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Currently under review in NeuroImage Clinical.
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The two following manuscripts were also published during my doctorate. They are
not part of this dissertation, but Article VI will be briefly discussed in section 1.2.3
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raphy and deep brain recordings
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Dissecting deep brain stimulation evoked neural activity in the basal ganglia

Sohail Noor, Alexandra Steina, & Cameron McIntyre
Neurotherapeutics 21, e00356 (2024) https://doi.org/10.1016/j.neurot.
2024.e00356
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Abstract

Deep brain stimulation (DBS) is a surgical therapy that alleviates symptoms in
movement disorders such as essential tremor and Parkinson’s disease, by delivering
electrical stimulation to disease-specific deep brain structures. In addition to thera-
peutic benefits, the implantation of electrodes for DBS provides a unique opportunity
to record electrical activity in otherwise inaccessible regions of the brain. Studies of
this activity have revealed pathological alterations of neuronal oscillatory activity.
Further, it has been shown that oscillatory activity can be synchronized across
spatially separated areas, potentially reflecting inter-regional communication.

The present thesis aimed to characterize oscillatory brain networks in Parkinson’s
disease and essential tremor. The goal was to advance our knowledge about the
pathological mechanisms underlying both diseases and to clarify the significance of
subcortico-cortical coupling for both behavior and therapy. For this, four studies
were performed that combined magnetoencephalography, a non-invasive recording
technique that measures activity from the cortex, with recordings from DBS elec-
trodes. In Parkinson’s disease, signals were recorded from the subthalamic nucleus
(STN) and in essential tremor from the ventral intermediate nucleus of the thalamus
(VIM).

Study 1 sought to explore whether local synchrony within the STN and STN-cortex
coupling could predict the reduction of symptom severity achieved by DBS. The
study showed that particularly the coupling between STN and cortex was informative
about DBS outcome, implying that it may serve as a biomarker indicative of the
response of patients with Parkinson’s disease to DBS therapy.

In contrast, in essential tremor, oscillatory coupling between the VIM and cortex
is far less characterized, and its behavioral and clinical importance remains to be
determined. To close this knowledge gap, Study 2 investigated VIM-cortex coupling
at rest and compared it to STN-cortex coupling. Interestingly, the cortical regions
and frequency bands involved were similar to those observed for the STN, suggesting
that certain aspects of subcortico-cortical coupling may reflect universal properties
of oscillatory brain networks.

To further uncover the pathological mechanisms underlying essential tremor, Study 3
aimed at characterizing oscillatory activity during action tremor, the main symptom
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of essential tremor. The study demonstrated that oscillatory coupling at tremor
frequency between VIM, motor cortex and cerebellum increased in the presence
of tremor, suggesting that pathological synchronization of oscillatory activity may
contribute to disease pathology of essential tremor. Moreover, tremor amplitude
correlated with the strength of synchronization between VIM and motor cortex, indi-
cating that this oscillatory interaction may serve as a neural marker of tremor severity.

Study 4 examined whether synchronization between the VIM and cortex changes
when patients engage in voluntary movements. The study revealed frequency-specific
modulations of VIM-cortex coupling, including a decrease in coupling strength in
the beta frequency range (13–21 Hz), a phenomenon that has been observed across
other diseases and midbrain nuclei. In line with Study 2, these results suggest
that movement-related modulations of oscillatory activity might reflect universal
principles of motor network dynamics, rather than being specific to a disease.

The thesis advances our understanding of STN-cortex oscillatory coupling in Parkin-
son’s disease and VIM-cortex coupling in essential tremor, emphasizing the clinical
and behavioral significance of subcortico-cortical interactions. The presented studies
o!er new insights into general properties of oscillatory brain networks and their role
in disease, while suggesting that subcortico-cortical coupling could serve as a clinical
marker to enhance future therapies.
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Kurzfassung

Die tiefe Hirnstimulation (THS) ist eine chirurgische Therapie, die die Symptome
von Bewegungsstörungen wie essentiellem Tremor und Morbus Parkinson lindert,
indem elektrische Pulse an krankheitsspezifische tiefe Hirnstrukturen abgegeben wird.
Neben den therapeutischen Vorteilen bietet die Implantation von Elektroden für die
THS die einzigartige Möglichkeit, elektrische Aktivität in ansonsten unzugänglichen
Regionen des Gehirns aufzuzeichnen. Untersuchungen dieser Aktivität haben patholo-
gische Veränderungen der neuronalen oszillatorischen Aktivität aufgezeigt. Außerdem
hat sich gezeigt, dass die oszillatorische Aktivität über räumlich getrennte Hirnareale
hinweg synchronisiert ist, was möglicherweise interregionale Kommunikation wider-
spiegelt.

Die vorliegende Arbeit zielte darauf ab, oszillatorische Hirnnetzwerke bei Morbus
Parkinson und essentiellem Tremor zu charakterisieren. Ziel war es, unser Wissen
über die pathologischen Mechanismen, die beiden Krankheiten zugrunde liegen, zu
erweitern und die Bedeutung der subkortiko-kortikalen Kopplung sowohl für das
Verhalten als auch für die Therapie zu klären. Zu diesem Zweck wurden vier Studien
durchgeführt, in denen Magnetoenzephalographie, eine nicht-invasive Methode zur
Messung kortikaler Aktivität, mit Aufzeichnungen von den THS-Elektroden kom-
biniert wurde. In Parkinson wurden die Signale aus dem Nucleus subthalamicus
(STN) und beim essentiellen Tremor aus dem Nucleus ventralis intermedius des
Thalamus (VIM) aufgezeichnet.

In Studie 1 wurde untersucht, ob die Synchronität von lokaler Aktivität innerhalb
des STN und die Kopplung zwischen STN und Kortex die durch THS erzielte Ver-
ringerung der Symptomschwere vorhersagen können. Die Ergebnisse zeigten, dass
insbesondere die Synchronisation zwischen STN und Kortex auf den THS-Erfolg
hinweist. Diese Beobachtung deutet darauf hin, dass die interregionale oszillatorische
Kopplung als Marker genutzt werden könnte, um den Therapieerfolg vorherzusagen.

Im Gegensatz dazu ist die oszillatorische Kopplung zwischen VIM und Kortex beim
essentiellen Tremor weit weniger erforscht, und ihre verhaltensbezogene sowie klin-
ische Bedeutung ist noch unklar. Um diese Wissenslücke zu schließen, untersuchte
Studie 2 die VIM-Kortex Kopplung in Ruhe und verglich sie mit der STN-Kortex
Kopplung. Interessanterweise waren die beteiligten kortikalen Regionen und Fre-
quenzbänder denen des STN ähnlich, was darauf hindeutet, dass bestimmte Aspekte
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der subkortiko-kortikalen Synchronität universelle Eigenschaften oszillatorischer Net-
zwerke des Gehirns widerspiegeln könnten.

Um die pathologischen Mechanismen des essentiellen Tremors weiter zu entschlüsseln,
untersuchte Studie 3 die oszillatorische Aktivität während des Aktionstremors, dem
Hauptsymptom der Erkrankung. Die Ergebnisse zeigten, dass die oszillatorische
Kopplung in der Tremorfrequenz zwischen VIM, Motorkortex und Kleinhirn bei
Auftreten des Tremors verstärkt wurde, was darauf hindeutet, dass eine pathologische
Synchronisation oszillatorischer Aktivität zur Krankheitsentstehung beitragen könnte.
Darüber hinaus korrelierte die Tremoramplitude mit der Stärke der Synchronisation
zwischen VIM und motorischem Kortex, was darauf hinweist, dass diese Interaktion
als neuronaler Marker für die Stärke des Tremors dienen könnte.

Studie 4 untersuchte, ob sich die Synchronisation zwischen VIM und Kortex verän-
dert, wenn Patienten freiwillige Bewegungen ausführen. Die Studie zeigte frequen-
zspezifische Modulationen, darunter eine Abnahme der Kopplungsstärke im Beta-
Frequenzbereich (13–21 Hz). Dieses Phänomen ist auch bei anderen Erkrankun-
gen und in anderen Mittelhirnkernen zu beobachten. Im Einklang mit Studie 2,
deuten diese Ergebnisse darauf hin, dass bewegungsbezogene Modulationen der
oszillatorischen Aktivität eher universelle Prinzipien von motorischen Netzwerken
widerspiegeln als krankheitsspezifische Mechanismen.

Die Dissertation erweitert unser Verständnis der oszillatorischen Kopplung zwischen
STN und Kortex in Morbus Parkinson und zwischen VIM und Kortex im essen-
tiellen Tremor und betont die klinische und verhaltensbezogene Relevanz subkortiko-
kortikaler Interaktionen. Die präsentierten Studien liefern neue Erkenntnisse über
allgemeine Eigenschaften oszillatorischer Netzwerke und ihre Rolle bei Krankheiten,
während die Studien auch darauf hindeuten, dass subkortiko-kortikale Kopplung als
klinischer Marker zur Verbesserung zukünftiger Therapien beitragen könnte.
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1 Introduction

Movement disorders, such as Parkinson’s disease (PD) or essential tremor (ET) are
neurological conditions causing motor symptoms, such as slowed, or involuntary
movements. These symptoms can severely impair patients’ quality of life by limiting
their ability to perform everyday tasks [1]. One major risk factor for developing a
movement disorder is age [2,3]. As the number of individuals over the age of 65 is
expected to double by 2030, concerns are growing about a corresponding increase of
movement disorders [4]. While both PD and ET are currently not curable, various
therapies can provide symptom relief [5, 6]. One e!ective surgical intervention is
deep brain stimulation (DBS), which involves the implantation of electrodes into
a disorder-specific target [7, 8]. However, some patients experience loss of bene-
fit over time, and stimulation can induce adverse side e!ects [9]. This, combined
with the expected demographic shift, highlights the urgent need to optimize therapies.

Understanding the pathophysiological mechanisms underlying diseases and to dis-
entangle pathological and physiological activity is crucial for advancing therapies.
Electrophysiological recording techniques are valuable tools for providing insights
into neuronal dynamics and identifying neural correlates reflecting disease states [10].
Neuronal oscillatory activity, rhythmic fluctuations of neuronal activity, has been
shown to be linked to behavior [11,12]. In the context of movement disorders oscilla-
tions can be pathologically altered [13]. Recordings from various sites of the brain
reveal that oscillations between di!erent regions are coupled and this coupling is often
interpreted as communication between the regions involved [14, 15]. Coordinated
interactions between di!erent parts of the brain are important for cognition and
behavior and alterations in coupling might be related to di!erent disease states [16].

In the case of PD, oscillatory coupling and its relation to PD pathology have already
been described in great detail. The present thesis builds on this knowledge to
determine whether oscillations are informative about DBS outcomes. In contrast,
less is known about oscillatory brain networks in ET. This thesis addresses this gap
by characterizing oscillatory coupling during tremor, rest, and voluntary movement
in patients with ET. The following general introduction will give a brief overview
about electrophysiological recording techniques and neuronal oscillations. Moreover,
it will give an insight into symptoms and pathology of ET and PD and describe how
neuronal oscillations are related to behavior and disease.
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1.1 Electrophysiology

The human brain gives rise to behavior, processes sensory information, regulates
emotions, coordinates movement, enables cognition and memory [17]. While neurons
serve as the brain’s fundamental processing units, it is the organization of these
neurons into specialized ensembles that is believed to give rise to intelligent behavior
[18, 19]. The human brain contains around 100 billion neurons, which transmit and
process information [20]. A neuron consists of a soma, an axon, and dendrites. Signals
travel from a neuron’s axon through synapses to neighboring dendrites (see fig. 1.1).
The information transfer depends on temporary ion movements across membranes,
generating electrical currents. When an action potential, a rapid voltage change across
the axonal membrane, reaches an axon terminal, it triggers neurotransmitter release
into the synaptic cleft. This leads to excitatory or inhibitory post-synaptic potentials
(EPSPs/IPSPs), with EPSPs increasing and IPSPs reducing the probability of an
action potential in the next neuron [21].

Figure 1.1: Schematic drawing of two neurons. When an action potential in one
neuron travels towards the synpase, neurotransmitters are relased into
the synaptic cleft. This can either cause the next neuron to be excited or
inhibited. Image taken from my master’s thesis "Movement performance
and brain activity under deep brain stimulation at di!erent frequencies".

1.1.1 Measuring Electrophysiological Activity

Neuronal activity can be measured on di!erent scales, from microlevel recordings of
single cell spiking to macroscale recordings capturing the summed activity of larger
neuronal populations. Recordings can be invasive, with electrodes of various sizes
measuring electric activity at a location within the brain. Non-invasive techniques, like
electroencephalography (EEG) or magnetoencephalography (MEG), detect electric
and magnetic fields outside the skull, that are generated by larger volumes of tissue.
The cellular processes that contribute to the measured fields are briefly described in
Box 1.
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Box 1 Extracellular Field Potentials

All active cellular processes, such as post- and presynaptic potentials, action
potentials, afterpolarizations, and neuron-glia interactions, generate trans-
membrane currents, that produce electric and magnetic fields, detectable in
the extracellular space [22, 23]. Single neuron action potentials can be mea-
sured at the microscale, with spiking activity manifesting as high-frequency
signals (> 600Hz) [24]. Field potentials, on the other hand, represent the
summed activity of neuronal populations and include signals measurable by
macroelectrodes, MEG or EEG. Here the signal with frequencies < 600Hz
is typically relevant [25]. When activity is measured on larger spatial scales
encompassing groups of neurons, the recorded field results from the superim-
position of numerous sources, making it challenging to determine individual
contributions [22]. However, signals from multiple compartments must co-occur
in time, to create an measurable signal. Based on this assumption postsynaptic
potentials are thought to contribute most to the fields measured by MEG and
LFP recordings. Although the signal of individual postsynaptic potentials is
small (1-10 fAm) [26], their slow dynamics (10-100 ms) and the large number of
synapses make temporal overlap likely [22]. While action potentials generate
stronger signals, their brief duration (< 2 ms) and low chance of synchronous
firing suggests a smaller contribution to the field potential [22]. However,
contributions may di!er between recording technique (LFP vs. MEG) or
recording location (cortex vs. sub-cortex). Furthermore, neuronal architecture
and geometry shape the recorded fields.

Magnetoencephalography

Magnetic fields measured by MEG (see fig. 1.2A) typically range from 50 – 500 fT [27].
The basic principles of MEG are explained in Box 2. It is thought that approximately
105 pyramidal neurons are the primary contributors to these signals due to their long
apical dendrites oriented in parallel [28]. Further, EPSPs are thought to dominate the
MEG signal, as IPSPs produce only small extracellular currents and thus contribute
less to the extracellular field [29]. During an EPSP, positive ions flow into the
dendrite at the site of the synapse, leading to passive outward currents at other sites
along the dendrite. This causes the apical dendrite to become more electropositive
intracellularly (more electronegative extracellularly) compared to the basal dendrite
and soma. This potential di!erence generates a current flow within the dendrite,
called primary current, as well as a volume current in the extracellular space, referred
to as secondary current [28]. At a distance from the source, such as it is the case in
MEG recordings,this spatial charge separation can be approximated by a current
dipole. MEG sensors primarily detect signals from pyramidal neurons that are
oriented tangentially to the skull, rather than those that are radially oriented (see fig.
1.2B). The magnetic field B(r) at a location r captured by MEG arises from both
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primary JP (r→) and secondary currents JV (r→) at location r→ which can be described
by the law of Biot-Savart [27, 30]:

B(r) =
µ0

4ω

∫
J(r→)→ r ↑ r→

||r ↑ r→||dv
→ (1.1)

where µ0 represents the permeability in free space. The pyramidal neurons’ structure
supports large dipoles and strong magnetic fields. Their parallel orientation minimizes
field cancellation, forming what is known as an "open-field" configuration. Neurons
with other structures, such as spherical dendrites, are thought to contribute less to
the MEG signal due to greater field cancellation ("closed-field") [31]. Computational
modeling for EEG activity has recently pointed toward a greater contribution of action
potentials, presynaptic spikes, and afterpolarizations than previously assumed [22].
This might also apply for MEG recordings. Although cortical activity is believed to
dominate the MEG, signals from deeper brain structures such as hippocampus [32],
cerebellum [33], and thalamus [34] or brainstem [35] have also been reported.

Figure 1.2: MEG and DBS system. A 306-channel MEG system (MEGIN) at
Universitätsklinikum Düsseldorf. B Schematic illustration of piece of
cortex. MEG sensors mainly pick up signals from pyramidal neurons that
are tangentially oriented to the skull than from pyramidal neurons that
are radially oriented. Image taken from my master’s thesis. C Schematic
illustration of implanted DBS system. The electrodes are connected
with the implanted pulse generator via extension cables. Figure taken
from [36]. CC BY 3.0.
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Box 2 Principles of Magnetoencephalography

The brain’s magnetic fields are several orders of magnitude smaller than the
earth’s magnetic field. To detect these tiny fields, highly sensitive sensors
like Superconducting Quantum Interference Devices (SQUIDs) are needed.
SQUIDs, cooled with liquid helium, operate in the superconducting state [27].
They consist of a superconducting loop interrupted by insulating layers called
Josephson junctions. In a superconductor, electrons form Cooper pairs, which
move resistance free through the loop and can tunnel through the Josephson
junctions. The basic principle of measuring the magnetic flux with a SQUID
involves inserting a bias current into the loop, which splits evenly and flows
in the same direction through the two halves of the superconducting loop.
When an external magnetic field is applied to the ring, a screening current
arises and flows in the same direction as the bias current in one half and in
the opposite direction in the other half of the ring. This causes a measurable
voltage across the Josephson junctions. If the magnetic flux increases, the
SQUID will switch to the next magnetic flux quantum, reversing the current
flow in the ring [37, 38]. The SQUIDs are connected to flux transformers, such
as planar gradiometers and axial magnetometers, to help capture and focus
the magnetic fields. Planar gradiometers consist of two adjacent coils and
measure the di!erence of the magnetic fields between these two points, while
axial magnetometers consist of a single coil and measure the absolute magnetic
field. Both magnetometers and gradiometers are arranged in the MEG helmet
such that they scan the whole head [27,37]. To prevent the brain’s magnetic
fields to be superimposed by stronger external magnetic fields, the MEG is
installed in a shielded room. However, power line noise, electric devices in the
MEG chamber or non-brain signals such as muscle contraction or heartbeats
cause artefacts in the MEG. When analyzing brain signals, the data is usually
cleaned from artefacts, by visual inspection and the removal of epochs or
channels containing artefacts or by more advanced methods such as signals
space separation [39], temporal signal space separation [40] or independent
component analysis [41].

Source Reconstruction

When analyzing MEG data, it is of interest to localize the neuronal sources that
generate the signal on sensor level. This process, known as source reconstruction,
requires solving the "forward problem", followed by solving the "inverse problem" [28].
The forward problem estimates the signal generated by a known source. In MEG,
the forward model estimates the magnetic field at sensor level based on a given
source configuration, taking sensor geometry and head anatomy into account. To
limit the number of potential sources, typically a finite grid is constructed, with
each grid point representing a source. As described above, the neural current at a
grid point location is approximated as a current dipole. Then, starting with the
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quasistatic approximation of the Maxwell’s equations, the magnetic flux density at a
given location can be derived from the law of Biot-Savart [27]. Based on this, a pro-
jection matrix, so-called leadfield L, is calculated describing how the neural sources
εs are projected to the sensors, resulting in the signalεb at sensor-level (see fig. 1.3) [42].

Figure 1.3: Schematic illustration of source reconstruction. Forward solution:
The leadfield matrix L describes, how the sources εs are projected to a
sensor at location i, resulting in the sensor-level signal εb. Inverse solution:
The reconstructed sources εs→ can be written as a linear combination of εb,
by using a weight matrix W . Based on the forward solution, the weight
matrix W is optimized under constraints to find a solution for the inverse
problem.

The next step in source reconstruction involves solving the inverse problem. The
aim of the inverse problem is trying to find the neuronal sources εs→ that reflect
the measured signal best, under consideration of the forward problem. However,
one major challenge of the inverse problem is that it is ill-posed, as the enormous
number of sources maps to a limited number of sensors [27]. This means that the
solution of the inverse problem is not unique and di!erent combinations of sources
can produce similar patterns of sensor-level activity [43]. Hence, a priori assumptions
are necessary to find a weighting matrix W that projects the sensor-data εb to the
reconstructed source space εs→ (see fig. 1.3). Numerous approaches such as minimum
norm estimation or beamforming exist that put constraints on the data [44,45]. A
beamformer performs spatial filtering of sensor-level data to distinguish between
signals arriving from a source of interest and those originating elsewhere [43]. The
main assumption of beamforming is that spatially separated sources are uncorrelated.
Taking the forward solution into account, the goal of the beamformer filter is to
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determine the optimal weighting for each sensor to enhance the signal from the
source of interest, while minimizing contributions from all other sources. Di!erent
beamformers exist such as linearly constrained minimum variance [46] or dynamic
imaging of coherent sources [47].

Intracranial Local Field Potential Recordings

Electrodes placed within the brain for surgical therapy provide the unique opportu-
nity to capture signals that are either not measurable or only partially measurable
through non-invasive methods. They o!er a more precise localization than MEG
recordings but are limited to the specific brain regions chosen as stereotactic targets.
Intracranial signals can be measured by micro- or macroelectrodes. Microelectrodes
have a small diameter and can detect single-neuron spiking [48]. Macroelectrodes,
such as the ones implanted for DBS (see fig.1.2C), have a larger diameter and pick
up the summed activity of neurons in the vicinity of the electrode [49]. The signal
measured by these electrodes is referred to as local field potential (LFP).

Similar to MEG, it is assumed that synaptic currents dominate the signal detected
by DBS-macroelectrodes. However, identifying the exact sources of LFPs in deep
brain structures is more challenging, because for example basal ganglia structures
and the thalamus are less organized than cortex and seem to lack the open-field
arrangement described for pyramidal neurons [48,50,51].

In addition to synaptic currents, single cell spiking seems to contribute to the LFP in
lower frequencies as well. In the VIM and STN, bursts of action potentials have been
demonstrated to be related to LFP activity [52,53], while action potential outside of
bursts do not contribute much to the LFP signal [53]. The term "burst" refers to a
pattern of rapid firing of a group of neurons over a short period of time. Typically,
bursts contain multiple spikes within a short time window, interleaved by longer
intervals without spiking activity [54].

Alternatively, LFPs recorded from subcortical structures may originate from volume-
conducted signals generated by cortical activity [55]. However, the impact of volume
conduction is assumed to be influenced by the reference scheme chosen. Monopolar
referencing is thought to detect volume-conducted cortical signals [48]. In monopolar
referencing, all electrode contacts are referenced to a common distant contact, such
as the mastoid in LFP recordings. In contrast, bipolar referencing schemes have
shown to minimize the impact of volume conduction [48]. Bipolar referencing means
that the signal at an electrode contact is referenced against a signal from another
contact nearby instead of a distant common source. In LFP-recordings, the voltage
measured across two adjacent contacts is typically subtracted.
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1.1.2 Neural Oscillations

A feature of neuronal activity is its rhythmic repetition over time, known as neuronal
oscillations. These oscillations are ubiquitous throughout the mammalian brain
and they are associated with various behavioral and cognitive processes [11, 12].
Notably, neuronal oscillations tend to occur in distinct frequency bands, which are
commonly defined as delta (2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (13–35 Hz;
low-beta 13–21Hz; high-beta 21–35Hz), gamma (35–90Hz), and high-frequency
oscillations (>200 Hz) see fig. 1.4A [56,57]. Modulating oscillatory activity through
transcranial alternating current stimulation or DBS has been shown to influence
behavioral outcomes. For example, DBS in the theta range improved working mem-
ory in patients with PD [58] and transcranial current stimulation in the beta range
slowed movements in healthy subjects [59]. These findings further underpin the
link between the oscillations and behavior [60]. This connection seems particularly
relevant in movement disorders, where pathological alterations in rhythmic activity
often correspond to specific symptoms [16].

Despite the clear association, there is an ongoing debate about whether oscillations
play a causal role in neural processing or are simply epiphenomenal [61]. Recently, it
has been pointed out that part of this discussion has been influenced by a misunder-
standing of the term oscillation, and it has been proposed to distinguish between
two separate entities: ’oscillations-in-process’, rhythmic repetitions of physiological
events, and ’oscillations-in-measurement’, rhythmic patterns in the recorded sig-
nals [62].1 Oscillations-in-process are present on molecular, cellular, synaptic and
network level [63]. Many neurons have pacemaker properties, meaning that they
can fire spontaneously in an oscillatory manner [64, 65]. At network level, reciprocal
interactions between inhibitory and excitatory neuronal populations can generate
oscillatory activity patterns in both groups [66].

Synchronization of Local Neuronal Populations

’Oscillations-in-process’ can synchronize neuronal populations at di!erent frequencies,
with the synchronized neurons undergoing more or less the same regular periodic
changes in excitability [14, 15,67]. This synchronized activity may be detectable as
’oscillations-in-measurement’, rhythmic patterns in the signal measured by MEG or
LFP. Techniques like Fourier and wavelet transforms, temporal filters, and linear
projections are commonly used to quantify the characteristics of oscillations-in-
measurement [56, 68, 69]. The basis of Fourier analysis is outlined in Box 3. Spectral
power is commonly used to quantify the degree of local synchrony.

1It should be noted, that while it is generally assumed that ’oscillations-in-process’ are measurable
as ’oscillations-in-measurement’, an oscillation in one entity can occur independently of an
oscillation in the other entity [62].
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Box 3 Spectral Analysis

Fourier transformation is a technique that transforms a time-domain signal into
frequency-domain. It can be used to decompose a signal into its constituent
frequencies and extracts phase and amplitude as a function of frequency [56].
Since neuronal time series are finite due to limited recording length, a discrete
Fourier transform is required to map a neuronal time-series into the frequency
domain. The result is the complex valued Fourier coe"cient SX(f, n) for a
frequency f , which can be derived by

SX(f, n) =
T↑1∑

t=0

X(t, n)e↑i2ωf t
T (1.2)

with X(t, n) representing the discrete signal of a given epoch n with length
T [70]. Spectral power is defined as the squared Fourier amplitude at a given
frequency.

SXX(f, n) = ↓SX(f, n)SX(f, n)
↓↔ (1.3)

with ↓ denoting the complex conjugate. Narrow-band peaks in the power
spectrum are assumed to indicate the presence of oscillatory components in
the signal at specific frequencies. Di!erences in power across experimental
conditions may reflect changes in neuronal synchronization or changes in the
number of neurons contributing to the signal. However, such di!erences can
also arise from aperiodic or 1/f activity, characterized by an exponential power
decay [23,71]. This component may reflect shifts in the balance of excitatory
and inhibitory potentials [72] and varies across individuals and recordings,
potentially confounding interpretations of oscillatory activity. Separating the
spectrum into periodic and aperiodic components allows for the isolation of
genuine oscillatory power (periodic component of the signal) [73].

The Fourier Transform does not caputure the temporal dynamics of a signal,
as it assumes a stationary signal. To capture the temporal dynamics of a
signal, wavelet transforms can be performed, which yield power or coherence
as a function of both frequency and time [74].

Synchronization of Distant Neuronal Populations

Coordinated interaction between spatially distant brain regions is important for
cognition and behavior [12, 75]. While structural connections provide the anatomical
basis for these interactions [76], cognitive processes likely require more dynamic com-
munication mechanisms for flexible signal transmission [14]. Oscillations are proposed
as one mechanism for inter-areal communication. The phase of oscillatory activity
creates time windows of enhanced sensitivity to incoming signals alongside time
windows of higher probability for generating outgoing signals [14]. The alignment
of excitable phases between di!erent brain regions can be quantified by coherence



1.1 Electrophysiology 13

(see Box 4 and fig. 1.4B). Coherence plays a key role in the communication-through-
coherence (CTC) hypothesis, which posits that phase synchronization enhances
e!ective communication between neuronal populations [14, 15, 77]. The CTC hy-
pothesis proposes that synaptic input from a transmitting neuronal group is more
likely to trigger action potentials in a receiving group if it arrives during an excitable
phase, thereby facilitating communication. Conversely, arrival during a non-excitable
phase hinders communication. Consequently, it is suggested that when a neuronal
assembly receives inputs from multiple presynaptic neuronal populations, it will
preferentially respond to the input from the group with which it is phase-coherent.
However, the causal role of coherence has been debated and it has been suggested
that coherence might be a result of communication rather than its cause (coherence-
through-communication [78]). For example, it was shown that local rhythms in two
neuronal populations do not need to be synchronized for coherence to occur [78,79].

Figure 1.4: Neuronal oscillations. A Oscillations in di!erent frequency ranges
Figure taken from [80]. Reprinted with permission from Elsevier. B
Schematic illustration of functional connectivity between two spatially
separated cortical regions. These regions are said to be coherent (coh =
1) when they keep a constant phase and amplitude di!erence over time.
Figure taken from [81]. Reprinted with permission from Elsevier.
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Box 4 Functional Connectivity

Functional connectivity refers to the temporal correlation between neurophys-
iological events occurring at di!erent locations in the brain [82]. It can be
assessed by coherence for example. Coherence Coh is used to quantify phase
synchronization between neuronal oscillations [83]. It describes the linear
dependency between two signals, indicating whether they maintain a stable
phase and amplitude relationship over time at a given frequency f .

Coh(f) =
|
∑N

n=1 Sxy(f, n)|√
(
∑N

n=1 Sxx(f, n))(
∑N

n=1 Syy(f, n))
(1.4)

with the cross-spectral density Sxy(f, n) = ↓SX(w, n)SY (f, n)↓↔, the auto-
spectral densities Sxx and Syy and n describing the trial number n = 1...N [70].
Coherence values range between zero ("not coherent") and one ("perfectly
coherent).

Connectivity can also be assessed using methods like Granger causality, which
statistically estimates the directionality between two signals. A common
method for computing Granger causality involves fitting autoregressive models.
In an autoregressive model, a time series Y (t) is expressed as a weighted sum
of its past values Y (t↑ ϑ) and a noise term ϖ(t):

Y (t) =
p∑

ε=1

a(ϑ)Y (t↑ ϑ) + ϖ(t) (1.5)

with ϑ referring to the time lag of the preceding samples, p describing the
model order and a(ϑ) representing the weight for each Y (t↑ ϑ) term [83].
Now, a signal X is said to Granger cause another signal Y if incorporating
the past values of both X and Y improves predictions about the future of Y
compared to using only the past values of Y [83]. For this, a second model,
a bivariate autoregressive model is estimated, describing the time-series Y (t)
with both past values Y (t) and past values of X(t):

Y (t) =
p∑

ε=1

b(ϑ)Y (t↑ ϑ) +
p∑

ε=1

c(ϑ)X(t↑ ϑ) + ϱ(t) (1.6)

with b(ϑ) and c(ϑ) representing the respective weights of the lagged values of
Y (t) and X(t) and ϱ(t) referring to the noise term. Granger causality GC is
then obtained by comparing the ratio of the variances of ϖ(t) and ϱ(t) [83]:

GCX↔Y = ln

(
var(ϖ)

var(ϱ)

)
(1.7)
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1.2 Movement Disorders

1.2.1 Parkinson’s Disease

PD a!ects around 1% of the population older than 60 years [84]. The main symp-
toms of PD are bradykinesia (slowness of movement), 4–8 Hz resting tremor, rigidity
(muscle sti!ness) [85]. Other motor symptoms are postural instability, gait distur-
bances, impaired eye movement, problems with speech and bladder control [85,86].
Non-motor symptoms such as depression, sleep disorders, and dementia are also
common [87]. Both genetic and environmental factors are involved in the etiology of
PD and age is the most robust risk factor [88]. To date, it is not possible to cure
PD, but e!ective drugs such as levodopa (L-Dopa) exist for the therapy of motor
systems in PD. However, some motor symptoms such as freezing of gait, are not
always responsive to L-Dopa and after several years of therapy, medication-induced
side-e!ects, such as dyskinesias occur in around one third of the patients [88]. DBS
of the subthalamic nucleus (STN) or globus pallidus internus (GPi) are e!ective
surgical treatments, but both STN- and GPi-DBS can also cause side e!ects, such as
dyskinesias or neuropsychological side e!ects, for example [89]. Electrodes targeting
the STN are shown in fig. 1.5A.

