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Abstract

Quantum repeaters are central components in quantum networks placed between two
parties to divide the total communication distance into shorter sections. Through lo-
cal operations, the quantum repeaters enable the end nodes to be entangled without
them interacting directly with each other. Holding an entangled state, the parties
can perform quantum key distribution to share a secret key. To increase the en-
tanglement generation rate, and therefore, the secret key rate between the parties,
memories can be added to the quantum repeater. Those memories allow for paral-
lelizing the entanglement distribution attempts, a technique called multiplexing.

In many real-world applications, multipartite entanglement between N parties is
needed. Therefore, in this work, we generalize the concept of bipartite multiplex-
ing to multipartite multiplexing in multipartite quantum repeaters, in the following
called quantum routers. In a first step, we investigate the underlying multipartite
matching problem, which resembles a problem already known in graph theory. The
matching defines how the qubits are optimally combined so that the resulting en-
tangled states are of high fidelity. The fidelity is influenced by the storage time —
the longer a qubit is stored, the more the fidelity drops. By considering different
matching strategies, we were able to maximize the fidelity and the secret key rate.
Our results show that it is optimal to combine the freshest qubits with the highest
fidelities first. Moreover, qubits whose fidelity has already dropped under a cer-
tain threshold should be removed from the memories. We further analyze how the
entanglement generation rate depends on the size of the quantum router network.
Therefore, we derive a general expression that describes the entanglement genera-

tion rate as a function of the number of parties and the available memories per party.

Our results provide a basis for planning and scaling quantum router networks
with a central quantum router. They make it possible to estimate in advance which
entanglement rates can be achieved for a given number of parties and how these
can be increased by adding quantum memories. At the same time, the matching
strategies we investigate offer the possibility of minimizing the influence of quantum

memories and maximizing the secret key rate.
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Zusammenfassung

Quantenrepeater sind zentrale Komponenten in Quantennetzwerken, die dazu die-
nen, verschrankte Zustande iiber groflere Distanzen zwischen zwei Endknoten, den
Parteien, zu verteilen. Die Quantenrepeater sind so zwischen den Parteien po-
sitioniert, dass sie die Gesamtstrecke in kiirzere Abschnitte unterteilen. Durch
lokale Operationen ermoglichen sie eine Verschrankung der beiden Endknoten, ohne
dass diese direkt miteinander interagieren. Mithilfe dieser Verschrankungen konnen
die Parteien einen sicheren Quantenschliisselaustausch durchfithren. Um mehr ver-
schrankte Zustande pro Versuch zu erzeugen, konnen dem Repeater Quantenspei-
cher hinzugefiigt werden. Diese ermoglichen die Parallelisierung der Versuche zur

Verschriankungsverteilung, ein Verfahren, das als Multiplexing bezeichnet wird.

In vielen praktischen Anwendungen wird eine multipartite Verschrinkung zwi-
schen N Parteien benttigt. In dieser Arbeit verallgemeinern wir daher das Konzept
des bipartiten Multiplexings auf das multipartite Multiplexing in multipartiten Quan-
tenrepeatern, im folgenden Quantenrouter genannt. Als ersten Schritt untersuchen
wir das dabei entstehende Problem des multipartiten Matchings, das in ahnlicher
Form bereits aus der Graphentheorie bekannt ist. Das Matching bestimmt, wie
die Qubits im Quantenrouter optimal kombiniert werden, sodass die resultierenden
verschrankten Zustande moglichst hohe Zustandsgiiten aufweisen. Diese Giite wird
durch die Speicherzeiten der Qubits beeinflusst — je langer ein Qubit gespeichert ist,
desto starker nimmt seine Giite ab. Durch verschiedene Matchingstrategien konnten
wir die Giite und die daraus resultierende geheime Schliisselrate maximieren. Unsere
Ergebnisse zeigen, dass es optimal ist, in jeder Runde bevorzugt die neuesten Qubits
mit hochster Giite zu kombinieren. Zudem sollte ein Qubit, dessen Giite unter einen
bestimmten Schwellwert gefallen ist, aus dem Speicher geloscht werden. Zusatzlich
untersuchen wir, wie sich die Rate der Verteilung verschrankter Zustande mit der
Grofle des Netzwerkes verandert. Hierfiir leiten wir eine allgemeine Formel her,
welche die Rate in Abhangigkeit von der Anzahl an Parteien und der verfiigharen

Speicher pro Partei beschreibt.

Unsere Ergebnisse bieten eine Grundlage fiir die Planung und Skalierung von

Quantenrouternetzwerken mit einem zentralen Quantenrouter. Sie ermoglichen es,
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im Voraus abzuschéatzen, welche Raten flir die Verteilung verschrankter Zustande
bei gegebener Anzahl an Parteien erreichbar sind und wie sich diese durch das
Hinzufiigen von Quantenspeichern steigern lasst. Gleichzeitig bieten die von uns
untersuchten Matchingstrategien die Moglichkeit, den Einfluss der Quantenspeicher

zu minimieren und die geheime Schliisselrate zu maximieren.
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CHAPTER 1

INTRODUCTION

With the development of quantum mechanics in the early 20th century, the way
to modern physics was paved. This year, we are celebrating 100 years of quantum
mechanics — 100 years in which new theories and new physics research fields were
investigated. From the development of the model of the atom by Niels Bohr in 1913
[Boh13] to the discovery of quantized spin in atoms in 1922 [GS22], and the quantum
description of solids in 1929 [Blo29], many discoveries and theories have reshaped
modern physics.

The first introduction of the concept of entanglement by A. Einstein, B. Podolsky,
and N. Rosen in 1935 [EPR35] led to many controversial discussions. With the
introduction of the Bell inequalities in 1964 [Bel64], the discussions shifted more
toward experimental considerations. John S. Bell argued that the theory of hidden
variables implies mathematical constraints on the measurements performed on two
separate entangled particles. These constraints are known as the Bell inequalities.
Entanglement was first demonstrated experimentally in a Bell test in 1972 [FCT72].
In that experiment, S. Freedman and J. Clauser were the first to demonstrate the
violation of Bell’s inequality using photons from excited calcium atoms. In 2022, J.
Clauser, together with A. Aspect and A. Zeilinger received the Nobel Prize in Physics
for the proof of Bell’s inequality, which demonstrates quantum entanglement, and

other groundbreaking discoveries in quantum information theory.



Chapter 1. Introduction

Quantum information theory is a field of research that developed from quan-
tum mechanics. Due to the properties of quantum particles, such as superposi-
tion (demonstrated in Schrodinger’s cat thought experiment by E. Schrodinger in
1935[Sch35]) and quantum entanglement, these are suitable for information theory.
Analogous to classical bits, quantum bits (qubits) can be used to store or trans-
mit information. The no-cloning theorem for arbitrarily unknown quantum states
introduced fundamental implications for quantum computing and cryptography in
1982 [WZ82]. Two years later, the first protocol for quantum cryptography was
presented [BB84]. Using this protocol, two parties can exchange a secret key that
is inherently secure from eavesdroppers. Just one year later, in 1985, D. Deutsch
showed that it is possible to simulate any physical system with a universal quan-
tum computer and highlighted tasks, for which such a device outperforms classical
computers [DEJT96]. Further quantum algorithms were introduced in the 1990s. In
1994, Shor developed an algorithm for prime factorization that can be used to break
classical cryptosystems (public key cryptography) [Sho94].

To date, there have been many further discoveries in the field of quantum in-
formation theory. In this work, we focus on quantum networks. A network is an
association of end nodes, the so-called users, who exchange information over long
distances. In the following, we address the question of how the users (or parties)

can share entangled states over long distances within a network.

1.1 Motivation and related work

Quantum entanglement is one of the main resources needed to share or transmit
information or secret keys (quantum key distribution) between the parties. Dis-
tributing these entangled states over longer distances is challenging. Due to inter-
actions with the environment, a quantum system evolves with time and, therefore,
loses information. A distance of about 150-200 km can be bridged by, for exam-
ple, sending photons through an optical fiber without using advanced technologies
[HRP106, SWV109].

For a fixed distance d between the parties, a strict upper bound on the achievable

secret key rate in quantum key distribution (QKD) is given by the PLOB bound
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named after its inventors Pirandola, Laurenza, Ottaviani, and Banchi [PLOB17]:

Kprop = —log(l - 77)7 (1-1)

with transmittance n = 10419 being the fraction of photons that are sent through
the fiber successfully. For a commercial optical fiber used with light of a wavelength
of 1550 nm, for the attenuation coefficient « it holds @ = 0.2 dB/km. The PLOB
bound sets the limit on the rate of quantum key distribution that is achievable
over a repeaterless lossy quantum channel, such as an optical fiber. This limit is
independent of the QKD protocol, i.e., all protocols that only use direct transmission
(so no memories and no entanglement swapping) cannot beat this bound. To get

secret key rates beyond this limit, new strategies have to be developed.

One strategy to increase the distance between the parties while beating the PLOB
bound is given by advanced technologies such as twin-field quantum key distribution
[LYDS18]. Here, the parties do not directly send qubits (in the form of photons) to
each other, but instead, send weak coherent pulses to a central station that performs
interference measurements. Using twin-field QKD, the distance between the parties
can be remarkably increased above 500 km [ZLJY23, LZJ"23]. Another strategy,
which is experimentally more challenging, is the use of quantum repeaters [BDCZ98].
These intermediate stations are put between the parties to divide the distance into
smaller segments, thus overcoming the PLOB bound. Unlike classical amplifiers,
a quantum repeater does not amplify the signal within the channel. According to
the no-cloning theorem, copying an arbitrary unknown quantum state is impossible.
Therefore, amplifying an incoming signal (quantum bit) in a classical manner is not
feasible. Instead, long-distance entangled links are generated by performing local
measurements (entanglement swapping) at the stations. As a result, end nodes share
entangled links even without previous interactions. Compared to the intermediate
station in twin-field QKD, a quantum repeater is a more complex device that needs
quantum memories to store the incoming quantum bits. In addition to the quantum
memories, components to perform the entanglement swapping are needed. The main
challenges for a quantum repeater to tackle are long coherence times, fault-tolerance,
and low-loss components. To deal with these requirements, three generations of

quantum repeaters exist:
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e 1st generation. Quantum repeaters of the first generation work with entan-
glement swapping at the central station and additional purification [BDCZ98].

Due to the purification, error tolerance is given.

e 2nd generation. For these quantum repeaters, purification is replaced by
quantum error correction [JTNT09]. Additional entanglement swapping still
needs to be performed. Quantum repeaters of the second generation are faster

and more scalable. However, these repeaters still need quantum memories.

e 3rd generation. Here, no quantum memories are needed, and only quantum
error correction is performed at the quantum repeater. This method does not
require two-way communication, so it is faster and suitable for networks. In
contrast, fault-tolerant quantum gates and high-rate quantum error correction

are required here.

An overview of all three generations of quantum repeaters is given in [MLK™16].
Each generation has advantages and disadvantages. In general, the quantum
repeater of the third generation is technologically the most advanced, since it is
faster and more scalable. Nevertheless, for realization, fully fault-tolerant and high-
fidelity components are required, which are not yet widely available. So far, the
analysis remains theoretical, and no experimental demonstration has been made.
Quantum repeaters of the second generation use quantum error-correction, which
leads to faster transmissions. To reach this, higher gate fidelities are also required, as
well as quantum memories with long coherence times. Also, no full second-generation
quantum repeater has been demonstrated so far. In this work, we focus on first-
generation quantum repeaters. Those are ideal devices for early-stage networks
and are good for proof-of-principle demonstrations. Since an experimental road-
map was given by Duan et al. in 2001 [DLCZ01] (DLCZ proposal, named after
its authors), several experimental demonstrations have been realized. In 2005, the
first demonstration of a quantum memory for a single photon was made [CMJT05],
and entanglement between light and matter could be generated [CDRFT05]. After
further significant steps were achieved, memory-based quantum communication was
demonstrated, achieving a four-fold increase in the secret key rate compared to the

loss-equivalent direct-transmission method [BRM120].
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One of the challenges that still has to be tackled is the low entanglement gen-
eration rate. In another demonstration of a quantum repeater node using trapped
ions [KCM 23], for example, the achieved rate (entangled pairs per second) is about
1-10 Hz. Assuming that, due to post-processing, only 10% of the entangled pairs
generate a secret bit for the key, it takes between ~ 4 and ~ 40 minutes to generate
a key of length 256 bits. With this key length, only short messages can be encoded.
In real-world applications, longer keys are needed, thus significantly increasing the
key generation time. Different strategies to increase the entanglement generation
rate have been proposed [BPvL11, SSARG11]. One method, first introduced in
[CJKKO7], is the multiplexing. In spatial multiplexing, several memories are put in
parallel, so that multiple independent attempts of distributing entangled states can
be made per communication round. This leads to an increase in the entanglement
generation rate and a reduction of the waiting times of the qubits in the memo-
ries, which are major bottlenecks in real-world quantum networks. Collins et al.
[CJKKO7] show that by introducing m memories (each distributing entangled states
with probability p), the total success probability p;,; for entanglement distribution

in a single attempt becomes
Prot =1 —(1—=p)™ (1.2)

which can be approximated by mp for small p, i.e., p < 1. Compared to a simple
quantum repeater without spatial multiplexing, for which the success probability is
simply p, a linear speed-up in m is reached. Consequently, the waiting time drops by
a factor m. Further proposals of quantum repeaters using memory multiplexing are
given, for example, in [SARAT07, SSARG11]. Demonstrations of a quantum repeater
following the DLCZ proposal and integrating spatial multiplexing have been realized
in recent years. In [PJCT17], the authors use acousto-optic deflectors to individually
address 225 spatial cells. They demonstrate the independent access and control over
many memory elements. In [LZW721], multiple atomic memory cells are used to
demonstrate spatial multiplexing. The authors improve the entanglement generation
rate and reduce waiting times by parallelizing quantum memory channels using four

independently operated atomic quantum memory cells.

A question that arises when dealing with spatial memory multiplexing is how to
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combine the quantum memories in a manner that results in an optimal entanglement
generation rate. Due to the interaction of qubits with the quantum memories during
storage, the fidelity of the qubits degrades, which in turn reduces the secret key rate.
Depending on the platforms that are used to realize the setup, different memory
lifetimes between 1 ms [LZW'21] and several minutes [WUZ17] are achievable.
Motivated by the fact that long-range connections are experimentally challenging
[GMM*24], Abruzzo et al. introduce the so-called finite-range multiplexing protocol
that takes into account that all-to-all connections might be demanding to realize
experimentally [AKB14a].

In real-world applications, it is often not sufficient to distribute entangled states
between two parties only. Instead, multipartite entanglement between N parties
is needed — for example, in secret sharing [HBB99], leader election [ABDRO04], or
conference key agreement [CLO8]. Therefore, we consider multipartite quantum
repeaters and generalize the concept of (finite-range) multiplexing to the multi-
partite setup in this work. We focus on multipartite quantum networks with one
central station that is placed between the N end nodes. As the central station is
used to "route” (distribute) entangled states among all parties, we call this sta-
tion the quantum router. Similar network structures are analyzed in other works
about multipartite quantum routers (also called quantum switches in the litera-
ture) [NVGT20, NVGT22, VGNT21la, MEW23]. In [BVK98|, a generalization to
the multipartite entanglement swapping is given, thus laying the groundwork for
multipartite entanglement distribution in quantum networks. A two-dimensional
quantum repeater protocol using an all-photonic framework to generate multipar-
tite entanglement over long distances is presented in [LFL*23a]. The performance
of the entanglement generation (i.e., entanglement generation rate and fidelity) via
a central node in a star-shaped network is analyzed in [ARW23]. The distribution of
the GHZ state is either realized via a factory node or a 2-switch, in which the GHZ
state is created stepwise from all the Bell states. The distribution of an entangled
state between a subset of all parties has been analyzed numerically [CKD*21] and
also analytically via Markov chains [VGNT21b]. It is also possible to perform con-
ference key agreement via a central quantum router without integrating quantum

memories [LFLT23b].

Compared to previous work about quantum routers, we focus on integrating quan-



1.2. Overview of results

tum memories to perform memory multiplexing within the quantum router. Due to
the parallelization of the entanglement distribution, we increase the entanglement
generation rate. Additionally, we analyze various strategies for choosing the qubits
for the multipartite entanglement swapping depending on the fidelities of the qubits.
This allows us to minimize the influence of the quantum memories on the fidelity
of the qubits in order to keep the secret key rate as high as possible. Note that
our setup can be seen as a generalization of the measurement-device-independent
quantum key distribution protocol with quantum memories from [AKB14b] to more

than two parties.

1.2 Overview of results

In this work, we generalize the finite-range multiplexing from the bipartite quantum
repeater to a multipartite quantum router modeled as a star graph connecting N
parties. We formalize the underlying quantum router matching problem that must
be solved to enable optimal performance in choosing the qubits for the entanglement
swapping in the quantum router. Specifically, we show that this matching problem
as a decision problem, analogous to the well-known N-dimensional matching, is
NP-complete. We further identify special cases that admit efficient polynomial-
time solutions and provide concrete algorithms for solving them. For the general
unweighted maximum quantum router matching, we propose an approximation al-
gorithm that solves the problem, but does not always guarantee finding a matching
with maximum cardinality.

Building on this theoretical foundation, we analyze the influence of the quantum
memories on the secret key rate and investigate various multiplexing strategies for
optimizing the secret key rate. For this purpose, we use the algorithms for the
quantum router matching that we derive in the prior work. We show that the best
strategy is always to use the freshest qubits first (with the highest fidelities) and
remove qubits whose fidelities drop below a certain threshold — the fidelity cutoff.
For this work, we develop a simulation of the multipartite quantum router in a
star graph that models the distribution of multipartite entangled states among all
parties and calculates the achievable rates (entanglement generation rate and secret

key rate) based on the samples generated by the simulation. Compared to other
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simulators [CKD*21, WHW*24], we focus on the multipartite quantum router and
especially the integration of multiplexing and the underlying matching problem.
Although quantum memories introduce decoherence over time — leading to an
increase in the quantum bit error rates — they also raise the router rate, i.e., the rate
at which entangled states can be distributed across all parties. In this thesis, we
investigate the link between the router rate and both the number of parties N and
the number of memories m per party. We derive an approximate formula capturing
this relationship and demonstrate that the minimal rate achievable with two parties
and a single memory each can be maintained even as the network scales to arbitrary

sizes.

1.3 Thesis structure

The dissertation is organized as follows:

e In Chapter 2, we provide the fundamentals of quantum mechanics that are
needed for further understanding of this work. We first introduce the postu-
lates of quantum mechanics and the mathematical background for quantum
information theory. We then introduce the concept of entanglement, quantum

networks, and quantum key distribution.

e The proper definition and analysis of the underlying quantum router matching
problem is given in Chapter 3. Some background from computer science about
complexity and the matching problem in graphs is explained. We present
our results about the complexity of the quantum router matching and give
the algorithms for some special cases. Further, we introduce the approxima-
tion algorithm that solves the general unweighted maximum quantum router
matching. This is based on our work [BGK™'25] and [JAK25].

e In Chapter 4, we investigate the impact of the quantum memories when storing
the qubits. We first give more information about the conference key agreement
and derive formulas for the quantum bit error rates and the secret key rate
needed for the considered star-shaped quantum router network. We describe

the simulations that we perform to simulate the quantum router network and
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integrate different matching strategies. We discuss these strategies with re-
spect to the achievable secret key rates and find optimal strategies that lead
to maximal rates. These results are mainly based on [KKB24], while the algo-

rithms for solving the underlying matching in the simulations are taken from
[BGK™25].

In Chapter 5, we give an approximation formula to calculate the achievable
router rate in the stationary regime. Based on the theory of Markov chains
that we further specify in this chapter, we derive the relation between the
asymptotic router rate and the network size for different scenarios. Those
results are based on [KTWT25].






CHAPTER 2

THEORETICAL BACKGROUND

About 100 years ago, contradictions regarding the microscopic nature of our universe
arose in physics, leading to a new research field. At that time, physicists started
to predict absurd theories [NC10] such as the 'ultraviolet catastrophe’ leading to
infinite energy [Ehrll], or electrons that could spiral into the nucleus. Theories
that were based on the fundamentals of classical physics reached their limits. As a
result, the modern theory of quantum mechanics was born. With high success, that
theory was applied in many different research fields. One of the fields of modern
quantum mechanics is the quantum information theory [Bru25]. Our work focuses
on the aspects of quantum communication within quantum networks, which forms

one possible application of quantum information theory.

To understand the basics of quantum mechanics, we start with the postulates,
which were formulated in the early days of quantum mechanics. We further introduce
the main topics of quantum information theory and quantum networks to guide the

reader through the necessary background.

The topics presented here are covered in [NC10, HHHH09, JFZ22, GHZ89, VM 14,
AKB14a, LP09, MT09, BB84, MGKB20]. Additional inspiration has been drawn
from [Wol21, Ten23, Abrl4, Gra2l].

11



Chapter 2. Theoretical background

2.1 Postulates of quantum mechanics

With the postulates of quantum mechanics, we give a relation between the physics
and the mathematical description of quantum mechanics. The postulates were de-
veloped in the early days of quantum mechanics and still serve as the foundation of
modern physics. This section provides an overview of the fundamental concepts re-
quired to understand the following work. The presentation of the postulates follows
[INC10].

2.1.1 Quantum states

We now introduce the first postulate of quantum mechanics, which deals with the
Hilbert space H. It is the space in which quantum mechanics takes place. Here, we

restrict ourselves to the finite-dimensional case.

Postulate 1.([NC10]) Associated to any isolated physical system is a complex vec-
tor space with inner product (that is, a Hilbert space) known as the state space of
the system. The system is completely described by its state vector, which is a unit

vector in the system’s state space.

To understand the first postulate, some basic notations from linear algebra are
needed. For now, we consider isolated quantum systems, i.e., we demand systems
that do not interact with other systems or the environment. The state vector is
usually given in Dirac notation where the vectors are denoted as a ket [i)). Note
that the symbol v is a label for the vector. It can be replaced by any other symbol.
For the inner product, also the dual space H* and the dual vectors (¢| are needed.
Given a complex field C, the dual space H* is given by the set of all linear maps
(| : H — C where the vectors (1| are called bra. The dual vector (1| relates to the

state vector |¢) via the Hermitian conjugate (-)1:

(aftn) + Blva))' = afn| + Bty (2.1)
(@] + Blal) = alin) + Bli) (2.2)

12



2.1. Postulates of quantum mechanics

for any complex numbers «, 3 and its complex conjugates &, 5. From that, the inner

product is defined as follows:

Definition 2.1 (Inner product). The mapping (-|-) : H x H — C takes two vectors
[V), |¢) € H as input and associates them with a complex number. It is called the

inner product if it satisfies the following conditions:

1. (pl¢) = (9lY) (conjugate symmetry) ,

2. (Y|)y > 0 with equality if and only if |v) = 0 (positive definiteness),

3. (P> Nii) = D M| @) for any N; € C (linearity).

2.1.2 The density operator

Due to imperfections or system interactions, many quantum states are not fully
known in the real world. For that, we need a description of these quantum states.
The density operator is a way to represent a quantum system that cannot be de-
scribed by a single quantum state [¢). Instead, it is in one of several quantum
states |¢;), each appearing with corresponding probability p; with >, p; = 1. The
set {p;, )} is called an ensemble of pure states with the completely known pure
states |1;). The density operator, often also called density matriz p of a quantum

system, is given as
p =Y pilthi) (. (2.3)

The density operator fulfills the following conditions:
1. Trace condition: T'r(p) =Y. p; = 1 with diagonal entries p;; of matrix p,

2. Positivity condition: p is a positive semi-definite operator, i.e., (v|p|v) >0

for any vector |v) € H, and

*

3. Hermiticity: p = p' with the Hermitian operator p! = (pT)* = (p 2 P 2)
P1 P3

for a density matrix p = po Py
P2 pP3

13



Chapter 2. Theoretical background

pT is the transpose of the matrix and p* the complex conjugate. The proofs of the
trace and the positivity condition are given in [NC10] in Theorem 2.5.

Any quantum state that can be completely described as a state vector can also
be represented by its density matrix p = |¢)(¢b|. In this case, the ensemble only
contains one state vector that appears with probability p = 1. In the following, we
call such a state a pure state. The density matrix of a pure state always fulfills the
criterion Tr(p?) = 1. All other quantum states that contain a mixture of several
pure states [¢;) in their ensemble are called mized states. The density operator of a
mixed state fulfills 7'r(p?) < 1. A d-dimensional state of the form p = % we call the

maximally mixzed state.

2.1.3 Quantum bits

The qubit (short for a quantum bit) is the quantum analog of a classical bit in
information theory. In this thesis, we consider the qubit as the fundamental quantum
system. For now, we stick to the qubit as a mathematical object. The physical
realization of such systems will be discussed later when we consider applications.
The qubit lives in the two-dimensional Hilbert space C?. Compared to a classical
bit (that can take values of either 0 or 1), a qubit can take any linear combination
of states, the so-called superposition. Any state vector of a pure quantum state can

be written in the following form:

[¥) = al0) + Bl1), (2.4)

with complex numbers o and 5. When we measure a qubit, we get more restricted
results, meaning that we find the qubit in state |0) with probability [(0]¢)]* = |a?|
and state |1) with probability [(1|¢)|> = |8?. Since the probabilities must sum

1
to one, i.e., |a|? + |8% = 1, we find |¢)) to be normalized. The states |0) = (())

0
and |1) = Nk that the qubit can take, form the so-called computational basis,

i.e., these state vectors form an orthonormal basis of the vector space, here the
two-dimensional Hilbert space H.

Another useful representation of qubits is their geometric picture. Due to the

14



2.1. Postulates of quantum mechanics

-z =11)

Figure 2.1: Bloch sphere: geometric representation of a qubit.

normalization property of a qubit, we can rewrite Eq. 2.4 in the following way:
; 0 P
) = e cos§|0)—|—e“”s1n§|1> ) (2.5)

with real numbers v, 0, and . Since the prefactor e’ does not make a difference
when observing a qubit (see Chapter 2 in [NC10] for more details), we can ignore it

and effectively describe the qubit as
0 P
|v) :Cos§|0>—|—e“"sm§|1). (2.6)

This equation represents a sphere with € and ¢ giving a specific point on the sphere.
Fig. 2.1 shows the geometric representation of a qubit, often called the Bloch sphere.
Pure quantum states are represented by any point on the surface of the Bloch sphere,

while mixed quantum states lie in the interior of the Bloch sphere.

2.1.4 Composed quantum systems

In many applications, more than one quantum system will be of interest. That
means that two or more qubits interact with each other or form a larger quantum
system in a higher dimensional Hilbert space. The second postulate of quantum

mechanics tells us how to describe such composed quantum systems.

Postulate 2.([NC10]) The state space of a composite physical system is the tensor

15



Chapter 2. Theoretical background

product of the state space of the component physical systems. Moreover, if we have
systems numbered 1 through n, and system number i is prepared in the state |¢);,
then the joint state of the total system is |¢1) ® |¢2) @ -+ ® [1)y,).

Note that each state vector |¢;) lives in its own Hilbert space #H;. The com-
posed quantum system of n Hilbert spaces with equal dimensionality forms itself
a Hilbert space, ie., Hi. ., = H1 ® Ho ® -+ ® H,,. In the following, the tensor
product [¢) ® |1¢2) is sometimes also written as [¢1) |¢2) or |¢11)s). Often, we use
letters to indicate the affiliation of a (sub-)system to a party, i.e., [Yat)p...) with
WJA) c 7‘[,4, W)B) € 7‘[3, R

With the reduced density operator, it is possible to describe subsystems of a de-
composed quantum system. Given a composed physical system of A and B described
by the density operator pap, the reduced density operator to describe system A is

given as

pa =trg (pap) - (2.7)

The map of operators trg is called the partial trace over system B. It is defined as

trp (lar) (az| @ [by) (ba]) = [aa) {az| tr ([br) (ba), (2.8)

with vectors |a1),|ag) in Alice’s state space and vectors |by),|by) in Bob’s state
space. For the trace on the right-hand side, we find ¢r (|by) (b2|) = (ba|by1). Given,
for example, the state pap = 1/2(]00) + |11)) , ® ((00] 4 (11]) 5, we find

pa =trp(pap)
. (\oo> (00] + [00) (1] + |11) (00| + |11) <11|>

2
109 401 (010) +10) (1] 1]0) + [1) (0] (O11) + 1) 1] 1)

2
RUICESVI 29)
— %, (2.10)
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2.1. Postulates of quantum mechanics

It is worth noticing that the reduced state is a mixed state, even though the joint

system is pure and, therefore, fully describable.

2.1.5 Time evolution

So far, we have considered isolated quantum systems that do not interact with other
systems or their environment. In real-world applications, it is not reasonable to make
such an assumption. Therefore, we introduce the third postulate of quantum me-
chanics. This postulate deals with the time evolution of a quantum system that

interacts with its environment.

Postulate 3.([NC10]) The evolution of a closed quantum system is described by a
unitary transformation. That is, the state [¢) of the system at time ¢; is related to
the state |¢') of the system at time t by a unitary operator U which depends only

on the times t; and t,,

¥y = Uly). (2.11)

For any unitary operator U it holds UTU = 1, where UT = (U7)* is the self adjoint
of U. An operator is unitary if and only if all its matrix representations are unitary.
The unitary operator U is also normal, which means that it holds UUT = UTU from
which UUT = 1 follows. Considering two state vectors [1) and |¢) and a unitary
operator U, such that 1)) = U |[¢) and |¢') = U |¢). With (/| = (1| UT, it holds

(W'¢) = (W[UTUlg) = (Y[1¢) = (¥l9). (2.12)

This shows that the unitary operator preserves the inner product.

2.1.6 Measurements

Every measurement performed on a quantum system influences the system. It is

an interaction from the outside with the closed system. With a measurement, the
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experimentalist observes what is going on inside the quantum system. Therefore,
the system is no longer closed and isolated from its surroundings. Before a mea-
surement, the quantum system can be in a superposition of states. With a certain
probability, one of these states is measured, projecting the quantum state onto one
of its possible states. Postulate 4 describes the effects of a measurement performed

on a quantum system.

Postulate 4.([NC10]) Quantum measurements are described by a collection {M,,}
of measurement operators. These are operators acting on the state space of the
system being measured. The index m refers to the measurement outcome that may
occur in the experiment. If the state of the quantum system is [¢)) immediately

before the measurement, then the probability that result m occurs is given by

p(m) = (| M, My, |¢), (2.13)

and the state of the system after the measurement is

M,

(N (2.14)
v (WIMEM,,|0)

Note that the measurement operators M,, fulfill completeness:
> MM, =1 (2.15)

and probabilities sum to one:

L= p(m) =) (0|M}My[¢). (2.16)
The postulate tells us that each measurement leads to one measurement outcome
m with a certain probability p(m). After the measurement, the quantum state
changes due to the interaction. The new state is given by Eq. 2.14. A simple but

important example we use in our work is the measurement of a single qubit in the

18



2.1. Postulates of quantum mechanics

computational basis. The two measurement operators My = |0)(0| and M; = |1)(1]
give the measurement with possible outcomes 0 or 1. The completeness relation
from Eq. 2.15 is fulfilled since MgMo —{—M{er = My+ M; = 1. Given a single qubit
state by

1) = a|0) + B|1), (2.17)
we obtain the measurement outcome 0 with probability
p(0) = (Y| MgMo|w) = (| Molw) = |a, (2.18)

and analogously, for a measurement outcome 1, we obtain a probability of |3]?. The

states we obtain after the measurement are given by:

Mﬁlf) - %|O> (2.19)
My) B
B 1A (220)

Effectively, the prefactors a/|a| and 5/|3| can be neglected so that we obtain the
state |0) when measuring the outcome 0, and we obtain the state [1) when measur-

ing the outcome 1, respectively.

A special set of measurement operators form the projective measurements. This
can be seen as a special case of the previous postulate in which the measurement
operators {M,,} additionally fulfill orthogonality: the operators are Hermitian and
fulfill M., M, = Sy M-

Projective measurements. A projective measurement is described by an o0b-

servable M, a Hermitian operator on the state space of the system being observed.

The observable has a spectral decomposition
M=) mP,, (2.21)

where P, is the projector onto the eigenspace of M with eigenvalue m. The possible
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Chapter 2. Theoretical background

outcomes of the measurement correspond to the eigenvalues, m, of the observable.

Upon measuring the state |1}, the probability of getting result m is given by

p(m) = ([ Pnlt)). (2.22)

Given the outcome m occurred, the state of the quantum system immediately after

the measurement is

Pl)
p(m)

(2.23)

A measurement can also be performed on a composed quantum system. Con-
sider, for example, the situation where Alice and Bob share a state ps g with
Hap = Ha ® Hp, and each party wants to perform a measurement given by the
measurement operators { M4} and {Mpg}, respectively. The measurement outcome
of Alice performed on the reduced state trgpap has to agree with the measurement
{M4 ® 1} performed on the composed quantum system p,p. The same has to

hold for Bob’s measurement.

2.2 Entanglement

The property of entanglement is one of the fundamental concepts that arises only
in composed quantum systems. Entanglement is one of the central advantages of
quantum mechanics. In quantum communication systems, for example, entangle-
ment can be used to generate secret keys between the communicating parties. We
will discuss this in detail in Sec. 2.4.

Given an entangled composed quantum system of n subsystems with Hilbert space
HIQOH®---®H,, it is impossible to describe each quantum system independently,
i.e., no product of the subspaces can be generated to describe the composed system.
The concept of entanglement is independent of the distance between the quantum
systems forming an entangled system. Once a measurement is performed on an

entangled system, all subsystems contained in the composed system are influenced by
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2.2. Entanglement

the measurement. Even without sharing the measurement result, the total composed
system is influenced by the measurement outcome, so that the previous measurement

now predetermines a measurement on any subsystem.

2.2.1 Bipartite entanglement

Given any bipartite system with Hilbert spaces H 4 and H g, the decomposed system
|YV) ap € H s is entangled if and only if

[¥V)ap # [¥)a ® V)5 (2.24)

i.e., the composed system is not describable by the product of its states [¢) 4 and
|t)) . The well-known maximally entangled states in a bipartite setup are the four

Bell states of the following form:

6% = 75 (100) & 1) (2.25)
%) = % (l01) + [10)) (2.26)

On the other hand, a state is separable if each subsystem of the composed system

can be described independently of each other:

[¥)ag = [¥)a @ [¢) 5. (2.27)

An example of a separable state is given by:

1 1
= 75(100) +101)) = =0} (10) + 1)) (2.28)

Testing whether a given state is entangled or separable is not an easy task. There

) an

are different criteria that can be used to detect separability. For example, [GT09]
gives an overview of different separability criteria for discrete-variable systems, and
[FVMH19] deals with the techniques and challenges in experimental entanglement

certification in such systems.
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Chapter 2. Theoretical background

The authors in [VPRK97, DHRO02], derive different quantities to quantify the
amount of entanglement are given. In our work, we address the question of how
close a given state is to a known entangled quantum state. To determine this, we
use the fidelity F', which is a measure of distance. The fidelity gives the distance

between two states p and o as

F(p,0) = <t7"\/p1/20p1/2>2 : (2.29)

In the case of considering the fidelity between a pure state |¢)) and any state p, the
fidelity is given by the overlap between the state |¢)) and p

E(ly), p) = @lple). (2.30)

With this, we can calculate how close an arbitrary state p is to a Bell state |¢*) or

).

Bell measurement

To create or measure a Bell state, we need a certain set of operations that we can
apply to a quantum state. We can perform a quantum computation, the quantum
analog to classical computation, to change a quantum state. Just like with clas-
sical computers, quantum computers are represented by quantum circuits. These
consist of wires and elementary quantum gates. This allows the information to be
manipulated and transmitted in the desired manner. In quantum circuits, we find
single and multiple qubit gates. A single qubit gate gets one qubit as the input
and operates on that single qubit. In classical computation, such a gate is the NOT
gate. It changes a bit from 0 — 1 and vice versa (1 — 0). In quantum computing,
all Pauli matrices are single qubit gates that act, in principle, on a superposition
(|) = a|0) + 5|1)). The Pauli X-operator acts similarly to the classical NOT gate.
It takes a superposition and changes the role of the states |0) and |1):

X[¢) = X(a|0) + 8[1))
= al1) + B0). (2.31)
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a[0) + B|1) [ X ] o|1) + B|0)

a|0) + B|1) [ Z] al0) — B|1)

a[0) + B|1) Y] 1) —iB|0)

al0) + BI1) [H] 2(10) + 1) + Z5 (10) +[1))
|4) 4)
|B) & A B)

Figure 2.2: Circuit representation of the three Pauli matrices X, Z, and Y, the
Hadamard gate H, and the two-qubit CNOT-gate. The €p is the sum
modulo two operation.

