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1 INTRODUCTION

Introduction

In many markets, beliefs of buyers are important and the recent literature has documented
that such beliefs need not be correct. In this dissertation, I shed light on how firms
respond to the possibly incorrect beliefs of market participants and study the broader
implications for the functioning and regulation of such markets. The different chapters
of this dissertation are motivated by recent cases, for example, competition or consumer
protection cases against large platforms such as dating or cryptocurrency platforms in
digital markets, or antitrust cases against colluding manufacturers in traditional retail
markets.

The first two chapters study (exploitative) platform markets. Platform markets are
ubiquitous in our modern economy and shape how people meet and interact. For example,
matching platforms have become the most common means of finding a (romantic) partner
or a job. These platforms, however, have repeatedly come under scrutiny for engaging in
deceptive and exploitative business models.

In Chapter 1, I examine how a matching platform, which has increasing access to user
data, tailors its algorithm when — as I argue is commonly the case — incentives between
the platform and users are misaligned. Users pay to be matched by the platform, while
the platform makes money as long as users continue to search for partners. Contrary to
the intuition that more data about users might improve matching efficiency and speed,
I show that more data allows the platform to raise profits by designing a matching rule
that increases search time. Restating the platform’s problem as a linear programming
problem allows me to characterize the optimal matching mechanism. I show that random
matching is, but for knife-edge cases, suboptimal for the platform. Instead, the platform
strategically lowers match quality to increase search time and thus profits, leading to
unnecessary delays. In addition, the optimal matching mechanism often induces inefficient
matches to leave the platform together.

Finally, I provide two explanations for why platforms adopt business models with
misaligned incentives: targeted advertising and the presence of overconfident users. In
principle, the platform can set up a business model that extracts the entire surplus from
users by collecting high personalized fees and providing users with the socially optimal
match. Under the realistic assumption, however, that users are reluctant to pay upfront
but are willing to consume ads I show that an ad-based model can outperform the former
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business model if targeted advertising is sufficiently efficient. Alternatively, if users are
overconfident about their desirability, this belief leads users to underestimate their search
time. Therefore, under the pay-as-you-search business model they spend a higher amount
ex post than anticipated ex ante. This, in turn, favors the prevailing business model.

In Chapter 2, I investigate the use of so-called fake profiles by platforms. One core
implication of network effects is that a platform wants to convince potential users that it
has a large network. In a number of prominent cases involving dating or cryptocurrency
platforms, firms did so by actively engaging in activities that artificially inflate the size of
the network. To study the impact on users who are either suspecting or unsuspecting, I
develop a model in which a profit-maximizing platform wants to convince users of its large
network size when there is uncertainty about the number of potential users. To do so, the
platform uses prices and fake profiles to signal its size both when users are sophisticated
and when they are unaware of the platform’s ability to do so.

If — as in some real-world examples — users are naïve about the platform’s ability
to use fake profiles, the platform exploits users’ misperceptions by using fake profiles
to deceive users about the size of its network, and thus its value. By raising prices in
equilibrium, the platform profits from the artificial increase in demand. When users
are sophisticated on the other hand, larger platforms use fake profiles to differentiate
themselves from smaller platforms. Sophisticated users correctly anticipate the platform’s
incentives and thus discount the perceived network size by the expected number of fake
profiles. In contrast to the case of naïve consumers, platforms would benefit from a ban
on fake profiles when users are sophisticated. Rather than seeing platforms commit to
not using fake profiles, we observe that platforms actually hide the use of fake profiles in
their terms of service. This, however, likely indicates that users are mainly naïve in these
markets, which makes fake profiles profitable.

In Chapter 3, I investigate jointly with Matthias Hunold, Johannes Muthers, and
Alexander Rasch how incorrect beliefs of retailers in vertically related markets affect a
manufacturer’s ability to collude. Evidence from cartel cases in vertically related mar-
kets indicates that manufacturers often fail to achieve collusive price increases, because
unsuspecting retailers refuse to accept higher prices for the fear of being outcompeted by
fellow downstream firms that (continue to) receive better offers.

To address this issue, we show how the (market) beliefs of retailers affect the market
outcome when manufacturers try to collude. With two exclusive manufacturer-retailer
pairs and private contracting, we show that potential strategic misinterpretations and
misunderstandings by retailers are important for the feasibility of manufacturer collusion
in vertically related markets. We model the retailers’ (potentially incorrect) expecta-
tions about their competitors’ wholesale price offers. If retailers believe collusion to be
infeasible or do not foresee manufacturers’ punishment strategies, it is impossible for
manufacturers to collude. By contrast, if retailers anticipate the collusive strategy and
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condition their action on past offers, collusion becomes feasible. We introduce the prop-
erty of opportunism-proofness that excludes profitable joint deviations by the collusive
entity and discuss adaptive beliefs for which retailers heuristically learn about the market
conduct.

To conclude, this dissertation examines how firms strategically respond to demand
with incorrect beliefs. This analysis contributes to the growing field of behavioral indus-
trial organization, see Heidhues and Kőszegi (2018) for a survey. While recent policy pa-
pers suggest that behavioral effects are particularly important in digital settings (Crémer
et al., 2019; Scott Morton et al., 2019; Fletcher et al., 2021), academic research on this
topic is scarce. Chapter 1 and 2 contribute to filling this gap. In Chapter 3, we propose
that certain challenges in traditional retail markets can be naturally understood through
the lens of incorrect beliefs, which classic competition models abstract from.
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1.1 Introduction

The emergence of digital matchmakers has revolutionized the way people meet and inter-
act. By reducing search frictions, these platforms have the potential to more efficiently
match users. With the help of algorithms based on detailed user data, they promise to
facilitate the search for suitable partners in many areas of life. In fact, online dating
has become the most common way to meet potential partners in recent years, and for
more than a decade, job searches have been conducted predominantly through such on-
line platforms (Rosenfeld et al., 2019; Kircher, 2022). This paper investigates the impact
of a platform with detailed user data on the resulting speed and assortativity of match-
ing in the society. It highlights a novel source of mismatching: profit-driven, purposeful
mismatching of platforms.

To do so, I study the matching rule of a profit-maximizing platform on which users
search for a suitable match. To capture the two most prominent business models, I assume
that the platform commits to either an amount of advertising or a payment per period
in which the user is active.1 In either case, spending their time searching is costly for
users. To attract and keep users’ attention, the platform offers users a recommended
match in each period. First, I show that the most prominent search protocols used to
study centralized or decentralized matching markets — the positive assortative matching
rule (PAM) and a random matching rule — are strictly suboptimal. Instead, the platform
uses its knowledge about users to strategically lower the quality of recommended matches.
This induces agents to search longer and thereby increases the payments the platform can
collect. Besides prolonging search, the resulting matching outcomes can be drastically
different from the socially optimal outcome — positive assortative matching — and induce
a substantial welfare loss.

Why do platforms then rely on business models that induce misaligned incentives? I
provide two plausible explanations. First, when, as in many online markets, users are
reluctant to make monetary payments but are willing to consume ads,2 offering an ad-
based model can be more profitable. Second, when users have arguably well-documented
misperceptions such as being overconfident regarding their desirability,3 they underesti-

1See Appendix C for evidence on the business model of dating and job search apps.
2Advertising-based models play a key role in online markets, including both fully ad-supported and

“freemium” business models. Freemium refers to business models, where users can use a basic service
for free in exchange for consuming ads, but need to pay a fee to use the premium service (without
ads). Freemium has become the most popular pricing strategy for many apps (see ACM (2019) or
https://www.statista.com/chart/1733/app-monetization-strategies/).

3Overconfidence has been widely documented in the experimental literature, see for example Burks
et al. (2013) and Dubra (2015). Especially overconfidence with respect to one’s own attractiveness is
common (Greitemeyer, 2020). Psychologists argue that such overconfidence determines how individuals
look and compete for potential partners (Murphy et al., 2015). In labor markets, Spinnewijn (2015) and
Mueller et al. (2021) find that the unemployed overestimate how quickly they will find a job. Moreover,
beliefs are not revised (sufficiently) downward after remaining unemployed. Both findings suggest that
job seekers are persistently overconfident about their desirability to firms.

https://www.statista.com/chart/1733/app-monetization-strategies/
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mate their expected search duration and hence payments to the platforms for existing
pay-per-month schemes.

After discussing the related literature in Section 1.2, Section 1.3 presents the model.
A monopoly platform organizes a two-sided matching market in which users search for a
partner on the opposite side. The platform commits to a matching rule that determines
the probability that two users — each characterized by a vertical type — will meet.
Additionally, the platform commits to a per-period cost that it collects from active users,
which are either an amount of advertising or a search fee per period. After active users
have paid the per-period cost, they receive a recommendation from the platform. Upon
meeting, users simultaneously decide whether to accept or reject the proposed match.
After rejecting, a user can continue to search. The analysis focuses on steady states; in
these the inflow of new agents must equal the outflow under the platform’s matching rule.

Section 1.4 starts by characterizing the users’ search behavior. Then, fixing search
costs, the platform’s problem is to choose matching probabilities conditional on each
users’ type subject to participation constraints regarding the users’ decision to join the
platform, incentive constraints on the users acceptance decisions, feasibility constraints
on the matching mechanism as well as steady-state constraints. This original problem is
highly non-linear. Instead of analyzing the original problem, I make use of an auxiliary
problem. This auxiliary problem is a linear programming problem in which the platform
chooses masses of recommended matches and matched pairs accepting each other using
the facts that: (i) the objective function is linear in steady-state masses, and (ii) the
constraints are linear in the mass of recommended and matched pairs by using appro-
priate transformations. The profit-maximizing solution to this auxiliary problem is then
transformed back to the solution of the original problem. Given the profit-maximizing
matching rule, the platform chooses its advertising level or search fee. In the most gen-
eral setting for any given finite set of users’ types, I prove that an optimal solution to the
platform’s profit-maximization problem exists using the auxiliary problem. Based on the
reformulation, I show that the widely analyzed matching rules are suboptimal. Random
matching is suboptimal, when at least two types on each side of the market participate.
Moreover, whenever both market sides are fully symmetric I show that the positive as-
sortative matching rule — where each user meets a user of their own type — can be
suboptimal.

Considering the special case with two types on each side of the market and symmetric
inflows, Section 1.4.2 illustrates the main insight of the model — the platform’s incentive
to recommend and foster mismatches. To induce users to search, the platform frequently
recommends mismatches to users, i.e., a high type meets a low relatively more often than
a high type. The socially efficient matching outcome in which users sort positively is only
implemented by the platform if significantly more low than high types enter the market.
Otherwise, the platform induces a weakly, or even non-assortative, matching outcome.
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The platform’s matching thus creates two intertwined inefficiencies: it distorts match-
ing outcomes by inducing mismatches that deviate from the socially optimal outcome,
and it increases users’ search time, leading to higher search costs than necessary. Both
inefficiencies have implications for real-world markets such as dating and labor markets.
In particular, in labor markets, the extent of mismatch has a significant impact on produc-
tivity and long-term unemployment (Şahin et al., 2014; McGowan and Andrews, 2015).
Moreover, prolonged search duration, i.e., time spent unemployed or in a mismatched
job, has high economic and social costs (e.g., unemployment insurance). In marriage
markets, sorting has been found to have important implications for income inequality
and household decisions (Lee, 2016). In addition, the quality of the relationship or mar-
riage is a determinant of overall well-being and health (Robles et al., 2014; Sharabi and
Dorrance-Hall, 2024). In the special case with two types, I find that the socially efficient
matching outcome can induce the longest search time of agents, while the search time of
agents decreases when the platform implements a weakly assortative or non-assortative
outcome.

Finally, Section 1.5 turns to the question of why platforms rely on business models
in which the incentives between the platform and the users are misaligned. For example,
a simple potential business model for platforms would be to collect high personalized
search fees from each type and provide them with the socially optimal match in the first
period. In principle, this business model extracts the entire surplus from users. Under the
realistic assumption that users are reluctant to pay upfront but are willing to consume
ads, however, I show that an ad-based model can outperform the former business model
if targeted advertising is sufficiently efficient. Alternatively, if users are overconfident
about their desirability, this belief leads users to underestimate their search time when
incentivized to search. Therefore, under the pay-as-you-search business model they spend
a higher amount ex post than anticipated ex ante. This, in turn, favors the prevailing
business model.

Section 1.6 concludes and highlights that the tension arising from the misalignment of
incentives becomes more important as the platform collects more data and develops more
predictive algorithms.

1.2 Related Literature

This article contributes to two central strands of literature, which I detail below. In
contrast to the literature, I consider the profit-maximizing incentives of a matchmaker
when agents are vertically differentiated and characterize the matching rule and resulting
matching outcome.
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Matching and Search Theory The vast literature on search-and-matching models,
see for instance Burdett and Coles (1999), Eeckhout (1999), Bloch and Ryder (2000), and
Smith (2006), provides insights into the functioning of decentralized markets in which
agents meet at “random”.4 These matching models with heterogeneous agents build the
foundation to investigate sorting and mismatch in markets such as labor and marriage
markets when search frictions are present. In line with these models, agents in my model
have vertical preferences that result in a unique stable matching. I follow Lauermann and
Nöldeke (2014) and suppose that types are finite. The model at hand crucially departs
from the literature on decentralized matching, which assumes that agents meet according
to a random matching technology, by explicitly accounting for the design of the matching
rule. With increasing access to user data about preferences and machine-learning tools,
matching platforms can design their own recommendation and matching algorithms to
maximize profits. While many platforms do not disclose the specifics of their matching
algorithms, it is evident that their algorithms are far more sophisticated than random
matching.5

The question of how to design the matching rule is related to the literature on cen-
tralized matching as pioneered by Gale and Shapley (1962), Roth (1982), and Roth and
Sotomayor (1992), which studies match quality and implementation of efficient match-
ing rules in two-sided markets.6 The principal considers properties such as stability,
strategy-proofness and Pareto efficiency of the matching rule. In contrast, I characterize
the profit-maximizing solution for different given business models.

Search problems are widely studied not only on an individual level but researchers also
rely on these to better understand job search and its implications on the functioning of the
economy. Early articles include Pissarides (1985), Mortensen and Pissarides (1994), and
Mortensen and Pissarides (1999), which focus on wage bargaining and unemployment
dynamics and on-the-job search when agents are ex-ante homogeneous. Dolado et al.
(2009) introduces heterogeneous types of workers and firms into job search models, which
are also crucial in my model. A recent treatment on how job search has changed in the
digital era is provided by Kircher (2022).

Finally, my paper is related to papers investigating biased beliefs of agents in matching
and search markets. Closely related in a dating market, Antler and Bachi (2022) show
that agents’ coarse reasoning leads to overoptimism about their prospects in the market

4The aforementioned literature assumes that agents have non-transferable utility. Search-and-
matching models with transferable utility have been analyzed, for example, by Becker (1973, 1974) and
Shimer and Smith (2000). For an overview of the literature on search-and-matching models see Chade
et al. (2017).

5Dating platforms such as Tinder or bumble provide a general description of their algorithm, see
for example https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-
The-Method-Behind-Our-Matching, whereas the dating platform “Hinge” claims to use the Gale-Shapley
algorithm designed to find stable matchings.

6The literature on matching in two-sided markets can be divided into centralized and decentralized
matching (see Echenique et al. (2023) for a recent overview).

https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-The-Method-Behind-Our-Matching
https://www.help.tinder.com/hc/en-us/articles/7606685697037-Powering-Tinder-The-Method-Behind-Our-Matching
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and induces them to search inefficiently long. In labor markets, Spinnewijn (2015) and
Mueller et al. (2021) document that job seekers often hold overoptimistic beliefs and
thereby underestimate their time to find a job. I contribute to this literature by showing
how current platform business models exploit overconfident types.

Platform Markets Central to the literature that studies platform and (online) two-
sided markets is the presence of network effects and how these shape the incentives and
price setting of a platform that enables the interaction between two groups (Caillaud and
Jullien, 2003; Rochet and Tirole, 2003, 2006). As a result, in most models agents are
assumed to care only about the number of matches instead of match quality.

With the emergence of digital matchmakers, the literature extended to analyzing (cus-
tomized) matching on platforms with a focus on the interaction between pricing and
matching efficiency (Damiano and Li, 2007; Damiano and Hao, 2008), price discrimina-
tion (Gomes and Pavan, 2016, 2024), and auctions (Johnson, 2013; Fershtman and Pavan,
2022), all abstracting from search frictions and dynamics. In my model, the platform de-
signs the matching rule in its online market place, but in contrast to the aforementioned
articles, the platform has an incentive to not implement the efficient and full surplus
extracting matching rule.

Within the analysis of digital matchmakers, Halaburda et al. (2018a) and Antler et
al. (2023, 2024) also focus on applications to dating platforms. Most closely related is
Antler et al. (2024) who study a matchmaker’s incentives in a model with horizontally
differentiated types, which determine the fit of agents. The platform charges a single
“upfront” fee in the second period after agents have joined and received their first match
for free. The authors draw a similar conclusion: the platform has an incentive to invest into
a technology that increases the speed of search but not into improving match quality. The
main difference lies in modeling the matching technology. The authors restrict attention
to a truncated random matching technology under which agents meet at random above
a threshold and do not meet if their fit is below the threshold; in contrast, I solve for the
optimal matching rule.

Within the platform literature models on platforms intermediating consumer search
Hagiu and Jullien (2011, 2014), Eliaz and Spiegler (2011b, 2016), and Nocke and Rey
(2024) are closely related. Hagiu and Jullien (2011) provide a rationale for intermediaries
to divert search of their consumers away from preferred stores. Although the insight is
closely related to the mismatching incentive in my model, the (one-sided) market in Hagiu
and Jullien (2011) does not include the strategic component on the other side as stores
would never reject a consumer willing to buy. Hence, there is no analogue to my finding
that the platform prolongs search of lower types by recommending them to higher types
knowing that they will reject those lower types. Additionally, there is no equivalent to
overconfident users in their model. Finally, my model of a two-sided matching market
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Figure 1.1: Within-Period Timing

offers insights into the allocative inefficiency and the length of search for labor and dating
markets intermediated by matching platforms.

1.3 Model

A monopolist platform organizes a matching market in which a continuum of agents from
two sides, k = A, B, search for a partner from the opposite side. The market operates in
discrete time with an infinite horizon. I focus on steady state analysis. In slight abuse of
notation, I therefore suppress time indices whenever it does not lead to confusion.

Agents An agent of each side is characterized by a type θk
i ∈ Θk, with Θk = {θk

1 , θk
2 , ..., θk

Nk}
finite. At the beginning of each period, an agent θk

i decides whether to enter the market
or to exit and take outside option ωk

i . An agent that participates in the market becomes
inactive with an exogenous probability δ > 0 and also leaves the search process. The
platform charges an active agent of type θk

i a search cost sk
i . Then, each active agent

receives a single recommendation from the platform. After receiving a recommendation,
two agents who meet observe each other’s type and simultaneously decide whether to
accept or reject the other agent. The following payoffs are realized based on their actions
in the current period: (i) mutual acceptance yields a match utility of u(θk

i , θ−k
j ) = θk

i θ−k
j ,

and (ii) (one-sided) rejection yields a utility of zero in the current period. After a rejec-
tion, an agent can continue searching in the next period. The timing within each period
is summarized in Figure 1.1.

Agents are assumed to use time- and history-independent strategies. A pair of func-
tions σk : Θk×Θ−k → [0, 1] and σ−k : Θk×Θ−k → [0, 1] describe the acceptance strategies,
where 0 ≤ σk(θk

i , θ−k
j ) ≤ 1 is the probability that an agent of type θk

i on side k accepts a
match with type θ−k

j on the other side. The function ηk
i : (θk

i , ωk
i ) → [0, 1] describes the

participation strategy of an agent of type θk
i with outside option ωk

i . In other words, with-
out loss of generality, I focus on strategies where identical agents, active on the same side
of the market and of the same type, use the same acceptance and participation strategy.
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Then,

α(θk
i , θ−k

j ) = σk(θk
i , θ−k

j ) · σ−k(θk
i , θ−k

j )

denotes the probability of a mutual acceptance by type θk
i and θ−k

j .

Matching A matching mechanism M := {ϕk(·)}k=A,B consists of (potentially stochas-
tic) matching rules ϕk(·). Let Θ̂k be the set of participating types from side k = A, B.
For θk

i ∈ Θ̂k, ϕk(·|θk
i ) ∈ ∆(Θ̂−k

∪ ωk
i ), which is a probability measure over Θ̂−k

∪ ωk
i .

Intuitively, this describes the probability of meeting the various types of the opposing
side as well as the outside option. Any θk

i ∈ Θk \ Θ̂k who does not participate is assumed
to be meet their outside option with probability one, ϕ(ωk

i |θk
i ) = 1. Denote the mass of

agents of type θk
i on side k by f(θk

i ). Matching mechanism M induces a distribution of
matched pairs M

⎛⎜⎜⎜⎝
⎛⎜⎜⎜⎝

f(θk
1)

...
f(θk

Nk)

⎞⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎝
f(θ−k

1 )
...

f(θ−k
N−k)

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ ↦→

⎛⎜⎜⎜⎝
Φ(θk

1 , θ−k
1 ) · · · Φ(θk

1 , θ−k
N−k)

... ...
Φ(θk

Nk , θ−k
1 ) · · · Φ(θk

Nk , θ−k
N−k)

⎞⎟⎟⎟⎠ ≡ M.

An entry of matrix M is the mass of agents that are recommended to each other under
matching mechanism M and is given by

Φ(θk
i , θ−k

j ) = f(θk
i )ϕ(θ−k

j |θk
i ) = f(θ−k

j )ϕ(θk
i |θ−k

j ),

where the masses are symmetric, i.e. the mass of agents of type θk
i on side k being

matched to agents of type θ−k
j on side −k is equal to the mass of agents of type θ−k

j on
side −k being matched to type θk

i on side k: Φ(θk
i , θ−k

j ) = Φ(θ−k
j , θk

i ). Under matching
mechanism M, the mass of agents of type θk

i that are unmatched, i.e. do not receive a
recommendation in a given period, is

Φ(θk
i , ωk

i ) = f(θk
i ) −

∑︂
θ−k

j ∈Θ−k

Φ(θk
i , θ−k

j ).

To capture the idea that the platform can only generate revenue by keeping users’ at-
tention and, hence, wants to match as many agents as possible, I impose the following
assumption.

Assumption 1. Let k̂ be the short side of the market. For each agent on side k̂,
ϕ(ωk

i |θk̂
i ) = 0.

Under Assumption 1, feasibility of the matching rule can be expressed in terms of the
masses of matched pairs.
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Definition 1. A matching mechanism M is feasible if

∑︂
θ−k

j ∈Θ−k

Φ(θk
i , θ−k

j ) + 1k=k̂Φ(θk
i , ωk

i ) = ηk
i f(θk

i ), ∀θk
i ∈ Θk, k = A, B. (1.1)

Timing and Population Dynamics At the beginning of a period t, agents who did not
find a match in the last period arrive and a (time-invariant) inflow of new agents of type
θk

i given by the mass {βk
i }k=A,B

i enters the platform. Agents decide whether to participate
on the platforms. Those who decide to participate become inactive with probability δ,
while active agents are matched according to matching mechanism M resulting in matrix
Mt. Based on their recommended match, agents make their acceptance decision resulting
in mutual acceptance probabilities {αt(θk

i , θ−k
j )}ij. At the end of the period, agents that

mutually accepted each other exit in pairs. The total outflow of agents is then given by
pairs that exit together in a match, agents that become inactive with probability δ and
agents that decided not to participate.

Platform The platform commits to a matching mechanism M := {ϕk(·)}k. To capture
the two most prominent business models, I suppose that the platform either commits to
an extent of advertising or a given payment per period. Formally, this choice induces the
type-dependent search cost sk

i while generating revenue per search of type θk
i of ν(sk

i ). In
case of payments, ν(sk

i ) is the identity function. In case of advertisements, ν(sk
i ) is an

increasing and strictly concave function of the search costs, which for example captures
the intuition that the agents’ disutility of advertising is convex in the number of ads shown
while the platform’s profit is constant per ad. Let sk

i ∈ [0, u], where u is the maximum
match utility that the highest type can achieve on the platform. The platform discounts
future profits according to ρ and thus maximizes

Π =
∑︂

k=A,B

∑︂
θk

i ∈Θk

(1 − δ)ηk
i

1 − ρ
ν(sk

i )f(θk
i ).

Equilibrium Concept The model focuses on a steady state analysis in which the
market is balanced: that is, the inflow of agents is equal to the outflow of agents under
matching mechanism M. Formally:

Definition 2. (Steady State) For given matching mechanism M, a steady state is a tuple
(f(θk

i ), α(θk
i , θ−k

j ), ηk
i )k

ij that satisfies

βk
i = f(θk

i )

⎡⎢⎣(1 − ηk
i ) + ηk

i

⎛⎜⎝δ + (1 − δ)
∑︂

θ−k
j ∈Θ−k

α(θk
i , θ−k

j )ϕ(θ−k
j |θk

i )

⎞⎟⎠
⎤⎥⎦ , (1.2)
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for all θk
i ∈ Θk, k = A, B. The left-hand side describes the inflow of agents of type θk

i ,
where the right-hand side is the outflow. The outflow is the mass of type θk

i agents times
the probability that agents do not participate plus the probability of becoming inactive
or exiting in a match.

A steady state is an equilibrium if the following is satisfied.

Definition 3. (Equilibrium) A steady state is an equilibrium if — given that agents
anticipate other agents’ strategies correctly — the profile of stationary strategies (σ, η)
satisfies:

1. Agents accept a match if and only if the match yields a higher payoff than the
expected utility from continuing to search.

2. Agents participate if and only if the expected utility from participating yields a
higher payoff than their outside option.

Under the usual Nash assumption of correctly anticipating other players’ strategies, the
definition captures that agents maximize expected utility with respect to their acceptance
strategy implicitly ruling out the case that a valuable pair is rejected because everyone is
certain that their partner rejects.7 The third part captures that agents maximize expected
utility when deciding to participate on the platform.

1.3.1 Discussion of Assumptions

Search Costs Agents incur additive search costs sk
i in each period, which are designed

by the platform. They either represent the nuisance costs from advertising as, for example,
in Anderson and Coate (2005), which are positively related to the advertising intensity,
or the search fee that the platform charges periodically. Search frictions are modeled by
introducing the exogenous exit probability δ. Following a literal interpretation, δ is the
probability with which agents become inactive, i.e. the probability that an agent finds
a job or a partner offline through other means. More generally, δ can be thought of as
modeling the force that leads agents to discount the future, which makes delayed matching
more costly.

Business Model The platform is assumed to be a monopolist in the matching market.
Following evidence from the dating market, the most popular dating platforms have a
common owner. For simplicity, I assume that the dominant owner only offers one platform

7This allows the current match partner to tremble with small probability. Alternatively, acceptance
decisions could be made sequential in which case agents would have to accept a valuable match.
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in my model.8 More generally, we often observe platforms with large market power in
two-sided markets, where joining a new platform is worthwhile only if others join. My
monopoly setup is a simple setting capturing such market power.

The model examines two prevalent business models: an advertisement-based approach
and periodic search fees. Many platforms adopt the former— (targeted) advertising —
by monetizing user attention through selling advertising slots to firms. In return for
users’ attention, the platform provides its matching service for free. In this setup, keeping
user attention is crucial for the platform’s revenue.9 This is why I assume that the
platforms earns no revenue when not capturing the user’s attention through offering a
potential match. Alternatively, platforms implement search fees, which they collect from
active users. Examples include “pay-per-click” or “pay-per-contact” fees, though monthly
subscription plans are also common. These fees are typically low, distinguishing them
significantly from participation fees, which are far less common but used by some selective
matching platforms.10

An advertising-based stream of revenues continues to be a prominent part of platform
business models, especially with transaction costs. Platforms have transaction costs when
setting up a payment system, while many users are reluctant to give their credit card data
to platforms. Overall, privacy concerns, risk aversion and uncertainty about new products
(platforms) can play a role why users (initially) prefer to use the matching service for
“free” while watching advertisement over signing up to a subscription plan or paying a
participation fee. As a consequence, many platforms rely on these so-called “freemium”
business models, which have become even more popular since the emergence of mobile
applications (apps). Here, “freemium” describes business models where a basic service
is available to users for free (with advertisement), whereas an upgraded service can be
accessed through purchases.11 Other platforms, however, rely only on advertising or fees.
I return to the question of why platforms refrain from collecting a fixed fee for a certain
promised match in Section 1.5.

8The dating market is highly concentrated with the Match Group Inc. owning many of the most
popular dating platforms: Tinder, Hinge, PlentyofFish, Match, OkCupid etc. (see https://www.bamsec.
com/filing/89110323000114?cik=891103), while other dating platforms are highly differentiated and
for example, cater to specific religious groups. Recent experimental evidence from Dertwinkel-Kalt et al.
(2024) suggest that even the closest competitors, Tinder and bumble, are viewed to be almost independent
instead of substitutes by consumers.

9Recent papers that study different aspects of attention on platforms are for example Prat and Valletti
(2022), Chen (2022), and Srinivasan (2023).

10For an overview of the most common platforms and their fee structure see Appendix C.
11For empirical evidence see for example, Kummer and Schulte (2019) for studying privacy concerns

in the mobile app market and Deng et al. (2023) for studying freemium pricing of mobile applications.

https://www.bamsec.com/filing/89110323000114?cik=891103
https://www.bamsec.com/filing/89110323000114?cik=891103
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No Agent is Unmatched The key assumption of the matching rule, Assumption 1,
states that if possible each agent receives a recommended match in any period.12 As many
online platforms take on a dual role as attention intermediaries and need to attract con-
sumers’ attention to sell to advertisers, providing a constant stream of potential matches
aims at grabbing and keeping consumers’ attention.13

To grab users’ attention, the platform makes a recommendation any time the agent
enters and is active on the platform. The recommendation of a potential match can be
viewed as being part of a menu that the platform offers. Following the idea of Eliaz
and Spiegler (2011a), the platform offers a menu that consists of an attention-grabbing
component and its true value of the service. In reality, the attention grabbing component
is supported by push notifications or emails, while the value from the platform’s service
is determined by the expected utility from getting a match. The modeling choice is
further supported by a recent lawsuit against the MatchGroup Inc., owner of a majority
of the most popular dating platforms.14 In the complaint, the plaintiff accuses Match
to monopolize users’ attention and claim that “Push Notifications prey on users’ fear of
missing out on any potential matches with a strategic notification system designed to
capture and retain attention throughout the day”.

1.4 Analysis

To analyze the equilibrium, I need to characterize the agents’ behavior and the platform’s
optimization problem. The agents’ search process is characterized by a set of participation
and incentive constraints that determine whether an agent is willing to incur the search
costs as well as accepts or rejects a recommended match.

Agents’ Search Process. Consider the strategy of agent θk
i being active in the match-

ing market. Upon meeting an agent θ−k
j , the agent decides whether to accept or reject

the recommended match. Mutual acceptance results in a match and both agents leave
the market as a pair. If at least one of the agents rejects the match, agent θk

i continues
to search.

12In the literature on search-and-matching models time is often continuous, such that matching oppor-
tunities arrive at a constant rate. Similarly, Antler et al. (2023, 2024) make the assumption that matches
arrive at a constant rate even in the presence of a matchmaking platform.

13In a recent experiment, Aridor (Forthcoming) provides evidence that users allocate their attention
across product categories and offline when facing restriction in their time spent on a specific platform.
The results suggest that competition for attention spans across multiple markets.

14Oksayan v. MatchGroup Inc., N.D. Cal., No. 3:24-cv-00888, 2/14/24.
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Due to the stationarity of the environment, the continuation value of agent θk
i , V C(θk

i ),
is defined by the following recursive equation

V C(θk
i ) =δωk

i + (1 − δ)
⎡⎣−sk

i +
∑︂

j

α(θk
i , θ−k

j )ϕ(θ−k
j |θk

i )θk
i θ−k

j

+ (1 −
∑︂

j

α(θk
i , θ−k

j )ϕ(θ−k
j |θk

i ))V C(θk
i )
⎤⎦ .

The first term represents the case in which agent θk
i will become inactive with probability

δ and gets its outside option ωk
i . If the agent remains active with probability 1 − δ, it

incurs the search cost sk
i . The expected utility from leaving in a match is given by the

utility from a match with type θ−k
j , which is equal to the product of both types, and the

probability of meeting and mutually accepting type θ−k
j . With the counterprobability, the

match was not mutually accepted and agent θk
i continues to search.

Solving for the continuation value yields

V C(θk
i ) =

δωk
i + (1 − δ)

(︂
−sk

i +∑︁
j α(θk

i , θ−k
j )ϕ(θ−k

j |θk
i )θk

i θ−k
j

)︂
δ + (1 − δ)

(︂∑︁
j α(θk

i , θ−k
j )ϕ(θ−k

j |θk
i )
)︂ . (1.3)

The continuation value then characterizes the payoff of an agent who rejects a match and
returns to the search process, whereas the match payoff θk

i θ−k
j characterizes the payoff of

an agent who accepts a match with type θk
j (and is accepted by them). By Definition 3,

if the match value θk
i θ−k

j is smaller (larger) than the continuation value V C(θk
i ), agent-θk

i

will reject (accept) a recommended match with agent-θ−k
j .

