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Zusammenfassung  

Das Phänomen der Implantatmigration beschreibt die Verschiebung 

orthodontischer Mini-Implantate (OMIs) unter Einwirkung konstanter Kräfte und 

widerspricht den Grundprinzipien des physiologischem Knochenumbaus. Die 

grundlegende Biomechanik hiervon ist bis jetzt noch nicht verstanden. Ziel dieser 

Dissertation war es, den Einfluss lokaler Spannungen auf den Knochenumbau 

und die Implantatmigration kontinuierlich belasteter OMIs zu untersuchen. Zwei 

Mini-Implantate wurden jeweils in einen Schwanzwirbel von 61 Ratten eingesetzt. 

Eine kontinuierliche mechanische Belastung wurde durch die Verbindung der 

Implantate mit einer Nickel-Titan-Kontraktionsfeder unterschiedlicher Kräfte (0,0, 

0,5, 1,0, 1,5 N) erreicht. Longitudinale in-vivo Daten wurden mittels mikro-CT von 

jedem Tier zu bestimmten Zeitpunkten erhoben: sofort und 1, 2 (n = 61), 4, 6 und 

8 (n = 31) Wochen nach der Operation. Neun Volumes of interest (VOI) wurden 

um jedes Implantat definiert. Um die Spannungswerte in der Umgebung des 

Implantats zu untersuchen, wurden Mikro-Finite-Elemente-Modelle erstellt. 

Knochenumbau wurde anhand der Veränderung des Knochenvolumens 

aufeinanderfolgender Scans analysiert. Für die statistische Analyse wurden ein 

gemischt lineares Modell und Likelihood-Ratio-Tests verwendet, gefolgt von 

einem Tuckey-Post-hoc-Test im Falle von Signifikanz. Tendenziell stiegen die 

Spannungen bis zur zweiten Woche an. Danach zeigten sich abnehmende 

Werte. Die höchsten Spannungswerte wurden in der oberen proximalen Region 

berechnet. Ein initialer Knochenabbau wurde in den meisten Fällen bis Woche 

zwei, gefolgt von einem Knochenaufbau bis Woche acht, beobachtet. Dieses 

Muster wurde insbesondere in der Gruppe mit einer Belastung von 1,5 N 

festgestellt. Die Studie legt nahe, dass kontinuierliche Belastungen den peri-

implantären Knochenumbau beeinflussen. Implantatmigration könnte durch den 

Einfluss von Insertionstrauma und kontinuierlicher Belastung ermöglicht worden 

sein und schien durch eine anschließende Konsolidierungsphase mit hohem 

Knochenaufbau und Anpassung an die Belastungsbedingungen limitiert zu 

werden.  
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Abstract 

The phenomenon of implant migration describes the displacement of orthodontic 

mini-implants (OMIs) under constant forces and contradicts the basic principles 

of physiological bone remodelling. The fundamental biomechanical mechanism 

of this unexpected behaviour is not yet understood. This dissertation aimed to 

evaluate the influence of local stresses on bone remodelling and implant 

migration around static-loaded OMIs. Two mini-implants were inserted into a 

single caudal vertebra of 61 rats. Static mechanical loading at different forces 

(0.0, 0.5, 1.0, 1.5 N) was achieved by connecting the implants with a nickel-

titanium contraction spring. Longitudinal in vivo data was collected by performing 

micro-CT scans of each specimen at specific time points: immediately after 

surgery, 1, 2 (n = 61), 4, 6 and 8 (n = 31) weeks post-op. Nine volumes of interest 

(VOIs) were defined around each implant. Micro-finite element models were 

calculated to examine peri-implant stress values. Bone remodelling was analysed 

by calculating changes in bone volume between subsequent scans. Statistical 

analysis employed a linear mixed model and likelihood-ratio-tests, followed by 

Tuckey post-hoc-Test in case of significance. Stresses tended to increase 

towards week two while decreasing values were observed afterwards. The 

highest stress values were calculated in the proximal top region (the cortical bone 

median of the implants). The bone remodelling analysis revealed that in most 

cases bone degraded within the first two weeks, followed by bone gain up to week 

eight. This pattern was especially apparent in the group of 1.5 N loading. The 

study suggests that static stresses influence peri-implant bone remodelling. 

Implant migration could be explained by the influence of both the trauma from 

implant insertion and static loading and seemed to be reduced by a following 

consolidation phase with a high amount of bone gain and adaption to the loading 

conditions.   
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1 Introduction 

Skeletal anchorage using orthodontic mini-implants (OMIs) gained popularity 

owing to additional intraoral anchorage, reduced side effects, improved 

aesthetics, and novel treatment options [1, 2]. 

