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Bacterial endosymbionts are common throughout the eukaryotic tree of life

and provide a range of essential functions. The intricate integration of bacte-

rial endosymbionts into a host led to the formation of the energy-converting

organelles, mitochondria and plastids, that have shaped eukaryotic evolu-

tion. Protein import from the host has been regarded as one of the distin-

guishing features of organelles as compared to endosymbionts. In recent

years, research has delved deeper into a diverse range of endosymbioses and

discovered evidence for ‘exceptional’ instances of protein import outside of

the canonical organelles. Here we review the current evidence for protein

import into bacterial endosymbionts. We cover both ‘recently evolved’

organelles, where there is evidence for hundreds of imported proteins, and

endosymbiotic systems where currently only single protein import candidates

are described. We discuss the challenges of establishing protein import

machineries and the diversity of mechanisms that have independently evolved

to solve them. Understanding these systems and the different independent

mechanisms, they have evolved is critical to elucidate how cellular integration

arises and deepens at the endosymbiont to organelle interface. We finish by

suggesting approaches that could be used in the future to address the open

questions. Overall, we believe that the evidence now suggests that protein

import into bacterial endosymbionts is more common than generally real-

ized, and thus that there is an increasing number of partnerships that blur the

distinction between endosymbiont and organelle.

Introduction

The acquisition of bacterial endosymbionts more than

1.5 billion years ago and their integration into the

intracellular networks of a unicellular host resulted in

the evolution of mitochondria and primary plastids

(referred to as plastids hereafter). The resulting geneti-

cally chimeric organisms (i.e., heterotrophic and
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photosynthetic eukaryotes) form today a major part of

Earth’s rich biodiversity. A critical process in organel-

logenesis, that is, regarded by most as marking the

boundary between an endosymbiont and an organelle,

is the evolution of protein import systems that translo-

cate nucleus-encoded proteins across the organellar

envelope membranes. This critical step enabled the

transfer of hundreds of endosymbiont genes, whose

products are essential for metabolism, growth, genetic

information processing, and division, to the host

nuclear genome in a process termed endosymbiotic

gene transfer (EGT) [1,2]. Today, mitochondrial and

plastid genomes encode no more than 66 and 240 pro-

teins, respectively [3,4].

The majority of nucleus-encoded proteins, that are

imported into mitochondria and plastids, are trans-

lated on eukaryotic ribosomes as precursor proteins

carrying N-terminal signal sequences, called transit

peptides. The transit peptides interact with soluble

sorting factors and chaperones before binding to

receptors in the TOM and TOC complexes (short for

translocon of the outer mitochondrial and chloroplast

membranes) that ‘forward’ the recognized proteins to

transmembrane channels within these multi-protein

complexes. The TOC complex forms a super-complex

with the TIC complex (translocon of the inner chloro-

plast membrane), which translocates the protein across

the inner membrane [5–9]. Proteins imported through

the TOM complex can be routed to the TIM23 or

TIM22 complex (translocons of the inner mitochon-

drial membrane). The former delivers the precursor

proteins to the inner membrane or matrix, and the lat-

ter inserts hydrophobic membrane proteins, particu-

larly mitochondrial carrier proteins with cryptic

internal targeting signals into the inner membrane.

Other specialized pathways exist for the insertion of

outer membrane proteins and import of inter mem-

brane space proteins that largely lack transit peptides.

Several recent reviews discuss in detail the current

knowledge regarding protein import into mitochondria

and plastids [10–14].
The complexity of the molecular machineries that tar-

get, translocate, and sort nucleus-encoded proteins into

mitochondria and plastids, and sub-compartments

therein, likely represents a main hurdle for organello-

genesis events and raises the questions of (a) how pro-

tein import into organelles started, (b) whether more

basic protein import mechanisms exist in more recently

acquired bacterial endosymbionts, and (c) would novel

organelles that evolve independently use similar mecha-

nisms for protein import as mitochondria and plastids.

A place to search for answers to these questions are

the countless eukaryotes from across all superphyla

that have acquired diverse, more recent intracellular

bacterial symbionts. These endosymbionts equip their

hosts with a range of novel physiological functions,

including photosynthesis, N2 fixation, biosynthesis of

essential metabolites or cofactors, chemolithoautotro-

phy, and anaerobic respiration [15–19]. In contrast to

organelles, these endosymbionts generally have been

regarded as ‘genetically autonomous’, that is, they

import metabolites but not proteins from their host

cells [20]. However, over the last 15 years, patchy evi-

dence started to accumulate that at least some of these

‘endosymbionts’ might not be as genetically autono-

mous as originally thought. For two cases, specifically

the photosynthetic chromatophore of the cercozoan

amoeba Paulinella chromatophora and, as of this year,

the N2-fixing ‘nitroplast’ (or UCYN-A endosymbiont,

short for ‘unicellular cyanobacteria nitrogen-fixing

group A’) in the haptophyte alga Braarudosphaera

bigelowii, the import of hundreds of nucleus-encoded

proteins has been revealed by protein mass spectrome-

try (MS) [21–23]. Imported proteins compensate for

the loss of corresponding genes from the endosymbi-

ont genome, characterizing chromatophores and

UCYN-A as novel genetically integrated organelles.

When speaking of ‘genetic integration’, we refer to

endosymbionts (now called organelles) in which essen-

tial endosymbiont genes have been functionally

replaced by nuclear genes with products that are

imported into the endosymbiont. In contrast, ‘meta-

bolically integrated’ endosymbionts receive only

metabolites from the host. However, in addition they

may be targeted by host effector proteins that manipu-

late their behavior in the symbiotic system. The latter

endosymbionts should, in theory, be viable outside the

host when supplemented with the right metabolites.

In this review, we summarize the evidence for pro-

tein import into bacterial endosymbionts. We describe

what is known about the cellular integration, the

molecular mechanisms underlying protein import (very

little), the origin and functions of imported proteins,

and reflect on the hurdles for the evolution of protein

import into a bacterial endosymbiont.

Cellular integration of bacterial
endosymbionts

Bacterial endosymbionts show diverse modes of cellular

integration and subcellular localizations within eukary-

otic cells. In multicellular organisms, endosymbionts are

typically restricted to specific tissues or organs com-

posed of specialized endosymbiont-harboring cells,

called ‘bacteriocytes’ [15,18,24], whereas in single-celled

protists, every host cell contains the endosymbiont(s).
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Most bacterial endosymbionts are located in the cytosol

of their host cell, either free (i.e., surrounded only by its

own bacterial envelope) or housed in a specialized

host-derived vacuole. Symbiont and vacuole together

are called the ‘symbiosome’. However, some endosymbi-

onts reside in more unusual locations such as the ER

[25], the nucleus [26], or the mitochondrion [27]. An

extreme case is found in the mealybug, a plant

sap-feeding insect, that contains two matryoshka-like

nested bacterial endosymbionts in its bacteriocytes [28].