The optimal strategy of an agent who uses a time-and history-independent strategy
satisfies:

σk(θk
i , θ−k

j ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if θk

i θ−k
j < V C(θk

i )
r ∈ [0, 1] if θk

i θ−k
j = V C(θk

i )
1 if θk

i θ−k
j > V C(θk

i )
, for k = A, B. (1.4)

If the match value with a type θ̂
−k

j is larger than the continuation value, agent θk
i will

accept a recommended match with agent θ̂
−k

j and all agents of types higher than θ̂
−k

j . The
optimality of this strategy follows directly from the supermodularity of the match payoff.

An agent participates if the continuation value is larger than the agent’s outside option.
Due to the stationarity and history-independence of strategies, if an agent decides to
participate in the matching market, they will not exit during the search process and
search until they exit in a match or become inactive with probability δ.
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Remark. The strategy of an agent of type θk
i is increasing in its second argument

σk(θk
i , θ−k

N−k) ≥ σk(θk
i , θ−k

N−1) ≥ · · · ≥ σk(θk
i , θ−k

1 ), but may be neither in- nor decreasing in
its first argument.

The fact that the agent’s strategy is increasing in its second argument follows directly
from Equation 1.4. If the agent’s outside options are weakly increasing in type, for match-
ing rules such as random or positive assortative matching rules σk(θk

i , θ−k
j ) is additionally

decreasing in its first argument: σk(θk
Nk , θ−k

j ) ≤ · · · ≤ σk(θk
1 , θ−k

j ). A random matching
rule yields the same meeting probabilities for all types. Due to the supermodularity of the
payoff function, higher types will reject (weakly) higher types than lower types do. With
positive assortative matching, the matching probabilities conditional on being a higher
type first-order stochastically dominates the matching probabilities conditional on being
a lower type. Hence, higher types will reject strictly higher types than lower types do.
In contrast, a negative assortative matching rule, which recommends (almost exclusively)
higher types to lower types, and vice versa, can cause lower types to reject lower types
while higher types are willing to accept them. Indeed, I will explicitly provide an example
of such an equilibrium in Section 1.4.2.

Given the agent’s strategy in Equation 1.4, the acceptance probabilities satisfy

α(θk
i , θ−k

j ) =
⎧⎨⎩ 0 if θiθj < V C(θk

i ) or θiθj < V C(θ−k
j )

1 if θiθj > V C(θk
i ) and θiθj > V C(θ−k

j )
. (1.5)

Equation 1.5 establishes the relationship between acceptance probabilities and matching
outcomes. Mutual acceptance requires that whenever two types of agents meet, both
must find it optimal to stop searching.

1.4.1 Multiple Types

Consider the case with Nk types of agents such that Θk = {θk
1 , ..., θk

Nk} on side k = A, B,
where θk

Nk > ... > θk
1 . The following section provides general results on the existence of

an equilibrium, optimal solution and their properties. Let sk
i be exogenous.

Lemma 1. For a given feasible matching mechanism, a steady-state equilibrium exists if
and only if Equation 1.2 and 1.5 are satisfied.

Suppose for a feasible matching mechanism, an equilibrium exists. Then, it must give
rise to (i) a steady state and (ii) optimal strategies of agents, i.e. satisfy Definition 2
and Definition 3. Hence, by (i) Equation 1.2 (balance condition) must hold, and (ii)
implies Equation 1.5 (optimal mutual acceptance) must hold. Conversely, if Equation
1.2 is violated the steady state (balance) condition fails and if Equation 1.5 is violated
at least some agent behaves suboptimal. Thus, a feasible matching rule gives rise to an
equilibrium if and only if Equation 1.2 and 1.5 hold.
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Lemma 2. There exists a feasible matching rule that gives rise to an equilibrium.

In the most simple case consider the matching rule ϕ(ωk
i |θk

i ) = 1 for all types θk
i ∈ Θk

on side k = A, B. Given that agents are matched with their outside option, no agent
is willing to incur search costs. With no agent participating in the steady state, the
matching rule is feasible and gives rise to a steady state equilibrium.

Next, to determine the profit-maximizing matching rule M, it is useful to define
the matching outcome. Intuitively, the matching outcome is defined as the matrix that
describes the distribution of pairs under matching rule M that exit in a match. Recall
that matrix M describes the masses of recommended pairs under matching rule M and
let A denote the matrix of agents’ mutual acceptance probabilities

A ≡

⎛⎜⎜⎜⎝
α(θk

1 , θ−k
1 ) · · · α(θk

1 , θ−k
N−k)

... ...
α(θk

Nk , θ−k
1 ) · · · α(θk

Nk , θ−k
N−k)

⎞⎟⎟⎟⎠ .

Formally, the matching outcome is defined as the componentwise multiplication (Hadamard
product) of matrix A and M :

Definition 4. The matching outcome is defined by the matrix

A ⊙ M =

⎡⎢⎢⎢⎣
α(θk

1 , θ−k
1 )Φ(θk

1 , θ−k
1 ) · · · α(θk

1 , θ−k
N−k)Φ(θk

1 , θ−k
N−k)

...
α(θk

Nk , θk
1)Φ(θk

Nk , θ−k
1 ) · · · α(θk

Nk , θ−k
N−k)Φ(θk

Nk , θ−k
N−k)

⎤⎥⎥⎥⎦ ≡ O(·).

Matching outcomes are (i) assortative if O(·) has positive entries only along the main
diagonal, (ii) weakly assortative if O(·) has positive entries along the main diagonal and
to the right if and only if all entries below are also positive, and (iii) non-assortative
otherwise.

If a matching outcome is assortative, this implies that lower types are matched with
strictly lower types than higher types while the definition of weakly assortative implies
that lower types can be matched with the same types as higher types. The definition is
weak in the sense that it does not require that lower types accept with a higher probability
than higher types. Other matching outcomes are called non-assortative and entail negative
assortative outcomes where higher types are matched with strictly lower types than lower
types.

Denote by m(θk
i , θ−k

j ) = α(θk
i , θ−k

j )Φ(θk
i , θ−k

j ) an entry of matrix O(M). Each entry is
therefore the mass of matched pairs that exit the market together in every period. For
a given matching rule, an equilibrium induces at most one matching outcome since the
mutual acceptance probabilities and steady state masses are pinned down in equilibrium.
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To find the profit-maximizing matching rule and the associated matching outcome,
I proceed in two steps. First, I fix a matrix of acceptance probabilities and determine
the optimal feasible matching rule that implements the mutual acceptance probabilities.
Second, supposing the optimal matching rule from step one is used to implement any
chosen matrix of acceptance probabilities, I choose the matrix that yields the highest
platform profits.

First, note that the platform finds it optimal to induce either full participation of a
type or no participation.

Lemma 3. It is without loss of generality to consider ηk
i ∈ {0, 1}.

Suppose the platform charges type-dependent search fees, and type θk
i , who is indif-

ferent between participating and not participating, participates with probability less than
one. Then, the platform makes the same profit if type θk

i participates with probability
one, the platform sometimes matches them to their outside option, and reduces their
search fee such that they make the same payments in expectation. If the platform uses
an advertising-based business model, the platform will strictly increase its profit by this
procedure due to the concavity of advertising. Therefore, from now on I will focus on
ηk

i ∈ {0, 1}, which allows to focus on the set of participating types. Then, suppose the
platform induces a set Θ̂k for k = A, B to participate.

In the following, I will transform the platform’s profit-maximization problem into a
linear program. For given search cost sk

i , recall that the platform’s objective is to maximize

max
M

∑︂
k=A,B

∑︂
θk

i ∈Θ̂k

(1 − δ)sk
i

1 − ρ
f(θk

i ),

i.e., the platform maximizes the steady state mass of active agents with weight sk
i . Note

that the platform does not earn revenue from agents that are inactive or do not participate
in the market in the first place. The maximization problem underlies a set of constraints.
First, the matching rule must implement a steady state. The steady state condition
(Equation 1.2) implies

βk
i = f(θk

i )δ + (1 − δ)
∑︂

θ−k
j ∈Θ−k

α(θk
i , θ−k

j )Φ(θ−k
j |θk

i )⏞ ⏟⏟ ⏞
=m(θk

i ,θ−k
j )

. (Steady State)

In the steady state, the inflow of agents of θk
i is equal to the mass of agents that become

inactive in a period with probability δ and the mass of active agents that exit in matched
pairs. In the steady state, the mass of agents of type θk

i can be restated as

f(θk
i ) =

βk
i − (1 − δ)∑︁j m(θk

i , θ−k
j )

δ
, (Steady-State Mass)
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and therefore, depends positively on the inflow, βk
i , and negatively on the mass of matched

pairs that include type θk
i . Second, the matching rule determines whether agents partici-

pate in the market and whether agents search according to the platform’s recommenda-
tions. For participating agents, it must hold that the agent prefers participating in the
market to accepting the outside option, i.e.

ωk
i ≤

δωk
i + (1 − δ)

(︂
−sk

i +∑︁
j α(θk

i , θ−k
j )ϕ(θ−k

j |θk
i )θk

i θ−k
j

)︂
δ + (1 − δ)

(︂∑︁
j α(θk

i , θ−k
j )ϕ(θ−k

j |θk
i )
)︂ = V C(θk

i ).

Since the match payoffs are supermodular, there exists a critical lowest type that an
agent θk

i is willing to accept (Equation 1.4). Agent θk
i rejects (accepts) all types below

(above) the critical lowest type. The incentive constraint for agent θk
i to follow the

recommendation of the platform to (weakly) reject an agent θ−k
j reads15

θk
i θ−k

j ≤ V C(θk
i ).

By using the steady state condition, the participation and incentive constraints can be
reformulated. Note that the denominator of the continuation value is equal to the prob-
ability that an agent exists, which is equal to βk

i/f(θk
i ) by Equation 1.2. Inserting into the

continuation value and rearranging yields

βk
i ωk

i ≤ δf(θk
i )ωk

i − (1 − δ)f(θk
i )sk

i + (1 − δ)
∑︂

j

α(θk
i , θ−k

j )Φ(θ−k
j |θk

i )⏞ ⏟⏟ ⏞
=m(θk

i ,θ−k
j )

θk
i θ−k

j , (PC)

βk
i θk

i θ−k
j ≤ δf(θk

i )ωk
i − (1 − δ)f(θk

i )sk
i + (1 − δ)

∑︂
j

α(θk
i , θ−k

j )Φ(θ−k
j |θk

i )⏞ ⏟⏟ ⏞
=m(θk

i ,θ−k
j )

θk
i θ−k

j . (IC)

Lastly, the platform’s matching rule must satisfy the feasibility constraints. Without loss
of generality, let side B be of smaller or same size as side A. Then on side A, the sum over
the mass of each recommended pair that includes type θA

i must be equal to the steady
state mass of θA

i . On side B, the sum over the mass of each recommended pair that
includes type θB

i and the mass of agents of type θB
i that are unmatched must be equal to

the steady state mass of type θB
i

∑︂
θ−k

j ∈Θ−k

Φ(θk
i , θ−k

j ) + 1k=AΦ(θk
i , ωk

i ) = f(θk
i ), k = A, B. (Feasibility)

As stated above, for given matrix A the above constraints and the objective function are
all linear functions of the steady state masses, matched pairs, and recommended pairs.

15In mechanism design, this is often referred to as an obedience constraint because there is no private
information throughout the model.
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The steady-state mass in turn is also a linear functions of the mass of matched pairs.
To complete the reformulation as linear program, it remains to include the indifference
constraints for agents who mix when accepting type from the other market side, which
implies that the respective incentive constraint must hold with equality. Appendix A.1
formally does so, leading to:

Lemma 4. The platform’s problem can be restated as a linear programming problem in
the mass of matched and recommended pairs: {m(θk

i , θ−k
j )}, {Φ(θk

i , θ−k
j )}ij.

Note that by Lemma 1, the solution to the linear program is an equilibrium as it fulfills
Equation 1.2 and 1.5. Given a solution of the linear program — the auxiliary problem —
the optimal matching rule to the original problem results from

ϕ(θ−k
j |θk

i ) =
Φ(θk

i , θ−k
j )

f(θk
i ) .

Next, I show that the auxiliary problem has an optimal solution. I say that a matrix
A of mutual acceptance probabilities can be implemented if there exists a matching mech-
anism M such that

(︂
(f(θk

i ))θk
i ∈Θk , A, η

)︂
is an equilibrium. Let A be the set of matrices A

that can be implemented. By Proposition 2, A is non-empty. For every A′ ∈ A, construct
a matrix A′′ such that

α′′(θk
i , θ−k

j ) = α′(θk
i , θ−k

j ) if α′(θk
i , θ−k

j ) ∈ {0, 1},

α′′(θk
i , θ−k

j ) = αij otherwise,

where αij can take on any value in [0, 1]. I use αij ∈ [0, 1] whenever an agent is indifferent,
which implies that the same constraints in the auxiliary program must hold. Denote
the resulting set of matrices as A∗ and note that A∗ is finite. Now, I can solve the
linear program over the mass of matched and recommended pairs (ignoring acceptance
probabilities). Solving this for all (finite) possible combinations of constraints yields a
set of candidate solutions among which I choose the one that maximizes the platform’s
profit. To find the corresponding acceptance probabilities αij ∈ [0, 1] when the agent is
indifferent, divide the matched pairs through the recommended ones

αij =
m(θk

i , θ−k
j )

Φ(θk
i , θ−k

j )
.

Formally, as A∗ is finite, only a finite number of linear problems must be solved. Each
linear program returns a set of candidate solutions and a value of the objective function.
Fixing A ∈ A∗, the linear program returns a value Π(A), i.e., the profit level, and let
G = ⋃︁

A∈A∗ Π(A) be the set of profit levels for all linear programs with A ∈ A∗ that
implement an equilibrium.
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Lemma 5. The set G is non-empty and finite with Π(A) < ∞ for all A ∈ A∗ and
−∞ < Π(A) for at least one A ∈ A∗.

Key to the proof is to show that the linear program for any given matrix A ∈ A is (i)
not unbounded and (ii) not infeasible, i.e. the feasible region is non-empty. Given that
both (i) and (ii) are satisfied, an optimal solution to the linear program exists and the
linear program attains a finite optimal value (Dantzig, 1963).16

Theorem 1. There exists an optimal solution.

I proceed by showing that an optimal solution exists for any exogenous search costs sk
i

for all θk
i ∈ Θk, k = A, B. By Lemma 5, the maximum over set G is well-defined as G is

finite and bounded such that an optimal solution exists. Next, I show that there exists an
optimal solution if the platform chooses search costs sk

i for all θk
i ∈ Θk, k = A, B. Through

a series of Lemmas, I prove that the set G is compact-valued and upper hemicontinuous in
the vector of search costs. This implies that the set max G is upper semicontinous in the
vector of search costs. Therefore, by an extension of the Weierstrass theorem a maximum
exists.

To identify properties of the optimal solution, first consider two prominently studied
matching rules. As discussed in Section 1.2, in decentralized matching-and-search markets
agents are often assumed to meet according to a random matching technology. A natural
question to consider is whether a platform that has access to extensive user data would
commit to a random meeting technology as well.

Proposition 1. Suppose Nk ·N−k > 1. Then, random matching is generically suboptimal
for exogenous search costs and endogenous search fees. Consider the class of functions:
ν(sk

i ) = κ(sk
i )α with κ ∈ R+ and α ∈ (0, 1). Random matching is generically suboptimal

within this class of functions.

The proposition shows that random matching is generically suboptimal for the plat-
form if search costs are exogenous or type-dependent search fees are endogenously cho-
sen.17 For analytical convenience, I consider the class of concave revenue functions in the
proof to determine a knife-edge solution.

Consider the nontrivial case in which there are different types to be matched. Under
random matching, the conditional probability of meeting a type θk

i on side k is the same
for all types θ−k

j ∈ Θ−k on side −k and corresponds to the proportion of type θk
i in the

16Existence follows from the fact that the constraint set is a convex polyhedron. Because the objective
is linear and the constraint set is convex, any local extremum will be the global extremum. As the
objective is linear, the extremum will be obtained at one of the extreme points of the constraint set, i.e.,
at the vertices of the polyhedron.

17Consider the following definition for generically suboptimal. The probability of the case in which
random matching is optimal occurs with probability zero when the model parameters are randomly
drawn from continuous intervals as defined in the proof.
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population. As shown in Appendix A.2, the probability of meeting a type θk
i is a function

of the inflow, βk
i , and the probability of exit, δ. In contrast, for given search costs, the

optimal solution of the linear program is a function of these and internalizes changes in
the search cost. Therefore, random matching is generically suboptimal for given search
costs, although it may coincide with the optimal solution for knife-edge sk

i , θk
i , δ, and βk

i .
This result extends to the case in which the platform chooses a (linear) search fee. The
platform does not choose random matching, but chooses a positive assortative matching
rule that maximizes the agents match surplus and extracts all surplus via the search fee.

Proposition 1 highlights that a platform, which has increasing access to user data,
does not commit to a random matching technology. Proposition 1 immediately implies
that the platform values user data as access to data increases the platform’s profit.

Corollary 1. Suppose a platform has access to data about user types. The platform makes
higher profits by using the data to discriminate users by conditioning the matching rule
on user types instead of refraining from using user data.

Second, consider the positive assortative matching rule (PAM) under the assumption
that both sides are symmetric with respect to the inflow of new agents: βA

i = βB
i , their

type space Θk = Θ, and outside options. Under symmetry, PAM matches agents if
and only if they are of the same type on both sides of the market. In this particular
case, PAM is of special interest in the literature as it maximizes total match surplus
when the match utility is supermodular, where an agent’s individual match surplus is
defined as the difference between the expected match utility on the platform and the
agent’s outside option. Furthermore, the resulting matching outcome, i.e., the positive
assortative matching outcome, is equivalent to the set of stable matchings (Roth and
Sotomayor, 1992). That is, matches are individually rational, i.e., yield a utility greater
than their outside option, and are pairwise stable, i.e., there exists no blocking pair of
agent that would prefer to be matched to each other instead of the equilibrium matching.
The next proposition shows under which circumstances the positive assortative matching
rule (PAM) is not profit-maximizing under type-dependent search fees and advertising.

Proposition 2. Suppose both market sides are symmetric.

(i) PAM is profit-maximizing if the platform can charge arbitrary high type-dependent
search fees. Conversely, for every type there exists a threshold si such that if si < si,
PAM is suboptimal.

(ii) There exists a threshold δ such that if δ ≤ δ and ν(·) is concave, PAM is suboptimal.

When the platform commits to a (time-constant) deterministic matching rule such
as PAM, agents will accept the recommended match in the first period. Therefore, all
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agents search for exactly one period, which results in a steady state population equal to
the inflow for each type.

First, PAM is indeed profit-maximizing if the platform has pricing power. By charging
(high) type-dependent fees, the platform can extract the full surplus from agents, i.e., the
expected match value of an assortative match over the agent’s outside option. In this case,
the “search fee” is paid once, since agents search for only one period. The proposition,
however, shows that if the platform cannot commit to high search fees, for example due to
a (binding) price ceiling s, then PAM is no longer optimal. Let s be such that si violates
the condition in Proposition 2 for at least one type θi ∈ Θ. For the sake of exposition,
assume that this is not the lowest type. Then the platform can no longer extract the full
surplus from an agent of type θi. Then, PAM is not profit-maximizing, as the platform
has an incentive to deviate to a matching rule under which type θi and the lowest type
θ1 meet with mass ε. The price ceiling s is such that whenever type θi and type θ1,
θi (weakly) rejects θ1 under the new matching rule. This implies that type θi searches
longer than one period such that the platform earns more from type θi. For example,
fees for in-app purchases in Apple’s App store are capped at 999.99$, i.e., s = 999.99$.
The estimated lifetime utility from a match and hence, potential willingness to pay for
a partner could be well above 999.99$. Traditional matchmakers charge over ten times
the amount.18 Alternatively, users may be reluctant to spend large sums online in one
payment, such that the platform’s pricing power might be limited as well.

Second, suppose the platform follows an advertising-based business model. If the
return to advertising is concave and δ ≤ δ, then PAM is suboptimal. Under PAM agents
search for only one period. Thus, a profit-maximizing platform would need to impose
the highest feasible search cost per agent. With concave advertising returns, however,
it becomes more profitable to reduce search costs and increase the mass of participating
agents. Since δ > 0 implies a loss in profits due to exogenous attrition that increases with
longer search times, a high δ reduces the platform’s willingness to trade off longer search
durations for lower costs.

Proposition 2 raises the question of why we, as users, do not observe high search fees
online, and why matching appears to be (anecdotally) worsening rather than improving.
If the platform has pricing power and can perfectly identify users’ types, Proposition 2
implies that it induces only one period of search and employs PAM to extract the full
surplus from users. This raises the question: under what conditions does the platform
have an incentive to induce more search?

In Section 1.4.2, I examine pricing under complexity constraints. I present an example
with two user types, where the platform is limited to setting a single price, and show that

18See https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?
unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=
articleShare

https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=articleShare
https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=articleShare
https://www.nytimes.com/2024/02/13/business/dating-bounty-roy-zaslavskiy.html?unlocked_article_code=1.VU0.XqAb.q2iJT-p0bHz1&smid=nytcore-ios-share&referringSource=articleShare
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under these conditions, the platform prefers not to use PAM. In Section 1.5, I demonstrate
that even when the platform has full pricing power and can implement complex pricing
schemes, it does not use PAM and instead relies on advertising—–provided it is sufficiently
efficient. Furthermore, when users are overconfident, I show that the platform has an
incentive to induce search by lowering fees for high types.

1.4.2 Binary Types

Suppose now that market sides are symmetric. There are only two types on each side of
the market and with slight abuse of notation denote the type set by Θ = {θh, θl} with
θh > θl. Each type has an outside option of zero.19 In the previous section, I showed that
random matching is suboptimal for the platform, while PAM is optimal if the platform
charges sh = θ2

h and sl = θ2
l .

This section examines the case in which the platform is constrained in setting agents’
search costs. In reality, a platform serves many types of users, which would require
complex pricing schemes to extract each agent’s surplus. I therefore consider a setting in
which both types of agents face the same search cost designed by the platform, sh = sl =
s. One possible interpretation is that both types use the basic service of a (freemium)
platform. In this case, the platform is assumed to determine the amount of advertising
shown to each agent using the basic service. Alternatively, if payments are involved,
agents may choose among (discrete) pricing tiers, with all agents on the same tier paying
the same amount—as is common on dating platforms. On job platforms, for example,
firms often pay the same price per click when advertising a job in a given submarket. To
determine how the matching outcome is affected by the platform-chosen matching rule,
the analysis fully characterizes all possible matching outcomes in this example.

As in Section 1.4.1, I proceed in two steps. First, I characterize the optimal match-
ing rule that implements the mutual acceptance probability matrices that are consistent
with Equation 1.5. Given the first step, I find the optimal matrix of mutual acceptance
probabilities that maximize the platform’s profit. To identify the optimal matching rule
for the platform, suppose for now that s is exogenous.

The first result, Lemma 11,20 characterizes the optimal matching rule that implements
the mutual acceptance probability matrices. With two types, the mutual acceptance
matrix takes the following form

A =
⎡⎣α(θh, θh) α(θh, θl)

α(θh, θl) α(θl, θl)

⎤⎦ ,

19The following analysis qualitatively unaffected as long as the outside options are ωl < θ2
l and ωh <

θhθl. The platform’s profit, however, is quantitatively affected as the platform can extract less rent from
each agent.

20Lemma 11 and its proof can be found in Appendix B.
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where the mutual acceptance probability of the assortative matches are along the diagonal
and the mutual acceptance probability of mismatches are off the diagonal. Trivially with
one type, the mutual acceptance matrix consists only of one entry. With two types, only
three possible matrices can be implemented as part of an equilibrium

AP AM =
⎡⎣1 0
0 1

⎤⎦ , AW P AM =
⎡⎣ 1 α′

ij

α′
ij 1

⎤⎦ , ANAM =
⎡⎣ 1 α′′

ij

α′′
ij 0

⎤⎦ , α′
ij, α′′

ij ∈ [0, 1].

Given the platform’s matching rule, high type agents can either accept only other high
types, or accept low types with positive probability. This results in three possible con-
stellations of mutual acceptance probabilities and thus matching outcomes. If high type
only accept high types, low types will always accept high and types, resulting in a positive
assortative matching outcome — only agents of the same type accept each other (AP AM).
Depending on the matching rule if high types accept low types with positive probability,
low types may accept low types, resulting in a weakly assortative matching outcome —
high and low types mutually accept the same types of agents (AW P AM ). Alternatively,
low types may reject low types, resulting in a non-assortative matching outcome — high
types accept low types, but low types do not (ANAM).

For each of the three possible matching outcomes, there exists an optimal matching rule
that implements the outcome for a range of parameters (Lemma 11). The implementation
of the matching outcomes depends crucially on feasibility. Given the total mass of agents
that join, the ratio of new high to low type agents, 0 < βh/βl < ∞, determines which
outcome can be implemented, as the ratio affects the steady state population of both types.
The positive assortative matching outcome can be implemented for all 0 < βh/βl < ∞,
whereas the weakly assortative and non-assortative outcomes cannot.

Given the existence of an optimal matching rule, which matrix A maximizes the plat-
form’s profit for fix search costs? The next proposition summarizes the results.

Proposition 3. (i) Let 0 ≤ s ≤ θ2
l . The platform implements AP AM and the matching

outcome, OP AM , is positive assortative if

0 ≤ βh

βl

≤
(︄

βh

βl

)︄(a)

, or
(︄

βh

βl

)︄(b)

≡ (1 − δ)(θ2
h − s)

θh(θh − θl) − s + δ(θ2
h − s) ≤ βh

βl

.

The platform implements AW P AM and the matching outcome, OW P AM , is weakly positive
assortative if

(︄
βh

βl

)︄(a)

≤ βh

βl

≤
(︄

βh

βl

)︄(b)

.

(ii) Let θ2
l ≤ s ≤ θhθl. If βh ≥ βl, the platform implements AW P AM and the match-

ing outcome is either weakly assortative, OW P AM , or non-assortative for large enough s,
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ONAM . If βh < βl, the platform implements AW P AM and the matching outcome is weakly
assortative, OW P AM , or only high types participate if s is large enough.
(iii) Lastly, if θhθl ≤ s ≤ θ2

h, low types do not participate on the platform. The mutual
acceptance matrix and matching outcome is positive assortative.

First, consider the maximum rent that the platform can extract when the positive
assortative matrix, AP AM , is implemented. A high type agent is willing to search the
longest for a match with another high type. In this case, the maximum rent the platform
can extract from a high type agent is proportional to θh(θh − θl), which is the value of
its own type times the match premium. The match premium is the gain from being in a
match with a high type instead of leaving with a low type. If the platform were to extract
more rent, high types would start accepting low types as well, and thus only search for one
period. Conversely, if high types always reject low types, the maximum rent the platform
can extract from low types is proportional to θ2

l .
Due to feasibility constraints, the platform is constrained by the ratio of high to low

types when choosing the matching rule. The platform can extract the rent from both
types — as described above — at

(︄
βh

βl

)︄(a)

= (1 − δ)(θ2
l − s)(s + δ(θ2

h − s))
(θh(θh − θl) − s − δ(θ2

h − s))(s + δ(θ2
l − s)) , (1.6)

At this “optimal” ratio, high types are just indifferent between accepting and rejecting
low types, while low types are just indifferent between participating or not, which results
in

ϕ(θh|θh) = s + δ(θhθl − s)
(1 − δ)θh(θh − θl)

, (1.7)

ϕ(θl|θl) = s

θ2
l

. (1.8)

Due to feasibility constraints, the incentive and participation constraints cannot generally
bind at the same time while implementing a positive assortative matching outcome. As
the ratio increases, relatively more high type agents enter compared to low type agents.
In this case, high types inevitably meet high types more often, so the platforms makes the
participation constraint binding for low types. The platform must increase the probability
of a high type meeting a high type such that high types are left with a rent greater than
θhθl. As the ratio decreases, relatively few high type agents enter compared to low type
agents. The platform makes the incentive constraint binding for high types, leaving a
positive rent for low types by increasing the probability of a low type meeting a low type.
In both cases, the platform potentially forgoes a significant amount of rent when moving
away from the “optimal” ratio.
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Second, consider the maximum rent that the platform can extract when the weakly
positive assortative matrix, AW P AM , is implemented. Suppose the ratio of high to low
types is greater than in Equation 1.6. Then, the platform can commit to a matching rule
in which high types randomize over accepting and rejecting low types, while low types
remain indifferent between participating and their outside option. The expected match
utility of high types decreases, while the expected match utility of low types increases.
For a ratio of high to low types greater than in Equation 1.6, implementing AW P AM yields
a higher profit than AP AM . When implementing AP AM , the platform must increase the
meeting probability of assortative pairs as the ratio βh/βl increases, otherwise low types
will no longer be willing to participate. This implies, however, that the platform forgoes
rent from high types. Inducing high types to accept mismatches with positive probability,
α(θh, θl) > 0, leads to a longer search of low types as they receive a higher expected match
utility. Extending the search of low types, implies that there are more low types on the
platform, so the platform can also extend the search time of high types.

Third, consider the maximum rent that the platform can extract when the negative
assortative matrix, ANAM , is implemented. High types accept both types with positive
probability, while low types reject low types and only enter in (mis-)matches with high
types. The rent extracted from low types is then proportional to θl(θh − θl), the value of
their own type times the match premium. The platform, however, never finds it profitable
to implement ANAM when it can implement AW P AM as the platform can extract all rent
from low types in the latter case, whereas it can only extract the rent premium in the
former case. Lastly, if search costs are large, the platform can implement AW P AM , but
match low types only to high types if feasible. This in turn results in a non-assortative
matching outcome albeit mutual acceptance would be weakly assortative.

For a given inflow of high and low types, βh

βl
, Proposition 3 presents the matching

outcomes that the platform prefers to implement. The assortativity of the matching
outcomes is non-monotonic in the ratio of high to low types. For example, the platform
can implement the positive assortative matching outcome in markets in which one type
dominates. In contrast, the platform implements mismatch in relatively balanced markets.

Corollary 2. The platform strategically lowers the quality of (recommended) matches.
The platform’s matching creates two economic inefficiencies: delayed matching and mis-
matched pairs.

In other words, the platform recommends mismatches to agents when feasible, i.e., the
platform fosters mismeetings to delay agent’s matches. By delaying matches, the platform
increases the payments that it collects from agents per period. Extending users’ search,
such as in one-sided (matching) markets, has also been shown by for example, Hagiu and
Jullien (2011). In addition to mismeetings, the platform also fosters actual mismatches by
inducing users to leave in mismatched (inefficient) pairs. Without allowing side payments,
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mismatches are a way of shifting utility from high to low types to incentivize low type
participation.

Next, consider the inefficiencies measured as (i) the amount of mismatch compared to
the socially optimal matching and (ii) the length of search for agents. Let the (welfare)
loss from mismatch be given by

W =
∑︂

(θi,θj)∈Θ×Θ
α(θi, θj)Φ(θi, θj)(θiθj − θ2

i ),

i.e., the sum over the mass of mismatches times the difference in match utilities between
the mismatches and the assortative matches. The expected usage time of an agent is
given by their stopping time

T (θi) = 1
δ + (1 − δ)∑︁j=h,l α(θi, θj)ϕ(θj|θi)

,

such that the total length of search is T = T (θh) + T (θl).

Proposition 4. (i) If the platform implements AP AM together with matching outcome
OP AM , mismatch is WP AM = 0 and T (θi) is decreasing in s and δ.
(ii) If the platform implements AW P AM together with matching outcome OW P AM , mis-
match is WW P AM is increasing in s if βl > βh and in- or decreasing in s otherwise as well
as decreasing in δ for s ≤ θ2

l and in- or decreasing in δ otherwise. T (θi) is decreasing in
s and δ.
(iii) If the platform implements AW P AM together with matching outcome ONAM , mismatch
is WNAM = −βl(θh − θl)2 and T (θi) = 1.

By definition, welfare loss is zero under positive assortative matching, as it maximizes
total surplus. As search cost or friction δ increases—–both of which lower agents’ contin-
uation values—–the platform must raise assortativity and decrease agents’ search time to
keep low types participating and high types rejecting low types. In the weakly assortative
case, assortativity rises with δ, reducing mismatches as long as s ≤ θ2

l . Since the mass
of assortative matches varies with s, the mass of mismatches may increase or decrease
depending on whether βh or βl is larger. In contrast, welfare loss in the non-assortative
case is unaffected by search cost or δ, and the platform induces only one period of search.