DBS-Target: Subthalamic Nucleus

The STN is a small structure located within the basal ganglia. Other components of
the basal ganglia are the striatum, the GPi, the globus pallidus externus (GPe) and
the substantia nigra pars compacta (SNpc) and pars reticulata (SNpr)) [90]. The
basal ganglia are connected to cortex and thalamus. This basal ganglia-thalamo-
cortical circuit is involved in movement control [91], cognitive functions [92], reward
processing and motivation [93]. In regard to movement control, three main pathways
are considered important: The indirect, direct and hyperdirect pathway (see 1.5B).

The activation of the direct pathway is thought to promote movement. The direct
pathway begins with the motor cortex sending excitatory signals to the striatum,
which in turn inhibits GPi and SNr. As a result, the thalamus becomes more
active/less inhibited and sends excitatory signals back to the motor cortex. As a
consequence, motor cortical activity increases, facilitating movement [90].

Activating the indirect pathway is assumed to suppress movement. The indirect
pathway is initiated by the striatum receiving excitatory inputs from the motor cortex.
As a consequence, the striatum inhibits the GPe, resulting in the STN becoming less
inhibited/more active. The STN then excites the GPi and SNr. Subsequently, both
GPi and SNr increase their inhibition on the thalamus, which in turn results in less
excitatory input to motor cortex, leading to movement inhibition [90].



16 1 Introduction

The hyperdirect pathway is assumed to provide fast inhibition of movements. In
this pathway, the motor cortex sends excitatory signals to the STN, resulting in the
STN exciting both GPi and SNr. Consequently, the thalamus is more inhibited/less
active, leading again to reduced activity in the motor cortex [94].
The STN is involved in movement control via the indirect and hyperdirect pathway.
In PD, the STN is assumed to be overactive, leading to bradykinesia [95].

Pathophysiology

PD is a neurodegenerative disease characterized by the loss of dopaminergic neurons
in the SNpc, which is speculated to result from the accumulation of alpha-synuclein in
Lewy bodies [96]. Di!erent models exist which explain how dopamine depletion leads
to Parkinsonian symptoms [97]. The classical rate model suggests that dopamine
depletion induces changes of firing rates within the basal ganglia, with decreased
activity in the direct and increased activity in the indirect pathway. This imbalance
is thought to result in an ’overinhibition’ of the thalamus, which in turn reduces
motor cortex activation, leading to bradykinesia. The model has dominated the
field for many decades, with numerous observations supporting its validity. For
instance, the model’s prediction that "silencing" the STN would help restore the
balance between the direct and indirect pathway, was supported by studies showing
that inactivating the STN results in symptom reduction [98,99]. However, not all
experimental findings fit within this framework. One of its major limitations is that
it does not adequately explain rigidity or tremor [97].

Beyond changes in firing rate, alterations in firing patterns, e.g. enhanced oscillatory
activity at tremor and beta frequencies, have been observed in the basal ganglia
("Oscillatory model") [100]. Beta oscillations are thought to originate within the
indirect pathway, specifically involving the reciprocal connection between the STN
and GPe [101, 102]. Under normal conditions, dopamine is thought to decouple
activity between STN and GPe. In the dopamine-depleted state this connection
may become stronger, introducing increased beta activity [97]. Throughout the
motor system, beta activity has been suggested as a promoter of the motor status
quo [103]. Consequently, excessive beta activity in Parkinson’s disease may result
in increased postural maintenance, hindering the initiation of new movements and
leading to bradykinesia. However, the causal relationship between beta oscillations
and bradykinesia remains uncertain. While STN stimulation at beta frequencies has
been demonstrated to slow movement in humans [104–106], studies in animals have
reported that symptoms can arise before the emergence of beta peaks [107,108]. It
should also be noted that in the past the rate and the oscillatory model have often
been regarded as separate entities, but there is evidence that both models describe
the same phenomenon on di!erent scales [109].
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1.2.2 Essential Tremor

Essential tremor is considered the most common neurological movement disorder
worldwide, a!ecting around 0.32 to 1.32% of the global population [110]. The
incidence follows a bimodal distribution, peaking in the second and sixth decade of
life [111]. Essential tremor is defined as an isolated tremor syndrome characterized by
bilateral upper-limb action tremor (4-12 Hz) persisting for at least three years, with or
without tremor in other body parts, and no other neurological signs. Essential tremor
plus refers to essential tremor with additional signs like mild ataxia or dystonic
postures [112]. Although identifying major risk genes has been di"cult, essential
tremor almost certainly has a genetic component [113]. Environmental factors also
play a role in its etiology [114]. Essential tremor is not curable, but therapies can
alleviate symptoms. Propranolol and primidone are the primary pharmacological
treatments for essential tremor, reducing tremor severity by approximately 50 % in
about half of patients [9, 115]. However, due to side e!ects or insu"cient e"cacy, a
large number of patients eventually stops these medications. [9, 116]. In severe and
medical-refractory cases, surgical interventions such as DBS targeting the ventral
intermediate nucleus of the thalamus (VIM) are e!ective. However, VIM-DBS (see
1.5A) can also cause adverse side e!ects, such as gait ataxia, dysarthria or muscle
contractions. Another problem can be the loss of benefit over time [9, 115].

DBS-Target: Ventral Intermediate Nucleus of the Thalamus

The VIM is located in the ventral part of the thalamus (motor thalamus), which is
connected to major motor regions of the brain. It receives inputs from both cerebel-
lum and basal ganglia and connects reciprocally to motor cortex (see 1.5C) [117].

The cerebellum is located between cerebrum and brainstem and is an important
motor region in the brain [118]. It controls and coordinates voluntary movements, is
involved in timing of movement and grip force [119] and important for balance and
locomotion [120].

The motor cortex is part of the frontal lobe, involving primary motor, premotor
and supplementary motor cortex. It generates electrical signals that project via
spinal neurons to muscles, contributing to the planning, control, and execution of
movements [121].

Historically, the motor thalamus was viewed as a passive relay station for motor
signals from the periphery to the cortex [122]. However, recent studies emphasize its
role as an active modulator of motor information [123]. Based on its cytoarchitecture,
the motor thalamus is further divided into cerebellar and basal ganglia input zones.
The VIM is located in the cerebellar receiving zone [117] and receives predominantly
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Figure 1.5: Basal ganglia and cerebello-thalamo-cortical loops. A Electrodes
targeting the VIM and the STN. Electrodes were localized with LeadDBS
[129]. B Scheme of basal ganglia thalamo-cortical loops: Direct, indirect
and hyperdirect pathway. Figure adapted from [109]. CC BY 4.0. C
Cerebello-thalamo-cortical circuit.

inputs from the contralateral cerebellum and to a minor extent from the ipsilateral
cerebellum via the dentatorubrothalamic pathway [124,125]. In the VIM, di!erent
firing patterns have been shown to be related to di!erent motor states. For instance,
during both passive and active movements of a limb, movement-related cells have
been shown to fire [126], emphasizing the VIM’s involvement in motor control.
Additionally, neurons in the VIM exhibit tremor-related bursting activity during
tremor episodes ("tremor cells") [127,128]. The bursting patterns in these tremor
cells have been found to be coherent with tremor activity [128]. The VIM serves
as an e!ective neurosurgical target for tremor suppression and alongside reducing
tremor, DBS seems to inhibit tremor firing within the VIM [127].

Pathophysiology

Electromyography (EMG) and accelerometry studies support a central, rather than a
peripheral, origin of tremor. Specifically, a network involving the cerebellum, motor
thalamus, cortex, and inferior olive is thought to be involved in essential tremor,
supported by fMRI and electrophysiological studies [130–132]. However, the origin of
pathological rhythmic activity remains poorly understood. For instance, it is not yet
clear, whether essential tremor is a neurodegerative disease [9]. While some studies
report indications for neurodegernation such as morphological changes or Purkinje
cell loss in the cerebellum [133, 134], these findings have not been consistently
replicated [135]. An additional observation that may or may not be related to
neurodegeneration is a reduction in cerebellar gamma-aminobutyric acid (GABA)-
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ergic tone in patients with essential tremor. Reduced GABAergic inhibition may
lead to overactivity of cerebellar neurons resulting in abnormal oscillatory activity
[136–138]. Moreover, pruning deficits of climbing fibers to Purkinje cell synapses
have been reported in postmortem cerebella of patients with ET recently [139,140].
In a mouse model, such deficits have been shown to induce ET-like symptoms, and
increased cerebellar oscillations have been linked to tremor severity in patients with
essential tremor [139,141]. These findings point towards the cerebellum as primary
source of tremor oscillations, which then propagate to e!erent structures like the
VIM [53]. However, other findings suggest that multiple nodes within the cerebello-
thalamo-cortical circuit are capable of generating activity at tremor frequency, with
tremor arising through dynamic interactions between these regions [116,117]. The
oscillatory network hypothesis is supported by observations that neurons in the
thalamus, inferior olive, and cerebellum possess distinct intrinsic electrical properties
that enable independent oscillatory activity [130,142, 143]. Moreover, the disruption
of tremor by focal strokes at various sites within the circuit suggests that the network
is initially involved in tremor generation [144].

1.2.3 Deep Brain Stimulation

A DBS-system consists of electrodes implanted in disorder-specific brain targets,
an internal pulse generator, and connecting extension cables. The implantation
of electrodes for DBS often already results in a short-term symptom relief after
surgery, which is known as "stun-e!ect" [145,146]. To achieve therapeutic e!ects in
the long-term, high-frequency stimulation (>100Hz) is typically delivered via the
internal pulse generator. While the exact mechanisms of action underlying DBS
remain unclear, it has been observed that DBS a!ects both local and circuit activity.

On microscale, DBS modulates neural firing and interferes with neural plasticity.
Each DBS pulse presumably activates presynaptic terminals in the target area,
leading to neuronal responses depending on whether the synaptic input is inhibitory
or excitatory [109]. In the VIM, high-frequency DBS initially increases firing, likely
due to the predominant excitatory inputs that the VIM receives. This initial increase
is followed by an attenuation in firing, probably caused by synaptic depression [127].
In the STN, where GPe-inhibitory inputs slightly dominate excitatory inputs, DBS
results in sustained firing inhibition [147, 148]. The local suppression of neuronal
firing in both STN and VIM is associated with clinical symptom relief.

On mesoscale, DBS suppresses pathological oscillatory synchronization, such as STN
beta activity in Parkinson’s disease [149]. Another notable phenomenon observed
in both the STN and GPi, but not in the VIM, is that DBS induces an evoked
response within these structures [150,151]. The discovery of this DBS local evoked
potentials or evoked resonant neuronal activity is relatively new and current research
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is beginning to shed more light on its implications. Article VI reviews DBS local
evoked potentials. These potentials are characterized by two positive-going peaks
occurring within the 7 ms interstimulus interval during 130 Hz stimulation. This
activity remains detectable for a short duration after stimulation cessation (see
fig. 1.6A). It is speculated that DBS local evoked potentials are mediated by the
inhibitory interaction with the GPe, as both STN and GPi, but not VIM, receive
input from the GPe. DBS local evoked potentials can be observed under anesthesia
and show their highest amplitude in regions with pronounced beta activity, suggesting
their potential as biomarkers for precisely localizing stimulation targets.

At macroscale, STN-, GPi- and VIM-DBS have been shown to influence neural
activity in cortical areas distant from the stimulation site, inducing evoked responses
at di!erent latencies [152,153]. Fig. 1.6B shows the cortical evoked response resulting
from stimulation of the right STN in patients with PD. The responses are assumed
to be a result of ortho- and antidromic activation of di!erent pathways. Antidromic
activation of the hyperdirect pathway by STN-DBS has particularly drawn attention,
as it has been speculated to be related to the therapeutic e!ects in Parkinson’s
disease [152].

Figure 1.6: DBS evoked potentials. A STN-DBS elicits local evoked potentials
within the STN. The evoked potential is characterized by a positive and
two negative peaks in the interstimulus interval during 130 Hz stimulation.
Figure is taken from Paper VI [154]. CC BY-NC-ND 4.0. B DBS of
the right STN elicits evoked potentials in the cortex. The response
occurring 19-29 s after the stimulation pulse is most pronounced in the
right pre-motor cortex. The figure shows and average of 28 subjects that
received low-frequency stimulation in the right STN (own-data).

1.3 Oscillations and Behavior

1.3.1 Electrophysiological Signals as Biomarkers

DBS is an e!ective therapy for movement disorders, but clinical outcomes vary
between individuals, and stimulation-induced side e!ects may limit therapeutic suc-
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cess [10]. Over the past years, considerable e!orts have been made to identify markers
reflecting symptoms with the aim of optimizing DBS treatment. Approaches to
improve DBS involve adjustment of stimulation in response to signals associated with
specific symptoms (adaptive or closed-loop DBS) [155,156] or automated program-
ming of stimulation parameters informed by electrophysiological markers [157,158].
Neuronal oscillations, among other electrophysiological signals, have shown potential
as biomarkers due to their correlation with disease states. However, oscillations
occur under physiological conditions and before integrating these signals into clinical
practice, it is crucial to distinguish pathologically altered oscillations from those
reflecting normal brain function.

In non-invasive recordings, this issue can be addressed by comparing patient cohorts
to healthy controls. For non-invasive recordings it becomes more challenging to
unravel physiological and pathological activity, as invasive recordings cannot be per-
formed in healthy individuals. There are di!erent approaches to solve this problem.
One possibility to link intracranial signals to pathology is to compare untreated
(medication/stimulation OFF) with treated (medication/stimulation ON) states.
Another approach is to compare activity across di!erent disorders that use a common
stereotactic target. Additionally, the relationship between symptom severity and
neuronal oscillations can be investigated, or activity during specific motor symptoms,
such as tremor or freezing of gait can be compared with episodes in which these
symptoms are absent.

Moreover, it is important to note that oscillatory activity is not inherently pathological.
For instance, beta oscillations occur in the healthy brain at rest and they undergo
modulations during movement. However, in PD beta activity is pathologically
altered and it is considered as a biomarker, reflecting the akinetic motor state. This
characteristic makes beta oscillations a promising feedback variable for adaptive
DBS [159,160]. The following sections will provide an overview of how oscillations
relate to behavior and disease.

1.3.2 Resting State

The human brain is constantly active, even during sleep or rest. The resting state
refers to a condition in which a person is not focused on a specific task. Functional
magnetic resonance imaging (fMRI)-studies, tracking slow fluctuations (<0.1Hz)
of the blood oxygenation level dependent (BOLD) signal [161], have shown that
distinct networks form during rest that are consistent across individuals and studies,
resembling those activated during sensory, motor, and cognitive tasks [162]. MEG
and EEG studies have revealed corresponding networks, when appropriate frequency
ranges are selected [163, 164]. The advantage of MEG compared to fMRI is that
it captures fast dynamics that are not measurable by fMRI. Hence, MEG is able
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to simultaneously investigate networks at di!erent frequencies. Studies combining
LFPs and MEG, for example, demonstrated that subcortical–cortex coupling shows
frequency-specific coupling to di!erent cortical regions during rest [165].

1.3.3 Movement

Voluntary Movement

Across various species, movement is linked to modulations of neuronal oscillations.
At rest, the motor system is synchronized in the beta frequency range. This ac-
tivity is suppressed just before and during movement [166]. Gamma activity, on
the other hand, increases during movement. After movement termination, beta
activity returns to its pre-movement level and temporary increases above this level
(beta-rebound) [166]. The time-course of movement-related modulations of oscillatory
activity in motor cortex and STN are displayed in fig 1.7A.

Beta oscillations are believed to stabilize the current motor state ("status quo") by
suppressing distractions and alternative actions [103,167]. Based on these findings,
beta activity is often described as ’antikinetic’, as it is thought to maintain the
current behavioral state, with reductions in beta activity occurring when a change
in the behavioral state is desired. The post-movement beta rebound may reflect an
active inhibition of the motor network after movement together with the processing
of sensory feedback [168].

Gamma oscillations scale with movement parameters like velocity and e!ort [169,170]
and might be involved in proprioceptive feedback processing to actively control
movement [171]. In contrast to beta oscillations, gamma activity is often described
as "prokinetic," meaning that it facilitates movement initiation and execution.

Movement-related modulations of oscillatory activity are usually stronger in the hemi-
sphere contralateral than ipsilateral to movement. Such modulations of oscillatory
activity have been found across the motor system in both cortical and subcortical
structures and for inter-regional coupling [172–175]. Moreover, they occur in both
the healthy state and in movement disorders and disturbances in these patterns may
be related to pathology in movement disorders [176].

Tremor

Tremor is an involuntary, rhythmic movement of a body part [112], which can be
physiological or pathological. Physiological tremor is of low amplitude, occurs in
healthy individuals and can be enhanced by factors like drugs, fatigue, or anxiety.
Pathological tremor has a higher amplitude and interferes with daily activities. It is a
symptom of many movement disorders such as Parkinson’s disease or essential tremor.
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Tremor can have di!erent origins, including mechanical oscillations of the limbs,
reflex-induced oscillatory activity, central oscillators or an imbalance of feedforward
and feedback systems. Tremor in essential tremor and Parkinson’s disease is assumed
to have a central origin, based on the observation that the frequency of tremor
remains una!ected under mass loading [111]. The central source of tremor could be
a single oscillator, or a system of interconnected oscillators [111].

Essential tremor is associated with pathological alteration within the cerebello-
thalamo-cortical circuit [177]. Parkinsonian rest tremor is associated with two brain
circuits: the basal ganglia and also the cerebello-thalamo-cortical circuit [178,179].
The dimmer-switch model suggests, that the basal ganglia trigger resting tremor in
PD, while the cerebello-thalamo-cortical circuit modulates its amplitude [177,180].

Tremor-related oscillatory brain activity is assumed to be projected to muscles via
motor pathways and peripheral nerves, resulting in observable tremor [181]. Fig.
1.7B shows the time resolved EMG, VIM and motor cortex power spectral densities
in a patient with ET who experienced tremor. After tremor onset (0 s) power in the
tremor frequency range (↗5 Hz) increases in the VIM and motor cortex contralateral
to the tremulous limb.

Figure 1.7: Movement related modulations of oscillatory activity. A Os-
cillatory activity in motor cortex (M1) and STN is modulated during
simultaneous button pressing with index, middle and ring finger. Beta
activity decreases shortly before and during movement, while gamma
activity increases. Beta activity rebounds after movement cessation.
Figure taken from [174]. CC BY-NC-SA 3.0. B After the onset of tremor
(0 s) an increase of activity around tremor frequency can be observed in
both VIM and M1 contralateral to tremor (own data).
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1.3.4 Oscillations in Parkinson’s Disease

Many spectral features are associated with specific symptoms in Parkinson’s disease.
Beta activity is the most frequently analyzed feature due to its strong link to motor
symptoms such as bradykinesia and rigidity [10]. In the dopamine-depleted state of
Parkinson’s disease, exaggerated beta oscillations in the basal ganglia, especially in
the STN, are correlated with bradykinesia [182,183]. Movement, DBS and L-Dopa
reduce beta activity, and the beta reduction by both DBS and L-Dopa correlates with
clinical improvements [183–186]. Beta activity in the STN also appears as a biomarker
for guiding electrode implantation, as stimulating the dorsal region of the STN, where
beta power is most pronounced, is associated with a stronger alleviation of symptoms.

Beyond bradykinesia and rigidity, resting tremor is associated with oscillations at
tremor frequency, along with alterations gamma and high-frequency oscillations
[187–189]. Further, tremor episodes have been linked to reductions in beta activity
[190]. Moreover, excessive gamma activity (60-90Hz) is linked to L-Dopa- and
DBS-induced dyskinesias [191].

Oscillatory Coupling

Oscillatory coupling between the STN and cortex in the beta range has been exten-
sively studied. The STN primarily couples with motor and premotor regions at beta
frequencies during rest [165,192]. In contrast to STN power, which seems strongly cor-
related to PD symptoms, the relationship between STN-cortex coherence and motor
impairment is less clear, as inconsistent results have been observed [192–194]. Further-
more, conflicting results have been observed following L-Dopa administration, with
reports of both an increase and a decrease in STN-motor cortex coherence [165,192].

It has been proposed that this ambiguity might stem from STN-cortex coherence
rather reflecting hyperdirect pathway activity rather than indirect pathway activity,
which is more closely linked to PD pathophysiology (see 1.2.1). In context of these
two pathways, there is also evidence for a sub-division of the beta band into a
low-beta (13–21Hz) and high-beta (21–35Hz) band [169]. STN-cortex coupling in
these bands appears to localize in di!erent cortical regions, with high-beta coherence
peaking more medially in the motor cortex and low-beta coherence peaking more
laterally [193]. Furthermore, both beta sub-bands seem to play distinct roles in motor
function and pathology [186, 193,195]. Particularly, low-beta activity correlates with
Parkinsonian symptoms [186] and may originate within the indirect pathway [193].
In contrast, high-beta oscillations in the STN are thought to be mediated by the
hyperdirect pathway, and may be involved in physiological motor signaling [193,194].
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1.3.5 Oscillations in Essential Tremor

Oscillatory activity in essential tremor has been less extensively studied than in
Parkinson’s disease. In essential tremor, oscillations related to tremor are the most
frequently studied feature, as tremor is the primary symptom of ET. The spectral
analysis of thalamic activity has revealed peaks at tremor frequency in the presence
of tremor, that are absent when patients do not experience tremor [196]. Further,
muscle activity from the tremulous limb has been found coherent with tremor-related
thalamic activity [143]. Moreover, a negative correlation between beta power in the
VIM and tremor amplitude has been reported [197].

Apart from tremor, VIM activity has also been studied when patients with ET were
resting or performing a voluntary movement. For instance, one study reported beta
peaks, primarily in the low-beta range, in the VIM power spectrum at rest [198].
During movement, beta activity has been shown to be suppressed, while gamma
activity increases, with the onset of this gamma increase correlating with reaction
time [170]. Both activity in the tremor frequency range and beta-band activity have
been proposed as potential biomarkers for adapting DBS [196].

Oscillatory Coupling

VIM-cortex coupling, especially whole-brain coupling, has rarely been investigated.
When investigated, the focus was again mainly on tremor. There are a few studies,
that have combined recordings from the VIM with EEG recordings, but the sample
sizes in these studies were relatively small. Another limitation is their focus on
EEG activity from the motor cortex rather than examining whole-brain activity.
For instance, one study reported coupling between the VIM and ipsilateral motor
cortex at tremor frequency during tremor in two patients [199]. In line with these
findings, a second study reported VIM-motor cortex coupling at tremor frequency in
one essential tremor patient that experienced tremor during the experiment [200].
The same study reported beta band (8-27 Hz) coupling between VIM and ipsilateral
sensorimotor cortex at rest [200].
A few other studies exist, that have investigated VIM-cortex coupling during volun-
tary movement, such as self-paced or externally triggered movement. These studies
have found that VIM-motor cortex coupling in the beta range decreases during
movement [200–202].

However, some studies exist that have examined whole-brain network activity in
essential tremor. They did not investigate coupling between VIM and cortex, but
focused on corticomuscular coherence, the coupling between muscle activity and
MEG/EEG signals, during tremor.
Mixed findings have been made regarding coupling between muscle and motor cortex
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during tremor: Some studies found increased coupling between muscle activity from
the tremulous limb and motor cortex during tremor [178], while other studies made
negative findings [203]. Further investigation revealed that cortical involvement
might be intermittent [204], which might explain the ambiguous results regarding
corticomuscular coherence in ET. In addition to activity in the motor cortex, activity
in the cerebellum has been shown to be coherent with muscle activity during tremor
[178]. In the same study both cerebellum and motor cortex coupled as well at tremor
frequency in the presence of tremor [178].
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2 Aims

This thesis investigated oscillatory coupling between the cortex and two subcortical
nuclei: the VIM in essential tremor and the STN in Parkinson’s disease.

In PD, oscillatory activity in the STN and coupling between STN and cortex has
been extensively studied [165,192,193]. These studies have established the role of
oscillations, particularly beta oscillations, in PD pathophysiology [169]. However,
open questions remain, such as whether these oscillations provide insights into the
therapeutic benefit of DBS.
In contrast, the oscillatory coupling between the VIM and cortex in essential tremor is
not well understood, and its behavioral and clinical relevance needs to be established.
A better understanding of VIM-cortex coupling could enhance clinical applications
and improve therapeutic approaches. Key questions that remain unanswered include
which cortical areas couple to the VIM at rest, whether the spatial organization of
VIM-cortex coherence di!ers across frequency bands, and how VIM-cortex synchro-
nization changes with tremor and voluntary movement.

The specific aims of the present thesis were as follows:

Study 1: Determine whether the symptom reduction following DBS can be pre-
dicted based on oscillatory activity and explore whether STN power or STN-cortex
coherence serves as a stronger predictor of DBS outcome.

Study 2: Identify the cortical regions involved in resting-state coupling with the
VIM and assess whether coupling in di!erent frequency ranges exhibits distinct
spatial topographies.

Study 3: Explore whether the VIM synchronizes with cortical and cerebellar activity
at tremor frequency during tremor episodes in order to clarify the involvement of
the cerebello-thalamo-cortical circuit in the pathophysiology of tremor.

Study 4: Assess whether VIM-cortex coherence is modulated during voluntary
movement and identify the cortical regions involved in these modulations.
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3 Methods

3.1 Recording Setup

The studies presented in this dissertation were based on simultaneous MEG and
LFP recordings and had the same experimental setup. All patients who participated
received surgery for DBS. Recordings happened the day after electrode implantation
and the day before the simulator was implanted. This allowed for the recording of
LFPs from the subcortical target in combination with MEG. For the LFP recordings,
the deep brain electrodes were externalized and connected to amplifiers integrated into
the MEG system via non-magnetic extension leads. The electrodes were implanted
bilaterally, allowing for LFP recordings from both hemispheres. Dependent on the
electrode type, signals were acquired from either four or eight contacts per electrode.
The DBS electrodes were referenced against a surface electrode positioned on the left
mastoid and then re-referenced o#ine using a bipolar referencing scheme to minimize
volume conduction (see fig. 3.1). MEG signals were captured using a 306-channel
MEG system by MEGIN (see fig. 1.2A). Additionally, muscle activity from the
extensor and flexor muscles was recorded using surface EMG, and movement data
was collected via accelerometers attached to the fingers.

3.2 Paradigm

Both PD and ET patients were recorded during rest (Study 1, Study 2). The PD
patients were not recorded as part of this thesis, but were recorded in previous
studies [165,205]. After the resting state recordings, essential tremor patients were
asked to perform multiple tasks, which were analyzed in Study 3 and Study 4 (for
description see respective study).

3.3 Analysis of LFP and MEG Data

The data were processed with the Fieldtrip Toolbox [206], MNE-Python [207] and
custom-written MATLAB and Python scripts. For local activity, the power spectral
densities were calculated as described in 1.1.2 Box 3. The fitting oscillations and
one over f (FOOOF) toolbox was used to decompose the spectrum into a periodic
and aperiodic component [71], as illustrated in fig. 3.2A. To ensure good model
fits, the results were visually inspected and the model parameters were adjusted if



3.4 Statistical Analysis 29

Figure 3.1: Bipolar re-referencing scheme. A For non-segmented leads, the
signal from one ring contact is subtracted from the adjacent ring contact
to create bipolar channels. For instance, subtracting the signal at level
1 from that at level 2 yields the bipolar channel ’12’. B Segmented
leads are typically composed of two ring contacts at top and bottom
and two segmented contacts in between. Each segment on level 2 is
referenced with each segment at level 3, resulting in channels such as
’2A-3A’, ’2B-3B’, ’2C-3C’. Each segment at level 2/3 is referenced with
the ring contact at level 1/4, resulting in bipolar channels such as ’1-2A’,
’1-2B’ or ’3A-4’. Figure adapted from [160]. Reprinted with permission
from Springer Nature.

necessary. Subsequently, the aperiodic component was substracted from the periodic
component and only the latter was kept for further analysis. To quantify coupling
between subcortical and cortical brain regions, coherence was calculated as described
in Box 4. The MEG data was analyzed on source-level. For this, beamforming was
applied on the data either in the time-domain using a linearly constrained minimum
variance (LCMV [46]) beamformer or in the frequency domain using a dynamic
imaging of coherent sources (DICS [47]) beamformer. Other methods, such as the
machine-learning techniques (Study 1) and Granger causality (Study 2), specific to
only one study can be found in the method section of the respective publication.

3.4 Statistical Analysis

For statistical analysis, cluster-based permutation tests were performed. The basic
principles will be roughly explained in the following section. One challenge when
performing statistical analysis on MEG data is the multiple comparisons problem
which arises due to the large number of sensor/source, time and frequency pairs.
Conducting a large number of statistical tests increases the family-wise error rate
(FWER), which is the probability of falsely rejecting the null hypothesis or identifying
a significant e!ect when none exists. A non-parametric cluster-based permutation
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Figure 3.2: Power and Coherence Analysis. A Example of fitting oscillations
and one over f (FOOOF) output. The FOOOF algorithm parameterizes
the original spectrum into an aperiodic component (blue dashed line)
and a full model fit (red line). B Coherence between MEG and LFP
signal was calculated on sensor level and transferred to source space by
beamforming.

test provides a solution for the multiple comparisons problem by controlling the
FWER at a given critical alpha level. Cluster-based permutation tests can be
applied to within-subject designs (e.g. testing the same participants under di!erent
conditions) and between-subject designs (e.g. comparing di!erent cohorts under the
same condition). The procedure works as follows: First, a test statistic (t-value) is
calculated for each data point to identify potential significant e!ects. Then clusters
are formed by grouping temporally and spatially adjacent data points that exceed a
predetermined threshold and a summary statistic is calculated for each cluster. To
obtain a p-value for a cluster, the data labels are randomly permuted, for example
over the experimental condition. The result of this step is called a random partition
and a test statistic is calculated on each random partition. The procedure is repeated
many times (e.g. 1000 permutations) to construct a histogram of the test statistic
(null distribution). For each random partition, only the cluster with the highest
summed test statistic is kept. The null distribution is thus a description of the largest
e!ects that might occur by chance. The p-value is calculated as the proportion of
random partitions that resulted in a larger test statistic than the original one. If
the p-value is smaller than the critical alpha-value, it can be concluded that the
experimental conditions are significantly di!erent [208].
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4 Study 1: Neuronal Oscillations

Predict Deep Brain Stimulation

Outcome in Parkinson’s Disease

4.1 Introduction

Current DBS systems face several limitations, including manual, time-consuming
programming and the absence of automatic parameter adjustments. To improve
therapy, it is essential to accelerate and automate the process of identifying optimal
stimulation sites and parameters. A promising approach is to incorporate electro-
physiological signals as feedback [209], as these signals have been linked to disease
state and symptom severity (see 1.3.4).

