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Summary

The aim of this thesis is to study operations on Milnor-Witt K-theory KMW
∗ . This invariant

of smooth schemes arises naturally in motivic homotopy theory as the motivic 0-stem π0(1k)∗
of the motivic sphere spectrum 1k, see [72], and many other invariants are modules over it.
The starting point for studying operations on Milnor-Witt K-theory is a paper of Vial [96],
where theM∗(k)-module of all uniformly bounded operations KM

n →M∗ on Milnor K-theory
KM

n is computed. Here M∗ is a cycle module with ring structure in the sense of Rost [86]. It
turns out that this module of operations is generated by certain divided power operations.
By a result of Morel [73], Milnor-Witt K-theory can be seen as a quadratic refinement of
Milnor K-theory. Therefore this thesis deals with a generalization of Vial’s aforementioned
result to Milnor-Witt K-theory.
In Chapter I, which is a preparatory chapter of this thesis, we give an introduction to motivic
homotopy theory and to the origin of Milnor-Witt K-theory. In particular, we give a detailed
account of Morel’s unstable computation of homotopy sheaves of spheres from [75] where
Milnor-Witt K-theory shows up. We also give a rough outline of Morel’s stable computation,
by which we mean his proof of π0(1k)∗ = KMW

∗ from [72].
In Chapter II, the main chapter of this thesis, we first compute all additive and all Gm-
stable operations on Milnor-Witt K-theory. After this we construct divided power operations
KMW

n → M∗ for any homotopy module M∗. This is our first main result. Next we study
operations on canonical generators [−1, . . . ,−n] of K

MW
n . Our second main result is a full de-

scription of theM∗(k)-module of all operations [−1, . . . ,−n] →M∗, whereM∗ is a homotopy
module with ring structure. Following a strategy of Garrell [42] from the theory of quadratic
forms, we study how a general operation KMW

n → M∗ changes when adding/subtracting an
element of [−1, . . . ,−n] to the argument. We refer to these changes as shifts. Using those
shifts we compute the M∗(k)-module of all operations KMW

n → M∗, which turns out to be
“essentially generated” by divided power operations. This is our next main result. Here we
had to restrict to a certain class of homotopy modules, but those still contain all cycle mod-
ules. Finally, we retrieve and generalize both Vial’s and Garrell’s computations of operations
on Milnor K-theory and on powers of the fundamental ideal of the Witt ring from [96] and
[42] respectively. This also leads to our last main result, which is a description of operations
between Milnor, Witt and Milnor-Witt K-theory in fixed degrees.
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Zusammenfassung

Das Ziel dieser Arbeit ist, Operationen auf der Milnor-Witt-K-Theorie KMW
∗ zu studieren.

Diese Invariante glatter Schemata taucht auf natürliche Weise in der motivischen Homotopie-
Theorie als 0-te motivische Homotopiegarbe π0(1k)∗ des motivischen Sphärenspektrums 1k

auf, siehe [72], und viele andere Invarianten sind Moduln darüber. Der Ausgangspunkt
des Studiums der Operationen auf der Milnor-Witt-K-Theorie ist ein Artikel von Vial [96],
in welchem der M∗(k)-Modul aller uniform beschränkten Operationen KM

n → M∗ auf der
Milnor-K-Theorie KM

n berechnet wird. Hierbei ist M∗ ein Zykelmodul mit Ringstruktur
nach Rost [86]. Es stellt sich heraus, dass dieser Modul der Operationen von gewissen di-
vidierten Potenzoperationen erzeugt wird. Aufgrund eines Resultates von Morel [73] kann
die Milnor-Witt-K-Theorie als quadratische Verfeinerung der Milnor-K-Theorie angesehen
werden. Daher behandelt diese Arbeit eine Verallgemeinerung des zuvor [Theorem II.6.7]
erwähnten Resultates von Vial zur Milnor-Witt-K-Theorie.
In Kapitel I, welches ein Vorbereitungskapitel dieser Arbeit ist, geben wir eine Einführung
in die motivische Homotopietheorie und in den Ursprung der Milnor-Witt-K-Theorie. Ins-
besondere geben wir Morels instabile Berechnung von Homotopiegarben von Sphären aus [75],
bei welchen die Milnor-Witt K-Theorie auftaucht, detailliert wieder. Wir geben auch einen
groben Überblick über Morels stabile Berechnung, d.h. seinen Beweis von π0(1k)∗ = KMW

∗
aus [72].
In Kapitel II, dem Hauptkapitel dieser Arbeit, berechnen wir zunächst alle additiven und alle
Gm-stabilen Operationen auf der Milnor-Witt-K-Theorie. Danach konstruieren wir dividierte
Potenzoperationen KMW

n →M∗ für jeden Homotopiemodul M∗. Dies ist unser erstes Haupt-
resultat. Als nächstes studieren wir Operationen auf den kanonischen Erzeugern [−1, . . . ,−n]
von KMW

n . Unser zweites Hauptresultat ist eine vollständige Beschreibung desM∗(k)-Moduls
aller Operationen [−1, . . . ,−n] → M∗, wobei M∗ ein Homotopiemodul mit Ringstruktur ist.
Einer Strategie von Garrell [42] aus der Theorie der quadratischen Formen folgend studieren
wir, wie sich eine allgemeine Operation KMW

n →M∗ unter der Addition/Subtraktion eines El-
ementes aus [−1, . . . ,−n] im Argument verändert. Die Veränderungen bezeichnen wir als Ver-
schiebungen. Unter Verwendung dieser Verschiebungen berechnen wir denM∗(k)-Modul aller
Operationen KMW

n →M∗, welcher sich im Wesentlichen als von unseren dividierten Potenz-
operationen erzeugt herausstellt. Dies ist unser nächstes Hauptresultat. Hierbei mussten wir
uns auf eine bestimmte Klasse von Homotopiemoduln einschränken, welche aber immer noch
die Zykelmoduln enthält. Schlussendlich gewinnen wir Vials und Garrells Berechnungen der
Operationen auf der Milnor-Witt-K-Theorie [96] bzw. auf den Potenzen des Fundamentalide-
als des Wittrings [42] zurück und verallgemeinern diese. Dies führt auch zu unserem letzten
Hauptresultat, welches eine Beschreibung der Operationen zwischen der Milnor-, der Witt-
und der Milnor-Witt-K-Theorie in festen Graden ist.
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Conventions, notations and a shortcut

Throughout this thesis we let k be a perfect base field of characteristic not 2. Furthermore
we assume all schemes to be separated and of finite type over k and rings are not necessarily
commutative. For the convenience of the reader, we give the following table of notations for
the main part of the thesis, which is Chapter II:

k Perfect base field of characteristic not 2
Fldk Category of field extensions of k

Fldftrk Category of field extensions of k with finite transcendence degree

KM
∗ Milnor K-theory as a functor on Fld/k or Fldftr/k

KW
∗ Witt K-theory as a functor on Fld/k or Fldftr/k

KMW
∗ Milnor-Witt K-theory as a functor on Fld/k or Fldftr/k

GW Grothendieck-Witt ring as a functor on Fld/k or Fldftr/k

W Witt ring as a functor on Fld/k or Fldftr/k

I Fundamental Ideal as a functor on Fld/k or Fldftr/k
Smk Category of smooth schemes over k with the Nisnevich topology
Set/k Category of sheaves (of sets) on Sm/k
Set∗/k Category of sheaves of pointed sets on Sm/k
Ab/k Category of abelian sheaves on Sm/k
AbA1/k Category of strictly A1-invariant sheaves on Sm/k
ZA1 [X] Free strictly A1-invariant sheaf on X˜︁ZA1 [X] Reduced free strictly A1-invariant sheaf on X

KM
∗ Milnor K-theory as a homotopy module

KW
∗ Witt K-theory as a homotopy module

KMW
∗ Milnor-Witt K-theory as a homotopy module

GW Grothendieck-Witt ring as an unramified sheaf on Sm/k
W Witt ring as an unramified sheaf on Sm/k
I Fundamental ideal as an unramified sheaf on Sm/k

xM∗ x-torsion of some homotopy module M∗
δn 1 if n is odd and 0 if n is even
Opsp Operations on field extensions commuting with specialization maps
τn action of [−1]n−1 on some homotopy module

The first chapter of this thesis is a brief introduction to motivic homotopy, which also explains
where the central objects of this thesis naturally arise. Some readers may for various reasons
want to skip this introduction and directly read Chapter II.2. We believe this to be possible
and our advise is to at least read Section I.6.2 of Chapter I. There will be a couple of
statements at the end of said section which are not necessarilly comprehensible without
knowing a bit of motivic homotopy theory, but these are not needed for the main results and
their proofs in Chapter II.
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Introduction

Motivic (or A1-)homotopy theory is the homotopy theory of schemes. Its study was initiated
by Voevodsky, and Morel and Voevodsky in [98] and [76] respectively, and has since been
developed further by the work of many.
Although this theory is rather young, it has already had various deep applications in algebraic
geometry and algebraic topology. Let us list a few:

• The Milnor and Bloch-Kato conjectures, see [101],[102] and [104]

• Computations of new stable stems, see [56]

• Representability results for algebraic vector bundles, see [13], [14] and [15]

One crucial aspect of motivic homotopy theory is the study of the new (co-)homology theories
and their (co-)homology operations. Classically, (co-)homology operations have also been
studied extensively and have been used for various applications. Famous examples include
so-called Adams operations ψl : K → K on topological K-theory, which were used in Adams’
study of vector fields on spheres [4] and Adams’ and Atiyah’s proof of the Hopf invariant
one problem [5]. Also stable operations, which are families of operations on a (co-)homology
theory respecting the suspension functor, are of central interest. The most famous example
being the (mod p) Steenrod algebra, the algebra of stable cohomology operations in mod p
singular cohomology H∗(−;Z/pZ).
In the motivic world, such operations on mod p motivic cohomology H∗,∗(−;Z/pZ) are
for example constructed and used by Voevodsky in his proof of the aforementioned Bloch-
Kato conjecture [101],[102] and [104]. For a field F , the (mod p) motivic cohomology group
Hn,n(Spec(F );Z/pZ) is given by (mod p) Milnor K-theory KM

n (F )/p [68], which is an in-
variant defined by Milnor in his seminal paper [70]. For this theory, Vial [96] determines the
M∗(k)/p-module of all uniformly bounded operations KM

n /p → M∗ and the M∗(k)-module
of uniformly bounded operations KM

n →M∗. Here, M∗ is a so-called cycle module with ring
structure, such as Milnor K-theory or algebraic K-theory. In turns out that these modules of
operations are spanned by so-called divided power operations. This thesis is a generalization
of Vial’s results. Let us therefore introduce the main objects.
In topology, the n-sphere Sn can be defined purely in terms of the 1-dimensional sphere S1, by
using the smash product “∧”. The latter is a “tensor product” of pointed topological spaces
and it is not difficult to verify that Sn = (S1)∧n. Following that idea, we now find that there
are multiple 1-dimensional spheres in motivic homotopy. As an amalgamation of objects from
algebraic topology and objects from algebraic geometry, we have the topological/simplicial
1-spheres S1 and also the algebraic 1-dimensional sphere Gm. This results in a bigraded
family of spheres Sn,m = (S1)∧(n−m) ∧G∧m

m in motivic homotopy theory. These spheres give
rise to bigraded stable homotopy sheaves of spheres πn,m(1k), which are of central interest to
motivic, but also to classical stable homotopy theory. The latter is due to work of Levine [61],
which in particular yields that πn,0(1C)(C) are the usual stable homotopy groups of spheres.
So this is what happens if we ignore the algebraic spheres. For the other extreme, Morel
[72] showed that for all integers m, the sheaf π−m,−m(1k) has a purely algebraic description,

called Milnor-Witt K-theory KMW
m in degree m. This makes use of further work of Morel

[73], where it is shown that there is a pullback square

2



KMW
m KM

m

Im KM
m/2,

where I is the fundamental ideal of the Witt ring of quadratic forms W . Based on the fact
that Im also has an algebraic description called Witt K-theory in degree m, see [73], this
pullback square explains the name Milnor-Witt K-theory and describes Milnor-Witt K-theory
as a quadratic refinement of Milnor K-theory. This leads to the natural question whether
Vial’s aforementioned results can be generalized to Milnor-Witt K-theory, which is the main
content of my thesis.
The main strategy to get a hold of these operations is the following. Garrel [42] computes
the modules of all operations In →W and In → H∗(−;µ2) defined over field extensions of a
fixed base field. These computations also respect the natural filtrations of W and H∗(−;µ2)
and thus in particular give all operations In → Im. Garrel relies on Theorem 18.1 of Serre
[88], which describes all operations Pfn →W and Pfn → H∗(−;µ2) as free modules of rank
2. Here Pfn are isomorphism classes of n-Pfister forms, which are the canonical choice of
generators of In. He goes on to study how an operation on In changes when adding and
subtracting generators x ∈ Pfn. In other words, the idea is to start with operations on
generators, which in Garrel’s case are known due to the aforementioned results of Serre, and
then to extend these to the entire theory, even though the operations need not be additive.
For Milnor-Witt K-theory, operations on generators are not known, which at first prevents
us from following Garrel’s strategy. Our first main result gets rid of this obstruction. Let us
denote by [−1, . . . ,−n] the subsheaf of canonical generators of Milnor-Witt K-theory.

Theorem (Theorem II.3.3). For any homotopy module M∗ with ring structure and any
positive integer n, the M∗(k)-module of operations [−1, . . . ,−n] → M∗ is free of rank 2
generated by the constant operation 1 and the action of [−1, . . . ,−n] on 1 ∈M∗(k).

Here, a homotopy module is a certain kind of Z-graded module over Milnor-Witt K-theory
given by π−∗,−∗(E) for a motivic spectrum E. This includes Milnor-Witt K-theory, Milnor
K-theory, Witt K-theory, algebraic K-theory and Hermitian K-theory.
While this result generally enables Garrel’s strategy for us, the next issue is that many
operations on quadratic forms are already known. For example, exterior power operations
were already known to Bourbaki [23]. It was folklore that these are λ-operations, which was
finally shown by McGarraghy in [69]. As shown by Garrel [42], these turn out to generate
all operations in a suitable sense. Based on Vial’s and Garrel’s computations, the natural
guess is that also the operations on Milnor-Witt K-theory are spanned by similar kinds of
operations. This leads us to construct divided power operations for Milnor-Witt K-theory:

Theorem (Theorem II.2.1). Let n be a positive integer, let ℓ be a non-negative integer
and let δn be 1 if n is odd and 0 if n is even. Moreover, let h ∈ KMW

0 (k) be the standard
hyperbolic form, let M∗ be a homotopy module and let y ∈ δnhM∗(k). There are operations

λnl · y : KMW
n →M∗ which map sums of generators [a1,1, . . . , a1,n] + . . .+ [ar,1, . . . , ar,n] to(︃ ∑︂

1≤i1<...<il≤r

[ai1,1, . . . , ai1,n] · . . . · [ail,1, . . . , ail,n]
)︃
· y.

3



Now that we also have some natural candidates for generators of all operations, we con-
tinue translating Garrel’s strategy to Milnor-Witt K-theory. For this to work we restrict
to N-graded homotopy modules with ring structure M∗, which we call N-graded homotopy
algebras. Several other obstructions arise from the non-commutativity of KMW

∗ , which we
manage to overcome by a careful study of the differences in Garrel’s and our setup. To state
the main results, let us define

σl
n =

⌊ l−1
2 ⌋∑︂

j=0

(︃
⌊ l−1

2 ⌋
j

)︃
[−1]n(l−j)λnl−j

for all integers l ≥ 1 and σ0
n = λn0 . These are certain linear combinations of our previous

operations, which suit Garrel’s strategy. Our next main result is the following.

Theorem (Theorem II.5.6). Let n be a positive integer. For all N-graded homotopy algebras
M∗, the map

f : M∗(k)
2 × δnhM∗(k)

N\{0,1} → HomShv(SmNis
k )(K

MW
n ,M∗), (al)l≥0 ↦→

∑︂
l≥0

σl
n · al

is an isomorphism of M∗(k)-modules, where δn is 1 if n is odd and 0 if n is even.

Actually, this result can be refined a bit. The right hand side is equipped with the natural
filtration induced by the filtration FdM∗ = M≥d and also the left hand side can be given a
suitable filtration. The isomorphism above is then even an isomorphism of filtered modules. It
is not completely obvious that infinite sums of the form

∑︁
l≥0 σ

l
n ·al with suitable coefficients

(al)l≥0 make sense. For this we had to show that while these sums are infinite, they become
finite when evaluating at any element of KMW

n .
Since Milnor K-theory can be identified with a quotient of Milnor-Witt K-theory, the above
theorem also allows us to recover Vial’s aforementioned results [96] and to generalize these
to non-uniformly bounded operations:

Theorem (Theorem II.6.6). For all positive integers n and all cycle modules with ring
structure M∗, we have

HomShv(SmNis
k )(K

M
n ,M∗) ∼=

{︂∑︂
l≥0

σl
n · al | (al)l≥0 ∈M∗(k)

2 ×
δn2

(︂
τnM∗(k)

)︂N\{0,1}}︂
as a filtered M∗(k)-module. In particular we recover Theorem 5.5 of [96].

Here a cycle module can be defined as a homotopy module on which a certain element, namely
the Hopf element η ∈ KMW

−1 (k), acts trivially. Similarly, our computation of operations on
Milnor-Witt K-theory also allows us to generalize Garrel’s [42] computation to N-graded
homotopy algebras:

Theorem (Theorem II.6.2). For all positive integers n and all N-graded homotopy algebras
M∗, we have

HomShv(SmNis
k )(I

n,M∗) ∼=
{︂∑︂

l≥0

σl
n · al | (al)l≥0 ∈M∗(k)× hM∗(k)

N\{0}
}︂

4



as a filtered M∗(k)-module. In particular we recover Theorem 4.9 of [42] if M∗ = W or
M∗ = KM

∗ /2 ∼= H∗(−, µ2).

A direct consequence of this is the following corollary, which describes all operations on
Milnor-Witt K-theory in negative degree:

Corollary (Corollary II.6.3 and Corollary II.6.4). Let n be a negative integer. For all N-
graded homotopy algebras M∗, the filtered M∗(k)-modules HomShv(SmNis

k )(K
MW
0 ,M∗) and

HomShv(SmNis
k )(K

MW
n ,M∗) are given by

HomShv(SmNis
k )(Z,M∗)×

{︂∑︂
l≥0

σl
1 · al | (al)l≥0 ∈M∗(k)× hM∗(k)

N\{0}
}︂

and
HomShv(SmNis

k )(Z/2Z,M∗)×
{︂∑︂

l≥0

σl
1 · al | (al)l≥0 ∈M∗(k)× hM∗(k)

N\{0}
}︂
,

respectively.

Finally, due to the above computations as filtered modules, we obtain the following descrip-
tion of operations between K-theory sheaves in fixed degrees.

Theorem (Theorem II.6.7). Let n be a positive integer. The following table gives a complete
list of operations between Milnor, Witt and Milnor-Witt K-theory

A B HomShv(SmNis
k )(A,B)

KM
n KM

m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
min(m

n ,1)≥l≥0

KM
m−nl(k)×

∏︂
m
n≥l≥2

δn2
(τnK

M
m−nl(k))

}︂
KM

n KW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

1∏︂
l=0

KW
m−nl(k)×

∏︂
l≥2

δn2
(τnK

W
m−nl(k))

}︂
KM

n KMW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

1∏︂
l=0

KMW
m−nl(k)×

∏︂
l≥2

δn2
(τnK

MW
m−nl(k))

}︂
KW

n KM
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈ KM

m (k)×
∏︂

m
n≥l≥1

2K
M
m−nl(k)

}︂
KW

n KW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
l≥0

KW
m−nl(k)

}︂
KW

n KMW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈ KMW

m (k)×
∏︂
l≥1

hK
MW
m−nl(k)

}︂
KMW

n KM
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
min(m

n ,1)≥l≥0

KM
m−nl(k)×

∏︂
m
n≥l≥2

δn2K
M
m−nl(k)

}︂
KMW

n KW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
l≥0

KW
m−nl(k)

}︂
KMW

n KMW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

1∏︂
l=0

KMW
m−nl(k)×

∏︂
l≥2

δnhK
MW
m−nl(k)

}︂
,

where τn is the action of [−1]n−1 on the target.
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Chapter I

Motivic Homotopy Theory

In this chapter we will introduce the unstable and stable motivic homotopy categories over a
perfect base field k of characteristic not 2, which we, as also mentioned before, fix for the rest
of the thesis. Let us note that this is a very common assumption in motivic homotopy theory
and that certain results that we will present need this assumption or are only known under
this assumption. Moreover, we want to highlight that this is a rather short introduction and
hence many fundamental results will not be included here. One such example is the so-called
homotopy purity, found as Theorem 2.23 of Section 3 of [76].
The main idea of motivic homotopy is that the affine line A1 replaces the unit interval
I = [0, 1] used in the homotopy theory of topological spaces and that this replacement allows
us to do homotopy theory with schemes. In particular A1 becomes contractible in this theory.
As there are quite some interesting invariants of schemes which are not A1-invairant, i.e., not
homotopy invariant in this setting, also non-A1-invariant variants of motivic homotopy theory
are being explored more and more; see [8], [7], [6] and [52]. We will exclusively work with the
“classical” A1-invariant theory. Before we get into more details, let us give a quick summary
of how to construct the unstable motivic homotopy category H(k) to motivate the various
sections of this chapter:

• Restriction to nice spaces

We want algebraic K-theory to be homotopy invariant, but this is false in general. By
Quillen’s fundamental theorem for algebraic K-theory, this is true for regular noetherian
schemes though [46]. This suggests that we should not work with all schemes, but rather
with a suitable subcategory of schemes. As it turns out, the category Smk of smooth
schemes which are separated and of finite type over k is the correct choice.

• Choice of a suitable topology (Section I.1)

The Zariski topology is not too well-behaved when trying to replicate notions or results
from topology. That is when algebraic geometers often switch to the étale topology,
which will not work for our purposes, since algebraic K-theory is known not to satisfy
étale descent, see for instance page 3 of [65]. But there is a topology sitting in between
these two topologies, which shares the respective good properties and at the same time
avoids bad ones. This is the so-called Nisnevich topology [77], which is the default
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topology on Smk for doing homotopy theory. Let us nevertheless note that there are
other topologies under consideration as well. One such example is the so-called cdh-
topology; see, for instance, [103].

• Extending the category (Section I.1)

Various colimits of spaces show up naturally in homotopy theory, but categories of
schemes are very poorly equipped when it comes to colimits. Therefore we consider
presheaves on Smk, which by the Yoneda lemma gives us the free cocompletion. There
are also models with sheaves instead of presheaves due to the sheafification functor
being a left adjoint. We will use the latter, as these for instance respect previously
existing pushouts.

• Getting a homotopy theory (Sections I.2 and I.3)

A well-behaved model for the usual homotopy theory of topological spaces is given by
the homotopy category of simplicial sets, see Theorem I.3.19. The latter are, in some
sense, a category-theoretic version of simplicial complexes. We now replace sheaves on
Smk by sheaves of simplicial sets on Smk, which we will call spaces. Equivalently, we
may consider simplicial sheaves on Smk. This allows us to define a simplicial model
structure and hence to get a homotopy theory on smooth schemes.

• Making A1 contractible (Section I.4)

Although we managed to define a homotopy theory on smooth schemes, it has a purely
simplicial nature and does not reflect the main idea. In particular, the affine line A1 is
not yet contractible. Therefore we incorporate this into the simplicial model structure,
which yields the so-called A1-model structure on spaces. The associated homotopy
category is the unstable motivic homotopy category H(k).

Before we begin, let us quickly mention what happens if one tries to follow the same recipe
for topological spaces. Here the first step should be the restiction to a suitable category of
manifolds. Dugger showed in [34] that this results in a model for the usual homotopy theory
of topological spaces.

I.1 Topologies on Schemes

In this section we will deal with the second and third bullet points of our summary. In
particular, we will introduce the Nisnevich topology on smooth schemes and the associated
notion of Nisnevich (pre-)sheaves.

I.1.1 First examples of Grothendieck Topologies

The Zariski topology is rather coarse, which certainly comes with its downsides. One being
the lack of a suitable cohomology theory for schemes over finite fields, which Weil sug-
gested would be instrumental at solving the famous conjectures named after him. This led
Grothendieck to categorify open coverings and thus to give birth to the notion nowadays
refered to as a Grothendieck topology [9]. In particular, the étale topology was born and
with it étale and ℓ-adic cohomology as constructed by Grothendieck and Artin [1], [2] and
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[3], which indeed turned out to be crucial in the proofs of the Weil conjectures. Since then,
various other Grothendieck topologies on schemes were found and studied. Let us note that
even if we ignore motivic homotopy theory, Grothendieck topologies are also of interest to
homotopy theorists. They were for instance used to define scissors congruence K-theory spec-
tra by Zakharevich [110] and thus gave rise to higher versions of Hilbert’s 3rd problem. Also
in the recent proof of the redshift conjecture in chromatic homotopy theory by Burklund,
Schlank and Yuan [26] it was crucial to find a suitable Grothendieck topology in the setting
of spectral algebraic geometry.
For this subsection we follow Chapter 2.1 of [78].

Definition I.1.1. A Grothendieck topology τ on a category C consists of collections Cov(X)
of families of morphisms {Ui → X}i∈I for each object X ∈ C, called coverings of X, subject
to the following three conditions:

(i) For every isomorphism U → X, we have {U → X} ∈ Cov(X).

(ii) For all coverings {Ui → X}i∈I and all morphisms Y → X, the pullback Ui×X Y exists
and we have {Ui ×X Y → Y }i∈I ∈ Cov(Y ).

(iii) For all coverings {Ui → X}i∈I and for all coverings {Uij → Ui}j∈Ji , i ∈ I, we have
{Uij → Ui → X}i∈I,j∈Ji

∈ Cov(X).

Some authors would refer to the above notion as a Grothendieck pretopology. In their
language, we will not need the full notion of Grothendieck topologies and therefore refrain
from defining them. Let us just mention that every Grothendieck pretopology gives rise to a
Grothendieck topology and that one can think of a Grothendieck pretopology as a convenient
basis of a Grothendieck topology.
Let us give a couple of elementary examples. As for topological spaces, there are two trivial
examples of Grothendieck topologies:

Example I.1.2. If C is an arbitrary category, we can define the indiscrete Grothendieck
topology on C by only allowing isomorphisms as coverings. Since isomorphisms are stable
under pullback and composition, this does indeed yield a Grothendieck topology.

Example I.1.3. If C is a category that has all pullbacks, we can let all families of morphisms
be coverings. This certainly satifies axioms (i)-(iii) and thus defines a Grothendieck topology
on C, called the discrete Grothendieck topology on C.

Furthermore, every topological space gives rise to a Grothendieck topology:

Example I.1.4. Let X be a topological space and consider the poset category Op(X) of
open subsets of X. For every open subset U of X, we define Cov(U) to consist of those
families of morphisms {Ui → U}i∈I with

⋃︁
i∈I Ui = U . This defines a Grothendieck topology

on Op(X). Let us quickly check the three axioms. The isomorphisms in Op(X) are exactly
the identity maps idU : U → U , which certainly are coverings. Thus (i) holds. For all open
subsets U of X and for each pair of morphisms U1 → U and U2 → U , the pullback U1 ×U U2

is given by the intersection U1 ∩ U2, which is again an open subset of X and hence exists in
Op(X). If now {Ui → U}i∈I is a covering, i.e. we have

⋃︁
i∈I Ui = U , then we clearly also

have the equality
⋃︁

i∈I(Ui ∩ U ′) = U ′ for any other open subset U ′ of X with U ′ ⊂ U . In
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other words, {Ui ×U U
′ → U ′}i∈I is a covering of U ′ for any morphism U ′ → U . This shows

that (ii) also holds. Finally, for all open subsets U of X, for all coverings {Ui → U}i∈I of U
and for all coverings {Uij → Ui}j∈Ji

of Ui, i ∈ I, we have that {Uij → Ui → U}i∈I,j∈Ji
is a

covering of U , since U =
⋃︁

i∈I Ui =
⋃︁

i∈I

⋃︁
j∈Ji

Uij . Therefore also (iii) holds.

Before we give more examples, let us quickly introduce the following notion:

Definition I.1.5. A category C together with a Grothendieck topology on C is called a site.

Often, particularly for schemes, there are two sites associated with the same Grothendieck
topology, namely a small one local to some fixed geometric object X and a big one on the
full category of all such objects.

Example I.1.6. The site associated with the Grothendieck topology given by the usual
coverings of a topological space X from Example I.1.4 is called the small site of X.

Example I.1.7. We can also consider the “usual coverings” of topological spaces as coverings
on the category of all topological spaces. This yields the big site of topological spaces.

Example I.1.8. If X is a scheme, then the small site of the underlying topological space of
X is called the small Zariski site of X and is usually denoted by XZar. Although we will not
define it, there is a notion of equivalence of sites. Up to such an equivalence, the small Zariski
site can also be defined in terms of morphisms of schemes over X. Here a cover {Ui → X}i∈I

is given by open immersions that are jointly surjective.

Example I.1.9. The “usual coverings” for schemes define a Grothendieck topology on Sch
which gives rise to the big Zariski site SchZar.

As already mentioned in the introduction, a very important example of a Grothendieck
topology is the étale topology. Let us therefore quickly recall one of the many equivalent
definitions of étale morphisms, which we will use to verify some examples later on, see also
[89, Tag 02GH].

Definition I.1.10. A morphism f : Spec(A) → Spec(R) of affine schemes is called (stan-
dard) étale if it is isomorphic to the canonical map Spec(R[x]h/(g)) → Spec(R) for some
polynomials g, h ∈ R[x], where g is monic and its derivative g′ is invertible in R[x]h/(g).

Although a bit more specialized, this definition is essentially one way of saying that the given
morphism is smooth (the invertibility of g′ is essentially the Jacobian criterion) and that it
is of relative dimension 0 (the number of indeterminates and relations agree), which indeed
is one of the more commonly used definitions of étale morphisms also found in loc. cit.

Example I.1.11. Let n be a positive integer not dividing the characteristic of k. Then we
claim that the map f : Gm → A1, x ↦→ xn is étale. We have a commutative diagram

k[t] k[t, t−1]

k[tn] k[tn][s]s/(s
n − tn)

∼=

t ↦→ tn

∼=

can
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of k-algebras, where the vertical isomorphisms are given by t ↦→ tn and t ↦→ s respectively.
Note that sn − tn ∈ k[tn][s] is a monic polynomial and that its derivative nsn−1 is a unit in
k[tn][s]s/(s

n − tn). Indeed, due to the localization at s we have that sn−1 is a unit and by
our assumption on the characteristic of k also n is a unit. Therefore this diagram shows that
f is étale.

For more concrete examples we refer the reader to Section I.1.3. This now allows us to define
étale morphisms as standard étale morphisms:

Definition I.1.12. A morphism f : X → Y of schemes is called étale if there exist open
affine coverings Y =

⋃︁
i∈I Vi and f−1(Vi) =

⋃︁
ji∈Ji

Uj for all i ∈ I such that each of the
morphisms Uji → Vi are (standard) étale.

Example I.1.13. Open immersions of schemes are étale. Indeed, we can cover an open
subscheme by open affines and then these by basic open subschemes. The latter are given by
localizing at the multiplicative set generated by one element, which therefore tells us that we
have an étale map by choosing g = x in the definition of étale maps between affine schemes.

We are now able to define étale coverings:

Definition I.1.14. A family of morphisms {fi : Ui → X}i∈I of schemes is called an étale
covering if the morphisms fi are étale for all i ∈ I and X =

⋃︁
i∈I fi(Ui).

Example I.1.15. By Example I.1.13, every Zariski covering is also an étale covering.

Now that we have one definition for étale morphisms and their associated coverings, we are
also able to consider the étale sites.

Example I.1.16. There is the small étale site Xét of a scheme X, which is the full subcat-
egory of SchX with objects given by étale morphisms.

Example I.1.17. Taking étale coverings on the category of all schemes yields the big étale
site Schét.

There are of course various other sites of interest, such as the ones given by the fppf and
fpqc topologies on schemes, which we are not mentioning here, see [89, Tag 021L] and [89,
Tag 03NV].

I.1.2 Sheaves on Sites

Before we get to the central example for our purposes, we want to recall how to define
sheaves on sites, see for instance Chapter 2.2 of [78]. Let us first recall the general definition
of presheaves.

Definition I.1.18. Let C and D be two categories. A D-valued presheaf (or presheaf of
“objects of D”) on C is a functor F : Cop → D.

If the category D is not specified, it is always assumed to the category of sets.

