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Summary (German) 

Die Parkinson-Krankheit (PD) ist eine der häufigsten neurodegenerativen 
Erkrankungen, jedoch ist die diagnostische Genauigkeit durch das Fehlen 
sensitiver und spezifischer Biomarker begrenzt. Ein vielversprechender Ansatz zur 
Entwicklung von Biomarkern ist die Analyse PD-spezifischer Veränderungen der 
neuronalen funktionellen Konnektivität im Ruhezustand (rsFC) mithilfe der 
funktionellen Magnetresonanztomographie (fMRT). Verschiedene Studien 
berichteten über Veränderungen in der funktionellen Konnektivität (FC) im Default 
Mode Network (DMN, u.a. mit selbstbezogenen Gedanken und Tagträumen 
assoziiert) und in Task-positiven Networks (TPNs, bei der Ausführung von 
Aufgaben aktiv). Die Literatur ist jedoch häufig widersprüchlich.  
Ziel der vorliegenden Studie war die Evaluierung der rsFC von metaanalytisch 
definierten Netzwerken als potenzielle Biomarker für PD und die Identifizierung 
möglicher Ansatzpunkte für die Biomarker-Forschung. Dabei wurde die FC des 
DMN, eines gesamten Gehirnnetzwerks (WBN) und von 11 metaanalytisch 
definierten TPNs in zwei unabhängigen Datensätzen mit insgesamt 66 
PD-Patienten und 67 gesunden Kontrollpersonen systematisch untersucht. Dabei 
kamen einfache Mittelwerte der FC und graphentheoretische Kennzahlen zum 
Einsatz. Beide Datensätze wurden unabhängig voneinander analysiert, um die 
Replizierbarkeit der Ergebnisse zu überprüfen. 
Im ersten Datensatz zeigte sich, dass das DMN bei PD-Patienten weniger stark 
und effizient vernetzt war. Die mittlere FC, die global efficiency und die diffusion 
efficiency des DMN waren verringert und mehrere Messgrößen korrelierten 
negativ mit der motorischen Symptomlast. Auch innerhalb mehrerer TPNs (u.a. 
zwei motorische Netzwerke) war die FC reduziert. Die Analyse der Interaktionen 
zwischen DMN und TPNs/WBN ergab Hinweise auf einen weniger effizienten 
Informationsfluss, z.B. zwischen dem DMN und dem motor execution Netzwerk 
bzw. dem vigilant attention Netzwerk. Darüber hinaus wurden veränderte 
Integrations- und Segregationsmuster des DMN bei PD festgestellt. Nur ein kleiner 
Teil der Ergebnisse aus dem ersten Datensatz wurde im zweiten Datensatz 
repliziert, vermutlich aufgrund der heterogenen Natur der PD. Insgesamt gab es 
Hinweise darauf, dass rsFC-Analysen von metaanalytischen Netzwerken ein 
möglicher Ausgangspunkt für die von Biomarker-Entwicklung bei PD sein könnten. 
Allerdings wirft die geringe Übereinstimmung der Ergebnisse in den beiden 
Datensätzen Fragen zur Zuverlässigkeit der Befunde auf. Zusammen mit früheren 
Studienergebnissen legt die Studie nahe, dass eine vertiefte Untersuchung von 
PD-Subtypen erforderlich ist, um das Potenzial von FC-basierten Biomarkern für 
die Parkinson-Diagnostik weiter zu erforschen und zu bewerten. 
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Summary (English) 

Parkinson’s disease (PD) is among the most prevalent neurodegenerative 
diseases. However, due to a lack of sensitive and specific biomarkers, diagnostic 
accuracy remains relatively low. One promising avenue for the development of 
biomarkers is the analysis of functional magnetic resonance imaging (fMRI) to 
detect PD specific changes in neural resting-state functional connectivity (rsFC) 
patterns. Previous studies found alterations of functional connectivity (FC) in the 
default mode network (DMN, associated with self-referential thoughts and 
mind-wandering) and in task-positive networks (TPN, involved in externally 
directed tasks), however the literature is often contradictory. 
The aim of the study was to help to elucidate whether rsFC of meta-analytic 
networks has the potential to serve as a diagnostic biomarker in PD, and to 
identify potential starting points for further biomarker research. To this end, rs-fMRI 
data from two independent datasets from a total of 66 PD patients and 67 healthy 
controls (HC) were analyzed. Within- and between-network FC of the DMN, a 
whole-brain network (WBN) and 11 meta-analytically defined TPNs, covering a 
large set of cognitive functions, were systematically assessed via variations of 
simple mean FC and graph-theoretical measures. Both datasets were investigated 
independently to evaluate replicability of results. 
In the first dataset, there were signs of a less strongly and less efficiently 
connected DMN in PD compared to HC. The average FC, global efficiency and 
diffusion efficiency of the DMN were decreased, and several measures correlated 
negatively with motor symptom severity. FC was also decreased within several 
TPNs, including the two investigated motor networks. The analysis of the 
interaction of the DMN and the TPNs/WBN revealed signs of a less efficient 
information flow between networks (e.g., between DMN and motor execution 
network or DMN and vigilant attention network). Furthermore, there were signs of 
altered integration and segregation patterns of the DMN in PD. Intriguingly, only a 
small portion of the results from the first dataset was replicated in the second 
dataset, probably due to the heterogeneous nature of PD. Overall, there is some 
evidence for the suitability of rsFC measures as a starting point for the 
development of new biomarkers in PD. However, the small overlap of results 
between the two datasets raises concerns about the reliability and generalizability 
of PD-related FC alterations. Overall, taken together with previous findings, the 
study indicates the need for further investigations into PD subtypes to fully explore 
and evaluate the potential to develop FC-derived biomarkers in PD. 
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1 Introduction 

1.1 Parkinson’s disease 

Parkinson’s disease (PD) is a progressive neurodegenerative disease, primarily 

characterized as a motor disorder. The disease is caused by a loss of 

dopaminergic neurons in the pars compacta of the substantia nigra, a brain region 

crucial for the initiation and coordination of movements. Pathophysiologically, 

alpha-synuclein aggregates, called Lewy-bodies, are responsible for the neural 

loss, first occurring in the upper brainstem, then spreading throughout the brain 

over time (Braak et al. 2003; Goedert et al. 2013). 

1.1.1 Epidemiology 

Parkinson’s disease affects approximately 1 % of the population above the age of 

60 (Tysnes & Storstein 2017). Men seem to be more at risk than women (Tolosa et 

al. 2021). The disease onset usually occurs at 65 to 70 years, but earlier onsets 

are possible, especially in genetically predisposed individuals (Tysnes & Storstein 

2017). When the condition was first described by James Parkinson in 1817 as 

“shaking palsy” (Parkinson 2002), it was a rare disease. However, over the course 

of the last two centuries, it has become more common and the prevalence is still 

rising (Ben-Shlomo et al. 2024; Dorsey et al. 2018). Between 1990 and 2016, an 

increase in deaths (161 %), disability-adjusted life-years (148 %) and prevalence 

(145 %) of PD has been reported (GBD 2016 Neurology Collaborators 2019). This 

increase is caused by increasing global life expectancy as well as environmental 

factors. Researchers predict that this increase will continue in the next generation 

(Dorsey et al. 2018; GBD 2016 Parkinson’s Disease Collaborators 2018). PD is 

now one of the leading causes of neurological disability (Dorsey et al. 2018; GBD 

2016 Neurology Collaborators 2019). These numbers illustrate that an increase in 

research efforts is needed to meet the challenges that arise with increasing PD 

prevalence.  

1 

https://sciwheel.com/work/citation?ids=71507,872416&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=3082324&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10932520&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=10932520&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3082324&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3082324&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=72713&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=6195959,15909920&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6770790&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=8494219,6195959&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6195959,6770790&pre=&pre=&suf=&suf=&sa=0,0
https://sciwheel.com/work/citation?ids=6195959,6770790&pre=&pre=&suf=&suf=&sa=0,0


1.1.2 Pathophysiology and etiology 

The pathological hallmark of PD are aggregates of misfolded proteins, called Lewy 

bodies, discovered by Fritz Heinrich Lewy in 1912 (Engelhardt & Gomes 2017). In 

1990, alpha-synuclein was identified as the major component of these neural 

inclusions leading to cell loss, especially in the substantia nigra (Braak et al. 2003; 

Goedert et al. 2013; Tolosa et al. 2021). To date, the post-mortem proof of the 

presence of Lewy bodies is the only way to definitively diagnose PD (Bloem et al. 

2021). In 2003, Braak and colleagues proposed a staging scheme of PD based on 

their discovery that Lewy bodies seem to follow a systematic pattern of spread 

throughout the brain (Braak et al. 2003). They found that in early stages, Lewy 

bodies were present in the dorsal motor nucleus of the glossopharyngeal and 

vagal nerves as well as in the anterior olfactory nucleus. From here, the misfolded 

protein-aggregates spread to other brain regions in a presumably prion-like 

fashion (Braak et al. 2003; Goedert et al. 2013; Steiner et al. 2018). This, however, 

does not apply to all PD cases, underlining the heterogeneous nature of the 

disease. 

Genetic predispositions also play an important role in PD etiology (Blauwendraat 

et al. 2020; Bloem et al. 2021). Mutations in several genes have been found to be 

associated with PD. These mutations can be differentiated into two different 

categories: (1) High risk mutations, being rather rare but showing a high 

penetrance and often occurring in familial PD and (2) low risk mutations, being 

rather common but showing smaller effects, often present in what seems to be 

sporadic PD (Blauwendraat et al. 2020; Bloem et al. 2021). Although these 

mutations increase the risk of developing PD, research suggests that other factors 

are needed to initiate the disease. The most important risk factor is age. 

Additionally, environmental factors, such as the exposure to pesticides, smoking 

(risk factors) or caffeine consumption (protective factor), play a role (Blauwendraat 

et al. 2020; Bloem et al. 2021). 

Recent research has propagated the existence of a gut-brain axis, proposing an 

important role of the gastrointestinal system in the etiology of PD (Klann et al. 

2021). 
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1.1.3 Clinical symptoms  

By definition, Parkinson’s disease is marked by the presence of bradykinesia in 

combination with either rigidity or rest tremor with a frequency of 4 to 6 Hz. 

Together, these symptoms are called parkinsonism (Gibb & Lees 1988; Jankovic 

2008; Postuma et al. 2015). These cardinal symptoms are often accompanied by a 

loss of postural stability, usually occurring later in the course of the disease 

(Jankovic 2008). These motor symptoms result from the loss of neurons within the 

substantia nigra, impairing the basal ganglia circuit, normally involved in the 

initiation of motor functions. Secondary motor symptoms are for example 

hypomimia, dysarthria, micrographia or the freezing phenomenon, where patients 

literally freeze in the middle of motion (Jankovic 2008).  

With regard to the importance of motor disability, PD is classified primarily as a 

motor disease. However, non-motor symptoms also play an important role. Among 

these are autonomic dysfunction, a cognitive impairment that can develop into 

dementia, sleep disorders, anosmia and muscle pain (Jankovic 2008). The PD 

defining symptoms often are preceded by a prodromal stage with predominantly 

autonomic symptoms, often preceding the motor symptoms by several years. 

Among these symptoms, hyposmia, constipation, depression and idiopathic 

rapid-eye-movement (REM) sleep behavior disorder are the most common 

(Mahlknecht et al. 2015). Idiopathic REM sleep behavior disorder, characterized by 

excessive movements during REM sleep, a sleeping phase that is usually 

characterized by atonia, seems to be the best predictor for the development of PD, 

or other synucleinopathies (Mahlknecht et al. 2015).  

Autopsy studies suggest the existence of an asymptomatic stage in which Lewy 

bodies are present in the brain, but none of the abovementioned symptoms is 

experienced by the patient. It is estimated that motor symptoms begin when as 

much as 40 % of the substantia nigra is degenerated (Mahlknecht et al. 2015). 

 

Cardinal symptoms Bradykinesia 

Rigidity 

Rest tremor (4 to 6 Hz) 

Postural instability 
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Secondary motor symptoms Hyposmia 

Dysarthria 

Micrographia 

Festination 

Freezing of gait 

Non-motor symptoms Autonomic dysfunction 

Cognitive impairment 

Dementia 

REM sleep disorder 

Anosmia 

Pain 

Urinary urgency 

Constipation 

Sexual dysfunction 

Hypotension 

Anxiety 

Depression 

Color vision impairment 

Dysexecutive syndrome 

Frequent prodromal symptoms Hyposmia 

Constipation 

Depression 

Idiopathic REM sleep behavior disorder 

Table 1. Symptoms of Parkinson’s disease. Modified after (Jankovic 2008; Tolosa et al. 2021) 

1.1.4 Diagnosis 

Until today, PD diagnosis relies on the evaluation of a patient’s symptoms by a 

clinician. This reliance on the expertise of the examining clinician entails 

subjectivity and makes diagnosis difficult, especially in early disease stages 

(Bloem et al. 2021; Postuma et al. 2015). Therefore, there is a large research 

interest in developing biomarkers to improve the diagnostic accuracy for PD, 
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especially in early stages, to provide better and earlier treatments for the affected 

patients.  

The diagnostic challenge resides in the overlap of PD symptoms with other 

neurodegenerative diseases. Among the most common misdiagnosed differential 

diagnoses are atypical parkinsonian syndromes, essential tremor, Alzheimer’s 

disease or secondary parkinsonisms (e.g., drug induced, vascular or infectious) 

(Tolosa et al. 2021). 

The UK Parkinson’s Disease Society Brain Bank clinical diagnostic criteria 

propose a three-step approach for the clinical diagnosis of PD (for detailed criteria, 

see Table 2). In the first step, the presence of parkinsonism (bradykinesia plus 

either rest tremor or rigidity, or both) is assessed. In the second step, the clinician 

checks for exclusion criteria, namely symptoms or aspects in patient history that 

make secondary parkinsonism or an atypical Parkinsonian syndrome (such as 

corticobasal degeneration, supranuclear palsy and multiple system atrophy) more 

probable. If no other probable explanation for the parkinsonism is found, the 

clinician screens for supportive symptoms for the diagnosis of PD, such as 

unilateral onset, response to levodopa (cf. Table 2), of which at least 3 must be 

present to allow the diagnosis of PD (compare Gibb & Lees 1988; Hughes et al. 

1992). Following this pattern, the accuracy of PD diagnosis is estimated to be 

around 80 % based on autopsy studies (Hughes et al. 1992; Rizzo et al. 2016; 

Schrag et al. 2002). 

Step 1  Presence of 

parkinsonism, defined as 

bradykinesia combined 

with at least one of the 

listed symptoms 

Rigidity 

Rest tremor (frequency: 4 to 6 Hz) 

Postural instability, not otherwise 

explained 

Step 2 Checking for listed 

exclusion criteria, hinting 

at different etiology 

History of head injury 

History of strokes 

History of encephalitis 

Oculogyric crisis 

Remission of symptoms 

Intake of neuroleptic medication 
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Only one body side attained after 3 years 

Early autonomic dysfunction 

Early signs of severe dementia with 

speech and memory impairment or 

apraxia 

No response to high-dose levodopa 

> 1 affected relative 

Supranuclear gaze paresis 

Signs of cerebellar impairment 

Babinski sign 

Tumor or hydrocephalus communicans in 

neuroimaging 

MPTP exposure 

Step 3 Presence of listed 

supportive criteria for 

Parkinson’s disease; ≥ 3 

for definite diagnosis 

Unilateral onset 

Presence of rest tremor 

Progression of the disease 

Persistent asymmetry of the symptoms in 

Progressive disease 

Good response to treatment with levodopa 

(70 to 100 %) 

Response to levodopa over the course of 

min. 5 years 

Disease progression > 10 years 

Presence of severe levodopa-induced 

dyskinesia 

Table 2. UK Parkinson’s Disease Society Brain Bank clinical diagnostic criteria. Modified after 

(Deuschl et al. 2016; Gibb & Lees 1988; Hughes et al. 1992), MTPT = 1-methyl-4-phenyl-1,2,3,6- 

tetrahydropyridine. 

 

To improve diagnostic accuracy, the goal is to standardize clinical assessment, in 

order to improve inter-rater reliability and the diagnostic process for less 

experienced clinicians. Hence, the recently validated Movement Disorders Society 

(MDS) clinical diagnostic criteria for PD suggest a four-step approach, based on 

6 

https://sciwheel.com/work/citation?ids=1346929,222259,14629326&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0


the UK Parkinson’s Disease Society Brain Bank clinical diagnostic criteria 

(Postuma et al. 2015). Through the standardized symptom assessment, the 

criteria make a distinction in two levels of diagnostic certainty: (1) “Clinically 

Established PD”, maximizing specificity and (2) “Clinically Probable PD”, creating a 

balance between high specificity and sensitivity (Postuma et al. 2015). The criteria 

define absolute exclusion criteria which rule out a PD diagnosis. Additionally, they 

provide a list of red flags and supportive criteria. Red flags describe symptoms that 

make a PD diagnosis less probable and have to be outweighed by supportive 

criteria in order to allow the diagnosis of “Clinically Probable PD”. 

The clinical diagnosis can be supported by imaging strategies. A normal structural 

MRI favors PD over atypical parkinsonian syndromes, where specific structural 

changes can often be seen (Tolosa et al. 2021). Additionally, the diagnosis can be 

supported by dopamine transporter (DAT) imaging, which can detect dopaminergic 

degeneration (Brücke & Brücke 2022). A normal DAT scan rules out a PD 

diagnosis and favors differential diagnoses such as essential tremor (Brücke & 

Brücke 2022; Postuma et al. 2015).  

As the diagnostic accuracy of PD still remains relatively low, different avenues for 

the development of new biomarkers for PD diagnosis are being explored. One 

promising research avenue is the analysis of functional brain networks, such as 

the well studied default mode network (DMN), assessed via functional magnetic 

resonance imaging (fMRI) in order to detect PD specific connectivity patterns. In 

the present study, a variety of functional brain networks assessed via fMRI was 

analyzed in two cohorts of PD patients and healthy controls. The neuroscientific 

and methodological foundations of these analyses will be explained in the 

following paragraphs. 

1.2 Neural connectivity 

1.2.1 Structural connectivity 

The brain is arguably the most complex organ of the human body. It has a mostly 

invariant structure, composed of different types of neurons, however it can perform 

an enormous variation of tasks (Park & Friston 2013). The diverse functionalities 

range from unconscious activities, like controlling crucial biological functions such 

as breathing and body temperature, to highly complex conscious work such as 
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solving math problems and navigating through large cities. In contrast to other 

organs, the brain is able to learn complex new skills to adapt to environmental 

challenges. An immense research effort is put into answering the question of how 

such complex and dynamic functions are possible based on the mostly fixed 

neural structure (Park & Friston 2013). The neural structure resembles a complex 

network of myriads of neurons, organized in gray and white matter. The axons 

emerging from the perikarya in the gray matter travel to other cortical or 

subcortical brain regions, building the white matter. Neurons that are located next 

to each other communicate using electrical or chemical signals that they exchange 

via synapses. These structural connections are also called structural connectivity 

(Sporns 2013). 