Many bacterial endosymbionts are vertically trans-

mitted from one host generation to the next and have

coevolved with their hosts for sometimes hundreds of

millions of years [29–34]. In some protists, vertical

transmission involves strict synchronization of host

and endosymbiont cell division, which establishes a

defined number of endosymbiotic units per host cell

(e.g., in P. chromatophora [35], B. bigelowii [23,36],

and in the trypanosomatid Angomonas deanei [37])

(Fig. 1). As a consequence of their perpetual confine-

ment to a stable, metabolite-rich environment, drift,

and the long-time scales of these interactions, the

genomes of vertically transmitted endosymbionts tend

to reduce, in extreme cases down to 200 or fewer

protein-coding genes [38–40]. Host complementation

of essential symbiont functions relaxes the selection

pressure on the corresponding genes, which can even-

tually lead to their loss, while host dependence upon

its increasingly degenerating and reducing endosymbi-

ont can drive it down the ‘evolutionary rabbit hole’

[41]. The complemented products mostly originate

from the host itself including re-assigned organellar

support genes, but sometimes originate from EGT

from the endosymbiont itself [42–46] or, more often,

from horizontal gene transfers (HGTs) from bacteria

other than the endosymbiont [39,42,43,45–48].
Together, these processes result in highly complemen-

tary sets of proteins encoded in nucleus and endosym-

biont that, in concert, mediate diverse biological

processes.

The molecular mechanisms supporting this tight

host/symbiont cooperation are poorly understood. In

many endosymbionts, gene losses not only concern met-

abolic enzymes but extend to proteins involved in

genetic information processing (such as DNA replica-

tion and repair, transcription, and translation) [48,49].

Some of these functions that localize in the bacterial

cytoplasm appear to be compensated by nucleus-

encoded proteins that are specifically upregulated in the

bacteriocytes housing the endosymbionts [48]. Further-

more, although complementary sets of metabolic

enzymes in host and endosymbiont suggest extensive,

Fig. 1. Synchronized cell division of endosymbiont-harboring protists with their endosymbionts. (A) Paulinella chromatophora, (B)

Braarudosphaera bigelowii, (C) Angomonas deanei. C, chromatophore; K, kinetoplast (a network of circular DNA containing many copies of

the mitochondrial genome typical for the kinetoplastida); N, nucleus; P, plastid; S, endosymbiont.
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bidirectional metabolite exchange between the symbiotic

partners, reductive endosymbiont genome evolution is

typically accompanied by a pronounced loss of solute

transporters [19,22,50–55]. Both observations suggest

that host-encoded proteins are imported into the endo-

symbionts and inserted into their membranes. However,

whether protein import in deed plays a role for the com-

plementation of lost bacterial functions has not been

studied in most systems.

Restructuring of the bacterial
envelope during organellogenesis

Bacteria depend on diverse protein transport systems

to release proteins into the periplasm, insert them into

the outer membrane (in Gram-negative bacteria) or

transport them out of the cell. The most central are

the general translocases of the cytoplasmic membrane:

the Sec translocon that secretes unfolded proteins

across or inserts transmembrane (TM) proteins into the

membrane, and the twin-arginine translocation (Tat)

machinery that transports folded proteins [56]. The

b-barrel assembly machinery (BAM) inserts b-barrel
proteins into the outer membrane [57]. These vectorial

transport systems, however, cannot be simply operated

in reverse, and bacteria do not generally contain protein

import systems that would readily allow for the import

of host-derived proteins. Hence, organellogenesis events

must have entailed a major restructuring of the bacterial

envelope and protein complexes therein, in order to

establish metabolic connectivity and the capacity

to import nucleus-encoded proteins.

If mitochondria and plastids were originally

enclosed in a host-derived membrane, they lost this

third membrane [58]. Like the outer membranes of

their bacterial ancestors, the outer mitochondrial and

plastid membranes contain b-barrel proteins, but the

lipopolysaccharides (LPS) that formed the outer leaflet

of the bacterial outer membrane have been lost. Addi-

tionally, the peptidoglycan (PG) layer has been lost in

mitochondria and most plastids and is only retained

in the plastids of Glaucophyte algae, mosses, and some

spermatophytes [59–61].
The central protein-conducting channels of the

TOM complex (Tom40) and the TOC complex (Toc75

and Toc159) are formed by b-barrel proteins, however,
not all of these can be linked to ancestral bacterial

proteins. Tom40 shares a common origin with the

mitochondrial porin VDAC (voltage-dependent

anionic channel) [62,63]. The VDAC superfamily

apparently emerged only in the context of mitochon-

drial evolution in the last eukaryotic common ancestor

(LECA) by the amplification of a double bb-hairpin

element; a bacterial precursor protein could not be

pinpointed [64,65]. Toc75 belongs to the Omp85 pro-

tein family that also contains BamA, the central pro-

tein transporting protein of the bacterial BAM

complex [66]. However, Toc75 was recently shown to

form a hybrid b-barrel together with a member of the

Toc159 protein family which is believed to have origi-

nated with the eukaryotic cell [8,9,67]. A phylogenetic

relationship between bacterial branched-chain amino

acid transporters, the mitochondrial Tim17, Tim22,

and Tim23 proteins (that form the central

protein-conducting channels of the TIM23 and TIM22

complexes), and Tic20 (that likely forms a central part

of the protein translocation channel of the TIC com-

plex [10]) that has been initially suggested [68,69],

could not be supported by later studies [70–72].
Instead, Tim17, Tim22, and Tim23 apparently resulted

from gene duplications that occurred before the

appearance of the LECA, but their ancestral gene

remains obscure [72,73]. For Tic20, cyanobacterial

homologs of unknown function can be identified [74].

Following plastid acquisition, the Tic20 family diversi-

fied into two protein groups of which only the faster

evolving group 1 could be functionally linked to pro-

tein import [71]. In addition to the main protein con-

duction channels, the TIC/TOC and TIM/TOM

complexes contain numerous auxiliary subunits of bac-

terial and eukaryotic origin [67,75–77]. Hence,

although the mitochondrial and plastid protein trans-

location machineries contain a number of proteins of

bacterial origin, these proteins underwent extensive

changes over time, some probably beyond recognition,

and became part of novel multi-protein complexes of

mixed genetic origin that provide functions that do

not exist in bacteria.

The endosymbiont envelope in more
recently established endosymbioses

The ways in which host/symbiont coevolution trans-

formed the envelope of more recently acquired endo-

symbionts from a defense surface into a symbiotic

interface are barely understood. In many vertically

transmitted endosymbionts, this transformation has

been accompanied by the loss of genes involved in the

generation of certain components of the bacterial enve-

lope (Fig. 2), often accompanied by the gain of novel

host-derived membranes that became specialized for

the symbiotic interaction (Fig. 3). In addition to the

reduction of bacterial solute transporters (see above),

some endosymbionts lost the ability to synthesize

phospholipids (Fig. 2A,B), PG (Fig. 2A,C), or LPS

(Fig. 2A,D); and loss of the Sec, Tat, and BAM
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complexes are not uncommon [78] (Fig. 2A,E).