For instance, oscillatory activity changes with fluctuations in symptom severity, a
relation that can be exploited for the development of closed-loop DBS systems [210].
Moreover, oscillations have been shown to be informative about optimal stimulation
site and can hence guide contact selection and lead placement [211,212].

To automate and accelerate DBS programming, machine learning o!ers a powerful
solution. Electrophysiological data, recorded by MEG or DBS macroelectrodes, are
often complex and high-dimensional, making it challenging for traditional analysis
methods to extract meaningful patterns [213]. Machine learning is particularly
valuable in this context, as it can process large datasets, identify subtle patterns that
might otherwise be missed, and make predictions based on these patterns. Moreover,
machine learning models can adapt to new, unseen data, with the ability to general-
ize across patients and conditions. In context of DBS, machine-learning techniques
can accelerate the identification of biomarkers, or the optimization of stimulation
parameters. Further, machine learning techniques can operate in real-time which is
useful for closed-loop DBS applications [214].

An important step toward more personalized DBS therapy would be the ability to
predict stimulation e"cacy based on short recordings after surgery. But why would
electrophysiological data be predictive of DBS outcome? Beta oscillatory activity
in the STN is correlated with bradykinesia and DBS suppresses this activity [184].
Further, a positive correlation between DBS outcome and both the length of the
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oscillatory region in the dorsolateral STN and STN beta power had already been
demonstrated [215]. Moreover, STN-cortex coherence may provide insights into
which cortical regions are modulated by stimulation and could therefore serve as
a predictor of DBS response (see 1.2.3). These observations suggest that neuronal
oscillations might be useful biomarkers for predicting DBS e"cacy. However, esti-
mating stimulation outcomes based on network-level data involving multiple brain
regions and frequency bands has not been done thus far.
Study 1 (Article I) aimed at predicting the reduction of motor impairment achieved
by STN DBS based on local STN activity and STN-cortex coupling in patients with
Parkinson’s disease.

4.2 Methods

Simultaneous LFP-MEG recordings were acquired from 36 patients with Parkinson’s
disease as part of previous studies [165,216,217]. All patients were recorded at rest
one day after electrode implantation in the medication-o! state. In addition, motor
symptoms were evaluated for each patient before surgery and again 3 to 6 months
after electrode implantation. Motor symptom severity was quantified by the Unified
Parkinson’s Disease Rating Scale (UPDRS) III sum score.

For the machine learning analysis, features were extracted from the LFP-MEG
data, including local STN power and STN-cortex coherence across eight frequency
bands: delta/theta, alpha, low-beta, high-beta, low-gamma, high-gamma, slow high
frequency oscillations (sHFO), fast high frequency oscillations (fHFO). STN-cortex
coherence was localized using a beamformer and each source was mapped to one of
30 cortical parcels representing di!erent brain regions (see fig. 4.1A).

The features were then used to predict stimulation outcome, which was defined as
the symptom reduction achieved by DBS. The symptom reduction was quantified
by the di!erence in UPDRS III scores before surgery and after DBS implantation
with stimulation on. Only the features from the electrode contact that was used
for stimulation when the post-surgery UPDRS III sum scores were assessed were
included in the analysis.

Extreme gradient boosting was used to predict stimulation outcome, and predictions
were generated by applying a leave-one-out approach where each subject was in
the test set once and in the training set all other times (see fig. 4.1B). To assess
model performance, the root mean square and Pearson correlation were calculated
between the predicted and the actual data. Additionally, a null model was created
that predicted DBS outcomes by averaging the results of the training set, serving as
a baseline.
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Figure 4.1: Analysis Pipeline. A Extraction of features. The power spectral
densities and STN-cortex coherence were calculated for the selected LFP
contacts. STN power spectra were 1/f corrected and activity within one
frequency band was averaged. For coherence, a beamformer was applied to
localize connectivity to the STN in source space. Each source was mapped
to one of the 30 cortical parcels and coherence was averaged frequency- and
parcel-wise. B Leave-One-Out Regression. Feature vectors from the left
and right hemispheres were vertically concatenated to generate a subject-
level feature vector. The subject features were combined horizontally for
the feature matrix. In each iteration of the leave-one-out framework, one
subject was held out as the test set, while the remaining data served as
the training set. The training set was further split into three folds for
cross-validated hyperparameter tuning and feature selection. The test
set features were then fed into the regression model to predict reductions
in the UPDRS III sum score. Taken from Article I. CC BY 4.0.

4.3 Results

4.3.1 Features

STN power contained peaks in the alpha, low-beta, high-beta band and in the sHFO
range. Coherence between STN and cortex in the alpha band mapped mainly to
temporal regions ipsilateral to the STN and in the beta band the STN coupled
primarily to motor cortex.



34 4 Study 1

4.3.2 Model Performance

The predictive model’s performance was first evaluated separately for power and
connectivity features as a function of number of features. The STN-cortex connectivity
features performed better than the STN power features. A single connectivity feature
was su"cient to outperform the null model, whereas at least four power features were
needed. Based on these findings, a model was trained on five connectivity and five
power features. A fixed feature set was taken for each subject and the taken features
were the ones identified as most important features for predicting DBS outcome.
For power, the most informative feature was high-beta activity and the connectivity
model took particularly fHFOs and low-gamma oscillations into account (for details
see Article I 2.2.6. Feature importance analysis and 3.3. Feature importance). The
best performing connectivity model performed better than the best performing power
model. Figure 4.2 shows the correlations between actual and predicted scores for the
power and the connectivity model and the combination of both. A correlation of
r = 0.84 between actual and predicted scores was achieved with the best performing
connectivity (see fig. 4.2B), whereas a correlation of r = 0.52 was achieved with the
best performing power model (see fig. 4.2A). Moreover, adding power features to
the connectivity features did not improve the prediction of stimulation outcomes
(r = 0.84, see fig. 4.2C).

Figure 4.2: Power and connectivity models. The scatter plots illustrate the
correlation between actual and predicted DBS outcomes when the five
best power features (green), the five best connectivity features (orange)
were taken and when the five best power and connectivity features were
combined (purple). Taken from Article I. CC BY 4.0.
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4.4 Discussion

Study 1 found that DBS outcomes can be predicted from STN power and STN-
cortex coherence in Parkinson’s disease patients, with STN-cortex coherence being a
particularly strong predictor of DBS benefit.

There are several reasons why predicting the e"cacy of DBS based on neuronal
oscillations might be feasible. One reason is the close relationship between altered
oscillatory activity and Parkinsonian symptoms. For instance, increased beta activity
has been shown to correlate with bradykinesia [182,183], and there may even be a
causal link between beta oscillations and motor symptoms (see 1.2.1). Moreover,
DBS has been demonstrated to reduce these excessive beta oscillations [183]. If
oscillations are indeed causal to symptoms and DBS e!ectively suppresses them,
the strength of oscillatory activity at the stimulation site could serve as a potential
indicator of DBS treatment e"cacy.

Another possible explanation is that the e"cacy of DBS may rely on its ability to
reach and modulate distant cortical regions (see 1.2.3). In this context, STN-cortex
coherence could reflect how strong a region of the STN is coupled to a cortical area.
The present findings suggest that network e!ects of DBS may play a more critical
role in its clinical e"cacy, as connectivity models were found to be better predictors
of DBS outcomes than STN power.

Furthermore, Study 1 may provide the electrophysiological counterpart to prior
research linking DBS outcomes to anatomical connectivity [218,219]. These studies
assessed the spatial reach of stimulation, often using methods like the volume of tissue
activated, to determine which brain regions are a!ected by DBS [218]. Similarly, the
functional connectivity used for predictions in the present study could reflect the
strength of coupling between the stimulation site and the cortex.

A surprising finding of the study was that high-beta power emerged as the most
informative feature of local activity, since low-beta oscillations are typically linked
to symptom severity in Parkinson’s disease [186]. However, this aligns with other
studies suggesting that high-beta power better predicts motor improvement after
therapies like DBS, while low-beta primarily reflects symptom severity [195,220,221].
The importance of high-beta activity for predicting DBS outcomes may relate to
the hyperdirect pathway: high-beta activity in the STN is thought be mediated
through the hyperdirect pathway [194], and DBS e"cacy might involve antidromic
activation of this pathway [152]. Thus, strong high-beta activity could indicate how
e!ectively DBS activates the hyperdirect pathway. Notably, high-beta coherence
was less important for prediction, which matches previous findings that showed no
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correlation between STN-cortex coherence and symptom reduction following L-Dopa
treatment (see 1.3.4).

4.5 Conclusion

Overall, the study confirms that neuronal oscillations provide valuable information
about DBS outcomes. This relation could be exploited in the future for automated
DBS programming, helping to accelerate the identification of the optimal stimulation
contact or inform decisions about the most e!ective stimulation site.
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5 Study 2: Mapping

Subcortico-Cortical Coupling

- A Comparison of Thalamic and

Subthalamic Oscillations

5.1 Introduction

At rest, brain activity across di!erent regions interacts, forming structured patterns
observable in fMRI, MEG, or EEG recordings [163,164]. Moreover, frequency-specific
subcortico-cortical oscillatory networks have been described for several nuclei tar-
geted by DBS [193,222–224]. A well-studied example of subcortico-cortical coupling
is resting state STN-cortex coherence. The STN primarily couples with temporal
regions and the brainstem in the alpha band, while in the beta band, it predomi-
nantly couples with motor and premotor cortices [165]. These frequency-dependent
interactions suggest a structured organization of subcortico-cortical coupling, which
may be relevant for understanding DBS mechanisms.

While Study1 utilized the spectral and spatial features of coupling between cortex and
STN to predict DBS outcomes in Parkinson’s disease, it remains unclear whether the
VIM exhibits frequency-specific coupling to the cortex, as comprehensive whole-brain
descriptions of VIM-cortex coherence are lacking. However, there is some initial
evidence that the VIM also engages in frequency-specific coupling with the cortex.
For instance, combining EEG with LFP recordings from the VIM demonstrated
beta-band coherence between the VIM and motor cortex at rest, which decreased
during movement [201]. Study 2 (Article II) builds on this knowledge and aimed
at characterizing VIM-cortex oscillatory coupling at rest in patients with essential
tremor.

Furthermore, accumulating evidence suggests that subcortico-cortical coupling could
be part of larger brain circuits that interconnect multiple brain regions, as simi-
lar frequency-dependent oscillatory networks have been observed across di!erent
subcortical nuclei [225]. To explore this further, Study 2 aimed to compare VIM-
cortex coupling with STN-cortex coherence, seeking to identify both di!erences and
similarities in oscillatory coupling.
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5.2 Methods

19 patients with essential tremor undergoing surgery participated in the study and
an equal number of patients with Parkinson’s disease was included. MEG, LFP
and EMG signals were recorded simultaneously, while patients were at rest. The
patients were instructed to sit still with eyes open during the measurement. The
recording length varied from 5-10 min for the ET group and from 5-30 min for the PD
cohort. The PD patients were not recorded as part of this thesis, but were recorded
in previous studies [165,205].

For the PD patients, two measurements were conducted. One while on dopaminergic
medication and one after medication withdrawal. The primary analysis of this study
focused on the medication OFF state, while a control analysis was performed using
signals recorded in the medication ON state.

At first, the power spectral densities were calculated for VIM and STN activity. The
signal was decomposed into a periodic and aperiodic component and the aperiodic
component was substracted from the original spectrum.
For further analysis, one contact was selected per hemisphere, chosen based on proxim-
ity to the suggested therapeutic "sweet spot" for VIM-DBS [226] and STN-DBS [211]
(see fig 5.1A-B). Four hemispheres were excluded due to uncertain electrode position.

Whole brain maps of coherence were generated for the selected contacts in the theta
(3-7Hz), alpha (7-13Hz), low-beta (13-21Hz), and high-beta (21-35Hz) frequency
bands. To identify di!erences in VIM and STN spectral power and coherence,
a cluster-based permutation test was performed, using hemisphere as the unit of
observation rather than patient.

5.3 Results

5.3.1 Local Oscillations

Analysis of spectral power revealed that both the VIM and the STN exhibited activity
in the alpha and low-beta frequency ranges (see fig. 5.1C). Spectral peaks in the
high-beta range occurred particularly in the STN. Power in the high-beta range
(19-33 Hz) was significantly higher than in the VIM.

5.3.2 Subcortico-Cortical Coupling

Interestingly, localizing brain regions coherent with VIM and STN activity demon-
strated that the spatial patterns of VIM-cortex and STN-cortex coherence were very
similar. Theta coherence localized to temporal cortex and hippocampus (fig 5.2A/B).
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Figure 5.1: Oscillatory activity in the ventral intermediate nucleus of the
thalamus (VIM) and subthalamic nucleus (STN). Reconstructed
local field potentials recording sites shown in A frontal and B lateral
view. Stimulation "sweet spots" are displayed in black. C Group- and
hemisphere-averages of power spectral densities for VIM (blue) and STN
(orange), following subtraction of the aperiodic component. Shaded re-
gions indicate the standard error of the mean and gray shading represents
significant di!erences between both nuclei. Taken from Article II. CC
BY 4.0.

In the alpha band, VIM/STN coupled primarily to temporal cortex and brainstem
(fig. 5.2C/D). In the low-beta band coherence was strongest to brainstem/cerebellum
and motor cortex (fig. 5.2E/F), while in the high-beta band coherence localized to
motor areas (fig. 5.2G/H).

Figure 5.2: Coupling between ventral intermediate nucleus of the thalamus
(VIM)/subthalamic nucleus (STN) and cortex. Group-averaged
source-localized VIM-cortex coherence (A, C, E, G) and STN-cortex
coherence (B, D, F, H). The right hemisphere corresponds to the ipsilat-
eral side relative to the subcortical recording location. coh: coherence.
Article II. CC BY 4.0.
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5.3.3 Di!erences between VIM- and STN-Cortex Coupling

Despite the qualitative similarities, quantitative di!erences were observed. Low-
beta coherence to the brainstem/cerebellum was stronger for the VIM (fig. 5.3A),
while high-beta coherence to motor cortex was stronger for the STN (fig. 5.3B).
Under dopaminergic medication, high-beta coupling between STN and motor cortex
remained stronger than VIM-motor cortex coherence (see Article II Supplementary
Fig. S2).

Figure 5.3: Di!erences between cortical coupling to ventral intermediate
nucleus of the thalamus (VIM) and subthalamic nucleus (STN).
A VIM–brainstem low-beta coherence > STN–brainstem low-beta co-
herence. B STN–cortex high-beta coherence > VIM–cortex high-beta
coherence. Nonsignificant changes are masked. Article II. CC BY 4.0.

5.4 Discussion

Study 2 demonstrated in a whole-brain analysis that VIM-cortex coupling is spectrally
and spatially organized. The cortical regions that were involved in coupling align
with the VIM’s anatomical connections to the motor cortex and the cerebellum [117].

One major discovery of Study 2 was that the topographies of VIM- and STN-cortex
coupling were very similar. Previous studies have mapped oscillatory coupling be-
tween the cortex and other midbrain structures, such as GPi, nucleus basalis of
Meynert, pedunculopontine nucleus in di!erent diseases, including Parkinson’s dis-
ease, obsessive-compulsive disorder, dystonia and Lewy body dementia [193,222–224].
Interestingly, these studies found analogous resting state brain networks to the ones
identified here, regardless of the specific subcortical structure or disease. This sug-
gests that frequency-specific resting state subcortical-cortical coupling might reflect
physiological large scale synchrony rather than disease specific networks.

Another key finding of Study 2 was that high-beta activity appeared as a distinct
spectral feature of the STN, with both high-beta power and coherence higher in the
STN compared to the VIM. While this could be related to PD, given the established
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link between beta oscillations and PD pathophysiology, Study 2 found some indica-
tions for high-beta activity being STN- rather than PD-specific. When correlating
high-beta coherence with disease severity, no correlation was found (Article II
Supplementary Fig. S3). Furthermore, L-Dopa did not eliminate the di!erence in
high-beta STN-cortex coherence and VIM-cortex coherence. Both findings suggest
that high-beta activity may reflect a physiological rather than a pathological signal.
This observation supports the notion that high-beta activity is linked to physiological
motor signaling, whereas low-beta activity is more strongly associated with motor
impairment (see also 4.4 for discussion) [183, 193, 194]. Moreover, Study 2 found
evidence for high-beta activity being mediated through the hyperdirect pathway, as
motor cortex activity led ("Granger-cause") STN activity in the high-beta band (for
a detailed description of Granger causality analysis, see Article II 2.5 Directionality

Analysis and 3.4 Directionality Analysis).

5.5 Conclusion

Study 2 revealed distinct spatial topographies of VIM-cortex coupling in di!erent
frequency bands. The similarity between VIM-cortex coupling and STN-cortex
coupling suggests that some aspects of subcortical-cortex coupling might reflect
universal features of oscillatory brain networks. Moreover, the study revealed that
high-beta activity might be a spectral feature of the STN, possibly mediated by the
hyperdirect pathway.
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6 Study 3: Oscillatory Coupling

between Thalamus, Cerebellum

and Motor Cortex in Essential

Tremor

6.1 Introduction

After presenting VIM-cortex coherence at rest in the previous study, Study 3 (Ar-
ticle III) explored how VIM-cortex coherence changes when patients experience
tremor. The aim was to get an insight into the pathological mechanisms underly-
ing tremor, with a particular focus on rhythmic brain activity at the tremor frequency.

As discussed in 1.2.2, essential tremor is thought to originate centrally rather than
peripherally [111]. Consistent with this hypothesis, electrophysiological studies have
demonstrated that various brain regions exhibit activity coherent with tremulous
activity from the a!ected limb. For example, recordings from the VIM have revealed
narrow-band oscillations at the tremor frequency when tremor is present [196,227].
Additionally, studies combining MEG/EEG with EMG have shown coherence be-
tween tremor-related activity in the motor cortex and cerebellum [132,178].

These findings suggest that synchronized oscillatory activity within the cerebello-
thalamo-cortical circuit may play a key role in the pathophysiology of essential
tremor. However, direct evidence for this hypothesis remains limited. To address
this, the present study combined recordings from the VIM and cortex, allowing for
the simultaneous investigation of both subcortical and cortical regions. Through this
approach, Study 3 aimed to resolve the role of the cerebello-thalamo-cortical circuit
in tremor.

6.2 Methods

This study included 19 patients with essential tremor. LFPs from the VIM were
recorded simultaneously with MEG. Additionally, EMG electrodes were placed on
both forearms to capture muscle activity. Measurements were conducted during a
motor task designed to provoke postural tremor. In this postural task (HOLD), pa-
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tients rested their elbows on a table and lifted both forearms with fingers spread and
palms facing inward. The task lasted 7 min. The hold epochs (20 s) were interleaved
with rest epochs (20 s) to minimize fatigue.

The EMG signals were visually inspected to identify epochs with tremor. This
procedure was done for each body side separately. Figure 6.1A depicts an example
trace of EMG activity in a patient that experienced tremor. Tremulous activity is
visible as 5Hz rhythmic activity. In this patient tremor started immediately after
the arm was lifted. Tremor-free epochs were also determined. These were taken from
the rest blocks in between the posture.

Although patients with essential tremor usually present with bilateral action tremor,
due to the post-operative stun e!ect, tremor was only present in 10 patients in
either one or both arms. One patient’s hemisphere was excluded due to uncertainty
regarding electrode placement. The data was analyzed per body side/hemisphere
rather than per subject and 16 body sides were included in the final analysis.

VIM power spectra were calculated for all LFP contacts, and the contact exhibiting
the strongest tremor-related peak contralateral to the tremulous limb was selected for
further analysis. All power spectra were 1/f-corrected, and the aperiodic component
was removed.

MEG signals were source-localized using beamforming. Coherence was calculated
between the source-locaized activity and the selected LFP channel/the EMG channel
recording muscle activity (corticomuscular coherence). Whole-brain coherence maps
were constructed at the individual tremor frequency ±0.5Hz. Both VIM-cortex
coherence and corticomuscular coherence maps during tremor were contrasted with
the respective maps when no tremor was present. Cortical regions showing the
strongest di!erences were selected as regions of interest for correlation with tremor
amplitude. Coupling strength at tremor frequency and coupling strength in the beta
band (13-35 Hz) were correlated with tremor amplitude.

6.3 Results

6.3.1 Muscle and Thalamic Activity

In order to confirm the presence/absence of tremor, power spectra calculated from
the EMG channels were inspected for peaks in the 4-8Hz range. For the epochs
labeled as tremor, clear peaks at tremor frequency were visible, which were absent in
the tremor-free intervals (see fig. 6.1A). For each patient and each body side the
individual peak tremor frequency was extracted (see Article III Table 2). The
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average tremor frequency was 5.1 Hz ± 0.5 Hz. The averaged power spectral densities
of the selected EMG channels are depicted in fig. 6.1B.
In the VIM, spectral peaks at tremor frequency emerged as well in the presence
of tremor, which were absent during rest. Figure 6.1C shows the power spectra
averaged over all VIMs contralateral to the tremulous body side. The spectra were
shifted along the x-axis to align with individual tremor frequency.

Figure 6.1: Muscle/thalamic activity and coupling with cortex. A Example
trace of muscle activity recorded from a tremulous limb in one subject.
Tremor started immediately after the arm was lifted. B 1/f corrected
power spectral densities of muscle activity from the tremulous limb,
C 1/f corrected power spectral densities of the VIM contralateral to
tremor. D Thalamo-cortex coherence at individual tremor frequency
increased during tremor. The surface plots indicate where in the brain
significant increases where observed (purple). Corticomuscular coherence
increased as well and the brain regions showing a significant e!ect are also
illustrated (light pink). The overlap between thalamo-cortex coherence
and corticomuscular coherence is displayed in pink. Only coherence with
the VIM contralateral to tremor is displayed. Left hemisphere: ipsilateral
to tremor; right hemisphere: contralateral to tremor. Reproduced from
Article III. Rights are with author (Steina).
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6.3.2 VIM-Cortex Coherence

Contrasting coupling at tremor with rest showed that VIM-cortex coherence at
tremor frequency increased during tremor (see fig. 6.1D). This increase mapped to
the primary motor cortex and the cerebellum ipsi- and contralateral to tremor. In
addition, corticomuscular coherence increased as well. This increase was localized
to the primary motor cortex, the cerebellum and the prefrontal gyrus. The spatial
patterns of VIM-cortex and corticomuscular coherence overlapped, but were more
wide-spread for the latter (see fig. 6.1D).

6.3.3 Coupling Strength and Tremor Amplitude

The cortical regions (motor cortex, cerebellum ipsi- and contralateral to tremor)
showing the strongest di!erences were defined as regions of interest for correlation of
coupling strength with tremor amplitude. For postural tremor, VIM-/EMG-motor
cortex coupling strength at tremor frequency, but not VIM-/EMG-cerebellar coupling
strength, correlated with tremor amplitude (see Article III, fig. 4/5). In the beta
range VIM-motor cortex coupling strength was inversely correlated with tremor
amplitude (see Article III, fig. 4).

6.4 Discussion

Study 3 demonstrated that oscillatory coupling between the VIM, cerebellum, and
motor cortex increases during tremor. Moreover, it showed that this network is not
only internally synchronized but couples with muscle activity as well. Hence, the
findings provide further evidence for the involvement of the cerebello-thalamo-cortical
circuit in the pathophysiology of essential tremor [117,131–133,178,228].

A core achievement of the study was providing direct evidence for synchronization
between the VIM and cerebellum. While this connection has long been hypothesized
to be involved in tremor [177], it had not been demonstrated using simultaneous
recordings from both the thalamus and cerebellum. One challenge in studying this
relationship is that cerebellar activity is di"cult to measure. In MEG, for exam-
ple, there is an ongoing debate about whether cerebellar signals can be reliably
detected [33]. In this study, tremor-synchronous activity was clearly localized to
the cerebellum and from a methodological perspective these findings suggest that
MEG is a valuable tool for studying cerebellar activity. However, further validation
is necessary and could be done by comparing MEG recordings with recordings from
DBS electrodes directly placed in the cerebellum, as recently implanted in patients
with cerebral palsy in a clinical trial [229].
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Apart from showing synchronization between cerebellum and thalamus, another
contribution of this study was demonstrating that VIM and motor cortex synchronize
during tremor. Previous studies have reported coherence at the tremor frequency
between the VIM and EEG sensors positioned over the sensorimotor cortex, but
only in a total of three subjects [199, 200]. Study 3 confirmed these findings and
expanded upon them by explicitly showing motor cortex involvement in a brain-
wide analysis. The correlation between VIM-/EMG-motor cortex coupling strength
and tremor amplitude suggests that the connection between VIM and motor cor-
tex may play a role in modulating tremor amplitude [230]. Clinically, this means
that thalamo-cortical coupling could be used as a marker for tremor severity, and
targeting this connection with neuromodulation techniques could help reduce tremors.

Another notable aspect of the study is the inverse relationship between VIM-motor
cortex coherence in the beta band and tremor amplitude. This finding is particularly
interesting, as typically voluntary movement is associated with a desynchronization
of beta activity (see Study 4). However, previous studies have already shown a
link between tremor and a reduction of beta activity. For example, in Parkinson’s
disease, tremor episodes have been associated with beta suppression [190], and in
essential tremor, VIM beta power has been shown to negatively correlated with
tremor power [197]. These results suggest that both tremor and voluntary movements
share common underlying processes [181].

6.5 Conclusion

In summary, Study 3 confirmed the involvement of the cerbello-thalamo-cortical
circuit in the pathophysiology underlying essential tremor.
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7 Study 4: Modulations of

Thalamo-Cortex Coupling during

Voluntary Movement in Patients

with Essential Tremor

7.1 Introduction

Study 4 (Article IV) explored the e!ects of voluntary movement on the VIM-cortex
oscillatory networks determined in Study 2. As described in 1.2.2 the VIM is not
only involved in tremor, but plays also a role for movement control, posture mainte-
nance, and motor learning [231]. Along with this, movement related modulations of
oscillatory activity have been observed in the VIM: Beta activity decreases during
movement, while gamma activity increases [170]. As described in 1.3.3, these changes
seem to be a characteristic feature of oscillatory activity across the whole motor
system.

Movement-related modulations are not constrained to local activity but also a!ect
inter-regional coherence. In the case of the VIM, studies have shown that beta
coupling with the motor cortex decreases during self-paced or externally triggered
hand movements [198,201,202]. However, the exact spatial distribution and temporal
dynamics of these modulations are still not well understood. Study 4 aimed to explore
the modulations of VIM-cortex coupling during an externally triggered button press
task. More specifically, the study sought to identify the cortical regions involved in
movement-related modulations.

As outlined in 1.3.3, beta activity is often considered as "antikinetic", based on
findings in PD. Recording activity from the VIM in patients with essential tremor
o!ers the unique opportunity to investigate if this relationship holds as well in
patients who do not have akinesia. Hence, a second goal of the study was to assess
whether there is a relationship between VIM-cortex coupling and how fast patients
pressed a button after the presentation of a visual cue.
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7.2 Methods

In Study 4, 10 patients with ET were asked to press a button with either the right or
the left hand. The task was performed in 1-3 blocks, with each block lasting 8 min.
Each block was evenly divided into left- and right-hand trials and began with a video
showing which hand to use first. After half the trials, the hand was switched and
the switch was indicated by a second video. At the beginning of each trial a black
fixation cross was shown between 6-8 s, followed by a green cross signaling the Go
cue to press the button. After pressing the button, the hand remained in motion as
it returned to its starting position on the table.

One subject was excluded due to bad LFP signals throughout the recording and
the hemisphere of a second subject was excluded due to unclear electrode position.
Similar to study 2 and 3, the data was analyzed hemisphere-wise rather than subject-
wise, with a total of 17 hemispheres going into final analysis. Dependent on the hand
used for button pressing, one hemisphere was labeled as contralateral while the other
was labeled as ipsilateral to movement.

Epochs were created from -4 s to 4 s relative to the button press (t = 0). Time-resolved
power spectra were calculated for the VIM ipsilateral and contralateral to the moving
hand. The LFP contact showing the strongest beta power suppression contralateral
to movement was chosen for further analysis. VIM power during movement (-1.5 s to
2.0 s around button press) was compared against baseline (-3 s to -2 s before button
press) activity. Time and frequency intervals showing significant di!erences were
identified as intervals of interest for whole-brain coherence analysis.

VIM-cortex coherence was calculated on source-level for the identified time and
frequency intervals. To assess movement-related changes, VIM-cortex coherence
during the intervals of interest were contrasted with coherence during baseline by
a cluster-based permutation test. Moreover, absolute coherence values around the
time of the Go cue (-0.5 s to 0.5 s around Go cue) were calculated and correlated
with reaction time (time of button press - time of Go cue).

7.3 Results

7.3.1 Thalamic Activity

Activity in the VIM was modulated before, during and after button pressing (fig.
7.1). Alpha and low-beta power in the VIM contralateral to movement decreased
shortly before and during movement. Gamma activity increased during button
pressing. After button pressing thalamic high-beta power increased. Similar patterns
were visible in the VIM ipsilateral to the moving hand, but only the alpha-/beta-
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suppression was significant compared to baseline. Based on these findings, the
following time- and frequency-intervals were selected for coherence analysis: 8-20 Hz
and -0.5 s to 0.5 s; 21-35 Hz and 0.5 s to 1.5 s; 65-85 Hz and -0.5 to 0.5 Hz.

Figure 7.1: Thalamic activity is modulated during voluntary movement
Modulations of activity in the VIM A ipsilateral and B contralateral to
movement during button pressing. The black outlines mark significant
changes (p < 0.05) compared to baseline (-3 s to -2 s before button press).
Taken from Article IV.

7.3.2 Modulations of VIM-Cortex Coherence

A decrease in 8–20Hz coherence was observed in the interval from -0.5 s to 0.5 s
around the button press. This decrease occurred in coupling between cortex and both
the VIM ipsi- and contralateral to movement. The strongest reductions in coherence
were localized to the supplementary motor area and premotor cortex on both sides.
Figure 7.2A indicates in which brain regions significant modulations occurred.

Additionally, an increase in high-beta coherence was observed following the button
press (0.5 s to 1.5 s after button press). This increase was evident in the hemisphere
contralateral to movement, with the strongest modulations occurring in similar
regions as the coherence suppression, albeit more focally.
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Figure 7.2: Movement-related modulations of thamalamo-cortex coherence
and correlation between thalamo-motor cortex coupling strength
and reaction time. A The surface plots illustrate significant e!ects
observed when comparing VIM-cortex coherence during movement to
baseline. Coupling between the cortex and VIM contralateral (dark blue)
and ipsilateral (light blue) to movement increased in the 8–20 Hz range.
Additionally, high-beta coherence (21–35 Hz) with the VIM contralateral
to movement increased (red) after the button was pressed. The overlap
between regions of coherence increase and decrease is marked in purple.
Non-significant changes are masked. The left hemisphere corresponds to
the ipsilateral side of movement, while the right hemisphere corresponds
to the contralateral side. B Top and lateral views of grid points used
as beamformer target locations for calculating coherence between the
VIM and motor cortex to correlate reaction times with VIM-motor cortex
coupling strength (8–20Hz) around the Go cue in the hemisphere C
ipsilateral and D contralateral to button press. Taken from Article IV.

