), while nodes with fewer self-transitions reflect
higher-energy states. For visualization purposes, the depicted sizes are adjusted based
on the minimum and maximum values for each network on a linear scale from 1 to 10.
In the following, the size of the nodes will also be referred to as the population of the states.
In addition, we used Gephi’s modularity class feature to divide the network into local
communities, which makes it easier to identify groups of nodes that are strongly connected
and have high similarity between states. In terms of a free-energy perspective, the states of
a community belong to the same energy basin of an underlying multi-funnel free-energy
landscape [56].

3.3. Analysis of Water around the Solutes

To elucidate possible effects of the water solvating the peptide or the GAG, we ana-
lyzed the water structure and dynamics around the solutes. For determining the water
structure, we used the translational order parameter T and orientational order parameter
Q [57]. The translational order parameter is given by

T =
1
ζc

∫ ζc

0
|g(ζ)− 1|dζ (2)

where g refers to the oxygen–oxygen radial distribution function (RDF) and ζ = r · ρ1/3

is a dimensional variable dependent on the radial distance r and the density of the water-
oxygen atoms (ρ = NO/V). The parameter ζc = 2.8 is chosen such that g(ζc) ∼ 0. The
order parameter T can be used to measure whether or not long-range interactions are
present in a medium. For an ideal gas, the RDF is equal to 1 and hence T = 0. In the case
of a crystal, the RDF is different from 1 even for large distances, so T is large in a system
with long-range order. The orientational parameter Q measures the ability of neighboring
water molecules to produce tetrahedral arrangements. It is given by

Q = 1− 3
8

3

∑
j=1

4

∑
k=j+1

(
cos ψjk +

1
3

)2
(3)

where ψjk is the angle between neighboring O atoms j and k with central atom i. The
value of Q can range from 0 to 1, where 0 corresponds to a random distribution of water
molecules and 1 to a perfect tetrahedral arrangement.

To probe the dynamics of the water in the first solvation shell, we made use of the
lifetimes of the hydrogen bonds (H-bonds) between water and the solutes (Aβ or GAG).
To this end, we performed short simulations of 100 ns for the Aβ and Aβ-GAG system,
using the same parameters as described above but writing out data every 0.5 ps to resolve
the H-bond lifetimes. These simulations were analyzed in terms of the H-bond existing
function h(t0 + t), which is either 1 or 0 at a given time, depending on whether or not a
specific H-bond is present. To improve statistics, multiple time origins t0 are used in the
calculation and the average is taken over all time origins and possible H-bonds. The mean
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H-bond lifetime 〈τ〉 can then be determined by calculating the autocorrelation function of
the averaged h(t0 + t) and fitting a stretched exponential function to it:

c(t) = exp

{(
− t

τ

)β
}

(4)

where c(t) refers to the autocorrelation function, τ is the lifetime, and β is the stretching fac-
tor. From this, the mean lifetime 〈τ〉 can be calculated via integration, which is analytically
solved by the gamma function Γ:

〈τ〉 = τ

β
Γ
(

1
β

)
(5)

4. Conclusions

We constructed the transition networks (TNs) revealing the conformational preferences
and conversions of the amyloid β-peptide Aβ1−42 (here simply called Aβ) under different
conditions: as a single peptide in solution, Aβ in the presence of the GAG chondroitin-4-
sulfate with sixteen subunits, and Aβ in complex with three POPC lipids. For defining
the states of each TN, we chose the same three descriptors: (i) the number of residues
with an α-helical structure, (ii) the number of residues with a β-sheet structure, (iii) the
peptide distance from end-to-end. Using the same descriptors allows direct comparison
of the resulting TNs and identification of changes in the underlying free-energy surfaces
between the different systems. Moreover, the choice of a low-dimensional projection of the
phase space due to using only three descriptors allows a very intuitive interpretation of the
resulting TNs and directly visualizes the conformation switching of Aβ. In particular, we
have shown how the interaction of Aβ with a GAG or POPC lipids leads to a transition
from disorder to order of the intrinsically disordered monomer. Taking advantage of the
similarities of the transition network layout, we can infer a shift of the main basin of
the underlying free-energy surface from disordered conformations with large end-to-end
separations to more compact conformations with high amounts of β-sheet. The overall
increase in β-sheet-rich structures could, in turn, serve as a nucleus for amyloid aggregation
and the formation of toxic oligomers. Our findings contribute to the growing body of
knowledge on the role of GAGs and lipids in Aβ aggregation and the development of
Alzheimer’s disease.
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Supplementary Tables

Nα Nβ dNC/[Å]
Aβ only 0.8±1.9 2±3 34±17
Aβ in Aβ-GAG 0.2±0.7 10±4 28±11
Aβ in Aβ-POPC 3±5 5±4 20±12

Table S1. Mean and variance of the three descriptors used for the transitions networks of the Aβ-only,
Aβ-GAG, and Aβ-POPC systems. The descriptors are: i) the number of residues forming α-helical
structure (Nα), ii) the number of residues forming β-sheet structure (Nβ), iii) the N-to-C distance
(dNC).

Community Orange Yellow Black Blue Pink Other
Aβ-only 20.0% 40.2% 8.7% 19.7% 7.1% 4.3%
Aβ-GAG 0.1% 1.0% 8.3% 70.3% 16.7% 3.6%
Aβ-POPC 13.1% - 22.3% 54.9% 4.5% 5.2%

Table S2. Population of the transition network communities (identified by color) of the three Aβ

systems.
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Supplementary Figures

Figure S1. Probability distributions for the three descriptors used in the transitions network of the
Aβ-only system (left), Aβ-GAG system (center), and Aβ-POPC system (right). The descriptors are:
i) the number of residues forming α-helical structure (Nα, top), ii) the number of residues forming
β-sheet structure (Nβ, middle), iii) the N-to-C distance (dNC, bottom).
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Figure S2. Intermolecular contact maps for Aβ interacting with a GAG molecule. The interactions
are separated into residue–monosaccharide interactions. Two interaction partners were considered to
be in contact if in a given frame of the trajectory they are closer than 10 Å. The resulting number of
contacts were normalized with respect to the total number of time frames per trajectory, yielding a
contact probability with a maximum value of about 8.5% (see color scale on the right).
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Figure S3. The radial distribution g(r) of Na+ (red) and Cl− (black) relative to the carboxyl groups
of negatively charged Aβ residues in the Aβ-only system.
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Figure S4. The radial distribution g(r) of Na+ (red) and Cl− (black) relative to the charged groups of
positively charged Aβ residues in the Aβ-only system.
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Figure S5. The radial distribution g(r) of Na+ (red) and Cl− (black) relative to the carboxyl groups
of negatively charged Aβ residues in the Aβ-GAG system.
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Figure S6. The radial distribution g(r) of Na+ (red) and Cl− (black) relative to the charged groups of
positively charged Aβ residues in the Aβ-GAG system.
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Figure S7. The radial distribution g(r) of Na+ (red) and Cl− (black) relative to the COO− (left) and
OSO−3 (right) groups of the GAG in the Aβ-GAG system.
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The energy landscape of Ab42: a funnel to disorder
for the monomer becomes a folding funnel for
self-assembly†

Moritz Schäffler,ab David J. Wales c and Birgit Strodel *ab

The aggregation of amyloid-b (Ab) peptides, particularly Ab1–42, plays a

key role in Alzheimer’s disease pathogenesis. In this study, we inves-

tigate how dimerisation transforms the free energy surface (FES) of the

Ab1–42 monomer when it interacts with another Ab1–42 peptide. We

find that the monomer FES is a structurally inverted funnel with a

disordered state at the global minimum. However, in the presence of a

second Ab1–42 peptide, the landscape becomes a folding funnel,

leading to a b-hairpin state. Using first passage time analysis, we

analyse the pathway for the transition from disordered to the

b-hairpin state, which highlights the initial formation of a D23–K28

salt bridge as the driving force, together with hydrophobic contacts.

Alzheimer’s disease, a neurodegenerative disorder, is linked to
the aggregation and misfolding of Ab peptides, with Ab42 being
especially prone to forming insoluble fibrillar structures in the
brain.1 As a monomer, Ab is an intrinsically disordered peptide
(IDP), lacking a stable secondary or tertiary structure.2,3 However,
during the aggregation process, Ab undergoes conformational
changes, leading to more ordered structures.4 Understanding
these structural transitions is crucial for elucidating the molecular
mechanisms underlying Alzheimer’s pathology, as they are pivotal
in the formation of toxic oligomers and fibrils.5 Studying amyloid
aggregation at the structural level in experiments is challenging
due to the heterogeneity and transient nature of amyloid oligo-
mers, as their diverse and short-lived states complicate detailed
characterisation. Techniques such as nuclear magnetic resonance
(NMR) spectroscopy, cryogenic electron microscopy (cryo-EM),
and X-ray crystallography usually struggle to resolve these small,
dynamic oligomeric intermediates.6 Molecular simulations can

therefore be helpful, providing insights into the conformational
dynamics and aggregation pathways of Ab peptides.7

The energy landscapes of IDPs feature complex topographies
with multiple minima representing various conformational states,
which may correspond to an evolved intrinsically multifunctional
capability.8 The energy landscapes for amyloid aggregation are
even more heterogeneous, reflecting the diverse conformational
and aggregation states amyloid proteins can adopt.9 In a previous
study that applied NMR-based metadynamics simulations to Ab40,
the free energy landscape revealed what the authors called an
‘inverted landscape’, in which the global minimum consists of
disordered structures, while higher energy regions contain tran-
siently structured conformations, suggesting increased structur-
ing at higher temperatures.10 This result contrasts with the
multifunnel energy landscapes characterised for IDPs,8,11 which
feature low-lying minima of similar energy separated by substan-
tial energy barriers that trap the system in metastable states. In
this study, we determine the free energy surface (FES) of Ab42 as a
monomer and for an initial aggregation step into b-sheet-rich
dimers, offering fresh insights into the structural dynamics dur-
ing Ab42 aggregation. We suggest that the monomer landscape
might be described as a ‘disordered funnel’, as explained below.

To obtain the FES of the monomer and the dimer, we performed
molecular dynamics (MD) simulations using the all-atom force field
CHARMM36m12 and sampled 6 and 24 ms for the Ab42 monomer and
dimer, respectively. The Ab42 peptides in each frame of the MD
simulations of both monomer and dimer are characterised by the
distribution of reciprocal interatomic distance (DRID) metric, a
structure-specific dimensonality reduction method known for preser-
ving system kinetics effectively.13,14 We used the Ca atoms of
structurally important residues of Ab42, namely D1, F19, D23, K28,
L34, and A42, as reference atoms to define the DRID metric. For each
of the reference atoms, the first three moments of the DRID are used
to define the state vector, resulting in a 3N - 3Nc dimensionality
reduction, where N is the number of atoms in the molecule and Nc

the number of reference atoms. After clustering, the trajectory of
states is used to calculate the rate matrix of transitions between them,
which is translated into free energies of the states (minima) and
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transition states that connect them.15,16 The resulting FESs are
visualised using disconnectivity graphs,17,18 where the branches
terminate at the energies of local minima, and the vertical scale is
the free energy. These branches are joined at the threshold where the
free energy exceeds the value for the highest transition state on the
lowest path between them. Hence the branches correspond to a
segregation of the minima into sets that can interconvert amongst
themselves at any given level on the vertical scale. Similar states
leading to the same local minimum are grouped in the same basin,
facilitating intuitive analysis of the underlying structure of the land-
scape and identification of folding funnels. Central to our investiga-
tion is the application of first-passage time (FPT) distribution analysis
to extract the kinetics of transitions between different states.16,19 This
approach allows us to address the temporal aspects of the conforma-
tional changes, shedding light on the pathways and rates governing
the transitions between disordered and b-sheet-rich conformations.
Detailed information on the methods can be found in the ESI.†

First, we discuss the free energy surface of the Ab42 monomer, for
which the disconnectivity graph is shown in Fig. 1. The FES exhibits
one main funnel leading to the global minimum. In contrast to the
usual landscapes of folded proteins, the global minimum corre-
sponds to a disordered state of the Ab42 monomer (labeled as state
D for disorder). Conformations featuring partial secondary struc-
ture, such as a b-hairpin characteristic for Ab oligomers20 or the S-
shape conformation that is the usual building block of fibrils,4 are
found as excited states in the FES of the monomer with energies of
DFmon

H = 2.3 kT and DFmon
S = 3.2 kT respectively. Here, an excited

state is defined as a higher free energy minimum, not to be
confused with an electronic excited state. This organisation of the
FES with (partially) folded states at the top of the funnel, and the the
disordered states at the bottom, has previously been called an
‘inverted free energy landscape’.10 We suggest the nomenclature
‘structurally inverted funnel’ or simply ‘disordered funnel’, since it is
the structure that is inverted, not the funnel.

To illustrate the FES of the Ab42 dimer and allow direct
comparison to the monomer, we treat the two chains in the dimer
systems as individual peptides and present the disconnectivity
graph of the dimer for an Ab42 peptide in the environment of the
second Ab42 peptide. This representation further allows us to use
the same DRID metric to calculate the states, highlighting the
structural changes in the presence of another Ab42 peptide. The
resulting FES for the Ab42 dimer, shown in Fig. 2, exhibits the
topology of a folding funnel leading to a b-hairpin state with
significant b-sheet content (hence labeled state B). Projecting the
global minimum of the monomer FES (state D) onto the dimer FES,
reveals that the disordered state appears as an excited state in the
dimer FES, with a free energy difference of DFdim

D = 3.9 kT. Similarly,
the global minimum of the dimer FES (state B) can be projected
onto the monomer FES (see Fig. 1), where it is likewise an excited
state, with a free energy difference of DFmon

B = 3.6 kT. We note that
the D state in the dimer FES is not yet a dimer, but two disordered
monomers, while the b-hairpin in the B state of the dimer is a result
of interpeptide interactions due to dimerisation (Fig. S1, ESI†).

To analyse the timescales associated with the interconversions
between the disordered state D and the b-hairpin state B, we
calculated the first passage time distribution for these transitions

(see ESI† for details). The resulting FPTs for the monomer and
dimer are shown in the lower right corner of Fig. 1 and 2,
respectively. For the monomer, the transition times are tmon

D-B B
15 ns and tmon

B-D B 3 ns. While the transition time from the
disordered state to the excited b-hairpin state is five times longer
than the reverse transition, the transition to the excited state is
still relatively fast. In contrast, for the dimer the transition times
are tdim

D-B B 4 ns and tdim
B-D B 300 ns, with a ratio of about 75 for

the transition from the global minimum to the excited disordered
state with respect to the reverse transition. Thus, we observe a
separation of timescales in the dimer, but not the monomer.