Example I.1.19. A very important class of examples of presheaves on a category C are the
representable presheaves, which by definition are the presheaves isomorphic to Hom(−, X)
for some object X ∈ C.
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This notion of presheaves on a category specializes to the notion of presheaves on a given
topological space X by choosing C as the topology of X considered as a poset category. In
this situation we are able to talk about sheaves and not only presheaves, which we can now
also generalize based on the notions of Grothendieck topologies and sites.

Definition I.1.20. Let D be a complete category. A D-valued sheaf on a site C is a D-valued
presheaf F on C such that for any X ∈ C and any covering {Ui → X}i∈I , the diagram

F(X)
∏︁
i∈I

F(Ui)
∏︁

i,j∈I

F(Ui ×U Uj)

is an equalizer diagram, where the two arrows on the right are induced by the two projections.

We denote the categories of presheaves and sheaves on C by PreSh(C) and Shv(C) respectively.
By definition, we have an inclusion functor Shv(C) ↪→ PreSh(C). Let us quickly mention that
sheafification also extends to our general setup:

Proposition I.1.21. For any site C, the inclusion functor Shv(C) ↪→ PreSh(C) has a left
adjoint.

This left adjoint is called the sheafification functor and its construction, as for example done
in [78, Theorem 2.2.4], shows that it commutes with finite limits.

Example I.1.22. An example which we will use very often is the following. For every abelian
group A, we can consider the constant presheaf with value A on a site C. Its sheafification
will be denoted by A and is called the constant sheaf with value A.

Let us also adress representables. Central to algebraic geometry is that every scheme X itself
defines a Zariski sheaf Hom(−, X), obtained from gluing affine opens. This is the basis for
the functorial point of view of algebraic geometry and leads to the following notion:

Definition I.1.23. A site (C, τ) (or just the Grothendieck topology τ) is called subcanonical
if all representable presheaves on C are sheaves on C.

The name comes from the fact that such a topology is coarser than the so-called canonical
topology, which by definition is the finest topology with the property that all representables
are sheaves, see [89, Tag 00WO].
The simplest way to establish this property is the following easy observation, which follows
directly from the definitions:

Proposition I.1.24. If C is a category with two Grothendieck topologies τ and τ ′ such that
τ is coarser than τ ′ and the site (C, τ ′) is subcanonical, then so is (C, τ).

As any étale covering is a so-called fpqc covering, see for instance [89, Tag 03PF], and it
is known that the fpqc topology is subcanonical [89, Tag 03NV], also the étale topology is
subcanonical. Therefore we get:

Corollary I.1.25. All topologies on Smk which are coarser than the étale topology are sub-
canonical.

Remark I.1.26. In the next subsection we will introduce the Nisnevich topology. By defi-
nition, it will be coarser than the étale topology and thus be a subcanonical topology.
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Although not directly relevant for us, we cannot refrain from quickly mentioning the following.
Let X be a scheme and let τ be a Grothendieck topology on schemes. In the same way that
the stalks of the structure sheaf OX with respect to the Zariski topology are local rings,
one might wonder what happens for finer topologies. Among these we have only introduced
the étale topology so far, but let us nevertheless also mention what happens in case of the
Nisnevich topology:

Example I.1.27. For the étale topology, the local rings are strictly henselian local rings [2].
These are henselian local rings, i.e. local rings for which Hensel’s lemma holds, whose residue
field is separably closed.

Example I.1.28. As already mentioned, the Nisnevich topology lies in between the Zariski
topology and the étale topology. Therefore also its local rings must not quite be strictly
henselian local rings, but still local rings. It turns out that these are exactly the henselian
local rings [77].

Finally, let us quickly discuss sheaf cohomology on a site (C, τ). For this it is, as always,
crucial to know that we can choose injective resolutions.

Theorem I.1.29. The category of abelian sheaves on any site C has enough injectives. In
particular, any abelian sheaf F on C has an injective resolution F → I∗.

Proof. This is Theorem 19.7.4 of [89, Tag 01DL].

Now the usual definition of sheaf cohomology extends, see also [89, Tag 01FT]:

Definition I.1.30. Let C be a site and let n be a non-negative integer. The n-th cohomology
of an abelian sheaf F on C is the functor

Hn(−,F) = Hn(I∗(−)) : C → Ab

for an injective resolution F → I∗.

Note that these groups do not depend on the chosen injective resolution resulting in a well-
defined notion.

Remark I.1.31. If C is some category of schemes, we have various useful choices of topolo-
gies. Therefore we may also consider sheaf cohomology with respect to any of these topologies.
To ensure that the reader knows with which topology we are currently working, we will usu-
ally add the topology τ as an index of the cohomology groups. So for example, H∗

Nis(X,F)
will denote the Nisnevich cohomology groups of some scheme X with respect to an abelian
(Nisnevich) sheaf F .

I.1.3 The Nisnevich Topology

In the last subsection we already mentioned some properties of the Nisnevich topology. So
let us finally introduce it.

Definition I.1.32. A collection of morphisms of schemes {fi : Ui → X}i∈I is called a Nis-
nevich covering if the following two conditions hold:
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(i) The morphisms fi are étale for all indices i ∈ I.

(ii) For every point x ∈ X there exist an index i ∈ I, such that fi is completely decomposed
at x, i.e. for every point x ∈ X there exist an index i ∈ I, a point u ∈ Ui with
fi(u) = x, such that the morphism on the residue fields κ(x) → κ(u) induced by fi is
an isomorphism.

We will denote the collection of all Nisnevich coverings of a given scheme X by CovNis(X).
The original definition of these coverings due to Nisnevich [77] was different, but we will soon
see that this is an equivalent description.

Remark I.1.33. Some authors demand that the morphisms fi are not only étale, but étale
and of finite type. This is automatically the case in our setup due to our general assumptions
on schemes; see page 1. Since étale morphisms are locally of finite presentation and thus in
particular locally of finite type, we only need to observe that they are always quasi-compact,
when between separated schemes of finite type. This follows from the fact that if f : X → Y
and g : Y → Z are morphisms of schemes such that g is separated and g ◦f is quasi-compact,
then also f is quasi-compact [89, Tag 050Y].

Let us now have a look at some examples:

Example I.1.34. Every Zariski covering is a Nisnevich covering. Indeed, if {fi : Ui → X}i∈I

is a Zariski covering, i.e. a family of open immersions whose images cover X in the usual
sense, then it is in particular an étale covering, see I.1.15. By the fact that open immersions
always induce isomorphisms on residue fields, it is even a Nisnevich covering.

Example I.1.35. We let n be a positive integer and choose a ∈ k×. Suppose that the
characteristic of k does not divide n. Then we claim that the morphisms

A1 \ {a}

Gm A1

i

(−)n

are an étale covering, which form a Nisnevich covering if and only if a ∈ k×n, i.e if and only
if the element a has an n-th root in k. Let us verify this.
The morphism i is certainly étale, since it is an inclusion of an open subscheme and we have
already seen in Example I.1.11 that the power map (−)n : Gm → A1, which we will also
denote by f , is étale.
Let us now show that for each b ∈ A1, at least one of the morphisms f or i is completely
decomposed at b. As i is the inclusion of the open subscheme A1\{a}, i is certainly completely
decomposed for all b ∈ A1 \ {a} and cannot be completely decomposed at a ∈ A1, as a has
no preimage under i. Therefore the two morphisms f and i form a Nisnevich covering if and
only if the morphism f is completely decomposed at a.
If they form a Nisnevich covering, f has to be completely decomposed at a, i.e. there exists
a preimage c of a under f , such that f : κ(a) → κ(c) is an isomorphism. In particular, we
have a ∈ k×n.
If a has an n-th root in k, let’s say c, then we can choose c as a preimage of a under f and
we get the commutative diagram
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κ(a) Frac(k[t]/(t− a)) k[t]/(t− a) k

κ(c) Frac(k[t, t−1]/(t− c)) k[t]/(t− c) k

f

∼= ∼=

t ↦→ tn

∼= ∼=

Since the identity morphism on k and the rows are isomorphisms, so is f .

Example I.1.36. Let n ≥ 2 be an integer and suppose that the characteristic of k does not
divide n. Then the morphism

Spec(k[t, t−1, s]/(sn − t)) Spec(k[t, t−1]) = Gm
f

induced by the composition k[t, t−1] ↪→ k[t, t−1, s] ↠ k[t, t−1, s]/(sn − t) is an example of an
étale covering, which is not a Nisnevich covering. Let us first verify that it is étale.
The polynomial sn − t ∈ k[t, t−1][s] = k[t, t−1, s] is monic and its derivative nsn−1 is a unit
in the quotient k[t, t−1, s]/(sn − t). Indeed, the inverse is given by n−1st−1. Therefore, the
morphism f is standard étale.
It remains to show that this morphism is not a Nisnevich covering. For this we consider the
generic fiber:

f−1(η) = Spec(k[t, t−1, s]/(sn − t))×Gm
Spec(k(t))

∼= Spec(k[t, t−1, s]/(sn − t)⊗k[t,t−1] k(t))

∼= Spec(k(t)[s]/(sn − t))

The polynomial sn − t is irreducible as an element of k[t, s] by Eisenstein’s criterion with
respect to the prime ideal (t) ⊂ k[t, s] and it is also primitive. Therefore it is also irreducible
as an element in Frac(k[t])[s] = k(t)[s] by Gauss’s lemma, so that k(t)[s]/(sn − t) is a field
extension of k(t) of degree n. This shows that the generic point η ∈ Gm only has one
preimage under f (which is the generic point of Spec(k[t, t−1, s]/(sn − t))) and that the
induced morphism on the residue fields is the degree n field extension k(t) ⊂ k(t)[s]/(sn− t).
In other words, f is not completely decomposed at η and hence not a Nisnevich covering.

Example I.1.37. Let us again consider the previous example, i.e. the canonical morphism

Spec(k[t, t−1, s]/(sn − t)) Spec(k[t, t−1]) = Gm
f

We have already seen that this is an étale covering, which fails to define a Nisnevich covering.
It is completely decomposed at 1 ∈ A1 though:
Clearly the point (1, 1) ∈ Spec(k[t, t−1, s]/(sn − t)) is a preimage of 1 ∈ Gm and we get the
commutative diagram

κ(1) Frac(k[t, t−1]/(t− 1)) k

κ((1, 1)) Frac(k[t, t−1, s]/(sn − t, t− 1, s− 1)) k

f

∼=

∼=
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which shows that the induced morphism f : κ(1) → κ((1, 1)) is an isomorphism. Therefore
we can turn the étale covering f into a Nisnevich covering by adding the open inclusion
A1 \ {0, 1} ↪→ Gm to our covering (open immersions are completely decomposed at all points
of their image as explained in Example I.1.34).

There are various ways of checking if a given family of étale morphisms is a Nisnevich covering:

Proposition I.1.38. Let X be a smooth scheme and let {fi : Ui → X}i∈I be a family of étale
morphisms. The following are equivalent:

(i) The family {fi : Ui → X}i∈I is a Nisnevich covering.

(ii) For all fields field extensions k ⊂ F , the induced morphism∐︂
i∈I

Ui(F ) → X(F )

is surjective.

(iii) There exists a non-negative integer r and a sequence

∅ = Zr ⊂ Zr−1 ⊂ . . . ⊂ Z1 ⊂ Z0 = X

of finitely presented closed subschemes, such that for all 0 ≤ m ≤ r the induced mor-
phism ∐︂

i∈I

f−1
i (Zm \ Zm+1) → Zm \ Zm+1

admits a section.

(iv) For all x ∈ X, the induced morphism∐︂
i∈I

Ui ×X Oh
X,x → Oh

X,x

admits a section.

Here Oh
X,x denotes the henselization of the local ring OX,x. We will not use the last condition

and only included it for the sake of completeness.

Proof. Let us outline how to, for instance, obtain a sequence as in (iii) from the definition of
Nisnevich coverings and refer to [49] and [51] for the remaining details of the proof (including
the other directions). Given a Nisnevich covering {fi : Ui → X}i∈I , we can consider the
induced morphism f :

∐︁
i∈I Ui → X. Now we set Z0 = X. Assuming we have constructed Zi

as in (iii), let us see how to obtain Zi+1. Since étale morphisms are stable under base change,
we have that

∐︁
i∈I Ui ×X Zi → Zi is étale. Using that the fi are completely decomposed,

one now finds a dense open subset Vi ⊂ Zi on which
∐︁

i∈I Ui ×X Zi → Zi has a section.
Letting Zi+1 = (Zi \ Vi)red, we obtain the desired sequence which must stabilize as X is
noetherian.

Since we are particularly fond of condition (ii), which also happens to be the original definition
by [77], let us revisit some of the examples:
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Example I.1.39. Let us verify once more that the two étale morphisms

A1 \ {a}

Gm A1

i

f =(−)n

from Example I.1.35 form a Nisnevich covering if and only if a ∈ k×n. Let k ⊂ F be a field
extension. Using condition (ii), we need to check under which conditions the map

F× ⨿ (F \ {a}) F
f ⨿ i

is surjective. Certainly all elements of F \{a} are in the image via the morphism i. Therefore
this map is surjective if and only if a is in the image of f for every field extension k ⊂ F , i.e.
if and only if a has a n-th root in k×.

Example I.1.40. Let us also use condition (ii) to see why the étale morphism

Spec(k[t, t−1, s]/(sn − t)) Spec(k[t, t−1]) = Gm
f

from Example I.1.36 fails to be a Nisnevich covering. If k ⊂ F is a field extension, the
induced map on F -points is given by

{(a, b) ∈ F 2 | a ̸= 0, bn = a} pr1−−→ F×,

which certainly fails to be surjective in general.

It is now quite easy to verify that Nisnevich coverings give rise to a Grothendieck topology,
see for instance [49]:

Proposition I.1.41. The data of Nisnevich coverings form a Grothendieck topology on Smk.

This is the Nisnevich topology, which will be our default topology on smooth schemes from
now on. It is actually rather simple to check whether a presheaf on Smk is a Nisnevich sheaf.
To be able to make this more precise, we introduce the following notion from [76]:

Definition I.1.42. A cartesian square

U ×X V V

U X

p

i

in Smk is called an elementary (or distinguished) Nisnevich square if the following three
conditions are fullfilled:

(i) The morphism i is an open immersion.

(ii) The morphism p is étale.

(iii) The morphism p : p−1(X \ U)red → (X \ U)red is an isomorphism.
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Example I.1.43. Every pullback of the form

U ∩ V V

U X

◦

◦

with U and V covering X clearly defines an elementary Nisnevich square. In particular, the
usual covering of P1 by two A1’s intersecting in Gm defines an elementary Nisnevich square.

As the name might suggest, elementary Nisnevich squares yield examples of Nisnevich cov-
erings. Let us verify this:

Lemma I.1.44. The two morphisms i and p of an elementary Nisnevich square

U ×X V V

U X

p

i

form a Nisnevich covering of X.

Proof. First note that i and p are both étale. Therefore we just need to verify that, given
a point x ∈ X, either i or p is completely decomposed at x. This is clear if x ∈ U , so let
us assume that x ∈ X \ U . Since p : p−1((X \ U)red) → (X \ U)red is an isomorphism, x
has a unique preimage p−1(x) ∈ p−1((X \ U)red) ⊂ V and the scheme p−1((X \ U)red) can
be considered as a closed subscheme of X. Thus the induced map κ(p−1(x)) → κ(x) is an
isomorphism, since the operation (−)red does not change residue fields.

Elementary Nisnevich squares are more than just some class of Nisnevich coverings. It turns
out that to check if a given presheaf on Smk is a (Nisnevich) sheaf, these are the only coverings
we need to deal with [76] (see also [49]):

Theorem I.1.45. Let C be a complete category and let F be a C-valued presheaf on Smk.
The presheaf F is a C-valued (Nisnevich) sheaf if and only if F(∅) is terminal and for all
schemes X and all elementary Nisnevich squares

U ×X V V

U X

the induced diagram

F(X) F(V )

F(U) F(U ×X V )

is a cartesian square in C.

Now that we understand the topology of our choice a bit, we will introduce a general setup
for homotopy theory next.
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I.2 Homotopical Algebra

In this section we will deal with the technical framework needed to install a homotopy theory
on a category (non-∞-categorical version). A standard source for most of this material is the
book [48] by Hovey, which we will also generally follow.

I.2.1 Model Categories

A first approach for creating a homotopy theory one might come up with is:

Definition I.2.1. A category with weak equivalences consists of a category C together with
a collection W(C) of morphisms of C, called weak equivalences, such that

(i) The collection W(C) contains all isomorphisms.

(ii) For every commutative triangle in C if two of the three morphisms are contained
in W(C), then so is the third one.

We will usually refer to the property (ii) as two-out-of-three for weak equivalences.

Example I.2.2. For every category C, the collection Iso(C) of isomorphisms in C turns C
into a category with weak equivalences. We clearly only need to check (ii). Consider a
commutative triangle

Y

X Z

gf

g ◦f

in C. If both f and g are isomorphisms, then so is g ◦ f with inverse morphism f−1 ◦ g−1. If
both f and g ◦ f are isomorphisms, then we claim that f ◦ (g ◦ f)−1 is an inverse morphisms
of g. Indeed, we clearly have g ◦ (f ◦ (g ◦ f)−1) = idZ , so that f ◦ (g ◦ f)−1 is a right inverse
of g. To see that it is also a left inverse of g, we precompose (f ◦ (g ◦ f)−1) ◦ g ◦ f = f with
f−1. Analogously we get that f is an isomorphism with inverse (g ◦ f)−1 ◦ g if both g and
g ◦ f are isomorphisms.

Example I.2.3. Let R be a ring and consider one of the categories Ch≥0(R), Ch+(R),

Ch−(R) or Chb(R), i.e. the category of non-negatively graded, bounded below, bounded
above or bounded chain complexes of R-modules. Recall that a morphism f : M• → N• be-
tween two such chain complexes of R-modulesM• and N• is called a quasi-isomorphism if the
induced morphisms Hn(f) : Hn(M•) → Hn(N•) on the homology groups are isomorphisms
for all integers n. The collection of all quasi-isomorphisms turns each of these four categories
into a category with weak equivalences. Let us quickly explain why:
Since homology is functorial, isomorphisms get mapped to isomorphisms, so that (i) is sat-
isfied. Moreover we have that (ii) holds, since by the previous example isomorphisms satisfy
two-out-of-three and quasi-isomorphisms are defined via isomorphisms.
More generally, we can also replace the category of R-modules by an arbitrary abelian cate-
gory A and the same arguments apply.
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Example I.2.4. As is to be expected, the classical notion of weak (homotopy) equivalences
turns the category of topological spaces into a category with weak equivalences. Recall that
a continuous map f : X → Y between two topological spaces X and Y is a weak (homotopy)
equivalence if the induced map π0(f) : π0(X) → π0(Y ) on the path components is bijective
and if the induced homomorphisms πn(f, x) : πn(X,x) → πn(Y, f(x)) on the homotopy groups
are isomorphisms of groups for all x ∈ X and all integers n ≥ 1. Since both π0 and πn are
functors, they map isomorphisms to isomorphisms, so that (i) is satisfied. Once again we
have that (ii) holds since weak (homotopy) equivalences are defined via isomorphisms.

Example I.2.5. There is of course another suitable notion to turn the category of topological
spaces into a category with weak equivalences, namely homotopy equivalences. The collection
of homotopy equivalences certainly contains all homeomorphisms and does also satisfy two-
out-of-three, since this notion is symmetric with respect to source and target and stable
under compositions.

As in the classical situation (see Example I.2.8 below), we would like to invert weak equiva-
lences. For this we introduce:

Definition I.2.6. Let C be a category and let W be a collection of morphisms of C. A
localization of the category C at the/with respect to the collection W consists of a category
C[W−1] together with a functor LW : C → C[W−1], such that:

(i) For every morphism w ∈W , the morphism LW (w) is an isomorphism.

(ii) If D is a category together with a functor F : C → D, such that the morphism F (w)
is an isomorphism for all w ∈ W , then there exists a unique functor F : C[W−1] → D
making the diagram

C D

C[W−1]

F

LW
F

commutative.

The second condition ensures that the category C[W−1] is unique up to a unique equivalence
of categories. Therefore we will speak of the localization with respect to some collection of
morphisms instead of a localization with respect to these morphisms.

Definition I.2.7. The homotopy category Ho(C) of a category with weak equivalences C is
the localization C[W(C)−1] of C at the collection W(C) of weak equivalences.

It is time for a couple of examples:

Example I.2.8. Localizing the category of topological spaces at either the homotopy equiv-
alences or the weak equivalences, we obtain some category Ho(Top) which one usually refers
to as the homotopy category of topological spaces. Here the localization can be constructed
explicitly via a so-called calculus of fractions [41] (this is an analog of how one localizes rings
in terms of multiplicative subsets). Which category this is now depends on whether we just
restrict to some nice subcategory of topological spaces (as usual in homotopy theory) or really
all topological spaces. Either way this is a classical object of interest.
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Example I.2.9. Let A be an abelian category. The derived category D(A) arises as a
localization of a category with weak equivalences. Here one usually considers a category
of chain complexes (see Example I.2.3) or a category K(A) of chain complexes, where chain
homotopy equivalences have been inverted, and then one localizes at the quasi-isomorphisms.
Also this makes use of the aforementioned notion of a calculus of fractions. For more details
we refer to Chapter 10 of [105].

Looking at our examples, everything seems to work quite well. A problem is that we cannot
guarantee the existence of localizations of categories in general, at least without changing our
universe. In other words, the typical matter of size issues once again arises. Furthermore,
the morphisms given by the general construction are very difficult to control and hence also
difficult to work with, see for instance page 147 of [43]. The notion of model categories
remedies this issue. Before we can state the definition of a model category, we will need some
notions.
Let X and X ′ be objects of a category D. Recall that X is a retract of X ′ if there exist
morphisms r : X ′ → X and s : X → X ′ with r ◦ s = idX . In this case the morphism r is
called a retraction of s. The important case for us is the one when D is a morphism category
of some category C. If we spell this out in terms of the category C, this means:

Definition I.2.10. Let C be a category and let f : X → Y and g : X ′ → Y ′ be two morphisms
in C. We say that f is a retract of g if there exists a commutative diagram of the form

X X ′ X

Y Y ′ Y

f

idX

g f

idY

Based on this we now introduce:

Definition I.2.11. A model category consists of a category C together with three subcate-
gories W(C), Fib(C) and Cof(C) of C, called weak equivalences, fibrations and cofibrations of
C, such that

(MC1) The category C is complete and cocomplete, i.e. it has all small limits and all
small colimits.

(MC2) The collection W(C) satisfies two-out-of-three.

(MC3) The three collections W(C), Fib(C) and Cof(C) are stable under retracts.

(MC4) For every commutative square

X X ′

Y Y ′

i pφ
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in C, where i ∈ Cof(C) and p ∈ Fib(C), there exists a morphism φ : Y → X ′

making the two resulting triangles in C commutative if i ∈ W(C) or p ∈ W(C).

(MC5) Every morphism f in C has a functorial factorization f = p ◦ i where p ∈ Fib(C)
and i ∈ Cof(C) ∩ W(C), and a functorial factorization of the form f = p′ ◦ i′
where p′ ∈ Fib(C) ∩W(C) and i′ ∈ Cof(C).

If (C,W(C),Fib(C),Cof(C)) is the datum a model category, one also says that the three
collections W(C), Fib(C) and Cof(C) equip/endow the underlying category C with a model
structure. Furthermore, (co-)fibrations that are also weak equivalences are usually called
acyclic or trivial (co-)fibrations. In the situation of (MC4) we say that i has the left lifting
property with respect to p and that p has the right lifting property with respect to i.

Remark I.2.12. The above definition is not the one given by Quillen in [80]. It turned
out, that one can demand stronger versions of Quillen’s axioms without loosing any essential
examples. Furthermore, the additional assumptions are simply helpful.

Let us now get to some examples:

Example I.2.13. Every complete and cocomplete category C has three different model
structures given by letting one of the three collections W(C), Fib(C) and Cof(C) be the
collection of all isomorphisms and by letting the other two be the collection of all morphims.
Then clearly all the axioms hold.

Example I.2.14. There are exactly 9 model structures on the category Set, a fact which can
be worked out directly from the definition (we refrain from doing that here, but encourage
any interested reader to try to prove this). These are:

W(Set) Fib(Set) Cof(Set)

Bij All maps All maps

Non-∅ maps and id∅ Bij and ∅ maps All maps

Non-∅ maps and id∅ Surj and ∅ maps Inj

All maps Bij All maps

All maps Surj Inj

All maps Bij and ∅ maps Non-∅ maps and id∅

All maps Surj and ∅ maps Non-∅ Inj and id∅

All maps Inj Surj

All maps All maps Bij

Here Inj, Surj and Bij are the collections of injective, surjective and bijective maps. Further-
more, by “∅ maps” we mean the collection of inclusions of the empty set into all other sets,
which should also explain what we mean by “Non-∅ maps” and “Non-∅ Inj”. This example
stems from a mathoverflow comment of Goodwillie, see [45], and was then worked out by
Barthel and Antoĺın Camarena [19]. For those readers willing/able to read German, we also
recommend the bachelor thesis of Dratschuk [32].
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Example I.2.15. In their recent paper [18], Balchin, Ormsby, Osorno and Roitzheim show
that the totally ordered set [n] = {0, . . . , n} considered as a category has

(︁
2n+1

n

)︁
model

structures. Their strategy is to show that the model structures are in bijection with so-called
contractible submodels of [n], which they can count via compositions of the integer n+ 1.

Let us now mention some of the model categories which one encounters more naturally.
There are two classical model structures on topological spaces based on the fact that there
are two natural candidates for weak equivalences, namely homotopy equivalences and weak
(homotopy) equivalences.

Example I.2.16. The Quillen model structure on Top is given by weak (homotopy) equiv-
alences, Serre fibrations and retracts of relative cell complexes as cofibrations, see [80].

Example I.2.17. The Strøm model structure on Top is given by homotopy equivalences,
Hurewicz fibrations and closed Hurewicz cofibrations, see [90].

Example I.2.18. Note that if C is a model category, then so is Cop. Here the weak equiv-
alence do not change, but the fibrations and cofibrations get swapped; see Remark 1.1.7 in
[48].

There are also various model structures on categories of chain complexes, whose homotopy
theories usually go by the name of homological algebra. Here we refer to Chapter 2.3 of [48]
for more details and let R be a ring.

Example I.2.19. The injective model structure on Ch≥0(R) is given by the quasi-isomor-
phisms as weak equivalences, degreewise epimorphisms with injective kernel as fibrations and
degreewise monomorphisms as cofibrations. To extend this model structure to the category
of all chain complexes, one needs to replace the fibrations by degreewise split surjections with
so-called fibrant kernels.

Example I.2.20. The projective model structure on Ch≥0(R) is given by the quasi-isomor-
phisms as weak equivalences, degreewise epimorphisms as fibrations and degreewise monomor-
phisms with projective cokernel as cofibrations. Also here we can extend to the category of
all chain complexes by replacing the cofibrations by degreewise split injections with so-called
cofibrant cokernels.

Our definition of a model category is in some sense rather minimalistic, although not all au-
thors demand that the two factorizations from (MC5) are functorial or that model categories
are closed under retracts. Many authors do demand further properties, especially regarding
the lifts from (MC4). These follow from our axioms, see Lemma 1.10 of [48]:

Proposition I.2.21. Let C be a model category. Then the following hold:

(i) The fibrations of C are exactly the morphisms having the right lifting property with
respect to acyclic cofibrations of C.

(ii) The acyclic fibrations of C are exactly the morphisms having the right lifting property
with respect to cofibrations of C.

(iii) The cofibrations of C are exactly the morphisms having the left lifting property with
respect to acyclic fibrations of C.

22



(iv) The acyclic cofibrations of C are exactly the morphisms having the left lifting property
with respect to fibrations of C.

Remark I.2.22. Based on this proposition, two of the three collections W(C), Fib(C) and
Cof(C) determine the third one. The only case for which this is maybe not immediately
clear is the one where Fib(C) and Cof(C) are given. The weak equivalences are then exactly
the morphisms of C that can be factorized as an acyclic cofibration followed by an acyclic
fibration. Here we use (ii) and (iv) of the proposition to define acyclic (co-)fibrations since
we cannot use weak equivalences. Indeed, each morphism, hence also each weak equivalence,
can be factorized as a acyclic cofibration followed by a fibration due to (MC5). Therefore
also the fibration must be acyclic by two-out-of-three for weak equivalences. On the other
hand, two-out-of three also ensures that each morphism that has such a factorization is a
weak equivalence.

I.2.2 Homotopy Categories

In the previous subsection we mentioned that categories with weak equivalences are in general
not sufficient for a well-behaved notion of homotopy categories. In fact, this was our main
reason to introduce model categories. In this subsection we will construct a suitable model
of a homotopy category Ho(C) associated with a model category C following Chapter 1.2 of
[48]. Let us fix some notation. Since any model category C is complete and cocomplete, we
can consider the limit and colimit over the empty diagram. Therefore our category C has a
terminal object and an initial object, which we denote by 1 and ∅ respectively.

Definition I.2.23. Let C be a model category. An object X of C is

(i) fibrant if the morphism X → 1 is a fibration of C.

(ii) cofibrant if the morphism ∅ → X is a cofibration of C.

(iii) bifibrant if X is both fibrant and cofibrant.

For a model category C, these notions yield three full subcategories Cfib, Ccof and Cbif given
by the fibrant, cofibrant and bifibrant objects respectively. Note that the axioms of a model
category allow us to turn objects into fibrant/cofibrant ones. Indeed, if we consider the map
∅ → X for some object X ∈ C, then we can factorize it as ∅ → QX → X, where the first
map is a cofibration and the second map is an acyclic fibration. In other words, up to weak
equivalence, we can replace any given object X by a cofibrant one. Since our factorizations
are assumed to be functorial, this yields a functor Q : C → Ccof , X ↦→ QX, called the cofibrant
replacement functor. Analogously we obtain a fibrant replacement functor R : C → Cfib.

Definition I.2.24. Let C be a model category and let X be an object of C. An object X ′

of C together with

(i) a fibration p : X ′ → X × X together with a weak equivalence ω : X → X ′ is called a
path space object of X if the triangle

X ×X

X X ′ω

∆X p
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commutes, where ∆X is the diagonal.

(ii) a cofibration i : X ⨿X → X ′ together with a weak equivalence ω : X ′ → X is called a
cylinder object of X if the triangle

X ⨿X

X ′ X

i
∇X

ω

commutes, where ∇X is the codiagonal.

Note that every object in a model category has both a path object and a cylinder object due
to the two factorizations from (MC5). These notions now allow us to define certain notions
of homotopies.

Definition I.2.25. Let f, g : X → Y be two parallel morphisms in a model category C.

(i) A left homotopy from f to g relative to a cylinder object (X ′, i, ω) of X is a morphism
h : X ′ → Y such that the diagram

X ⨿X Y

X ′

(f, g)

i
h

commutes. Furthermore, we call f left homotopic to g if there exists a cylinder object
(X ′, i, ω) together with a left homotopy from f to g relative to (X ′, i, ω).

(ii) A right homotopy from f to g relative to a path space object (Y ′, p, ω) of Y is a
morphism h : X → Y ′ such that the diagram

X Y × Y

Y ′

(f, g)T

h p

commutes. Furthermore, we call f right homotopic to g if there exists a path space
object (Y ′, p, ω) together with a right homotopy from f to g relative to (Y ′, p, ω).

We see that path space objects and right homotopies are dual to cylinder objects and left
homotopies. This is both true in an informal and formal sense, where the latter uses that
the opposite of a model category is itself a model category; see Example I.2.18. Therefore
we can once again focus on one of the two notions by the self-duality of model categories.
Since the notion of cylinder objects and left homotopies is closer to the usual definition of
homotopies in topology, we prefer to phrase everything in terms of these. Moreover, due to
the following lemma, which can be found as part of Proposition 1.2.5 in [48], we do not need
to worry about these matters too much:
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Lemma I.2.26. Let C be a model category and let X and Y be objects of C. If X is cofibrant
and Y is fibrant, then for all parallel morphisms f, g : X → Y the following are equivalent:

(i) The morphism f is left homotopic to the morphism g.

(ii) The morphism f is left homotopic to the morphism g relative to a fixed cylinder object
of X.

(iii) The morphism f is right homotopic to the morphism g.

(iv) The morphism f is right homotopic to the morphism g relative to a fixed path space
object of Y .

Under the same assumptions we will also get a suitable homotopy relation, which is also part
of Proposition 1.2.5 of loc. cit.:

Lemma I.2.27. Let C be a model category and let X and Y be objects of C. The left homotopy
relation on Hom(X,Y ) is reflexive and symmetric. If X is cofibrant, it is also transitive.
In particular, the left homotopy relation defines an equivalence relation on Hom(X,Y ) for
cofibrant X.