Most impressive is the pattern of gene loss within

endosymbionts with extremely reduced genomes

(< 0.2 Mbp) in which often all of the above-mentioned

envelope-related functions are missing [78]. This indi-

cates that these ‘endosymbionts’ completely depend on

host-derived lipids and presumably protein complexes

to build their envelopes and equip them with

functional proteins. How these losses are compensated

by nuclear genes and the consequences of these losses

for the characteristics of the endosymbiont envelope

remain unclear, in particular concerning the permeabil-

ity for proteins and metabolites. However, although a

mechanistic understanding of protein import into bac-

terial endosymbionts is largely missing, there is experi-

mental evidence that protein import occurs for a

Fig. 2. Capacity of endosymbionts to autonomously build a bacterial cell envelope. (A) Gene presence/absence patterns in the genomes of

endosymbiotic (red) and free-living bacteria (black) as analyzed by the toolset provided by the Kyoto Encyclopedia for Genes and Genomes

(https://www.kegg.jp/). (B–E) As a reference, pathways for phospholipid biosynthesis (B), PG biosynthesis (C), LPS biosynthesis (D), and the

envelope structure of Escherichia coli (E) are provided.
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number of systems, which will be summarized in the

next section.

Protein targeting and import into
bacterial endosymbionts

Bacterial endosymbionts and evolving organelles

in protists

Chromatophores of the cercozoan amoeba Paulinella

Cercozoan amoebae of the genus Paulinella contain

two photosynthetic organelles, termed ‘chromato-

phores’ [79,80], that evolved ~ 90–140 million years

ago (MYA) from a cyanobacterium of the Synechococ-

cus/Prochlorococcus clade [34,81,82]. Although chro-

matophores are ~ 140 times larger in volume than

their free-living relatives and fill up a large part of the

host cell, they morphologically resemble cyanobacteria

rather than plastids [83,84]. Cell cycles of host and

chromatophore are tightly synchronized and, during

host cell division, one chromatophore segregates to the

newly formed daughter cell [35] (Fig. 1A). Following

chromatophore acquisition, the photosynthetic Pauli-

nella lineage diversified into at least three species,

P. chromatophora, P. micropora, and P. longichromato-

phora [80,85,86]. With a size of ~ 1 Mbp and containing

878–860 protein-coding genes, chromatophore genomes

lost around 2/3 of their original coding capacity

[53,80,87,88]. Today, the gene sets of the chromato-

phore and the host nucleus are highly complementary.

Around 60 EGT and 170 HGT-derived nuclear genes

from bacteria other than the chromatophore ancestor

contributed to this complementarity [45,89–92].
EGT-derived genes include genes for the low molec-

ular weight photosystem I subunits PsaE and PsaK

(7.5 and 7.8 kDa, respectively). Isolation of photosys-

tem I and radiolabeling studies in the presence of

selective inhibitors of either prokaryotic or eukaryotic

ribosomes demonstrated that the corresponding

Fig. 3. Visualizations of the endosymbiotic systems, highlighting the membrane systems surrounding the endosymbionts that any imported

proteins need to traverse. (A) Paulinella chromatophora and its chromatophores. (B) Braarudosphaera bigelowii and UCYN-A, nitroplast. (C)

Angomonas deanei, as a representative of the Strigomonadinae, and Ca. Kinetoplastibacterium (D) Pea aphid, Acyrthosiphon pisum, and

Buchnera endosymbiont shown within a bacteriocyte. (E) Representing both the red palm weevil, Rhynchophorus ferrugineus, and its

Nardonella endosymbiont, and the cereal weevil, Sitophilus, and its endosymbiont Sodalis pierantonius. Shown within a bacteriocyte. (F)

Mealybug, Planococcus citri, and its nested endosymbionts, Ca. Tremblaya princeps and Ca. Moranella endobia, shown within a

bacteriocyte. (G) A legume and its rhizobia endosymbionts shown within a root nodule cell.

2997The FEBS Journal 292 (2025) 2992–3013 ª 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

M. E. S. Sørensen et al. Protein import into bacterial endosymbionts

 17424658, 2025, 12, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.17356 by U

niversitäts- U
nd L

andesbibliothek D
üsseldorf, W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



proteins are synthesized on eukaryotic ribosomes and

imported into the chromatophore where they assemble

with chromatophore-encoded subunits into photosys-

tem I complexes [93]. Immunogold transmission elec-

tron microscopy (TEM) using antibodies against PsaE

revealed the protein not only in the chromatophore

but also in the Golgi apparatus. This observation sug-

gests that vesicular trafficking through the secretory

pathway is involved in protein translocation across the

outer of the two chromatophore envelope membranes,

although PsaE and PsaK lack N-terminal signal pep-

tides (SPs) that typically target proteins into the secre-

tory pathway. Based on electron micrographs, the

outer chromatophore membrane has been interpreted

as host-derived whereas the cyanobacterial outer mem-

brane has been lost [83,94,95] (Fig. 3A). This interpre-

tation is in line with the loss of genes for LPS

biosynthesis and export, BamA and other cyanobacter-

ial outer membrane proteins from the chromatophore

genome that apparently has not been accompanied by

EGT [22,53] (Fig. 2A).

The global characterization of the chromatophore

proteome by protein MS demonstrated that protein

import is not restricted to a few low molecular weight

proteins. Instead, hundreds of proteins that derive

from EGTs and HGTs, but mostly from the host itself

are imported and compensate for functions lost from

the chromatophore genome or add novel functionality

[21]. Interestingly, imported proteins form two classes

(Fig. 4A). Whereas short chromatophore-targeted pro-

teins (sCTPs; < 90 aa) lack obvious targeting signals,

long chromatophore-targeted proteins (lCTPs; > 250

aa) carry a conserved N-terminal ‘chromatophore tran-

sit peptide’ (crTP) (Fig. 4B). Some sCTPs share char-

acteristics and form expanded families. Two of these

families are characterized by specific cysteine motifs

resembling the motifs found in nodule-specific

cysteine-rich peptides (NCRs) of legumes and

bacteriocyte-specific cysteine-rich peptides (BCRs) of

aphids [22] (see below). Similar to NCRs and BCRs,

at micromolar concentrations the purified proteins

show antimicrobial activity against Escherichia coli

and bind to bacterial membrane lipids in vitro [96].

Antimicrobial activity is not, however, restricted

to cysteine motif-containing sCTPs, but extends to

sCTPs annotated as ‘4-oxalocrotonate tautomerase’

and ‘DNA-binding sCTPs’ (a protein family with

> 200 members that bind to double-stranded DNA)

[96]. These annotations suggest functions in the chro-

matophore cytoplasm or at its nucleoid. Thus, it has

been proposed that the lipid-binding capacity and anti-

microbial activity at (probably unphysiologically) high

concentrations reflect a characteristic linked to the

import mechanism of sCTPs rather than their physio-

logical function [96].