These results highlight the differences between the FES of
the Ab42 monomer and dimer. For the disordered funnel of the
monomer, higher local minima are readily accessible and the
time scales of interconversions between them are of similar

Fig. 1 Free energy disconnectivity graph for the FES of the Ab42 monomer.
The energies are given in units of kT (see scale bar on the right), with k the
Boltzmann constant, and T the absolute temperature. The branches are
colored according to the average number of residues in b-sheet conformation
in the ensemble of structures belonging to the corresponding minimum,
ranging from blue (no b-sheets) to red (13 residues involved in b-sheets).
Representative structures of some minima are shown, where D (for ‘disor-
dered’) is the global minimum of the monomer FES and B (for ‘b-sheet’) is the
global minimum of the dimer FES projected onto the monomer FES. The
structures are shown in the cartoon representation, with b-sheets highlighted
in yellow and the centroids used in the DRID metric shown as spheres (blue for
positive charge at the N-terminus and K28 side chain, red for negative charge
at the C-terminus and D23, magenta for the hydrophobic F19 and L34). In the
bottom right corner, the probability distribution (lnt) of the first passage time t
for transitions between states D and B is shown on a logarithmic scale.
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magnitude, while transitions to excited states from the ordered
global minimum of the dimer are relatively slow. Thus, while
we characterise the monomer FES as a disordered funnel, the
dimer FES is closer to the expected form for a folded protein.
Our FES and timescale analysis of Ab42 further confirms the
predictions made for the energy landscapes of folded and
disordered proteins based on the slope of the free energy
funnels.21 Chong and Ham determined the FESs of two folded
proteins, which exhibited steep folding funnels, and of an IDP,
which has a gentler slope and led to similar transition times to

and from the global minimum. A significant difference from
our study is that the global minimum of the IDP they consid-
ered is a partially folded state, whereas at the global minimum
of Ab42 is essentially fully disordered.

To gain further insight into the structural transition from
disordered state D to folded state B in the Ab42 dimer, we extracted
structural pathways associated with the fastest transition in the
dimer FES (see ESI† for details). From the ensemble that includes
all the possibilities D - B we identified three characteristic path-
ways (Fig. S2 in ESI†), by associating structures from the MD
simulations with the states in the kinetic model. These pathways
include three intermediate states (I1, I2, I3), which are marked on
the FES in Fig. 2. Here, the most important of these three pathways,
shown in Fig. 3, is discussed along with the FPTs associated with
the fastest transitions between sequential states.

The initial transition D - I1 is characterised by a scissor
motion, which closes the relatively extended conformation to a
hairpin-like structure. The main driving force for this movement is
the formation of a salt bridge between D23 and K28, which is then
followed by the establishment of hydrophobic contacts between
the strands on both sides of the turn, involving residues 17LVFFA21

and 30AIIGLMV36. The formation of these intrapeptide contacts
occurs cooperatively with the establishment of interpeptide con-
tacts between the hydrophobic regions of both peptides (Fig. S3
with in-depth discussion in the ESI†). In state I1, the most
important hydrophobic contact is between F19 and L34, which
is structurally suboptimal and therefore shifts to F19–I32 in state
I2. In fact, the intermediate I1 is B 1 kT higher in energy than state
D, and there is a significant barrier of B 9.4 kT that needs to be
overcome for the D - I1 transition. This barrier is reflected in the
four to nine times slower transition time for this first transition
compared to the subsequent transitions. Nonetheless, the first
passage time associated with the process tdim

D-I1 B 780 ps is still
very fast compared to the height of the energy barrier, which can
be explained with the FPT probability distribution (Fig. S4 in ESI†).
This distribution features both fast and slow relaxation modes,
resulting in a mean first passage time that appears slow, which is
also reflected in the high free energy barrier. Hence, analysis of
the full FPT distribution once again reveals important details that
are not evident from average rates.19

After reaching I1, the system moves downhill in energy to the
global minimum. After the positions of the hydrophobic con-
tacts have been optimised in I2, hydrogen-bonds form between

Fig. 2 Free energy disconnectivity graph for the FES of the Ab42 dimer.
The branches are colored according to the average number of residues in
b-sheet conformation in the ensemble of structures belonging to the
respective minimum, ranging from blue (no b-sheets) to red (19 residues
involved in b-sheets). For further details, see the caption of Fig. 1. The
cartoons of all indicated dimer structures are shown in Fig. S1 (ESI†).

Fig. 3 Fastest pathway from the intrinsically disordered state (D) to the global minimum (B) in the dimer free energy surface. The spheres represent the
centroids used in the DRID metric. The FPTs associated with the fastest transition between the states along the pathway are shown above the arrows,
which were calculated separately for each transition and therefore do not add up to the total transition time associated with the full pathway, where all
possible recrossing events are included. Fig. S1 (ESI†) shows the pathway again, but with both peptides within the dimer.
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the strands, leading to a short antiparallel b-sheet in I3.
Inspecting the dimer FES, we see that the intermediate I3 is
already located in the central folding funnel, close to the global
minimum. The final transition I3 - B, further stabilizes the
b-sheet and involves a reorientation of the C-terminal.

The elucidation of the pathway for structure formation during
Ab42 dimerisation confirms the relevance of the D23–K28 salt
bridge for turn formation.22,23 Our results reveal that the creation
of this salt bridge initiates the turn, leading to b-hairpin formation.
A recent study demonstrated that Ab oligomerisation depends on
this specific b-hairpin motif, as variants of the Ab peptide that
cannot adopt this hairpin structure do not produce oligomers.20 In
addition, this b-hairpin structure is crucial for mediating Ab
toxicity, as demonstrated by a study in which Ab oligomers with
a permanently present hairpin—achieved by introducing a disul-
fide bridge between residues 21 and 30—proved to be particularly
toxic.24 Our observations of the hydrophobic contact formation are
consistent with with a recent low-temperature solid-state NMR
spectroscopy study of freeze-trapped Ab40 oligomers.25 Tycko and
coworkers identified b-hairpin conformations with contacts within
the peptide and between the two main hydrophobic segments of
Ab40 that developed within 1 ms. The primary hydrophobic contact
was located between the aromatic sidechain of F19 and aliphatic
sidechains in residues 30–35, which fully agrees with the structures
in the folding funnel of the dimer FES determined here.

In conclusion, our study provides new insight into the structural
dynamics of Ab42 with implications for Alzheimer’s disease pathol-
ogy. Through analysis of free energy landscapes and first-passage
time distributions, we have elucidated key aspects of Ab42 confor-
mational transitions from a disordered to a b-sheet forming state.
Our results reveal distinctive features in the free energy landscapes
of Ab42 monomers and dimers, highlighting the impact of the
molecular environment on structural stability and propensity for
aggregation. Specifically, we observe that the FES of the monomer
resembles a structurally inverted folding funnel, where disordered
states are lowest in energy. In contrast, the lowest minima for the
dimer are characterised by more ordered structures, predominantly
consisting of b-hairpins, which form as Ab42 folds upon binding to
the hydrophobic region of another Ab42 peptide. Thus, the increase
in hydrophobicity in the environment of Ab42 appears to be crucial
for its folding during self-assembly. Our analysis of first-passage
times indicates that the FES of the monomer is relatively flat, with
excited states (higher free energy minima) more readily accessible
compared to the dimer. This organisation reflects the disordered
nature of the low-lying states for the monomeric form of Ab42.

Our pathway analysis identifies key intermediates and struc-
tural rearrangements involved in the transition from disordered
to folded states, providing mechanistic insights into the initial
aggregation steps for Ab42. Starting from an extended conforma-
tion, the peptide chain undergoes a scissor-like motion, estab-
lishing a salt bridge between residues D23 and K28, followed by
the formation of hydrophobic contacts. Subsequently, these
contacts reorganise, leading to b-hairpin structures. Our results
should contribute to a deeper understanding of the molecular
mechanisms underlying Alzheimer’s disease pathology, and may
inform the development of targeted therapeutic interventions.
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ELECTRONIC SUPPLEMENTARY INFORMATION:

The energy landscape of Aβ42: a funnel to disorder for the monomer
becomes a folding funnel for self-assembly

Moritz Schäffler,a,b David J. Wales,c and Birgit Strodela,b,∗

1 Methods

1.1 Simulation Details
In this study, molecular dynamics (MD) simulations were con-
ducted for the Aβ1−42 monomer and dimer. In both systems,
Aβ1−42 was modeled with neutral histidine and no terminal
capping groups, resulting in an overall peptide charge of 3−.
The simulations were performed using the GROMACS simulation
package.1 As the monomer and dimer simulations where origi-
nally performed as part of different studies, some of the simu-
lation settings differ slightly, but the most relevant settings are
identical, in particular the force field parameters and ion concen-
tration are the same. We are confident that the slight differences
in the setup do not affect our key conclusions.

The CHARMM36m force field2 was employed in all simula-
tions. Previous research has revealed that the CHARMM36m
force field provides an accurate representation of monomeric Aβ 3

and is well suited for simulating amyloid aggregation phenom-
ena.4

All system preparations followed the same protocol: the pep-
tide(s) was(were) positioned within the simulation box with a
minimum distance of 1.2 nm between any peptide atom and the
simulation box faces or edges. The box was subsequently filled
with TIP3P water molecules,5 along with Na+ and Cl− ions to
achieve system neutralization and a physiological salt concen-
tration of 150 mM. After system equilibration, each system was
simulated under N pT conditions at 1 bar, using the Parrinello-
Rahman pressure coupling scheme.6 The dimer simulations were
conducted at 298 K using the Nosé-Hoover thermostat,7,8 while
the monomer system was maintained at 300 K using a veloc-
ity rescaling thermostat.9 In all simulations, periodic boundary
conditions in all dimensions were applied, with the particle-mesh
Ewald method10 employed for the calculation of electrostatic in-
teractions. The calculation of van der Waals and Coulomb inter-
actions in real space were performed with a cutoff at 1.2 nm.

The total simulation time for the Aβ1−42 monomer accumu-
lated to 6 µs. For the dimer, three simulations were conducted,

a Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düs-
seldorf, 40225 Düsseldorf, Germany
b Institute of Biological Information Processing, Structural Biochemistry (IBI-7),
Forschungszentrum Jülich, 52428 Jülich, Germany
c Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cam-
bridge, U.K.
∗ Correspondence: b.strodel@fz-juelich.de

each initiated from two extended Aβ1−42 monomers separated
by at least 2 nm. Due to the initial peptide extended conforma-
tions, a relatively large simulation box was necessary to prevent
self-interaction across periodic boundary conditions, leading to
an extensive system predominantly composed of water. To con-
serve computational resources, after an initial 2 µs simulation
per dimer simulation, the peptide structures of the last MD frame
were extracted and resolvated in a smaller simulation box, as at
this point the two peptides had already formed a dimer. Subse-
quently, after a brief N pT equilibration, another 6 µs per dimer
system were collected, resulting in a cumulative simulation time
of 3×8 µs for the Aβ1−42 dimer.

All MD simulations were run on the supercomputer JURECA.11

1.2 Distance of Reciprocal Interatomic Distances Metric

In order to partition the sampled conformational space over the
course of the MD simulation into discrete microstates, we used
the distribution of reciprocal interatomic distance (DRID) met-
ric12 for subsequent structural clustering. Given the size of the
Aβ1−42 monomer, structure-based clustering in Cartesian coordi-
nates becomes a challenging task. One therefore usually relies on
some form of dimensionality reduction, which should preserve as
much of the kinetics and structural features as possible. It has
been shown that the DRID metric is a good candidate to meet
both of these criteria.12,13 A key feature of the DRID metric is
the use of the multiplicative inverse (reciprocal) distances, which
highlights the difference in short distances, while not neglecting
changes in large distances completely.

To apply the DRID metric, two essential atom sets are defined:
a set of m centroids C representing key structural elements, and a
set of N reference atoms A (excluding atoms that are covalently
bound to the centroid). For a given structure, the distribution of
reciprocal interatomic distances for each centroid i and the first
three moments of that distribution (µi,νi,ξi) are calculated, re-
sulting in a 3m dimensional vector for each structure (i.e., each
frame of the MD trajectory). The moments are defined as follows,

µi =
1

N−1−nbi

N

∑
i

1
di j

, (1)

νi =

[
1

N−1−nbi

N

∑
i

1
(
di j−µi

)2

]1/2

, (2)
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ξi =

[
1

N−1−nbi

N

∑
i

1
(
di j−µi

)3

]1/3

, (3)

where di j denotes the distance of atom a j ∈ A to centroid ci ∈
C , nbi is the number of covalent bonds of a centroid, and N the
number of atoms in A . The distance metric s jk between a pair of
conformations j and k in DRID space is defined as

s jk =
1

3m

m

∑
i

[
(µ j

i −µk
i )

2 +(ν j
i −νk

i )
2 +(ξ j

i −ξ k
i )

2
]1/2

. (4)

To group the structures into states, we performed regular space
clustering in DRID space, as implemented in the PyEMMA python
package,14 using the s jk distance metric.

For studying the conformational space of the Aβ1−42 peptide,
we chose as centroids the Cα atoms of structurally important
residues, namely D1, F19, D23, K28, L34 and A42, resulting in
an 18-dimensional DRID space. We chose D23 and K28, because
they have been identified in previous studies to form a salt bridge
in the β -hairpin state.15,16 The residues F19 and L34 are mem-
bers of the hydrophobic core regions and have been shown by
NMR spectroscopy to form contacts in Aβ oligomers,17 while the
termini D1 an A42 where included to capture the overall com-
pactness of the peptide. For clustering, we chose a cutoff of
sc

jk = 0.02 nm−1, which resulted in 447 states for the monomer
and 511 states for the dimer.

To evaluate the robustness of the FES derived from project-
ing structures into the DRID space, we computed the FES for
the dimer system using various DRID metrics. Specifically, we
selected five times 6 random residues of the peptide chain as cen-
troids for defining the DRID metric, and constructed five FESs.
All FESs exhibited a consistent single funnel structure, similar
to the FES presented in this manuscript (Fig. 2). To assess the
predictability of our results, we calculated the overlap between
the ensemble of states corresponding to the global minimum of
the FES presented in Fig. 2 and those of the randomly gener-
ated FESs, yielding an average overlap of ∼45%. When the three
most prominent states next to the global minimum but within the
same basin are further included, there is an overlap of at least
77% between the current and the random FES. Moreover, the in-
trinsically disordered state consistently appeared as a high-energy
excited state in all FESs. These findings underscore the robustness
of the DRID metric, showing its reliability relatively independent
of centroid selection.