So here we are in the situation where we have a suitable notion of homotopies between two
parallel morphisms. The set of equivalence classes with respect to the homotopy relation on
Hom(X,Y ) will be denoted by [X,Y ]. To have these between all objects, we will need to
restrict to objects of a given closed model category C that are bifibrant, i.e. both fibrant
and cofibrant. We now define π(Cbif) to be the category with objects given by the objects of
C that are bifibrant together with morphisms [X,Y ] between each two objects X and Y of
π(Cbif). This is a model for the wanted homotopy category:

Theorem I.2.28. For every model category C, the category π(Cbif) is a homotopy category
of C. Furthermore, every isomorphism in π(Cbif) is represented by the homotopy class of a
weak equivalence under this equivalence of categories.

Proof. This is Theorem 1.2.10 of [48].

Here we have two choices for the functor C → π(Cbif). We can first use the fibrant replacement
functor, then the cofibrant replacement functor and then pass to homotopy classes of maps.
We can also first use the cofibrant replacement functor, then the fibrant replacement functor
and then pass to homotopy classes. By Theorem 1.2.10 of loc. cit. these two choices are
equivalent. Moreover, Theorem I.2.28 does not only tell us that we managed to construct
a homotopy category, but also that we did not accidentally invert more morphisms than we
wanted to.
Now that we know how to get homotopy categories, we want to see which functors descend
to them. For this we first introduce the following:

Definition I.2.29. Let C and D be model categories and let F : C → D and G : D → C be
functors.

(i) The functor F is called a left Quillen functor if it is a left adjoint and preserves cofi-
brations and acyclic cofibrations.
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(ii) The functor G is called a right Quillen functor if it is a right adjoint and preserves
fibrations and acyclic fibrations.

(iii) The pair (F,G) is called a Quillen adjunction if F ⊣ G, and F is a left Quillen functor
or G is a right Quillen functor.

Note that by Lemma 1.3.4 of [48], the two conditions within (iii) are equivalent. Based on
Quillen functors, we can now define derived functors, where we will make use of our notation
from Definition I.2.6.

Definition I.2.30. Let C and D be model categories.

(i) If a functor F : C → D is a left Quillen functor, then the composition

LF = LW ◦ F ◦ LW ◦Q : Ho(C) → Ho(Ccof) → Ho(D)

is called the (total) left derived functor of F .

(ii) If a functor G : D → C is a right Quillen functor, then the composition

RG = LW ◦G ◦ LW ◦R : Ho(D) → Ho(Dfib) → Ho(C)

is called the (total) right derived functor of G.

Example I.2.31. By definition, the homotopy categories of our model categories of chain
complexes Ch≥0(R) or Ch(R) are given by the associated derived categories D≥0(R) and
D(R), see also Chapter 2.3 of [48], and our notion of left/right derived functors retrieves the
more classical notion of derived functors between derived categories.

Definition I.2.32. A Quillen adjunction (F,G) is called a Quillen equivalence if LF or RG
defines an equivalence of categories.

Note that, if one of those two derived functors is an equivalence, then so is the other since it
becomes a quasi-inverse of the former. This notion is the right notion of equivalent homotopy
theories in this setup.

Example I.2.33. The Quillen and the Strøm model structures on Top are Quillen equivalent,
see Chapter 17 of [67].

For another concrete example of a Quillen equivalence we refer the reader to Theorem I.3.19
in the next section.

I.2.3 Homotopy Limits and Colimits

Even if we are given a model category and thus also have an associated homotopy category,
limits and colimits do not generally work well with our homotopy theory. In this subsection
we will rectify this issue, at least for a certain type of index categories. Let us start with an
example in the case of topological spaces:

Example I.2.34. Consider the two pushout squares
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S0 pt S0 I

pt pt pt S1
⌜ ⌜

We clearly have a morphism of pushout diagrams

S0 pt

pt S0 I

pt

where all the three maps are weak equivalences, but there cannot be a weak equivalence
pt → S1 on the level of the pushouts. This shows us that we cannot take (co-)limits of
homotopy types in general.

The solution is to consider a version of (co-)limit which works well with respect to the notion
of homotopy, which is hence called homotopy (co-)limit. These always exist, see for example
the very nice mathoverflow answer [97] of Virili following the construction from [27]:

Theorem I.2.35. Let C be a model category and let I be an index category.

(i) There exists a model structure on CI so that Rlim(F ) exists for any F ∈ CI .

(ii) There exists a model structure on CI so that Lcolim(F ) exists for any F ∈ CI .

Definition I.2.36. Let C be a model category, let I be an index category and let D : I → C
be a diagram. The functors from the theorem above are called the homotopy limit holim(D)
of D and the homotopy colimit hocolim(D) of D respectively.

Setting up the full theory of homotopy (co-)limits is not only not easy, but also not relevant
for this document. Moreover, homotopy (co-)limits are generally difficult to compute. We
will just focus on a certain class of homotopy (co-)limits, for which the theory is easier. Let
us start by treating a concrete kind of diagram of topological spaces. Note that by Example
I.2.33, we do not need to worry about the choice of model structure.

Theorem I.2.37. The homotopy pushout X ⨿h
A Y of a diagram

A Y

X

g

f

of topological spaces is modeled by the double mapping cylinder M(f, g) = X ⨿A×{0}(A ×
I)⨿A×{1} Y .

Proof. This follows from Example 8.8 of [82] together with the fact that taking the mapping
cylinder of a continuous map gives rise to the cofibrant replacement functor, see for instance
page 45 of [66].
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There is an obvious collapse mapX ⨿h
A Y → X ⨿A Y to the usual pushout, given by collapsing

the cylinder A× I.

Lemma I.2.38. The collapse map X ⨿h
A Y → X ⨿A Y is a weak equivalence if one of the

maps A→ X and A→ Y is a (Hurewicz) cofibration.

Proof. This is a special case of Example 8.8 of [82].

In other words, if A → X or A → Y is an inclusion of a nice subspace, then the actual
pushout X ⨿A Y already has the correct homotopy type.
This lemma also indicates how we could try to compute homotopy pushouts. Here we will at
first not justify why everything works, but we will resolve this afterwards. Given a diagram

A Y

X ,

g

f

we can replace one of the two maps f : A→ X and g : A→ Y by a cofibration whose target
is weakly equivalent to the target of f or g respectively. Without loss, let us choose f . As
mentioned in the proof of the above theorem, this can be realized by choosing ˜︁X as the
mapping cylinder of f and the map ˜︁f is just the inclusion of A ↪→M(f). Using the language

of model categories, ˜︁f is a cofibrant replacement of f . The pushout of the diagram

A Y

˜︁X
g

˜︁f

is then the homotopy pushout of the original diagram. If we feel like it, we can of course
also do this for both maps, which then directly gives the double mapping cylinder. If A
is cofibrant, then the above works. If A is not cofibrant, then we need to assume that the
given model category is left-proper, that is, weak equivalences are preserved by pushouts
along cofibrations. For a reference see Proposition A.2.4.4 in [62]. While this is a restriction,
essentially all model categories that are usually considered turn out to be left-proper.

Example I.2.39. Let us return to the example from the beginning. We consider the diagram

S0 pt

pt

whose maps are certainly not cofibrations. The cofibrant replacement of S0 → pt is the
inclusion S0 ↪→ I, so that the pushout of the replaced diagram is given by S1. Here S1 is
built from a 1-cell I attached to the 0-cell pt. Had we cofibrantly replaced both maps, the
resulting S1 would arise from two 1-cells glued together at their corresponding end points.
Either way, we were able to compute the homotopy pushout.
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So why does the above recipe work? For this recall that a subcategory D of a category C
is called wide if it contains all objects of C. We now introduce the following notion which
nowadays is named after Reedy due to his paper [81], where some first instances of said
notion were implicitly studied:

Definition I.2.40. A category I together with two wide subcategories I+ and I− and a
map deg : Ob(I) → N is called a Reedy category if

(i) For every non-identity morphism X → X ′ in I+ we have deg(X) < deg(X ′).

(ii) For every non-identity morphism X → X ′ in I− we have deg(X) > deg(X ′).

(iii) Every morphism in I has a unique factorization by a morphism in I− followed by a
morphism in I+.

So, vaguely speaking, we have a degree function deg on the objects of our category and choose
positive and negative morphisms. Then we demand that positive morphisms raise the degree,
that negative morphisms lower the degree and, that every morphism is uniquely built from
positive and negative ones.

Example I.2.41. Every discrete category I is Reedy by choosing deg(X) = 0 for all X ∈ I.
Here both I+ and I− coincide with the category I.

We can visualize Reedy categories by denoting an object by its degree and by drawing a “+”
or a “−” over a non-identity morphism to indicate in which of the two wide subcategories it
lives.

Example I.2.42. The index category for pushouts is a Reedy category:

0 1

1

+

+

Example I.2.43. Also the following category is Reedy:

2 1 2

1 0 1

2 1 2

+

+

+

+

+

+

+

+

+

+

+

+

This category is the index category for a pushout of pushouts.

The relevance of Reedy categories lies in the simplicity of model structures on functor cate-
gories involving the Reedy category, which can be found as Theorem 4.18 in [82]:

Theorem I.2.44. Let C be a model category and let I be a Reedy category. Then the
category CI has a model structure, where the weak equivalences are exactly the objectwise
weak equivalences and both the fibrations and cofibrations are contained in the objectwise
fibrations and cofibrations.
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This is the Reedy model structure on CI . It is quite technical to define the fibrations and
cofibrations of the Reedy model structure, which is why we omit this. The relevant aspect
of this model structure is the following:

Example I.2.45. The Reedy structure on the index category of a pushout from Example
I.2.42 retrieves the statement from Lemma I.2.38 for a general model category C. Moreover,
the Reedy structure allows us to compute the homotopy pushout in terms of a cofibrant
replacement of one of its maps, as can be found as Example 8.8 in [82]. So the argument
why the above recipe works is that the index category for pushouts is Reedy, and that we
understand the cofibrations on the level of the associated functor category well enough.

All the homotopy (co-)limits that will show up later can be expressed in terms of homotopy
pushouts, so that we are now suited to deal with those.
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I.3 Simplicial Stuff

In this section we will deal with those objects which allow us to install a homotopy theory on
smooth schemes, namely with simplicial objects in a given category C. Here we will generally
follow [44]. Due to Dugger [34], taking simplicial sheaves on a site can even be seen to create
a universal homotopy theory in a suitable sense. This is a further justification of Morel’s and
Voevodsky’s approach to the homotopy theory of smooth schemes from [76].

I.3.1 The Simplex Category and Simplicial Objects

We have seen how model categories enable us to get our hands on a homotopy category. To
get a meaningful model structure on a category closely related to smooth schemes, we study
the so-called simplex category which allows us to define simplicial objects.

Definition I.3.1. The simplex category ∆ has as objects the ordered sets

[n] = {0 ≤ 1 ≤ . . . ≤ n}

for all non-negative integers n together with order-preserving maps as morphisms.

In other words, the simplex category is just a skeleton of the category of non-empty finite
ordered sets.
We will now consider two particular kinds of morphisms in ∆. For all integers n ≥ 1 and all
0 ≤ i ≤ n, we define the i-th coface map to [n] to be the morphism

δni : [n− 1] → [n], j ↦→

{︄
j if j < i

j + 1 if j ≥ i

and for all non-negative integers n and all 0 ≤ i ≤ n the i-th codegeneracy map to [n] to be

σn
i : [n+ 1] → [n], j ↦→

{︄
j if j ≤ i

j − 1 if j > i
.

In other words, the morphism δni is the unique injective order-preserving map [n− 1] → [n]
with i not in its image and the morphism σn

i is the unique surjective order-preserving map
[n+ 1] → [n] that hits i twice. The importance of these two types of morphisms comes from
the following:

Lemma I.3.2. Any morphism in the simplex category ∆ is a composition of coface and
codegeneracy maps.

Proof. This is the Lemma 1 on page 177 of [64].

Any relation between two morphisms in ∆ is hence a consequence of relations between coface
and codegeneracy maps. Let us therefore list these:

Lemma I.3.3. The coface and codegeneracy maps satisfy the relations:

(i) For all 0 ≤ i < j ≤ n+ 1 we have δn+1
j ◦ δni = δn+1

i ◦ δnj−1.

31



(ii) For all 0 ≤ i < j ≤ n− 1 we have σn−1
j ◦ δni = δn−1

i ◦ δn−2
j−1 .

(iii) For all 0 ≤ i ≤ n− 1 we have σn−1
i ◦ δni = id[n−1] = σn−1

i ◦ δni+1.

(iv) For all 0 < j + 1 < i ≤ n we have σn−1
j ◦ δni = δn−1

i−1 ◦ σn−2
j .

(v) For all 0 ≤ i ≤ j ≤ n− 1 we have σn−1
j ◦ σn

i = σn−1
i ◦ σn

j+1.

Proof. These follow directly from the definitions.

Definition I.3.4. Let C be a category. The category sC of simplicial objects in C is the
category Fun(∆op, C) of C-valued presheaves on ∆.

Example I.3.5. A simple example of a simplicial object is the following. Fix some object
X of a category C. Then the constant functor ∆op → C with value X is a simplicial object
of C. One usually refers to such simplicial objects as discrete simplicial objects.

Considering objects of a category C as discrete simplicial objects gives us a natural inclusion
functor C → sC. This is how we will view smooth schemes as spaces in the next section.

Remark I.3.6. Categories of presheaves are always cocomplete. In fact, given a category
C, the category PreSh(C) is the free cocompletion of C by the Yoneda lemma. Furthermore,
limits and colimits are computed objectwise.

If X is a simplicial object in a category C, we will usually write Xn instead of X([n]) and call
it the n-th level or the n-simplices of the simplicial object X. By Lemma I.3.2 and Lemma
I.3.3, we have:

Proposition I.3.7. Let C be a category. The data of a simplicial object in C is equivalent
to a sequence (Xn)n∈N of objects Xn of C together with morphisms dni : Xn → Xn−1 for all
integers n ≥ 1 and all 0 ≤ i ≤ n and morphisms sni : Xn → Xn+1 for all non-negative integers
n and all 0 ≤ i ≤ n, such that the following relations hold:

(i) For all 0 ≤ i < j ≤ n+ 1 we have dni ◦ dn+1
j = dnj−1 ◦ d

n+1
i .

(ii) For all 0 ≤ i < j ≤ n− 1 we have dni ◦ sn−1
j = dn−2

j−1 ◦ dn−1
i .

(iii) For all 0 ≤ i ≤ n− 1 we have dni ◦ sn−1
i = idXn

= dni+1 ◦ s
n−1
i .

(iv) For all 0 < j + 1 < i ≤ n we have dni ◦ sn−1
j = sn−2

j ◦ dn−1
i−1 .

(v) For all 0 ≤ i ≤ j ≤ n− 1 we have sni ◦ sn−1
j = snj+1 ◦ s

n−1
i .

See also Proposition 2 on page 178 of [64]. The morphisms dni are called face maps and the
morphisms sni are called degeneracy maps. If an n-simplex lies in the image of any degeneracy
map, it is called degenerate. If not, then it is simply called non-degenerate.

Example I.3.8. Any discrete simplicial object X has n-simplices Xn = X together with
the identity morphism as face and degeneracy maps.
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I.3.2 Simplicial Sets

For us the relevant simplicial objects will be simplicial sets and simplicial (pre-)sheaves on
the category Smk of smooth schemes. Let us therefore start by giving examples of simplicial
sets:

Example I.3.9. For any non-negative integer n, the standard n-simplex is the simplicial set
∆n = Hom(−, [n]). In other words, the standard n-simplex is the image of the ordered set
[n] under the Yoneda embedding ∆ ↪→ PreSh(∆) = sSet.
There is a unique order-preserving map [m] → [0] for every non-negative m. Thus the
simplicial set ∆0 consists of a point at every level with the only non-degenerate simplex
given by the identity id : [0] → [0] ∈ (∆0)0. More generally, ∆n has no non-degenerate
m-simplices for m > n and a unique non-degenerate n-simplex id: [n] → [n] ∈ (∆n)n.

Example I.3.10. Given the standard n-simplex ∆n for some non-negative integer n, we can
define its boundary ∂∆n. If this was the topological standard n-simplex

|∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1 | x0 + . . .+ xn = 1} ⊂ Rn+1,

we would just throw away the unique face of dimension n to get its boundary. This is
essentially also what happens here, except that we also have degenerate versions of that face
coming from higher-dimensional simplices. Therefore we set

∂∆n([m]) = {f ∈ ∆n([m]) | f is not surjective}

to additionally exclude exactly all of these potentially degenerate n-dimensional faces and
consider the boundary ∂∆n as a simplicial subset of ∆n.

Example I.3.11. For all 0 ≤ j ≤ n, the j-th horn Λn
j of the standard n-simplex ∆n is the

simplicial subset given by the union of all faces of ∆n except for the j-th one.

Although we are not going to use that language, we can now also define what an ∞-category
(modeled by quasi-categories) is. This notion was originally defined by Boardman and Vogt
[21] and has afterwards been developed further by work of Joyal [58] and [59], and also
considerably by Lurie [62]. These quasi-categories are defined via the so-called inner horn
filling condition:

Definition I.3.12. An∞-category is a simplicial setX such that for all non-negative integers
n and all 0 < j < n, every morphism Λn

j → X can be extended to a morphism ∆n → X.

For a justification/explanation of this definition we recommend reading [63, Tag 0001]. Even
though we stress once again that we are not going to use the language of ∞-categories here,
we certainly recommend the interested reader to at least read these two pages.

Example I.3.13. For any category C, there exists a simplicial set N(C) called the nerve
of the category C. The n-th level Nn(C) of N(C) is given by the set HomCat([n], C) of all
functors from the ordered set [n], considered as a category, to the category C. In other words,
Nn(C) consists of all diagrams of the form

X0 → X1 → . . .→ Xn−1 → Xn
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in the category C. We now define the i-th face map dni : Nn(C) → Nn−1(C) to be the morphism
that “removes” the i-th object of a diagram

X0 → X1 → . . .→ Xi−1 → Xi → Xi+1 → . . .→ Xn−1 → Xn.

For all 1 ≤ i ≤ n− 1 this means, that the i-th face map dni maps

X0 → X1 → . . .→ Xi−1 → Xi → Xi+1 → . . .→ Xn−1 → Xn

to the diagram

X0 → X1 → . . .→ Xi−1 → Xi+1 → . . .→ Xn−1 → Xn,

where the morphism Xi−1 → Xi+1 is the composition Xi−1 → Xi → Xi+1. The i-th
degeneracy map sni : Nn(C) → Nn+1(C) maps a diagram

X0 → X1 → . . .→ Xi−1 → Xi → Xi+1 → . . .→ Xn−1 → Xn

to the diagram

X0 → X1 → . . .→ Xi−1 → Xi → Xi → Xi+1 → . . .→ Xn−1 → Xn,

where the morphism Xi → Xi is given by the identity idXi . The nerve is actually functorial
in C by mapping a functor F : C → D to the sequence of maps (Hom([n], F ))n∈N. The nerve
of a category is an ∞-category. Not only is it an ∞-category, but this is exactly how one can
consider a (1-)category as an ∞-category since the nerve functor turns out to be fully-faithful
and hence is an embedding. Its essential image consists exactly of those ∞-categories that
admit unique fillers for inner horns. For more details see [63, Tag 002L] and [63, Tag 003F].

Example I.3.14. For any topological space X, there exists a simplicial set Sing(X) called
the singular simplicial set associated with X. The n-th level Singn(X) of Sing(X) is given
by the set Hom(|∆n|, X) of continuous maps from the topological n-simplex

|∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1 | x0 + . . .+ xn = 1} ⊂ Rn+1

to the topological space X. Here the i-th face map is

dni : Singn(X) → Singn−1(X), f ↦→ f ◦ incli,

where incli : |∆n−1| → |∆n|, (x0, . . . , xn−1) ↦→ (x0, . . . , xi−1, 0, xi, . . . , xn−1) is the inclusion
outside of the i-th position, and the i-th degeneracy map is

sni : Singn(X) → Singn+1(X), f ↦→ f ◦ addi,

where addi : |∆n+1| → |∆n| is the continuous map defined by

(x0, . . . , xn+1) ↦→ (x0, . . . , xi−1, xi + xi+1, xi+2, . . . , xn+1).

This is also functorial in X. If f : X → Y is a continuous map between two topological spaces
X and Y , then we have a map Sing(X) → Sing(Y ) given by composing with f on each level.
For more information we refer to [63, Tag 001Q]
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We can also define various operations of simplicial sets. We will collect some important ones
in one big definition. For this note that a pointed simplicial set is simplicial set X together
with a choice of an element x ∈ X0.

Definition I.3.15. Let X and Y be simplicial sets.

(i) The product X × Y is the simplicial set with n-simplices Xn × Yn for all non-negative
integers n and coordinatewise face and degeneracy maps. If X and Y happen to be
pointed with base points x and y respectively, the basepoint of the product is (x, y).

(ii) The wedge sum (X, y) ∨ (Y, y) of two pointed simplicial sets (X,x) and (Y, y) is the
subsimplicial set of (X × Y, (x, y)) with n-simplices Xn × {y} ∪ {x} × Yn for all non-
negative integers n.

(iii) If Y is a simplicial subset of X, then the quotient simplicial set X/Y is the simplicial
set with n-simplices Xn/Yn and face and degeneracy maps induced from the ones of
X. If X and Y happen to be pointed with base point x, the basepoint of the quotient
is the equivalence class of x.

(iv) The smash product X ∧ Y is the pointed simplicial set (X × Y, (x, y))/(X ∨ Y ).

Example I.3.16. The simplicial 1-sphere is the quotient simplicial set S1 = ∆1/∂∆1. Based
on this we define the simplicial n-sphere Sn as (S1)∧n for all non-negative integers n. Another
model for the n-sphere in positive degree is ∆n/∂∆n. These two models turn out to be weakly
equivalent, which is a notion that we will introduce now.

Before we introduce a model structure on sSet, there is one last notion that we will use and
that implicitly showed up in Example I.3.14, see also [63, Tag 001X].

Definition I.3.17. The geometric realization of a simplicial set (Xn)n∈N is the quotient∐︂
n∈N

(Xn × |∆n|)/∼,

where each Xn is equipped with the discrete topology, and ∼ is the equivalence relation
generated by (x, incli(p)) ∼ (di(x), p) and (y, addi(p)) ∼ (si(y), p) for x ∈ Xn+1, y ∈ Xn−1

and p ∈ |∆n|, where Di and Si are the standard inclusions and collapses of topological
simplices.

Now we can introduce weak equivalences, fibrations and cofibrations of simplicial sets:

W(sSet) = Morphisms of simplicial sets whose geometric realizations are weak equiv-
alences of topological spaces

Fib(sSet) = Morphisms of simplicial sets having the right lifting property with respect
to inclusions of horns Λn

i ↪→ ∆n for all positive integers n and all 0 ≤ i ≤ n
(also called Kan-fibrations)

Cof(sSet) = Monomorphisms of simplicial sets, i.e. levelwise injective maps
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Theorem I.3.18. The three classes W(sSet), Fib(sSet) and Cof(sSet) endow the category
sSet of simplicial sets with a model structure. Moreover, a morphisms f : X → Y of simplicial
sets is an acyclic fibration if and only if it has the right lifting property with respect to
inclusions of boundaries ∂∆n ↪→ ∆n for all non-negative integers n.

Proof. This is Theorem 3.6.5. of [48].

This is usually called the Quillen model structure on simplical sets and from now on we
consider sSet as a model category with this model structure. We can now compare this
model category with any one of the two Quillen equivalent model structures on the category
of topological spaces, see Chapter 1.4 Example 2 of [80]:

Theorem I.3.19. The functors

sSet Top .

|−|

Sing
⊣

are a Quillen equivalence.

This adjunction shows that simplicial sets give rise to a combinatorial model for the homotopy
theory of topological spaces.
Finally, let us mention that the category of simplicial sets also has a well-behaved notion of
internal Hom’s. Given two simplicial sets X and Y , we define a presheaf Hom(X,Y ) by

[n] HomsSet(X ×∆n, Y )

[m] HomsSet(X ×∆m, Y )

f φ ↦→ φ ◦ (idX ×f∗)

on the simplex-category ∆. Note that by definition there is a canonical bijection

Hom(X,Y )0 = HomsSet(X,Y ).

Proposition I.3.20. For all simplicial sets Y , there is an adjunction

sSet sSet .

−×Y

Hom(Y,−)

⊣

In particular, the category sSet of simplicial sets is cartesian closed.

Proof. This can be found in [89, Tag 017H].

We will also use the Notation (−)Y instead of Hom(Y,−). Then the adjunction above yields
the usual exponential law

(ZY )X ∼= ZY×X

for all simplicial sets X, Y and Z.
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I.3.3 Simplicial Homotopy Theory

Now that we have a combinatorial model for the homotopy category of topological spaces,
we certainly also want to talk about homotopy groups within that model. This is what we
will quickly discuss in this section.
Although we have seen the general setup of homotopies within model categories, we think
it is valuable to be a bit more explicit. Recall that the usual homotopy groups πn(X) of a
pointed topological space X can be defined as homotopy classes of continuous maps In → X
which take the boundary ∂In of the n-cube In to the base point of X. To translate this
definition into the simplicial world, we first have to define homotopies in the style of classical
homotopy theory. For this entire subsection we follow Chapters 1.6 and 1.7 of [44].

Definition I.3.21. A homotopy from a simplical map f : X → Y to a simplicial map
g : X → Y is a simplicial map h : X ×∆1 → Y making the diagram

X ×∆0 X

X ×∆1 Y

X ×∆0 X

id×d1
f

h

id×d0
g

of simplical sets commutative. If we are additionally given an inclusion i : A ↪→ X of simplicial
sets such that the compositions f ◦ i and g ◦ i agree, then we will say that the homotopy h
is relative to A if the diagram

X ×∆1 Y

A×∆1 A

h

pr1

i×id f◦i

commutes as well.

In the language of model categories we would say that ∆1 gives rise to a cylinder object. As
in the homotopy theory of topological spaces, we say that f is homotopic to g if there exists
a homotopy from f to g and denote this by f ≃ g. We would now like to claim that being
homotopic defines an equivalence relation, but this is not true in general as the following
example shows.

Example I.3.22. Consider the two simplicial maps d1 : ∆0 → ∆1 and d0 : ∆0 → ∆1. Then
the diagram

∆0 ×∆0 ∆0

∆0 ×∆1 ∆1

∆0 ×∆0 ∆0

id×d1 d1

id×d0 d0
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is clearly commutative so that d1 ≃ d0. When we swap the two simplicial maps on the right
there is no simplicial map ∆0 ×∆1 → ∆1 making the resulting diagram commutative, since
such a map would require non-order-preserving maps. Therefore d0 ̸≃ d1, which means that
the homotopy relation is not symmetric.

As we have also seen in the section on homotopy categories, the solution is to add some
further assumption:

Proposition I.3.23. Let Y be a fibrant simplicial set and let X be a simplicial set with a
simplicial subset A ⊂ X. Then both the homotopy relation and the homotopy relation relative
to A on Hom(X,Y ) are equivalence relations.

Proof. This is Corollary 6.2 of Chapter I of [44].

Fibrant simplicial sets are also called Kan complexes. These now allows us to define homotopy
groups due to the above proposition.

Definition I.3.24. Let n be positive integer. The n-th (simplicial) homotopy group πn(X,x)
of a pointed Kan complex (X,x) is the set of homotopy classes relative to ∂∆n of simplicial
maps α : ∆n → X which make the diagram

∆n X

∂∆n ∆0

α

x

commutative.

Since Sn = ∆n/∂∆n is a model for the simplicial n-sphere, the above definition can equiv-
alently be phrased in terms of homotopy classes of simplical maps Sn → X, which recovers
the other usual definition of homotopy groups.
Although we have already called πn(X,x) the homotopy groups of (X,x), we are yet to
actually describe the group structure. Since this is rather technical we will refrain from
doing that, but let us note that it is of course defined similarly as for topological spaces and
results in an analogous theory:

Theorem I.3.25. Let n be a positive integer and let (X,x) be a pointed Kan complex. There
is a natural operation πn(X,x) × πn(X,x) → πn(X,x) turning πn(X,x) into a group with

identity element given by the homotopy class of ∆n → ∆0 x−→ X. If n ≥ 2, these groups are
abelian.

Proof. This is Theorem 7.2 of Chapter I of [44].

To lift this theory to arbitrary simplicial sets, we use that Kan complexes by definition are
the fibrant objects for the Quillen model structure on simplicial sets.

Definition I.3.26. Let n be a positive integer. The n-th homotopy group πn(X,x) of a
pointed simplicial set (X,x) is the n-th homotopy group of the fibrant replacement (RX,Rx).
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This yields a very well-behaved homotopy theory of simplicial sets, see [44]. Moreover, if we
were to unwind everything, this definition follows exactly the general setup of Section I.2.2,
i.e πn(X,x) has an alternative description as maps in Ho(sSet∗) from the simpicial n-sphere
to (X,x).

Remark I.3.27. There is, of course, also a homotopy set π0(X,x) of a pointed simplicial set,
which is defined exactly as above, but which does not come with a natural group structure.
For the sake of simplicity, we will still call it the zeroth homotopy group, so that we can just
speak of homotopy groups in all non-negative degrees.

Remark I.3.28. Due to the Quillen equivalence between sSet and Top, these homotopy
groups coincide with the usual homotopy groups of the geometric realization of X, see Propo-
sition 3.6.3 of [48]. This gives another way of seeing that the higher homotopy groups are
abelian.

We are now interested in the sheaf-theoretic version of this theory, which is what we will
study next.
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I.4 Unstable Motivic Homotopy Theory

We are finally ready to enter the world of unstable motivic homotopy theory. Here we will
start by introducing the basic objects, called spaces, and then we will see a glimpse of how
their homotopy theory works. Finally, we study motivic spheres.

I.4.1 Spaces and the A1-model structure

Let us introduce one of the main objects of study in motivic homotopy theory following [76].

Definition I.4.1. A space is a simplicial (Nisnevich) sheaf on the category Smk.

Equivalently, a space can also be defined to be a sheaf of simplicial sets on the category Smk

of smooth schemes and both points of view are useful. We denote the category of spaces by

Spc(k) = sShv(Smk) ≃ Shv(Smk, sSet).

Let us have a look at two main classes of examples.

Example I.4.2. Every simplicial set X gives rise to a space by taking the sheaf associated
with the constant presheaf with value X. This space will also be denoted by X.

Example I.4.3. Every sheaf F on Smk gives rise to a space by considering it as a discrete
simplicial sheaf on Smk. Since every representable presheaf is a sheaf (see Corollary I.1.25),
this allows us to consider every smooth scheme X as a space which we will still denote by X.

These two classes also help with understanding what a general space is supposed to be.
Spaces are the outcome of merging the categories of simplicial sets and smooth schemes and
extending the result to a well-behaved category in which our usual homotopical notions will
make sense.
As for topological spaces, we need a notion of pointed spaces for various homotopical con-
structions and objects. For this we also denote the space Spec(k) by pt.

Definition I.4.4. A pointed space is a pair (X,x) where X is a space and x : pt → X is a
morphism of spaces.

This yields a category of pointed spaces and morphisms compatible with the basepoints,
which we denote by Spc∗(k). Also here we can give an equivalent definition, namely as a
sheaf of pointed simplicial sets.

Remark I.4.5. The following pointed spaces occur so frequently that we do not want to
mention their base points all the time:

• (An, e1) with e1 = (1, 0, . . . , 0) and in particular (A1, 1)

• (An \ {0}, e1) and in particular (Gm, 1)

• (P1,∞)

• (Sn, 1)
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Therefore we will drop their base points from our notation unless we happen to choose
different ones or unless we want to highlight that we are working in the pointed category.

As in topology, we can rather easily go back and forth between unpointed and pointed spaces
in terms of the usual adjunction.

Lemma I.4.6. The forgetful functor Spc∗(k) → Spc(k) has a left adjoint Spc(k) → Spc∗(k)
given by mapping a space X to the space X+ = X ⨿pt with the additional point as a base
point.

This follows directly from the definitions, but see also page 82 of [76]. Using this notion, we
can once again define homotopy groups, just that now they will be sheaves. This should not
be too surprising though.

Definition I.4.7. Let n be a non-negative integer. The n-th homotopy sheaf πn(X,x) of a
pointed space (X,x) is the (Nisnevich) sheafification of the presheaf U ↦→ πn(X(U), x(U)).