In contrast to dental implants, OMIs are loaded with constant forces of low 

magnitude. Whereas implants including OMIs were assumed to be stationary 

stable, recent studies have observed that orthodontic forces may induce implant 

displacement, commonly referred to as implant migration [3-5].  

Previous research revealed that local stresses are a decisive factor for bone 

remodelling. Bone fraction values were found to be higher in pressure zones and 

decreased in the absence of forces [6, 7]. However, this fundamental 

understanding of load-dependent bone remodelling appears to be in contraction 

with the phenomenon of implant migration, where bone must be resorbed at the 

side where stresses are highest to move in the pulling direction.  
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1.1 Bone 

1870, the German anatomist Julius Wolff discovered an alignment of bone 

trabeculae along the direction of the mechanical forces. For this reason, he 

attributed these forces as the cause for the optimised architecture of bone. His 

findings, outlined in his article “Ueber die innere Architectur der Knochen und ihre 

Bedeutung für die Frage vom Knochenwachstum” proposed the idea that bone 

adjusts to its mechanical loads, with each trabecula having a specific static role 

in resisting external forces [8]. Consequently, bone not only produces 

erythrocytes, thrombocytes and leucocytes [9], or stores calcium as part of the 

mineral balance [10, 11], for example, but essentially fulfils the task of supporting 

the soft tissue and protection of vital organs while continuously adapting to the 

external applied load.  

Wolff´s Law and Mechanostat Theory  

Since the initial ideas of Wolff, the study of the relationship between bone 

architecture and loading has become a key issue in orthopaedics and other 

related sciences [12]. Roux postulated in 1881 that bone growth and maintenance 

are controlled by mechanical stimuli [13]. This theory was later taken up again by 

Wolff in his idea on bone remodelling [14], which is known today as “Wolff's Law” 

[15].  

According to Wolff's Law, bone builds up and gains density when subjected to 

loading and degrades when it's loaded less or not at all. There is a balance 

between sufficient mechanical stability and optimization of the weight [15]. Frost 

further extended the ideas and proposed the Mechanostat Theory as a model for 

bone remodelling [16]. It states that local bone growth and loss depend on 

mechanical, elastic deformation. Bone mass therefore reduces below a certain 

value of elastic deformation and builds up above a certain value. The plateau in 

between these values is called the “lazy zone”.  Here, the bone does not change 

due to an equilibrium between bone formation and resorption [17]. This theory 

can already be recognized in “everyday” situations. In paraplegics, the amount of 

bone in the unused legs is reduced, while bone in the arm, which is used even 

more than usual, is built up [18, 19]. Weightlifters often show an increase in bone 

density as a response to physical training [20], whereas astronauts lose bone 

mass in weightlessness [21]. 
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To further investigate the Mechanostat Theory, both animal and human studies 

have since been conducted. While these studies generally agree with Frost´s 

findings a major aspect was challenged: a linear relationship between local tissue 

loading and bone remodelling was found, with no “lazy zone” [6, 7, 22]. These 

studies also indicate that the response of bone to mechanical loading is quite 

comparable between animals and humans [6]. 

Bone remodelling  

From studies of the past decades, we know that the fundamental mechanism of 

bone remodelling involves a coordinated interplay between osteoclastic bone 

resorption and osteoblastic bone formation enabled due to communication 

among osteoclasts, osteoblasts, and osteocytes [23-25]. 

Major cell types and pathways  

Osteoblasts form bone by producing a type I collagen-rich bone matrix. This 

extracellular matrix is initially called osteoid and later mineralized by calcium 

phosphate accumulation in the form of hydroxyapatite, controlled by osteoblasts 

[26]. For craniofacial bone, osteochondral progenitor cells, derived from neural 

crest cells, differentiate into bone-forming osteoblasts [27]. This process of 

differentiation is regulated by several transcription factors such as SOX9 [26, 28, 

29]. Further, the runt-related transcription factor 2 (Runx2) initiates differentiation 

into osteoblasts, showing upregulation in preosteoblasts and reaching its 

maximum level in immature osteoblasts [30]. Among the signalling pathways 

controlling bone formation and osteoblastogenesis, the canonical Wnt signalling 

pathway is one of the most relevant [23]. Wnt, modulated by osteocytes, binds its 

receptor Frizzled as well as co-receptors such as LDL receptor-related protein 5 

or 6 (LRP5/6). This way, the destruction complex of ß-catenin is inhibited and 

cytoplasmic ß-catenin, important for the specification of mesenchymal progenitor 

cells into osteoblasts, is increased [31]. ß-catenin then activates target gene 

expression within the nucleus to upregulate osteoblast proliferation [31]. 