1.3 Free Energy Calculation

The free energy surface (FES) of a protein determines its struc-
tural and dynamical properties and is therefore of great interest if
one wants to understand the protein function. Here, we calculate
the free energies associated with the states determined by struc-
tural clustering in DRID space, treating each state as a minimum
in the FES.18 The free energy of the minima Fi are calculated via
their occupation probability pi,

Fi =−kBT log(pi), (5)

where kB is the Boltzmann constant and T the temperature of
the system. The rate matrix R, representing the state-to-state
rates r jk between minima j and k observed in the MD simula-
tions, is used to derive the transition state free energies Fjk via the
Eyring–Polanyi formulation. The rate matrix was derived from
the transition matrix of the MD trajectory in DRID space, which
represents the corresponding right stochastic matrix. Assuming
Markovian dynamics, these free energies can be calculated as fol-
lows:

Fjk = Fk− kBT log(k jk)+ kBT log
(

kBT
h

)
, (6)

where h is the Planck constant. In a perfectly converged system,
the transition state free energy for both interconversion rates be-
tween minima j and k should be the same, i.e. Fjk = Fk j. How-
ever, for a finite MD trajectory this equality is rarely achieved. To
minimize the error we average over both rates,

F ts
jk =

Fjk +Fk j

2
, (7)

giving us an estimate for the transition state free energy F ts
jk be-

tween minima j and k.

It is important to note that it is the rates that correspond to ob-
servable quantities, and the free energy barriers simply provide a
convenient way to visualise the corresponding landscape. Equa-
tion (6) translates the rates into barriers on a log scale. Multiply-
ing all the rates by a constant factor would preserve detailed bal-
ance and shift the connections in the disconnectivity graph uni-
formly, without affecting the organisation of the landscape. The
relative free energies of the minima in the graph and the barri-
ers between them reproduce the equilibrium distribution and the
rates by construction. Hence we obtain insight into the organ-
isation of the landscape in a representation that will faithfully
reproduce the stationary distribution and the rates.

To assess the assumption of Markovian dynamics, we con-
ducted a Chapman-Kolmogorov test on the kinetic network of the
dimer system, following the standard PyEMMA protocol19 with a
discrete timestep of τ = 20 ps. The number of metastable states
was set to five, representing the number of states on the pathway
from the disordered state D to the global minimum B. Figure S5
illustrates the comparison between the estimated and predicted
transition probabilities between metastable states for lagtimes up
to 100 ps. The strong agreement between estimated and pre-
dicted probabilities supports the Markovian nature of the dynam-
ics. Notably, the states involved in the pathway do not correspond
to the metastable states identified by PCCA++ clustering20:

D : state 1

I1 : state 3

I2 : state 5

I3 : state 5

B : state 5

However, this observation aligns with our findings, as states I2, I3,
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and B are structurally similar, closely located within the same en-
ergy funnel, and exhibit relatively fast transitions, as confirmed
by FPT analysis. Additionally, the highest transition probabili-
ties are associated with the transitions between states 1→ 3 and
3 → 5, reproducing the fastest pathway as determined by FPT
analysis. The estimated and predicted transition probabilities as
determined from a Chapman-Kolmogorov test for the kinetic net-
work of the monomer system is presented in Fig. S6.

1.4 First Passage Times

While the FES governs the structural and dynamical properties
of a molecule, in experiment often the relaxation times asso-
ciated with a given process are measured. Thus, studying the
timescales associated with transitions between minima on the FES
can bridge the gap between simulation and experiment, and also
shed light on the processes associated with those timescales. Of-
ten quantified by the mean first passage time (MFPT), intercon-
version rates between minima offer insights into the average time
taken for a system to transition between reactant and product
states. It has been shown that studying the first passage time
(FPT) distribution of a transition can reveal a interesting addi-
tional information.21 Specifically, such analysis provides direct
access to the organizational structure of the underlying energy
landscape and facilitates the identification of distinct signatures
linked to relaxation to different funnels in the FES.

For a given transition A ← B from reactant state A to
product state B the first passage time probability distribution
p(t) can be obtained by treating the product state as absorb-
ing. Then, the master equation for the occupation probabilities
Pα (t) for the set of intermediate states I and reactant states I∪B is

⌈
ṖI(t)
ṖB(t)

⌉
=

⌈
KII−DI KIB

KBI KBB−DB

⌉⌈
PI(t)
PB(t)

⌉
= MPI∪B(t), (8)

where KXY is the rate matrix of transitions between connected
states and DX a diagonal matrix containing the escape rates of
each state in X, i.e. ⌈DX⌉ii = ∑ j K ji. Applying eigenvector de-
composition to the formal solution of eq. 8 produces an analytic
solution for the first passage time distribution

p(t) = ∑
l

νle
−νltAl , (9)

here −νl are the eigenvalues of M and Al are amplitudes, which
depend on the eigenvectors of M. The FPT can be represented by
the probability distribution P(y) for y = log(t)

P(y) = ∑
l

νle
y−νl exp(y)Al , (10)

which gives distinct peaks for different features and relaxation
time scales in the FPT distribution.

2 Pathway Analysis

2.1 Extraction of Pathways

From the database of minima and transition states constituting
the FES of the dimer, we extracted the shortest pathway connect-
ing states D and state B using the PATHSAMPLE program.22 This

pathway describes the fastest transition from a disordered struc-
ture (state D) to a β -hairpin structure (state B). The transition
occurs through three intermediate states (I1, I2, I3), character-
ized by the establishment of a salt bridge between residues D23
and K28, followed by the formation of hydrophobic contacts and
subsequent rearrangement of these contacts into a β -sheet. How-
ever, due to the dimensionality reduction from application of the
DRID metric before clustering, the resulting minima represent an
ensemble of configurations. While these structures are similar
according to the DRID metric, this procedure leads to an ensem-
ble of slightly different pathways. To identify potential pathways
from this ensemble of candidates for further analysis, we have
employed linear interpolation between the configurations to con-
struct trajectories for the transition:

D→ I1→ I2→ I3→ B.

Given our focus on studying the pathway associated with the
fastest transition rates, we only considered trajectories that do
not involve chain crossing in the linear interpolation between
states, which is an artefact.. From this procedure, we inferred
three pathways (Fig. S2), which exhibit slight differences in their
final configuration but all begin with the formation of a salt bridge
between D23 and K28, proceed with hydrophobic contact forma-
tion, and ultimately reorient into a β -sheet configuration.

The predominant pathway 1 is discussed in the main text.
Here, we briefly discuss the other two pathways from D to B.
Pathway 2 is different from pathway 1 primarily in two aspects.
Firstly, the closing scissor motion from an extended to a closed
structure is not fully accomplished via the transition to the first
intermediate state I1, but also involves the second intermediate
state I2. Nonetheless, it follows the same hierarchy of events,
where first the salt bridge and then the hydrophobic contacts are
formed. The second deviation from pathway 1 is the orienta-
tion of the C-terminus, which almost wraps around the rest of
the chain. Examination of the full dimer structure of this mem-
ber of the global minimum ensemble reveals a very stable com-
plex, which is the predominant structure in one of the three MD
trajectories. In contrast, pathway 3 exhibits β -hairpin formation
only in the early stages of the transition, via the first intermedi-
ate state I1. Subsequently, the hydrophobic contacts reorganise
to form a short parallel β -sheet in I1, resulting in a wide loop
in the peptide central region. While this pathway differs signifi-
cantly from pathways 1 and 2, the final structure constitutes only
a very small fraction of the equilibrium population of the global
minimum (< 1%).

2.2 First Passage Times

Besides calculating the FPT probability distribution for the overall
transition, we also calculated the FPTs between the intermediate
states corresponding to the fastest pathway between D and B.
Fig. S4 shows the resulting FPT probability distributions for each
intermediate transition. In each case, the FPT probability dis-
tribution indicates the presence of both fast and slow relaxation
modes to the target state, leading to an overall slow MFPT. The
two peaks correspond to two competing events: relaxation to the
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global minimum and relaxation to the absorbing target state of
that transition. The first, faster peak is associated with direct re-
laxation to the absorbing target state, while the slower peak cor-
responds to relaxation to the global minimum followed by even-
tual propagation to the absorbing target state. This is evident
in the FPT probability distribution, where slow relaxation to the
global minimum is generally more likely, except for the final tran-
sition I3→ B, where fast/direct relaxation to the global minimum
is more probable compared to relaxation via intermediates. The
last intermediate exhibits significant structural similarity to the
global minimum, which is further underscored by the close prox-
imity of I3 and B in the FES funnel. Consequently, the slow peak
corresponding to relaxation via intermediates in the side funnel
acts only as a minor kinetic trap. This latter process is not promi-
nently featured in the FPT distribution for the D→ B transition,
as it is not accessed significantly for the chosen starting point and
thus has a negligible impact on the overall relaxation pathway.

The FPTs associated with the fastest mode according to the
peak position of the fast relaxation mode are as follows:

τdim
D→I1

∼780 ps

τdim
I1→I2

∼190 ps

τdim
I2→I3

∼90 ps

τdim
I3→B ∼110 ps

Since each FPT probability distribution was calculated separately,
the respective target state was treated as an absorbing state. As
a result, the individual estimates of the FPT associated with the
fastest transitions do not add up to the estimate of the overall
transition time between states D and B of τdim

D→B ∼ 4 ns, which
include all possible recrossing event. The individual FPT distribu-
tions provide insights into the relative timescales of the interme-
diate transitions as well as the underlying structure of the FES.

2.3 Cooperative Folding

We demonstrated how the FES of the Aβ1−42 peptide is signifi-
cantly altered in the presence of another Aβ1−42 peptide by em-
ploying the same DRID metric to calculate the FES. However, this
approach only implicitly reveals the impact of their interaction.
To more thoroughly analyse the cooperative effects driving the
Aβ1−42 peptide towards a more folded, β -sheet-rich state rather
than a disordered state, we studied the intra- and interpeptide
contacts along the fastest pathway from state D to B.

Figure S3 displays the intra- and interpeptide contact maps for
the ensemble of states states belonging to D and B as well as for
the three intermediates along that pathway. In the disordered
state D, the two peptides show no interaction, as indicated by the
absence of contacts between the two peptides. The intrapeptide
contact map, on the other hand, reveals a slight tendency towards
forming a hairpin structure, suggested by the faint contact trace
perpendicular to the diagonal. This mirrors the behaviour of two
Aβ1−42 monomers, as shown by the FES of the Aβ1−42 monomer
in Fig. 1, and confirms that no stable β -hairpin is formed with-

out an interaction partner. In the first intermediate state I1, the
two Aβ1−42 peptides begin to form a complex, with one monomer
contacting the hydrophobic C-terminal region of the other. In
parallel, contacts begin to form within the peptide, in particular
a salt bridge forms between residues D23 and K28, and the hy-
drophobic core region around F19 interacts with the hydropho-
bic C-terminal region around L34. At this point, the orientation
of the interacting peptide segments within the peptide is mainly
parallel and not antiparallel, as required for a hairpin structure.
In the second intermediate state I2, the interpeptide contact map
reveals strong interactions between the hydrophobic regions of
the two Aβ1−42 peptides, while the intramolecular D23–K28 salt
bridge is broken to allow the hydrophobic intrapeptide contacts
to reorganise. The binding of the hydrophobic regions between
the peptides can be considered a hydrophobic platform essential
for forming the proper intrapeptide contacts necessary for the β -
hairpin structure. In the third intermediate state I3, the D23–K28
salt bridge reforms, and the β -hairpin structure becomes estab-
lished, as indicated by a strong contact trace perpendicular to the
diagonal. Additionally, the dimer shows a high propensity for
forming antiparallel contacts between the hydrophobic core re-
gions or hydrophobic C-termini of the two peptides. Finally, the
transition to the global minimum state B is characterised by fur-
ther stabilisation of the β -hairpin and a stronger tendency for an-
tiparallel alignment in the intermolecular hydrophobic contacts.

In summary, this juxtaposition of intra- and interpeptide inter-
actions during the D→B transition reveals that their formation
occurs in a cooperative manner. The Aβ1−42 peptide gains the
ability to fold into a stable β -hairpin by binding to the hydropho-
bic region offered by the other Aβ1−42 peptide. Therefore, the
increase in hydrophobicity in the environment appears to be cru-
cial for folding during self-assembly.
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Fig. S1 Fastest pathway from intrinsically disordered state (D) to the global minimum (B) in the dimer free energy surface. Different to Fig. 3,
here both peptides in each of the states are shown. The spheres represent the centroids used in the DRID metric: blue spheres for positively charged
N-terminus and K28, red spheres for the negatively charged C-terminus and D23, and magenta spheres for the hydrophobic F19 and L34.

Fig. S2 The three most dominant pathways from the intrinsically disordered state (D) to the global minimum (B) in the free energy surface of the
dimer. Only the peptide of the dimer for which the D→ B transition was analysed is shown.
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Fig. S3 Intra- and interpeptide contact maps along the D→B transition for Aβ1−42 dimerisation. The contact maps were calculated for the ensemble
of conformations belonging to the intrinsically disordered state (D), the global minimum (B), and the intermediate states of the fastest D→B pathway
(I1,I2,I3). Two residues were considered to be in contact if any pair of atoms of the two residues were within a distance of 6 Å. The lower right
corner displays the physicochemical nature of all possible residue–residue interactions that could occur within an Aβ1−42 peptide or between Aβ1−42
peptides: electrostatic repulsion (orange) or attraction (green), polar (blue) and hydrophobic interactions (magenta). For direct comparison with the
other panels of this figure, the regions of relevant hydrophobic interactions as well as the D23–K28 salt bridge are highlighted by red boxes.
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Fig. S4 Probability distribution of the first passage time t, P(ln t), for each intermediate transition of the pathway D→ I1→ I2→ I3→ B. The FPTs
are calculated for each transition separately, treating the target state as an absorbing state.

7



Fig. S5 Chapman-Kolmogorov test for the kinetic network of the dimer system, following a standard PyEMMA protocol with a discrete timestep of
τ=20 ps. The number of metastable states as determined by PCCA++ was set to 5.
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Fig. S6 Chapman-Kolmogorov test for the kinetic network of the monomer system, following a standard PyEMMA protocol with a discrete timestep
of τ=20 ps. The number of metastable states as determined by PCCA++ was set to 5

.
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ABSTRACT: Peptide fibrillization is crucial in biological
processes such as amyloid-related diseases and hormone storage,
involving complex transitions between folded, unfolded, and
aggregated states. We here employ light to induce reversible
transitions between aggregated and nonaggregated states of a
peptide, linked to the parathyroid hormone (PTH). The artificial
light-switch 3-{[(4-aminomethyl)phenyl]diazenyl}benzoic acid
(AMPB) is embedded into a segment of PTH, the peptide
PTH25−37, to control aggregation, revealing position-dependent
effects. Through in silico design, synthesis, and experimental
validation of 11 novel PTH25−37-derived peptides, we predict and
confirm the amyloid-forming capabilities of the AMPB-containing peptides. Quantum-chemical studies shed light on the
photoswitching mechanism. Solid-state NMR studies suggest that β-strands are aligned parallel in fibrils of PTH25−37, while in one of
the AMPB-containing peptides, β-strands are antiparallel. Simulations further highlight the significance of π−π interactions in the
latter. This multifaceted approach enabled the identification of a peptide that can undergo repeated phototriggered transitions
between fibrillated and defibrillated states, as demonstrated by different spectroscopic techniques. With this strategy, we unlock the
potential to manipulate PTH to reversibly switch between active and inactive aggregated states, representing the first observation of a
photostimulus-responsive hormone.