Besides the expanded family of DNA-binding

sCTPs, also ~ 20% of lCTPs in both, P. chromato-

phora and P. micropora, have predicted functions asso-

ciated with genetic information processing such as a

DNA polymerase I (PolA), DNA helicases, a DNA

ligase (LigA), predicted transcription factors, and

ribosome-associated proteins [21,90]. Some of these

proteins specifically fill gaps in chromatophore-

encoded processes. Additionally, within the lCTPs a

family of ~ 20 octotrico peptide repeat proteins has

been identified which serve in green algae as important

nuclear factors regulating posttranscriptional steps of

chloroplast gene expression [22]. Hence, it appears that

in Paulinella the host gained control over DNA repli-

cation and can influence gene expression in the

chromatophore.

The crTP targeting signal likely holds the key to

understand the molecular mechanisms underlying the

import of the long lCTPs into the chromatophore.

MS characterization of the N-termini of

chromatophore-targeted proteins demonstrated that

the ~ 200 aa-long crTP is bipartite [97]. In most

lCTPs, only the first ~ 50 aa (crTPpart1) are cleaved

off during import (Fig. 4B). CrTPpart1 contains sig-

nals that imply protein trafficking through the secre-

tory pathway, suggesting that not only sCTPs but

also lCTPs traffic via the Golgi into the chromato-

phore [93,97]. Surprisingly, the remainder of the crTP

(crTPpart2) remains attached to the imported protein.

Conserved secondary structure elements throughout

crTPpart2 suggest that it adopts a structural fold that

possibly is responsible for translocating lCTPs across

the PG layer and inner chromatophore membrane.

In sum, the chromatophore is a new genetically inte-

grated photosynthetic organelle. The nucleus evolved

considerable control over the chromatophore proteome

not only by direct targeting of hundreds of nucleus-

encoded proteins into the chromatophore but addition-

ally by controlling expression of chromatophore genes.

Although many details on the protein import mechanism

remain to be elucidated, it appears that it depends on the

secretory pathway and that proteins exceeding a size cut-

off of ~ 90 aa require a crTPpart2 at their N terminus that

provides a still unknown function. This import pathway,

in which vesicular transport releases presumably folded

proteins into the intermembrane space, is very different

from TIC/TOC and TIM/TOM-dependent protein

import mechanisms into mitochondria and plastids. The

translocation mechanism across the inner membrane

and whether import clients are unfolded in this process is

currently unclear.
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Nitroplasts in the haptophyte alga B. bigelowii

Recently, evidence for the evolution of a second novel

genetically integrated organelle has been found in the

marine haptophyte B. bigelowii [23]. B. bigelowii and

its relatives contain cyanobacteria of the UCYN-A

clade which coevolved with their host cells for

~ 91 million years and are related to a group of free-

living N2-fixing cyanobacteria containing Cyanothece,

Gloeocapsa, and Crocosphaera ssp. [98,99]. Isotope

tracer studies showed that UCYN-A fixes N2 during

Fig. 4. Comparison of endosymbiotic-targeted proteins. (A) Chromatophore-targeted proteins (CTP) in Paulinella chromatophora form two

groups, short (< 90 aa) and long (> 250 aa) CTPs. (B) Schematic alignment of 3 lCTPs showing the characteristic bipartite N-terminal

extension (crTP, green). The zoom-in shows a multiple sequence alignment of 12 representative crTPs. (C) Schematic alignment of 3

nitroplast-targeted proteins (NTP) showing the characteristic C-terminal extension (uTP, red). The zoom-in shows a multiple alignment of 12

representative uTPs. Scissors symbols mark the targeting signal cleavage sites deduced by MS analyses in B and C. (D) Multiple sequence

alignments of 7 BCRs from the aphid Acyrthosiphon pisum and NCRs from the legume Medicago truncatula. Six representative NCRs of

group A (4 conserved cysteines) and group B (6 conserved cysteines) are shown. Signal peptides are underlined, and asterisks show

conserved cysteine residues. For all alignments, amino acids are color-coded in blue (positively charged; H, K, R), magenta (negatively

charged; E, D), cyan (hydrophobic; A, P, W, I, L, M, V, F), orange (neutral; G, S, Y, N, Q, T), and black (cysteines; C). Sequence identifiers or

accession numbers are, from top to bottom, for crTPs: scaffold7571-size1527|m.60359; scaffold3807-size2095|m.37686; scaffold10361-

size1249|m.74090; scaffold6875-size1609|m.56608; scaffold8035-size1476|m.62771; scaffold3865-size2079|m.38081; scaffold5513-size1797|

m.48594; scaffold4638-size1933|m.43151; scaffold2991-size2309|m.31974; scaffold4337-size1989|m.41170; scaffold2706-size2392|m.29779;

scaffold2155-size2616|m.25388 [see ref. 21; available at PRIDE Repository (https://www.ebi.ac.uk/pride/archive/), accession number

PXD006531]; for uTPs: KC1-P2-N_CL7753Contig1_1; KC1-P2-N_CL1062Contig1_1; KC1-P2-N_CL4024Contig1_1; KC1-P2-

N_CL8449Contig1_1; KC1-P2-N_CL1190Contig1_1; KC1-P2-N_CL2249Contig1_1; KC1-P2-N_CL4289Contig1_1; KC1-P2-N_CL7819Contig1_1;

KC1-P2-N_CL7868Contig1_1; KC1-P2-N_CL1296Contig1_1; KC1-P2-N_CL2661Contig1_1; KC1-P2-N_k25_Locus_10184_Trans [see ref. 23,

available at Dryad, https://doi.org/10.5061/dryad.2z34tmptf]; for BCRs (AphidBase IDs): ACYPI32128; ACYPI38738; ACYPI44142; AK343177;

AK339855; ACYPI49532; ACYPI45157; for NCRs (NCBI accession no.) group a: AFK48426.1; AES68835.1; ABS31393.1; RHN51124.1;

AES98754.1; ABS31399.1 and group b: ABS31396.1; ABS31401.1; KEH26626.1; XP_039683422.1; KEH38199.1; AES78310.1. Sequence

alignments were made with CLUSTALX (B, C) or CLUSTALW (D) and refined manually.
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the day and rapidly transfers it to the host, which in

turn fixes CO2 into metabolites that are taken up by

UCYN-A [100,101]. The symbiosis is widespread

throughout global oceans and is an important contrib-

utor to marine N2-fixation [100,102,103].

Within the host cytoplasm, UCYN-A is enclosed in

a host-derived membrane in addition to its own two

bacterial membranes and a PG layer [98,104]

(Fig. 3B). There is only a single UCYN-A per B. bige-

lowii cell, which undergoes coordinated division with

the host cell and is vertically transmitted [23,104]

(Fig. 1B). However, when nitrogen compounds are

externally provided in culture, B. bigelowii can lose

UCYN-A [104]. The UCYN-A genomes are ~ 1.4

Mbp in size and lost the genes for oxygenic photosyn-

thesis and carbon fixation but retained a complete set

of nif genes supporting N2 fixation [102,105,106].