Sclerostin (SOST), as well as dickkopf 1 (DKK1), both expressed in osteocytes 

[32] and osteoclasts, act as antagonists of the Wnt signalling way by inhibiting 

the LRP5/6 [33-36]. Mechanical loading is associated with lower levels of 

sclerostin, leading to bone formation [37], whereas unloading increases sclerostin 

levels, leading to bone resorption [38]. 
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Multinucleated osteoclasts develop from the fusion of precursor cells derived 

from the monocyte/macrophage lineage [39]. Osteoclasts dissolve bone minerals 

through the secretion of hydrochloric acid, whereas the organic bone matrix is 

degraded by proteolytic enzymes like Cathepsin K or matrix metalloproteinases 

(MMPs) [40]. To facilitate this process, these cells have podosomes to enable 

adhesion to the bone surface and form a sealing zone to ensure an isolated 

microenvironment [41]. Expressed by Osteoblasts, macrophage colony-

stimulating factor (M-CSF) activates osteoclast precursor cells and plays a pivotal 

role in initiating osteoclast differentiation [42]. Further differentiation of an 

osteoclast precursor into a mature osteoclast is promoted by the Receptor 

Activator of NF-κB Ligand (RANKL) binding to Receptor Activator of NF-κB 

(RANK) [43]. Current understanding suggests that, in addition to osteoblasts, 

osteocytes in particular express RANKL and thus influence bone resorption [44, 

45]. Recent studies indicate that unloading increases RANKL expression in 

osteocytes, which in turn correlates with bone resorption in the absence of 

loading [46]. Osteoprotegerin (OPG) acts as an antagonist to this system, 

inhibiting the activation of RANK by binding RANKL [47]. Until now the major 

source of OPG is not completely clear [39] but besides osteocytes also 

osteoblasts and osteoprogenitorcells are considered to secrete  OPG [48]. As 

RANKL and OPG act in the opposite way, the ratio between RANKL and OPG 

therefore has a major influence on bone remodelling. 

Osteocytes, derived from osteoblasts, are located inside the extracellular bone 

matrix and constitute over 90% of the cellular composition in the bone of an adult 

human [40]. They form dendritic processes that allow interaction between 

osteocytes themselves, as well as with bone marrow or bone lining cells [49]. It 

was found that mice were resistant to underload-induced bone resorption when 

osteocytes were previously targeted for destruction [50], indicating the core role 

of osteocytes in Mechanotransduction. Thus, besides the fact that osteoblasts 

and osteoclasts determine the extent of bone remodelling by adding or removing 

bone [24], it is now certain that osteocytes have a crucial function in orchestrating 

bone remodelling by regulating the activity of  osteoblasts and osteoclasts [23].  

Besides mechanical loading, other factors such as calcium homeostasis [6] or 

hormones (e.g. parathyroid hormone or glucocorticoids) [51] have a significant 

influence on bone remodelling.  
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Mechanotransduction  

To enable bone remodelling in response to mechanical loading, the mechanical 

stimulus is detected by Osteocytes and further converted into a biomechanical 

signal (Mechanotransduction) [52, 53]. Recent discourse has revolved around the 

exact way in which stimuli are perceived by osteocytes. Some researchers 

propose that dendrites of osteocytes not only facilitate cell-to-cell communication 

but also sense mechanical loading [23, 54, 55]. This capability is attributed to the 

presence of fluid, located around the dendrites, also referred to as canalicular or 

bone fluid. When stress is applied, the fluid moves away from the compressed 

region, enabling osteocytes to detect mechanical loading by registering the flow 

of canalicular fluid [56]. Other sources suggest a combination of dendrites and 

the cell body to sense mechanical stimuli [57] while some contend that the 

primary cilium is most likely to detect the stresses [58, 59]. Evidence exists for 

each of these theories. 

An early response to mechanical loading and fluid flow shear stress is the 

increase of intracellular calcium levels due to Voltage-dependent calcium 

channels, present in both osteocytes and osteoblasts [60]. Subsequently, this 

results in the release of NO, ATP, and prostaglandin, which all exhibit a stress-

dependent effect in bone-building [61-63]. For instance, NO, downregulates bone 

resorption and induces bone formation [23, 64] 

In addition, mechanical deformation of osteocytes induces Ca2+-flux dependent 

release of extracellular vesicles and promotes bone formation [65, 66]. EVs 

contain mediators such as RANKL, OPG, or sclerostin [66]. This way bone 

remodelling is orchestrated in part by mechanosensitive osteocytes.  