■ INTRODUCTION
Modulating a protein’s secondary structure stands as a pivotal
strategy to define and harness its functionality.1 While
numerous protein structures are identified, predicted, and
engineered, the concept of inducing conformational changes
by external triggers to alter their biological activities remains
rare. Temperature,2 pH,3 polarity,4 or light offer avenues for
such a dynamic control, in particular when applied to sensitive
functional groups inserted inside the protein. Among these,
light emerges as a particularly advantageous stimulus,
providing precise temporal control across vast time scales,
noninvasiveness, and compatibility with intricate matrices like
living tissues.5 Leveraging light-induced conformational
changes has demonstrated success in various proteins, from
transporter-proteins like rhodopsins to enzymes, showcasing
potential applications in photopharmacology and diverse
enzymatic processes.5,6 Moreover, external photoswitches
have successfully enabled photomodulation in a diverse array
of enzymes,7 modifying binding affinities,8 facilitating peptide
purification through photoaffinity,9 and controlling secondary
structure alterations.10 Beyond the structure of individual
peptides or proteins, there is a strong interplay between
secondary structure and aggregation of peptides. This process
is particularly pronounced in the context of amyloid

aggregation, where proteins form β-sheet-rich structures,
leading to the formation of highly ordered fibrillar aggregates.11

Such fibrils are a hallmark of several neurodegenerative
diseases, including Alzheimer’s and Parkinson’s. Understanding
and controlling amyloid aggregation can thus be crucial for
developing therapies for diseases associated with these
pathological protein assemblies. However, controlling peptide
aggregation proves to be a significant challenge, given the
complex processes involved. This challenge arises from
intricate intrapeptide and interpeptide interactions, coupled
with extensive conformational changes on a large scale,
particularly when considering the regulation of primary and
secondary nucleation preceding fibrillization. Therefore, the
utilization of light to control amyloid assembly processes
represents a groundbreaking advancement, enabling control
over the bioavailability of hormones, such as the parathyroid
hormone (PTH). PTH is reversibly stored in functional
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Figure 1. Concept for a light-driven (de)-aggregation of the parathyroid-hormone (PTH). The artificial light-switch, 3-{[(4-aminomethyl)-
phenyl]diazenyl}benzoic acid (cis/trans-3,4′-AMPB) is embedded at various positions of a peptide-fragment of PTH, switching between the cis/
trans-form, in this mode regulating the reversible assembly of the peptide into fibrils.

Figure 2. (A) Sequence of PTH25−37, where the fibril-forming region identified by bioinformatic analysis is labeled, and the chemical structure of
AMPB, which replaces V31 in P4, is shown. The side chains of the amino acids, shown in blue and red, are positively and negatively charged at pH
7.4, respectively, with H32 shown in light blue as a borderline case, while green and gray indicate polar and hydrophobic amino acids, respectively.
(B) PTH25−37 and trans-P4 form fibrils, as shown in the ThT fluorescence cartoon below (blue and green line), while cis-P4 initially forms
amorphous aggregates, which then transform into fibrils (red line in ThT cartoon). (C) Electrostatic potentials surface (values in kTe−1 according
to the color scale at the bottom) of PTH25−37 and trans-P4. (D) Average simulated secondary structure population, divided into α-helical,
intrapeptide β-sheets, interpeptide parallel, and antiparallel β-sheets as indicated by the color code. Results are shown for simulations of monomers,
dimers, and hexamers of PTH25−37, trans-P4, and cis-P4. (E) Representative snapshots of the monomer and dimer simulations, with the α-helix
shown in green, the β-sheets in yellow, the random coil in gray, the N- and C-termini as blue and red spheres, respectively, and AMPB in purple.
(F) Contact matrix of dimer simulations for PTH25−37, trans-P4, and cis-P4. (G) Quantum chemical potential energy scan of the trans → cis
isomerization of the AMPB photoswitch in P4.
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amyloid fibrils, as these fibrils, unlike, e.g., amyloid-Aβ fibrils,
can disintegrate again after aggregation. In this study, we
pioneer the utilization of light to achieve a reversible transition
between the aggregated and nonaggregated states of PTH
(Figure 1), allowing the regeneration of PTH fibrils through
precise light control, presenting a transformative advancement
in the field.12

PTH, a reversibly fibrillating 84-amino acid hormone, is
ubiquitously distributed in animals.13 Responsible for regulat-
ing calcium and phosphate homeostasis,14 mature PTH1−84 is
stored in functional amyloids before secretion,15 wherein its N-
terminal pro-sequence potentially prevents premature aggre-
gation.16 PTH-related diseases prompt the use of approved
drugs, Natpara (PTH1−84) and Forteo (PTH1−34), addressing
hormone imbalances.17 While the physiological role of the N-
terminal 34 amino acids of PTH1−84 is well investigated, being
crucial for the activation of G-protein coupled receptors of
bone and kidney cells18 and in the nervous system for calcium
and phosphate homeostasis,19 there remains a knowledge gap
regarding the fibrillization process and the resulting fibrils.
Current knowledge indicates that under physiological con-
ditions, the thermodynamic stability of PTH1−84 fibrils is low
enough to allow dissociation upon dilution, with the fibril-
forming sequence encompassing amino acids R25-L37.15

Previous research explored the impact of the pro-sequence16

and environmental factors on the fibrillization process20,21 of
PTH, however, with an only limited insight into the precise
structural parameters controlling assembly and disassembly of
the fibrils.22 The aim of the current work is to gain deeper
insights into the fibrillization of PTH25−37, coupled with the
ability to reversibly control this process and understand the
structural principles of the assembly process. We employ a
synthetic approach for synthesizing PTH25−37 peptides bearing
the azobenzene photoswitch, 3-{[(4-aminomethyl)phenyl]-
diazenyl}benzoic acid (AMPB), guided by bioinformatics to
strategically place AMPB for optimal photocontrol, with
biophysical techniques such as thioflavin T (ThT) fluo-
rescence, CD spectroscopy, and transmission electron
microscopy (TEM) to assess the peptide aggregation dynamics
and aggregate morphology. This is further combined with
molecular dynamics (MD) simulations to elucidate the impact
of AMPB on the structure and dynamics of the designed
peptides and their small oligomers (amounting to a total of
285 μs simulation time), while wide-angle X-ray scattering
(WAXS) and solid-state nuclear magnetic resonance (ssNMR)
spectroscopy in conjunction with MD are employed to provide
structure models for selected amyloid fibrils. Finally, quantum-
chemical potential energy scans of both the ground (S0) and
excited states (S1 and T1) reveal insights into the photo-
switching mechanism of the AMPB group and its electronic
interaction when integrated into PTH25−37, considering both
the monomeric and dimeric peptide state. Providing a
thorough understanding of the aggregation behavior of
PTH25−37 and its derivatives, we have engineered a peptide
analogue with the unique capability of reversible light-induced
switching of its aggregation state.

■ RESULTS AND DISCUSSION
Aggregation Characteristics of Unmodified PTH25−37

and Engineered Peptide. To understand the aggregation of
PTH25−37 and make informed design decisions, we began our
analysis with a detailed examination of the original peptide
PTH25−37 and one engineered peptide (P4),22 bearing the

photoswitch in the central part of the peptide (Figure 2A).
Unmodified PTH25−37 and trans-P4 form amyloid fibrils within
15 and 10 h, respectively, whereas cis-P4 initially forms
amorphous aggregates and only forms amyloid fibrils after
about 50 h (Figure 2B).22 The increased rate of aggregation of
trans-P4 compared to PTH25−37 is assigned to the
physicochemical properties of the amino acids and the
phototrigger, AMPB, that make up the peptide (Figure 2A).
PTH25−37 has three positive charges (RKK) at the N-terminus,
followed by a mixture of hydrophobic, polar and one negatively
charged residue (D30) in the middle, while the C-terminal
residues are mainly hydrophobic. This uneven distribution of
physicochemical properties across the sequence is also
reflected in the electrostatic potential surface, which shows a
strongly positively charged N-terminus and a more hydro-
phobic C-terminal half with some negative charge accumu-
lation beyond the first three residues (Figure 2C). The
assumption therefore is that amyloid aggregation of PTH25−37
is driven by the residues after the initial RKK sequence. To test
this assumption, we used four aggregation predictors:
PASTA,23 AGGRESCAN,24 AmyloGRAM,25 and FoldAmy-
loid,26 which show that the sequence 32HNFVA37L is an
aggregation hotspot and that the first five amino acids
25RKKL29Q should not contribute to fibrillization. For 30DV,
a low tendency to aggregation was observed. In P4, one of the
residues of the later sequence, V31, is replaced by AMPB. This
increases the overall hydrophobicity of the peptide, while the
azo group itself adds some positive charge to the electrostatic
potential, which compensates for the predominant negative
charge in the C-terminal part of the peptide. These two effects,
therefore, explain the faster aggregation kinetics of trans-P4
compared to PTH25−37.
To understand the aggregation mechanisms and elucidate

the structures that form during aggregation, namely first
oligomers and finally fibrils, we performed MD simulations and
ssNMR spectroscopy of both PTH25−37 and P4, the latter
simulated in the trans- and cis-states (see Table S1 for an
overview of simulations performed). In this way, we can also
develop a structural understanding of why the fibrillization of
cis-P4 is slowed down and generally reduced. The monomers
of either PTH25−37, trans-P4, and cis-P4 are mainly in a random
coil state (Figure 2D). Nevertheless, small differences between
the monomeric peptides can be observed. One of them is that
PTH25−37 shows a certain tendency to form an α-helix in the
N-terminal residues up to D30, which is lost when V31 is
replaced by AMPB (Figure 2E). When the azo group is in the
cis-state, this allows more intrapeptide contacts, including the
formation of a β-hairpin, whereas in the trans-state, P4 is
mostly in a fully elongated state. The dimer simulations
showed an increase in β-sheets for all three peptides, but most
for PTH25−37. This is a result of peptide aggregation, as there is
a particular increase in β-sheets between the peptides (Figure
2D), which are mainly arranged antiparallel, as shown by the
contact matrix (Figure 2F). In an antiparallel arrangement, the
three positively charged N-terminal residues RKK can interact
with the negative charge at the C-terminus of the neighboring
peptide. Interestingly, the trans-P4 peptide, which we expected
to aggregate the fastest based on the fibrillization data, forms
fewer β-sheets at the oligomer level. Instead, the interpeptide
interactions are dominated by contacts between the two
AMPB groups, while the peptides are aligned antiparallel to
each other. In contrast, although the cis-P4 peptide adopts β-
sheet structures to some extent due to intrapeptide hairpins, it
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aggregates mainly randomly, as confirmed by the many
interpeptide contacts, which is consistent with the amorphous
aggregates observed in vitro. The distinct differences between
peptide aggregation involving cis- and trans-AMPB allow fibril
formation to be controlled at the molecular level by
isomerization, providing a solid basis for photocontrol of
amyloid formation.
In an effort to identify the nucleus of fibril formation, we

also simulated the hexamer formation of PTH25−37, trans-P4,
and cis-P4. However, this system size is still too small (or the
simulation time too short) to observe the emergence of fibrillar
structures. On the contrary, the hexamers of these peptides are
less ordered than the dimers. This confirms the experimental
observation that the propensity of PTH25−37 to form amyloid is
much lower than that of other peptides, such as that of Aβ16−22.
For the latter, we observe the formation of ordered hexamers
when simulated under the same conditions as here,27 while
ThT experiments for this peptide show that fibrils are already
present at the beginning of the measurements.28 For both
PTH25−37 and P4, we even see a decrease in interpeptide β-
sheets when we increase the system size to the hexamer, which
can be explained by the increase in dimensionality of the
conformational space, which allows for more interpeptide
interactions and makes it less likely to see ordered aggregates
on short time scales. Another interesting observation is that the
amount of helix formed increased in the hexamer system of the
PTH25−37 compared to its monomer and dimer. This again
reflects the helical propensity of this peptide, which can be
stabilized by interpeptide interactions, a common observation

in intrinsically disordered peptides that can fold after binding
to interaction partners.29

We further investigated the electronic interactions and the
photoswitching mechanism of AMPB integrated into
PTH25−37, both in the monomer and dimer states. To this
end, we generated 34 switching trajectories using MD
simulations to model the trans → cis isomerization of the
AMPB photoswitch along the CNNC dihedral angle. The
resulting ensemble of pathways was individually analyzed using
ONIOM-based QM/QM230 (NEVPT231/xTB32) calculations,
yielding potential energy scans for the ground and first excited
triplet and singlet states (Figures 2G and S1). While the
calculations clearly indicate that photoswitching is feasible, we
also found that several scans exhibit structural barriers, that
may impact the fluorescence wavelength and lifetime
compared to the pure photoswitch (Figure S2).33 Further
elucidation through principal component analysis of the
distance matrices between peptide residues (Figures S3 and
S4) revealed critical structural motifs potentially responsible
for the observed S1 barrier in trans → cis isomerization paths.
These motifs particularly involve configurations of R25
interacting with A36/L37 and H32/Q33, in both monomeric
and dimeric forms (Figure S5).
Structures of PTH25−37 and P4 Fibrils. The final state of

aggregation, the amyloid fibrils, was characterized by wide-
angle X-ray scattering (WAXS) and ssNMR, and the resulting
data were used to generate structural models whose stability
was evaluated in MD simulations. The WAXS measurement
was performed with preformed fibrils of either PTH25−37 or
trans-P4. Due to the isotropic orientations of the fibrils and the