The Pauli X-operator is represented by the matrix

0 1
X = (1 0). (2.32)

The Pauli Z-operator changes the phase between the state of a superposition, i.e.,
it changes the sign of the state |1) to —|1):

ZlY) = Z(a|0) + B[1))
= a|0) — BI1). (2.33)

1 0
7 = (0 _1>. (2.34)

Combining both the Pauli X- and the Pauli Z-operator gives the third Pauli oper-

with Pauli Z-operator
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ator, which is called Pauli Y-operator

0 —i
3f:<i o)' (2.35)

Another useful single qubit gate we will need to perform Bell state measurements is

the Hadamard gate. This gate takes a single quantum state and returns a superpo-

sition:
1
HI0) = = (0) + 1) (2.36)
HI1) = — (J0) — |1). (2.37)

S

2

The Hadamard gate is given by the matrix

1 (1 1
H:E&_J. (2.38)

With a multiple qubit gate, multiple qubits are received as input. Unlike classical
gates, all input qubits are returned as outputs. The most important multiple qubit
gate for this work is the so-called controlled-NOT gate, or CNOT gate for short.
This gate gets two qubits as input: one control qubit and one target qubit. Based on
the state of the control qubit, the target qubit is either flipped or remains untouched.

Its action is given by the matrix

100 0
0100
Urn = 2.39
N7l o0 0 1 (2.39)
0010

The truth table of the CNOT-gate shows the changes it performs on the two input
qubits:

24



2.2.

Entanglement

a—Hl—9—

b

‘ﬁab>

Figure 2.3: Quantum circuit for the Bell state creation.

D
€

Input Output
Control Target | Control Target
0) 0) 0) 10)
o | o
) N B U
nooow w0

Fig. 2.2 gives an overview of the circuit representation of the quantum gates intro-

duced here.

To create a Bell state, the quantum circuit from Fig. 2.3 is performed. Depending
on the two input qubits, here named a and b, one of the four Bell states from Eq.

2.25 or Eq. 2.26 respectively is created:

In Out

100) | 75 (100) + [11))
01) | 5 (|01) + [10))
|10) | 75 (100) —[11))
11) | 75 (|01) — [10))

Starting for example with the input state |00), the quantum circuit leads to the

following;:

0004 Ha®1p, LQ(|0>+|1>)A|0>B (2.40)
1 1
E(IO>+\1>)A!0>B Uen, E(\oo>+y11>). (2.41)

Due to the Hadamard gate, the first qubit is converted to a superposition. Note
that the second qubit remains untouched, i.e., the identity is applied to qubit b.
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This is followed by the CNOT gate. The superposition created before is given as
the control qubit. The gate flips the state of qubit b if a is set to 1.

Entanglement swapping

We now introduce the concept of entanglement swapping. We will use this oper-
ation later in the context of quantum networks. In many applications, such as
quantum networks, entanglement is the basic resource we need to transfer informa-
tion. Therefore, it is necessary to distribute entangled quantum states between the
communicating parties. Entanglement swapping is used to make the communica-
tion feasible even over larger distances. With this concept, entanglement can be
interchanged between distant parties that have never interacted directly with each
other. Entangled states are created locally by the parties, here, A and B. In the
next step, both parties keep one qubit of the entangled pair locally while the second
qubit is sent to a central station. A Bell measurement is performed at this station
between arriving qubits. This causes the remaining qubits to be projected onto one
of the four Bell states. The Bell measurement uses the same quantum gates as the
quantum circuit to create a Bell state. However, the sequence in which the gates are
performed for the Bell state measurement is inverted. Fig. 2.4 shows an exemplary
setup for the entanglement swapping. The protocol performed by the parties is as

follows:

1. Alice and Bob both create the entangled state |¢T) = \% (100) + |11)),

2. Both parties hold one qubit locally (say A; and B;) and send the second qubit
to the central station (say As and By),

3. A Bell state measurement is performed at the arrived qubits:
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Entanglement

swapping n
A
B,

Alice

Figure 2.4: Scheme of the entanglement swapping setup performed between two par-
ties, Alice and Bob. The last symbol within the quantum circuit ( )
represents the measurement performed on the qubits A, and Bs.

a) The input is given by

1 1
640,675 = 75 (100) +11) 4 @ == (100) + 1)), (242)

1

= 5 (‘OOOO>A1AgBlBQ + ’001]‘>A1A23132

+ [1100) 4, 48,8, T ’1111>A1A23132) (2.43)
1

- 5 <|OO>A1B1 |00>A232 + |01>A181 |01>A2B2

+ |]‘0>A1B1 |1O>A232 + |]‘]‘>AlBl |1]‘>A232) : (244)

Note that the order of the qubits in the last step is changed such that the
qubits held locally by the parties and those sent to the central station

are each grouped together.

b) First, the CNOT gate is performed between qubit A, (control qubit) and
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B, (target qubit) leading to the following:

1
B (|00>,41131 |OO>A282 + |01>A1B1 |01>A232 + |10>A131 |11>A232

c) Applying the Hadamard gate on qubit A, and rearranging the terms

gives:

1 1
(ﬁ 00) 1,5, 10) + 1), 005, + 5 108).05, 10} + 1), 1),

DN | —

1 1
b 10045, 10) = 1)), b, + = 1), 10) = D), |o>32)
(2.46)

1 1 1

= 5 (750000 1115, 100)5, + 5 (00) = [11)),5,10) 5,
1 1

5 (00 4 110) 3,5, 101, + 75 (01) = 110015, 1)1, )

(2.47)

1

= 5 (‘¢+>AIBI ’00>A232 + |¢7>A131 ‘1O>A232

[ 4 10y + 197 4, 1) aa) (2.48)

d) The central station performs a measurement in the computational ba-
sis on the qubits A, and By that are stored in the memories. Each
measurement outcome {|00) , [01) ,|10), |11)} of system Ay By occurs with
probability p = |%\2 = %. Depending on the measurement outcome, the
subsystem of qubits held locally by the parties (i.e., A1B;) is then in
one of the four Bell states {|¢1),|@), [T), [7). Mathematically, this is
obtained by tracing out system AsBy (i.e., pa,p, = 1T a,B,(pA,B1A2B,))-
Note that the created Bell state can be changed to a specific Bell state
by performing local measurements on subsystems A; and Bj, depending
on the measurement outcome of the system AsB;. To get the Bell state

|¢pt) from the actual Bell state the parties hold locally, the following local
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operations need to be performed:
772X, (2.49)

with ag, by € {0,1} being the measurement results of the qubits A, and
Bs.

For example, if the parties desire to share the |¢T) state, but the measurement
in the central station leads to the outcome [10), the parties must perform a
7 measurement locally since a; = 1 and by = 0 so that Z'X°. It is similarly
possible to create any other Bell state. In that case, the local operations

performed based on the measurement outcome must be adjusted accordingly.

2.2.2 Genuine multipartite entanglement

So far, we have focused on bipartite systems of two qubits. Entanglement also occurs
in larger systems in which many qubits interact with each other. The straightfor-
ward way to define entanglement in a multipartite system is via the concept of full
entanglement or full separability, respectively. A multipartite quantum system of n
qubits |¢),5 ,, € Hi2., each with Hilbert space H; with i € {1,2,...,n} is fully

separable, if and only if

) = @iy [¥); - (2.50)

Accordingly, a system is fully entangled if and only if all bipartite partitions are
pairwise entangled. This is called genuine multipartite entanglement (GME).

Unlike in bipartite entanglement, there are more classifications of entanglement in
the multipartite setup. Besides the fully entangled or fully separable states, there are
classes of partially separable states. This means that a given state of n subsystems
is separable with respect to a partition of all subsystems. A detailed overview of the
concepts of multipartite entanglement is given, for example, in [HHHHO09].

In our work, however, we focus on the class of genuine multipartite entangled
states. The well-known state we use here is the so-called Greenberger-Horne-Zeilinger
state (GHZ state) [GHZ89]. The GHZ state is a fully entangled quantum state of
at least three qubits. The general equation describing any GHZ state with n qubits
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2 (] —
By s>
By & | GHZ)
BN_1 : ()

Figure 2.5: Quantum circuit for the GHZ state creation. When passing through the
circuit from right to left, the GHZ state measurement that is used in
entanglement swapping is given.

is given by:

|GHZ") = % (Ji) £ |n* —1—14)) with i=0,1,...,2"7" — 1. (2.51)

Here, the numbers within the kets are written in binary notation. Often, this par-

ticular state is considered:

GHZ) =~ (10)*" + |1)°") for n > 3. (2.52)

V2

This is the generalization of the [¢T) Bell state for n qubits.

GHZ state creation and measurement

The creation and distribution of the GHZ state via entanglement swapping work
analogously to the Bell state circuit presented in Sec. 2.2.1. Fig. 2.5 shows the
corresponding quantum circuit for the N-partite setup with N parties. We can
create a GHZ state by moving left to right. In contrast, a GHZ state measurement
is performed by running through the circuit from right to left, starting with the
CNOT gates. This is used in entanglement swapping when not just two but N
parties want to distribute a genuine multipartite entangled state (here the GHZ
state) among themselves. Analogously to before, each party prepares a Bell pair
(say the |¢T) state) and sends one qubit to the central station while keeping the

second one locally. Due to the measurement performed at the central station, the
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qubits held locally are projected onto a GHZ state. With classical communication
of the measurement results (of the qubit at the central station) and local operations
(LOCC), we can generate the desired GHZ state. Again, the subsystem of qubits
held locally is obtained by tracing out the central station and the qubits stored in
it.

Due to the structure of the quantum circuit, one party has a special role (namely,
performing the Hadamard gate and providing the control qubit for all the CNOT
gate operations). This party we call the center party A, and the other parties we
call the peers B; with i € {1,2,..., N — 1}.

2.3 Quantum networks

Quantum networks — an important element of quantum computing — consist of end
nodes with quantum processors and channels that connect these processors. Similar
to classical networks, information (in the form of qubits) is processed and transmit-
ted in these networks. Quantum processors perform quantum circuits on the qubits
to solve certain tasks. A quantum network can form a cluster of many quantum
processors to increase the computational power of the combination of all processors.
This is used in quantum computing to get more powerful computers. Quantum
networks can also be used for communication. For this purpose, information can
be shared and transmitted between the end nodes via the channels. Entangled
states between the nodes are often required to send information or share secret
keys. Therefore, entanglement forms a basic resource needed in quantum networks.

Besides the end nodes and the channels connecting the quantum processors, in-
termediate stations for long-distance communication are an essential component of
quantum networks. These quantum repeaters are introduced in the following subsec-
tion. The distribution of entanglement in quantum networks via quantum repeaters

will be the main topic of the following sections and our work.

2.3.1 Quantum repeater

Quantum repeaters play an essential role in quantum communication over longer

distances. Due to the interaction of the qubits with the fiber or its environment,
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the distance over which qubits can be sent is limited. In the following, we consider
qubits as a physical system of depolarized photons. The information is then encoded
as follows: the state |0) is given by a photon with horizontal polarization, and the
state |1) is encoded as the photon with vertical polarization. The superposition is
given by any other polarization that leads — when being measured — to either the
horizontal or vertical polarization, each with a certain probability. As a channel, we
consider optical fibers such as the standard telecom fibers. In this case, the distance
d that a qubit can travel through the fiber, and the probability p that the qubit

arrives successfully are related via:
p=10"1%. (2.53)

With an absorption coefficient o = 0.2 dB/km !, we find that qubits arrive suc-
cessfully after a distance d = 100 km only with a probability of p = 0.01. So only
1% of all qubits sent over a fiber of 100 km arrive successfully. Under these cir-
cumstances, building a quantum network would be very challenging. Either one
would have to have a quantum processor every few kilometers, or one would have
to send a lot of qubits to compensate for the high loss rate of the fiber over the dis-
tance. In practice, intermediate stations are often used. However, these stations are
not end nodes equipped with full quantum processors. Instead, quantum repeaters
are placed between the end nodes to enlarge the possible communication distance

between them.

In classical networks, amplifiers are used to increase the signal during its transi-
tion in a fiber. With quantum information, using classical amplifiers is infeasible
due to the so-called no-cloning theorem [WZ82]. The theorem states that doing an
exact copy of an unknown quantum state is impossible. Therefore, the use of am-
plifiers for quantum information would require a predetermination of the complete
quantum state sent through the channel. Quantum repeaters are used to solve this
problem. They are elements that are placed between two end nodes, performing a
Bell state measurement on the arrived qubits. Based on entanglement swapping,

quantum repeaters work differently from classical amplifiers. The protocol for the

!The value a = 0.2 dB/km belongs to a commercial optical fiber that is used with light of the
wavelength of A = 1550 nm.
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Figure 2.6: Representation of a bipartite quantum repeater with multiplexing
(adapted from [AKB14al). Each party has five memories and sources
available, so up to five Bell state measurements can be performed in
parallel. Light blue quantum memories indicate that they are filled with
a qubit. Possible connections for the entanglement swapping are indi-
cated with the dotted lines.

entanglement swapping is the same as in Sec. 2.2.1. Both parties send one qubit of
an entangled state to the quantum repeater. The repeater station performs a Bell
state measurement to project the locally held qubits on one of the four Bell states.
By performing additional local operations, the desired Bell state can be preserved.
The precise protocol about the working principle of a quantum repeater is given
in the following subsection on multiplering. How the entangled states are used for

communication or secret key distribution will be discussed in Sec. 2.4.

Multiplexing

Collins et al. first introduced multiplezing to a quantum repeater in 2007 [CJKKO7].
Multiplexing means every party has several quantum memories available in the
quantum repeater. We denote the number of memories per party by m. In addition
to the quantum memories, each party has m quantum sources, each connected via a
quantum channel to one of the memories. Fig. 2.6 shows an example of a quantum

repeater with m = 5 memories per party. Due to parallel channels between the end
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node and the quantum repeater, up to m Bell pairs can be generated in parallel.
Therefore, up to m Bell state measurements are performed simultaneously. Of
course, this depends on the number of qubits available at the quantum repeater.
The goal of the multiplexing setup is to maximize the number of Bell pairs that
can be distributed in each protocol round between the end nodes. One round of the

protocol consists of the following steps:

1. Each party prepares a Bell pair and sends one qubit to the quantum router
while the second qubit is held locally. Note that this is done only for empty

memories since filled memories are not overwritten with new qubits.

2. Qubits that arrive successfully at the quantum repeater are stored in the mem-

ories. This event is heralded by the central station.

3. The quantum repeater performs Bell state measurements (compare the proto-
col steps for the entanglement swapping in Sec. 2.2.1) on a maximal number
of qubits in parallel. This is based on the bipartite matching problem, which is
well-known in graph theory (see [LP09], for example). The matching problem
defines how the quantum memories are connected for the Bell state measure-

ments.

4. The measurement outcome is heralded. The parties can perform additional

local operations to turn the entangled state into the desired Bell state.

5. All quantum memories used for a measurement are emptied again. All other
memories remain untouched. The actual memory configuration of filled and

empty memories is the starting configuration of the following round.

Fig. 2.7 gives an overview of the quantum memories in the repeater station during
one protocol round. The multiplexing focuses on step 3 of the protocol. In this step,
the advantage of performing up to m Bell state measurements in parallel comes
into account. The way the underlying matching problem works is explained in the

following.
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Figure 2.7: Illustration of a protocol round. An example configuration of the quan-
tum memories within the quantum repeater during a round is shown.
Filled memories are depicted in blue.

Bipartite matching

In each protocol round, the matching is performed individually on the memory
configuration given in the quantum repeater. The quantum repeater can be seen as
a bipartite graph G = (V, E) with nodes V and edges E. The quantum memories
are the graph’s nodes, and the possible connections between the quantum memories
(nodes) are represented by the edges. Due to the bipartition of the memories,
the graph is bipartite: quantum memories belong either to party A or to party
B, and edges are only drawn between nodes from different subsets V4 or Vp, i.e.,
E = {{vi,vj}|v; € Va ANv; € Vg}. The bipartite graph looks different every round,
depending on the memories filled in that round. Note that only filled memories
contribute to the graph. The matching M outputs an independent set of edges that
do not share common nodes. This property is required, as no qubit can appear
in two different Bell state measurements. Since we want to maximize the number
of Bell state measurements per round, we want that edge set to be maximal. A

matching is chosen as follows:
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e The bipartite graph is created from the given quantum repeater setup every
round: all filled memories contribute to the graph, with the allocation to the
subset V4 or Vg given by its allocation to party A or B. All edges indicating
the possible connections between the nodes are drawn. The edges must fulfill

the following properties:
1. Edges always consist of exactly two nodes, one from each subset.

2. The connection length w defines which nodes are allowed to be connected
(see Fig. 2.8(a) for an example). The connection length is given by
the difference in the labels of the quantum memories being connected.
For example, w = 0 means that only memories with the same label can
be connected, whereas w = m — 1 allows all connections between the

memories independent of their label.

e Given the set of all possible edges fulfilling the properties from above, an edge
set with maximum cardinality and no two common vertices is chosen. An

example is given in Fig. 2.8(b).

The connection length is taken into account due to the assumption that it can be
infeasible or at least experimentally challenging to realize Bell state measurements
between all memories from the parties.

The maximum cardinality bipartite matching is well-known in graph theory and
can be solved in polynomial time, for example, with the algorithm by Hopcroft and
Karp (1973) [HK71]. For the implementation of the bipartite matching, complete
packages, for example, exist for Python. In this work, we implement the bipartite

matching with the package bipartite from the networkz library [Net24al.

Repeater rate

Due to multiplexing, more than one Bell state measurement can be performed in each
protocol round. The aim is to maximize the number of entangled states distributed
in every round. The figure of merit that describes how many Bell state measurements
¢ are successfully performed on average per memory and round is the repeater rate.

The average number of successful Bell state measurements is denoted as (¢). We
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((a)) Example graphs for different connection lengths w for a given mem-
ory configuration. Depending on the connection length, the max-
imum cardinality of a valid matching varies. Since the maximum
connection length between two nodes is given by w = 3 here, the
resulting graph is the same for w < 4 and w < 3 in this specific

example.
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((b)) Example matching (shown in red) for the graph with con-
nection length w < 2. The matching on the left shows a
maximal matching. This is a matching to which no ad-
ditional edges can be added without obtaining duplicate
nodes. The matching on the right is a maximum match-
ing with maximum cardinality. This matching would be
valid for the maximum cardinality bipartite matching ap-
plied to the quantum repeater.

Figure 2.8: Example graphs for a specific memory configuration in the quantum
repeater. The different graphs resulting from restrictions on the connec-
tion length are given in (a). Fig. (b) shows two different matchings for
the graph with a connection length of w < 2.
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average the repeater rate over all running rounds up to the current round s.:
R(s))=—)» ~*. (2.54)

In [AKB14a], a detailed representation of how the repeater rate can be calculated
analytically is given. Here, we give some notation and general ideas of the concepts

that we will later need for the multipartite setup.

Mathematically, we can describe the quantum repeater with its changes regard-
ing the filled memories as a Markov chain [MT09]. A Markov chain is a stochastic
process that describes the sequence of possible events, each only depending on the
state of the previous event. The configuration of the quantum memories within the
quantum repeater can be given as a binary bit string C = {0,1}*™ of total length
2m. The string can be divided into two substrings (each of length m): one represent-
ing Alice’s memories and one for Bob’s memories. For example, the configuration
describing the quantum repeater in Fig. 2.8, is C = {1010000110}. Filled memories
are represented by a one, and empty memories by a zero. Now, we transfer that
to the description of Markov chains. In the quantum repeater setup, the state of
such an event describes the configuration of the quantum memories at one round
of the protocol. The memory configuration at the beginning of a round is given
by the final memory configuration of the previous round. The statistical process
through which such a configuration was created does not matter and is indepen-
dent of the further course of the Markov chain. The state vector m is a column
vector of length 22 that gives the probabilities to find the memories within the
quantum router in a specific configuration. Since it represents probabilities, we
have Z?iﬂg_l m; = 1. A configuration C; is given as the binary representation of
its index i. Given, for example, a quantum repeater with one memory per party,
four configurations Cy = {00},C; = {01},Cy = {10},C3 = {11} exist. If all four
possible configurations can be found with equal probability, the corresponding state
vector is m = (0.25,0.25,0.25,0.25)T. If all memories are empty, the vector looks
like 7 = (1,0,0,0)T.

A transition that gives the change between two different memory configurations

(states) occurs with a certain probability. This depends on the initial configuration

38



2.3. Quantum networks

and the underlying physical setup. To fully describe the quantum repeater, we
need two transitions: one describing the transition due to sending qubits to the
repeater and one for the Bell state measurement performed at the quantum repeater.
Each transition is given by a stochastic matrix called the transition matriz T. All
entries T;; describe the probabilities for a specific transition between two memory
configurations, namely from configuration C; to configuration C;. Therefore, each
entry is a nonnegative real number (i.e., T;; € [0,1]), and all entries of a column sum
to one. Note that due to the binary representation of i, j for the configurations, we
get i,5 € {0,1,...,22™ —1}.

The first transition is described via the storage map oy : H'(0) — H'(¢) with
the set H1'(¢) of all configurations that lead to ¢ Bell state measurements for a given
m and w. This means the storage map takes the set of configurations for which no
measurements can be performed (i.e., £ = 0) to the set of configurations for which
¢ Bell state measurements can be performed. The second transition is given by the
measurement map py : H(¢) — H7(0). Here, the transition goes from the set of
configurations that lead to ¢ Bell state measurements to the set of configurations
for which no measurements can be performed. Note that the measurement map
directly depends on the connection length w. Taking for example the configuration
from Fig. 2.8, it holds that {1010000110} € H3(2) but {1010000110} ¢ H7(2) since
for a maximal connection length of w = 1, only one Bell state measurement can be
performed.

We call the configuration at the beginning of a round C. The storage map o,
gives the transition due to the successfully arriving qubits to the intermediate con-
figuration C’. Due to the Bell state measurements, the configuration changes to the
final configuration denoted as C”. This is given by the measurement map p,. The
following round starts with the new initial configuration C” of the previous round.

The chronological process of one protocol round is as follows:

Clls—1) s ens — 1y je(s) =2 er(s) s

Protocol round s — 1 Protocol round s Protocol round s + 1

The storage map o, gives the transition according to the success probability p
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(1-p)° 1-p

((a)) Storage map oy ((b)) Measurement map /i

Figure 2.9: ([KTW*25]) Transition maps for the quantum repeater with one memory
per party. Along the arrows, the probabilities for the transitions are
given. Arrows between two memory configurations that are not shown
have zero probability. Memories shown in blue indicate that they are
filled with a qubit.

of the qubits when sent through the channel (see Eq. (2.53)). The probability
that a qubit arrives at the quantum repeater station and the configuration therefore

changes from C to C’ is given by
Probloy(C) = C'] = Prob|C'|C]
= [[ Problc)le], (2.55)
with
Prob[ci|c;] = (1 —p)(1 = ) (1 — ¢;) + pei(1 = &) + ¢c (2.56)

for each bit ¢;,¢; € {0,1} from the bit string C and C’, respectively, each rep-
resenting the configuration of a single memory. Fig. 2.9(a) shows the graphical
representation of the storage map in a quantum repeater with one memory per

party. In that example, the quantum repeater can take one of the four configu-
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rations: Cp = {00},C; = {01},Cy = {10}, and C3 = {11}. From Eq. (2.55), the
transition probabilities between the four memory configurations follow. The matrix

that represents the storage map is given by:

(1-p)? 0 0 0
1— 1— 0 0
S S . (2.57)
pl—=p) 0 1-p 0
p? p p 1

The column of the matrix gives the starting configuration C, and the row the final
configuration C'. Entry (oy)e0 = p(1 — p), for example, gives the probability for
the transition from the initial configuration Cy to the intermediate configuration C’s,
i.e., Prob[10/00]. In detail, we find the probability that a memory remains empty
as Probld = Olc = 0] = 1 — p, and the probability that a memory gets filled as
Probld = 1|c = 0] = p. The total probability of transitioning from configuration
Co to configuration C} is then given by the product, i.e., Problo,(Cy) = C4] = p(1—p).

The transition due to the Bell state measurement is generally connection length-
dependent. Which transition follows from which configuration C’' € H*(¢) is deter-
mined by the matching problem described previously. Independent of the choice of
the matching, it holds that one configuration either changes to another configura-
tion because the measurement is performed or no change is made. The mapping is
previously defined and unique. Additionally, we assume the Bell state measurement
to be perfect, i.e., ppsy = 1. Therefore, we find (u);; = 1, if a measurement is
performed, and (y);; = 0 otherwise. In the example shown in Fig. 2.9(b), a Bell
state measurement can be performed only on configuration C3 = {11}. There is
no matching for all other configurations, and the configuration remains unchanged.

The resulting matrix that defines the measurement map is therefore given by

e = (2.58)

o O O =
o O = O
o = O O
o O O =
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Figure 2.10: Possible paths to get from the memory configuration Cy back to the
same configuration within one round.

To get the transition of one protocol round, i.e., combining the storage and the

measurement map, one has to concatenate both transition matrices
T = py ooy, (2.59)

which is again a valid transition matrix. In our example, that leads to the following

transition matrix:

(I=p?+p* p p 1
1— 1— 0 0

T—ppoop— | 7PP b . (2.60)
p(1—p) 0 1-p 0

0 0 0 0

All entries of the total transition matrix 7" remain nonnegative real numbers, and
all columns sum to one. Each entry of the matrix gives the total probability to go
from any configuration C; at the beginning of a round to another configuration C;’
at the end of this round. Note that there can be more than one transition from
configuration C; to configuration C/. Fig. 2.10 shows exemplary all different paths
illustrating the transitions that can occur to get from configuration Cy back to C{ in
a single round. Since probabilities along a path are multiplied, and probabilities of
all parallel paths are summed, we get the same total probability in Fig. 2.10 and in

the corresponding entry Ty, of the transition matrix.
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Now, we can calculate the state vector 7 for the end of each round to get the

probabilities m; of every configuration C;. For the initial configuration, we start with
T

empty quantum memories, i.e., Tjpir = (1 0 ... 0 > , as no qubits are sent to
the quantum router before starting the protocol. The probability distribution 7,

after one round s is then given by

g = Tﬂ—im’t

= (1 0 0)Tinit- (2.61)

Considering a specific memory configuration C, the transition to another memory

configuration C” is calculated as follows:

Problugoo,(C) =C"] = Z Spup(cry.cn Problog(C) = C'], (2.62)
Cremnp (o)

with Kronecker delta 6,,» = 1 for + = 2’ and d,,» = 0 otherwise. Eq. 2.62 is
used to calculate a specific entry of the state vector 7, i.e., the entry m; for a given
configuration C;. The probability to find any configuration C at the beginning of a
round s (that equals the configuration C” at the end of the previous round s — 1)

depends on the initial configuration C of the previous round (s — 1):

ProblC(s)] = > meb pg 00y (C(s —1)) = C"(s — 1) Prob[C(s — 1)].

C(s—1)EHM(0) £=0
(2.63)

To calculate the probability of performing ¢ Bell state measurements on the inter-
mediate configuration C’(s) of a round s (Prob[A = ¢|(s)), we need to apply the

storage map once more to the initial configuration C(s):

ProbA ={)(s)= > Prob[C'(s)]

= Z Z Prob[oy(C) = C'|Prob|C(s)], (2.64)

C'eMHm () CEHT(0)
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with the random variable A that can take values from 0 to m. Analogously, we

proceed in the Markov chain picture:

Prob[A =] = Z i

CLenT(0)

= Y (o), (2.65)

CleH (1)

with state vector m;,; giving the probability distribution at the beginning of the
round. With this probability, it is now possible to calculate the probability of

having ¢ successful Bell measurements:

m

Probfs ==Y @ ProbiA = i|(s)plasr (1 — psar) ™, (2.66)

=0

with random variable A € [0, m] as the number of performed Bell state measurements
and random variable ¥ € [0,m] as the number of successfully performed Bell state
measurements. Whether a Bell state measurement is successful is given by the
success probability pgsys. Finally, we calculate the average number of successfully

performed Bell state measurements as
(0) =" tProb[2 = {](s). (2.67)
=0

The repeater rate can now be calculated by combining all the equations and finally
inserting Eq. (2.67) into Eq. (2.54).

2.3.2 Multipartite quantum router

So far, we have considered only the bipartite setup, where the quantum repeater
is placed between two end nodes. Now, we consider the multipartite setup. In
our work, we focus on the star-shaped network with one central station and all end
nodes located around it. Due to its structure, we call the central station the quantum
router. The task of the quantum router is the same as that of the quantum repeater:

the quantum router is placed in the middle between the end nodes to overcome larger
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distances. It uses entanglement swapping to distribute entanglement between all end
nodes. As described in Sec. 2.2.2, the entanglement swapping is performed using a
GHZ state measurement. Consequently, the qubits held locally are projected onto
one of the GHZ states given in Eq. 2.51. With classical communication and local
operations, the desired GHZ state can be obtained.

In [CKD*21, VGNT21b], similar graph structures are analyzed analytically and
numerically with the goal of entangling £ < N parties. Liet al. consider multipartite
star graphs without quantum memories [LFL*23b]. Here, we introduce quantum
memories into the quantum router and generalize the memory multiplexing to the
multipartite setup. In this section, we give a brief overview of the setup of a quantum
router and introduce memory multiplexing. A detailed discussion of the underlying
multipartite matching, as well as the multiplexing strategies, is given in Chapter 3

and Chapter 4 when we present our results.

Multiplexing

With memory multiplexing, the GHZ state generation rate can be increased similarly
to that of the bipartite scenario. Fig. 2.11 shows an example setup of a quantum
router with four parties and five memories each. The parties are here called Alice,
Bob, Charly, and Dave. Due to the underlying quantum circuit of performing a GHZ
state measurement, the connections within the quantum router are made between
N — 1 parties (called peers B; with ¢ € {1,2,...,N — 1}) and one party, called
central party A (compare Sec. 2.2.2 for details). Here, Alice (A) is considered to be
the center node, while Bob (B;), Charly (Bz), and Dave (Bs) are the peers.

Again, all memories are labeled so that the connection length can again be defined
as the difference in the memory labels. Note that for the multipartite setup, this
is an artificial construction since the labels are made randomly and depend on
the arrangement of the memories made in the experimental setup. However, the
connection length is considered to include the assumption that it is impossible to
always connect all memories from one party with all memories from another party.

Similar to the bipartite setup, the choice of the memories used for the GHZ state

measurement is based on a matching problem in graph theory. We properly define
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Figure 2.11: ([KKB24]) Representation of a four-partite quantum router with mul-
tiplexing. Up to five GHZ state measurements can be performed in
parallel, as every party holds five photon sources and has five quantum
memories available. Quantum memories that are shown in light blue
represent filled memories. Possible connections between the memories
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the multipartite matching that shows up in quantum routers and give a concrete

description of the graph theoretical problem and its complexity in Chapter 3.

Router rate

Analogously to the repeater rate, we define the router rate of a quantum router
as the number of GHZ state measurements performed successfully on average per
round and memory:

R(s) = — Z o (2.68)

¢zt M

The calculation of the router rate is similar to the one for the quantum repeater
given in Sec. 2.3.1. However, the bit strings C describing the memory configurations
of the quantum router with N parties and m memories per party are now of length
Nm. In total, there are now 2¥™ different memory configurations the quantum
router can be in. Therefore, the probability distribution given by the state vector
7 as well as the two transition matrices oy and j, are now of dimension 2¥™ and
2Nm s 9Nm - respectively. The entries of the storage map o, are again calculated
via Eq. (2.56) while the measurement map i, relies on the underlying multipartite

matching.

2.4 Quantum key distribution

We now focus on an application in quantum communication: the quantum key dis-
tribution. For this purpose, we consider the following situation:

Alice and Bob - one of whom is located in Duesseldorf and the other one in Munich -
want to share their secret information about their bank accounts. This is a message
in binary form: 7011010010101000110110”. For security reasons, they do not want
to convey this information on the phone since any eavesdropper (a malicious third
party that is not authorized to get this information) could listen to them. The same
holds for any other communication method. Any letter, either written on paper or
by electronic mail, could be intercepted, copied, or just read in between. To increase

security, Alice and Bob agree to use a secret key that only they know. This key
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Message M: 011010010101000110110
key K: 101011001010101011100

®
SecretM:  110001011111101101010

) ] [
+ _—

Secret message M'
— —N === /A

Alice Encoding Decoding Bob

Figure 2.12: Illustration of secure communication using a secret key. Alice encodes
the message by adding a secret key (addition modulo 2: &), and Bob
decodes the message by subtracting the same key.

consists of a string of uniformly random bits at least as long as the message. In this
example, the key is given by 7101011001010101011100”. The party who wants to
send the message, let us say Alice, can use the secret key to encode her message:
she adds the secret bit string bitwise (addition modulo 2) to the original message to
create another bit string from which the information cannot be generated without
further knowledge about the secret key. Conversely, Bob can subtract the same
secret bit string to recover the original message. This is the decoding. An example
scheme is shown in Fig. 2.12.

The encoded message can be sent over a public channel. Even if it is intercepted
by a third party, the information is secure since no reference to the original message
is given. Only the parties that have knowledge about the secret key can recover the
information. This encryption method, using a pre-shared key only once, is called

one-time-pad [Sha49]. It is proven to be secure under the following assumptions:
1. The key is generated truly randomly.
2. The key and all subparts are used only once.
3. All parties keep the key secret and do not share it with anyone.

4. The key is at least as long as the message that is to be encrypted.
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Now that Alice and Bob know how they can send the message secretly, they have a
new challenge to deal with: how can they share the key secretly so that no eavesdrop-
per gets to know the key? In classical computation, public key cryptography [DHT6]
such as RSA [RSAT8] is a common technique used nowadays. That is asymmetric
cryptography, in which the keys for encoding and decoding are different. One party
publishes a key, let us say Alice. Every party that wants to send a message to Alice
can use the public key for encryption. The key for decryption is a different secret
key only known to Alice. She uses that key to decrypt the message and recover the
original information. In that way, the distribution of a symmetric secret key that

all communicating parties need for encryption and decryption can be performed.

The RSA cryptosystem, like many other public key cryptosystems, uses large
prime numbers. The security proof of RSA then relies on the complexity of fac-
torizing large numbers: given a number n, the task is to find the product of prime
numbers that equals n. Although the test of deciding whether a number is prime or
not is in P [AKS02], it is not known whether the factorization problem is in P. So
far, no efficient algorithms exist to solve this task if the key has enough bits 2. An
overview of classical key distribution and the methods of symmetric and asymmetric

keys is given, for example, in [Rot05].

With the development of quantum computers, the long-term security of public
key cryptography is no longer guaranteed. Shor’s algorithm is said to be efficient in
solving the factorization problem [Sho94, Sho97]. However, quantum technologies
also lead to new opportunities: one can make use of the properties of quantum
mechanics to solve the task of distributing a secret key. Quantum key distribution
offers an information-theoretically secure solution to share a secret key between the
parties. We first consider the BB84 protocol, named after its inventors Bennett and
Brassard in 1984 [BB84].

2Since January 2025, for example, the German Federal Office for Information Security has rec-
ommended a modulus n = pg (with primes p and q) of at least 3000 bits in length [Fed24].
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Figure 2.13: Representation of the two orthogonal bases used to encode the bits for
the key distribution: 0+ [0)or|0), 1 — [1)or |1).

2.4.1 BB84 protocol

We return to Alice and Bob, who still have to handle the problem of secretly sharing
a key. So far, they have shifted the problem of sharing a message secretly to the
problem of distributing the key without being eavesdropped on. To tackle that
problem, they want to perform the bipartite BB84 protocol to distribute a random
secret key that they can use to share their private message about the bank account.

To do so, they make use of two orthogonal bases to encode a classical bit:

By ={|0),[1)} (2.69)
B, ={|0),]1)}. (2.70)

Photons are used to set up the qubits physically. The information is encoded in the
polarization, and the basis defines the orientation of the polarization (compare Fig.

2.13). The steps of the protocol are as follows:

1. Prepare-and-measure: Repeat the following steps n times:

a) Alice randomly chooses a basis By or By and polarizes the photon either
horizontally (|0),|0)) or vertically (|1),]1)).
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2.4. Quantum key distribution

b) The qubit is sent through a quantum channel. When Bob receives the

photon, he randomly chooses a basis and measures the polarization.