The mechanism of dynamic bone remodelling primarily depends on the fact that 

the bone is subjected to physiological cyclic loading. In contrast, continuous 

compression, as seen when using OMIs, could lead to different phenomena since 

the blood marrow supply could be disrupted. This could result in osteocytic cell 

death and bone repair, as a response on high static loadings [67-72]. 

Angiogenesis within the affected area would be feasible as part of the bone repair 

process [73].  
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Microcracks and bone repair  

Physiological mechanical loading causes micro damage within the bone structure 
[74]. Therefore, microcracks can be considered a physiological phenomenon, 

damaging both the dendrites of the osteocytes and the osteocytes themselves. 

As a result, the damaged osteocytes undergo apoptosis [75]. Since osteocyte 

apoptosis, either due to fatigue or other factors such as underload or estrogen 

deficiency [76, 77], is a fundamental process to initiate bone remodelling, it 

induces the release of ATP via pannexin-1 channels (PANX1) and its coactivation 

receptor P2X7R [78]. In this context, ATP acts as a localization signal and binds 

to P2Y2 receptors of the surrounding "bystander" osteocytes [79]. This 

mechanism causes bystander osteocytes to upregulate the release of RANKL 

[78] to activate osteoclastogenesis and the resorption of damaged bone. In 

addition, B-cell lymphoma 2 protein (BcL-2) increases in bystander osteocytes. 

This anti-apoptotic protein presumably functions to protect against increased 

osteoclastic activity [80], thus preventing excessive osteocyte degradation. 

In addition to these mechanisms, damage-associated molecular patterns 

(DAMPs) are released when osteocytes die [81]. These either directly activate 

the differentiation of osteoclasts via macrophage-inducible C-type lectin receptor 

(Mincle) or reach the junction with the bone marrow through the canalicular 

network [81]. In the last case they bind to pattern recognition receptors (PRRs) 

[82] on bone marrow cells, activating them and inducing the release of 

proinflammatory cytokines such as TNF 𝑎 , il-6 or il-1 by monocytes and 

macrophages [83]. These cytokines positively influence the increase of RANKL 

in osteoblasts, leading to the activation of osteoclast formation again [84].    

The insertion process of OMIs induces microcracks in the surrounding bone [85]. 

Consequently, subsequent post-traumatic bone healing, beginning with an initial 

phase of bone resorption followed by bone formation, as previously mentioned, 

could be one factor potentially facilitating implant migration.  
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1.2 Micro-computed Tomography 

High-resolution micro-computed tomography (micro-CT) has been utilized in 

laboratory settings since the late 1980s [86] for research purposes in both animal 

and human specimens. Over time its use has grown considerably [87, 88]. 

Dedicated in vivo micro-CT systems such as the vivaCT 80 (Scanco Medical 

AG, Switzerland) enable longitudinal scans of small animals. The advancement 

of micro-CT scanners has further enabled high-resolution three-dimensional 

analysis of the morphology of cortical and trabecular bone [89-92], opening novel 

prospects in the field of bone research. 

Micro-CT in dentistry  

In addition to the possibility of studying bone morphology concerning bone 

diseases and their treatment in preclinical and clinical studies [93, 94], micro-CT 

is widely employed in the field of dental research (endodontics [95, 96] or oral 

surgery). Within the latter, studies could focus on augmentation procedures [97, 

98], the influence of antiresorptive therapy on bone metabolism [99], or on 

osseointegration of dental implants [100, 101]. 

Regarding bone-to-implant contact (BIC), which is considered a crucial 

parameter for osseointegration, the comparison between conventional 

histological examination and three-dimensional micro-CT analysis indicates no 

significant difference when the analysis is performed by a trained observer [102]. 

Moreover, approaches have been introduced to further reduce the influence of 

metal artefacts enabling peri-implant bone segmentation using only a single 

threshold [103].  

Advantages and disadvantages  

Compared to conventional two-dimensional imaging techniques such as 

histology, micro-CT imaging offers the possibility to analyse larger volumes of 

interest (VOIs), or even the entire microstructure if required.  The micro-CT 

workflow enables full or semi-automatically extraction of parameters, facilitating 

the analysis of a substantial amount of specimens [104-106]. In addition to bone 

morphology parameters such as bone volume per total volume (BV/TV), quality 

parameters of bone like mineral properties can be measured [87, 107].  
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Due to the non-destructive workflow, longitudinal in vivo studies could be 

conducted [5, 108]. The integration of bone remodelling analysis with micro-finite 

element analysis (micro-FEA), for instance, has contributed novel insights into 

the load-dependent behaviour of bone remodelling [6, 7].  