Here the space under consideration was pointed. To make sure that any space can be pointed,
Morel and Voevodsky make use of topos-theoretic points. We do not want to discuss those
in more detail, but refer the interested reader to [76].
This gives us a functor πn, which according to Theorem I.3.25 maps to the category of sheaves
of groups Grp /k if n = 1, and for n ≥ 2 maps to the category of abelian sheaves Ab /k. We
can now introduce the following weak equivalences, fibrations and cofibrations of simplicial
sheaves:

Ws(Spc(k)) = Morphisms of spaces, which for all choices of compatible base points in-
duces isomorphisms on all simplicial homotopy sheaves.

Cofs(Spc(k)) = Monomorphisms of spaces, i.e. objectwise monomorphisms of simplicial
sets

Fibs(Spc(k)) = Morphisms of spaces having the right lifting property with respect to
acyclic cofibrations

Theorem I.4.8. The three classes Ws(Spc(k)), Fibs(Spc(k)) and Cofs(Spc(k)) endow the
category Spc(k) of spaces with a model structure.

Proof. This is Theorem 1.4 together with Remark 1.3 from Chapter 2 of [76].

This is the so-called simplicial model structure on spaces and comes together with a simplicial
homotopy category Hs(k) = Hs(Spc(k)). As stated at the very beginning of this chapter,
this homotopy theory is not quite what we want. We still need to ensure that A1 becomes
contractible. For this we consider the following notion.

Definition I.4.9. A space Y is A1-local if for smooth schemes X, the map

HomHs(k)(X,Y ) → HomHs(k)(X × A1, Y )

induced by the projection onto the first component is bijective.
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In other words, A1-local spaces are spaces, for which the affine line already seems contractible.
These spaces are also called motivic spaces. Let us denote the full subcategory of A1-local

spaces by SpcA
1

(k). These now allow us to upgrade our simplicial weak equivalences to
A1-equivalences:

Definition I.4.10. A morphism f : X → Y of spaces is an A1-weak equivalence if for all
A1-local spaces Z, the map

f∗ : HomHs(k)(Y, Z) → HomHs(k)(X,Z)

given by precomposing with f is a bijection.

We have of course an inclusion functor SpcA
1

(k) ↪→ Spc(k). This functor turns out to have
a left adjoint with a very useful property, see Theorem 3.2 from Chapter 2 of [76] together
with Example 4 directly beneath it:

Theorem I.4.11. The inclusion functor SpcA
1

(k) ↪→ Spc(k) has a left adjoint LA1 , which
is a (left) Bousfield localization. In particular, there is a model structure on spaces given by
the following weak equivalences, fibrations and cofibrations:

WA1(Spc(k)) = A1-weak equivalences

FibA1(Spc(k)) = Morphisms of spaces having the right lifting property with respect to acyc-
lic cofibrations

CofA1(Spc(k)) = Monomorphisms of spaces

We never explained what a (left) Bousfield localization is. This notion originally due to
Bousfield [24] is a localization of a model category, which adds morphisms to the weak
equivalences without changing the cofibrations, see for instance Chapter X.3 of [44]. We
advise a reader who is unfamiliar with Bousfield localizations, to split this theorem into two
parts. Namely, that there is a left adjoint to the inclusion SpcA1(k) ↪→ Spc(k) and that this
yields a model structure as described above. This model structure is the A1-model structure.

Definition I.4.12. The homotopy category H(k) associated with the A1-model structure
on spaces is the unstable motivic homotopy category.

The forgetful functor Spc∗(k) → Spc(k) also endows the category Spc∗(k) of pointed spaces
with the A1-model structure, so that we also get a pointed unstable motivic homotopy cate-
gory H∗(k). As mentioned more generally in Section I.2.2, we use the notation [(X,x), (Y, y)]
to denote the set of morphisms (X,x) → (Y, y) in the category H∗(k) and denote A1-weak
equivalences by ≃A1 .

Definition I.4.13. Let n be a non-negative integer. The n-th A1-homotopy sheaf πA1

n (X,x)
of a pointed space (X,x) is the sheafification of the presheaf U ↦→ [Sn ∧ U+, (X,x)].

This is once again functorial in (X,x). These sheaves are sheaves of groups if n = 1, and
abelian sheaves if n ≥ 2 by the usual Eckmann-Hilton argument.
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Remark I.4.14. Note that the adjunction between unpointed and pointed spaces from
Lemma I.4.6 shows that the A1-connected components πA1

0 (−) do not really require base-
points. We can also define it as the sheafification of U ↦→ HomH(k)(U,−) on the level of
unpointed spaces. As in classical homotopy theory, computing these homotopy sheaves is
not easy at all. We will nevertheless see a non-trivial computation in Section I.6.3.

Definition I.4.15. A pointed space (X,x) is A1-n-connected if the sheaf πA1

i (X,x) vanishes
for all 0 ≤ i ≤ n.

Example I.4.16. In the next section we will see that the smash product “∧” of simplicial
sets can be extended to spaces. In particular, there are spaces of the form Sn ∧ (X,x). By
Theorem 1.18 of [75], such spaces are A1-(n− 1)-connected.

Proposition I.4.17. A morphism f : (X,x) → (Y, y) of A1-connected pointed spaces is an
A1-equivalence iff for all n > 0, the induced map

f∗ : π
A1

n (X,x) → πA1

n (Y, y)

is an isomorphism.

Proof. This is Proposition 2.14 from Chapter 3 of [76].

I.4.2 From old to new Spaces

Except for the two standard examples of spaces from Examples I.4.2 and I.4.3, we have not
seen any examples of spaces. Let us therefore discuss a couple of operations on (pointed)
spaces resulting in new examples.

Definition I.4.18. The wedge sum (X,x)∨ (Y, y) of two pointed spaces (X,x) and (Y, y) is
the sheafification of the presheaf U ↦→ (X,x)(U) ∨ (Y, y)(U).

It is not difficult to observe that the wedge sum is the coproduct of pointed spaces. The
desired universal property just lifts from the one on the level of simplicial sets.

Definition I.4.19. The smash product (X,x)∧(Y, y) of two pointed spaces (X,x) and (Y, y)
is the sheafification of the presheaf U ↦→ (X,x)(U) ∧ (Y, y)(U).

This defines a symmetric monoidal structure on the category H∗(k), i.e. , it is a ‘tensor
product” of pointed spaces, see Lemma 2.13 from Chapter 3 of [76].

Example I.4.20. By definition we have S0 ∧ (X,x) = (X,x) for all pointed spaces (X,x).
In other words, S0 is the tensor unit.

Example I.4.21. For any pointed space (X,x), the smash product S1 ∧ (X,x) is given by
the homotopy pushout of the diagram

(X,x) pt

pt
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i.e. it is the so-called categorical suspension Σ(X,x) of (X,x), see for example page 148 of
[48]. Since other kinds of suspensions naturally show up in motivic homotopy theory, we will
from now on denote this suspension by ΣS1(X,x).

These two operations allow us to expand our collection of examples, which can then once
again result in further examples by taking limits or colimits or their derived variants.

Remark I.4.22. The smash product distributes over the wedge sum. This can be seen
very directly on the level of pointed simplicial sets. If (X, y), (Y, y) and (Z, z) are pointed
simplicial sets, then both (X, y) ∨ (Y, y)) ∧ (Z, y) and ((X,x) ∧ (Z, z)) ∨ ((Y, y) ∧ (Z, z)) are
quotients of (X ⨿Y )×Z ∼= (X×Z)⨿ (Y ×Z) by the same equivalence relation. By definition
of “∧” and “∨” for pointed spaces, this distributivity now lifts to the level of pointed spaces.

Let us also mention another example of homotopy pushouts of spaces which we have already
introduced under a different name.

Lemma I.4.23. Every elementary Nisnevich square

U ×X V V

U X

pr1

pr2

p

i

is a homotopy pushout square of spaces.

Proof. First note that since i is an open immersion, so is its base change pr2. The latter is
hence a monomorphism of discrete simplicial sheaves and thus a cofibration for the A1-model
structure. Therefore the usual pushout coincides with the homotopy pushout. Moreover, as
all these are discrete simplicial sheaves, we just need to verify that X is the pushout in the
category of sheaves on Smk. Let F be a test object together with morphisms tU : U → F
and tV : V → F satisfying pr1 ◦ tU = pr2 ◦ tV .

U ×X V V

U X

F

pr1

pr2

p
tV

i

tU

By Theorem I.1.45, we know that when we apply F to the elementary Nisnevich square, we
obtain a pullback square of sets

F(X) F(V )

F(U) F(U ×X V ).

F(i)

F(p)

F(pr2)

F(pr1)
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Via the Yoneda lemma, the morphisms tU and tV define elements of F(U) and F(V ) re-
spectively, and these elements satisfy F(pr1)(tU ) = F(pr2)(tV ) since pr1 ◦ tU = pr2 ◦ tV .
Therefore the pair (tU , tV ) defines an element of the pullback F(X), which gives us the re-
quired morphism t : X → F compatible with tU and tV via the Yoneda lemma. Moreover,
since the pair (tU , tV ) is uniquely determined, this morphism is also unique.

This can also be found in [76] as Lemma 1.6 of Chapter 3.

I.4.3 Motivic Spheres

In topology there is a family of spheres Sn graded by the natural numbers. Now that we work
with spaces, we also have the algebraic sphere Gm which is used to build algebraic tori etc.
So we have two kinds of spheres. Going back to the topological picture, all the topological
spheres are generated by S1 under the smash product, i.e., we have Sn = (S1)∧n. If we are
to mimic this, we end up with the following definition of motivic spheres:

Definition I.4.24. Let m and n be non-negative integers with n ≥ m. The motivic sphere
Sn,m of bidegree (n,m) is the (pointed) space (S1)∧(n−m) ∧G∧m

m = Σn−m
S1 G∧m

m .

Note that there are two conventions for the bidegree. In our convention, which is the more
common one since it matches up with the grading in motivic cohomology, we have S1 = S1,0

and Gm = S1,1 whereas one sometimes finds Gm = S0,1 as well.

Example I.4.25. By definition S1,1 = Gm and Sn,0 = Sn for all non-negative integers n.

By Lemma 2.15 and Example 2.20 from Chapter 3 of [76], there are a couple more spheres
which we can understand very concretely:

Lemma I.4.26. There is an A1-weak equivalence S2,1 = ΣS1Gm ≃A1 P1 in Spc∗(k).

Proof. Consider the pointed version of the distinguished Nisnevich square

Gm A1

A1 (P1, 1)

from Example I.1.43, which by Lemma I.4.23 defines a homotopy pushout square in Spc∗(k).
Since A1 ≃A1 pt, we hence get the homotopy pushout square

Gm pt

pt (P1, 1)

so that ΣS1Gm ≃A1(P1, 1). Since for each point a ∈ P1, the automorphism(︃
0 1
1 −a

)︃
∈ PGL2(k) = Aut(P1)

maps a to ∞, we have ΣS1Gm ≃A1 P1 as claimed since isomorphisms are always weak equiv-
alences.

45



Proposition I.4.27. There is an A1-weak equivalence S2n−1,n ≃A1 An \ {0} in Spc∗(k) for
all positive integers n.

Proof. We give a proof by induction on n ≥ 1. As already noted in Example I.4.25, the case
n = 1 holds by definition. From now on consider n ≥ 2. The distinguished Nisnevich square

(An−1 \ {0})×Gm An ×Gm

(An−1 \ {0})× A1 An \ {0}

defines a homotopy pushout square in Spc∗(k) by Lemma I.4.23. Contracting all the affine
spaces, we thus get the homotopy pushout square

(An−1 \ {0})×Gm Gm

An−1 \ {0} An \ {0}

We now compute the homotopy colimit of the diagram

pt pt pt

An−1 \ {0} (An−1 \ {0}) ∨Gm Gm

An−1 \ {0} (An−1 \ {0})×Gm Gm

in two ways. We can first take the homotopy pushouts of the rows and then the homotopy
pushout of the resulting diagram, which is given by the homotopy pushout square

pt An \ {0}

pt An \ {0}.

We can also take the homotopy pushouts of the columns and then the homotopy pushout of
the resulting diagram, which yields the homotopy pushout square

(An−1 \ {0}) ∧Gm pt

pt ΣS1(An−1 \ {0}) ∧Gm .

Thus we have an A1-weak equivalence An\{0} ≃A1 ΣS1(An−1\{0})∧Gm in Spc∗(k). Finally,
using the induction hypothesis, the right hand side is given by

S1 ∧ (An−1 \ {0}) ∧Gm ≃A1 S1,0 ∧ S2n−3,n−1 ∧ S1,1 = S2n−1,n,
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which is what we wanted to show.

We now consider the two families of affine quadrics

Q2n = Spec(k[x1, . . . , xn, y1, . . . , yn, z]/(x1y1 + x1y2 + . . .+ xnyn − z(1 + z)))

and

Q2n+1 = Spec(k[x1, . . . , xn+1, y1, . . . , yn+1]/(x1y1 + x1y2 + . . .+ xn+1yn+1 − 1))

for all positive integers n. As also described [11], the projection Q2n+1 → An+1 \ {0} onto
the first n + 1 coordinates is a well-known A1-weak equivalence. By Proposition I.4.27 we
thus have that Q2n+1 ≃A1 S2n+1,n+1 for all positive integers n. In loc. cit. Asok, Doran and
Fasel also manage to treat the other case:

Theorem I.4.28. There is an A1-weak equivalence Qm ≃A1 Sm,⌈m
2 ⌉ in Spc∗(k) for all non-

negative integers m.

In loc. cit. they also find out that for some integers m and n, the motivic sphere Sm,n does
not have a smooth (affine) model, by which we mean that there exists a smooth (affine)
scheme X over k, so that Sm,n is A1

k-weakly equivalent to (X,x) for some x ∈ X. To go into
a bit more detail, they show:

Proposition I.4.29. If m > 2n, the motivic sphere Sm,n does not have a smooth affine
model.

Let us conclude with a remark explaining why we did not consider general motivic spheres
Sn,m for the definition of the A1-homotopy sheaves.

Remark I.4.30. One can, in fact, also define more general A1-homotopy sheaves by consid-
ering the sheafification of U ↦→ [Sn,m ∧ U+,−]. As it turns out, these can be expressed fully

in terms of the sheaves πA1

n (−) and are hence obsolete, see Theorem I.6.29.
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I.5 Stable Motivic Homotopy Theory

The stable world within motivic homotopy theory was first explored and studied by Voevod-
sky [98] and Jardine [57]. Here the central object is the stable motivic homotopy category
SH(k), the homotopy category of motivic spectra.

I.5.1 Motivic spectra and the A1-Stable Model Structure

As for spaces, let us begin by defining our basic objects of study. Here it is rather common
not to include base points in the notation. We will still use our convention from Remark
I.4.5 though.

Definition I.5.1. A motivic spectrum is a sequence E = (En)n≥0 of pointed spaces together
with morphisms σn : P1 ∧ En → En+1 of pointed spaces for all n ≥ 0.

Example I.5.2. Any pointed space X has an associated motivic spectrum

Σ∞X = (X,P1 ∧X, (P1)∧2 ∧X, (P1)∧3 ∧X, . . . ),

called the suspension spectrum of X, where the structure morphisms are just identity mor-
phisms.

Example I.5.3. Although it is a special case of the previous example, we nevertheless wish
to highlight the following motivic spectrum due to its importance. The suspension spectrum
of S0,0 = S0 is called the motivic sphere spectrum, which we will denote by 1k. This notation
reflects that it is the unit for the smash product of motivic spectra; see Theorem I.5.26.

Example I.5.4. More generally, we set 1n,m
k = Σ∞Sn,m. Here we have n ≥ m ≥ 0 for the

motivic sphere Sn,m to be defined.

Example I.5.5. Also any unpointed space X has an associated suspension spectrum. It is
defined by taking the suspension spectrum of the pointed space X+ = X ⨿pt and is denoted
by Σ∞

+X.

Example I.5.6. The zero spectrum 0 is given by (pt,pt, . . . ) with the evident structure
maps. Although we have not introduced morphisms of motivic spectra yet, let us already
note that this is indeed the zero object in the category of motivic spectra, which is certainly
not difficult to imagine based on its definition.

For further and in particular more interesting examples of motivic specta, we refer to the
next subsection.

Definition I.5.7. A morphisms f : E → E′ between two motivic spectra is a family of
morphisms fn : En → E′

n such that the diagrams

P1 ∧ En En+1

P1 ∧ E′
n E′

n+1.

σn

idP1 ∧fn fn+1

σ′
n
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commute for all non-negative integers n.

This gives us the category Sp(k) of motivic spectra, which are the central objects of stable
motivic homotopy theory. Note that taking suspension spectra of pointed or unpointed spaces
yields functors

Σ∞ : Spc∗(k) → Sp(k) and Σ∞
+ : Spc(k) → Sp(k).

We now quickly introduce a model structure on Sp(k).

Definition I.5.8. Let E be a motivic spectrum and let n and m be integers. The sheafi-
fication πn,m(E) of the presheaf ˜︁πn,m(E) which maps a smooth scheme U to the colimit
of

. . .→ [(P1)∧r ∧ Sn,m ∧ U+, Er]
(σr)∗◦ΣP1−−−−−−→ [(P1)∧(r+1) ∧ Sn,m ∧ U+, Er+1] → . . .

for r > 0 is called the (n,m)-th motivic stable homotopy sheaf of E.

Note that the stable homotopy sheaves are abelian sheaves due to P1 being a suspension
in H∗(k), which follows from Theorem 3 of [25] together with the hom-tensor adjunction as
in classical stable homotopy theory. Alternatively, using Theorem I.6.29, we see that this
colimit is a colimit of higher A1-homotopy sheaves and hence must be abelian as well. These
hence define functors

πn,m : Sp(k) → Ab /k

by level-wise post-composing with a given morphism of motivic spectra.

Remark I.5.9. There are many different notations for these homotopy sheaves in the liter-
ature (mostly on the level of the indices). Therefore we want to provide translations between
the ones that we see most frequently:

πn,m(E) = πn−m+(m)(E) = πn−m+αm(E) = πn−m(E)−m

While the one from our definition is closest to the topological situation, the other ones have
the advantage of separating the two kinds of spheres. Additionally, the one on the very
right has a different sign with respect to the algebraic spheres, which gives the right sign for
homotopy modules (the kind of objects that we will introduce in the next section). Therefore
we will also use this notation as well.

As in the usual category of spectra, the homotopy (pre-)sheaves allow us to define suitable
weak equivalences:

Definition I.5.10. A morphism f : E → E′ of motivic spectra is called an A1-stable equiv-
alence if the induced morphisms ˜︁πn,m(E) → ˜︁πn,m(E′) are isomorphisms for all n,m ∈ Z.

Example I.5.11. Any levelwise A1-weak equivalence, that is, a morphism f : E → E′ of
motivic spectra such that all the components fn : En → E′

n are A1-weak equivalences, is an
A1-stable equivalence. In particular, if we have an A1 weak equivalence g : X → Y between
pointed spaces, then the induced morphisms Σ∞f : Σ∞X → Σ∞Y on the level of suspension
spectra are A1-stable equivalences.

We now consider the three classes:
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W(Sp(k)) = A1-stable equivalences

Fib(Sp(k)) = Morphisms of spectra having the right lifting property with respect to
acyclic cofibrations

Cof(Sp(k)) = Levelwise cofibrations of pointed spaces, i.e. levelwise monomorphisms

Theorem I.5.12. The three classes W(Sp(k)), Fib(Sp(k)) and Cof(Sp(k)) endow the cate-
gory Sp(k) of motivic spectra with a model structure.

Proof. This can be found as Theorem 6.25. in [83].

This model structure is called the A1-stable model structure and its associated homotopy
category is the central object of stable motivic homotopy theory:

Definition I.5.13. The homotopy category SH(k) associated with the A1-stable model struc-
ture on motivic spectra is the stable motivic homotopy category.

I.5.2 Some further examples of Motivic Spectra

In this subsection we want to sketch how to construct two important examples of motivic
spectra, the first one being motivic versions of Eilenberg-Mac Lane spectra. For these we
generally follow Section 6.1 of Voevodsky’s very well written notes [98], and also our notes
from talk 4 at Talbot 2023 [107]. Let us quickly recall how to construct Eilenberg-Mac Lane
spectra in classical homotopy theory:
Given an abelian group A, there exist CW-complexes K(A,n) for all n ≥ 0 called Eilenberg-
Mac Lane spaces, satisfying

πi(K(A,n)) =

{︄
A if i = n

0 otherwise.

These spaces come along with equivalences K(A,n) ≃ ΩK(A,n+ 1) yielding a spectrum

HA = (K(A, 0),K(A, 1),K(A, 2), . . . )

via the maps ΣK(A,n) → K(A,n + 1) adjoint to the above equivalences. This is the
Eilenberg-Mac Lane spectrum associated with the abelian group A and it satisfies

πi(HA) =

{︄
A if i = 0

0 otherwise

and represents ordinary cohomology with coefficients in A.
Let us now construct its motivic version. The main question here is how to define motivic
Eilenberg-Mac Lane spaces. We could try to copy the topological definition, i.e. we take
spaces K(A,n) with

πA1

i (K(A,n))(Y ) =

{︄
A if i = n

0 otherwise
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for every connected smooth scheme Y . Assuming that such spaces exist, we still need struc-
ture maps

P1 ∧K(A,n) → K(A,n+ 1),

but there are in general no non-constant such maps in H∗(k). Indeed, we have

[P1 ∧X,K(A,n+ 1)] ∼= [X,ΩP1K(A,n+ 1)]

for any space X, where ΩP1 is a P1-loop space, which can be defined as an internal hom.
The latter should at least be conceivable to readers familiar with the analogous setting in
algebraic topology. We have

πA1

i (ΩP1K(A,n+ 1)) = πA1

i+1(K(A,n+ 1))−1 =

{︄
A−1 if i = n

0−1 else

}︄
= 0

for all i. Here (−)−1 is the homotopy contraction, an algebraic incarnation of the derived
Gm-loop space which we will introduce in Section I.6.1. If the reader is unfamiliar with it,
we advise to view this computation as a black box for now. Thus we have shown that the
space ΩP1K(A,n + 1) is contractible and hence does not allow any non-constant structure
maps. Let us contemplate a bit more about this in the following remark.

Remark I.5.14. The actual cause of the contractibility of the space ΩP1K(A,n + 1) was
that the sheaf A−1 is trivial. While this is an issue for defining motivic Eilenberg-Mac Lane
spectra representing motivic cohomology as above, this is not an issue in general. There are
plenty of sheaves for which the construction (−)−1 does not vanish, see Sections I.6.1 and
I.6.2, and using these we may find structure maps to define motivic spectra. This does lead
to a different kind of Eilenberg-Mac Lane spectra HM∗ in motivic homotopy theory [71,
page 64], which are indeed defined in analogy to the topological situation. Here the input
M∗ is a so-called homotopy module, a notion which we will introduce in Section I.6.1.

Let us now focus on motivic Eilenberg-Mac Lane spetra associated to an abelian group again.
We need to remedy the above obstruction. Suslin had the idea to use the Dold-Thom theorem
[31], a version of which we therefore state:

Theorem I.5.15 (Dold-Thom). Let (X,x0) be a pointed CW-complex. Then we have

K0(SP
∞(X,x0)) ≃

∏︂
n≥0

K(H̃n(X), n),

where SP∞(X,x0) = colimm(X,x0)
m/Sm is the infinite symmetric product considered as a

commutative topological monoid under concatenation and K0 is its topological group comple-
tion.

This version can be found on page 596 of [98]. Taking homotopy groups of the topological
spaces above yields the more known version of the Dold-Thom theorem. If we take X =
M(A,n) to be a Moore space (essentially an Eilenberg-Mac Lane space for ordinary reduced
homology instead of homotopy), we thus have an equivalence

K0(SP
∞(M(A,n))) ≃

∏︂
n≥0

K(A,n)
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and can hence get our hands on Eilenberg-Mac Lane spaces in this way. But what is a good
motivic candidate for K0(SP

∞(X,x0))? A point in it should be a Z-linear combination of
closed points of our given smooth scheme X. From the point of view of algebraic geometry,
this sounds like we should use algebraic cycles/correspondences. This idea turns out to work:

Definition I.5.16. The category Cork of finite correspondences has smooth schemes as
objects and morphisms HomCork(X,Y ) = Cork(X,Y ) are formal Z-linear combinations of
the form

∑︁
imi[Zi ↪→ X×Y ], where the Zi are integral closed subschemes and pr1 : Zi → X

is finite and surjective onto some irreducible component of X.

The composition of such morphisms is defined as follows:
If c1 ∈ Cork(X,Y ) and c2 ∈ Cork(Y, Z), then c1 × Z and X × c2 intersect properly inside
of X × Y × Z, see Lemma 1.15 of [29] where this is shown over a more general base. This
allows us to set

c2 ◦ c1 = (pr1,3)∗((c1 × Z) · (X × c2)) ∈ Cork(X,Z),

where “·” denotes the intersection product. Note that the finiteness is used for the above
pushforward.
Note that Cork is an additive category with direct sum X ⊕ Y given by the disjoint union of
X and Y . Therefore we can consider spaces

Atr(X) = HomCork(−, X)⊗A

for any abelian group A and any smooth scheme X, which we will call A-linear representable
presheaves with transfer. As we will not introduce presheaves with transfers, any reader
unfamiliar with these should just view the above as a name.
Presheaves of the form Atr come together with natural morphisms jX : X → Atr(X) defined
by mapping f ∈ Hom(Y,X) to its graph [Γf ] ∈ Ztr(X) and then tensoring with the abelian
group A.
We also define their pointed versions

Atr(X,x0) = cofib(Atr(x0) → Atr(X))

and set Atr((X1, x0,1) ∧ . . . ∧ (Xr, x0,r)) to be the space

cofib
(︂∐︂

i

Atr

(︂∏︂
j ̸=i

(Xj , x0,j)
)︂
→ Atr

(︂∏︂
j

(Xj , x0,j)
)︂)︂
.

Although we have briefly motivated the use of correspondences, let us nevertheless quickly
justify these definitions with respect to our goal as done in [92]:

Theorem I.5.17. We have Ztr(X)(Y )[ 1p ]
∼= K0(Hom(Y,SP∞(X))[ 1p ] for all normal con-

nected Y , where p is the exponential characteristic of k.

So these definitions do indeed provide us with a good candidate for K0(SP
∞(−)). To get

suitable structure morphisms, we observe that the Z-bilinear map

Ztr(X)× Ztr(X
′) → Ztr(X ×X ′)
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defined by mapping ([Z], [Z ′]) to its product [Z × Z ′], induces a morphism

Atr(X,x0) ∧Atr(X
′, x′0) → Atr((X,x0) ∧ (X ′, x′0)).

Now we have all the ingredients that we need and can finally define motivic Eilenberg-Mac
Lane spectra.

Definition I.5.18. The motivic Eilenberg-Mac Lane space K(A, 2n, n) is the A-linear repre-
sentable presheaf with transfers Atr((P1)∧n). Furthermore, the motivic Eilenberg-Mac Lane
spectrum HA is the sequence of pointed spaces

(K(A, 0, 0),K(A, 2, 1),K(A, 4, 2), . . . )

together with the structure maps σn given by the composite

P1 ∧Atr((P1,∞)∧n) → Atr(P1,∞) ∧Atr((P1,∞)∧n) → Atr((P1,∞)∧(n+1))

of jP1 ∧ id and the morphism induced by the product map.

So now we have Eilenberg-Mac Lane spectra. Let us now also briefly sketch how to obtain
a motivic version of the algebraic K-theory spectrum, following subsection 2.1 of [60], the
thesis of Kumar.
We consider Thomason-Trobaugh’s algebraic K-theory sheaf K of [95]. In loc. cit. it is shown
that this is a Nisnevich sheaf on Smk and hence defines a space. Note that by results of
Borelli [22] regular separated Noetherian schemes have an ample family of line bundles, so
that Thomason-Trobaugh K-theory agrees with Quillen K-theory [95]. In particular, these
two definitions of algebraic K-theory agree in our setting. Since we prefer Quillen’s setup,
we will hence only use Quillen K-theory from now on.
We can assign a basepoint to K by choosing the trivial vector bundle of rank 0. A fundamental
result of Morel and Voevodsky found as Proposition 3.9 from Chapter 4 of [76] now states:

Theorem I.5.19. For all pointed smooth schemes (X,x), there are natural isomorphisms

HomH∗(k)(S
n ∧ (X,x),K) ∼= KQ

n (X)

for all non-negative integers n.

This is the representability of algebraic K-theory in the unstable motivic homotopy category.

Remark I.5.20. It is also possible to give a more concrete model for K. Consider the colimit
GL = colimGLn, where the diagram for the colimit is given by the block sum A ↦→ A ⊕ 1.
Then the Nisnevich sheaf Z×BGL is a model for K, see Proposition 3.10 from Chapter 4 of
loc. cit.

Using the projective bundle formula in algebraic K-theory from [95], it is now possible to
obtain the following:

Theorem I.5.21. There is a natural map σ : P1 ∧ K → K.

Proof. Kumar gives a very detailed construction in his thesis [60, Corollary 2.1.11], from
which we get the desired map via the hom-tensor adjunction.
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The result presented in Kumar’s thesis can be seen as a motivic Bott periodicity result. As
for usual K-theory, this can be used to define the desired K-theory spectrum. As we never
talked about the notion of Ω-spectra, let us nevertheless use the adjoint map as in the above
theorem.

Definition I.5.22. The (motivic) algebraic K-theory spectrum KGL is the sequence of
pointed spaces (K,K,K, . . . ) together the map σ : P1 ∧K → K as structure map on all levels.

Note that while this construction gives a model for the motivic algebraic K-theory spectrum,
it does not directly yield an E∞-structure, i.e. a homotopy coherent multiplication. For our
purposes this model is enough though.

I.5.3 More on SH(k)

Here we introduce various operations of motivic spectra and study their properties on the
level of the stable motivic homotopy category SH(k). As before, all of this is completely
analogous to the classical stable homotopy theory.

Definition I.5.23. The wedge sum E ∨E′ of two motivic spectra E and E′ with structure
maps (σn)n≥0 and (σ′

n)n≥0 respectively is the motivic spectrum (E0∨E′
0, E1∨E′

1, E2∨E′
2 . . . )

with structure maps

P1 ∧ (En ∨ E′
n)

∼= (P1 ∧ En) ∨ (P1 ∧ E′
n)

σn∨σ′
n−−−−→ En+1 ∨ E′

n+1

for all non-negative integers n.

So this works exactly as for spaces. In Section I.4.2 we have also introduced smash products
of pointed spaces. It is certainly not to difficult to define a mixed smash product:

Definition I.5.24. The smash product E ∧ (X,x) of a motivic spectrum E with a pointed
space (X,x) is the motivic spectrum

(E0 ∧ (X,x), E1 ∧ (X,x), E2 ∧ (X,x), . . . )

with structure maps σn ∧ id(X,x), where the σn are the structure maps of E, for all non-
negative integers n.

These two operations on motivic spectra are clearly functorial.

Theorem I.5.25. The category SH(k) is a triangulated category with shift functor − ∧ S1.

Proof. See for instance Theorem 3.10 of [84].

As for (non-motivic) spectra, it is not possible to define a well-defined smash product on
Sp(k) for our model of motivic spectra, i.e. for the sequential approach to (motivic) spectra.
It does nevertheless work on the level of the stable homotopy category, see Theorem 5.6 of
[98] and the discussion beneath it:

Theorem I.5.26. The category SH(k) has a symmetrical monoidal structure “∧” with unit
1k satisfying:
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(i) For any motivic spectrum E and any pointed space X, the motivic spectrum E ∧Σ∞X
is canonically isomorphic to the motivic spectrum E ∧X.

(ii) For any motivic spectrum E and any family of motivic spectra Ei, i ∈ I, the motivic
spectrum (

⨁︁
i∈I Ei)∧E is canonically isomorphic to the motivic spectrum

⨁︁
i∈I(Ei∧E).

Via this theorem, the above shift functor can also be seen as − ∧ 1
1,0
k . This means that

smashing with 1
1,0
k is invertible in SH(k). This also leads to 1n,m

k being ∧-invertible for all
n ≥ m ≥ 0. These inverses can also be defined quite explicitly.

Example I.5.27. We first define a motivic spectrum 1
−2n,−n
k for n ≥ 0 as follows. It is the

motivic spectrum
(pt, . . . ,pt, S0,P1, (P1)∧2, (P1)∧3, . . . )

with S0 being at the n-th entry. The structure maps are the same as for the motivic sphere
spectrum together with the canonical map for the first n− 1 entries. In other words, it is a
shifted motivic sphere spectrum.
Now let n and m are arbitrary integers. Since the two tuples (−2,−1) and (1, 1) form a
Z-basis of Z2, there exist integers a and b with a(−2,−1) + b(1, 1) = (n,m). We now define

1
n,m
k = (1−2,−1

k )∧a ∧ (11,1
k )∧b.