7.3.3 Correlation with Reaction Time

Based on above results, a region of interest (ROI) was defined covering premotor and
supplementary motor areas (see fig. 7.2B) in order to calculate VIM-motor cortex
coupling strength in the two frequency interval 8-20 Hz and 21-35 Hz. Alpha/low-beta
coherence (-0.5 s to 0.5 s around the Go cue) between the VIM and the motor cortex
contralateral to the moving hand correlated with reaction time, meaning that higher
8-20 Hz coherence was associated with slower reactions (see fig. 7.2D). No significant
correlation was observed for the hemisphere ipsilateral to movement (see fig. 7.2C)
and no significant e!ect was observed for high-beta coupling.
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7.4 Discussion

Study 4 demonstrated that voluntary movement is associated with modulations
of thalamic oscillations and thalamo-cortical coupling in the hemisphere ipsi- and
contralateral to movement. Thalamic power modulations were consistent with previ-
ous findings [170] and the movement related decrease of alpha-/low-beta coherence
aligns with earlier studies as well [198,201,202]. Study 4, extends the knowledge by
localizing the cortical regions involved to premotor and supplementary motor cortex.
A novel finding of Study 4 was the increase in high-beta coherence following button
press, which had not been described previously, and which might be analogous to
the post-movement beta rebound (see 1.3.3).

Moreover, the findings indicate that low- and high-beta oscillations in the VIM are
modulated di!erently during movement. This aligns with the commonly described
subdivision of beta activity in the STN in Parkinson’s disease. However, the origin of
low- and high-beta activity in the VIM is less clear, since the VIM is not innervated
by the indirect and the hyperdirect pathway like the STN (see Study 1 and Study 2
for further discussion). Despite the di!erent origins, the sub-bands may serve similar
roles in the VIM as in the STN. In this study, a positive correlation between low-beta
VIM-cortex coupling and reaction time was observed, with stronger coupling in
this band associated with slower button presses. This suggests that the concept of
low-beta activity as "antikinetic" extends to thalamic oscillations in essential tremor,
even in the absence of akinesia in this patient group. This finding underscores that
low-beta oscillations are generally linked to movement slowing.
The origin and role of high-beta oscillations in the VIM requires further investigation,
particularly as high-beta peaks were not prominent in the VIM during rest (see
Study 2).

When comparing the findings of the present study with those of Study 3, which
described tremor-related modulations, it appears that the brain regions involved in
voluntary movement and tremor di!er. Specifically, during tremor, the sensorimotor
cortex proper was engaged rather than premotor or supplementary motor regions.
This suggests that di!erent thalamo-cortical connections may be active during tremor
and voluntary movement. However, it is important to note that no direct statistical
comparison was performed between these two tasks. As noted in Study 3, there
were also some similarities between the two types of movement: in Study 3, stronger
tremor was linked to weaker beta-band coupling between the VIM and motor cortex
and in Study 4, beta activity was suppressed during voluntary movement. These
findings suggest that beta suppression could be a common feature in both tremor
and voluntary movement.
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7.5 Conclusion

Study 4 demonstrated frequency-specific modulations of thalamo-cortical coupling
during voluntary movement and highlighted that the notion of low-beta activity as
antikinetic is also valid in the context of thalamo-cortical connectivity.
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8 General Discussion

The present dissertation aimed at providing insights into oscillatory coupling between
the cortex and two midbrain nuclei, the STN/VIM, in Parkinson’s disease and
essential tremor, respectively. By combining LFP recordings from the STN/VIM
with MEG from cortical regions, subcortico-cortical coupling was characterized on
network level and its role in both normal brain functions and the pathophysiology of
PD and ET was assessed.

A major achievement of the thesis was the characterization of oscillatory coupling
between the VIM and cortex in the human brain. While the VIM serves as an e!ective
target for DBS, it’s functional coupling to cortex had been largely unexplored. This
work demonstrated that the VIM exhibits frequency-dependent coupling with the
cortex at rest (Study 2) and that this coupling is modulated during both tremor
(Study 3) and voluntary movement (Study 4). These findings highlight the VIM’s
involvement in tremor generation and motor control and align with the "modern
perspective" on the VIM as an active modulator of output, while in the past it was
seen merely as passive relay [117,231]. Hence, enhancing our knowledge about the
VIM is crucial for understanding the mechanisms giving rise to both voluntary and
involuntary movements.

The thesis not only expanded our knowledge about the VIM, it also contributed to re-
search in essential tremor. Human brain functions are believed to require coordinated
interactions between brain regions [181] and here the relevance of oscillatory coupling
for both rest and movement in patients with ET was demonstrated. Additionally, the
thesis provided novel insights into the pathological mechanisms that may underlie
the disease (Study 3). It confirms the idea that pathologically synchronization across
motor-related brain networks is involved in the generation of tremor [16,181]. Specif-
ically, the thesis verified the involvement of pathologically synchronized oscillations
across the cerebello-thalamo-cortical circuit in action tremor [230].

In regard to Parkinson’s disease, this work confirmed previous results about STN-
cortex coupling (Study 1 and Study 2). Particularly, high-beta activity emerged
as a feature of the STN, which tallies with the idea that high-beta activity might
be a characteristic signature of the STN [194]. Moreover, the thesis revealed that
synchronization between STN and cortex is predictive of stimulation outcomes,
supporting that DBS e"cacy may be explained through network e!ects, with co-
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herence indicating which cortical regions are modulated by DBS [232]. Study 1
further provided insights into how the knowledge of neuronal oscillations and their
relationship to motor impairment or symptom severity can be applied in clinical
practice. Currently, finding optimal stimulation settings remains a time-consuming
trial-and-error process [233]. By leveraging the relationship between neuronal oscilla-
tions and disease-specific states, it may be possible to guide parameter selection or
identify optimal stimulation sites, automating and accelerating the process with the
goal of enhancing the e"cacy of neuromodulation therapies.

In this context, the thesis identified specific markers that could serve as feedback
variables. Study 1 demonstrated that STN-cortex coupling is a more informative
predictor of DBS outcomes than STN power alone, highlighting coherence as a po-
tential biomarker for treatment e"cacy. Similarly, Study 3 revealed that VIM-motor
cortex coupling strength at tremor frequency correlated with tremor amplitude, while
beta coupling strength in the same connection was negatively correlated with tremor
amplitude. These findings suggest that VIM-motor cortex coupling could serve as
a marker reflecting tremor severity. Overall, these results underscore the clinical
importance of oscillatory coupling between deep brain structures and the cortex.

While the exact relationship between structural and functional connectivity remains
unknown [76], the thesis provides some evidence for a connection between structural
and functional connectivity. The functional connectivity observed between the VIM
and cortex (Study 2, 3 and 4) aligns with its structural connections to the cerebellum
and motor cortex [234]. Furthermore, Study 1 suggests a potential link between
structural and functional connectivity, as functional connectivity provided valuable
information about stimulation outcomes, potentially due to its reflection of the fiber
tracts modulated by stimulation. Additional support for this relationship comes
from the observation that STN DBS-evoked cortical potentials (see 1.6) reach similar
cortical regions to those involved in coupling to the STN.

Moreover, this thesis established some general ideas about oscillatory activity and
oscillatory brain networks:
First, an interesting pattern emerges, when considering all studies collectively. While
certain aspects of oscillatory coupling appear to be specific to a particular subcortical
region or disease, other features seem to reflect universal properties of oscillatory
brain networks. For instance, studies 1 and 3 demonstrated that the same cortical
regions exhibit frequency-specific coupling with both the STN (in PD) and the
VIM (in ET). Furthermore, when comparing these networks to oscillatory brain
networks described for other midbrain nuclei, it becomes evident that they all share
similar frequency-specific topographies [193,222–224]. Additionally, movement ap-
pears to be accompanied by frequency-specific modulations of coherence that are
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strikingly similar across subcortical nuclei and disorders. In Study 4, modulations of
VIM-cortex coupling during voluntary movement were investigated in ET. Although
these modulations were not directly compared to movement-related modulations of
subcortico-cortex coherence in other patient groups, existing research indicates that
the reduction in beta coherence during voluntary movement is not unique to ET or
the VIM [174, 175]. Instead, it seems to be a general characteristic of the human
brain. Similar observations apply to tremor-related coupling. The VIM couples
with cortical regions and the cerebellum during tremor (Study 3), which aligns with
previous studies in PD demonstrating that the STN couples as well with the cortex
and the cerebellum during tremor [177,180].
These findings provide evidence that functional connections may not be limited to
a specific subcortical nucleus, but instead reflect synchrony within larger networks
that comprise multiple brain regions. Additionally, these findings emphasize that
understanding both the shared and distinct aspects of oscillatory brain networks is
crucial for interpreting oscillations in the context of pathophysiology.

Second, this work revealed that several concepts of oscillatory activity, primarily
described for the STN in PD, also apply to the VIM in PD, supporting the existence
of "universal properties" of neuronal oscillatory activity. For instance, while the
distinction between low- and high-beta oscillations is well established in the STN in
PD, Studies 2–4 suggest that this sub-division, along with the distinct functional
roles of di!erent beta rhythms, also applies to the VIM in ET. In the STN, low-
and high-beta activity is associated with the indirect and hyperdirect pathways,
respectively. However, since the VIM is not innervated by these pathways, the
origins of low- and high-beta activity in the VIM is less clear. Despite the potentially
di!erent mechanisms giving rise to these rhythms, VIM and STN beta oscillations
appear to result in comparable behavioral outcomes. In PD, excessive low-beta
activity correlates with bradykinesia. Study 4 found that higher low-beta VIM-cortex
coherence was associated with longer reaction times in a cued button press task,
suggesting that increased low-beta coherence may contribute to movement slowing,
even in patients with ET who do not have akinesia. These findings reinforce the
idea that certain characteristics of neuronal oscillations are universal across brain
regions and disorders. They further emphasize the role of beta oscillations in motor
control, showing that the concept of beta activity as antikinetic extends beyond
Parkinson’s disease. Generally, these observations also demonstrate that oscillations
are not pathological per-se.

At the same time, while the observations made in the present work highlight shared
oscillatory mechanisms across disorders, they also reveal that similar oscillatory
dynamics can be linked to di!erent behavioral states. For instance, both voluntary
movement vs. tremor (involuntary movement) were associated with similar modula-
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tions of oscillatory activity. Study 3 revealed that stronger tremor was associated
with lower VIM-motor cortex coherence in the beta range and study 4 showed that
VIM-motor coherence decreases with voluntary movement, suggesting that both
types of movement may involve similar underlying mechanisms. Additionally, this
highlights that beta reduction is not just a feature relating to voluntary movement,
but relates also to involuntary movement, highlighting that it is crucial to account
for the motor or disease state at the time of recording when interpreting oscillations.

8.1 Limitations

One limitation common to the studies presented is the relatively small sample sizes.
In Study 1, the patient cohort was large for a MEG-LFP study (36 patients), but
the sample size was not large for a machine learning study. To improve predictive
accuracy and generalizability, larger cohorts and also patients from di!erent centers
should be included in the future.

Similarly, in Study 3, the sample size was small, as many patients did not ex-
hibit tremor during the tremor-provoking task due to the post-operative stun e!ect.
Nonetheless, when comparing the sample size in Study 3 to previous studies, it is
still substantially larger [199,200].

A broader concern involves the nature of oscillatory activity itself. Recent debates
suggest that oscillations may not always be rhythmic [61] and that traditional analysis
may not be able to capture certain aspects of the data, such as non-oscillatory
aperiodic activity or waveform shapes [73]. For power, it was tried to account for
that by utilizing the FOOOF algorithm which decomposes the power spectra into an
aperiodic and a periodic component. However, there are also some methodological
challenges of FOOOF that can introduce biased estimates [235].

8.2 Outlook

While it is well established that there is a correlative relationship between oscillations
and both behavior and disease, the causal mechanisms remain poorly understood [236].
In the future, it is important to gain a deeper understanding of the causal link be-
tween oscillations, behavior and disease, to further advance our knowledge about the
pathophysiological mechanisms underlying neurological diseases.
Beyond identifying the mechanisms that give rise to symptoms, it is equally impor-
tant to understand how pathological activity spreads through brain circuits and
where it originates. While Study 2 investigated Granger causality for resting state
activity, Study 3 and 4 provided solely coherence measures, which do not allow for
investigations of directionality. It is important that future studies investigate the
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directionality of coupling also for tremor and voluntary movement. This knowledge
could enable targeted interventions to suppress abnormal activity before it spreads,
potentially enhancing treatment outcomes.
Especially in ET, there is still a need to advance therapies, such as new pharmaco-
logical treatments and DBS optimization [115,237]. Similar, patients with PD would
benefit from improved and more personalized stimulation strategies.

Current e!orts to enhance DBS are focused on the development of adaptive/closed-
loop DBS systems that stimulate only when symptoms occur and adjust parameters
based on e.g. electrophysiological feedback variables [160]. However, for the clinical
use of adaptive/closed-loop DBS systems it is necessary to find reliable biomark-
ers [238]. In PD, beta activity and in ET, oscillations in the tremor range are
considered potential biomarkers [196,210]. In the past, biomarkers have been mainly
established through conventional analytic methods, such as spectral analysis of local
brain activity. However, it has become evident that there are some limitations to
these approaches as they fail to reflect some aspects of the data, such as bursts or
waveform shape asymmetries. These aspects seem to contain valuable information
about diseases as well, as they have been shown to relate to symptoms [238,239].

Moreover, while past e!orts to identify biomarkers have primarily focused on activity
within a single brain region, measures like coherence and phase-amplitude coupling
may also serve as valuable biomarkers for adaptive/closed-loop DBS [202,238]. The
present studies suggest that coherence can indeed act as a biomarker for adaptive
DBS, as a direct relationship was observed between STN-cortex coherence and DBS
e"cacy, as well as between VIM-cortex coherence and tremor severity. Furthermore,
Study 1 indicates that connectivity may, in some contexts, be more advantageous
than local synchrony, as connectivity-based models outperformed power-based mod-
els for predicting DBS outcomes. This underscores the potential of network-based
biomarkers to refine neuromodulation strategies.

In addition to optimizing DBS, future research might further explore the clinical
utility of non-invasive stimulation techniques. Non-invasive techniques, such as
transcranial alternating current stimulation have been shown to modulate oscillatory
activity in both Parkinson’s disease (PD) and essential tremor (ET), improving
bradykinesia [240] and alleviating tremor [228,241]. They could hence complement
existing therapeutic options without the need for brain surgery [240], but for move-
ment disorders, they are not yet approved in clinical settings. To translate these
techniques into clinical practice, a deeper understanding of which brain oscillations
and cortical regions contribute to specific disorders is required.

However, this knowledge cannot be gained solely from controlled experiments in
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research settings, it also requires studying brain activity in real-world conditions.
A key step in this direction is the use of long-term recordings collected outside the
traditional research setting including at home environments. Such data is essential
for understanding how disease symptoms and brain activity change over time. Until
recently, brain oscillations linked to neurological disorders could only be recorded
during brief clinical visits, typically lasting just a few minutes or hours. Now, ad-
vances in technology allow for continuous brain activity recording [242], even after
the DBS system has been implanted. This makes it possible to track how brain
activity fluctuates in daily life, providing new insights into the relationship between
symptoms and brain networks.

Apart from optimizing stimulation, it is important to gain deeper insights into the
pathophysiology of ET. For this, the relationship between oscillatory activity and
symptoms such as cognitive decline in patients with essential tremor plus could
be explored in the future. In PD, cognitive impairment has been linked to alter-
ations in oscillatory activity, particularly changes in beta synchronization within the
cortico-striato-thalamo-cortical loop [243]. However, in ET, the role of oscillations
in the VIM and VIM-cortex coupling in relation to cognitive deficits remains unex-
plored. Investigating this relationship could further advance our understanding of
the underlying mechanisms of essential tremor.

8.3 Conclusion

In conclusion, this thesis provided novel insights into subcortico-cortical networks
in the human brain. It identified some universal characteristics of oscillatory brain
networks and established the role of oscillatory coupling for motor behavior. Moreover,
the work made a significant contribution to deepening our understanding of the
pathophysiology of essential tremor and Parkinson’s disease. It also presented
evidence for subcortical-cortex coupling as a potential clinical biomarker, which could
inform future neuromodulatory therapies.
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a b s t r a c t

Background: Neuronal oscillations are linked to symptoms of Parkinson's disease. This relation can be
exploited for optimizing deep brain stimulation (DBS), e.g. by informing a device or human about the
optimal location, time and intensity of stimulation. Whether oscillations predict individual DBS outcome
is not clear so far.
Objective: To predict motor symptom improvement from subthalamic power and subthalamo-cortical
coherence.
Methods: We applied machine learning techniques to simultaneously recorded magnetoencephalogra-
phy and local field potential data from 36 patients with Parkinson's disease. Gradient-boosted tree
learning was applied in combination with feature importance analysis to generate and understand out-
of-sample predictions.
Results: A few features sufficed for making accurate predictions. A model operating on five coherence
features, for example, achieved correlations of r > 0.8 between actual and predicted outcomes. Coherence
comprised more information in less features than subthalamic power, although in general their infor-
mation content was comparable. Both signals predicted akinesia/rigidity reduction best. The most
important local feature was subthalamic high-beta power (20e35 Hz). The most important connectivity
features were subthalamo-parietal coherence in the very high frequency band (>200 Hz) and
subthalamo-parietal coherence in low-gamma band (36e60 Hz). Successful prediction was not due to
the model inferring distance to target or symptom severity from neuronal oscillations.
Conclusion: This study demonstrates for the first time that neuronal oscillations are predictive of DBS
outcome. Coherence between subthalamic and parietal oscillations are particularly informative. These
results highlight the clinical relevance of inter-areal synchrony in basal ganglia-cortex loops and might
facilitate further improvements of DBS in the future.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Parkinson's disease is a common neurodegenerative disease,
affecting approximately 6.1 M people worldwide [1]. Besides
pharmacological agents such as levodopa, deep brain stimulation
(DBS) is used for symptomatic treatment of Parkinson's disease. A
common target structure for DBS is the subthalamic nucleus (STN)

which is interconnected with the pallidum, the thalamus and
several cortical areas via basal-ganglia cortex loops [2]. In patients
with Parkinson's disease, activity in these loops is characterized by
strong neuronal oscillations, synchronized across the connected
structures [3].

Neuronal oscillations are closely related to Parkinsonian symp-
toms. STN beta oscillations (13e35 Hz), in particular, have been
shown to reflect the motor state [4]. They are reduced by voluntary
movement, pharmacological therapy and DBS [5e10]. High-gamma
oscillations (60e90 Hz), in contrast, are a marker of dyskinesia,
typically arising as a side-effect of dopaminergic therapy [11].
Tremor is associated with narrow-band oscillations at individual
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tremor frequency, observable throughout a distributed subcortico-
cortical tremor network [12,13]. Given their intricate relationship
with Parkinsonian symptoms, recent studies have explored the
utility of neuronal oscillations for optimizing DBS.

Most of these studies have focused on the dynamics of elec-
trophysiological signals and used oscillations for adapting DBS to
spontaneous changes of symptom severity, such as on-off-
fluctuations [14] or tremor [15,16]. Other studies have assessed
the utility of quasi-stationary oscillatory activity for optimizing
electrode placement, complementary to imaging studies on “sweet
spots” in DBS [17,18]. Zaidel et al. demonstrated a positive linear
correlation between DBS outcome and both the length of the
oscillatory region in the dorsolateral STN and STN beta power [19].

Here, we adopted a similar, though more holistic approach for
exploring the relationship between DBS outcome and neuronal
oscillations. We analyzed simultaneous magnetoencephalography
(MEG) and local field potential (LFP) recordings from Parkinson's
disease patients with externalized leads to assess both STN oscil-
lations and their synchrony with cortical activity. By applying ma-
chine learning techniques, we demonstrate that it is possible to
predict DBS outcome for unseen patients based on their patterns of
neuronal synchrony, considering many frequency bands and brain
areas simultaneously.

2. Materials and methods

The aim of this study was to predict motor symptom reduction
achieved by DBS based on band-limited STN power and STN-cortex
coherence. For this purpose, we trained and evaluated a machine
learning model operating on features extracted from MEG-LFP
datasets, contributed by two previous studies performed at the
University Hospital Düsseldorf [20,21]. Both studies recruited pa-
tients with Parkinson's disease selected for DBS of the STN ac-
cording to standard clinical criteria.

2.1. Patient and measurement details

36 Parkinson's disease patients implanted with deep brain
electrodes for STN DBS the day before the measurement took part
with written informed consent, according to the Declaration of
Helsinki. Patient details are given in Table S1 of the Supplementary
Material. The experimental protocols were approved by the Ethics
Committee of the Medical Faculty of Heinrich Heine University
Düsseldorf (no. 3209 and 5608).

The experimental procedures have been described elsewhere
[20,21]. Briefly, MEG signals were recorded by a 306-channel MEG
system (Elekta Neuromag) with a sampling rate of 2 kHz (study 1)
or 2.4 kHz (study 2). LFPs were recorded simultaneously using
externalized leads and a mastoid reference. LFP signals were

arranged into a bipolar montage offline. The cables used for
externalization contained very little ferromagnetic material and did
not cause major MEG artifacts. Forearm electromyograms as well as
vertical and horizontal electrooculograms were recorded in addi-
tion. Patients were at rest in an upright position, with eyes open.
The measurements took place after overnight withdrawal from
dopaminergic medication (Med OFF). In a subset of patients, we
performed additional recordings about 1 h after intake of levodopa
(Med ON). Here, we analyzed the Med OFF data only.

The Unified Parkinson's Disease Rating Scale (UPDRS) part III of
the Movement Disorders Society [22] was obtained by an experi-
enced movement disorder specialist following optimization of DBS
parameters. In most cases, scoring took place between 3 and 6
months after the LFP-MEG measurements (Table S1, Supplemen-
tary Material).

2.2. Data analysis

The general analysis pipeline is depicted in Fig. 1. It contained
one sub-pipeline for feature extraction (Fig. 1A) and one for pre-
diction (Fig. 1B).

2.2.1. Contact selection
First, we selected one electrode contact pair for each hemisphere

by picking the contact used for therapeutic DBS at the time of UPDRS
assessment and the closest neighboring contact in the direction of
the midpoint between the most ventral and the most dorsal contact.
This choice was adapted in case therapeutic DBS was bipolar or in
case the initial choice included bad LFP channels, i.e. channels with
strong noise/weak signal. In the former case, we selected the bipolar
pair used for therapeutic DBS, and in the latter case, we took the
closest neighbor of the bad channel in the direction of the electrode
center. In case a group of segments was used for DBS in patients
implanted with segmented leads, we first re-referenced the signal of
each active segment from the original mastoid reference to the
closest neighbor, computed features separately and averaged over
segments. Lead localization, performed with LEAD DBS [23],
confirmed correct placement for all electrodes under study (Fig. 2A).

2.2.2. Data preprocessing
The data were preprocessed with the Fieldtrip toolbox [24]. LFP

and MEG data underwent visual screening. Bad channels and
epochs containing artifacts were discarded. The data were
segmented into 2s windows (frequency resolution: 0.5 Hz) with
50% overlap.

2.2.3. STN power
We applied a Hanning taper and computed power for each

integer frequency between 1 and 398 Hz using Welch's method.
Line noise and its harmonics were eliminated by replacing
values ± 2 Hz from the harmonics by surrogate values obtained by
linear interpolation. The aperiodic (1/f) component was removed
from the LFP power spectra using the fitting oscillations and one over
f (FOOOF) algorithm [25]. This stepwas necessary to ensure that the
predictive models operated on neuronal oscillations proper. Note
that coherence, unlike power, is a normalized quantity not
requiring this correction. When applying FOOOF, we adapted its
parameters iteratively until a good fit was achieved, confirmed
visually for every case. Since a good description of the entire
spectrum was usually not achievable with a single model, we per-
formed separate fits for the frequency ranges below 90 Hz and
above 200 Hz (frequencies between 90 and 200 Hz were not
analyzed here). The periodic minus the aperiodic component was
retained and power was averaged within eight frequency bands of
interest: delta/theta (3e7 Hz), alpha (8e12 Hz), low-beta

Abbreviations

DBS deep brain stimulation
FDR false discovery rate
fHFO fast high frequency oscillations (300e400 Hz)
FOOOF fitting oscillations and one over f
LFP local field potential
MEG magnetoencephalography
RMSE root mean squared error
sHFO slow high frequency oscillations (200e300 Hz)
STN subthalamic nucleus
UPDRS Unified Parkinson's disease Rating Scale
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(13e20 Hz), high-beta (21e35 Hz), low gamma (36e60 Hz), high-
gamma (60e90 Hz), slow high-frequency oscillations (sHFO;
200e300 Hz) and fast high-frequency oscillations (fHFO;
300e400 Hz).

2.2.4. STN-cortex coherence
Coherence was estimated and localized once per frequency

band rather than once per frequency. Using the multitaper method
[26], we computed coherence at the band center frequency and
applied appropriate spectral smoothing to include the entire band.
For bands covering line noise harmonics, we computed estimates
for sub-bands, excluding the harmonics, and averaged them.
Coherence was source-localized using Dynamic Imaging of
Coherent Sources [27]. We made use of realistic, single-shell head
models based on the individual, T1-weighted MR image. The
beamformer grid contained 567 locations spread out evenly across
the cortical and cerebellar surface. It was aligned to Montreal
Neurological Institute (MNI) space, allowing for grid parcellation
into 30 supersets of regions defined in the Automatic Anatomic
Labeling (AAL) atlas [28]. Details on these regions are provided in
Table S2 of the Supplementary Material.

Following feature extraction, features were arranged into a
feature matrix of size Npatients x Nfeatures (Fig. 1). In this matrix, each
subject was represented by one column comprising both STN po-
wer and STN-cortex coherence with ipsilateral and contralateral
cortical parcels for both left and right STN. Two alternative designs
were also tested, but found to have inferior performance (Fig. S2 of
the Supplementary Material): one with hemispheres rather than
subjects as unit of observation, and one inwhich hemispheres were
ordered according their laterality with respect to the more affected
body side.

2.2.5. Machine learning model
For predicting motor improvement, we employed extreme

gradient boosting, as implemented in the XGBoost package for
Python [29]. In this framework, the target score is predicted by a
sequence of decision trees assembled tree-by-tree during training.
Each new tree is trained on the error made by the group assembled
so far, resulting in a stepwise refinement of the prediction. XGBoost
has gained popularity by winning numerous machine learning
competitions and is a commonly used tool in machine learning. It
appears to be particularly well suited for electrophysiological
datasets [30], which are typically small, structured and noisy. In a
recent study by Merk et al. [31], XGBoost outperformed linear
regression and artificial neural networks in the prediction of grip
force based on STN and cortical oscillations.

2.2.6. Feature importance analysis
Feature importance analysis seeks to describe how much an

individual feature or a subgroup of features contributed to a pre-
diction made by a machine learning model. Here, we quantified
feature importance using the Python implementation of SHapely
Additive exPlanations (SHAP) [32]. SHAP values are estimates of
Shapley values, a concept from cooperative game theory for a fair
distribution of a payout among players. Besides having a range of
desirable mathematical properties, SHAP values have an intuitive
interpretation: they sum to the difference between the current and
the average model output. While the concept is applicable to any
machine learning model, specialized versions such as TreeSHAP
have been developed, optimized for tree ensemble-based models
such as XGBoost [33].

Fig. 1. Analysis pipeline. (A) Feature extraction. Following contact selection, STN power and STN-cortex coherence were computed from the Fourier spectrum. STN power un-
derwent 1/f-correction and was averaged within frequency bands. STN-cortex coherence was source-localized using beamforming. Each source was assigned to one of 30 cortical
parcels and source coherence was averaged within parcels and frequency bands. Band-limited STN power and STN-cortex coherence formed the hemisphere feature vector. (B)
Leave-one-out regression. Left and right hemisphere feature vectors were stacked vertically to form the subject feature vector. The subject feature vectors were stacked horizontally
to form the feature matrix. In each iteration through the leave-one-out cycle, one subject was set aside (test set). The remaining train set was divided into 3 folds for cross-validated
hyper-parameter tuning and feature selection. The test features served as input to the regression model, which predicted UPDRS III sum score reduction.
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Fig. 2. Spectral characteristics of features. (A) Reconstruction of electrode locations. The subthalamic nucleus is depicted in yellow. (B) STN power, averaged over hemispheres,
below 90 Hz. (C) as (B) for the high frequency range. (D) Group-mean STN-cortex coherence by cortical parcel. The solid lines represent the mean. Shadings represent the standard
error of the mean. The labels “ipsi” and “contra” refer to the subthalamic nucleus. (E) as (D) for the high frequency range (multitaper method, ±5 Hz spectral smoothing). The dotted
black lines indicate the level of ipsi- and contralateral coherence after shuffling data segments in time. (For interpretation of the references to color in this figure legend, the reader
is referred to the Web version of this article.)
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2.2.7. Predicting DBS outcome
DBS outcome was quantified by the difference in UPDRS III sum

score Med OFF/Stim OFF - Med OFF/Stim ON, unless specified
otherwise. Predictions were computed sequentially for each subject
in a leave-one-out fashion, i.e. each subject served as the test set
once and was part of the train set in all other iterations. In each
iteration through the leave-one-out loop, featureswere standardized
using mean and variance of the train set. Next, we selected the most
important k features according to the mean absolute SHAP values
computed on the train set. The train set was then sub-divided into
three folds for cross-validated hyper-parameter tuning with the
Hyperopt package [34]. The optimization procedure and the chosen
parameters are detailed in the Supplementary Material.

Model performance was quantified by the root mean squared
error (RMSE) and Pearson's correlation coefficient between the
actual and the predicted DBS outcome. We further applied a null
model agnostic of electrophysiology for establishing a performance
baseline. The null model generated predictions of DBS outcome by
averaging the outcomes of the train set.

2.3. Statistics

Significance of correlation was assessed using the pearsonr
function of the scipy.stats package (two-sided test; statistic: b;
significance level: 0.05). When computing the correlation coeffi-
cient repeatedly, we applied false discovery rate (FDR) correction
using the Benjamini-Hochberg procedure.

3. Results

3.1. Features

The spectral and spatial characteristics of the features are illus-
trated in Figs. 2 and 3, respectively. STN power spectra contained
peaks in the alpha, low-beta and high-beta band. Individual patients
showed an additional high-gamma peak (Fig. 2B). The HFO spectrum
was dominated by sHFO peaks, as described previously for the
medication OFF state (Fig. 2C) [35,36]. The coherence spectra con-
tained strong alpha peaks, which were ubiquitous but most pro-
nounced in temporal areas ipsilateral to the STN (Fig. 2D). Medial
sensorimotor and adjacent areas ipsilateral to the STN additionally
showed strong beta peaks, as reported by previous studies (Fig. 3)
[20,37]. The coherence spectra did not contain any consistent HFO

peaks (Fig. 2E), but some subjects had more coherence in this range
than others (Fig. S1 of the Supplementary Material). Finally, many
coherence spectra had several narrow peaks in the delta/theta range,
presumably reflecting tremor, occurring at slightly different fre-
quencies in individual patients [12,13].

3.2. Model performance

We evaluated the performance of predictive models operating
either on STN-cortex coherence (connectivity models) or STN po-
wer (local models) as a function of the number of features. In order
to test whether the model predicted DBS benefit or symptom
severity better, we predicted both the difference between the DBS
OFF and the DBS ON score (benefit) and the DBS OFF score
(symptom severity) separately. Note that all UPDRSIII scores were
collected several months after surgery (Table S1).