2. Sifting: Alice tells Bob which basis she chose in every round over the authen-
ticated classical channel. Rounds in which the basis choice of Alice and Bob

did not coincide are discarded.

Alice and Bob did perform the protocol up to that step. The following table shows

an example of what they came up with:

Alice’s basis By | By | By | By | By | By | By | By | By | B

Prepared photon =1 =1 01T 1IN I T =N\

Bob’s basis Bo | By | By | By | By | Ba | By | By | By | By

Measurement outcome | v | — | 2| T | r | AN | T | r | T
Raw key 0|1 ]1 17101

In the rounds in which the basis choices differ, the measurement outcome is random,
here indicated by the ”"r”. Statistically, Alice and Bob choose the same basis for half
of the rounds. Therefore, the raw key is of length approximately n /2.

The presence of an eavesdropper could change the setup as follows, depending on
the power she has. One strategy the eavesdropper can choose is to intercept the
qubit in the channel, perform a measurement on it, and resend the qubit to Bob.
Since the announcement about the basis choice is made via a classical channel, the
eavesdropper can access that information. Analogously to Bob, she has to discard
all rounds in which she chose a basis other than the one Alice used for preparation.
Nevertheless, her interaction with the qubit affects the state of the quantum system.
The measurement outcome is random in all rounds in which the eavesdropper chooses
a basis different from Alice’s. Consequently, the state of the qubits is randomly set

to one of the polarizations. This introduces an error, which can be later identified:
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Round 1 213141516 | 7]8]9]10
Alice’s basis By | B | By | By | By | By | By | By | By | Bs
Prepared photon =S| =1 01T 1IN N T =N\
Eve’s basis Bo | By | By | By | By | By | By | Ba | By | By
Resent photon r|r | TN N
Bob’s basis Bo | By | By | By | By | Ba | By | By | Ba | By
Measurement outcome | r | r* | A | ¢ [ * || * | 1 |1
Raw key 1|1 || ¥

In all rounds in which Alice and Bob choose the same basis, but the eavesdropper

chooses the opposite basis, Bob’s measurement may differ from what Alice would

expect. Due to Eve’s measurement, the superposition of the photon collapses. With

a probability of 1/2, she resends a photon with a polarization opposite to the one

Alice originally sent. This random output "r*” introduces an error. With a proba-
bility of 1/2, that bit in the raw key differs for Alice and Bob. This is to be verified

in the next step of the protocol:

3. Parameter estimation: Alice and Bob use part of the raw key to estimate

the quantum bit error rates (QBER) Qx and Q7. Qx gives the error from
an X-basis measurement, while )z gives the error from the measurement
performed in the Z-basis. In that step, the presence of an eavesdropper can
be inferred. Considering Eve’s attack shown above, about n/8 of the key is
corrupted on average: with a probability of 1/2, Alice and Eve choose different
bases. With another chance of 1/2, the measurement result of Eve collapses the
state to the polarization Alice did not choose. Due to Bob’s basis choice, the
round is discarded with a probability of 1/2. Whenever Alice and Bob compare
parts of the key and find such a large difference in the key, the protocol should

be aborted and has to be started again.

Additional steps of the BB84 protocol are:
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4. Information reconciliation: Alice and Bob perform some classical error

correction on the raw key to compensate for potential errors arising from the
interaction of the qubit with its environment. Communication takes place via
the public authenticated channel. At the end of this step, both parties hold

the same bit string.
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5. Privacy amplification: In this step, Alice and Bob agree on a hash function
they both apply to their bit strings to generate a shorter but completely secret
bit string: the final key K.

The efficiency of the protocol can be improved by choosing one basis with a higher
probability. The rounds in which this preferred basis is used for key generation,
while the rounds using the other basis are used for testing. This technique does not

compromise security [LCAO05].

Entanglement-based version

Instead of using single-photon sources that can prepare single photons and send
them one by one, we can use an entanglement-based version of the BB84 protocol

[BBM92]. In this protocol, the prepare-and-measure part is changed as follows:
1. Prepare-and-measure: Repeat the following steps n times:

a) An entangled state (ideally the maximally entangled Bell state [¢T)) is
distributed between the parties Alice and Bob by any source.

b) Alice and Bob each choose a measurement basis in which they measure
their qubit of the Bell pair. Both parties record their measurement out-

come.

2. All other steps remain the same.

Note that the distribution of an entangled state can be done via a quantum re-
peater performing entanglement swapping. Both parties then hold one qubit of the
entangled pair on which they both can perform a measurement, recording their mea-

surement outcome.

Security of the BB84 protocol was proven in [SP00] with a simple proof based on
entanglement purification. A more general proof is given, for example, in [KGRO05].
In general, the eavesdropper can perform different attacks, depending on the power
she has. For the different attacks, different security proofs are needed. Additionally,
some assumptions have to be made in order to guarantee security in practical QKD.
Since we do not deal with the security of quantum key distribution in this work, we
leave it at this point and refer the reader to [SBPCT09] for further details.

93



Chapter 2. Theoretical background

2.4.2 Multipartite BB84 protocol

A secret key can also be distributed among a larger set of parties. We call this
scenario conference key agreement. Sequentially performing the bipartite quantum
key distribution protocol can solve this task. However, due to multipartite quantum
correlations, more efficient protocols can be designed [MGKB20]. Here, we focus on
the multipartite BB84 protocol (also called N-BB84 protocol). The protocol makes
use of the multipartite entangled GHZ state (for N parties)

1

V2

because the measurement outcomes in the Z-basis provide perfect correlation and

eHZ) = —= (0% + 1)), 2.71)

are random and uniformly distributed.

The steps of the protocol are a generalization of the protocol steps from the

entanglement-based bipartite BB84 protocol given above:

1. Prepare-and-measure: Repeat the following steps n times:

a) A quantum source distributes a multipartite entangled GHZ state among

all parties so that each party holds one qubit of the state.

b) Each party performs a measurement on their own qubit and records the
outcome. The measurement is performed in one of the two bases (i.e.,

key generation or test basis).

All other steps remain the same. The parties can perform the sifting step in order
to discard rounds in which the measurement bases chosen by the parties differ. The
QBERs are estimated in the parameter estimation step. Afterward, some error
correction protocol is applied in the information reconciliation, and lastly, the

key is shortened to a completely secure key in the privacy amplification.

Since key generation only works if all N parties choose the same measurement
basis in one round, this basis is again chosen with a higher probability than the test

basis.
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2.4. Quantum key distribution

2.4.3 QBER and key rate

The information we gain during the conference key agreement is given by the quan-
tum bit error rates estimated in the parameter estimation step. The QBER in the
X-basis gives the error with respect to the multipartite entangled GHZ state from
Eq. 2.71. If the state held by the parties equals the GHZ state, the QBER is
zero. Otherwise, it gives the probability that the state differs from the GHZ state.
Explicitly, Q) x is calculated as

1— (XN

Qx = —=

(2.72)

The expectation value of the X-operator is given by (X) = tr (pX) for a density
matrix p. The QBER in Z-basis gives the probability that one of the parties B; gets
a different measurement outcome than party A does. In the multipartite setup, we
call this the bipartite QBER @ p,. Explicitly, it holds:

Qap, = % (2.73)

With the QBER, the asymptotic secret fraction can be calculated. This rate gives
the fraction of secret bits that are preservable from all measured bits. For the

N-BB84 protocol, [GKB18] gives the asymptotic secret fraction as follows:

oo =1 —h(Qx) — max h(Qag,). (2.74)

1<i<N-1

For the bipartite setup, we find

oo = 1= h(Q@x) — h(Q2z), (2.75)

with )z being the probability that party A and B get different measurement out-
comes for the Z-basis measurement. In both equations, h(p) = —plog,(p) — (1 —

p) logy(1 — p) is the binary Shannon entropy function.

The secret key rate is defined as the fraction of all distributed bits that successfully
contribute to the final key as secret bits. It is given by the product of the asymptotic
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secret fraction from Eq. 2.74 and the router rate from Eq. 2.68:

K(se) = rooR(s¢). (2.76)
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CHAPTER 3

THE QUANTUM ROUTER MATCHING
PROBLEM

3.1 Introduction

To implement the quantum router with memory multiplexing, it is essential to un-
derstand the underlying graph-theoretical problem of matching. It is of great interest
to quickly decide how the quantum memories of the different parties have to be con-
nected via a GHZ state measurement to optimize the distribution rate of entangled
states and increase the secret key rate by reducing the storage time of the qubits
in the memories. Efficient algorithms that solve the quantum router instances and
the multiplexing requirements are to be developed here. The effect of the quantum
memories on the fidelity of the stored qubits, as well as the underlying strategies
that optimize the secret key rate, are discussed and evaluated in Chapter 4.

In our work, we focus on the quantum router matching. We give a proper def-
inition and compare the problem with the known N-dimensional matching that is
given in the literature. We further analyze the complexity of the quantum router
matching. We start with the decision problem and arbitrary connections that can
be chosen within the requirements given by the underlying quantum circuit. It turns

out that this most general decision problem is N'P-complete, just as the known N-
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Chapter 3. The quantum router matching problem

dimensional matching is [Kar72|. From that, it follows that finding a matching with
maximum cardinality (the maximum quantum router matching) cannot be easier.
However, drawing the edges with respect to the connection length, which is physi-
cally motivated, leads to some special cases that are efficiently solvable. In our work,
we examine different cases and give algorithms for those that are efficiently solvable.
Furthermore, we propose an approximate solution for the maximum quantum router
matching in the general case using a greedy algorithm. For small input graphs, it
is also possible to get exact solutions for the quantum router matching since the
difference between exponential and polynomial runtime is not that significant. This
can be used to compare the approximation algorithm for small graphs with an exact
solution. For large inputs, however, the exponential runtime makes it impossible
to find a maximum cardinality matching by checking all possible solutions. In that

case, the approximation algorithm is needed.

3.2 Computational complexity

As this topic requires some background knowledge about computer science, we first
introduce the concept of computational complexity. This measures how many re-
sources are needed to solve a problem algorithmically. Considering a Turing ma-
chine (TM), there are two resources considered: the time (number of computation
steps) and the space (number of cells on the working tape). A Turing machine is
a theoretical computation model that forms the basis of a modern computer. It is
named after its inventor, Alan Turing [Tur37, Tur96]. Equipped with an infinite
tape, a read/write head, and a set of rules that determine its actions based on the
current state and tape symbol, it can simulate any algorithm. A nondeterministic
TM, in contrast to a deterministic TM, can choose between multiple options on how
to proceed. That is, it can have several paths in its computation. Acceptance is
reached if and only if at least one accepting path exists. Deterministic TMs, how-
ever, cannot have nondeterministic paths. But they can just go through all paths
of the nondeterministic TM sequentially, such that they are just as powerful as
nondeterministic TMs. Note that this takes up to exponentially more computation
steps.

In the following, we focus on the resource time. Regarding deterministic Turing
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3.3. Quantum router matching

machines, the computation time is the number of computation steps that need to
be performed until a computation is done. For a nondeterministic TM, the number
of steps required to perform a computation is the shortest accepting path. If such
a path does not exist, the computation time is undefined. In general, the computa-
tion time of an instance is related to the input size. To classify problems, complexity
classes are used. Each class contains problems that can be solved by a given max-
imal resource (always with respect to the most efficient algorithm that solves the
problem). Here, we focus on the time complexity classes P and N'P. A problem is
considered to be efficiently solvable if a deterministic TM exists that can solve the
problem in polynomial time. Any decision problem (leading to a ’yes’ or 'no’ output,
i.e., either acceptance or no acceptance) that can be decided on a deterministic TM
in polynomial time, leading to a correct answer, is in P. Problems outside of P are
called intractable, meaning that any deterministic TM requires running exponen-
tially many computation steps with respect to the input size. A decision problem
is in NP, if and only if there exists a nondeterministic TM that runs in polynomial
time and decides the problem. Note that P C NP L.

A decision problem is called N'P-hard if every problem in NP can be reduced
to it in polynomial time. Moreover, a decision problem is called NP-complete if
it is both in NP and NP-hard. In general, N'P-complete problems are said to
be the "hardest” problems in this complexity class. Note that P, NP, and NP-
completeness are only defined for decision problems, i.e., only for problems that have
a yes/no answer. The Euler diagram representing these two complexity classes is
given in Fig. 3.1. Besides these two complexity classes, there are more classifications
regarding time and space resources. A more detailed overview of computational

complexity is given, for example, in the book by Rothe [Rot05].

3.3 Quantum router matching

Similar to the bipartite quantum repeater with memory multiplexing, the quantum
router setup is also based on a matching problem from graph theory. The quantum

memories in the router form a graph as in the bipartite setup. However, since there

1The question of whether P = NP remains open. However, it is generally assumed that they are
not equal.
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Axajdwo)

NP-complete

Figure 3.1: Euler diagram for the set of P, NP, N'P-hard, and N'P-complete prob-
lems under the assumption that P # NP.

are now N parties, i.e., N subsets of memories, this is an N-partite graph G = (V, F).
The set of nodes V' is divided into N pairwise disjoint subsets Vi, V5, ..., Vy. Again,
the edges indicate the possible connectivity between those nodes. Due to the graph

structure, the problem we consider here is a special form of N-dimensional matching.

The N-dimensional matching known from literature is defined on hypergraphs. A
hypergraph is a pair (V, E) with nodes V' and hyperedges E that is given by a set
of any number of vertices v € V. An example hypergraph is given in Fig. 3.2. The
N-dimensional matching is defined as follows [LP09]:

Definition 3.1 (N-dimensional matching). Given the N finite sets V, with « €
{1,...,N} and let T be a subset of Vi x Vo x -+- x Viy. That means that T consists
of N-tuples (vi,vq,...,vy5) with vy € Vi,ug € Vo,... oy € V. The set M C T is
an N-dimensional matching if for any two distinct N-tuples (vi,va,...,vn) € M

and (01, 0g,...,0n) € M it holds vy # U1,v9 # Do, ..., Uy # UN.

The corresponding decision problem of this verifies whether a matching exists with
at least cardinality v for a given input hypergraph and a positive integer . Already,

the 3-dimensional matching (from Def. 3.1) as a decision problem was mentioned to
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Figure 3.2: Example of a hypergraph with vertices %4 =
{U17 V2, U3, V4, Vs, Vg, U7, Ug, 'Ug} and hyperedges E = {617 €9, €3, 64}
Wlth €1 = {U17U2}7€2 = {'1)17'027'04},63 = {U37U47U5}7€4 = {U67U8}7€5 =

{vr,vs8}.

be N'P-complete by Karp in 1972 [Kar72]. Thus, the optimization problem given
by the maximum 3-dimensional matching that finds a maximum integer v is not
easily solvable, either. To prove NP-completeness, a known N P-complete problem
is reduced to this problem. The full proof is given, for example, in [Har82, KT06].
There, the NP-complete problem 3-SAT is reduced to the maximum 3-dimensional
matching. Approximation algorithms can be used to solve this problem up to a

certain convergence [Cygl3].

Let us now consider the matching we perform in the quantum router. Although
the quantum router is defined on an N-partite graph, the connections between the
individual parties are defined via bipartite edges and not as hyperedges. This is due
to the underlying GHZ circuit performed at the quantum router (see Sec. 2.2.2 for
details). Even though these edges can be grouped into hyperedges under certain
criteria, the previous definition is not transferable. This is shown by a simple exam-
ple in Fig. 3.3. The graph on the left of Fig. 3.3(a) shows a 3-partite graph with

hyperedges including one node per party: e; = {vh,v4,v3} and ey = {v}, 0%, vt}
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® () @ ® ) @ @

@® @ «——»0® ® @——>0 <0~ @

@ ® ® @ ® ® © ® ®
((

I Resulting hyperedges
a)) Hyperedges b)) Bipartite edges between °) X A
(@) Ryperedo e Aies oo Alice-Charly from physical motivation

©®

Figure 3.3: Example of a 3-partite graph with (a) hyperedges and (b) bipartite edges
forming a matching instance. The graph in (b) can be obtained by split-
ting the hyperedges into bipartite edges. The reconstructed hypergraph
shown in (c) shows, however, that the quantum router is not described
suitably by the hypergraph given on the left, as they are different from
each other.

(with B: Bob, A: Alice, C: Charly). This forms a valid subset T of V4 x Vi x V&
and is, therefore, a correct instance to which we can apply the 3-dimensional match-
ing defined before. The graph in the middle of Fig. 3.3(b) shows the same graph
instance but with bipartite edges between Bob and Alice, and between Alice and
Charly. One can construct this graph from the graph on the left by splitting the
hyperedges into bipartite edges. Nevertheless, we find two more hyperedges when
constructing the hypergraph starting from the graph in the middle, in which the
filled memories and allowed bipartite edges are given. The resulting hypergraph
with the four hyperedges is shown on the right of Fig. 3.3(c). From a physical per-
spective, there is no reason why these two additional hyperedges (shown in black)
should be excluded from the matching if the connection length is not restricted.
This example shows that any graph instance we define in a quantum router is a
special case of the general N-dimensional matching in graph theory. However, it is
important to note that not all valid graph instances for the N-dimensional matching

represent the physical setup in a suitable way.

We define the quantum router matching as follows:

Definition 3.2 (Quantum router matching). Given an N-partite graph consisting
of N disjoint vertex subsets Vi,Vs, ...,V created from the given quantum router

setup in each round. A quantum router matching M is a set of N-tuples ;. with
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Quantum router

Bob Alice Charly

Figure 3.4: Example of a maximum quantum router matching in a 3-partite graph.
The connection length is set to w < 1. The dashed lines show all possible
bipartite edges between Bob and Alice and Alice and Charly. From that,
all valid hyperedges are constructed. These are given by the solid lines.
A possible maximum quantum router matching is shown in red.

ke {l,2,...,|M|}, such that

e cach N-tuple always consists of exactly one node from each subset V,, i.e.,

(v1,v9,...,0N) with vy € Vi,vy € Vo, ... uny € Vi,

e cach N-tuple is created from bipartite edges between one special party, let us say
center party Vi (or Va) and all peers Vi, ..., Vn_1 (or Vg, withi € {1,...,N—

1}),

e no node 1s used more than once, and
e bipartite edges that do not conform to the connection length are not allowed.

A quantum router matching is mazimum when its cardinality | M| is mazimum, and

no other choice of N-tuples can increase the cardinality.

An example of a tripartite graph with a valid maximum quantum router matching

is shown in Fig. 3.4.
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3.4 Results

In our work, we first define the corresponding decision problem and prove N7P-
completeness for the most general case in which we draw edges randomly between
filled quantum memories. Then we discuss special cases that result from integrating
the connection length, for which we obtain efficient algorithms. In the case of the
unweighted general quantum router maximum matching, we additionally provide an

approximation algorithm.

3.4.1 Complexity results

For a complexity analysis, it is useful to formulate the problem as a decision problem
first and check this for its hardness. If deciding whether some cardinality v can be
achieved is already hard, it shows that computing such a matching is hard, too. We
define the general decision problem of the quantum router matching with arbitrary

connections as follows:

QUANTUM ROUTER MATCHING (QRM)
Given: An N-partite graph G = (V, E) with N disjoint subsets
with one central subset V4 and ¢ € {1,..., N — 1} peers

Vp,, and a positive integer +.
Question: Does there exist a quantum router matching of at least

size v in G7

We further introduce a Weighted multipartite maximum matching that allows us
to weight all vertices with respect to the fidelity of the qubits within the memories.
A detailed discussion about different matching strategies is given in Chapter 4. In
this work, we follow the strategy to always combine qubits with the highest fidelities,
i.e., the lowest storage time (a physical motivation for that is also given in Chapter
4). For now, we assume that all weights W given by the fidelity of each node of one
N-tuple (F, with v € (}) within a matching are multiplied, and the total weight of
one matching W (M) is given by the sum of the weights of all N-tuples (x € M:

W) =>" T[] F.- (3.1)

CEM veE(
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The resulting weighted multipartite matching is as follows:

WEIGHTED QUANTUM ROUTER MAXIMUM MATCHING (WQRMM)
Given: An N-partite graph G = (V, E) with N disjoint subsets
with one central subset V4 and i € {1,..., N — 1} peers
Vg,, the fidelity F, € [0, 1] for each node v € V, and a

positive integer ~.

Question: Does there exist a maximum multipartite matching M

with total weight at least v in G?

We prove that the general decision problem given by QRM is — similar to the
known N-dimensional matching — NP-complete. To show N'P-hardness, we reduce
to QRM from the well-known problem 3-SAT to show that QRM is at least as
hard as 3-SAT. This 3-SAT problem was independently proven NP-complete by
Cook [Coo71] and Levin [Lev73]. That QRM is in NP (and thus N'P-complete)
follows immediately from the fact that any solution to the problem can be guessed
nondeterministically in polynomial time, and its correctness can be shown determin-
istically. Since the unweighted maximum QRM for a general graph is intractable, it
immediately follows that WQRMM is intractable as well.

Although intractability holds for the general cases of the introduced QRM (WQRMM)
with arbitrary connections, we give special cases in which the problems are efficiently

solvable:

1. QRM is in P, whenever every node from the peers Vg, withi € {1,..., N—1}

is connected to at most one node from the center party Vj.

2. WQRMM is in P, whenever every node from the peers Vg, withi € {1,..., N—

1} is connected to at most one node from the center party V.

3. QRM is in P, whenever every node from the peers Vg, with ¢ € {1,..., N —1}

is connected to every node within the center party Vj.

4. WQRMM is in P, whenever every node from the peers Vg, withi € {1,..., N—

1} is connected to every node from the center party V.

5. QRM is efficiently solvable via Network Flow for all tripartite graph instances.
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Note that the results 1 and 2 are both independent of the connection length w. To
show the result, one can perform a simple algorithm that finds a maximum matching
in polynomial time: For each center node v4 € V4, one has to check whether there
exists at least one connection to every peer Vg, with i € {1,..., N —1}. If so, one
chooses one edge to each peer and adds all these nodes together with the center
node as an N-tuple to the matching. In the case of the WQRMM, one chooses the
connection with the highest weight. Since there is no other link from the peer node
to the center, it is always better to choose this node instead of not including the
node at all, and no better total weight can be reached. Result 3 covers the case that
all connections are allowed, i.e., the connection length is maximal. In that case,
we can immediately see the cardinality of the maximum quantum router matching
since it is given by the minimum number of filled memories of one party. As the
N-tuples, one chooses the first | M| nodes from each partition Vi, Vp,, ..., Vg, , and
adds them to the matching. As this empties all memories of at least one partition,
no more N-tuples can be added to the matching so that it is maximal. Similar to
result 3, result 4 covers the setup in which the connection length is not restricted,
this time including weights. The rearrangement inequality [Rud52| states that for

three ordered sequences of nonnegative real numbers
T STy < Sy, PSP S S Wny 1S RS S 2,
and the two permutations
Yr(1)s Yn(2)s - Yr(n) OF Y1, oo Uny Zr(1)s 2r(2)s - -+ 27r(n) Of 21,00, 2
it holds:
TYr()2r()) + F Tpln(n) Zrn) < T1Y121 + -0+ TplYnZn. (3.2)

The same holds for any finite number of ordered sequences of nonnegative real num-
bers. The details of the proof of the rearrangement inequality are given in [Rud52].
Since all weights W € [0,1] are nonnegative real numbers, we can use the rear-
rangement inequality to show that ordering all nodes by their weights and forming

the N-tuples choosing the first |M| nodes with highest weights of each partition
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always leads to a matching with maximum cardinality and maximum weight. The
cardinality of the matching is again given by the minimum number of nodes of one
partition.

For the tripartite network, every instance of the unweighted multipartite matching
can be mapped to an instance of the well-known Network Flow problem (see for
example [Will9, AMO93|) since this setup always represents a flow from peer B
over the center party A to peer By. Accordingly, the 3-partite matching can always
be solved efficiently via network flow. This holds for the full-range multiplexing
(i.e., maximal connection length), as well as for the finite-range multiplexing (i.e.,
restricted connection length).

The underlying mazimum network flow is defined as follows: Given a directed
graph G = (V, E) with two additional vertices s,t € V. These are the source s
from which the flow goes to the sink t. Each edge (vq,vy) is assigned to a capacity
u(vy,v9) € Ry. The s-t flow has to fulfill the

a) capacity constraint: each edge (vq,v2) € E has a maximum flow upper bounded

by the capacity u(vy, v2),

b) flow conservation constraint: for each node v; € V', the sum of the input flow

equals the sum of the output flow of that node v;.

The goal of the network flow is to find a flow f that maximizes the net flow from
the source s to the sink ¢.

To correctly model the 3-partite matching, all capacities are set to one. In this
way, it is guaranteed that memories from each peer node B; and By appear only
once in a matching. To make the center node’s memories appear only once, the
array of nodes from party A has to be duplicated to A’. Edges between layers A
and A’ are only drawn between a node and its own copy. Since the capacities are
restricted to one, and input and output flows have to be equal, it is now guaranteed
that also the nodes from party A appear only once in a matching. Fig. 3.5 shows an
example network flow problem for a given quantum router instance. As the general
multipartite matching is defined over bipartite edges connecting the center party A
to the peers By, it is generally not possible to map the multipartite matching (with

N > 3) to the maximum network flow problem.
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Figure 3.5: Example of a Network flow instance. On the left, the quantum router
with its memories is shown. The right side shows the resulting network
flow instance, with the additional source s and sink t. To prevent Alice’s
memories from being chosen twice, the copied layer (Alice)’ is added,
resulting in a single edge between a node from A and A’.

3.4.2 Approximation algorithm

For the general maximum quantum router matching in which we can restrict the
connection length but do not include weights to the nodes, we provide an approxima-
tion algorithm. The general idea of this algorithm is to first include bipartite edges
between the center node V4 and the peers Vp, for nodes that only have one edge
to the center or the peer, respectively. All these nodes are added to the matching,
and further connections of these nodes are deleted. In this way, it is often possible
to resolve the matching step by step. Algorithm 1 shows the working principle of
the approximation algorithm. The cardinality of the matching can — for a restricted

connection length — only be upper bounded by

M| < min V.. (3.3)

te{A,B1,....BN -1}

Note that in all subsets V¢, only filled memories are considered when calculat-
ing the upper bound on |M|, as empty memories do not contribute to the match-
ing. With the instruction Remove orphaned nodes, we mean that all center nodes
that are not connected to at least one node from every peer B; and vice versa are
deleted. The function Get I_maz calculates the maximum cardinality as |M| =

Mie(a,B,...By 1} | Vi]-
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Results

Algorithm 1 Approximation Algorithm

remove orphaned nodes
get l_maz

> Strategy 1

repeat < True
while repeat do
repeat < False
check_1 < True
while check-1 do
check_1 « False
for v/ € V4 do
if v7 has a single unmarked edge to any v’ e Vg, then
mark edge {v7, vj/} for later selection of matching
delete further edges from node ' e VB
delete orphaned nodes
check_1 < True
repeat < True
end

end

end

if marked edges give valid matching with cardinality I_max then
|  return matching M

end

check_2 < True

while check_2 do
check_2 < False

for vi’ € Vg, do
if vi" has single unmarked edge to any node vJ € V4 then
mark edge {vj,vjl} for later selection of matching
delete further edges from node v € Vi
delete orphaned nodes
check_2 < True
repeat < True
end
end

end
if marked edges give valid matching with cardinality [-max then
| return matching M
end
end
for v/ € V4 do
if v; has no marked edge to a node v’ in any Vp_; then
| choose first edge between center V4 and peer Vp, and mark it
end

end

if marked edges give valid matching with cardinality I_maz then
| return matching M

end

> Strategy 2

reset graph (i.e., unmark all edges and add deleted nodes and edges)
for vJ € V4 do
for v’ € Vg, do
mark the first edge for matching M’
delete orphaned nodes

end
end
if |M'| < |M| then
| return matching M
end
return matching M’
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Given a valid graph instance representing the quantum router at a specific time,

the algorithm either

e terminates with strategy 1 and finds a matching with maximum cardinality

|M| = min,eqr,. ay |Vi| or

e does not terminate with strategy 1, and a matching with cardinality [M| <

min,e ... vy |V,| is found. This can happen for the following reasons:

— since Eq. 3.3 is only an upper bound, it is possible that the matching has

maximum cardinality with |M| < min,eq . ny |V,| or

— due to the greedy behavior of the algorithm, edges may not be considered

that are generally necessary to reach a maximum cardinality.

In this case, strategy 2 is performed instead. Since edges are randomly chosen
here, the algorithm either terminates with a matching that has maximum
cardinality or with any matching M’. If |M| > |M’|, i.e., Strategy 1 leads to

a matching with larger cardinality, this matching is returned instead.

An example input graph on which the algorithm does not terminate with Strategy
1 due to its greedy behavior is shown in Fig. 3.6. Figure 3.6(a) shows how the
greedy algorithm performs in Strategy 1. The resulting matching has a cardinality
smaller than 1. max since edges are deleted by the algorithm that are needed to get
a maximum cardinality matching. In Fig. 3.6(b), the choice given by Strategy 2 of
the greedy algorithm is shown. In this example, a matching with maximum cardi-
nality is achieved. Note that the matching that is found by the algorithm depends
on the order in which the for-loops go through the graph. Starting in reverse order
would make strategy 1 find the maximum cardinality matching in this example,

while strategy 2 would not lead to a maximum cardinality matching.

In Fig. 3.7, we give an overview of how the approximation algorithm performs.
Therefore, we run the protocol over 500 rounds and repeat that 100 times to get
a total of 50,000 samples. In each round, we track whether there is no matching,
a matching with only one N-tuple (always choose the first N-tuple), or whether
it terminates with Strategy 1 or 2. By definition, the algorithm always finds a
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((a)) Strategy 1 of the approximation algorithm leads to a matching with |[M| =2 < 3 =
min,e(1 . N} [V.|. Due to the greedy behavior of the algorithm, edges are chosen such

that the only edge between node four from A and node five from By is deleted. The
chosen matching is shown in step 9.

Step 1 Step 2 Step 3 Step 4
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((b)) Strategy 2 of the approximation algorithm results in a matching with maximum
cardinality |M| = min,cg; . ny|V.] = 3. The chosen matching is shown in step 4.

Figure 3.6: Approximation algorithm applied to an example graph instance repre-
senting a quantum router with four parties and five memories each. The
connection length is restricted to w = 1.
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maximum matching with cardinality | max when it terminates with strategy 1. For

Strategy 2, we cannot say whether it finds a maximum matching by chance.

For small network sizes, we additionally run an exact algorithm that finds a max-

imum cardinality matching from all possible solutions (see Algorithm 2). Therefore,

Algorithm 2 Exact Algorithm

get 1.max
for v/ € V4 do
for vi’ € Vp, do
mark all edges {v7,v7'} to all peers B;

end
hyperedges_v7 < combinations(marked-edges, N-1)
for hyperedge in hyperedges-v? do
| delete hyperedge, if there is more than one edge to the same B;
end

end
1 < l.Lmax
while [ > 0 do
combination_of_hyperedges < combinations(hyperedges, 1_bound)
for hyperedges in combination_of-hyperedges do
delete all hyperedges, where elements are not pairwise disjoint
if len(hyperedges) = | then
| return 1
end
end
l=1-1

end

we first calculate all possible hyperedges for each of Alice’s nodes v/ € V4. To do this,
we first consider all possible combinations of bipartite edges of a node v/ € V, and
select from these combinations all of them that have exactly one edge to each peer B;.
In the example given in Fig. 3.8, the hyperedges {v}, vy, , v }, {vh, vp,,vE, }, and
{vh, vh,, v}, } are selected for node vjy. However, since the hyperedge {v}, v ,v5, }
does not contain a node from party Bs, it is invalid and therefore deleted. Valid
hyperedges inclduing node v} are then given by {v},vp ,vp,} and {v},vg ,vE,}-

The same is done for all other nodes v/ € VA4,
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Figure 3.7: Dependency of the greedy algorithm performance on different network
sizes and connection lengths. In all cases, the probability of link gener-

ation is set to p = 0.1.
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Figure 3.8: Example graph instance for the exact algorithm to determine a valid
matching. The valid matching is shown in red.

Given all valid hyperedges, we calculate all possible combinations of these hyper-
edges from which we want to find a valid solution, i.e., one that does not include the
same node in more than one hyperedge. In the given example, a valid combination
is given by M = {{v},vp,,v3, }, {v],vE,,v5,}} since this fulfills all requirements
given in Sec. 3.3. To get all combinations of a given set, we use Python’s iter-
tools.combinations module (referred to as ”combinations” in the algorithm) [Pyt24].
Nevertheless, due to the exponential runtime of the multipartite matching, the exact
algorithm works with our hardware only up to a network size of five parties with
five memories each. For this network size, we find that for a success probability (for
generating a bipartite link between the peers and the central station) of p = 0.1
and all restricted connection lengths, there is a matching with cardinality |M| > 1
in about 30% of the rounds, and the approximation algorithm always finds a max-
imum cardinality matching. For a success probability of p = 0.2 and a connection
length of w = 1, with a probability of under 0.1% no maximum matching is found.
Additionally, for arbitrary connections between the filled nodes, the approximation
algorithm fails to yield a maximum matching in under 1% of the cases for a success
probability of p = 0.1.

For larger network sizes, we give the statistics of how often the approximation
algorithm terminates with |M| = 0, |M| = 1, strategy 1, or strategy 2 in Fig.
3.7. For the analysis, we fix the success probability of generating a bipartite link
between the parties and the central router to p = 0.1. According to Eq. 2.53,
a success probability of 10% corresponds to a distance between the peers and the
central node of d = 50 km. Smaller distances, i.e., larger probabilities, are not

realistic for real-world applications, and smaller probabilities, i.e., larger distances,
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lead to very low key rates and are, therefore, also not feasible. In Fig. 3.7(a), the
dependency on different connection lengths w € [1, 8] is shown for a fixed network
size of N = 10 and m = 10. It turns out that strategy 2 is only relevant for small
w. Therefore, we set this parameter to w = 1 for further analyses. An increase
in the number of communicating parties also does not influence the result of the
algorithm remarkably, as shown in Fig. 3.7(b). For a fixed number of m = 10, the
algorithm terminates with strategy 2 in at most 1% of the cases. With increasing
N, the percentage drops further below 1%.

Fig. 3.7(c) shows that only with increasing m, the algorithm terminates signifi-
cantly often with strategy 2. For the considered setup of N = 10 and w = 1, the
algorithm terminates with strategy 2 in more than 30% of the rounds. Compared
to the setup with N = 10 and m = 10, where only 1% of the rounds terminate
with strategy 2, this is an increase of about 3000%. This shows that the algorithm
works only approximately and is less accurate for larger network sizes regarding the
number of memories per party. Nevertheless, we have to take into account that the
completion with strategy 2 does not necessarily mean that the algorithm did not

find a matching with maximum cardinality.

3.5 Conclusion

In our work, we properly define the graph-theoretical problem of quantum router
matching needed to optimally choose the qubits for the GHZ measurements in mul-
tipartite quantum routers. We show the difference to the known N-dimensional
matching problem and study its computational complexity. Although the general
decision problem is proven to be NP-complete, i.e., intractable, we show that in
some exceptions, the problem is efficiently solvable, i.e., there exist efficient algo-
rithms. With these algorithms, it is possible to simulate multipartite quantum
routers in a feasible time and make clear how the memories have to be entangled via
a GHZ state measurement to increase the router rate while decreasing the storage
times of the individual qubits, thus reducing the QBERs.

With the approximation algorithm, we show that it is already possible to deal with
the general unweighted maximum multipartite matching, even though it does not

always lead to a matching with maximum cardinality. With our simulations, we show
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that for smaller network sizes, the algorithm finds a maximum cardinality matching
in over 90% of the cases. Only for increasing m does the algorithm become less exact
in more rounds. In future work, we propose to focus further on the approximation
algorithm by considering the order of the for-loops. Starting to check for single edges
at different nodes can influence the algorithm’s result (as shown by the example given
in Fig. 3.6). We further propose to include weights in the approximation algorithm
since the weighted quantum router maximum matching is the more interesting case

from the physical point of view.

3.6 Publication

The complexity proof together with the algorithms solving the special cases we
consider here are accepted as a contribution at the 2nd Workshop on Quantum
Algorithms, Software, and Applied Research (QUASAR 2025) and will be published
in the Proceedings of this conference [BGK*25]. The accepted version of the paper
is attached to this work in Appendix A. A second paper, including the results of the
approximation algorithm, will be submitted to the Journal of Advanced Quantum

Technologies, and is currently in preparation [JAK25].