Figure 3. (A, D) WAXS results for PTH25−37 and the AMPB-modified PTH25−37 peptide trans-P4. (B, E) Solid-state NMR (ssNMR) 2D 13C−13C
proton driven spin diffusion spectra close to rotational resonance (mixing time 1s) of fibrils of the PTH25−37 and trans-P4 peptide with uniformly
13C-labeled L28 and F34. (C, F) Fibril models of PTH25−37 and trans-P4 constructed based on the ssNMR (left) and at the end of MD simulations
(right), where β-sheets are shown in yellow, random coil in gray, the N- and C-termini as blue and red spheres, respectively, AMPB in purple, and
the side chains of L28 and F34 are highlighted as black and green sticks, respectively. Note that in panel F, the structure on the right-hand side is
rotated by 90° to better represent the fibrillar arrangement.
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resulting isotropic scattering pattern (see Figure S6), the
scattering intensities were angular averaged and are displayed
in Figure 3 A, D. For PTH25−37, we observed a diffraction
pattern typical for β-sheet-containing amyloid fibrils.34 The
reflection at 4.7 Å indicates a structural repeat corresponding
to the distance between two β-strands within a sheet, whereas
the reflection at 10.3 Å corresponds to the distance between
two β-sheets in a fibril. A reflection at 9.4 Å, which would
correspond to the repeating unit of two antiparallel β-strands
within a β-sheet (i.e., 2 × 4.7 Å), is not observed, suggesting a
parallel alignment of the strands within the β-sheets, which
allows the hydrophobic, aggregation-prone residues on the C-
terminal side of the peptide to lie adjacent to each other. To
test this conclusion, we performed ssNMR measurements of
synthesized PTH25−37 with uniformly 13C-labeled L28 and F34.
In the 2D 13C−13C spin diffusion measurements with
longitudinal mixing times of 500 ms to 1 s, we did not
observe any cross-peaks between these residues (Figures 3B,
S7). This finding is indicative of a distance of >6 Å between
these residues35 and thus supports parallel β-sheets in
PTH25−37 fibrils. To answer the question of how two sheets
of parallel stacked peptides could be arranged in the fibril,36 we
constructed four possible fibril models (with 6 peptides per
sheet) consistent with the NMR distance data and tested their
stability in MD simulations. Only one of these arrangements
proved to be stable, even after 1 μs MD. In this model, the β-
sheets, which consist of parallel and in-register strands, are
oriented antiparallel and their R25 side chains point inward
(Figure 3C). This also agrees with our findings from the
oligomer simulations, which revealed a preferred antiparallel
arrangement between the PTH25−37 peptides, as this allows the
positive charges at the N-terminus to interact with the
negatively charged C-terminus. In the fibril, this is realized
via intersheet interactions, while within the sheets, the
hydrophobic residues are adjacent to each other for optimal
β-sheet stability. The fibril model at the end of the simulation
confirms that the β-sheets are stable. The β-conformation is
partially lost only at the terminal residues, which is due to the
electrostatic repulsion between the three positive charges on
the RKK residues, which also cause twisting of the fibril. The
simulation-averaged distance between β-strands is 4.8 Å, and

between two sheets, it is 10.3 Å, in agreement with the WAXS
data.
The WAXS signals for trans-P4 (Figure 3D) are much

broader than for PTH25−37, indicating less structured fibrils for
P4. Nevertheless, the peak for strand spacing at 4.6 Å
dominates the signal, clearly indicating β-sheet formation. The
next peak is at 9.2 Å, which corresponds to twice the
interstrand distance. This indicates an antiparallel arrangement
of the trans-P4 peptides within a sheet, as here the antiparallel
unit consisting of two peptides is another repeat unit leading to
a scattering signal. A signal for the intersheet distance is not
visible, but could be hidden under the 9.2 Å signal, considering
that the signal at 10.3 Å for the PTH25−37 fibrils is also not
strong. The conclusion that the trans-P4 peptides are
antiparallel in the fibrils is supported by the ssNMR
measurements showing an L28-F34 cross-peak in 2D
13C−13C spin diffusion spectra, which is indicative of an
inter-residual distance <6 Å (Figures 3E and S8). Based on this
information and in addition to the results of our dimer and
hexamer simulations of trans-P4, which revealed a strong
interaction between the AMPB groups, we created several
possible fibril structures and tested their stability in MD
simulations. The structure that met all our experimental
specifications and was also stable during the 1 μs simulation is
the one shown in Figure 3F. The structure at the end of the
simulation shows a larger deviation from the idealized fibril
model and with shorter β-sheets than observed for PTH25−37,
which explains the broader WAXS signal. Stabilizing aspects
are that the oppositely charged N- and C-terminal ends are
directly adjacent within and between the β-sheets and that the
central AMPB groups are aligned parallel to each other for
π−π stacking interactions. The antiparallel β-sheets themselves
are less stable, however, as they are formed between the
hydrophobic C-terminal half and the nonamyloid-prone N-
terminal half on both sides of the AMBP group. Moreover, the
AMPB group in the center of the peptide breaks the β-sheet
structure, which explains that the P4 fibrils are shorter than
those of PTH25−37. In addition, the π−π stacking and β-sheet
stacking have opposite spacing requirements with ≈3.8 Å and
≈10 Å, respectively, which can be clearly seen in the MD

Table 1. Designed PTH25−37 Peptides Containing the AMPB Photoswitch (Azo) Inserted between Two Amino Acids (i) or an
Amino Acid Exchanged by AMPB (e)a

peptide primary sequence modification t1/2(cis) [h]

PTH25−37 25RKKLQ30DVHNF35VAL - -
P1 (i) 25RKKLQ30D-Azo-VHNF35VAL D30-Azo-V31 90
P2 (i) 25RKKLQ30DV-Azo-HNF35VAL V31-Azo-H32 90

central P3 (e) 25RKKLQ-Azo-VHNF35VAL D30 → Azo -
P4 (e) 25RKKLQ30D-Azo-HNF35VAL V31 → Azo 97
P5 (e) 25RKKLQ-Azo-HNF35VAL D30,V31 → Azo -
P6 (i) 25RKKLQ-Azo-30DVHNF35VAL Q29-Azo-D30 -
P7 (i) 25RKKL-Azo-Q30DVHNF35VAL L28-Azo-Q29 72

N-terminal P8 (i) 25RK-Azo-KLQ30DVHNF35VAL K26-Azo-K27 89
P9 (e) 25R-Azo-KLQ30DVHNF35VAL K26 → Azo 86
P10 (i) 25RKKLQ30DVHN-Azo-F35VAL N33-Azo-F34 -

C-terminal P11 (i) 25RKKLQ30DVHNF35V-Azo-AL V35-Azo-A36 -
P12 (e) 25RKKLQ30DVHNF-Azo-AL V35 → Azo 63

aThe corresponding peptides were prepared by on-resin synthesis (Merrifield-synthesis) using Fmoc-based building blocks. The synthesis of the
AMPB photoswitch follows previously published methods.22 The half-life time t1/2 (hours) of the cis-form of the peptides was investigated via UV/
vis spectroscopy (see the experimental section for further experimental details).
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snapshot shown in Figure 3F and further explains the
broadness of the corresponding WAXS signal.
Peptide Design. Based on all simulations and structural

investigations made for PTH25−37 and the P4 variant, we
designed 11 novel PTH25−37-derived peptides, wherein the
amyloid-forming capabilities of the AMPB group in view of
fibrillization were probed by placing the photoswitch at
positions in the center of the peptide (P1−P6), at the N-
terminal (P7−P9) or at the C-terminal part (P10−P12), with
an amino acid either being exchanged by AMPB or AMPB
being inserted between two amino acids (Table 1).
Our design strategy is based on the assumption that moving

the AMPB group to the N-terminal side will enhance
fibrillization by introducing the hydrophobic AMPB into the
polar and charged N-terminal region, whereas moving it to the
C-terminal side should impair amyloid formation by disrupting
the amyloid-prone peptide region. In addition, we expect that
the difference between the cis- and trans-forms of AMPB will
become less important as it is shifted toward the termini, since
hairpinning should no longer be possible in the cis-form. To
refine these predictions, we performed MD simulations of the
P1, P3, P8, and P12 variants, considering both the cis- and
trans-configurations of each peptide as monomer and dimer
(Figure 4A; P1 was also simulated as hexamer, see Figure S9).
The simulations of P1 revealed a similar tendency for β-sheet
formation as seen for P4 (Figure 2D), which makes sense given
that AMPB is at the same position in both peptides, but
instead of replacing V31 as in P4 it is added between D30 and
V31, thereby extending the hydrophobic stretch on the C-
terminal side of the peptide (Figure S10), which might lead to

a faster aggregation kinetics in the experiments. In P3, the
AMPB group is shifted by one position toward the N-terminus
compared to P4, replacing D30. This increases the hydro-
phobicity of the peptide in support of aggregation, while the
removal of the negative charge increases the overall positive
peptide charge, which could discourage aggregation. The
simulations revealed that the increase in hydrophobicity
prevails, as random dimerization with mainly intrapeptide
instead of interpeptide β-sheets dominated in the simulations
of trans-P3. P8 was simulated as a representative peptide in
which AMPB is significantly shifted toward the N-terminus
and inserted between K26 and K27. The electrostatic potential
surface (Figure S10) shows that the insertion of the
hydrophobic AMPB into the positively charged N-terminal
region indeed significantly increases its hydrophobicity,
promoting fibrillization. However, the secondary structure
preferences are somewhat shifted away from β-sheet toward
the formation of α-helices in both cis- and trans-configurations
and both as monomers and dimers, which was not seen for the
P3 and P4 variants and may counteract amyloid fibrillization.
Finally, we examined the P12 mutant in which the AMPB
photoswitch is introduced into the aggregation-prone C-
terminal region in the form of an exchange of V35. As
predicted, the simulations confirm a drastic decrease in β-sheet
formation compared to PTH25−37 and the other simulated
peptide designs. As with P8, where AMPB is placed at the N-
terminal side, its C-terminal position in P12 also leads to the
formation of α-helices, which could also counteract amyloid
aggregation.

Figure 4. (A) Simulated average secondary structure population, divided into α-helical, intrapeptide β-sheets, and interpeptide parallel and
antiparallel β-sheets as indicated by the color code. Results are shown for simulations of monomers and dimers of the trans- and cis-forms of P1, P3,
P8, and P12. (B) Lag time tlag (orange) and characteristic time tchar (blue) of the trans-forms (left) and cis-forms (right) of the peptides P1, P2, P4,
P7, P8, and P9. The corresponding values of PTH25−37 are indicated as orange (tlag) and blue line (tchar). (C) TEM images of the trans-isomers of
P1, P2, P7, P8, P9, and P12 after 20 min at 4 °C. Scale bar = 250 nm. (D) TEM images if the cis-isomers of P1, P2, P7, P8, P9, and P12 after 20
min at 4 °C. Scale bar = 250 nm. TEM data for the photoswitching of P4 are presented in Figure S23.
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Next, we investigated the influence of the AMPB site
experimentally. The designed peptides displayed varying
solubility in a buffered aqueous solution (50 mM Na2HPO4,
pH 7.4), ranging from 370 μM for P4 to 7 μM for P10 (Table
S2), thus limiting the assay-copnditions to those wherein
sufficient critical concentrations could be reached. The critical
concentration (ccr) of monomers in a fibril-forming system is
the minimum concentration required to form fibrils in the
dynamic equilibrium between the fibrils and the monomeric
peptide form, which can be converted to a standard free energy
of the fibril elongation reaction (ΔG0). Since the ccr of
PTH25−37 is 42 μM at the chosen conditions, we decided to
exclude the peptides with lower solubility, also motivated by
the observation that no fibrillization was observed in P3 and
P5, due to their low solubility. The peptides with small ccr are
the ones in which the hydrophobicity in the otherwise rather
polar and positively charged peptide region was increased (P3,
P5, P6), or in which the already hydrophobic C-terminal
region was made more hydrophobic by placing the AMPB
there (P10, P11). The reduced solubility of P3 is consistent
with our MD simulation prediction of random aggregation. For
the remaining peptides (P1, P2, P7, P8, P9, and P12, in
addition to P4), we determined the photophysical character-
istics of the isomerization reaction, such as the half-life time
t1/2 of the thermodynamically less favorable cis-isomer, which is
influenced by the position of the azobenzene switch (Table 1).
To ensure probing of the fibrillization kinetics, it is important
that the stability of the cis-isomer is significantly larger than the
lag time of the fibrillization process. As both process are
competing we strived to minimize the rate of cis → trans
isomerization to primarily investigate the behavior of the cis-
isomer in the relevant time range. These half-life times range
from 63 to 97 h, with the longest time observed for P4, where
the central V31 was replaced by AMPB, and the shortest time,
when the azo switch was shifted toward the C-terminus,
replacing V35. The increased half-life time can be explained by
the energy barrier for the cis → trans isomerization in the
ground state due to interaction between the residues at either
side of the AMPB group (Figure 2G), which is also reflected in
the cis:trans ratio. After synthesis, this ratio is between 3:97 and
6:94 for the freshly prepared peptides, subsequently increasing
during the photo-induced trans → cis isomerization to the
photostationary state (PSS), reaching values of 90:10 to 82:18.
Isomerization back under dark conditions reduces this ratio to
19:81 and 24:76 in the PSS of cis → trans isomerization (Table
S3). To exclude a photobleaching effect of the AMPB
photoswitch, we repetitively conducted alternating trans →
cis and cis → trans isomerizations over 5 cycles (Figure S11).
When monitoring the absorption at two wavelengths
(absorption maxima of trans- and cis-isomer, respectively) we
did not observe a decline in the overall absorption, except for
the first cycle, which can be explained by the fact that the initial
peptides directly after synthesis possess an increased trans-
content compared to the subsequent photostationary state. To
assess the toxicity of the peptides with the incorporated
photoswitch, we conducted cytotoxicity assays with the N-
terminally modified P8, the centrally modified P4, and the C-
terminally modified P12 (Figure S12), and we did not observe
any toxicity toward 3T3 and NHDF cells.
We then examined the fibrillization process of the peptides

using the ThT fluorescence assay after an established protocol
for PTH1−8420 (Figures S13−S20) and followed the formation
of fibrils with TEM images after 20 min at 4 °C and after 1, 3,

24, and 96 h at 37 °C (Figures S21−27, original data for the
photoswitching (TEM) for P4 are presented in Figure S23).
The ThT fluorescence curves were fitted using eq. 1 and
yielded the lag time tlag, which corresponds to the onset of the
fibril growth phase, and the characteristic time tchar, the point at
which the fluorescence intensity reaches 50% of its maximum
(Figures 4B, S13−20). Compared to PTH25−37, the fluo-
rescence intensity was significantly lower, resulting in a poorer
signal-to-noise ratio. We attribute this to fluorescence
quenching by the azobenzene moiety, which is an already
known property of this molecular building block.10 g,22

Nevertheless, a sigmoidal fibrillization curve is clearly visible
for the three replicate measurements of each peptide. Peptides
P1, P2, P4, P7, P8 and P9 show typical fibrillization behavior
with lag phase, growth phase, and stationary phase (Table S4).
This observation is consistent with our prediction that the
placement of AMPB in the middle or at the N-terminus of
PTH25−37 should not prevent the amyloid aggregation ability of
the peptide. All trans-peptides exhibited, irrespective of the
positioning of the photoswitch, a faster fibrillization process
than PTH25−37 with significantly shortened lag phases (tlag of 8
h for PTH25−37 vs 0−2 h for the peptide designs) and reduced
tchar (Figure 4B). We assume that the increased hydrophobicity
and the organizing effect of the AMPB group are the driving
forces for the increased tendency of amyloid aggregation. TEM
images of the fibrils were obtained for all peptides after only 20
min at 4 °C (Figure 4C). The cis-forms of peptides P1, P2, and
P4, in which AMPB was inserted at the central position next to
the aggregation hot-spot sequence H32-L37, showed slower
fibrillization compared to PTH25−37, whereby for cis-P1 and cis-
P2 the fibrillization occurred in a similar time range, while the
fibrillization of cis-P4 was strongly delayed. In agreement with
our predictions, the incorporation of the photoswitch in its cis-
form at the N-terminal part had almost no influence on the
fibrillization kinetics: cis-P7 and cis-P8 aggregated at a similar
rate as PTH25−37, while the fibrillization of cis-P9 was even
faster (due to the increased hydrophobicity of the peptide).
The TEM images (Figures 4D, S21−27) confirm these
observations. For the cis-isomers of P1 and P2, we mainly
observed amorphous aggregates in the early images (after 20
min); the first objects, which could be clearly assigned to
fibrillar aggregates, as with the trans-forms, were only detected
after 24 h. For P4 (Figure S20) the difference was even more
significant: in the cis-form, the first fibrillar aggregates were
visible in the image only after 60 h. For the N-terminally
modified peptides cis-P7, cis-P8, and cis-P9, however, fibrils
were already visible after 20 min.
For the fibrillization behavior of the C-terminally modified