When predicting DBS benefit, both connectivity and local
models outperformed the null model, which estimated DBS
outcome by averaging the outcomes of the train set (Fig. 4A;
RMSENull: 6.74). Connectivity-based models outperformed the null
model even with a single feature and generally performed better
than local models (avg. RMSEconn: 5.1, avg. rconn: 0.64). Local models
required at least four features to achieve better performance than
the null model and a significant correlation between predicted and
actual DBS outcomes (Fig. 4B; avg, RMSElocal: 6.0, avg. rlocal: 0.42).

The OFF score was not predicted as accurately as DBS benefit.
Connectivity models could not perform this task at all (Fig. 4C and
D; RMSEnull_off: 11.09; avg. RMSEconn: 13.42, avg. rconn: !0.10). Local
models operating on 3e6 STN power features, however, achieved a
significant correlation between actual and predicted DBS OFF
scores (Fig. 4D; RMSEnull_off: 11.09; RMSElocal_5: 9.04, rlocal_5: 0.55).

3.3. Feature importance

This analysis aimed at revealing the most important features for
successfully predicting clinical benefit. To assess feature impor-
tance, we summed absolute SHAP values over all models contrib-
uting to the previous analysis (Fig. 4) and within categories of
interest such as frequency band (Fig. 5A and B), brain region
(Fig. 5C) and hemisphere with respect to the STN (Fig. 5D). For local
models, STN high-beta power was the most important feature,
followed by alpha and sHFO power (Fig. 5A). Strong high-beta po-
wer indicated a good DBS outcome. Strong beta-band coherence, in

Fig. 3. Source-localized STN-cortex coherence. Coherence was normalized by the spatial mean prior to averaging over hemispheres. Whole-brain images were flipped such that
the hemisphere ipsilateral the STN ended up on the right side. Normalized coherence is color-coded. Theta: 3e7 Hz; alpha: 8e12 Hz; low-beta: 13e20 Hz; high-beta: 21e35 Hz; low
gamma: 36e60 Hz; high-gamma: 60e90 Hz; sHFO: 200e300 Hz; fHFO; 300e400 Hz. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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contrast, was not indicative of a good outcome (Fig. 5B). Connec-
tivity models relied mostly on fHFO, low-gamma and theta oscil-
lations. Connectivity with parietal areas was particularly important
(Fig. 5C). As expected, coherence between STN and ipsilateral cor-
tex was more important than coherence between STN and
contralateral cortex (Fig. 5D).

3.4. Combining local and connectivity features

We investigated the potential merit of combining local and
connectivity features when predicting DBS benefit. To simplify
interpretation, we used a fixed feature set rather than running a

data-driven selection for each individual subject as above. We
chose the five local and the five connectivity features with the
highest overall SHAP sum (as five was the lowest number for which
both the local and the connectivity models reached good perfor-
mance in the previous analysis). The selected features are listed in
Fig. 6B. As depicted in Fig. 6A, the best-5 connectivity model
(RMSEconn ¼ 3.54, rconn ¼ 0.84, pconn ¼ 1e-14) outperformed the
best-5 local model (RMSElocal ¼ 5.77, rlocal ¼ 0.52, plocal ¼ 0.001).
Adding local features to the connectivity features did not improve
the connectivity model further (RMSEcomb ¼ 3.61, rcomb ¼ 0.84,
pcomb ¼ 1.69e-10).

Fig. 4. Model performance vs. number of features. (A) Root mean squared error as a function of number of features for the prediction of DBS OFF-ON score. (B) Pearson's
correlation coefficient quantifying the correlation between predicted and actual DBS outcome for the prediction of DBS OFF-ON score. Significant correlations are highlighted by
gray shading (p < 0.05, FDR corrected). (C) as (A) for DBS OFF score. (D) as (B) for DBS OFF score. STN local: model operating on STN power features; STN conn: model operating on
STN-cortex coherence features.

Fig. 5. Feature importance. Bars represent absolute SHAP values summed over all models and within the corresponding category. (A,B) frequency band. (C) brain region. (D)
hemisphere. High bars indicate that features of the corresponding category had a strong impact on the prediction. Colors represent the mean correlation between SHAP values and
feature values within each category. Dark red colors indicate that high feature values consistently drove the prediction toward higher values. Dark blue colors indicate that high
feature values consistently drove the prediction towards lower values. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of
this article.)
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Fig. 6B illustrates feature importance and the relation between
feature values and feature importance for the combined model.
Connectivity features generally had a stronger impact on the pre-
diction than local features. The strongest influence was attributed
to fHFO coherence between the right STN and ipsilateral inferior
parietal cortex. Low values strongly drove the prediction towards
worse predicted outcomes. Indeed, when relating this feature to
DBS outcome directly, we observed an approximately logarithmic
relationship, i.e. outcomes dropped steeply with decreasing
coherence (log(coherence)-outcome correlation: r ¼ 0.40,
p ¼ 0.02). Feature importance analysis further revealed that strong
coupling between the right STN and ipsilateral parietal cortex and a
weak coupling between the right STN and contralateral parietal
cortex in the low-gamma band drove the prediction toward a good
DBS outcome. So did strong coupling between the left STN and
contralateral, inferior occipital cortex in the theta band and weak
coupling between right STN and temporal cortex in the low-beta
band.

3.5. Feature correlations

Whereas the automatically selected set of most important local
features contained frequency bands with clear peaks and an
established role in Parkinson's disease pathophysiology, such as
the beta and the HFO band, the set of most important connectivity
features did not. To better understand the nature of these features,
we investigated their correlation with all other features (Fig. 7A).

Both fHFO and low-gamma coherence with parietal cortex were
strongly correlated with a large set of other features, in particular
>35 Hz connectivity with the entire hemisphere. Replacing each
of the best five connectivity features by their closest correlate,
however, decreased performance substantially (Fig. 7B;
RMSEbest ¼ 3.61, rbest ¼ 0.84, pbest ¼ 1.69e-10; RMSEcorr ¼ 6.47,
rcorr ¼ 0.29, pcorr ¼ 0.09), demonstrating that the selected features
are not arbitrary representatives of a highly correlated feature
group. Destroying true phase relationships by shuffling the LFP
signals in time abolished the ability to predict clinical benefit from
STN-cortex coherence, demonstrating that connectivity models
relied on phase information (Fig. S3 of the Supplementary
Material).

3.6. Control analyses

Given the critical role of lead placement for DBS benefit, we
asked whether themost informative features might reflect distance
to target. None of the best 10 features were significantly correlated
with the distance of the LFP channel to a published “sweet spot” for
STN DBS [38], and distance could not predict clinical benefit on its
own (see Supplementary Material). Similar observations were
made for a set of potential confounders, including recording dura-
tion, electrode type (segmented vs. non-segmented), days passed since
recording and signal-to-noise ratio. We conclude that the success of
the electrophysiological models cannot be explained by correlation
with these variables.

Fig. 6. Comparing local and connectivity models. (A) Scatter plots showing the correlation between actual and predicted DBS outcome using the five best local features (green),
the five best connectivity features (orange) and the five best local and connectivity features combined (purple). (B) SHAP values for each feature of the combined model. Each dot
represents one subject. High values on the x-axis indicate a strong influence on the prediction in either the negative (SHAP<0) or the positive direction (SHAP>0) relative to the
mean. Normalized feature values are color-coded. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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3.7. Predicting improvement of particular symptoms

In the previous analyses, we quantified DBS outcome by the
reduction of the UDPRS III sum score, representing overall motor
symptom severity. To see whether local and connectivity features
relate to particular and possibly different symptoms, we computed
predictions for each individual UPDRS III item (Fig. 8A and C) and
for the akinesia-rigidity, the tremor and the axial subset sum score
(Fig. 8B and D) using the best-5 local and the best-5 connectivity
model described above. The local and the connectivity model had a
very similar RMSE profile. Both predicted the DBS-induced
improvement of akinesia/rigidity best.

4. Discussion

We have demonstrated that is possible to predict DBS outcome
from STN power and STN-cortex coherence in Parkinson's disease
patients. Our results indicate that STN-cortex coherence, in
particular, is a good predictor of clinical benefit.

4.1. Relation to previous studies

Few studies have made out-of-sample predictions of DBS
outcome based on electrophysiological data. We knowof only three
studies, all of which investigated signals fromwithin or nearby the
STN, recorded during surgery [39e41]. Here, we applied a network

approach, incorporating both subthalamic oscillations and their
synchrony with oscillatory activity in various cortical areas. In this
respect, our approach can be considered an electrophysiological
pendant of discriminative tractography. This is a technique for
predicting DBS outcome from structural connectivity with the
volume of tissue activated (VTA), an estimate of the spatial extent of
neuromodulation around the active contact. This approach and
related methods have facilitated accurate predictions of DBS

Fig. 7. Correlations and replaceability of the five best connectivity features. (A) Pearson correlation between the five most important connectivity features and all other features.
Correlations were averaged within lobes (frontal, parietal, temporal, occipital) for the sake of readability. (B) Prediction performance for the five best connectivity features, their
strongest correlates and their second strongest correlates.

Fig. 8. Single item prediction. (A) Single item prediction for the local model. (B)
Subset sum score predictions for the local model. (C) As (A) for connectivity model. (D)
As (B) for connectivity model.
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outcome in many disorders, including Parkinson's disease [42],
obsessive-compulsive disorder [43,44], Tourette's Syndrome [45],
and Essential Tremor [46]. Although structural and functional
connectivity do not necessarily contain redundant information
about DBS outcome [42], structural connectivity forms the basis of
functional connectivity, suggesting that both might predict the ef-
ficacy of DBS in individual patients. In this study, we show that this
is indeed the case. Predicted DBS outcomes, derived from a few
functional connectivity features only, were highly correlated with
the actual outcomes. The null model, which predicted DBS outcome
based on the average outcome in the training set, performedworse,
i.e. knowing the individual electrophysiology helps improving
realistic expectations of DBS outcome.

4.2. The link between DBS outcome and oscillations

Predicting clinical benefit form neuronal oscillations might
work for several reasons. First, exaggerated synchronization itself
has been suggested to cause Parkinsonism [47]. If oscillations were
the causal process, an estimate of how strong the process is around
the stimulation contact might allow for predicting the DBS effect in
the individual patient.

Alternatively, successful prediction might be explained by a
consistent relationship between oscillations and contact location,
which is known to be a crucial factor for DBS. Indeed, beta and HFO
oscillations have a characteristic spatial distribution in the STN area
[48,49]. Here, we found, however, that the distance of an LFP
channel to a published sweet spot for STN DBS had little predictive
power and did not correlate with the most informative oscillatory
features [38]. This is likely a characteristic of our sample, which
includes only the contacts with optimal clinical efficacy, which, in
our case, differed little with respect to placement. Presumably,
locationwould become a crucial piece of information if one were to
include other contacts further off target, e.g. the contacts not
selected for DBS. We could not investigate this here because we
lacked a good characterization of the clinical effect for non-selected
contacts.

It is possible that the prediction relied in part on information
about the ability of DBS to modulate remote cortical areas, which
may be key to the clinical effect of DBS [50]. This would explainwhy
connectivity models performed better than local models and why
they could predict DBS benefit but not symptom severity. Whether
stimulation can reach a relevant anatomical connection might be
relevant for the clinical effect of DBS, but is not relevant for the
patient's motor state off stimulation.

STN-cortex coherence carries information on functional con-
nectivity by definition. In addition, it has recently been demon-
strated to correlate with the density of reconstructed fiber tracts
connecting STN and cortical areas, i.e. it also contains information
on anatomical connectivity [51]. Interestingly, the same study
demonstrated that STN beta oscillations might arise as a conse-
quence of cortical input, implying that even local oscillations can
relate to STN-cortex connectivity.

4.3. Feature importance

In this paper, we applied feature analysis to identify particularly
informative features. This analysis yielded STN high-beta power as
the most import local feature, in line with a recent classification
study in the primate model of PD [52]. The finding further aligns
with a recent study reporting that high-beta oscillatory activity
distinguishes the STN from neighboring structures [51]. STN-cortex
beta coherence, in contrast, was less relevant for prediction. This
observations tallies with studies on dopamine effects, which found

no relation between the degree of symptom reduction achieved by
levodopa and the degree of beta coherence reduction [8,53].

While beta coherence with motor cortex did not emerge as a
very important feature, coherence in other frequency bands was
strongly predictive of DBS outcome, even more so than STN high-
beta power. Coherence between the STN and parietal cortex at
high frequencies (low-gamma and fHFO) allowed for accurate es-
timates of DBS efficacy. This is somewhat surprising, given that
these frequency bands did not contain coherence peaks. Despite
this lack of structure and a strong correlation with high-frequency
coupling (>35 Hz) to other cortical areas, these features appear to
be particularly relevant for DBS outcome, as they were not
replaceable without harming performance and lost their predictive
potential through shuffling.

The importance of parietal features points towards a clinical
relevance of parieto-STN connectivity. Yet, in light of the strong
correlation between features, this hypothesis requires confirmation
by independent studies. A number of PET studies have reported
that STN DBS leads to metabolic changes in parietal areas,
evidencing that DBS modulates parietal cortex [54,55]. Further, PD
patients differ from healthy controls in their resting-state BOLD
signal correlation between STN and parietal cortex, suggesting
pathological relevance of this connection [56]. And lastly, both STN
and parietal cortex were proposed to be part of brain network for
response inhibition [57,58]. This network is believed to be lateral-
ized to the right hemisphere [59,60], which might relate to the fact
that all of the important parietal connectivity features identified
here were right STN features, suggesting that left and right STN
might not have the same relation to clinical improvement. The fact
that good predictions required data from both hemispheres further
supports this hypothesis.

4.4. STN power vs. STN-cortex coherence

One research question of this studywas whether STN power and
STN-cortex coherence carry different information about DBS
outcome. Our results do not support this hypothesis. Although local
models did achieve reasonable predictions, adding local features
did not improve the best-performing connectivity models, indi-
cating that the information carried by STN power was already
contained in STN-cortex coherence e even though the frequency
bands were different. Similarly, when predicting single UPDRS
items both local and connectivity models showed a very similar
performance profile, i.e. the accurately predicted symptom re-
ductions and the non-accurately predicted symptom reductions
were the same for both feature types. In conclusion, STN-cortex
coherence seems to condense more information in a lower num-
ber of features, but power and coherence do not seem to be inde-
pendent sources of information.

The same analysis revealed that both STN power and STN-cortex
coherence predicted the reduction of akinesia/rigidity best. This
might be due to the known link between akinesia and (beta) os-
cillations [61], and could additionally reflect common properties of
the group under study. A certain level of akinesia and rigidity
reduction was common to all patients, whereas only a subset of
patients showed marked tremor and/or axial symptoms. Because
learning occurred across subjects, oscillation-outcome relation-
ships shared among patients were learned the best.

4.5. Limitations

While an analysis of feature importance can reveal new insights,
it should be interpreted with caution. Identifying causal relation-
ships is generally not possible with this approach [62]. Any feature
related to DBS outcome might be so via correlation with other
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features or unobserved variables, i.e. a feature important to the
model is not necessarily important to the brain. This aspect is
particularly relevant with regard to a possible pathophysiological
role of high-frequency coupling, which requires further
investigation.

Finally, a sample size of 36 patients is large for a MEG-LFP study
(as far as we know, this is the largest sample so far) but it is not at all
large for a machine learning study. Future studies should aim at
including more data, potentially by fostering data sharing.

5. Conclusions and outlook

It is possible to predict DBS outcome based on subthalamic os-
cillations and their synchrony with cortical oscillations. Future
studies may investigate whether this link between electrophysi-
ology and clinical improvement can be leveraged to improve lead
placement and/or contact selection.
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Tab. S1: Patient details. Note the difference in contact naming convention: most ventral Medtronic: 
0; most ventral Boston Scientific and Abbott: 1.   

ID study age 
[y] sex 

dise
ase 

dura
tion 
[y] 

electrode 
type 

UPDRS 
III Med 

Off/ 
Stim Off 

UPDRS 
III Med 

Off/ 
Stim 
On 

time 
btw. 
MEG 
and 

UPDRS 
[m] 

data 
length 
[min] 

active 
left 

sel. 
chan 
left 

active 
in 

biool
ar 

active 
right 

sel. 
chan 
right 

active in 
bipolar 

S01 1 76 w 22 Medtronic/ 
non-seg 49 30 2 9.63 2 12 y 1 12 y 

S02 1 70 m 11 Medtronic 
/non-seg 23 15 3 9.88 1 12 y 1 12 y 

S03 1 64 w 19 Medtronic/ 
non-seg 34 21 5 9.42 12 12 y 12 12 y 

S04 1 62 w 15 Medtronic 
/non-seg 46 37 3 9.84 23 23 y 23 23 y 

S05 1 54 m 10 Medtronic/ 
non-seg 25 13 4 8.75 2 12 y 3 23 y 

S06 1 48 m 10 Medtronic/ 
non-seg 51 29 3 9.93 2 12 y 23 23 y 

S07 1 66 m 8 Medtronic/ 
non-seg 34 22 7 10 2 12 y 2 23 y 

S08 1 60 m 6 Medtronic/ 
non-seg 33 12 4 10.00 1 12 y 0 01 y 

S09  1  69  m  2  Medtronic/ 
non-seg 38  19  11  9.75  1 12 y 1 12 y 

S10  1  53  m  11  StJude/non-
seg 22  10  6  9.98  2 12 y 2 12 y  

S11  1  61  w  10  Medtronic/ 
non-seg 44  28  5  9.87  1 12 y 1 12 y 

S12  1  54  m  12  StJude/non-
seg 37  22  6  10.00  1 12 y 1 12 y 

S13  1  52  m  7  Boston 
Sc./non-seg 50  34  14  5.00  4 34 y 4 34 y 

S14  1  53  m  6  Boston 
Sc./non-seg 35  12  5  4.65  3 23 y 3 23 y 

S15  1  45  m  5  Medtronic/ 
non-seg 57  40  45  1.18  2 02 y 2 12 y 

S16  1  45  w  9  Medtronic/ 
non-seg 30  16  3  3.09  0 01 y 0 02 y 

S17  1  62  w  3  Medtronic 
/non-seg 38  15  3  5.17  1 02 n 1 02 n  

S18  1  75  w  14  Medtronic/ 
non-seg 58  36  2  3.83  1 12 y 13 12 y 

S19  1  52  m  4  Medtronic/ 
non-seg 40  18  5  4.52  1 12 y 1 12 y 
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S20  1  55  m  11  Boston 
Sc./non-seg 52  47  24  10.70  2 12 y  5 56 y  

S21  2  69  m  12  Abbott/seg 42  18  4  23.98  2ABC 
2A-

3A,2B-
3B,2C-3C 

y 2B 2B-3B y  

S22  2  56  m  6  Abbott/seg 23  17  4  29.60  2AB 2A-
3A,2B-3B y 2B 2B-3B y 

S23  2  65  m  13  Abbott/seg 34  26  4  26.68  1 
2A-

3A,2B-
3B,2C-3C 

n 2ABC 

2A-
3A,2B-
3B,2C-

3C 

y  

S24  2  62  w  19  Abbott/seg 34  8  3  14.83  2ABC 3B-4,3C-
4 n 2ABC 

2A-
3A,2B-
3B,2C-

3C 

y 

S25  2  70  m  5  Abbott/seg 53  34  4  27.37  2ABC 2C-3C y 2ABC 
2A-

3A,2C-
3C 

y  

S26  2  56  m  7  Abbott/seg 30  26  14  24.58  2B 3A-4 n 2C 1-2C y  

S27  2  60  w  6  Abbott/seg 48  34  4  29.83  3ABC 2B-
3B,2C-3C y  3ABC 3A-

4,3B-4 y  

S28  2  47  m  6  Abbott/seg 39  29  3  29.10  2AC 2A-
3A,2C-3C y 2ABC 

2A-
3A,2B-
3B,2C-

3C 

y  

S29  2  59  m  15  Abbott/seg 50  31  4  29.10  2ABC 2C-3C y 2ABC 
2B-

3B,2C-
3C 

y  

S30  2  41  m  7  Abbott/seg 55  30  3  21.58  2ABC 
2A-

3A,2B-
3B,2C-3C 

y 2ABC 

2A-
3A,2B-
3B,2C-

3C 

y  

S31  2  59  w  9  Abbott/seg 42  31  3  9.12  2C 2C-3C y 2C 2A-3A n 

S32  2  72  w  3  Abbott/seg 28  18  6  28.97  3ABC 2A-
3A,2C-3B y 2ABC 

2A-
3A,2B-
3B,2C-

3C 

y  

S33  2  68  m  10  Abbott/seg 40  30  3  29.33  2ABC 
2A-

3A,2B-
3B,2C-3C 

y 2ABC 

2A-
3A,2B-
3B,2C-

3C 

y 

S34  2  54  m  3  Abbott/seg 13  11  14  28.17  1 1-2A,1-
2B,1-2 y 2AC 

2A-
3A,2C-

3C 
y  

S35  2  59  m  10  Abbott/seg 48  45  2  17.33  2C 2C-3C y 3B 2B-3B y  

S36  2  56  w  5  Abbott/seg 34  16  15  27.83  3ABC 2B-
3B,2C-3C y 2B 2B-3B y 

µ  59.1  9.1  39.1 24.4 6.9 15.3       

σ  8.7  4.7  10.9 10.1 8.0 9.7       

 

 

Tab. S2: Details on cortical areas. The table lists parcel labels along with the x, y and z coordinates of 
the grid point cloud centroids.  

area x y z 
SensorimotorR 38.28 -14.42 54.59 
FrontalSupR 17.78 33.48 41.75 
FrontalMedR 36.35 38.63 20.92 
FrontalInfR 52.30 31.11 1.94 
ParietalSupR 23.00 -60.67 64.84 
ParietalInfR 52.73 -47.50 47.29 
TemporalSupR 63.47 -13.85 3.22 
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TemporalMidR 59.85 -23.91 -11.06 
TemporalInfR 58.30 -35.63 -24.14 
OccipitalSupR 19.94 -94.60 24.55 
OccipitalMidR 39.38 -85.00 17.80 
OccipitalInfR 29.33 -95.00 -9.09 
AngularR 47.81 -65.00 39.75 
SupraMarginalR 61.83 -32.50 34.73 
CerebellumR 33.90 -61.22 -46.50 
SensorimotorL -39.35 -12.95 54.26 
FrontalSupL -14.80 44.73 30.35 
FrontalMedL -32.91 40.96 24.72 
FrontalInfL -50.60 29.52 3.11 
ParietalSupL -17.14 -61.76 64.62 
ParietalInfL -49.08 -51.11 46.36 
TemporalSupL -59.66 -8.18 -1.40 
TemporalMidL -61.87 -31.36 -5.78 
TemporalInfL -59.29 -28.33 -25.71 
OccipitalSupL -8.64 -97.80 21.46 
OccipitalMidL -33.41 -91.75 10.92 
OccipitalInfL -24.92 -91.83 -10.07 
AngularL -48.73 -66.00 36.52 
SupraMarginalL -61.99 -33.33 30.51 
CerebellumL -31.65 -61.54 -46.86 

 

Parameter tuning 

Our tuning procedure was inspired by this blog post: 
https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-
codes-python. We started with an initial choice that differed slightly from the default settings to 
account for the small sample size and the associated risk of overfitting (learning_rate = 0.05 , 
min_child_weight = 2, subsample = 0.8, colsample_bytree = 0.8). Following an initial tuning of the 
number of trees, the parameters subsample and colsample_bytree, followed by min_child_weight, 
were tuned in nested cross-validation using the Hyperopt toolbox (Bergstra et al., 2013). We tuned 
these parameters specifically because they had the strongest effect on the model output in our 
study. After tuning, we lowered the leaning rate and re-estimated the best number of trees for the 
refined settings. This was the final parameter selection.  

 

Tab. S3: XGBoost parameters. Parameters in italic were tuned in 3-fold cross-validation, nested in the 
leave-one-out loop. For these parameters, the table provides the minimum, the median and 
maximum value used in any of the models. The remaining parameters were the same for all models.  

parameter name value 
base_score 0.5 
booster gbtree 
colsample_bylevel 1 
colsample_bynode 1 
colsample_bytree 0.50; 0.70; 0.99 
gamma 0 
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learning_rate 0.05 
max_delta_step 0 
max_depth 4 
min_child_weight 1.00; 2.00; 12.00 
missing None 
n_estimators 204; 363; 1874 
objective reg:squarederror 
reg_alpha 0 
reg_lambda 0 
scale_pos_weight 1 
subsample 0.5; 0.73; 0.99 

 

High-frequency coherence 

Fig. S1 depicts STN-cortex coherence in the HFO range for every hemsiphere.  

 

 

Fig. S1 : High-frequency STN-cortex coherence. Spectra were computed using the multitaper method 
with ±5Hz spectral smoothing. Occasional artifact at line noise harmonics were removed and 
replaced by interpolated values.  

 

Alternative designs 

For the analysis presented in the main paper, patient feature vectors were constructed by stacking 
the left hemisphere feature vector onto the right hemisphere feature vector (compare main paper 
Fig. 1). Here, we tested an alternative organization of features, reflecting the body-side asymmetry 
characteristic of PD. We stacked the features of the hemisphere contralateral to the more affected 
body side onto the features of the hemisphere ipsilateral to the more affected body side, and re-ran 
the performance analysis described in the main paper (compare main paper Fig. 4). Prediction with 
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the connectivity model was still possible, but the model required more features than in the original 
analysis (Fig. S2A). Local models could not predict DBS benefit with this design. 

We further tried predicting the DBS-induced reduction of the UPDRSIII hemibody sum score using 
only the features of the contralateral hemisphere. Prediction was not successful with this setting (Fig. 
S2B), suggesting that information from both hemispheres is needed for estimating DBS benefit. 

 

Fig. S2 : Root mean squared error vs. number of features for alternative designs. A) Predicting 
UPDRSIIII sum score improvement from features organized with respect to the symptom-dominant 
body side. B) Predicting UPDRSIIII hemibody score improvement from electrophysiological features 
of the contralateral hemisphere. 

 

Control Analyses 

Given the critical role of lead placement for DBS efficacy, we asked if the oscillatory features used 
here might reflect contact distance to target. First, we extracted the auxiliary features “distance 
between bipolar LFP channel and sweet spot left” and “distance between bipolar LFP channel and 
sweet spot right”. The sweet spot was chosen according to (Caire et al., Acta Neurochir (Wien) 2013; 
155: 1647– 1654; MNI coordinates: x = ±12.6, y = −13.4, z = −5.9 mm). This was done by computing 
the Euclidian distance between the sweet spot for both contacts of each bipolar contact pair. The 
distance between a bipolar channel and the sweet spot was defined as the smaller one of the two 
distances. An alternative definition of distance based on the midpoint of the line connecting both 
contacts of a pair was also tested and yielded similar results. 

Neither of the five best connectivity features nor of the five best local features correlated 
significantly with distance to the sweet spot following FDR correction (lowest corrected p = 0.16). 
Distance alone was not sufficient to predict DBS outcome in our sample (RMSEdist= 9.25, rdist= -
0.17, pdist=0.33). When the distance features were added to the best-5 local model, performance 
increased slightly (ΔRMSE = 0.66) and the distance features ranked 5th and 6th of 7 with respect to 
SHAP value. When the distance features were added to the best-5 connectivity model, performance 
did not change (ΔRMSE = -0.02) and the distance features ranked 6th and 7th of 7 with respect to 
SHAP value. In summary, these results suggest that oscillations convey information on DBS outcome 
above and beyond distance to target. 

In another set of control analyses, we assessed several potential confounders that might be trivially 
correlated with DBS benefit and/or neuronal oscillations and might underlie the predictions reported 
here. These included recording duration, electrode type (segmented vs. non-segmented) and days 
passed since recording, all of which differed markedly across the two studies contributing data. None 
of these variables allowed for predicting DBS outcome on their own (RMSEdur=9.83, RMSEtype= 6.81, 
RMSEdays=8.77, RMSENull=6.74; rdur= -0.26, rtype= -0.04, rdays= 0.08; pdur= 0.12, ptype= 0.83, pdays=0.63). 
When added to the best-5 connectivity model or the best-5 local model, the performance of these 
models hardly changed (ΔRMSE local = 0.60, ΔRMSEconn = -0.07). When ranked by SHAP value, the 
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potential confounders ranked 8th (last), 7th and 6th for the connectivity model and 8th, 7th and 5th for 
the local model. We conclude that the success of the electrophysiological models cannot be 
explained by correlations with either recording duration, electrode type or time since recording. 

We further investigated whether a contact’s signal-to-noise ratio (SNR) might affect prediction. To 
estimate SNR, we assessed the STN power spectra.  We integrated power over the periodic and the 
aperiodic components estimated by the FOOOF algorithm and divided these integrals, i.e. we 
computed the ratio between total peak power and total 1/f-background. In case of segmented leads, 
we averaged SNR over segments. SNR did not allow for predicting DBS outcome on its own (RMSESNR= 
11.56, rSNR=-0.45, pSNR= 0.006 ). When added to the best-5 connectivity model or the best-5 local 
model, the performance of these models decreased slightly (ΔRMSE local = -0.32 , ΔRMSEconn = -0.23). 

Shuffling  

To test the importance of true phase relationships to our connectivity models, we repeated our 
analyses with shuffled, surrogate data. LFP data segments were randomly reassigned to MEG data 
segments from the same recording, but a different point in time. This approach destroys true phase 
relationships between STN and cortex while maintaining other properties such as the noise floor. 
Following shuffling, connectivity features were re-computed and DBS benefit was predicted as 
before. The procedure was repeated 50 times, to obtain a surrogate distribution of RMSE values. As 
depicted in Fig. S3, the original RMSE achieved by the best-5 connectivity model was lower than any 
value of the surrogate distribution, suggesting that phase relationships are indeed relevant.  

 

 

Fig. S3: Shuffling abolished the ability to predict DBS outcome from STN-cortex coherence. Blue: Full 
surrogate distribution of the root mean squared error (RMSE) obtained by shuffling data segments in 
time. The white dot represents the median, the gray bar the 2nd-3rd quartile range. The RMSE 
associated with the original best-5 connectivity features is shown as an orange line, the RMSE 
achieved by the null model as a gray line. 
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R E S E A R C H A R T I C L E

Mapping Subcortico-Cortical Coupling—A Comparison of
Thalamic and Subthalamic Oscillations

Alexandra Steina, MSc,1 Sarah Sure, MD,1 Markus Butz, PhD,1 Jan Vesper, MD,2 Alfons Schnitzler, MD,1 and
Jan Hirschmann, PhD1*

1Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
2Department of Functional Neurosurgery and Stereotaxy, Neurosurgical Clinic, Medical Faculty, Heinrich Heine University,

Düsseldorf, Germany

ABSTRACT: Background: The ventral intermediate
nucleus of the thalamus (VIM) is an effective target for
deep brain stimulation in tremor patients. Despite its
therapeutic importance, its oscillatory coupling to cortical
areas has rarely been investigated in humans.
Objectives: The objective of this study was to identify
the cortical areas coupled to the VIM in patients with
essential tremor.
Methods: We combined resting-state magnetoen-
cephalography with local field potential recordings
from the VIM of 19 essential tremor patients. Whole-
brain maps of VIM–cortex coherence in several fre-
quency bands were constructed using beamforming
and compared with corresponding maps of sub-
thalamic nucleus (STN) coherence based on data from
19 patients with Parkinson’s disease. In addition, we
computed spectral Granger causality.
Results: The topographies of VIM–cortex and STN–
cortex coherence were very similar overall but differed
quantitatively. Both nuclei were coupled to the ipsilateral
sensorimotor cortex in the high-beta band; to the

sensorimotor cortex, brainstem, and cerebellum in the
low-beta band; and to the temporal cortex, brainstem,
and cerebellum in the alpha band. High-beta coherence to
sensorimotor cortex was stronger for the STN (P = 0.014),
whereas low-beta coherence to the brainstem was stron-
ger for the VIM (P = 0.017). Although the STN was driven
by cortical activity in the high-beta band, the VIM led
the sensorimotor cortex in the alpha band.
Conclusions: Thalamo-cortical coupling is spatially and
spectrally organized. The overall similar topographies of
VIM–cortex and STN–cortex coherence suggest that
functional connections are not necessarily unique to one
subcortical structure but might reflect larger frequency-
specific networks involving VIM and STN to a different
degree. © 2024 The Authors. Movement Disorders publi-
shed by Wiley Periodicals LLC on behalf of International
Parkinson and Movement Disorder Society.