Nevertheless, detailed analysis of cells, released transmitters, or proteins is not 

possible, and other examination methods such as histology or gene-expression 

analysis are required [109]. Another major limitation of micro-CT is the potential 

occurrence of (metal-) artefacts. Particularly, when examining specimens 

containing highly radiopaque objects such as titanium implants, artefacts can 

influence the grey values of the surrounding area [102, 103]. 
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1.3 Micro-finite element analysis 

From finite element to micro-finite element  

In 1972 finite element analysis (FEA) emerged in biomechanics as a “new method 

to analyse the mechanical behaviour of skeletal parts” [110] and has since 

become increasingly important. The application of the FE method to human bone 

initially aimed to evaluate structural failure probabilities [111]. It later evolved to 

study stresses and strains induced by orthopaedic forces to establish 

relationships between load-carrying functions and tissue morphology, as well as 

to promote the development of implants to provide better fixation [12]. Within this 

context, FEA was used due to its powerful ability to simulate loadings on highly 

irregular structures such as bone. However, simulations using finite element (FE) 

models have limitation with regard to the representation of the geometry, material 

properties and loading [111]. In particular, trabecular bone is not continuous at 

the microscopic level, thus, concerns arose about whether a continuum 

representation of the bone would impact the results [112]. This consideration 

gave rise to the idea of examining irregular bony structures at the microscopic 

level in terms of a micro-FEA. 

The first micro-FEA of a bone sample of reasonable size in 1995 [113] 

demonstrated its fundamental capabilities. Subsequently, the new capability of 

micro-CT imaging enabled faster, high-resolution in vivo scans. With increasing 

computational power, the model size increased in recent years making it possible 

to analyse whole bones [114]. 

Micro-finite element analysis today  

It is now believed that micro-FEA provides better information for measurements 

of bone stiffness, strength and fracture prediction than parameters such as bone 

density do [114]. Furthermore, owing to its ability to represent the irregular 

microarchitectural configuration of the trabecular network, micro-FEA can provide 

more detailed information than FE analyses representing bone as a continuum 

[115]. 

When researching diseases [116] and treatments  [117], micro-FEA serves as a 

tool to acquire detailed information about the micromechanical properties of bone 

[114], considering the microscopic anatomy [118]. In addition, micro-FEA enabled 
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new findings and insights into the correlation between bone remodelling and 

tissue loading [6, 7]. 
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1.4 Orthodontic mini-implants  

According to the third Newtonian axiom "Actio = Reactio", every force generates 

an equal and opposite counterforce (reactive force). As forces are a fundamental 

part of orthodontic treatment, this law is often found in this speciality and thus 

leads not only to desired but also to undesired tooth movements of the anchorage 

units [119-121].  

In addition to the possibility of using teeth or extraoral devices, skeletal anchorage 

allows new solutions to minimize undesirable effects [122-126]. In this regard, 

skeletal anchorage using OMIs has been used frequently in recent years [1, 2]. 

Due to their ease of use and low invasiveness, they have proven effective in 

clinical situations, enabling novel treatment options [127, 128].  

Skeletal anchorage in the past 

Initial efforts to achieve skeletal anchorage using screws inserted into the bone 

go back to Gainsforth and Higley 1945, who employed vitallium screws [129]. 

However, as the screws were lost under load due to insufficient osseointegration 

and subsequent loosening, titanium was discussed as a possible alternative 

material. In 1969, Brånemark's research on dental titanium implants 

demonstrated osseointegration and stability over five years, thus establishing 

titanium as a highly biocompatible material [130]. In the early 1980s, Schroeder 

et al. described an ankylotic connection between the titanium-sprayed implant 

surface and the surrounding bone. This study reports on the first experiments 

conducted with cylindrical titanium implants implanted in monkeys [131].   