P12, where V35 was replaced by AMPB, we found that it is
entirely different. Unlike other peptides, ThT fluorescence
curves for both trans- and cis-P12 show a linear increase after a
lag phase of approximately 20 h, with no saturation observed
even after 140 h, indicating reduced fibrillization. This also
holds true for fibril morphologies, as both P12 isomers exhibit
similar shorter fibrils in the TEM images, with trans-P12
forming fibril-like structures after 1 h and cis-P12 after 3 h.
In summary, our study revealed that the impact of the

photoswitch varies depending on its placement: when
positioned within the fibril-forming segment, such as in P12,
fibril formation is significantly hindered, whereas outside this
crucial region, the trans-isomers demonstrate faster fibril
formation compared to PTH25−37. Notably, cis-isomers display
a strongly hindered fibril formation or the formation of
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amorphous aggregates, with the inhibition decreasing as the
distance from the fibril-forming C-terminal region increases.
Photocontrolled Multiple Switching of Fibril For-

mation. By computationally analyzing the primary structure,
modeling the peptide structures in their monomeric and
aggregated forms, and studying the fibrillation process of
PTH25−37 and the designed peptides, we aimed to determine
the most suitable position for the incorporation of the
photoswitch into the peptide sequence to control fibril
formation. Based on the results obtained, we applied several
criteria to select the most promising candidate from the
designed peptides (Table 1) to test whether amyloid formation
can be reversibly switched on and off by light. After excluding
peptides with insufficient solubility (P10 and P11) as well as
the poorly aggregating P12, the focus was placed on the
peptides P1, P2, and P4, which show accelerated fibrillization
due to the central placement of the photoswitch in the trans-
conformation, while the cis-form slows down fibrillization. Of
these peptides, P4 exhibited both the best solubility and the
largest difference in fibrillization for trans- and cis-P4.
Therefore, we selected this peptide P4 to further test whether
we could achieve reversible fibril formation (Figures 5, S19,
S28). It should be noted that during the following sequence of
experiments, the cuvettes were not changed; moreover, also no
new peptides were added to the solution. Starting from the
trans-isomer of P4, fibrils were formed in the first cycle at 37
°C in phosphate buffered aqueous solution and the aggregation
kinetics followed via ThT fluorescence (Figure 5A, left). After
the fibrillization passed over to the stationary phase, the
solution was shaken another 20 h to affirm that the equilibrium
has been established. Subsequently, the suspension was
irradiated at a wavelength of 340 nm for 5 h under stirring,

after which UV/vis spectroscopy was used to verify that the cis-
photostationary state of P4 was reached. Now, the solution was
irradiated for 20 min with light of 405 nm wavelength to switch
the cis-PSS to the trans-PSS to produce monomeric trans-
peptides, which underwent another fibrillization cycle (Figure
5A, middle). The newly formed fibrils were again exposed to
the photoisomerization treatment involving trans → cis
isomerization to degradate the fibrils. The ThT-monitored
fibrillization assay was repeated with a portion of the solution,
and fibril formation was observed for a third time (Figure 5A,
right). For the second and the third fibrillization cycle, a
decreased starting concentration of the trans-isomer was
observed (UV/vis spectra, Figure S29). As we could already
exclude photobleaching, we suppose that aggregates adhere to
the wall of the 96-well plates and are, therefore, not available
for further fibrillization cycles. The fibrils formed during the
fibrillization process can precipitate and thus disturb the
measurement via scattering effects, causing noise in the signal
after the first stationary phase. Because the trans → cis
isomerization of the AMPB-switch is not reaching 100% due to
the photostationary state, there certainly are fibrillar aggregates
present in the solution, which, however, may interfere in the
subsequent fibrillization processes and thus change the
following fibrillation kinetics. Nonetheless, for each new
fibrillization process monitored here, a lag phase, growth
phase, and stationary phase were observed.
While monomers remain soluble, fibrils tend to precipitate,

causing the solution to become turbid during the fibrillization
assay and leading to a decrease in transmission. Observing the
transmission across three switching cycles, it was evident that
transmission decreases during the fibrillization process (Figure
5B, cyan lines). Degradation of the fibrils via trans → cis

Figure 5. Multiple fibrillization and degradation cycles of trans-P4 fibrils through photoisomerization. (A) Fitted ThT signal monitored by the
fluorescence assay of three fibrillization cycles of trans-P4 comprising degradation of fibrils by photoinduced trans → cis isomerization and
subsequent photoinduced cis → trans isomerization leading to renewed fibrillization. (B) Change in the transmission of a P4 sample over several
switching cycles (cyan for fibrillization periods and orange during trans → cis isomerization). (C) CD spectra of monomeric trans-P4 (blue), trans-
P4 fibrils (green), and the fibrils after trans → cis isomerization via irradiation with 340 nm for 5 h (orange).
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isomerization, however, led to an increase in transmission, as
released monomers dissolve back into the solution (Figure 5 B,
orange lines). The incomplete recovery of the transmission
during degradation results from the aforementioned observa-
tion that the trans → cis isomerization only leads to a
maximum trans:cis ratio of 18:82. Therefore, the degradation
process of the fibrils is an only partial one, presumably as a full
isomerization cannot be reached. The changes in secondary
structure during fibrillization were probed by CD spectroscopy
(Figures 5C, S28). In its monomeric form, trans-P4 displays a
shoulder around 220−230 nm and a minimum around 210
nm. In the CD spectrum of the trans-P4 fibrils, a minimum is
observable between 220 and 230 nm, while the minimum
around 210 nm is nearly completely absent. Degradation of the
fibrils by the trans → cis isomerization leads to a CD spectrum
where the minimum around 210 nm reappeared and the other
minimum between 220 and 230 nm still exists. The minimum
at 210 nm arises from the monomeric peptides, while the
minimum between 220 and 230 nm is indicative for the fibril
form. The observed CD spectrum is thus a superposition of
both forms, the monomeric and the fibrillated form. From the
CD spectra, we can, therefore, conclude that fibrillization from
the trans-form and incomplete fibril degradation during trans
→ cis isomerization can be observed.
Fibrillization of proteins are complex, often irreversible

processes, which are characterized by a strong thermodynamic
negative free energy, as e.g., in Aβ fibrillization, and thus
conventionally termed as “irreversible.”58 This is often
connected with a high kinetic barrier, usually preceding the
fibrillization process, wherein nucleation is central to initiate
that nucleation process. The PTH peptides studied here are
“more reversibly” fibrillating peptides, wherein the thermody-
namic stabilization of the amyloid state is less and, therefore,
also the kinetic barriers.15,59 Nonetheless, until now, it has not
been possible to control the reversibility of this process, as
accomplished here via the introduction of a photoswitch.
However, in contrast to other reversibly (photo)-switchable
systems, such as reported for small molecule assemblies,60

adhesives,61 or photoswitchable enzymes,62 a full reversion of
the aggregation of the current system is not reached, as
expected, as the fibrillization and defibrillization processes
depend on many factors, such as the kinetic barriers in either
direction, the kind and number of nuclei present during the
different switching cycles, or also the precipitation of fibrils.

■ CONCLUSION
In this study, we have demonstrated precise control over
reversible peptide fibrillization by strategically positioning a
photoswitch within the central region of a fibril-forming
peptide. Utilizing the artificial light switch 3-{[(4-
aminomethyl)phenyl]diazenyl}benzoic acid (AMPB) embed-
ded in a peptide containing residues 25−37 of the parathyroid
hormone (PTH), we investigated the impact of position on
peptide aggregation. Through a comprehensive approach
involving computational modeling, peptide synthesis, aggrega-
tion assays, and structural analyses, we elucidated key features
governing the fibrillization of both unmodified and modified
PTH25−37 peptides. Notably, the trans-peptides with the
modification positioned adjacent to the fibril-forming region
in the center of the peptide (P1, P2, and P4) displayed
enhanced fibrillization compared to unmodified PTH25−37,
while the aggregation is slowed down for their cis-isomers.
Peptides featuring the photoswitch in the nonamyloidogenic

N-terminal region behaved similarly to unmodified PTH25−37
(P7, P8, and P9), whereas peptide P12, where the azobenzene
unit replaced V35 in the amyloid-prone region, showed
decreased fibrillization, largely unaffected by the photoswitch’s
isomer state. Our bioinformatics and simulation analysis
uncovered that modification with AMPB typically boosts the
peptides’ hydrophobicity, thereby augmenting their tendency
to aggregate. Furthermore, AMPB facilitates self-interaction
among peptides through π−π interactions, further enhancing
their aggregation propensity. Structural investigations of P4
employing WAXS and ssNMR suggest that β-strands in
amyloid fibrils of P4 are�in contrast to fibrils of unmodified
PTH25−37� aligned antiparallel. Simulations suggest that
AMPB might not fully adhere to the amyloid fold, owing to
the distinct demands for interpeptide distances in π−π
interactions and fibril formation. This elucidates the
diminished fibrillization observed when the photoswitch is
positioned within the amyloid-forming segment of the peptide,
as seen in P12. Importantly, our results showcase the potential
of strategically placing the azo photoswitch, particularly
exemplified by peptide P4, to control reversible amyloid
aggregation. The phototriggered degradation of fibrils formed
in the trans-state of AMPB enables repeated fibril formation,
which in fact may allow to reversibly modulate the fibrillization
of the PTH hormone, with the monomeric peptides released
upon fibril degradation serving as the active form and the
fibrillar structures acting as an inert peptide reservoir. Given
the peptides’ nontoxic nature (Figure S12), this light-triggered
approach, therefore, presents a promising method for
controlled drug delivery and release of such reversibly
fibrillating peptides. We regard our system here as a switchable
fibrillization system, where a phototrigger from the outside is
able to induce fibrillization, as e.g., needed in many modern
neuro-cellbiology systems.63

■ EXPERIMENTAL SECTION
Materials. All technical solvents were distilled prior use;

air- and moisture-sensitive reactions were carried out in flame-
dried glassware under atmospheric pressure of nitrogen. 2-(6-
Chloro-1-H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium
hexafluorophosphate (HCTU), N-methyl-morpholine
(NMM), N,N-dicyclohexylcarbodiimide (DIC), N-Hydroxy-
benzotriazole (HOBT), trifluoroacetic acid, 4-amino-benzyl-
amine, and oxone were purchased from Sigma-Aldrich. 9-
Fluorenylmethyl-N-succinimidylcarbonat (Fmoc-OSu) was
received from Fluorochem. 3-Aminobenzoic acid was
purchased from Merck and was used without further
purification.
UV/Vis, CD, and Transmission Spectroscopy Meas-

urements. UV/vis-absorbance spectroscopy was measured on
a JASCO V-660 absorbance spectrometer in a 1 cm quartz
glass cuvette. For PTH25−37, the absorbance was measured at
205 nm with a molar extinction coefficient of 49.310 cm−1
M−1; trans-azobenzene containing peptides were measured at
327 nm with a molar extinction coefficient of 13.000 cm−1
M−1. CD spectroscopy was measured with a JASCO J-1500
CD Spectrometer in either a 1 mm. As buffered solution, a 50
mM aqueous Na2HPO4 buffer solution was used with a pH
value adjusted to 7.4. Transmission was measured with a
Litesizer DLS 500 from Anton Paar using a 3 mm × 3 mm
quartz glass cuvette. The irradiation wavelength was 658 nm.
The equilibration time was 1 min, and the measurement time
was 10 s. The temperature was maintained at 25 °C.
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Peptide Synthesis. The 3,4′-AMPB photoswitch was
synthesized in two steps according to our published
procedure.22 Solid-phase peptide synthesis was utilized on an
automated peptide synthesizer MultiPep RS (Intavis AG,
Koeln, Germany) using standard Fmoc-chemistry and
preloaded resins. Standard coupling of all protected natural
amino acids was performed as single couplings in dimethyl-
formamid (DMF) using 5 equiv of amino acids, HCTU as
coupling reagents, and 10 equiv of NMM as base for 1 h at
room temperature. Special building groups, such as Fmoc-3,4′-
AMPB, were coupled with 3 equiv using DIC and HOBT in
DMF/ N-methyl-2-pyrrolidone (NMP) at room temperature
and with gentle shaking in the dark overnight. The N-terminal
Fmoc protecting group was removed by washing the resin with
20% piperidine for 20 min. The final side chain deprotection
and cleavage from the resin employed a mixture of trifluoro-
acetic acid and water (90:10 Vol%) with gentle agitation for 2
h at room temperature. The crude peptides were purified to
>95% purity using preparative RP-HPLC (Gilson, Limburg,
Germany). For both analytical and preparative use, the mobile
phase was a mixture of water (eluent A) and acetonitrile
(eluent B), respectively, each containing 0.1% trifluoroacetic
acid. Samples were eluted with a linear gradient from 5% B to
95% B in 15 min for analytical runs and in 90 min for
preparative runs on a semipreparative PLRP-S column (Agilent
Technologies, 300 × 25 mm, 8 um). Finally, all peptides were
characterized by analytical HPLC Dionex Ultimate 3000
(Thermo Scientific, Germany) using a PLRP-S column
(Agilent Technologies, 150 × 4.6 mm, 3 um) and MALDI-
MS (Bruker Microflex LT, Bremen, Germany), which gave the
expected [M + H]+ mass peaks. The full molecular
characterizations are shown for all peptides in Figures S30−
S47.
Aggregation Kinetics. The fibrillization process was