Key Words: essential tremor; ventral intermediate
nucleus; local field potentials; magnetoencephalography;
subthalamic nucleus

Essential tremor (ET) is the most common movement
disorder with a global prevalence of 0.32% across
all ages.1 ET patients suffer primarily from isolated
upper limb intention tremor and postural tremor.2-4

The underlying pathophysiology is only partially
understood, but abnormalities in the cerebello-thalamo-
cortical circuit seem to play a key role in the generation

of tremor.4-7 Deep brain stimulation (DBS) of the
ventral intermediate nucleus of the thalamus (VIM) is
a standard therapy to treat severe ET. Recent studies
have demonstrated that the optimal stimulation site
for tremor suppression is the inferior border of the
VIM in proximity to the dentatorubrothalamic tract
(DRTT).8-11
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Besides the clinical benefit, DBS can also facilitate
insights into basic neurophysiology. The implantation of
electrodes for DBS provides the unique opportunity to
record local field potentials (LFPs) from the DBS target
structure. LFP recordings from the VIM of tremor
patients revealed prominent oscillatory activity at tremor
frequency that increases in amplitude in the presence of
tremor.12 These oscillations can be used to detect tremor
episodes and might be a potential feedback signal for
closed-loop DBS.13 Tremor oscillations in the VIM are
coherent with accelerometer signals and electromyo-
graphic recordings from the tremulous hand at tremor
and double tremor frequency,7,14 and this connectivity is
organized in distinct spatial clusters within the VIM.15

Oscillatory coupling between deep brain structures and
cortical areas is commonly interpreted as communication
in spatio-temporally organized networks.16-18 Frequency-
specific networks at rest have been described for several
DBS targets, such as the subthalamic nucleus (STN)17,19-22

and the globus pallidus internus (GPi),23,24 for example.
The STN forms an alpha-band (8–12 Hz) network
with brainstem and temporal regions. At beta frequencies
(13–30 Hz), the STN couples to motor and premotor cor-
tex, with cortex driving STN activity.17,19,22,24 The GPi
couples to cerebellar sources in the alpha band and to sen-
sorimotor areas in the beta frequency band.23 A map of
oscillatory coupling between the VIM and cortex has not
been presented yet.
Here, we set out to close this knowledge gap. To

localize cortical areas functionally coupled to the VIM,
we performed simultaneous magnetoencephalography
(MEG)–LFP recordings in 19 ET patients at rest. We
compared the identified networks with STN–cortical
networks, based on the data of 19 Parkinson’s disease
(PD) patients. Furthermore, we assessed spectral
Granger causality between cortical and subcortical
areas to estimate the directionality of coupling.

Materials and Methods
Patient and Measurement Details

A total of 19 patients undergoing DBS surgery partici-
pated in this study. All patients had been implanted with
deep brain macroelectrodes of different types
(see Table S1 of the Supplementary Material) for VIM
DBS the day before measurement. The pulse generator
was not implanted at this stage, and electrodes were exter-
nalized so that they could be used for LFP recordings. All
measurements took place with prior written informed con-
sent according to the Declaration of Helsinki, and the
study was approved by the Ethics Committee of the Medi-
cal Faculty of Heinrich Heine University Düsseldorf (ET,
“2018-217-Zweitvotum”; PD, nos. 3209 and 5608). In
addition to the ET group, we included data from PD
patients implanted with electrodes for STN stimulation

(see Table S2 for patient details) collected in other stud-
ies.19-21 PD patients were recorded with the same experi-
mental setup as ET patients, after overnight withdrawal
from dopaminergic medications for at least 12 hours.19-21

MEG signals were recorded by a 306-channel MEG
system (Vectorview, MEGIN) with sampling rates
of 2 kHz (ET) and 2.4 kHz (PD), respectively. LFP
signals were recorded simultaneously using the exter-
nalized leads and a mastoid reference. LFP signals
were rearranged into a bipolar montage offline by sub-
tracting the signals of adjacent contacts. In addition,
we recorded electromyograms (EMG) from both fore-
arms, accelerometer signals from both index fingers,
and horizontal and vertical electrooculograms.
Patients were instructed to sit still in an upright posi-
tion with eyes open for 5 to 10 minutes.

Data Analysis
Contact Selection

We localized the DBS electrodes using LeadDBS using
preoperative magnetic resonance imaging (MRI) and
postoperative computed tomography scans.25 For VIM-
DBS, recent studies have shown that the best tremor
suppression can be achieved when stimulating at the
ventral border of the VIM in the proximity of DRTT
fibers.8-11 For STN-DBS, the best overall motor
improvement was achieved when stimulating the dorso-
lateral part of the STN.26,27 We selected one bipolar
contact pair for each hemisphere and each patient such
that they were as close as possible to reported DBS
“sweet spots” (VIM: X = !15 mm, Y = "18.5 mm,
Z = "2.5 mm11; STN: X = 12.42/"12.58 mm,
Y = "12.58/"13.53 mm, Z = "5.38 mm27) while
ensuring that at least one of the contacts was inside the
target structure. We excluded four electrodes in each
patient group based on the reconstructed position due
to presumably suboptimal placement.

Data Preprocessing
The data were processed with the Fieldtrip toolbox28

and self-written MATLAB (The MathWorks, Inc.,
Natick, MA, USA) scripts. MEG and LFP data were
visually inspected for artifacts. EMG channels were
scanned for tremor, and epochs with tremor were dis-
carded. Bad channels and epochs with other artifacts
such as sensor jumps were discarded. The remaining
data length was 377 seconds (mean) ! 184 seconds
(standard deviation) for the ET group and 409 seconds
(mean) ! 80 seconds (standard deviation) for the PD
group. For spectral analysis, data were high-pass fil-
tered at 1 Hz, downsampled to 500 Hz, and segmented
into 2-second trials with 50% overlap.
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Local Oscillatory Activity
Power spectra (2–35 Hz) for VIM and STN were

computed using a Hanning taper. Physiological power
spectra are thought to be composed of two distinct
components: an aperiodic component (1/f) and a peri-
odic component, represented by distinct peaks in a
spectrum.29,30 To make spectra comparable between
patients, the aperiodic component was modeled using
the fitting oscillations and one over f algorithm and
then subtracted from the power spectrum.31 The aperi-
odic and periodic components were visually inspected,
and the model order was adapted, if necessary, to
ensure a good model fit.32

VIM/STN–Cortex Coupling
We localized brain areas coherent with VIM/STN activ-

ity in four different frequency bands: theta (3–7 Hz),
alpha (7–13 Hz), low beta (13–21 Hz), and high beta
(21–35 Hz). Rather than computing coherence for each
integer frequency, we applied bandwidth-wide spectral
smoothing to capture an entire band in one estimate using
the multitaper method.33 Coherence was localized by
applying dynamic imaging of coherent sources34 to the
LFP-MEG cross-spectral densities. For this purpose, we
created single-shell head models based on the individual
T1-weighted MRI scan (Siemens Mangetom Tim Trio,
3-T MRI scanner). The three-dimensional beamformer
grid had a spacing of 1 cm and was aligned to Montreal
Neurological Institute (MNI) space. Beamforming yielded
volumetric images of coherence for each contact pair and
each frequency band. In addition, we mapped the imagi-
nary part of coherency to exclude spurious coherence cau-
sed by volume conduction.35

All source images of coherence with the left
VIM/STN were mirrored across the mid-sagittal plane
to allow comparisons between the contra- and ipsilat-
eral hemispheres. Coherence images were normalized
by dividing by the mean over all voxels. For seg-
mented leads, we averaged coherence and power
across segments for reasons of comparability with a
nonsegmented lead.

Directionality Analysis
We performed directionality analysis for VIM/STN

and two cortical regions of interest ipsilateral to the
DBS target: brainstem (X = ! 10 mm, Y = "10 mm,
Z = "20 mm) and medial sensorimotor cortex
(X = ! 20 mm, Y = "40 mm, Z = 70 mm). These
regions were selected because coherence with
these regions differed between the VIM and STN. For
each region of interest (ROI) and its nine closest
neighboring grid points, we first extracted time-
domain source activity using a linearly constrained
minimum variance beamformer.36 Next, we com-
puted directional connectivity with VIM/STN for

each grid point and averaged it over neighboring grid
points to improve the signal-to-noise ratio. Down-
sampling and filtering were not applied in this analy-
sis. Directionality of subcortico–cortical coupling was
quantified by a nonparametric variant of spectral
Granger causality,37,38 as implemented in the Fieldtrip
function ft_connectivity_granger.
Granger causality estimates are influenced by sev-

eral factors, including volume conduction. To reduce
the influence of trivial factors, Granger causality esti-
mates of the original data were compared with those
of time-reversed data.39 If a signal A Granger causes
another signal B, Granger causality from A to
B should be higher for the original data than for the
time-reversed data, resulting in a positive difference
between original and time-reversed data. Granger
causality from B to A, in contrast, should be lower
for the original than for the time-reversed case,
resulting in a negative difference. Hence, the sign of
the difference contains information about the direc-
tion, and the across-subject consistency of the differ-
ence is an indicator of significance.39

Statistical Analysis
Differences between the VIM and STN in power and

coherence were assessed with a nonparametric, cluster-
based permutation test (statistic: largest sum of cluster
t values, 2000 permutations), as implemented in
Fieldtrip.40 As in many previous works on LFP-MEG
coherence,17,19,24 the unit of observation was hemi-
spheres, not patients (NET = 34, NPD = 34).
Differences in directed connectivity were assessed

with a repeated measures analysis of variance in SPSS
(IBM Corp.) with the following factors: direction (mid-
brain > cortex, cortex > midbrain), frequency band
(alpha, low beta, high beta), and cortical area (sensori-
motor cortex, brainstem).

Results
Local Oscillatory Activity

Figure 1A,B depicts the subcortical recording loca-
tions and group average; 1/f-corrected spectral power
for the VIM and the STN is displayed in Figure 1C.
Alpha and low-beta peaks were found in both
structures. Spectral peaks in the high-beta range,
however, occurred in the STN only. Power in this fre-
quency band was significantly higher in the STN
compared with the VIM (cluster-based permutation
test, tclustersum = 49.51, P = 0.001, frequency range:
19–33 Hz).

Subcortico–Cortical Coupling
Qualitatively, the topographies of VIM–cortex

and STN–cortex coherence were similar (Fig. 2).

686 Movement Disorders, Vol. 39, No. 4, 2024

S T E I N A E T A L

 15318257, 2024, 4, D
ow

nloaded from
 https://m

ovem
entdisorders.onlinelibrary.w

iley.com
/doi/10.1002/m

ds.29730 by A
lexandra Steina - U

niversitäts- U
nd Landesbibliothek D

üsseldorf , W
iley O

nline Library on [06/12/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

80 9 Scientific Publications



Spatial patterns of coherence were frequency specific
and clearly lateralized to the ipsilateral hemisphere with
respect to the subcortical recoding site. In the theta
band, temporal cortex and hippocampus coupled
strongest to the VIM and STN (Fig. 2A,B). Coupling
in the alpha band likewise involved the temporal
cortex and the brainstem (Fig. 2C,D). In the low-beta
band, VIM and STN activity were coupled to the
brainstem and the cerebellum, but also to motor areas
(Fig. 2E,F). In the high-beta band, both structures dis-
played strongest coherence with the medial sensorimo-
tor cortex (Fig. 2G,H). This coupling did not correlate
with disease severity in PD patients (Fig. S3). The
spatial patterns persisted when considering the imaginary
part of coherency, an alternative coupling measure insen-
sitive to volume conduction (Fig. S1).

Differences between VIM–Cortex and STN–
Cortex Coupling

Notwithstanding their qualitative similarity, we
observed quantitative differences between VIM– and
STN–cortex coherence (Fig. 3). Coupling to the
brainstem was stronger for the VIM than for the STN
in the low-beta band (cluster-based permutation test:
tclustersum = 311.82, P = 0.017; Fig. 3A), whereas
medial sensorimotor areas were more coherent with the
STN than with the VIM in the high-beta band
(tclustersum = 367.03, P = 0.014; Fig. 3B). The difference
in the high-beta band remained when PD patients were
on medication (tclustersum = 275.03, P = 0.038; Fig. S2).
Based on these results, we selected the cluster cen-

troids of the low-beta brainstem cluster (MNI coordi-
nates: X = 10 mm, Y = "10 mm, Z = 20 mm; Fig. 4C)

FIG. 1. Local oscillations in ventral intermediate nucleus of the thalamus (VIM) and subthalamic nucleus (STN). Frontal (A) and a lateral view (B) on
reconstructed local field potential recording sites. Sweet spots in black. (C) Group- and hemisphere-average power spectral densities for VIM (blue)
and STN (orange) after subtraction of the aperiodic component. Shaded areas represent the standard error of the mean. The gray shading indicates
significant differences between the VIM and STN. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Qualitative similarity between ventral intermediate nucleus of the thalamus (VIM) and subthalamic nucleus (STN)–cortex coherence. Group-
average source images of normalized VIM–cortex (A, C, E, G) and STN–cortex (B, D, F, H) coherence for different frequency bands. The right side corre-
sponds to the ipsilateral side with respect to the subcortical recording site. coh, coherence. [Color figure can be viewed at wileyonlinelibrary.com]
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and of the high-beta sensorimotor cluster (MNI coordi-
nates: X = 20 mm, Y = "40 mm, Z = 70 mm;
Fig. 4D) as cortical ROIs for subsequent analyses.
Please note that results noted previously relate to spa-

tially normalized coherence. The difference in low-beta
coherence with the brainstem appeared to be accentu-
ated by normalization (see Fig. 3C for non-normalized
coherence). When testing for whole-brain differences
without normalization, the cluster in the low-beta band
was still detectable, but the P-value was above the sig-
nificance threshold (tclustersum = 139.35, P = 0.13). The
difference in the high-beta band remained significant
(tclustersum = 668.61, P = 0.025). Hence, the low-beta
effect is best understood as a difference in how coher-
ence is distributed across brain areas rather than a dif-
ference in absolute coupling strength.

Directionality Analysis
We investigated the directionality of coupling

between the VIM/STN and the cortical ROIs (Fig. 4)
and found a three-way interaction between the cortical
area, direction, and frequency band factors for the VIM
(F2,32 = 8.154, P = 0.001) and a similar trend for
the STN (F2,32 = 83.214, P = 0.053). We performed
post hoc tests evaluating directional coupling for all
factor combinations. The VIM showed significant
directed coupling with sensorimotor cortex in the alpha
band, with the VIM leading the sensorimotor cortex

(t = 2.4392, P = 0.0203). The sensorimotor cortex
drove STN activity in the alpha (t = 2.5574, P = 0.0153)
and in the high-beta band (t = 2.8103, P = 0.0083). The
brainstem drove STN activity in the alpha band
(t = 2.9917, P = 0.0052), the low-beta band (t = 2.4625,
P = 0.0192), and the high-beta band (t = 2.5429,
P = 0.0159). The sign of the differences in Granger cau-
sality changed for the opposite direction in all cases,
suggesting nonspurious directionality.

Discussion

Although beta coherence between the VIM and sen-
sorimotor cortex has been described on the sensor
level,41,42 this is the first work presenting a whole-
brain, frequency-resolved map of VIM–cortex resting-
state coherence in ET patients and contrasting it with
STN–cortex coherence in PD patients.

Local Oscillatory Activity in the VIM and STN
We found prominent alpha peaks in the VIM and

STN at all recording locations. In the subcortical
structures, the alpha rhythm is linked to cognition
and emotion43 and might be involved in motor
functions.44 The thalamus has been suggested to be
a pacemaker for alpha oscillations,45,46 a concept
challenged by other studies favoring a cortical origin

FIG. 3. Quantitative differences between ventral intermediate nucleus of the thalamus (VIM) and subthalamic nucleus (STN)–cortex coherence. (A) VIM–

brainstem low-beta coherence > STN–brainstem low-beta coherence. (B) STN–cortex high-beta coherence > VIM–cortex high-beta coherence. Nonsig-
nificant changes are masked. (C) Coherence with brainstem averaged over patients and hemispheres for the VIM (blue) and the STN (orange). (D) as
(C) for sensorimotor cortex. Shaded areas represent the standard error of the mean. coh, coherence. [Color figure can be viewed at
wileyonlinelibrary.com]

688 Movement Disorders, Vol. 39, No. 4, 2024

S T E I N A E T A L

 15318257, 2024, 4, D
ow

nloaded from
 https://m

ovem
entdisorders.onlinelibrary.w

iley.com
/doi/10.1002/m

ds.29730 by A
lexandra Steina - U

niversitäts- U
nd Landesbibliothek D

üsseldorf , W
iley O

nline Library on [06/12/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

82 9 Scientific Publications



of alpha oscillations.47-49 In our study, the significant
directionality of VIM–sensorimotor cortex coupling at
alpha frequencies, with the VIM leading cortical activity,
supports the idea of a thalamic pacemaker. Notably,
the dominant direction of alpha-band coupling with
thesensorimotor cortex was opposite for the STN,
with the cortex leading the STN, suggesting a local origin
of the subcortical alpha drive. (A schematic illustration
based on the present results is provided in Fig. 5.)
Beta oscillations in the STN, VIM, and cortex are

linked to motor functions. They decrease in amplitude
during voluntary movement42,50 and tremor.51 In PD
patients, they are reduced by dopaminergic medication52

and DBS.53,54 The treatment-induced reductions of beta
amplitude correlate with treatment-induced reductions
of PD motor symptoms, akinesia, and rigidity in particu-
lar.55,56 Based on previous reports,17,57,58 we divided the
beta band into low- and high-beta sub-bands, and we
observed a clear separation of effects. Low-beta power
was similar for the VIM and STN, and thus for ET and
PD patients, despite being considered a potential marker
of parkinsonism based on its responsiveness to levo-
dopa.57,59 High-beta power, in contrast, was strikingly
different between the STN and VIM: only the STN
exhibited strong high-beta activity, which was nearly
absent in the VIM. This finding aligns with previous
studies reporting weak high-beta oscillations in the
VIM.44 They further support the notion of high-beta
oscillations being a unique spectral signature of the STN,
possibly resulting from cortical input via the hyperdirect

pathway24 (see the Differences Between the VIM and
STN Networks section).

VIM–Cortical Coupling
We found spectrally and spatially distinct patterns of

oscillatory coupling between the VIM and cortex during

FIG. 5. Summary. Alpha oscillations (blue) were observed in the sub-
thalamic nucleus (STN) and ventral intermediate nucleus of the thalamus
(VIM). Oscillatory coupling in the alpha band appeared to have a bottom-
up structure, with the thalamus driving the motor cortex. High-beta oscilla-
tions (yellow) were observed in the STN only, with the motor cortex driving
the STN. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. Directionality of ventral intermediate nucleus of the thalamus (VIM)–cortex (CTX) and subthalamic nucleus (STN)–cortex (CTX) coupling. Boxplots
represent differences in Granger causality between original data and time-reversed data. Differences significantly greater than zero indicate significant
directionality. In the case of a cortical drive, values represented by the left box in a pair are negative, whereas values to the right are positive (and vice
versa for subcortical drive). Asterisks indicate significant deviations from zero. [Color figure can be viewed at wileyonlinelibrary.com]
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rest and identified two main networks: an alpha/low-beta
network involving the temporal cortex, brainstem, and
cerebellum and a high-beta network involving the medial
sensorimotor cortex. This pattern of coupling is in agree-
ment with the VIM’s structural connections. The VIM is
located in the ventrolateral thalamus.60,61 It is reciprocally
connected with the primary motor cortex,62 likely
explaining the mostly bidirectional coupling with motor
areas observed here (with the exception of alpha oscilla-
tions). In addition, the VIM receives excitatory inputs from
the dentate nucleus of the cerebellum via the DRTT.63,64

Most but not all fibers of the DRTT decussate in the mid-
brain.9,11,64 Given this pattern of structural connectivity, it
is possible that the alpha/low-beta coherence described
here is in part related to the DRTT input to the ventral
thalamus. Rather than in the cerebellum proper, however,
we found the strongest alpha/low-beta coherence in the
midbrain and the brainstem. This might be related to the
difficulty of capturing cerebellar activity with MEG as a
result of the cerebellum’s anatomy.65

Similarities between the VIM and STN
Networks

We could reproduce results obtained in previous studies
on STN–cortical coupling with a new patient cohort,
reporting alpha-band coherence between the STN and
temporal cortex and beta-band coherence between the
STN and cortical motor areas.17,19,22,24 One of the most
remarkable findings of this study is that the topographies
of VIM–cortex and STN–cortex coherence were very sim-
ilar overall, suggesting that frequency-specific coupling to
certain cortical “hubs” is a common phenomenon occur-
ring in a larger number of midbrain nuclei.
Large-scale synchrony might explain the similarity of

VIM–/STN–cortex coherence and analogous networks
observed for other subcortical structures. In dystonia
patients, the GPi couples to temporal regions in the
theta frequency band, to cerebellar sources in the alpha
frequency band, and to sensorimotor areas in the beta
frequency band.23 The pedunculopontine nucleus in PD
patients forms networks with the brainstem and the cin-
gulum in the alpha band and with motor areas in the
beta band.66 Subcortico-cortical coupling was also
investigated for the nucleus basalis of Meynert (NBM)
in patients suffering from PD dementia and Lewy body
dementia.67 The NBM was found to be coupled to tem-
poral regions in the theta band and to sensorimotor
areas in the beta band. All of these networks have sub-
stantial overlap, consistent with large-scale synchrony.

Differences between the VIM and STN
Networks

Although the overall spatio-spectral structure was
similar for VIM– and STN–cortex networks, we did
observe quantitative differences. Deeper sources, such

as brainstem and the dorsal edge of the cerebellum,
were more coherent with the VIM than with the STN
at low-beta frequencies, whereas the STN displayed
greater coherence with motor areas in the high-beta
band. These differences are likely attributed to the spe-
cific anatomical connections of VIM and STN, respec-
tively. Unlike the STN, the VIM receives direct
projections from the cerebellum, passing through the
brainstem via the superior cerebellar peduncle and
crossing hemispheres in the midbrain. Thus, one might
expect stronger coupling to deep brain areas, the ana-
tomical details of which might be insufficiently resolved
by MEG. The STN, in contrast, receives cerebellar
input only indirectly via a disynaptic pathway from the
dentate nucleus to the striatum.68

Unlike alpha oscillations, which may arise
subcortically,45,46 beta oscillations are believed to be gen-
erated in the motor cortex.69 The motor cortex has
monosynaptic projections to both the STN and thalamus,
but the symmetry of connections is different. Although
the connections between the thalamus and motor cortical
areas are reciprocal,62 M1-STN coupling is asymmetric:
the STN receives cortical afferents via the hyperdirect
pathway, without sending direct projections back to the
motor cortex.70-72 This connectivity pattern was proposed
to explain the findings of a recent study comparing STN
and GPi power and oscillatory coupling in PD patients.24

The study revealed stronger beta power for STN than
GPi, along with stronger high-beta coherence with cortical
motor areas, and showed that STN–motor cortex struc-
tural connectivity correlates with high-beta coherence spe-
cifically. Here, we demonstrate similar differences in
power and coherence between the STN and VIM. In
addition, we found a cortical drive specifically for
STN–sensorimotor high-beta coupling, in accordance
with earlier studies,17,73 whereas no such cortical drive
in the beta band was found for the thalamus (Fig. 5). In
summary, these findings suggest that elevated high-beta
coherence is an electrophysiological marker of the hyper-
direct pathway.

Nucleus- Versus Disease-Specificity of
Coupling

VIM and STN recordings were performed in two sep-
arate groups of patients, each suffering from a different
disease (ET and PD), raising the question of whether
the observed differences in coherence are attributable to
the subcortical structure or to the disease. Given the
pathological increase of beta oscillations in PD, a par-
ticular concern could be that the strong high-beta band
coupling, which we assume to be STN specific, is really
PD specific. Although we cannot rule out this possibil-
ity, we provide indications by relating coherence to
disease severity and by investigating the effect of levo-
dopa on coherence, thereby probing the importance of
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parkinsonism for high-beta STN–cortex coupling.
Neither did we find a correlation between symptom
severity and high-beta coherence in PD patients, nor
did levodopa intake abolish the difference between
VIM– versus STN–cortex coherence in the high-beta band.
These findings speak in favor of high-beta coherence being
a characteristic of the STN, not the disease. Previous stud-
ies support this interpretation by demonstrating similar
levels of STN–cortex beta coherence in PD and dystonia
patients.74 Strong high-beta coupling between the STN
and motor cortex was also found in a patient with
obsessive-compulsive disorder, evidence of its existence
even in nonmotor disorders.75

This is not to say that the disease has no effects on
oscillatory coupling in basal ganglia–cortex loops.
Notwithstanding possible effects of the underlying
pathology, we would definitely expect such effects
when the groups experience different motor symptoms.
Here, both groups were recorded at rest, and episodes
with rest tremor (PD specific) were excluded.

Limitations

We found the spatial and spectral organization of
VIM– and STN–cortex coherence to be rather similar.
Although large-scale synchrony is a plausible explana-
tion, we cannot rule out volume conduction as an alter-
native explanation. The “sweet spots” in the ventral
thalamus and the dorsal STN are only approximately
10mm apart. Although we were careful to exclude con-
tact pairs reaching into the neighboring target, it is pos-
sible that a common subcortical source affected both
VIM and STN measurements despite using a bipolar
reference scheme. The spatial reach of LFP recordings is
not exactly known, but computational and experimen-
tal studies have demonstrated that a DBS contact can
pick up signals within a volume of several millime-
ters.76 Some deep sources might even be strong enough
to be registered by DBS electrodes and MEG.77-80 The
connectivity patterns presented here did not depend on
this form of volume conduction, as confirmed by our
analysis of the imaginary part of coherency.

Conclusions

Thalamocortical resting-state coherence is spatially
and spectrally organized in frequency-specific networks
involving medial sensorimotor cortex (beta band) as
well as the temporal cortex, brainstem, and cerebellum
(alpha band). These are roughly the same networks
described for the STN and other midbrain nuclei,
suggesting large-scale subcortico-cortical synchrony.
The fact that similar patterns are found in different dis-
eases supports a physiological rather than a pathologi-
cal nature.
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Tab. S1: ET patient details. The presence/absence of tremor is provided for the day of 
measurement. l = left upper extremity, r = right upper extremity, - = no tremor, n.a. = not 
assessed.  

disease age 
[y] 

sex disease 
duratio
n [y] 

electrode 
type 

data 
length 
(s) 

action 
tremor 

ET01 65 m 19 Abbott 
Infinity 175 - 

ET02 69 m 18 Abbott 
Infinity 92 l+r 

ET03 71 m 20 Abbott 
Infinity 228 l+r 

ET04 60 f 49 Abbott 
Infinity 258 - 

ET05 62 m 50 Abbott 
Infinity 189 l 

ET06 46 f 66 
Boston Sc. 
Vercice 
standard 

295 
n.a. 

ET07 65 m 30 
Boston Sc. 
Vercice 
standard 

626 
l+r 

ET08 58 m 5 Abbott 
Infinity 378 - 

ET09 77 f 8 
Boston 
Sc.Vercise 
Cartesia 

398 
l+r 

ET10 74 m 20 Abbott 
Infinity 166 l+r 

ET11 30 m 25 Abbott 
Infinity 318 - 

ET12 44 m 40 Medtronic 
3389 263 r 

ET13 57 f 51 Abbott 
Infinity 384 - 

ET14 76 m n.a. Medtronic 
SenSight 588 l 

ET15 54 m 39 Abbott 
Infinity 598 l+r 
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ET16 62 f 56 
Boston 
Sc.Vercise 
Cartesia 

330 
- 

ET17 65 m 20 
Boston 
Sc.Vercise 
Cartesia 

705 
l+r 

ET18 71 m 20 
Boston 
Sc.Vercise 
Cartesia 

600 
- 

ET19 67 m 15 Abbott 
Infinity 574 l+r 

!
+/−	& 

62 
+/- 
12 

 31 +/- 
18 

 377 +/- 
184 

 

 

Tab. S2: PD patient details.  

disease age 
[y] 

sex disease 
duration 
[y] 

electrode 
type 

data 
length 
(s) 

UPDRS 
sum 
Med off 

UPDRS 
sum 
Med on 

PD subtype 

PD01 65 f n.a. Abbott 
Infinity 426 20 14 akinetic-rigid 

PD02 56 m 6 Abbott 
Infinity 400 31 25 intermediate 

PD03 45 m 3 Abbott 
Infinity 336 22 10 intermediate 

PD04 47 m 6 Abbott 
Infinity 400 42 35 intermediate 

PD05 62 f 2 Abbott 
Infinity 380 26 17 intermediate 

PD06 52 m 7 

Boston 
Sc. 
Vercise 
Standard 

308 

27 n.a. tremor-
dominant 

PD07 59 f 9 Abbott 
Infinity 340 39 30 intermediate 

PD08 69 m 6 Abbott 
Infinity 386 42 29 intermediate 

PD09 54 m 7 Abbott 
Infinity 391 49 27 akinetic-rigid 
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PD10 72 f 3 Abbott 
Infinity 400 35 16 akinetic-rigid 

PD11 69 m 12 Abbott 
Infinity 394 n.a. 38 intermediate 

PD12 70 m 11 Medtronic 
3389 300 39 31 akinetic-rigid 

PD13 65 m 13 Abbott 
Infinity 400 64 23 intermediate 

PD14 60 f 6 Abbott 
Infinity 400 23 13 intermediate 

PD15 59 m 10 Abbott 
Infinity 352 41 28 akinetic-rigid 

PD16 68 m 10 Abbott 
Infinity 559 27 11 intermediate 

PD17 54 m 3 Abbott 
Infinity 600 53 14 intermediate 

PD18 41 m 7 Abbott 
Infinity 516 27 8 tremor-

dominant 

PD19 59 m 15 Abbott 
Infinity 500 38 27 akinetic-rigid 

!
+/−	& 

59 
+/- 
9 

 8 +/- 4  409 
+/- 80 

35.8 +/- 
11.8 

22 +/- 
9.2 
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Fig. S1: VIM- and STN imaginary part of coherency. Group average source images of 

VIM- (A,C,E,G) and STN- (B,D,F,H) cortex imaginary part of coherency for different 

frequency bands (A/B, C/D, E/F, G/H). Sources on the right side correspond to the ipsilateral 

side (with respect to the subcortical recording site). 
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Differences between VIM- and STN-cortex coupling (medication 
on) 

In addition to the measurements in the medication off state, the PD cohort underwent 

simultaneous MEG and LFP recordings in the medication on state. The measurements took 

place at least half an hour after the administration of the morning levodopa dose and after 

clinical improvement was seen as described in other studies1,2. We constructed whole-brain 

maps of STN-cortex coherence from the medication on data and tested if the quantitative 

differences in VIM- and STN-cortex coherence remained. The difference in the high-beta 

band remained when PD patients were in medication on (cluster-based-permutation-test: 

tclustersum = 275.03, p = 0.038, Fig. S2), whereas the difference in the low-beta band did not 

remain.  