Historically, neurological disorders were distinguished into “cortical syndromes”, 

resulting from gray matter lesions, and “conduction syndromes'', caused by white 

matter lesions (Geschwind 1965). Since then, disconnection of brain regions by 

damage to the cortico-cortical fibers has been studied as a possible explanation 

for various neurologic symptoms. In the following decades, interruptions of such 

cortico-cortical fibers have also been studied in more complex behavioral 

symptoms, e.g., in the context of Alzheimer’s disease (Hof & Bouras 1991). 

Similarly, different symptoms in PD (motor as well as non-motor symptoms) have 

been investigated with regard to interrupted and hence disconnected 

cortico-cortical and cortico-striato-thalamo-cortical fibers (Cronin-Golomb 2010). In 

comparison to the perception of PD simply as a basal ganglia or midbrain 

dysfunction, the definition of PD as a disconnection syndrome helps to understand 

complex cognitive symptoms. Even though the disease starts in the basal ganglia, 

the pathology also affects brain regions that have afferent or efferent connections 

to the basal ganglia. For example, patients with accentuation of motor symptoms 

in the left body side (with predominant pathology in the right midbrain) more often 

develop visual memory deficits. Vice versa, patients with right-sided symptoms 

(corresponding to left midbrain pathology) more often exhibit deficits in verbal 

memory (Amick et al. 2006; Cronin-Golomb 2010).  

1.2.2 Functional connectivity 

In contrast to the obvious structural connectivity between brain regions, functional 

connectivity refers to the temporal synergy between spatially distant brain regions 
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(Friston 1994) and can be quantified by correlations between activity signals, e.g., 

measured by magnetic resonance imaging, electroencephalography or 

magnetoencephalography (van den Heuvel & Hulshoff Pol 2010). If the activity 

pattern of two brain regions shows a high temporal correlation, these regions can 

be considered as functionally connected. Functional connectivity (FC) can be 

observed in regions that are at the same time structurally connected, but also 

between brain regions without a strong structural connection (Eickhoff & Müller 

2015). In general, functional and structural connectivity are highly correlated (van 

den Heuvel & Sporns 2013; Zimmermann et al. 2019). A set of brain regions that 

exhibit similar activity patterns form a functional brain network (Sporns 2013).  

One brain region can participate in different networks, depending on the required 

functionality (Dragomir & Omurtag 2023; Sporns & Betzel 2016). Functional 

connectivity can be found during the performance of cognitive tasks (task-based 

FC) but also when an individual is at rest (resting-state FC, cf. section 1.3.2). Both 

forms of functional connectivity have been extensively studied in healthy 

individuals and in patients with various neurological and psychiatric diseases and 

can be measured with the help of fMRI, which will be introduced in the following 

paragraph.  

1.3 Functional magnetic resonance imaging 

1.3.1 Principles of functional magnetic resonance imaging 

Functional magnetic resonance imaging is an imaging technique which can 

measure brain activation by detecting differences in regional cerebral oxygen 

consumption (Glover 2011). It is a popular tool for the investigation of functional 

connectivity. The principle of fMRI-imaging is based on the phenomenon that an 

activated brain region has an increased energy need in comparison to an 

inactivated brain region. In the blood, oxygen is transported by hemoglobin, which 

exists in an oxygenated (O-Hb) and a deoxygenated form (D-Hb). O-Hb is 

diamagnetic and can not be magnetically differentiated from the surrounding brain 

tissue. D-Hb however has different magnetic properties (Pauling & Coryell 1936). It 

is paramagnetic and therefore can be detected by the scanner (Thulborn et al. 

1982). If the neural activity in a specific brain region increases (e.g., to perform a 

motor task), the involved neurons need more energy. To meet the increased 
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energy-demand, locally stored oxygen is used to gain energy through oxygenation 

of glucose, a process called glycolysis, in order to produce energy rich adenosine 

triphosphate (ATP; Dienel 2019). As oxygen consumption increases, the ratio of 

O-Hb (decrease) and D-Hb (increase) changes, indicating a transient oxygen 

deficit. The increased oxygen consumption triggers an increase in regional blood 

flow within seconds, leading again to a change in the ratio of O-Hb (increase) and 

D-Hb (decrease) (Glover 2011). The altered ratio of O-Hb and D-Hb results in a 

magnetic field. This in turn triggers alterations in T2 and T2* relaxation times in the 

MRI-scanner, reflecting the initial brain activation (Glover 2011). The detected 

signal is called the blood oxygen level dependent (BOLD) signal and was first 

discovered in rats and then in humans by Ogawa and colleagues (Ogawa et al. 

1990a, 1990b).  

fMRI imaging can be performed on a standard MRI scanner, is a non-invasive 

technique and is considered a safe technique that can be used in children and 

adults alike (Gore 2003). It therefore quickly became a popular tool and is for 

example used for surgical planning, therapy monitoring or as a biomarker (Glover 

2011). While the spatial resolution of fMRI is good compared to other 

neuro-imaging-techniques such as magnetoencephalography (a resolution below 

3 cubic millimeters is possible (Farahani et al. 2019)), the temporal resolution is 

rather poor, because the hemodynamic response triggered by brain activation is 

delayed (Lv et al. 2018). Furthermore, the BOLD signal can be influenced by 

pathologies such as structural brain abnormalities, e.g., after an ischemic stroke or 

by alterations in blood flow in patients with arteriosclerotic vascular changes (Lake 

et al. 2016).  

1.3.2 Resting-state functional magnetic resonance imaging 

In the beginning, fMRI was used to map brain activity following a specific task or 

stimulus, targeting a specific brain function, e.g., motor system, visual system, 

auditory system (task-based fMRI). Biswal and colleagues later discovered 

consistent spontaneous low frequency BOLD signal fluctuations (0.01 to 0.08 Hz) 

in the resting-state that showed correlations in functionally related brain regions 

even in the absence of an active task (e.g., bilateral sensorimotor cortices, (Biswal 

et al. 1995; Biswal 2012; Smitha et al. 2017)). To acquire resting-state fMRI data, 

individuals are asked to lie in the scanner and simply rest with their eyes closed or 
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fixating a pre-defined point, without focusing on anything specific and without 

falling asleep for the duration of 5 or more minutes (Power et al. 2014; Smitha et 

al. 2017). 

With the development of the resting-state fMRI-technique, image acquisition in the 

clinical setting became easier because the patients don’t need to be able to follow 

task instructions (Lv et al. 2018). Therefore, resting-state fMRI-scanning can also 

be used for children, unconscious individuals or patients with disabling diseases 

that would make following a specific task paradigm difficult (Smitha et al. 2017). 

This advantage also applies to PD patients who can struggle with motor tasks and 

tasks targeting cognitive functions, depending on the present disease stage.  

It was found that functional networks that can be seen during task-based fMRI 

(so-called task-positive networks, TPN) also appear during resting-state fMRI 

(Power et al. 2014). One of the first networks that was consistently observed in 

rs-fMRI data was the default mode network (DMN), which explicitly shows 

increased activity in the resting-state (cf. section 1.4.1; Power et al. 2014). 

Following the discovery of the DMN, an increasing amount of studies aimed at 

reproducing findings (i.e., functional networks) from task-based fMRI studies using 

resting-state fMRI (Power et al. 2014). The discovery of resting-state FC simplified 

FC research, because multiple networks could be analyzed simultaneously, 

requiring only one scanning session. In task-based fMRI, on the contrary, two 

different tasks and scanning sessions would be necessary to investigate two 

different functions (e.g., motor function vs. somatosensory function; Smitha et al. 

2017). With fMRI, even analyzes at the whole-brain level became possible, 

providing valuable insights into the functional architecture of the brain as a whole 

(Baggio & Junqué 2019). 

1.4 Functional brain networks 

As mentioned above, the brain can be viewed as a large, complex network of brain 

regions interacting with each other. This interaction can be investigated at different 

levels. Functional connectivity assessed by fMRI relies on the grouped activation 

signals of several hundreds to thousands of neurons. A functional connection is 

calculated as the correlation between BOLD signal time series from groups of 

neurons (Bassett & Sporns 2017) (cf. Fig. 1). Several brain regions showing these 
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correlations in a specific context, e.g., a specific task or in the resting state, form a 

functional network. Multiple functional brain networks have been reliably found 

across individuals and can be examined in different contexts. Most of these 

functional networks are what Bassett and Sporns call “co-activation networks”, 

containing brain regions that are activated by the same task or sensory input 

(Bassett & Sporns 2017). Functional brain networks can change due to 

pathological processes. They simultaneously reflect underlying pathophysiological 

mechanisms as well as the change in behavior that can be observed externally 

(Bassett & Sporns 2017). The analysis of functional networks could be a valuable 

approach to develop biomarkers for disease diagnosis or therapy monitoring 

(Baggio et al. 2015b). 

Fig. 1: Principle of functional connectivity: BOLD-time series correlation. For each region of 

interest (ROI), the BOLD-time series over time is assessed. Then, pairwise Pearson’s correlation of 

different ROIs is calculated as a measure of functional connectivity between brain regions. The 

higher the correlation coefficient, the higher the functional connectivity between these regions. 

BOLD = blood oxygen level dependent signal. 
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1.4.1. Default mode network 

One functional network that has caught a high interest, both in the context of 

diseases and healthy subjects, is the default mode network (DMN). The DMN 

consists of several brain regions that exhibit a particularly high activity during rest, 

when the brain is not involved in any specific task. It was discovered by Shulman 

and colleagues in a meta-analysis of positron emission tomography (PET) 

(Shulman et al. 1997). They observed a set of brain regions that consistently 

showed less activation during the execution of externally directed tasks (Shulman 

et al. 1997). In 2001, Raichle and colleagues coined the term “default mode of 

brain function” and suggested that the involved areas and their activity were an 

indicator of intrinsic brain activity (Raichle 2015). There are several components 

within the DMN: the ventral and dorsal medial prefrontal cortex (vMPFC and 

dMPFC), the posterior cingulate cortex (PCC) with the neighboring precuneus, the 

inferior parietal lobule, the lateral temporal cortex and the hippocampal formation 

(Buckner et al. 2008; Raichle 2015). The functions of the DMN are manifold and 

include self-related thoughts like autobiographical memory, planning of future 

events, thinking about past events, mind wandering and theory-of-mind 

(Andrews-Hanna et al. 2010; Buckner et al. 2008; Mantini & Vanduffel 2013; 

Raichle 2015). Moreover, the DMN also plays a role in externally directed tasks, 

e.g., by interacting with different TPNs (Spreng 2012). Because of its central role 

in cognitive functions and the association of its dysfunction with various 

neurological and psychiatric diseases, the DMN was used as the central or core 

network for the present study.  

1.4.2 Analysis of functional brain networks 

In order to interpret disease-driven changes in functional network architecture, 

e.g., of the DMN, the properties of a network need to be quantified using 

measures that can be compared between subjects, populations or over time. One 

popular approach in network science is graph theory, originally derived from 

mathematics (Bullmore & Sporns 2009). In graph theory, networks are represented 

as nodes that are connected by edges (Rubinov & Sporns 2010; Sporns 2018).  

This approach can be applied to all kinds of networks, from subway systems and 

telephone networks to functional neuronal networks. In fMRI-derived networks, the 

nodes correspond to brain regions and the edges to the correlations between 
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BOLD time series (Farahani et al. 2019). All possible pairwise internodal 

correlations within a network can be represented in an association matrix. Starting 

from this matrix, a graph is then created (Bullmore & Sporns 2009). The graph can 

either be binary or weighted, by attributing the correlation coefficient of two nodes 

to the corresponding edge (Bullmore & Sporns 2009).  

  

Fig. 2: Schematics of different types of graphs. In graph theory, a network is represented by 

nodes and edges. The strength of the connections between two nodes can be taken into account 

by the attribution of a weight. The result is a weighted graph, in contrast to a binary graph, that only 

indicates that there is or is not a connection above a defined threshold between two regions. 

Depending on whether the direction of information flow is taken into account, a directed or 

undirected graph results. In the present study, weighted undirected graphs were analyzed.  
 

However, not all correlations might be meaningful, e.g., some could be the 

byproduct of noise sources or random correlations and produce false positives 

(Drakesmith et al. 2015). Therefore, it is common practice to threshold the 

association matrix and retain only higher, potentially meaningful correlations for 

the ensuing calculations. Unfortunately, there are no generally accepted rules as 

to which threshold level is best or if thresholds should be used at all. Furthermore, 

there is an ongoing discussion about the meaning of negative correlations. This 

issue is addressed in the present study by the use of three different FC thresholds.  
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Once a graph is defined, different descriptive network metrics can be computed to 

describe the network properties and make them comparable across subjects or 

groups. In the present study, the functional connectivity of predefined functional 

networks was examined. To this end, the average BOLD time series of brain 

regions participating in a given network were extracted from fMRI data of PD 

patients and healthy control subjects in two different cohorts. Using Pearson’s 

correlation coefficient, a correlation matrix was obtained which resulted in a 

weighted, undirected functional network that was further analyzed using average 

functional connectivity measures and other graph theory measures.  

Graph theory measures aim at revealing specific network properties at a global 

(network) or local (nodal) level. Frequently used measures are for example the 

clustering coefficient or the shortest path and related measures like the 

characteristic path length or global efficiency (Rubinov & Sporns 2010). The 

clustering coefficient for example reflects clustered connectivity around network 

nodes by assessing if neighbors of a given node A are also neighbors of each 

other. The shortest path is defined as the minimal number of steps needed to get 

from node A to node B (Rubinov & Sporns 2010). The average shortest path 

length for all possible pairs of nodes is called characteristic path length and is a 

measure of integration of a network (Rubinov & Sporns 2010). Integration 

describes the capacity to integrate information originated in different and distant 

network areas (Farahani et al. 2019). Meanwhile, segregation describes the 

formation of specialized communities or modules within a network (Farahani et al. 

2019). Local measures (such as betweenness centrality or participation coefficient, 

cf. methods) on the contrary can help to understand the role of a single brain 

region within the network (Farahani et al. 2019).  

1.5 Functional connectivity as potential biomarker in Parkinson’s 
disease 

1.5.1 Resting-state functional connectivity as biomarker 

As pointed out before, the accuracy of PD diagnosis has yet to be improved. Thus, 

there is a growing interest in the development of diagnostic biomarkers. 

Disease-specific FC patterns are studied as potential biomarkers for several 
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diseases, e.g., Alzheimer’s disease, schizophrenia, Huntington’s disease, 

dementia with Lewy Bodies, multiple system atrophy, frontotemporal dementia and 

also Parkinson’s disease (González-Madruga et al. 2022; Hohenfeld et al. 2018; 

Sheffield & Barch 2016).  

The Biomarkers Definition Working Group defines a biomarker as “a characteristic 

that is objectively measured and evaluated as an indicator of normal biological 

processes, pathogenic processes, or pharmacologic responses to a therapeutic 

intervention” (Biomarkers Definitions Working Group. 2001). In general, 

biomarkers can be used to diagnose a medical condition, to stage an already 

diagnosed disease or to estimate the prognosis and treatment response. In PD, 

biomarkers could help to reliably diagnose the disease, even in early stages, 

monitor disease progression and differentiate between PD and similar conditions 

like atypical parkinsonian syndromes (Yamashita et al. 2023). Additionally, 

biomarkers can increase the objectivity of the diagnosis, so far relying on the 

subjective assessment by a clinician (Yamashita et al. 2023). Different properties 

of ideal biomarkers in pharmacological research have been defined by Lesko and 

Atkinson (Lesko & Atkinson 2001). These properties can also serve as a guidance 

for biomarkers in other contexts. After Lesko & Atkinson, the properties of 

biomarkers should include clinical relevance, sensitivity and specificity, reliability, 

practicality and simplicity (Lesko & Atkinson 2001). These properties should also 

be fulfilled for PD biomarkers derived from the analysis of rsFC.  

Clinical relevance means that the potential biomarker should reflect a 

pathophysiological process, which requires a deep understanding of the 

underlying pathomechanism of a disease (Lesko & Atkinson 2001). In the context 

of PD, rsFC can both help to understand pathomechanisms and at the same time 

reflect the changes in the functional architecture to differentiate between 

PD-patients and healthy subjects.  

A sensitive rsFC biomarker should be able to detect even small changes in the 

functional architecture of the brain in PD to allow early diagnosis and to avoid false 

negatives and thus increase diagnostic accuracy. At the same time, a useful 

biomarker should be able to differentiate between PD and other diseases or 

healthy individuals (specificity). It has been shown, that rsFC in principle has these 

potentials (cf. section 1.2.6, functional networks in PD). 
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Lesko and Atkinson define reliability as the “ability to measure [the biomarker] with 

acceptable accuracy, precision, robustness, and reproducibility” (Lesko & Atkinson 

2001). A lack of reliability is the greatest challenge when it comes to rsFC-derived 

biomarkers in PD. In general, fMRI signals are robust, and many findings could be 

repeatedly reproduced across different populations (Bandettini 2009). However, in 

PD but also in other neurological diseases, specific FC alterations frequently 

cannot be replicated in other datasets acquired at different sites. In rsFC 

measured by fMRI, low frequency alterations in BOLD-signal are analyzed. These 

can be “hidden” or altered by noise signals, for example caused by respiration, 

heart activity, head motion or thermal noise (Caballero-Gaudes & Reynolds 2017; 

Glover 2011). Therefore, prior to BOLD-signal-analysis, potential noise signals 

have to be removed in a process called preprocessing. To date, no standard 

preprocessing pipeline has been established (Douw et al. 2019). Hence, results of 

FC-studies could be influenced by the choice of denoising technique, decreasing 

the comparability across studies and reducing the replicability of results (Baggio et 

al. 2015b). This issue is addressed in the present study by the use of an identical 

analysis pipeline applied to the two independent datasets.  

A powerful advantage of fMRI imaging for the assessment of rsFC is its 

practicality, as it is noninvasive and does not require the injection of a contrast 

medium (Kim et al. 2021). It therefore poses little risk to patients or research 

participants, and there are only a few contraindications that prevent subjects from 

undergoing fMRI scanning. Additionally, fMRI acquisition is relatively simple 

compared to other imaging techniques that might require the administration of 

contrast agents or radioactive markers. MRI-scanners are widely available and 

image requisition in the resting-state does only require a small amount of 

compliance of the scanned subjects.  