Evidence for EGT has not been found in B. bigelo-

wii [23,104]. However, recently, protein MS of isolated

UCYN-A endosymbionts unveiled the import of > 350

nucleus-encoded proteins, many of which compensate

for functions lost from the cyanobacterial genome and

complete metabolic pathways in UCYN-A [23]. Some

imported proteins apparently allow B. bigelowii to reg-

ulate specific aspects of genetic information processing

in UCYN-A. There is, for example, an imported

methionine-tRNA formyltransferase (Fmt) that is criti-

cal for initiating translation in prokaryotes as well as

mitochondria and plastids and likely replaces the fmt

gene which has been lost from the UCYN-A genome

[23]. 62% of the nucleus-encoded proteins found

enriched in the UCYN-A fractions carry a conspicu-

ous C-terminal extension containing conserved amino

acid motifs, that likely represents an import signal and

thus has been termed the ‘UCYN-A transit peptide’

(uTP) (Fig. 4C). By protein MS, no uTP-derived pep-

tides were identified suggesting that this presumptive

targeting sequence is cleaved upon import.

Hence, the nitroplast shows a similar integration

level as the chromatophore in Paulinella. Its ability to

fix nitrogen makes it an exciting novel type of

prokaryote-derived eukaryotic organelle and demon-

strates that organellogenesis events can be driven by

the provisioning of functions other than aerobic respi-

ration and photosynthesis. The uTPs point toward yet

another mechanism for protein import into the novel

organelle. The C-terminal position of the uTP suggests

that the proteins leave the ribosome fully folded before

they are recognized as import clients, hence, although

details are unknown, the underlying import mechanism

is presumably very different from TIC/TOC and

TIM/TOM-dependent mechanisms.

Spheroid bodies in the diatom Epithemia

Rhopalodiacean diatoms house nitrogen-fixing cyano-

bacterial endosymbionts that are designated ‘spheroid

bodies’ or ‘diazoplasts’ and evolved from the same

clade of free-living cyanobacteria as Braarudosphaera

nitroplasts [98,107,108]. Spheroid bodies are estimated

to have been acquired 12–35 MYA [109–111].
Although they underwent significant genome reduc-

tion, with 3.0–2.5 Mbp, their genomes are (still)

around twice the size as in UCYN-A [112–114]. A

considerable level of cellular integration is indicated by

their vertical transmission during asexual as well as

sexual reproduction [115,116] and an apparently con-

trolled number of spheroid bodies of between two and

16 (depending on the species and host cell size) [115].

However, in contrast to the nitroplast, a recent study

found by protein MS only six host-encoded proteins

that were significantly enriched in spheroid bodies of

the Rhopalodiacean Epithemia clementina [110].

Whether these proteins translocate across the bacterial

membranes is unclear. However, since the host-derived

membrane surrounding the endosymbiont is lost dur-

ing the isolation process, these proteins appear to be

specifically targeted at least across this outermost host

membrane. One of the endosymbiont-targeted proteins

(ETPs) is annotated as E3 ubiquitin ligase, the remain-

ing proteins lack similarity to proteins of known func-

tion, and none of the ETPs are of bacterial origin.

Therefore, their functions in the symbiotic interaction

remain enigmatic.

Although there might be more ETPs that escaped

detection (only 6.5% of the predicted nucleus-encoded

proteins were identified), spheroid bodies apparently

have not reached the same level of genetic integration as

chromatophores or nitroplasts (for which many more

imported proteins were identified in MS studies that

reached a similar coverage of the endosymbiont-encoded

proteins [21,23]). As no genetic tools are available for

E. clementina as of yet, determination of the subcellular

localizations and cellular functions of the identified

ETPs is challenging. Nevertheless, it would be of utter-

most interest as it could help to unravel the molecular

mechanisms that establish the tight integration of the

spheroid body that apparently does not depend on mas-

sive protein import.

Ca. Kinetoplastibacterium spp. in symbiont-harboring

trypanosomatids

The Strigomonadinae are a subfamily of monoxenous

trypanosomatids that live throughout their life cycle as

3000 The FEBS Journal 292 (2025) 2992–3013 ª 2024 The Author(s). The FEBS Journal published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Protein import into bacterial endosymbionts M. E. S. Sørensen et al.

 17424658, 2025, 12, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1111/febs.17356 by U

niversitäts- U
nd L

andesbibliothek D
üsseldorf, W

iley O
nline L

ibrary on [21/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



commensals in the digestive tracts of insects. All mem-

bers of this subfamily (comprising the genera Angomo-

nas, Strigomonas, and Kentomonas) possess a vertically

transmitted b-proteobacterial endosymbiont, called Ca.

Kinetoplastibacterium, that resides freely in the host

cytoplasm and supplies the host with several metabo-

lites and cofactors [33,117–119]. Host/symbiont coevo-

lution over ~ 40–120 million years resulted in genome

reduction to a size of 0.8 Mbp [120–122]. An advanced

level of cellular integration is indicated by a strict syn-

chronization of the cell cycles of host and endosymbi-

ont resulting in a single endosymbiont per host that

divides just before the host cell divides [33,37,118]

(Fig. 1C).

Protein MS of isolated endosymbionts in combina-

tion with in vivo localization studies of fluorescent

fusion proteins, enabled by the development of genetic

tools for this trypanosomatid, identified seven ETPs

within A. deanei [123,124]. Thus, also in A. deanei,

genetic integration is not as advanced as for the chro-

matophore and UCYN-A. The ETPs appear to be

either host-derived or represent orphan proteins of

unclear provenance and most lack functional annota-

tions. However, differential localizations of the ETPs

within/around the endosymbiont suggest that they ful-

fill specific functions. ETP1 and ETP5 distribute over

the endosymbiont envelope. ETP2, ETP7 (a predicted

PG hydrolase), and ETP9 (a predicted dynamin-like

protein), localize at the endosymbiont division site.

Since nucleus-encoded PG hydrolases and dynamin-

like proteins are also required at the division site of

mitochondria and/or plastids, it appears likely that

these proteins provide A. deanei with nuclear control

over endosymbiont division [125–128]. In order to

function as a PG hydrolase, ETP7 would have

to translocate across the outer endosymbiont mem-

brane to reach the PG-containing periplasm. Finally,

two ETPs, ETP3 and ETP8, showed a fluorescence

pattern compatible with a localization in the symbiont

cytosol plus localization over the Golgi. The outer

membrane of Ca. Kinetoplastibacterium sp. is of bac-

terial origin (Figs 2A and 3C) but MS analyses

detected phosphatidylcholine, a major phospholipid in

eukaryotes that cannot be synthesized by

endosymbiont-encoded enzymes, as a major compo-

nent of endosymbiont fractions [129] and TEM ana-

lyses captured vesicles that appear to fuse with the

endosymbiont outer membrane of Strigomonas culicis

[130]. These observations point toward a role of vesic-

ular transport in host/symbiont communication, how-

ever, need to be corroborated by experimental data.

Additionally, Ca. K. crithidii encodes a single porin

which likely contains 18 membrane-spanning b-strands

and showed a slight preference for cations over anions

in electrophysiological measurements [131]. Whether

this porin serves only in nutrient exchange or enables

protein translocation across the outer membrane is still

to be elucidated.