Various forms and locations of skeletal anchorage have been explored, including 

a study initially described by Melsen, in which ligature wires inserted into the 

maxillary antral wall provided anchorage [132]. Moreover, the influence of 

orthodontic forces on the osseointegration of endosseous titanium implants 

(Brånemark, size 10 x 3.75 mm) was studied, demonstrating the suitability of 

these implants as orthodontic anchorage devices [133]. Endosseous Implants 

were also placed vertically in the retromolar region for purely orthodontic 

purposes [134]. Due to poor bone quality and thick mucosa in this area [135] one 

later switched to horizontal insertion [136].  
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The aforementioned methods of skeletal anchoring are quite invasive, which is 

why smaller, more atraumatic implants, also referred to as OMIs were introduced 

[137]. With these implants placed between or right beside the roots, adjacent 

teeth in most cases can only be moved 1-1.5mm, before contacting the OMI. 

Therefore, the idea of placing short implants in the mid-palatal region emerged, 

which dates back to Triaca 1992 [138]. This region has consistently proven to be 

a favourable site for OMI insertion, which is why mini-implants are now mostly 

inserted in the anterior palate, the so-called “T-Zone” [139-142]. In this zone the 

loss rate on the one hand [143] and the fracture rate on the other hand [144] are 

low. 

Indications 

OMIs find numerous applications where a stable anchorage unit is required. As 

published by Bock et al. [145] examples of clinical indications for OMIs are 

intrusion [146, 147] or extrusion [148], distalisation [149] or mesialisation [150, 

151], (early) class lll treatment using a hybrid hyrax device [126, 152, 153], 

alignment of ankylosed or displaced teeth [127, 154], pre-prosthetic treatment 

[155], uprighting of tipped molars [156] or mini-implant-borne rapid maxillary 

expander [157].  Further indications include en-masse retraction [158] or the 

possibility of closing gaps by installing temporary pontics [159].  

Advantages and risks  

As mentioned, the importance and use of OMIs has increased enormously in the 

past [1, 2]. This is not only due to the versatility of making new treatment options 

possible [127, 152, 160], but also because of the combination of a high degree of 

aesthetics [151, 161] with relatively low costs [162, 163]. In addition, OMIs ensure 

short treatment time with remarkable efficacy [128, 149, 164-168], partly due to 

minimal reliance on patient compliance[168, 169]. Compared to normal dental 

implants the insertion and removal procedure is much easier and less invasive 

[162]. 

Disadvantages associated with OMIs include the risk of root damage [170] or 

loosening of the implant. In the literature, studies report an overall success rate 

of approximately 84 to 88 % [171-173] and a failure risk of 6 % for palatal placed 
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OMIs [174], and many cases in which OMIs are used unsuccessfully are in the 

early stages of insertion or loading [175].  

In dental implantology, there is general evidence that sufficient primary stability 

is one of the most important key factors for high success rates [176, 177]. As has 

been shown in past studies, this point can also be applied to orthodontic mini-

implants [178]. For this reason, primary stability is a decisive factor for the 

successful treatment with OMIs. To achieve this, regions with good bone quality 

should be preferred [179]. In addition, a thin attached mucosa [180] as well as 

the correct insertion angle [142] is important to anchor the implants sufficiently in 

the bone. Accordingly, distinct anatomical regions exhibit different failure rates, 

such as 1.5-5.5 % for palatal or 9.2-16.4 % for buccally placed implants in the 

maxilla [181]. Another important factor is the properties of the implant itself.   

Properties of OMIs 

Many studies have investigated the influence of shape, geometry, and 

dimensions of the screw to achieve better primary stability [175, 182-184]. In this 

context the diameter is known to be a dominant factor for the mechanical 

environment of the screw [182, 185], that’s why McNally et al. recommend a 

screw diameter greater than or equal to 1.8mm [186]. A study by Nienkemper et 

al. postulates that longer implants of 11mm have higher primary stability than the 

control group of 9mm [187]. Other studies not only confirm these points [171, 175] 

but also assign decisive influence to other factors such as material and exposure 

length [188], screw shape [175, 189, 190] thread shape [188, 191], or thread 

depth [188]. Longer implants may lead to patient discomfort due to the potential 

perforation of the nasal mucosa, when placed in the T-zone. This is why today it 

is customary to employ a 9 mm length implant in the anterior and a 7 mm length 

implant in the posterior T-zone. 

Due to the requirements for OMIs to provide sufficient retention and yet be easily 

removed after treatment, grade V titanium alloy (Ti-6Al-4V) [192] with a machined 

surface is often used [193]. The machined surface of the implants ensures less 

osseointegration compared to conventional dental implants exhibiting a micro-

rough surface. Therefore, the retentive force of the implant is based more on 

mechanical retention than on osseointegration [194] and the implant can be 
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removed easily by unscrewing. In this context, until now, it remains unclear to 

what extent the OMI surface influences implant migration.  