3.7 Personal contribution

The N'P-completeness proof of the general quantum router matching was done by
Christian Laufimann. The results 1-3 about special cases being in P were done
by Christian Laumann and me in equal parts. Result 4, which was about the
weighted quantum router maximum matching with unrestricted connection length,
was done by Luis Gindorf. The approximation algorithm and the exact algorithm
were developed and tested in simulations by me. Dorothea Baumeister came up with
the idea of using network flow for the tripartite quantum router matching, which
was then implemented and analyzed by me. The accepted publication was written

by Luis Gindorf, Christian Lauffimann, Jorg Rothe, and me in equal parts.
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CHAPTER 4

EFFICIENT MULTIPLEXINC
STRATEGIES IN QUANTUM
ROUTERS

4.1 Introduction

In this chapter, we generalize the concept of the quantum repeater to the multipartite
setup of a quantum router. In contrast to [LFLT23b], we use quantum memories
to improve the key rate through multiplexing. In our work, we investigate in detail
how the use of such quantum memories affects the qubits and the achievable rates in
quantum key distribution. On the one hand, memory multiplexing helps increase the
router rate, i.e., multiplexing leads to an increase in the number of distributed GHZ
states per round. On the other hand, however, storing the qubits in the memories
leads to an interaction between the qubits and their environment. This means the
qubits lose their information over time, and their fidelity decreases. The longer a
qubit is stored in memory, the more likely it is to interact with its surroundings,
which can cause decoherence. As a result, the quantum bit error rates increase, and
the fraction of bits that can be used to exchange the secret key becomes smaller.

In [AKB14a], Abruzzo et al. investigate different matching strategies for the bi-
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partite quantum repeater. In our work, we first extend the principles of a quantum
repeater using memory multiplexing to the multipartite setup of a quantum router
being placed between N parties. In a second step, we deal with the question of
how to optimally use the memories and connect qubits via a GHZ state measure-
ment without the QBERs becoming too large. For this investigation, we use the
implementations of the (weighted) quantum router maximum matching introduced
in Sec. 3.

Before we consider the matching strategies, we generalize the setup and adapt
the formulas needed to calculate the secret key rate in the (multipartite) N-BB84

protocol.

4.2 Conference key agreement via quantum routers

We consider a star graph with one central quantum router and N parties with m
memories each located around it as depicted in Fig. 2.11. To distribute multipartite
entangled states among all N parties, each party generates bipartite Bell states
between itself and the central quantum router first. With a GHZ state measurement,
the locally held qubits are projected onto one of the GHZ states. By applying
local operations depending on the measurement outcome, the desired }GH Zy > =
\/Li <|O)®N + |1>®N> can be produced.

Once stored in the memories, the qubits start to decohere. Here, we restrict the
noise model to depolarization (see Chapter 8.3.4 in [NC10], for example). A qubit

that is stored for § rounds in the memory is then given by:

1 —p(9)

1 (4.1)

p(8) = p(d)po +

with initial state py. With probability p(d), the state remains untouched, and with
probability 1—p(0), it is replaced by the maximally mixed state 1/2. The probability

of white noise relates to the decoherence parameter 7 of the quantum memory via
p(0) = e, (4.2)

If the qubit is not stored, i.e., for § = 0, we find p(6 = 0) = 1, so that the qubit
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remains untouched. For 6 > 0, the qubit decays exponentially. The decoherence
parameter 7 defines the number of storage rounds after which a quantum state
decays to 1/e of its initial value, meaning it loses about 63% of its coherence. The
bipartite states, after being stored in the memory, are described by a Werner-like
state with fidelity F"

p=F |67 0 |+ 5 (o) o [+ [0ty + o) (o) (43

Due to the storage, the fidelity of state p changes according to

1 1
F— -+ (F——)em 4.4
) + ( 4> e (4.4)
The total initial state on which the GHZ state measurement is performed is given
by the tensor product of all « € {1,2,..., N} parties’ initial Bell diagonal states p,,
each with fidelity F;:

Prot = R,L1p.
=ty (R 1oy o]+ 25 (0 o+ o) o+ o) D)) - (49)

Performing the GHZ state measurement and local operations as given in Sec. 2.2.2
and tracing out the qubits in the central station leads to a GHZ diagonal state held
locally by the N parties. This state is of the following form:

pM =N |GHZ Y (GHZS | + Xy |GHZy ) (GHZy |

2N _o
2

+ > N (|GHZF)(GHZY |+ |GHZ; ) (GHZ,]), (4.6)

k=1

with the general GHZ states as given in Eq. 2.51. Although the state is GHZ
diagonal, we consider the density matrix expressed in the computational basis in
the following. Note that due to symmetry, the second half of the diagonal elements
equals the first half in reverse order. Equality also holds for the two off-diagonal
elements pggﬁ)(upper right corner) and pgﬁi) (lower left corner). The GHZ di-

agonal elements A\, can be calculated explicitly assuming that the qubits undergo

79



Chapter 4. Efficient multiplexing strategies in quantum routers

depolarization during storage. For an explicit calculation, we rewrite Eq. 4.3 as
p=AlgT) (67| +Bo7) (07| +C ) W+ D7) w7 (A7)

with Bell diagonal elements A = F and B=C =D = % The elements of the
initial state p for each party ¢ € {1,2,..., N} are given by

_A+B F, 1

P, = P44), = 5 3 + 6 (4.8)
A-B 2 1

R R gFL — 5 nd (4.9)
C+D 1 F,

P2 =PI = —5 =37 3 (4.10)

With these equations, the elements of the shared GHZ state p“# can be calculated.

For the elements pﬁhl’)z = pg%ZQN and p(’gﬁ = p(GZgZ ) we find:

GHZ )\3_ + )\_ a GHZ

p(l,l) = Xnorm 9 | | P(1,1), + P(2,2), ) = p(2N72N) (411)
GHZ Ay — Ao HN GHZ

p(2N’1) = Xnorm 9 = P4,1), p(LQN) (412)

with normalization constant Ynerm. All other entries along the diagonal in p“## are

of the form

N N
Xnorm (p(l,l),l H P(x,x),i + £(2,2),1 H p(r,x)ﬂ) (413)

=2 =2

with indices (x, x) either being entry (1, 1) or entry (3, 3) and the indices (z, Z) indi-
cate the negation of (z,x), i.e., they are given by (2,2) or (4,4). For each diagonal
entry in p©Z the indices (x,z) are chosen such that all possible combinations of
indices appear once in the matrix. The normalization constant guarantees, that

tr (p17) = 1. 1t is given by Xnorm = 271

For the tripartite network with parties A, B, and C, for example, we find the
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following diagonal matrix entries:

Ao+ Ao
P = Plas =

= 2% (p(1,1),4P(1,1),BP1,1).C + P(2,2).4P(2,2),BP(22).C ) -
Pz = e =M
= 2% (p(1,1),4P(1,1),BP(3.3).C + P(2,2).4P(2,2), BP(4,4).C )

oo = plos) =

= 2% (p(1,1),4P(3,3),BP1,1).C + P(2,2),4P(4,4),BP@22),c) » and

A = PG =

=2? (p(l,l),AP(3,3),Bp(3,3),C’ + p(2,2),Ap(4,4),Bp(4,4),c) .
For the off-diagonal matrix elements, it holds
A=A
o5 = ol = 25

= 2% (p(a1),4P(4,1),BP1),C) -

Generally, the GHZ diagonal elements A\, with x € {1,..., 272

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

} directly follow

from Eq. (4.13) , while the elements A\ and )\, are calculated from Eq. (4.11) and

Eq. (4.12):

)‘3_ = Xnorm H P, + H P(2,2),c + H P41,

ro1 1 F 2
= Xnorm =+ - == b —=
X Hl(:s+6)+£[l(3 3>+L:1(3

N N N
)\a = Xnorm H P, + H P(2,2),. — H /0(4,1),L>

SOE 1 1w /(1 E\ 1y /2
= Xnorm H(§+6)+1_[1(§_§>_1_[1(§FL__

=1

(4.19)

(4.20)

Note that the GHZ diagonal element \; of the new state p“*% also gives the fidelity

of the state, i.e., FOHZ = (GHZ] | p*"2 |GHZ ) = \{.
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Regarding the conference key agreement (for details about the N-BB84 protocol,
see Sec. 2.4), we find for the QBERs the following expressions:

1— (AT 4+ Ay
@y - L= )
N
1 2 1
= Z — Xnorm _FL__
g X Hl(:a 6)
1 1
:5—2‘3NH(4FL—1) (4.21)
=1
1 —(ZuZn
QAB¢:—<2A 5)
NY2//F, 1\ /1 Fg Fp 1\ /1 Fyu
=2 norm |\ & I - : : - 5 5
wn(z) ((58) G- 5) (50) G- %))
2

For the bipartite error rate, the probability of Z4 # Zp, with centerparty A and

peers B; with i € {1,2,..., N — 1} is fulfilled by all matrix entries containing either

the elements pglf{)z A,ogg’)z B, OF pgf{)z B, p(%g)z 1 1.e., these elements contribute to Q g,

All other terms with fidelities Fjp, with B; # B; cancel out, leading to a constant

prefactor of (1/2)" 2. Due to the symmetry of p@#%

giving the factor 2 in Eq. (4.22).

, each term appears twice, thus

Since we perform the protocol over s rounds, the qubits used for a GHZ mea-
surement in each round can experience different numbers of storage rounds within
the memories. Therefore, we calculate the QBERs over all possible storage rounds
6, € {0,1,...,s} of qubits from all parties ¢ € {A, By, B, ..., By_1}:

Z Z Z QX (54,05,,...) Prob[s(s)

54=06p,=0  dpy_,=

Prob[ég,|(s)...Probldg,_,|(s) (4.23)
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QAB Z Z Z QAB 5A,5Bl,...)'PTOb[(5A](S)

5A=06p,=0  dpy_,=

Prob[dg,](s) ... Probldg,_,](s). (4.24)

This is the probability that a qubit with a certain number of storage rounds (Prob(d,))
occurs multiplied by the QBER (see Eq. 4.21 for Qx and Eq. 4.22 for Q p,, respec-
tively) resulting from that number of storage rounds. The total QBERs estimated
during the protocol are given by the average QBER per round multiplied by the
total number of successful measurements per round divided by the total number of

measurements summed over the whole protocol up to a current round s.:

o S O(5) - Qx(s)
X =TS 00 (4.25)
T D) - Qs(s)

S S TE (4.26)

The number of measurements per round can be calculated similarly to the bipartite
setup, as described in Sec. 2.3.1. For larger network sizes (exceeding a total number
of 15 memories, i.e., Nm > 15), the average number of GHZ measurements per
round is obtained via simulations. The same holds for the different numbers of
storage rounds d and the probabilities of how often these ¢ appear. An overview of

the simulations is given in Sec. 4.3.

To calculate the asymptotic secret fraction, the total QBERs are inserted into Eq.
2.74:

=1-h(QY) — h(Q%L ) . 4.27

Too ( x) 1;@.26}3{1 ( ABZ-) (4.27)

Note that the asymptotic secret fraction can, in principle, become negative. From a

physical perspective, a negative fraction of usable secret bits does not make sense.

So, the value is then set to zero. Together with the router rate R (that is discussed

in Sec. 2.3.2), the secret key rate can be calculated as the product of both these

values, i.e.,

K = Rro.. (4.28)
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4.3 Simulation

To calculate the router rate and the QBERs, the whole protocol of a quantum router

with memory multiplexing is simulated. All simulations are done in Python. In the

following, we give an overview of these simulations.

The quantum router with memory multiplexing

The quantum memories of each party are given by an array that can take either

values of -1 (for empty memories) or a real number F' € [0, 1], depending on the

fidelity the qubit has according to its storage time. The steps of the simulations are

as follows:

. Starting from the empty memory configuration, a decision is made for each

memory whether it is to be filled or not. That happens randomly with proba-
bility p. If a qubit is stored, the corresponding entry in the array is set to the
initial fidelity Fj,;; a qubit has. In the following rounds, only empty memories
are tried to be filled.

. At the beginning of each round, the fidelities of the leftover qubits from the

previous round are reduced according to Eq. (4.4).

. Based on the memory configuration, the (weighted) quantum router maximum

matching is performed to decide which memories are involved in which GHZ

measurement.

. All array entries representing a qubit used in a GHZ measurement are reset

to -1.

. When cutoffs are considered, all memories with a fidelity ' < Fiuopr are

deleted. That means that all corresponding array entries are also set to -1.

The whole protocol is performed for a fixed number of rounds. Additionally, it is

repeated for several iterations to increase the number of samples for the statistics.
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The matching problem

The matching is realized in different ways depending on the network size (N and
m), the connection length w, and the strategy (unweighted or weighted) that is to
be implemented.

(i) The quantum router maximum matching for N = 3 parties without weights is
modeled as a maximum flow from peer B; over the central party A to peer By (see
Sec. 3.4 for details). We implement the network flow in Python with the module
mazimum_flow in networkz [Net24b].

(ii) For larger network sizes in the unweighted case, the implementation depends
on the connection length. For w = 0 and w = m — 1, the matching is always
efficiently solvable. The former has only one solution, since every node of B; has
at most one edge to the central party A. Only if A has a connection to all B;, this
N-tuple is added to the matching. The latter is solved analogously to the algorithm
mentioned in Sec. 3.4.1 by successively adding the first filled memory from each
party as an N-tuple.

For restricted connection lengths, the matching can be solved exactly for network
sizes up to about 25 nodes in total (i.e., Nm < 25). That means that the first solu-
tion with maximum cardinality is chosen from all possible solutions. For networks
including more than 25 nodes, the approximation algorithm from Sec. 3.4.2 is used.

(iii) The weighted matching problem was initially considered for small networks
of up to three parties with four memories each. For this setup, a solution with
maximum weights was initially selected from all solutions with maximum cardinality.
In a later work, we introduced and proved the algorithm from Sec. 3.4.1 for efficiently
solving the weighted maximum matching for a maximum connection length. For
restricted connection lengths, a solution with maximum cardinality and weighting

is still selected from all possible solutions.

Router rate and QBER

All parameters needed to calculate the secret key rate can be taken from these
simulations. The router rate follows immediately from the simulation step 3 given
above. The cardinality of the chosen matching performed in each round gives the

number of GHZ state measurements ¢ performed. By repeating the simulations,
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an average (¢) can be taken from these samples. The router rate follows from Eq.
(2.68) by summing all average numbers of GHZ state measurements performed in
each round up to the current round s. and normalizing by the number of memories
m and rounds s.:

> €>(s

_ Sl (4.29)

m
s=1

It is also possible to analytically calculate the router rate by following the equations
given in Sec. 2.3.2. However, this is only possible for networks up to a total num-
ber of about 15 nodes since the transition matrices of size 2V™ x 2¥™ have to be

calculated.

The quantum bit error rates are calculated via the fidelities of the qubits used
in a GHZ measurement. These are taken from the simulations in step 3 of the
previously given protocol. Using Eq. (4.21) for Qx and Eq. (4.22) for Qap,,
the QBERs after the GHZ measurement are calculated. The average QBER per
round can be either generated directly from these samples or all possible QBERs are
calculated and weighted with the probability that qubits with this fidelity appear in
a GHZ measurement (see Eq. (4.23) and Eq. (4.24)). The QBERs of one matching
are averaged over all GHZ measurements performed in one protocol round. Given
the router rate and the QBERs, the other values can be calculated following the

corresponding equations given in Sec. 4.2.

4.4 Results

In our work, we perform simulations on the quantum router connecting N = 3 par-
ties. Analogously to the results in a previous paper [AKB14a|, we show with our
simulations that the main advantage of using multiplexing is already given for a
connection length of w = 1. Allowing GHZ measurements between memories with
greater distance in the label does not lead to significant advantages. This result,
however, should be taken carefully since the labels given to the quantum memories

within a quantum router are artificial, and it is not fully clear how memories within
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the quantum router would be arranged in an experimental setup. Nevertheless, it
shows that an all-to-all connection between the memories of different parties is not
necessary to take advantage of multiplexing. This facilitates an experimental setup,
as the all-to-all connections require the implementation of a GHZ state measure-
ment circuit between all memories of the parties. Therefore, considering ”direct
neighbors” with a small connection length is already a good improvement for the

achievable rates and, at the same time, easier to implement.

Our work focuses on the different matching strategies that can be performed to
increase the secret key rate. In a first step, we analyze various strategies for choosing
memories for the GHZ state measurements with the aim of maximizing the secret key
rate. Second, we introduce cutoffs to the fidelities to further optimize the secret key
rate. For the matching strategies, we weight all allowed connections in the quantum
router. In general, weights are given by the quality of the qubits stored in the
quantum memories. The quality is given by the fidelity of each qubit according to
Eq. 4.4. In [BGK™25], we show numerically that the fidelities should be maximized
in order to minimize the quantum bit error rates (from Eq. (4.21) and Eq. (4.22)).
This can be seen from Eq. 4.21 as well, which is minimal for a maximal product,
i.e., for the term J[Y, (4F, — 1) being maximal. That is fulfilled for all F, = 1. With
decreasing fidelities, the QBER in the X-basis increases. To minimize the QBER in
the Z-basis, Eq. 4.22 has to be minimized. Also here, a minimum QBER is reached
for maximal fidelities, i.e., Fiy = 1 and Fp, = 1. With decreasing fidelities, the
QBER increases again. So in total, both QBERs are minimal with fidelity F, = 1

for all parties ¢ € {1,2,..., N}, and increase with decreasing fidelities.

Regarding the number of storage rounds §, which determines the fidelities of
the qubits, a minimization must be performed. Following this optimization, the
newest qubits with the highest fidelities are always chosen first, while qubits with low
fidelities are always less likely to be chosen and remain in the memories. Therefore,
an additional strategy that chooses qubits with low fidelities is also considered. For
this purpose, we combine new qubits with the older qubits, i.e., the difference in
fidelities between Alice’s qubit and the peers B; are considered as weights and are

either maximized or minimized. In total, we compare the following strategies:
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S0: Random choice: choose the first matching with maximum cardinality indepen-

dent of its weights.

S1: Difference in qubit quality: weight the connections by the difference in the

number of storage rounds of the qubits included in an N-tuple and
a. minimize over the sum of weights, or

b. maximize over the sum of weights.

S2: Maximum qubit quality: maximize the fidelity of all qubits included in an

N-tuple by minimizing the number of storage rounds.

Fig. 4.1 shows a comparison of the different strategies for a tripartite network with
four memories per party. The plot shows that maximizing the fidelity of the qubits
included in a matching (strategy S2) leads to the highest secret key rate overall.
For a few rounds only, strategy S1 a.) performs better than S0. Here, minimizing
the difference in the qubit quality leads to higher key rates than randomly choosing
a matching with maximum cardinality. In the long term, the opposite holds: it is
better to randomly choose the matching (SO) than to minimize the difference in the
number of storage rounds (strategy S1 a.)). In contrast, maximizing the difference
in the qubit quality (strategy S1 b.)) always leads to the lowest secret key rate.
With strategy S1 a.), qubits with the highest correlations are chosen for each N-
tuple. Consequently, qubits that have already experienced decoherence over a longer
time are selected less likely and, therefore, decohere even further. On the contrary,
strategy S1 b.) selects qubits with a significant difference in quality. Thus, qubits
with a higher decoherence time are also selected. However, the resulting N-tuples
have the lowest correlations even when N-tuples with perfect correlations could be
generated.

As the preferred strategy S2 also does not choose qubits with lower fidelities,
we additionally introduce cutoffs to remove qubits with low fidelities. Qubits that
decohere in the quantum memories for a certain time are removed from the memories,
so that these memories can be refilled with new qubits in the following. Under the
assumption that Qx = Qap, = @ and that all fidelities are equal (i..e., F} = F; =
-+ = Fy = F) we get a maximal QBER of @ < 0.11 that still leads to a positive
secret fraction according to Eq. (4.27). With that and Eq (4.21) we find for the
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Figure 4.1: ([KKB24]) Comparison of the secret key rate for the different matching
strategies in a tripartite network with four memories per party. The
other parameters are: w =1, p = 0.1, 7 = 100, and 50,000 samples.
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For the given setup of the tripartite network, the fidelity has to be F' > 0.94, which
is reached after about 8 storage rounds under the assumption that the initial fidelity
is given by Fj,; = 1.

Since it holds in reality that QQx < Q) 4, and not all fidelities are necessarily equal,
the actual number of rounds that a qubit can be stored until the secret fraction
becomes zero differs from that calculation. For the tripartite network considered
here, the optimal cutoff time is 10 rounds. That follows from the simulation results
shown in Fig. 4.2. To optimize the secret key rate, it must also be taken into account
that by shortening the storage time, the router rate decreases. While maximizing
the secret fraction, the router rate is reduced due to fewer GHZ measurements being

performed every round. The optimal secret key rate is achieved when both effects
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Figure 4.2: ([KKB24]) Effect of the number of cutoff rounds on the rates in a tripar-
tite network with four memories per party. The other parameters are:
w=1,p=0.1, 7 =100, and 50,000 samples.

cancel each other out, and the secret key rate does not decrease further with the
number of rounds performed. For the tripartite network with m = 4 memories each,
the effect on the router rate, the secret fraction, and the secret key rate are shown in
Figure 4.2 (a)-(c) for various cutoff rounds. The plot of the secret key rate without
cutoff (compare Fig. 4.2(c)) shows the competing behavior between the router rate
and the secret fraction. For a small number of rounds, the secret key rate increases
due to the increase in the router rate (see Fig. 4.2 (a)) while for a large number of
rounds, the decrease in the secret fraction (see Fig. 4.2 (b)) predominates, such that
the secret key rate decreases again. When choosing the right cutoff, these effects
cancel out, and the secret key rate remains constant with the number of rounds.

As seen in Fig. 4.2(c), this happens with a chosen cutoff of 10 rounds for the given
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network size. In general, the ideal cutoff can approximately be determined using
Eq. 4.30

4.5 Conclusion

With this work, we generalize the bipartite quantum repeater with memories used
for multiplexing to the multipartite quantum router. This setup can be seen as a
generalization of the measurement-device-independent QKD protocol with quantum
memories from [AKB14b] to the multipartite scenario. In comparison to previous
work about conference key agreement in star graphs [LFL123b], we include quantum
memories to analyze their effects and the advantage of multiplexing.

We show that the use of memory multiplexing increases the secret key rate. Sim-
ilar to the bipartite quantum repeater, the main advantage is already gained by re-
stricting the connection length to w = 1. On one hand, this makes the experimental
setup easier, since no all-to-all connections between the memories are required. On
the other hand, from a theoretical point of view, the analysis of which memories are
connected in which way, i.e., the underlying matching problem, becomes more com-
plex when restricting the connection length to a finite regime (compare Sec. 3.4).
In general, this result must be considered with caution, as the connection length
within the N-partite quantum router is an artificially introduced concept. Since no
assumptions are made here about a fixed arrangement of the quantum memories in
an experimental quantum router setup, the analysis regarding the connection length
refers to purely abstract considerations.

To optimally use the advantage of memory multiplexing, we analyze different stor-
age and measurement strategies for the GHZ measurement. It turns out that the
best strategy is to combine qubits with the highest fidelities first and remove qubits
with lower fidelities when the fidelities fall below a certain cutoff. In future work, it
would be interesting to extend the analysis to larger network structures with more
than one central quantum router. The analytical results from our work are already
general for arbitrary N and m. Note that the limitation is due to the complexity
of the restricted underlying quantum router matching needed to simulate the quan-
tum router. This shows again that finding good approximation algorithms for the

weighted quantum router maximum matching for restricted connection length, as
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discussed in Sec. 3.4, is of great interest.

4.6 Publication

The main results from this chapter are published as a paper in Physical Review A in
2024 [KKB24]. The paper is attached to this work in Appendix B. Further work on
this topic, as the improved analysis of the quantum router matching as well as the
generalized equations for the QBERs and the fidelity of the generated GHZ state
(Eq. (4.21), Eq. (4.22), and Eq. (4.19)) are part of the publication [BGK™25] which
is presented in Appendix A.

4.7 Personal contribution

The results based on the work [KKB24], as well as all the coding of all simulations,
were done by me. Luis Gindorf came up with the generalized formulas for the
QBERs and for the fidelities of the generated states with the ‘GH Zf > by inferring
them from concrete examples (i.e., for N = 3, N = 4, and N = 5 parties). The

derivation of the general validity of these equations was done by me.
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CHAPTER 5

LIMITATIONS OF THE ACHIEVABLE
ROUTER RATE IN THE STATIONARY
REGIME

5.1 Introduction

In the previous chapter, we showed that memory multiplexing helps increase the
secret key rate. To get a fundamental understanding of the scalability of quantum
networks with one central quantum router, we now focus on achievable router rates in
the stationary regime. Motivated by the question of how many entangled states can
be distributed per round in different network sizes, we develop analytical expressions
to get limits on the router rate based on the number of parties and the number of
available memories. With these expressions, we get an idea of how the router rate
changes with an increasing number of participants and how a decrease in the router
rate can be reduced by adding more memories per party.

Previous works about quantum repeater chains analyzed the average waiting time
a qubit has to wait until it is used for a Bell state measurement [SSvL.19, KMSD19].
In contrast, we focus on the rate of entangled links distributed per round in the

long-term regime in a multipartite quantum router. Vinay et al. analyzed the bi-
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partite entanglement generation rate in repeater chains in [VK19]. Compared to
[KSSvL23], we store qubits over the rounds and do not empty the memories after a
successful GHZ measurement. With this, we analyze the advantage of not emptying

the memories immediately.

The problem of finding the long-term router rate comes along with the task of
finding the stationary distribution of a Markov chain. This can be done by solving
a system of linear equations that describe the Markov process. Generally, this is
numerically solvable for a given system of linear equations, i.e., for a fixed network
size. Nevertheless, we prefer to have analytic solutions for arbitrary N and m to
understand the dependency of the router rate on the network size. For the bipartite
setup (i.e., N = 2), we get analytic results, while for the multipartite setup, we get

very good approximations giving the router rate in the stationary limit.

5.2 More about Markov chains

Before making use of the theory of Markov chains, we repeat the main aspects on
how we model the quantum router as a Markov process and discuss some main
features. For a more detailed introduction, see Sec. 2.3.1. So far, we modeled the
bipartite quantum repeater as a Markov chain by describing the configuration of
the quantum repeater by a binary string C = {0,1}*™ of total length 2m. For the
N-partite quantum router, we make use of the same notation, now having a binary
string C = {0, 1}¥™ of total length Nm. Analogously, the state vector 7 is now a
vector of length 2V™ where each entry m; represents the probability of the quantum
router to be in the i-th out of 2V™ possible configurations. Note that a configuration
denoted as C; represents the binary string corresponding to the binary representation
of i. The transition matrix 7 also increases in dimension to 2V™ x 28m,

For clarity, we give an example of the transition maps for a tripartite quantum
router with one memory per party. The configurations that the quantum router can
be in are as follows: Cy = {0,0,0}, C; = {0,0,1}, C; = {0,1,0}, C3 = {0,1,1},
Cy, ={1,0,0}, C5 = {1,0,1}, Cs = {1,1,0}, and C; = {1,1,1}. In Fig. 5.1, we show
the transitions given by the storage map (see Fig. 5.1(a)) and the measurement

map (see Fig. 5.1(b)) for the tripartite quantum router without multiplexing. For
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Figure 5.1: Transition maps for the tripartite quantum router with one memory per
party. Along the arrows, the probabilities for the transitions are given.
For a better overview, only one arrow of each possible transition between
a state with m; initially filled memories to 7 finally filled memories is
given. All transitions from a configuration with the same m; and m;
have the same probability, since the probability does not depend on the
order of the memories. Arrows between two memory configurations that
are not shown have zero probability. Memories shown in blue indicate

that they are filled with a qubit. 95
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this example, the matrix representing the storage map is given by:

(1-p)° 0 0 0 0 0 0 0
p(1—p)* (1-p)? 0 0 0 0 0 0
p(l—p2 0 (1-p? 0 0 0O 0 0

oo | AP pA=p) P(A=p) 1=p 0 00 of
p(l—p? 0 0 0 (1-p?% 0 0 0
p*(1—p) p(1-p) 0 0 p(l—p) 1—p 0 0
PAl-p) 0  p(l—=p) 0 p(l—p) 0 1-—p 0

p’ P’ P’ p P’ p p 1

Similar to the bipartite case, an entry of the measurement map is set to one if
a GHZ measurement is performed (i.e., each party has at least one filled memory)
and zero otherwise. The resulting matrix for the measurement map of the given

example is as follows:

He = (5.2)

S O O = O O O©oO O
SO O B O O O O O
o = O O O O o O

O O O O O o o =
oSO O O O o o~ O
o O O O O~ O O
S O O O = O O O
SO O O O o o o =

Note that the storage map can always be written as a tensor product of the storage
map for a single party. In the case of the given example where each party has only one

1—-p 0
memory available, the storage map for a single party is defined as algl) = b )
p

®3
The matrix from Eq. (5.1) is then given by o, = (0?)) as N = 3 parties are

considered here. On the contrary, it is not possible to generalize the measurement
map. For each network size, one has to define how the memories are chosen for the
GHZ measurement by following the underlying quantum router matching. Only for

the case of no multiplexing (i.e., m = 1), it is possible to write the measurement
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o 0\ /o 1\

since all configurations remain the same except the one where all memories are filled,

map as

i.e., configuration Cy~_; changes to Cy.

The transition matrix then follows from the concatenation of the storage map and

the measurement map:
T = py ooy (5.4)

Given the transition matrix 7" and any initial configuration as the state vector m;,;,
we can calculate the probability distribution after s rounds as my = T°7m;,;. In the
asymptotic limit of infinitely many rounds (i.e., s — o0), we find the stationary
distribution 7 as

7= lim T 7, (5.5)

500

with 7 = T'w. The stationary distribution 7 of the Markov chain representing the
quantum router is unique as this Markov chain is irreducible. A Markov chain is
irreducible if it has only one recurrence class. That means that any configuration of
this recurrence class can reach any other configuration of the same recurrence class
within a finite number of rounds. This is true for the quantum router setup, as any
number of quantum memories can be filled in each round. Therefore, it is always
possible to reach any configuration from the empty quantum router. Also, the empty
quantum router can always be reached by filling all memories and performing GHZ
measurements on all qubits later. By filling one memory per round, all combinations
can be reached successively. As the total number of memories has to be finite, the
number of rounds in which we can go from one configuration to another is also finite.
Consequently, the stationary distribution is unique and, therefore, independent of

the initial configuration given by the state vector ;.

97



Chapter 5. Limitations of the achievable router rate in the stationary regime

5.3 Results

In our work, we focus on the two setups of a multipartite quantum router: without
multiplexing (m = 1) or with multiplexing (m > 1). Overall, we assume that the
connection length is not restricted. Whenever there is at least one memory filled

per party, a GHZ measurement is performed independently of the memory label.

5.3.1 No multiplexing

We first analyze the behavior of the router rate in the stationary regime of a quantum
router without multiplexing. On an abstract level, this setup is similar to a bipartite
quantum repeater chain. In a repeater chain of N segments, two end nodes are
connected via N —1 quantum repeaters [BDCZ98]. Similar to the multipartite setup,
one link exists between each station (i.e., no multiplexing in the repeater chains),
and a link between the end nodes is only established if all intermediate links between
the quantum repeaters exist. So far, the average waiting time [SSvL.19, KMSD19],
the entanglement generation rate (repeater rate) [VK19], and the exact rate for
larger repeater chains [KSSvL23] have been analyzed. In our work, we show that
the router rate, i.e., the entanglement generation rate for the multipartite quantum
router without multiplexing, coincides with the results shown in [BPvL11].

We derive this result by considering the multipartite quantum router setup and
not the repeater chain. Since the resulting Markov chain is irreducible and, therefore,
leads to an unique stationary distribution 7 = limg_, o T°7;ni, We can calculate this
stationary distribution by finding an expression for the term lim, .., 7°. As the
measurement map g, can be generalized for the case without multiplexing (see Eq.

(5.3)), a general expression for the transition matrix 7" for arbitrary N can also be

found:
T =cop
1—p 0\ o o\ fo 1\
=7 Lo — + (5.6)
p 1 0 1 0 0
=0+ ocXy, (5.7)
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with the storage map given by the tensor product of the storage map for a single

1—p 0 o 0\"" (o 1\*"
memory o) = P and the term Xy = | — +
p 1 01 0 0

Note that we here changed the order of the transition matrix from 7' = p o o to
T" = oo, since this simplifies part of the calculation. As the stationary distribution
does not depend on the initial distribution ;,;;, we can perform a measurement first

(by applying p) without changing the result.

To calculate the term 7"%, we make use of the following properties:

0 1 ®NU ; ®N: 0 1 ®NUS ; ®Nzl (5.8)
1) e, 1

and

(0 1)®N05 (é) (1= (1=p)", (5.9)

0\ " ex (00 N\ ev (01
where (0 1) = and (O 1> = . Thus, the
1 0 1 0 0 0

term XyoXy can be simplified as follows:

() ()0 e
() e (0 e
) e ) e
) e 6) e
= (== = 1) Xy = (.~ D X (5.10)

99



Chapter 5. Limitations of the achievable router rate in the stationary regime

where we set p, = (1 — (1 — p)®)". Using this, the general term 7" can be written

as
T =0° + Z A; XNBs_i, (5.11)
=1
with
B,_;=0"" (5.12)
and

)

A; = Z c§i)aj. (5.13)

j=1
The prefactors cy) are of the form:
i—1
4 = ;Cgl) (it =1, J=1 (5.14)
Y, j>1

with the first prefactor being cgl) = 1. We derive Eq. (5.11) from the concrete

calculation of 7" and T" and prove its general validity via induction.

For the stationary distribution in the asymptotic regime, we calculate 157>

QN

Timit
with the initial configuration chosen as 7;,; = ) , i.e., all memories are filled

at the beginning. Since the goal is to determine the number of feasible GHZ mea-
surements per round, it suffices to determine the probability that all memories are
filled in the steady-state regime. This probability (Prob[¢ = 1]) is given by the last
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entry of the state vector m. Therefore, we consider:

Probll = 1] = (0 1>®N7_r

_ (O 1>®NT/S (?) ®N
_ (() 1)@)N
LYY -

o’ + ES: AiXNBs—i
i=1

0 QN
0" e

i=1 j=1

s i—1 s
:1+ZZC§])<@FJ‘_1>:ZC§J)- (5.16)

i=2 j=1 j=1

By setting s — oo and rearranging the terms, we get the desired result:

1

Problt =1] = 1+ Zzil <1 —(1-(1- p)S)N>

= (V). (5.17)

As this is the setup without multiplexing, the probability that one measurement is
performed in a round equals the average number of GHZ measurements performed
in each round, i.e., (¢) = 3,_, £ - Prob[{] = Prob[{ = 1].

This result is already known in the context of repeater chains [BPvL11]. As the
abstract description of a quantum router without multiplexing and the bipartite

repeater chain coincide, so do the results. Eq. (5.17) can be written as

N (_1)k+1 N !
(0) = [;—1_(1_p)k(k)] : (5.18)
which is known from probability theory: the term in brackets gives the expectation
value of the maximum of N independent geometrically distributed random variables
with success probability p [SR90]. In the context of the quantum router, this quan-
tity gives the average waiting time to perform a GHZ measurement starting with an
empty quantum router. The inverse of the average waiting time gives the desired

value (¢) since no multiplexing is considered here. Performing a GHZ measurement
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Figure 5.2: ([KTW™'25]) Average number of GHZ measurements performed in the
asymptotic limit for a quantum router without multiplexing for two dif-
ferent success probabilities p = 0.1 and p = 0.05. The calculation is
done by following Eq. 5.17.

always returns the quantum router to the initial state of all memories being empty,
and the quantum router is reset to the initial state.

The results show that the router rate decreases with an increasing number of
communicating parties. An exemplary plot of the router rate as a function of the
number of parties N for a fixed success probability p = 0.1 and p = 0.05 is shown
in Fig. 5.2. Although the router rate decreases slowly with the number of parties
(ie., () x (InN)~"1), the figure shows that for small N a significant drop in the
router rate occurs. Increasing the number of communicating parties from N = 2
to N = 3 already leads to a decrease of about 32% in the router rate. This clearly
demonstrates that adding quantum memories is a relevant step to counteract this

drop in the router rate.

5.3.2 Multiplexing

Now, we consider the quantum router with multiplexing, i.e., m > 1. Generally,
for a quantum router with N parties and m memories each, 2V™ different memory
configurations exist. To simplify the following discussion, and since we do not set

any restrictions on the connection length, we can ignore the order of the memories of
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each party. This means that in the following, we will not consider the configuration
itself but rather the number of filled memories m = |m| per party. Then, we only
consider the number of all configurations that have m filled memories. This reduces
the number of configurations to (m + 1)¥. The state vector 7 is then a vector of
length (m + 1), the storage map o, the measurement map s, and the transition
matrix 7' = po are then given by a (m + 1)V x (m + 1) matrix. In the following,
we denote a configuration as k = (ma, mp,, ..., mp,_,) with m4 for the number of
filled memories on Alice’s side and mp, for all Bob’s (B; with ¢ € {1,..., N — 1})

memories, respectively.