At least one nuclear gene in A. deanei appears to

result from EGT [46]. Its gene product, an ornithine

cyclodeaminase that converts ornithine into proline,

however, was not among the ETPs but acquired a new

localization in the glycosomes, specialized peroxisomes

in the trypanosomatids that tightly associate with the

proline-auxotroph endosymbionts [123].

Together, the results suggest that although massive

protein import into the endosymbiont has not evolved

in A. deanei, similar to the spheroid body, a number

of host proteins have apparently started to interact

with specific structures in the endosymbiont. The

genetic tools available for this endosymbiotic system

make A. deanei an ideal model to scrutinize the func-

tions of these early ETPs and investigate how they

provide the host with control over processes such as

endosymbiont division (as suggested by the functional

annotations and subcellular localizations observed for

some of them).

Nutritional endosymbionts in insects

There is a large diversity and prevalence of endosymbi-

onts within insects [132]; they cover a wide range of

functions, but have been particularly pivotal in

enabling insects to survive on nutritionally imbalanced

diets [133]. Many of these interactions are, therefore,

essential and mutually obligate. Extreme genome

reduction of the endosymbionts has occurred on multi-

ple occasions [38–40]. In some cases, it has been shown

that the host complements the endosymbiont directly

with metabolic compounds, leading to mosaic path-

ways that cross multiple compartments [134]. In a few

instances, however, there is evidence that proteins or

polypeptides are transported into the endosymbiont,

and these will be discussed below.

The pea aphid Acyrthosiphon pisum

The first example was found within the pea aphid

A. pisum, which has harbored its c-proteobacterial
endosymbiont, Ca. Buchnera aphidicola, for over

100 million years [135]. Buchnera is housed in special-

ized bacteriocyte cells, surrounded by two bacterial

membranes, a PG layer, and one host symbiosomal

membrane [136] (Figs 2A and 3D).

The Buchnera genome in A. pisum is 0.64 Mbp in

size and biosynthetic pathways for many essential
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amino acids are split between host and symbiont [137].

Whereas protein MS analyses identified enzymes that

were enriched in bacteriocytes and that mediate the

biosynthesis of amino acids provided to the endosym-

biont by the host, no host proteins appeared as reli-

ably enriched in the endosymbionts themselves [138].

Additionally, expansions of amino acid transporter

gene families have been described that are specifically

expressed in the bacteriocytes [139]. These findings

imply that pathways are linked on the metabolite level

and large-scale import of host-encoded proteins into

Buchnera does not occur. However, the total proteome

analysis captured only 1940 out of 34 616 predicted

aphid proteins leaving room for protein import that

escaped detection.

Although no functional EGT occurred in the pea

aphid, 12 nuclear genes apparently resulted from

HGTs of diverse bacteria other than Buchnera, and

seven of these have been found to be highly tran-

scribed specifically in the bacteriocyte [47,140]. The

location of one of these proteins, the 21.2-kDa protein

RlpA4, was found to be restricted to the maternal bac-

teriocytes and specifically to the cytoplasm of the

Buchnera cells within them, using immunoblot, immu-

nofluorescence, and immunogold TEM analyses with

antibodies raised against RlpA4 [141]. A 23 aa-long

SP likely directs the protein via the secretory pathway

across the symbiosomal membrane [47,140]. It remains

unknown, however, how the protein proceeds to cross

the bacterial envelope and what the precise function of

RlpA4 is within the Buchnera cell [141].

Transcriptome comparison between bacteriocytes

and entire aphids revealed among the 50 most highly

over-represented genes in bacteriocytes, 11 orphan

genes encoding proteins with N-terminal SPs. Seven of

these genes encoded short peptides of 67–108 aa with

six or eight cysteines that were termed ‘Bacteriocyte-

specific Cysteine-Rich peptides’ (BCRs) (Fig. 4D),

while the remaining secreted orphan proteins contain

no cysteines and vary in length from 108 to 413 aa

[142]. When externally applied to E. coli cells, four

BCRs exhibited antimicrobial activity and were

hypothesized to influence the endosymbiont in a simi-

lar manner to the NCR peptides in legumes (see

below) [143]. The location of these peptides within the

bacteriocytes and whether they are transported into

the Buchnera cells have yet to be demonstrated. None-

theless, it appears likely that, similar to RlpA4, some

of these bacteriocyte-specific secreted proteins translo-

cate the bacterial envelope and serve as nuclear factors

providing the host with control over certain biological

processes of its endosymbiont.

The red palm weevil Rhynchophorus ferrugineus

Many weevils carry the c-proteobacterial endosymbi-

ont Ca. Nardonella that resides free in the cytoplasm

of the bacteriocytes of their larval bacteriome and is

vertically transmitted from mother to offspring [144]

(Fig. 3E). Nardonella coevolved with its weevil host

for > 100 million years, which resulted in extreme

genome reduction to 0.20–0.23 Mbp and 196–231 pre-

dicted protein-coding genes in different weevil lineages

[144–147]. Nardonella lost genes for the biosynthesis of

fatty acids, phospholipids, the BAM, Tat, and most

of the genes for the Sec complex, only the PG biosyn-

thetic enzymes are largely encoded [78] (Fig. 2A). Fur-

thermore, while Nardonella endosymbionts encode

minimal but supposedly complete gene sets for replica-

tion, transcription, and translation, they lost genes for

almost all other metabolic pathways. Their genomes

appear to be streamlined for a single biological func-

tion: provisioning tyrosine, an important precursor for

cuticle formation in their weevil hosts [144]. However,

a gene for the aminotransferase that catalyzes the last-

step in this pathway is missing in Nardonella. In the

transcriptome of the black hard weevil Pachyrhynchus

infernalis, two glutamate oxaloacetate transaminases,

GOT1A and GOT2A, were identified that are prefer-

entially expressed in bacteriocytes. Both proteins can

convert the precursor 4-hydroxy-phenylpyruvate to

tyrosine by transamination and were shown to be

required for tyrosine production in the weevil by

RNAi [144]. Recently, orthologs of these proteins,

termed RfGOT1 and RfGOT2A, were identified in the

red palm weevil R. ferrugineus where they are specifi-

cally upregulated in the bacteriome and required for

tyrosine production as well [148]. Localization of both

proteins in the Nardonella cytoplasm was observed by

immunogold TEM and immunofluorescence experi-

ments [148]. RfGOT1 and RfGOT2A have a size of

48.3 and 45.8 kDa, respectively, and carry no pre-

dicted SP at their N terminus, in line with the lack of

a symbiosomal membrane. Further experiments are

needed to confirm the import of these proteins; how-

ever, they suggest that other presumed-bacteriocyte

proteins should be tested for endosymbiont

localization.