Implant migration 

Although OMIs [195] can be assumed to be stationary stable when orthodontic 

forces are applied, migration within bone has been observed [3-5]. This 

phenomenon, also referred to as implant migration, seems to contradict the 

Mechanostat Theory since it cannot solely be attributed to the previously 

described bone remodelling processes: one would expect bone formation in 

regions of elevated stress due to loading. Consequently, additional factors, such 

as bone healing following insertion trauma and the effects of continuous loading, 

must be considered.  

A significant correlation between velocity of movement and applied force was 

recently postulated [5]. The mechanism behind this phenomenon is still unclear 

and has become an increasing challenge for orthodontic scientists.  
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1.5 Aims  

The overall goal of this study was to achieve further explanations of these 

unexpected biological patterns enabling implant migration. Specific aims were to 

assess the local stresses through a micro-FEA at constantly loaded OMIs, to 

evaluate the impact of stresses, and to correlate these findings with the bone 

remodelling processes. The following null hypotheses were formulated: 

1. H0: According to Mechanostat Theory there is no local tissue loading 

above which implant migration occurs. With higher tissue loading chances 

for bone formation increase, limiting implant migration. 

A: There is a local tissue loading above which implant migration occurs 

(local bone loss instead of bone formation due to high stresses). 

2. H0: There is no association between bone formation and implant 

migration, so that the migration rate does not decrease over time.  

A: With increased bone formation, implant migration decreases over time. 

3. H0: Post-traumatic bone healing does not enable implant migration. 

A:  Post-traumatic bone healing does enable implant migration.  
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2 Micro finite element analysis of continuously loaded mini-implants - 
A micro-CT study in the rat tail model, Kerberger R, Brunello G, 
Drescher D, van Rietbergen B, Becker K., Bone, Volume 177: 116912, 
(2023) 
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3 Discussion 

Both preclinical and clinical studies suggest that orthodontic mini-implants 

subjected to static loading can exhibit movement within the bone while 

maintaining stability [3-5]. The mechanisms behind this phenomenon, commonly 

known as implant migration, appear to contradict the fundamental principles of 

bone remodelling [6, 16, 25, 196] and remain to be understood. 

In the present study, 2 implants were inserted into the tail vertebra of n=61 rats 

and subjected to different static forces (0N, 0.5N, 1N, or 1.5N). In vivo micro-CT 

scans were taken immediately and 1, 2 (n=61), 4, 6, and 8 (n=31) weeks after 

surgery [5]. To describe the results depending on the peri-implant bone region, 

nine volumes of interest (VOIs) were defined for each implant. Within each VOI, 

local stresses around mini-implants were calculated by using micro-finite element 

analysis (FEA) and further correlated with peri-implant bone remodelling [108].  

In brief, stress values tended to peak after two weeks in most VOIs, and bone 

remodelling analysis indicated initial bone loss within the first two weeks followed 

by subsequent bone gain, particularly prominent in the 1.5 N loading group. Bone 

gain trended downwards towards week 8 [108], implying a potential association 

between movement velocity, peri-implant stresses, and bone remodelling [5, 109, 

197]. Correspondingly, stress distribution aligned with the direction of implant 

movement, reaching peak values in proximal top VOIs (the cortical bone region 

median of the implants). Elevated stresses were also evident in the lateral middle 

and distal bottom regions. The findings vary across species, age, and bone 

regions, necessitating caution when transferring the results to clinical scenarios 

[198, 199]. 

It should be noted that this study deviated from assessing strain or strain energy 

density and opted for stress analysis, since post-traumatic bone healing due to 

microcracks rather than dynamic bone remodelling was thought to be associated 

with implant migration [6, 7].  

Early healing phases did not involve a functional connection between implants 

and surrounding bone. When simulation stresses using FEA, bone was 

disconnected from the implant where tensile forces could be expected, for this 

reason. In this context, limitations with regard to the FEA exist due to ongoing 

bone remodelling and the absence of longitudinal in vivo histological information 
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regarding functional bone to implant contact at especially the last time points 

[109]. 

Limitations stemming from metal and motion artefacts were addressed to be 

minimized to less influence the results [103, 108]. 

As previously discussed, osteocytes are crucial in orchestrating the extent of 

bone remodelling [23]. This mechanism allows the bone to respond to mechanical 

stress and adjust its volume accordingly. Given this understanding, it appears 

implausible that implants could migrate through bone as demonstrated within this 

study since high stresses would be expected on the side toward which the OMI 

moves, further restricting implant migration. Therefore, the observed movement 

cannot be explained by the Mechanostat Theory. At this point it is important to 

mention that static implant loading combined with insertion trauma is not a 

physiological loading process. 