1.4.3 Advertising and Search Fee

Search Fee If ν(s) = s, the platform charges a linear search fee. It maximizes profit
by choosing the fee, given a matching matrix A and the optimal rule that implements
it. According to Proposition 3, the platform considers three cases where both types
participate: (i) implementing AP AM with the positive assortative outcome O(AP AM), (ii)
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implementing AW P AM with the weakly positive assortative outcome O(AW P AM ), and (iii)
implementing AW P AM with the non-assortative outcome O(AP AM). Additionally, there is
case (iv) where only high types participate. The next proposition states that the platform
can implement any of the four cases depending on the exogenous parameters.

Proposition 5. For a range of parameters, the platform chooses
(i) s to maximize Π(AP AM) s.t. s ∈ [0, θ2

l ] : βh/βl ≤ (βh/βl)(a) and implements OP AM .
(ii) s to maximize Π(AW P AM ) s.t. s ∈ [0, s] : (βh/βl)(a) ≤ βh/βl ≤ (βh/βl)(b) and implements
OW P AM .
(iii) s = θhθl and implements ONAM .
(iv) s = θ2

h and excludes low types from participating.

The proposition characterizes the platform’s optimal solution when s is a uniform
search fee paid by agents. When βh/βl is relatively low, the platform chooses to implement
AP AM . In this case, its profit is bounded by

ΠP AM <
2(1 − δ)

1 − ρ

(︂
βhθh(θh − θl) + βlθ

2
l

)︂
,

which corresponds to the maximum surplus the platform can extract as δ → 0, when
high types are indifferent between accepting or rejecting low types, and low types are
indifferent between participating or opting out. As in Proposition 3 if βh/βl ≥ (βh/βl)(a),
the platform can implement AW P AM and outcome OW P AM .

For βh/βl ≥ 1, the platform can implement the non-assortative outcome. As agents
only search for one period, the profit given ONAM is maximized if the search fee is set as
high as possible. Thus, the platform chooses s = θhθl yielding a profit of

ΠNAM = 2(1 − δ)
1 − ρ

(βh + βl) θhθl.

With increasing βh/βl, the platform finds it profitable to charge the highest possible
search fee s = θ2

h to extract the full surplus from high types, while excluding low types
from participating on the platform. This holds as with increasing βh/βl, the share of
revenue from high types grows larger and hence, it becomes more profitable exploiting
only one type of users. The platform makes a profit of

Πθh
= 2(1 − δ)

1 − ρ
βhθ2

h.

Advertising Now, suppose the platform sells the attention of its users to advertisers. The
platform decides on the advertising intensity, which is related to the search cost that users
experience. Let ν(s) be the revenue per unit of search cost to users. Recall that ν(s) is
an increasing, concave function of search cost s with ν(0) = 0. This assumption excludes
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functions that are convex, i.e., under which the platform could prefer an advertising
intensity that induces users to stay for only one period, thereby significantly reducing the
mass of active users. The platform maximizes its profit with respect to s

max
s

2ν(s)(1 − δ)
1 − ρ

⎛⎝∑︂
θi∈Θ

f(θk
i )(s)

⎞⎠ ,

where the mass of agents of type θi is given by Lemma 3 subject to the conditions in
Proposition 3. The platform chooses s = sA such that

ν(sA)
ν ′(sA) = −

∑︁
k

∑︁
i f(θk

i )
∂
∑︁

k

∑︁
i

f(θk
i )/∂s

⃓⃓⃓
s = sA . (1.9)

Under the above condition, the marginal cost of an increase in search cost, given by the
semi-elasticity of demand on the right-hand side, is equal to the marginal benefit of an
increase in search cost, given by the semi-elasticity of advertising revenue.

Proposition 6. If ν(s)
ν′(s) ≥ s for s ∈ [0, θ2

h], the platform chooses search costs that are
lower or equal than a uniform search fee. Furthermore, if ν(θhθl)/ν(θ2

h) ≥ βh/βh+βl, i.e. ν(·)
is sufficiently concave at high search costs, the platform finds it profitable to never exclude
low types from the search process.

1.5 Explanations

If ν(sk
i ) = sk

i , the optimal contract is a set of personalized search fees. The platform
maximizes the total match surplus as in Appendix A.2 and extracts the surplus from
each agent via the fee. Considering the simplified model from Section 1.4.2, the platform
commits to the positive assortative matching rule and personalized fees (sh = θ2

h, sl = θ2
l )

(see Proposition 2). Under the positive assortative matching rule, agents meet their match
in the first period. The platform’s profit is

ΠP AM = 2(1 − δ)
(1 − ρ) (βhθ2

h + βlθ
2
l ).

1.5.1 Advertisement

Advertisement plays a key role in the digital economy. More specifically, in the light of the
application to dating and job search platforms, a substantial share of these platforms rely
on advertisement as a source of revenue, see Appendix C for an overview of dating and job
search apps that show advertisement. In the following example, I highlight that a (partly)
advertising-based business model can outperform profits generated by personalized prices
demonstrated by the following example.
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Example 1. Consider the concave function ν(s) = κsα for α = 1
2 . Figure 1.2 plots the

function for different values of κ. Furthermore, assume that βh < βl and let the value
of a high type, θh = 2, be twice as large as the value of a low type, θl = 1. Denote the
1−δ/1−ρ = γ.

For βh < βl, the platform either implements AP AM or AW P AM . To maximize adver-
tising profits, the platform chooses sA ∈ [0, θ2

l ] to solve

βh

βl

= (1 − δ)(θ2
l − sA)(s + δ(θ2

h − sA))
(θh(θh − θl) − sA − δ(θ2

h − sA))(sA + δ(θ2
l − sA)) ,

at which the agents’ search time under AP AM and AW P AM coincides. Furthermore recall
that if the condition is satisfied, the agents’ search time is maximized as low types are
indifferent between participating or not and high types are indifferent between accepting
and rejecting low types (and rejecting with probability one). The platform’s advertising
profit is

ΠA = 2γκ
√

sA

(︄
βhθh(θh − θl)

sA + δ(θ2
h − sA) + βlθ

2
l

sA + δ(θ2
l − sA)

)︄
.

For the chosen parameters, sA is equal to θ2
l = 1 if βh = 0 and strictly larger than zero

for βh approaching βl. The profits for βh = 0 are

ΠA(βh = 0) = γκ
√︂

θ2
l βl = γκβl,

ΠP D(βh = 0) = γβlθ
2
l = γβl,

which coincide for κ = 1. Thus, for κ > κ = 1, advertising profits are larger than the
profits of the optimal contract for some βl > 0. Now, let βh approach βl, the profits are

ΠA(βh = 0) = 2γκ
√

sA

(︄
βhθh(θh − θl)

sA + δ(θ2
h − sA) + βlθ

2
l

sA + δ(θ2
l − sA)

)︄
,

ΠP D(βh → βl) = 4γβl(θ2
h + θ2

l ).

Then, there exists a κ > κ such that advertising profits are larger than the profits of the
optimal contract for all βh ∈ [0, βl). For the values in this example, κ ≈ 3/2.

For general revenue functions ν(s), an advertisement-based business model generates
higher profits than charging personalized prices if advertisement revenue is sufficiently
efficient compared to its nuisance:

ν(s)
s

≥ βhθ2
h + βlθ

2
l

s(T (θh) + T (θl))
,
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Figure 1.2: ν(s) = κ
√

s for different κ

where the numerator is the full surplus that can be extracted from agents under PAM with
personalized fees and the denominator is the total amount of search cost that agent’s pay
while searching under advertising. Note that if the market is extremely unbalanced, i.e.
if only high types are in the market, advertising is less profitable as long as ν(θ2

h)/θ2
h ≤ 1.

1.5.2 Overconfidence

Up to this point, the model has assumed that agents behave rationally and have a cor-
rect expectation about their own type. In the following, I will introduce a fraction of
overconfident agents, i.e., agents who perceive themselves to be of a higher type than
they actually are. In the simplest example, an overconfident low type perceives itself as a
high type. Overconfidence is a widely documented bias in the psychology and behavioral
economics literature.21

Especially in dating markets and labor markets overconfidence is thought to be preva-
lent for example, when it comes to a person’s own attractiveness or ability. In dating
markets, both women and men prefer attractive over unattractive profiles regardless of
their own attractiveness (Egebark et al., 2021). Bruch and Newman (2018, 2019) analyze
the structure of online dating markets in US cities and provide suggestive evidence for
the fact that the majority of users contacts a partner who is more desirable than they are
instead of contacting a partner who is as desirable than they are. One possible explana-

21Ample evidence suggests that on average agents overestimate their ability, traits and prospects.
Such overconfidence has been documented in laboratory experiments by Burks et al. (2013); Dubra
(2015); Charness et al. (2018). Additionally, there is empirical evidence that consumers are overoptimistic
regarding future self-control when signing up for a gym membership (DellaVigna and Malmendier, 2006),
workers overpredict their own productivity (Hoffman and Burks, 2020), and some CEOs are overoptimistic
regarding their firm’s performance (Malmendier and Tate, 2005, 2008).
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tion is documented by Greitemeyer (2020), that is, more unattractive people are unaware
of their (un-)attractiveness from a psychological perspective. Similarly in labor markets,
Spinnewijn (2015) and Mueller et al. (2021) find that the unemployed overestimate how
quickly they will find a job and are persistently overconfident about their desirability to
firms. In line with the empirical evidence, Dargnies et al. (2019) document in a laboratory
experiment that agents who are overconfident are less likely to accept earlier job offers in
a matching market.

Following this evidence, consider the following simple extension to the model in Sec-
tion 1.4.2. There exists a symmetric share of λ overconfident users on each side of the
market. An overconfident user has type θl, but persistently believes to have type θh,
i.e. is stubborn and does not learn their true type. Denote the overconfident type by θ̂l.
Other agents correctly identify overconfident types as low types. Following Definition 3,
an overconfident type chooses their strategy confidently believing in their misperceived
type. As a result of overestimating their own type, they, however, are overoptimistic
about the likelihood of being accepted by others. As before, users incur search costs and
become inactive with probability δ.22

As overconfidence has been identified in empirical and experimental setting, I suppose
that the platform can perfectly identify overconfident users as well. The platform chooses
matching rule M, which consists of ϕ(·|θi) for θi ∈ {θl, θh, θ̂l}, and search costs (sh, sl).
As a benchmark, suppose the platform induces only one period of search by charging
(sh = θ2

h, sl = θ2
l ) and choosing the positive assortative matching rule in which high types

only meet each other and (true) low types, which includes overconfident types, only meet
each other. The platform’s profits are

ΠOC
P AM = 2(1 − δ)

1 − ρ
(βhθ2

h + βl(1 − λ)θ2
l + βlλθ2

h).

To show that the platform can improve on this profit, let the platform induce search by
inducing high types to reject low types. The matching rule and search costs must satisfy
the participation constraint of low types and the incentive constraint of high types

θhθl ≤ (1 − δ)(−s + ϕ(θh|θh)θ2
h)

δ + (1 − δ)ϕ(θh|θh) , (IC-θh)

0 ≤ (1 − δ)(−s + ϕ(θl|θl)θ2
l )

δ + (1 − δ)ϕ(θl|θl)
. (1.10)

Given both constraints are satisfied, the participation constraint of high types and the
incentive constraint of low types (to reject low types) are satisfied as well. Next, consider
the acceptance behavior of an overconfident type. Given their perception of the game,

22Note that δ can have an additional interpretation in the presence of overconfident users. If overconfi-
dent users do not find a match, δ can be interpreted as the probability that an overconfident agent leaves
due to growing dissatisfaction with the platform.



36 1.5. EXPLANATIONS

rejecting low types is perceived optimal if

θhθl ≤ (1 − δ)(−s + ϕ(θh|θh)θ2
h)

δ + (1 − δ)ϕ(θh|θh) , (PIC-θ̂h)

which coincides with the incentive constraint of high types. Similarly, they face the same
perceived participation constraint. The payoff from participation is

−s

δ
< 0,

since overconfident users reject low types, but high types never accept overconfident types.
This leads them to search until they exogenously exit with probability δ.

Remark. Overconfident users search too intensively.

Proposition 7. (Overconfidence) Let λ∗ ≡ βh

βl

δθhθl

(1−δ)θ2
h

−θhθl
. For λ < λ∗, the platform

maximizes profits by setting (sh = θ2
h, sl = θ2

l ) and inducing only one period of search.
The platform’s profit is ΠOC

P AM . For λ ≥ λ∗, the platform maximizes profits by setting
(sh = θh(θh − θl) − δ/1−δθhθl, sl = θ2

l ) and inducing search from overconfident users. The
platform’s profit is

ΠOC
S = 2(1 − δ)

1 − ρ

(︄
βh(θh(θh − θl) − δ

1 − δ
θhθl) + βl(1 − λ)θ2

l +
βlλ(θh(θh − θl) − δ

1−δ
θhθl)

δ

)︄
.

Anecdotes from Dating Apps, such as Tinder, provide evidence for the fact that less
than 10% of users account for a disproportional amount of revenue.23 On Tinder, an
average user spends around 30$ in in-app purchases and subscriptions, whereas “heavy”
users would spend 10 times the amount.

Consider the following example to illustrate that in markets with many low types,
already a small percentage of overconfident users can be sufficient to achieve higher profits.

Example 2. Let βh = 1
4 , βl = 3

4 , δ = 1/10, θh = 2, θl = 1. Then, λ ≥ 4.2%. For low

values of δ, a relatively small percentage of overconfident users is necessary to substantially
increase the platforms profit. Note that δ is directly related to the stopping time of
overconfident users, i.e. overconfident users search for ten periods before they exit. More
generally, consider the following comparative statics.

Corollary 3. λ∗ increases in δ, and βh

βl
.

Intuitively, the necessary share of overconfident users decreases if δ becomes small as
overconfident users search for more periods. If the ratio βh

βl
increases, i.e. there are more

23See https://uxdesign.cc/how-tinder-drives-over-1-6-billion-in-revenue-8006e718e761
and the referenced podcast therein, https://open.spotify.com/episode/1ZfL2Mq1n0NzyVKKerynvZ?
si=UBlpCunARLW8jPfNNYK4dw.

https://uxdesign.cc/how-tinder-drives-over-1-6-billion-in-revenue-8006e718e761
https://open.spotify.com/episode/1ZfL2Mq1n0NzyVKKerynvZ?si=UBlpCunARLW8jPfNNYK4dw
https://open.spotify.com/episode/1ZfL2Mq1n0NzyVKKerynvZ?si=UBlpCunARLW8jPfNNYK4dw
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high types than low types in the market, the platform needs to rely more on overconfident
users. The reason is that given that the platform lowers the search fee for high types to
exploit overconfident users, they become less profitable. Hence, with more high types,
there must be more overconfident types to offset the loss from high types.

1.6 Conclusion

On matching platforms, the misalignment of incentives between users and the platform
becomes more problematic as platforms collect more data and develop more predictive
algorithms. This paper presents a model in which a platform has perfect information
about its users’ types and matches them to its advantage. In contrast, random matching
corresponds to the case where the platform has no information about its users’ types.
The platform benefits from more information about its users’ types: Random matching
is strictly suboptimal.

Both sorting and search time have implications for real-world markets. The platform’s
algorithm can support the socially optimal matching. But even absent exogenous search
costs and search frictions, the algorithm can also foster non-assortative matching outcomes
in fully symmetric markets resulting in mismatch. Additionally, it increases users’ search
time by recommending unsuitable matches. While mismatch has a negative impact on
productivity and long-term unemployment in labor markets (Şahin et al., 2014; McGowan
and Andrews, 2015), assortative mating in marriage markets is a driver of household
inequality (Pestel, 2017; Eika et al., 2019; Almar et al., 2023). Therefore, if policies
aim to reduce mismatch — as in labor markets — policymakers should be concerned
about matching platforms that employ the business models described above. Rather than
relying on platforms to reduce search frictions, the platform’s algorithm is a potential
source of additional mismatch. In contrast, dating apps can make a positive contribution
to reducing household inequality.

Empirical evidence on online matching and search platforms is mixed. For example,
in dating markets Hitsch et al. (2010) show that matches are approximately efficient and
stable. The authors, however, rely on data before the advent of large dating apps. In
contrast, more recent evidence, such as Sharabi and Dorrance-Hall (2024), finds that
people who meet online are less satisfied in their marriages. In labor markets, Kroft and
Pope (2014) show that Craigslist has no effect on the unemployment rate. Similarly,
Gürtzgen et al. (2021) provide evidence that online searches do not affect employment
stability or wage outcomes, but instead increase the proportion of unsuitable candidates
in job applications.
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A Appendix

A.1 Linear Programming Formulation

The linear programming formulation of the platform’s problem in Lemma 4 is given in the
following. For α(θk

i , θ−k
j ) ∈ {0, 1}, the platform’s optimization problem can be represented

by the following (mixed integer) linear program:

max
{Φ(·),m(·)}k

ij

∑︂
k=A,B

∑︂
θk

i ∈Θk

(1 − δ)ν(sk
i )

1 − ρ
f(θk

i ), (1.11)

subject to participation constraints

βk
i ωk

i ≤ f(θk
i )(δωk

i − (1 − δ)sk
i ) + (1 − δ)

∑︂
j

m(θk
i , θ−k

j )θk
i θ−k

j , ∀θk
i ∈ Θk, k = A, B,

(1.12)

incentive constraints

βk
i θk

i θ−k
j + α(θk

i , θ−k
j )(−βk

i θk
i θ−k

j ) ≤f(θk
i )(δωk

i − (1 − δ)sk
i ) + (1 − δ)

∑︂
j

m(θk
i , θ−k

j )θk
i θ−k

j

≤
(︄

βk
i

δ
θk

i θ−k
j − βk

i θk
i θ−k

j

)︄
(1 − α(θk

i , θ−k
j )) + βk

i θk
i θ−k

j ,

(1.13)

∀θk
i ∈ Θk, k = A, B,

feasibility and steady state constraints

∑︂
θ−k

j ∈Θ−k

Φ(θk
i , θ−k

j ) + 1k=BΦ(θk
i , ωk

i ) = f(θk
i ), ∀θk

i ∈ Θk, k = A, B, (1.14)

f(θk
i ) =

βk
i − (1 − δ)∑︁j m(θk

i , θ−k
j )

δ
, ∀θk

i ∈ Θk, k = A, B, (1.15)

and constraints on the matched and recommended pairs ∀(θk
i , θ−k

j ) ∈ Θk ×Θ−k. First, the
mass of recommended and matched pairs must be non-negative and the mass of matched
pairs cannot be greater than the mass of recommended pairs

Φ(θk
i , θ−k

j ) ≥ 0, m(θk
i , θ−k

j ) ≥ 0, (1.16)

m(θk
i , θ−k

j ) ≤ Φ(θk
i , θ−k

j ). (1.17)

Second, the mass of matched pairs must be smaller than the largest possible mass of the
agents, i.e. the mass that arises when agents only exit upon becoming inactive βk

i/δ times
the acceptance probability, and larger than the mass of recommended pairs minus the
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largest possible mass times the probability of a rejection

m(θk
i , θ−k

j ) ≤
min{βk

i , β−k
j }

δ
α(θk

i , θ−k
j ), (1.18)

m(θk
i , θ−k

j ) ≥ Φ(θk
i , θ−k

j ) −
min{βk

i , β−k
j }

δ
(1 − α(θk

i , θ−k
j )). (1.19)

This ensures that the mass of matched pairs must be smaller than the mass of recom-
mended pairs and that for α(θk

i , θ−k
j ) = 0 the mass of matched pairs cannot be greater than

zero. To accommodate for mixed acceptance probabilities of agents, consider an agent
of type θk

m that is indifferent between accepting and rejecting a type θ−k
s . Hence, θk

m

could randomize over the acceptance probability towards type θ−k
s : σk(θk

m, θ−k
s ) ∈ (0, 1).

Conceptually, this imposes indifference or equality on some constraints rather than in-
equalities in the original formulation above. For any pair (θk

m, θ−k
s ) ∈ Θk × Θ−k for which

α(θk
m, θ−k

s ) ∈ (0, 1), the adjusted incentive constraints are

βk
mθk

mθ−k
s = f(θk

m)(δωk
m − (1 − δ)sk

m) + (1 − δ)
∑︂

j

m(θk
m, θ−k

j )θk
mθ−k

j , for θk
m, (1.20)

β−k
s θk

mθ−k
s ≥ f(θ−k

s )(δω−k
s − (1 − δ)s−k

s ) + (1 − δ)
∑︂

j

m(θk
m, θ−k

j )θk
mθ−k

j , for θk
s , (1.21)

where θk
m is indifferent between accepting and rejecting θ−k

s and θ−k
s (weakly) accepts θk

m.
The constraints on the mass of recommended and matched pairs are

m(θk
m, θ−k

s ) ≤ min{βk
m, β−k

s }
δ

, for (θk
m, θ−k

s ), (1.22)

m(θk
m, θ−k

j ) ≤ Φ(θk
m, θ−k

s ), for (θk
m, θ−k

s ). (1.23)

The linear program can be summarized in the subsequent lemma.

Lemma 6 (Linear Program). Fix any mutual acceptance matrix A. The platform’s
maximization problem yields the same profit as linear programming problem with objec-
tive function in Equation 1.11 subject to constraints Equation 1.12 through 1.16 for any
α(θk

i , θ−k
j ) ∈ {0, 1}, and for any pair (θk

m, θ−k
s ) ∈ Θk × Θ−k for which α(θk

s , θ−k
m ) ∈ (0, 1),

replace Equation 1.13 for θk
m by Equation 1.20 and replace Equation 1.13 for θk

s by Equa-
tion 1.21 and replace Equations 1.18 to 1.19 for (θk

m, θ−k
s ) by Equations 1.22 to 1.23.

Note on Standard Form of a Linear Program To abbreviate future arguments, I
relate the linear program by the standard form of a linear program. The matrix notation
is

max xcT ,

s.t.Hx ≤ b, x ≥ 0,
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where c ∈ Rn. The variable vector x ∈ X ⊂ Rn consists of n variables, i.e., the mass of
recommended and matched pairs, and is an element of the compact set X as each mass
takes a value in [0, βi/δ]. The m inequalities are given by matrix H ∈ Rm×n. Equalities,
such as the feasibility constraints, can be expressed as two opposite inequalities. Vector
b ∈ Rm captures the right-hand side of the inequalities. P ≡ {x ∈ Rn|Hx ≤ b} is the
feasible region given by the inequality constraints.

A.2 Benchmarks

This section analyzes two polar cases, in which the intermediary has full information
about agent’s types and is able to extract the full rent from the matching output or the
intermediary has no information about agent’s types and must match agents at random.

Socially-Optimal Matching The first benchmark constitutes the case in which the in-
termediary (or a social planner) provides the socially-optimal matching under the premise
that agent’s types can be identified perfectly. The intermediary or social planner max-
imizes the sum of total matching outputs given that agents only search for one period.
The matching output function is supermodular, i.e. types of both sides are complements.
The socially-optimal matching is the solution to the linear program

max
M

∑︂
k=A,B

∑︂
θ−k

j ∈Θ−k

∑︂
θk

i ∈Θk

(θk
i θ−k

j − ωk
i )m(θk

i , θ−k
j ) (1.24)

subject to feasibility

∑︂
θ−k

j ∈Θ−k

m(θk
i , θ−k

j ) ≤ βk
i , ∀θk

i ∈ Θk, (1.25)

∑︂
θk

i ∈Θk

m(θk
i , θ−k

j ) ≤ β−k
j , ∀θ−k

j ∈ Θ−k, (1.26)

m(θk
i , θ−k

j ) ≥ 0, ∀(θk
i , θ−k

j ) ∈ Θk × Θ−k. (1.27)

The linear program follows the optimal assignment problem by Koopmans and Beckmann
(1957) and Shapley and Shubik (1971). Both agents that form the match (θk

i , θ−k
j ) receive

the output θk
i · θ−k

j .

Remark. If markets are fully symmetric, the socially optimal matching is m(θk
i , θ−k

j ) = βk
i

if θk
i = θ−k

j . The outcome is said to exhibit positive assortative matching.

If market sides are fully symmetric, βA
i = βB

i , the solution to the linear program is
attained with m(θk

i , θ−k
j ) ∈ {0, βk

i }, that is a pair is either matched with probability one
or not matched. Although the linear program permits partial or fractional matching of
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agents, Dantzig (1963) showed that the maximum value of the objective is attained with
probabilities in {0, 1}.

For symmetric populations of agents, optimality requires that no individual remains
unmatched, such that the feasibility constraints must hold with equality. Otherwise, the
social planner can increase welfare by assigning an unmatched agent to another unmatched
agent as the value of their match is greater than zero. The objective is maximized if
m(θk

i , θ−k
j ) = βk

i when θk
i = θ−k

j by applying the rearrangement inequality (Hardy et al.,
1952).

Random Matching The second benchmark is a random matching market. For exam-
ple, if an intermediary has no information (data) about agents’ types, and thus cannot
condition on any observables, the intermediary’s matching rule incorporates random meet-
ings between agents. A random matching market may also reflect offline meetings between
agents that are not intermediated by any platform.

A random matching market is a tuple (Θ̂k
, f(θk

i ))k=A,B with parameters (sk
i , δ).The

analysis builds on the model of Lauermann and Nöldeke (2014).24

The total mass of agents on side k is f
k = ∑︁

θk
i ∈Θk f(θk

i ). Since each agent can meet
at most one agent per unit of time, the total mass of meetings is given by min{f

A
, f

B}.
Given that meetings are random, the fraction of meetings that involve type θk

i on side k

and type θ−k
j on side −k is then

f(θk
i )f(θ−k

j ) min{f
k
, f

−k}
f

k · f
−k .

If f
k

> f
−k, then the mass of agents on side k that meet their outside option is Φ(θk

i , ωk
i ) =

f
k−f

−k

f
k . The probability to meet type θ−k

j on side −k conditional on being an agent of
any type on side k is

ϕ(θ−k
j ) =

f(θ−k
j )

f
−k

min{f
k
, f

−k}
f

k ,

where the probability that type θk
i on side k exits the search process in a match with type

θ−k
j is

µ(θk
i , θ−k

j ) =
(1 − δ)α(θk

i , θ−k
j )ϕ(θ−k

j )
δ + (1 − δ)∑︁θ−k

j
α(θk

i , θ−k
j )ϕ(θ−k

j )
,

where µ(θk
i , ωk

i ) = 1 −∑︁
θ−k

j
µ(θk

i , θ−k
j ) is the probability that type θk

i remains unmatched.

24In contrast to Lauermann and Nöldeke (2014), agents may face explicit search cost sk
i in addition to

δ.
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Let (f(θk
i ), α(θk

i , θ−k
j )ij)k=A,B be a steady state. Then M with entries given by

m(θk
i , θ−k

j ) =
α(θk

i , θ−k
j )f(θk

i )f(θ−k
j ) min{f

k
, f

−k}
f

k · f
−k . (1.28)

is the unique matching outcome induced by the steady state under random matching.
Vice versa, if M is a steady state matching outcome then f(θk

i ), α(θk
i , θ−k

j ) is given by

f(θk
i ) = βk

i

δ
µ(θk

i , ωk
i ), (1.29)

α(θi, θj) = m(θk
i , θ−k

j ) f
k · f

−k

f(θk
i )f(θ−k

j ) min{f
k
, f

−k}
, (1.30)

where α(θk
i , θ−k

j ) ≤ 1 for all (θk
i , θ−k

j ) ∈ Θ̂k
× Θ̂−k and m(θk

i , ωk
i ) is the probability of

ending up with one’s outside option. Matching M is an equilibrium matching if

m(θk
i , θ−k

j ) =

⎧⎪⎨⎪⎩
0 if θk

i θ−k
j < V C(θk

i ) or θk
i , θ−k

j < V C(θ−k
j )

f(θk
i )f(θ−k

j ) min{f
k

,f
−k}

f
k·f−k if θk

i θ−k
j > V C(θk

i ) and θk
i θ−k

j > V C(θ−k
j )

holds for all (θk
i , θ−k

j ) ∈ Θ̂k
× Θ̂−k.

B Appendix: Omitted Proofs

B.1 Multiple Types

Proof of Lemma 1 and 2 in the text.

Proof of Lemma 3. If ηk
i < 1 and Φ(θk

i , ωk
i ) ≥ 0 are optimal for any θk

i ∈ Θk, then
ηk

i = 1 and Φ′(θk
i , ωk

i , ) are also optimal such that

Φ(θk
i , θ−k

j ) = Φ′(θk
i , θ−k

j ), (1.31)

(1 − ηk
i )f(θk

i ) + Φ(θk
i , ωk

i ) = Φ′(θk
i , ωk

i ), (1.32)

for all θk
i ∈ Θk and θ−k

j ∈ Θ−k. For given ηk
i < 1 and matching rule M, Equation 1.31

and 1.32 determine the new matching rules for ηk
i = 1.

Now consider the participation for type θk
i . In equilibrium, the participation constraint

must be binding for agents to find it optimal to randomize in their participation decision.
Suppose the participation constraint is binding, then it can be rewritten as

(1 − δ)sk
i = (1 − δ)

∑︂
j

α(θk
i , θ−k

j )ϕ(θ−k
j |θk

i )
(︂
θk

i θ−k
j − ωk

i

)︂
.
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As the masses are the same by Equation 1.31, the total surplus extracted by the platform
remains the same as optimality requires that the participation constraint continues to
bind. Multiplying with the total mass of agents of type θk

i if ηk
i < 1 yields

(1 − δ)ηk
i f(θk

i )sk
i = (1 − δ)

∑︂
j

α(θk
i , θ−k

j )Φ(θ−k
j |θk

i )
(︂
θk

i θ−k
j − ωk

i

)︂
⏞ ⏟⏟ ⏞

Total Surplus

.

Similarly, when multiplying with the total mass of agents of type θk
i if ηk

i = 1 yields

(1 − δ)f ′(θk
i )sk,′

i = (1 − δ)
∑︂

j

α(θk
i , θ−k

j )Φ(θ−k
j |θk

i )
(︂
θk

i θ−k
j − ωk

i

)︂
.

Therefore, the total surplus extracted is the same in both cases by construction. Thus, if
the platform charges a search fee both cases yield the same surplus.

In the case of advertising note that f ′(θk
i ) must increase if ηk

i increases, i.e. the steady-
state mass increases if more agents participate everything else equal. Rewrite equation
1.31 as

ηk
i f(θk

i )ϕ(θ−k
j |θk

i ) = f ′(θk
i )ϕ′(θ−k

j |θk
i )

Therefore, to fulfill the equality in Equation 1.31 ϕ′(θ−k
j |θk

i ) must decrease to decrease the
right-hand side. This implies that sk,′

i < sk
i and therefore, the platform profit increases in

the advertising case due to the concavity of ν(sk
i ).

Proof of Lemma 5 As defined in the Section 1.4.1, the set G is the set of profit levels
following from all linear programs with A ∈ A∗. I show that the set G is (i) non-empty
with Π(A) < ∞ for all A ∈ A∗ and −∞ < Π(A) for at least one A ∈ A∗ and (ii) finite.

To define set G, recall the following definitions from the text. (i) Define a subset
A∗ ⊂ A, where A are the mutual acceptance matrices that can be implemented by
a matching mechanism M. Construct A∗ through the following procedure: For every
A′ ∈ A, construct a matrix A′′ such that

α′(θk
i , θ−k

j ) = α′′(θk
i , θ−k

j ) if α′(θk
i , θ−k

j ) ∈ {0, 1},

α′(θk
i , θ−k

j ) = αij otherwise,

where αij is a variable in [0, 1]. (ii) For each A ∈ A∗, the linear program is given by
Lemma 6. The value of the objective is given by Π(A). Then, (iii) G = ⋃︁

A∈A∗ Π(A).

(a) G is non-empty.
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I will show that for any A ∈ A∗, there exists an optimal value Π(A) < ∞ to the linear
program. To do so, fix A ∈ A∗ and consider the linear program as defined in Lemma 6
in Appendix A.1. To prove that an optimal solution exists, I show that: (i) the objective
of the linear program is bounded, i.e., the linear program is not unbounded, and (ii) the
feasible region of the variable vector, P , is non-empty for a range of parameters. From
both it follows that there exists an optimal solution by Dantzig (1963); Bertsimas and
Tsitsiklis (1997).

(i) First, I show that the objective is bounded for all linear programs for fix A ∈ A∗.
For a maximization problem to be bounded there must exists a constant C ∈ R such that
for all feasible x ∈ Rn cT x ≤ C holds. The objective is bounded as

∑︂
k=A,B

∑︂
θk

i ∈Θk

(1 − δ)sk
i

(1 − ρ) f(θk
i ) <

∑︂
k=A,B

∑︂
θk

i ∈Θk

(1 − δ)sk
i

(1 − ρ)
βk

i

δ
≡ C. (1.33)

This implies that Π(A) < ∞ for all A ∈ A∗.
(ii) Second, I show that the feasible region is non-empty. The feasible region is defined

by the set P = {x ∈ Rn : Hx ≤ b}. For any A ∈ A∗, there exists a matching rule under
which the constraints are not inconsistent for a range of parameters. This follows from
the fact that A∗ ⊂ A and the definition of A implies that A ∈ A if and only if there exists
an exogenous matching rule for which an equilibrium with mutual acceptance matrix A

exists. By Lemma 2 there exists at least one equilibrium that can be implemented by a
matching mechanism, hence, A∗ is non-empty. Therefore, the feasible region is non-empty
for a range of parameters for each linear program for fix A ∈ A∗.