Since the analysis of rsFC can deliver detailed insights into the pathophysiology of 

PD and is a promising avenue for the discovery of new and improved biomarkers, 

an increasing amount of studies investigates rsFC in PD and uncovered disease 

specific changes in single functional connections between brain regions but also in 

previously defined functional networks, which help broaden our understanding of 

both the healthy brain and the brain affected by various neurological or psychiatric 

diseases. 
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1.5.2 Functional networks in Parkinson’s disease 

Although many studies were able to detect different rsFC alterations in PD 

patients, the literature does not paint a clear picture and is partly contradictory. To 

date, most studies on functional networks in PD analyze within-network FC, often 

focusing on specific connections rather than network-based properties. More 

recently, several studies also investigated the coupling of different networks 

(between-network FC).  

The network that was most studied in the context of PD is the DMN. Several 

studies found dysfunctions in FC of the DMN in PD patients, with different results. 

On the one hand, decreased within-DMN FC was observed in PD patients (e.g., 

Baggio et al. 2015a; Jellinger 2023; Wolters et al. 2019). Disbrow and colleagues 

observed decreased FC between the PCC, medial prefrontal cortex (MPFC) and 

inferior parietal cortex (IPC) within the DMN (Disbrow et al. 2014). Another study 

found decreased FC of the right medial temporal lobe and the bilateral inferior 

parietal cortex within the DMN (Tessitore et al. 2012). In several studies, 

decreased DMN connectivity was associated with the presence of mild cognitive 

impairment (MCI, e.g., Disbrow et al. 2014; Jellinger 2023; Wolters et al. 2019) 

and with performance in cognitive tasks in cognitively unimpaired patients, 

suggesting that DMN connectivity is disrupted even before the emergence of 

cognitive impairment (Jellinger 2023; Tessitore et al. 2012). Another study found 

decreased FC in the dorsal part of the DMN in cognitively unimpaired patients with 

akinetic rigidity subtype PD (Hou et al. 2017). At the same time, they found 

increased FC in the anterior part of the DMN. Increased FC within the DMN was 

further described by Campbell and colleagues (Campbell et al. 2015). Alterations 

in DMN were also found in association with visual hallucinations (Yao et al. 2014) 

and in akinetic-rigidity dominant PD compared to tremor dominant PD 

(Karunanayaka et al. 2016). Finally, some studies did not find any significant 

changes in DMN FC (e.g., Helmich et al. 2010). As the DMN plays an outstanding 

role in the functional architecture of the brain and has been the subject of various 

FC studies in the context of PD and other neuropsychological diseases, it was 

chosen as the central network for the present study.  

In addition to the DMN, other functional networks have been studied in the context 

of PD. In contrast to the DMN, which is sometimes termed the task-negative 
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network, other functional networks are often termed as task-positive networks 

(TPNs) (Power et al. 2014), because of their relation to different externally focused 

cognitive functions or tasks. However, there is no clear definition or nomenclature 

of task-positive networks (for instance, there is not “the” working memory network), 

complicating the comparison of results across studies. However, functional 

networks for the same functions often comprise similar brain regions (Baggio et al. 

2015b). As PD is primarily classified as a motor disease, a relatively large amount 

of studies focused on the investigation of motor related networks and found 

decreased (Campbell et al. 2015; Caspers et al. 2021; Peraza et al. 2017) as well 

as increased (de Schipper et al. 2018) FC between motor regions. Furthermore, 

functional aberrations (mostly a decrease of FC) were described for 

cortico-striato-thalamo-cortical circuits (e.g., Hacker et al. 2012; Helmich et al. 

2010; Kwak et al. 2010). Moreover, FC alterations in networks involved in attention 

processes have consistently been observed and associated with different PD 

symptoms (Baggio et al. 2015a; Bezdicek et al. 2018; Maidan et al. 2019; Yeager 

et al. 2024). On the contrary, a study investigating the executive control network in 

PD did not find any significant differences in comparison to healthy controls 

(Disbrow et al. 2014). 

Besides the analysis of within-network FC, the interest in between-network FC is 

growing as well. Complex interactions between the DMN and other, usually 

anticorrelated task-positive networks (TPNs) is crucial for the execution of complex 

cognitive tasks (Fox et al. 2005; Spreng 2012; Spreng et al. 2013). It has been 

hypothesized that dopamine modulates the interaction of different cognitive 

networks like the DMN, the dorsal attention network and the frontoparietal network 

(Dang et al. 2012). In a state of dopamine depletion and in the case of a highly 

complex disease like PD, the investigation of the coupling between networks is 

therefore interesting.  

In the context of PD, between-network FC was found to be an indicator for the 

presence of specific symptoms, e.g., freezing of gait (Bharti et al. 2020), difficulties 

in executive functions (Boon et al. 2020) or attention (Boord et al. 2017) and 

impulsivity (Koh et al. 2020). Moreover, reduced connectivity between the ventral 

and dorsal attention networks was found in PD patients with hallucinations (Shine 

et al. 2014). Another study found a correlation between cognitive impairment and 

reduced coupling between the DMN and the dorsal attention network, as well as 
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between the dorsal attention network and right frontal insular regions, that are 

thought to be involved in network switches necessary for attention or executive 

functions (Baggio et al. 2015a). Furthermore, coupling of the right central 

executive network (CEN) and the salience network as well as coupling of the DMN 

and CEN were found to be altered in PD patients without dementia (Putcha et al. 

2015). The same group found a correlation of cognitive functions and coupling of 

the DMN and the salience network (Putcha et al. 2016). Recently, a study found an 

association of motor and cognitive symptom severity with altered interaction 

between the sensorimotor network and the dorsal attention network, as well as 

between the ventral attention network and frontoparietal network 

(Delgado-Alvarado et al. 2023). In another study, PD patients were differentiated 

from healthy controls (HC) using a machine-learning algorithm based on 

between-network FC (Rubbert et al. 2019), underlining its diagnostic potential. 

Several studies have used a graph theoretical approach for the analysis of 

resting-state fMRI in PD research. FC alterations were found at the global and 

nodal level. It was for example found that network efficiency was decreased in PD, 

combined with a higher clustering coefficient and higher characteristic path length 

(Göttlich et al. 2013; Wei et al. 2014). Another study found a decreased global 

efficiency and increased characteristic path length as well, but paired with a 

decreased clustering coefficient (Suo et al. 2017). It was further found that global 

efficiency was reduced even in early-state patients under treatment (Sang et al. 

2015). At the nodal level, nodal centrality was decreased in the sensorimotor 

cortex, in regions of the DMN and in temporal-occipital regions (Suo et al. 2017). 

Berman and colleagues found that the small-world architecture (high clustering 

coefficient and short path length) of several functional networks is modulated by 

dopaminergic treatment (Berman et al. 2016). Graph theory results could also be 

attributed to different symptoms like impulse control disorder (Zhu et al. 2021). 

1.5.3 Challenges and motivation 

The literature on FC alterations in PD does not paint a clear picture yet. As pointed 

out above, network alterations have been linked to different PD symptoms, motor 

as well as non-motor. However, findings sometimes seem contradictory (Prodoehl 

et al. 2014) and cannot always be explained with the current understanding of PD 

pathophysiology. Results of FC studies vary between different patient groups, e.g., 
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early vs. advanced disease stage, tremor-dominant vs. akinetic-rigid subtype or 

cognitive impairment vs. cognitively normal (Filippi et al. 2019), which makes it 

difficult to find disease specific patterns that apply to all PD patients but not to 

healthy subjects or patients with other, similar diseases.  

Overall, it becomes clear that while a substantial effort has already been put into 

the identification of FC patterns in PD, there is a need for further research. As the 

majority of conducted studies in the literature focus on the FC of single brain 

regions, leading to contradictory results, systematic network-based approaches 

could prove useful to uncover characteristics that apply to all individuals with PD 

and could hence be used for the development of biomarkers. This work therefore 

systematically analyzes FC patterns of various predefined meta-analytic networks 

across two different datasets. Meta-analytic networks are based on task-activation 

data in healthy populations and contain brain regions that are consistently 

activated by specific task paradigms. They are thus well suited to investigate FC 

changes as a possible basis for different, heterogeneous symptoms (Chen et al. 

2021), which could in turn be promising starting points for the future research for 

FC biomarkers. Furthermore, the same network coordinates can be applied across 

subjects and datasets and allow for comparisons. However, to date, there are only 

few studies that investigated meta-analytic networks in the context of diseases 

such as PD.  

One of the biggest challenges of the analysis of FC via fMRI is the lack of 

reliability. Alterations often cannot be replicated in different, independent datasets. 

At the same time, there is no gold standard for pre-processing and analysis 

pipelines. Both factors highlight the need for more research using independent 

datasets from different sites, while applying the same analysis pipeline to further 

investigate the reasons for the lack of reliability.  

1.6 Aims of thesis 

As pointed out before, there is a substantial need for the development of novel 

biomarkers to improve and objectify PD diagnosis. The present work therefore 

aimed at evaluating the potential of the analysis of rsFC of meta-analytic networks 

as a diagnostic or disease monitoring biomarker in PD by answering the following 

research questions:  
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(1) Does the network-based analysis of resting-state functional connectivity of 

predefined meta-analytic networks have the potential to uncover altered 

functional connectivity patterns in Parkinson’s disease?  

(2) Which networks and FC measures should be considered for further 

biomarker research? 

(3) Can reliability of resting-state fMRI analysis in Parkinson’s disease be 

improved by using the same analysis pipeline on independent datasets? 

In order to answer these questions and help to elucidate the fractionated and 

partly contradictory literature on FC patterns in PD, this study assessed within- 

and between-network FC of the DMN, a whole-brain network and 11 robust 

meta-analytically defined TPNs, involved in various cognitive functions, to reflect 

the variety of possible symptoms in PD. To this end, rs-fMRI data from two 

independent datasets from a total of 66 PD patients and 67 healthy controls were 

analyzed. Within- and between-network FC was assessed via variations of simple 

mean FC and graph-theoretical measures such as global efficiency, diffusion 

efficiency or positive participation coefficient.  

As mentioned above, replicability of neuroimaging-based results across datasets 

is challenging (Lerma-Usabiaga et al. 2019), especially in the context of 

neuropsychiatric disorder (Badea et al. 2017; Douw et al. 2019; He et al. 2020; 

Specht 2019). This challenge was taken into account by applying the exact same 

analysis pipeline in both datasets to exclude any methodological influences in 

case of non-replicability of results.  
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2 Material and methods 

2.1 Participants 

In the present study, two separate datasets, Data-PR and Data-DU, were analyzed 

separately, following the same analysis steps. Subject characteristics are listed in 

Table 3. 

Data-PR contained a total of 30 patients diagnosed with idiopathic PD and 30 HC, 

assessed in the General University Hospital in Prague, Czech Republic. Of the PD 

patients, 17 subjects were male, 13 female. The mean age was 64.6 ± 7.7 years. 

Of the HC, 15 subjects were male, 15 female. The mean age of HC was 63.5 ± 7.9 

years. The PD patients were diagnosed by neurologists according to criteria as 

defined by the UK brain bank (Gibb & Lees 1988). Patients exhibiting psychotic 

symptoms or taking antipsychotic treatment were excluded from the dataset. Other 

exclusion criteria were a cognitive impairment with a Montreal Cognitive 

Assessment (MoCa)-Score > 1.5 SD below the Czech norm, patients after 

implantation of deep brain stimulation or jejunal levodopa application, the 

presence of other motor or cognitive diseases and patients not eligible for MRI 

scanning. Motor symptom severity was assessed using the motor part of the 

Unified PD rating scale in pharmacological OFF-state (UPDRS-III OFF) and was 

30.6 ± 9.9 on average. Patients were scanned in pharmacological ON-state, 

following their individual drug regimens. All subjects gave their informed consent 

and data acquisition was approved by the ethics committee of the General 

University Hospital, Prague, Czech Republic.  

Data-DU consisted of 36 patients with idiopathic PD and 37 HC taken from a 

pre-existing pool assessed by the University Hospital Düsseldorf, Germany 

(Caspers et al. 2017, 2021; Rubbert et al. 2019). Of the PD patients, 22 subjects 

were male and 14 female. The mean age was 61.7 ± 9.8 years. Of the HC, 21 

subjects were male and 16 female. The mean age of HC was 60.5 ± 9.2 years. 

The PD patients were diagnosed by a board-certified neurologist. Exclusion 

criteria were the presence of a non-idiopathic parkinsonian syndrome, dementia or 

a major depression. Motor symptom severity was assessed by the attending 

neurologist using the motor part of the Movement Disorders Society (MDS-) 

UPDRS-III OFF and was 33.9 ± 10 on average. Patients were scanned in 
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pharmacological ON-state, following their individual drug regimens. All subjects 

gave their informed consent and data acquisition was approved by the ethics 

committee of the Medical Faculty of Heinrich-Heine-University, Düsseldorf, 

Germany.  

Retrospective analysis of both datasets was approved by the ethics committee of 

the Heinrich-Heine-University, Düsseldorf, Germany. 

 

 Patients Healthy controls p-value 

Data-PR     

sample size 30 30   

gender (m/f) 17/13 15/15 0.6* 

age 64.6 ± 7.7 (46–82) 63.5 ± 7.9 (46–83) 0.58** 

UPDRS-III OFF 30.6 ± 9.9 (8–64)   

Hoehn & Yahr Stage 2.02 ± 0.54 (1–3)   

Data-DU 

sample size 36 37   

gender (m/f) 22/14 21/16 0.7* 

age 61.7 ± 9.8 (44–80) 60.5 ± 9.2 (44–78) 0.59** 

MDS-UPDRS-III OFF 33.9 ± 10 (15–55)   

Hoehn & Yahr Stage 2.59 ± 0.72 (1–4)   
 
Table 3. Sociodemographic data and clinical scores. Overview of subject characteristics in 

analyzed datasets. UPDRS-III: Motor part of the Unified Parkinson’s disease rating scale; MDS: 

Movement Disorder Society; OFF: pharmacological OFF-state). Characteristics are displayed as 

mean ± standard deviation (lowest to highest value). Statistics: *gender was compared using a 

Chi2-Test; **for age comparison, a two-sample t-test was conducted. 

2.2 Ethic votes 

Data-acquisition for the datasets was approved by the local Ethics Committees of 

the respective universities (General University Hospital Prague, Czech Republic 

and Heinrich-Heine-university Düsseldorf, Germany). Retrospective analysis of 

these datasets was approved by the local Ethics Committee at 
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Heinrich-Heine-University (Faculty of Medicine, Study numbers 4096, 4039, 5193 

and 2018-317-RetroDEuA). 

2.3 Data acquisition 

For Data-PR, functional magnetic resonance imaging (rs-fMRI) was acquired using 

a 3 tesla (T) scanner (Siemens Skyra) with a 32-channel head coil. To obtain blood 

oxygen level dependent time series, a standard T2*-weighted echo-planar imaging 

sequence was used. One scan comprised 304 whole brain images and 30 slices 

with a repetition time (TR) of 2 seconds and an echo time (TE) of 30 ms. Voxel 

size was 3 mm³. Structural information was obtained with a standard T1-weighted 

magnetization-prepared rapid gradient echo (MPRAGE) image scan with a voxel 

size of 1 mm³. 

Imaging for Data-DU was also performed with a 3T scanner (Siemens Trio, 

Erlangen, Germany). For BOLD times series, an echo-planar imaging sequence 

was used. One scan comprised 300 time points and 36 slices. Repetition time was 

2.2 seconds, echo time 30 ms. Voxel size was 3.1 mm³. Acquisition time was 11 

minutes with a flip angle of 90° and a field of view (FoV) of 200 * 200 mm axial 

plane. Structural information was obtained with a standard T1-weighted MPRAGE 

image scan with a TR of 2.3 seconds, TE of 2.96 ms, inversion time (TI) of 900 

ms, a flip angle of 8° and a FoV of 240 * 256 mm. The structural scan comprised 

192 slices at a voxel size of 1 mm³. 

2.4 Preprocessing 

In order to improve comparability across datasets, the exact same preprocessing 

pipeline was applied to both of them using SPM12 software and MATLAB (version 

2019b, © MathWorks, Natwick USA) scripts. Data was realigned for motion 

correction. Rs-fMRI data was co-registered to structural data. Normalization 

parameters from structural scans were used to spatially normalize rs-fMRI data 

into Montreal Neurological Institute (MNI) space. Voxels other than gray matter 

were masked. Data was smoothed with a Gaussian kernel of 6 mm full width at 

half maximum. In order to allow magnetization for equilibrium, four dummy scans 

were discarded. Mean signals of white matter and cerebrospinal fluid were 
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regressed out together with 24-motion parameters, based on Friston-24 (Friston et 

al. 1996). 

2.5 Choice and definition of functional networks 

For this study, 13 a priori defined functional brain networks and their coupling were 

analyzed. In the center of the performed analyzes was the default mode network 

(DMN), here also termed the base network. We investigated functional connectivity 

behavior within the DMN as well as its coupling with 12 other functional networks. 

These comprised a whole-brain network (WBN) and 11 meta-analytically defined 

task-positive networks.  

The WBN, as defined by Power and colleagues (Power et al. 2013), including 264 

nodes participating in many different networks, was chosen because of its 

presumed potential to deliver insights into the coupling of the DMN with the brain 

as a whole.  

To cover a diverse set of brain functions that play a role in PD, a wide variety of 

networks was chosen. The MNI coordinates are listed in the appendix.  

2.5.1 Default mode network 

We chose the DMN as the base network of our study because it also plays an 

important and central role in the architecture of the brain. As described above (c.f. 

introduction), it is involved in many cognitive processes and has been shown to be 

altered in various neurocognitive diseases, including PD.  

In this study, coordinates for the regions of the DMN were taken from the literature. 

Core regions of the DMN were the posterior cingulate cortex, medial prefrontal 

cortex, lateral parietal cortex and the hippocampal formation (Van Dijk et al. 2010).  

26 

https://sciwheel.com/work/citation?ids=23369&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=23369&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=479904&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=1646255&pre=&suf=&sa=0


 
Fig. 3: Illustration of the default mode network. Created with BrainNet Viewer, Version 1.32 (Xia 

et al. 2013). MNI-coordinates as published by van Dijk and colleagues (Van Dijk et al. 2010). 

2.5.2 Motor function 

PD is primarily defined as a motor disorder. Therefore, two different motor 

networks were studied here: The motor execution network (MotorEx) (Witt et al. 

2008) and the perceptuo-motor network (MotorPerc) (Heckner et al. 2021). 