investigated using a thioflavin T (ThT) monitored fluores-
cence assay following the established process for PTH1−84.20
Therefore, the fluorescence intensity of ThT was measured.
Lyophilized peptides were dissolved in buffered solution and
kept on ice for the next steps. The sample solutions were
centrifuged at 13 000 rpm for 10 s, and the concentration of
the respective peptide was determined using UV/vis-
absorbance spectroscopy. If required, the cis-isomer of the
azobenzene containing peptides was produced as described
below. The sample solutions were centrifuged at 10 000 rpm
for 1 h at 4 °C, and the supernatant was transferred to another
tube. The solutions were diluted with buffer, and ThT was
added as a 1 mM stock solution to obtain a final concentration
of 100 μM for the peptides, with a solubility above 100 μM,
and 50 μM for ThT. For the other peptides, the solutions were
solely diluted with the ThT stock solution, to achieve the
highest possible concentration. For each sample, a total volume
of 480 μL was prepared, and three aliquots with 150 μL were
transferred to a medium binding 96-well plate (GREINER Bio-
One 675 076). The plate was sealed with a microplate cover,
and the fluorescence intensity was monitored at 37 °C using a
BMG FLUOStar Omega multimode plate reader using
fluorescence excitation and emission wavelengths at 460 and
485 nm, respectively. One measurement cycle lasted 5 min,
consisting of double-orbital shaking for 150 s and incubating
for 150 s. To describe the fibrillization process, the source data
were fitted. As the description of fibrillar growth in terms of the
molecular rate, kinetic can be considered as two main
fibrillation processes.37 Their contributions to the increase in

fluorescence ΔF (t) can be analyzed by a function, which was
derived by Dear et al.38 and has been used to characterize the
fibrillation kinetics of full-length PTH.20
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ΔFpl corresponds to the plateau value of the fluorescence in
the stationary phase, while λ and κ are the rate constants of the
primary and secondary nucleation processes.
Determination of the Solubility Parameters. To

determine the maximal solubility of a peptide, small amounts
(0.5 mg) of the respective peptide were added to 1 mL of
buffered solution and shacked for 10 s until an insoluble
precipitate was visible. The suspensions were centrifuged at
10 000 rpm for 1 h at 4 °C, and the supernatant was
transferred to another tube. The remaining monomer
concentration was determined using UV/vis-absorbance spec-
troscopy. To determine the critical concentration ccr, two
samples were prepared for each peptide according to the
procedure for the ThT monitored fibrillization assay, one with
ThT as a reference sample and the other one without ThT.
Twenty hours after the reference sample reached the stationary
phase, the fibril containing solutions from the sample without
ThT were transferred to a tube and centrifuged at 10 000 rpm
for 1 h at room temperature. The supernatant was transferred
to another tube, and the concentration of the remaining
monomers was determined using UV/vis-absorbance spectros-
copy at 278 nm with a molar extinction coefficient of 3750
cm−1 M−1 for the azobenzene containing peptides and at 205
nm with a molar extinction coefficient of 49 310 cm−1 M−1 for
PTH25−37.
Photosiomerization. The photoisomerization of the trans-

azobenzene moiety in the peptides was performed by
irradiating the dissolved peptides in a 1 cm quartz cuvette
for 30 min with light of 340 nm wavelength using a 69.2 mW
LED (Thorlabs, M340L5) equipped with a controller
(Thorlabs, LEDD1B). The photoisomerization of the cis-
azobenzene moiety in the peptides was performed by
irradiating the dissolved peptides in a 1 cm quartz cuvette
for 30 min with light of 405 nm wavelength using a 1.4 W LED
(Thorlabs, M405L4) equipped with a controller (Thorlabs,
LEDD1B).
Photobleaching. To test whether photobleaching occurs

during the photoisomerization, a solution of 50 μM P4 was
irradiated alternatingly for 30 min with light of 340 nm
wavelength (trans → cis isomerization) and light of 405 nm
wavelength (cis → trans isomerization). The absorption was
measured after each isomerization step at two wavelengths:
295 nm (absorption maximum of the cis-isomer) and 327 nm
(absorption maximum of the trans-isomer).
Transmission Electron Microscopy. TEM images were

taken with an electron microscope (EM 900; Zeiss) at 80 kV
acceleration voltage. For preparation, 5 μL of the peptide
solution were added on Formvar/Cu grids (mesh 200). After 3
min of incubation, the grids were gently rinsed two times with
water and then negatively stained using uranyl acetate (1%, w/
v) for one minute.
Fibril Degradation. To investigate the fibril degradation

through photoisomerization, 3 mL of a 100 μM trans-P4 in
buffer was prepared according to the procedure for the ThT
monitored fibrillization assay, except that ThT was excluded,
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and aliquots of 150 μL were transferred to a medium binding
96-well plate. As a reference sample, 480 μL of a 100 μM trans-
P4 in buffer was prepared with ThT, and both approaches were
incubated as described for the ThT monitored fibrillization
assay. Twenty hours after the reference sample reached the
stationary, the fibril containing solutions of the sample without
ThT were collected in one tube. UV/vis-absorbance and CD
were measured, and the fibril solution was transferred in a 1 cm
quartz glass cuvette and treated according to the procedure for
the trans → cis isomerization, except that the irradiation time
was prolonged to 5 h. Again UV/vis-absorbance and CD were
measured. Subsequently, the cis-isomer was photoisomerized
back to the trans-form. 456 μL of the solution was mixed with
24 μL of a 1 mM ThT stock solution and transferred as 150
μM aliquots to a medium binding 96-well plate for a ThT
monitored fibrillization assay. The remaining solution was
transferred as well in 150 μL aliquots to the 96-well plate and
incubated under the same conditions. This procedure was
repeated for every degradation cycle.
Solid-State NMR Spectroscopy. For the solid-state NMR

spectroscopy, 6 mL of a 100 μM solution of the respective
peptides (PTH25−37 and P4 with uniformly 15N/13C labeled
residues L28 and F34) was prepared according to the
procedure for the ThT monitored fibrillization assay and
transferred in 150 μL aliquots to a medium binding 96-well
plate. Twenty hours after the stationary phase was reached, the
fibril containing solutions were collected in a tube and
centrifuged at 60 000 rpm for 15 min at 10 °C. The
supernatant was discarded, the remaining fibril pellet was
frozen with liquid nitrogen, and the residual water was
removed using lyophilization. The lyophilized peptides were
packed into Bruker MAS rotors with outer diameters of 3.2
mm (PTH25−37) and 1.9 mm (P4), respectively. Solid-state
NMR experiments were conducted on an 18.8 T (800 MHz
1H frequency) Bruker Avance III spectrometer equipped with a
triple resonance HCN 3.2 mm MAS Efree probe and a 1.9 mm
triple resonance probe. For determination of intermolecular
long-range contacts between L28 and F34 resonances, proton-
driven spin diffusion (PDSD) experiments with an MAS
frequency of 20 kHz close to the rotational resonance
condition between aromatic 13C resonances of F34 and
aliphatic Cγ /Cδ resonances of L28 were recorded with mixing
times ranging from 50 ms to 1 s. For PTH25−37, additional
PDSD and DQSQ spectra were recorded on a 14.1 T (600
MHz 1H frequency) Bruker Avance wide bore spectrometer
equipped with a with a 3.2 mm MAS triple resonance 1H, 13C,
15N probe. Typical radiofrequency field strengths were 91−100
kHz for 1H, and 55.6 kHz for 13C Spinal64 1H decoupling39 (rf
field of 85 kHz) was applied during 13C evolution and
acquisition. The VT gas temperature was set to 263 K
(thermocouple reported temperature); the sample temperature
was estimated to be around 10−20 K higher due to frictional
heating under MAS.
WAXS Measurements. The WAXS measurements were

performed in transmission mode with a SAXSLAB laboratory
setup (Retro-F) equipped with an AXO microfocus X-ray
source. As a monochromator, the AXO multilayer X-ray optic
(AXO Dresden GmBH, Dresden, Germany) was used for Cu−
Kα (λ = 0.154 nm). The two-dimensional scattering patterns
were recorded with a two-dimensional detector (PILATUS3 R
300 K, DECTRIS, Baden, Switzerland). The preformed fibrils
were prepared as described for the measurement of the
aggregation kinetics in a total volume of 1 mL. Twenty hours

after the fibrillization reached the stationary phase, the fibril
suspension was ultracentrifugated at 60.000 g for 15 min, and
the obtained pellet was transferred into a glass capillary and
dried overnight. The scattering measurements were performed
at room temperature in vacuum and corrected for background.
Cytotoxicity Tests. Cell viability was determined for trans-

P4, trans-P8, and trans-P12 on NHDF as well as 3T3
fibroblasts with a resazurin reduction assay. Briefly, cells were
seeded at desired cell densities in corresponding culture media
supplemented with 10% FCS and penicillin/streptomycin in
96-well plates on day 0 and incubated overnight under
standard cell culture conditions. On day 1, serial dilutions of
the peptides in cell culture media were prepared. Then,
medium (background and negative control−100% viability),
TritonX in medium f.c. 0.025% (postive control−0% viability),
and the peptide dilutions were added with one treatment per
column (n = 8). Incubation for 24 h or 96 h under standard
cell culture conditions followed. On day of measurement,
resazurin stock solution was added to a final concentration of
44 μM into each well. After 2 h incubation, the resorufin
fluorescence was measured with a Cytation 5 plate reader
system. Means and standard deviation of each column were
calculated. Experiments were repeated independently 3 times,
and average values were evaluated (see Figure S12).
MD Simulations. For all MD simulations of the PTH25−37

peptide, as well as the mutants P1, P3, P4, P8, and P12, we
used the GROMACS simulation package.40 Since the
PTH25−37 sequence classifies as an intrinsically disordered
protein (IDP), we have used the CHARMM36m force field41

to model protein interaction, which has previously been shown
to be a suitable choice for IDPs.42 For the azobenzene
photoswitch (denoted AZO in our force field implementa-
tion), we parametrized the interactions following the cgenff
standard protocol43 and refined the parametrization using data
from QM/MM simulations,44 by fitting our parameters to
reproduce the bond, angle, and dihedral angle distributions of
the cis- and trans-state as obtained from QM/MM. The
resulting force field parameters are available at https://github.
com/strodel-group/Charmm36m_Azobenzene-FF. During the
MD simulations of the modified PTH25−37 peptides, the∠CNNC dihedral angle was restricted to either the cis- or
trans-states; thus, transitions between the two states of the
AMPB photoswitch were not modeled. The MD simulations of
all systems were prepared following the same protocol: first,
the peptide(s) were placed in the simulation box, where in case
of the dimer and hexamer simulations, the box size was always
chosen to achieve a peptide concentration of 10 mM. Then,
the box was filled with TIP3P water molecules,45 as well as Na+
and Cl− ions to neutralize the system and achieve a
physiological salt concentration of 150 mM. After equilibration
of the systems, a production run of 10 μs per system (1 μs for
the fibril models) was carried out under NpT conditions at
constant number of particles N, pressure p = 1, bar and
temperature T = 300 K. The pressure and temperature were
regulated using the Parrinello−Rahman pressure coupling
scheme46 and Nose−́Hoover thermostat,47 respectively. To
exclude edge effects, periodic boundary conditions in all
directions were applied, and the particle-mesh Ewald method48

was used to calculate electrostatic interactions. For the
calculation of van der Waals and Coulomb interaction in real
space, a cutoff of 12 Å was applied. An overview over all
simulations performed is given in Table S1, yielding 285 μs of
total simulation time across all systems. All MD simulations
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were run on the high-performance cluster JURECA-DC.49

Analysis of the MD data was performed with python using the
MDAnalysis50 package for reading of the MD trajectory and
the calculation of distances between groups of atoms, while the
MDTraj51 package was used for secondary structure analysis.
For visualization of the MD structures, the PyMOL52 software
was used. Additionally, PyMOL in combination with the
APBS53 plugin was used for the calculation and visualization of
electrostatic potential surfaces.
QM Calculations. The photoswitching mechanism of

AMPB integrated into PTH25−37 was monitored in the ground
and excited states along the ∠CNNC dihedral angle for the cis
↔ trans-transition of the azobenzene photoswitch. As a
starting point for the QM calculations, we constructed
pathways from cis to trans and vice versa, using MD
simulations. To consider the structural ensemble along the
pathway, we simulated 40 cis ↔ trans switching trajectories.
We started the switching from equilibrated cis- and trans-P4
structures obtained from equidistant time steps of 250 ns from
the 10 μs MD simulations. The switching in the MD
simulations was achieved by imposing a restraining potential
on the ∠CNNC dihedral angle and changing it every 2 ns in
increments of 10° between 0° and 180°. All other MD
simulation parameters were the same as described above. The
resulting trajectories were used as input for the subsequent
QM calculations. The QM calculations were conducted using
the ONIOM-based QM/QM2 method,30 with NEVPT2(2,2)/
def2-TZVP31,54 for QM and xTB232 for QM2, as implemented
in the ORCA program package.55 The QM region was focused
on the azobenzene core, including the peptide in π-conjugation
with it. The solvent was implicitly modeled using the ALPB
method.56 Due to convergence issues, analysis was limited to
34 of the original 40 trajectories. For these paths, the energies
of electronic states S0, S1, and T1 were interpolated to obtain
potential energy curves using Gaussian process regression from
the scikit-learn package.57 Some of the paths that have an
energy barrier at dihedral angles around 170° were analyzed at
the structural level. To this end, the inter-residue distances
based on the centers of mass of the residues were calculated for
all structures exhibiting a dihedral angle near 170° and then
analyzed through dimensionality reduction via principal
component analysis (PCA). The first three principal
components were transferred back into the original distance
matrix format and illustrated with three representative distance
matrices from the corresponding cluster of structures.
Representative structures for the distance matrices were also
extracted and visualized.
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1. Supplementary figures 

Figure S1. The smoothed potential energy curves from 34 converged cis ↔ trans isomerization paths. Single-point calculations 

are performed using NEVPT2(2,2)/xTB with implicit water through ALPB. The smoothing is carried out using Gaussian 

process regression. A subset of the paths has an energy barrier in the trans-cis-isomerization, notably paths 04, 10 and 21, 

with excitation energies before the barrier range from 2.5 to 3.0 eV. This correlates with the experimental fluorescence peak at 

485 nm (Figure S2), albeit with an expected ipsochromic effect caused by the minimum active 

space considered in the calculations. We attribute the extended fluorescence lifetime, compared to azobenzene, to structures 

hindered by this barrier, preventing radiationless relaxation. These barriers predominantly arise from structures characterized 
by dihedral angles around 170°, which exhibit a heightened S0–S1 excitation energy in the scan. 

 

Figure S2. Fluorescence life-time measurements. Fluorescence spectra measured at various points in time after the excitation 

pulse.  
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Figure S3. All geometries with dihedral angles near 170° projected on to the three-dimensional PCA space. The colors encode 

the S0–S1 excitation energies. The reduced three-dimensional space accounts for 86% of the total variance. Several clusters 

can be detected, notably one predominantly comprising structures with high excitation energies (visually represented in dark 

red in the lower left corner of the projection). This particular cluster is positioned at the negative extremity of the PC1-axis, 

advances towards the positive end of the PC2-axis and is situated approximately mid-way along the PC3-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. (a) The first three principal components represented in the distance matrix space. The first principal component 

signals a considerable separation between the residues R25 and A36/L37. Given this cluster's positioning at the PC1-axis's 

negative end, it implies that within these geometries, the distances between these residues are notably reduced. The second 

principal component reveals negative values for the separation between R25 and H32/N33, alongside positive distances 

between D30 and L37. The positive projection of this cluster on the PC2 suggests these distance matrix characteristics directly, 

without reversing the sign. With almost negligible projection on PC3, this component scarcely influences the distance matrices 

for structures within this cluster.  (b) Distance matrices for clusters with high excitation energies. Despite originating from 

different paths, these matrices exhibit consistent patterns. 
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Figure S5. Selected monomer structure (left) with distance matrix shown in Figure S4b and dimer structure (right) with a 

similar distance matrix. The corresponding distance matrices are shown in the upper right corners. It can be seen that the 

simultaneous interactions of R25 with A36/L37 and H32/N33 potentially contribute to the S1-barrier during the trans→cis 

isomerization path, leading to longer fluorescence lifetimes. This structural motif is also found in the dimer, while their 
configurations stabilized by intermolecular interactions could also lead to an increased barrier. 