The difficulty of calculating the power of the transition matrix 7" is due to the
fact that it is not possible to find a general expression for the storage and the
measurement map. However, it is possible to write down the storage map for a fixed
number of memories m and a single party denoted as ¢(!). From this, the storage
map for multiple parties N and fixed m can be calculated as the tensor product,

ie., o™ = (0(1))®N. The single-party matrix is given by:

0, m; > mf
(1) -
Ty = —m; o (5.19)
v ( in TrNLZ ) (1 —p)ym—mipms=mi otherwise
my—my
with m;,my € {0,1,...,m} being the number of filled memories before (1;) and

after (my) storing all qubits that have arrived successfully. However, it is impossible
to represent the measurement map via the tensor product for larger N. Here, for
each choice of N and m, the matrix must be considered explicitly using the under-
lying matching. Consequently, it is only possible to generate the transition matrix
independently for every specific network size. The system of linear equations of the

form
T="Tm, (5.20)

with state vector 7 in the stationary regime and transition matrix 7" = po can be

solved for given N and m.

In our work, we provide an approximate equation that can be used to calculate
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the router rate for arbitrary N and m. With this, the dependency of the router rate

on the network size (i.e., for any N and m) can be deduced.

Bipartite setup

In a first step, we focus on the bipartite scenario (N = 2) and derive an approximate
expression for the router rate under the assumption that only small orders of success
probability p are considered. This means that in every round, at most one qubit
arrives at the quantum router and is stored successfully. Stored qubits that are not
used for a GHZ measurement in a round are still kept in the memories for the next

round. A valid transition in one round is then one of the following:

e with probability 2mp, a first qubit is stored either on Alice’s or Bob’s side in
the quantum router (here, we assume without loss of generality that Alice’s

memories are filled first),

e with probability (m — m)p, another memory from party A is filled (assuming

that m memories are filled already),

e with probability mp, a memory is filled on Bob’s side and, therefore, a GHZ

measurement is performed (both parties then consume one qubit), or

e with remaining probability, nothing changes.

The stationary distribution can be maintained via the Markov chain tree theo-
rem [LR86] that connects the probability of finding a specific configuration k €
{(0,0), (1,0),...,(m,0)} (each represented by a node in the Markov chain) to the
weights of its arborescences Ax. That means, that for each node k in the graph
representation of the Markov chain, we find a set of edges A C FE such that each
other node k’ € V has a directed path to the chosen node k and all nodes except the
chosen node k have exactly one outgoing edge. In this specific example of N = 2,
each node k has exactly one arborescence Ay. The weight of each arborescence,
denoted by || AJ|, is defined as the product of the edge transition probabilities g, for
all e € A, as described above:

1Al =TT e (5.21)

e€eA
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2mp (m—1)p D
@ - o @ ‘..." mp @

Figure 5.3: ([KTW*25]) Markov chain for the bipartite quantum router repre-
sented as a graph. The nodes give the different memory configurations
(ma,mp) giving the number of filled memories for Alice (14) and Bob
(mp), respectively. Associated with each edge is the transmission prob-
ability ¢ to go from one configuration to another configuration. Since
self-loops are not considered in the Markov chain tree theorem [LR86],
these edges are not shown here. The set of edges colored in red repre-
sents the arborescence belonging to the node with configuration (0,0)
(also colored in red).

The Markov chain representing the bipartite quantum repeater as well as the ar-
borescence for node (0,0) are shown in Fig. 5.3. Due to the assumption of small
p, exactly one GHZ measurement can be performed whenever there is at least one
memory filled on Alice’s side, and with probability mp, one memory is filled on
Bob’s side in the following round. To compute the probability of ending up in a
configuration with at least one filled memory (i.e., k € (1,0),...,(m,0)), we apply

the Markov chain tree theorem:

Prob[€ = 1] = <€> =1- 70(0,0)

[ Aol
=1 =" (5.22)
2 k=0 Aol
The router rate in the stationary regime then follows as:
l
Ry = pmu - p<€>
m
(1 ! > (5.23)
=P B m _ m—1)! ’ :
1+2%50, m*t Emfkiz

A comparison of the router rate obtained by this equation with the results from
the simulation shows that the approach of small p is a lower bound, providing good

results also for larger m.
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Generalization to arbitrary N

A direct generalization of the Markov chain tree theorem to networks with more
than two parties is impossible, even under the assumption of small p. The theorem
is easily applicable for the bipartite setup since all roots k in the underlying graph
have a single arborescence due to the simple graph structure obtained for N = 2 and
small p. For the multipartite setup, the number of arborescences per root increases.
Even in the simplest case of N = 3 and m = 2, each root k has three arborescences.
This can be determined using Tutte’s directed matrix-tree theorem [Tut01].
Nevertheless, it is possible to derive an approximate formula for the router rate
for the general case. To do so, we make the following assumptions for a simplified

model:

e The random number of performed GHZ measurements ¢ is substituted in the
original model by a fixed number ¢ that is associated with the average value

(¢) in the stationary regime.

e The expectation value of the number of filled memories is allowed to be neg-
ative for each party. Only their stationary average values are required to be

non-negative.

e The stationary occupation numbers giving the number of filled memories per

party are given by the normal distribution.

The average number of GHZ measurements that are performed in the stationary

2
(6) =pm (\/%ln]\f—l—l—\/%ln]\f) (5.24)

such that the router rate follows

regime results in:

2
_p<\/f_m51nN+1—\/f—mﬂlnN> : (5.25)
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e Simulation
e Approximation
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Router rate

Figure 5.4: Comparison of the router rate between the approximation obtained here
and the simulation of the quantum router. The plot covers different
network sizes with varying N and m.

with = (1 —p)/(2 — p). For the parameter o we find

(5.26)

o= \/5(1 _ In(4rIn N) _27> |

4Iln N

where v = 0.5572 ... is the Euler-Mascheroni constant.

To verify our approach, we compare the router rate obtained with Eq. 5.25 with
the simulations performed similarly as described in Sec. 4.3. Fig. 5.4 shows the
router rate for different network sizes, either obtained via the approximation formula
or the simulations. The plot shows that Eq. 5.25 leads to a good approximation
of the router rate in the asymptotic regime. In Fig. 5.5, we show the scaling of
the router rate with the network size for different networks up to N = 150 parties
with m = 100 memories each. The router rate is calculated via the approximation
formula. It turns out that the router rate initially increases linearly with the number
of memories, while it saturates for larger network sizes. When each party has enough
memories available, the router rate does not further increase. In Fig. 5.5, this
threshold is shown with the red dots. The router rate reached at that configuration

does not increase significantly (i.e., the difference becomes smaller than 0.0001) when
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0
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Figure 5.5: ([KTW™25]) Scaling of the router rate calculated via Eq. (5.25) for
larger networks. The line of red dots indicates the maximal achievable
router rate for a given number of parties N. Adding more memories per
party does not further increase the router rate, i.e., the rate increases
less than linearly with the number of memories. The light blue plane
shows the achievable router rate of the simplest case with N = 2 and
m = 1. This threshold can be surpassed by increasing the number of
memories per party for all network sizes considered here.

more memories are added. Additionally, we show that the router rate achieved in
the simplest case, i.e., for N = 2 and m = 1 with R, = 0.068 , can be obtained in
all network configurations considered here by adding more memories to each party.
The threshold of that minimal achievable router rate in a network is shown by the

light blue plane in Fig. 5.5.

In the case of large N, we find

lim R, ~ —27

—1
o . 2
i azgmy * ) (5:27)

This goes along with the results we get for the case of no multiplexing in Sec. 5.3.1.

For large m, we see that the router rate converges, i.e., it follows

lim Reo & p. (5.28)

m— 00

The effect of adding more memories does not change the router rate, as we have

already seen from the simulations.
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5.4 Conclusion

With this work, we derive the relation between the router rate and the network size
of a star graph with N parties and m memories each. Additionally, the results can
be used to derive the relation to the success probability p. For large m, the router
rate converges to p, i.e., the router rate mainly depends on the success probability for
large m. Here, mp forms an upper bound on the achievable router rate for general
network sizes with arbitrary N and m. When considering only parallel connections
(i.e., w = 0), the router rate is given as R., = m({;) with router rate (¢;) for the
case without multiplexing. Then, the rate depends only on the achievable rate for a
single memory (/1) and the number of parallel connections m that can, in principle,

be created. Note that m(¢;) gives a lower bound on the router rate for each N.

We find that the multipartite quantum router without multiplexing (i.e., m = 1)
coincides with the description of a bipartite repeater chain with N — 1 quantum re-
peaters. The results show that even though the router rate decreases slowly with the
number of communicating parties N (R, o< In(N)™1), the drop that goes along with
small N is significant. This result clearly demonstrates the importance of quantum
memories to counteract the rate reduction with increasing N. Secondly, we derive
an approximate formula for the quantum router with multiplexing (m > 1). This
shows the dependency of the router rate on the network size (N, m) and the success
probability p of creating bipartite Bell pairs. The results show that the router rate
saturates for large m, which means that the average number of GHZ state measure-

ments performed does not grow faster than linearly with the number of memories m.

The results of this work can be used to plan quantum networks and estimate
achievable router rates depending on the network size. In particular, the optimal
number of quantum memories can be determined, especially when the number of
participating parties increases, thereby decreasing the router rate. Due to the con-
vergence of the router rate that arises for large m, it would be interesting to inves-
tigate alternative protocols that use additional quantum memories. The integration
of entanglement distillation of the bipartite Bell pairs [DEJ*96, DBCZ99, BAKB13]
could be one application that could make use of additional quantum memories. This

research direction is left for future work.
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5.5 Publication

The results of this chapter are published in our work in [KTW*25]. The arXiv
version of this paper is attached to this work in Appendix C.

5.6 Personal contribution

The derivation of the router rate for a multipartite quantum router without multi-
plexing was done in equal parts by Nikolai Wyderka and me. In doing so, Nikolai
Wyderka essentially inferred the Eqs (5.11) to (5.14). The proofs of their general
validity were done by me. Anton Trushechkin performed the transformation to the
known results given in Eq. (5.18). The results for the bipartite quantum repeater
were obtained by Anton Trushechkin and me in equal parts. The generalization to
networks with arbitrary N and m was done by Anton Trushechkin. The compar-
ison of the approximation formula with the simulations was executed by me. The
simulations that were used for the validation of the approximation formulas were
developed by me in the context of the previous work (see Sec. 4.3). The publication
was written by Anton Trushechkin and me in equal parts with all calculations and

plots being performed by me.
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CHAPTER 6

DISCUSSION

Entanglement is one of the fundamental resources needed in quantum networks for
communication and secret key distribution. To distribute entangled states over
larger distances, intermediate stations called quantum repeaters are used. By per-
forming Bell state measurements, these entangled links can be distributed among
the parties.

In our work, we consider a generalization to the multipartite quantum router.
Similar to [CJKKO7], we introduce memories for multiplexing. We investigate the
effect of the quantum memories on the qubit fidelities and optimize the secret key
rate by exploring different matching strategies similar to the bipartite quantum
repeater in [AKB14a]. We show that the secret key rate is optimal when combining
the freshest qubits first and removing older qubits with a fidelity smaller than a
certain threshold — defined as the cutoff.

To find the best matching strategy, we have properly defined and analyzed the un-
derlying graph-theoretical problem of the quantum router matching. We show that
the corresponding decision problem is generally NP-complete, from which hardness
for the maximum quantum router matching follows. However, for some special cases,
we find algorithms that solve the problem in polynomial time. Furthermore, we de-
velop an approximation algorithm for the general unweighted maximum quantum

router matching. This solves the matching problem but does not always guarantee
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maximum cardinality.

In addition to the influence of the quantum memories on the qubit fidelity, we also
examine the dependence of the entanglement generation rate (or router rate) on the
number of quantum memories per party. We show that by increasing the number
of quantum memories per party, the decrease in the router rate, which comes along
with an increasing number of parties, can be counteracted. To this end, we derive
a general expression for the router rate in the asymptotic limit as a function of the
number of parties and memories. This expression allows us to calculate in advance
the maximum number of entangled states that can be distributed per round in the

asymptotic limit.

Our work can be used to plan quantum router networks with a central quantum
router for entanglement distribution or conference key agreement. The matching
algorithms we propose can be integrated to determine optimal qubit combinations
to improve both the number of distributed entangled states per round and the secret
key rate in quantum key distribution. Moreover, our analysis of the router rate in
dependence on the network size (Eq. (5.25)) offers valuable guidance for planning

and scaling quantum networks.

This work reveals further research directions, and interesting questions remain.
It is worthwhile to investigate which rates result in larger, more complex networks
that incorporate multiple quantum routers. Identifying effective strategies for op-
timizing the secret key rate in such extended architectures is also of great interest.
To simulate large-scale networks efficiently, it is advisable to study the weighted
matching problem further and develop a suitable approximation algorithm for it.

Additionally, new strategies for improving the secret key rate can be explored.
As discussed in [BAKB13], purification protocols offer one such approach. Estab-
lished bipartite purification methods [DBCZ99, DEJT96] could be applied prior to
entanglement swapping at the router. For example, all available quantum memories
could be used for purification, or multiple purification processes could be performed
in parallel, allowing the resulting parallel links to still support multiplexing. Alter-
natively, novel multipartite purification strategies could be developed and integrated

into the protocol after performing the entanglement swapping.
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Overall, our work outlines optimization strategies for both the router and secret
key rates in quantum networks, using a central quantum router for entanglement
distribution and conference key agreement. These results provide a foundation for
further investigations into the performance of larger, more complex network topolo-
gies. Additionally, they can be extended by incorporating alternative noise models
beyond depolarization, as well as by integrating advanced techniques such as entan-

glement purification.
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Abstract

Over the past few years, the concept of quantum routers and their
usefulness in quantum communication networks (e.g., in the BB84
protocol [5]) has been popularized in quantum information theory.
While quite some work has been done on the theoretical imple-
mentation of quantum routers using multiplexing, most of it is
constrained to the bipartite case [2, 9]. We extend this setup to
quantum routers used in multipartite conference key agreement
protocols so as to distribute a secret key among N parties. We for-
malize the general quantum entanglement matching problem, and
show it’s NP-completeness. We then study special cases for which
we found efficient algorithms. Finally, we consider the weighted
case where the weights represent the qubit ages.

Keywords

Quantum cryptography, Quantum routers, Computational complex-
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1 Introduction

Quantum communication, which emerged from quantum mechan-
ics in the 20th century, studies communication via quantum infor-
mation (qubits) over macroscopic distances [16]. It provides the
advantage of an increased security against an eavesdropper since
every interaction with a quantum system has an effect on it, and it
is therefore more likely to detect any act of eavesdropping [5, 32].

This becomes especially important as many public-key cryptosys-
tems are vulnerable to quantum algorithms (for more background
on quantum cryptography, we refer to the survey by Brufl et al. [8]),
although it is not clear yet whether quantum computers can be
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a real threat in practice [31]. The most common choice of trans-
portation for the qubits is that of single photons in glass fiber. The
polarization of the photon encodes the state of the qubit [34]. Their
effective range, however, is limited due to photon losses via random
scattering processes [30]. The transmittivity p of a photonic qubit
in an optical fiber depends on the communication distance D:

p=10", (1)

where a reasonable assumption for the absorption coefficient « is
0.2 dB/km [16]. For a typical distance of D = 100 km, this yields a
transition probability of p = 0.01, so the qubit arrives intact in only
one percent of all cases.

To cope with this problem, the use of quantum repeaters—first
without multiplexing [30] and later with multiplexing [9]—has been
proposed. These network elements are placed between the com-
municating parties to shorten the distance between them. Links
are first generated between two neighboring repeater stations. One
long link between the end nodes is generated by performing mea-
surements on the quantum repeaters. Here, “multiplexing” means
that each party has several parallel quantum channels available,
so several links between the parties and the quantum repeater can
be produced simultaneously. Arriving qubits are stored in quan-
tum memories within the router. These stored qubits are further
used to generate entangled states between the N parties, where not
only parallel links between the memories are considered. This is
done to further increase the generation rate of links between end
nodes. For the bipartite quantum repeater, there has been some
research considering repeaters without [1, 7, 13, 22] and with multi-
plexing [2, 9]. Also, the generalization to the multipartite quantum
repeater without multiplexing has been examined in [4, 11, 14, 33].
Often, multipartite quantum repeaters are called quantum routers
because qubits are distributed more in a net-like topology than
in a straight topology. As in the bipartite quantum repeater, the
communication via quantum routers can be used for conference
key agreement [24], the generalization of quantum key distribution.
Here, qubits are sent to multiple other parties to share a secret
key among all parties. So far, the generalization of multipartite
multiplexing has not been analyzed much yet [20].

Due to the multiplexing, a matching protocol must be executed
within the quantum router for every round of the quantum key
distribution protocol. For the bipartite setup, the matching prob-
lem from graph theory is well-known, and there exist efficient
algorithms to find a matching with maximum cardinality [6, 18].
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Multiple strategies to maximize the quantum repeater’s efficiency
have been implemented and analyzed in the bipartite case [2]. In
the multipartite quantum router, the matching problem has first
been considered in [20]. Our work further specifies the multipartite
matching problem in the quantum router. We study the computa-
tional complexity of the associated problem and introduce efficient
algorithms for some special cases.

2 Preliminaries

For a detailed overview of quantum information theory, we refer
the reader to the textbook by Nielsen and Chuang [26].

2.1 The Bigger Picture

We consider a multipartite quantum network in which N parties
want to share a secret key by performing the multipartite NBB84
quantum key distribution protocol [17], which generalizes the well-
known bipartite BB84 quantum key distribution protocol [5]. There-
fore, it is necessary for all parties to share entangled states (genuine
multipartite entanglement), such as the GHZ state

_ L (&N ®N )
W= (10N + o).

When the parties perform a measurement in the computational
basis {|0), |1)} on this shared state, each party ideally records the
same classical output of 0 or 1. Repeating this for n shared states,
each party would hold the same bit string x € {0,1}" that can
be used as a key after performing some classical post-processing
steps [17]. However, the distribution of entangled states is infeasible
for long distances due to the exponential distance dependency of
the transition probability p of a photon in a quantum channel (recall
Equation (1)). To circumvent this, a quantum router is introduced
to shorten the communication distances among the parties: Every
party prepares several entangled qubit pairs and sends one of the
qubits from each pair to the router. The router, in turn, acts on the
qubits to entangle the parties’ qubits. The quantum router further
uses multiplexing to increase the key rate (i.e., the average fraction
of secret key bits per sent qubit). Multiplexing means that every
party sends multiple qubits in parallel—from which some may get
lost in transition—and the router establishes entanglement among
the received qubits.

2.2  Quantum Router

We formalize a quantum router as a graph G = (V, E) with V parti-
tioned into N parts. The nodes represent the filled quantum mem-
ories (of N communicating parties) in the quantum router.! One
part (without loss of generality, the last one) is called the center
and is denoted by C = {Cl, ...}, and all other parts are called the
peers, denoted by P; = {Pil, ...} withi € [N —1], where [k] denotes
{L...,k} for k € N\ {0}. It holds that V.= P, U---UPy_  UC;
since this is a partition, all its parts are pairwise disjoint and cover
all of V.

To generate an entanglement link, the quantum router performs
a GHZ measurement (entanglement swapping) involving exactly

!Note that in transmission some qubits may get lost, so the total number of nodes in
the graph is not necessarily the total number of available memories. For simplicity, we
do not consider empty memories, as they cannot be used anyway.
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Figure 1: Quantum circuit for the GHZ state measurement
for a tripartite network. The center party has a special role
by providing the control qubit for the CNOT gate and addi-
tionally performing the Hadamard gate H.

one memory (i.e., node) from each part.? A GHZ measurement
requires that one memory is designated as the center, as described
in Figure 1. Multiple links can be created this way; however, each
quantum memory is only allowed to appear in at most one entan-
glement link. Generally, quantum memories cannot be combined
to an entanglement link arbitrarily. There can be limitations which
memories can be connected due to the complicated physical realiza-
tion (see Appendix A for details). To address this, we say an edge
between two nodes in quantum router G represents the ability to
use the respective nodes in an entanglement link; in other words,
the edge represents the existence of a controlled-NOT (or, CNOT)
gate. We assume that the center node in every entanglement link
is always from the center C, which significantly reduces the dif-
ficulties in a physical realization. This brings us to the notion of
entanglement matching, defined as follows.

Definition 2.1 (entanglement matching). Given a quantum router
G = (V, E) with V partitioned into N parts as explained above, an
entanglement matching M = {p11, . .., jq} is a set of subsets y; C V,
1 < j < g, such that

(1) every subset y1; in M consists of exactly one node from every
part Pl, o ’PN—I’ C,

(2) every two distinct subsets, say y; and pj with i # j, in M are
disjoint, and

(3) every node x in any subset i is either itself in the center C,
or has an edge to the respective center node from ;.

The size of an entanglement matching M is its cardinality |M]|.

Let us illustrate this with Figure 2.

2.3 Computional Complexity

We will study the computational complexity of decision problems
related to quantum entanglement matchings. Assuming the reader
to be familiar with the basic notions of computational complexity

2This projects the locally held qubits of the parties (i.e., those qubits not sent to the
router) onto a GHZ state from which the secret key can be generated [17]. However,
this happens outside the router, so for the following it is not relevant.
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Figure 2: Example of a quantum router with three parts: the
center C = {C1,C?,C3} and two peers,P, = {Pl,Pf,P'i*,Pf} and
P, ={P},PZ, Pg} A possible entanglement matching of size
three is M = {{C', P}, P}},{C%, P3, P}},{C? P{, P3}} (in red).

theory, we refer to the standard textbooks by Garey and John-
son [15], Papadimitriou [27], and Rothe [28] for more background.
In particular, we denote the complexity classes “deterministic poly-
nomial time” by P and “nondeterministic polynomial time” by NP.
Further, we consider the notions of hardness and completeness for
NP, based on the polynomial-time many-one reducibility, denoted
by <P : For decision problems X and Y, we write X <F, Y if and only
if every instance x of X can be transformed by a polynomial-time
computable reduction p to an instance p(x) of Y such that x is a
yes-instance of X exactly if p(x) is a yes-instance of Y. A problem
Y is said to be NP-hard if X <P Y for each X in NP, and Y is said
to be NP-complete if it is both NP-hard and in NP.

3 Computional Complexity of the Quantum
Entanglement Matching Problem
To study the computional complexity of determining whether there

exist large enough quantum entanglement matchings for a given
quantum router, we first formalize this as a decision problem:

QUANTUM ENTANGLEMENT MATCHING (QEM)

Given: A quantum router G with center C and peers P,, . . ., Py_qs

and a positive integer y.

Question: Does there exist an entanglement matching of size at least y
in G?

Note that the problem is different from the NP-complete N-
dimensional matching problem [23], where a matching is requested
for given hyper-edges. Our graph (representing a quantum router)
is a regular graph without hyper-edges. We will now show that
QEM is NP-complete, too.

THEOREM 3.1. QEM is NP-complete.

Proor. Membership in NP is obvious since given an instance
of QEM, in polynomial time we can nondeterministically guess a
solution and deterministically check its correctness, i.e., for each
guessed entanglement matching, we can easily verify its size and
validity.

It remains to show NP-hardness, which we will do now by a re-
duction to QEM from the well-known NP-complete problem 3SAT:3

3Cook [10] and, independently, Levin [21] proved that 3SAT is NP-complete; it is the
first natural problem known to be NP-complete, see also the relevant textbooks [15,
27, 28] mentioned above.
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3-SATISFIABILITY (3SAT)

Given: A boolean formula 7 in conjunctive normal form with ex-

actly three literals per clause.
Question: Is i satisfiable, i.e., can we assign truth values to its variables
such that the formula evaluates to true?

Let
7= (nll ananf)A-v-/\(n},v;zﬁv;rg)
be a given instance of 3SAT, where each ﬂ'{ ,1<i<nandl1<j<3

is a literal over the set « = {ai,.. .,aq} of variables. By a =
{=a1,...,~aq} we denote the set of negations of these variables,
so each 7':{ is from a U @.

Given 7, we construct a quantum router G = (V, E) with

V=CUP,U---UP,UX,

where
C = aUaU{w} (with w standing for “the last resort”),
P, = {P?l,...,Piaq,Pi”"}foreachi,1SiSn,and
X = {x%,...,x% x?}.

Furthermore, the edges in E are defined as follows:

e For each x%i, there is an edge to «; and —a;;

o for x®, there is an edge to w;

o for eachPia’ withr € {1,...,q}and i € {1,...,n}, there is
an edge to ar, —ar, and w,

e for each Pf" with i € {1,...,n}, there is an edge to JTil, 2

Al
and n? according to the given formula 7 = (nll \Y 7'[12 v rr13 ) A
s A (ﬂ,lan,%Vng).

We illustrate the construction in Figure 3 with a simple 3SAT
instance. Note that the constructed graph meets the requirements
of a quantum router matching. To complete our construction of the
QEM problem instance, we set y = q + 1.

Intuitively, the selection of nodes from the center C in the match-
ing will represent a truth assignment to the variables in 7, and the
peers P, ..., P, represent the clauses in 7. Note that, by construc-
tion, a matching of size q is always possible since we can match
every aj with x% and Plij for every P;. Note further that the con-
struction can be performed in polynomial time.

It remains to show the correctness of the construction: To prove
3SAT <, QEM, we need to show that for each given boolean for-
mula 7 in conjunctive normal form with exactly three literals per
clause, it holds that

7 € 3SAT & (G,y) € QEM.

(=) We first show that if there exists a truth assignment to the
variables that makes 7 true, we can find a quantum router matching
of size y.

Let f1,...,Bq € a U a be chosen such that the f; represent the
given satisfying truth assignment: f; = «; if @; is set to true, and
Bj = —~a; otherwise. Define a quantum entanglement matching M
by constructing the following subsets of M:

e For each fij, 1 < j < q, we construct a subset with f; (from
the center) and all adjacent, not already used P;r " For each P,
such that P;T ! is not adjacent to f; or has already been used
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earlier, we add Pl.aj instead. Finally, we add x% to complete
the subset. Note that every Pf" is now contained in exactly
one of the subsets constructed in this step, since each Pf" has
an edge to at least one f; because the assignment satisfies 7.

e For node w, we do the same, except that this will not match
with any P;Z", as there is no connection to w, and they are
already used in subsets constructed in the previous step.
However, since in each P, node Pf i was matched instead of
one P:Xj , @ can be matched with these leftovers as well as
with x.

The resulting matching will have size y = g + 1, since all nodes
from C (including w) are matched. Further, the matching is valid
since (1) exactly one node from C, X, P,,..., P, ispart of the match-
ing, (2) no node is selected twice, and (3) only nodes adjacent to
the center can be selected.

(&) We now show that if there is a matching of size y = q + 1,
then there is also a truth assignment making 7 true. Let M =
{#1, . .., pty } be a quantum router matching of size (at least) y. First,
note that subset X controls that ; and —a; can never be selected
in the same matching, as only one of the two can find a peer in
X. Thus M has exactly size y, and it contains either «; or —a; for
eachi,1 < i < g, as well as w. This in turn means that the selected
literals (or negations) in M are a valid (potentially not satisfying)
truth assignment to the variables of 7. It only remains to show that
the selection actually satisfies .

For a contradiction, assume this truth assignment does not sat-
isfy 7. This means that at least one clause of (nl.l \% 7[12 \% n?) is not
satisfied by the truth assignment. This implies that node P;” is
not part of the matching M, as it only has edges to the respective
variables that satisfy this clause. But this is a contradiction to the
size of M being y = g + 1, since only g nodes remain in P;. Thus
the truth assignment must satisfy 7, proving the claim. O

As we see, finding the largest possible matching can be quite
challenging and becomes intractable on large instances. However,
in practical applications, some assumptions can be made on the
set of edges E in the graph from a QEM instance that allow for
an efficient solvability of the problem. Let us first consider a case
where each node is connected to at most one node from the center.

THEOREM 3.2. QEM is in P whenever every node from the peers is
connected to at most one node from the center.

ProoFr. We give an algorithm that finds a maximum matching
for a given instance in polynomial time. For each node from the
center, we check if it has at least one connection to a node from
every peer. If so, we choose one arbitrary node from each peer
which is connected to this center node, add them to the matching
(together with the center node). It is easy to see that this can be
done in polynomial time (more precisely, in time O(N - r), where
N is the size of the partition and r the number of center nodes).

Note that since each node has at most one connection to a node
from the center, no node will be used twice by the algorithm. Thus
all subsets in the matching are disjoint. Further, by construction,
only nodes connected to the respective center node are considered,
and each subset in the matching has exactly one node from every
peer and from the center. Thus the matching is valid.
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Figure 3: Illustration of the construction in the proof of
Theorem 1. The shown graph represents the 3SAT formula
m=mAm=(maVecVd)A(@aVbV-c). The four parts are
color-encoded. A possible quantum entanglement match-
ing is indicated in red and corresponds to the assignment
a, b, c,~d, which indeed satisfies .

Finally, the resulting matching is maximal, as every center node
appears in a subset of the matching, except if it does not have
a connection to at least one other party. In the latter case, the
respective center node cannot be part of the matching anyway.

By applying this algorithm we can easily decide whether a match-
ing of the requested size at least y is possible. m]

We next consider a case where every node outside the center is
connected to every node within the center. That is, we have the
following set of edges:

E={{x,y}|xeC, yeV\C}.

THEOREM 3.3. QEM is in P whenever every node from the peers is
connected to every node within the center.

ProoF. We give an algorithm that finds a maximum matching
for a given instance in O(N - ), where N is the size of the partition
and ¢ the minimum number of nodes in any of its parts: Choose
one arbitrary node from each part and add them to the matching.
Remove all chosen nodes to ensure they are not reused. Iterate this
until one of the parts is empty (exactly £ times).

The resulting matching is maximal, as no more nodes from the
now empty part are available. Further, it is valid since, by construc-
tion, each subset y; in the matching

(1) contains exactly one node from every part of the partition,

(2) is disjoint to every other subset yi, j # i, as we remove used
nodes from the graph, and

(3) nodes within y; are guaranteed to have a connection to their
respective center (or are themselves in the center).

By applying this algorithm, we can easily decide whether a
matching of the requested size at least y is possible. m]
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Interestingly, we now show that there exists an efficient al-
gorithm for QEM whenever N < 3, i.e,, when a center is sur-
rounded by at most two peers in the given quantum router. This
underlines a fundamental difference between QEM and the N-
dimensional matching problem, which is NP-hard even for three
dimensions [15, 19].

THEOREM 3.4. QEM is in P for instances with N < 3, i.e., with one
center and at most two peers.

ProOOF SKETCH. For N = 1 there is no peer to match with the
center, so this is a trivial case. For N = 2 the problem reduces
to the regular bipartite matching problem, for which an efficient
algorithm exists [18].

It turns out that the case N = 3 can be formulated as a network
flow problem. In general, a network flow is defined as follows (see,
e.g., the textbook by Ahuja et al. [3]): Let G(V, E) be a directed
graph with the distinguished nodes s, t € V as the source and sink.
The capacity c(e) € R of an edge e € E defines the maximum flow
that can go through that edge. The flow f : E — R has to fulfill the
following properties:

a) For each edge e holds f(e) < c(e).
b) For each node, the sum of all input flow equals the sum of
all output flow.

The question in network flow is: what is the maximum flow fyax
that can be achieved in a given instance?

To model QEM as a network flow problem, we first introduce a
source s and a sink ¢. We add directed edges from s to every node in
P, and directed edges from every node in P, to t. We then replace
all undirected edges between P, and C by directed edges from P,
to C. Next, we clone every center node C’ and denote the clone by
C"". We introduce directed edges from every C' to C" . Further, for
each undirected edge between C i and a node from P,, we introduce
a directed edge from C 7' 1o the respective node from P,. Finally, we
remove all undirected edges and set the capacity of all remaining
edges to 1. An example is given in Figure 4.

Note that each node from P, has exactly one incoming edge, and
nodes from C and P, have exactly one outgoing edge, and all edges
have capacity 1. This mimics the QEM-requirement that every node
is part of at most one entanglement link (see Definition 2.1 (2)).
Note further that to get from source to sink one has to pass exactly
one node from C, P, and P,. This represents the requirement from
Definition 2.1 (1). Finally, note that Definition 2.1 (3) is guaran-
teed by the construction since edges to and from the center (resp.
center-clone) are only turned from undirected to directed but never
introduced or removed.

To complete our proof sketch, note that a maximum flow uses
the maximum number of paths from the source to the sink, since
all weights are 1. Hence, the matching is maximal. O

The restrictions on QEM introduced previously demonstrate that
efficient algorithms exist for specific graph structures. A quantum
router where every node has at most one connection to the center
(see Theorem 3.2) is relatively easy to realize in practice, and it is
helpful to know that it is also easy to find optimal entanglement
matchings in such a router. However, it will not be possible to
match as many quantum memories as in the fully connected router
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Figure 4: Left: example of a quantum router with three par-
ties. Right: The same quantum router mapped to a network
flow instance. The capacity of every edge is 1.

described in Theorem 3.3.* While this case is also easy from a com-
putational perspective, it may in contrast be physically challenging
to implement. The last case with N < 3 is interesting because
when it comes to experimental realization of multipartite quantum
routers, the case of three parties will be the first proof of concept.
It is good to know that in such a proof of concept we at least will
not run into computational intractability.

4 Weighted Matchings

We now conclude this study by adding weight to the matchings.
These weights represent the qubits’ storage time in the quantum
memories. We call this the qubit age, denoted by 6, € N for a
node v. The background for this is that, in reality, one would repeat
the process of entanglement matching multiple times until a suffi-
ciently large key was exchanged. Between the single rounds of this
process, the unmatched filled memories will not be cleared. How-
ever, during storage the qubits decohere in the quantum memories.
The more a qubit decoheres, the less useful it is for entanglement
swapping. Informally, what we try to do in this section is to find a
cardinality-maximal entanglement matching (as before in the un-
weighted versions) which simultaneously maximizes the usability
of the involved qubits for entanglement swapping. To do so, we
first define this usability of qubits. We then define the weighted
version of QEM formally and study its computational complexity.

The quality of a qubit is given by the fidelity, which is 1 initially
and decreases when the qubit decoheres over time:

F(v) = exp (-8./7) (2)

with the decoherence constant 7, which is specific to the quantum
memory. The qubit age is measured in entanglement generation
attempts (rounds). Note that this is based on a specific error model.
Here, we assume that qubits depolarize in the quantum memory (see
Appendix A for more details). Due to decoherence, errors arise that
diminish the ratio of secret bits generated in the BB84 protocol [5]
from those imperfect qubits. The quantum bit error rates (QBERs)
give the errors after performing the entanglement swapping. They
depend on the storage time of the qubits before the entanglement
swapping. We distinguish between the error rate ex measured in
the X-basis and the bipartite error rate ec p, between the parties C

4 According to Abruzzo et al. [2] and Kunzelmann et al. [20], the advantage of all-to-all
connections compared to more sparse connections does not seem to be overwhelming,

though.
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and P; measured in the Z-basis:
eXz‘—_l_[(4Fk—1) 3)

ecr, = (FC +Fp —4F Fp + 2) . (4)

The general goal is to optimize the secret fraction. It is given by:

Too (éx, ECP.) = max {0, 1 - h(éx) — max h(éCP.)} ®)
I3 l 13
with binary Shannon entropy

h(p) = —plog,(p) — (1 — p) log,(1 - p).