Whereas MotorEx is based on an activation likelihood estimation 

(ALE)-meta-analysis (Eickhoff et al. 2009, 2012) of studies exclusively using 

finger-tapping tasks, MotorPerc is based on an ALE-meta-analysis including a 

wider variety of motor paradigms, such as isometric force, motor learning, writing 

and drawing, chewing, grasping or finger tapping. Regions included in MotorEx are 

located in the primary sensorimotor cortex, the supplementary motor area (SMA), 

the premotor cortex, inferior parietal cortex as well as the basal ganglia and the 

anterior cerebellum (Witt et al. 2008). Key regions of the MotorPerc network are 

the bilateral pre-supplementary SMA, the SMA, dorsal premotor cortex, primary 

motor and somatosensory cortex, intraparietal sulcus, the superior parietal lobule, 

the posterior inferior frontal gyrus, the anterior insula, putamen, thalamus and 

cerebellum (Heckner et al. 2021).  
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Fig. 4: Illustration of the motor execution network. Created with BrainNet Viewer, Version 1.32 

(Xia et al. 2013). MNI-coordinates as published by Witt and colleagues (Witt et al. 2008). 

 

Fig. 5: Illustration of the perceptuo-motor network. Created with BrainNet Viewer, Version 1.32 

(Xia et al. 2013). Several regions lie within the cerebellum, which is not included in the model. 

MNI-coordinates as published by Heckner and colleagues (Heckner et al. 2021). 

2.5.3 Top-down control/Attention 

Attention dysfunction is frequently seen in PD patients, even in early stages. It is 

also a predictive factor for the development of PD dementia (Woods & Tröster 

2003). In general, attention as a complex brain function can be separated into two 
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mechanisms: top-down control and bottom-up control. Top-down control refers to 

the ability to actively direct attention to certain objects or subjects. Bottom-up 

control, however, is stimulus-driven. That is, if an external stimulus is perceived 

and identified as important, the currently performed task, action or thought can be 

disrupted to shift attention to the new stimulus (Corbetta & Shulman 2002). It was 

found that PD patients show an imbalance of attention control mechanisms: 

bottom-up attention control is dominant over top-down attention control (Bin Yoo et 

al. 2018; Cools et al. 2010; Flowers & Robertson 1995). To reflect attention deficits 

in PD, we included several functional networks involved in attention and action 

regulation.  

The meta-analytical vigilant attention network (VigAtt) investigated in this study 

(Langner & Eickhoff 2013) includes brain regions involved in sustaining vigilant 

attention over more than 10 seconds. The concept of vigilant attention, defined as 

maintaining attention while performing monotonous tasks, was introduced by 

Robertson and Garavan (Robertson & Garavan 2004). The VigAtt network used in 

this study was defined using an ALE-meta-analysis. Experimental paradigms used 

in the assessment of vigilant attention are e.g., reaction time tasks, stimulus 

discrimination tasks (such as go/no-go tasks) or sustained target counting tasks 

(Langner & Eickhoff 2013). Brain regions that consistently showed activation 

during the aforementioned task paradigms were e.g., the dorsomedial, mid- and 

ventrolateral prefrontal cortex, the anterior insula, parietal regions as well as 

subcortical regions, as the cerebellar vermis, thalamus, putamen or midbrain 

(Langner & Eickhoff 2013). 
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Fig. 6: Illustration of the vigilant attention network. Created with BrainNet Viewer, Version 1.32 

(Xia et al. 2013). MNI-coordinates as published by Langner and Eickhoff (Langner & Eickhoff 

2013). 

 

The cognitive action control network (CogAC) contains brain regions needed to 

suppress routine actions in order to perform non-routine actions (Cieslik et al. 

2015). These include the right anterior insula, the inferior frontal junction, the 

anterior midcingulate cortex and the pre-supplementary motor area (Cieslik et al. 

2015). Definition of the CogAC network relied on a coordinate-based 

ALE-meta-analysis. The network represents different subcategories of cognitive 

action control, namely action withholding, action cancellation and interference 

control. Included task paradigms were the antisaccade, flanker, go/no-go, 

stop-signal, SRC, Stroop, and Simon tasks (Cieslik et al. 2015). 
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Fig. 7: Illustration of the cognitive action control network. Created with BrainNet Viewer, 

Version 1.32 (Xia et al. 2013). MNI-coordinates as published by Cieslik and colleagues (Cieslik et 

al. 2015). 

 

Another network representing action control is the cognitive action regulation 

network (CogAR) (Langner et al. 2018). In the case of CogAR, cognitive action 

regulation is defined as “intentionally withholding or stopping a prepotent action, 

often in combination with performing a competing alternative action” (Langner et 

al. 2018). Situations requiring this kind of action control bear a conflict between 

different, competing responses: an inadequate but dominant response and an 

adequate but non-dominant response. The goal of action regulation is to favor the 

adequate, non-dominant response over the inadequate, dominant response. The 

ALE-meta-analysis for CogAR included the following tasks: Stroop, Flanker, 

Simon, Stimulus-response compatibility, other conflict tasks, Go/no-go, 

Stop-signal, Task switching, Wisconsin card sorting (Langner et al. 2018). 
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Fig. 8: Illustration of the cognitive action regulation network. Created with BrainNet Viewer, 

Version 1.32 (Xia et al. 2013). MNI-coordinates as published by Langner and colleagues (Langner 

et al. 2018). 

2.5.4 Working memory 

Along with attention deficits, impaired working memory is another sign of cognitive 

impairment in PD (Bin Yoo et al. 2018). Working memory allows humans to 

complete complex cognitive tasks, such as following and participating in a 

conversation, solving math problems or finding the way to work in the morning. In 

order to complete these tasks, working memory has the capacity to store 

information for a short period of time and to actively process the information 

(Ramos & Machado 2021). One of the most popular organizational models of 

working memory was developed by Baddeley & Hitch (1974), who postulated a 

distinction between verbal (“verbal loop”) and spatial information (“visuospatial 

sketchpad”). In this model, attribution of incoming sensory information to one of 

the loops was mediated by a “central executive” (Baddeley & Hitch 1974; Rottschy 

et al. 2012). This model was later extended with the concept of an “episodic 

buffer”, i.e., a system with the capacity for ultrashort-term storage of sensory input 

(Baddeley 2000). PD patients often show a deterioration of verbal working memory 

(Ramos & Machado 2021). In this study, we included a meta-analytically defined 

working memory network (WM), representing a core network of regions that are 

active across various different working memory tasks (Rottschy et al. 2012). 
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Fig. 9: Illustration of the working memory network. Created with BrainNet Viewer, Version 1.32 

(Xia et al. 2013). MNI-coordinates as published by Rottschy and colleagues (Rottschy et al. 2012). 

2.5.5 Multiple tasks 

Performing two tasks simultaneously or rapidly switching between tasks is 

cognitively demanding and results in a delay of responses to external stimuli, as 

shown in many studies (e.g., Kiesel et al. 2010; Koch et al. 2018; Pashler 1994). 

Both, the ability of managing two tasks at once (like talking on the phone while 

cooking) and rapid task-switching decrease with age. It has been hypothesized 

that the same neural mechanisms underlie dual-tasking and task-switching and 

the deterioration of both with increasing age (Verhaeghen et al. 2003). Multitasking 

can be impaired in individuals with neurodegenerative diseases. In PD, especially 

patients with cognitive impairment experience difficulties with multitasking and 

hence with the completion of complex everyday tasks. For example, walking while 

talking can become difficult for affected individuals (Raffegeau et al. 2019; 

Schmitter-Edgecombe et al. 2024). 

The multitasking network (MultiTask) analyzed in the present study relies on two 

ALE-meta-analyses on either dual-tasking or task-switching. The core network 

activated by both types of cognitive action included the bilateral intraparietal 

sulcus, left dorsal premotor cortex and the right anterior insula (Worringer et al. 

2019).  
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Fig. 10: Illustration of the multitasking network. Created with BrainNet Viewer, Version 1.32 (Xia 

et al. 2013). MNI-coordinates as published by Worringer and colleagues (Worringer et al. 2019). 

2.5.6 Executive functions  

The term ‘executive functions’ refers to a set of cognitive functions that allow 

higher-order cognitive processes such as solving problems, making decisions or 

planning (Diamond 2013). Among these functions are the abilities such as to hold 

and manipulate information in order to use it for another task (working memory), 

resisting temptations (inhibition) and paying attention to external or internal stimuli 

(attention). PD patients often experience a decline in executive functions in the 

context of the frequently observed cognitive impairment.  

As seen before, neural networks for distinct executive functions (i.e., working 

memory, vigilant attention) have been described. However, it was observed that a 

set of brain regions is consistently activated across different executive functions. 

Consequently, a multiple-demand network (MDN) has been proposed, including 

brain regions that consistently contribute to different executive functions, like 

mid-dorsolateral regions (i.e., middle and posterior parts of the inferior frontal 

sulcus), mid-ventrolateral regions (around the frontal operculum to anterior insula) 

and dorsal anterior cingulate regions (Duncan & Owen 2000). Based on the 

concept of a common neural correlate for executive functions, an extended 

multiple demand network (eMDN) was proposed by Camilleri and colleagues 

(Camilleri et al. 2018), containing other brain regions that are active in several 
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executive functions but were not included in the MDN. Core regions of the eMDN 

are the bilateral inferior frontal junction (reaching into the inferior frontal gyrus), the 

bilateral anterior insula, and the bilateral pre-supplementary motor area (reaching 

into the anterior midcingulate cortex) (Camilleri et al. 2018). 

 
Fig. 11: Illustration of the extended multiple demand network. Created with BrainNet Viewer, 

Version 1.32 (Xia et al. 2013). MNI-coordinates as published by Camilleri and colleagues (Camilleri 

et al. 2018). 

2.5.7 Social and emotional processing 

Disturbances in emotional processing often occur in PD patients. These concern 

the emotional experience (e.g., reduced arousal in response to emotional pictures) 

as well as perception and expression of emotions on faces or in voices (for a 

review, cf. Péron et al. 2012).  

To take impairment of emotional and social processing into account, we added two 

different functional networks to our analysis. The emotional scene and face 

processing network (EmoSF) is based on an ALE-meta-analysis of studies using 

expressive faces and natural scene photographs as emotional stimuli (Sabatinelli 

et al. 2011). Among the core regions of this network is the amygdala, which was 

activated by both emotional faces and scenes. Other regions that consistently 

showed activation across stimuli were located in the medial prefrontal cortex, 

inferior frontal cortex, inferior temporal cortex and extrastriate occipital cortex 

(Sabatinelli et al. 2011). 
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Fig. 12: Illustration of the emotional scene and face processing network. Created with 

BrainNet Viewer, Version 1.32 (Xia et al. 2013). Several regions lie within the cerebellum, which is 

not included in the model. MNI-coordinates as published by Sabatinelli and colleagues (Sabatinelli 

et al. 2011). 

 

The other network involved in emotional processing that was analyzed for the 

present study is the extended social-affective default network (eSAD, (Amft et al. 

2015), which includes regions of the DMN involved in social and affective 

processes as well as related areas. The eSAD network comprises regions such as 

the amygdala and the hippocampus, associated with emotional and memory 

processes. It further includes brain regions associated with motivation and reward 

or autobiographical information (Amft et al. 2015) and is thus involved in a broad 

variety of cognitive functions that might be impaired in PD. 
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Fig. 13: Illustration of the extended social-affective default network. Created with BrainNet 

Viewer, Version 1.32 (Xia et al. 2013). MNI-coordinates as published by Amft and colleagues (Amft 

et al. 2015). 

2.5.8 Reward-related processes 

As PD affects the dopaminergic pathways in the brain which are also involved in 

reward-related behavior, a meta-analytically defined network involved in 

reward-related decision-making (Rew) was included in this study as well. A 

common reward-related symptom in PD is, e.g., impulse control disorder, often 

caused by dopamine replacement therapy (Drew et al. 2020). Regions of the Rew 

network include the nucleus accumbens, caudate, putamen, thalamus, 

orbitofrontal cortex, bilateral anterior insula, cingulate cortex (anterior and 

posterior), inferior parietal lobule and prefrontal cortex (Liu et al. 2011) 
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Fig. 14: Illustration of the reward-related decision-making network. Created with BrainNet 

Viewer, Version 1.32 (Xia et al. 2013). MNI-coordinates as published by Liu and colleagues (Liu et 

al. 2011). 

2.6 Calculation of resting-state functional connectivity 

The location of the network regions were described by MNI coordinates. Each 

region within the network was defined as a network node. To obtain a 

characteristic BOLD time series for a node, the time series of each voxel within a 6 

mm sphere around the center of each region were extracted and averaged. The 

weights of the edges between the network nodes were defined as the correlation 

between the time series of the two respective nodes. The weights were calculated 

as Pearson’s correlation coefficient.  

2.7 Measures of network connectivity 

To systematically quantify within- and between-network FC of the included 

networks, three different variations of simple average FC as well as several 

graph-theory based measures suitable for the analysis of human brain networks 

were calculated.  
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2.7.1 Average functional connectivity measures 

As this work focuses on the interaction of the DMN with other networks and the 

brain as a whole, first, the average within-network FC (wnFC; cf. Fig. 15a) of each 

network separately as mean FC between all pairs of nodes of the network was 

calculated. Second, the average FC of different network-combinations was 

calculated. To this end, the DMN was paired with each of the TPNs and with the 

WBN and again mean FC between all pairs of nodes of the network-combination 

was calculated (combFC; cf. Fig. 15b). Finally, the average between-network FC 

(bnFC) was of interest. To this end, the same network combinations as for 

combFC were analyzed, but focusing on the between-network edges, excluding 

any within-network connections (cf. Fig. 15c).  

 
Fig. 15: Schematic of average functional connectivity measures. Bold lines were included into 

the calculations of a given measure, dotted lines were excluded. a) Average within-network 

functional connectivity (wnFC) of the default mode network (DMN), the task-positive networks 

(TPNs), and the whole-brain network (WBN). b) Average functional connectivity of the DMN taken 

together with each TPN or the WBN separately (combFC). c) Average between-network functional 

connectivity of the DMN taken together with each TPN or the WBN separately (bnFC). 

2.7.2 Graph theory measures 

To further characterize the integration and segregation of the DMN with TPNs and 

the WBN, several graph theory measures were computed using the Brain 

Connectivity Toolbox (Sporns 2018; https://sites.google.com/site/bctnet/). 
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Global efficiency 

The Global efficiency (GE) of a network is a measure that describes how efficiently 

information is exchanged between the different nodes of a given network (Fagiolo 

2007; Latora & Marchiori 2001; Onnela et al. 2005; Rubinov & Sporns 2010). It is 

defined as the average of the inverse shortest path length. Weighted GE is 

calculated as (Ek et al. 2015; Latora & Marchiori 2001; Rubinov & Sporns 2010): 

 

 

where: 

- n = number of nodes within the given network 

- dij = distance between two nodes (i and j) 

Higher weights correspond to a shorter path length. Values for GE range between 

0 and 1, where 1 indicates the highest possible efficiency as observed in a fully 

connected network. Paths between disconnected nodes are defined as having a 

length of ∞. Contrary to the characteristic path length, global efficiency is more 

influenced by short paths and therefore might be a suitable measure to 

characterize network integration (Achard & Bullmore 2007; Rubinov & Sporns 

2010). GE can be used in the context of functional networks, however it has to be 

noted that functional networks have in general weaker connections between nodes 

and therefore have a lower global efficiency than structural and effective networks 

(Rubinov & Sporns 2010). 

GE was calculated for the DMN alone, for each combination of DMN and TPN and 

the DMN combined with the whole-brain network.  

Mean global diffusion efficiency 

The mean global diffusion efficiency (DE) is the average of the inverse of the mean 

first passage time, which is itself defined as the average amount of steps or time it 

takes to move from node i to node j of a given network, while choosing a random 

path. It is calculated as (Goñi et al. 2013): 
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where: 

- tij = mean first-passage time of an undirected graph 

To describe communication within a network, two concepts can be differentiated: 

routing or diffusion. Whereas routing describes directed, navigated movement of 

information to a specific target (for example characterized using GE), diffusion 

describes a more passive, random movement without a specific target. Passive 

diffusion can be observed in different types of networks, like social networks, and 

might play a role in neural networks as well (Goñi et al. 2013). The measures of 

diffusion efficiency were developed to complement known measures for routing 

efficiency (Goñi et al. 2013). 

Mean nodal eccentricity 

The mean nodal eccentricity (ECC) is defined as the average maximal path length 

between a node and any other node of a given network (https://sites.google.com 

/site/bctnet/list-of-measures): 

where: 

- u, v = nodes of a given network 

The minimal possible eccentricity corresponds to the radius of the network, 

whereas the maximal possible eccentricity is the diameter. Eccentricity is related to 

the characteristic path length, which is defined as the average shortest path length 

between all pairs of nodes within a given network (Rubinov & Sporns 2010).  

Mean node betweenness centrality vector 

The node betweenness centrality (BET) is defined as the portion of all possible 

shortest paths in a given network that involve the examined node. That means that 

a node with a high betweenness centrality takes part in many shortest paths. It 
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acts as an information bridge and is therefore central for information flow within the 

network.  

Betweenness centrality was first described by Freeman (Freeman 1977) and is 

mathematically described as (Brandes 2001): 

 

where: 

- σst = total number of shortest paths from node s to node t 

- σst (v) = number of shortest paths that pass through v 

Nodes with a high betweenness centrality are often hub nodes.   

Mean positive participation coefficient 

The positive participation coefficient (PPC) is defined as the distribution of 

positively weighted edges of a given node within its own community and with other 

communities.  

For the present study, every investigated network was defined as one community 

and the PPC was then calculated for each node of the DMN, combined with the 

nodes of another community. Values of the PPC vary between 0 and 1, with values 

close to 1 indicating an equal distribution of edges between the communities and 0 

indicating a restriction of edges to one community (Guimerà & Nunes Amaral 

2005). 

 

where: 

- Kis = number of links of a node i in a module s 

- ki = total degree of node i 
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Mean nodal strength of positive/negative weights 

The nodal strength (ST) is defined as the sum of the weights of all edges that are 

connected to a given node (Fornito 2016). It is the weighted analogue of a node’s 

degree, which is simply defined as the number of edges one specific node has. 

Mathematically, normalized (average) strength of a node is described as (Fornito 

2016):  

 

where:  

- wij = weight of the edge between the nodes i and j  

2.7.3 Functional connectivity filters 

In graph theory, it is a common procedure to apply filters to FC by only including 

edges above a certain weight into the calculations. However, little is known about 

the impact of the use of such thresholds and to date, no standard threshold level 

exists. In the present work, three different threshold levels were applied. At the first 

threshold level, named thrX, both negative and positive edges were retained, if 

allowed by the respective measure. Second, a threshold level of 0, named thr0, 

was applied, retaining only edges with a positive correlation coefficient. All 

negative correlations were set to 0. Third, a threshold level at 0.25, named thr25, 

was applied, including only higher correlations between node time series in the 

calculation. All correlations below 0.25 were set to 0.  

2.8 Statistics 

Analogous to the FC calculation, all statistical tests were conducted on both 

datasets separately. 