 

 

Figure S6: Wide-angle x-ray diffraction patterns from dried fibrillar samples of PTH25-37  (left) and P4 (right).   
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Figure S7. 2D 13C,13C spin diffusion spectra of fibrils from PTH25−37, uniformly 13C labeled for L28 and F34, recorded under 

different conditions. Red: magnetic field strength 14.1 T (corresponding to 600 MHz 1H resonance frequency), spinning speed 

11 kHz, mixing time 10 ms. Blue: magnetic fiels strength of 18.8 T (corresponding to 800 MHz 1H resonance frequency), 

spinning frequency of 20 kHz, mixing time 1 s. Figure S6 shows the 2D 13C,13C spin diffusion spectra of fibrils from PTH25−37, 

uniformly 13C labeled for L28 and F34, recorded under different conditions. In the red spectrum, intraresidual cross-peaks 

between neighboring 13C sites of L28 and F34, respectively, are visible. At a longer mixing time of 1 s (blue), long-range 

correlations between all 13C spins within one residue are obtained. Spin systems of the labeled amino acids F34 (cyan) and L28 

(brown) are marked by solid lines. Dashed lines show a possible contact between L28 Cγ/Cδ and an aromatic F34 carbon. The 

spinning speed of 20 kHz corresponds to the first order rotational resonance condition for resonances with a chemical shift 

difference of 100 ppm, leading to a recoupling of dipolar couplings between aromatic ring carbon atoms of F34 and aliphatic 

Cγ and Cδ signals of L28, facilitating magnetization transfer between those residues if the distance between these residues 

would not exceed 6 Å.20 The fact that no inter-residual cross-peaks between L28 and F34 can be observed is thus a strong 
indication against an antiparallel arrangement of β-strands within the β-sheet. 
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Figure S8. 2D 13C,13C spin diffusion spectra of fibrils from P4, uniformly 13C labeled for L28 and F34, recorded at a magnetic 

field strength of 18.8 T (corresponding to 800 MHz 1H resonance frequency) at a spinning speed of 20 kHz, corresponding to 

the first order rotational resonance condition for signals with a chemical shift difference of 100 ppm. Red: Mixing time of 

50 ms. Blue: Mixing time of 1 s. See for more information in Fig. S6. Here, inter-residual cross-peaks between the aromatic 

ring signals of F and L C resonances are clearly visible for a mixing time of 1 s (blue spectrum). 
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Figure S9. Summary of all MD simulation results. The average numbers of residues ⟨Nres⟩ forming secondary structure 

elements, divided into α-helical (magenta), intrapeptide β-sheets (blue), interpeptide parallel β-sheets (cyan) and interpeptide 

antiparallel β-sheets (green) are given. The average was taken over the number of frames of the simulation and normalized by 
the number of peptides NP present in the corresponding simulation.  
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Figure S10. Electrostatic potential surface of PTH25−37 and the peptides P1, P3, P4, P8, and P12, with values according to the 

color map at the bottom, ranging from -2 (red) to +2 kTe−1 (blue). The electrostatic potential mapped to the molecular surfaces 

was calculated using the Adaptive Poisson-Boltzmann Solver (APBS1) plugin for the pymol2 software package. For each 
peptide, the two views that are rotated by 180° around the backbone axis are shown, as well as a transparent front view. 
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Figure S11: Control experiment to investigate photobleaching of the azobenzene unit during the photoisomerization. 

Absorption of P4 was measured after each isomerization step at 327 nm (top, blue dots) and 295 nm (bottom, red dots).   Light 

red area corresponds to irradiation with light of 340 nm wavelength for 30 min to achieve trans→cis isomerization. Light blue 
area corresponds to irradiation with light of 405 nm wavelength for 30 min to achieve cis→trans isomerization.  
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Figure S12: Cell viability assay of trans-P4, trans-P8, and trans-P12 on NHDF (human, adult, fibroblasts) and 3T3 (murine, 

embryonal, fibroblasts) cells after 24 h (blue) and 96 h (orange). 100% cell viability corresponds to the value of the negative, 
untreated control.  
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Figure S13. Fibrillization kinetics of 85 µM P1 as trans- (left) and cis-isomer (right). Measured in a ThT-monitored 

fluorescence assay at 37 °C in 50 μM Na2HPO4 buffered aqueous solution (pH 7.4). 

 

 

Figure S14. Fibrillization kinetics of 55 µM P2 as trans- (left) and cis-isomer (right). Measured in a ThT-monitored 
fluorescence assay at 37 °C in 50 μM Na2HPO4 buffered aqueous solution (pH 7.4). 

 

 

Figure S15. Fibrillization kinetics of 100 µM P7 as trans- (left) and cis-isomer (right). Measured in a ThT-monitored 
fluorescence assay at 37 °C in 50 μM Na2HPO4 buffered aqueous solution (pH 7.4). 
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Figure S16. Fibrillization kinetic of 100 µM P8 as trans- (left) and cis-isomer (right). Measured in a ThT-monitored 
fluorescence assay at 37 °C in 50 μM Na2HPO4 buffered aqueous solution (pH 7.4). 

 

 

Figure S17. Fibrillization kinetics of 100 µM P9 as trans- (left) and cis-isomer (right). Measured in a ThT-monitored 
fluorescence assay at 37 °C in 50 μM Na2HPO4 buffered aqueous solution (pH 7.4). 

 

 

Figure S18. Fibrillization kinetics of 100 µM P12 as trans- (left) and cis-isomer (right). Measured in a ThT-monitored 
fluorescence assay at 37 °C in 50 μM Na2HPO4 buffered aqueous solution (pH 7.4). 
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Figure S19. Fibrillization kinetics of P4 over three cycles of alternating fibrillization and fibril degradation through trans→cis 

isomerization measured in a ThT-monitored fibrillization assay at 37 °C in 50 µM Na2HPO4 buffered aqueous solution 

(pH 7.4).  

 

Figure S20. Fibrillization kinetics of PTH25-37 in different concentrations measured in a ThT-monitored fluorescence assay at 
37 °C in 50 μM Na2HPO4 buffered aqueous solution (pH 7.4); (left) raw data, (right) fitted data using Eq. (1).  

 

 

 

Figure S21. TEM images of P1 at different times and temperatures; scale bar = 250 nm. 
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Figure S22. TEM images of P2 at different times and temperatures; scale bar = 250 nm. 

 

Figure S23. TEM images of P4 at different times and temperatures; scale bar = 250 nm.  
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Figure S24. TEM images of P7 at different times and temperatures; scale bar = 250 nm. 

 

 

Figure S25. TEM images of P8 at different times and temperatures; scale bar = 250 nm. 
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Figure S26. TEM images of P9 at different times and temperatures; scale bar = 250 nm. 

 

 

Figure S27. TEM images of P12 at different times and temperatures; scale bar = 250 nm.  
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Figure S28: CD-spectra of the reversible fibrillization of P4 over three cycles (1st, 2nd, and 3rd). trans-Isomer (blue) was 

measured directly after dissolving the peptide, trans-fibrils (green) were measured 20 h after reference sample reached the 
stationary phase, and irradiated fibrils (orange) were measured directly after irradiating the fibrils with 340 nm for 5 h. 



S18 

 

Figure S29: UV/Vis-spectra of trans-P4 monomer before each fibrillization cycle. Dashed line corresponds to the absorption 
maxima of the trans-isomer at 327 nm. 
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2. Supplementary tables 

 

Table S1. All Simulations performed, with their respective simulation time 

Peptide Simulation Simulation Time [μs] 

PTH25-37 Monomer/Dimer/Hexamer 3 systems x 10 

P1 Monomer/Dimer/Hexamer - cis/trans 6 systems x 10 

P3 Monomer/Dimer - cis/trans 4 systems x 10 

P4 Monomer/Dimer/Hexamer - cis/trans 6 systems x 10 

P8 Monomer/Dimer - cis/trans 4 systems x 10 

P12 Monomer/Dimer - cis/trans 4 systems x 10 

PTH25-37 fibril 4 models x 1 

P4 fibril 11 models x 1 

 

Table S2. Sequence of PTH25-37 and P1 – P12 and their respective solubility in buffered solution (50 mM aqueous Na2HPO4) 
with pH 7.4, the critical fibrillization concentration (ccr), and standard free energy of the fibrillization reaction ΔG0. 

Peptide Primary sequence Solubility [µM] ccr [µM] ΔG0 [kJ/mol] 

PTH25-37 25RKKLQ30DVHNF35VAL >500 42 26 

P1 25RKKLQ30D-Azo-VHNF35VAL 90 28 27 

P2 25RKKLQ30DV-Azo-HNF35VAL 60 27 27 

P3 25RKKLQ-Azo-VHNF35VAL 35 n.d. n.d. 

P4 25RKKLQ30D-Azo-HNF35VAL 370 23 28 

P5 25RKKLQ-Azo-HNF35VAL 25 n.d. n.d. 

P6 25RKKLQ-Azo-30DVHNF35VAL 20 n.d. n.d. 

P7 25RKKL-Azo-Q30DVHNF35VAL 140 32 27 

P8 25RK-Azo-KLQ30DVHNF35VAL 200 6 31 

P9 25R-Azo-KLQ30DVHNF35VAL 130 26 27 

P10 25RKKLQ30DVHN-Azo-F35VAL 7 n.d. n.d. 

P11 25RKKLQ30DVHNF35V-Azo-AL 20 n.d. n.d. 

P12 25RKKLQ30DVHNF-Azo-AL 135 - - 

  n.d. – not determined 
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Table S3. Photophysical properties of P1, P2, P4, P7, P8, P9, P12 in buffered solution. cis-PSS – cis-photostationary state at 

340 nm after 30 min. trans-PSS – trans-photostationary state at 405 nm after 20 min.  

 Peptide t1/2 (cis, 37 °C) [h] after synthesis cis-PSS  trans-PSS 

  cis:trans ratio 

P1 90 5:95 86:14 19:81 

P2 90 6:94 87:13 19:81 

P4 97 3:97 82:18 24:76 

P7 72 8:92 94:6 23:77 

P8 89 6:94 85:15 23:77 

P9 86 9:91 91:9 16:84 

P12 63 4:96 90:10 19:81 

 
Table S4. Fibrillization parameters of PTH25−37, P1, P2, P4, P7, P8, and P9 in buffered solution. tlag - lag time. tchar - 
characteristic time. 

Peptide tlag (trans) [h] tchar (trans) [h] tlag (cis) [h] tchar (cis) [h] 

PTH25-37 7.770 ± 1.111 12.797 ±3.341 - - 

P1 0.392 ± 0.013 0.556 ± 0.008 9.759 ± 1.383 19.640 ±0.842 

P2 0.482 ± 0.207 1.247 ± 0.208 13.052 ±1.336 17.867 ± 0.360 

P4 1.917 ± 0.507 2.371 ± 0.433 29.525 ±0.558 42.444 ± 5.251 

P7 0.381 ± 0.056 0.627 ± 0.078 8.014 ± 1.643 9.875 ± 1.881 

P8 1.069 ± 0.096 1.356 ± 0.197 5.524 ±1.781 20.701 ± 4.415 

P9 0.267 ± 0.019 0.653 ± 0.040 3.833 ± 0.458 4.188 ± 0.290 
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3. Peptide characterization after synthesis 

Figure S30: 1H-NMR spectra (500 MHz, D2O) of P1 (top, trans-isomer) and P2 (bottom, trans-isomer).3 
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Figure S31: 1H-NMR spectra (500 MHz, D2O) of P3 (top, trans-isomer) and P4 (bottom, trans-isomer).3 
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Figure S32: 1H-NMR spectra (500 MHz, D2O) of P5 (top, trans-isomer)3 and P6 (bottom, trans-isomer). 
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Figure S33: 1H-NMR spectra (500 MHz, D2O) of P7 (top, trans-isomer) and P8 (bottom, trans-isomer). 
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Figure S34: 1H-NMR spectra (500 MHz, D2O) of P9 (top, trans-isomer) and P10 (bottom, trans-isomer). 
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+

 

 

Figure S35: 1H-NMR spectra (500 MHz, D2O) of P11 (top, trans-isomer) and P12 (bottom, trans-isomer). 
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Figure S36: (left) HPLC-trace of P1 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P1 (m/z 
calculated: 1805.00 found: 1805.938).3 



S28 

 

Figure S37: (left) HPLC-trace of P2 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P2 (m/z 
calculated: 1805.00 found: 1806.162).3  



S29 

  

 

Figure S38: (left) HPLC-trace of P3 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P3 (m/z 
calculated: 1689.97 found: 1688.964).3  
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Figure S39: (left) HPLC-trace of P4 (cis- and trans-isomer between 5 and 6 min) (right) MALDI-spectrum of P4 (m/z 
calculated: 1705.93 found: 1706.254).3 
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Figure S40: (left) HPLC-trace of P5 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P5 (m/z 
calculated: 1590.90 found: 1591.069).3 
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Figure S41: (left) HPLC-trace of P6 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P6 (m/z 
calculated: 1805.00 found: 1804.663). 
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Figure S42: (left) HPLC-trace of P7 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P7 (m/z 
calculated: 1805.00 found: 1803.746). 
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Figure S43: (left) HPLC-trace of P8 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P8 (m/z 
calculated: 1805.00 found: 1805.333). 
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Figure S44: (left) HPLC-trace of P9 (cis- and trans-isomer between 5 and 6 min). (right) MALDI-spectrum of P9 (m/z 
calculated: 1676.90 found: 1676.985). 
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Figure S45: (left) HPLC-trace of P10 (cis- and trans-isomer between 6 and 7 min). (right) MALDI-spectrum of P10 (m/z 
calculated: 1805.00 found: 1803.561). 
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Figure S46: (left) HPLC-trace of P11 (cis- and trans-isomer between 6 and 7 min). (right) MALDI-spectrum of P11 (m/z 
calculated: 1805.00 found: 1803.693). 
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Figure S47: (left) HPLC-trace of P12 (cis- and trans-isomer between 5.5 and 6.5 min) (right) MALDI-spectrum of P12 (m/z 
calculated: 1705.93 found: 1705.916). 
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