Note that the QBERs (ex, éc pi) are here averaged over one
matching. The overall key rate is given by the fraction of all shared
bits (given as the router rate R) from which a secret key can be
generated:

K=reo (éx, écpl_) R. 6)

The router rate is proportional to the number of shared entangled
links generated per round:

R« |M]|. (7)

We provide a detailed description of the underlying physical back-
ground of the entanglement swapping protocol as well as the deriva-
tion of Equations (3) and (4) in Appendix A. Given the ages of all
qubits, we now optimize for the secret fraction ro (recall Equa-
tion (5)) while keeping the requirement of maximum cardinality.
We first observe the following result:

THEOREM 4.1. Younger qubits lead to a greater secret fraction if
all involved qubits are younger than t log(4). Formally:

Oreo
Vi e [N],j€[m]:d;j <rlog(4) = Vie[N],je[m]: 950 <0.
ij
PrOOF. We begin by deriving two statements from the condition
(5,']' < tlog(4).
As a shorthand, we define F;; := F(6;j) = exp (—=0;j/7). As F is
monotonically decreasing in §, we have:

5ij € [0,log(@) = Fyj € |F(log(4)r), F(0)] = ]il] (®)

From this, we can deduce bounds for the QBERs:

N
1 1
ex(j) 2 min{ - - —— 4F; )| Fij €]1/4,1
x0) {2 2~3Ng( i =1 |Fij € 11/ ]}
N
1 1 1
ex(j) Smax|- - —= 4F; )| Fij € 11/4,1] =
x0) {2 2~3Ng( i = 1)|Fij € 1/ } >

And similarly for ec p,:

2
€eCP, > min{a(Flj + Fij — 4FyjFij + 2

Fij € ]1/4, 1]} =0;

2
ecp, < max{;(Flj + Fij — 4FyjF;j + 2

Fij € ]1/4, 1]}

NI»—I
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Since the averaged QBERSs are calculated by taking the mean of the
QBERs, we receive the same bounds:
ex € [0,1/2[, ecp, €[0,1/2]
Now, we can infer the second statement:
h(e) = —elogy(e) — (1 - ) logy(1 — )
Oh(e)
de
We now complete the proof of the theorem by derivation:
Ore 0
d6ij 651- j
We first consider the case 1 — h(ex) —

:Iogz(%—l)>0f0ree[0,%[ 9)

0.1 hlex) - max hec,)}.

maxye[N-1) h(écp,) < 0

Here, roo = 0 and thus gg"" = 0. Of course, the other case is more
ij
interesting:
Oreo 0 0
— =———h(e —_— h
(951']' 351‘]' (e ) 651 ké?]%xl (ecp )
one) (dex decp,
B de | 04;; 06ij

oh1 9
== ex(r) + e r |,
5 170, VEZU] x(r) gﬁ cr, (")
where p (ie., the subscript of party P,, occurring in the second and
the third equality) is set to argmax; h(éc pk).
Since ex(r) depends on J;, for all i € [N], only the ex(j)-term
is dependent on &;; and survives the derivation.
Further, ecp, (r) depends on 1, and Jp. Therefore, the sum
collapses with r = j through this derivation, too:

Oreo oh1l 0 . )

Wi}' = —$75 (eX(I) + eCPp(I))
_ 1(9h6FU BFU B Fij
= 7%@6%] (EX(])+€CP (J)) | Wt] ==
_thah 0 . . o Fijl?h
= It de oF;; (ex) + ecr, ) 1= T e
_ o ?ex) , Fecr,U)

(9Fl] aFij ’

We find C > 0 due to statements (8) and (9). Also using (8), we
calculate

dex(j) 1 0
=—— 4F;; — 1)—(4F;; — 1
aFij 2. 3N ( tj )aFlj( 1] )
_ 2 l—[ 4FU
t#1
6€CPp(j) g(l —4F; i=1
Tijz 5(1—4F1j i=ppr <0
0 else

Putting this together ylelds °° < 0, completing the proof. O

We emphasize that the qubit age condition of the theorem is
quite weak. Qubits older than log(4)r lead to quantum bit error
rates greater than 1/2, making their use for the protocol worse than
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randomly guessing qubit states. Therefore, qubits older than this
threshold might as well be just discarded.

Theorem 4.1 tells us to use the ¢ youngest available qubits for
an optimal matching of cardinality ¢. It is, however, still unclear
in which way qubits should be combined in order to maximize the
secret fraction. Because the secret fraction is a highly nonlinear
function with respect to the qubit ages, we introduce a simpler
optimization goal:

POSTULATE 1. An entanglement matching M has the maximal
possible secret fraction for an instance if it minimizes

fn= 3 [

HjEM X4t

We justify this postulate by looking at the expression of the
QBERs in Equations (3) and (4). For an entanglement link, they are
small when the product of the fidelities of the qubits involved is
large. Therefore, the simplified optimization goal minimizes the
product over the involved qubit’s ages, since small qubit ages lead
to high fidelities. For multiple matches in a matching, we sum these
products, since the QBERs are averaged in this case. Minimization of
the qubit ages also aligns with the statement of Theorem 4.1. We can
now define the weighted version of the QUANTUM ENTANGLEMENT
MATCHING problem:

WEIGHTED QUANTUM ENTANGLEMENT MAXIMUM MATCHING (WQEMM)

Given: A quantum router G with center C and peers P, . . ., P

> EN-p
anage d,, € Nfor eachnode v € V, and a positive integer y.

Question: Does there exist a maximum-cardinality entanglement
matching M with £(M) <y in G?

It is easy to see that for the general case (i.e., an arbitrary graph G)
this problem is NP-hard, since finding an unweighted maximum-
cardinality matching is already NP-hard by Theorem 3.1. However,
for two of the aforementioned special cases—nodes connected to at
most one node from the center, or to all nodes from the center—we
now present efficient algorithms for WQEMM, thus strengthening
Theorems 3.2 and 3.3.

THEOREM 4.2. WQEMM is in P whenever every peer’s node is
connected to at most one node from the center.

ProoOF. We extend the algorithm from the unweighted case in
Section 3 so that it not only finds a maximum-cardinality matching
M but also minimizes £(M).

For each node ¢ € C from the center, we check if it has at
least one connection to a node from every peer. If the respective
center node has not, we skip it. If it has, let P;[c] be the set of
nodes in P; connected to center node ¢. We choose from each peer
i € {1,...,N — 1} one node from P;[c] with the smallest storage
time among the nodes in Pl.[c], entangle them with c, and add this
entangled link to the matching.

It is easy to see that this can be done in polynomial time and leads
to a valid maximum-cardinality matching (just as in the unweighted
case). This matching also minimizes £(M), due to the fact that every
peer’s node has only one connection to a center node: It is always
better to choose a node of smallest age from P;[c], as the nodes in
P;[c] cannot be used with any other center node, and choosing one
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of smallest age minimizes for the current entanglement link. By
applying this algorithm one can decide WQEMM. m]

THEOREM 4.3. WQEMM is in P whenever every node outside the
center is connected to every node within the center.

ProoF. We give an algorithm that finds an optimal matching in
time O(mlog(m)N):

e Sort the nodes of every part of the partition by ascending
weight (qubit age).

o Let ¢ be the minimum number of nodes in all parts of the par-
tition (note that this is the maximal cardinality any matching
can have).

e For every k € [£], add the k-th node from every peer and the
center as an entanglement link to the matching.

It is clear that the produced matching is valid:

e Every match contains a node from every part of the partition.

e No two matches use the same node.

o Connectivity to the center is always guaranteed in this spe-
cial case of the problem.

The matching also has maximal cardinality (i.e., £). It remains to
show that M is also optimal in

in= 3 [ e

HjEM X €4

This is an application of the generalized rearrangement inequal-
ity [29, Theorem I], which states that for an arbitrarily shaped
matrix of positive real numbers, the sum over the product of the
columns is maximal when the matrix is permuted such that the
columns are in nonincreasing order. In our case, it is minimal when
the columns are in nondecreasing order. By applying this algorithm
one can decide WQEMM in polynomial time. m]

5 Conclusions and Outlook

We have studied computational aspects of quantum routers and of
the problem of finding entanglement matchings. We have shown
that the general case is NP-complete (Theorem 3.1) and explored
special cases which are tractable and allow efficient algorithms
(Theorems 3.2, 3.3, and 3.4). We then studied the weighted version
of the problem (i.e., with qubit ages). Under a few reasonable as-
sumptions we were able to prove the analogues of Theorems 3.2
and 3.3 for the weighted case (Theorems 4.2 and 4.3), i.e., these two
weighted special cases are tractable, too.

As a next step, we already started with the design of efficient
approximation algorithms for the general problem. We plan to
study those algorithms both from a theoretical and experimental
angle (i.e., worst case, best case, and average quality of the result).
As we have shown that the general case is computationally hard,
good approximation is one key to making quantum routers more
realizable in practice.

Moreover, modern SAT-solving techniques may provide the pos-
sibility to circumvent the NP-completeness of QEM and WQEMM
in practice. In addition, it would be interesting to see if our NP-
complete problems QEM and WQEMM perhaps are fixed-parameter
tractable [25] or whether they are hard also in terms of parameter-
ized complexity [12] for reasonable parameters.
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On Matching in Multipartite Quantum Routers

A Memory Decoherence and Quantum Bit
Error Rates

We now provide a more detailed explanation of the underlying
physical process in the quantum router.

The central parameter in quantum key generation is the secret
fraction, which is to be optimized. In multiplexing, the additionally
introduced quantum memories mainly influence this parameter.
During storage, the qubits decohere in the memories, meaning their
quantum state changes. Recalling (2), the amount of decoherence
can be characterized by the qubit fidelity, which is a distance mea-
sure between two different qubit states (here, the initial and the
decohered state):

F(8) = exp(=6/7),

where § is the age of the qubit, and 7 is a decoherence constant
specific to the quantum memory. The qubit age is an integer § € Ny
measured in entanglement generation attempts (rounds).

Initially, the quantum state of each party k is given by pg =
[¢*) (¢T|. Due to the time evolution caused by the decoherence,
the state changes to the depolarized state pZep = ?:0 KipK IT with
the Kraus operators as follows:

K0=]lz®\/l?]12

1-F .
Ki=1,® Tai, i €{x,y,z}.

Ox,y,z (in the following also denoted as X, Y, Z) are the Pauli ma-
trices acting on a single qubit. This yields

d
pkep(Fk)
1-Fp . .
= Felg™) @'+ 3 (6771 + 1Y) WH I+ 7))
F)
I T
1
_ 0 1L N 0
2 ° 1 ° §_Tk Fol
k
ng—g 0 0 T+E

with Bell states
|6%) = 1/V2(|00)  [11)) and [¢*) = 1/v2(|01) = |10)).

The total state of 2N qubits on which the entanglement swapping
is performed is given by the Tensor product of all bipartite entangled
states between the end nodes C and all P;:

prot = O, T (Fe). (10)

Given pyot, the GHZ measurement is performed: First, one party
(here, party C) performs a controlled-NOT (or, CNOT) operation
with each P, i.e., party P; flips its qubit if C’s qubit is in state |1).
In a second step, party C performs a Hadamard operation H on its
qubit, thus producing a superposition (|0) + |1)) of its own qubit.
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The final entangled state is calculated via:
T

N-1 N-1
( HT. (11)

prin=H | | CNOTipror | | | cNOT;
i=1 i=1

Finally, a measurement in the X-basis is performed on each

qubit. The total entanglement swapping protocol results in a GHZ
diagonal state given by its density matrix p°“ of dimension 2V x2

of which each party holds one qubit:
P4t =AY |GHZ{ Y (GHZ] | + Ay |GHZy ) (GHZ; | +
(2N-2)/2
> A (|GHZZ§) (GHZ}| +|GHZ;) <GHZ;|) . (12)
=1
The GHZ states are given as |GHZ?) =1/V2 (16y £ IN2 -1 - 0))
with the states written in binary notation. An explicit calculation
leads to:
-
out _ _out _ /10 +A0
Pan = PeNan) T T

_ dep dep
= Xnorm l_[Pk,u,n + n Pr,(2,2)
k k

NoRe o1\ (1 F
:Xnorm(l_[(?k"‘g)"'ﬂ(g_?k))’ (13)

k=1
+ _
out _ out _ u
PNy T Paen) T T
d
= Xnorm l_[ Pk’eg’l)
k
N
2 1
:Xnorm,lc__[l(ng_ g), (14)

(15)

and all other entries along the diagonal are given by the 1, with
£ € {1,(2N - 2)/2} of the form

N N
out out out out
Xnorm (pC,(l,l) : l_[pk,(x,x) +pC,(2,2) ’ npk,(i,fc))
k=2 k=2

with indices (x, x) either being (1, 1) or (3, 3). The indices (%, X)
belong to the negation of (x, x), i.e., they are given by (2, 2) as the
negation of (1,1) or (4,4) as the negation of (3, 3), respectively.
Along the first half of the diagonal, the entries are given by all
combinations of indices. They are ordered following the binary
representation of the belonging index ¢ from the corresponding
A¢ with 0 representing the indices (1, 1) (respectively, (2, 2) for
the negation) and 1 representing the indices (3, 3) (respectively,
(4, 4) for the negation). Due to symmetry, we find the same entries
in the second half of the diagonal in reverse order, see Eq. (12).
The normalization constant is given by ynorm = 2N-1 5o that
Tr(p°** = 1) holds.

As a concrete example we give the resulting density matrix for the
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tripartite network:

.
Pl = @ = 2 (o o P + PP )
= Plsay
ptsy =M =22 (00t o oy + 0P P )
= Plry
Pyt =22 = 2 (pE T ooty + PC P )
= Plsiey

out _ _ 52 ( dep dep dep dep dep dep
Plaay =13 =2 (pc,inZ,33pP2,33 + P 22Pp, 44PP, 44

— out
= P(s,5p and
Ar =27
out _ 0 0 _ ,2( dep dep dep \ _ out
Py~ — 5 2 (Pc,41ppz,41PPZ,41) = P1,8)

out _ out out — out
(1) = PN on) 204 PNy = PN )

Note that the equalities p
hold due to the equality of the corresponding terms in pZeP .Due to
the GHZ measurement performed, the output state is projected onto
one of the GHZ states given above. Depending on the measurement
output, the parties can perform local operations on their qubit to
turn the entangled state into the IGHZ(;r ) state.

This state can then be used to distribute a secret key between
all parties. The whole multipartite BB84 protocol is given in [24].
The key is generated by measuring the own qubit in the X-basis
and recording the classical measurement outcome. Since the state
is a genuine multipartite entangled state, each party should ideally
get the same measurement outcome and, therefore, an identical bit
string for the raw key. The additional information from the Z-basis
measurements is used for some test rounds. Since the input states
already have reduced fidelities depending on the qubit ages, the
output state also has reduced fidelity. This relates to the quantum
bit error rates (QBERs). These QBERSs are calculated based on the
classical information from the measurements. This is done by par-
tially comparing the measured outcome. The QBER gives the ratio
between different measurement results and the total number of
measurement outcomes. For the multipartite setup, measurements
in the X-basis and the Z-basis are considered separately:

1-(X®N
L »
1- <ZCZP,'>
ecpi = T = PrOb(ZC * Zpi). (17)

The error rate in the X-basis is described by ex, and ec P, gives
the bipartite error rates between party C and each party P;, re-

0 (1)], it holds (X®N) = Tr (p"”tX®N) =

spectively. With X = [1

Bruf} et al.
(A§ = A7). Explicitly, we find for the X-error:
ex:;_hwmﬁﬂga-g)
:%'ﬁﬂ(‘%'”' (18)
For the bipartite error rate, the probability that Z, # Zp_holds
p  dep

is given for all matrix entries containing either p Ce or

L1PP,(2.2)
dep dep
Pe,2.2)Pp,.(11)
fidelities of party C and that specific P;. Explicitly, all other terms
with fidelities F, p, with Pi’ * Pi cancel out, leading to a constant

The bipartite error rate ecp, only depends on the

prefactor (1/2)N~2. Explicitly, we have
ecpi = PrOb(ZC * Zpi)

N-2
1
=2 Xnorm * (5) .

(3= 655 3)

2
=3 (FC + Fp —4F Fp. + 2) . (19)

Due to these errors, the ratio of secret bits that can be generated
in the BB84 protocol is diminished. This figure of merit is described
by the secret fraction reo:

Foo (Ex,écpi) = max {O,l—h(éx)—mlaxh(écpi)}, (20)

where éx and ec p, are the QBERs averaged over one matching and
his the binary Shannon entropy h(p) = —p log,(p)—(1-p) log,(1-p).
The secret key rate gives the fraction of secret bits from all shared
bits (given by the router rate R) from which a secret key can be
generated:
K =re (€x,24B;) R. (21)
The router rate gives the number of GHZ measurements [ that are
established on average per round ¢ and per memory per party:
18
R=— ) (1), (22)
"
where m is the number of memories per party and the sum is taken
over all rounds t up to a current round tc. Note that the number
of GHZ measurements performed in each round is given by the

cardinality of the underlying router matching considered here, i.e.,
1=|M|.
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Multipartite multiplexing strategies for quantum routers
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This work explores the important role of quantum routers in communication networks and investigates the
increase in efficiency using memories and multiplexing strategies. Motivated by the bipartite setup introduced
by Abruzzo et al. [Phys. Rev. A 89, 012303 (2014)] for finite-range multiplexing in quantum repeaters, we extend
the study to an N-partite network with a router as a central station. We present a general protocol for N parties
after defining the underlying matching problem and we calculate the router rate for different N. We analyze the
improvement due to multiplexing and analyze the secret key rate with explicit results for the tripartite network.
Investigating strategic qubit selection for the Greenberger-Horne-Zeilinger measurements, we show that using
cutoffs to remove qubits after a certain number of rounds and consistently combining qubits with the lowest
number of storage rounds leads to an optimal secret key rate.

DOI: 10.1103/PhysRevA.110.032617

I. INTRODUCTION

Quantum communication is a major field of research in
quantum information theory. An essential area is the gener-
ation of secret keys, which can be used in cryptography. In
quantum key distribution (QKD), such keys are generated
between two parties [1,2]. The generalization to N parties
is called conference key agreement (CKA) [3,4]. Usually,
photons are used to distribute a key which limits the distance
to about 150 km [5] as photon losses scale exponentially
with distance. Quantum repeaters are needed to overcome
this problem [6,7]. In an intermediate repeater station, the
entangled state between the remote parties is established by
performing a Bell state measurement (BSM). So far, quantum
repeaters connecting two parties have been investigated, either
without memories [8] or with memories [9]. In the latter
case, additional multiplexing can be used to perform paral-
lel independent Bell state measurements, thus increasing the
generation rate of entangled states between the parties [10,11]
per round. These states can, e.g., be used for quantum key
distribution such as the BB84 protocol [1] or (measurement)
device-independent QKD protocols [2,12].

In this work we introduce a generalization to a quantum
router that connects N parties in a star graph, where the
quantum router is the central node. This central station is used
to distribute multipartite entanglement between the parties in
larger networks [13]. Similar network structures have been
analyzed in quantum switches with or without buffer, where
the goal is to connect N < k of the k users via an entangling
measurement. This setup has been investigated numerically
[14] and also analytically using Markov chains [15]. Here we
deal with the distribution of entangled Greenberger-Horne-
Zeilinger (GHZ) states between N parties by performing GHZ
measurements within the router. We additionally include
quantum memories for multiplexing in the quantum router by
generalizing the protocol from [11]. We define the underlying
N-dimensional matching problem, discuss suitable algorithms
for different network sizes, and analyze the router rate. In

2469-9926/2024/110(3)/032617(11)
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a second step, we analyze such networks in the context
of conference key agreement. Our setup can be seen as a
generalization of the measurement-device-independent QKD
protocol with quantum memories from [9] to more than two
parties. Compared to previous work about CKA in star graphs
[16], we additionally analyze the effect of quantum memories
and the use of multiplexing. We calculate the quantum bit
error rates for the BB84 protocol with N parties and use this
to determine the asymptotic secret fraction and the secret key
rate. The focus is on examining different matching strategies
to select the qubits for the GHZ measurements to maximize
the key rate.

The paper is structured as follows. In Sec. II we present
the N-partite network with the quantum router as the central
element and explain the entanglement distribution among all
parties. In Sec. III we introduce multipartite multiplexing
and define the related matching problem from graph theory.
We further focus on the router rate, i.e., the rate with which
entangled states can be created in each round of the protocol.
Router rates for different setups are calculated. Finally, we
consider conference key agreement and determine secret key
rates for tripartite networks in Sec. IV. We further analyze
different strategies for minimizing the influence of memory
decoherence for the tripartite network. We conclude in Sec. V
with a summary and outlook.

II. QUANTUM ROUTER WITH MEMORIES
IN N-PARTITE STAR GRAPHS

We first generalize the concept of a quantum repeater to a
quantum router in a network of N communicating parties that
are located at equal distances around the router. The scenario
with unequal distances of the parties could be analyzed in
an analogous way. The general setup of such a star-shaped
network is shown in Fig. 1. The entanglement distribution is
performed in the following steps.

©2024 American Physical Society
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FIG. 1. General setup of a quantum router with quantum mem-
ories (QM) that is connected to N parties. All parties are placed at
equal distances around the router. The photon sources of the parties
each produce a Bell state, of which one qubit is held locally while
the second qubit is sent to the central station. A GHZ measurement
between all parties is performed.

(i) Each party prepares a Bell state |¢pT) = %(|OO) + |11))
and sends one qubit via the quantum channel to the quan-
tum router. The second qubit is held locally by each party.
Qubits that successfully arrive at the router are stored in a
memory.

(i1) In each round, in which some memories of all parties
are filled, a GHZ measurement is performed (Fig. 2), where
one party (here party A) has a special role, providing the
control qubit for the controlled-NOT gates and performing
the Hadamard gate. The measurement outcome is announced
to all parties. Memories, whose stored qubits are included
in a GHZ measurement, are reset for the next round. Filled
memories, which are not included in a GHZ measurement,
remain filled for the next round.

(iii)) Depending on the measurement outcome, the par-
ties perform a phase flip (party A) or bit flip (parties

& fd
PBN o [~

FIG. 2. Quantum circuit for performing the entangling GHZ
measurement. Gates are only applied to the qubits stored in the
memories.

B;), if necessary, in order to obtain the desired GHZ state
IGHZ)y = J5(10)*N + [1)=V).

We call these three steps together one round. In the fol-
lowing, the label of the round is denoted by s. Any number
of rounds can be performed, each containing one attempt of
entanglement generation. By including m > 1 memories per
party, the probability that each party has at least one filled
quantum memory in a round can be increased. This means that
the number of distributed states in a single round increases to
a maximum of m. This so-called multiplexing is examined in
detail in Sec. III.

As a figure of merit, we define the router rate as the num-
ber of successful GHZ measurements per memory per round
averaged over the whole running time up to a current round
¢, namely,

1< (1
Riso = - 322 ()

m
¢ =1

Here (I)(s) is the average number of GHZ measurements in
round s. During the storage process, the qubits are subject to
noise, which is analyzed in the following.

Noise model for the memories

We model noise affecting the stored qubits by depolariza-
tion. Starting the storage in round sy with a given quantum
state pp, the depolarized state in round s has the form
1— —

p(s — so) 1 @)
2
The decoherence parameter 7 of the memory is related to the
probability of white noise [see Eq. (2)] by

pd)=e", 3

with § = s — 59 the number of storage rounds of a qubit. Note
that the decoherence parameter t and the number of storage
rounds § are each given by an integer.

The bipartite states after decohering in the memories are
given by

p(s — o) = p(s — so)po +

Fooo_o
5 (e
YT+ YD, “)

with F; = % + % p(8) defining the fidelity of the states for the
parties i € {A, By, B,, ...}. The total input state pj%plmBN_l is
given by the tensor product of the noisy states provided by
each party. Performing the GHZ measurement on those qubits
which are stored in the memories, the parties end up sharing
a GHZ diagonal state pj; ,  of the remaining qubits held
locally. It is related to the input fidelities F; of the initial de-
polarized states by its GHZ diagonal elements. The fidelity of
the output state is given by Fpup = (GHZW%]DI»..BN,, |GHZ)y.
An explicit calculation for the tripartite case is given in
Appendix C.

Pl = FloT) ¢TI +

III. N-PARTITE MULTIPLEXING

The generalized setup of a quantum router with multiplex-
ing is shown in Fig. 3. All parties have a fixed number m

032617-2
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N-1

900
L L O

FIG. 3. Generalized setup of a quantum router with multiplexing
for an N-partite star graph. Shown is an exemplary filling of the
memories. Empty memories are white, while filled memories are
shown in blue. The connection lengths w (difference of labels of
filled memories) for this example are also indicated.

of photon sources and correspondingly m quantum memories
in the router. The memories within the quantum router are
either empty (white in Fig. 3) or filled with a qubit (blue in
Fig. 3). The number of filled memories depends on the loss
rate 1 of the channel and the probability of successful storage.
The parameter 7 relates to the distance d between each party
and the central router via d = —10/a log,o n, with the fiber
attenuation coefficient «. In the following, we also call 1 the
transmittivity of the quantum channel. The connection length
w 1s defined as the distance between the memories, i.e., the
difference of the labels (see the example in Fig. 3). Physically,
this parameter is relevant in an experimental setup where
it is not possible to connect quantum memories with larger
physical distances. For each memory configuration in every
round, the protocol aims to perform the maximal number of
GHZ measurements between all parties.

A. Time structure of a multiplexing protocol round

The different configurations of the memories the quan-
tum router goes through in one round of the entanglement
distribution protocol are shown in Fig. 4. Each memory con-
figuration is given by a vector C (for details of its notation see
Sec. III C), where each entry represents one memory within
the router. Following the steps for entanglement distribution
given in Sec. II, one finds two transitions of the memory
configurations: Starting a round with a memory configuration
C, it changes to the intermediate configuration C’ after sending
and storing one part of the Bell pairs prepared by the parties.
The qubit arrives with probability 1 and is then heralded and
stored by the quantum router. Based on the configuration C’,
a maximal number of GHZ measurements / is performed. In
each round, the router reports whether the measurement was

Step 1 Step 2 Step 3

Storage map o Measurement map p

B

[elele][elele] [ lele)

- [B50[000 550
050060000

e’ e

FIG. 4. Temporal structure of a round in the multiplexing pro-
tocol. In each round, qubits are first sent to the router and if they
arrive successfully are stored in the respective memories (storage
map o leading from configuration C to C’). The GHZ measurements
are performed and memories that are involved in a measurement are
emptied (measurement map ). The new memory configuration C”
forms the starting configuration C for the following round.

successful. If so, the measurement results and the information
on which memories were involved in the measurement is
communicated. The final memory configuration after resetting
the used memories is given by C”. This memory configuration
is kept for the next round.

In the following, the focus will be on the choice of the
memories included in a GHZ measurement. Finding a com-
bination that maximizes the number of GHZ measurements /
per round corresponds to the problem of matching from graph
theory, which is introduced in the following section.

B. Matching problem

The memories of the quantum router form an N-partite
graph G = (V, E) consisting of nodes V (here the filled mem-
ories) and edges E (the connectability between the memories).
The set of nodes V is divided into N pairwise disjoint subsets
Vi, Va, ..., Vy which result from the allocation of the mem-
ories to the different parties. An edge always connects two
nodes from different subsets, i.e., E = {{v;,v;} | v; € V; A
vj € V; fori # j}. Since the goal of the router is to perform
a GHZ measurement between party A and each B;, we define
hyperedges (sets of nodes) which need to fulfill the following
properties.

(i) Each hyperedge always consists of a set of N nodes from
different subsets, i.e., T = {{vy,...,ony} |v1 €Vi, ..., v, €
Vn} € V) x --- x Vy, containing exactly one memory per
party.

(ii) The vertices are connected in such a way that each B;
has exactly one edge to party A but no edges to other B; or
the own subset since this is fixed by the GHZ measurement
circuit (see Fig. 2). In general, nodes can appear in several
hyperedges. Party A can be fixed for the whole protocol or it
can be chosen individually in each round.
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FIG. 5. Example of a tripartite graph in the quantum router for
different choices of the maximal connection length w. (a) Graph
for full-range multiplexing such that any node of one subset can be
connected to any node of another subset. In (b) and (c) the maximal
connection length is reduced to 2 and 1, respectively. (d) Finally, only
parallel connections are allowed (w =0) so that some filled
memories are no longer considered in the matching. Solid lines
represent connections with w =m — 1 =3 (maximal), dashed
lines represent w = 2, dash-dotted lines represent w = 1, and dotted
lines show connections belonging to w = 0.

(iii) In the case of restricting the connection length w,
edges are only allowed to be drawn between two nodes ful-
filling that constraint.

We point out that finding a set of such hyperedges in
a given graph corresponds to the modified matching prob-
lem we consider here. Its formal definition is given below.
In every protocol round the graph in the quantum router
is constructed based on the given memory configuration.
Memories only contribute to the graph if they are filled.
Hyperedges are drawn between the memories such that they
fulfill the properties defined above. The graph construction
for a fixed memory configuration but different connection
lengths w is exemplarily shown in Fig. 5. For example, we
find the following hyperedges for the graph in Fig. 5(c):
{{2, 3, 3}, {2, 3,4}, {4, 3, 3}, {4, 3, 4}}. Here we fix party A
for the whole protocol, since the increased rate due to a
dynamic choice of a different Alice in each round is small
compared to increasing the connection length. Additionally,
it is not clear whether this can be realized easily in an
experimental setup.

Since the goal of the multiplexing scheme is to perform a
maximal number of GHZ measurements per round, we want
to find a set of pairwise disjoint hyperedges where the set has
maximal cardinality. The condition of being pairwise disjoint
follows from the fact that a stored qubit cannot be used in two
different GHZ measurements. A set of hyperedges in which
no two hyperedges share a common node is called a match-
ing. A set of maximum cardinality concerning the number
of contained hyperedges is called maximum matching. Note
that more than one maximum matching may exist. In the
previous example of Fig. 5(c), each allowed hyperedge is a
valid matching with a maximum cardinality of 1. A larger set
of hyperedges cannot be formed, since all hyperedges share

FIG. 6. Examples of maximum matching from the corresponding
graphs in Fig. 5 for different connection lengths. For (a) w < 3 and
(b) w < 2, there is a maximum matching with two hyperedges each,
and for (c) w < 1, there is a maximum matching with one hyperedge.
For (d) w = 0, no matching is found. All hyperedges are shown in
green. Note that this choice of hyperedges is not unique.

Alice’s third node as a common node. Figure 6 shows an
explicit example of a valid maximum matching given each
graph from Fig. 5 as an input instance.

The underlying problem from graph theory is formally
defined as follows:

Maximum N-dimensional matching

Given: An N-partite graph instance and all valid
hyperedges T C V) x V, x --- x Vy
Question: What is a valid maximum matching M € T'?

However, note that in our scenario, not all possible N-
partite graph instances can occur due to the given physical
constraints. The maximum number of hyperedges (defining
the number of GHZ measurements / that can be performed in
each round) is limited by the given graph instance in every
round, namely, by the number of existing edges between the
nodes [given by the degree deg(v;) of each node v;], and by
the number of filled memories n; per party k:

< mi ; : : < mi .
I < ker}lAl’%i}{l{v,Ideg(v,) >0Av; eVidl} < kg;%i}{nk} &)

Recall that the degree of a node may depend on the maximal
connection length w. For full-range multiplexing it holds that
[ = mingea g (e}

Finding a matching in this case as well as for w =0
is trivial. The original maximum N-dimensional matching
problem is contained in the class AP [17,18]. Neverthe-
less, it is possible to construct algorithms that solve the
previously introduced modified maximum N-dimensional
matching problem for small graphs if the total number of
memories does not become too large. In that case, it is still
possible to go through all hyperedges and find a combination
of pairwise disjoint hyperedges that leads to maximum cardi-
nality. For N = 3 parties, the problem can also be solved via
network flow. For larger N, all combinations of hyperedges
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are to be considered and the optimal one is chosen. Details
about the implementation can be found in Appendix B.

In addition to finding a maximum matching, weights can
be added to the edges and optimized in a second step. In
our scenario, the weights will be a function of the number of
rounds that the relevant qubits have spent in the memories.
Note that the main goal does not change and a maximum
matching is to be found first. If there is more than one such
maximum matching, the one with optimized weights is cho-
sen. This leads to the maximum N-dimensional matching with
weights. Here it is always necessary to go through all solutions
and choose the optimal matching. How the weights are set is
defined in Sec. IV A. The implementation details are given in
Appendix B.

C. Router rate

In this section we analyze the router rate

IR EN(I0)
R(se) = — > : (6)

¢ =1 m

as defined in Sec. I1. Following [11], we find analytical expres-
sions for the generalized rate in a quantum router connecting
more than two parties. We start by defining the configura-
tion of the memories belonging to each party via the vectors
a, 51, 52, ..., each of length m. Every entry in a vector repre-
sents one memory from the set of memories per party and
can be either 0 (empty memory) or 1 (filled memory). In
the example given in Fig. 5, the vectors describing the mem-
ory configurations are d@ = (1,0, 1, 0), 1;1 =(1,1,0,1), and
Bz = (0,0, 1, 1). From this, the total memory configuration
C = (a, l;l, e, l;N_l) follows, a vector that is given by the
concatenation of the memory configuration of each party.
Again, each entry ¢; € {0, 1} in C represents one memory.
The value is set to 0 for empty memories and it is set to
1 when the memory is filled. As the maximal connection
length w limits the number of GHZ measurements, the set
of configurations of m memories per party leading to / GHZ
measurements is further denoted by H”' (/). Regarding Fig. 5
as an example, then (@, by, b)) € Hg‘(Z), (@,by,by) € 7-[3(2),
(@, by, by) € Hi(1), and (@, by, by) € HL(0), resulting in no
matching. However, this configuration does not allow, e.g.,
l=2andw = 1,ie., @ b1, by) ¢ H(Q2),

With this notation, the transition between two memory con-
figurations can be denoted by the storage map o; : H})(0) —
‘H2 (1) and the measurement map w; : H2 (1) — HI(0) (see
also Fig. 4). The former contains the transition from con-
figuration C to C’ given by the probability n of successfully
sending each of the qubits through the quantum channel:

Prob[o;(C) = C'] = Prob(C’|C)

N-m
= l_[ Prob(c}|c;)

i=1

m N—1
= [ [ Prob(gjla;) [ | Prob(®1b;.). (1)

i=1 j=1

The transition probability between an initial configuration
C and the configuration C’ is calculated memorywise for
each configuration entry ¢; and ¢; with ¢;, ¢} € {0, 1} and

i€fl,2,...,Nm} (ie., a; for Alice’s memories and b;; with
i € {1,...,m} for the memories of the j Bobs) by
Prob(cj|c;) =(1 — m(1 = )1 = ¢;) + nej(1 — ¢;) + cjci.
(3

The map p; describes transitions given by the GHZ mea-
surements, i.e., it maps the memory configurations C’' before
the measurements to after the measurements (C”). The choice
of the memories included in such a measurement is made
based on the underlying matching problem explained in the
preceding section. Combining both maps, the probability for
an initial memory configuration C to end in the final configu-
ration C” is given by

Probluu; 0 01(C) =C"l =Y 8uc.c'Probloy(C) = C'1,
CreHm(l)

C))

where & denotes the Kronecker delta, which is 1 if and only if
w(C") = C” and 0 otherwise.

Remark. The main difference in the calculation of the
router rate for N > 2 parties (compared to N = 2) lies in
the determination of these two transition maps. The represen-
tation of a configuration C now includes the concatenation
of N vectors, instead of only two vectors. The verification
of whether a configuration is in H (/) must be adjusted
accordingly.

Using these generalized transition matrices and given that
all memories are empty at the beginning of the protocol, the
router rate can be calculated analytically, analogously to [11].
That is done by computing each possible configuration C; at
the end of one round s (which equals the configuration Cy
at the beginning of the next round) iteratively by knowing
the transition probabilities given by Eq. (9) and the final
configuration from the end of the previous round denoted by
Cl,=Cs

Prob(C{)(s)= Y Y Prob[u; o0(C;)

C,eMm(0) 1=0
= C!]Prob(Cy)(s) = Prob(Cy1). (10)

Given this probability for any configuration at the beginning
of a round [Prob(C)(s)], we calculate the probability of having
| GHZ measurements:

Prob(A = [)(s)
= Y Prob(C)(s)

C'eHm(l)

w

= Y > Probloy(C) = C'IProb(C)(s).  (11)

CreMn () CeM0)

Here A denotes a random variable that can take values
0, 1, ..., mrepresenting the number of performed GHZ mea-
surements. In the case of considering not only deterministic
GHZ measurements but also probabilistic measurements, the
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probability that | GHZ measurements are performed success-
fully is given by

Prob(T =I)(s) = Z (;)Prob(A =i)(s)Ph, (1 — Pouz) ™,
i=l
(12)

with Pgpz the success probability of a GHZ measurement.
In addition, ¥ is a random variable taking values 0, 1, ..., m
defining the number of successful GHZ measurements. Then
the average number of successful measurements is given by

(1)(s) = > _ I Prob(E = I)(s). (13)

=0

Finally, by inserting this in Eq. (6), the router rate can be
calculated.