For n ≥ m ≥ 0, these are isomorphic in SH(k) to the suspension spectra from Example I.5.4.
As one might suspect by now, the inverse of −∧1n,m

k is then given by −∧1−n,−m
k . For more

details we refer to Wickelgren’s lecture notes [106] where this approach is used in classical
stable homotopy theory.

Remark I.5.28. Given a motivic spectrum E, these generalized motivic sphere spectra can
also be used to define the E-homology and E-cohomology. The (n,m)-th E-homology of a
spectrum F is En,m(F ) = [1n,m

k , E ∧F ] and the (n,m)-th E-cohomology of a spectrum F is
En,m(F ) = [E,1n,m

k ∧ F ]. If E = HA and F = Σ∞
+X for some scheme X, then En,m(F ) is

called motivic cohomology of X with coefficients in A and is denoted by Hn,m(X;A). For
more details we refer to page 595 of [98].

Finally, let us very briefly talk about ring and module spectra in this setting.

Definition I.5.29. A motivic ring spectrum is a monoid in the category SH(k).

In other words, it is a motivic spectrum R equipped with a multiplication map µ : R∧R→ R
and a unit map η : 1k → R, such that µ is associative and such that η is unital. The reason for
choosing monoid objects is the following. Spectra behave in many ways similarly to abelian
groups and rings are monoid objects in the category of abelian groups.

Example I.5.30. The motivic sphere spectrum is a motivic ring spectrum. Here the mul-
tiplication is the isomorphism 1k ∧ 1k → 1k coming from 1k being the unit for the smash
product and the unit map is given by the identity id : 1k → 1k.

If we have rings, we can also talk about modules.

Definition I.5.31. A module over a motivic ring spectrum R is a module objectM ∈ SH(k)
over E.
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Also here this condition can be spelled out similarly as for ring spectra. Such a module M
is a motivic spectrum together with a scalar multiplication/action ρ : R∧M →M satisfying
associativity and unitality. The prime example for modules over motivic ring spectra and
our reason for introducing these notions is the following.

Example I.5.32. Every motivic spectrum E is a module over the motivic sphere spectrum
1k. Here the scalar multiplication is once again the isomorphism 1k ∧ E → E coming from
the motivic sphere spectrum being the unit for the smash product.

It is not difficult to observe that this example can be upgrades to an equivalence of categories
F : Mod1k

→ SH(k), where F is the forgetful functor. This can even be upgraded further into
a highly coherent setting; see [37] and [38] for the corresponding statements in the topological
setting.
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I.6 Homotopy Modules

In this section we want to introduce homotopy modules, which arise as a certain abelian
subcategory of the motivic stable homotopy category SH(k). These will be the central objects
which we will deal with in Chapter II.

I.6.1 The homotopy t-structure

Let us first talk about t-structures in general. The idea here is the following. Given an abelian
category A, we can pass to its derived category D(A), which is a triangulated category that
still contains A as the subcategory of complexes concentrated in degree 0. Introduced by
Bĕılinson, Bernstein and Deligne in their study of perverse sheaves [20], a t-structure on a
triangulated category now allows to do this in general, i.e. to find an abelian subcategory
defined by objects “concentrated in degree 0” within a given triangulated category. We must
of course specify which kind of notion of degree we are talking about here.

Definition I.6.1. A (homological) t-structure on a triangulated category T consists of two
full subcategories T≥0, T≤0 ⊂ T subject to the following axioms:

(i) For all X ∈ T≥0 and Y ∈ T≤0[−1] we have HomT (X,Y ) = 0;

(ii) There are inclusions T≥0[1] ⊂ T≥0 and T≤0 ⊂ T≤0[1];

(iii) For any T ∈ T there is a distinguished triangle

X T Y X[1]

with X ∈ T≥0 and Y ∈ T≤0[−1].

As the name suggests, there is also a notion of cohomological t-structures which we will not
consider here. One usually denotes T≤0[n] by T≤n and T≥0[n] by T≥n. Given a t-structure
(T≤0, T≥0) on a triangulated category T , the full subcategory T ♡ = T≤0 ∩ T≥0 of T is called
the heart of the t-structure. Furthermore, the inclusion functors T≤n → T have right adjoints
τ≤n and the inclusion functors T≥n → T have left adjoints τ≥n, which are called truncation
functors, see Proposition 1.3.3 of loc. cit. The proof of this proposition in particular shows
the following statement, which we wish to record separately.

Lemma I.6.2. Let T be a triangulated category with t-structure (T≤0, T≥0). There is a
natural bijection HomT (τ≤0X,A) → HomT (X,A) for objects X ∈ T≥0 and A ∈ T ♡.

This innocent looking lemma turns out to be quite useful. Before we finally get to some
examples, let us quickly state the following:

Theorem I.6.3. The heart T ♡ of a t-structure on a triangulated category T is an abelian
category.

Proof. This is Theorem 1.3.6 of [20].

So the category given by the intersection of the objects of non-positive and non-negative
degree, i.e. the objects of degree 0, is indeed abelian as mentioned in the introduction.
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Remark I.6.4. In search of the conjectural abelian category of mixed motives MM(k), one
hope is to find a suitable t-structure on Voevodsky’s derived category of motives DM(k),
which then on the level of its heart would yield a model for MM(k).

Let us now discuss two standard examples of t-structure, one of which we already mentioned
in the introduction:

Example I.6.5. Let A be an abelian category with associated derived category D(A). Then
the pair of full subcategories

D(A)≥0 = {X ∈ D(A) | Hi(X) = 0 for all i < 0}

and
D(A)≤0 = {X ∈ D(A) | Hi(X) = 0 for all i > 0}

define a t-structure on D(A), see Example 1.3.2 from [20]. Here our notion of degree is hence
the homological degree. In this case we have

D(A)≥n = {X ∈ D(A) | Hi(X) = 0 for all i < n}

and
D(A)≤n = {X ∈ D(A) | Hi(X) = 0 for all i > n},

and the heart of the t-structure is isomorphic to the abelian category A, which we hence
managed to reconstruct from D(A).
Since this is the guiding example, let us also have a look at the truncation functors. Given
a chain complex C• ∈ D(A), the truncation τ≤nC• is the chain complex

. . . 0 0 coker(∂n+1) Cn−1 Cn−2 . . .

with coker(∂n+1) in degree n. In particular, the chain complex τ≤0C• is the homology group
H0(C•) considered as a chain complex in degree 0 for C ∈ D(A)≥0. The truncation τ≥nC•
is the chain complex

. . . Cn+2 Cn+1 ker(∂n) 0, 0 . . .

where once again ker(∂n) is in degree 0.

For those readers familiar with stable homotopy theory we also have the following classical
example:

Example I.6.6. The two full subcategories

SH≥0 = {E ∈ SH | πi(E) = 0 for all i < 0}

and
SH≤0 = {E ∈ SH | πi(E) = 0 for all i > 0}

given by connective and coconnective spectra define a t-structure on the stable homotopy
category SH, known as the Postnikov t-structure. The give rise to Postnikov towers in stable
homotopy theory. For references see Theorem 5.25 together with Theorem 8.3 of the second
chapter of [87]. Here the heart SH♡ consists exactly of the Eilenberg-Mac Lane spectra HA
for abelian groups A, which yields an equivalence of categories π0 : SH♡ → Ab with inverse
H : Ab → SH♡.
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By Remark 5.3.2 of Morel’s seminal paper [72] we now have an analogous t-structure for
motivic spectra, where we still use the simplicial degree.

Theorem I.6.7. The two full subcategories

SH(k)≥0 = {E ∈ SH(k) | πn(E)∗ = 0 for all n < 0}

and
SH(k)≤0 = {E ∈ SH(k) | πn(E)∗ = 0 for all n > 0}

define a t-structure on the motivic stable homotopy category SH(k).

This is the homotopy t-structure. We now want to have a more algebraic description of its
heart

SH(k)♡ = {E ∈ SH(k) | πn(E)∗ = 0 for all n ̸= 0}

similarly to describing the heart of the Postnikov t-structure in terms of abelian groups. For
this we introduce A1-invariance properties following [76], [99] [100] and [75]:

Definition I.6.8. A sheaf of

(i) sets on Smk is called A1-invariant if for any X ∈ Smk, the morphism

H0
Nis(X,F) → H0

Nis(X × A1,F)

induced by the projection X × A1 → X is a bijection.

(ii) groups on Smk is called strongly A1-invariant if for any X ∈ Smk, the morphism

Hi
Nis(X,F) → Hi

Nis(X × A1,F)

induced by the projection X × A1 → X is a bijection for i = 0 and i = 1.

(iii) abelian groups on Smk is called strictly A1-invariant if for any X ∈ Smk, the morphism

Hi
Nis(X,F) → Hi

Nis(X × A1,F)

induced by the projection X × A1 → X is a bijection for all i ∈ N.

We are now only interested in abelian sheaves so that all of these notions make sense. In this
case we do actually not need to distinguish the two latter ones as the following crucial result
of Morel [75, Corollary 5.45] shows.

Theorem I.6.9. Every strongly A1-invariant abelian sheaf is strictly A1-invariant.

We now denote the full subcategory of Ab /k given by strictly A1-invariant abelian sheaves
by AbA1/k and give a couple of examples.

Example I.6.10. There are various ways of verifying that Z is strictly A1-invariant. As a
constant sheaf, it is certainly A1-invariant. Additionally, Z is an example of a so-called sheaf
with transfers, which are additive presheaves on finite correspondences (Section I.5.2), whose
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restriction along the inclusion Smk ↪→ Cork is a sheaf. Indeed, if X is a smooth scheme, we
have by definition

Cork(X,Spec(k)) =

r⨁︂
i=1

Z,

where r is the number of connected components of X. Thus the presheaf with transfers
Ztr(Spec(k)) is nothing but the constant sheaf with value Z and in particular a sheaf with
transfers. In Theorem 5.6 of [99] and Theorem 3.1.12 [100] Voevodsky shows that A1-invariant
sheaves with transfers are strictly A1-invariant, which hence gives us that Z is strictly A1-
invariant.

Example I.6.11. The abelian sheaf Gm is strongly and hence also strictly A1-invariant.
Indeed, H0

Nis(−,Gm) = Gm is A1-invariant. Furthermore we have a canonical isomorphism
H1

Nis(−,Gm) ∼= Pic(−), see [89, Tag 040D], and the Picard group is known to be A1-invariant
for normal and thus also for smooth schemes, see Chapter II Prop. 6.6 of [47].

Example I.6.12. By Corollary 6.2 of [75], the higher A1-homotopy sheaves πA1

n are strictly
A1-invariant. Here “higher” means n ≥ 2 as usual. Moreover, if the A1-fundamental sheaf
πA1

1 happens to be abelian, then it is also strictly A1-invariant by Theorem 6.1 of loc. cit.
together with Theorem I.6.9.

Remark I.6.13. One might also wonder which kind of A1-invariance holds for the sheaf πA1

0

of A1-connected components. Morel’s conjecture on πA1

0 stated as Conjecture 1.12 in [75]
predicted it to be A1-invariant, but it turns out not to be A1-invariant in general. This is a
recent result of Ayoub [16].

The category AbA1/k ha a symmetric monoidal structure, see Lemma 6.2.13 of [74] satisfying
the usual properties. From now on, whenever we consider tensor products of strictly A1-
invariant sheaves, it will be with respect to this symmetric monoidal structure.
The category AbA1/k also turns out to be abelian. To understand why this is the case we first
consider so-called A1-local chain complexes following Chapter 6.2 of [75]. Here we make use of
the fact that abelian sheaves form an abelian category so that we can consider the associated
derived category. In there we can consider any abelian sheaf as a complex concentrated in
degree 0, which includes free abelian sheaves Z[X] given by applying to some sheaf X the
left adjoint of the inclusion functor Ab /k ↪→ Set /k.

Definition I.6.14. A chain complex M• ∈ D(Ab/k) is called A1-local if for all chain com-
plexes C• ∈ Ch•(Ab/k), the projection C• ⊗ Z[A1] → C• ⊗ Z ∼= C• induces a bijection
HomD(Ab/k)(C•,M•) → HomD(Ab/k)(C• ⊗ Z[A1],M•).

Here the tensor product “⊗” is the sheafification of the tensor product on the level of
presheaves. Before we get to an example, let us give a criterion for a chain complex to
be A1-local.

Proposition I.6.15. A chain complex M• ∈ D(Ab/k) is A1-local if and only if all its
homology sheaves are strictly A1-invariant.

Proof. This follows from Theorem I.6.18 as observed in Corollary 6.23 of [75].
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Example I.6.16. Let M ∈ Ab/k, considered as a chain complex concentrated in degree 0.
Since its homology sheaves are given by

Hn(M) =

{︄
M if n = 0

0 else,

we have that the chain complex A is A1-local if and only if the abelian sheaf M is strictly
A1-invariant.

We denote by DA1(Ab/k) the full subcategory of D(Ab/k) given by A1-local chain complexes.
As the name suggests, this category is indeed a localization:

Proposition I.6.17. There is an A1-localization functor

LA1 : D(Ab/k) → DA1(Ab/k)

turning DA1(Ab/k) into a reflective subcategory, i.e LA1 is left adjoint to the inclusion functor
DA1(Ab/k) ↪→ D(Ab/k).

Proof. This is Corollary 6.19 of [75].

Recall that if a fully faithful functor R has a left adjoint L, the counit of the adjunction
ϵ : L ◦ R → id is a natural isomorphism. Therefore, if M• is an A1-local chain complex, we
have LA1M• ∼=M•. Furthermore, Morel [75, Theorem 6.22] shows:

Theorem I.6.18 (A1-connectivity Theorem inD(Ab/k)). If a chain complexM• ∈ D(Ab/k)
is (−1)-connected, i.e. Mn = 0 for all negative integers n, then so is LA1M•.

In loc. cit. Morel immediately concludes:

Corollary I.6.19. There is a t-structure on D(AbA1/k) whose heart is exactly the category
AbA1/k of strictly A1-invariant abelian sheaves. In particular, the category AbA1/k is abelian.

Proof. By the previous theorem, the standard t-structure on D(Ab /k) descends to a t-
structure on D(AbA1/k). Now Proposition I.6.15 shows that its heart is AbA1/k, which by
Theorem I.6.3 in particular implies that the category of strictly A1-invariant abelian sheaves
is abelian.

Let us now also give another central kind of examples of strictly A1-invariant abelian sheaves.

Example I.6.20. As already used above, there is a free abelian sheaf functor Z[−] : Set /k →
Ab /k defined as the left adjoint of the inclusion functor Ab /k ↪→ Set /k. Now Proposition
I.6.17 together with Theorem I.6.18 also yields a left adjoint for the inclusion AbA1/k ↪→
Ab /k. Therefore we can compose these two left adjoints and get a free strictly A1-invariant
sheaf functor ZA1 [−] : Set /k → AbA1 /k, which of course is once again the left adjoint of the
inclusion AbA1/k ↪→ Set /k.

Example I.6.21. There is also a reduced version ˜︁ZA1 [−] of the previous example. It is
defined by mapping (X,x) to the quotient ZA1 [X]/ZA1 [x] = ZA1 [X]/Z[x] and yields a left
adjoint LA1 to the inclusion AbA1/k ↪→ Set∗ /k. It is compatible with the A1-localization
functor from Proposition I.6.17 via Corollary I.6.19.
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Example I.6.22. Since we clearly have an identification

HomAb/k(Z,M) = HomAb/k(Z[Spec(k)],M) = HomSet/k(Spec(k),M)

for all strictly A1-invariant abelian sheaves M , and since we know that Z is strongly A1-
invariant, Z must be the free strictly A1-invariant sheaf on Spec(k). In particular, we have˜︁ZA1 [S0] = Z.

In the next subsection we will actually see how the sheaf ˜︁ZA1 [G∧n
m ] can be understood more

concretely for n ≥ 1.

Remark I.6.23. Note that by the definition of the tensor product from Lemma 6.2.13 of
[74] we have

ZA1 [X × Y ] ∼= ZA1 [X]⊗ ZA1 [Y ]

for all sheaves X and Y , that is, the this property of free abelian sheaves lifts to the A1-
invariant setting. Furthermore, by the relations on top of page 19 of [35] together with the

definition of ˜︁ZA1 [−] we have˜︁ZA1 [X ∧ Y ] ∼= ˜︁ZA1 [(X,x)]⊗ ˜︁ZA1 [(Y, y)]

for all pointed sheaves (X,x) and (Y, y).

A last ingredient we need for our algebraic description is the following construction of Vo-
evodsky [99]:

Definition I.6.24. Let M ∈ Ab/k. The abelian sheaf M−1 = ker(M(− × Gm) → M),
where the morphism is induced by the inclusion of the first factor, is called the (homotopy)
contraction of M .

Example I.6.25. If A is the constant abelian sheaf with values in an abelian group A, then
we have A−1 = 0 by definition.

Example I.6.26. We have (Gm)−1 = Z. While this can be seen more directly, this also
follows from the fact that Milnor K-theory is a homotopy module, see Example I.6.43, with
KM

1 = Gm and KM
0 = Z.

By its definition, the contractionM−1 of an abelian sheafM fits into the short exact sequence

0 M−1 M(−×Gm) M 0,
i∗1

which is a quite beneficial point a view. The morphism i∗1 used to define contractions is often
called the evaluation at 1 ∈ Gm. This is based on:

Proposition I.6.27. For all smooth schemes X and allM ∈ AbA1/k, the two abelian sheaves
M(−×X) and MZA1 [X] are canonically isomorphic.

Proof. Via the free-forgetful adjunction, the Yoneda lemma gives us a natural identification
MZA1 [X] = HomAbA1/k

(ZA1 [−],MZA1 [X]). Using the hom-tensor adjunction, the latter sheaf is

isomorphic to HomAbA1/k
(ZA1 [−]⊗ZA1 [X],M) ∼= HomAbA1/k

(ZA1 [−×X],M), where we also
make use of Remark I.6.23. Therefore, using the free-forgetful adjunction and the Yoneda
lemma once more, we thus have a canonical isomorphism MZA1 [X] ∼=−→M(−×X) as claimed.
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If one keeps track of all the isomorphisms leading to the isomorphismMZA1 [X] ∼=−→M(−×X)
that we have just constructed, it is not difficult to see that the morphism i∗1 : M(−×Gm) →M
becomes exactly ev1 : M

ZA1 [Gm] →M , the evaluation at 1 ∈ Gm.

Corollary I.6.28. For every M ∈ AbA1/k, the two abelian sheaves M
˜︁ZA1 [Gm] and M−1 are

canonically isomorphic.

Proof. The short exact sequence

0 ZA1 [{1}] ZA1 [Gm] ˜︁ZA1 [Gm] 0

of abelian sheaves is split. Indeed, the morphism ZA1 [Gm] → ZA1 [{1}] = Z induced by the
constant map Gm → {1} is a retraction. Therefore M (−) = HomAbA1/k

(−,M) preserves the
exactness of the above sequence, which yields the short exact sequence

0 M
˜︁ZA1 [Gm] MZA1 [Gm] MZA1 [{1}] 0.

Under the canonical isomorphism MZA1 [{1}] ∼=−→M , the map on the right is the evaluation at

1 ∈ Gm, which gives us M
˜︁ZA1 [Gm] = ker(ev1) =M−1.

From now on, we will use this as the definition of contractions. Furthermore, we denote by
M−j the sheaf recursively defined by (M−(j−1))−1.
Let us also state where the homotopy contractions show up naturally, which also clarifies in
which way they are related to homotopy theory as the name indicates. They are an algebraic
incarnation of derived Gm-loop spaces, see Theorem 6.13 of [75]:

Theorem I.6.29. For all pointed connected A1-local spaces X and all integers j ≥ 0 and
n ≥ 1, the sheafification of the presheaf U ↦→ [Sn ∧ G∧j

m ∧ U+, X] on Sm/k is canonically

isomorphic to πA1

n (X)−j.

In other words, homotopy contractions allow us to express homotopy sheaves with respect
to general motivic spheres in terms of homotopy sheaves with respect to simplicial spheres.
This is what we mentioned in Remark I.4.30.
Now that we have everything we need, lets us finally define homotopy modules.

Definition I.6.30. A homotopy module (M∗, ϵ∗) is a sheaf M∗ ∈ (AbA1/k)Z together with
isomorphisms ϵn : Mn → (Mn+1)−1 for all n ∈ Z. If it additionally has the structure of a
graded ring when applied to fields, we call it a homotopy algebra.

So for homotopy modules the contraction is nothing but a shift of degree. There is an obvious
notion of morphisms of homotopy modules, which yields the category Π∗(k) of homotopy
modules. We will however usually drop the isomorphisms ϵn from the notation and just say
that M∗ is a homotopy module.

Theorem I.6.31. The restriction of the functor

π0(−)∗ : SH(k) → Π∗(k), E ↦→ π0(E)∗ =
⨁︂
m∈Z

π−m,−m(E)

to the heart of the homotopy t-structure SH(k)♡ defines an equivalence of categories.
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Proof. This is Theorem 5.2.6 of [71].

The inverse is an Eilenberg-Mac Lane spectrum construction we hinted at in Remark I.5.14.
As a consequence, the category Π∗(k) is an abelian category. We say that a homotopy module
M∗ is associated with a motivic spectrum E ∈ SH(k) if π0(E)∗ ∼= M∗. Note that we do not
demand that E lies in SH(k)♡.
According to [40] or to Chapter 2.3 of [75], one can define homotopy modules as certain
functors on the category of finitely generated field extensions of k, which then extend naturally
to all smooth schemes. To make this work, quite some extra data needs to be specified. This
includes so-called residue and specialization maps, which we will see a concrete example of
in the next subsection. We are namely going to study the homotopy module associated with
the motivic sphere spectrum 1k, but from a very hands on perspective.

I.6.2 Milnor-Witt K-theory and further Homotopy Modules

Following Section 3 of our preprint [108], we quickly recall some basics of Milnor-Witt K-
theory. This invariant is a prime example of a homotopy module and also gives rise to further
examples. For more details we refer to Chapters 3.1 and 3.2 of Morel’s book [75].

Definition I.6.32. The Milnor-Witt K-theory ring KMW
∗ (F ) of a field F is the free unital

Z-graded ring generated by symbols [a] of degree 1 for all a ∈ F× and a symbol η of degree
−1 subject to the following relations:

(MW1) [a][1− a] = 0 for all a ∈ F× \ {1} (Steinberg relation);

(MW2) [ab] = [a] + [b] + η[a][b] for all a, b ∈ F× (Twisted tensor relation);

(MW3) η[a] = [a]η for all a ∈ F× (Centrality relation);

(MW4) η(2 + η[−1]) = 0 (Witt relation).

In particular, an element of degree n in KMW
∗ (F ) is given by a Z-linear combination of

elements of the form ηd[a1, . . . , ar] with r−d = n, where we denote the product [a1] · . . . · [ar]
by [a1, . . . , ar]. Furthermore we set ⟨a⟩ = 1+ η[a] ∈ KMW

0 (F ) for all a ∈ F×, h = ⟨1⟩+ ⟨−1⟩
and ϵ = −⟨−1⟩. A summary of the most essential relations is:

Lemma I.6.33. We have the following:

(i) 0 = [1] and 1 = ⟨1⟩ as elements of KMW
∗ (F ). In particular, h = 2 + η[−1] and the

relation η(2 + η[−1]) = 0 can be rewritten as ηh = 0.

(ii) [a,−a] = 0 = [−a, a] for all a ∈ F×.

(iii) [a,−1] = [a, a] = [−1, a] for all a ∈ F×. In particular ⟨a⟩[a] = ⟨−1⟩[a] for all a ∈ F×.

(iv) [ab−1] = [a]− [b]⟨ab−1⟩ for all a, b ∈ F×.

(v) [an] =
∑︁n−1

i=0 ⟨(−1)i⟩[a] for all positive n and [an] = ϵ
∑︁−(n−1)

i=0 ⟨(−1)i⟩[a] for all negative
n and all a ∈ F×. In particular, [a2] = h[a] for all a ∈ F×.
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(vi) ⟨a⟩⟨b⟩ = ⟨ab⟩ for all a, b ∈ F×. Together with (i) this in particular yields that ⟨a⟩ is a
unit with inverse ⟨a−1⟩ and that ϵ2 = 1.

(vii) ⟨a⟩2 = ⟨a2⟩ = 1 for all a ∈ F×.

(viii) ⟨a⟩x = x⟨a⟩ for all x ∈ KMW
∗ (F ) and all a ∈ F×.

(ix) ⟨a⟩[b] = [ab]− [a] for all a, b ∈ F×.

(x) xx′ = ϵnmx′x for all homogeneous elements x, x′ ∈ KMW
∗ (F ) of degrees n and m

respectively, i.e. the ring KMW
∗ (F ) is ϵ-graded commutative.

Proof. These are Lemma 3.5, Lemma 3.7,Corollary 3.8 and Lemma 3.14 of [75].

All these relations will be used freely in all of our computations. Therefore we certainly
want to encourage the reader to check this list of relations in case that some computation is
unclear.

Lemma I.6.34. For all n ≥ 1, the abelian group KMW
n (F ) is generated by elements of the

form [a1, . . . , an] with a1, . . . , an ∈ F× and for all n ≤ 0, the abelian group KMW
n (F ) is

generated by elements of the form ηn⟨a⟩ with a ∈ F×.

Proof. This is Lemma 3.6 of loc. cit.

We will mostly make use of this statement in the case n ≥ 1. Here the proof merely consists
of getting rid of powers of η in elements of the form ηd[a1, . . . , an+d] by using relation (MW2)
often enough, thus resulting in the pure (η-free) symbols as generators. Let us note that a
list of relations with respect to these generators was computed by Hutchinson-Tao for n ≥ 2
in [54] and by Tao/Hutchinson-Tao for n = 1 in [94] and [55]. We prefer to use the following
standard presentation, which one obtains directly from the definition, see also Lemma 3.4 of
[75]:

Lemma I.6.35. For n ≥ 1, the n-th Milnor Witt K-theory group KMW
n (F ) of F is generated

by elements of the form ηd[a1, . . . , ar] with d = r − n ≥ 0 subject to the relations:

(i) ηd[a1, . . . , ar] = 0 whenever ai + ai+1 = 1 for some 1 ≤ i ≤ r − 1.

(ii) ηd[a1, . . . , ai−1, bb
′, ai+1, . . . , ar] = ηd[a1, . . . , ai−1, b, ai+1, . . . , ar]

+ ηd[a1, . . . , ai−1, b
′, ai+1, . . . , ar]

+ ηd+1[a1, . . . , ai−1, b, b
′, ai+1, . . . , ar]

(iii) 2ηd+1[a1, . . . , ai−1, ai+1, . . . , ar+2] + ηd+2[a1, . . . , ai−1,−1, ai+1, . . . , ar+2] = 0

Milnor-Witt K-theory is functorial with respect to field extensions. This allows us to view
both KMW

∗ and KMW
n for a fixed integer n as Ab- and Set-valued functors on the categories

Fldk of field extensions and the category Fldftrk of field extensions of our base field k with
finite transcendence degree. The more general definition of Milnor-Witt K-theory of smooth
schemes requires certain maps. For this suppose that F is a discretely valued field with
valuation ν and fixed uniformizing element π. We denote the associated valuation ring by
Oν and the residue field by κ(ν).
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Theorem I.6.36. There is exactly one homomorphism

∂πν : K
MW
∗ (F ) → KMW

∗−1 (κ(ν))

of graded abelian groups with the following three properties:

(i) ∂πν (ηx) = η∂πν (x) for all x ∈ KMW
∗ (F ).

(ii) ∂πν ([π, u2, . . . , un]) = [u2, . . . , un] for all u2, . . . , un ∈ O×
ν .

(iii) ∂πν ([u1, u2, . . . , un]) = 0 for all u1, . . . , un ∈ O×
ν .

Proof. This is Theorem 3.15 of [75].

This homomorphism is called residue map and the composition

sπν : K
MW
∗ (F )

[−π]·−−−→ KMW
∗+1 (F )

∂π
ν−−→ KMW

∗ (κ(ν))
⟨−1⟩·−−−→ KMW

∗ (κ(ν))

is called specialization map and is a homomorphism of graded rings. Let a ∈ F× and write
a = πnu for some unit u ∈ O×

ν . As it turns out, the specialization map can also be defined
as the unique homomorphism KMW

∗ (F ) → KMW
∗ (κ(ν)) of graded rings mapping [πnu] to [u]

and η to η, see page 57 of loc. cit. Some useful relations of these two kinds of maps are:

Proposition I.6.37. For all u ∈ O×
ν and all x ∈ KMW

∗ (F ) we have:

(i) ∂πν ([u]x) = ϵ[u]∂πν (x) and s
π
ν ([u]x) = [u]sπν (x).

(ii) ∂πν (⟨u⟩x) = ⟨u⟩∂πν (x) and sπν (⟨u⟩x) = ⟨u⟩sπν (x).

(iii) ∂uπν (x) = ⟨u⟩∂πν (x) and suπν (x) = sπν (x) + ϵ[u]∂πν (x). In particular, both the residue
map and the specialization map do generally depend on the choice of the uniformizing
element π.

Proof. The first two relations for residue maps are Proposition 3.17 in [75] and the corre-
sponding ones for the specialization maps follow immediately from the definition and the
respective relations for the residue map. This clarifies (i) and (ii). The first formula of (iii)
is Remark 1.9 in [39]. We will quickly prove the second one. Let u ∈ O×

ν and x ∈ KMW
∗ (F ).

Then

suπν (x) = ⟨−1⟩∂uπν ([−uπ]x) = ⟨−1⟩⟨u⟩∂πν ([−uπ]x) = ⟨−1⟩⟨u⟩∂πν ((⟨u⟩[−π] + [u])x)

= ⟨−1⟩(∂πν ([−π]x) + ϵ⟨u⟩[u]∂πν (x))
= ⟨−1⟩∂πν ([−π]x)− ⟨u⟩[u]∂πν (x)
= sπν (x) + ϵ[u]∂πν (x),

where we use that the residue map is a group homomorphism which satisfies the two formulas
from (i), (ii) and (iii).
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Recall that every closed point p ∈ A1, or equivalently every monic irreducible polynomial
f ∈ F [t], gives rise to a discrete valuation on F (t), which measures the divisibility with
respect to f . We will denote this valuation by vp or vf and the associated residue map with
respect to the uniformizer f by ∂pvp or ∂fvf . These residue maps allow us to express Milnor-

Witt K-theory of F (t) in terms of Milnor-Witt K-theory of F and Milnor-Witt K-theory of
the residue fields κ(vp):

Theorem I.6.38. There is a split short exact sequence

0 KMW
∗ (F ) KMW

∗ (F (t))
⨁︁

p∈A1

KMW
∗−1 (κ(vp)) 0

i∗
⊕p∂

p
νp

of graded KMW
∗ (F )-modules, where i∗ is the map induced by the inclusion F ⊂ F (t).

Proof. This is Theorem 3.24 of [75].

It is not difficult to observe that a retraction of i∗ is given by the specialization map stvt .
This kind of sequence is usually refered to as Milnor’s short exact sequence due to Milnor’s
seminal paper [70], where he constructs this type of sequence for both Milnor K-theory and
Witt rings of quadratic forms.
For a scheme X we denote by X(c) the set of its points of codimension c. Recall that one
can define a discrete valuation ring to be a normal noetherian local domain of dimension
1. Therefore, if we are given a smooth irreducible scheme X, any point x ∈ X(1) gives
rise to a discrete valuation vx on Frac(OX,x) = k(X). Indeed, the local ring is noetherian
since X is locally noetherian. It is normal since X is smooth, and its dimension is given by
dim(OX,x) = codim(x) = 1. If X is reducible, then the same holds for all codimension 1
points y ∈ X(1) in the closure of a given codimension 0 point x ∈ X(0). In particular, we get
residue maps ∂

πy
vy : KMW

∗ (κ(x)) → KMW
∗−1 (κ(y)) for any choice of uniformizing elements πy.