2.8.1 Patient parameters 

To compare the age distribution of the PD and HC groups, a two-sample t-test was 

conducted. Gender distribution among groups was compared via the Chi2-test. 
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Differences between motor symptom severity ((MDS-)UPDRS-III OFF) and 

disease stage (Hoehn & Yahr, H&Y) were evaluated using two-sample t-tests. This 

test was conducted despite the use of different versions of the UPDRS in the two 

datasets, as it was demonstrated that there is a high correlation between the two 

scales (Merello et al. 2011). 

2.8.2 Functional connectivity measures  

Statistical analyzes were conducted separately for each measure (i.e., three 

variations of average FC and six different graph theory derived measures) and 

each of the 13 networks and DMN-TPN/-WBN-combinations respectively. The data 

were first tested for group differences between PD patients and healthy controls, 

followed by testing for correlations of each measure with motor disease severity in 

PD patients. 

Group differences in FC measures between PD and HC groups were analyzed by 

using the analysis of covariance (ANCOVA) procedure. Age and gender were 

included as covariates. For each measure and each network or network 

combination, a separate ANCOVA was conducted. False discovery rate (FDR) 

procedure was used to correct for multiple comparisons, to account for the number 

of included networks and resulting network combinations (Benjamini & Hochberg 

1995). 

For the examination of the relationships between FC measures and clinical 

symptom severity, Pearson’s partial correlations were calculated. To this end, the 

FC measures were correlated with (MDS-)UPDRS-III OFF. Age and gender were 

included as covariates. Significance levels were again adjusted for multiple testing 

using the FDR procedure.  
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3 Results 

3.1 Participants 

No differences in age and gender distribution between PD patient and HC groups 

were detected in either dataset (p > 0.05). Furthermore, the age and gender 

distribution of both datasets was similar (p > 0.5). When comparing the motor 

symptom severity in PD patients of both datasets, measured by (MDS-)UPDRS-III 

OFF, no significant differences could be found (p > 0.05). The only significant 

difference between the patient characteristics of both datasets was a higher 

average Hoehn & Yahr stage in Data-DU (p < 0.05).  

3.2 Data-PR 

3.2.1 Group differences 

For every measure and every network, a group-wise comparison was performed 

between PD and HC. Among the networks that showed significant group 

differences between the two groups were the DMN, both motor networks 

(MotorPerc and MotorEx), the vigilant attention network (VigAtt) and the 

whole-brain network (WBN). Of all the tested measures, significant group 

differences were found for wnFC, combFC, and the graph theory measures GE 

and DE. Concerning the FC thresholds (thrX, thr0 and thr25), it was observed, that 

more significant results appeared without a threshold (thrX), while the exclusion of 

negative edges (thr0) and rising the FC threshold to 0.25 (thr25) gradually lead to 

a reduction of significant differences. All FDR-corrected p-values can be found in 

the appendix. 

WnFC of both motor networks was significantly reduced in PD patients at all three 

FC thresholds (see Fig. 16). Besides the DMN, wnFC of different TPNs, namely 

CogAC, CogAR, Rew, VigAtt, as well as in the WBN was significantly reduced in 

PD patients. In contrast to wnFC-changes in the motor networks, the mentioned 

networks only showed significant differences at FC threshold levels thrX (no 

threshold) and thr0 (only positive edges retained).  
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Fig. 16. Group differences in wnFC in Data-PR. Displayed are boxplots showing the data 

distribution for networks with significant differences in average within-network functional 

connectivity (wnFC). Conducted statistical analysis: Analysis of covariance (covariates: gender, 

age), false-discovery-rate-corrected p-level 0.05. Computation at 3 functional connectivity threshold 

levels (thr): thrX = all weights included, thr0 = positive edges retained, thr25 = weights above 0.25 

retained. Networks: Default mode network (DMN), cognitive action control network (CogAC), 

cognitive action regulation network (CogAR), perceptuo-motor network (MotorPerc), motor 

execution network (MotorEx), whole-brain network (WBN), reward-related decision-making network 

(Rew), vigilant attention network (VigAtt). 

 

When analyzing the average FC of the DMN combined with each of the TPNs and 

the WBN (combFC), a decrease was observed for the combinations of the DMN 

with CogAC, CogAR, MotorEx, MotorPerc, Rew, VigAtt, eMDN and the WBN (see 

Fig. 17). All the mentioned network combinations (DMN-TPN/WBN) showed 

significant differences at thrX, some also at thr0. 
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Fig. 17: Group differences in combFC in Data-PR. Displayed are boxplots showing the data 

distribution for networks with significant differences in average combined functional connectivity 

(combFC). Conducted statistical analysis: Analysis of covariance (covariates: gender, age), 

false-discovery-rate-corrected p-level 0.05. Computation at 3 functional connectivity threshold 

levels (thr): thrX = all weights included, thr0 = positive edges retained, thr25 = weights above 0.25 

retained. Networks: Default mode network (DMN), cognitive action control network (CogAC), 

cognitive action regulation network (CogAR), perceptuo-motor network (MotorPerc), motor 

execution network (MotorEx), whole-brain network (WBN), reward-related decision-making network 

(Rew), vigilant attention network (VigAtt), extended multiple demand network (eMDN). 

 

No significant group differences of pure between-network average FC (bnFC) were 

observed. 

Concerning the analyzed graph theory measures, significant group differences 

were found for GE and DE. Except for PPC and ST, the analyses for the graph 

theory measures were only performed at thr0 and thr25, as per definition not all 

the measures allow negative weights. 

The GE of the DMN as well as of the DMN combined with the MotorEx and VigAtt 

networks was reduced in PD patients at thr0 (cf. Fig. 18). At thr25, none of these 

differences were significant.  
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Fig. 18: Group differences in GE in Data-PR. Displayed are boxplots showing the data 

distribution for networks with significant differences in global efficiency (GE). Conducted statistical 

analysis: Analysis of covariance (covariates: gender, age), false-discovery-rate-corrected p-level 

0.05. Displayed are results from analysis at FC threshold level thr0 (only positive edges retained). 

Networks: Default mode network (DMN), motor execution network (MotorEx), vigilant attention 

network (VigAtt). 

 

In PD patients, DE was significantly reduced in several network combinations at 

thr0, namely the DMN and the combinations of DMN with CogAC, MotorPerc, 

Rew, VigAtt, WM, eMDN, eSAD and WBN (cf. Fig. 19). At thr25, only the group 

differences in network combinations of DMN with WBN and eSAD remained 

significant.  
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Fig. 19: Group differences in DE in Data-PR. Displayed are boxplots showing the data 

distribution for networks with significant differences in diffusion efficiency (DE). Conducted 

statistical analysis: Analysis of covariance (covariates: gender, age), false-discovery-rate-corrected 

p-level 0.05. Displayed are results from analysis at FC threshold level thr0 (only positive edges 

retained) and thr25 (only edges with weights > 0.25). Networks: Default mode network (DMN), 

cognitive action control network (CogAC), perceptuo-motor network (MotorPerc), whole-brain 

network (WBN), reward-related decision-making network (Rew), vigilant attention network (VigAtt), 

working memory network (WM), extended multiple demand network (eMDN), extended 

social-affective default network (eSAD). 

3.2.2 Correlations with motor symptom severity 

All different FC metrics were correlated with motor symptom severity. In general, 

stronger correlations were observed at a higher FC threshold. Among the 

networks that showed significant group differences were the DMN, MotorPerc and 

MultiTask. Of all tested measures, the highest number of significant correlations 

was observed for wnFC (of DMN), ST, PPC and GE.  

First, a negative correlation between wnFC of the DMN and motor symptom 

severity was found at thr0 and thr25 (thr0: r = -0.53; thr25: r = -0.57, both p < 0.05, 

cf. Fig. 20).   
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Fig. 20: Correlation of wnFC with UPDRS-III OFF in Data-PR. Scatter plots showing the relation 

between motor symptom severity (measured by part III of the unified PD Rating Scale in medical 

OFF-state, UPDRS-III OFF) and within-network functional connectivity (wnFC) of the default mode 

network (DMN). Significant Pearson’s partial correlation to a p-level of < 0.05 at two different FC 

threshold levels: a) thr0 = positive edges retained, b) thr25 = weights above 0.25 retained. 

Pearson’s r: thr0: r = -0.53; thr25: r = -0.57, both p < 0.05. 

 

Another finding concerning the average FC measures was a positive correlation of 

bnFC between the DMN and MotorPerc with UPDRS-III OFF (r = 0.542, p < 0.05) 

at thrX. When using an FC threshold, this correlation was no longer significant (cf. 

Fig. 21). 
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Fig. 21: Correlation of bnFC with UPDRS-III OFF in Data-PR. Scatter plot showing the relation 

between motor symptom severity (measured by part III of the unified PD Rating Scale in medical 

OFF-state, UPDRS-III OFF) and average between-network functional connectivity (bnFC) of the 

perceptuo-motor network (MotorPerc). Significant Pearson’s partial correlation at a p-level of < 

0.05. No FC threshold applied (thrX).  

 

For the graph theory measures, the following correlations were significant: ST 

within the DMN correlated negatively with UPDRS-III OFF at all FC threshold 

levels (thrX: r = -0.53; thr0: r = -0.54; thr25: r = -0.56; all p < 0.05). Furthermore, at 

thr25 ST of several DMN-TPN combinations showed a significant correlation, too, 

namely combinations of DMN with CogAR (r = -0.45), emotional scene and face 

processing (EmoSF, r = -0.42), MotorEx (r = -0.48), MultiTask (r = -0.52), Rew (r = 

-0.42), eMDN (r = -0.43) and eSAD (r = -0.53, cf. Fig. 22). 
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Fig. 22: Correlation of ST with UPDRS-III OFF in Data-PR. Scatter plots showing the relation 

between motor symptom severity (measured by part III of the unified PD Rating Scale in medical 

OFF-state, UPDRS-III OFF) and mean nodal strength (ST). Significant Pearson’s partial correlation 

to a p-level of < 0.05). Analysis conducted for 3 functional connectivity threshold levels (thr): a) thrX 

= all weights included; b) thr0 = positive edges retained; c) thr25 = weights above 0.25 retained. 

For reasons of readability, the diagram showing the correlations of ST at thr25 does not contain all 

significant networks. Not displayed are ST of DMN-CogAR (r = -0.45), DMN-EmoSF (r = -0.42), 

DMN-Rew (r = -0.42) and DMN-eMDN (r = -0.43; all p < 0.05). Networks: Default mode network 

(DMN), cognitive action regulation network (CogAR), emotional scene and face processing network 

(EmoSF), motor execution network (MotorEx), multitasking network (MultiTask), extended multiple 

demand network (eMDN), extended social-affective default network (eSAD). 

 

For the PPC, several DMN-TPN combinations correlated with motor symptom 

severity (cf. Fig. 23). At all FC thresholds, significant correlations were found for 

the DMN combined with MotorPerc (thrX: r = 0.49; thr0: r = 0.49; thr25: r = 0.59) 

and MultiTask (thrX: r = 0.54; thr0: r = 0.53; thr25: r = 0.50). At thr25, also the PPC 

of DMN combined with CogAC (r = 0.47) and MotorEx (r = 0.50) were positively 
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correlated with UPDRS-III OFF. The PPC of the DMN combined with the WBN 

however was negatively correlated with UPDRS-III OFF at thr25 (r = -0.44). 

 
Fig. 23: Correlation of PPC with UPDRS-III OFF in Data-PR. Scatter plots showing the relation 

between motor symptom severity (measured by part III of the unified PD Rating Scale in medical 

OFF-state, UPDRS-III OFF) and mean positive participation coefficient (PPC) of the default mode 

network (DMN) combined with task-positive networks/whole-brain network. Significant Pearson’s 

partial correlation (p < 0.05). Analysis conducted for 3 functional connectivity threshold levels (thr): 

a) thrX = all weights included; b) thr0 = positive edges retained; c) thr25 = weights above 0.25 

retained. For reasons of readability, the correlation of the PPC of DMN-CogAC (r = 0.47) with 

UPDRS-III OFF is not displayed. Networks: multitasking network (MultiTask), perceptuo-motor 

network (MotorPerc), motor execution network (MotorEx), whole-brain network (WBN). 

 

Finally, a negative correlation of GE of the DMN with UPDRS-III was observed at 

both tested FC threshold levels (thr0: r = -0.54 and thr25: r = -0.54), as well as a 

negative correlation of the GE of DMN-MultiTask at thr25 (r = -0.47, cf. Fig. 24).  
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Fig. 24: Correlation of GE with UPDRS-III OFF in Data-PR. Scatter plots showing the relation 

between motor symptom severity (measured by part III of the unified PD Rating Scale in medical 

OFF-state, UPDRS-III OFF) and global efficiency (GE) of the default mode network (DMN) and the 

combination of the DMN with the multitasking network (MultiTask). Significant Pearson’s partial 

correlation to a p-level of < 0.05 at two different FC threshold levels: a) thr0 = positive edges 

retained, b) thr25 = weights above 0.25 retained. Pearson’s r: GE of DMN at thr0: r = -0.54 and 

thr25: r = -0.54, GE of DMN-MultiTask at thr24: r = -0.47, all p < 0.05. 

3.3 Data-DU 

3.3.1 Group differences 

As in Data-PR, for every measure and every network, a group-wise comparison 

was performed between PD and HC. However, in Data-DU, only few significant 

group differences were observed. These appeared primarily when no FC threshold 

was applied.  

Concerning the average FC measures, no significant group differences were found 

using a conservative significance criterion of p < 0.05. However, average 

within-network FC (wnFC) of the DMN (p = 0.07) and eMDN (p = 0.09) was lower 

in PD patients at a trend-level at thrX. The other networks that showed a 

significantly lower wnFC in Data-PR (CogAC, CogAR, MotorPerc, MotorEx, WBN, 

Rew, VigAtt) did not differ in Data-DU. For average combined FC (combFC), again 

only a trend-level decrease in PD patients was observed for several DMN-TPN 

combinations (CogAC, MotorPerc, MotorEx, MultiTask, eMDN, all p < 0.1).  

For the graph theoretical measures, significant differences were found for DE and 

ECC. At thr0, DE of several DMN-TPN/WBN combinations was reduced in 
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PD-patients, namely the DMN combined with WBN, CogAC, Rew, VigAtt, WM, 

eMDN, eSAD, as well as in the DMN alone (all p < 0.05, cf. Fig. 25). 

 
Fig. 25: Group differences in DE in Data-DU. Displayed are boxplots showing the data 

distribution for networks with significant differences in diffusion efficiency (DE). Conducted 

statistical analysis: Analysis of covariance (covariates: gender, age), false-discovery-rate-corrected 

p-level 0.05. Displayed are results from analysis at FC threshold level thr0 (only positive edges 

retained). Networks: Default mode network (DMN), cognitive action control network (CogAC), 

whole-brain network (WBN), reward-related decision-making network (Rew), vigilant attention 

network (VigAtt), working memory network (WM), extended multiple demand network (eMDN), 

extended social-affective default network (eSAD). 

 

Finally, at thr0, the mean nodal eccentricity (ECC) showed a significant increase in 

PD patients for the combination of the DMN with MultiTask (p = 0.038, cf. Fig. 26).  
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Fig. 26: Group differences in ECC in Data-DU. Displayed are boxplots showing the data 

distribution for group differences in mean nodal eccentricity (ECC) in the combination of the default 

mode network (DMN) with the multitasking network (MultiTask) at functional connectivity threshold 

level thr0 (only positive edges retained). Conducted statistical analysis: Analysis of covariance 

(covariates: gender, age), false-discovery-rate-corrected p-level 0.05. 

3.3.2 Correlations with motor symptom severity 

At a conservative p-level of 0.05, no significant correlations were found in 

Data-DU. However, at a trend-level, some observations could be made. Without 

the application of an FC threshold (thrX), wnFC of the DMN (r = -0.41) and 

combFC of the DMN combined with eSAD (r = -0.39) and the WBN (r = -0.40) 

correlated negatively with disease severity (all p < 0.1). Concerning graph theory 

measures, at thrX, ST of DMN combined with MotorPerc (r = -0.42), MotorEx (r = 

-0.48) and WBN (r = -0.40) was negatively correlated with motor symptoms (all p < 

0.1). Similar correlations also appeared at thr0.  

At thr25, some trend-level correlations of GE and BET were found. GE of the DMN 

combined with CogAC, MotorEx, WM and eSAD were negatively correlated with 

MDS-UPDRS-III (all p < 0.1). Finally, BET of the DMN together with CogAR and 

MotorEx showed a negative correlation with motor symptoms at thr25 (all p < 0.1).  
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3.4 Consistent findings across datasets 

3.4.1 Group differences 

At a significance level of p < 0.05, both datasets showed significant group 

differences for the DE within several DMN-TPN-combinations, i.e., the DMN 

combined with CogAC, WBN, Rew, VigAtt, WM, eMDN, eSAD, and the DMN alone 

(thr0). When considering a more lenient statistical significance of p < 0.1, a 

consistent finding was the decreased wnFC of the DMN at thrX (p = 0.033 in 

Data-PR and p = 0.07 in Data-DU). Similarly, combFC of several DMN-TPN 

combinations was decreased in both datasets (thr0; p < 0.1), namely the 

combinations of the DMN with CogAC, MotorPerc, MotorEx, MultiTask, WM and 

eMDN.  

Overall, it can be said that a relatively large portion of the findings in Data-DU 

were also present in Data-PR, but in Data-PR, other significant differences were 

found, that were not present in Data-DU.  

3.4.2 Correlations with motor symptom severity 

When comparing the correlations with motor symptom severity in both datasets, 

the only consistent correlation was a negative correlation of wnFC of the DMN with 

UPDRS-III OFF. It should however be noted that this correlation was observed at 

different FC threshold levels (thrX in Data-DU and thr0 and thr25 in Data-PR). In 

Data-DU, the correlation was significant only at a trend level of p < 0.1. 

In both datasets, the DMN and the two motor networks showed significant 

correlations with disease severity, albeit for different FC measures (significance 

level of p < 0.1 for Data-DU).  
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4 Discussion 

In the present work, resting-state functional connectivity of predefined 

meta-analytic networks in PD patients was analyzed to study its potential of 

serving as a diagnostic or monitoring biomarker for PD. To find valuable biomarker 

candidates, a wide variety of functional networks and functional connectivity 

measures were included and analyzed. The computed measures comprised 

variations of average functional connectivity and graph theory measures and were 

used to characterize within- as well as between-network FC. Measures were 

statistically tested for group differences between PD patients and healthy controls 

and correlated with motor symptom severity.  

In this discussion, the disease specific results will be reviewed in the context of the 

current literature and evaluated for their potential to serve as foundations for 

further biomarker research. Furthermore, the broader implications of functional 

connectivity in biomarker research will be considered. Then, the challenges and 

limitations will be addressed, followed by a conclusion that aims at guiding future 

research in this field.  