 

Fig. S2: Quantitative differences between VIM- and STN-cortex coherence in the high-
beta band (medication on). 
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Coherence and symptom severity 
We extracted time-domain source activity from the medial sensorimotor cortex (see Methods: 

Directionality analysis in main paper) for the PD cohort and calculated coherence with the 

STN. We correlated (Pearson’s correlation coefficient) low- and high-beta STN-cortex 

coherence with the contralateral UPDRS hemibody sum score assessed on the day of the 

measurement. We found no correlation (Fig. S3) between symptom severity and low-/high-

beta coherence in PD patients (low-beta: r = -0.003, p = 0.99, high-beta: r = -0.009, p = 0.96).

 

Fig. S3: Correlation between symptom severity and resting-state coherence in PD 

patients. UPDRS hemibody sum scores and contralateral low- (A) and high- (B) beta STN-

M1 coherence.  
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R E S E A R C H A R T I C L E

Oscillatory Coupling Between Thalamus, Cerebellum, and Motor
Cortex in Essential Tremor

Alexandra Steina, MSc,1 Sarah Sure, MD,1 Markus Butz, PhD,1 Jan Vesper, MD,2 Alfons Schnitzler, MD,1 and
Jan Hirschmann, PhD1*

ABSTRACT: Background: Essential tremor is hypoth-
esized to emerge from synchronized oscillatory activity
within the cerebello-thalamo-cortical circuit. However,
this hypothesis has not yet been tested using local field
potentials directly recorded from the thalamus alongside
signals from both the cortex and cerebellum, leaving a
gap in the understanding of essential tremor.
Objectives: To clarify the importance of cerebello-
thalamo-cortical oscillatory coupling for essential tremor.
Methods: We investigated oscillatory coupling between
thalamic local field potentials and simultaneously recorded
magnetoencephalography in 19 essential tremor patients
with externalized deep brain stimulation electrodes. Brain
activity was measured while patients repeatedly adopted a
tremor-provoking posture and while pouring rice grains
from one cup to another. In a whole-brain analysis of
coherence between the ventral intermediate nucleus of the
thalamus and cortex we contrasted epochs containing
tremor and epochs lacking tremor.

Results: Both postural and kinetic tremor were associated
with an increase of thalamic power and thalamo-cortex
coherence at individual tremor frequency in the bilateral
cerebellum and primary sensorimotor cortex contralateral
to tremor. These areas also exhibited an increase in corti-
comuscular coherence in the presence of tremor. The cou-
pling of motor cortex to both thalamus and muscle
correlated with tremor amplitude during postural tremor.
Conclusions: These results demonstrate that essential
tremor is indeed associated with increased oscillatory cou-
pling at tremor frequency within a cerebello-thalamo-cortical
network, with coupling strength directly reflecting tremor
severity. © 2025 The Author(s). Movement Disorders publi-
shed by Wiley Periodicals LLC on behalf of International
Parkinson and Movement Disorder Society.

Key Words: ventral intermediate nucleus; functional
connectivity; essential tremor; deep brain stimulation;
magnetoencephalography

Upper limb action tremor is the main symptom of
essential tremor, the most prevalent movement disorder
worldwide.1 Deep brain stimulation (DBS) of the ventral
intermediate nucleus of the thalamus (VIM) is an effective
therapy for severe essential tremor. The insertion of elec-
trodes for DBS provides the unique opportunity to record
signals directly from the VIM. Intraoperative studies have
identified tremor-synchronous bursting cells in the VIM2

and local field potential (LFP) recordings have uncovered
oscillations at tremor and double tremor frequency,
coherent with muscle activity in the tremulous arm.3

Apart from the VIM, other parts of the brain, such as
cerebellum and motor cortex, have been implicated in the
pathophysiology of essential tremor. Studies using func-
tional magnetic resonance imaging (fMRI) have found
tremor-related signal fluctuations in the cerebellum, the
thalamus, and motor cortex.4,5 Further, non-invasive elec-
troencephalography (EEG) and magnetoencephalography
(MEG) studies have revealed tremor-synchronous activity
in the cerebellum and primary motor cortex.6-9

Based on these findings, it is assumed that essential
tremor emerges through synchronized activity within
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the cerebello-thalamo-cortical circuit, even though
tremor-related synchronization of thalamic, cortical,
and cerebellar oscillations has rarely been investigated to
date. Two case studies describe coherence between the
thalamus and motor cortex,10,11 but a group-level,
brain-wide analysis is lacking, as is evidence for tremor-
related coupling between the thalamus and cerebellum.
Studying these network synchronization processes in

humans is challenging. While fMRI has provided impor-
tant evidence for the involvement of the cerebello-
thalamo-cortical circuit in tremor,4,5 it lacks the temporal
resolution required to capture the fast dynamics of tremor.
Conversely, MEG and EEG have sufficient temporal reso-
lution but have limited sensitivity to deep sources, such as
the thalamus.
Here, we overcome these difficulties by means of

simultaneous recordings from externalized DBS elec-
trodes, MEG, and muscle activity in patients with
essential tremor. Using this methodology we provide, to
the best of our knowledge, the first description of the
network topology of thalamo-cortical coupling, for
both postural and kinetic tremor. In addition, we dem-
onstrate the behavioral relevance of thalamo-cortical
coupling by relating it to tremor severity.

Methods
Patients and Recordings

A total of 19 patients with essential tremor undergo-
ing surgery for DBS participated in the study, which
was approved by the Ethics Committee of the Medical
Faculty at Heinrich Heine University Düsseldorf (ET:
‘2018-217-Zweitvotum’, ‘2021-1587-andere Forschung
erstvotierend’). All patients provided written informed
and fulfilled the Movement Disorder Society’s diagnos-
tic criteria for essential tremor.12 Detailed patient infor-
mation is provided in Table 1.
The recordings took place the day after implantation

of DBS macroelectrodes, before the pulse generator was
implanted. This allowed for the recording of LFPs from
externalized leads, which were referenced to the mas-
toid and connected to amplifiers integrated into the
MEG. We recorded from the bilateral electrodes
targeting the VIM in combination with MEG, EMGs
from both forearms (extensor digitorum communis and
flexor digitorum communis), accelerometer signals from
both index fingers, and electrooculograms. All signals
were recorded by a 306-channel MEG system
(Vectorview, MEGIN). The sampling rate was 2 kHz.

Paradigm
The experiment consisted of two motor tasks, which

were performed following a 5–10 min resting state
recording, analyzed previously.13 In essential tremor,
patients experience action tremor with a frequency of

4–8 Hz, which occurs when maintaining a posture
against gravity (postural tremor) or during voluntary
movement (kinetic tremor).12 The tasks were designed
to capture both kinds of tremor.
In the first motor task (HOLD; postural tremor),

patients placed their elbows on a table in front of them
and elevated both forearms with palms facing inward
and fingers spread. This task was carried out for 7 min
in total. To avoid fatigue, we alternated holding and
resting every 20 s.
Throughout the second task (POUR; kinetic tremor)

patients kept one plastic cup in each hand, one filled
with rice grains and the other empty. A screen was
positioned in front of the patients. They were instructed
to start pouring the rice from one cup into the other,
standing on the table, once the fixation cross turned
green (Go cue), and to keep pouring until the cross
turned red (Stop cue). Then, both cups were to be
placed on the table until the next Go cue appeared. The
Go and Stop cues were displayed for 10 s and 5 s,
respectively. This task was performed in 2.5-min blocks
and each patient completed 2–3 blocks. Due to fatigue,
only 8 of 19 patients completed this task.

Data Preprocessing
Preprocessing and further analysis steps were per-

formed with the FieldTrip toolbox,14 MNE-Python,15

and custom-written MATLAB scripts.
We scanned the raw data for bad MEG, LFP, and

EMG channels and excluded these from further analyses.
Next, we applied temporal signal space separation to the
MEG data using MNE-Python’s mne.preprocessing.
maxwell_filter in order to reduce artefacts. We set
st_duration to 10 s and st_correlation to 0.98.
The rest of the analysis was performed with the

FieldTrip toolbox. The data were down-sampled to
200 Hz and only the 204 planar gradiometers were used
for further analysis. LFPs were rearranged into a bipolar
montage by subtracting the signals of adjacent contacts
(see Fig. S1) and visually screened for artifacts. EMGs
were high-pass filtered at 10 Hz and full-wave rectified.

Tremor
We inspected the continuous EMG and accelerometer

signals to identify tremor and tremor-free epochs
(Fig. 1A). To avoid any tremor-related activity, we
labelled epochs as tremor-free only if we found no indica-
tion of tremor in either hand, which was mostly the case
for the pauses in between movements. In three cases,
tremor persisted in the pauses so that we had to extract
tremor-free epochs from the resting-state recordings.13

The presence of tremor was evaluated separately for
each body side. While this procedure accounts for the
independence of left and right upper limb tremor,16 it
does not stratify the tremor state of the other body side,
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which may or may not exhibit tremor at the same time.
Because the tremor label pertained to one body side only,
we limited all tremor analyses to the corresponding (con-
tralateral) hemisphere.
To verify the presence/absence of tremor, we com-

puted the EMG power spectra for each forearm between
1 and 35 Hz in 0.5 Hz steps. We averaged the spectra of

flexor and extensor and identified individual tremor fre-
quency for each body side (Table S1).

Power and Coherence Spectra
For the computation of spectra, we segmented the

data into non-overlapping 2 s epochs, convolved

TABLE 1 Patient details

Patient ID Age (y) Sex Disease duration (y) Electrode type

ET01 65 M 19 Abbott Infinity

ET02 69 M 18 Abbott Infinity

ET03 71 M 20 Abbott Infinity

ET04 60 F 49 Abbott Infinity

ET05 62 M 50 Abbott Infinity

ET06 65 M 30 Boston Sc. Vercice Standard

ET07 58 M 5 Abbott Infinity

ET08 77 F 8 Boston Sc. Vercice Cartesia

ET09 74 M 20 Abbott Infinity

ET10 30 M 25 Abbott Infinity

ET11 57 F 51 Abbott Infinity

ET12 76 M NA Abbott Infinity

ET13 54 M 39 Medtronic SenSight

ET14 62 F 56 Abbott Infinity

ET15 65 M 20 Boston Sc. Vercice Cartesia

ET16 71 M 20 Boston Sc. Vercice Cartesia

ET17 67 M 15 Abbott Infinity

ET18 82 F 62 Boston Sc. Vercice Cartesia

ET19 68 F 35 Boston Sc. Vercice Cartesia

μ!σ 65 ! 11 31 ! 20

Abbreviations: y, year; M, male; F, female; NA, not available; μ, mean; σ, standard deviation.

FIG. 1. Electromyography (EMG) signals and deep brain stimulation electrodes targeting the ventral intermediate nucleus of the thalamus. (A) 10 Hz High-
pass filtered and rectified and EMG signal during change from rest to hold in one patient. Tremor started immediately after the arm had been lifted.
(B) Electrodes targeting the ventral intermediate nucleus of the thalamus, localized with Lead-DBS. MNI, Montreal Neurological Institute. [Color figure can be
viewed at wileyonlinelibrary.com]
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the epochs with a Hanning taper, and computed power
and magnitude-squared coherence in the 1–35 Hz range
using Welch’s method (frequency resolution: 0.5 Hz).
Physiological power spectra are assumed to consist of

a periodic component, visible as peaks in the spectrum,
and an aperiodic (1/f) component. We used the fitting
oscillations and 1/f (FOOOF) algorithm17 to model
both components of the EMG and LFP spectra (for
details see Supporting Information ‘Power spectra–
FOOOF algorithm’). For further analysis, only the peri-
odic component was considered.

Contact Localization and Contact Selection
DBS electrodes were localized with Lead-DBS18

(Fig. 1B; see Supporting Information for details). We
ensured that electrodes were on target and considered
only contacts within the ventral thalamus according to
the DISTAL atlas.19 For each hemisphere, we selected
the bipolar LFP channel with the highest power peak at
individual tremor frequency. Depending on the individ-
ual lateralization of tremor, this procedure resulted in
either one (one body side affected by tremor) or two
selected channels per patient (both body sides affected
by tremor). We excluded one patient due to uncertain
electrode position.

Source Reconstruction
For each patient, a single-shell head model was generated

based on their individual T1-weighted MRI scan (Siemens
Mangetom Tim Trio, 3-T MRI scanner, München,
Germany). Source reconstruction was performed for a grid
with 567 points on the cortical surface, aligned toMontreal
Neurological Institute (MNI) space, with a linear con-
strained minimum variance (LCMV) beamformer.20 The
regularization parameter λ was set to 5%. To account
for the rank reduction resulting from temporal signal
space separation, we truncated the covariance matrix
such that it had the same rank as the Maxwell-filtered
data. When computing condition contrasts (tremor
vs. rest) we applied a common spatial filter to exclude
confounds arising due to differences in spatial filters.

Source Coherence Images

We computed thalamocortical and corticomuscular
coherence spectra (see ‘Power and Coherence Spectra’
for details). In addition, we averaged activity !0.5 Hz
around individual tremor frequency and computed one
source image per hemisphere in this frequency range.
Moreover, we constructed coherence maps in the beta
range (13–35 Hz) for correlation with tremor severity.
For epochs containing right-hand movement, we mir-
rored the source images across the midsagittal plane. In
consequence, brain activity ipsilateral to movement
appears in the left hemisphere, and brain activity

contralateral to movement in the right hemisphere in all
figures.

Tremor Amplitude
To quantify tremor amplitude, we extracted EMG

spectral power at individual tremor frequency !0.5 Hz
from the 1/f-corrected power spectra and averaged
power over flexor and extensor.

Statistical Analysis
As in previous studies,13,21 the unit of observation

was hemisphere rather than patient (postural tremor:
Nhemispheres = 16, kinetic tremor: Nhemispheres = 9). The
study had a within-hemisphere design, and we matched
the amount of data across conditions for each hemi-
sphere when computing condition contrasts (action
tremor vs. rest). The statistical analysis was based on
nonparametric, two-sample, cluster-based permutation
tests with 1000 random permutations. The tests were
two-tailed and the α-level was set to 0.05. Multiple
comparison correction was implemented by relating all
effects to the strongest effects observed in the permuted
data.22 Cortical areas showing differences served as
regions of interest for further analyses, such as Pearson
correlation between coherence and tremor amplitude.
When comparing spectra, we recentered them on

individual tremor frequency (tf) and included the fre-
quency range from tf – 2 Hz to tf + 15 Hz.

Results
Tremor

In the HOLD task, 7 of 19 patients experienced bilat-
eral postural tremor and 3 patients experienced unilat-
eral tremor. In the POUR task, 4 of 8 patients
experienced bilateral kinetic tremor and 2 patients
experienced unilateral tremor (Table S1). The average
tremor frequency was 5.1 Hz !0.9 Hz (μ ! σ) for pos-
tural tremor and 4.4Hz ! 1.1Hz for kinetic tremor.

Tremor-Related Thalamic Activity
When patients experienced tremor a clear spectral peak

emerged at individual tremor frequency, which was
absent during rest. This occurred in the EMG power spec-
trum (cluster-based permutation test: postural tremor:
tclustersum = 27.6, P = 0.002, Fig. 2A; kinetic tremor:
t = 19.7, P = 0.017, Fig. 2B), the VIM power spectrum
(postural tremor: t = 13.0, P = 0.009, Fig. 2C; kinetic
tremor: t = 14.2, P = 0.009, Fig. 2D), and the VIM-
EMG coherence spectrum (postural tremor: t = 3.1,
P = 0.15, Fig. 2E; kinetic tremor: no cluster, Fig. 2F).
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Coherence, Postural Tremor
Coupling at tremor frequency between the cortex and

the VIM contralateral to the tremulous arm was stron-
ger in the presence than in the absence of tremor.
Figure 3 shows the brain regions where significant mod-
ulations (P < 0.05) occurred. The effect mapped to the
sensorimotor cortex contralateral to tremor
(cluster-based permutation test: tclustersum = 132.23,
P = 0.002; MNI-coordinates maximal t-value:
X = !45.4 mm, Y = "30 mm, Z = 62.9 mm), the ipsi-
lateral cerebellum (t = 68.19, P = 0.008;X = !8.5 mm,
Y = "90 mm, Z = "35 mm), and the contralateral cere-
bellum (t = 39.22, P = 0.021; X = !25 mm,
Y = "50 mm,Z = "60 mm).
Corticomuscular coupling increased in similar regions:

bilateral motor cortex (t = 205.37, P = 0.004;
X = !23.7 mm, Y = "60 mm, Z = 70.2 mm), bilateral
cerebellum (t = 172.83, P = 0.006; X = !26.6 mm,
Y = "90 mm, Z = "31.8 mm), and bilateral prefrontal
cortex (t = 271.34, P = 0.002; X = !40.7 mm,

Y = 50 mm, Z = 21.7 mm; Fig. 3A). The corresponding
t-maps can be found in Figure S2A (VIM-cortex coher-
ence) and Figure S3A (corticomuscular coherence).
VIM-cortex and corticomuscular coherence over-

lapped in several areas, such as the hand area of senso-
rimotor cortex contralateral to tremor, as well as in the
cerebellum ipsilateral to tremor. Yet, the changes in
corticomuscular coherence were more widespread,
including additional frontal and parietal areas. The
VIM-cortex and corticomuscular coherence spectra for
the sensorimotor cortex contralateral to tremor, and
the cerebellum ipsilateral and contralateral to tremor
are displayed in Figure 4A,B.

Coherence, Kinetic Tremor
During kinetic tremor, similar changes occurred, but

the effects were more circumscribed (Fig. 3B). Increases
of coherence were observed in supplementary motor
cortex contralateral to tremor (t = 38.8, P = 0.012;
X = !39 mm, Y = "20 mm, Z = 66 mm), the

FIG. 2. Thalamic and muscle activity during postural and kinetic tremor and tremor-free epochs. Averaged electromyography (EMG) activity of the trem-
ulous arm during postural (A) and kinetic (B) tremor and tremor-free epochs. 1/f-corrected ventral intermediate nucleus of the thalamus (VIM) power
contralateral to the tremulous arm during postural (C) and kinetic (D) tremor. Coherence between the tremulous arm and the contralateral VIM during
postural (E) and kinetic (F) tremor. Spectra were shifted along the frequency axis to align them on individual tremor frequency (tf). For postural tremor,
the spectra were averaged over 16 hemispheres from 9 patients. For kinetic tremor, the spectra were averaged over 9 hemispheres from 5 patients.
The shaded areas (pink and yellow) represent the standard error of the mean. The grey shading indicates significant differences between tremor and
tremor-free epochs. [Color figure can be viewed at wileyonlinelibrary.com]
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cerebellum ipsilateral (t = 62.6, P = 0.002;
X = !50.6 mm, Y = "40 mm, Z = 41.8 mm), and
contralateral to tremor (t = 37.84, P = 0.012). Corti-
comuscular coherence increased in medial sensorimotor
regions (t = 73.3, P = 0.01; X = !16.9 mm,
Y = 10 mm, Z = 67.1 mm). The corresponding t-maps
are shown in Figure S2B (VIM-cortex coherence) and
Figure S3B (corticomuscular coherence).

Relationship between VIM-Cortex Coherence
and Tremor Amplitude–Postural Tremor

Tremor Frequency

The amplitude of tremor correlated with VIM-motor
cortex coherence at tremor frequency (r = 0.59,
P = 0.017, Fig. 4C(i)) during postural tremor. The rela-
tionship between tremor amplitude and VIM-cerebellar

FIG. 3. Thalamo-cortical and corticomuscular coherence increased during postural and kinetic tremor. The surface plots illustrate the increase of ventral
intermediate nucleus of the thalamus (VIM)-cortex (purple) and corticomuscular coherence (light pink) during postural (A) and kinetic (B) tremor at indi-
vidual tremor frequency !0.5 Hz. The overlap between VIM-cortex and corticomuscular coherence is displayed in pink. Only coherence to the VIM con-
tralateral to movement is displayed. Left hemisphere: ipsilateral to tremor; right hemisphere: contralateral to tremor. [Color figure can be viewed at
wileyonlinelibrary.com]

FIG. 4. Coherence spectra and correlation between postural tremor amplitude and coherence. Coherence between ventral intermediate nucleus of the
thalamus (VIM) (A) electromyography (EMG) (B) and (i) motor cortex contralateral, (ii) cerebellum ipsilateral, and (iii) cerebellum contralateral to tremor,
for postural tremor and tremor-free epochs. Spectra were averaged across patients. Shaded areas represent the standard error of the mean. Scatter
plots illustrate the relationship between tremor amplitude and VIM-cortex (C) and EMG-cortex (D) coherence at tremor frequency and in the beta band
(13–35 Hz) during postural tremor. Cb, cerebellum; M1, primary motor cortex; ipsi, ipsilateral to tremor; contra, contralateral to tremor; tf, individual
tremor frequency. [Color figure can be viewed at wileyonlinelibrary.com]
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coherence, however, was not significant (cerebellum ipsi-
lateral to tremor: r = 0.3, P = 0.26, Fig. 4C(ii); cerebel-
lum contralateral to tremor: r = 0.4, P = 0.12, Fig. 4C
(iii)). Postural tremor amplitude also correlated with
EMG-motor cortex coherence (r = 0.72, P = 0.002,
Fig. 4D(i)). The correlation with EMG-cerebellar coher-
ence was not significant (cerebellum ipsilateral to tremor:
r = 0.42, P = 0.1, Fig. 4D(ii); cerebellum contralateral to
tremor: r = 0.3, P = 0.24, Fig. 4D(iii)).

Beta Band

We found a negative correlation between tremor
amplitude and VIM-motor cortex coherence in the beta
band (r = "0.56, P = 0.025, Fig. 4C(i)). The relation-
ship between tremor amplitude and VIM-cerebellar beta
coherence, however, was not significant (cerebellum ipsi-
lateral to tremor: r = "0.25, P = 0.34, Fig. 4C(ii); cere-
bellum contralateral to tremor: r = "0.14, P = 0.6,
Fig. 4C(iii)). The correlation between tremor amplitude
and EMG-cortex beta coherence was not significant
(motor cortex: r = "0.4, P = 0.1, Fig. 4D(i); cerebellum
ipsilateral to tremor: r = "0.37, P = 0.17, Fig. 4D(ii);
cerebellum contralateral to tremor: r = "0.15, P = 0.6,
Fig. 4D(iii)).

Discussion

In this study, we characterized VIM-cortex coupling
during tremor in patients with essential tremor, using
intracranial recordings from the VIM, in combination
with MEG. During postural and kinetic tremor, VIM
power and VIM-cortex coherence increased at individ-
ual tremor frequency. This effect was most prominent
in the primary motor and primary somatosensory cor-
tex ipsilateral to the VIM and the bilateral cerebellum.
Corticomuscular coherence also increased during
tremor and exhibited a similar spatial organization.
Coupling strength of motor cortex to both VIM and
muscle correlated with postural tremor amplitude.

Localization of Tremor-Related Activity
Using intracranial and MEG recordings, we demon-

strated that neuronal oscillations in the ventral thala-
mus synchronize with motor cortical and cerebellar
activity in the presence of tremor. Although this is a
common narrative in the tremor literature, no study
has, to the best of our knowledge, demonstrated this
effect in a larger cohort of essential tremor patients.
Our findings add to a growing body of evidence for

a central tremor network underlying essential tremor,
gathered through a wide range of techniques, including
clinical electrophysiology,6,7 fMRI,4,5 neuropathology,23,24

neurostimulation,25-28 and tractography.29,30 Studies com-
bining EMG and fMRI have localized tremor-associated
brain activity by tracking BOLD signal modulations

correlated with slow changes in tremor amplitude.4,31,32

Similarly, MEG7 and EEG8 have been combined with
EMG to investigate tremor at a smaller timescale. Across
studies, the thalamus, the cerebellum, and primary motor
cortex have emerged as major hubs of the essential tremor
network. Complementary to these findings,
neuromodulation has uncovered important functional
aspects of the cerebello-thalamo-cortical circuit. It has
been demonstrated, for example, that phase-locked VIM
DBS26 and non-invasive stimulation of the cerebellum27

or motor cortex25 can intensify or weaken tremor,
depending on the phase difference between tremor and
stimulation. These findings emphasize the importance of
rhythmic neural activity synchronized across a distributed
tremor network, similar to findings in Parkinson’s dis-
ease.33 A correlation between oscillatory coupling and
essential tremor severity, however, has not been demon-
strated to date. This is one important contribution of the
current study, emphasizing the clinical relevance of
thalamo-cortical coupling at tremor frequency.

Cerebellum

The cerebellum is thought to play a major role in the
pathophysiology of essential tremor.34,35 In line with
this notion, we found that both VIM and muscle activ-
ity in the tremulous arm were coherent with the bilat-
eral cerebellum during postural and kinetic tremor. In
contrast, previous MEG/EEG studies have found
tremor-associated neural activity to be limited to the
cerebellar hemisphere ipsilateral to the tremulous
arm.6,7 This difference may stem from bilateral postural
tremor in some of our patients, leading to bilateral cere-
bellar activation. Notwithstanding an effect of bilateral
tremor in this scenario, bilateral cerebellar activation
was also visible during unilateral kinetic tremor
(POUR). An involvement of the bilateral cerebellum is
plausible based on the structural connections of the
VIM: it receives inputs from the contralateral cerebel-
lum via decussating fibres and, to a minor extent, from
the ipsilateral cerebellum via non-decussating fibers of
the dentato-rubro-thalamic tract.36 Moreover, studies
combining EMG and fMRI reported bilateral cerebellar
involvement during unilateral tremor in patients with
essential tremor32,37 and similar observations have been
made for unilateral dystonic tremor.38 However, only
the cerebellum ipsilateral to movement was active dur-
ing mimicked tremor in healthy individuals.32,37 This
indicates that the recruitment of both cerebellar hemi-
spheres might be a pathological feature.

Primary Sensorimotor Cortex

It is well-established that the primary sensorimotor
cortex plays an important role in many types of involun-
tary movement, such as Parkinsonian tremor33 or focal
dystonia.39 The role of thalamo-sensorimotor cortex
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coupling in essential tremor, however, is less clear. To
date, simultaneous LFP-EEG recordings have been con-
ducted in three patients across two studies, all showing
tremor frequency peaks in the VIM–motor cortex coher-
ence spectra.10,11 For coupling between muscle and
motor cortex, ambiguous results have been reported.
Some studies found increased coupling during tremor,6,7

while others found coupling in only a few patients,40

and one study reported no coupling at all.41 Trying to
reconcile these findings, it has been speculated that the
involvement of the sensorimotor cortex is intermittent.42

In this study, we provide evidence for motor cortical
involvement in essential tremor: VIM/EMG-motor cor-
tex coupling increased during both postural and kinetic
tremor.
During postural tremor, the strength of VIM"motor

cortex and EMG-motor cortex coupling at tremor fre-
quency, but not of VIM"cerebellar or EMG-cerebellar
coupling correlated with tremor amplitude, underpin-
ning the importance of the motor cortex. A prominent
contribution by the motor cortex is supported by previ-
ous studies demonstrating that non-invasive stimulation
of motor cortex reduces essential tremor amplitude.43

Interestingly, similar observations have been made for
re-emergent tremor in Parkinson’s disease: transcranial
magnetic stimulation of the primary motor cortex, but
not the cerebellum, modulated tremor amplitude.44,45

In addition, connectivity and network mapping studies
have unveiled that VIM-DBS at sites more strongly con-
nected to the primary sensorimotor cortex was associ-
ated with superior tremor improvement.30,46 Notably,
it has further been reported that sensorimotor cortex
leads muscle activity during tremor,47 suggesting that
the increased synchronization with primary sensorimo-
tor cortex might reflect an active involvement of motor
cortex rather than field spread from primary somato-
sensory cortex.
Additionally, we found that coherence between the

VIM and motor cortex in the beta band was inversely
correlated with tremor amplitude. A negative associa-
tion between beta activity and tremor has often been
reported for resting tremor in Parkinson’s disease.33,48

In the case of essential tremor, previous studies have
shown a similar negative correlation between beta
activity and tremor within the VIM,49 and our findings
extend this relationship to thalamo-cortical coupling.
Voluntary movements are likewise associated with a
reduction of beta activity and, together, these results
indicate that tremor and voluntary movements might
have common underlying mechanisms.50

Postural Versus Kinetic Tremor
Action tremor can be divided into different types such

as postural and kinetic tremor. These subtypes can co-
occur in a single patient. It remains unclear whether the

subtypes arise from distinct brain regions.51 EMG-
fMRI studies found activation of cerebellum, motor
thalamus, and motor cortex in different kinds of action
tremor, suggesting that the cerebello-thalamo-cortical
circuit is involved in the generation of different types of
tremor.31,32 Our findings support this idea. However,
the cortical distribution of coherence with thalamic
activity was more widespread for postural tremor than
for kinetic tremor. This may be due to postural tremor
occurring simultaneously in both body sides in some
patients, whereas kinetic tremor was unilateral.

Limitations
Due to the postoperative stun effect, uni- or bilateral

tremor was present in 12 of 19 patients during the
HOLD task, the POUR task, or both. While this sample
size is small in absolute numbers, it is substantially
larger compared to previous studies measuring tha-
lamo-cortical coupling in humans (N ≤ 3).10,11

Further, from a methodological perspective, it would
be desirable to match the motor tasks perfectly (eg,
HOLD with tremor versus HOLD without tremor or
mimicked action tremor versus true action tremor).
This was not possible in our cohort because the instruc-
tion to keep a static posture or to mimic action tremor
inevitably elicits actual tremor.
Finally, we note that shaking extensions can cause

artefactual tremor peaks in LFP power and coherence.
The topography of MEG-LFP coherence observed here,
however, is inconsistent with cable movement.

Conclusions

Recording thalamic and cortical activity simulta-
neously, we demonstrate that tremor episodes in
patients are characterized by synchronized oscillations
in the ventral intermediate nucleus of the thalamus, the
cerebellum, and sensorimotor cortex, underpinning
the role of the cerebello-thalamo-cortical circuit in the
pathophysiology of essential tremor.
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Supplementary Table 1 Task & tremor information.  
 