Note that the two matrices describing the transitions of
the memory configurations are of dimension 2™ x 2™ with
M = Nm the total number of memories. This limits the
network size, for which the router rate can be calculated an-
alytically. For my > 12, the runtime becomes infeasible and
makes analytical calculations impracticable. All results con-
sidering larger networks are based on numerical simulations
performing the presented protocol and extracting the average
number of GHZ measurements per round from 50 000 repeti-
tions. The simulation is further described in Appendix A.

The router rate for different network sizes is calculated for
the following parameters. The probability of the successful
transmission of a qubit is 7 = 0.1, which corresponds to a
distance of d = 50 km between the parties and the central
node. The fiber coefficient is chosen as o = 0.2. This value
describes a commercial optical fiber used with light at a
wavelength of 1550 nm. The GHZ measurement, as well as
the storage process of the qubits in the memories, is assumed
to be perfect. In addition, it is assumed that all memories are
initially empty and qubits remain in the memories until they
are selected for a GHZ measurement by matching. The impact
of premature removal of qubits from storage will be discussed
later. Figure 7 shows the router rates for a four-partite network
with various numbers of memories per party. For each choice
of m, maximal connection lengths of w = 0, 1, and m — 1 are
chosen.

In the case of w = 1, only a small increase in the router rate
with increasing m can be seen in Fig. 7. The biggest difference
in the router rate for increasing m is achieved with full-range
multiplexing. The plot shows that for small m a large advan-
tage can already be gained by using finite-range multiplexing,
e.g., w = 1. As the number of memories per party increases,
the increase of the router rate with the connection length w
becomes larger. In both figures, the difference between w = 0
and w = 1 for a small number of protocol rounds can be ex-
plained by combinatorial arguments. The initial router rate for
a connection length w = 0 comes from the probability R(s. =
1) = 1" that all memories with the same label are filled after
one round [here we find R(s, = 1) = 10~ for n = 0.1 and
N = 4]. For a connection length w > 0, all possible combi-
nations of hyperedges that are allowed have to be counted.
The probability of ending up in one of these memory config-
urations normalized over m gives the initial router rate for the
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FIG. 7. Comparison of the router rate for different four-partite
networks with varying numbers of memories m per party and differ-
ent maximal connection lengths w. The transmittivity is chosen to be
n=0.1.

multiplexing setup [for w = 1, we find 37 memory configura-
tions with one filled memory per party, leading to R(s. = 1)
= 1.2 x 1073]. Since all memories are initially empty, the
difference between the curves for different connection lengths
is larger for a small number of rounds. The asymptotic
convergence behavior of the curve can be explained by the
description of the setup via Markov chains [19,20].

The relationship between the number of communicating
parties and the router rate is shown in Fig. 8 for N = 3 and 5,
with a fixed memory number of m = 3. Again, a significant
improvement in the router rate can already be achieved by
considering finite-range multiplexing with w = 1. The simu-
lations also show that for larger N the router rate decreases
significantly, but the general behavior of each graph does
not change. The fast decrease of the router rate for larger
N indicates the importance of the usage of memories in a
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FIG. 8. Comparison of the router rate for different network sizes
where each party has m = 3 memories. The other parameters are
w=0,1,2and n =0.1.

032617-6



MULTIPARTITE MULTIPLEXING STRATEGIES FOR ...

PHYSICAL REVIEW A 110, 032617 (2024)

quantum router. The effect of decoherence that comes along
with the memories is analyzed in the following.

IV. SECRET KEY RATE

When the entangled states are distributed between all par-
ties, these states can be used for further applications such as
conference key agreement. This task aims to generate and dis-
tribute a common secret key between more than two parties.
Given a shared quantum state between N parties, a secure key
can be established through local operations and public com-
munication. We use the N-BB84 protocol, a generalization
from the bipartite BB84 protocol used for quantum key dis-
tribution (for more details, see [3,4]). Given that a GHZ state
is shared between all parties, every party measures their local
part of the GHZ state either in the Z basis (key generation
round) or in the X basis (test round). Additionally, the usual
postprocessing steps for CKA are performed as given in [3].
Using some of the measurement outcomes for the classical
parameter estimation, the quantum bit error rates (QBERSs)
Ox and Qup, can be estimated. In particular, Qsp, is the

|

probability that A and B; have different outcomes in the
Z-basis measurement and Qy is the error rate for the mea-
surements in the X basis with respect to |GHZ). Explicitly,
these QBERSs are defined by

1— (x®N)
Ox =——F— (14)
Oup, = Prob(Z, # Zp,)
_ L) (iAZB"). (15)

The QBERs in general depend on the number of storage
rounds of all parties (for the simulations, see Appendix A for
details).

The asymptotic secret fraction r,, which is a central fig-
ure of merit, is also calculated. It defines the fraction of
secret bits that can be extracted from the measured qubits. For
the generalized N-BB84 protocol [3,4] the asymptotic secret
fraction is

reo (Q¥", fgi)zmax[o,l—h(Qggt)— max h( };’lg[)], (16)

1<i<N—1

with the binary Shannon entropy h(p) = —plog,(p) — (1 — p)log,(1 — p). The total QBER Q' € {Q¥", Q4% } is given by
the total number of measurements per round multiplied by the average QBER in each round divided by the total number of
measurements summed over the whole number of rounds up to s,:

0" (se) =

Here Prob(§;), with i € {a, by, ..., by_1}, is the fraction of
qubits of party i that are used in a GHZ measurement that
has experienced decoherence for a certain number of rounds
8. The term Q(8,, .. ., 8p,_,) is the theoretical QBER for the
given storage times, which depend on all the fidelities of the
stored qubits a, by, ..., by_. The probability of white noise
p(8;) = e~%/T depends on all the storage rounds of all parties
8ays 8bys -+ s Oby_y-

Finally, the secret key rate K(s.) can be calculated as the
product of the asymptotic secret fraction from Eq. (16) and
the router rate from Eq. (6):

K(se) = roo (O (50), Qi (s0))R(se)- (18)

In Appendix C an analytic calculation of the shared state
after the GHZ measurement and the resulting quantum bit
error rates is presented for the tripartite network. Using these
results, we analyze different matching strategies with the aim
of finding the one that optimizes the secret key rate. This
comparison is presented in an exemplary way in the tripartite
router setup in the following sections.

A. Strategies for storage and measurement

In [11], various strategies for how to choose memories for
the BSMs were analyzed, with the aim of maximizing the
secret key rate. Here we generalize the strategies to N parties.
To integrate strategies into the matching process defined in

S ) 5, X5, OBar - 8hy , )Prob(8,) - - Prob (8, ,)(s)
Do (D) '

a7

(

Sec. III B, weights are associated with the edges, taking into
account the number of storage rounds & of the qubits that are
included in a GHZ measurement. Two different ways are cho-
sen to calculate the weights. (i) The weight W) of a hyperedge
is defined by the absolute values of the difference in the num-
ber of storage rounds per two qubits, summed over all relevant
bipartite edges within the hyperedge (see construction of the
graph as in, e.g., Fig. 5). For the case N = 3 this reads

Wi = 18, — 8al + |8 — 81, (19)

(i) The weight W, is defined by the sum of the number
of storage rounds of each qubit contained in the hyperedge.
Explicitly, for the case N = 3,

Wh = 8, + 80 + 8, 20)

Based on this, we compare the following strategies for the
choice of the maximum matching among several possible
ones.

Strategy SO. The first maximum matching found is chosen
independently of the number of storage rounds.

Strategy SI. Taking the number of storage rounds of the
qubits in the memories into account we (a) minimize over the
sum of weights W [defined in Eq. (19)] of all hyperedges and
(b) maximize over the sum of weights W, [defined in Eq. (19)]
of all hyperedges.

032617-7



KUNZELMANN, KAMPERMANN, AND BRUSS

PHYSICAL REVIEW A 110, 032617 (2024)

4 memories, w =1

0.040

0.0384

0.036

Secret key rate
o o
o o
w w
N Iy

0.0301

0.0284

20 40 60 80 100 120 140
Round s
FIG. 9. Comparison of the secret key rate for the different strate-
gies as described in Sec. IV A. In the tripartite network, each party
has four memories and the maximal connection length is set to w =
1. The other parameters are n = 0.1, T = 100, and 50 000 samples.

Strategy S2. Taking the number of storage rounds of the
qubits in the memories into account, we minimize the sum of
weights W, [defined in Eq. (20)] of all hyperedges.

Strategy S1(a) produces states with the highest correlations
by preferably choosing qubits with a minimal difference in the
number of storage rounds, while qubits with large differences
in the number of storage rounds are left over. As a conse-
quence, older qubits are chosen less often than newer qubits.
In contrast, older qubits are chosen earlier by combining them
with the newest qubits in strategy S1(b). In strategy S2 we
focus on a maximal fidelity by connecting qubits with the
lowest number of storage rounds. Therefore, new qubits are
measured as soon as possible. For example, with a memory
allocation of §, =0 or 1, §,, = 3, and §;, = 3, strategy S1(a)
would select the qubits with 6, =1, §,, =3, and §,, = 3,
while strategy S2 would select the qubits with §, = 0, §,, = 3,
and §;, = 3 measuring newer qubits first.

Note that a maximization of the number of storage rounds
(leading to a maximization of strategy S2) is not considered,
as this increases the QBER and therefore leads to a decreasing
secret key rate.

Figure 9 shows the secret key rate computed in a tri-
partite network with four memories per party. The maximal
connection length is set to finite-range multiplexing (w = 1).
The calculations are based on simulations with 50000 sam-
ples to get the average number of GHZ measurements per
round ({/)) and the probability for the number of storage
rounds [Prob(§)]. Details of the simulation are given in Ap-
pendix A. The transmittivity is set to n = 0.1 and v = 100
is the decoherence parameter defined in Eq. (3). It turns out
that considering the highest fidelities (i.e., the sum over the
number of storage rounds has to be minimized; see strategy
S2) leads to the highest secret key rate. Minimizing the dif-
ference in the number of rounds [see strategy S1(a)] leads to
better results than choosing the first matching found (strategy
S0) when performing only a few number of rounds. In the
long-term, that changes and strategy SO performs slightly
better than strategy S1(a). Nevertheless, strategy S2 is the
only strategy of practical use independent of the number of
protocol rounds being performed.

Note that a maximal secret key rate is reached after about
16 rounds, as seen in Fig. 9. Exceeding this number of rounds,
the secret key rate decreases due to the decoherence that the
qubits experience in the memories. To reduce this effect, addi-
tional cutoffs will be introduced in a next step. Note that strat-
egy S2 already leads to the idea of cutoffs, since older qubits
are chosen with lower preference compared to new qubits.

B. Strategy: Emptying the memories after cutoffs

We now modify the protocol presented in Sec. IIT A by
introducing cutoffs s.uof at the end of each round: Older
qubits are removed from the memories such that they can be
refilled in upcoming rounds. The previously defined strategy
S2 of matching the newest qubits first is kept here and cutoffs
are additionally considered.

The secret key rate plotted in Fig. 9 shows the competing
behavior of the router rate and the asymptotic secret fraction.
Due to the exponential decay of the fidelities that the qubits
experience while being stored, a smaller cutoff leads to higher
fidelity, which increases the asymptotic secret fraction. In
contrast, the router rate decreases with smaller cutoffs, since a
reduction in the cutoff comes along with a decreasing proba-
bility for memories to be filled. This can be seen in Figs. 10(a)
and 10(b), where the router rate and the asymptotic secret
fraction are plotted for different cutoffs. An optimal cutoff can
be found where the two values multiply in a way that the secret
key rate does not decrease with the number of rounds.

For our setup, such an optimal cutoff is achieved at Scyeoft =
10 rounds (seen by the simulations which were also done for
Scutoff = 9 and 11), which leads to the maximum secret key
rate, as seen in Fig. 10(c). This cutoff can either be deduced
from Fig. 9, where the secret key rate reaches roughly its max-
imum at about 16 rounds, or it can be argued mathematically
via Eq. (16) for the secret fraction. Assuming that Ox = Qug,,
none of the QBERs should be larger than 0.11 since other-
wise 7o = 0. To achieve Ox > 0.11, the mean fidelity that
the qubits need to have when included in a GHZ measure-
ment can be calculated. Here we assume that F; = 1 and
Fp, = Fp, since one qubit is always new in the case of max-
imizing /. With the given parameters, Qx > 0.11 is reached
when the qubits are maximally stored for scyoir = 12 rounds.
This is only an approximation since several assumptions are
made here.

V. CONCLUSION

Quantum routers form a main ingredient when building
quantum networks as they increase the communication dis-
tance between end users. By including quantum memories and
multiplexing, the router rate (i.e., entanglement generation)
and the secret key rate can be improved significantly. In this
work, we presented a generalization of the bipartite repeater to
the quantum router in an N-partite star graph with the quantum
router being the central node. In contrast to previous work,
we integrated quantum memories into the quantum router
and considered multiplexing. We described the modified
underlying graph-theoretic matching problem and imple-
mented different algorithms for the maximum N-dimensional
matching (with weights) to reduce the runtime as much as
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FIG. 10. Effect of the number of cutoff rounds on rates in a
tripartite network with m = 4 memories per party and finite-range
multiplexing w = 1. (a) Router rate for different cutoffs. (b) Secret
fraction and (c) secret key rate for the same setup. The other param-
eters are n = 0.1, T = 100, and 50 000 samples.

possible. For N = 3, we designed an efficient algorithm in
terms of using network flow.

Furthermore, we analyzed the router rate in star networks
up to a network size of five parties with four memories each.
The resulting plots show that even for finite-range multi-
plexing, large improvements in the router rate are achieved.
In a second step, we considered conference key agreement
and studied noise effects on the quantum memories. Due to
decoherence, the asymptotic secret fraction, and therefore the
secret key rate, decreases when qubits are stored longer. To
minimize this effect, we investigated different storage and
measurement strategies for the GHZ measurement. It turned
out that it is best to connect the qubits with the shortest
number of storage rounds (highest fidelities), i.e., to minimize

the sum of the number of storage rounds in each matching.
This strategy outperforms all other investigated strategies.

We further modified the protocol by removing older qubits
from the memory after a certain number of rounds since
they cannot contribute to the secret key rate. Combining the
optimal matching strategy with the optimal number of cutoff
rounds leads to the overall highest secret key rate.

In future work the analysis of larger networks with more
than one central router will be of interest. Note that our an-
alytical expressions hold for arbitrary N and m. The limiting
factor in considering larger graphs is the underlying matching
problem and the simulation of the protocol, which scale unfa-
vorably with the network size. It should be investigated how
the network structure influences the router rate and the secret
key rate depending on multiplexing with different matching
strategies. It might also be conceivable to extend the protocols
and, for example, to take distillation into account. Regarding
implementations, the influence of finite key effects might be
integrated as well, following [21].
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APPENDIX A: SIMULATION OF THE MULTIPLEXING
PROTOCOL

To calculate the necessary parameters for the router rate
and the secret key rate, we simulate the multipartite multi-
plexing protocol. To do so, the memories of each party are
stored as an array that can take the value of either O (for empty
memories) or an integer i € N, depending on the number of
rounds the qubit has already been stored. All simulations are
done in PYTHON. The steps of the simulation are as follows.

(i) Starting from the empty memory configuration, a deci-
sion is made for each memory in turn as to whether a qubit
arrives and is stored or not. This happens randomly with a
probability of n (given by the probability for a qubit to arrive
at the router). If a qubit is stored, the corresponding array entry
is set from O to 1. If the qubit is still in memory at the end of
the round, the entry in the following round is increased by 1.
In further rounds, a qubit is only sent if the memory is still
empty.

(i) Based on the memory configuration, the maximum
matching is performed to decide which memories are involved
in which GHZ measurement. Depending on the strategy
chosen, as well as the number of parties and the connec-
tion length, the matching is implemented differently (see
Appendix B).

The memory configuration determines how many GHZ
measurements can be performed in each round [see Eq. (5)].
This results in the value for /. Furthermore, the probability
of the average number of storage rounds Prob(§;) can be
determined at this point considering each §; given by each
qubit of the ith party.

(iii) The memories whose qubits were used in a GHZ
measurement are set back to 0. Depending on whether a cutoff
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FIG. 11. Representation of the matching problem for the tripar-
tite graph as a network flow. A source and a sink are added to the
graph. All edges have a capacity of 1. To ensure that each party
only appears once in a chosen flow (matching), it has to be ensured
that each party only has one incoming or outgoing edge. Therefore,
Alice’s memory layer is copied and connected to the original layer
accordingly. This ensures a single outgoing edge for A and a single
incoming edge for A’ resulting in the guaranty that A cannot be
contained in two different flows (matchings).

is defined, all qubits whose number of storage rounds has
exceeded the cutoff are removed from the memories as well.

(iv) Using this new memory configuration, the next round
s 4 1 is started and the memory storage rounds are increased
by 1 (if not empty).

The protocol is performed a fixed number of rounds. Ad-
ditionally, the protocol is repeated several times, to get the
average values for / and Prob(§;)(s).

APPENDIX B: MATCHING ALGORITHM

The matching is realized in different ways depending on
the strategy, the number of parties, and the connection length.

For the tripartite network, the matching problem can be
reduced to the well-known network flow problem [22], as the
graph structure given by the circuit in Fig. 2 defines a flow
from party B; over party A to party B,. Assigning capacities
to the edges and adding a source and a sink to the graph, the
maximum flow from the source to the sink can be calculated.
This corresponds to a maximum three-dimensional matching.
As each node is allowed to appear in only one matching, the
capacity has to be set to 1. Additionally, the array of the party
in the middle (here party A) has to be doubled (layer A”). Edges
are only allowed to be drawn between a node and its own copy
(see Fig. 11). This has to be done to ensure that memories
are not chosen more than once, as the input flow has to equal
the output flow for each node. For party B and party B, this
is guaranteed, since these nodes are only connected to the
source or sink on one side, respectively. In PYTHON, network
flow can be realized using the maximum_flow function from
scipy.sparse.csgraph.

For networks with more than three parties, the matching
is realized as follows. At first, all memories that are filled
in one round are included in the set of nodes V where the
filled memories from one party form one subset V; of vertices.
In the next step, all valid edges and the resulting hyperedges
between the memories from the disjoint subsets are identified
depending on the connection length w. Then all possible com-
binations of hyperedges are considered sequentially. The first
subset of hyperedges with no common vertices and maximum
cardinality according to Eq. (5) that is found is chosen to be

the matching. For parallel connections, i.e., w = 0, there is
only one matching that can be found, as no node has more
than one incoming or outgoing edge, respectively. In the case
of full-range multiplexing, i.e., w = m — 1, a matching can be
found by connecting the first filled memory from each party.
Afterward, these nodes have to be erased from the graph so
that they cannot be chosen a second time. This is repeated
until one party has no more filled memories.

In the case of weighted matching, it is always necessary
to find all allowed hyperedges (e.g., by combinations from
the PYTHON package ITERTOOLS). From all combinations, the
combination with maximum cardinality and maximum or
minimum weight is chosen. This algorithm is also used for
the tripartite network when weights are considered.

APPENDIX C: EXPLICIT CALCULATIONS
FOR THE TRIPARTITE NETWORK

In the following, the calculations of the shared quantum
state and the resulting quantum bit error rates are made explic-
itly for the case of the tripartite network. Starting from three

Bell states |¢pT) = %(|OO> +|11)) held by A, B;, and B,

the input state for the GHZ measurement can be calculated.
We assume that the qubits stored in the memory undergo
depolarization such that |¢p*){¢T|; — ,oiclep =Flo*) (ot +
SEUGTN @I+ [T+ 19 ) (WD) for i € (A, Bi, Ba).
The input state is then given by the product state

dep _dep dep dep
Pa,BiB, = Pa, ®’031 ®'0132
dep dep dep
=P,a,0 P00 @000 (cnH
(@ b b0pP

The GHZ measurement is performed on the second qubit of
the three parties (a®, b'?, and b$”) according to the quantum
circuit given in Fig. 2. The measurements performed at the
end of the circuit are done in the Z basis. In the case of
measuring three times a zero, the remaining first qubits (a‘",
b(ll), and b(zl)), held by each party, are projected onto the
IGHZ) state (with a certain fidelity F < 1 because of the
depolarization). Depending on the measurement outcome, a
projection onto another GHZ state is also possible. In this
case, the desired |GHZ§ ) state can be achieved by the parties

changing their local qubit according to Z™ ® X " @ X
with the announced measurement outcomes m,@ of the second
qubit, where i € {a, by, b,}. The corrected final state resulting
from a GHZ measurement of the depolarized initial states is
then given by the GHZ diagonal state

2)
my,

,Z):T%IBZ = A¢IGHZ{)(GHZ{ | + A, |GHZ, )(GHZ, |

3
+ ) M(GHZ)(GHZ]| + |GHZ; ){GHZ; |),
i=1

(C2)

with the GHZ states |GHZ) = %(|i> +|N2—=1—14) and
i=0,1,...,27"! given in binary notation.

The GHZ diagonal elements kii are given by
Ay =5 (4 — Fy — Fp, — Fg, — 2FFp,
— 2Fy, Fy, — 2FyFp, + 32F\F3, Fp,),  (C3)

032617-10



MULTIPARTITE MULTIPLEXING STRATEGIES FOR ...

PHYSICAL REVIEW A 110, 032617 (2024)

Ay =5 (5— 5Fy — 5Fy, — 5Fp, + 14F;Fp,

+ 14Fp, Fg, + 14FFy, — 32F;Fp, Fp,), (C4)
M = §(Fp, +2F\Fp, — 2FyFp, — 2Fp, F, + 1),  (C5)

§(Fg, — 2F\Fp, — 2Fp Fg, + 2FzFp, + 1), (C6)

§(Fix — 2F\Fp, — 2F\Fp, + 2F3, F, + 1), (CT)

with initial fidelity F; = 1+ 2¢7%/" for each party i€
{A, By, ..., By_1}. Note that one of these fidelities has to be
1 in each round since we maximize the number of GHZ mea-
surements /. The fidelity of the state after correction according

J

Qw[(sc) =

Z;‘:] (D) (s) Zgam Zgb(f) Z;b(zz) Q((Sa(z;, (Sb(lz>, 5b<22))Pr0b(50(2> )PI‘Ob((Sb(IZ) )PrOb((Sb(za)(S)

to the measurement outcome is

Fi)dep :<GHZg|bdep

a(l)b(ll)b(zl)
For the QBER in the X basis, it holds that
_ 1 — (X®N) . 1—(%8’—)\5)

IGHZ) = A§. (C8)

= C9
Ox 5 7 (C9)

The bipartite QBERs are given by
Oap, = 2(A2 + A3), «€10)

Oap, = 2(A + A3).

With the QBERs from Egs. (C9) and (C10), the total error
(Qx" and Qyy ) over the protocol (all rounds up to a current
round s.) between all outcomes of A and B; can then be
calculated following Eq. (17):

YD)

(C11)

With this, we can finally compute the asymptotic secret fraction from Eq. (16) and further the secret key rate given in Eq. (18).
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Multipartite quantum repeaters play an important role in quantum communication networks en-
abling the transmission of quantum information over larger distances. To increase the rates for
multipartite entanglement distribution, multiplexing of quantum memories is included. Under-
standing the limitations of achievable rates in the stationary regime for different network sizes is
a fundamental step to comprehend scalability of quantum networks. This work investigates the
behavior of the multipartite quantum repeater rate (i.e., the number of GHZ states generated per
round and per memory) in the stationary regime in multipartite star graphs with a single central
multipartite quantum repeater including multiplexing using Markov chains. We derive a closed-
form expression for the stationary rate depending on the network size. We support our results with
numerical simulations. Further, we show that the rate saturates for large number of memories. On
an abstract level, the mathematical description is equivalent to quantum repeater chains between
two parties. Therefore, our results also apply to those setups.

I. INTRODUCTION

Quantum communication over large distances in
quantum networks relies on the availability of entangled
quantum pairs between end nodes. By increasing the
distance between two nodes, the success probability for
distributing entangled quantum states decreases [1]. To
overcome this problem, quantum repeaters have been
suggested [2-4]. By performing Bell state measurements
in a central quantum repeater, entanglement between
two distant parties can be generated. Analogously, in
the multipartite setup, a GHZ measurement can be
performed to entangle all n parties that are connected
with the multipartite quantum repeater [5]. To fur-
ther increase the rate of entanglement distribution in
quantum networks, multiplexing can be introduced
to the quantum repeater [6], where each party has m
parallel quantum channels with the repeater. Instead
of sending one qubit to the repeater, m qubits can
be sent in parallel. Consequently, up to m entangling
operations can be performed in parallel at the central
station, such that the entanglement distribution rate
is increased. This has been analyzed theoretically for
the bipartite [7] as well as the multipartite setup [8].
Since multiplexing is related to an increased cost of
resources, understanding the scaling of such multiplexed
multipartite quantum repeaters with respect to the num-
ber of parties and memories per party is of great interest.

A repeater chain of n segments with n — 1 repeater
stations between two parties was considered in Ref. [9].
By using Markov chains, the authors calculated the av-
erage waiting times and, based on this, the transmission
rates. In Ref. [10], also the average waiting time was an-
alyzed for evaluating entanglement distribution in quan-
tum networks. The entanglement generation rate was

* These two authors contributed equally

analyzed in Ref. [11]. In Ref. [12], the secret key rate for
repeater chains with more segments was computed. The
authors additionally considered more realistic setups, in-
cluding memory cutoffs and repeater chains running in
parallel. Bipartite quantum repeaters with multiplexing
were studied in Ref. [13-15].

In this paper, we investigate multipartite quantum re-
peaters that connect more than two parties based on the
setup shown in Fig. 1. Here, one multipartite quantum
repeater is placed between n parties, that are connected
to a central station. Each party has m memories available
at the multipartite quantum repeater. These memories
allow the parties to send m qubits in parallel. The pur-
pose of the multipartite quantum repeater is to generate
Greenberger-Horne-Zeilinger (GHZ) multipartite entan-
gled states. As a figure of merit, we consider the average
number of GHZ states generated per round and per mem-
ory, called “multipartite repeater rate”. In the following,
we simply denote it as repeater rate.

In contrast to previous works, we are not interested
in the average waiting time for generating the desired
state, starting from the initial state of empty memories,
but in the repeater rate of the stationary (i.e., long-term)
regime. The difference with the scenario of Ref. [12] is
that, after a successful GHZ measurement, we do not
empty all multiplexed memories, but keep them for future
rounds. In other words, the next round does not start
again from the initial state, but starts from a state where
some memories can be already filled. Then we obtain a
random process (a Markov chain) and are interested in
its stationary regime, namely in stationary repeater rate.

The problem of finding the stationary state of a
Markov chain is reduced to the solution of a system of
linear equations. It can be solved numerically, but it is
preferable to have an analytic solution for understand-
ing the influences of various parameters on the perfor-
mance of such systems. Unfortunately, this system is
intractable analytically, even for a moderate number of
parties and memories. So, suitable approximations are
required, which we use to derive explicit formulas that



give a very good approximation for the repeater rate for
an arbitrary number of parties and memories.

It is worth noting that, on the considered idealized
level of description, our scenario is mathematically
equivalent to a transmission line between two partici-
pants, Alice and Bob, with n — 1 intermediate quantum
repeaters that split the transmission line into n segments
and generate Bell pairs on each segment. Thus, though
we will focus on the case of a multipartite quantum
repeater between n participants, our results can be
applied also to a chain of n — 1 quantum repeaters
between two participants.

Our paper is structured as follows. In Sec. II, we in-
troduce the n-partite quantum repeater with multiplex-
ing and its description via Markov chains. In Sec. III,
we analyze the setup without multiplexing and show the
equivalence to the setup of a bipartite repeater chain.
We move on to the generalized multipartite quantum re-
peater including multiplexing in Sec. IV. We give bounds
on the repeater rate in the multipartite repeater setup,
including multiplexing. We further discuss the effect of
memories on the repeater rate and the dependency on
the number of parties as well as the number of memories
in larger networks. In Sec. V, we present our conclusion
and outlook.

II. THE SETUP
A. Physical description

We consider a star network with one central multipar-
tite quantum repeater and n parties around it [8] (see
Fig. 1). Each party has m > 1 sources producing Bell
pairs. We will refer to the case m > 1 as multiplex-
ing. Additionally, each party has m quantum memories
in the multipartite quantum repeater to store arriving
qubits [6]. For simplicity, we assume that the memories
are perfect and have infinite storage time. Each source
sends one qubit of the Bell pair via a quantum channel
to the multipartite quantum repeater per unit of time
(round). The qubit is stored and heralded if it arrives
successfully (with probability p). If each party has at
least [ filled memories, then the parties can perform [
GHZ measurements. Fig. 1 shows a configuration allow-
ing two GHZ measurements.

We consider the case of no restriction on the coupling of
memory cells inside the multipartite repeater, i.e., if each
party has at least one filled memory, a GHZ measurement
can be performed independently of the positions of the
filled memories in the memory stacks of each party. The
case of restrictions was analyzed in Ref. [8].

Recall that the n-partite GHZ measurement is the
measurement corresponding to the orthonormal basis

(X .. X 2 |GHZ)}, (1)

Quantum router

00O
O
000

A

Figure 1. Setup of a tripartite multipartite quantum re-
peater with n = 3 parties and m = 3 memories per party
adapted from [8]. The blue and white vertices (balls) corre-
spond to empty and filled quantum memory cells, respectively.
The edges between the parties and the multipartite quantum
repeater (depicted in black) correspond to established Bell
pairs. Edges inside the multipartite quantum repeater (de-
picted in red and blue) correspond to possible combinations
allowing two GHZ measurements.

bi,...,b, € {0,1}, where
1
V2

and X; and Z; are the Pauli operators acting on the ith
qubit. Each state from this basis (i.e., a postmeasure-
ment state) is local-unitary equivalent to the GHZ state,
and the local unitaries are determined by the announced
measurement outcome. We assume that the GHZ mea-
surements are perfect.

The GHZ states are then used in an application, e.g.,
in a conference key agreement protocol [16]. Thus, mem-
ories that were included in a measurement are emptied
again, see Fig. 2. All other memories remain untouched
for the next round. In the following, qubits from a Bell
pair are only sent to memories that are not filled from a
previous round.

The goal of the protocol is to perform as many GHZ
measurements [ as possible per round and consequently
maximize the rate in the stationary regime. More pre-
cisely, the number of GHZ measurements is a random
variable L (all random variables will be denoted as capi-
tal Latin letters, and their possible values will be denoted
as the corresponding small letters) because the storage
process is probabilistic. We want to maximize its aver-
age value (L) in the stationary regime.

IGHZ) = —(|0)®" + [1)®") (2)

B. States of the multipartite quantum repeater
and transitions

Let us describe the set of configurations of the memory
cells in the multipartite quantum repeater. The multi-
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Figure 2. Schematic representation of a protocol round anal-
ogous to [7, 8]. Shown are the memory configurations for a
multipartite quantum repeater with n = 3 parties, each with
m = 3 memories. The transition of the memory configura-
tions consists of the two processes of sending/storing (map o)
and measuring (map ).

partite repeater has m qubit memory cells for each party,
i.e., nm memory cells in total. Each party also has m
memory cells, which are in one-to-one correspondence
with the corresponding multipartite repeater’s memory
cells, see Fig. 1. Thus, each party’s memory cell is as-
signed to its own multipartite repeater memory cell and
one can speak about pairs of memory cells. Since the
memories are filled by pairs, we will use the notions of
pairs of memory cells or single memory cells (from the
party or repeater side) interchangeably.

Thus, the configuration of memories in the whole sys-
tem is uniquely defined by the memory configuration in
the multipartite repeater. The configuration of the pairs
of memories for the ith party can be defined as a bi-
nary vector @; = (a;1, @2, - - - , @3y ) With length m. Here,
ai; = 0 and a;; = 1 correspond to an empty and filled ith
pair of memories, respectively. The total memory config-
uration is thus given by a = (@1, ds, . ..,d,) € {0,1}"™.

Since the positions of the filled memories are unimpor-
tant for the possibility of the GHZ measurement, we are
actually interested in the number of filled memories |a;|
(here, |-| denotes the Hamming weight of a binary vector,
i.e., the number of ones) for each party rather than the
vectors a@; themselves. This can be used in simulations
to reduce the configuration space, and we will use this
more economic description in Sec. IV. However, in this
section, it will be conceptually more convenient to use
the vectors a@;.

Each round of the multipartite quantum repeater in-
cludes two steps, depicted in Fig. 2. The first step is the
storage step. A Bell state source is assigned to each of

the nm pairs of memories between the parties and the
multipartite repeater. During the storage step, for each
empty pair of memories, the corresponding Bell state
source tries to establish a Bell pair and store it in the
pair of memories. The success probability of this single
event is p. Possible reasons for the failure of Bell-state
generation are discussed, e.g., in Ref. [17]. Note that the
success of a Bell state generation is considered indepen-
dently for each link.

The second step is called “measurement” which cor-
responds to emptying some memories due to the GHZ
measurement. Namely, if each party has at least [ filled
memories and one party has exactly [ filled memories,
then | GHZ measurements are performed and ! memo-
ries are emptied for each party. The precise positions of
the emptied memories are unimportant. For definiteness,
let us assume that each party tries to empty memories
with higher indices first.

To answer the question of how many GHZ measure-
ments can be performed per round in the stationary
regime, we will employ the theory of Markov chains.

C. Description via Markov chains

Let m, denote the probability for the system to be
in the configuration a € {0,1}"™ in some moment of
time. The probability distribution {7a}acfo,1}»m can be
represented as a vector 7 of length nm. Then the two
steps described in the previous subsection correspond to
2" @ 2™ transition matrices o (for the storage step)
and g (for the measurement step) between the config-
urations. The (stochastic) transition matrix 7" of one
“working cycle”, or round, is then given by

T = po. (3)

A matrix element T,, gives the probability of chang-
ing the multipartite quantum repeater’s state from any
configuration a to any configuration a’ (i.e., the column
contains the actual configuration and the row the future
configuration).

As an example, consider the case of n =2 and m = 1,
i.e., two participants, each with a single memory. As
soon as both memories are filled with a quantum bit,
both memories are emptied by performing a Bell state
measurement. In this case, @; and d@s, are simply single
bits and we can write a = (a1, asz).

Such a Markov chain has four different configurations:
a = (0,0) (both memories in the repeater are empty),
a = (0,1) and a = (1,0) (one memory is filled and one
is empty) and a = (1,1) (both memories are filled). The
storage map o) for one party has the form ,

o0 — <1 o ‘f) (4)

Here, the first and second rows/columns correspond to
a; = 0 (empty memory) and a; = 1 (filled memory),
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Figure 3. Graph representation of the storage map o (left)
and the measurement map g (right) of a bipartite quantum
repeater with one memory per party. The vertices correspond
to configurations, and the edges correspond to possible tran-
sitions between them. Along the edges, the transition proba-
bilities depending on the success probability p are given. The
Bell measurement is considered to be perfect.

respectively. The first column indicates that an empty
memory remains empty with probability 1 — p and be-
comes filled with probability p. The second column
means that the filled memory remains filled with proba-
bility 1 in this stage. The total storage map o is obtained
via the tensor product:

(1-p? 0 0

0
p(l—=p) 1—-p 0 0O
0
1

o=cW ® o = , (5)

pﬂ;p) 0 1-p
p p p
where the rows and columns (corresponding the bipartite

configurations a) are ordered in the usual way: (0,0),
(0,1), (1,0), (1,1). The measurement map y is as follows:

0
0
X (6)
0

SO o

0
1
0
0

=
Il
cocor

That is, the memory configuration changes in this step
only if both memories are filled and a Bell state measure-
ment can be performed. A graph representation of both
maps is shown in Fig. 3. The transition matrix 7" is then
given by

(1-p°+p » p 1
p(l _p) I—p 0 0 (7)
pl-=p) 0 1-pO)°

0 0 0 0

T =po =

Returning from our example, the stationary distribu-
tion 7* of a Markov chain is a distribution 7 (represented
as a column vector) that does not change when the tran-
sition matrix 7T is applied:

mr=Tr". (8)

The stationary distribution can also be calculated by tak-
ing the limit of 7"° with infinitely many rounds s and

applying it to an initial distribution 7(®):

= lim 7°7(©, (9)
S§—00

Note that 7* is the stationary probability distribution for
memory configurations at the end of a round, i.e., after
a measurement step. The number of GHZ state mea-
surements in any round is specified by the configuration
before this step, i.e., after the storage map. So, to get
the average number of GHZ state measurements, we need
to apply the storage map, i.e., we need to consider the
vector om*.