4.1 Discussion of results 

4.1.1 Functional connectivity of the DMN 

The DMN was chosen as the central network for the present study. There are 

several factors that justify this choice. For instance, the DMN is arguably the most 

widely studied functional brain network, receiving significant attention in research 

on both healthy individuals and patients with various diseases. FC alterations have 

for example been described in the context of Alzheimer’s disease, autism 

spectrum disorder, epilepsy, mood disorders and Parkinson’s disease (e.g., Feng 

et al. 2024; Mohan et al. 2016; Tessitore et al. 2019). Furthermore, the DMN is 

involved in a wide range of brain functions. The DMN was first described as a set 

of brain regions that are suppressed when an individual is engaged in an external 

task and active in the absence of external stimuli (Shulman et al. 1997). The 

cognitive functions that were first discovered were therefore activities like 

self-referential thoughts, day-dreaming, thinking about future or past events and 

mind-wandering (Buckner et al. 2008; Menon 2023). More recently, it was 
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hypothesized that the DMN is also involved in other complex, goal-directed tasks 

like different planning scenarios, episodic or semantic memory and language 

(Menon 2023), for instance by coupling with other networks like the frontoparietal 

control network (Spreng 2012; Spreng et al. 2010). Considering this wide range of 

functions, it becomes clear why the interest in the DMN architecture in different 

neurological diseases is high. 

In the present study, the average FC between all pairs of nodes in the DMN 

(wnFC) was significantly decreased in PD patients in Data-PR at thrX and thr0. 

Furthermore, in Data-PR, a decrease of global efficiency and diffusion efficiency of 

the DMN were observed in PD patients. WnFC, coupling strength (ST) and GE of 

the DMN were negatively correlated with motor symptom severity. Some of these 

observations were also made in Data-DU. There, a trend of decreased wnFC of 

the DMN was observed (p = 0.07) and DE of the DMN was significantly reduced. 

At a trend-level (p < 0.1), wnFC of the DMN was negatively correlated with 

symptom severity. Overall, these observations are hints for a less strongly and less 

efficiently connected DMN in PD patients compared to HC, especially in Data-PR. 

These functional abnormalities seem to increase with ongoing disease duration 

and worsening motor impairment. Several publications support the finding of 

decreased FC within the DMN in PD and found associations with lower cognitive 

performance (Baggio et al. 2015a; Disbrow et al. 2014; Hou et al. 2016; Jellinger 

2023; Lucas-Jiménez et al. 2016; Tessitore et al. 2012; Wolters et al. 2019). The 

DMN is, as mentioned above, involved in memory processes (Mohan et al. 2016; 

Smallwood et al. 2021) and PD patients are prone to the development of cognitive 

impairments (Aarsland et al. 2021; Goldman & Sieg 2020; Litvan et al. 2012). The 

decreased wnFC of the DMN could therefore be interpreted as a sign of cognitive 

impairment. A reduction of within-network FC of the DMN is also well described in 

Alzheimer’s disease, underlining the connection between the DMN-FC and 

cognitive performance (Mohan et al. 2016; Pini et al. 2021). Due to a lack of data 

on cognitive performance, the association with cognitive performance could not be 

directly tested here, however, correlations of DMN-FC measures with motor 

symptom severity were found in the present study. In PD, motor symptoms 

generally worsen with ongoing disease. As the likelihood of cognitive decline also 

increases with ongoing disease, it can be argued that motor symptom severity can 

to some extent serve as a proxy for cognitive symptoms. However, some studies 
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observed correlations of FC with cognitive performance but not motor performance 

(Disbrow et al. 2014; Olde Dubbelink et al. 2014), which shows that further testing 

with more information on patient phenotypes is needed in order to evaluate if the 

altered DMN architecture found here is also associated with cognitive decline.  

Although the present data and several other studies suggest that the DMN is less 

efficiently organized in PD and loses some of its connectivity, it has to be noted 

that increased FC (e.g., Campbell et al. 2015; Chen et al. 2022) and increased GE 

(Fang et al. 2017) within the DMN is also described in the literature. There are 

several possible reasons for these discrepancies. In the study conducted by 

Campbell and colleagues, patients were scanned after an overnight withdrawal of 

their antiparkinsonian medication (Campbell et al. 2015) whereas in the present 

study, patients were scanned on their habitual medication regimen. Fang and 

colleagues investigated subjects with early PD, whereas the used samples in the 

present study are more heterogeneous in this regard (Fang et al. 2017). Similarly, 

the H&Y stage of the patients in the study conducted by Chen and colleagues was 

lower (1.41 ± 0.45) than in the present samples (Data-PR: 2.02 ± 0.54 and 

Data-DU: 2.59 ± 0.72) (Chen et al. 2022). Increased connectivity within the DMN 

in PD has been shown to be associated with visual hallucinations, suggesting that 

DMN connectivity has an impact on the development of specific symptoms or vice 

versa (Mohan et al. 2016), which might not have been frequently present in the 

investigated populations. Here again, more details on disease subtypes and 

specific symptoms are needed in order to understand the impact of changes in 

DMN FC. 

Overall, because of its alterations and correlation with symptom severity, it can be 

argued that within-DMN FC has some potential as a starting point for the research 

for a disease-severity marker. This potential is underlined by the fact that 

significant FC changes could be observed in both datasets. Other studies also 

came to the conclusion that the DMN could be a valuable starting-point for further 

biomarker research in cognitively impaired PD patients (Tessitore et al. 2019; 

Wolters et al. 2019). 

4.1.2 Functional connectivity changes within TPNs 

In Data-PR, a decreased wnFC of both included motor networks was observed. 

This observation was however not replicated in Data-DU. The decreased wnFC of 
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the motor networks can be interpreted as a reflection of PD as a movement 

disorder. This finding is supported by previous studies that found decreased FC 

between brain regions involved in motor functions (e.g., Campbell et al. 2015; 

Caspers et al. 2021; Peraza et al. 2017; White et al. 2020). However, increased 

FC has also been described (de Schipper et al. 2018). As with the FC within the 

DMN, findings on motor network FC in the literature have often been seemingly 

contradictory. Still, several studies could relate FC changes of motor regions to 

different PD symptoms, e.g., motor symptoms (Dahmani et al. 2024; Hensel et al. 

2019; Wu et al. 2009) or behavioral changes (Vervoort et al. 2016), highlighting its 

potential as a biomarker (Tessitore et al. 2019), i.e., to distinguish different PD 

subtypes. However, further research is needed.  

Decreased wnFC was also found within the vigilant attention, cognitive action 

regulation (CogAR), cognitive action control (CogAC) and reward (Rew) networks 

in Data-PR. The vigilant attention network is based on a meta-analysis of 

fMRI-studies focusing on FC during continuous stimulus-detection and 

stimulus-discrimination tasks requiring attention over a prolonged period of time 

(Langner & Eickhoff 2013). CogAC and CogAR are both involved in action control, 

e.g., when a difficult action has to be favored over another, easier action, in order 

to achieve a certain goal (Cieslik et al. 2015; Langner et al. 2018). PD is often 

accompanied by cognitive impairment, including attention deficits (Aarsland et al. 

2021). Therefore, alterations of FC in corresponding regions and networks are a 

plausible finding. Different studies have concentrated on the role of the dorsal and 

ventral attention network as well as the frontoparietal network defined by Yeo and 

colleagues (Yeo et al. 2011). These networks show a relevant overlap with the 

attention networks investigated here. FC alterations in these networks in PD have 

been observed and linked to specific symptoms, e.g., cognitive impairment 

(Baggio et al. 2015a; Bezdicek et al. 2018; Peraza et al. 2017; Yeager et al. 2024) 

or freezing of gait (Maidan et al. 2019), supporting the present findings.  

The changes in the reward network found in the present study fit well together with 

the pathophysiology of PD, i.e., changes in the dopaminergic system, which is 

important for reward-related processes (Perry & Kramer 2015). 

Reward-processing is impaired in PD patients (Costello et al. 2022). This can for 

example lead to impaired impulse control, which can also be a side effect of the 
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dopamine replacement therapy or dopamine agonists, depression, or apathy 

(Costello et al. 2022; Perry & Kramer 2015). 

4.1.3 Whole-brain functional connectivity 

Besides the findings of decreased wnFC of different TPNs, the wnFC of the WBN 

was found to be decreased in PD patients in Data-PR, but not in Data-DU. This 

finding indicates the presence of FC alterations at the whole-brain level and 

underlines the perception of PD as a disconnection syndrome (Cronin-Golomb 

2010). The concept helps to understand the variety of different symptoms that 

characterize PD. The decreased average FC at the whole-brain level shows that 

PD changes are not restricted to separate brain regions. The finding of altered 

whole-brain FC is for example supported by a meta-analysis that investigated 

changes in structural connectivity at the whole-brain level and found decreased 

global efficiency, clustering coefficient and an increased characteristic path length 

in PD (Zuo et al. 2023). They concluded that segregation and integration in PD 

patients are decreased at a structural level and that therefore the 

small-world-architecture is impaired (Zuo et al. 2023). In the present study, similar 

observations could be made, although the GE of the functional whole-brain 

network was only decreased at a trend-level.  

The overall decrease of FC observed in the present study seems to be reflected or 

especially pronounced in several of the mentioned TPNs that are involved in 

functions that are impaired in PD, such as motor and cognitive processes.  

4.1.4 Between-network functional connectivity 

Alongside within-network FC, connectivity between networks (bnFC) was 

investigated, too. However, no significant group differences were found. When 

correlating bnFC with motor symptom severity, a significant positive correlation 

was found for the average FC between the perceptuo-motor network (MotorPerc) 

and the DMN in Data-PR (not in Data-DU). This finding suggests a shift in the 

relationship between these two networks with increasing disease severity. 

Although no significant group differences in bnFC were found here, other studies 

could find alterations of FC between networks and link them to different PD 

symptoms. For instance, reduced FC between the right fronto-parietal network and 

the executive control network (Bharti et al. 2020) and reduced FC between the 
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dorsal attention network, the medial visual network and the sensory-motor network 

or an increase of negative FC between the dorsal attention network (Yu et al. 

2021) were linked to freezing of gait. Furthermore, reduced FC between the DMN 

and regions of the dorsal attention and fronto-parietal network were associated 

with attention deficits (Boord et al. 2017). One observation that arises from the 

literature is that between-network FC has mostly been linked to specific symptoms 

and thus might be limited to specific subtypes of PD. This view is supported by the 

findings of Wang and colleagues, who hypothesized that between-network FC 

could be used to differentiate tremor dominant and postural instability dominant PD 

subtypes (Wang et al. 2023). Although no group differences of bnFC were 

observed in this study, it might have potential for a biomarker differentiating 

between subtypes, which could not be tested for in the present study due to a lack 

of phenotype data. Additionally, there might be potential as a disease monitoring 

biomarker, as correlations with disease severity were found in this study. A more 

detailed analysis of bnFC in different PD subtypes could help to solve this 

problem. It has moreover been reported, that bnFC varies with age (DeSerisy et 

al. 2021), even in healthy subjects, which may explain why no group differences 

were found in this study, as the results were controlled for age in all analyses. 

4.1.5 Interaction of the DMN and TPNs 

Several studies investigated the functional coupling and decoupling of 

resting-state networks in PD and suggested that changes in the coupling-behavior 

are associated with cognitive performance (Putcha et al. 2015, 2016; Tessitore et 

al. 2019; Yeager et al. 2024). Therefore, the investigation of network coupling and 

inter-network FC is an interesting approach for biomarker research and might offer 

valuable insights into brain architecture in the context of PD. Several of the 

calculated measures in this study, especially graph theory measures, aimed at 

characterizing the interaction of the DMN with task-positive networks. In PD 

patients, a decreased global efficiency of the DMN combined with the motor 

execution network and the vigilant attention network (as well as of the DMN alone) 

was observed in Data-PR, but not in Data-DU. This hints at a less efficient 

information flow between the DMN and the mentioned TPNs in PD. GE has only 

been used in a few studies in PD so far, but decreased GE of different brain 

networks in PD was observed (Novaes et al. 2021; Sang et al. 2015; Suo et al. 
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2017). One study found a decrease of GE within the motor circuit in PD. The 

decreased GE correlated with tremor severity (Novaes et al. 2021). Another study 

investigating GE of functional brain networks in PD found a decreased GE in the 

sensorimotor and the visual network but an increased GE within the DMN (Fang et 

al. 2017), which contradicts our finding of decreased GE within the DMN (cf. 

section 4.1.1). However, these results indicate that in general, GE can be useful 

for both the investigation of smaller functional networks and the whole-brain 

network. The present results indicate that GE can also help to characterize 

network coupling. 

In both datasets, significant decreases of diffusion efficiency of several 

DMN-TPN-couples were found, however the absolute DE values were ranging 

between 0 and 0.05 and were thus very small. Only for the DMN alone, higher 

values were calculated. No other studies investigating diffusion efficiency in PD 

were found. The present results suggest that DE might be more suitable for the 

analysis of smaller networks rather than large or combined networks. A similar but 

less pronounced effect could be observed for GE, where the values of the DMN 

alone were higher than those of DMN-TPN-combinations. A possible explanation 

could be that TPNs and the DMN are often considered as being anticorrelated 

(Fox et al. 2005), which leads to negative weights of inter-network connections. 

However, DE and GE were only calculated at thr0 and thr25, where negative 

weights were set to zero. Both measures are based on path lengths (characteristic 

path length in GE and random paths in DE) between all nodes of the network. In 

the presence of negative edges (set to zero), these path lengths increase, which at 

the same time decreases the efficiency of information flow as measured by DE 

and GE.  

Finally, significant correlations between the PPC of different DMN-TPN-couples 

and UPDRS-III OFF were observed in Data-PR (not in Data-DU). On the one 

hand, there was a positive correlation of the PPC of the DMN combined with 

MotorPerc, MotorEx and MultiTask networks. A higher PPC indicates that the 

edges are distributed more equally between the different communities (i.e., 

networks). The positive correlation with symptom severity indicates a reduction in 

segregation of the respective networks with increasing disease severity. On the 

other hand, the PPC of the DMN with the WBN correlated negatively with 

symptom severity, indicating that the DMN might segregate from the brain as a 
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whole while integrating increasingly with different TPNs. The increased integration 

with motor networks and the multitasking network could be interpreted as a 

compensation mechanism. The observations concerning PPC support the 

assumption made by Zuo and colleagues, who, as mentioned before, found signs 

of an altered small-world-architecture, which is normally characterized by high 

clustering and short path length, in PD patients (Zuo et al. 2023). Taken together, 

the PPC could deliver some valuable insights in the functional brain architecture in 

PD and might have potential as a starting point for biomarker research, especially 

as a disease monitoring biomarker.  

4.1.6 Functional connectivity thresholds and negative weights 

There is an ongoing controversy about the use of negative FC correlations. In the 

present study, FC was evaluated at three different threshold levels: first including 

both negative and positive weights (thrX), second including only positive weights 

(thr0) and third including only weights with a correlation coefficient above 0.25 

(thr25). The used thresholds derived from the literature and were already used in 

other studies (Buckner et al. 2009; Holiga et al. 2019; Wagner et al. 2021), yet 

there is an ongoing debate about the usefulness of negative weights and the 

choice of the threshold levels is still partly arbitrary, requiring a more detailed 

analysis in the future.  

In group-wise comparison, most significant differences were found, when negative 

weights were included, indicating that negative weights can indeed provide 

meaningful insights. Recently, several studies supported this hypothesis. For 

example, one study used a negative correlation matrix to classify patients with 

autism with a high accuracy (Kazeminejad & Sotero 2020). Another possibility to 

take negative weights into account is to use the absolute values of negative 

weights when analyzing FC, resulting in a measure of shared information between 

brain regions, whether it is positive correlation or anticorrelation. Using this 

approach, one study made the observation that FC changes based on absolute 

values were more often reproducible (Ran et al. 2020). On the other hand, it was 

argued that thresholding can lead to more noise and potentially falsify the 

assumptions made on network topology (Douw et al. 2019). 

When it comes to the correlation of FC measures with symptom severity, a 

contrary effect concerning the different threshold levels was observed, especially 
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in Data-PR. More significant correlations, especially for the graph theory 

measures, were found, when only higher weights were included (thr25). So 

possibly, the focus on stronger connections enhances and highlights 

individual-specific signals, leading to a better correlation with individual symptom 

severity. This observation can potentially help future biomarker studies, especially 

for the measurement of disease severity. It has been shown that individual FC of 

resting-state networks is reproducible over time, underlining the general potential 

of rsFC as a disease monitoring biomarker (Tessitore et al. 2019).  

4.2 Implications for biomarker research 

One aim of this study was to help to elucidate whether the analysis of network FC 

could prove useful as a starting point for the research for biomarkers in PD. Some 

of the changes observed in this study are consistent (at least at a trend level) 

across the two datasets and the literature (e.g., the decreased within-network FC 

of DMN), but the discrepancies were predominant and in the second dataset, only 

few significant results were obtained. 

The changes present in both datasets concerned primarily the DMN and the motor 

networks and concerning the FC measures, some consistency was found for 

combFC, DE and ST.  

The goal of biomarkers is to standardize diagnosis and monitoring of disease 

severity and therapy. In some clinical contexts, fMRI is already used today, for 

example in neurosurgical planning of epilepsy surgeries or to evaluate operability 

of brain tumors (Voets 2021), however the translation of functional connectivity 

data as a diagnostic biomarker into the clinical setting is difficult.  

The findings of the present study show that meta-analytic functional networks 

assessed via fMRI have the potential to fulfill some of the properties of ideal 

biomarkers as defined by Lesko and Atkinson (Lesko & Atkinson 2001). First, they 

measure clinically relevant features that partly correlate with disease severity and 

thus could help differentiate PD patients from healthy individuals and differentiate 

different PD subtypes. fMRI has a good spatial resolution, is available in many 

hospitals and is relatively straightforward to acquire for both, the patient and the 

health care professional (Glover 2011; Gore 2003). It therefore can be used in the 

clinical setting. However, although numerous studies used FC measured by fMRI, 
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it still is not regularly used in the clinical context. In order to evaluate sensitivity 

and specificity of the present results, further research is needed, and the results 

ideally need to be matched to other diagnostic methods and post-mortem analyses 

of the patient’s brain tissue. It was proposed by Douw and colleagues to 

consistently include the report of reliability, reproducibility, sensitivity and specificity 

of new measures that are meant to differentiate between patients and healthy 

subjects (Douw et al. 2019). In comparison to only reporting on significant group 

differences, this could help the field to advance faster on the way to reliable FC 

biomarkers (Douw et al. 2019).  