Definition I.6.39. The n-th Milnor-Witt K-theory group of a smooth scheme X is

KMW
n (X) = ker

(︃ ⨁︂
x∈X(0)

KMW
n (κ(x))

⊕∂
πy
νy−→

⨁︂
y∈X(1)

KMW
n−1 (κ(y))

)︃
Note that this does not depend on the choices of uniformizers by Proposition I.6.37 adn
Lemma I.6.33, and is hence well-defined. If we are given a morphism f : X → Y between
smooth schemes, one can define a pullback map f∗ : KMW

n (Y ) → KMW
n (X) as follows:

As a morphism between smooth schemes, f is a local complete intersection morphism and
thus factorizes as a regular embedding j : X → Z followed by a smooth morphism g : Z → Y ,
see [89, Tag 068E]. The idea is to proceed by constructing the desired pullback maps for
j and g. For g this is relatively straight-forward and is really just given by a pullback of
symbols. For the morphism j, one reduces to the codimension 1 case via a choice of a regular
sequence and realizes the pullback by using specialization maps. Finally, there is work to be
done to verify that everything is independent of all the choices that were made. For more
details we refer to Chapter 3.2 of [75]. The resulting n-th Milnor-Witt K-theory sheaf will
be denoted by KMW

n , whereas we will still use the notation KMW
n for its “restriction” to the

category Fldftrk . An alternative definition of KMW
n for positive n can be given due to the

following result of Morel:
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Theorem I.6.40. Let M be a strictly A1-invariant abelian sheaf and let n be a positive
integer. The map

[−]∗ : HomAbA1/k
(KMW

n ,M) → HomSet∗/k(G
∧n
m ,M)

induced by the universal symbol [−] : G∧n
m → KMW

n , (a1, . . . , an) ↦→ [a1, . . . , an] is a natural
bijection in M . In other words, KMW

n is the reduced free strictly A1-invariant abelian sheaf
Z̃A1 [G∧n

m ] on the sheaf of pointed sets G∧n
m .

Proof. This is Theorem 3.37 of [75].

There is also a similar description in degree 0, which is Theorem 3.46 of loc. cit.:

Theorem I.6.41. Let M be a strictly A1-invariant abelian sheaf. The map

⟨−⟩∗ : HomAbA1/k
(KMW

0 ,M) → HomSet/k(Gm/2,M),

induced by the universal form ⟨−⟩ : Gm/2 → KMW
0 , a ↦→ ⟨a⟩ is a bijection. In other words,

KMW
0 is the free strongly A1-invariant abelian sheaf ZA1 [Gm/2] on the sheaf Gm/2.

Proof. As sheaves of sets we have Gm/2 = coeq(2, 0), where n : Gm → Gm is the n-th power
map of the group operation for n = 0, 2. Therefore a morphism Gm/2 → M of sheaves
corresponds to a morphism Gm →M of sheaves that coequalizes the two morphisms 2 and 0.
The free-forgetful adjunction now yields that morphisms Gm → M of sheaves that equalize
the two morphisms 2 and 0 are in natural bijection to morphisms ZA1 [Gm] → M of abelian

sheaves that coequalize ZA1 [2] and ZA1 [0]. Under the isomorphism ZA1 [Gm] ∼= Z⊕˜︁ZA1 [Gm],

these once again correspond to morphisms Z⊕˜︁Z[Gm] →M that coequalize(︃
idZ 0

0 ˜︁ZA1 [2]

)︃
and

(︃
idZ 0
0 0

)︃
.

By Theorem I.6.40 and Lemma 3.14 of [75], these morphisms in turn correspond to morphisms
Z⊕KMW

1 →M that coequalize the matrices(︃
idZ 0
0 h

)︃
and

(︃
idZ 0
0 0

)︃
.

In other words, these morphisms are exactly the morphisms

Z⊕KW
1

∼= Z⊕KMW
1 /h→M

of abelian sheaves, where we already make use of Example I.6.44 from below. Finally, we
precompose with the isomorphism

KMW
0 = GW → Z⊕ I = Z⊕KW

1

given by splitting off the rank, see Example I.6.44 and the discussion after Theorem I.6.46,
and thus end up with morphisms KMW

0 →M of abelian sheaves. We leave it to particularly
motivated readers to verify that all these identifications together yield the map induced by
the universal form.
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Now that we have seen the basics of Milnor-Witt K-theory, let us finally give some examples
of homotopy modules:

Example I.6.42. Milnor-Witt K-theory KMW
∗ is the homotopy module associated with the

motivic sphere spectrum 1k as shown by Morel [72], the motivic spectrum H̃Z representing
Milnor-Witt motivic cohomology, see e.g. Déglise and Fasel [30, Theorem 4.2.3] and the al-
gebraic special linear cobordism spectrum MSL by work of Yakerson [109, Proposition 3.6.3].

In particular, the 1k-module structure on any motivic spectrum E gives rise to a KMW
∗ -module

structure on the homotopy module π0(E)∗, so that every homotopy module is equipped with
such structure. This can also be seen via Chapter 2.3 of [75] or Feld’s theory of Milnor-Witt
cycle modules, see [40]. In particular, there is a canonical choice of contraction isomorphisms
given by the aforementioned action:
Theorem I.6.40 together with Lemma I.6.28 gives us, that for any homotopy module M∗ and
for any integer n, the contraction (Mn)−1 can be identified with HomAbA1/k

(KMW
1 ,Mn). On

the level of the latter sheaf we can now consider the morphism

Mn−1 → HomAbA1/k
(KMW

1 ,Mn), x ↦→ (y ↦→ yx),

which by Lemma 2.48 of [75] is an isomorphism for all integers n and thus gives us contraction
isomorphisms by the discussion above. On the other hand, if we are given a homotopy module
M∗, we can also use the contractions to define the module structure, see for instance appendix
A of [17]. As this action in positive degree is the most crucial for this work, let us quickly
explain it. As above, the contraction isomorphisms give us

Mm
∼= HomAbA1/k

(KMW
n ,Mn+m)

which via the hom-tensor adjunction corresponds to an action KMW
n ⊗Mm → Mn+m. This

is the desired action.

Example I.6.43. By its very definition, the quotient KMW
∗ /η is Milnor K-theory KM

∗ . Since
the category of homotopy modules is abelian and thus has such quotients, also KM

∗ is a
homotopy module. Here the KMW

∗ -action and the residue and specialization maps are given
via the quotient map. Milnor K-theory also arises as the homotopy module associated with
the motivic Eilenberg-Mac Lane spectrum HZ and the algebraic cobordism spectrum MGL,
see Theorem 3.4 of [93] and Remark 3.10 of [50]. Additionally, the quotient KM

∗ /2 is the
homotopy module associated with HZ/2.

Example I.6.44. A second quotient we consider is KW
∗

∼= KMW
∗ /h, called Witt K-theory. It

was defined by Morel in terms of generators and relations similar to Milnor-Witt K-theory
[73] and the isomorphism KW

∗
∼=−→ KMW

∗ /h is given by mapping η to η+hKMW
∗ and a symbol

{a} to the class −[a]+hKMW
∗ . Furthermore, Morel showed that Witt K-theory is nothing but

the graded ring of powers of the fundamental ideal
⨁︁

n∈Z I
n, where by convention In = W

for negative n. Here the isomorphism identifies pure symbols [a1, . . . , an] of length n with
n-Pfister forms ⟨⟨a1, . . . , an⟩⟩ and the multiplication by η with the inclusions In+1 ↪→ In.

Example I.6.45. Algebraic K-theory KQ
∗ is a homotopy module, which arises from the

algebraic K-theory spectrum KGL. This follows from Theorem I.5.19 and the definition of
KGL.
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Now that we have a couple of examples at hand, we can also give another description of
Milnor-Witt K-theory, namely as follows. The resolution of the Milnor conjecture of quadratic
forms by Orlov-Vishik-Voevodsky [79] gives a commutative diagram

KMW
∗ KM

∗

KM
∗ /2

KW
∗ KW

∗ /ηK
W
∗+1

∼=

where the bottom right map is given by [a1, . . . , an] + ηKW
∗+1 ↦→ [a1, . . . , an] + 2KM

∗ . Morel
[73] shows that this diagram fully describes Milnor-Witt K-theory:

Theorem I.6.46. The above diagram is a pullback square.

In loc. cit. he proves that this is a pullback square when applied to fields, which then by the
content of Chapter 2 and 3 of [75] extends to the case of sheaves, as all the occuring maps are
compatible with the respective residue/specialization maps. In degree 0, this in particular
recovers the classical pullback square

GW Z

W Z/2Z

and shows that KMW
n

∼= W for negative integers n. The description of Milnor-Witt K-theory
as a pullback of Milnor- and Witt K-theory over their common base allows us to study
operations KMW

n → KMW
m by studying operations KMW

n → KR
m, where the later can stand for

Milnor K-theory, Milnor K-theory mod 2 or Witt K-theory.
By [40] or by Chapter 2.3 of [75], homotopy modules come with residue and specialization
maps, which also satisfy the properties of Proposition I.6.37. Furthermore, it is shown in loc.
cit. that the following two properties hold:

Proposition I.6.47. For any homotopy module M∗ and any transcendental element t over
k, the map M∗(k) →M∗+1(k(t)), x ↦→ [t]x is injective with left-inverse ∂tνt

. In particular, if
[a]x = 0 for all field extensions k ⊂ F and all a ∈ F , then x = 0.

Proposition I.6.48. For any homotopy module M∗ and any field extension k ⊂ F , there is
a split short exact sequence

0 M∗(F ) M∗(F (t))
⨁︁

p∈A1

M∗−1(κ(vp)) 0
i∗

⊕p∂
p
νp

of graded M∗(F )-modules, where i∗ is the map induced by the inclusion F ⊂ F (t).
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These properties will be used to compute operations on generators of Milnor-Witt K-theory
in Section II.3.
The last ingredient we need is the following. Sheaves defined on objects as in Definition
I.6.39, and on morphisms as in the discussion after Definition I.6.39, are called unramified
and their construction is the main content of Chapter 2.1 of [75].

Example I.6.49. In Lemma 6.4.4 of [74] Morel observed that any strictly A1-invariant
abelian sheaf is unramified. In particular this yields that homotopy modules are unramified.

All the sheaves that we consider from now on will be strictly A1-invariant and hence unram-
ified. We refrain from giving a precise definition of unramified sheaves, but rather advise the
reader to blackbox the proposition below which in particular allows us to ignore the notion
of being unramified.
Given two unramified sheavesM and N , we can “restrict” them to the category Fldftrk of field
extensions of k with finite transcendence degree. Morel observes in Theorem 2.11 together
with Definition 2.9 of [75] that unramified sheaves always come with specialization maps as
we have introduced below Theorem I.6.36 for Milnor-Witt K-theory, but defined on the level
of valuation rings. For homotopy modules we even have those on the level of fields, as we have
seen. Therefore we can consider those morphisms of unramified sheaves restricted to Fldftrk

which commute with those specialization maps. By this we mean morphisms φ : M |
SetFldftr

k
→

N |
SetFldftr

k
making the diagram

M |
SetFldftr

k
(OF ) N |

SetFldftr
k

(OF )

M |
SetFldftr

k
(κ(ν)) N |

SetFldftr
k

(κ(ν)).

φ

sπν sπν

φ

commutative for every finitely generated field extension k ⊂ F equipped with a discrete val-
uation ν, valuation ring OF , residue field κ(ν) containing k and every choice of uniformizing
element π. In particular, although the morphism is only defined on the level of certain field
extensions, it is supposed to respect discrete valuation rings. The set of such morphisms will
be denoted by Opsp(M,N).

Proposition I.6.50. For all unramified sheaves M and N we have an identification

HomSet/k(M,N) = Opsp(M,N).

Moreover, the same identification holds for quotients of KMW
n .

Proof. This is Remark 2.15 in [75].

Therefore we will from now on mostly restrict to the category Fldftrk of field extensions with
finite transcendence degree of our base field k and work in this more concrete setting.

I.6.3 Morel’s Unstable and Stable Computations

We will give a detailed account of Morel’s computation of πA1

n (Sn ∧G∧i
m ) from Chapter 6.3 of

[75], and then also give a very brief outline of Morel’s computation of π0(1k)∗ from [72]. The
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latter computation is the original proof of the fact that Milnor-Witt K-theory is a homotopy
module.
Let us now start with the aforementioned unstable computation. The general idea is to use
a motivic Hurewicz theorem to translate the computation of motivic homotopy groups to
certain homology groups. The latter are what we will introduce now following Chapter 6.2
of [75]. We want to define the A1-singular chain complex CA1

• (X) of a space X, which is the
motivic analogue of the singular chain complex. For this we make use of the sheaf-theoretic
Dold-Kan correspondence or at least of one of the involved functors therein, which we will
recall now.

Definition I.6.51. Let A ∈ sAb/k be a simplicial abelian sheaf. Its normalized chain

complex NA• ∈ Ch•(Ab/k) is given by NAn =
⋂︁n−1

i=0 ker(di) together with the differentials
∂n = (−1)ndn, where the di : An → An−1 are the face maps.

Note that such chain complexes are (−1)-connected, since there are no negative-dimensional
simplices. Moreover, this construction is functorial and we denote the corresponding functor
by N : sAb/k → Ch≥0(Ab/k).

Theorem I.6.52 (Sheaf-theoretic Dold-Kan correspondence). The normalized chain complex
functor N : sAb/k → Ch≥0(Ab/k) yields a Quillen equivalence, where sAb is equipped with
the Quillen model structure and Ch≥0(Ab/k) is equipped with the projective model structure.

We are not aware of a reference for the sheaf-theoretic version, but it can be proven in
the usual way. For this we recommend [63, Tag 00QQ]. In particular, for all A ∈ sAb/k
the simplicial homotopy sheaves πn(A) coincide with the homology sheaves Hn(NA•) for all
integers n.

Definition I.6.53. The A1-singular chain complex of a space X is

CA1

• (X) = LA1NZ[X]•,

i.e the A1-localization of the normalized chain complex of the free simplical abelian sheaf on
X. Its homology sheaves HA1

n (X) = Hn(C
A1

• (X)) are the A1-homology sheaves.

The chain complex NZ[X]• is often denoted by C•(X) and we just call it the chain complex

associated with X. This gives us CA1

• (X) = LA1C•(X).

Remark I.6.54. Since C•(X) by definition is (−1)-connected, so is the chain complex

LA1C•(X) = CA1

• (X) by Theorem I.6.18 (the A1-connectivity Theorem). Therefore A1-
homology sheaves vanish in negative degree.

Example I.6.55. Let us compute the A1-homology of a point. As a space, Spec(k) has
n-simplices Spec(k) for all n ≥ 0 together with the identity morphism as face and degeneracy
maps. Therefore also the simplicial abelian sheaf Z[Spec(k)] has n-simplices Z[Spec(k)] ∼= Z
for all n ≥ 0 together with identity maps. This gives

C•(Spec(k)) ∼= . . . 0 0 Z 0 0 . . .
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with Z in degree 0, the chain complex associated with the strictly A1-invariant abelian sheaf
Z from Example I.6.10. By our observation from Example I.6.16 this means that C•(Spec(k))
is A1-local, so that LA1C•(Spec(k)) ∼= C•(Spec(k)). Hence we have

HA1

n (Spec(k)) =

{︄
Z if n = 0

0 else,

which clearly resembles the singular homology of a point.

Note that the same arguments show that C•(X) is given by Z[X] concentrated in degree 0
for any X ∈ Sm/k. The actual information therefore really comes from the A1-localization.

Definition I.6.56. The n-th reduced A1-homology sheaf of a space X is the abelian sheaf
H̃A1

n (X) = ker(HA1

n (X) → HA1

n (Spec(k))).

If X is a pointed space, we have

HA1

n (X) =

{︄
H̃A1

n (X)⊕ Z if n = 0

H̃A1

n (X) else

by the previous example. Let us list a couple of properties of A1-homology, which all have
familiar analogues in the theory of singular homology.

Proposition I.6.57. For all X ∈ Set /k there is a canonical isomorphism HA1

0 (X) ∼= ZA1 [X]

and in particular an isomorphism H̃A1

0 (X) ∼= ˜︁ZA1 [X].

Proof. Let X be Nisnevich sheaf considered as a space and let A be a strictly A1-invariant
abelian sheaf. There are identifications

HomSet/k(X,A) = HomAbA1/k
(ZA1 [X], A) = HomDA1 (Ab/k)(ZA1 [X], A),

where the last one makes use of Example I.6.16. Since ZA1 [X] is A1-local, we furthermore
have ZA1 [X] ∼= LA1 ZA1 [X] and thus

HomDA1 (Ab/k)(ZA1 [X], A) = HomAb/k(τ≤0LA1 ZA1 [X], A)

by Lemma I.6.2. Now the A1-connectivity Theorem yields τ≤0LA1 ZA1 [X] ∼= HA1

0 (X) as seen
in Example I.6.5. Thus

HomSet/k(X,A) = HomDA1 (Ab/k)(H
A1

0 (X), A) = HomAb/k(H
A1

0 (X), A),

which finishes the proof.

Remark I.6.58. In light of the above proposition we have a natural extension of the def-
inition of the functors ZA1 and ˜︁ZA1 to all spaces, namely in terms of the 0th A1-homology
sheaves.

The A1-localization functor LA1 commutes with the S1-suspension functor ΣS1 , as Morel
observes on page 164 of [75]. A consequence of this is the suspension isomorphism:
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Proposition I.6.59. For all integers n and all pointed spaces X, there is a natural isomor-
phism H̃A1

n (X) → H̃A1

n+1(ΣS1X) of abelian sheaves.

The last tool of A1-homology we need is an analogue of the Hurewicz theorem. If X is a
space, we consider the evident morphism

πA1

n (X) = πn(LA1X) → πn(Z[LA1X]).

Via Dold-Kan the latter sheaf can be identified with Hn(NZ[LA1X]•), which we can map
further to Hn(LA1NZ[LA1X]•). But by page 161 of [75] the natural map

HA1

n (X) = Hn(LA1NZ[X]•) → Hn(LA1NZ[LA1X]•)

is an equivalence. Therefore we can consider its inverse and obtain the desired Hurewicz map
πA1

n (X) → HA1

n (X).

Theorem I.6.60 (A1-Hurewicz Theorem). Let X be a pointed A1-connected space.

(i) The Hurewicz morphism πA1

1 (X) → HA1

1 (X) is the initial morphism from πA1

1 (X) to

a strictly A1-invariant abelian sheaf. Moreover, it is an isomorphism if πA1

1 (X) is an
abelian sheaf.

(ii) If n ≥ 2 and X is A1-(n−1)-connected, then HA1

i (X) vanishes for all 0 ≤ i ≤ n−1 and

the Hurewicz morphism πA1

n (X) → HA1

n (X) is an isomorphism. Moreover, the Hurewicz

morphism πA1

n+1(X) → HA1

n+1(X) is an epimorphism.

Proof. This is Theorem 6.35 together with Theorem 6.37 of [75].

Note that while recent results of Choudhury and Hogadi [28] show that the Hurewicz mor-
phism is an epimorphism in degree 1, it is still unknown if it is the abelianization morphism
in general.

Corollary I.6.61. For all pointed spaces X and all integers n ≥ 2, we have a canonical
isomorphism πA1

n (Σn
S1X) ∼=−→ ˜︁ZA1 [X] of abelian sheaves.

Proof. Let n ≥ 2 and let X be a pointed space. Then Σn
S1X is A1-(n− 1)-connected as seen

in Example I.4.16, and the Hurewicz morphism

πA1

n (Σn
S1X) ∼=−→HA1

n (Σn
S1X)

is an isomorphism. Applying the suspension isomorphism n times gives us

HA1

n (Σn
S1X) = ˜︁HA1

n (Σn
S1X) ∼= ˜︁HA1

0 (X)

which by Proposition I.6.57 proves the claim.

Example I.6.62. For all integers i ≥ 0 and n ≥ 2, the previous Corollary yields

πA1

n (Sn ∧G∧i
m ) = πA1

n (Σn
S1G∧i

m ) ∼= ˜︁ZA1 [G∧i
m ] =

{︄
Z if i = 0

KMW
i if i ≥ 1,

where the second case makes use of Theorem I.6.40. Since we have the A1-equivalence
An+1\{0} ≃A1 Σn

S1G∧n+1
m from Proposition I.4.27, this gives us πA1

n (An+1\{0}) ∼= KMW
n+1 for

all n ≥ 2.
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In light of the recently established P1-Freudenthal theorem of Asok, Bachmann and Hopkins
[10], this unstable computation also gives the stable one for certain fields:

Theorem I.6.63. Suppose that the characteristic of k is 0. There is a canonical isomorphism
π0(1)m

∼=−→KMW
m of abelian sheaves for all integers m.

Proof. Let m and r be integers with r ≥ m. By definition we then have

π0(1)m(U) = colimr≥m[Sr ∧G∧r−m
m ∧ U+, S

r ∧G∧r
m ]

for all smooth schemes U on the level of presheaves before Nisnevich sheafification. Hence
Theorem I.6.29 together with the P1-Freudenthal theorem of [10] yields that the sheaf π0(1)m
is isomorphic to πA1

r (Sr ∧ G∧r
m )−(r−m) for some r >> m. As seen in Example I.6.62, this

sheaf is given by (KMW
r )−(r−m). Now the latter sheaf is canonically isomorphic to KMW

m by
section 3 of [75] together with Lemma 2.48 of loc. cit. This finishes the proof.

Let us now very quickly outline the stable computation. Although we have already used this
notation for the abstract symbols of Milnor-Witt K-theory, let us nevertheless introduce the
following notation for any finitely generated field extension k ⊂ F :

[a] = Σ∞(S0 → Gm,−1 ↦→ a) ∈ [1k,Σ
∞ Gm](F ) = π0(1k)1(Spec(F )) for a ∈ F×

η = Σ∞(A2 \ {0} ↠ P1) ∈ [Σ∞ Gm,1k](F ) ∼= [1k, (Σ
∞Gm)∧−1](F ) = π0(1k)−1(Spec(F ))

where for the latter map we used both Lemma I.4.26 and Proposition I.4.27, together with
the invertibility of the generalized motivic sphere spectra from Example I.5.27. This suggests
how we want to define a map KMW

∗ → π0(1k)∗. That this actually works is one of Morel’s
results from [72] based on previous results of Hu and Kriz [53]:

Theorem I.6.64 (Morel). The Milnor-Witt relations hold in π0(1k)∗. In particular, there
is a well-defined morphism KMW

∗ → π0(1k)∗ given by [a] ↦→ [a] and η ↦→ η.

Proof. Druzhinin [33] proves this in the more general setup of an arbitrary base scheme.

We claim that this is an isomorphism. To show that, Morel constructs a morphism in the
opposite direction. This morphism is essentially a byproduct of the fact that the pullback
of KM

∗ and KW
∗ along their common quotient KM

∗ /2 is a homotopy module. In other words,
Morel obtains a natural morphism π0(1k)∗ → KM

∗ ×KM
∗ /2 K

W
∗ , but the latter object is iso-

morphic to KMW
∗ as we have seen in Theorem I.6.46. This turns out to be the inverse to the

morphism from the above theorem, see [72].
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Chapter II

Operations on Milnor-Witt
K-theory

This chapter is the main part of this thesis, which can also be found as sections 4-9 in
our preprint [108]. We start with the very formal computations of additive operations on
Milnor-Witt K-theory, from which we also obtain the Gm-stable ones.

II.1 Warmup: The Additive and Gm-stable Operations

The computations of this section can be easily deduced from the results in [75], but their
proofs are not recorded very well. Therefore we will quickly deal with those. The key
ingredient is Theorem I.6.40.

Corollary II.1.1. Let n be a positive integer and let M∗ be a homotopy module. For all
integers m, the abelian sheaf HomAbA1/k

(KMW
n ,Mm) is isomorphic to Mm−n. In particular,

we have HomAbA1/k
(KMW

n ,KMW
m ) ∼= KMW

m−n for all integers m.

Proof. Theorem I.6.40 together with Remark I.6.23 yields KMW
n = ˜︁ZA1 [G∧n

m ] ∼= ˜︁ZA1 [Gm]
⊗n.

Therefore we get HomAbA1/k
(KMW

n ,Mm) ∼= HomAbA1/k
(Z, (Mm)−n) ∼= (Mm)−n via the hom-

tensor adjunction. Since M∗ is a homotopy module, this is just Mm−n.

As we already observed just after Example I.6.42, the isomorphism

KMW
m−n(k)

∼=−→ HomAbA1/k
(KMW

n ,KMW
m )

is given as follows. It maps an element x to the multiplication with x, and for general
homotopy modules, it maps an element to the action of KMW

n on said element.

Corollary II.1.2. Let M∗ be a homotopy module. For all integers m, the abelian sheaf
HomAbA1/k

(KMW
0 ,Mm) is isomorphic to Mm ⊕ hMm−1. In particular, we have an isomor-

phism HomAbA1/k
(KMW

0 ,KMW
m ) ∼= KMW

m ⊕ hK
MW
m−1 for all integers m.
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Proof. We have an isomorphism GW ∼=−→ Z⊕ I by splitting off the rank, which we can
translate to an isomorphism KMW

0
∼=−→ Z⊕KMW

1 /h on the level of Milnor-Witt K-theory.
This gives

HomAbA1/k
(KMW

0 ,Mm) ∼= HomAbA1/k
(Z,Mm)⊕HomAbA1/k

(KMW
1 /h,Mm)

with the first summand being Mm. The latter one is the kernel of

h∗ : HomAbA1/k
(KMW

1 ,Mm) → HomAbA1/k
(KMW

1 ,Mm),

which under the isomorphism HomAbA1/k
(KMW

1 ,Mm) ∼= Mm−1 from the previous Corollary
is hMm−1 as claimed.

It is also not difficult to keep track of the isomorphisms in this case:

HomAbA1/k
(KMW

0 ,Mm) = rk ·Mm(k)⊕ (⟨−⟩ ↦→ [−]) · hMm−1(k)

Note that the latter map is not well-defined by itself. It really requires an element in the
kernel of h. Indeed, whenever we are given an element a ∈ F× for some field extension k ⊂ F ,
then ⟨a2⟩ = ⟨1⟩. If we want a well-defined map we thus have

[a]h · y = [a2] · y = [1] · y = 0 · y = 0

for all elements y ∈Mm−1(k). Since a was arbitrary, Proposition I.6.47 thus yields h · y = 0.
So if we want to respect the relations of the form ⟨a2⟩ = ⟨1⟩, we have no choice but to act on
h-torsion elements. To give an actual counterexample, consider M∗ to be Milnor K-theory.
By the fact that h mod η = 2 mod η, the well-definedness of the above map for y = 1 would
imply that KM

1 (F ) ∼= F× is 2-torsion, which is clearly false in general.
For M∗ = KMW

∗ , the multiplication of an element of KMW
0 with an element x ∈ KMW

m (k) is
given by rk ·x+ (⟨−⟩ ↦→ [−])ηx, which allows us to write

HomAbA1/k
(KMW

0 ,KMW
m ) = id ·KMW

m (k)⊕ (⟨−⟩ ↦→ [−]) · hKMW
m−1(k).

Multiplication with a fixed element of suitable degree does of course also give us operations
KMW

−n → KMW
m . For those readers interested in stable operations, note that in light of

Theorem I.6.29, we see that the isomorphism

KMW
n−1

∼= HomAbA1/k
(KMW

1 ,KMW
n ) = HomAbA1/k

(˜︁ZA1 [Gm],K
MW
n ) = (KMW

n )−1

given by multiplication is exactly the Gm-suspension isomorphism. Therefore Corollary II.1.1
yields that a Gm-stable operation of degree m of Milnor-Witt K-theory, i.e. a family of oper-
ations respecting the suspension isomorphisms, needs to be a constant sequence of multipli-
cations with a fixed element x ∈ KMW

m (k), which certainly are well-defined operations. Let
us record this observation:

Corollary II.1.3. The Gm-stable operations of degreem on Milnor-Witt K-theory are exactly
the constant sequences (x · id)n∈Z with x ∈ KMW

m (k).

We have not dealt with all additive operations on negative degree Milnor-Witt K-theory
here. We did not see a direct way to easily compute these and will hence not do that in this
section. We will still see all operations on negative degree Milnor-Witt K-theory (and hence
in particular the additive ones) though.
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II.2 The Divided Power Operations λln

We will now introduce the operations which turn out to “essentially generate” all operations
on Milnor-Witt K-theory. Here “essentially” will mean that we have to allow certain infinite
linear combinations, which we will explain later. For the entire section we let n be a positive
integer and all natural transformations/operations are considered to be between Set-valued
functors. Recall that we can reduce to this setup by Proposition I.6.50. If k ⊂ F is a field
extension and

x = [a1,1, . . . , a1,n] + . . .+ [ar,1, . . . , ar,n] ∈ KMW
n (F )

is a sum of pure symbols, we call

λln(x) =
∑︂

1≤i1<...<il≤r

[ai1,1, . . . , ai1,n] · . . . · [ail,1, . . . , ail,n] ∈ KMW
ln (F )

the l-th divided power of x, where we allow l to be any non-negative integer. Since Milnor-
Witt K-theory is non-commutative, this expression is in general not even well-defined for a
fixed element x, although it is when l or n is even. We can remedy this. As also done in
the theory of λ-rings, it is sometimes easier to define all λ-operations λl at once in terms of
one power series Λ =

∑︁
λltl. To be able to define this on a Milnor-Witt K-theory group,

we specify the desired value on generators [a1, . . . , an] and extend this to arbitrary elements
of KMW

n via the formula from Proposition II.2.3. This is a usual identity of divided power
operations, which we hence certainly want to have for out yet to be defined operations as
well. So this is the approach we take. If we let δn be 1 if n is odd and 0 if n is even, the
following then turns out to give us well-defined divided power maps:

Theorem II.2.1. Let k ⊂ F be a field extension and let M∗ be a homotopy module. Fur-
thermore, let Sn(F ) be the set of symbols ηd[a1, . . . , ad+n], where d is a non-negative integer
and a1, . . . , ad+n ∈ F×. For any y ∈ δnhM∗(k), the map

Λn · y : Z⊕Sn(F ) →M∗(F )[[t]]

given by mapping
∑︁r

i=1miη
di [ai,1, . . . , ai,di+n] to

r∏︂
i=1

∏︂
J⊂{1,...,di+1}

(︃
1 +

[︂∏︂
j∈J

ai,j , ai,di+2, . . . , ai,di+n

]︂
t

)︃(−1)
edi,J ·mi

· y,

where edi,J = di + 1− |J |, is a well-defined map, which factorizes through the quotient map
Z⊕Sn(F ) ↠ KMW

n (F ).

Proof. If n is odd, we have y = ⟨1⟩ · y = ϵ · y since y ∈ hM∗(k). Therefore the products in
Λn · y are independent of their order, which results in the well-definedness of this map. If n
is even, Λn ·y is well-defined without restrictions on y by the fact that KMW

2∗ is commutative.
Therefore we are either way in a commutative setting and will from now on freely change the
order within the occuring products.
To show that Λn · y factorizes through the quotient map Z⊕Sn(F ) ↠ KMW

n (F ), we need to
verify the three relations from Lemma I.6.35. Let ηd[a1, . . . , ad+n] ∈ Z⊕Sn(F ) be a generator
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of the Steinberg relation, i.e. we have that ai+1 = 1− ai for some 1 ≤ i ≤ d+n− 1. If i ≤ d,
we can permute the aj ’s in the image and may thus assume that i = 1. Denoting the tuple
(ad+2, . . . , ad+n) by ad, the product

Λn · y(ηd[a1, . . . , ad+n]) =
∏︂

J⊂{1,...,d+1}

(︃
1 +

[︂∏︂
j∈J

aj , ad

]︂
t

)︃(−1)ed,J

· y

can be rewritten as

∏︂
I⊂{3,...,d+1}

(︂
1 +

[︂∏︁
i∈I ai, ad

]︂
t
)︂(−1)ed,I (︂

1 +
[︂
a1a2

∏︁
i∈I ai, ad

]︂
t
)︂(−1)ed,I

(︂
1 +

[︂
a1

∏︁
i∈I ai, ad

]︂
t
)︂(−1)ed,I (︂

1 +
[︂
a2

∏︁
i∈I ai, ad

]︂
t
)︂(−1)ed,I

· y.

It therefore suffices to show that

(1 + [b]t)(1 + [a(1− a)b]t) = (1 + [(1− a)b]t)(1 + [ab]t)

for all a, b ∈ F×, where we are in a commutative setting. This amounts to showing the
equality of the linear and quadratic coefficients of both sides. Using the Steinberg relation,
the linear coefficient on the left hand side is

[b] + [a(1− a)b] = [b] + [1− a] + [ab] + η[1− a, ab] = [b] + [1− a] + [ab] + η[1− a, b],

which coincides with [(1 − a)b] + [ab], the one from the right hand side. The quadratic one
on the left hand side is

[b, a(1− a)b] = [b, 1− a] + [b, ab] + η[b, 1− a, ab] = [b, 1− a] + [b, ab] + η[b, 1− a, b],

whereas the quadratic coefficient on the right hand side is

[(1− a)b, ab] = η[1− a, b, ab] + [1− a, ab] + [b, ab] = η[1− a, b, b] + [1− a, b] + [b, ab].