Patient ID 
Tasks 
performed 

Postural 
tremor 
frequency 
L/R [Hz] 

Kinetic 
tremor 
frequency 
L/R [Hz] 

Postural 
tremor 
data 
length L/R 
[s] 

Kinetic 
tremor  
data 
length L/R 
[s] 

ET01 H, P - - - - 

ET02 H 4.5 / 4.5 - 88 / 78 - 

ET03 H 5 / 5.5 - 99 / 40 - 

ET04 H - - - - 

ET05 H 6 / - - 153 / - - 

ET06 H 6.5 / 6.5 - 81 / 80 - 

ET07 H - - - - 

ET08 H 5 / 5.5 - 297 / 213 - 

ET09 P - 5 / 5.5 - 81 / 72 

ET10 H - - - - 

ET11 H, P - 3 / 5 - 63 / 109 

ET12a H, P 5.5 / - 6.5 / - 236 / - 102 / - 

ET13 H, P - - - - 

ET14 H, P - 4.5 / 3.5 - 130 / 146 

ET15 H, P 5 / - 5 / 4.5 174 / - 128 / 109 

ET16 H, P - - - - 

ET17 H 3.5 / 3.5 3.5 / - 102 / 90 49 / - 

ET18 H 5 / 4 - 69 / 65 - 

ET19 H 5.5 / 5.5 - 87 / 137 - 

! ± 	$  5.1±0.9  4.4 ± 1.1 122 ±	70 98.9 ± 32 

 
 
H: Hold, B: Button press, P: Pour !: mean, $: standard deviation.  
aLeft VIM excluded due to uncertain electrode position. 
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Methods 
 
Referencing scheme 
 

 
Supplementary Fig. 1: Bipolar montage used for re-referencing the contacts of a segmented 

lead. Each segment on level 2 was referenced to the corresponding segment on level 3, resulting 

in the bipolar channels 2A-3A, 2B-3C and 2C-3C. All segments were further referenced to the 

ring contact above (level 3) or below (level 2).  

 
Lead localization 
 
Lead localization was done in Lead-DBS v2.3, using pre-operative MRI and a post-operative 

CT scan. A linear co-registration of CT and MRI scans was performed with advanced 

normalization tools (ANTs).1 The coregistration was visually inspected and adjusted if 

necessary. Subsequently, the pre-operative images were normalized from subject space to MNI 

space (ICBM 152 2009b Nonlinear Asymmetric),2 with the ANTs-based diffeomorphic 

normalization SyN algorithms.1 A brain shift correction was performed, using a coarse mask 

by Schönecker.3 Lead trajectories were either automatically reconstructed with PACER4 and 

manually refined or fully manually reconstructed if PACER failed.  

 

Power spectra – FOOOF algorithm 
We applied the fitting oscillations and one over f (FOOOF) algorithm to model the periodic and 

aperiodic component of the LFP and EMG spectra. The model was fitted to the spectrum in the 

2-35 Hz range. The aperiodic component was fitted with either a fixed or a knee model. The 

peak width parameter was set to 1-3 Hz and the number of Gaussian fits was ranging from 8-

12. All spectra were visually inspected and corrected if necessary to ensure good model fits.  
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Results 
 

 

Supplementary Fig. 2: t-maps of tremor vs. no tremor for thalamocortical coherence.  A 
Postural tremor vs. no tremor. B Kinetic tremor vs. no tremor. Cluster-based permutation test. 

 

 

Supplementary Fig. 3: t-maps of tremor vs. no tremor corticomuscular coherence. A 

Postural tremor vs. no tremor. B Kinetic tremor vs. no tremor. Cluster-based permutation test. 
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Modulations of thalamo-cortical coupling  

during voluntary movement  

in patients with essential tremor 
Alexandra Steina1, Sarah Sure1, Markus Butz1,  

Jan Vesper2, Alfons Schnitzler1, Jan Hirschmann1 

Abstract 

The ventral intermediate nucleus of the thalamus (VIM) is the main thalamic hub for 

processing cerebellar inputs and the main deep brain stimulation target for the treatment of 

essential tremor (ET). As such, it presumably plays a critical role in motor control. So far, 

however, this structure has been rarely investigated in humans, and almost all of the existing 

studies focus on tremor. Here, we set out to study neural oscillations in the VIM and their 

coupling to cortical oscillations during voluntary movement. 

We investigated thalamo-cortical coupling by means of simultaneous recordings of thalamic 

local field potentials and magnetoencephalography in 10 ET patients with externalized deep 

brain stimulation electrodes. Brain activity was measured while patients were pressing a 

button repeatedly in response to a visual cue. In a whole-brain analysis of coherence between 

VIM and cortex, we contrasted activity around a pre-movement baseline and button pressing. 

Button pressing was associated with a bilateral decrease of thalamic power in the alpha (8–

12 Hz) and beta (13–21 Hz) band and a contralateral power increase in the gamma (35–

90 Hz) band. Moreover, changes in VIM-cortex coherence were observed. Alpha/low beta (8–

20 Hz) coherence decreased before and during movement, and the effect localized to the 

supplementary motor area and premotor cortex. A rebound of high beta (21–35 Hz) coherence 

occurred in the same region, but was more focal than the suppression. Pre-movement levels of 

thalamo-cortex low-beta coherence correlated with reaction time. 

Our results demonstrate that voluntary movement is associated with modulations of 

behaviourally relevant thalamic coupling, primarily to premotor areas. We observed a clear 

distinction between low- and high-beta frequencies and our results suggest that the concept of 

“antikinetic” beta oscillations, originating from research on Parkinson’s disease, is 

transferable to ET. 
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Introduction 

The ventral intermediate nucleus of the motor thalamus (VIM) is believed to play a major role 

in the pathophysiology of essential tremor (ET).1 Deep brain stimulation (DBS) of the VIM 

effectively suppresses tremor and oscillatory activity in the VIM has been demonstrated to be 

coherent with activity from the tremulous limb during tremor.2 

Apart from its role in tremor, the motor thalamus is involved in controlling voluntary 

movements, maintaining postures, and motor learning.3,4 Local field potential (LFP) 

recordings, for example, have revealed that oscillatory activity in the VIM is modulated 

during voluntary movements. During both self-paced and externally triggered movements, 

beta activity (13–30 Hz) decreases, while gamma activity (35–90 Hz) increases.5–7 Such 

movement-related modulations of oscillatory activity are a ubiquitous phenomenon, occurring 

in several motor-related brain areas, such as motor cortex8 or basal ganglia.9 Beta activity is 

often interpreted as antikinetic,10,11 i.e. anti-correlated with movement speed, while gamma 

activity is considered pro-kinetic.12 

Expanding on these findings, studies combining LFP and cortical recordings have revealed 

that subcortical-cortical coupling follows similar dynamics. For example, in dystonia patients, 

low-beta (13–21 Hz) GPi-cortex coupling diminishes during cued movements, with coherence 

values correlating with reaction times,11 in line with an antikinetic nature of beta oscillations. 

Similarly, in Parkinson’s disease, movement onset is accompanied by suppression of beta 

coherence and an increase of gamma coherence between the STN and cortex,13 with 

levodopa-induced bradykinesia improvements correlating with greater gamma coherence.9 

There is also initial evidence for modulations of thalamo-cortical coupling during voluntary 

movement,6,7 but their topography, dynamics, and behavioural relevance remain elusive. 

The aim of this study was to describe the network topology of thalamo-cortical coupling and 

its dynamic modulations before, during, and after voluntary movement. For this purpose, we 

performed LFP recordings from externalized VIM-DBS electrodes in combination with 

whole-head MEG during externally triggered button pressing in patients with ET. Moreover, 

we correlated coherence values with reaction times to demonstrate the behavioural relevance 

of thalamo-cortical coupling. 
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Materials and methods 

Patients and recordings 

10 patients diagnosed with essential tremor, undergoing surgery for DBS, participated in the 

study. Before the recording, patients provided written informed consent according to the 

Declaration of Helsinki and the study was approved by the Ethics Committee of the Medical 

Faculty at Heinrich Heine University Düsseldorf (ET: "2018-217-Zweitvotum"). The 

measurements happened the day after implantation of DBS electrodes and before the pulse 

generator was implanted, allowing for the recording of LFPs from the externalized leads. 

Patient details are provided in Table 1. 

Electrophysiological measurements 

We recorded MEG combined with intracranial LFPs from bilateral electrodes targeting the 

VIM. The LFPs were referenced to a mastoid reference. MEG signals were recorded by a 

306-channel MEG system (Vectorview, MEGIN) with a sampling rate of 2 kHz. Moreover, 

we measured electromyograms (EMGs) from both forearms (extensor digitorum communis 

and flexor digitorum communis), accelerometer signals from both index fingers, and vertical 

and horizontal electrooculograms. 

Paradigm 

The experiment included one motor task, which followed a resting state recording14 and two 

other motor tasks,15 that were analysed in our previous works. 

During the motor task, a button box was placed on a table in front of the patients. Upon the 

presentation of a visual cue, presented on a screen in front of them, patients pressed a button 

with either the left or the right index finger. Each trial started with a black fixation cross that 

was presented between 6-8 s, followed by a Go cue (green cross). Pressing the button started 

the next trial. The task was performed in blocks of 8 min and each patient completed 1-3 

blocks. Each block was divided equally into a left-hand and a right-hand part, and started with 

a short video indicating which index finger to use first. The hand was switched after half of 

the trails had been recorded, with the hand switch indicated by a second video. 

Data preprocessing 
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Data analysis was performed with the FieldTrip toolbox,16 MNE-Python,17 and custom 

written MATLAB (the MathWorks) scripts. Raw data were scanned for bad MEG and LFP 

channels and bad channels were excluded from further analyses. In order to reduce artefacts 

we applied temporal signal space separation to the MEG data using MNE-Python’s 

mne.preprocessing.maxwell_filter, with st_duration set to 10 s and st_correlation to 0.98. 

All following analysis steps were performed with the FieldTrip toolbox. For further analysis, 

we used only the 204 planar gradiometers and down-sampled the data to 200 Hz. We 

rearranged the LFPs into a bipolar montage by subtraction of signals from adjacent electrode 

contacts. EMGs were high-pass filtered at 10 Hz and full-wave rectified. 

Epoching 

The data were arranged in trials ranging from -4 to 4 s relative to button press (t = 0 s). Trials 

were visually inspected and bad trials were removed. Additional trials were discarded if the 

variance of any LFP channel exceeded 10-8  or if patients pressed the button more than 

once within the 8 s interval around the button press. One patient was excluded from further 

analysis because of bad LFP quality throughout the button pressing task. Information on the 

final number of trials can be found in Supplementary Table 1. 

Source reconstruction 

We generated a single-shell head model for each patient based on the individual T1-weighted 

MRI scan (Siemens Mangetom Tim Trio, 3-T MRI scanner, München, Germany) and 

reconstructed sources for a grid with 567 points. The grid points were distributed over the 

cortical surface, aligned to Montreal Neurological Institute (MNI) space. For source 

reconstruction, we used a linear constrained minimum variance (LCMV) beamformer,18 with 

the regularization parameter  set to 5%. Temporal signal space separation results in rank 

reduction, which can lead to erroneous beamformer output. To account for the rank reduction, 

we truncated the covariance matrix such that it had the same rank as the Maxwell-filtered 

data. To minimize confounds due to differences in spatial filters, we applied a common spatial 

filter to both condition contrasts (button press vs. baseline). 

Time-resolved spectra 

For the trial-based data, we calculated time-resolved power and thalamo-cortical coherence 

spectra with a sliding window of 800 ms which was moved in steps of 50 ms. At each time 

step, complex Fourier spectra were calculated from 5-45 Hz and 55-90 Hz using multi-
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tapering with 2 Hz spectral smoothing, from which we derived power and coherence. The 

interval from 45-55 Hz was excluded due to 50 Hz line noise. For statistical analysis, we 

defined two intervals of interest: a baseline period from -3.0 to -2.0 s and a peri-movement 

interval from -1.5 to 2.5 s. 

Contact localization and contact selection 

Using a pre-operative MRI and a post-operative CT scan, we localized DBS electrodes with 

Lead-DBS.19 The localized electrodes are displayed in Fig. 1C. We ensured that electrodes 

were on target and used only contacts within the ventral thalamus for further analysis. 

Moreover, we selected one bipolar LFP channel showing the strongest 8-20 Hz 

desynchronization contralateral to the button press. Because we alternated blocks of left- and 

right-hand button pressing, this procedure resulted in two selected channels per patient, i.e. 

one per hemisphere. 

 

Figure 1: Electromyography signals and deep brain stimulation electrodes targeting the 

ventral intermediate nucleus of the thalamus (A) EMG timeseries averaged over all 

patients, aligned to button press (t = 0). The shaded blue area represents the standard error of 

mean. (B) Electrodes targeting the VIM localized with Lead-DBS. 

Source images 

We computed band-limited coupling between reconstructed sources and LFPs for three 

frequency ranges of interest: alpha/low-beta (8-20 Hz), high beta (21-35 Hz), and gamma (65-

85 Hz). Alpha and low-beta were aggregated as they changed jointly in the button press task. 

We applied bandwidth-wide spectral smoothing to capture an entire band in one estimate, 

using multi-tapering.20 
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For epochs containing right hand movement, we mirrored the source images across the 

midsagittal plane. In consequence, brain activity ipsilateral to movement appears in the left 

hemisphere in all figures, and brain activity contralateral to movement in the right 

hemisphere. 

Reaction time and pre-movement coherence 

We tested if pre-movement coupling strength was predictive of reaction time. For this 

purpose, we calculated pre-movement coherence (-0.5 to 0.5 s relative to the Go cue) in the 

alpha/low-beta (8-20 Hz) and in the high beta (21-35 Hz) band and correlated it with reaction 

time. One patient’s reaction time was not stored due to technical problems. 

Statistical analysis 

Rather than patient, the unit of observation of this study was hemisphere (Nhemispheres = 17) in 

line with previous studies.14,21,22 The statistical analysis had a within-hemisphere design 

(movement vs. baseline) and we used a nonparametric, two-sample, cluster-based-permutation 

tests with 1000 random permutations. The tests were two-tailed, with an -level of 0.05. The 

results were corrected for multiple comparisons by relating all effects to the strongest effects 

observed in the permuted data (brain-wide or spectrum-wide).23 Cortical areas showing 

differences served as regions of interest for further analyses, such as Pearson correlation with 

behavioural metrics or visualization of power/coherence dynamics. 

Results 

Button pressing 

In the button pressing task, patients had to press a button every 6-8 s in response to a visual 

cue. Group average EMG activity, aligned to the button press, is displayed in Fig. 1B. On 

average, movement started between 2-1.5 s before the button was pressed, as patients had to 

first lift their hand from the table and reach towards the button box. 

Movement-related power changes of thalamic oscillatory activity 

Movement-related changes in VIM power ipsi- and contralateral to the button press are 

depicted in Fig. 2. VIM power in the 8–20 Hz range started to decrease below baseline levels 

~ 1 s before the button press, and this decrease lasted until ~1.5 s after the button press. 

Besides this movement-related alpha/low-beta power suppression, which occurred bilaterally 
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(ipsilateral VIM: cluster-based-permutation-test, tclustersum = -1.61*103, p = 0.004; contralateral 

VIM: t = –2.5*103, p = 0.002), we observed movement-locked power increases with a 

pronounced hemispheric lateralization. In the VIM contralateral to movement, power in the 

21-35 Hz range increased around 0-2 s relative to the button press (t = 1.7*103, p = 0.003), 

likely reflecting a combination of a low-gamma power increase around movement onset and a 

post-movement beta rebound. A further gamma power increase was observed at higher 

frequencies (65-85 Hz), around the time of button press (t = 746, p < 0.001). 

 

Figure 2: Thalamic power is modulated during button pressing. Baseline-corrected time 

frequency spectra of VIM power averaged over 17 hemispheres from nine patients in the 

hemisphere (A) ipsilateral and (B) contralateral to the button press (time point 0 s). Colours 

code absolute change in log10-transformed power compared to the mean baseline level (–3.0 

– –2.0 s). Black contours mark significant changes (p < 0.05). 

Movement related changes of VIM-cortex coherence 

For the whole-brain VIM-cortex coherence analysis, we defined three time-frequency 

intervals of interest: -0.5-0.5 s/8-20 Hz, -0.5-0.5 s/ 65-85 Hz and 0.5-1.5 s/21-35 Hz. These 

intervals reflect the movement-related alpha/low-beta power suppression, the gamma power 
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increase locked to the button press and the high-beta power rebound, respectively, as 

observed for VIM power (Fig. 2). We assessed changes of VIM-cortex coherence in these 

intervals relative to baseline for the hemisphere contralateral to movement and for the 

hemisphere ipsilateral to movement. 

Contralateral hemisphere 

For the first time-frequency interval of interest (-0.5-0.5 s/8-20 Hz; movement-related 

alpha/low-beta suppression), we observed a decrease of VIM-cortex coherence in primary 

motor, premotor, and primary somatosensory cortex contralateral to movement (cluster-

based-permutation test; tclustersum = –160, p = 0.002; MNI-coordinates minimal t-value: X = +/–

54.4 mm, Y = –40 mm, Z = 51.1 mm), which was strongest in superior frontal gyrus. For the 

second time-frequency interval of interest (0.5-1.5 s/21-35 Hz; high-beta rebound), we found 

an increase of coherence with precentral gyrus (t = 46.2, p = 0.003; X = +/–39.7 mm, Y = 

0 mm, Z = 59.4 mm). This coherence rebound was mostly contained within the region 

presenting the movement-related suppression earlier in the trial (Fig. 3). Peri-movement 

VIM-cortex coherence changes in the gamma-band (-0.5-0.5 s/ 65-85 Hz) mapped to similar 

areas (Supplementary Fig. 1) but were not significant (t = 15.4, p = 0.09; X = 39.7 mm, Y = 

0 mm, Z = 59.4 mm). 

Ipsilateral hemisphere 

For the VIM ipsilateral to movement, we observed a movement-related alpha/low-beta 

suppression, which mapped to the supramarginal gyrus ipsilateral to button press (t = –38.8, p 

= 0.012; X = –/+56.4 mm, Y = –30 mm, Z = 46.4 mm; Fig. 3), but no significant rebound. 
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Figure 3: Thalamo-cortical coupling is modulated during button pressing. Coupling 

between cortex and VIM contralateral (dark blue) and ipsilateral (light blue) to button press 

decreased in the 8-20 Hz range during the button press, after which beta coherence rebounded 

in the 21-35 Hz range (red). The overlap between movement-related beta suppression and 

post-movement beta rebound is marked in purple. Non-significant changes are masked. Left 

hemisphere: ipsilateral to button press, right hemisphere: contralateral to button press. Note 

that the colours code significant effects rather than effect size. 

Dynamics of thalamo-cortical coupling 

To investigate the dynamics of thalamo-cortical coupling during button pressing, we 

computed a time-frequency spectrum of coherence between the VIM and the region with the 

strongest changes in the whole-brain analysis (bilateral motor and pre-motor cortex; see Fig. 

3). Because the former analysis had already revealed significant deviations from baseline, we 

did not re-assess significance here. 
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The dynamics of coherence resembled those of VIM power (Fig. 2), with a peri-movement 

alpha/low-beta suppression in both the contra- and the ipsilateral hemisphere (with respect to 

movement). The post-movement beta rebound in the high-beta range was stronger in the 

hemisphere contralateral to movement (Fig. 4). 

 
Figure 4: Time-resolved dynamics of thalamo-cortex coherence during button pressing. 
(A) Grid points (beamformer target locations) defining the regions of interest. Coherence was 

computed for each grid point and averaged within the region of interest. Left hemisphere: 

ipsilateral to button press, right hemisphere: contralateral to button press. (B-C) Baseline-

corrected time frequency spectra of coherence between VIM and motor cortex (B) ipsilateral 

and (C) contralateral to button press (time point 0 s). 

Dynamics of motor cortical power 

We selected the same regions of interest as for coherence and computed time-resolved power 

spectra for the motor cortex ipsi- and contralateral to movement (Fig. 5). A strong power 

suppression ranging from 5–35 Hz was visible in both hemispheres (ipsilateral motor cortex: 

cluster-based-permutation-test, tclustersum = -7.9*103, p < 0.001; contralateral motor cortex: t = 

–1.1*104, p < 0.001). We did neither observe a strong beta rebound, nor a gamma increase in 

motor cortex. To examine whether beta power was rebounding in motor cortex, we aligned 

the time-resolved power spectra to the time point when the button was released 
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(Supplementary Figure 2). This analysis demonstrated a weak rebound in the alpha/beta 

range in the hemisphere contralateral to movement. 

 

Figure 5: Time-resolved dynamics of cortical power during button pressing. (A) Grid 

points (beamformer target locations) defining the regions of interest. Left hemisphere: 

ipsilateral to button press, right hemisphere: contralateral to button press. (B-C) Baseline-

corrected time frequency spectra of cortical power (B) ipsilateral and (C) contralateral to the 

button press (time point 0 s). 

Pre-movement VIM-cortex coherence and reaction time 
Based on studies of Parkinson’s disease, beta band synchronisation has been labelled 

“antikinetic”, i.e. inversely related to movement speed. Here, we tested the validity of this 

label in ET patients by correlating pre-movement levels of VIM-motor cortex beta coherence 

(8–20 Hz, 21–35 Hz; - 0.5–0.5 s around Go cue) to reaction time (time of button press - time 

of Go cue presentation). 

Pre-movement levels of 8–20 Hz coupling between VIM and motor cortex contralateral to 

movement was positively correlated with reaction time (r = 0.53, p = 0.038; Fig. 6B). The 

correlation was not significant for the high-beta band (r = -0.06, p = 0.82). Coupling between 

VIM and motor cortex ipsilateral to button press was not significantly correlated with reaction 
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time, neither in the alpha/low-beta (8–20 Hz: r = 0.09, p = 0.74) nor in the high-beta band 

(Fig. 6B; 21–35 Hz: r = -0.45, p = 0.09). 

 
Figure 6: Correlation between coherence and reaction time. Scatterplot illustrating the 

relationship between pre-movement alpha/low-beta coherence and reaction time for coupling 

between ipsilateral VIM and ipsilateral motor cortex (A) and contralateral VIM and 

contralateral motor cortex (B). 
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Discussion 

In the present study, we revealed the brain areas and frequency bands involved in thalamo-

cortical coupling during voluntary movements. We found that voluntary movement is 

associated with peri-movement modulation of beta band coherence, involving mostly 

supplementary motor area and premotor cortex. Pre-movement alpha/low-beta coherence 

between motor cortex and VIM contralateral to movement correlated with reaction time, 

suggesting that beta band synchronization is generally associated with slowness, even in the 

absence of akinesia. 

Our study is one of few works relating thalamo-cortical coupling to voluntary movement. 

Most studies have investigated tremor, which has a different coupling profile, involving other 

frequency bands and other brain areas.24–26 In fact, we have recently described tremor-related 

coherence profiles of half the patients analyzed in this work.15 Strongest tremor-associated 

modulations of VIM-cortex coherence were observed in primary sensorimotor cortex rather 

than pre-motor areas, suggesting that different channels of thalamo-cortical communication 

might be active during tremor and voluntary movements. A further difference might be the 

modulation of VIM-cerebellar coupling, which was pronounced for tremor but non-significant 

for button pressing. However, voluntary movement and tremor seem to share some common 

frequency-specific modulations. Voluntary movement is linked to a suppression in the beta-

band, for example, and tremor amplitude is also inversely related to beta-band VIM-motor 

cortex coupling.15 

Overall, our results underscore how closely neuronal oscillations in the motor system are 

linked to the movement present at the time of recording – a link which should be kept in mind 

when attributing oscillatory patterns to any specific disease. 

VIM power 
Here, we reproduced previous findings on modulations of thalamic activity during voluntary 

movements.5,7 Before and while the button was pressed, alpha (8-12 Hz) and low-beta (13-

20 Hz) activity were desynchronized, while gamma activity was synchronized. Shortly after 

the button press, high-beta (21-35 Hz) oscillations increased to a higher level than baseline 

(rebound). This pattern has been replicated in numerous motor structures, such as motor 

cortex27 or the STN,9 and numerous cohorts, including patients with Parkinson’s disease,9 
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dystonia,11 and healthy controls.8 Matching such a ubiquitous motive, we suggest that the 

spectral modulations of VIM activity observed here are of physiological rather than of 

pathophysiological nature. 

The apparent divergence between the dynamics of low- and high-beta activity matches 

findings in Parkinson’s disease indicating distinct roles of low- and high-beta activity.28,29 

Whether alpha oscillations change independently of low-beta oscillations or result from 

spectral leakage from the beta band is under debate.30,31 Whereas Klostermann et al. suggested 

a distinction between alpha and beta (13-35 Hz) activity,7 we found no evidence for 

independence between thalamic alpha and low-beta oscillations and treated both bands as a 

single entity. 

Motor cortical power 

Motor cortical power largely resembled VIM power, but, in contrast to the VIM, motor cortex 

did not reveal a strong beta rebound in this paradigm. However, a weak rebound was visible 

in the hemisphere contralateral to movement when the spectral modulations were related to 

the time when the button was released (Supplementary Fig. 2). This finding suggests a 

differential response of the thalamus and motor cortex to single elements of the motor 

sequence. 

VIM-cortex coupling 

VIM-cortex coupling followed a similar pattern as VIM power: alpha-/low-beta coherence 

decreased prior to and throughout the button press, and high-beta coherence increased after 

the button press. The decrease of alpha-/low-beta coherence has been reported before for 

externally paced7,32 and self-paced movements.6 We extend previous findings by localizing 

the coherence decrease to premotor cortex and the supplementary motor area. This 

localization is different from the spatial minimum of the cortical beta power suppression, 

which is typically observed in sensorimotor cortex proper, around the hand knob.8 

Compared to baseline, high-beta coupling between cortex and the VIM contralateral to 

movement increased shortly after the button press. This effect was strongest in similar regions 

as the preceding 8–20 Hz decrease, but more focal. The coherence increase might be 

analogous to the post-movement rebound of beta power that is typically observed in 
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sensorimotor cortex.8 This rebound is usually lateralized to the contralateral hemisphere,8 

while the beta power suppression has been reported to be bilaterally symmetric.33,34 This 

pattern is in line with our results, as coherence decreased bilaterally during movement, 

whereas the post-movement coherence increase was lateralized to the contralateral 

hemisphere. 

VIM-cortex coupling and reaction time 

Pre-movement levels of 8-20 Hz VIM-motor cortex coherence in the contralateral hemisphere 

correlated positively with reaction time, i.e. higher coupling around Go cue onset were 

associated with slower responses. These findings tally with the proposed antikinetic nature of 

low-beta oscillations, derived mainly from studies on Parkinson’s disease. These studies have 

established a relationship between elevated beta power in the STN and the severity of 

bradykinesia and rigidity.35,36 Moreover, movements of healthy individuals have been 

demonstrated to be slower when low-beta activity happens to be elevated in the course of 

spontaneous fluctuations or is elevated artificially by transcranial alternating current 

stimulation.37,38 Further, in patients with Parkinson’s disease deep brain stimulation in the 

beta range has shown to slow movements.39 The antikinetic nature of low-beta oscillations is 

not only reflected by local oscillatory power, but extends to coupling between different 

regions, as observed for GPi-cortex11 and cortico-spinal coherence,40 for example. Here, we 

demonstrate that the concept holds for VIM-cortex coupling, too. 

Interestingly, other pre-movement features of thalamic activity have likewise been linked to 

reaction time. The amplitude of the contingent negative variation in between a pre- and a Go-

cue was predictive of reaction time in a cued Go/NoGo task.41 Moreover, increased levels of 

thalamic gamma activity have been revealed to result in faster task performance.5 These 

observations align well with the modern view on the role of the thalamus in motor control. 

For a long time, the motor thalamus was believed to simply relay inputs from cerebellum to 

motor cortex. However, in the last decades, it became evident that information to cortex is not 

just passively relayed, but modified by the thalamus.3 Our study further supports this notion. 

Limitations 

Intracranial recordings from the human thalamus are only possible in patients. Therefore, we 

cannot be sure whether the oscillatory dynamics described here indeed relate to normal motor 
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control. Yet, several of our findings match observations made in other patient populations and 

in healthy participants, who, at the cortical level, exhibit the same beta and gamma power 

dynamics at movement start and stop.42 

Although the patient cohort consisted of individuals with ET, tremor was only present in 6 out 

of 17 analyzed body sides during button pressing most likely due to the stun effect (see 

Supplementary Table 1). Thus, we could not compute a meaningful statistical contrast 

between button pressing with intention tremor to button pressing without intention tremor, 

which would have been an interesting addition to our recent work on essential tremor .15 

Conclusions 

Our study demonstrates behaviourally relevant modulations of thalamo-cortical coupling 

during voluntary movement. Further it extends the notion of beta oscillations being 

“antikinetic” to thalamo-cortical coupling. 
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Table 1 Patient details 

Patient ID age [y] sex disease duration [y] electrode type 

ET01 65 m 19 Abbott Infinity 

ET02 71 m 20 Abbott Infinity 

ET03 60 f 49 Abbott Infinity 

ET04 62 m 50 Abbott Infinity 

ET05 57 f 51 Abbott Infinity 

ET06 76 m n.a. Abbott Infinity 

ET07 54 m 39 Medtronic SenSight 

ET08 62 f 56 Abbott Infinity 

ET09 65 m 20 Boston Sc. Vercice Cartesia 

ET10 71 m 20 Boston Sc. Vercice Cartesia 

 65  11  31  20  

 
y: year, m: male, f: female, n.a.: not available, : mean, : standard deviation. 
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Supplementary Table 1 Task information 

 
L: left, R: Right, n.p.: not present, -.: not available, y: yes. 
aData length, tremor. 
bAmount of trials after cleaning. 
cRight VIM excluded due to uncertain electrode position. 
dButton press from ET09 was excluded from further analysis due to bad LFP data quality. 

 

Patient ID 

Button 

press L / R 

tremor 

Button 

press L / R 

trialsb 

ET01 n.p. 53 / 45 

ET02 y / y 83 / 85 

ET03 n.p. 89 / 87 

ET04 n.p. / n.p. 76 / 76 

ET05 y / n.p. 44 / 37 

ET06c y / n.p. 54 / 54 

ET07 n.p. 63 / 59 

ET08 y / y 54 / 49 

ET09d y / y - 

ET10 n.p. / y 51 / 63 
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Movement related changes of VIM-cortex coherence 

VIM-cortex coherence in the gamma range increased during movement. This increase was 

strongest in the pre-central gyrus, but the increase was not significant (tclustersum = 15.4, p = 0.09; 

X = 39.7 mm, Y = 0 mm, Z = 59.4 mm; Supplementary Fig. 1). 

 

Supplementary Fig. 1: Change of thalamo-cortical coupling in the gamma range during 
button pressing. Coupling between cortex and the VIM contralateral to movement in the 65-

85 Hz range increased during button pressing. Strongest changes are displayed (tclustersum = 15.4, 

p = 0.09; non-significant). 
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Dynamics of motor cortical power 

We aligned time-resolved power in motor cortex to the time point when the button was released 

(t = 0) to investigate if beta power was rebounding in motor cortex. On a descriptive level, this 

analysis suggests a weak rebound in the alpha/beta range in the hemisphere contralateral to 

movement (Supplementary Figure 2). The weakness of the rebound might be due to the fact 

that the hand was still in motion after the button press, as patients returned their hand to the 

table in front of them. Note, however, the VIM and VIM-cortex coupling showed a marked 

rebound even in this situation. 

 

 

Supplementary Fig. 2: Time-resolved dynamics of cortical power during button pressing 
aligned to end of button press. (A) Grid points used for extracting cortical activity. Left 

hemisphere: ipsilateral to button press, right hemisphere: contralateral to button press. (B-C) 
Baseline-corrected (-3 to -2 s before onset of button press) time frequency spectra of cortical 

power (B) ipsilateral and (C) contralateral to the button press (time point 0 s marks the time 

when the button was released). 
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