The biggest challenge that comes with fMRI-derived FC is the reliability (Tessitore 

et al. 2019). As already mentioned several times throughout the manuscript, the 

overlap between the results of both datasets was minimal despite identical 

processing and analysis pipelines. At a significance level of p < 0.05 only a 

reduction of diffusion efficiency in the DMN and several DMN-TPN-couples was 

significant in both datasets. The choice of the significance level of p < 0.05 is 

conservative, given that the statistical analyses of the two datasets were 

conducted separately. When considering a more lenient significance threshold of p 

< 0.1 the overlap is larger, nevertheless still only a small part of the findings in 

Data-PR appear again in Data-DU. In the past decades, fMRI was used widely to 

characterize FC patterns in PD. However, the literature on FC changes in PD is 

still inconclusive and the replication of results across different samples often failed 

(Badea et al. 2017; Jadavji et al. 2023). This challenge also becomes apparent in 

this study. There are different possible reasons for these replication difficulties that 

can be divided in two main categories: differences in methods, ranging from image 

acquisition to preprocessing choices and data analysis on the one hand and 

heterogeneity of the different samples, e.g., disease stage, disease subtype, or 

subject characteristics on the other hand. The first category was addressed in this 

study by using identical preprocessing and analysis pipelines on both datasets. 

The image acquisition parameters were also similar in both datasets (cf. methods), 

so these technical influences are probably not the main reason for the observed 

lack of replicability. It is however a general problem, that to date, no standardized 

analysis-pipelines exist for the analysis of resting-state fMRI-data, which in general 

makes replicability of results across samples difficult (Badea et al. 2017; Tessitore 

et al. 2019).  
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When comparing the patient characteristics of the two cohorts, the age and gender 

distribution was similar. Also, the motor symptom severity, although measured with 

two different versions of the UPDRS, was similar. Based on the available patient 

data, only the Hoehn & Yahr stage differed between the two datasets, being 

significantly higher in Data-DU, which possibly influenced the results. A lack of 

replicability of fMRI-based findings in different PD cohorts is a general issue that 

was for example addressed by Badea and colleagues, who specifically aimed at 

replicating results across three different PD samples (Badea et al. 2017). They 

concluded that the heterogeneous nature of PD is the most probable reason for 

this issue. This view is also supported by other studies (e.g., Berg et al. 2021; 

Greenland et al. 2019; Tahmasian et al. 2017). The cardinal symptoms of PD, 

namely tremor, rigor, akinesis and postural instability, can to some extent be found 

in every PD patient, but the degree or predominance of each symptom is highly 

variable. Based on the predominance of specific symptoms, several PD subtypes 

are differentiated (Tolosa et al. 2021). These subtypes are not only characterized 

by the different symptom manifestation but also by different disease progression 

speed, the presence or absence of cognitive impairment and by the degree of 

response to dopaminergic treatment (Armstrong & Okun 2020). Furthermore, it 

becomes more and more evident that FC alterations are also different between the 

subtypes (Baggio et al. 2015b; Filippi et al. 2019). As a reaction to these 

heterogeneous phenotypes, it is even questioned if PD is one single disease entity 

or if it is more suitable to view PD as a group of diseases with a similar 

pathogenesis (Rodríguez-Violante et al. 2017). Furthermore, dopaminergic 

treatment influences the intrinsic network FC and therefore can lead to more 

variable results (Achard & Bullmore 2007; Asendorf et al. 2024; Baggio et al. 

2015a; Ballarini et al. 2018; Cole et al. 2013; Esposito et al. 2013; Krajcovicova et 

al. 2012).  

Another challenge in fMRI-imaging that is often mentioned in the literature is that it 

appears to be more suitable to investigate group differences (as in the present 

study) compared to individual differences. It is often difficult or impossible to 

transfer the insights of fMRI studies from the group level to the individual level 

(Cerasa et al. 2016; Glover 2011). This makes the translation to the clinical setting 

very challenging (Tessitore et al. 2019).  
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There is an urgent need for publicly available large scale PD datasets, comprising 

detailed phenotype information, in order to systematically analyze FC patterns 

associated with PD subtypes and disease states. Furthermore, reproducibility and 

comparability across studies could be improved by defining standardized 

processing pipelines and sharing code.  

4.3 Limitations 

The present study yielded some meaningful and interesting insights on the 

architecture of functional brain networks in Parkinson’s disease, however there are 

some limiting factors that should be addressed in further studies. 

The present datasets were rather small. The used datasets are typical for clinical 

datasets used in PD FC-studies which tend to be small, inhomogeneous and thus 

non-representative (Baggio et al. 2015b; Khalili-Mahani et al. 2017; Tahmasian et 

al. 2017; Woo et al. 2017). Small samples are more vulnerable to outliers and 

individual deviations, for instance caused by other, not yet diagnosed diseases, 

potentially influence the mean of the cohort to a greater extent than in large 

samples.  

Furthermore, there was not enough information on the disease subtype, disease 

duration, details on dopaminergic treatment or cognitive impairments and the 

influence of these factors on the results can only be hypothesized. The lack of 

information on cognitive performance is important for the results concerning the 

networks that are implicated in cognitive processes rather than motor processes. 

Especially, alterations within the DMN architecture have repeatedly been 

correlated with cognitive performance (e.g., Tessitore et al. 2012). A similar 

approach should be repeated using datasets with more information on the 

mentioned patient properties in order to evaluate their impact on the results.  

The DMN was chosen as the central network of the study because of its prominent 

role in different cognitive processes and because of its often cited quality as a 

task-negative network. However, recent findings challenge the view of the DMN as 

task-negative, as it is also recruited for the execution of different complex tasks 

(for a review see Spreng 2012). Other studies also investigated the coupling of 

other resting-state networks, without directly including the DMN, and observed 
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interesting alterations in PD. The same additional analyses would be interesting 

for the used datasets and networks and should be investigated in the future. 

The network coordinates used in this study were defined in prior coordinate-based 

meta-analyses. Another commonly used approach is the independent component 

analysis (ICA), which is especially useful in exploratory studies without a strong a 

priori hypothesis (Cerasa et al. 2016). However, meta-analytical networks were 

chosen here, because the coordinates are a good estimate for the location of 

functional brain regions that consistently and robustly show activation across 

similar tasks and therefore cognitive functions. This allowed it to include networks 

representing a large variety of functions. As some networks (e.g., CogAR and 

CogAC) were based on similar but still distinct tasks, we could test for consistency 

of results within datasets. However, it would be interesting to use a purely 

data-driven approach, such as ICA, with similar datasets to further investigate the 

influence of this methodological choice.  
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5 Conclusion 

The present study aimed to evaluate the potential of the network-based analysis of 

resting-state functional connectivity of predefined meta-analytic networks for the 

development of biomarkers in Parkinson’s disease.  

In order to qualify as a potential biomarker, it first has to be established, that 

functional connectivity patterns in PD can be uncovered using meta-analytic 

networks instead of other, more popular approaches, such as independent 

component analysis. The present study showed that, indeed, FC alterations in PD 

patients could be found using meta-analytic networks. The significant findings 

were plausible and complement the existing literature on FC changes in PD. It 

became clear that the investigation of both, individual networks and combinations 

of networks, can deliver insights in disease specific connectivity patterns. The 

present work also shows, that both graph theory derived measures and simple 

variations of average FC can uncover PD specific FC alterations.  

Several potentially interesting starting points for the development of biomarkers 

could be identified in the present study. The decreased wnFC (both datasets) and 

decreased GE (Data-PR) of the DMN both hint at a less efficiently organized DMN 

that correlates with disease severity and could therefore be investigated as a 

potential disease severity marker. Although no group differences were found for 

the between-network FC, there might be some potential as a biomarker for 

disease severity, as correlations with motor symptoms were found. The literature 

also suggests, that the analysis of between-network FC could have potential for 

the differentiation between disease subtypes. Additionally, the PPC of the DMN 

together with other communities is an interesting measure that should be further 

investigated in future studies. The networks with the most significant group 

differences and correlations were the DMN and the two motor networks, but 

cognitive networks, such as CogAC or VigAtt, were also altered in PD. In order to 

further evaluate the diagnostic potential of the architecture of cognitive networks, 

similar analyses should be repeated on larger datasets with phenotype data on 

cognitive performance. Longitudinal studies in a consistent set of patients could be 

conducted to evaluate the consistency of the results at an individual level over 

time, to facilitate the translation of the results into clinical practice.  
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Although several potential approaches for further biomarker research could be 

identified in the present study, the challenge of insufficient replicability of results 

across datasets remains. The application of the same analysis-pipeline to both 

datasets did not improve reliability of rs-fMRI-derived measures in Parkinson’s 

disease, and the overlap between the results in the two datasets was small. 

Combined with the inconsistent literature in the field, the present results raise 

concerns about the reliability and generalizability of FC alterations in such a 

heterogeneous disease as PD. This could indicate that FC measures may be more 

suitable for the differentiation between disease subtypes and for the use as a 

disease-monitoring biomarker, rather than as a general diagnostic biomarker for 

Parkinson’s disease. There is a need for further investigations of different PD 

subtypes and larger datasets to fully evaluate the potential of FC-based 

biomarkers in general and the mentioned measures specifically in the context of 

PD. Only if the shortcoming of lacking reliability of fMRI-derived FC patterns can 

be overcome, reliable biomarkers can be found and used in the clinical setting.
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AC 
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Motor
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Motor
Ex 
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iTask WBN Rew VigAtt WM eMDN eSAD DMN 

thrX 

bnFC 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874 0.874 NaN 

wnFC 0.034* 0.029* 0.230 0.001* 0.001* 0.278 0.001* 0.030* 0.006* 0.081° 0.051° 0.256 NaN 

combFC 0.033* 0.034* 0.293 0.003* 0.017* 0.072° 0.003* 0.033* 0.010* 0.064° 0.033* 0.121 0.033* 

PPC 0.965 0.815 0.508 0.664 0.652 0.958 0.179 0.328 0.664 0.664 0.664 0.179 NaN 

ST 0.112 0.091° 0.312 0.245 0.115 0.073° 0.254 0.133 0.091° 0.112 0.133 0.112 0.086° 

thr0 

bnFC 0.836 0.862 0.836 0.836 0.862 0.836 0.836 0.836 0.836 0.836 0.862 0.836 NaN 

wnFC 0.081° 0.080° 0.417 0.002* 0.008* 0.410 0.022* 0.419 0.022* 0.216 0.176 0.380 NaN 
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ECC 0.109 0.249 0.197 0.313 0.249 0.249 0.487 0.249 0.109 0.197 0.164 0.222 0.313 

BET 0.820 0.063° 0.768 0.584 0.063° 0.679 0.679 0.768 0.584 0.810 0.584 0.810 0.483 

PPC 0.957 0.780 0.504 0.666 0.664 0.957 0.179 0.326 0.666 0.666 0.666 0.179 NaN 

ST 0.113 0.092° 0.312 0.245 0.116 0.074° 0.254 0.134 0.092° 0.113 0.134 0.113 0.085° 

thr25 

bnFC 0.888 0.888 0.888 0.846 0.888 0.888 0.888 0.888 0.888 0.888 0.846 0.846 NaN 

wnFC 0.157 0.157 0.548 0.045* 0.022* 0.548 0.120 0.937 0.120 0.391 0.521 0.548 NaN 

combFC 0.163 0.163 0.577 0.111 0.111 0.273 0.111 0.684 0.111 0.273 0.441 0.310 0.111 

GE 0.088° 0.088° 0.646 0.178 0.088° 0.201 0.088° 0.259 0.088° 0.088° 0.338 0.178 0.088° 

DE 0.068° 0.887 0.887 0.402 0.402 0.402 0.006* 0.068° 0.175 0.068° 0.595 0.046* 0.174 

ECC 0.323 0.151 0.795 0.432 0.432 0.396 0.432 0.617 0.432 0.432 0.770 0.282 0.227 

BET 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 

PPC 0.750 0.612 0.559 0.491 0.559 0.750 0.491 0.504 0.612 0.750 0.504 0.504 NaN 

ST 0.226 0.226 0.458 0.439 0.229 0.226 0.458 0.282 0.226 0.226 0.337 0.226 0.226 

 
Table S1. Group differences between patients with Parkinson’s disease and healthy controls 
in Data-PR. Conducted statistical analysis: ANCOVA (covariates: gender, age), displayed are 
FDR-corrected p-values (* = p < 0.05; ° = p < 0.1). Analysis conducted for 3 threshold levels (X = 
all weights included; 0 = positive edges retained; 25 = weights above 0.25 retained). Networks: 
Cognitive action control (CogAC), cognitive action regulation (CogAR), emotional scene and face 
processing (EmoSF), perceptuo-motor (MotorPerc), motor execution (MotorEx), multitasking 
(MultiTask), whole-brain network (WBN), reward-related decision-making (Rew), vigilant attention 
(VigAtt), working memory (WM), extended multiple demand (eMDN), extended social-affective 
default (eSAD), default mode network (DMN). Functional connectivity (FC) measures: average 
between-network FC (bnFC), average within-network FC (wnFC), average combined network FC 
(combFC), mean positive participation coefficient (PPC), mean nodal strength (ST), global 
efficiency (GE), mean global diffusion efficiency (DE), mean nodal eccentricity (ECC), mean node 
betweenness centrality vector (BET).  
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Data-DU Cog 
AC 

Cog 
AR 

Emo
SF 

Motor
Perc 

Motor
Ex 

Mult 
iTask WBN Rew VigAtt WM eMDN eSAD DMN 

thrX 

bnFC 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 0.944 NaN 

wnFC 0.150 0.150 0.374 0.182 0.150 0.183 0.183 0.401 0.410 0.150 0.091° 0.182 NaN 

combFC 0.070° 0.113 0.637 0.070° 0.070° 0.070° 0.155 0.122 0.155 0.070° 0.070° 0.122 0.070° 

PPC 0.966 0.316 0.316 0.966 0.316 0.349 0.242 0.316 0.966 0.966 0.327 0.316 NaN 

ST 0.872 0.872 0.872 0.951 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872 0.872 

thr0 

bnFC 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 0.691 NaN 

wnFC 0.489 0.489 0.489 0.686 0.529 0.489 0.686 0.489 0.904 0.529 0.489 0.642 NaN 

combFC 0.616 0.616 0.616 0.647 0.616 0.616 0.653 0.616 0.844 0.649 0.616 0.616 0.616 

GE 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.683 0.738 0.764 0.738 0.738 0.683 

DE 0.016* 0.146 0.752 0.169 0.092° 0.305 0.007* 0.044* 0.035* 0.007* 0.016* 0.043* 0.016* 

ECC 0.269 0.431 0.148 0.461 0.463 0.038* 0.843 0.269 0.148 0.823 0.244 0.240 0.190 

BET 0.986 0.919 0.992 0.992 0.480 0.992 0.992 0.480 0.986 0.480 0.992 0.480 0.992 

PPC 0.972 0.308 0.308 0.972 0.308 0.345 0.242 0.308 0.972 0.972 0.336 0.308 NaN 

ST 0.877 0.877 0.877 0.948 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 0.877 

thr25 

bnFC 0.485 0.505 0.485 0.116 0.485 0.774 0.343 0.485 0.606 0.485 0.192 0.745 NaN 

wnFC 0.896 0.896 0.615 0.896 0.963 0.896 0.896 0.240 0.922 0.978 0.896 0.978 NaN 

combFC 0.974 0.974 0.749 0.749 0.974 0.974 0.749 0.389 0.974 0.974 0.974 0.974 0.831 

GE 0.856 0.934 0.856 0.856 0.922 0.902 0.856 0.856 0.934 0.934 0.934 0.934 0.856 

DE 0.389 0.389 0.101 0.389 0.944 0.527 0.101 0.527 0.944 0.389 0.417 0.417 0.101 

ECC 0.789 0.823 0.789 0.925 0.273 0.789 0.873 0.873 0.789 0.789 0.789 0.873 0.873 

BET 0.986 0.986 0.986 0.950 0.986 0.986 0.986 0.679 0.968 0.986 0.986 0.986 0.986 

PPC 0.837 0.497 0.497 0.526 0.497 0.526 0.497 0.502 0.659 0.837 0.502 0.497 NaN 

ST 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901 0.901 

 
Table S2. Group differences between patients with Parkinson’s disease and healthy controls 
in Data-DU. Conducted statistical analysis: ANCOVA (covariates: gender, age), displayed are 
FDR-corrected p-values (* = p < 0.05; ° = p < 0.1). Analysis conducted for 3 threshold levels (X = 
all weights included; 0 = positive edges retained; 25 = weights above 0.25 retained). Networks: 
Cognitive action control (CogAC), cognitive action regulation (CogAR), emotional scene and face 
processing (EmoSF), perceptuo-motor (MotorPerc), motor execution (MotorEx), multitasking 
(MultiTask), whole-brain network (WBN), reward-related decision-making (Rew), vigilant attention 
(VigAtt), working memory (WM), extended multiple demand (eMDN), extended social-affective 
default (eSAD), default mode network (DMN). Functional connectivity (FC) measures: average 
between-network FC (bnFC), average within-network FC (wnFC), average combined network FC 
(combFC), mean positive participation coefficient (PPC), mean nodal strength (ST), global 
efficiency (GE), mean global diffusion efficiency (DE), mean nodal eccentricity (ECC), mean node 
betweenness centrality vector (BET)  
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Data-PR Cog 
AC 

Cog 
AR 

Emo
SF 

Motor 
Perc 

Motor
Ex 

Multi 
Task WBN Rew VigAtt WM eMDN eSAD DMN 

thrX 

bnFC 0.28 0.33 -0.01 0.54* 0.38 0.35 0.11 0.02 0.30 0.23 0.27 -0.42 NaN 

wnFC -0.13 -0.10 0.18 -0.34 -0.22 -0.28 0.01 0.14 -0.19 -0.06 -0.20 -0.35 NaN 

combFC -0.02 0.06 0.05 -0.02 -0.06 -0.07 0.01 0.03 0.01 0.01 -0.08 -0.41 -0.47 

PPC 0.30 0.38° -0.29 0.49* 0.40° 0.54* -0.45° -0.42° 0.35 0.33 0.33 -0.18 NaN 

ST -0.24 -0.39 -0.41 -0.16 -0.40 -0.37 -0.22 -0.36 -0.33 -0.20 -0.33 -0.49° -0.53* 

thr0 

bnFC 0.12 0.15 -0.23 0.34 0.14 0.25 -0.19 -0.18 0.10 0.14 0.08 -0.45 NaN 

wnFC -0.18 -0.15 -0.01 -0.16 -0.13 -0.31 -0.07 -0.01 -0.13 -0.13 -0.19 -0.38 NaN 

combFC -0.17 -0.20 -0.18 -0.06 -0.21 -0.29 -0.08 -0.14 -0.16 -0.12 -0.21 -0.45 -0.53* 