Then, by strong duality (Dantzig, 1963), it follows that the linear program attains an
optimal solution for any A ∈ A∗. The optimal value to the linear program, Π(A), is finite
and G is non-empty.

(b) G is finite.

As G = ⋃︁
A∈A∗ Π(A) and A∗ is finite by construction, G is also finite as the profit level

of a given linear program is a singleton. As each linear program for fix A ∈ A∗ is bounded,
the profit level takes on either a (finite) optimal value if an optimal solution exists or the
value is undefined if the linear program is infeasible for given parameters.

I prove Theorem 1 through a series of lemma. Recall that sk
i ∈ [0, u] ≡ S and denote

the vector of search costs by (sk
1, ..., sk

N)k=A,B ≡ s.

Lemma 7. Let the vector of search costs s be given. There exists an optimal solution
with Π∗ ≡ maxs G(s).
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Proof. By Lemma 5, the set G is finite and non-empty for any given sk
i ∈ R+. Hence

for given vector s, G has a maximum element and Π∗ = max G is well-defined and has a
finite value.

Now, let the platform choose the vector of search costs s. I prove that there exists an
optimal solution Π∗,s ≡ maxs Π∗(s).

First, observe that if sk
i ≥ maxθ−k

j
{θk

i · θ−k
j − ωk

i } for all θk
i ∈ Θk, no agent participates

and the equilibrium profit is zero. Therefore, to make positive profits sk
i ≤ maxθ−k

j
{θk

i ·

θ−k
j −ωk

i } for at least one θk
i ∈ Θk such that the set of participating types Θ̂k is non-empty.

Recall that G(s) is the set of profit levels induced through all linear programs that have a
feasible solution for given s. In slight abuse of notation, define G(s) as a correspondence
from s to such profit levels Π(s)

G(s) : S |Θk|×|Θ−k| ⇒ R+
0 .

which assigns to each point s of S |Θk|×|Θ−k| a finite subset G(s) of R+
0 . The correspondence

is compact-valued as G(s) is a compact (finite) subset of C for all s ∈ S |Θk|×|Θ−k . In the
following, I will show that the correspondence is upper hemicontinuous in s on S |Θk|×|Θ−k .

To do so, recall the matrix notation of the linear program in Appendix A.1:

max
x∈X

xcT ≡ ΠA(s),

s.t.HAx ≤ bA, x ≥ 0.

Denote by subscript A, the profit level and constraint set of the linear program for given
matrix A ∈ A∗. In Lemma 5, I have shown that a linear program for a fixed A ∈ A∗

has a solution for some s ∈ S |Θk|×|Θ−k . Additionally, whenever the linear program has a
solution, it has an optimal solution. The value of the linear program, ΠA(s), is thus finite
on a set JA ≡ {s ∈ S |Θk|×|Θ−k|| − ∞ < ΠA(s) < ∞}, where JA ⊆ S |Θk|×|Θ−k . The set is
compact.25

Lemma 8. The value of the objective ΠA(s) of a linear program for given matrix A ∈ A∗

is upper hemicontinuous in s on JA.

Proof. Fix A ∈ A∗, and consider the associated linear program from Lemma 6. For
given A ∈ A∗, s changes vector c continuously, as each entry, ν(sk

i ) or 0, is continuous in
25The set JA contains all s ∈ S |Θk|×|Θ−k| for which the value of the linear program is finite. In other

words, the linear program must be bounded and feasible for those s. By Lemma 5, the linear program is
bounded. The linear program is feasible for some s if all constraints can be met, i.e. the feasible region
P is non-empty. Suppose for contradiction that JA is not compact. Now, take any sequence sn → s, for
which the feasible region is non-empty for all sn. For the limit point s not to be in set JA, the feasible
region must be empty for s, and hence, at least one inequality must be violated strictly. But then, as the
linear constraints are continuous in s, the constraints must also be violated for sn close enough to s, a
contradiction.
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sk
i . Furthermore s changes matrix HA continuously as sk

i linearly enters as a coefficient
in the incentive and participation constraints. The optimal value of the linear program is
given by

ΠA(s) ≡ sup
x∈Rn

{c(s)x|HA(s)x ≤ bA, x ≥ 0},

which is finite on JA. In slight abuse of notation, denote the correspondence from s to
the optimal value of the linear program by

ΠA(s) : S |Θk|×|Θ−k| ⇒ R+
0 .

Next, consider set of primal feasible solutions of the linear program that defines objective
Π, which is given by the correspondence

s → PA(s) ≡ {x|HA(s)x ≤ b, x ≥ 0}.

First, I show that the set of (primal) feasible solutions of the linear program is upper
hemicontinuous in s. Consider the following definition: PA(s) is upper hemicontinuous at
s on JA if

s = lim
n→∞

sn, xn ∈ PA(sn), and x = lim
n→∞

xn,

implies that x ∈ PA(s).26 To see that PA(s) is upper hemicontinuous, suppose that
{sn}n ∈ JA and s = limn→∞ sn. Let {xn}n be a sequence such that for all n, xn ∈ PA(s):
HA(sn)xn ≤ bA, and x = limn→∞ = xn. Since by the continuity of HA(·) and independence
of bA in s

||HA(sn) − HA(s)|| → 0, ||xn − x|| → 0, and ||bA − bA|| = 0,

it follows that HAx ≤ bA and x ≥ 0, which yields x ∈ PA(s). This implies that PA(s) is
in fact upper hemicontinuous in s on JA.

Next, I show that this implies that ΠA(s) = c(s)x is upper hemicontinuous in s on JA.
Suppose that {sn}n ∈ JA and s = limn→∞ sn. Let {Πn}n be a sequence such that for all
n, Πn ∈ ΠA(s), and Π = limn→∞ Πn. Since by the continuity of c(·)

||c(sn) − c(s)|| → 0,

26This definition follows Wets (1985). Furthermore, let ||H|| = supx∈X ||Hx||
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and the upper hemicontinuity of PA(s) on JA

||xn − x|| → 0

it follows that Π ∈ ΠA(s). This implies that ΠA(s) is in fact upper hemicontinuous in s
on JA.

Recall that G(s) = ⋃︁
A∈A∗ ΠA(s) is the finite union over the equilibrium profit levels of

each linear program.

Lemma 9. G(s) is upper hemicontinuous in s on S |Θk|×|Θ−k|.

Proof. Recall that for each ΠA(s) the value ΠA(s) is finite on JA and empty on
S |Θk|×|Θ−k| \ JA. I prove the lemma by induction over the equilibria associated with
the finite set A∗. Let there be K equilibria, which can be implemented by the linear
programs and consider the correspondence GK(s) = ⋃︁

{A1,...,AK} ΠA(s) that includes K out
of K equilibria. By induction, I will consider GK to include increasingly more equilibria.

Base case: Let G1 be the correspondence that includes only the trivial equilibrium
from Lemma 2 with A1 ∈ A∗. Note that S |Θk|×|Θ−k| = JA1 as the trivial equilibrium
is a solution to the corresponding linear program for each s ∈ S |Θk|×|Θ−k|. Hence, the
statement follows from Lemma 8.

Induction step: The induction hypothesis states that GK(s) = ⋃︁
{A1,...,AK} ΠA(s) is

upper hemicontinuous on S |Θk|×|Θ−k|. Note that by the induction step, K includes the
trivial equilibrium. It remains to show that GK(s) ∪ ΠAK+1(s) is upper hemicontinuous in
s on S |Θk|×|Θ−k|.

Recall that the correspondence GK(s) ∪ ΠAK+1(s) is upper hemicontinuous at s0 ∈
S |Θk|×|Θ−k|, if for any open set V ⊆ R+

0 with GK(s0)∪ΠAK+1(s0) ⊆ V , there exists an open
neighborhood U(s0) ⊆ S |Θk|×|Θ−k| such that if s ∈ U(s0), then GK(s) ∪ ΠAK+1(s) ⊆ V .

Let s0 ∈ S |Θk|×|Θ−k| and V be an open set with GK(s0) ∪ ΠAK+1(s0) ⊆ V . Suppose first
that ΠAK+1 is empty at s0. Since GK(s0)∪ΠAK+1(s0) ⊆ V , it follows that GK(s0) ⊆ V and
ΠAK+1(s0) ⊆ V by assumption (where V is the union of an open set and the empty set).
By the upper hemicontinuity of GK(s), there exists a neighborhood UK of s0 such that
GK(s0) ⊆ V for all s ∈ UK . Additionally, there exists a neighborhood UK+1 of s0 such that
ΠAK+1(s0) = ∅ ⊆ V for all s ∈ UK+1 (by the compactness of JAK+1 . Let U = UK ∩ UK+1.
Then, for any s ∈ U , both GK(s) ⊆ V and ΠAK+1(s) ⊆ V such that GK(s)∪ΠAK+1(s) ⊆ V .

Let both GK(s) and ΠAK+1(s) be non-empty at s0. Since GK(s0) ∪ ΠAK+1(s0) ⊆ V , it
follows that GK(s0) ⊆ V and ΠAK+1(s0) ⊆ V . As both GK(s0) and ΠAK+1(s0) are upper
hemicontinuous for s0, it holds that: There exists a neighborhood UK of s0 such that
GK(s0) ⊆ V for all s ∈ UK and UK+1 of s0 such that ΠAK+1(s0) ⊆ V for all s ∈ UK+1.
Then, for any s ∈ U , both GK(s) ⊆ V and ΠAK+1(s) ⊆ V such that GK(s)∪ΠAK+1(s) ⊆ V .

Therefore, G(s) is upper hemicontinuous in s on S |Θk|×|Θ−k|.
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Lemma 10. The function Π∗(s) is upper semi-continuous in s on S |Θk|×|Θ−k|.

Proof. The function Π∗ is upper-semicontinuous if for every point s ∈ S |Θk|×|Θ−k|,
Π(s) ≥ lim sup Π(sn) for every sequence {sn}n ⊂ S |Θk|×|Θ−k| satisfying limn→∞ sn = s.

Let limn→∞ sn = s, and define Π∗
n = max G(sn), so that Π∗

n ∈ G(sn) for all n. Since for
each sn G(·) is finite by Lemma 5 and the sequence {Π∗

n} is bounded, it has a convergent
subsequence by the Bolzano-Weierstrass theorem: Π∗

nk
→ Π′ for some Π′ ∈ R+

0 . Then,
as Π∗

nk
∈ G(snk

), snk
→ s, and Π∗

nk
→ Π′, the upper hemiconituity of G(s) implies that

any limit point of Π∗
nk

belongs to G(s), i.e. Π′ ∈ G(s). Therefore, Π′ ≤ max G(s). Since
Π∗

nk
→ Π′, this implies:

lim
n→∞

sup Πn = lim
n→∞

sup max G(sn) ≤ max G(s).

Intuitively, Π∗ is continuous in s except for jump points (discontinuities). At a jump
point, the definition of upper semicontinuity requires that the function is only allowed to
jump “up”. By the upper hemicontinuity, I already know that the limit point — when
taking a sequence of s — is still in max G(s). Additionally, due to the definition of Π∗ as
Π∗ = max G(s), the limit point can only jump “up”.

Proof of Theorem 1 By Lemma 10, max G = Π∗(s) is upper semi-continuous in s and
compact-valued. Thus, there exists a maximum by Weierstrass extreme value theorem on
the compact set S |Θk|×|Θ−k|.

Proof of Proposition 1 The proof proceeds by considering the cases where search
costs are exogenous and where search costs are chosen as search fee or advertising.

Case 1: Exogenous Search Cost First, suppose search costs are exogenously given.
Let the parameters be drawn uniformly from the following sets: θk

i ∈ Θk = [θ, θ] ⊆ R+,
βk

i ∈ [0, β], δ ∈ (0, 1], ωk
i ∈ Ω = [0, ω], and sk

i ∈ [0, u]. An outcome is said to be generically
suboptimal if the set of parameter values for which it is optimal has measure zero in the
relevant parameter space.

For given A ∈ A∗, an optimal solution is a matching rule for which the objective
function of the linear program in Appendix A.1 attains its maximum value. Recall from
Appendix A.1 that the platform solves

max
{Φ(·),m(·)}k

ij

∑︂
k=A,B

∑︂
θk

i ∈Θk

(1 − δ)ν(sk
i )

1 − ρ
f(θk

i ),

subject to participation constraints (Equation 1.12), incentive constraints and 1.13), fea-
sibility constraints (Equation 1.14) and steady-state constraints (Equation 1.15). Using
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the steady state conditions from Equation 1.15 to substitute for f(θk
i ) yields

max
{Φ(·),m(·)}k

ij

∑︂
k=A,B

∑︂
θk

i ∈Θk

(1 − δ)ν(sk
i )

1 − ρ

βk
i − (1 − δ)∑︁j m(θk

i , θ−k
j )

δ
.

Both feasibility and steady-state constraints must be binding in the optimal solution.
Additionally, at least one participation or incentive constraint must be binding in the op-
timal solution. Suppose otherwise, then the platform can decrease at least one m(θk

i , θ−k
j )

such that one constraint is binding and thereby increase its profits.
Recall that {mRM(θk

i , θ−k
j )}k

ij is the vector of masses of matched pairs under random
matching. Then, mRM(θk

i , θ−k
j ) = 0 if α(θk

i , θ−k
j ) = 0 and

mRM(θk
i , θ−k

j ) =
α(θk

i , θ−k
j )βk

i µ(θk
i , ωk

i )β−k
j µ(θ−k

j , ω−k
j )(︂∑︁

θk
i

βk
i µ(θk

i , ωk
i )
)︂

·
(︃∑︁

θ−k
j

β−k
j µ(θ−k

j , ω−k
j )

)︃

if α(θk
i , θ−k

j ) ∈ (0, 1] (see Appendix A.2).This is a function of the inflow vector (βk
1 , ..., βk

Nk)k,
δ and the probability of a type θk

i being matched to their outside option ωk
i (µ(θk

i , ωk
i )).

Observe that for given A ∈ A∗, mRM(θk
i , θ−k

j ) is independent of sk
i . Fix A ∈ A∗. Given

{mRM(θk
i , θ−k

j )}k
ij, I show that the participation and incentive constraints are generically

non-binding. Rearranging and using the steady state condition yields the following con-
straints

βk
i

(︄
θk

i θk
j − ωk

i + (1 − δ)
δ

sk
i

)︄
≤ (1 − δ)

∑︂
j

mRM(θk
i , θ−k

j )
(︄

θk
i θ−k

j − ωk
i + (1 − δ)

δ
sk

i

)︄
,

(1.34)

βk
i

(1 − δ)
δ

sk
i ≤ (1 − δ)

∑︂
j

mRM(θk
i , θ−k

j )
(︄

θk
i θ−k

j − ωk
i + (1 − δ)

δ
sk

i

)︄
.

(1.35)

Suppose βk
i , ωk

i , θk
i , θ−k

j and δ are drawn uniformly from their continuous intervals. Note
that each constraint for a type θk

i is a linear equation in sk
i . Hence, for given {mRM(θk

i , θ−k
j )}k

ij,
there exists at most one sk

i per participation or incentive constraint of type θk
i such that the

constraint is binding. This implies that if sk
i is drawn uniformly from a continuous inter-

val, the set of parameters for which the constraint is binding has measure zero. Therefore
integrating over the cases for which at least one constraint is binding, the corresponding
set of parameters has measure zero as well. Hence, for each A ∈ A∗, the constraints are
generically non-binding. Lastly, since A∗ is finite, this concludes the proof that random
matching is generically suboptimal for exogenously given search costs. Next, consider the
case where the platform chooses the vector of search costs.
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Case 2: Endogenous Search Cost (Search Fee) Consider the case, in which the
platform sets a linear search fee and earns ν(sk

i ) = sk
i for all θk

i = Θk, k = A, B. The
platform maximizes the total match surplus and fully extracts the surplus through the
search fee. The platform solves the maximization problem in Equation 1.24 subject to
Equation 1.25, 1.26, and 1.27 from Appendix A.2. Given the solution to this problem,
{mP AM(θk

i , θ−k
j )}k

ij, the platform sets sk
i to fully extract each type’s surplus:

βk
i

(1 − δ)
δ

sk
i = (1 − δ)

∑︂
j

mP AM(θk
i , θ−k

j )
(︄

θk
i θ−k

j − ωk
i + (1 − δ)

δ
sk

i

)︄
.

The optimal matching rule that maximizes total match surplus follows the procedure:
Starting with the highest possible type on side A, each agent is matched to the highest
possible type on side B. If there are not enough high types remaining on side B, the
algorithm proceeds in descending order of type on side B until all agents of the highest
possible type on side A are matched. The process continues in descending order with the
next highest type on side A, each time matching to the next available remaining types
on side B. Once all agents on B have been matched, any remaining agents on side A are
assigned to their outside option. The optimal matching rule hence always differs from
random matching. To see this, observe that higher types receive better recommendations
under the above procedure, whereas each type receive the same recommendations under
random matching.

Case 3: Endogenous Search Cost (Advertising) Now consider the case in
which the platform earns a revenue of ν(sk

i ) when charging search costs sk
i . I, again,

examine random matching that satisfies the feasibility constraints outlined in Equation
1.14. For any A ∈ A∗, and using the steady-state conditions to substitute for fRM(θk

i ),
the platform’s objective under random matching becomes the following maximization
problem:

max
s

∑︂
k=A,B

∑︂
θk

i ∈Θk

(1 − δ)ν(sk
i )

1 − ρ

βk
i − (1 − δ)∑︁j mRM(θk

i , θ−k
j )

δ⏞ ⏟⏟ ⏞
=fRM (θk

i )

. (1.36)

subject to the participation and incentive constraints in Equation 1.34 and 1.35.
To maximize s, observe first that ν ′(sk

i ) > 0 as ν(sk
i ) is strictly increasing in sk

i . This
implies that the platform has an incentive to increase the search costs as much as possible
given the constraints. Therefore for A ∈ A∗, the optimal solution is to choose sk

i such
that for each type θk

i ∈ Θk, k = A, B either the participation or the relevant incentive
constraint — induced by A — is binding. Note that the random matching vector satisfies
the feasibility condition, and as random matching is independent of sk

i feasibility remains
to be satisfied.
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Next, I show that the platform has an incentive to deviate from the above solution.
First, suppose A′ ∈ A∗ consists only of entries equal to one, so all agents accept any match
in the first period. Incentive constraints are slack, and the platform chooses s to make
participation constraints binding. Under random matching, the platform can at most
charge the expected value of a match. By deviating to positive assortative matching—the
solution under a linear search fee—the platform can raise search costs and profits, since
ν(sk

i ) is strictly increasing in sk
i .

Second, consider any matrix in A′′ ∈ A∗ \ {A′}. In this case, at least one type rejects
another type with positive probability. As the match utility with the lowest type is the
lowest, this implies that at least one type is willing to reject the lowest type. Consider
the pair of types (θk

1 , θ−k
R ) for which type θ−k

R ∈ Θ−k is willing to reject the lowest type
θk

1 on the other market side (α(θk
1 , θ−k

R ) = 0). Recall that each type must be accepted
by at least one other type on the opposite market side to be willing to participate, thus
consider pairs (θk

1 , θ−k
A ) and (θk

A, θ−k
R ) for which α(θk

1 , θ−k
A ) = 1 and α(θk

A, θ−k
R ) = 1.

For fix A′′ ∈ A∗ \ {A′}, I will show that the platform’s profit can be improved by
changing the matching rules for types θk

1 , θk
A, θ−k

A and θ−k
R as well as adjusting their search

costs. The platform will choose the mass of recommended pairs

Φ′(θk
1 , θ−k

R ), Φ′(θk
1 , θ−k

A ), Φ′(θk
A, θ−k

R ), Φ′(θk
A, θ−k

A ),

and the mass of matched pairs m′(·, ·) = α(·, ·)Φ′(·, ·) as detailed below. For all other
types, the platform chooses the mass of recommended pairs such that

Φ′(θk
i , θ−k

j ) = ΦRM(θk
i , θ−k

j ), ∀θk
i ∈ Θk \ {θk

1 , θk
A},

Φ′(θk
i , θ−k

j ) = ΦRM(θk
i , θ−k

j ), ∀θ−k
j ∈ Θ−k \ {θ−k

R , θ−k
A }.

Without loss of generality, suppose that the total mass of all types on market side A is
smaller or equal than the total mass of all types on market side B: ∑︁θA

i ∈ΘA fRM(θA
i ) ≤∑︁

θB
i ∈ΘB fRM(θB

i ). Then, for market side A, the platform chooses the mass of types that
are recommended to their outside option such that

Φ′(θk
i , ωk

i ) = ΦRM(θk
i , ωk

i ), ∀θk
i ∈ Θk \ {θk

1 , θk
A}, k = A.

The mass of recommended pairs and the mutual acceptance probabilities remain the
same as under random matching. As a result, the mass of matched pairs—defined as the
product of these two terms—is also unchanged. Therefore, the participation and incentive
constraints for all other types continue to hold. In addition, the feasibility constraint in
Equation (1.14) and the steady-state constraint in Equation (1.15) are still satisfied.
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For ε ∈ [− min{βi −mRM(·, ·)}, min{mRM(·, ·)}], the platform chooses mRM(θk
1 , θ−k

A )−
m′(θk

1 , θ−k
A ) = ε and mRM(θk

A, θ−k
R ) − m′(θk

A, θ−k
R ) = ε, i.e. the platform changes the mass

of the two matched pairs by ε. Substituting the change into the steady state condition
(Equation 1.15) for type θk

1 and type θ−k
R yields

fRM(θk
1) + 1 − δ

δ
ε =1

δ

⎛⎝βk
1 − (1 − δ)

⎛⎝−ε +
∑︂
Θ−k

mRM(θk
1 , θ−k

j )
⎞⎠⎞⎠ ,

fRM(θ−k
R ) + 1 − δ

δ
ε =1

δ

⎛⎝β−k
R − (1 − δ)

⎛⎝−ε +
∑︂
Θk

mRM(θk
i , θ−k

R )
⎞⎠⎞⎠ .

Therefore, by decreasing (increasing) the mass of the two matched pairs, increases (de-
creases) the steady state mass by 1−δ

δ
ε compared to the steady state mass under random

matching. Substituting ΦRM(θk
1 , θ−k

A )−Φ′(θk
1 , θ−k

A ) = ε and ΦRM(θk
A, θ−k

R )−Φ′(θk
A, θ−k

R ) = ε

into the feasibility constraints of type θk
1 and type θ−k

R yields

fRM(θk
1) + 1 − δ

δ
ε = Φ′(θk

1 , θ−k
R ) − ε + 1k=AΦRM(θk

1 , ωk
1) +

∑︂
Θ−k\{θ−k

R }
ΦRM(θk

1 , θ−k
j ),

(1.37)

fRM(θ−k
R ) + 1 − δ

δ
ε = Φ′(θk

1 , θ−k
R ) − ε + 1k=AΦRM(θ−k

R , ω−k
R ) +

∑︂
Θk\{θk

1}
ΦRM(θk

i , θ−k
R ),

(1.38)

which implies that Φ′(θk
1 , θ−k

R ) − ΦRM(θk
1 , θ−k

R ) = 1−δ
δ

ε + ε = ε/δ. It remains to determine
Φ′(θk

A, θ−k
A )−ΦRM(θk

A, θ−k
A ) and m′(θk

A, θ−k
A )−mRM(θk

A, θ−k
A ). To do so, consider two cases:

either α(θk
A, θ−k

A ) = 0 or α(θk
A, θ−k

A ) = 1.
In the first case, α(θk

A, θ−k
A ) = 0, I can exchange θk

A for θk
1 and θ−k

A for θ−k
R in Equa-

tion 1.37 and 1.38 above. Then, it follows that Φ′(θk
A, θ−k

A ) − ΦRM(θk
A, θ−k

A ) = ε/δ and
m′(θk

A, θ−k
A ) = 0.

In the second case, α(θk
A, θ−k

A ) = 1, the platform can set Φ′(θk
A, θ−k

A ) − ΦRM(θk
A, θ−k

A ) =
m′(θk

A, θ−k
A ) − mRM(θk

A, θ−k
A ) = ε. Since the platform decreases (increases) the mass of the

matched pair (θk
A, θ−k

R ) but increases (decreases) the mass of the matched pair (θk
A, θ−k

A )
by the same amount, this implies that the steady state mass of type θk

A is unchanged
compared to the steady state masses under random matching. Additionally, feasibility
continues to be satisfied as the platform shift mass ε from one recommended pair to the
other. Similarly, the steady state mass of type θ−k

A is the same as under random matching
and the steady state constraint as well as feasibility constraint remain satisfied.

Next determine the change in search costs for types θk
1 , θk

A, θ−k
A and θ−k

R . Note that for
the newly chosen mass of recommended and matched pairs (Φ′(·, ·), m′(·, ·)), the originally
binding participation or incentive constraint is no longer binding. Since, however, the
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right-hand side of the participation or incentive constraints (see Equation 1.34 and 1.35)
are linearly increasing in m(·, ·) and the left-hand side of the constraints are ordered due
to the supermodularity of the match utility, the platform can choose a new search cost s̃k

i

such that the constraint becomes binding again. Let the platform choose s̃k
1, s̃k

A, s̃−k
R , s̃−k

A

such that originally binding participation incentive constraint of each type is binding
again.

Using Equations 1.34 and 1.35 and mRM(θk
1 , θ−k

A )−m′(θk
i , θ−k

i ) = ε and mRM(θk
A, θ−k

R )−
m′(θk

A, θ−k
R ) = ε, the difference between sk

1 − s̃k
1 and s−k

R − s̃−k
A is given by

(1 − δ)
βk

1 − (1 − δ)∑︁j mRM(θk
1 , θ−k

j )
δ⏞ ⏟⏟ ⏞

f(θk
1 )

(sk
1 − s̃k

1) = ε(θk
1θ−k

A − ωk
1 + 1 − δ

δ
s̃k

1). (1.39)

Observe that the right-hand side is positive for ε > 0 as θk
1θ−k

A − ωk
1 > 0 due to the fact

that both types mutually accept each other. Then, it follows that s̃k
1 must be smaller than

sk
1 for ε > 0. Additionally, by the steady state constraint, the factor on the left-hand side

is equal to (1 − δ)fRM(θk
1). Similarly, using mRM(θk

A, θ−k
R ) − m′(θk

A, θ−k
R ) = ε and taking

the difference, s−k
R − s̃−k

A is given by

(1 − δ)fRM(θ−k
R )(s−k

R − s̃−k
R ) = ε(θk

Aθ−k
R − ω−k

R + 1 − δ

δ
s̃−k

R ). (1.40)

Observe that the right-hand side is again positive, so that s−k
R > s̃−k

A for ε > 0.
Next, if α(θk

A, θ−k
A ) = 0, the difference between the search costs for types θk

A and θ−k
A

can be derived as above

(1 − δ)fRM(θk
A)(sk

A − s̃k
A) = ε(θk

Aθ−k
R − ωk

A + 1 − δ

δ
s̃k

A), (1.41)

(1 − δ)fRM(θ−k
A )(s−k

A − s̃−k
A ) = ε(θk

1θ−k
A − ω−k

A + 1 − δ

δ
s̃−k

A ). (1.42)

Again, it holds that sk
A > s̃k

A and s−k
A > s̃−k

A for ε > 0.
If α(θk

A, θ−k
A ) = 1, recall that the platform sets: mRM(θk

1 , θ−k
A ) − m′(θk

i , θ−k
i ) = ε

mRM(θk
A, θ−k

R ) − m′(θk
A, θ−k

R ) = ε and mRM(θk
A, θ−k

A ) − m′(θk
A, θ−k

A ) = −ε. Using Equations
1.34 and 1.35, the difference of s−k

A − s̃−k
A is given by

(1 − δ)fRM(θ−k
A )(s−k

A − s̃−k
A ) = ε(θk

1θ−k
A − ω−k

A + 1 − δ

δ
s̃−k

A ) − ε(θk
Aθ−k

A − ω−k
A + 1 − δ

δ
s̃−k

A ).

(1.43)
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Since θk
A > θk

1 , the right-hand side is negative, so that s−k
A < s̃−k

A for ε > 0. Similarly, the
difference of sk

A − s̃k
A is given by

(1 − δ)fRM(θk
A)(sk

A − s̃k
A) = ε(θk

Aθ−k
R − θk

Aθ−k
A ), (1.44)

where the right-hand side is non-negative if θ−k
R ≥ θ−k

A .
To determine whether the deviation is profitable, consider the difference in profits

between the deviation profits and random matching profits (Equation 1.36). In the first
case, when α(θk

A, θ−k
A ) = 0, the steady state mass of all four types (θk

1 , θk
A, θ−k

R , θ−k
A ) in-

creases (decreases) by (1−δ)ε/δ while their search costs decrease (increase). The difference
in profits is therefore

∑︂
θk

i ∈{θk
1 ,θk

A,θ−k
R ,θ−k

A }

[︄
(ν(s̃k

i ) − ν(sk
i ))fRM(θk

i ) + ν(s̃k
i )(1 − δ)ε

δ

]︄
. (1.45)

Differentiating Equation 1.45 with respect to εk
i , and evaluating the condition at ε = 0,

yields:

∑︂
θk

i ∈{θk
1 ,θk

A,θ−k
R ,θ−k

A }
ν ′(s̃k

i )|s̃k
i =sk

i

∂s̃k
i

∂ε
|ε=0f

RM(θk
i ) + 1 − δ

δ
ν(s̃k

i )|s̃k
i =sk

i
. (1.46)

To determine the partial derivative of the search costs with respect to ε, I totally differ-
entiate Equations 1.39, 1.40, 1.41, and 1.42. Evaluating the derivative at ε = 0 yields:

∂s̃k
1

∂ε
|ε=0 = −

θk
1θ−k

A − ωk
1 + 1−δ

δ
sk

1

(1 − δ)fRM(θk
1) ,

∂s̃k
A

∂ε
|ε=0 = −

θk
Aθ−k

R − ωk
A + 1−δ

δ
sk

A

(1 − δ)fRM(θk
A) ,

∂s̃−k
R

∂ε
|ε=0 = −

θk
Aθ−k

R − ω−k
R + 1−δ

δ
s−k

R

(1 − δ)fRM(θ−k
R )

,

∂s̃−k
A

∂ε
|ε=0 = −

θk
1θ−k

A − ω−k
A + 1−δ

δ
s−k

A

(1 − δ)fRM(θ−k
A )

.

For analytical convenience, consider the class of concave functions ν(sk
i ) = κ(sk

i )α for
κ ∈ R+ and α ∈ (0, 1) from now on. Substituting ν(sk

i ) = κ(sk
i )α, ν ′(sk

i ) = κα(sk
i )α−1,
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and the partial derivatives above into Equation 1.46 yields

D ≡ α(sk
1)α−1

(︄
−

θk
1θ−k

A − ωk
1 + 1−δ

δ
sk

1

(1 − δ)

)︄
+ 1 − δ

δ
(sk

1)α

⏞ ⏟⏟ ⏞
=d(θk

1 )

+ α(sk
A)α−1

(︄
−

θk
Aθ−k

R − ωk
A + 1−δ

δ
sk

A

(1 − δ)

)︄
+ 1 − δ

δ
(sk

A)α

⏞ ⏟⏟ ⏞
d(θk

A)

+ α(s−k
A )α−1

(︄
−

θk
1θ−k

A − ω−k
A + 1−δ

δ
s−k

A

(1 − δ)

)︄
+ 1 − δ

δ
(s−k

A )α

⏞ ⏟⏟ ⏞
=d(θ−k

A )

+ α(s−k
R )α−1

(︄
−

θk
Aθ−k

R − ω−k
R + 1−δ

δ
s−k

R

(1 − δ)

)︄
+ 1 − δ

δ
(s−k

R )α

⏞ ⏟⏟ ⏞
=d(θ−k

R )

.

For the deviation to be profitable, the expression must be non-zero when being evaluated
at ε = 0. First, observe that D is continuous in α and D > 0 if α = 0. Second, I will
argue that D has at most one root in α. To do so, examine the terms for θk

i :

d(θk
1) = α(sk

1)α−1
(︄

−
θk

1θ−k
A − ωk

1 + 1−δ
δ

sk
1

(1 − δ)

)︄
+ 1 − δ

δ
(sk

1)α.

Differentiating with respect to α results in

∂d(θk
i )

∂α
= ((sk

1)α−1 + α(sk
1)α−1 ln sk

1)
(︄

−
θk

1θ−k
A − ωk

1 + 1−δ
δ

sk
1

(1 − δ)

)︄
+ 1 − δ

δ
(sk

1)α ln sk
1,

= (sk
1)α−1

(︄
−

θk
1θ−k

A − ωk
1 + 1−δ

δ
sk

1

(1 − δ) (1 + α ln(sk
1)) + 1 − δ

δ
sk

i ln(sk
i )
)︄

.