The cereal weevil Sitophilus

In the cereal weevil Sitophilus, the ancient Nardonella

endosymbiont was replaced 20 MYA by another c-
proteobacterial endosymbiont Sodalis pierantonius,

also referred to as Sitophilus primary endosymbiont
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(SPE) [147,149,150]. SPE lies free in the cytoplasm

of the bacteriocytes [151,152] (Fig. 3E). Its genome of

4.51 Mbp is still relatively large, but shows signs

of ongoing degeneration [150]. Within the Sitophilus

bacteriocytes, an 8.6-kDa antimicrobial peptide, ColA,

was found to be highly expressed and has been impli-

cated in the control of SPE [153]. Immunomicroscopy

with antibodies against ColA showed the peptide local-

ized within the endosymbiont cytoplasm in addition to

specific host tissues [153]. Interestingly, the same anti-

bodies also cross-reacted with Nardonella isolated from

the bacteriome of the palm weevil R. ferrugineus, sug-

gesting that ColA has a broader impact on weevil sym-

bioses. Far-western blotting suggested that ColA gains

access to the endosymbiont cytoplasm by interacting

with Omp receptors, and RNAi revealed that ColA is

involved in the regulation of endosymbiont growth

and location [153]. E. coli cells challenged with ColA

displayed cell giantism and polyploidy resembling the

phenotype of the SPE in the symbiotic association.

These results demonstrate that relatively recently cap-

tured endosymbionts can already be targeted by host

effector proteins. Furthermore, they suggest that ColA

is an ancient effector that has been used in weevils for

symbiotic interactions long before the acquisition of

SPE and that the intrinsic properties that enable ColA

to interact with diverse bacteria make it a useful tool

for gaining control over novel endosymbionts.

The mealybug Planococcus citri

The final case of protein import within insects was

identified within the complex nested endosymbiosis of

the mealybug P. citri. The bacteriocytes of the host

house a b-proteobacterium Ca. Tremblaya princeps,

which itself houses a c-proteobacterium, Ca. Mora-

nella endobia [28,55]. The ancestor of Tremblaya was

acquired ~ 100–200 MYA [154], whereas Moranella is

one of several c-proteobacteria that have been inde-

pendently acquired more recently in different

Tremblaya-harboring mealybug lineages [155]. In line

with their different ages, Tremblaya contains an

extremely reduced genome of 0.14 Mbp and the cells

form 10–20 lm large spheres, which contain several

Moranella cells with a genome size of 0.54 Mbp

[28,55]. Tremblaya is enclosed by three membranes,

apparently two ‘bacterial membranes’ and a surround-

ing host vesicle, however, it has lost all genes required

for the biogenesis of an envelope including the Sec,

Tat, and BAM machineries (Figs 2A and 3F). Within

Tremblaya, Moranella is surrounded by two bacterial

membranes [28] (Fig. 3F). The overall patterns of gene

loss and retention suggest that the two endosymbiont

genomes complement one another to synthesize the

essential amino acids the host requires [55]. Some of

these mosaic pathways are additionally supplemented

by host enzymes, the genes of which mostly originate

from HGT events [42]. One such pathway is PG bio-

synthesis. A PG layer was found exclusively at the

Moranella, but not the Tremblaya, cell envelope using

nanoSIMS visualization of 15N D-Ala [156]. Proteins

involved in the biosynthesis of soluble PG precursors

have been lost from the Moranella as well as Trem-

blaya genomes but are encoded as a result of HGTs in

the P. citri mealybug genome [42]. These genes are,

however, lineage specific and are not found in all

nested endosymbiont-hosting mealybugs. Using poly-

clonal antibodies and immunohistochemistry, one of

these proteins, the D-alanyl-D-alanine ligase MurF,

was found to be located in the Moranella cytoplasm

and, in a much lower concentration, to the bacterio-

cyte cytoplasm [156]. This finding suggests that PG

precursors are synthesized by imported host-encoded

proteins within the Moranella cytoplasm, which itself

encodes the last three steps of PG precursor biosynthe-

sis, including the flippase MurJ that externalizes the

membrane-bound precursor lipid II (Fig. 2A,C).

The mealybug MurF protein is a 56 kDa protein with

a predicted 20 aa-long SP, probably mediating translo-

cation across the symbiosomal membrane. The trans-

port mechanism by which MurF crosses the remaining

four membranes separating the host and Moranella

cytoplasm are as yet unknown as is the extent of pro-

tein import into Moranella and hence the level of

genetic integration. However, the finding that a single

nucleus-encoded protein masters this spectacular tar-

geting task translocating five membranes, makes it in

our opinion likely, that a general targeting mechanism

exists in P. citri that allows more nuclear proteins to

reach Moranella.

N2-fixing rhizobia in legumes

Approximately 65 MYA members of the legume fam-

ily established endosymbiotic associations with Rhizo-

bia, bacteria, which induce the formation of root

nodules in which they are enclosed in symbiosomal

membranes and differentiate into N2-fixing bacteroids

[24,157] (Fig. 3G). Rhizobia are a polyphyletic group

of a- and a few b-proteobacteria with genome sizes of

~ 5–10 Mbp [158]. Since legume seedlings are initially

aposymbiotic, every plant generation has to establish

the symbiosis anew from an environmental pool of

bacteria. The microaerobic conditions inside the nod-

ule protect the oxygen-sensitive nitrogenase [159]. Bac-

teroid differentiation is accompanied by massive
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transcriptome changes including an induction of genes

involved in N2-fixation and a repression of many

genes required for growth, including those for ribo-

somal proteins, and cell surface functions such as cap-

sular polysaccharides, LPS, and outer membrane

proteins [160–162].
In nodules of the inverted repeat-lacking clade

(IRLC) legumes, including Medicago truncatula, bacte-

roids undergo ‘terminal differentiation’ which includes

cell elongation, polyploidization, and loss of reproduc-

tive capacity, whereas bacteroids in non-IRLC legumes

maintain their normal size, genome content, and

reproductive capacity [163]. IRLC legumes, but not

legumes without terminal bacteroid differentiation,

encode short secreted peptides termed ‘nodule-specific

cysteine-rich peptides’ (NCRs), which in M. truncatula

form an expanded group of ~ 700 proteins. NCRs

contain a conserved SP followed by highly divergent

mature peptides of usually 35–55 aa length with four

to six cysteine residues at conserved positions

[164–166] (Fig. 4D). Their expression is almost exclu-

sive to the nodules and is highly spatially resolved to

functionally differentiated zones of the nodules

[160,161]. Within the nodule, NCRs are targeted via

the secretory pathway to the bacteroids where they

can interact with the membrane or different cytosolic

components [167–169]. A unique ensemble of marker

proteins distinguishes the symbiosomal membranes

from other membrane-bound compartments within the

host and enables the targeted delivery of diverse plant-

derived proteins, marked with specific SPs, via the

secretory pathway into the symbiosome [170,171]. A

nodule-specific signal peptidase complex, containing

the essential subunit DNF1, was identified in the

model legume M. truncatula. In the dnf1 mutant,

symbiosome-targeted proteins retain their SPs, are

trapped in the ER, and rhizobia cannot differentiate

into bacteroids [172].