Since we are in a commutative setting, these two agree. If i = d + 1, the same style of
argument works, although it is simpler in this case. One cannot ignore the contributions of
ad though. Finally, if i ≥ d + 2, the statement is clear. Therefore the map Λn · y factorizes

through the quotient map Z⊕Sn(F ) ↠ Z⊕Sn(F )/Rst, where Rst is the subgroup defined by
the Steinberg relation. By abuse of notation we still denote the induced map on the quotient
Z⊕Sn(F )/Rst → M∗(F )[[t]] by Λn · y. Let us now verify that the twisted tensor relation is
respected. For this we consider a generator

ηd[a1, . . . , ai−1, bb
′, ai+1, . . . , ad+n]− ηd[a1, . . . , ai−1, b, ai+1, . . . , ad+n]

− ηd[a1, . . . , ai−1, b
′, ai+1, . . . , ad+n]

− ηd+1[a1, . . . , ai−1, b, b
′, ai+1, . . . , ad+n]

of the twisted tensor relation in Z⊕S(F )/Rst and set Di = {1, . . . , d+1} \ {i}. Using that we
are in a commutative setting, we may once again assume that i = 1 since the case i ≥ d+ 2
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is trivial. Furthermore, we can ignore the contribution of the tuple (ad+2, . . . , ad+n) = ad as
seen above. This reduces the task to showing that the product of

∏︂
J⊂{2,...,d+1}

(︂
1 +

[︂∏︁
j∈J aj

]︂
t
)︂(−1)ed,J(︂

1 +
[︂
b
∏︁

j∈J aj

]︂
t
)︂(−1)ed,J(︂

1 +
[︂
b′
∏︁

j∈J aj

]︂
t
)︂(−1)ed,J

(︂
1 +

[︂
bb′

∏︁
j∈J aj

]︂
t
)︂(−1)ed,J(︂

1 +
[︂∏︁

j∈J aj

]︂
t
)︂(−1)ed,J(︂

1 +
[︂∏︁

j∈J aj

]︂
t
)︂(−1)ed,J

and ∏︂
J⊂{2,...,d+1}

(︂
1 +

[︂
b
∏︁

j∈J aj

]︂
t
)︂(−1)ed+1,J (︂

1 +
[︂
b′
∏︁

j∈J aj

]︂
t
)︂(−1)ed+1,J

(︂
1 +

[︂∏︁
j∈J aj

]︂
t
)︂(−1)ed+1,J (︂

1 +
[︂
bb′

∏︁
j∈J aj

]︂
t
)︂(−1)ed+1,J

is 1, which it clearly is. This gives us an induced map Z⊕Sn(F )/Rst,tt → M∗(F )[[t]], which
we will still denote by Λn · y. Here Rst,tt is the subgroup defined by the generators of the
Steinberg and twisted tensor relation. Finally, let us check the Witt relation. We pick a
generator

ηd+2[a1, . . . , ai−1,−1, ai+1, . . . , ad+2+n] + 2ηd+1[a1, . . . , ai−1, ai+1, . . . , ad+2+n]

considered as an element of the group Z⊕Sn(F )/Rst,tt, and set Di = {1, . . . , d+ 3} \ {i} and
ad = (ad+4, . . . , ad+2+n). As before, we can reduce to the case that i = 1. After cancellation,
this generator is now mapped to

∏︂
J⊂{2,...,d+3}

(︃
1 +

[︂
−

∏︂
j∈J

aj , ad

]︂
t

)︃(−1)ed+1,J(︃
1 +

[︂∏︂
j∈J

aj , ad

]︂
t

)︃(−1)ed+1,J

· y,

which agrees with

∏︂
J⊂{2,...,d+3}

(︃
1 +

(︃[︂∏︂
j∈J

aj , ad

]︂
+

[︂
−

∏︂
j∈J

aj , ad

]︂)︃
t

)︃(−1)ed+1,J

· y

by the fact that [a,−a] = 0 for all a ∈ F×. We also have

[a] + [−a] = [a] + [−1] + [a] + η[a,−1] = [−1] + [a](2 + η[−1]) = [−1] + [a]h

for all a ∈ F×, which yields[︂∏︂
j∈J

aj , ad

]︂
+
[︂
−

∏︂
j∈J

aj , ad

]︂
= [−1, ad] +

[︂∏︂
j∈J

aj , ad

]︂
h = [−1, ad] + h

∑︂
j∈J

[aj , ad]

for all J ⊂ {2, . . . , d+ 3}. The latter summand does not contribute outside of degree 1 since
[−1] ∈ ker(h) and [a, a] = [a,−1] for all a ∈ F×. Thus we are left with∑︁

d−|J| even
∑︁

j∈J h[aj , ad]t+
∏︁

d−|J| even
(︁
1 + [−1, ad]t

)︁∑︁
d−|J| odd

∑︁
j∈J h[aj , ad]t+

∏︁
d−|J| odd

(︁
1 + [−1, ad]t

)︁ · y,

which by a simple counting argument is 1 · y = y. This finishes the proof.
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From the definition of Λn · y it is clear that this map is functorial in F since y is defined over
k. It might not be clear how Λn · y relates to the divided powers as introduced before.

Definition II.2.2. Let l be a non-negative integer and let y ∈ δnhM∗(k) for some homotopy
module M∗. The l-th divided power operation on KMW

n associated with y is the operation
KMW

n → M∗ given by taking the coefficient of (Λn · y)(x) of degree l for all x ∈ KMW
n (F )

and all field extensions k ⊂ F .

We denote the l-th divided power operation on KMW
n associated with y by λln · y, which as

before is not only a notation, but allows us to work with the in general non-defined operation
λln as long as we act on y ∈ δnhM∗(k) in the end. Of course, λ0n = 1 and λ1n = id are defined
for all y. Furthermore we will just refer to an l-th divided power on KMW

n when speaking
about λln · y for some homotopy module M∗ and y ∈ δnhM∗(k). By its definition, we get:

Proposition II.2.3. Let k ⊂ F be a field extension. We have

λln · y(x+ x′) =

l∑︂
i=0

λin(x)λ
l−i
n (x′) · y

for all elements x, x′ ∈ KMW
n (F ).

Here the expression on the right hand side is to be read as
∑︁l

i=0 λ
i
n(x) · (λl−i

n (x′) · y) and
thus exists by first applying the above theorem for the field extension k ⊂ F and then for
the trivial field extension F ⊂ F .

Corollary II.2.4. Let k ⊂ F be a field extension. If

x = [a1,1, . . . , a1,n] + . . .+ [ar,1, . . . , ar,n] ∈ KMW
n (F )

is a sum of pure symbols, then

λln · y(x) =
∑︂

1≤i1<...<il≤r

[ai1,1, . . . , ai1,n] · . . . · [ail,1, . . . , ail,n] · y.

This justifies the name and also once again explains why Λn · y is defined the way it is. As
state before, an arbitrary element of KMW

n (F ) is first rewritten in terms of pure symbols and
then one extends the desired formula from the previous corollary via Proposition II.2.3 to
negative signs. The element y is still needed for it to map to M∗ and to be well-defined in
the case of odd n, of course.
Let us conclude this section by giving some further concrete examples of operations and
explaining how they can be expressed in terms of the operations from Definition II.2.2.

Example II.2.5. We do have the squaring map φ : KMW
1 → KMW

2 , x ↦→ x2. By the fact
that [a]2 = [a,−1] and [a, b] = [b, a]ϵ for all elements a and b of some field extension k ⊂ F ,
this operation can be seen to coincide with λ21 · (1+ ϵ)+λ11 · [−1]. Note that here the element
1 + ϵ indeed lies in the kernel of h, since h = 1− ϵ and ϵ2 = 1.
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II.3 Operations on Generators of Milnor-Witt K-theory

In this section we will state the basic tools needed for our computations later. For these we
will consider certain operations on Milnor K-theory. Let M∗ be a homotopy module and let
y ∈M∗(k). For a positive integer n and a non-empty ordered subset {i1, . . . , il} ⊂ {1, . . . , n},
we define the operation

[−i1 , . . . ,−il ] · y : (KM
1 )n →M∗

by mapping tuples (a1, . . . , an) ∈ Gn
m(F ) ∼= (KM

1 (F ))n to [ai1 , . . . , ail ] · y for every field
extension k ⊂ F . Furthermore we set this operation to be the constant operation with value
1 · y in the case that l = 0. These operations clearly commute with specialization maps and
turn out to generate all such operations (KM

1 )n → M∗, essentially by Theorem 3.18 of Vial
[96] with minor adaptations to generalize to homotopy modules:

Theorem II.3.1 (Vial). Let M∗ be a homotopy algebra and let n be a positive integer. The
M∗(k)-module Opsp((K

M
1 )n,M∗) of operations (KM

1 )n → M∗ commuting with specialization
maps is given by the free M∗(k)-module

n⨁︂
l=0

⨁︂
1≤i1<...<il≤n

[−i1 , . . . ,−il ] ·M∗(k).

Before we get to the proof, let us quickly remind the reader what the notation Opsp(−,−)
means. These are natural transformations which commute with specialization maps, as
discussed at the very end of Section I.6.2. As we have seen there, these are exactly the kind
of operations on the level of field extensions which assemble into morphisms between sheaves.

Proof. Let us first consider the case n = 1. Using Proposition I.6.50, we can prove this
statement on the level of sheaves, i.e., it suffices to show that

HomSet/k(K
M
1 ,M∗) = HomSet/k(Gm,M∗)

is given by [−]M∗(k)⊕M∗(k). By the free-forgetful adjunction, the above coincides with

HomAbA1/k
(ZA1 [Gm],M∗) = HomAb/k(ZA1 [Gm],M∗),

but this is not difficult to compute. The proof of Corollary I.6.28 together with Theorem
I.6.40 gives us the splitting ZA1 [Gm] ∼= ˜︁ZA1 [Gm]⊕ Z ∼= KMW

1 ⊕Z, which yields

HomAb/k(ZA1 [Gm],M∗) ∼= HomAb/k(K
MW
1 ,M∗)⊕HomAb/k(Z,M∗).

This is [−]M∗(k)⊕M∗(k) via Corollay II.1.1, as claimed.
As for the proof of Theorem 3.18 of [96], we now conclude by induction on n ≥ 1. The
case n = 1 has already been treated. Let us therefore assume that the claim is true for all
positive integers l ≤ n for some n ≥ 1. Let φ ∈ Opsp((K

M
1 )n+1,M∗), let k ⊂ F be a field

extension and let x ∈ (KM
1 (F ))n be a fixed element. Then φ((x,−)) : KM

1 → M∗ defines an
operation over the field F , which we will denote by φx. By induction hypothesis/the previous
step, there exist ax, bx ∈ M∗(F ) such that φx = [−]ax + bx. The assignments x ↦→ ax and
x ↦→ bx define operations in Opsp((K

M
1 )n,M∗) and are by induction hypothesis hence given
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by M∗(k)-linear combinations of [−i1 , . . . ,−il ] · 1 for 0 ≤ l ≤ n and 1 ≤ i1 < . . . < il ≤ n.
Together with φx = [−]ax+ bx this implies that φ is of the claimed form. It remains to show
that the operations of the form [−i1 , . . . ,−il ] · 1 are linearly independent. Suppose

φ =

n∑︂
l=0

∑︂
1≤i1<...<il≤n

[−i1 , . . . ,−il ] · ai1,...,il = 0

where ai1,...,il ∈ M∗(k) for 0 ≤ l ≤ n and 1 ≤ i1 < . . . < il ≤ n. We fix one or-
dered subset {j1, . . . , js} ⊂ {1, . . . , n} and consider the finitely generated field extension
k ⊂ k(tj1 , . . . , tjs) = F . We set tj = 0 for all j ∈ {1, . . . , n} \ {j1, . . . , js} and denote by t the
element (t1, . . . , tn) ∈ (KM

1 (F ))n. Then we have

aj1,...,js = ∂
tjs
νtjs

◦ . . . ◦ ∂tj1νtj1
(φ(t)) = ∂

tjs
νtjs

◦ . . . ◦ ∂tj1νtj1
(0) = 0,

which we had to show.

Remark II.3.2. This proof in particular shows that we do not need to distinguish between
operations defined on all field extensions or only on finitely generated ones. Since Theorem
II.3.1 is the very first ingredient of our computation, we will thus from now on just speak
about operations without specifying the underlying category of field extensions.

We now consider the subfunctor [−1, . . . ,−n] ⊂ KMW
n which for every field extension k ⊂ F

is given by [F×, . . . , F×], the pure symbols with entries from F×. Note that we use this
notation both for this subfunctor and for the operations arising in the previous Theorem.
According to Lemma I.6.34, this subfunctor encodes exactly the canonical generators of
KMW

n and our goal is to understand the operations on these generators. To express what it
means for such operations to commute with specialization maps (the latter do not restrict to
[−1, . . . ,−n]), we do the following. Since [−1, . . . ,−n] is the image of the universal symbol
[−] : G∧n

m → KMW
n , the operations [−1, . . . ,−n] → M∗ correspond to operations Gn

m → M∗
which factorize through (KM

1 )n = Gn
m ↠ G∧n

m → [−1, . . . ,−n]. The latter map will also be
called universal symbol and denoted by u. We know what it means for the latter operations
to commute with specialization maps and can restrict to those. This gives us a definition of
Opsp([−1, . . . ,−n],M∗), which we will now determine using the previous theorem.

Theorem II.3.3. For any homotopy algebra M∗ and any positive integer n, the M∗(k)-
module Opsp([−1, . . . ,−n],M∗) is free of rank 2 generated by the constant operation 1 and
[−1, . . . ,−n] · 1.

Proof. The M∗(k)-module Opsp([−1, . . . ,−n],M∗) is the submodule of Opsp((K
M
1 )n,M∗)

given by those operations which factorize through the universal symbol

u : (KM
1 )n = Gn

m ↠ G∧n
m → [−1, . . . ,−n].

According to Theorem II.3.1, the M∗(k)-module Opsp((K
M
1 )n,M∗) is

n⨁︂
l=0

⨁︂
1≤i1<...<il≤n

[−i1 , . . . ,−il ]M∗(k)
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and it is clear that its submodule M∗(k) ⊕ [−1, . . . ,−n]M∗(k) consists of operations that
factorize through u. It remains to show that these are the only ones, which we will do by
induction on n.
For n = 1 the statement coincides with the n = 1 case of Theorem II.3.1 and is thus already
shown. We now assume that the statement is true up to some positive integer n. Let
φ ∈ Opsp([−1, . . . ,−n+1],M∗), let k ⊂ F be a field extension and let x ∈ (KM

1 (F ))n. Then

φx = φ(x,−n+1) defines an operation KM
1 → M∗ defined over the field F , and is by the

previous theorem hence given by bx + [−n+1]b
′
x for some elements bx, b

′
x ∈ M∗(F ). We now

let ψ and ψ′ denote the operations (KM
1 )n → M∗ over k, given by mapping x ∈ (KM

1 (F ))n

to bx and b′x respectively.

Step 1: The operation ψ is constant. In particular, the operation [−n+1]ψ
′ factorizes through

u.
By the fact that [1] = 0 in Milnor-Witt K-theory, we have [x, 1] = [x′, 1] for all field extensions
k ⊂ F and all elements x, x′ ∈ (F×)n = (KM

1 (F ))n. Since the operation φ = ψ + [−n+1]ψ
′

factorizes through u, this gives us

ψ(x) = ψ(x) + [1]ψ′(x) = φ(x, 1) = φ(x′, 1) = ψ(x′) + [1]ψ′(x′) = ψ(x′).

In other words, the operation ψ is constant. Therefore, if we consider ψ as an operation
(KM

1 )n+1 → M∗, it factorizes through u : (KM
1 )n+1 → [−1, . . . ,−n+1]. Since the operations

which factorize through u are a M∗(k)-module and in particular a group, also the element
[−n+1]ψ

′ = φ− ψ factorizes through u.

Step 2: The operation ψ′ factorizes through u : (KM
1 )n → [−1, . . . ,−n].

Let k ⊂ F be a field extension and consider (a1, . . . , an), (a
′
1, . . . , a

′
n) ∈ (KM

1 (F ))n such
that [a1, . . . , an] = [a′1, . . . , a

′
n]. Thus, if t is a transcendental element over F , we also

have [a1, . . . , an, t] = [a′1, . . . , a
′
n, t] ∈ KMW

n+1 (F (t)). Since the operation [−n+1]ψ
′ facorizes

through u : (KM
1 )n → [−1, . . . ,−n], we get [t]ψ′(a1, . . . , an) = [t]ψ′(a′1, . . . , a

′
n), which yields

the equality ψ′(a1, . . . , an) = ψ′(a′1, . . . , a
′
n) by Proposition I.6.47.

Step 3: The operation φ is of the wanted form.
Using step 1 and 2 and the induction hypothesis, there exist x, y, z ∈M∗(k) with

φ = x+ [−n+1](y + [−1, . . . ,−n]z) = x+ [−n+1]y + [−1, . . . ,−n+1]ϵ
nz.

Renaming ϵnz = z′ ∈ M∗(k), it remains to show that y = 0. Since both the elements φ and
φ− [−n+1]y = x+ [−1, . . . ,−n+1]z

′ factorize through u, so does the operation [−n+1]y. Let
k ⊂ F be a field extension and let a1, . . . , an−1 ∈ F×. Furthermore let t be transcendental
over F . Then we have

[a1, . . . , an−1, t, t] = [a1, . . . , an−1, t,−1] ∈ KMW
n+1 (F (t))

and hence [t]y = [−1]y. Applying the residue map ∂tνt
now yields y = 0 since [−1]y is defined

over F .

II.4 Shifts for Operations on Milnor-Witt K-theory

Now that we computed the operations on the generators of Milnor-Witt K-theory, we follow
Garrel’s strategy from [42] and measure how an operation changes by adding or subtracting
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generators in order to understand all operations. For this we will now restrict to N-graded
homotopy algebrasM∗. For these we consider the separated filtration given by FdM∗ =M≥d,
where d ≥ 0. Note that being N-graded in particular gives us that the filtration pieces FdM∗
define ideals in M∗. Furthermore the filtration endows the M∗(k)-module Opsp(K

MW
n ,M∗)

with a separated filtration given by

Fd Opsp(K
MW
n ,M∗) = Opsp(K

MW
n , FdM∗)

for all non-negative integers d.

Remark II.4.1. Even though it is per se not an example of an N-graded homotopy algebra,
all of the following arguments will also work for the Witt ring W together with the separated
filtration given by powers of the fundamental ideal I and the usual residue and specialization
morphisms, as for example found in [36]. Here the KMW

∗ -action is the multiplication action
after passing to the quotient KW

∗
∼= I∗.

Recall that n is a positive integer. In the following proposition, which corresponds to Propo-
sition 3.1 of [42], we will make use of the n-th negative shift of a filtration, which is commonly
denoted by [−n]. We stress this to ensure that the reader does not confuse this shift with
a symbol of Milnor-Witt K-theory. Furtermore, let us note that we will define two kinds of
shifts for operations, a positive one and a negative one, but we will define them at the same
time using the symbol “±”.

Proposition II.4.2. For all N-graded homotopy algebras M∗, there exist unique morphisms

∂± : Opsp(K
MW
n ,M∗) → Opsp(K

MW
n ,M∗)[−n] = Opsp(K

MW
n ,M∗−n)

of filtered M∗(k)-modules, such that

φ(x± [a]) = φ(x)± [a]∂±(φ)(x)

for all φ ∈ Opsp(K
MW
n ,M∗), x ∈ KMW

n (F ), a ∈ (F×)n and all field extensions k ⊂ F .

Proof. Consider φ ∈ Opsp(K
MW
n ,M∗). Furthermore let k ⊂ F be a field extension, let

x ∈ KMW
n (F ) and let a ∈ (L×)n for some field extension F ⊂ L.

We set ψ(φ)±x ([a]) = φ(x± [a]), which yields an operation

ψ(φ)±x ∈ Opsp([−1, . . . ,−n],M∗)

defined over F . Theorem II.3.3 now gives ψ(φ)±x = [−1, . . . ,−n]ax + bx for some elements
ax, bx ∈M∗(F ). Since 0 ∈ [F×, . . . , F×] we have

φ(x) = φ(x± 0) = ψ(φ)±x (0) = 0 · ax + bx = bx.

Setting ∂±(φ)(x) = ax therefore does the job and also clarifies that ∂± is unique with the
wanted property. Furthermore, ∂± is by definition clearly a morphism of M∗(k)-modules. It
remains to verify that ∂± respects the respective filtrations. If φ ∈ Opsp(K

MW
n , FdM∗) for

some integer d, then for any element x ∈ KMW
n (F ) we have

φ(x± [a]) = φ(x)± [a]∂±(φ)(x) ∈ FdM∗(L)

for all a ∈ (L×)n. Hence ∂±(φ)(x) lives in Fd−nM∗(F ), which finishes the proof.
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We will usually denote ∂±(φ) by φ(±) and refer to them as positive and negative shifts of φ.
Let us record some useful examples, which correspond to Propositions 3.3 and 3.4 of [42]:

Proposition II.4.3. For all N-graded homotopy algebras M∗ and all y ∈ δnhM∗(k) we have

(i) λ0n · 1(±)
= 0 and λ1n · 1(±)

= λ0n · 1;

(ii) λln · y(+)
= λl−1

n · y for all integers l ≥ 2;

(iii) λln · y(−)
=

∑︁l−1
i=0(−1)l−(i+1)[−1]n(l−(i+1))λin · y for all integers l ≥ 2;

Proof. This is a direct consequence of Proposition II.2.3. For the convenience of the reader
we will nevertheless do the computations. Let k ⊂ F be a field extension, let x ∈ KMW

n (F )
and let a ∈ (F×)n. We have

λ0n · 1(x± [a]) = 1 = λ0n · 1(x) and λ1n · 1(x± [a]) = (x± [a]) · 1 = λ1n · 1(x)± [a] · 1,

which shows (i). Now let l ≥ 2. The computation

λln · y(x+ [a]) =
∑︂
i+j=l

λin(x)λ
j
n([a]) · y = (λln(x) + λl−1

n (x)[a]) · y = λln · y(x) + [a]λl−1
n · y(x)

shows claim (ii) and the computation

λln · y(x− [a]) =
∑︂
i+j=l

λin(x)λ
j
n(−[a]) · y = λln · y(x) + [a]

l−1∑︂
i=0

(−1)l−i[−1]n(l−i−1)λin · y(x)

using Proposition II.2.3 shows (iii) by rewriting the second summand as

[a]

l−1∑︂
i=0

(−1)l−i[−1]n(l−i−1)λin · y(x) = −[a]

l−1∑︂
i=0

(−1)l−(i+1)[−1]n(l−(i+1))λin · y(x).

We will now relate the two shifts to one another. In analogy to Proposition 3.2 of [42], we
obtain the following result.

Lemma II.4.4. Let φ ∈ Opsp(K
MW
n ,M∗) for some N-graded homotopy algebra M∗. Then

we have

(i) (φ(+))(−) = ϵn(φ(−))(+);

(ii) (φ(+))(+) ∈ Opsp(K
MW
n , δnhM∗);

(iii) φ(+) − φ(−) = [−1]n(φ(+))(−);
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Proof. Let φ ∈ Opsp(K
MW
n ,M∗), let k ⊂ F be a field extension, let x ∈ KMW

n (F ) and let
a, b ∈ (F×)n. We can compute φ(x+ [a]− [b]) in two ways. We get

φ(x+ [a]− [b]) = φ(x) + [a]φ(+)(x)− [b](φ(−)(x) + [a](φ(−))(+)(x))

by first applying the defining formula of ∂− and then the one of ∂+ and

φ(x+ [a]− [b]) = φ(x)− [b]φ(−)(x) + [a](φ(+)(x)− [b](φ(+))(−)(x))

if we use the other order. Hence we have

[a, b](φ(+))(−)(x)− [b, a](φ(−))(+)(x) = 0.

Using [b, a] = ϵn
2

[a, b] = ϵn[a, b] and choosing F = k(t, s) and a = t and b = s for some
transcendental elements t and s over k, we thus have (φ(+))(−) = ϵn(φ(−))(+) by Proposition
I.6.47, which shows (i). Similarly one gets

[a, b]δnh(φ
(+))(+)(x) = 0,

which then by Proposition I.6.47 yields that (φ(+))(+) ∈ Opsp(K
MW
n , δnhM∗) as claimed in

(ii). Finally, let us show (iii). Setting a = b, we get

φ(x) = φ(x)− [a]φ(−)(x) + [a](φ(+)(x)− [a](φ(+))(−)(x))

from the second formula above and therefore

[a]([−1]n(φ(+))(−)(x)− (φ(+) − φ(−))) = 0

by using that [a, a] = [a][−1]n. Choosing F = k(t) and ai = ti for some transcendental
elements t1, . . . , tn over k therefore once again completes the argument by Proposition I.6.47.

So the two shifts can in general not be applied independently of their order. This is different
from the situation in [42] and is an actual obstruction. As we will see in the next section, we
will eventually be able to commute them though.
We will also consider quotients of Opsp(K

MW
n ,M∗). For typographical reasons, we will occa-

sionally also denote operations respecting specialization maps from KMW
n to some N-graded

homotopy algebra M∗ by Opnsp(M∗). The following is our version of Proposition 7.8 of [42]:

Proposition II.4.5. For all N-graded homotopy algebras M∗ and for all non-negative inte-
gers d, the morphisms ∂± induce morphisms

Opnsp(M∗)/Opnsp(Fd+nM∗)
∂±
−−→ Opnsp(M∗)/Opnsp(FdM∗)

of M∗(k)/FdM∗(k)-modules whose kernels are M∗(k)/Fd+nM∗(k). In particular, the kernels
of ∂± are the submodule M∗(k) of constant operations.
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Proof. If φ,ψ ∈ Opnsp(M∗) are two operations whose images φ and ψ in the quotient by

Opnsp(Fd+nM∗) coincide, then we also have φ(±) = ψ(±) in Opnsp(M∗)/Opnsp(FdM∗) since ∂
±

maps Opnsp(Fd+nM∗) to Opnsp(FdM∗) by Proposition II.4.2. Therefore ∂± is a well-defined.

Let φ ∈ Opnsp(M∗) with φ
(±) ∈ Opnsp(FdM∗). Furthermore let k ⊂ F be a field extension, let

a ∈ (F×)n and let x ∈ KMW
n (F ). We have

φ(x± [a]) = φ(x)± [a]φ(±)(x) = φ(x) mod Fd+nM∗(F )

and know that every element x ∈ KMW
n (F ) can be written as a sum and difference of elements

in [F×, . . . , F×]. Therefore we get

φ(x) = φ(0) mod Fd+nM∗(F )

by repeating the previous computation, so that φ ∈ M∗(k)/Fd+nM∗(k) is a constant opera-
tion. Since such elements certainly are in the kernel of ∂±, this shows the first claim.
Now let φ be in the kernel of ∂±. Furthermore let k ⊂ F be a field extension and let
x ∈ KMW

n (F ). Then we have φ(x) − φ(0) ∈ Fd+nM∗(F ) for all non-negative integers d, so
that φ(x) = φ(0) by the fact that the intersection

⋂︁
d≥0 Fd+nM∗(F ) is trivial. Since elements

of M∗(k) clearly are in the kernel of ∂±, we are done.

II.5 Computing the Operations

Using the previously defined shifts we finally start with computing operations. As in Propo-
sition 8.1 of [42], we will first deal with quotients with respect to the filtration and then lift
these computations using the separatedness of the filtration. As in the last section, we let n
be a positive integer.

Proposition II.5.1. For all N-graded homotopy algebras M∗ and all non-negative integers
d, the M∗(k)/FdM∗(k)-module Opnsp(M∗)/Opnsp(FdM∗) is generated by residue classes of the

λin · a for ni < d with a ∈ δnhM∗(k) if i ≥ 2.

Proof. We give a proof by induction on d ≥ 0. For d = 0 we have FdM∗ = M∗, so that the
quotient Opnsp(M∗)/Opnsp(F0M∗) is the trivial module over the zero ring. This is certainly
generated by the empty set.
Suppose that the statement is true for non-negative integers up to some integer d and let
φ ∈ Opnsp(M∗). We denote the image of φ under the quotient map

Opnsp(M∗) ↠ Opnsp(M∗)/Opnsp(Fd+1M∗)

by φ. Its positive shift φ(+) lies in Opnsp(M∗)/Opnsp(Fd+1−nM∗) and can hence by the in-

duction hypothesis be written as φ(+) =
∑︁

0≤i≤ d+1−n
n

λin · ai for some ai ∈M∗(k), which for

i ≥ 2 lie in δnhM∗(k). We now consider the operation

ψ = φ−
∑︂

0≤i≤ d+1−n
n

λi+1
n · ai ∈ Opnsp(M∗)
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which is well-defined since a1 has a representative from δnhM∗(k). Indeed, we can write

a1 = ((φ)(+))(+) −
(︂(︂ ∑︂

2≤i≤ d+1−n
n

λi+1
n · ai

)︂(+))︂(+)

,

so that Lemma II.4.4 yields δnh ·a1 = 0. Thus δnha1 = b for some element b ∈ Fd+1−nM∗(k).
Since δnh has degree 0, the multiplication δnh : M∗(k) →M∗(k) is a homomorphism of graded
rings so that in particular

δnh(M∗(k)) ∩ Fd+1−nM∗(k) = δnh(Fd+1−nM∗(k)).

Therefore we have b = δnhb
′ for some b′ ∈ Fd+1−nM∗(k) and hence δnh(a1 − b′) = 0. The

element a1 − b′ ∈ δnhM∗(k) is the wanted representative of a1. From now on we denote this
representative by a1.

By the definition of ψ and Proposition II.4.3 we have ψ
(+)

= 0, which yields ψ = a−1 for some
element a−1 ∈ M∗(k) according to Proposition II.4.5. Here a−1 denotes the residue class of

a−1 modulo FdM∗(k) considered as a constant operation. Thus φ =
∑︁

−1≤i≤ d+1−n
n

λi+1
n · ai

as wanted.

We are finally ready to improve Lemma II.4.4. Moreover, we clarify the relation between the
δnh-torsion elements and higher shifts.

Corollary II.5.2. For all N-graded homotopy algebras M∗ and all non-negative integers d,
we have

(i) (φ(+))(−) = (φ(−))(+) for all φ ∈ Opnsp(M∗)/Opnsp(FdM∗) and all odd n. In particular,

(φ(+))(−) = (φ(−))(+) holds for all operations φ ∈ Opnsp(M∗) independent of the parity
of n;

(ii) (φ(+))(−), (φ(−))(+) ∈ Opsp(K
MW
n , δnhM∗) for all operations φ ∈ Opsp(K

MW
n ,M∗).

(iii) φ(±) ∈ Opsp(K
MW
n , δnhM∗(k)) for all φ ∈ Opsp(K

MW
n , δnhM∗(k));

Proof. In light of Lemma II.4.4, all statements are only of interest to us in the case that
n is odd. The first part of (i) follows directly from the previous statement together with
Proposition II.4.3. Now for the second part, let φ ∈ Opnsp(M∗). Using the first part, the

difference (φ(+))(−) − (φ(−))(+) defines an element of Opnsp(FdM∗) for every non-negative
integer d and hence lies in the intersection

⋂︁
d≥0 Opnsp(FdM∗) = 0.

Let us now prove the second statement. Part (i) together with Lemma II.4.4 yields

ϵn(φ(−))(+) = (φ(+))(−) = (φ(−))(+)

so that we have

δnh(φ
(−))(+) = (1− ϵn)(φ(−))(+) = 0 = (1− ϵn)(φ(+))(−) = δnh(φ

(+))(−),

which is what we wanted to show.
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For (iii) let φ ∈ Opsp(K
MW
n , hM∗), let k ⊂ F be a field extension, let x ∈ KMW

n (F ) and let

a ∈ (F×)n. The operation φ(±) is defined via the equation

φ(x± [a]) = φ(x)± [a]φ(±)(x),

which gives us
±[a]φ(±)(x) = φ(x± [a])− φ(x) ∈ hM∗(F ).

Hence we have
[a](±h)φ(±)(x) = h(±[a])φ(±)(x) = 0,

which as seen so often yields hφ(±)(x) = 0 by Lemma I.6.47. In other words we have
φ(±) ∈ Opsp(K

MW
n , hM∗).

In particular, we may apply the two shifts independently of their order and can define
φ(+m,−n) as the operation φ shifted m times with respect to ∂+ and n times with respect to
∂−.
As mentioned before, the operations λln turn out to essentially generate all operations. To be
able to make the word “essentially” precise, we introduce the following operations following
Proposition 4.6 of [42]:

σl
n =

l∑︂
j=⌊ l

2 ⌋+1

(︃ ⌊ l−1
2 ⌋

j − ⌊ l
2⌋ − 1

)︃
[−1]n(l−j)λjn =

⌊ l−1
2 ⌋∑︂

j=0

(︃
⌊ l−1

2 ⌋
j

)︃
[−1]njλl−j

n

for all integers l ≥ 1 and we additionally set σ0
n = λ0n.