The number of GHZ measurements in the stationary
regime as a random variable is denoted by L. The aver-
age value of the number of the GHZ measurement (L) is
completely determined by o7*:

=3

ae{0,1}nm

(07*)a min |@;], (10)
i=1,...,n

where (07*), denotes the entry of the vector om* and,
recall, |-| denotes the Hamming weight of the vector. The
minimal Hamming weight over all parties is the number
of the GHZ measurements [ for a given configuration.
From that, the asymptotic repeater rate per memory can
be calculated as

(11)

with m being the number of memories per party.

The Markov chain that represents the transitions of a
multipartite quantum repeater during one round is irre-
ducible. A Markov chain is irreducible if any configu-
ration can reach all other configurations (within a finite
number of rounds). This is true in the setup of the mul-
tipartite quantum repeater, as any number of memories
can be filled in every round, and the configuration with
all memories filled can always be reached, allowing them
to be emptied again. Therefore, it is always possible
to reach any configuration a’ from any configuration a
within a finite number of rounds. The stationary distri-
bution of an irreducible Markov chain is unique, i.e., it
is independent of the initial distribution 7(°). A natural
choice for (%) is the case of all memories being empty.

III. MULTIPARTITE QUANTUM REPEATER
WITHOUT MULTIPLEXING

First, we consider a multipartite quantum repeater
with a single memory per party, i.e., without multiplex-
ing. In this case, a = (a1, ...,a,), where a; are bits cor-
responding to the states of the single memories of each
party. A GHZ measurement is possible only in the con-
figuration a = (1,...,1), i.e., the memory for each party
is filled. The average number of GHZ measurements per
round, or, equivalently, for this case, the probability of



performing a single GHZ measurement in the stationary
regime, is given by

(L1) = Pr(Ly = 1) = (o7%)(1,...,1) (12)
where the subscript 1 in the notation L; denotes that we

consider the single-memory (per party) case. It turns out
that

-1

(L) = 1+§:(1—(1—(1—p)j)") . (13)

The derivation of Eq. (13) is provided in Appendix A,
but this result (in a different form) was already known in
the context of chains of quantum repeaters between two
participants [17]. To show this, let us simplify Eq. (13):

- -1

(L) = 1+ S0 (1) -
L j=1k=1
s e () _=p)* ]
- _1+k:1( £ <k>1—(1—p)’“]
(D ]
- _kz_ll-(l—p)k(kﬂ | 8

The last expression in the square brackets is well-known
in probability theory: It is the expectation value of
the maximum of n independent geometrically distributed
random variables with the success probability p [18]. In
our context, this represents the average waiting time for
the GHZ measurement when starting from empty memo-
ries. Indeed, the geometric distribution is the probability
distribution of the number of Bernoulli trials (random ex-
periments with exactly two possible outcomes) to get one
success. For a successful GHZ measurement, all n parties
must have a filled memory, hence the waiting time is the
maximum number of Bernoulli trials over all participants.

Then, (L) is the inverse of the expectation value of
the maximum of n independent geometrically distributed
random variables. This is due to the absence of multi-
plexing: Once a GHZ measurement is performed, the sys-
tem returns to the initial state with all memories empty.

The derivation in Appendix A can be considered as
an alternative derivation of the expectation value of the
maximum of n independent geometrically distributed
random variables. The advantage of Eq. (14) is that the
denominator contains a finite sum, but the terms have
alternating signs. The advantage of Eq. (13) is that all
terms have the same sign.

The expression in the square brackets in Eq. (14) for
the waiting time was obtained in a model of two par-
ties connected by a sequence of n segments with n — 1
repeaters [17] (see also Refs. [9, 19]), which is, as we no-
ticed above, mathematically equivalent to the considered
model of a multipartite quantum repeater.

o.1o\ —— p=0.1
p =0.05
0.08/
0.06 |
=)
L
0.04
0.02 I
20 40 60 80 100

Figure 4. Multipartite quantum repeater without multiplex-
ing: average number of GHZ measurements performed in the
asymptotic limit following Eq. (13) for two different success
probabilities p = 0.1 and p = 0.05, as a function of the num-
ber of parties n.

Known estimates on the expectation value of the maxi-
mum of n independent geometrically distributed random
variables are [20]:

n

"1 1 1
—Y sy <1+ —Y ~. (15)
1 y4 k:lk lanP :1k
Recall that
z": Y e ndy+ =40 (16)
e k 2n ’

where v = 0.57721 ... is the Euler-Mascheroni constant.
Substitution of Inegs. (15) into Eq. (14) leads to the
bounds for the stationary repeater rate in the case of
no multiplexing. Thus, the rate (L;) decreases slowly as
(Inn)~! for a large number of communicating parties n.

Fig. 4 shows the rates for two different success proba-
bilities. One can see that, although the decrease in the
average repeater rate is slow for a large number of com-
municating parties n, it decreases rapidly for small n.
This motivates the use of multiple memories per party,
allowing multiplexing to be integrated into the key distri-
bution protocol [7, 8], which is discussed in the following
section.

IV. THE CASE OF MULTIPLEXING
A. Reduction of the configuration space

Now consider the case of memory multiplexing, i.e.,
m > 2. We already mentioned that the number of GHZ
measurements depends only on the numbers of the filled
memories for each party |d@;| [see Eq. (10)], but not on
their positions. Hence, we can merge the configurations



corresponding to the same tuples (|@;|)™ ;. We will de-
note |d@;| = k; and (ki,...,k,) = k. Then the number
of configurations is reduced from 2" to (m + 1)™: Each
of the n parties is fully characterized by the number of
filled memories, from 0 to m.

Then we can interpret 7 as a vector of length (m+1)",
and o, pu, and T = po as (m + 1)™ x (m + 1)™ matrices.

The storage map is given by the tensor power o =
(cM)®" where the single-particle storage map is given
by

(1) 0, k>k,
kT Nk 17
L {(Z}:Z) (L— p)(m_k )pE' =k) " otherwise, (17)

with k, k" € {0,1,...,m}. The matrix of the mea-
surement map is defined as follows: For arbitrary
k = (k1,...,kn) and X' = (ki,...,k.), where k;, k. €
{0,...,m},

_J1, kx—K =1-Tand mink' =0, (18)
Hie = 0, otherwise,

where 1T = (1,...,1) is the vector containing n ones,

min k' is the minimum over &/, ...k}, and [ € {0,...,m}

) vy

is the number of GHZ measurements. Then Eq. (10) be-

L= >

k={0,...,m}"

(07" )k (min k). (19)

We can apply one more reduction of the configuration
space if we merge configurations that differ only by per-
mutations of the parties. That is, k = (k1,...,k,) and
k' = (K},..., k], are considered equivalent if (k],...,k})
can be obtained from (ki,...,k,) by a permutation of
elements. Then, we can define a “canonical” order of k;
as, e.g., decreasing;: k% > ké > e 2 ki and the state is
described by an ordered n-tuple (kf, s wghE)s

B. Bipartite setup (n = 2) for small success
probabilities p

For the bipartite case (i.e., n = 2) with multiplex-
ing [7], a general expression can be deduced under the
assumption of a small Bell pair generation probability
p < 1. Then, all formulas are approximated by the first
order in p, e.g., (1—p)™ ~ 1—mp. Physically, that means
that at most one memory can be filled per round. Nev-
ertheless, qubits are kept in the memories over rounds
once they are stored. The advantage is that the tran-
sition matrix has fewer entries that are unequal to 0.
Consequently, the graph representing the Markov chain
reduces significantly (see Fig. 5).

We use the description of the configuration space from
the end of Sec. IV A. Namely, a configuration is a pair
(k%, k%) of parties’ occupation numbers in decreasing or-
der. For example, the vertex (1,0) includes all config-
urations where one party has one filled memory. Since

1-(m-1)p-mp  1-(m-2)p-mp

Figure 5. Graph representation for the bipartite (n = 2)
star graph assuming that the success probability p of filling
a memory cell is small so that it only appears in first order
and at most one memory cell can be filled in each storage
step. The vertices (kf, k% ) are occupation numbers of parties’
memory cells in decreasing order. The last number is always
zero because as soon as the corresponding party also fills one
memory cell, a GHZ measurement is immediately performed,
which empties this memory again.

we empty memories (by performing the GHZ measure-
ment) at the end of a round, configurations where both
parties have filled memories, such as (1,1), cannot be
reached after each iteration, as it ends with a measure-
ment step. Therefore, these configurations do not appear
in the graph shown in Fig. 5. Including all assumptions,
the number of vertices, each representing one configura-
tion, reduces to m + 1 for the bipartite setup.

It is worthwhile to note that the transition probability
from (kf, k%) = (0,0) to (k¥,k¥) = (1,0) is 2mp rather
than mp because any of the two parties can fill one of
its memories. In other words, the ordered configuration
(k%, k% ) = (1,0) corresponds to the two unordered
configurations (k1, k2) = (1,0) and (k1,k2) = (0,1), and
the transition probability from (0,0) to each of these
configurations is mp. However, the transition probability
from (kf,k3) = (1,0) to (kf,k3) = (2,0) is (m — 1)p,
because now the order of the parties is fixed.

Recall that a Markov chain can be represented as a
directed graph, where the vertices V are configurations
and the edges E are possible transitions between them
in one time step (with nonzero probabilities). In our
case, V = {0,...,m}". Then, the stationary distribution
in the asymptotic limit can be obtained via the Markov
chain tree theorem:

Theorem 1 ([21]). Let a stochastic matriz T define an
irreducible finite Markov chain with stationary distribu-
tion ™™ = (7*)kev. Then

Al
A

T = (20)

Here, Ay denotes the set of arborescences of a chosen
root k, and A is the set of all arborescences of the graph
G. An arborescence with root k is a set of edges A C F,
that fulfills the following properties:

e cach vertex k/ € V has a directed path in the sub-
graph G’ = (V, A) to the chosen root k.

e cach vertex, except the root k, has precisely one
outgoing edge.




2mp (m-1)p (m-(m-1))p
mp mp B mp

Figure 6. The only arborescence A(; ) for the second node
(root) (1,0), i.e., the set of edges that lead to a directed path
from all nodes to the chosen root (1, 0), is shown in red. Since
self-loops do not contribute to the calculation, they are not
shown in the graph representation here.

e the root k has no outgoing edge.

Each my is the probability of finding configuration k in
the multipartite quantum repeater. In the graphical rep-
resentation, each vertex k represents one such configura-
tion. The weight ||A|| of an arborescence A is given by
the product of the weights of the edges p. (in our case,
probabilities of the corresponding transitions) included
in that arborescence:

1Al = T .- (21)

ecA

Then, | Akl is the sum over the weights of all arbores-
cences within the set Ay and ||A| is the sum over the
weights of all arborescences of the graph G:

Al =Y 114l

Ae Ay (22)
A= > 1A= Al
AeA keV

Thus, to calculate 7 for all roots k (i.e., all configura-
tions), it is required to find all arborescences in the graph
and calculate their weights. The Markov chain tree theo-
rem can also be applied to graphs with self-loops, which,
however, do not contribute to arborescences and can thus
be ignored [21].

We find that, in our case, each root has a single ar-
borescence only: Starting from each end of the chain,
all edges pointing towards the root are part of the ar-
borescence. An example for the arborescence Ay of
root (1,0) is shown in Fig. 6. By applying the Markov
chain tree theorem to the bipartite setup, we find for the
weights Wy for each root k € {(0,0),(1,0),...,(m,0)}
the following expressions:

o0l = (mp)™, (23)

Mol = 2mp)™, (24)
—1)!

Mgl = 2mmr+ipm =Dy

(m —k)!
(25)

To calculate the average number of GHZ measurements
(L) per round, we use Eq. (19). Due to the assumption
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Figure 7. Repeater rate Roc = (L)/m for a bipartite network
for different number of memories per party m. The success
probability is chosen to be p = 0.1. The analytical approxi-
mation is calculated via Eq. (27), while the direct calculation
is obtained via T"in.t for large n.

that at most one memory can be filled per round, max-
imally one GHZ measurement can be performed. The
stationary distribution is calculated with Eq. (3). We
see from the graph that only the configuration k = (0, 0)
at the beginning of a round leads to no GHZ mea-
surement since, in our approximation, only one mem-
ory can be filled in one round. All other configurations
k € {(1,0),(2,0),...,(m,0)} lead to a GHZ measure-
ment with the probability pm of increasing k; from 0 to
1. For the average number of GHZ measurements, we
then find:

wbm{géMﬁﬂ>

> ko M0l
—om (1 Aol >
Yo Mol (26)
1 1
=pm - m - m—1)!
1+2 Zk:l m~kH Em—k%!
For the repeater rate, it then holds:
R 1 ! (27)
o = P - m _ m—1)!
142350, m—kH Em—kgl

We can find asymptotic behavior for large m as follows:

zm:m_kH (m—-1)!  m! " mk
k=1

(m—k)! — mm & kL

m—1 k
~V2rme ™ Z % =V2mmFp(m—1), (28)
k=0

where F), is the cumulative distribution function of the
Poisson probability distribution with the expectation m.



Due to the central limit theorem, the Poisson distribution
is approximated by the normal distribution for large m,
which is symmetric with respect to the expectation value.
Hence, F,,,(m — 1) ~ 1/2 for large m (actually, already
for m = 5 the approximation is good). We obtain then

Roo%p<1—m>. (29)

In Fig. 7, we compare the repeater rate for the bipartite
network with up to m = 50 memories per party and a
success probability of p = 0.1 determined in two different
ways. We compare it with a direct calculation of 7" 7,
for large n. In the approximate solution, we use Eq.
(27) to calculate the repeater rate. Fig. 7 shows that the
approach of small p leads to a lower bound that provides
good results also for larger m.

C. Larger network sizes

For networks with n > 2 parties and memory multi-
plexing m > 1, it is hard to find a generalization by pro-
ceeding analogously to the bipartite network, even under
the assumption that p < 1. This is because the resulting
graphs representing the Markov chains have more than
one arborescence per root i. This holds already in the
simplest case with n = 3 and m = 2. Here, each root has
three arborescences. The number of arborescences can be
determined using Tutte’s directed matrix-tree theorem:

Theorem 2 (|22]). Let G = (V,E) be a directed graph
and L a matriz with entries

degin(k/)7 Zf k' = ka
Lyx =< —1, if k #k and (k,X') € E, (30)
0 otherwise,

k,k' € V, where deg,,, (k') is the in-degree of vertex k'.
The number of arborescences Ny with root k € V is then
given by

Ny = det (ﬁk) (31)

where Ly is the matriz produced by deleting the k-th row
and column from L.

Fig. 8 shows the increase of Ny up to m = 10
memories for a tripartite network for the first reduction
of the configuration space described in Sec. IV A, i.e.,
the configuration is given by the (unordered) occupation
numbers of three parties (ki, k2, k3), under the approx-
imation p < 1 (again, p is taken into account only
up to the first order). It can be seen that even under
the assumption of small p, it is not possible to find a
generalized expression for (L).
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Figure 8. Number of arborescences N for root k = (m,m, 0)
for a tripartite network with up to ten memories. Tutte’s
directed matrix-tree theorem (i.e., Eq.( 31)) is used for the
calculation.

Nevertheless, we can construct bounds for the average
number of GHZ measurements for the case of n parties
each having m memories. Suppose we treat the mem-
ories independently of each other (i.e., no multiplexing
is performed despite the multimemory setup). This case
leads to the following lower bound:

(L) = m(Lx) (32)

An upper bound for (L) can be achieved from numer-
ical simulations performed analogously to Ref. [8]:

(L) < pm. (33)

One can understand it as follows. After the measurement
step, at least one party has no filled memories. The av-
erage number of memories filled in the next storage step
for this party is pm. Since L cannot be larger than the
minimal number of filled memories among the parties,
(L) cannot be larger than pm.

However, comparison with simulation show that both
bounds (32) and (33) are loose. In the following subsec-
tion, we derive an approximate formula for the general
repeater rate, making different approximations.

D. Probabilistic model of the multipartite quantum
repeater and the repeater rate for the general case

The purpose of this subsection is to analyze the gen-
eral case of an arbitrary number of parties n and the
number of memories per party m. Up to now, we have
rigorous bounds only for the cases m = 1 and arbi-
trary n (Egs. (13) and (14)) and n = 2 and arbitrary
m (Eq. (26)). As we saw above, it is hard to generalize
Eq. (26) to the case of an arbitrary n. We need a for-
mula from which the asymptotic behavior with respect
to n and m could be easily derived.



Our derivation of such a formula will be based on the
following probabilistic model of the multipartite quantum
repeater:

e X, i is the random variable of the number of filled
memories (from 0 to m) for the ith party (i =
1,...,n) after the round £, i.e., before the (k+1)th
storage stage, t = 0,1,2,... The initial number of
filled memories is X; o = 0.

o Y, ;. is the number of new filled memories for the
party ¢ in the storage stage in the round k. It takes
values from 0 to m — X ; and obeys the binomial
distribution:

m—-

PrlYir =yl Xip—1 =2x] = ( 7

Jpra—pm

(34)
y=0,1,...,m—=zx.

® Zip = Xik—1 + Y is the number of the filled
memories for the party ¢ before the measurement
in the round k.

e [ = min; Z; is the number of GHZ measure-
ments in the round k.

e Measurement stage:

Xik=Zi — Ly. (35)

o (L) = limg_,oo(Lg) is the long-term expectation
value of Ly, which we want to find (or approxi-
mate). If the probability distribution of Lj con-
verges to a limiting distribution, L can be consid-
ered a random variable with this distribution.

However, the probabilistic analysis of the model de-
scribed above is problematic due to dependencies of X; j,
on each other by means of the subtraction of L, which
depend on Xj; j_; for all . To break this dependency,
we develop a simplified model. To do this, let us iterate
Eq. (35):

k k
Xik=Xio+ Y Yixr— Ly (36)

k'=1 k'=1

The intuition related to the law of large numbers tells
that, for large k, ZZ,ZI Ly can be replaced by k(Y).
In other words, random L/ can be replaced by a fixed
number.

_In view of this intuition, consider the random variables
Xik, Yik, Zik, and Lj with the following modification:
the recurrence equation (35) is replaced by

By =G5 (37)

for a fired number [ to be determined. Subsequently, the
random variables X; ;, can take negative values. Namely,

if Xi,O = 0, then X can take arbitrary integer values

from —lk (in the case Y;pr = 0, k = 1,...,k) to m.
Then, Y;  also can take values larger than m (if X; ;1
is negative). Formula (34) holds with X and Y replaced
by X and Y.

In this case, X; and X are independent for i # j
(and identically distributed because they obey the same
recurrence relation (37)). In other words, the dynamics
of the memory occupation numbers for different partici-
pants are uncoupled, which largely simplifies the analysis.

In the original model all X j, are nonnegative or, equiv-
alently,

min(XLk,...,Xn,k) 2 0. (38)
In the simplified model, we replace this requirement with
the following one: The number [ is chosen as a maximal
value such that the inequality

lim (min(X;4,..., Xnk)) >0 (39)

k—oo
holds, i.e., the long-time average of the minimum of the
occupation numbers is non-negative. The intuition be-
hind such a replacement is again the law of large num-
bers: we can hope that, in the asymptotic case, the fluc-
tuations around the expectation value are negligible.

_One can suggest the following financial analogy. If
X is the current “wealth” of the ith party, we take
a fixed “tax” [ and allow the party to “borrow” money for
some time (negative X; ;), but, on average, the minimal
“wealth” among the parties must remain non-negative.

Then, under the additional assumption of normal dis-
tribution for X; , and in the asymptotic case of large n,
one can derive the following formula for the maximal [,
which is an estimate for (L) in the original model (see
Appendix B):

2
(L)zpm<\/(f—mﬂlnn+l—\/(f—mﬁlnn) : (40)
Here = (1 -p)/(2-p),

a:\/i<1_ln(47rlnn)—2fy> )

4Inn

and ~ is the Euler-Mascheroni constant.
Note that for n — oo, we get

pm?
(L)~ (12)
i.e., logarithmical decrease, which agrees with the results
for the case of no multiplexing (Sec. III). The quadratic
dependence on m does not contradict the upper bound
(33) with the linear dependence because, for large n, the
right-hand side of Eq. (42) is smaller than pm. The
quadratic increase with m can be understood by the dou-
ble role of memory multiplexing. First, it increases the
average number of new Bell links per round. E.g., if all
memories of a party are empty, then pm is the average
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Figure 9. Comparison between simulations and the approx-
imate Eq. (40) for the repeater rate Roc = (L)/m with the
probability of successfully storing entangled qubits in memory
is p = 0.1. The repeater rate is shown for varying numbers of
parties n and memories m.

number of filled memories after a storage step. Second, if
a party already has one filled memory and waits for other
parties, multiple memories allows him not to waste time,
but to establish additional Bell links for future measure-
ments, so, after the measurement step, the parties start
not from scratch, but already have Bell links.

Interestingly, though strictly speaking, formula (40)
uses the approximation of large n, substitution of n = 1
in Eq. (40) gives the exact result for this case (L) = pm.

Also we see that, for large m, the repeater rate (11)
saturates:

Rm:%zp(l—\lcf—mﬂlnn>, (43)

so the effect of an additional memory for each party
does not increase Ro,. Also we see the agreement with
the large m asymptotics (29) for the case n = 2: The
repeater rate saturates as ¢//m with some constant c.
Egs. (29) and (43) (for small p) give close values of c.

To justify the approximation, we show the repeater
rate for varying network sizes in Fig. 9 comparing
the approximation formula obtained in Eq. (40) and
the simulation of the multipartite quantum repeater
performed. Eq. (40) gives a very good approximation
for the whole range of parameters (though formally it
was derived for the asymptotic case of large n).

In Fig. 10, we give an overview of the scaling of the
repeater rate calculated via the approximation formula
up to a network size of n = 150 parties, each having up
to m = 100 memories. The plot shows that, for small
m, the repeater rate grows linearly with m, but then the
growth slows down. The plot confirms the saturation of
the repeater rate (43). The red dots indicate the limit at
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Figure 10. Repeater rate Roc = (L)/m obtained by formula
(40) for different network sizes depending on n and m and a
success probability of p = 0.1. For a rate beyond the line of
red dots, the rate does not further increase with the number of
memories. The light blue plane shows the minimal achievable
repeater rate in a bipartite setup with a single link for both
parties.

which adding more memories to the network no longer
significantly increases the repeater rate, i.e., the differ-
ence in the repeater rate becomes smaller than 0.0001
with increasing m. For networks with more than 100
parties, this limit is at about m = 85 per party.

The light blue plane shown in Fig. 10 gives the re-
peater rate achieved in a bipartite network with only
one memory per party (R. = 0.068). For all network
sizes considered here, this threshold can be reached by
increasing the number of memories per party. Thus, one
can achieve the repeater rate of a bipartite network also
in a multipartite network.

V. CONCLUSION

Establishing entangled states between end nodes in
large quantum networks is one of the main challenges to
allowing the end nodes to communicate or share secret
keys. To enlarge the distance between the end nodes and
overcome distance-based fiber losses, quantum repeaters
are used. In our work, we have analyzed the repeater
rate of such multipartite quantum repeaters (multi-
partite quantum repeaters), i.e., the average number
of distributed GHZ states per round in the stationary
(long-term) regime. We have considered both single
links between the end nodes and the central multipartite
quantum repeater and multiple links (multiplexing).
Our results can be used to plan quantum networks
and estimate the achievable repeater rates for various
network sizes. The optimal number of memories can
be calculated, especially when the number of parties
increases.

For the single link case, we have derived Egs. (13) and



(14), which coincide with the rate of a chain of repeaters
between two participants obtained in Refs. [9, 17]. For
the multiplexing setup and two parties, we have derived
an approximate formula (27) for the repeater rate based
on the approximation of small success probabilities p.

Finally, we have derived an approximate formula to
calculate the average number of GHZ measurements per
round for an arbitrary number of participants and memo-
ries. This approximation gives very good agreement with
the simulation.

It turns out that the repeater rate saturates for a
large number of memories, i.e., the number of GHZ
measurements per round grows not faster than linearly
with the number of memories per party. Additionally, we
observe that as the number of participants n increases,
the repeater rate decreases slowly as (Inn)~!, provided
the number of memories per party remains constant.

In our work, we show that there is a maximal num-
ber of memories that helps to increase the repeater rate.
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Adding more memories does not lead to higher rates. In
future work, integrating entanglement purification will be
of great interest [23]. It will be interesting to analyze how
the fidelities change due to the underlying network struc-
ture and how entanglement purification can increase the
fidelity [24]. It should be investigated for which network
sizes multiplexing leads to higher fidelities than entan-
glement purification. In a further step, applications such
as conference key agreement [16] should also be included
in the analysis.
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Appendix A: Derivation and proof of the asymptotic
repeater rate without multiplexing

Here, we provide our derivation of the repeater rate for
the setup with a single memory per party only. We start
with the transition matrix 7" which is given by

N
T =op= (U(l)) n

Note that for this derivation, we consider the transition
matrix in reverse order. This can be done since the sta-
tionary distribution is independent of the initial distri-
bution 7(9). This transition matrix already provides the
distribution after the process of storing qubits in mem-
ory. It is, therefore, not necessary to apply another map.
This order is chosen here because it simplifies the follow-
ing calculations.

The storage process for one party with a single memory

is given by
0(1) _ (1 —p 0)
p 1

with p being the success probability of the optical fiber.
The total storage map for n parties follows from the ten-

sor product:
B 1-p 0 ®n
o= 1

A measurement is performed only when the memory of
every party is filled. In that case, the memories are emp-
tied; in all other cases, the memory configuration does
not change. Therefore, the measurement map is given by

®n ®n
00 01
=t =(39) +(00)

By combining both maps, we find the following transition

map:
Rn Xn
;L 00 01
T—a—i-a(—((] 1) +<O 0) )

=oc+0oX,

®n ®n
00 01
where we set (— <0 1) + <0 0) ) = X,,. In the

next step, we calculate T”% to get the stationary distri-
bution of the Markov chain 7* = lims_, o 777, It is
possible to rewrite 7" by

(A1)

(A2)

(A3)

(A4)

T/S =o° + ZAzXnBs—l (A5)

i=1
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with the second term given by

Bs—i = O's_i. (A6)
The first term is of the following form:
j=1
The prefactors cg-i) are given by
i—1
0} S
0 | @1, =1
g =1 i= (A8)
o j>1

where the first factor is fixed to cgl)

1-(1-p")"

Before going on, we explain Eq. (A5) in detail and
prove its validity via induction. To understand where the
decomposition of 7”% comes from, it is best to consider a
concrete example (e.g., T"?) first. We note that with

o= (1L (1))

we find the following:

(0 1) (?) T (0 1)*"o° (?) - (A10)

and

=1 and with p, =

(A9)

O (5) =a-a-p

Therefore, we can rewrite the term X,,0°X,, by the term
(ps — 1) X, with ps = (1—(1—p)*)™, which only depends
on the number of parties n and the number of rounds s.
T"? can thus be reformulated in the following way:

(A1)

T? = (0 +0X,) (0 +0X,)
=02+ 0Xno+ ((p1 — 1) 0 +0°) Xp0®  (Al2)

Here, we already find the structure from Eq. (A5). To
see that this is not by chance, we additionally calculate
T'3 in a similar way:

T3 = (02 +oXno+ (p1—1)oX, + 02Xn) (o0 +0Xp)
=+ 0X,0% + ((pl —1)o+ (0)2) Xno
+{((2 =D+ (91— 1* )0 + (91 ~ 1) 0> + 0* }Xno".
(A13)
This leads again to an expression of the form:

T =0°) A XnBs_i (A14)

with Bs_; = 0°~*. Now, we can guess the general behav-
ior for a term T"% = T's~17T":



o Multiplying 7/~ with o leaves the factor A; un-
touched and only increases the power of the last
term by one.

e Multiplying 7"*~! with 0 X,, creates a new term in
the sum since i increases by one, i.e., there is a new
term with factors A and By.

e The new factor Ay for the last term is given by

s—1
A= 4 (pey—1) 40 (A15)
j=1
By rewriting the term for the A; to the form
A=Y =dDod, (A16)
j=1
one finds the prefactors cgi) as given in Eq. (A8):
i—1 0
1 :
; Yol (pi—1), j=1
gl = 3 = (A17)
Y, i>1
with the first factor cgl) =1.
Let us prove the equations
T =0°+» AiXnB. i, (A18)
i=1
i—1 _
A=) Aj(picj —1)+ 0, (A19)
j=1
B; = ¢* (A20)

by induction.

Proof. Starting with the base case, we show equality for
s = 2. From Eq. (A12), it follows

T? = 0?4+ 0Xno + (p1 — 1) 0 X, + 02X,
o +0Xno+{(p1 —1)o+ 0%} X,

= 02 + A1 X, B1 + A2 X,, By

CTS + i AanBs_i

i=1
with A; given in Eq. (A19) and B; given in Eq. (A20):

A1:U,
B1:U,

Ag:(p1—1)0+02,
By =1.

In the general case, we assume that the equations (A18)-
(A20) hold for any s € N. In the induction step, we show
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that if the statement holds for any s € N, then s + 1
follows:

Tls+1 — (T/S)T/

= (0-5 + Z AanBs_i> (O‘ + O‘Xn)

i=1

s
=gt + 0's+1Xn + Z AanBs—i+1
i=1

+ Z A (ps—iv1 — 1) X,

i=1

s
= (J‘s-"_1 + Z AanBs—i+1

i=1

" (Z Ai (ps—it1 — 1) + GS+1> o

i=1

s

— o_s+1 + Z AanBs—’H-l e As+1XnBO
=1
s+1

=5t Z AiXpnBs_it1
1=1

— TIS+1~

To get the probability distribution in the asymptotic
limit, we choose an initial configuration and further cal-
culate 75770 It turns out that many terms cancel
when choosing 7(® = (0 I)T, which means that in the
initial configuration, all memories are filled. As the goal
is to calculate the average number of GHZ measurements
per round, we are only interested in the last entry of the
stationary distribution 7*, which gives the probability
that all memories are filled (see Eq. (12)). Therefore, we
need to calculate

oo (D)

= (0 1)*" |:<75 +> AiX,Bsi

o

i=1
s i—1
=1+ > i (pinj— 1)
i=2 j=1

(A21)

_N )
]Z::ll

By rearranging the sums and considering lim,_,,, the



asymptotic result follows:
® 0 “n > ()
n s _ J
(0 1)*"7 <J =)o
j=1
=1+ ") (pi-1)
j=1 i=1

(A22)
®n
=007 () - e
_ 1
1+ 52, (1- (1-a-2Y)")
= (L) (A23)

with the sum over the rounds, here denoted as j.

Appendix B: Stationary expectation and dispersion
for the simplified model

The aim of this section is to derive Eq. (40). Recall
that X, ; are identically distributed. Denote (X, 1) = i
and Var[X; ;| = o3.

Lemma 1. The following recurrence relations hold:

pre1 =pm+ (1 —p)up — 1,

2= (-pPo2+p-p)m—p). D

Note that, unlike other steps of the present analysis,
this lemma is a mathematically rigorous statement about
a well-defined probabilistic model. The proof will be
given later.

Take the limit & — oo in Egs. (B1) and denote p =
limy o0 ik and o2 = limy_, o, o7. We have

p=m-—-—,
B2
o 1-p1 (B2)
2—pp

In order to calculate (min; X; ), see Ineq. (39), we
need to know the distribution of X ik, Dot just the expec-
tation value and variance. Numerical simulations show
that, for large k, even for small n and m it is well approxi-
mated by the normal distribution with the expectation p
and the dispersion o7 given above. Under this assump-
tion, we can use the known approximation (asymptotics)
of the minimum of n identically normally distributed ran-
dom variables as n — oo [25]:

(min(X; g, ..., Xnx)) = pr — aopVInn, (B3)

and, thus,
klim (min(X; g, ..., Xn)) = p—aoVinn, (B4)

—00
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where

a::¢§<1—-kﬁgﬂ331131> (B5)

4lnn

and ~ is the Euler-Mascheroni constant. However, the
simulations show that o = 1 gives a good approximation
for a broad range of parameters.

In order to find the maximal value [, of [ such that
Ineq. (39) holds, we substitute Egs. (B2) into Eq. (B4).
This gives a quadratic function of v/I. Its substitution
into Ineq. (39) gives

2
B o2 \/aQ,B
liax = pm (\/Rlnn—l—l— mlnn , (B6)

where f = (1 —p)/(2 — p). We take this as an approxi-
mation for (L) and obtain (40).

Let us again summarize the approximations used in
this simplified model for the derivation of approximation

(40) for (L):

e Substitution of random ¢ in the original model by
a fixed number ¢ associated with the average value
(€) in the stationary regime.

e We allow the occupation numbers X; to be nega-
tive and demand only that their stationary average
values are non-negative.

e The use of the normal distribution for stationary
occupation numbers Xj.

e The use of the asymptotic expressions n — oo for
the case of finite or even small n.

The first two assumptions are based on the law of large
numbers (or neglection of fluctuations) argument, while
the third one — on the central limit theorem argument.
Also, these assumptions are justified by simulations.
However, it would be interesting to obtain mathemati-
cally rigorous justifications.

Proof of Lemma 1. We have [see Eq. (34)]

- - m—z e
PrlYip =yl Xik—1 =x] = < y )py(l —-p)"TY,

(B7)

y=0,1,...,m — z. Denote

E[Y; k| Xik1 =2l =D yPrl¥ir =y Xir1 =2l
y=0
=p(m

— )
(B8)

the conditional expectation of Yi,k on the condition that

Xi,k takes the value z (in the second line we used the
expression for the expectation value for the binomial dis-
tribution) and

E[Y; 4| Xik—1] = p(m — X, 1—1) (B9)



the conditional expectation of )N/},k conditioned on the
random variable X’i,k (informally speaking, regarding X
is a fixed number). This is in accordance with the
standard definition of the conditional expectation and
E[ﬁ,kpzi,k_l] is still a random variable. Then

(Yik) = Z Pr[X; x_1 = 2] E[Y; 4| Xi p_1 = ]

= (E[Y; x| X; k-1]) = p(m — pi—1).

Generally,

(B10)

(A) = (E[A|X; k-1]) (B11)

for an arbitrary random variable A, which is a general
property of the conditional expectation and which we
will use. _ ~ _ _ ~

Since Zi,k = Xi,k—l + Y;',k and Xi,k = Zi,k -1,

(Zi k) = pk—1+ (m— pg—1)p = mp+ (1 — p)—1 (B12)

and

p = E[X; 5] =mp+ (1 — p)p—1 — L. (B13)

We have obtained the first formula in Eqgs. (B1). The
calculation for the dispersion is as follows:
= Var[X; x] = Var[Z; ]
= Var[ ik—1) + Var[Yi 4] + 2 cov[X; 1, Y] (B14)
= o2 + Var[V; )+ 2 cov[Xik_1, Yik],

where cov[XLk_l, ffzk] denotes the covariance of the two
random variables. We have

COV[Xz'k hYz'k]

= ((Xik-1 — (Xin-1)) Vi — (Yir)))

= <E[( i k—1 — <Xi k— 1))(37119 — <)~/zk>)|)21k—1]>
= ((Xip-1 — (Xip-1)) E[(Vik — (Yik))| Xisk—1])
= <( ik—1 — 1k 1>)p(ﬂk—1 _Xi,k—1)>

= —p<(Xi,k—1 — hk-1)?) = —poi.
(B15)
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(B9)—(B11).
Now let us calculate Var[}}]:

Here we have used Egs.

Var(Y; ] = (Vi — (ﬁk>)2>
<E[ zk:_ )2|X]>’

where we have again used Eq. (B11). Express now

(B16)

(Yik — (Yig))?

= { (Tor — EFiplKeimr]) + (ELF:pl K imr] — (Fis)}

= (Vi — EVir Xin1])? + EFiplZik_1] — Fin)’

+2(Yix — E[Y; 1| Xio-1]) (E[Yi | Xi k1] — (Yir))
(B17)

and notice

E{(Yir —E[Y; k| Xi k-1]))%Xik—1} = p(1—p)(m— X, 1)

(B18)
(the variance of the binomial distribution),
E[Yi x| Xi k1] — (Yig) = p(p — Xik—1), (B19)
and
E{ (Yix — E[Yix|Xik-1]) (B[Yi k| Xi k1] — (Yik )’Xz K1}
= (E[Y; k| Xi k1] — (Yir)) E{¥;x — E] i,k|Xz',k~1 ’Xi,k~1}
-0 (B20)
(the last factor is zero). Hence,
Varf’i = 1-— XZ_-f- 2 —Xi_ 2
[Yi k] <P( P)Xik—1+p°(p k—1) > (B21)

= p(1 — p)(m — px—1) + p2op_;.

Substitution of Egs. (B15) and (B21) into Eq. (B14) gives
the second formula in Eq. (B1).
O