Now, observe that (sk
1)α−1 is strictly increasing in α, whereas the expression in brackets

changes sign at most once since it is linear in α. This implies that ∂d(θk
i )

∂α
changes sign at

most once, in which case it is positive for some α < α′ and negative for α > α′. Similarly,
this holds for the equivalent expressions, d(·), for each type θk

A, θ−k
A , θ−k

R . Then, since the
function D is continuous in α, D > 0 for α = 0, and D is increasing in α for α < α′′ and
decreasing for α > α′′, it follows that D has at most one root.

In the second case, when α(θk
A, θ−k

A ) = 1, the steady state mass of types (θk
1 , θ−k

R )
increases (decreases) by (1−δ)ε

δ
while the steady state mass of types θk

A and θ−k
A remains



56 B. APPENDIX: OMITTED PROOFS

unchanged. The difference in profits is therefore

∑︂
θk

i ∈{θk
1 ,θ−k

R }

[︄
(ν(s̃k

i ) − ν(sk
i ))fRM(θk

i ) + ν(s̃k
i )1 − δ

δ
ε

]︄
+

∑︂
θk

i ∈{θk
A,θ−k

A }

[︂
(ν(s̃k

i ) − ν(sk
i ))fRM(θk

i )
]︂

.

(1.47)

Differentiating Equation 1.47 with respect to ε and evaluating the condition at ε = 0,
yields

∑︂
θk

i ∈{θk
1 ,θ−k

R }

[︄
ν ′(s̃k

i )|s̃k
i =sk

i

∂s̃k
i

∂ε
|ε=0f

RM(θk
i ) + 1 − δ

δ
ν(s̃k

i )|s̃k
i =sk

i

]︄
(1.48)

+
∑︂

θk
i ∈{θk

A,θ−k
A }

[︄
ν ′(s̃k

i )|s̃k
i =sk

i

∂s̃k
i

∂ε
|ε=0f

RM(θk
i )
]︄

. (1.49)

Again, the expression must be non-zero for the deviation to be profitable. To determine
the partial derivatives of s̃k

A and s̃−k
A with respect to ε, I totally differentiate Equations

1.43 and 1.44:

∂s̃k
A

∂ε
|ε=0 = θk

A(θ−k
A − θ−k

R )
(1 − δ)fRM(θk

A) > 0 if θ−k
A > θ−k

R ,

∂s̃−k
A

∂ε
|ε=0 = θ−k

A (θk
A − θk

1)
(1 − δ)fRM(θ−k

A )
> 0.

Substituting ν(sk
i ) = κ(sk

i )α, ν ′(sk
i ) = κα(sk

i )α−1, and the partial derivatives above into
Equation 1.49 yields

D2 ≡ α(sk
1)α−1

(︄
−

θk
1θ−k

A − ωk
1 + 1−δ

δ
sk

1

(1 − δ)

)︄
+ 1 − δ

δ
(sk

1)α + α(sk
A)α−1

(︄
θk

A(θ−k
A − θ−k

R )
(1 − δ)

)︄
⏞ ⏟⏟ ⏞

d2(θk
A)

+ α(s−k
A )α−1

(︄
θ−k

A (θk
A − θk

1)
(1 − δ)

)︄
⏞ ⏟⏟ ⏞

=d2(θ−k
A )

+α(s−k
R )α−1

(︄
−

θk
Aθ−k

R − ω−k
R + 1−δ

δ
s−k

R

(1 − δ)

)︄
+ 1 − δ

δ
(s−k

R )α.

Examining the two new terms shows that d2(θ−k
A ) is strictly increasing in α, and d2(θk

A)
is strictly increasing in α if θ−k

A > θ−k
R , and decreasing otherwise. Again, D2 has at most

one root.
Suppose βk

i , ωk
i , θk

i , θ−k
j and δ are drawn uniformly from their continuous intervals.

Then, there exists at most one α for which D = 0 (or D2 = 0). Let α be drawn uniformly
from (0, 1), then random matching is generically suboptimal as such α is drawn with
measure zero.
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Proof of Proposition 2 Since market sides are fully symmetric, for brevity I drop
the superscript k of each type θk

i . In this case, the positive assortative matching rule is
defined as ϕ(θi|θj) = 1 if and only if i = j and results in steady-state mass f(θi) = βi for
any θi ∈ Θ.

Case 1: Search Fee

(a) “If” direction: PAM is optimal if the platform sets si = θ2
i − ωi for all θi ∈ Θ.

As shown in Appendix A.2, PAM maximizes total match surplus across all agents. By
choosing si = θ2

i − ωi, the platform can extract each agent’s match surplus as no agent is
willing to pay more, thereby maximizing the platform’s profit.

(b) “Only if” direction: Suppose, for contradiction, that PAM is profit-maximizing
even if si < si for some θi ∈ Θ \ {θ1} and

si = min
{︄

θ2
i − ωi, θ2

i − θiθ1 − δωi

1 − δ

}︄
,

where the first entry is smaller than the second entry if ωi > θiθ1. The platform’s profit
under PAM is strictly less than

ΠP AM <
2(1 − δ)

1 − ρ

⎛⎝ ∑︂
θj∈Θ\{θi}

βj(θ2
j − ωj) + βisi

⎞⎠ .

Next, observe that if the platform uses PAM with probability one in the next period, then
type θi would reject the lowest type θ1 in the (zero-probability) event they meet, since

max{θiθ1, ωi} < δωi + (1 − δ)(θ2
i − si). (1.50)

Consider a deviation from PAM in which all types other than θ1 and θi continue to
only meet each other (ΦD(θj, θj) = βj), but θ1 and θi meet each other with mass ϵ ∈
(0, min{β1,βi}/δ] (ΦD(θi, θ1) = ϵ). Simultaneously, reduce the search fee of type θ1 from
s1 = θ2

1 − ω1 to some s′
1, which I will specify below. Then, I will show that there exists an

ϵ > 0 and a corresponding s′
1 such that the resulting matching rule is feasible, incentive

compatible, and strictly improves the platform’s profit.
To check feasibility, substitute the steady state conditions in Equation 1.15 into the

feasibility constraints in Equation 1.14:

βi

δ + (1 − δ)ϕ(θi|θi)
= βiϕ(θi|θi)

δ + (1 − δ)ϕ(θi|θi)
+ ϵ,

β1

δ + (1 − δ)ϕ(θ1|θ1)
= β1ϕ(θ1|θ1)

δ + (1 − δ)ϕ(θ1|θ1)
+ ϵ.
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Solving for the new (conditional) matching probabilities under the deviation, denoted ϕD,
gives:

ϕD(θi|θi) = βi − ϵδ

βi + (1 − δ)ϵ , ϕD(θ1|θ1) = β1 − ϵδ

β1 + (1 − δ)ϵ . (1.51)

For any min{β1,βi}/δ > ϵ > 0, these probabilities are strictly less than one and larger than
zero. Set the new search fee of type θ1 to

s′
1 = β1 − ϵδ

β1 + (1 − δ)ϵ(θ2
1 − ω1)

Next, I verify that the condition in Equation 1.50 for type θi remains satisfied. Under
PAM, if si < si, then the inequalities are slack. Since matching probabilities are con-
tinuous in ϵ, there exists a small ϵ > 0 such that the condition remains non-binding or
becomes just binding. Thus, type θi continues to reject matches with θ1, and their search
behavior does not change for sufficiently small ϵ.

Now consider the participation constraint of type θ1 (Equation 1.12). Under PAM,
its participation constraint is binding when s1 = θ2

1 − ω1. Since θ1 now meets type θi

with positive probability, continuing to charge s1 = θ2
1 − ω1 would violate the constraint.

By lowering the search fee to s′
1 as defined above, the constraint remains binding. The

platform’s profit given the new matching rule and search fees is

ΠD = 2(1 − δ)
1 − ρ

⎛⎝ βisi

δ + (1 − δ)ϕD(θi|θi)
+ β1s

′
1

δ + (1 − δ)ϕD(θ1|θ1)
+
∑︂

j ̸=1,i

βj(θ2
j − ωj)

⎞⎠ ,

= 2(1 − δ)
1 − ρ

⎛⎝(βi + ϵ)si + (β1 + ϵ)(β1 − ϵδ)
β1 + (1 − δ)ϵ (θ2

1 − ω1) +
∑︂

j ̸=1,i

βj(θ2
j − ωj)

⎞⎠ ,

The deviation is profitable if ΠD − ΠP AM > 0, that is if

si − εδ

β1 + (1 − δ)ε(θ2
1 − ω1) > 0,

which holds for 0 < ε < β1si

δ(θ1−ω1)−(1−δ)si
.

Suppose for contradiction, that PAM is profit-maximizing even if s1 < s1 for type θ1⎧⎨⎩ s1 = θ2
1 − ω1 − βi

β1
(θiθ1 − ωi) if θiθ1 > ωi

s1 = θ2
1 − ω1 if θiθ1 ≤ ωi.

Consider a deviation from PAM in which all types other than θ1 and some type θi continue
to only meet each other (ΦD(θj, θj) = βj). For type θ1 and θi, the platform chooses a new
matching rule and search fee s′

i such that θi is indifferent between accepting and rejecting
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θ1 and θ1 is indifferent between participating or not given s1 < s1

max{θiθ1, ωi} = δωi + (1 − δ)(−si + ϕ(θi|θi)θ2
i )

δ + (1 − δ)ϕ(θi|θi)
,

ω1 = δω1 + (1 − δ)(−s1 + ϕ(θ1|θ1)θ2
1)

δ + (1 − δ)ϕ(θ1|θ1)
.

This results in matching rules ϕ(θi|θi) = (1−δ)si+δ(θiθ1−ωi)
(1−δ)θi(θi−θ1) if θiθ1 > ωi or ϕ(θi|θi) = si

θ2
i −ωi

if θiθ1 ≤ ωi, and ϕ(θ1|θ1) = s1
θ2

1−ω1
. Given the matching rule and s1 < θ2

1 − ω1, feasibility
requires that si is chosen such that f(θi)(1−ϕ(θi|θi)) = f(θ1)(1−ϕ(θ1|θ1)), where f(θk) =

βk

δ+(1−δ)ϕ(θk|θk) for k = 1, i.
Then, the platform’s deviation profit is larger than the profit under PAM when s1 < s1.

For δ → 0, it holds that

βi min{θi(θi − θ1), θ2
i − ωi} + β1(θ2

1 − ω1) ≥ βi(θ2
i − ωi) + β1s1,

where the inequality is strict if θiθ1 ≤ ωi or if θiθ1 > ωi and s1 < s1. This implies that
there also exists a small movement to δ > 0 where the inequality still holds.

Case 2: Advertisement

Suppose ν(·) is strictly increasing, concave and fulfills the conditions in the proposition.
Given PAM, the platform’s profit is equal to

ΠP AM = 2(1 − δ)
1 − ρ

∑︂
θi∈Θ

ν(θ2
i − ωi)βi

where search costs are set to si = θi − ωi to maximize profits given PAM. Consider the a
deviation in which all types other than type θ1 and some type θi continue to meet each
other:

Φ′(θj, θj) = ΦP AM(θj, θj) = βj, ∀θj ∈ Θ \ {θ1, θi}.

For type θ1 and θi choose the mass of recommended and matched pairs

{Φ′(θ1, θ1), Φ′(θ1, θi), Φ′(θi, θi)m′(θ1, θ1), m′(θ1, θi), m′(θi, θi)}

such that β1 − Φ′(θ1, θ1) = β1m
′(θ1, θ1) = ε and βi − Φ′(θi, θi) = βi − m′(θi, θi) = ε

for ε ∈ (0, min{β1, βi}]. The new matching rule must satisfy the feasibility constraints
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(Equation 1.14) and steady state conditions (Equation 1.15) below

β1 + 1 − δ

δ
ε = 1

δ
(β1 − (1 − δ)m′(θ1, θ1)) , (1.52)

β1 + 1 − δ

δ
ε = Φ′(θ1, θ1) + Φ′(θ1, θi), (1.53)

βi + 1 − δ

δ
ε = 1

δ
(βi − (1 − δ)m′(θi, θi)) , (1.54)

βi + 1 − δ

δ
ε = Φ′(θi, θi) + Φ′(θ1, θi). (1.55)

It follows that Φ′(θ1, θi) = ε
δ
. To ensure that type θi rejects type θ1 under the new

matching rule (so that m′(θ1, θi) = 0), while type θ1 participates, the platform chooses
(s̃1, s̃i) such that

βi

(︄
max{0, θiθ1 − ωi} + (1 − δ)

δ
s̃i

)︄
= (1 − δ)(βi − ε)

(︄
θ2

i − ωi + (1 − δ)
δ

s̃i

)︄
,

and

β1

(︄
(1 − δ)

δ
s̃1

)︄
= (1 − δ)(β1 − ε)

(︄
θ2

1 − ω1 + (1 − δ)
δ

s̃1

)︄
,

hold, which results in

s̃1 = (β1 − ε)(θ2
1 − ω1)δ

ε + δ(β1 − ε) ;

s̃i =
⎧⎨⎩

(βi−ε)(θ2
i −ωi)δ

ε+δ(βi−ε) if ωi ≥ θiθ1
δ

1−δ
βiθi(θi−θ1)−(θi−ωi)(ε+δ(βi−ε)

ε+δ(βi−ε) otherwise .

The deviation profit is therefore:

ΠD = 2(1 − δ)
1 − ρ

⎛⎝ν(s̃1)
(︄

β1 + 1 − δ

δ
ε

)︄
+ ν(s̃i)

(︄
βi + 1 − δ

δ
ε

)︄
+

∑︂
θj∈Θ\{θ1,θi}

ν(θ2
j − ωj)βj

⎞⎠ .

Then for (s1 = θ2
1 − ω1, si = θ2

i − ωi), the deviation is profitable if ΠD − ΠP AM > 0:

D ≡ ν(s̃1)
(︄

β1 + 1 − δ

δ
ε

)︄
− ν(s1)β1 + ν(s̃i)

(︄
βi + 1 − δ

δ
ε

)︄
− ν(si)βi ≥ 0. (1.56)

Rewriting the conditions yields

(1 − δ)(ν(s̃1) + ν(s̃i))ε ≥ δ[β1(ν(s1) − ν(s̃1)) + βi(ν(si) − ν(s̃i))]
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Rearranging for δ gives the following condition:

δ ≤ (ν(s̃1) + ν(s̃i))ε
β1(ν(s1) − ν(s̃1)) + βi(ν(si) − ν(s̃i)) + (ν(s̃1) + ν(s̃i))ε

≡ δ,

where δ ∈ (0, 1) for ε > 0.
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B.2 Binary Types

Lemma 11. For δ → 0, the optimal matching rule that implements
(a) AP AM is

⎡⎣ s
θh(θh−θl)

1 − s
θh(θh−θl)

1 − βh(θh(θh−θl)−s)
βhθh(θh−θl)+(βl−βh)s

βh(θh(θh−θl)−s)
βhθh(θh−θl)+(βl−βh)s

⎤⎦ , if βh

βl

≤ θ2
l − s

θh(θh − θl) − s
, (1.57)

or otherwise,
⎡⎣ βhs

βlθ
2
l
+(βh−βl)s

1 − βhs
βlθ

2
l
+(βh−βl)s

1 − s
θ2

l

s
θ2

l

⎤⎦ , if βh

βl

≥ θ2
l − s

θh(θh − θl) − s
, (1.58)

where at equality both matrices coincide. O(AP AM) is positive assortative.

(b) AW P AM is
⎡⎣ s

θh(θh−θl)
1 − s

θh(θh−θl)

1 − (βl(θ2
h−s)−βh(θh(θh−θl)−s))s

θl(θh−θl)(βh(θh(θh−θl)−s)+βl(θhθl−s))
(βl(θ2

h−s)−βh(θh(θh−θl)−s))s
θl(θh−θl)(βh(θh(θh−θl)−s)+βl(θhθl−s))

⎤⎦ , (1.59)

if (θ2
l − s)

θh(θh − θl) − s) ≤ βh

βl

≤ (θ2
h − s)

θh(θh − θl) − s) , and O(AW P AM ) is weakly assortative.

AW P AM is⎡⎣βh−βl

βh
1 − βh−βl

βh

1 0

⎤⎦ , if βh ≥ βl and βh − βl

βh

θh(θh − θl) ≤ s ≤ θhθl, (1.60)

or ⎡⎣ 0 1
1 − βh−βl

βl

βh−βl

βl

⎤⎦ , if βh ≤ βl and s ≤ β2
l θ2

l + βhθl(θh − θl). (1.61)

O(AW P AM ) is non-assortative.

(c) ANAM is ⎡⎣ βh−βl

βh
1 − βh−βl

βh

s
θl(θh−θl)

1 − s
θl(θh−θl)

⎤⎦ , if 1 ≤ βh

βl

≤ θh(θh − θl)
θh(θh − θl) − s

, (1.62)

or ⎡⎣ s
θh(θh−θl)

1 − s
θh(θh−θl)

1 − βl(θ2
h−θ2

l −s)−βh(θh(θh−θl)−s)
(θh−θl)θlβl

βl(θ2
h−θ2

l −s)−βh(θh(θh−θl)−s)
(θh−θl)θlβl

⎤⎦ , (1.63)

if θh(θh − θl)
θh(θh − θl) − s

≤ βh

βl

≤ θ2
h − θ2

l − s

θh(θh − θl) − s
, and O(ANAM) is non-assortative.
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Proof of Lemma 11 The proof proceeds as follows. Fixing each matrix of mutual
acceptance probabilities, I solve for the optimal matching rule by using the auxiliary
problem from Appendix A.1. The linear program in the binary case is given by

max 2(1 − δ)s
1 − ρ

(f(θh) + f(θl)) ,

subject to feasibility and steady state conditions

f(θh) = Φ(θh, θh) + Φ(θh, θl), (1.64)

f(θl) = Φ(θl, θl) + Φ(θh, θl), (1.65)

βh = f(θh)δ + (1 − δ)(α(θh, θh)Φ(θh, θh) + α(θh, θl)Φ(θh, θl)), (1.66)

βl = f(θl)δ + (1 − δ)(α(θl, θl)Φ(θl, θl) + α(θh, θl)Φ(θh, θl)), (1.67)

as well as the respective participation and incentive constraints.

(a) AP AM :
AP AM induces the following constraints: A high type must be willing to continue

searching after meeting a low type and the low type must be willing to participate. The
transformed incentive and participation constraints take the following form

βh(δθhθl + (1 − δ)s) ≤ (1 − δ)Φ(θh|θh)(δθ2
h + (1 − δ)s), (1.68)

βl(1 − δ)s ≤ (1 − δ)Φ(θl|θl)(δθ2
l + (1 − δ)s). (1.69)

By Theorem 1 an optimal solution exists. In the binary case, the optimal solution can
easily be checked. As the platform maximizes the steady state mass, it chooses Φ(θh, θh)
and Φ(θl, θl) to be as small as possible without violating the constraints. Here, Φ(θh, θh)
and Φ(θl, θl) are minimal when Equation 1.68 and Equation 1.69 bind resulting in

Φ(a)(θh, θh) = βh((1 − δ)s + δθhθl)
(1 − δ)((1 − δ)s + δθ2

h) ,

Φ(a)(θl, θl) = βls

(1 − δ)s + δθ2
l

.

Both the incentive and participation constraint, however, can only bind at the same time
whenever

(︄
βh

βl

)︄(a)

= (1 − δ)(θ2
l − s)(s + δ(θ2

h − s))
(θh(θh − θl) − s − δ(θ2

h − s))(s + δ(θ2
l − s)) ,

due to the feasibility constraints, Equation 1.64 and 1.65.
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The steady state mass can be calculated by inserting Φ(a)(θh, θh) and Φ(a)(θl, θl) into

f(θh) = βh − (1 − δ)Φ(θh, θh)
δ

,

f(θl) = βl − (1 − δ)Φ(θl, θl)
δ

.

The optimal matching rule is then given by ϕ(θi|θi) = Φ(θi,θi)
f(θi) for i = h, l.

If βh

βl
> (βh

βl
)(a), only the participation constraint can be binding such that Φ(θl, θl) =

Φ(a)(θl, θl). Inserting Φ(θl, θl) = Φ(a)(θl, θl) into the feasibility constraint of the low types
yields Φ(θh, θl), which in turn determines Φ(θh, θh) by inserting it into the feasibility
constraint of the high type. If βh

βl
< (βh

βl
)(a), only the incentive constraint of the high type

can be binding such that Φ(θh, θh) = Φ(θh, θh)(a) and the steps above can be repeated
respectively.

(b) AW P AM :
(b.1) AW P AM induces the following constraints: A high type must be indifferent be-

tween searching and accepting low types

βh(δθhθl + (1 − δ)s) = (1 − δ)
(︂
Φ(θh|θh)(δθ2

h + (1 − δ)s) + α(θh, θl)Φ(θh, θl)(δθhθl + (1 − δ)s)
)︂

.

which holds for ϕ(θh|θh) = (1−δ)s+δθhθl

(1−δ)θh(θh−θl)
. Additionally, low types must be willing to

participate

βl(1 − δ)s ≤ (1 − δ)
(︂
Φ(θl, θl)(δθ2

l + (1 − δ)s) + α(θh, θl)Φ(θh, θl)(δθhθl + (1 − δ)s)
)︂

.

From ϕ(θh|θh) = (1−δ)s+δθhθl

(1−δ)θh(θh−θl)
it follows

Φ(b)(θh, θh) = ϕ(θh|θh) βh

δ + (1 − δ)(ϕ(θh|θh) + α(θh, θl)(1 − ϕ(θh|θh)))⏞ ⏟⏟ ⏞
=f(θh)

= βh((1 − δ)s + δθhθl)
(1 − δ)(α(θh, θl)(θh(θh − θl) − δθ2

h − (1 − δ)s) + δθ2
h(1 − δ)s)

Then, Φ(b)(θh, θl) follows by inserting Φ(b)(θh, θh) in Equation 1.64, i.e.,

βh (θhθl − (1 − δ)θ2
h + (1 − δ)s)

(1 − δ)(α(θh, θl)(δθ2
h − δs − θ2

h + θhθl + s) − δθ2
h + δs − s) .

Furthermore, Φ(b)(θl, θl) follows from feasibility of the low type by inserting Φ(b)(θh, θl)
into Equation 1.65.
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The low type is indifferent between participating and not participating if

αW P AM ≡{︂
α(θh, θl) : βls = Φ(b)(θl, θl)(δθ2

l + (1 − δ)s) + α(θh, θl)Φ(b)(θh, θl)(δθhθl + (1 − δ)s)
}︂

.

For δ → 0, I get

αW P AM = s (βh(θh(θh − θl) − s) − βl(θ2
l − s))

(θh(θh − θl) − s) (βhθl(θh − θl) + βlθ2
l + (βh − βl)s) . (1.70)

The mutual acceptance probability is then given by the above. For δ → 0, to ensure that
αW P AM ≤ 1 and ϕ(θl|θl) ≥ 0, the conditions in the lemma must hold.

(b.2) Additionally for βh ≥ βl, the platform can implement AW P AM by always match-
ing low types with high types, i.e. ϕ(θh|θl) = 1. This implies that low types search for
only one period, such that f(θl) = Φ(θh, θl) = βl. The high types’ incentive constraint for
α(θh, θl) = 1 is

βh(δθhθl + (1 − δ)s) ≥ (1 − δ)
(︂
Φ(θh|θh)(δθ2

h + (1 − δ)s) + Φ(θh, θl)(δθhθl + (1 − δ)s)
)︂

,

and from the feasibility constraint (Equation 1.64), it follows that Φ(θh, θh) = βh − βl.
The incentive constraint of high types is satisfied if

s ≥ βh − (1 − δ)βl

(1 − δ)βh

θh(θh − θl) − δ

(1 − δ)θ2
h

The participation constraint of low types is satisfied if s ≤ θhθl:

βl(1 − δ)s ≤ (1 − δ)βl(δθhθl + (1 − δ)s).

Lastly for βh ≤ βl, the platform can implement AW P AM by always matching high types
to low types, i.e. ϕ(θl|θh) = 1. This implies that high types search for only one period,
such that f(θh) = Φ(θh, θl) = βh. Low types must be willing to participate

βl(1 − δ)s ≤ (1 − δ)
(︂
Φ(θl, θl)(δθ2

l + (1 − δ)s) + βh(δθhθl + (1 − δ)s)
)︂

.

If the participation constraint is satisfied, low types also search for only one period, such
that f(θl) = βl. Therefore, Φ(θl, θl) = βl − βh. Thus, the participation constraint is
satisfied if

s ≤ β2
l θ2

l + βhθl(θh − θl),
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and low types do not reject low types if

s ≥ δθl(βh(1 − δ)θh − βlθl)
(1 − δ)(βl − (1 − δ)βh) ,

which equals zero for δ → 0.

(c) ANAM :
(c.1) ANAM can be implemented if

βh((1 − δ)s + δθhθl) ≥ (1 − δ)Φ(θh|θh)((1 − δ)s + δθ2
h) + (1 − δ)Φ(θh, θl)((1 − δ)s + δθhθl),

βl((1 − δ)s + δθ2
l ) ≤ (1 − δ)Φ(θh|θl)((1 − δ)s + δθhθl).

As high types accept both high and low types and search for only one period, the
steady state mass of high types is equal to their inflow: f(θh) = βh. The platform’s profit
from high types is, therefore, independent of the matching rule. To maximize profits, the
platform minimizes Φ(θh, θl) such that

Φ(θh, θl) = βl((1 − δ)s + δθ2
l )

(1 − δ)((1 − δ)s + δθhθl)
,

and the incentive constraint of the low type binds. Φ(θh, θh) = βh − βl follows from the
feasibility constraints (Equation 1.64), where Φ(θh, θh) and Φ(θh, θl) must be such that
the incentive constraint of the high type is fulfilled, which is true if

1 ≤ βh

βl

≤ ((1 − δ)s + δθ2
l ) θh(θh − θl)

(θh(θh − θl) − (1 − δ)s − δθ2
h) ((1 − δ)s + δθhθl)

.

For δ → 0 this results in

1 ≤ βh

βl

≤ θh(θh − θl)
θh(θh − θl) − s

.

(c.2) ANAM can be implemented if a high type is indifferent between accepting and
rejecting a low type, while a low type is willing to reject low types. Again as in part (b),
ϕ(θh|θh) = (1−δ)s+δθhθl

(1−δ)θh(θh−θl)
must hold to ensure the indifference constraint of high types. Then

for α(θh, θl) ∈ [0, 1], Φ(c)(θh, θh) = Φ(b)(θh, θh) and Φ(c)(θh, θl) = Φ(b)(θh, θl). Inserting into
the incentive constraint of the low type, the low type rejects low types if

βl((1 − δ)s + δθ2
l ) ≤ (1 − δ)α(θh, θl)Φ(c)(θh, θl)((1 − δ)s + δθhθl),
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which holds with equality for

αNAM = βls

(βh − βl)(θh(θh − θl) − s) (1.71)

if δ → 0. It holds that αNAM > 0 generally, and αNAM ≤ 1 if βh

βl
≥ θh(θh−θl)

θh(θh−θl)−s
. Addition-

ally, ϕ(θh|θl) = (βh−βl)(θ2
h−θ2

l −s)
βlθl(θh−θl)

, which is larger than zero if βh ≥ βl and smaller than one
if βh

βl
≤ θ2

h−θ2
l −s

θh(θh−θl)−s
.

Proof of Proposition 3 Next, I determine the platform’s preferred outcome. First,
let s ≤ θ2

l .
(i) For βh

βl
≤
(︂

βh

βl

)︂(a)
, the profit when implementing AP AM (Equation 1.57) is

Π(a.1) = 2ν(s)(1 − δ)
1 − ρ

(︄
2βhθh(θh − θl) + (βl − βh)(s + δ(θ2

h − s))
s + δ(θ2

h − s)

)︄
.

For βh

βl
≥
(︂

βh

βl

)︂(a)
, the platform can either implement AP AM (Equation 1.58) or AW P AM

(Equation 1.59). The profits are

Π(a.2) = 2ν(s)(1 − δ)
1 − ρ

(︄
2βlθ

2
l + (βh − βl)(s + δ(θ2

l − s))
s + δ(θ2

l − s)

)︄

and

Π(b.1) = 2ν(s)(1 − δ)
1 − ρ

(2βhθ2
hθl − (βh − βl)(2θ2

l − s − θls) − δ(βh − βl)(θh − θl)(s + θhθl))
(θh + θl)(s + δ(θhθl − s)) ,

where the difference is positive

Π(b.1) − Π(a.1) ≥ 0.

Thus for
(︂

βh

βl

)︂(a)
≤ βh

βl
≤ (1−δ)θ2

h−s

θh(θh−θl)−s+δ(θ2
h

−s) the platform implements AW P AM and AP AM if
βh

βl
≥ (1−δ)θ2

h−s

θh(θh−θl)−s+δ(θ2
h

−s) .
It remains to compare the profit in equilibrium (b) when implementing AW P AM against

the profit from equilibrium (c) when implementing ANAM . Note that for s ≤ θ2
l , the profit

when implementing AW P AM is maximized in (b.1) as agents in both equilibria in (b.2)
only search for one period. The profit in (c) is

Π(c.1) = 2ν(s)(1 − δ)
1 − ρ

(︄
βh + βlθl(θh − θl)

s + δ(θhθl − s)

)︄
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or

Π(c.2) = 2ν(s)(1 − δ)
1 − ρ(︄

s(βh − βl)θh(θh − θl) + sβlθl(θh − θl) + δ(βhθh(θh − θl)(θhθl − s) + βl(θh − θl)2(s + θhθl)
(s + δ(θ2

h − s))(s + δ(θhθl − s))

)︄
.

Then, it holds that Π(b) ≥ Π(c.1), Π(c.2).
(ii) Let θ2

l ≤ s ≤ θhθl. Then, the platform can only implement AW P AM or ANAM .
Alternatively, the platform can exclude low types from participating. Recall that Π(c.1)

and Π(c.2) are strictly dominated by Π(b.1). Therefore, the platform implements either
AW P AM in Equation 1.59, 1.60, or 1.61. If βh ≥ βl, the platform can either implement
AW P AM in Equation 1.59 or 1.61. If βh < βl, the platform can either implement AW P AM

in Equation 1.59 or 1.60. In this case, however, for too large s no low type is willing to
participate such that the platform excludes low types. Note that at s = θhθl, the matching
outcome is non-assortative if βh ≥ βl, whereas only high types participate if βh < βl.
(iii) Let θhθl ≤ s ≤ θ2

h. If search costs are larger than θhθl, low types are no longer willing
to participate. To maximize surplus from high types, the platform sets ϕ(θh|θh) = 1.

Proof of Proposition 4 (i) The platform implements AP AM together with the match-
ing rule as in Lemma 11 (a). As the positive assortative matching outcome maximizes
match productivity, the welfare loss from mismatch is zero. For βh

βl
≤
(︂

βh

βl

)︂(a)
, agents’

expected search time is

T (θh) = θh(θh − θl)
s + δ(θ2

h − s) ,

T (θl) = βh(θh(θh − θl) + (βl − βh)s + δ(βl − βh)(θ2
h − s)

βl(s + δ(θ2
h − s)) .

Observe that T (θh) is decreasing in s and δ. Differentiating T (θl) with respect to s and
δ yields

∂T (θl)
∂s

= −βh(1 − δ)θh(θh − θl)
βl(s + δ(θ2

h − s))2 < 0,

∂T (θl)
∂δ

= −βhθh(θh − θl)(θ2
h − s)

βl(s + δ(θ2
h − s))2 < 0,

i.e. T (θh) is decreasing in s and δ as well.
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For βh

βl
≥ (1−δ)θ2

h−s

θh(θh−θl)−s+δ(θ2
h

−s) , agents’ expected search time is

T (θh) = βlθ
2
l + (βh − βl)(s + δ(θ2

l − s))
βh(s + δ(θ2

l − s) ,

T (θl) = θ2
l

s + δ(θ2
l − s) .