Remark II.5.3. Note that the transition matrix from the λln to the σl
n is an upper triangular

matrix with 1’s on the diagonal. Hence it is invertible and the modules of operations generated
by λ0n, . . . , λ

l
n and σ0

n, . . . , σ
l
n coincide. This can of course also be seen explicitly. Solving the

defining equation of σl
n for λln, we obtain

λln = σl
n −

⌊ l−1
2 ⌋∑︂

j=1

(︃
⌊ l−1

2 ⌋
j

)︃
[−1]njλl−j

n .

On the right hand side only λdn’s of lower degree than l show up, for which we can plug in
the same formula of lower degree. Although we have not checked in detail, we believe that
this yields the formula

λln =

l∑︂
j=2

(−1)j
(︃
⌊ l+j

2 ⌋
j

)︃
[−1]j−2σl+2−j

n .

Once again we need to know the shifts of these operations:

Proposition II.5.4. Let M∗ be an N-graded homotopy algebra and let y ∈ δnhM∗(k). Then
we have

(i) (σ0
n · 1)(±)

= 0 and (σ1
n · 1)(±)

= σ0
n · 1;
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(ii) (σl
n · y)(+)

= σl−1
n · y and (σl

n · y)(−)
= (σl−1

n − [−1]nσl−2
n ) · y for l ≥ 2 even;

(iii) (σl
n · y)(+)

= (σl−1
n + [−1]nσl−2

n ) · y and (σl
n · y)(−)

= σl−1
n · y for l ≥ 2 odd;

Proof. This is just a computation using Proposition II.4.3, which in particular already con-
tains part (i). Let us therefore focus on (ii) and (iii). Let l ≥ 2 be even and write l = 2d.
Then the operation σl

n · y is given by

σl
n · y =

2d∑︂
j=d+1

(︃
d− 1

j − d− 1

)︃
[−1]n(2d−j)λjn · y,

which yields

(σl
n · y)(+)

=
2d∑︂

j=d+1

(︃
d− 1

j − d− 1

)︃
[−1]n(2d−j)λj−1

n · y.

If l ≥ 2 is odd, we write it as l = 2d+ 1 and get

σl
n · y =

2d+1∑︂
j=d+1

(︃
d

j − d− 1

)︃
[−1]n(2d+1−j)λjn · y,

which results in

(σl
n · y)(+)

=

2d+1∑︂
j=d+1

(︃
d

j − d− 1

)︃
[−1]n(2d+1−j)λj−1

n · y.

For l = 2d ≥ 2 we directly get

(σl
n · y)(+)

=

2d∑︂
j=d+1

(︃
d− 1

j − d− 1

)︃
[−1]n(2d−j)λj−1

n · y =

2d−1∑︂
j=d

(︃
d− 1

j − d

)︃
[−1]n(2d−j−1)λjn · y,

which is exactly σl−1
n · y as written above. If l = 2d+ 1 ≥ 2 is odd, we need to compare

(σl
n · y)(+)

=

2d+1∑︂
j=d+1

(︃
d

j − d− 1

)︃
[−1]n(2d+1−j)λj−1

n · y =

2d∑︂
j=d

(︃
d

j − d

)︃
[−1]n(2d−j)λjn · y

with

2d∑︂
j=d+1

(︃
d− 1

j − d− 1

)︃
[−1]n(2d−j)λjn · y + [−1]

2d−1∑︂
j=d

(︃
d− 1

j − d

)︃
[−1]n(2d−j−1)λjn · y.

Now these two terms agree by the standard recurrence relation for binomial coefficients. The
two formulas for the negative shifts can be shown similarly, although we want to remark that
this case is more painful.

These computations of shifts will be used freely from now on. We will form infinite sums of
our operations and hence need to know that this is well-defined. As in Proposition 4.7 of
[42], the key is that these sums become finite whenever evaluated:
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Proposition II.5.5. Let M∗ be an N-graded homotopy algebra. For all elements y of

δnhM∗(k), all field extensions k ⊂ F and all elements x ∈ KMW
n (F ), we have σl

n · y(x) = 0
for all but finitely many l ≥ 0.

Proof. Let M∗ be an N-graded homotopy algebra, let y ∈ δnhM∗(k), let k ⊂ F be a field
extension and let x ∈ KMW

n (F ). Then x can be written as

x = [a1] + . . .+ [ar]− [b1]− . . .− [bs]

for some elements a1, . . . , ar, b1, . . . , bs ∈ (F×)n and some non-negative integers r and s. We
claim that σl

n · y(x) = 0 for all l ≥ 2max(r, s) + 1.
First note that we may assume r = s by adding or subtracting [1]n = 0 enough times. We
now prove the claim by induction on r ≥ 0. If r = 0, we have x = 0 and hence clearly
σl
n · y(x) = 0 for all l ≥ 1.

Let us now assume that the claim is true for all non-negative integers up to some r − 1. We
consider an element of the form

x = [a1] + . . .+ [ar]− [b1]− . . .− [br]

which we will also write as x = x′ + [ar]− [br]. Using Proposition II.5.4 we now get that

σl
n · y(x) = σl

n · y(x′) + [ar](σ
l
n · y)(+)

(x′)− [br](σ
l
n · y)(−)

(x′) + [ar, br](σ
l
n · y)(+,−)

(x′)

is some combination of elements of the form σd
n · y(x′) with d ≥ l − 2 and therefore vanishes

if l ≥ 2r + 1 by the induction hypothesis.

We define a filtration on M∗(k)
2 × δnhM∗(k)

N\{0,1} via taking

Fd(M∗(k)
2 × δnhM∗(k)

N\{1,2}) = {(al)l≥0 | al ∈ Fmax(d−nl,0)M∗(k) for all l ≥ 0}

to be the d-th piece of the filtration. This allows us to present our second main result, which
corresponds to Theorem 4.9 of [42].

Theorem II.5.6. For all N-graded homotopy algebras M∗ and all positive integers n, the
two maps

f : M∗(k)
2 × δnhM∗(k)

N\{0,1} → Opsp(K
MW
n ,M∗), (al)l≥0 ↦→

∑︂
l≥0

σl
n · al

and

g : Opsp(K
MW
n ,M∗) →M∗(k)

2 × δnhM∗(k)
N\{0,1}, φ ↦→ (φ(+⌊ l+1

2 ⌋,−⌊ l
2 ⌋)(0))l≥0

are mutually inverse isomorphisms of filtered M∗(k)-modules.

Proof. First note that the map f is well-defined by the previous Proposition, and that g
is well-defined by Corollary II.5.2. Furthermore, these two maps are clearly morphisms of
M∗(k)-modules which preserve the respective filtrations since σl

n takes values in FlM∗ for non-
negative integers l and each application of ∂± shifts the filtration by n as seen in Proposition
II.4.2.
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Next we show that f is a right inverse of g. Let (al)l≥0 ∈ M∗(k)
2 × δnhM∗(k)

N\{0,1}. Note
that by Proposition II.4.5, we can pretend that f((al)l≥0) is a finite sum to compute its
image under the map g. If d is even, we claim that

(f((al)l≥0))
(+⌊ d+1

2 ⌋,−⌊ d
2 ⌋) =

⎛⎝∑︂
l≥0

σl
n · al

⎞⎠(+⌊ d+1
2 ⌋,−⌊ d

2 ⌋)

=
∑︂
l≥0

σl
n · ad+l

according to Proposition II.5.4. Here we apply ∂(+,−) multiple times. To see that the outcome
is as claimed, first apply ∂+ if l is even, and ∂− first is l is odd, where we make use of Corollary
II.5.2 to choose the desired order of ∂+ and ∂−. Then Proposition II.5.4 directly yields the
result. If d is odd, we simply need to compute the positive shift of this operation, which by
the same Proposition is

σ0
n · ad + σ1

n · ad+1 + (σ2
n + [−1]σ1

n) · ad+2 + σ3
n · ad+3 + (σ4

n + [−1]σ3
n) · ad+4 + . . .

Plugging in 0 in both cases hence gives g(f((al)l≥0)) = (al)l≥0 as wanted.
Finally we show that the kernel of g is trivial. Let φ ∈ ker(g), in other words we have

φ(+⌊ l+1
2 ⌋,−⌊ l

2 ⌋)(0) = 0 for all non-negative integers l. By Proposition II.5.1 and the definition

of the operations σl
n, we have φ =

∑︁d−1
i=−1 σ

i+1
n · ai for some a0, . . . , ad−1 ∈M∗(k)/FdM∗(k),

where we consider φ modulo Opsp(K
MW
n , FdM∗). Therefore we get

al = φ(+⌊ l+1
2 ⌋,−⌊ l

2 ⌋)(0) = 0 modulo FdM∗(k)

for all 0 ≤ l ≤ d− 1. Thus all the ai live in FdM∗(k). Since this is true for all non-negative
integers d and the filtration (FdM∗(k))d≥0 is separated, we have φ = 0.

Corollary II.5.7. For every integer m, the KM
∗ (k)-module Opsp(K

MW
n ,KM

≥m) is given by

1∏︂
l=0

σl
n ·KM

≥m−nl(k)×
∏︂
l≥2

σl
n · δn2K

M
≥m−nl(k).

In particular we have that the abelian group Opsp(K
MW
n ,KM

m ) is given by∏︂
min(m

n ,1)≥l≥0

σl
n ·KM

m−nl(k)×
∏︂

m
n ≥l≥2

σl
n · δn2K

M
m−nl(k)

Corollary II.5.8. For every integer m, the KM
∗ (k)/2-module Opsp(K

MW
n ,KM

≥m/2) is given
by ∏︂

l≥0

σl
n ·KM

≥m−nl(k)/2.

In particular the abelian group Opsp(K
MW
n ,KM

m/2) is given by∏︂
m
n ≥l≥0

σl
n ·KM

m−nl(k)/2.
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Via Remark II.4.1 we also have:

Corollary II.5.9. For every integer n, the W (k)-module Opsp(K
MW
n , Im) is given by∏︂

l≥0

σl
n · Im−nl(k).

Based on these corollaries and the pullback square of Milnor-Witt K-theory, we can circum-
vent the assumption that the homotopy algebras we work with are N-graded and also get the
operations on Milnor-Witt K-theory.

Corollary II.5.10. For all integers m, the abelian group Opsp(K
MW
n ,KMW

m ) is given by

1∏︂
l=0

σl
n ·KMW

m−nl(k)×
∏︂
l≥2

σl
n · δnhK

MW
m−nl(k).

Proof. The pullback diagram

KMW
m KW

m

KM
m KM

m/2

gives rise to the pullback diagram

Opsp(K
MW
n ,KMW

m ) Opsp(K
MW
n ,KW

m )

Opsp(K
MW
n ,KM

m ) Opsp(K
MW
n ,KM

m/2)

of operations. By the previous Corollaries, it therefore suffices to show that∏︁1
l=0 σ

l
n ·KMW

m−nl(k)×
∏︁

l≥2 σ
l
n · δnhK

MW
m−nl(k)

∏︁
l≥0 σ

l
n ·KW

n−ml(k)

∏︁1
l=0 σ

l
n ·KM

m−nl(k)×
∏︁

m
n ≥l≥2 σ

l
n · δn2K

M
m−nl(k)

∏︁
m
n ≥l≥0 σ

l
n ·KM

m−nl(k)/2

is a pullback square, which is clear by the fact that pullbacks and products commute.

II.6 Garrel’s and Vial’s Operations, and Operations in
Non-positive Degree

Now that we understand operations on Milnor-Witt K-theory, let us reprove the known results
on operations on Milnor K-theory by Vial [96] and Witt K-theory by Garrel [42]. Let r be a
positive integer. Given some further integers sid indexed by a subset {i1, . . . , ij} ⊂ {1, . . . , r},
we denote by e(sid ) the number of even and by o(sid ) the number of odd integers among

(sid) = (si1 , . . . , sij ).
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Lemma II.6.1. Let n be a positive integer, let M∗ be an N-graded homotopy algebra and let
φ ∈ Opsp(K

MW
n ,M∗). Then we have

φ
(︂
x+ h

r∑︂
i=1

(−1)si [ai]
)︂
=φ(x) +

r∑︂
j=1

hj
∑︂

1≤i1<...<ij≤r

(−1)
∑︁j

d=1sid

j∏︂
d=1

[aid ]φ
(+e(sid ),−o(sid ))(x)

for all x ∈ KMW
n (F ), a1, . . . , ar ∈ (F×)n, all field extensions k ⊂ F and all positive integers

r and s1, . . . , sr.

Proof. We give a proof by induction on r ≥ 1. Let k ⊂ F be a field extension and let
x ∈ KMW

n (F ). If a1, . . . , an ∈ F×, then

φ(x± h[a1, . . . , an]) = φ(x± [a21, a2, . . . , an]) = φ(x)± [a21, a2, . . . , an]φ
(±)(x)

= φ(x)± h[a1, . . . , an]φ
(±)(x),

which clarifies the r = 1 case. Now suppose the statement is true for some positive integer r
and let a1, . . . , ar+1 ∈ (F×)n. Then we have

φ
(︂
x+ h

r+1∑︂
i=1

(−1)si [ai]
)︂
= φ

(︂
x+ h

r∑︂
i=1

(−1)si [ai]
)︂
± h[ar+1]φ

(±)
(︂
x+ h

r∑︂
i=1

(−1)si [ai]
)︂
.

Using the induction hypothesis for both summands and regrouping everything clearly yields
the claimed formula.

We denote by σl
n · y the operations on the quotient KMW

n /hKMW
n induced by σl

n · y if they
are well-defined. Since the isomorphism KMW

n /hKMW
n → KW

n (∼= In) maps [a] + hKMW
n to

−{a} (or further to −⟨⟨a⟩⟩), the operation σl
n ·y corresponds to the operation gln ·y of Garrel,

but does not coincide with it under the above isomorphism due to the change of sign. The
operations gln · y are defined via certain operations fdn · y, which are the ones corresponding
to our operations of the form λdn · y. We can also define the operations fdn · y on the level
of Milnor-Witt K-theory, by mapping [a] to (1 + [a]t)−1 · y instead of (1 + [a]t) · y and then
repeating the proof of Proposition II.2.1. Then one obtains the relation

f ln · y = (−1)l
l−1∑︂
i=0

(︃
l − 1

i

)︃
[−1]niλl−i

n · y

for all positive integers l and n by a simple induction. Alternatively we could also use Remark
7.3 of [42]. The same formula also holds if one starts with λln · y and wishes to express it via
operations of the form fdn · y. This allows us to go back and forth between our operations
and the ones of Garrel.

Theorem II.6.2. For all positive integers n and all N-graded homotopy algebras M∗, we
have

Opsp(I
n,M∗) ∼=

{︂∑︂
l≥0

σl
n · al | (al)l≥0 ∈M∗(k)× hM∗(k)

N\{0}
}︂

as a filtered M∗(k)-module. In particular we recover Theorem 4.9 of [42] if M∗ = W or
M∗ = KM

∗ /2
∼= H∗(−, µ2).
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Proof. We need to determine those operations φ ∈ Opsp(K
MW
n ,M∗) satisfying

φ(x+ hKMW
n (F )) = φ(x)

for all x ∈ KMW
n (F ) and all field extensions k ⊂ F . By the previous Lemma and Propo-

sition II.5.4, operations of the form
∑︁

l≥0 σ
l
n · al with (al)l≥0 ∈ M∗(k) × hM∗(k)

N\{0} do
exactly that. Therefore it remains to show that these are the only such operations. For
this we let φ ∈ Opsp(K

MW
n ,M∗) with φ(x + hKMW

n (F )) = φ(x) for all x ∈ KMW
n (F ) and

all field extensions k ⊂ F . Picking ±h[b1, . . . , bn] ∈ hKMW
n (F ), Lemma II.6.1 tells us that

±h[b1, . . . , bn]φ(±)(x) = 0. Thus we have hφ(±)(x) = 0 due to Lemma I.6.47, which in
light of Theorem II.5.6 and Proposition II.5.4 means that φ =

∑︁
l≥0 σ

l
n · al with sequence of

coefficients from M∗(k)× hM∗(k)
N\{0} as claimed.

Corollary II.6.3. For all N-graded homotopy algebras M∗ we have

Opsp(K
MW
0 ,M∗) = HomSet(Z,M∗)×

{︂∑︂
l≥0

σl
1 · al | (al)l≥0 ∈M∗(k)× hM∗(k)

N\{0}
}︂

as a filtered M∗(k)-module.

Proof. Since KMW
0

∼= GW ∼= Z× I by splitting off the rank, we get

Opsp(K
MW
0 ,M∗) = Opsp(Z,M∗)×Opsp(I,M∗) = HomSet(Z,M∗)×Opsp(I,M∗).

The previous theorem now yields the desired formula.

Corollary II.6.4. For all negative integers n and all N-graded homotopy algebras M∗, we
have

Opsp(K
MW
n ,M∗) = HomSet(Z/2Z,M∗)×

{︂∑︂
l≥0

σl
1 · al | (al)l≥0 ∈M∗(k)× hM∗(k)

N\{0}
}︂

as a filtered M∗(k)-module.

Proof. For negative n we have KMW
n

∼= W = GW/h. Since we know the operations on
GW ∼= KMW

0 by the previous corollary and since h gets mapped to (2, [−1]) under the
isomorphism GW ∼= Z× I ∼= Z×KMW

1 /h, we get that Opsp(K
MW
n ,M∗) is the product of

{φ ∈ HomSet(Z,M∗) | φ(x) = φ(x+ 2Z) for all x ∈ Z} = HomSet(Z/2,M∗}

and the group of those operations φ ∈ Opsp(K
MW
1 /h,M∗) satisfying

φ(x) = φ(x+ [−1]KMW
0 (F )/h)

for all x ∈ KMW
1 (F )/h and all field extensions k ⊂ F . Now we determine the latter group.

Let φ be an element of it and let k ⊂ F be a field extension. Furthermore, consider a
generator ⟨a⟩ ∈ KMW

0 (F )/h. Then we have ±[−1]⟨a⟩ = ±([−a]− [a]), which gives us

φ(x) = φ(x± ([−a]− [a])) = φ(x)± [−a]φ(±)(x)∓ [a]φ(∓)(x)
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for all via Proposition II.4.2 and thus

±[−a]φ(±)(x) = ±[a]φ(∓)(x)

for all x ∈ KMW
1 (F )/h. Setting a = 1, this yields φ(±)(x) ∈ τ2

(hM∗(F )), where we denote

by τn the action of [−1]n−1 and make use of the previous corollary. As in Theorem II.6.2
we thus have φ =

∑︁
l≥0 σ

l
n · al where the sequence of coefficients (al)l≥0 lives in M∗(k) ×

τ2
(hM∗(k))

N\{0}. On the other hand, if φ =
∑︁

l≥0 σ
l
n·al with sequence of coefficients (al)l≥0 ∈

M∗(k)× τ2
(hM∗(k))

N\{0}, then Proposition II.5.4 together with [−a] = [a] + [−1] + η[a,−1]
for all a ∈ F× and all field extensions k ⊂ F yields

±[−a]φ(±)(x) = ±[a]φ(∓)(x)

for all x ∈ KMW
1 (F )/h. In other words, such φ is in the abelian group which we are interested

in. This finishes the proof.

Let us now deal with Vial’s operations. For this we will first derive a formula which explains
what happens if we add elements of the form ±η[a, b, c] before applying an operation, at least
when η acts trivially on M∗. Note that such M∗ are equivalent to Rost’s notion of cycle
modules [86] with ring structure, see Remark 2.50 of [75] or Section 12 of [40] together with
Theorem 4.0.1 of [40].

Lemma II.6.5. Let n be a positive integer, let M∗ be a cycle module with ring structure and
let φ ∈ Opsp(K

MW
n ,M∗). Then we have

φ(x± η[a, b, c1, . . . , cn−1]) = φ(x)− [a, b, c1, . . . , cn−1][−1]n−1φ(∓2)(x)

for all x ∈ KMW
n (F ), a, b, c1, . . . , cn−1 ∈ F× and all field extensions k ⊂ F .

Proof. Let k ⊂ F be a field extension, let a, b, c1, . . . , cn−1 ∈ F×, x ∈ KMW
n (F ) and let

φ ∈ Opsp(K
MW
n ,M∗). We set c = (c1, . . . , cn−1). Then we have

η[a, b, c] = [ab, c]− [a, c]− [b, c]

which gives us

φ(x± η[a, b, c]) = φ(x)± [ab, c]φ(±)(x)∓ [a, c]φ(∓)(x)∓ [b, c]φ(∓)(x)

− [ab, c, a, c]φ(+,−)(x)− [ab, c, b, c]φ(+,−)(x) + [a, c, b, c]φ(∓2)(x)

± [ab, c, a, c, b, c]φ(±1,∓2)(x)

(⋆)

by applying Proposition II.4.2 various times. Note that since η acts trivially on M∗ and that
hence the action of h = 2 + η[−1] and 2 agree, Corollory II.5.2 tells us that we are working
with 2-torsion modules after shifting twice. Thus the second line of (⋆) is given by

−(2[a, b, c][−1]n−1 + [−1]n([a, c] + [b, c]))φ(+,−)(x) + [a, b, c][−1]n−1φ(∓2)(x),

and using Proposition II.4.4 (iii), we can replace the first line of the right hand side of (h⋆)
by

φ(x) + [−1]n([a, c] + [b, c])φ(+,−)(x).
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Therefore we have

φ(x± η[a, b, c]) = φ(x)− 2[a, b, c][−1]n−1φ(+,−)(x) + [a, b, c][−1]n−1φ(∓2)(x)

± 2[a, b, c][−1]n−1[−1]nφ(±1,∓2)(x).

Proposition II.4.4 (iii) now gives us

±2[a, b, c][−1]n−1[−1]nφ(±1,∓2)(x) = 2[a, b, c][−1]n−1φ(+,−)(x)

− 2[a, b, c][−1]n−1φ(∓2)(x))

which yields φ(x± η[a, b, c]) = φ(x)− [a, b, c][−1]n−1φ(∓2)(x) as claimed.

As also observed by Garrel in [42] with respect to the mod 2 case, Vial forgot to explicitly
mention that his operations KM

n → M∗ are uniformly bounded. Here M∗ is a cycle module.
Such operations by definition map to M≤m for some integer m, but as we have already
observed with respect to operations on Milnor-Witt K-theory, there are operations which are
not bounded in this sense. Therefore we will be able to find more operations than are listed
in [96]. From now on we denote the action of [−1]n−1 on some homotopy module M∗ by τn.
As for the operations on Witt K-theory, we denote by σl

n · y the operations on the quotient
KM

n = KMW
n /ηKMW

n+1 induced by σl
n · y if they are well-defined.

Theorem II.6.6. For all positive integers n and all cycle modules with ring structure M∗,
we have

Opsp(K
M
n ,M∗) =

{︂∑︂
l≥0

σl
n · al | (al)l≥0 ∈M∗(k)

2 ×
δn2

(︂
τnM∗(k)

)︂N\{0,1}}︂
as a filtered M∗(k)-module. In particular we recover Theorem 5.5 of [96].

Proof. We need to find the operations φ ∈ Opsp(K
MW
n ,M∗) satisfying

φ(x+ ηKMW
n+1 (F )) = φ(x)

for all x ∈ KMW
n (F ) and all field extensions k ⊂ F . Since every element of ηKMW

n+1 (F ) for
a field extension k ⊂ F can be written as a sum of elements of the form ±η[a1, . . . , an+1],
operations of the form

∑︁
l≥0 σ

l
n ·al with coefficients (al)l≥0 ∈M∗(k)

2×
δn2

(τn−1
M∗(k))

N\{0,1}

do that by the previous Lemma and Proposition II.5.4. Here the δn2-torsion comes from the
fact that h = 2 + η[−1] becomes 2 in the quotient KM

∗ = KMW
∗ /ηKMW

∗+1 .
Now we show that these are the only such operations. Let φ ∈ Opsp(K

MW
n ,M∗) with

φ(x + ηKMW
n+1 (F )) = φ(x) for all x ∈ KMW

n (F ) and all field extensions k ⊂ F . Picking
±η[a1, . . . , an+1], Lemma II.6.5 gives us that

[a1, . . . , an+1][−1]n−1φ(∓2)(x) = 0.

Therefore we have [−1]n−1φ(∓2)(x) = 0 due to Lemma I.6.47, which by Theorem II.5.6 and
Proposition II.5.4 means that φ =

∑︁
l≥0 σ

l
n · al with coefficients (al)l≥0 from the product

M∗(k)
2 ×

δn2
(τnM∗(k))

N\{0,1}.
For the “in particular part”, note that it does not matter whether we consider linear combi-
nations of the operations λln or σl

n when working with uniformly bounded operations. This
follows from Remark II.5.3.
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We can of course also compute operations KW
n

∼= In → KMW
m and KM

n → KMW
m analogously

as we did for Corollary II.5.10. Together with Proposition I.6.50 and the Corollaries of
Theorem II.5.6 this yields the following table on the level of sheaves:

Theorem II.6.7. For all positive integers n, the following table gives a complete list of
operations of degree (n,m) between Milnor, Witt and Milnor-Witt K-theory

A B HomShv(SmNis
k )(A,B)

KM
n KM

m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
min(m

n ,1)≥l≥0

KM
m−nl(k)×

∏︂
m
n≥l≥2

δn2
(τnK

M
m−nl(k))

}︂
KM

n KW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

1∏︂
l=0

KW
m−nl(k)×

∏︂
l≥2

δn2
(τnK

W
m−nl(k))

}︂
KM

n KMW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

1∏︂
l=0

KMW
m−nl(k)×

∏︂
l≥2

δn2
(τnK

MW
m−nl(k))

}︂
KW

n KM
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈ KM

m (k)×
∏︂

m
n≥l≥1

2K
M
m−nl(k)

}︂
KW

n KW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
l≥0

KW
m−nl(k)

}︂
KW

n KMW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈ KMW

m (k)×
∏︂
l≥1

hK
MW
m−nl(k)

}︂
KMW

n KM
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
min(m

n ,1)≥l≥0

KM
m−nl(k)×

∏︂
m
n≥l≥2

δn2K
M
m−nl(k)

}︂
KMW

n KW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

∏︂
l≥0

KW
m−nl(k)

}︂
KMW

n KMW
m

{︂∑︂
l≥0

σl
n · al

⃓⃓⃓
(al)l ∈

1∏︂
l=0

KMW
m−nl(k)×

∏︂
l≥2

δnhK
MW
m−nl(k)

}︂
,

where τn is the action of [−1]n−1 on the target.

Since algebraic K-theory agrees with Milnor K-theory in degree 1, Theorem II.6.6 also gives
us all operations KQ

1 → KQ
∗ and KQ

1 → KQ
m for arbitrary m. Let us record what our results

yield for higher degrees.

Remark II.6.8. If n ≥ 2, we still obtain a large set of operations KQ
n → KQ

∗ and KQ
n → KQ

m.
There is the so-called Suslin-Hurewicz map KQ

n → KM
n , which can be defined using the

A1-fiber sequence
An+1 \ {0} → BGLn → BGLn+1,

coming from the canonical inclusion GLn ↪→ GLn+1, see [12], which directly yields a map
on the level of sheaves. On the level of fields, this map had already been defined by Suslin
before [91]. Let us quickly sketch his construction for a field F :
We take the definition KQ

n (F ) = πn(BGL(F )+) and apply the Hurewicz map. The target is
then the homology of BGL(F )+, but the plus construction does not change the homology, so
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that we actually get a map to Hn(BGL(F )). Here we are in the stable range, so that this co-
incides with Hn(BGLn(F )). Suslin shows that the quotient Hn(BGLn(F ))/Hn(BGLn−1(F ))
is given by Milnor K-theory, which then yields the desired map KQ

n (F ) → KM
n (F ) by com-

posing with the quotient map

Hn(BGLn(F )) ↠ Hn(BGLn(F ))/Hn(BGLn−1(F )) ∼= KM
n (F ).

It should be possible to verify that this map on fields extends to a map on sheaves, but this
has not been done as far as we know. Therefore we will take the first definition and consider
the map KQ

n → KM
n .

Theorem II.6.6 now also yields all operations KQ
n → KQ

∗ factorizing over the Suslin-Hurewicz
map. Note that if we were only interested in uniformly bounded ones, then Vial’s afore-
mentioned results suffice here. Either way this does of course raise the question what the
image of the Suslin-Hurewicz map is. On page 370 of [91] Suslin conjectured that said image
is given by (n − 1)!KM

n (F ) for any infinite field F . He also showed that the n = 3 case of
this conjecture is equivalent to the Milnor conjecture on quadratic forms in degree 3, thus
justifying the interest in his conjecture. For more on the current state of this still widely
open conjecture, we refer the reader to [12], where the authors also prove the case n = 5
for fields of characterstic not 2 or 3. Under the same assumptions the n = 4 case was more
recently proven by Röndigs [85].
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Géométrie Algébrique du Bois-Marie 1963–1964 (SGA 4), Dirigé par M. Artin, A.
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[38] A. D. Elmendorf, I. Kř́ıž, M. A. Mandell, and J. P. May. Modern foundations for stable
homotopy theory. In Handbook of algebraic topology, pages 213–253. North-Holland,
Amsterdam, 1995.

[39] Jean Fasel. Lectures on Chow-Witt groups. In Motivic homotopy theory and refined
enumerative geometry, volume 745 of Contemp. Math., pages 83–121. Amer. Math.
Soc., [Providence], RI, [2020]©2020.

[40] Niels Feld. Morel homotopy modules and Milnor-Witt cycle modules. Doc. Math.,
26:617–659, 2021.

[41] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory, volume Band
35 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and
Related Areas]. Springer-Verlag New York, Inc., New York, 1967.

[42] Nicolas Garrel. Witt and cohomological invariants of Witt classes. Ann. K-Theory,
5(2):213–248, 2020.

103

https://www.math.uni-duesseldorf.de/~kammeyer/ba-dratschuk.pdf
https://www.math.uni-duesseldorf.de/~kammeyer/ba-dratschuk.pdf


[43] Sergei I. Gelfand and Yuri I. Manin. Methods of homological algebra. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin, second edition, 2003.

[44] Paul G. Goerss and John F. Jardine. Simplicial homotopy theory, volume 174 of
Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
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[59] André Joyal. Notes on quasi-categories. https://www.math.uchicago.edu/~may/IMA/
Joyal.pdf, 2008.

104

https://mathoverflow.net/q/29653
https://mathoverflow.net/q/29653
https://hoyois.app.uni-regensburg.de/papers/nisnevich.pdf
https://hoyois.app.uni-regensburg.de/papers/allagree.pdf
https://hoyois.app.uni-regensburg.de/papers/allagree.pdf
https://www.math.uchicago.edu/~may/IMA/Joyal.pdf
https://www.math.uchicago.edu/~may/IMA/Joyal.pdf


[60] K. Arun Kumar. On the Motivic spectrum BO and Hermitian K-theory. PhD
thesis, Universität Osnabrück. https://osnadocs.ub.uni-osnabrueck.de/handle/

urn:nbn:de:gbv:700-202011243776, 2020.

[61] Marc Levine. A comparison of motivic and classical stable homotopy theories. J.
Topol., 7(2):327–362, 2014.

[62] Jacob Lurie. Higher topos theory, volume 170 of Annals of Mathematics Studies. Prince-
ton University Press, Princeton, NJ, 2009.

[63] Jacob Lurie. Kerodon. https://kerodon.net/, 2024.

[64] Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[65] Akhil Mathew. Descent and nilpotence in algebraic K-theory. https://math.

uchicago.edu/~amathew/YTMlectures.pdf, 2015.

[66] J. P. May. A concise course in algebraic topology. Chicago Lectures in Mathematics.
University of Chicago Press, Chicago, IL, 1999.

[67] J. P. May and K. Ponto. More concise algebraic topology. Chicago Lectures in Mathe-
matics. University of Chicago Press, Chicago, IL, 2012. Localization, completion, and
model categories.

[68] Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture notes on motivic coho-
mology, volume 2 of Clay Mathematics Monographs. American Mathematical Society,
Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006.

[69] Seán McGarraghy. Exterior powers of symmetric bilinear forms. Algebra Colloq.,
9(2):197–218, 2002.

[70] John Milnor. Algebraic K-theory and quadratic forms. Invent. Math., 9:318–344,
1969/70.

[71] Fabien Morel. An introduction to A1-homotopy theory. In Contemporary developments
in algebraic K-theory, ICTP Lect. Notes, XV, pages 357–441. Abdus Salam Int. Cent.
Theoret. Phys., Trieste, 2004.

[72] Fabien Morel. On the motivic π0 of the sphere spectrum. In Axiomatic, enriched and
motivic homotopy theory, volume 131 of NATO Sci. Ser. II Math. Phys. Chem., pages
219–260. Kluwer Acad. Publ., Dordrecht, 2004.

[73] Fabien Morel. Sur les puissances de l’idéal fondamental de l’anneau de Witt. Comment.
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