The rhizobial transporter BacA has been implicated

in NCR translocation across the bacteroid cytoplasmic

membrane. BacA renders rhizobia sensitive to the pep-

tide antibiotic bleomycin and is required for bacteroid

differentiation in IRLC but not in non-IRCL legumes

[173]. BacA shares 64% sequence identity with the

peptide transporter SbmA of E. coli. Determination of

the structure of both proteins by cryo-EM showed that

they adopt the same overall fold with an outward-open

conformation and a large cavity that can accommo-

date diverse substrates. Furthermore, the structure sug-

gested a proton-driven mechanism for antimicrobial

peptide import [174]. Since bacA mutants quickly lyse

after endocytosis in NCR-producing host plants,

apparently, BacA facilitates not only the import of

NCRs allowing them to reach their intracellular tar-

gets but concomitantly counteracts deadly amounts of

membrane-permeabilizing NCRs by defensive uptake,

directing them away from the membrane to limit dam-

age [175,176].

The sheer number of different NCRs and lack of

knowledge of their exact redox status in planta makes

it challenging to dissect their exact mode of action in

bacteroid differentiation, however, deletion of single

NCRs can significantly impair bacteroid differentiation

[166,177,178]. Described effects of NCRs on Rhizobia

include inhibition of cell division, cell enlargement,

genome endoreduplication, and manipulation of bacte-

rial transcription and translation [168,169,179]. Fur-

thermore, when externally added to cultured Rhizobia,

NCRs can provoke features of terminal differentiation

and some show antimicrobial properties, at minimal

inhibitory concentration of ~ 2.5–12.5 lM, against

diverse bacteria [169,180].

Although rhizobia are controlled by a large arsenal

of nucleus-encoded proteins, we would not consider

rhizobia as genetically integrated organelles. Their

restriction to the root nodules and thus, exclusion

from the plant reproductive organs, prevents vertical

transmission of rhizobia. Hence, rhizobia retained the

capacity to survive in the soil independently of their

host plants and endosymbiont-encoded functions have

not been replaced by nuclear genes. Instead, rhizobia-

targeted legume proteins work as effectors that manip-

ulate the rhizobial morphology and physiology and

turn them into tiny N2-fixing factories. This manipula-

tion is an effective alternative to the genetic integration

that is always linked to a permanent host/

endosymbiont association with vertical transmission.

Conclusions and future directions

Genomic characterization of countless bacterial endo-

symbionts led to an advanced understanding of the

diversity of functions they provide to their hosts and

the dynamics of their evolution. However, our insights

into the cell biology of endosymbiotic associations,

including a mechanistic understanding of

host/symbiont interactions and the early steps in the

transition from endosymbiont to organelle, is lagging

far behind. This is at least partially due to the facts

that endosymbiotic systems are extremely diverse,

many cannot be cultivated easily, and for most, there

are no, or no advanced, genetic tools available.

Only in two systems, namely Paulinella and Braaru-

dosphaera, has the replacement of hundreds of endo-

symbiont proteins by nucleus-encoded proteins, and

hence a substantial level of genetic integration, been
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clearly established by the available data so far. How-

ever, it is certainly an oversimplification to assume

that endosymbionts with extremely reduced genomes

that lost essential genes for their central genetic pro-

cesses or the capacity to build their own membranes

can function by exchanging only metabolites with their

host cells. The report of single compensatory host-

encoded proteins being imported into highly reduced

bacterial endosymbionts in insects, where they replace

lost functions, suggests that genetic integration of the

endosymbiont has been achieved in additional systems.

However, to understand (a) how many highly

reduced endosymbionts depend on the import of com-

pensatory host-encoded proteins, (b) the level of

genetic integration of a given system, (c) how far

metabolite exchange alone suffices for a stable endo-

symbiotic association, or (d) to which extent hosts

depend additionally on the targeting of effector pro-

teins into their endosymbionts to control their growth,

physiology, and selective permeability, we need the

global characterization of many more endosymbiont

proteomes and functional studies on identified ETPs.

Such studies from diverse systems representing differ-

ent ages and levels of integration could help us to

develop a universal model of the early steps in orga-

nellogenesis and understand how much room there is

for variations on the theme. Furthermore, such data

would help to identify common physicochemical fea-

tures of the imported proteins (such as size, hydropho-

bicity, or conserved sequence elements) that in turn

could help to identify components of the import path-

ways as well as constraints for import (such as size

cutoffs dictated by the translocation systems in the dif-

ferent membranes or the PG layer itself).

A scenario for progressing organellogenesis that

appears plausible in the light of the available, though

limited, data is that a eukaryotic host cell starts rela-

tively early on to target effector proteins into a bacterial

endosymbiont, which can manipulate specific biological

processes in the bacterium to stabilize the symbiotic

association. Once a nucleus-encoded protein with func-

tional redundancy to the endosymbiont attains import

capacity, deleterious mutations in the endosymbiont

copy can get fixed and—if the resulting process cannot

be replaced by metabolite import—the endosymbiont

becomes dependent on the imported host protein. Pro-

cesses that cannot be easily replaced by metabolite

import would be, for example, genetic information pro-

cessing from the endosymbiont genome, photosynthesis

in a heterotrophic host with limited supply of organic

nutrients, or nitrogen fixation in an oligotrophic envi-

ronment. As soon as a general import mechanism with

a specific targeting signal evolves, it likely spreads

quickly and results in the import of hundreds of pro-

teins into the new organelle and hence, increases over

time the degree of genetic integration. It is important to

note that EGT is not a precondition for the genetic inte-

gration of an endosymbiont. In Paulinella, EGT played

only a circumstantial role in genetic integration of the

chromatophore, whereas in Braarudosphaera no EGT at

all was required. The likelihood that EGT contributes

to the set of endosymbiont-targeted support proteins

depends on (a) the number of endosymbiont genes that

are being functionally replaced by imported proteins,

(b) the access of the host to alternative sources of

genetic material via HGT, and (c) the nuclear integra-

tion rate of endosymbiont-derived chunks of DNA of a

sufficient size, which depends on diverse factors intrinsic

to the biology of the host and the endosymbiont.

Although the formal possibility exists that mRNA

import, not protein import, establishes the endosymbi-

ont’s dependence on nuclear genes, the observed conser-

vation of different targeting sequences (SPs, crTPs,

uTPs) on the amino acid level, plus experimental evi-

dence in some systems (such as legumes and Paulinella,

see above), renders this scenario very unlikely. How-

ever, dissecting the molecular mechanisms underpinning

the protein translocation across the endosymbiont-

surrounding membranes remains very challenging. A

key advancement will be the detailed characterization of

the proteome and protein complexes in these mem-

branes and the interactions between some of their com-

ponents and imported proteins. Leverage would be

provided by the further development of model systems

and genetic tools for these systems. Thus, it will take

time and effort before a mechanistic understanding of

the diverse mechanisms of protein import that are uti-

lized in different endosymbiotic associations becomes

available. However, research in this direction holds the

promise to unravel a plethora of novel biological mech-

anisms for targeting, insertion, and translocation of

proteins with different characteristics and folding states

to, in, and across biological membranes. Moreover, this

will provide vital insights into the circumstances pro-

moting organellogenesis events. It is an exciting time in

the field of endosymbiosis research, and the more sys-

tems we identify on the endosymbiont to organelle spec-

trum and characterize in depth, the deeper we can

expand our understanding of this complex evolutionary

transition.
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