Observe that T (θl) is decreasing in s and δ. Differentiating T (θh) with respect to s and
δ yields

∂T (θh)
∂s

= − βl(1 − δ)θ2
l

βh(s + δ(θ2
l − s))2 < 0,

∂T (θh)
∂δ

= − βl(θ2
l − s)θ2

l

βh(s + δ(θ2
l − s))2 < 0,

i.e. T (θh) is decreasing in s and δ as well.
(ii) The platform implements AW P AM together with the matching rule as in Lemma

11 (b.1). The welfare loss from mismatches is

WW P AM = αW P AMΦ(b)(θh, θl)(θh − θl)2,

and agents’ expected search time is

T (θh) = βh − (1 − δ)(Φ(b)(θhθh) + αW P AMΦ(b)(θh, θl))
βhδ

,

T (θl) = βl − (1 − δ)(Φ(b)(θlθl) + αW P AMΦ(b)(θh, θl))
βlδ

,

where

Φ(b)(θh, θh) = βhθhθl − (βh − βl)(1 − δ)(θ2
l − s)

(1 − δ)(θ2
h − θ2

l ) ,

Φ(b)(θl, θl) = βhθhθl − (βh − βl)(1 − δ)(θ2
h − s)

(1 − δ)(θ2
h − θ2

l ) ,

which are both increasing (decreasing) in s if βh > βl (βh < βl) and increasing in δ. Note
that Φ(b)(θh, θl) followed from feasibility (see proof of Lemma 11) and αW P AM is set to
fulfill the low types’ participation constraint. Using the implicit function theorem and
differentiating the participation constraint with respect to s yields

βl − (1 − δ)(αW P AMΦ(b)(θh, θl) + Φ(b)(θl, θl)) =
∂Φ(b)(θl, θl)

∂s
(δθ2

l + (1 − δ)s) + ∂αW P AMΦ(b)(θh, θl)
∂s

(δθ2
h + (1 − δ)s),
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where the left-hand side corresponds to δf(θl) > 0 and Φ(b)(θl, θl) is increasing in s if βh >

βl and decreasing otherwise. Thus, it follows that αW P AMΦ(b)(θh, θl) must be increasing in
s if βl > βh and either in-or decreasing for βl < βh (depending on the parameter values).
Using the implicit function theorem and differentiating the participation constraint with
respect to δ yields

0 = ∂Φ(b)(θl, θl)
∂δ

(δθ2
l + (1 − δ)s) + Φ(b)(θl, θl)(θ2

l − s)

+ ∂αW P AMΦ(b)(θh, θl)
∂δ

(δθ2
h + (1 − δ)s) + αW P AMΦ(b)(θh, θl)(θhθl − s),

As Φ(b)(θl, θl) is increasing in δ, αW P AMΦ(b)(θh, θl) must be decreasing in δ for s ≤ θ2
l . For

δ for s > θ2
l , αW P AMΦ(b)(θh, θl) can be either in- or decreasing in δ.

It follows that WW P AM is increasing in s if βl > βh and either in-or decreasing for
βl < βh (depending on the parameter values). Furthermore, WW P AM is decreasing in δ

for s ≤ θ2
l and either in- or decreasing for s > θ2

l .
Differentiating T (·) with respect to s and δ yields

∂T (θh)
∂s

= −(1 − δ)θhθl (βl ((θh − θl)δ + θl) + (θh − θl)(1 − δ)βh)
((θhθl − s)δ + s)2 βh(θh + θl)

< 0,

∂T (θl)
∂s

= −(1 − δ)θhθl (βh(θh − θl)(1 − δ) + βl ((θh − θl)δ + θl))
((θhθl − s)δ + s)2 (θh + θl)

< 0,

∂T (θh)
∂δ

= −θ2
hθl (βhθl(θh − θl) + βl(θ2

l − s))
(δθhθl + s(1 − δ))2βh(θh + θl)

< 0,

∂T (θl)
∂δ

= −θ2
hθl (βhθl(θh − θl) + βl(θ2

l − s))
(δθhθl + s(1 − δ))2(θh + θl)

< 0.

That is, T (·) is decreasing in s and δ.
(iii) The platform implements AW P AM by the matching rule as in Lemma 11 (b.2).

The matching outcome is non-assortative. The welfare loss from mismatch is

WNAM = −2βl(θh − θl)2,

and agents search for one period only.

Proof of Proposition 5 The proof follows the structure of Proposition 3. Note all
matching outcomes in Proposition 3 are implemented when choosing the search fee except
the positive assortative matching outcome for βh

βl
≥
(︂

βh

βl

)︂(b)
.

(i) Suppose the platform implements AP AM for βh

βl
≤
(︂

βh

βl

)︂(a)
. Recall that for s = θ2

l ,(︂
βh

βl

)︂(a)
= 0 and thus AP AM can never be implemented if there is a positive inflow of
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both types. The platform maximizes its profit with respect to s under the constraint that
s ∈ [0, θ2

l ] and the condition βh

βl
≤
(︂

βh

βl

)︂(a)
is still fulfilled.

(ii) Suppose the platform implements AW P AM for
(︂

βh

βl

)︂(a)
≤ βh

βl
≤
(︂

βh

βl

)︂(b)
. There exists

an θh(θh − θl) > s > θ2
l such that if s > s AW P AM can never be implemented if there is a

positive inflow of both types. The platform maximizes its profit with respect to s under
the constraint that s ∈ [0, s] and the condition

(︂
βh

βl

)︂(a)
≤ βh

βl
≤
(︂

βh

βl

)︂(b)
is still fulfilled.

(iii) Suppose the platform implements ANAM for βh > βl. Then, agents only search for
one period. Therefore, the platform increases the search fee as much as possible. By
Proposition 3, the upper limit is given by s = θhθl.
(iv) Lastly, the platform can exclude low types from participating. To maximize profits,
the platform extract the surplus from high types by setting s = θ2

h. The platform does so
for sufficiently high βh

βl
.

The platform does not implement the positive assortative matching outcome for βh

βl
≥(︂

βh

βl

)︂(b)
. Recall that profits are

2(1 − δ)
1 − ρ

(︄
2βlθ

2
l s

(1 − δ)s + δθ2
l

+ (βh − βl)s
)︄

.

Note that both terms are strictly increasing in s such that the platform would choose
s = θ2

l resulting in

2(1 − δ)
1 − ρ

(︂
βhθ2

l + βlθ
2
l

)︂
.

As ANAM can be implemented for βh > βl with s = θhθl, the profit from ANAM is always
strictly larger than the profit from AP AM for βh

βl
≥
(︂

βh

βl

)︂(b)
.

Proof of Proposition 6 For the proof of the first sentence, I first examine the first-
order condition in Equation 1.9. Observe that ν(s)

ν′(s) is strictly increasing in s due to the
concavity of ν(s). Additionally, from Proposition 4 it follows that ∂f(θk

i )/∂s < 0, i.e. f(θk
i )

is strictly decreasing in s. From the proof of Proposition 4, it follows that ∂2f(θk
i )/∂s2 > 0.

Thus, the right-hand side of Equation 1.9 decreases in s and the left-hand side increases
in s which implies the statement.

To prove the second sentence, note that the profit for charging s = θhθl and imple-
menting ONAM is

2(1 − δ)
(1 − ρ) ν(θhθl)(βh + βl),
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and for charging s = θ2
h and excluding low types is

2(1 − δ)
(1 − ρ) ν(θ2

h)(βh).

Then, if ν(·) is sufficiently concave, the platform prefers to charge a lower price for a
discrete increase in demand:

ν(θhθl)
ν(θ2

h) ≥ βh

βh + βl

(< 1).

Proof of Proposition 7 To characterize the profit-maximizing solution with overconfi-
dent users, note first that it is optimal for the platform to have all three types participate.
Otherwise, the platform can always increase profits by including the formerly excludes
type by charging a positive fee and matching them to each other. Consider the feasible
mutual acceptance matrices of the form

⎡⎢⎢⎢⎣
α(θh, θh) α(θh, θl) α(θh, θ̂l)
α(θl, θh) α(θl, θl) α(θl, θ̂l)
α(θ̂l, θh) α(θ̂l, θl) α(θ̂l, θ̂l).

⎤⎥⎥⎥⎦
As overconfident users perceive to have the same continuation value as high types, V C(θh),
they follow the same acceptance strategy. That is, overconfident users accept high types
with probability one and low types with probability α ∈ [0, 1] if and only if high types
do. Furthermore, overconfident users are accepted by high (low) types with positive
probability if and only if high (low) types accept low types with positive probability.

The feasible mutual acceptance matrices are

A1 =

⎡⎢⎢⎢⎣
1 1 1
1 1 1
1 1 1

⎤⎥⎥⎥⎦ , A2 =

⎡⎢⎢⎢⎣
1 0 0
0 1 0
0 0 0

⎤⎥⎥⎥⎦ , A3 =

⎡⎢⎢⎢⎣
1 α′ α′

α′ 1 α′

α′ α′ (α′)2

⎤⎥⎥⎥⎦ , A4 =

⎡⎢⎢⎢⎣
1 α′′ α′′

α′′ 0 0
α′′ 0 (α′′)2

⎤⎥⎥⎥⎦ ,

for α′ ∈ (0, 1] and α′′ ∈ (0, 1]. The profit from implementing A1 is given in the text
preceding Proposition 7. Observe that implementing A2 − A4 can induce search for more
than one period for at least one type.

To implement A2–A4, the incentive constraint ensuring that high types reject low
types with positive probability must hold. The platform then maximizes revenue from
both high and low types by maximizing match surplus and extracting it through the
search fee conditional on leaving a rent of θhθl to high types. From Appendix A.2, match
surplus is maximized under positive assortative matching—that is, when the platform
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implements A2. Moreover, agents must search for only one period; otherwise, surplus is
lost due to δ > 0.

Revenue from overconfident agents is maximized under A2 − A4 when they search for
1
δ

periods—i.e., no one they match with accepts them, and sh is maximized. Under A2,
this is exactly the case: overconfident types are rejected, they search for 1

δ
periods, and

the platform captures the match surplus from high types through sh, i.e. sh is maximal.
Thus, it follows that the relevant constraints are given by

θhθl ≤ (1 − δ)(−s + ϕ(θh|θh)θ2
h)

δ + (1 − δ)ϕ(θh|θh) , (IC-θh)

θhθl ≤ (1 − δ)(−s + ϕ(θh|θh)θ2
h)

δ + (1 − δ)ϕ(θh|θh) , (PIC-θ̂l)

0 ≤ (1 − δ)(−s + ϕ(θl|θl)θ2
l )

δ + (1 − δ)ϕ(θl|θl)
. (PC-θl)

From the steady state constraints, Equation 1.15, the platform’s profit maximization
problem can be written as

βhsh

δ + (1 − δ)ϕ(θh|θh) + βl(1 − λ)
δ + (1 − δ)ϕ(θl|θl)

+ βlλ

δ
,

subject to feasibility constraints, Equation 1.14, and the three incentive and participation
constraints above. It can easily be verified that sl = θ2

l and sh = θh(θh − θl) − d/1−δθhθl

and ϕ(θh|θh) = 1, ϕ(θl|θl) = 1 and ϕ(θ̂l|θ̂l) = 1 maximize the platform’s profit and satisfy
all constraints with equality. The platform’s profit, ΠOC

S , is given in Proposition 7, where
λ∗ is derived by setting ΠOC

S = ΠOC
P AM and solving for λ.
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C Appendix: Tables

Application App Price Subscriptions One-Time Purchases

Tinder Free
Tinder Gold (1 Week): $13.99 − 18.99
Tinder Gold (1 Month): $14.99 − 24.99
Tinder Plus (1 Month): $9.99

1 Boost: $3.99 − 7.99
3 Super Likes: $9.99
5 Super Likes: $4.99

Bumble Free Bumble Premium (1 Year) $129.99 − 169.99
5 Spotlights + Compliments $24.99 − 29.99
15 Spotlights + Compliments $44.99 − 59.99
30 Spotlights + Compliments $79.99 − 99.99

Hinge Free

Hinge+ Subscription (1 Week): $16.99
Hinge Subscription (1 Month): $29.99 − 34.99
Membership (1 Month): $19.99
Hinge Subscription (1 Week): $14.99
HingeX Subscription: $24.99

Bundle of three Roses: $9.99
Bundle of twelve Roses: $29.99
Boost: $9.99 − 19.99

Match Free

Match (1 Month): $19.99 − 42.99
Match (3 Months): $74.99
Match (6 Months): $129.99
Standard (1 Month): $44.99
Basic (1 Months): $44.99
Platinum (1 Week): $29.99

1 Top Spot: $2.99
Top Spot 10-Pack: $19.99
Boost 1-Pack: $5.99

Hily Free

Hily Premium (1 Week): $14.99
Profile boost (1 Week): $5.99 − 9.99
Premium+ (1 Week): $24.99
Hily Elixir (1 Week): $19.99

1 Unblur: $4.99
5 Unblur: $12.99

Plenty of Fish Free
Upgrade (1 Month): $19.99
Upgrade (3 Months): $38.99
Premium Membership (1 Month): $29.99

1 Token: $1.99
5 Tokens: $8.99
10 Tokens: $17.99

Badoo Free
Badoo Premium (1 Week): $5.99 − 8.99
Super Powers (1 Week): $2.99
Super Powers (1 Months): $11.99

Pack of 100 Credits: $1.99 − 3.99

Coffee Meets Bagel Free

Premium (1 Month): $14.99 − 34.99
Premium (3 Months): $74.99
Premium (6 Months): $71.99
Platinum (1 Month): $46.99
Platinum (3 Month): $99.99

200 Coffee Beans: $2.99
400 Coffee Beans: $4.99
3000 Coffee Beans: $24.99

Raya Free
Membership (1 Month): $24.99
Membership (6 Month): $113.99
Raya+ Membership: $49.99

30 Extra Likes: $10.99
Skip the Wait: $7.99
5 Skip the Waits: $29.99
1 Direct Request: $4.99
3 Direct Requests: $12.99
12 Direct Requests: $49.99

MeetMe Free
MeetMe (1 Month): $7.99
MeetMe (3 Months): $17.99
MeetMe+ (1 Month): $7.99

Pack of 200 Credits: $1.99
Pack of 500 Credits: $1.99 − 4.99
Pack of 1800 Credits: $14.99
Pack of 14500 Credits: $99.99
Pack of 3200 Credits: $24.99

Table A.1: A Selection of Dating Apps in the US Apple Store
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Application App Price Subscriptions One-Time Purchases

Tinder Free
Tinder Gold (1 Week): 13, 99 €
Tinder Gold (1 Month): 8, 99 − 27, 49 €
Tinder Platinum (1 Month): 32, 99 €

1 Boost: 7, 99 − 9, 99 €
3 Super-Likes: 11, 99 €
5 Super-Likes: 5, 99 − 9, 99 €

Bumble Free
Bumble Premium (1 Week): 14, 99 − 19, 99 €
Bumble Boost (1 Week): 5, 99 − 6, 99 €
Bumble Premium (1 Month): 34, 99 €

Hinge Free
Hinge+ Sub (1 Week): 14, 99 €
Hinge+ Sub (1 Month): 24, 99 €
HingeX Sub (1 Week): 24, 99 €

Bundle of twelve Roses: 24, 99 €
Bundle of three Roses: 7, 99 €
One Superboost: 14, 99 €
One Boost: 7, 99 €

LOVOO Free Lovoo Premium (1 Month): 11, 99 − 24, 99 €

300 Credits: 5, 99 €
500 Credits: 4, 99 €
550 Credits: 7, 99 €
3000 Credits: 19, 99£ €
5 Icebreaker: 5, 99 €
Unbegrenzte Likes: 1, 19 €

Badoo Free Badoo Premium (1 Week): 5, 99 − 7, 99 €
Badoo Premium (1 Month): 19, 99 €

100 Badoo Credits: 1, 99 − 4, 99 €
550 Badoo Credits: 12, 99 €
Super Powers (1 Woche): 2, 99 €
Super Powers (1 Monat): 8, 99 €
Super Powers (1 Woche): 2, 99 €

Parship Free
Premium lite (6 Month): 209, 99 − 229, 99 €
Premium classic (1 Year): 224, 99 − 499, 99 €
Premium Comfort: 249, 99 €

Parship Premium: 9, 99 €

OkCupid Free OkCupid Premium (1 Month): 15, 99 − 32, 99 €
OKCupid Premium (3 Month): 65, 99 €

1 Boost: 1, 99 − 7, 99 €
2 Superlikes: 7, 99 €

Raya Free
Membership (1 Month): 18, 99 €
Membership (6 Month): 83, 99 €
Raya+ Membership (1 Month): 44, 99 €

Skip the Wait 7, 99 €
3 Direct Requests 12, 99 €
1 Direct Request 4, 99 €
30 Extra Likes 10, 99 €
5 Skip the Waits 29, 99 €
1 Travel Plan 9, 99 €

LoveScout24 Free

Lovescout24 (1 Month): 39, 99 €
Mobile Plus (1 Month): 9, 99 €
Mobile Plus (1 Week): 4, 99 €
Lovescout24 (1 Week): 9, 99 €
Lovescout24 (3 Month): 89, 99 €

1 Booster: 1, 99 €
Wer sucht mich?: 1, 99 €
Boost: 1, 99 €
Dateroulette: 2, 99 €
Favouriten-Funk: 1, 99 €

ElitePartner Free

ElitePartner Premium Go: 3, 99 − 19, 99 €
Premium plus (1 Year): 399, 99 €
Premium basic (6 Months): 279, 99 €
Premium comfort (2 years) : 599, 99 €

Table A.2: A Selection of Dating Apps in the German Apple Store
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App Name Price Contains Ads Prices of In-App Purchases Number of Installations
German Store
happn Free Yes 0.59 − 274.99 € 100M+
Badoo Free Yes 0.39 − 244.99 € 100M+
Tinder Free Yes 0.29 − 324.99 € 100M+
SweetMeet Free Yes 0.59 − 219.99 € 50M+
Bumble Free No 0.29 − 314.99 € 50M+
BLOOM Free Yes 1.49 − 299.00 € 10M+
OkCupid Free Yes 0.71 − 194.99 € 10M+
Zoosk Free Yes 0.50 − 434.99 € 10M+
Mamba Free Yes 0.50 − 294.99 € 10M+
Boo Free Yes 0.46 − 218.85 € 10M+
US Store
happn Free Yes $0.49 − 224.99 100M+
Badoo Free Yes $0.49 − 239.99 100M+
Tinder Free Yes $0.49 − 299.99 100M+
SweetMeet Free Yes $0.99 − 199.99 50M+
Bumble Free No $0.49 − 259.99 50M+
BLOOM Free Yes $1.99 − 349.00 10M+
OkCupid Free Yes $0.99 − 179.99 10M+
Zoosk Free Yes $0.49 − 399.99 10M+
Mamba Free Yes $0.99 − 264.99 10M+
Boo Free Yes $1.00 − 269.99 10M+

Table A.3: Most Popular Dating Apps in the German and US Google Play Store

App Name App Price In-App Purchases Price Adds In-App Purchases No. of Downloads
US Apple Store US Android Store
LinkedIn Free Career (1 Month): $29, 99 − 39, 99

Business (1 Month): $69, 99
Free Yes $7.49 − 839.88 1B+

Indeed Free None Free Yes none 100M+
Glassdoor Free None Free No none 10M+
ZipRecruiter Free None Free No none 10M+
Monster Free None Free No none 5M+
German Apple Store German Android Store
LinkedIn Free Essentials (1 Month): 9, 99 €

Career (1 Month): 29, 99 − 39, 99 €
Business (1 Month): 69, 99 €

Free Yes 7, 00 − 839, 88 € 1B+

Indeed Free None Free Yes none 100M+
Glassdoor Free None Free Yes none 10M+
Stepstone Free None Free Yes none 10M+
Monster Free None Free Yes none 5M+
Costs for Recruiters
LinkedIn The standard account is free. Premium accounts cost between 40 − 125 €/$ (See above)
Indeed There is an option for free listings. Costly adds are charged per click, with a minimum of 5 €/$ per day
Glassdoor No information
Monster Two Options: Monster+ Standard: Pay per Click and Monster+ Pro: 749€/$299 per month
Stepstone Multiple tiers: “Campus” 199 €,“Select”: 329€, “Pro”: 1399 €, Pro Plus: 1699 €, Pro Ultimate: 2399 €
Zip Recruiter Pricing depends on the number of job ads. Ads are charged per day and per add:“Standard”: $16, “Premium”: $24

Plans are charged per ad and per month: “Standard”: $299, “Premium”: $419, “Pro”: $719

Table A.4: Selected Job Platforms in the German and US App Store
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2.1 Introduction

Joining a new platform often involves uncertainty for an individual user who cannot be
sure of its overall popularity. With uncertainty about a platform’s network size, users need
to form beliefs about the participation decisions of others. Based on the data platforms
collect and the in-depth knowledge of their business model, platforms naturally have an
informational advantage relative to individual users. Moreover, they have an incentive to
let consumers believe that joining will enable them to reap large network effects. Given
these incentives, this paper investigates a platform’s ability to use “fake profiles” to its
advantage both when users are sophisticated about and when they are unaware of the
platform’s ability to do so.

The use of fake profiles is a common phenomenon on digital platforms. Prominent
cases are those of Dating platforms. For example, the Federal Trade Commission (FTC)
sued the Match Group for using fake profiles to persuade users to upgrade to a paid
subscription. Other dating platforms use company-created fake profiles to interact with
users on the platform, giving them the impression of a real contact with users often being
unaware of this practice.1 Further examples include cryptocurrency exchange platforms,
which are under investigation by the SEC for engaging in trading financial assets them-
selves to artificially inflate the trading volume (so-called wash trading). Recent studies
show that about 70% of unregulated trades are subject to wash trading (Cong et al.,
2023). The economic costs to users and platforms are substantial. If fake profiles induce
users to hold incorrect belief about the platform, they may make inefficient participation
decisions. Furthermore, creating fake profiles is costly to the platform without generating
additional value.

Formally, I investigate how a monopoly platform uses multiple signals to convince
users of its network size. In particular, users can learn from the price they observe, a
(cheap-talk) message, and the network size. Users are uncertain about the distribution of
stand-alone values provided by the platform, while the platform has private information
about this fundamental. Given the information asymmetry, suboptimal membership fees
and fake profiles set by the platform are both costly signals about the fundamental. Fake
profiles can increase the perceived network size but do not generate network effects ex
post.

Users observe the membership fee first and then decide whether to join the platform.
Thereafter, users who joined observe the perceived network size and decide whether to exit

1See https://www.ftc.gov/news-events/press-releases/2019/09/ftc-sues-owner-
online-dating-service-matchcom-using-fake-love, last visited 01.09.2020); https://www.
verbraucherzentrale.de/wissen/digitale-welt/onlinedienste/onlinedating-auf-diesen-
portalen-flirten-fakeprofile-21848, last visited 01.09.2020 or https://www.faz.net/aktuell/
wirtschaft/unternehmen/straftaten-schiessen-wegen-datingplattform-in-die-hoehe-
18792428.html.

https://www.ftc.gov/news-events/press-releases/2019/09/ftc-sues-owner-online-dating-service-matchcom-using-fake-love
https://www.ftc.gov/news-events/press-releases/2019/09/ftc-sues-owner-online-dating-service-matchcom-using-fake-love
https://www.verbraucherzentrale.de/wissen/digitale-welt/onlinedienste/onlinedating-auf-diesen-portalen-flirten-fakeprofile-21848
https://www.verbraucherzentrale.de/wissen/digitale-welt/onlinedienste/onlinedating-auf-diesen-portalen-flirten-fakeprofile-21848
https://www.verbraucherzentrale.de/wissen/digitale-welt/onlinedienste/onlinedating-auf-diesen-portalen-flirten-fakeprofile-21848
https://www.faz.net/aktuell/wirtschaft/unternehmen/straftaten-schiessen-wegen-datingplattform-in-die-hoehe-18792428.html
https://www.faz.net/aktuell/wirtschaft/unternehmen/straftaten-schiessen-wegen-datingplattform-in-die-hoehe-18792428.html
https://www.faz.net/aktuell/wirtschaft/unternehmen/straftaten-schiessen-wegen-datingplattform-in-die-hoehe-18792428.html
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prior to paying the membership fee (following a “free-trial period”). In contrast to most of
the signaling literature, I analyze a game with multiple signaling instruments, continuous
signals and a continuum of receivers, where receivers (users) care not only about the
sender’s (platform’s) action, but also about the action of other receivers (users).

Absent fake profiles, the platform’s only signaling instrument about its size is the
price. If users cannot observe demand and pay the price upfront, prices must be distorted
upwards above full information prices to credibly signal a high fundamental. Only in
higher states can a platform set inefficiently high prices to optimally separate from lower
states. Including the possibility of creating fake profiles, users’ understanding thereof is
crucial when evaluating the market outcome. Before users pay the price, they observe the
perceived network size without being able to distinguish between real and fake profiles.
Sophisticated users, however, are fully aware of the platform’s practice, whereas naive
users are unaware of the possible use of fake profiles or believe that fake profiles are
forbidden and hence not used.

Sophisticated users anticipate the platform’s incentives correctly and hence, discount
the perceived network size by the expected amount of fake profiles. In that case, both
fake profiles and high prices are costly in that they reduce profits taken demand as given,
and hence are substitutes for signaling a high fundamental. Abstracting from existence
issues, the platform can always fully differentiate itself from those with less users through
costly signaling based either on inefficiently high prices or the use of costly fake profiles. I
identify parameter conditions such that the latter separating equilibrium exists, whereas
the former always exists. Given its existence, in the unique separating equilibrium the
platform with the lowest fundamental sets its full information price and all other platforms
need to create fake profiles and distort their prices. Otherwise, the unique equilibrium
has the same properties as the equilibrium absent fake profiles.

In contrast, if users dogmatically believe that every profile is real, i.e. they never con-
sidered the possibility of creating fake profiles, the platform uses the cheap-talk message
to communicate the expected network size upfront. Users blindly believe this message
upfront and the corresponding network size later on. The platform can exploit this mis-
perception by using fake profiles to signal an unrealistic high network size, and thus value,
to the users. In equilibrium, the platform always prefers to lie and deceive users by pre-
tending that their network size is larger than it actually is. With a bounded state space,
the platform with the highest fundamental, however, cannot induce unrealistic high user
beliefs. Hence, depending on the costs of fake profiles, platforms below a threshold lie
by creating fake profiles and set a higher price, and those above induce the highest pos-
sible belief about the state. This results in pooling on the observable instruments, but
differentiation on the unobservable instrument.

The results imply that a platform would like to commit to refrain from using fake
profiles with sophisticated users. Fake profiles are a wasteful investment for the platform
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used for separation. Rather than observing that platforms commit on not using fake pro-
files, it can be observed that platforms actually hide the use of fake profiles in their terms
and conditions. This, however, likely indicates that users are mainly naive in these mar-
kets, which renders fake profiles profitable. With sophisticated users the platform would
benefit from a regulation that provides commitment for the platform’s claim that the ob-
served network size is the true network size. This would result in full information prices
being incentive-compatible as lying by platforms with a low fundamental is detectable and
punished by exiting and non-paying users. If platforms are not able to credibly commit,
however, they can profit from fake profiles with sophisticated users: signaling via fake
profiles can lower the overall signaling costs when compared to signaling via distortionary
prices only.

Methodologically, I apply an adjusted version of the D1 criterion developed by Banks
and Sobel (1987) to refine the set of Perfect Bayesian Equilibria. It is well known that in
certain classes of games, the D1 criterion selects a unique equilibrium outcome, which is
separating, whenever there is a single receiver (or multiple receivers whose decisions are
strategically independent). I extend this result to strategically interdependent receivers
by imposing a restriction on the coordination problem of users’ entry decision off the
equilibrium path.

The remainder of the paper proceeds as follows. The related literature is discussed
in Section 2.1.1. Section 2.2 describes the model and discusses potential applications.
Section 2.3 analyzes the model when users are sophisticated, whereas Section 2.4 provides
the analysis for naive users. Section 2.5 discusses common cases of fake profiles and
Section 2.6 concludes. All omitted proofs are in Appendix B.

2.1.1 Related Literature

This paper is the first to introduce signaling into a model of platform adoption. As such
it is related to models of platforms when there is incomplete information. Technically, it
is related to the literature on signaling with multiple instruments. Since I allow for users
who have incorrect beliefs, it is also related to papers on misleading consumers. I discuss
these related papers below.

Platform Markets This paper belongs to the relatively sparse literature incorporating
issues of incomplete information and asymmetric information (Halaburda et al., 2018b;
Jullien and Pavan, 2019; Ke and Zhu, 2021; Kang and Muir, 2022) on platforms. Most
models in the literature on platforms and two-sided markets assume complete information
(Caillaud and Jullien, 2003; Rochet and Tirole, 2003, 2006; Armstrong, 2006; Halaburda
et al., 2018a; Gal-Or, 2020). To the best of my knowledge, no paper has investigated
asymmetric information between the platform and its users where the platform holds pri-
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vate information. The closest paper with respect to modeling the incomplete information
is Jullien and Pavan (2019) who consider a platform market in which both users and
platforms face uncertainty about participation decisions due to dispersion of information
about their preferences. Especially given the growing importance of big data, I consider
the more realistic case in which the platform has (superior) private information regarding
its desirability to potential users. This, however, implies that the platform’s choices act
as a signal. Contrary to Jullien and Pavan (2019), I consider a platform with only one
market side, or a platform on which both sides of the market are identical.

Signaling and Advertising As the monopoly platform has private information in
my model, it is closely related to the literature on signaling (Kreps and Sobel, 1994),
where signalling games with a continuum of states are studied by Mailath (1987) and in
particular Mailath and von Thadden (2013). Fake profiles have not been studied in this
context. Papers such as Kihlstrom and Riordan (1984), Milgrom and Roberts (1986), and
Bagwell and Ramey (1988) that study the use of costly advertisement in combination with
prices are conceptually closely related although they do not incorporate network effects.
Fake profiles resemble persuasive advertisement, which is assumed to shift the willingness
to pay of users (see Bagwell (2007) for an overview on advertisement). In a signaling
model, Rhodes and Wilson (2018) analyzed false advertising used by firms to overstate
the value of their products. False advertisement is only costly whenever it is punishable by
a third-party. Buyers, nevertheless, may be affected by false advertisement in equilibrium.
A key difference is how the amount of fake profiles is determined in my model in which
not only the cost function but also equilibrium prices and demand determine the amount
of fake profiles. Furthermore, the fact that fake profiles might not be observable to users
influence their equilibrium amount.

The paper adds to the literature on signaling by identifying a novel channel — network
effects — that makes signaling via price or fake profiles credible. Main channels in the
literature on signaling are: 1) repeated purchases, 2) cost differences between qualities,
and 3) information differences between users. Although learning by users bears similarities
to repeated purchases, price signaling in my model even works absent learning. Due
to the presence of network effects an increase in the price has two effects. First, the
price has a direct effect on users’ utility lowering their willingness to participate on the
platform. It follows that additionally, the price also has an indirect effect on users’
utility through the reduced participation decision of others, which further reduces their
willingness to participate. Without network effects, users would not care about the state
as their participation decision would be independent of those of other users.

Due to equilibrium multiplicity in signaling games, a wide range of papers focuses on
appropriate equilibrium refinements (Cho and Kreps, 1987; Banks and Sobel, 1987; Cho
and Sobel, 1990). As users exert positive externalities on each other, in my model the
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most prominent refinements in the literature fail to select a unique equilibrium. Therefore,
I adopt a version of the D1 criterion for a continuum of states as in (Ramey, 1996) and
impose a further (weak) restriction on the receivers’ strategies off-path: that they are
rationalizable (Bernheim, 1984; Pearce, 1984) given a common belief.

Consumer Naïveté The model investigates the effects of different types of user so-
phistication on the market outcome when users face fake profiles — thereby adding to
the literature on consumer naïveté. See Heidhues and Kőszegi (2018) for a survey on
the growing literature on how consumer naïveté affects market outcomes. While recent
policy papers suggest (Crémer et al., 2019; Scott Morton et al., 2019; Fletcher et al.,
2021), behavioral effects are particularly important in digital settings, academic research
on this topic is scarce. My paper is among the first formal models to introduce consumer
naïveté in platform markets. Others include Johnen and Somogyi (2024) who analyze
and compare the sellers’ and the platforms’ incentive to hide parts of the price from naive
consumers. They find that a platform has strong incentives to shroud additional fees if it
increases perceived consumer surplus. Conceptually, my paper is closely related to work
on consumer naivete in cheap talk models (Ottaviani and Squintani, 2006; Kartik et al.,
2007; Chen, 2011) that analyze the impact of naive or credulous consumers who blindly
believe the sender’s message. In contrast to these papers, creating fake profiles is costly
giving rise to signaling issues.

Manipulating Consumer Expectations More broadly, the paper is connected to the
literature that studies the manipulation of consumer expectations, especially in network
markets. Early contributions focus on the expectations of early adopters of a network
good. More recently, the emergence of fake reviews for products on platforms is studied.
Evidence of fake reviews on for example Amazon.com is provided by He et al. (2022) or
Expedia.com and TripAdvisor.com by Mayzlin et al. (2014). Theoretic treatments of fake
reviews can be found in Glazer et al. (2021) and Yasui (2020), where the most closely
related paper is Knapp (2022). The author analyzes a cheap-talk game in which a reviewer
of a good may create a truthful or fake review but abstracts from the platform setting
with network effects. Similar to my paper, consumers differ in their understanding of the
possibility of fake reviews (naive or sophisticated).