Therefore, it could be hypothesized that static loading fractures the peri-implant 

bone, leading to local bone resorption and facilitating implant migration. However, 

the Micro-FEA conducted within this study revealed comparatively low peak 

stress values that would not cause any bone damage. Therefore, bone fracture 

due to unphysiological overloading is not likely to cause early bone loss [200].  

More complex factors such as microcracks due to implant insertion trauma and 

ischemia caused by continuous compression could be more relevant factors: 

The insertion of mini-implants induces microcracks in the surrounding bone. 

Microdamage stimulates bone remodelling by initiating resorption through 

osteoclasts and new bone formation by osteoblasts [85]. Consequently, these 

microcracks lead to an accelerated rate of bone remodelling, a process known 

as regional acceleratory phenomenon (RAP) [201-203]. Under physiological 

loading conditions, damaged areas are repaired effectively, [204], whereas the 

accumulation of microcracks and unphysiological (e.g. static) loading 

compromise the mechanical properties of the bone [205]. RAP is frequently 

observed in combined surgical and orthodontic treatment, where perioperative 

remodelling within the alveolar process accelerates tooth movement. In this 

context, it is conceivable that the local peri-implant RAP, and the associated 

microcracks, facilitate implant migration.  
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Additionally, continuous compression of bone interrupts the blood marrow supply, 

leading to local ischaemia and bone necrosis following osteocytic cell death [67-

72]. Osteocyte apoptosis triggers the release of ATP, acting as a localisation 

signal for the surrounding Osteocytes [39]. These osteocytes induce the release 

of RANKL and subsequently activation osteoclastogenesis [39]. Furthermore, 

during this aseptic inflammation, cytokines such as TNF𝑎 promote osteoclast 

differentiation and enhance the release of VEGF, which upregulates the 

angiogenesis in this area [73]. High levels of angiogenesis are related to 

enhanced local bone remodelling, as observed after two weeks of loading within 

this study trail [197].  

In summary, the findings could be explained as follows: Bone resorption was 

generally observed in most VOIs during the first two weeks, likely due to 

microcracks caused by implant insertion and RAP. However, bone resorption was 

more pronounced in regions subjected to high static stresses (e.g. proximal top), 

where local ischemia may have further contributed to bone resorption due to the 

constant forces exerted on the OMIs top, it is conceivable that the implant could 

relocate into the newly resorbed area and therefore migrate through bone.  

Continuous loading may enable the implant movement due to an initial disbalance 

between bone resorption and bone formation, especially within the first two weeks 

after implant loading. After these two weeks, bone was able to adapt and more 

bone formation was observed, regardless the VOI. However, more bone 

formation was observed in VOIs of higher Stresses. This process of bone 

densification resulted in decreasing stress values after two weeks and Implant 

migration could be limited this way, underlining the high potential of bone 

adaption to new loading conditions in terms of bone remodelling.  

Future studies could aim to research the influence of aseptic inflammation and 

initial bone resorption on implant migration by analyzing relevant biochemical 

markers TNFα, as well as the influence of delayed implant loading and surface 

modifications, which could affect the osseointegration and peri-implant bone 

remodelling processes. It remains unclear if implant migration would have been 

possible after successful osseointegration and delayed implant loading.  
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Conclusion 

The highest stresses were calculated in the cortical region near the implant neck, 

aligning with the loading direction where the high-loading group previously 

indicated implant migration. All groups exhibited a net bone loss up to week 2, 

coinciding with the phase of the highest reported migration velocity [5]. This 

suggests a potential influence of both the trauma from implant placement and 

continuous loading, facilitating early implant migration. Subsequently, all groups 

showed a net bone gain, suggesting a consolidation phase limiting further implant 

migration. These observations imply that after successful osseointegration, 

implant migration may be improbable. Further in vivo studies employing a delayed 

implant loading protocol are necessary to confirm these findings. 

With reference to these inferences, the hypotheses outlined above can be 

assessed as follows: 

1. H0 is rejected. Within the first two weeks, particularly in zones of high 

stresses, an increased amount of bone loss enabling implant migration 

was observed. A certain threshold of stresses could not be identified. 

2. H0 is rejected. Increased bone formation seemed to reduce implant 

migration from week two onwards and the course of bone remodelling 

shown is in line with the reduction of implant migration over time.  

3. H0: is rejected. Factors such as post-traumatic bone remodelling seem to 

enable implant migration. 
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