GE -0.24 -0.30 -0.21 -0.10 -0.33 -0.41 -0.13 -0.25 -0.18 -0.18 -0.25 -0.45 -0.54* 

DE 0.13 0.17 0.04 0.07 0.15 0.24 0.00 0.07 0.14 0.04 0.07 -0.12 -0.33 

ECC 0.11 0.10 -0.05 -0.16 0.02 0.14 0.21 0.14 0.08 0.04 0.09 0.23 0.17 

BET -0.16 -0.03 -0.24 -0.12 0.11 -0.16 -0.02 -0.09 -0.10 0.06 -0.15 0.13 0.21 

PPC 0.30 0.39° -0.29 0.49* 0.40° 0.53* -0.45° -0.42° 0.35 0.34 0.33 -0.18 NaN 

ST -0.24 -0.39 -0.41 -0.16 -0.40 -0.37 -0.22 -0.36 -0.33 -0.20 -0.33 -0.49° -0.54* 

thr25 

bnFC 0.00 0.04 -0.20 0.17 -0.03 0.01 -0.29 -0.26 0.05 0.05 0.01 -0.47 NaN 

wnFC -0.26 -0.14 0.00 -0.05 -0.14 -0.33 -0.07 -0.08 -0.08 -0.15 -0.19 -0.42 NaN 

combFC -0.27 -0.27 -0.16 -0.10 -0.31 -0.41 -0.09 -0.22 -0.16 -0.16 -0.24 -0.48° -0.57* 

GE -0.33 -0.34 -0.24 -0.13 -0.36 -0.47* -0.14 -0.39 -0.13 -0.23 -0.28 -0.44° -0.54* 

DE -0.01 0.01 0.12 0.22 0.20 -0.02 -0.04 -0.23 0.07 -0.12 -0.05 -0.30 -0.40 

ECC 0.30 0.11 0.03 -0.15 -0.41 0.25 -0.09 0.11 -0.04 0.15 0.30 0.38 0.31 

BET -0.07 -0.17 0.02 -0.04 -0.09 -0.20 0.00 -0.34 -0.03 -0.02 -0.08 0.08 -0.07 

PPC 0.47* 0.40° -0.21 0.59* 0.50* 0.50* -0.44* -0.37° 0.41° 0.32° 0.41° -0.20 NaN 

ST -0.37° -0.45* -0.42
* -0.32 -0.48* -0.52* -0.32 -0.42* -0.40° -0.33 -0.43* -0.53* -0.56* 

 
Table S3. Correlation of functional connectivity measures with symptom severity in Data-PR. 
Conducted statistical analysis: Pearson’s partial correlations (covariates: gender, age) between 
functional connectivity (FC) measures and symptom severity measured by UPDRS-III OFF. 
Displayed are correlation coefficients (* = p < 0.05; ° = p < 0.1). Analysis conducted for all three FC 
threshold levels (X = all weights included; 0 = positive edges retained; 25 = weights above 0.25 
retained). Networks: Cognitive action control (CogAC), cognitive action regulation (CogAR), 
emotional scene and face processing (EmoSF), perceptuo-motor (MotorPerc), motor execution 
(MotorEx), multitasking (MultiTask), whole-brain network (WBN), reward-related decision-making 
(Rew), vigilant attention (VigAtt), working memory (WM), extended multiple demand (eMDN), 
extended social-affective default (eSAD), default mode network (DMN). Functional connectivity 
(FC) measures: average between-network FC (bnFC), average within-network FC (wnFC), average 
combined network FC (combFC), mean positive participation coefficient (PPC), mean nodal 
strength (ST), global efficiency (GE), mean global diffusion efficiency (DE), mean nodal eccentricity 
(ECC), mean node betweenness centrality vector (BET).  
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Data-Du Cog 
AC 

Cog 
AR 

Emo 
SF 

Motor
Perc 

Motor
Ex 

Multi 
Task WBN Rew VigAtt WM eMDN eSAD DMN 

thrX 

bnFC 0.18 0.06 -0.13 0.11 0.03 0.30 -0.32 -0.09 0.29 0.14 0.17 -0.40 NaN 

wnFC -0.29 -0.19 -0.19 0.02 -0.14 -0.27 -0.40 -0.03 -0.26 -0.19 -0.18 -0.31 NaN 

combFC -0.23 -0.28 -0.27 -0.01 -0.23 -0.16 -0.40° -0.13 -0.18 -0.18 -0.15 -0.39° -0.41° 

PPC 0.10 0.15 -0.29 0.03 0.07 0.43 -0.12 -0.22 0.14 0.02 0.01 -0.23 NaN 

ST -0.19 -0.32 -0.25 -0.42° -0.48° -0.26 -0.40° -0.23 -0.11 -0.19 -0.19 -0.35 -0.31 

thr0 

bnFC 0.01 -0.04 -0.09 -0.18 -0.20 0.07 -0.38 -0.12 0.15 -0.04 0.03 -0.34 NaN 

wnFC -0.35 -0.24 -0.19 -0.24 -0.27 -0.31 -0.38 -0.17 -0.32 -0.33 -0.25 -0.34 NaN 

combFC -0.31 -0.29 -0.23 -0.32 -0.39 -0.31 -0.38 -0.21 -0.24 -0.32 -0.24 -0.38 -0.31 

GE -0.37 -0.31 -0.25 -0.29 -0.38 -0.31 -0.31 -0.21 -0.33 -0.34 -0.29 -0.39 -0.32 

DE -0.24 -0.27 -0.12 0.16 -0.10 -0.02 -0.21 -0.12 0.03 -0.08 -0.12 -0.30 -0.36 

ECC 0.39 0.01 0.12 0.21 0.30 0.09 0.26 0.34 0.33 0.31 0.30 0.34 0.23 

BET 0.00 0.08 -0.17 -0.12 -0.03 -0.16 -0.22 -0.09 -0.08 0.14 0.06 0.27 0.12 

PPC 0.10 0.15 -0.29 0.03 0.07 0.43 -0.12 -0.22 0.14 0.01 0.01 -0.23 NaN 

ST -0.19 -0.32 -0.25 -0.42° -0.48° -0.26 -0.40° -0.23 -0.11 -0.19 -0.19 -0.35 -0.31 

thr25 

bnFC -0.03 -0.03 -0.07 -0.24 -0.16 -0.10 -0.27 -0.09 0.08 -0.07 -0.02 -0.29 NaN 

wnFC -0.35 -0.22 -0.15 -0.28 -0.25 -0.34 -0.30 -0.20 -0.34 -0.34 -0.28 -0.32 NaN 

combFC -0.33 -0.23 -0.16 -0.33 -0.30 -0.39 -0.30 -0.21 -0.28 -0.34 -0.28 -0.33 -0.18 

GE -0.38° -0.32 -0.22 -0.28 -0.37° -0.33 -0.31 -0.21 -0.35 -0.37° -0.25 -0.38° -0.30 

DE -0.16 -0.08 0.02 0.24 -0.04 -0.07 -0.14 0.17 0.04 -0.17 -0.15 -0.25 -0.25 

ECC 0.17 0.29 -0.08 0.17 0.22 0.22 -0.28 0.18 0.37 0.39 0.14 0.13 0.42 

BET -0.04 -0.42° -0.14 -0.12 -0.44° 0.01 -0.22 -0.09 -0.12 0.23 0.06 0.11 -0.38 

PPC -0.07 0.14 -0.16 0.07 0.05 0.26 -0.05 -0.12 -0.02 -0.03 -0.02 -0.10 NaN 

ST -0.15 -0.20 -0.15 -0.33 -0.25 -0.22 -0.28 -0.15 -0.09 -0.16 -0.17 -0.27 -0.19 

Table S4. Correlation of functional connectivity measures with symptom severity in 
Data-DU. Conducted statistical analysis: Pearson’s partial correlations (covariates: gender, age) 
between functional connectivity (FC) measures and symptom severity measured by 
MDS-UPDRS-III OFF. Displayed are correlation coefficients ( ° = p < 0.1). Analysis conducted for 3 
threshold levels (X = all weights included; 0 = positive edges retained; 25 = weights above 0.25 
retained). Networks: Cognitive action control (CogAC), cognitive action regulation (CogAR), 
emotional scene and face processing (EmoSF), perceptuo-motor (MotorPerc), motor execution 
(MotorEx), multitasking (MultiTask), whole-brain network (WBN), reward-related decision-making 
(Rew), vigilant attention (VigAtt), working memory (WM), extended multiple demand (eMDN), 
extended social-affective default (eSAD), default mode network (DMN). Functional connectivity 
(FC) measures: average between-network FC (bnFC), average within-network FC (wnFC), average 
combined network FC (combFC), mean positive participation coefficient (PPC), mean nodal 
strength (ST), global efficiency (GE), mean global diffusion efficiency (DE), mean nodal eccentricity 
(ECC), mean node betweenness centrality vector (BET).  
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Default mode network (DMN) 
X Y Z Corresponding macroanatomical brain region 
0 -53 26 Posterior cingulate gyrus  
0 52 -6 Superior frontal gyrus, medial orbital 
-48 -62 36 Left angular gyrus 
46 -62 32 Right angular gyrus 
-24 -22 -20 Left parahippocampal gyrus 
24 -22 -20 Right parahypppocampal gyrus 

Cognitive action control (CogAC) 
X Y Z Corresponding macroanatomical brain region 

36 22 -4 Right insula 
2 16 48 Left supplementary motor area 
48 12 30 Right inferior frontal gyrus, opercular part 
36 2 54 Right middle frontal gyrus 
48 30 24 Right inferior frontal gyrus, triangular part 
-38 -44 46 Left inferior parietal gyrus 
-24 -66 48 Left superior parietal gyrus 
40 -46 46 Right inferior parietal gyrus 
60 -44 24 Right superior temporal gyrus 
30 -62 52 Right superior parietal gyrus 
-44 10 30 Left inferior frontal gyrus, opercular part 
-34 20 -4 Left insula 
-26 2 52 Left middle frontal gyrus 
6 -18 -2 Right Thalamus 
-40 -66 -10 Left inferior occipital gyrus 
48 19 6 Right inferior frontal gyrus, opercular part 
8 29 30 Right anterior cingulate cortex 
-45 27 30 Left inferior frontal gyrus, triangular part 
11 7 7 Right caudate nucleus 

Cognitive action regulation (CogAR)   
X Y Z Corresponding macroanatomical brain region 

-40 -64 -12 Left fusiform gyrus 
36 22 -4 Right insula 
-44 10 32 Left precentral gyrus 
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60 -44 24 Right superior temporal gyrus 
0 18 48 Supplementary motor area 
-36 -46 46 Left inferior parietal gyrus 
38 -46 44 Right inferior parietal gyrus 
-26 0 54 Left middle frontal gyrus  

Emotional scene and face processing (EmoSF) 
X Y Z Corresponding macroanatomical brain region 

4 47 7 Right anterior cingulate cortex 
42 25 3 Right insula 
-42 25 3 Left inferior frontal gyrus, triangular part 
48 17 29 Right inferior frontal gyrus, opercular part 
-42 13 27 Left inferior frontal gyrus, triangular part 
-2 8 59 Left supplementary motor area 
20 -4 -15 Right hippocampus 
-20 -6 -15 Left amygdala 
-20 -33 -4 Left hippocampus 
14 -33 -7 Right lingual gyrus 
53 -50 4 Right middle temporal gyrus 
38 -55 -20 Right fusiform gyrus 
-40 -55 -22 Left fusiform gyrus 
38 -76 -16 Right inferior occipital gyrus 
-40 -78 -21 Crus I of left cerebellar hemisphere 
-4 52 31 Left superior frontal gyrus, medial 
36 25 -3 Right insula 
-38 25 -8 Left inferior frontal gyrus, pars orbitalis 
2 19 25 Right anterior cingulate cortex 
0 -15 10 Thalamus 
-2 -31 -7 Pulvinar 
-28 -70 -14 Left fusiform gyrus 
46 -68 -4 Right inferior temporal gyrus 
-48 -72 -4 Left inferior occipital gyrus 

Perceptuo-motor network (MotorPerc) 
X Y Z Corresponding macroanatomical brain region 

20 -56 -22 Lobule VI of right cerebellar hemisphere 
16 -74 -36 Crus II of right cerebellar hemisphere 
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14 -68 -48 Lobule VIII of right cerebellar hemisphere 
-32 -50 -32 Lobule VI of left cerebellar hemisphere 
0 -2 56 Supplementary motor area  
26 0 2 Right putamen  
-25.7 -3.3 2.1 Left putamen  
-14 -18 4 Left thalamus  
14 -18 4 Right thalamus  
-36 18 2 Left insula  
-36 -18 58 Left precentral gyrus 
38 -18 58 Right precentral gyrus 
-26 -4 62 Left superior frontal gyrus, dorsolateral 
26 -4 56 Right superior frontal gyrus, dorsolateral 
-18 -56 66 Left superior parietal gyrus 
-56 4 38 Left precentral gyrus 
-48 -28 20 Left rolandic operculum 

Motor execution (MotorEx) 
X Y Z Corresponding macroanatomical brain region 

-39 -21 54 Left postcentral gyrus 
41 -16 57 Right precentral gyrus 
-3 -2 54 Left supplementary motor area 
-57 2 32 Left precentral gyrus 
-53 -24 21 Left supramarginal gyrus 
45 -38 48 Right inferior parietal gyrus 
-23 -7 1 Left pallidum 
25 -8 3 Right pallidum 
-22 -52 26 Left Cerebellum 
18 -54 -22 Lobule VI of right cerebellar hemisphere 

Multitasking (MultiTask) 
X Y Z Corresponding macroanatomical brain region 

-34 22 -4 Left insula 
34 24 0 Right insula 
-26 0 52 Left middle frontal gyrus 
44 38 28 Right inferior frontal gyrus, triangular part 
46 10 28 Right inferior frontal gyrus, opercular part 
-6 18 50 Left supplementary motor area 
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-34 -52 56 Left inferior parietal gyrus 
32 -52 50 Right inferior parietal gyrus 
32 6 58 Right middle frontal gyrus 
Reward-related decision-making (Rew) 

X Y Z Corresponding macroanatomical brain region 

12 10 -6 Right caudate nucleus 
-10 8 -4 Left caudate nucleus 
36 20 -6 Right insula 
-32 20 -4 Left insula 
0 24 40 Superior frontal gyrus, medial 
0 54 -8 Superior frontal gyrus, medial orbital 
24 -2 -16 Right amygdala 
6 -14 8 Right thalamus 
-6 -16 8 Left thalamus 
0 8 48 Supplementary motor area 
8 -18 -10 Right brainstem 
-6 -18 -10 Left brainstem 
2 44 20 Right anterior cingulate cortex 
-24 2 52 Left middle frontal gyrus 
-38 -4 6 Left insula 
24 40 -14 Right superior frontal gyrus, orbital part 
-16 42 -14 Left superior frontal gyrus, orbital part 
40 32 32 Right middle frontal gyrus 
-28 -56 48 Left inferior parietal gyrus 
28 -58 50 Right angular gyrus 
0 -32 32 Posterior cingulate gyrus 
-36 50 10 Left middle frontal gyrus 
-46 42 -4 Left inferior frontal gyrus, orbital part 
30 4 50 Right middle frontal gyrus 
-22 30 48 Left superior frontal gyrus 

Vigilant attention (VigAtt) 
X Y Z Corresponding macroanatomical brain region 

-2 8 50 Left supplementary motor area 
8 32 46 Right superior frontal gyrus, medial 
0 26 34 Middle cingulate and paracingulate gyri 
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50 8 32 Right precentral gyrus 
40 22 -4 Right insula 
46 36 20 Right middle frontal gyrus 
-40 -12 60 Left precentral gyrus 
-46 -68 -6 Left inferior occipital gyrus 
-48 8 30 Left inferior frontal gyrus, opercular part 
62 -38 17 Right superior temporal gyrus 
8 -12 6 Right thalamus 
32 -90 4 Right middle occipital gyrus 
-42 12 -2 Left insula 
-10 -14 6 Left thalamus 
6 -58 -18 Lobule IV, V of vermis 
44 -44 46 Right inferior parietal gyrus 

Working memory (WM) 
X Y Z Corresponding macroanatomical brain region 

-32 22 -2 Left insula 
-48 10 26 Left inferior frontal gyrus, opercular part 
-46 26 24 Left inferior frontal gyrus, triangular part 
-38 50 10 Left middle frontal gyrus 
36 22 -6 Right insula 
50 14 24 Right inferior frontal gyrus, opercular part 
44 34 32 Right middle frontal gyrus 
38 54 6 Right middle frontal gyrus 
2 18 48 Supplementary motor area 
-28 0 56 Left middle frontal gyrus 
30 2 56 Right middle frontal gyrus 
-42 -42 46 Left inferior parietal gyrus 
-34 -52 48 Left inferior parietal gyrus 
-24 -66 54 Left superior parietal gyrus 
42 -44 44 Right inferior parietal gyrus 
32 -58 48 Right angular gyrus 
16 -66 56 Right superior parietal gyrus 
-12 -12 12 Left thalamus 
-16 2 14 Left caudate nucleus 
-16 0 2 Left pallidum 
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12 -10 10 Right thalamus 
-34 -66 -20 Lobule VI of left cerebellar hemisphere 
32 -64 -18 Lobule VI of right cerebellar hemisphere 

Extended multiple-demand network (eMDN) 
X Y Z Corresponding macroanatomical brain region 

-46 6 30 Left inferior frontal gyrus, opercular part 
50 12 28 Right inferior frontal gyrus, opercular part 
-32 20 2 Left insula 
36 22 0 Right insula 
-4 14 44 Left middle cingulate and paracingulate gyri 
6 18 46 Right middle cingulate and paracingulate gyri 
-32 -52 46 Left inferior parietal gyrus 
32 -58 48 Right angular gyrus 
44 36 20 Right middle frontal gyrus 
-28 -4 52 Left middle frontal gyrus 
-44 32 22 Left inferior frontal gyrus, triangular part 
32 0 52 Right precentral gyrus 
-20 6 4 Left pallidum 
10 -12 8 Right thalamus 
-46 -60 -10 Left inferior occipital gyrus 
22 6 4 Right putamen 
-10 -16 6 Left thalamus 

Extended social-affective default (eSAD) 
X Y Z Corresponding macroanatomical brain region 
0 38 10 Anterior cingulate gyrus 
-24 -10 -20 Left hippocampus 
24 -8 -22 Right hippocampus 
-2 -52 26 Posterior cingulate gyrus 
-2 32 -8 Anterior cingulate and paracingulate gyri 
-46 -66 18 Left middle temporal gyrus 
50 -60 18 Right middle temporal gyrus 
-2 52 14 Anterior cingulate and paracingulate gyri 
-6 10 -8 Left caudate nucleus 
6 10 -8 Right caudate nucleus 
-2 50 -10 Superior frontal gyrus, medial orbital 
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-54 -10 -20 Left middle temporal gyrus 
Table S5. Network coordinates and corresponding brain regions. The coordinates are reported 

in standard space of the Montreal Neurological Institute (MNI), labels are taken from the AAL atlas 

as provided by MRIcron (v1.0.20201102). 
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