2.2 Model

I analyze a sender-receiver model with two types of players: a platform (sender) and a
group of potential users (receivers) of mass one. The platform has private information
about a fundamental θ ∈ [θ, θ] ⊂ R that determines the users’ distribution of stand-alone
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values r on the platform F (r|θ) ≡ Fθ(r). The common prior about the fundamental is
µ0(θ), a continuous probability distribution, and has full support on Θ ≡ [θ, θ].

The platform and users engage in the following four-period game. First, nature draws
the fundamental θ ∈ Θ. The platform observes θ and sets a price p and message m, where
the message space is restricted to the type space. Additionally, the platform may invest
in fake profiles, where the amount of fake profiles is given by ξ. Then, upon observing
the platform’s message and price (p, m), as well as their own stand-alone value ri, users
decide whether or not to enter. Users who joined observe the perceived number of users
and decide whether to exit. The perceived number will depend on the actual mass of
users and fake profiles, in a way detailed below. Lastly, the platform collects fees.

Users: Payoff Users have a common outside option normalized to zero. They vary,
however, in the utility they receive from joining the platform — their stand-alone value
ri. User i obtains utility

vi = ri + βn − p,

where the distribution of stand-alone values r, Fθ, is continuous with full and strictly
positive support. Users benefit from positive network effects, β, and from the mass of
users that stay on the platform, n, but pay price p.

Users: Actions and Beliefs Upon having learned about the true fundamental, the
platform sets a price, sends a message, and determines the number of fake profiles. First,
after observing a price-message pair, users update about the fundamental and form a
belief µ(θ|p, m) and, then after learning their individual stand-alone value, form a be-
lief µ1(θ|p, m, ri). Second, after joining the platform, users observe the perceived mass
of users, which is a function of the mass of users who have joined and the mass of
fake profiles. The corresponding belief is denoted by µ2(θ|r, p, m, I), where I denotes
the information structure. Depending on the users’ ability to learn about or observe
fake profiles, they update about the fundamental based on the information structure
I = {∅, {[0, 1],R+

0 }, [0, 1] + R+
0 }. Users may either not observe the network size at all,

I = ∅, observe the true network size and fake profiles separately, I = {[0, 1],R+
0 }, or

observe the sum of both, I = [0, 1] + R+
0 , which may include fake profiles. Among these

users, sophisticated users are aware of the possibility of fake profiles, while naive users
blindly believe the message sent and take the network size at face value for values below
or equal to one.2

2As the true network size is at most equal to a mass of one when all users enter, naive users take the
network size at face value as long as it does not exceed a value of one. For values above one, naive users
are free to hold any belief about the state, where I restrict attention to naive users holding the most
pessimistic belief. Imposing any other belief such as the most optimistic belief, however, does not affect
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User i’s entry strategy in the first period is a mapping σ1
i : R× M → [0, 1] from prices

and messages to entry. For given price p and belief µ1(θ|·), a user enters if their expected
utility from entering is higher than their outside option. The aggregate entry decision of
users depends on the distribution of r in society. Following entry, users update their beliefs
to µ2(θ|·) and decide whether to exit the platform; formally, their exit strategy in period
two — given that the user entered in period one — is given by σ2

i : R × M × I → [0, 1].

Platform: Payoff and Actions The platform is a monopolist that chooses a price-
message pair (p, m) with p ∈ R+ and m ∈ M = Θ and a number of fake profiles ξ ∈ R+

0 .
The platform’s strategy maps the state space into prices, messages, and fake profiles
σP : Θ → R×Θ×R+

0 . The platform maximizes its profit with respect to prices, messages,
and fake profiles

max
p,ξ

(p − c)n(θ, µ, p) − γξ,

where n(θ, µ, p) is the mass of users that stay on the platform given the true fundamental,
their belief about it, and price p. Let c denote the marginal cost of the platform to serve
one user and γ the marginal cost of creating a fake profile.

Equilibrium Concept The equilibrium concept is Perfect Bayesian Equilibrium (PBE)
if all users are sophisticated. Strategies are optimal given beliefs at every information set.
Beliefs of sophisticated users are updated via Bayes’ rule whenever possible. At each
information node, users optimize given their beliefs (sequentially rationality).

If users are naive, I use a Perception-Perfect Equilibrium (PPE). Naive users form
their beliefs through the following rule. In the first period, naive users blindly believe in
the fundamental stated by the observed message, and thus hold point beliefs. Following
entry, users take the network size at face value (for a mass below or equal to one). If the
observed network size confirms the expected network size given first period belief, µN

1 ,
and price, p, the belief remains the same. If the observed network size, n̂, does not match
the expected network size, naive users revise their belief. The naive users’ new belief must
satisfy the following condition

µN
2 ≡ {θ′ ∈ Θ|n(θ′, µN

1 , p) = n̂}.

Naive users maximize expected utility given their beliefs.
As a tie-breaking rule, I impose that users enter only if they expect to stay: Whenever

a user is indifferent between not joining the platform or joining the platform but leaving
in period 3, I assume that the user does not enter.

the equilibrium as long as the message space is restricted to the type space and users understand that
the type space is bounded.
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Equilibrium Refinement For sophisticated users, off-path the set of equilibria is re-
fined by adapting the D1 Criterion of Ramey (1996) to a signaling game in which the
receivers strategically interact. Intuitively, under D1 users’ out-of equilibrium beliefs put
positive mass only to the types that are most likely to profit from a deviation from equi-
librium. As users’ participation decisions depend on the decision of other users and are
thus not strategically independent, I impose a restriction on the coordination aspect of
users’ entry decision. For a given price, I suppose this induces a common receiver belief
(as it does on the path of the play). Consumers take this common belief as given, and
then resolve the coordination problem among themselves in the same way as they would
if this belief was common knowledge. With common knowledge of the state, there is a
unique rationalizable entry decision suggesting that the coordination problem should be
resolved in exactly that way. The precise definition is given by Definition 4 in Appendix
A. For naive users, I do not use an equilibrium refinement. Beliefs (on and off-path) are
naively given by the simple rule specified above.

Assumptions To analyze the game, I impose regularity conditions on the family of
distributions Fθ(r) and the strength of the network effect β.

Assumption 2. The distributions Fθ(r) are

1. twice differentiable in r and θ with density fθ(r),

2. where the corresponding densities fθ(r) are single-peaked in r, and

3. the distributions have a (weakly) increasing hazard rate λ(r; θ) in r, and

4. common support.

The above assumption on Fθ ensures that the optimization problem of the platform
is well-behaved under complete information and that there exists a unique (monopoly)
price. The assumption on common support and single-peakedness can be relaxed to allow
for the family of uniform distributions as well.3

Assumption 3. (MLRP) For θ > θ′, fθ likelihood dominates fθ′: fθ(r)
fθ′ (r) is an increasing

function.

The monotone likelihood ratio property implies that Fθ first-order stochastically dom-
inates Fθ′ and hazard rate λ(p, n; θ) is strictly monotonically decreasing in θ. First-order

3Assuming non-common support has the following implication for the analysis. After observing the
stand-alone value, users with a high stand-alone value form a belief that puts zero probability on states
that are not possible. This does not affect the analysis of separating equilibria on-path, but plays a role
for incentive-compatibility as a deviation to a lower state cannot be credible to those users. During most
of the analysis, however, the relevant incentive compatibility is for a low type to mimic a high type. In
pooling equilibria beliefs are dispersed and the analysis remains unchanged.
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stochastic dominance implies that higher states lead to higher demand. The latter yields
that the price elasticity increases with increasing θ holding participation constant. Hence,
a higher state induces higher monopoly prices c.p. Lastly, to exclude multiplicity of (con-
tinuation) equilibria network effects β cannot be too strong.

Assumption 4. (Network effects) β ∈ {β ∈ R+ : 1/2 − β maxθ,r fθ(r) > 0, θ ∈ Θ}.

Networks effects must be small enough to avoid multiplicity of continuation equilibria,
and hence, guarantees uniqueness of continuation equilibria.

2.2.1 Preliminaries

Under the assumptions made for any price the platform has set, there exists a unique
cutoff strategy for users, even if the information is incomplete. Each user has private
information about their own reservation value. All users with reservation values above
the cutoff participate in the platform, while users below the cutoff do not. The first lemma
defines the cutoff.

Lemma 1. (Unique cutoff) In any equilibrium in which users hold a common belief upon
observing (p, m), users use a cutoff strategy. The unique cutoff is given by

rc = p − β
∫︂

Θ
(1 − Fθ(rc))µ(θ|rc, p)dθ, (2.1)

which results in n(θ, µ, p) = 1 − Fθ(rc) agents.

This lemma implies that users also follow a unique cutoff strategy in an equilibrium
in which some types pool, i.e. when there is incomplete separation. Users’ beliefs are
dispersed as although all users have a common prior, they draw inferences from their own
r. As a result, after observing a price and their own reservation value, users hold different
beliefs. To establish the lemma, however, it is sufficient to suppose that upon observing
the price but not yet their standalone value, users hold a common belief. On path this
must be fulfilled because all users rely on Bayes rule, whereas off-path the common belief
assumption is imposed.

As a benchmark, the next lemma characterizes the full information benchmark which
corresponds to the first-best solution in prices and user participation.

Lemma 2. (First-best) Under full information, there exists a unique equilibrium. In this
equilibrium, the platform’s profit maximizing price pF I(θ) satisfies

pF I − c = 1 − Fθ(rF I)
fθ(rF I) (1 − βfθ(rF I)), (2.2)

where rF I denotes the equilibrium cutoff given pF I . The full information price is strictly
monotonically increasing in θ if the density fθ(rF I) is strictly decreasing in θ.
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It follows that the mark-up is always positive and hence, the price is always above
marginal cost. If Fθ(·) is the exponential distribution with scale parameter θ, which
satisfies the MLRP, then indeed f 1,θ(rF I) < 0 and thus, the full information price increases
in θ. Lastly, Assumptions 2-4 imply that the platform’s profit for µ = θ̂ fulfills the (strict)
single-crossing property.

Lemma 3. The platform’s profit function, π(θ, θ̂, p), satisfies the single-crossing property,
namely

∂

∂θ

⎛⎜⎜⎜⎜⎝
∂π(θ, θ̂, p)

∂p

∂π(θ, θ̂, p)
∂θ̂

⎞⎟⎟⎟⎟⎠ > 0.

2.3 Price and Message as Signals

In this section, I will discuss a benchmark for analyzing the effectiveness of signaling on
platforms in which the presence of fake profiles does not impact demand. The benchmark
assumes that users enter the platform and decide whether to stay without being able to
observe the network size. In other words, the timing is as if user pay for their membership
before joining the platform. Users cannot learn from the network size before their purchase
decision, making fake profiles irrelevant. Hence, the participation and purchasing decision
happen simultaneously represented by the information structure I = ∅.

2.3.1 Sophisticated Users

Sophisticated users are rational and fully understand the signaling game. For those users,
the price is the only credible signal and the message is ignored. Hence, I will suppress
the message in the section below. For ease of exposition, the main part will focus on the
construction of separating equilibria. The platform uses a one-to-one strategy τ : Θ → R
that maps the state to its chosen price and therefore, users hold a common belief on the
path of play. I will focus on differentiable separating strategies τ .

Definition 1. A separating equilibrium consist of the platform’s strategy τ , users’ strat-
egy σi and beliefs, µ, such that:

1. For any p ∈ τ(Θ), µ(p) = τ−1(p),

2. For any θ ∈ Θ, τ(θ) ∈ arg maxp∈R+ π(θ, µ(p), p) (Incentive Compatibility).

The platform maximizes its profit with respect to the price given that users form their
beliefs according to µ(θ|p, m, r) = τ−1(p). With a slight abuse of notation n(θ, τ−1(p), p)
denotes the network size based on the true state θ, the belief τ−1(p) which is a Dirac
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measure, and the price. Therefore, when the platform increases its price, the effects on
profit are two-fold. The first effect is the direct price effect on the mark-up and demand,
whereas the second effect is the belief effect, i.e. a higher price potentially signals a higher
state. The platform’s pricing strategy is determined by

{τ(θ)} ≡ arg max
p∈τ∈([θ,θ])

(p − c)n(θ, τ−1(p), p).

Assumptions 2-4 ensure that the profit is differentiable. In any separating equilibrium,
rational users learn about the true state from the separating strategy. Focusing on dif-
ferentiable separating strategies the first-order condition can be used. The first-order
condition given that in equilibrium beliefs are correct, i.e., τ−1(p) = θ yields

n(θ, θ, p) + (p − c)∂n(θ, τ−1(p), p)
∂p

⃓⃓⃓⃓
⃓
τ−1(p)=θ

+ (τ−1(p))′(p − c)∂n(θ, τ−1(p), p)
∂τ−1(p)

⃓⃓⃓⃓
⃓
τ−1(p)=θ

= 0.

The separating strategy τ(θ) is given by the differential equation

τ ′(θ) = − (τ − c)n2(θ, θ, τ)
n(θ, θ, τ) + (τ − c)n3(θ, θ, τ) , (2.3)

where n2(·) and n3(·) denote the partial derivatives with respect to the second and third
arguments, respectively. Observe that setting p = pF I(θ) from Equation 2.2 sets the
denominator equal zero. Hence, setting the complete information prices for all types is
not a solution. Prices must be distorted. Sequential rationality implies setting the initial
value condition to τ(θ) = pF I(θ), i.e., the lowest type cannot do better than setting their
first-best price. Given the initial value condition, there exists a unique solution to the
differential equation that minimizes the level of costly signaling.

Proposition 1. Suppose I = ∅. Then under the equilibrium refinement in Definition 4,
there exists a differentiable separating equilibrium outcome in which the equilibrium price
pS,∗ is given by Equation 2.3 with τ(θ) = pF I(θ).

Given differentiability and the initial value condition, the (differentiable) separating
equilibrium is unique (Mailath, 1987). In the separating equilibrium, the platform “burns
money” to credibly communicate its type to its users taking the form of distorted prices.
The price as signaling device is feasible as the marginal cost of a price increase depends on
the demand curvature, which in turn is influenced by the platform’s true state. As shown
in Lemma 3, the platform is more willing to trade-off and increase in price against an
increase in demand. This link between the true fundamental and price is established by
the network effects that arise on the platform. Thus, the incentive-compatible separating
strategy must be increasing in the state as signed in the next corollary.
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Corollary 4. The equilibrium price pS,∗ is increasing in θ and is always greater than the
full information price.

To sign the pricing distortion, it is useful to recall that the full information price in
Lemma 2 might be either increasing or decreasing in the state, but is always greater
than marginal cost. In contrast, the equilibrium price under price signaling is always
increasing in the state. Together with Equation 2.3 and the fact that profits increase in
θ̂, this implies that the price must be larger than the full information price (i.e. at pS,∗

the denominator of Equation 2.3 must be negative). Hence, signaling always takes the
form of inflated prices.

Additionally, I show that there exist no equilibria in which types partially pool on
prices by applying the equilibrium refinement.

Proposition 2. There exists no equilibrium in which the platform in more than one state
θ sets a price p(θ) = p′ under the equilibrium refinement.

Applying the adjusted D1 Criterion in Definition 4 rules out any equilibrium in which
types partially pool on prices. The highest type in the pool always has an incentive to
deviate. The single-crossing property in prices implies that there exists a small increase
in both price and demand for which the highest type prefers to deviate, while lower
types do not. Since lower types would not choose such a price, D1 beliefs assign positive
probability only to higher types. Then, since D1 beliefs assign higher probability to higher
types following an off-path deviation, the user response must increase accordingly. This
ensures that the highest type finds the deviation profitable, thereby breaking the pooling
equilibrium.

The results in this section provide a novel rationale for platforms that charge high
prices, namely to signal their high quality. Many platforms offering “premium” services
only charge high prices to demonstrate that they can attract users with higher stand-alone
values through their services.4

2.4 Price, Message and Fake Profiles as Signals

In this section, I consider a setting where users observe the network size after joining
but cannot distinguish fake from real profiles, modeled by the information structure I =
[0, 1]+R+

0 . Due to the timing of the game, signals are observed sequentially and beliefs are
updated twice. I analyze the following two cases: First, sophisticated users who are aware

4For example in the dating industry, platforms such as eHarmony.com or ElitePartner advertise their
high quality services in comparison to other dating sites such as Match.com. ElitePartner, a dating site for
academics, offers to create an account for free, but to take any action on the platform, users need to sign
up for their membership which ranges between 70 Euro/month (6 months contract) to 35 Euro/month
(24 month contract). To sign up on ElitePartner users need to certify their academic degrees.
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of the possibility that the platform can create fake profiles but are unable to distinguish
them ad hoc. Second, naive users who are unaware of the possibility of creating fake
profiles, i.e., they simply believe that fake profiles are illegal or impossible to create.

2.4.1 Sophisticated Users

The analysis of sophisticated users, for whom fake profiles are unobservable but feasible,
extends the analysis in Section 2.3.1 by introducing an additional signaling instrument.
Throughout, I will continue to focus on differentiable separating equilibria as before.

Definition 2. A separating equilibrium consists of a platform’s strategy that is a one-to-
one mapping from the state to pairs of price and fake profiles ρ : Θ → R+×R+, θ ↦→ (p, ξ),
users’ strategy σ1

i and σ2
i , and beliefs µ1 and µ2 such that:

1. For any (p, ξ) ∈ ρ(Θ), µ1(·) = ρ−1(p) = µ2(·) = ρ−1((p, ξ)) (Belief Consistency).

2. For any θ, θ′ ∈ Θ, π(θ, θ, ρ(θ)) ≥ π(θ, θ′, ρ(θ′)) (Incentive Compatibility).

By construction, the platform faces a two-dimensional signaling problem as sophisti-
cated users take both the price and the (expected) number of fake profiles as signal. The
optimization problem can be formulated as the platform maximizing its profit given that
users are able to infer the true state in the separating equilibrium:

arg max
p,ξ

(p − c)n(θ, θ, p) − γ(ξ)

subject to incentive compatibility

π(θ, θ, ρ(θ)) ≥ π(θ, θ′, ρ(θ′)), ∀θ, θ′ ∈ Θ,

given by

(p(θ) − c)n(θ, θ, p(θ)) − γ(ξ(θ))

≥ (p(θ′) − c)n(θ, θ′, p(θ′)) − γ [ξ(θ′) + (n(θ′, θ′, p(θ′)) − n(θ, θ′, p(θ′)))] . (IC)

A deviation in the equilibrium strategy ρ(θ) consists of a deviation in price p(θ) alongside
a change in fake profiles ξ(θ). Although fake profiles bear similarities to the concept of
advertising, note that the incentive constraints are different. As users only observe n + ξ,
a deviation to price-fake profile pair (p′, ξ′) reveals information about the state. For a type
θ to mimic a type θ′, the platform instead needs to additionally adjust its fake profiles by
the difference in demand when deviating to induce belief θ′.

Turning to analyzing the incentive constraint, note that IC must bind. Setting the IC
slack would imply that the platform could decrease the difference between ξ(θ) and ξ(θ′)
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and save costs. Rearranging yields

γ[ξ(θ′) − ξ(θ)] =

(p(θ′) − c)n(θ, θ′, p(θ′)) − (p(θ) − c)n(θ, θ, p(θ)) − γ [n(θ′, θ′, p(θ′)) − n(θ, θ′, p(θ′))] .

(IC*)

which pins down the fake profile strategy of type θ as a function of the price p(θ). Note
that I restrict fake profiles to be non-negative throughout the analysis. Another possibility
is to pin down the pricing strategy as a function of fake profiles. Hence, it is possible to
construct a continuum of separating equilibria as separation can be achieved either via
the price or fake profiles. Consider the following condition:

Condition 1.
(p − c)n2(θ, θ, p) > γn1(θ, θ, p), ∀θ ∈ Θ.

Under Condition 1, the signaling benefit from an extra fake profile, the left-hand side
of the inequality, outweighs the cost of an extra fake profile, the right-hand side of the
inequality.

Proposition 3. Suppose Condition 1 is fulfilled.

(i) There always exists a separating equilibrium in which the platform sets zero fake
profiles and prices are set to

τ ′(θ) = − (τ(θ) − c)n2(θ, θ, τ(θ))
(τ(θ) − c)n3(θ, θ, τ(θ)) + n(θ, θ, τ(θ)) , (2.4)

with the initial value condition p(θ) = pF I(θ).

(ii) There exists a separating equilibrium in which the platform sets a positive level of
fake profiles given by

γξ = (p(θ) − c)n(θ, θ, p(θ)) − (p(θ) − c)n(θ, θ, p(θ)) −
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt,

(2.5)

and prices maximize equilibrium profits

p(θ) − c − γ = − n1(θ, θ, p)
n13(θ, θ, p) , for θ > θ. (2.6)

Suppose Condition 1 is violated. Then, there exists a separating equilibrium in which the
platform sets zero fake profiles and full information prices in each state.

Suppose Condition 1 holds. Then, there always exists a separating equilibrium in
which the platform uses only prices as a signal, as in Proposition 1. Since the equilibrium
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outcome in Proposition 1 satisfies the equilibrium refinement, so does the equilibrium
outcome in Proposition 3. The proof of Proposition 1 shows that there is no price to
which a type wants to deviate off-path, which also applies here. Additionally, independent
of any belief, the platform does not want to deviate to positive fake profiles, as once users
have entered — given any belief — no additional users can enter. Thus, fake profiles are
costly but do not increase demand.

There can exist a second equilibrium under additional condition in which the platform
creates a positive number of fake profiles. There are two main differences compared to
the analysis of advertisement. First, in the IC fake profiles require that the additional
term γ [n(θ, θ′, p(θ′)) − n(θ′, θ′, p(θ′))] is present. This reduces, ceteris paribus, the slope
of the fake profile function in equilibrium which must be created to ensure incentive-
compatibility. Intuitively, when the platform with a low fundamental wants to mimic
a platform with a high fundamental, the latter has an advantage of an already larger
network size. Second, the price in a model with advertisement would be independent of
the costs γ which appear as a mark-up on the right-hand side of Equation 2.4. Therefore,
the platform can shift a part of the marginal costs of creating fake profiles to its users.

As in Section 2.3, I apply the equilibrium refinement to show that there exist no
(partial) pooling equilibria.

Proposition 4. There exists no equilibrium in which the platform sets a price p′ and fake
profiles ξ(θ) such that n(θ, µ′, p′) + ξ(θ) = n(θ′, µ′, p′) + ξ(θ′) in more than one state.

2.4.2 Naive Users

This section turns to the analysis of naive users. Users are assumed to be misspecified
about fake profiles as they do not take the possibility into account that fake profiles can
be created. Therefore, naive users take the network size on a platform at face value,
i.e. suppose real profiles are equal to the profiles they see. As users cannot see the
network size upfront, they observe the platform’s message m ∈ Θ and take this as a literal
statement about its network size. Given a price p, the platform’s message m ∈ [θ, θ] can be
interpreted as sending a message about the feasible network size m ∈ [n(θ, θ, p), n(θ, θ, p)].

The notion of naive users is motivated by wrong legal beliefs, as users may believe
that fake profiles are simply illegal or impossible to create in practice.5 A majority of
users that is new to those platforms is surprised afterwards about the use of fake profiles
(see Section 2.5). In other cases, users form beliefs about these practices in traditional
markets, where the use of fake profiles or similar practices is forbidden, and take over their
beliefs to online markets or digital platforms. Fake profiles are often legal or the creation
of fake profiles is legal as long as firms disclose their use in the terms and conditions. In

5See Armstrong and Vickers (2012) who make a similar argument towards naivete with respect to
hidden prices.
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the terms and conditions, however, the phrases are well-hidden (see Section 2.5). Hence, if
users are naive with respect to the possibility of fake profiles, they take any demand that
they deem feasible at face value. This approach is combined with the notion of credulity
of users. The platform’s message about the network size is technically cheap-talk, but
users blindly believe in the message as they take the potential network size at face value.
In online markets, this message could be the announcement of membership statistics or
advertisement about the network size. Ottaviani and Squintani (2006) and Kartik et al.
(2007) define the notion of credulous users for cheap-talk games. In the model at hand,
the credulity stems from the naivete about the network size.

The equilibrium analysis is greatly simplified due to the fact that users put probability
one onto the state that the platform announces (which corresponds to a mass of users on
the platform). Hence, all subsequent beliefs in this section are point-beliefs, i.e. the Dirac
measure on θ′. To analyze the equilibrium of the game with naive users, I need to define
the platform’s strategy and equilibrium concept.6

Definition 3. The platform’s strategy ν is a LSHP (low types separate and high types
pool) strategy if, for any price p, there exists a θ̃ ∈ [θ, θ] such that:

1. For all θ < θ̃, ν(θ) ∈ {m(θ)|m ∈ Θ \ {θ}}, with ν(θ) ̸= ν(θ′)∀θ ̸= θ′.

2. For all θ ≥ θ̃, ν(θ) = θ.

Given a price p, a perceived separating equilibrium consists of

1. A LSHP strategy on messages ν(θ).

2. User beliefs µ(m) = m.

3. A fake profile strategy ξ(m) = n(m, m, p) − n(θ, m, p).

While the platform may separate in some states but pool in others, naive users, how-
ever, hold separating beliefs and thus form a point belief after observing the message
and perceived network size. The equilibrium is therefore termed a perceived separating
equilibrium. Since full separation is not feasible under low costs, as specified below, there
exists a cutoff state: the platform pools on the highest message if the fundamental is
above the cutoff and separates if it is below. Note that the fake profile strategy mirrors
the difference in real demand and forms part of the equilibrium. This definition is not
restrictive, as the platform chooses the fake profile strategy optimally as shown in the
following lemma.

Lemma 4. The platform optimally sets fake profiles equal to ξ(µ∗(m)) = n(µ∗(m), µ∗(m), p)−
n(θ∗, µ(m), p) such that m and ξ induce the same belief µ∗(m).

6This definition is based on Kartik (2009) who defines a strategy about a message as a LSHP strategy
in the context of a cheap-talk game.
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Users hold two relevant beliefs for the platform, once during their entry decision
µ(θ|p, m, r) = m and once during their exit decision µ(θ|p, m, r, n). If the announced
message (or announced demand) differs from the actual observed demand on the plat-
form, these two beliefs are not the same. Again, with a slight abuse of notation n(θ, m, p)
denotes the true network size based on the true state θ, the belief µ(·) = m which is a
Dirac measure, and the price. Conversely, n(m, m, p) denotes the believed network size
of naive users given belief µ(·) = m. The platform’s maximization problem is

arg max
{m∈Θ,p∈R+}

(p − c)n(θ, m, p) − γ (n(m, m, p) − n(θ, m, p))

The first-order conditions with respect to p and m result in

p − c = − n(θ, m, p)
n3(θ, m, p) + γ

(︄
n3(m, m, p)
n3(θ, m, p) − 1

)︄
(2.7)

(p − c + γ)n2(θ, m, p) = γ (n1(m, m, p) + n2(m, m, p)) . (2.8)

The first equation determines the optimal price given a chosen message m. If the message
is equal to the true state, the optimal price is equal to the full information price. The
second equation determines the choice of the optimal message. For a given price, the left-
hand side is the marginal benefit of fake profiles, i.e. the increase in users’ beliefs, and
the right-hand side are the marginal costs. The first-order conditions are only applicable
for m ≥ θ. If m < θ, the platform does not set any fake profiles as the number of fake
profiles is bounded away from zero.

Next, I determine the cutoff, i.e., the state at which the platform first chooses the
highest message. To solve for the cutoff type θ̃ < θ, I examine the indifference condition.
Let the profit of the platform in the indifferent state θ̃ be

π(θ̃, m, ξ(θ̃, m), p) ≡ π(θ̃, m),

which solves θ = arg maxm∈Θ π(θ̃, m):
(︄

− n(θ̃, θ, p)
n3(θ̃, θ, p)

+ γ
n3(θ, θ, p)
n3(θ̃, θ, p)

)︄
n2(θ̃, θ, p) = γ

(︂
n1(θ, θ, p) + n2(θ, θ, p)

)︂
. (2.9)
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Rewriting the equation gives the next lemma.

Lemma 5. The indifferent type θ̃ is the solution to

β(1 − Fθ̃(r(θ, p)) = γ, (2.10)

which has a unique solution and solves for θ̃ ∈ Θ if

γ ≡ β(1 − Fθ(r(θ, p)) ≤ γ ≤ β(1 − Fθ(r(θ, p)) ≡ γ

The equilibrium is characterized in the following proposition.

Proposition 5. The equilibrium with naive users is characterized as follows:

(i) If γ ≤ γ ≤ γ. The indifferent type solves Equation 2.10. Types θ < θ̃ separate with
ν(θ) > θ and types θ ≥ θ̃ pool on ν(θ) = θ.

(ii) If γ < γ, all types pool on ν(θ) = θ.

(iii) If γ > γ, each type chooses ν(θ) = θ.

Given message m, users believe µ(m) = m, equilibrium prices are given by Equation 2.7
and the number of fake profiles is ξ(m) = n(m, m, p) − n(θ, m, p).

Suppose that γ lies within the specified upper and lower bounds. Then, by Lemma
5, Equation 2.10 has a unique solution. All types above the indifferent type pool on the
highest message, while the types below choose m according to

β(1 − Fθ(r(m, p)) = γ.

Setting m = θ, i.e., every type reveals its true type to the naïve users, does not satisfy
the equation, as the marginal benefit from lying upwards exceeds the cost. Hence, every
type uses an inflated message m > θ, such that complete separation (from the platform’s
perspective) is not possible. Due to the bounded state space, the highest type runs out of
claims to make, and therefore higher types pool on the highest possible message. All types
except the highest set a higher price than under full information, and even the lowest type
creates fake profiles. The number of fake profiles increases up to the indifferent type and
decreases afterward; only the highest type creates no fake profiles. To exploit consumers’
naivete, a bound is imposed on the feasible strategies. In contrast to the fake profile
strategy in Section 2.4.1, which was not bounded, consumer naivete makes the restriction
of the state space binding, thereby influencing the strategy space.

Corollary 5. Suppose γ ≤ γ ≤ γ. Then θ̃, is increasing in γ and decreasing in β.
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In other words, the larger the network effects, the lower the indifferent type, as the
benefit from creating fake profiles increases. Conversely, if the marginal costs increase,
the indifferent type rises.

Suppose that γ ≤ γ. Then the lowest type already finds it optimal to send the
message m = θ, and thus so do all types above. Therefore, all types pool on the message
and the perceived network size. This implies that the lowest type creates fake profiles,
and moreover, the number of fake profiles is decreasing in type. That is, the lowest type
creates the most, and the highest creates none. Lastly, if γ ≥ γ. Then all types find it
optimal to send a message equal to their true state. They create no fake profiles and set
their full information prices.

From a welfare perspective, participation on the platform is distorted if γ ≤ γ. The
new indifferent user does not benefit from the use of fake profiles, as they pay an inflated
price for a non-existent network size. Users, however, who would have entered in the
game without fake profiles and full information might benefit indirectly from fake profiles
if they value network effects via β sufficiently. Due to excessive entry, the real network
size on the platform increases, which may offset the higher prices for some users.

2.4.3 Regulation

This section analyzes possible remedies for and regulation to deal with the use of fake
profiles. More specifically, I consider a ban of fake profiles, labeling fake profiles on the
platform, mandatory disclosure of fake profiles upfront. It is assumed that the regulation
is publicly known and users are educated and informed about the policy. The analysis
considers the first three policies first and will show that all three will lead to the same
unique market outcome. Lastly, it will be shown that educating users about the use of
fake profiles is insufficient to prevent the use of fake profiles.

Banning Fake Profiles How does a ban of fake profiles impact the market outcome?
Suppose the ban of fake profiles is public and users are informed about the policy. Sophis-
ticated users will deduce that whenever they join a platform, they will observe the real
network size. Hence, after joining sophisticated users are in a subgame of complete infor-
mation in which the state is known. The unique equilibrium is summarized in Proposition
6.

Labeling Fake Profiles Suppose through labeling fake profiles, users can perfectly
identify fake profiles and determine the real network size. In this case, labels must be
clear, obvious and understood by users. Again, in the last period sophisticated users face
a subgame of complete information (see Proposition 6). If fake profiles cannot serve as a
signal due to perfect identification, no fake profiles are used by the platform. This follows
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directly from the fact that fake profiles are costly, but do not yield a positive benefit to
the platform at this stage. Naive users behave as above.

Mandatory Disclosure Lastly, consider that platform must mandatory disclose their
use of fake profiles upfront (either stating their use or abstention). Under signaling with
price and fake profiles, or price only, the profit of a platform is always lower than the full
information profit which is first-best as signaling is costly. In the presence of mandatory
disclosure, the platform can choose to refrain from fake profiles credibly, which induces
sophisticated users to deduce, again, that they will observe the real network size on the
platform. As will be shown in the following proposition, this will enable the platform to
achieve its full information profit.

Analysis All policies result in perfect knowledge of users about the real network size
on the platform after joining, such that fake profiles cannot influence their perception.
Users are sophisticated and take the price as the only costly signal. Hence, the platform
maximizes its full information profit

max
p

(p − c)n(θ, θ, p), subject to n(θ, µ2(·) = θ, p) ≤ n(θ, µ1(·) = θ̂, p).

As users’ participation decisions are made after observing the first-period price, the con-
straint imposes an upper bound on demand in the last period. The optimal prices are
given by the first-order condition

n(θ, θ, p) + (p − c)∂n(θ, θ, p)
∂p

= 0 (2.11)

resulting in p = pF I(θ), the full information benchmark price given that θ ≤ θ̂.
To see that pF I(θ) is an incentive-compatible separating strategy, suppose that the

platform in state θ sets a price pF I(θ′) < pF I(θ) for θ′ < θ. This influences demand in two
ways: first, a price decrease leads to more demand holding all else constant and second, a
price decrease influences the believed state θ̂ and leads to a lower expected state. This in
turn, decreases demand all else constant. Suppose first that demand overall increases and
more user enter than in equilibrium. Then, in the last period users observe the realized
demand given price and belief (pF I(θ′), θ′) and the true state θ. As too many users entered
given belief θ′, users exit again such that

n(θ, θ, pF I(θ′) = 1 − Fθ(pF I(θ′) − βn(θ, θ, pF I(θ′))).

As the price and realized demand n(θ, θ, pF I(θ′)) are not profit maximizing in state θ, the
platform does not face a profitable deviation. A similar argument can be constructed if
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demand overall decreases. Then, following the deviating price pF I(θ′) too few users join
the platform than optimal.

Proposition 6. Suppose the government regulates platforms by either banning fake pro-
files, forcing them to label fake profiles, or mandatory disclosing fake profiles. If users are
aware of these policies, there exists a unique equilibrium that is separating and first-best.
In equilibrium, the platform sets the full information price and zero fake profiles are used.

This result stresses the importance of observing the network size before paying the
membership fee. Compared to Section 2.3.1 in which users paid the membership fee
without observing the network size, the platform can increase its profit by offering a free-
trial period before collecting the (one-time) membership fee.7 This “free-trial” period is
desirable from a platform’s perspective as full information prices are incentive compatible.
The platform does not incur a loss in profit due to wasteful signaling. In equilibrium,
both users and the platform are better off compared to the Section 2.3.1. In comparison
to the signaling literature, the learning-from-demand-stage resembles repeat purchases for
regular products or a full warranty/money-back guarantee.

The effect of educating naive users about the possibility of fake profiles are ambiguous.
Users and the platform might be both worse off. If naive users are educated and no other
action on fake profiles are taken, the platform might still use fake profiles for signaling as
in Theorem 3. Due to the consumer sophistication, the platform still needs to engage in
costly signaling. Comparing the equilibrium outcome in Theorem 3 and 5, the platform
makes losses when moving from the latter to the first. With naive users, the platform
makes higher profits than under full information, whereas with sophisticated users the
platform makes lower profit than under full information. The effect on users depends on
the prices and network effects. Naive users benefit from an increase in the real network
size compared to the equilibrium in Theorem 3. Additionally, prices might also increase
compared to the latter equilibrium.

2.5 Discussion

Convincing Users to Upgrade into a Premium Subscription The Dating plat-
form “Match.com” presumably utilized third-party fake profiles to persuade (male) users
into a paid subscription.8 Following the model, users are able to sign up to the platform
for free. Initially, undecided users, who did not pay for the membership, received emails
from potentially interested users. In the stylized version, users are assumed to view the

7The model abstracts from discounting between periods. Otherwise, the firm must be sufficiently
patient or the free-trial period must be sufficiently short.

8https://www.ftc.gov/news-events/press-releases/2019/09/ftc-sues-owner-online-
dating-service-matchcom-using-fake-love

https://www.ftc.gov/news-events/press-releases/2019/09/ftc-sues-owner-online-dating-service-matchcom-using-fake-love
https://www.ftc.gov/news-events/press-releases/2019/09/ftc-sues-owner-online-dating-service-matchcom-using-fake-love


2.5. DISCUSSION 99

total perceived network size ñ. To interact with the other users, they needed to upgrade
their free trial. The platform’s network size included fake profiles. The platform allegedly
used the third-party fake profiles ξ to direct messages towards non-paying users which
lead them to upgrade to a premium membership and pay p. Due to the platform’s inten-
tional use of fake profiles, i.e. identifying the third-party fake profiles, directing those to
non-paying users but keeping those away from paying members, it is plausible to assume
that the platform incurred small (effort) costs γ.

Manipulating the Network Size: Wash Trades One of the largest cryptocurrency
exchange platforms (“Binance”) is under investigation by the SEC for “manipulative trad-
ing that artificially inflated the platform’s trading volume”. They engaged in so-called
Wash trading. More precisely, another associated company (“Sigma Chain”) owned by
the same entity (“Zhao”) as the crypto exchange platform manipulated the platform’s
trading volume by selling and buying the same financial assets, therefore artificially in-
flating the platform’s volume.9 Furthermore, the U.S. based affiliate of “Binance” called
“BAM Trading Services” is accused of misleading investors about non-existent trading
controls on Binance.US. Wash trading is prohibited in offline (financial) markets, e.g. in
the US by the Commodity Exchange Act.10 For example, the Intercontinental Exchange
(ICE) takes measures to prevent self-trade to comply with regulations.11

In this application, the platform is a cryptocurrency trading platform and its users
are potential investors both buying and selling assets on the platform. Network effects
take the form of caring for liquidity. A platform with a large network, i.e. a high trading
volume, has more liquid assets and is more credible. Fake profiles are financial assets that
are self-traded by the platform and hence inflate the network size.

Manipulating the Network Size: Dating Platforms Other dating platforms use
company-created fake profiles; a list of several dating sites using this practice has been
published by the Verbraucherzentrale Bayern (Center for Consumer Advise Bavaria) in
Germany. These platforms employ paid workers to create profiles, and interact with users
on the platform, giving them the impression of a real contact.12 It is not commonly known
that platforms themselves create fake users to possibly stimulate demand, although it is
legal to do so as long as it is mentioned in the terms and conditions. There are companies
that specialize in providing employees as chat moderators to these platforms.13 These

9https://www.sec.gov/news/press-release/2023-101
10https://www.law.cornell.edu/uscode/text/7/chapter-1
11https://www.theice.com/publicdocs/futures/IFEU_Self_Trade_Prevention_FAQ.pdf
12See https://www.verbraucherzentrale.de/wissen/digitale-welt/onlinedienste/

onlinedating-auf-diesen-portalen-flirten-fakeprofile-21848, last visited 01.09.2020.
13For example, Cloudworkers or Agentur da Chatdeife are companies that employ freelancers

to work for and on one or more social-community platforms. See also https://www.spiegel.
de/wirtschaft/service/singleboersen-ein-moderator-von-fake-profilen-spricht-ueber-

https://www.sec.gov/news/press-release/2023-101
https://www.law.cornell.edu/uscode/text/7/chapter-1
https://www.theice.com/publicdocs/futures/IFEU_Self_Trade_Prevention_FAQ.pdf
https://www.verbraucherzentrale.de/wissen/digitale-welt/onlinedienste/onlinedating-auf-diesen-portalen-flirten-fakeprofile-21848
https://www.verbraucherzentrale.de/wissen/digitale-welt/onlinedienste/onlinedating-auf-diesen-portalen-flirten-fakeprofile-21848
https://www.spiegel.de/wirtschaft/service/singleboersen-ein-moderator-von-fake-profilen-spricht-ueber-seinen-job-a-1113937.html.
https://www.spiegel.de/wirtschaft/service/singleboersen-ein-moderator-von-fake-profilen-spricht-ueber-seinen-job-a-1113937.html.
https://www.spiegel.de/wirtschaft/service/singleboersen-ein-moderator-von-fake-profilen-spricht-ueber-seinen-job-a-1113937.html.
https://www.spiegel.de/wirtschaft/service/singleboersen-ein-moderator-von-fake-profilen-spricht-ueber-seinen-job-a-1113937.html.
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chat moderators set up fake profiles and engage in conversations with the users of the
platform pretending to be a real profile.

Furthermore, the UK Consumer and Markets Authority (CMA) confirms in its re-
port about the online dating industry that dating platforms may use "pseudo profiles" or
provider-generated profiles that could possibly mislead consumers. The CMA states that
if these fake profiles are not disclosed as such, it may be in breach with the "Consumer
Protection from Unfair Trading Regulations".14 In another industry report issued by the
Australian Competition and Consumer Commission (ACCC), the ACCC acknowledges
that fake profiles generated by providers exist, but stress that this issue lies beyond the
scope of their investigation mandate.15 This shows that the use of fake profiles might be
more common than initially expected and might not be restricted to the examples given
above.

Evidence that chat bots might have been used by dating platforms exists for the dating
site “Ashley Madison”. Ashley Madison was subject to a large data leak by hackers.16

The dating site used “chat hostesses” before 2011 to engage men, which coincides with
the notion of fake profiles in this context. After 2011, however, it is reported that they
stopped employing “chat hostesses”. Instead, the dating platform allegedly used chat bots
to deceive users to spend money on the platform. Although one might think that chats
bots are easier to be identified, this might not have been the case. Users seem to have
spent a reasonable amount of money on communicating with chat bots.

Lastly, there is evidence on dating platforms that use methods to create a similar effect
as with platform-generated fake profiles. The CMA investigated the case of Venntro Media
Group Ltd, a company that operates several dating sites. To inflate the network size on
their dating sites, Venntro cross-registered their members on various sites and not only
the site they originally signed up for.17

Launching Strategy for Start-Ups Upon launching a new platform, founders often
generate artificial demand (or supply) to onboard producers (or consumers). This practice
is documented in the business and management literature, e.g. Schirrmacher et al. (2017)
or Reillier and Reillier (2017). Evans and Schmalensee (2016) describe the practice as

seinen-job-a-1113937.html. and https://www.ndr.de/fernsehen/sendungen/panorama_die_
reporter/Undercover-als-Chatschreiberin-Abzocke-Flirtportal,sendung1098906.html for an
interview (in German) and https://www.marieclaire.fr/,dating-assistant,750821.asp for an
article (in French).

14See https://assets.publishing.service.gov.uk/media/5b114a8040f0b634abe911e7/
compliance_statement.pdf.

15See https://www.accc.gov.au/system/files/927_ICPEN%20Dating%20Industry%20Report_D09.
pdf.

16See https://financialpost.com/fp-tech-desk/inside-ashley-madison-calls-from-crying-
spouses-fake-profiles-and-the-hack-that-changed-everything?__lsa=b245-a155.

17See https://www.gov.uk/government/news/online-dating-giant-vows-clearer-path-to-
love.
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“self-supply”. In case studies by Schirrmacher et al. (2017) some platforms self-supplied in
the beginning at launch to influence participants’ beliefs, whereas one platform simulated
fake demand.

2.6 Conclusion

Especially on Dating platforms the use of fake profiles is heavily relied upon. Suggestive
evidence from a data leak of the platform ”Ashley Madison” shows that fake profiles were
used excessively. Most of the female users were in fact fake profiles. The data, however,
included credit card transactions (mostly from men) indicating that many users spend a
lot of money on the platform even though the chance of encountering a real women was
surprisingly low.

Economic papers exploring the regulation of platform markets are scarce, although
policy papers such as Fletcher et al. (2021) investigate common issues on platform that
may need to be regulated. For fake profiles, one suggested policy is banning fake pro-
files. German cases suggest, however, that the disclosure cannot be hidden in terms and
conditions. Similarly, one could consider mandatory disclosure policies. Voluntary and
mandatory disclosure has been discussed by scholars such as Grossman (1981), Mathios
(2000), or Fishman and Hagerty (2003).

In a classical model with rational users and voluntary disclosure all but the lowest type
should disclose their type and state that they would not use fake profiles. In my model
a platform would like to commit to refrain from using fake profiles with sophisticated
users as they are costly, which would indicate that if users are sophisticated voluntary
disclosure on fake profiles should be observed in online markets. Instead, their actual
use is mentioned in the terms and conditions, and consumer protection and competition
authorities try to inform unknowing consumers about these. In contrast, there is no
evidence of information campaigns or initiatives of firms committing not to use fake
profiles. Such voluntary disclosure might fail as the presence of naive users eliminates the
incentives to voluntary disclose the own type.

Combining suggestive evidence and the failure to observe voluntary disclosure in these
markets suggests that users are mainly naive. This speaks in favor of consumer protection
policies against practices that influence network effects such as a ban of fake profiles or
mandatory disclosure.
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A Appendix: Definition of Equilibrium Refinement

Definition 4. Equilibrium Refinement for Sophisticated Users
Denote the equilibrium strategy profile by Σ = ((p∗, m∗), r∗(p∗, m∗)), where r(·) denotes
the equilibrium cutoff mapping. The equilibrium profit of a platform of type θ is π∗(θ, Σ).

For a given price p, an arbitrary non-empty subset of sender type space Θ̃ ⊆ Θ, and
a non-empty subset of the other receivers action spaces Ỹ−i let

BRi(Θ̃, Ỹ−i) = ∪ρi∼∆(Θ̃×Ỹ−i) arg max
yi∈[0,1]

E(θ,y−i)∼ρi
[ui(θ, yi, y−i, p)]∀i

be the set of user i’s best responses to p for some belief ρi over sender type and the other
receivers action pairs with support contained in Θ̃ × Ỹ−i. For an arbitrary non-empty
subset of sender type space Θ̃ ⊆ Θ and k ∈ {0, 1, 2, ...} let

Y k
i (Θ̃) = BRi(Θ̃, Ỹk−1

−i (Θ̃)), and Y ∞
i (Θ̃) = ∩k∈{0,1,2,...}Y

k
i (Θ̃)∀i

be the set of rationalizable actions given Θ̃ for receiver i. Denote by R∞(Θ̃, p) the set of
rationalizable receiver action profiles for given p and Θ̃.

For a given out-of equilibrium price p and for each type θ, find all rationalizable action
profiles α ∈ R∞(Θ, p) by users that would cause θ to deviate from equilibrium. For θ ∈ Θ,
p, and equilibrium profile Σ,

Dθ = {α ∈ R∞(Θ, p) : π∗(θ, Σ) < Er∼απ(θ, p, r)},

is the set of receiver rationalizable actions for which type θ is strictly better-off deviating
towards p, and

D0
θ = {α ∈ R∞(Θ, p) : π∗(θ, Σ) = Er∼απ(θ, p, r)},

is the set of receiver rationalizable actions for which type θ is indifferent between deviating
towards p and setting equilibrium price p∗. If for some type θ there exists another type
θ′ such that

Dθ ∪ D0
θ ⊂ Dθ′ ,

then (θ, p) may be pruned from the game. The set of types that cannot be deleted is
denoted by Θ∗(p). A PBE violates D1 if there exists a type and action (θ, p) such that

min
α∈R∞(Θ∗(p),p)

π(θ, p, r) > π∗(θ, Σ) for some θ ∈ Θ∗(p). (D1)
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Discussion Ramey (1996) shows that under the following assumptions the unique D1
equilibrium is separating. The set of types is given by non-degenerate interval [θ, θ], where
prior beliefs are given by a continuous probability distribution µ(θ) with full support.
Signals are p ∈ Rk and the (single) receiver’s response r is chosen from the real line.
Payoff functions are continuously differentiable; the sender’s payoff π increases in the
receiver’s response. The receiver’s utility function u is strictly quasi-concave in its action
r for each signal and type. The receiver’s payoff is maximized in r by r∗(θ, p), which
is strictly increasing in θ. Furthermore, r∗(θ, p) is uniformly bounded above and for
k = 1, .., n : limpk→+/−∞ π(θ, r, p) = −∞. Enger’s Incentive Montonicity Condition holds
for the k signals (weaker condition than the multi-dimensional single-crossing property).

In the model at hand the assumptions on the receiver’s payoff functions and actions
are not fulfilled. A receiver’s response given price p is binary and depends on the belief
over the other receivers’ actions. The sender, however, does not care about the action of a
single receiver, but cares about the aggregate action taken by the receivers. The receivers’
payoffs are instead quasi-concave (linear) in the aggregate response. Additionally, the
aggregate response n∗(θ, p) is strictly increasing in θ due to the assumptions on Fθ.

B Appendix: Omitted Proofs

Recall that stand-alone values r are distributed according to the cumulative distribu-
tion function Fθ(r), with associated density fθ(r). Denote the derivative of the density
with respect to r by f ′

θ(r). Let F 1,θ(r) and f 1,θ(r) represent the first derivatives of the
distribution function and the density, respectively, with respect to θ.

Proof of Lemma 1 First, consider the case of complete information, in which the
assumption that users hold a common belief upon observing (p, m) is trivially fulfilled.
Users play sequentially rationalizable strategies, i.e. they play a best-response to a sym-
metric cutoff of other. To establish the unique cutoff rc ∈ [r, r] ⊆ [−∞, ∞], I will iterate
on the best-responses of users once from above starting at r0 = r and once from below
starting at r0 = r.

Step (i) Iteration starting from r0 = r.
Consider the best response of an agent i given an arbitrary state θ, price and mes-

sage pair (p, m) and the action profile of the other agents. The first iteration given the
symmetric cutoff r0 = r yields

BR1
i ({θ}, r0 = r) =

⎧⎨⎩ 1 if ri ≥ p

0 if ri < p.
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In the first iteration, agents with a reservation value of r1 ≡ p or higher will always enter
even if no one enters the platform (independent of their beliefs). Iterated elimination of
not best responses yields a cutoff value of ri in the i + 1’th iteration given by

ri+1 = p − β(1 − Fθ(ri))

This sequence is bounded by r ∈ [β − p, p] and strictly decreasing by the assumptions
made in Section 2.2. Hence, the sequence converges to its limit

rc = lim
i→∞

ri+1 = lim
i→∞

p − β(1 − Fθ(ri)) = p − β(1 − lim
i→∞

Fθ(ri)) = p − β(1 − Fθ(rc)).

The last inequality follows from the fact that the probability function is assumed to be
continuous. Then, the condition

rc = p − β(1 − Fθ(rc))

Step (ii) Iteration starting from r0 = r.
The first iteration given the symmetric cutoff r0 = r yields

BR1
i ({θ}, r0 = r) =

⎧⎨⎩ 1 if ri ≥ p − β

0 if ri < p − β.

In the first iteration, agents with a stand-alone value below r1 ≡ p − β will never enter
even if all others join the platform (independent of their beliefs). The cutoff value of ri

in the i + 1’th iteration is given by

ri+1 = p − β(1 − Fθ(ri)),

as the sequence is bounded by r ∈ [β −p, p] and strictly increasing,it converges to its limit

rc = p − β(1 − Fθ(rc)).

Step (iii) Show that rc and rc coincide.
Given Assumption 3, for any p ∈ R+ there exists one and only one solution to the

equation

r + β(1 − Fθ(r)) = p, (2.12)

as r is increasing in r with slope one, whereas β(1 − Fθ(r)) is decreasing in r with slope
smaller than one. Hence, the left-hand side is strictly increasing in r. Then, rc ≡ {r ∈
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[r, r] : r+β(1−Fθ(r)) = p} characterizes the unique cutoff which is the unique sequentially
rationalize user profile given the action-pair (p, m) by the platform.

Second, consider the case of incomplete information under the assumption that users
hold a common belief upon observing (p, m). Given the equilibrium definition of PBE,
there are two relevant types of equilibria — separating and pooling equilibria. In both
equilibria, the common belief assumption is fulfilled again. In a separating equilibrium,
users hold point-beliefs after observing (p, m), whereas users’ Bayesian update in a pooling
equilibrium after observing (p, m) is equal to their common (full support) prior. The proof
proceeds as follows. First, I will show that if users play cutoff strategies, there exists a
unique cutoff. Second, I will show that users will play a cutoff strategy in any equilibrium.

Step (i) Unique cutoff.
Suppose there exist two cutoffs defined by

rc + β
∫︂

Θ
(1 − Fθ(rc))dµ(θ|p, m, rc) = p, where (2.13)

µ(θ|p, m, rc) = µ(θ|p.m)fθ(rc|θ)∫︁
θ̃∈Θ µ(θ̃|p, m)fθ(rc|θ̃)dθ̃

, (2.14)

and

rc + β
∫︂

Θ
(1 − Fθ(rc))dµ(θ|p, m, rc) = p, where (2.15)

µ(θ|p, m, rc) = µ(θ|p.m)fθ(rc|θ)∫︁
θ̃∈Θ µ(θ̃|p, m)fθ(rc|θ̃)dθ̃

. (2.16)

For the sake of contradiction, suppose that the cutoff differ, e.g. rc < rc. Denote
X(r1, r2) =

∫︁
Θ(1 − Fθ(r1))dµ(θ|r2).

Lemma 6. X(r1, r2) is strictly decreasing in r1 and (weakly) increasing in r2.

The first part follows directly from the fact that 1 − Fθ(r1) is decreasing in r1 for all
θ and hence,

∫︁
Θ(1 − Fθ(r1))dµ(θ|r2) is decreasing in r1 as well holding µ(θ|r2) fixed.

For the second part, note that for r′ > r′′, µ(θ|p, m, r′) has first-order stochastic
dominance over µ(θ|p, m, r′′) due Assumption 3. Assumption 3 states that the family of
densities {fθ(r) ≡ f(r|θ)} is assumed to have the monotone likelihood ratio property. By
Milgrom (1981) (Proposition 2) a family of densities has the MLRP iff r′ > r′′ implies
that r′ is more favorable than r′′ meaning that µ(·|r′) dominates µ(·|r′′).

Recall that 1 − Fθ(r1) is bounded by [0, 1] and is strictly monotone increasing in θ by
Assumption 2 and 3. Then,

∫︁
Θ(1 − Fθ(r1))dµ(θ|r′) ≥

∫︁
Θ(1 − Fθ(r1))dµ(θ|r′′) holds as r′ is

more favorable than r′′, where it holds with equality whenever 1 − Fθ(r1) ∈ {0, 1}.
In equilibrium, both the left-hand side of Equation 2.13 and 2.15 must be equal to p.

Therefore, rc + βX(= rc + β
∫︁

Θ(1 − Fθ(rc))dµ(θ|p, m, rc) must hold with rc < rc. Note
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that in equilibrium, both the left-hand side of Equation 2.13 and 2.15 must be equal to
p. Therefore, rc + βX(= rc + β

∫︁
Θ(1 − Fθ(rc))dµ(θ|p, m, rc) must hold with rc < rc. Note

that In equilibrium, both the left-hand side of Equation 2.13 and 2.15 must be equal to
p. Therefore, rc + βX(rc, rc) = rc + βX(rc, rc) needs hold with rc < rc; however,

rc + βX(rc, rc) < rc + βX(rc, rc) ≤ rc + βX(rc, rc),

where the first inequality follows from Assumption 4 for any given θ and the second
inequality follows from the lemma above. This contradicts the initial assumption, thus,
rc = rc.

Step (ii) Users play cutoff strategies in any equilibrium.
Define rinf ≡ inf{ri : u(ri, p) ≥ 0} to be the user with the lowest ri of the set of users

that have a non-negative utility from joining the platform. Similarly, let rsup ≡ sup{ri :
u(ri, p) ≤ 0} be the users with the largest ri of the set of users that have a negative or
zero utility from joining the platform.

Therefore, it needs to hold that rsup + βX(rsup, rsup) ≤ p ≤ rinf + βX(rinf, rinf) for
rinf > rsup by definition. Imposing that X(r1, r2) strictly increases in r2, I can use the
previous argument from Step (i) to show that there agents play cutoff strategies. As long
as rinf, rsup ∈ (r, r) and hence X(r1, r2) strictly increases in r2, the following holds

rsup + βX(rsup, rsup) < rsup + βX(rsup, rinf) < rinf + βX(rinf, rinf)

Therefore, rinf = rsup and users follow a cutoff strategy.

Then, the condition

rc = p − β
∫︂

Θ
(1 − Fθ(rc))dµ(θ|p, m, rc), (2.17)

characterizes the unique cutoff. Note that if µ(θ|rc) = δθ̃, i.e. the belief concentrates on
state θ with probability 1 (a.s.), this condition is the same as under complete information.
Observe that

Remark. If belief µ(θ|p, m, r) has first-order stochastic dominance over a belief µ′(θ|p, m, r),∫︁
Θ(1 − Fθ(rc))µ(θ|rc)dθ increases and therefore, the cutoff rc decreases.

The result follows directly from the Equation 2.17 and Lemma 6.

Proof Lemma 2 Under complete information, equilibrium demand is determined by
the unique solution to

n∗ = Pr(r + βn∗ − p ≥ 0) = 1 − Fθ(p − βn∗),

⇔ n∗ = 1 − Fθ(r∗)
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given that Assumption 4. It is possible to rewrite this condition as G(n∗; p) = 1 − Fθ(p −
βn∗) − n∗. The implicit function theorem implies that a function g exists such that
n∗ = g(p). Implicit differentiation yields

−fθ(p − βn∗) + βfθ(p − βn∗)∂n

∂p
− ∂n

∂p
= 0

∂n

∂p
= −fθ(p − βn∗)

1 − βfθ(p − βn∗) .

The platform faces the optimization problem maxp(p − c)n(p) and yields

1 − Fθ(r∗) + (p − c) −fθ(r∗)
1 − βfθ(r∗) = 0,

which can be rewritten as

p − c = 1 − Fθ(r∗)
fθ(r∗)⏞ ⏟⏟ ⏞
η(θ,p)

(1 − βfθ(r∗))⏞ ⏟⏟ ⏞
>0

,

where η(θ, p) is the users price elasticity. Given Assumption 2 the hazard rate defined by
λ ≡ 1

η
is decreasing. Thus, the first-order condition solves for a unique price p∗(θ). The

second-order condition is

−
[︄
2 fθ(r∗)

1 − βfθ(r∗) + (p − c) f ′
θ(r∗)

(1 − βfθ(r∗))3

]︄
.

At p∗ it holds that

− 1
1 − βfθ(r∗)

[︄
2fθ(r∗) + f ′

θ(r∗) 1 − Fθ(r∗)
fθ(r∗)(1 − βfθ(r∗))

]︄

⇔ − 1
1 − βfθ(r∗)

[︄
2(1 − βfθ(r∗))[fθ(r∗)]2 + f ′

θ(r∗)(1 − Fθ(r∗))
fθ(r∗)

]︄
< 0

Note that the term in rectangular brackets is positive if 2(1 − βfθ(r∗)) ≥ 1 which holds
if 1/2 ≥ βfθ(r∗). The denominator is always positive, however, the numerator must
also be positive due to the assumption that the hazard rate is increasing in r given
2(1 − βfθ(r∗)) ≥ 1. To see this, take the first derivative of the hazard rate with respect
to r

λ′(r) = [fθ(r∗)]2 + f ′
θ(r∗)(1 − Fθ(r∗))

[1 − Fθ(r∗)]2 > 0, by Assumption 1.

Lastly, to show that the equilibrium price can be increasing/decreasing or constant
in state θ, note first that the hazard rate λ(r, θ) is strictly decreasing in θ by the MLRP
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property. It follows that

∂λ(r, θ)
∂θ

= f 1,θ(r)(1 − Fθ(r)) + fθ(r)F 1,θ(r)
(1 − Fθ)2 < 0,

which allows to bound f 1,θ(r) < fθ(r)
1−Fθ(r)(−F 1,θ(r)).

Taking the derivative of the first-order condition with respect to θ yields

∂p

∂θ
= −βf 1,θ(r)fθ(r)(1 − Fθ(r)) − (f 1,θ(r)(1 − Fθ(r)) + fθ(r)F 1,θ(r))(1 − βfθ(r))

fθ(r)2

= −f 1,θ(r)(1 − Fθ(r)) − fθ(r)F 1,θ(r)(1 − βfθ(r))
fθ(r)2

> 0

if f 1,θ(rF I) < 0.

Proof of Lemma 3 To see that the single-crossing condition is fulfilled, denote profits
by

π(θ, θ̂, p) = (p − c)(1 − Fθ(rc)),

where rc = p − β(1 − Fθ̂(rc)). Recall from Lemma 2 that the partial derivative of the
cutoff with respect to p is

∂rc

∂p
= 1

1 − βfθ̂(rc)
> 0.

The partial derivative of the cutoff with respect to θ̂ can be derived by totally differenti-
ating the cutoff above:

∂rc

∂θ̂
= βF 1,θ̂

1 − βfθ̂(rc)
< 0.

The (strict) single-crossing property is satisfied if ∂π(θ,θ̂,p)
∂p /∂π(θ,θ̂,p)

∂θ̂
is a strictly increasing

function of θ. Taking the respective derivatives and rearranging, yields

∂π(θ,θ̂,p)/∂p

∂π(θ,θ̂,p)/∂θ̂
= −

(p − c)
[︃

−fθ(r)
1−βfθ̂(rc)

]︃
+ 1 − Fθ(r)

(p − c)fθ(r)
[︃

−βF 1,θ̂(r)
1−βfθ̂(rc)

]︃ (2.18)

= 1
(−βF 1,θ̂(r))

+ 1 − βfθ̂(rc)
(p − c)(−βF 1,θ̂(r))

1 − Fθ(r)
fθ(r) , (2.19)
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where only the last term depends on θ. Recall that 1−Fθ(r)/fθ(r) corresponds to the inverse
hazard rate. Since the hazard rate is strictly decreasing in θ, the inverse hazard rate is
strictly increasing in θ. Thus, the whole expression is strictly increasing in θ if p > c.

Lemma 7. Choose any price p′, users’ response r′, and type θ′. For any type θ < θ′,
there exists h ∈ R+ and λ, such that 0 < λ < ε implies

π(θ′, pλ, rλ) > π(θ′, p′, r′) (A1)

π(θ̃, pλ, rλ) < π(θ̃, p′, r′), ∀θ̃ ≤ θ, (A2)

where (pλ, rλ) = (p′ + hλ, r′ − λ).

Given the single-crossing property from Lemma 3, I show that there exists a small
increase in price and increase in users’ response (demand), i.e. a decrease in the cutoff
r, that gives higher types scope to separate from lower types. Formally, the upcoming
lemma provides a price-response pair for which a higher type would like to deviate whereas
lower types do not. Note that both on-path and off-path user responses, i.e. the change
in demand, are determined by the cutoff in Equation 2.1. Due to continuity, the cutoffs
are r ∈ [r(p, δθ), r(p, δθ)] for given price p.

Proof of Lemma 7 The proof of this lemma follows Ramey (1996), but is simplified as
there is only one signal p for which the one-dimensional single-crossing condition holds.

Take θ < θ′ and let x ∈ R be such that x ≥ MRS(θ, p′, r′). Note that x ̸=
MRS(θ′, p′, r′) and {MRS(θ′, p′, r′)}, {x} are closed, convex sets as they are a single-
ton. Hence, it is possible to apply Minkowski’s hyperplane separation theorem, which
implies the existence of h ∈ R, h ̸= 0, such that

h · MRS(θ′, p′, r′) < 1 < h · x, (2.20)

for some h > 0. Suppose (pλ, rλ) = (p′ +hλ, r′ −λ) for λ > 0, i.e., a small increase in price
and a small increase in demand (a small decrease in the cutoff). To determine whether
π(θ̃, pλ, rλ) − π(θ̃, p′, r′) < 0, define

ζ(λ, θ̃) = −π(θ̃, pλ, rλ) + π(θ̃, p′, r − λ)
π(θ̃, p′, r − λ) − π(θ̃, p′, r′)

,

and then

π(θ̃, pλ, rλ) − π(θ̃, p′, r′) =
[︂
π(θ̃, p′, r − λ) − π(θ̃, p′, r′)

]︂ [︂
1 − ζ(λ, θ̃)

]︂
.
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To determine the sign of ζ(λ, θ̃), observe that

lim
λ→0

ζ(λ, θ̃) = lim
λ→0

−π(θ̃, pλ, rλ) + π(θ̃, p′, r − λ)
π(θ̃, p′, r − λ) − π(θ̃, p′, r′)

= −hπp(θ̃, p′, r′)
πr(θ̃, p′, r′)

= h · MRS(θ̃, p′, r′),

by l’Hospital rule and note that ∂π(·)/∂r < 0, so it is written as −πr(·). Hence, it is possible
to extend ζ(·) continuously to λ = 0. Define

ζ(λ, θ̃) =
⎧⎨⎩

−π(θ̃,pλ,rλ)+π(θ̃,p′,r−λ)
π(θ̃,p′,r−λ)−π(θ̃,p′,r′) if λ > 0

−hπp(θ̃,p′,r′)
πr(θ̃,p′,r′) if λ = 0

In λ ∈ R>0 ζ(λ, θ̃) is differentiable as a composition of differentiable functions, however,
the function is not differentiable in λ = 0 as MRS(θ̃, p′, r′) ̸= 0. For λ > 0 the function
is strictly decreasing in λ

−hπp(θ̃, p′, r′)(π(θ̃, p′, r − λ) − π(θ̃, p′, r′)) − (−π(θ̃, pλ, rλ) + π(θ̃, p′, r − λ))(πr(θ̃, p′, r′))
(π(θ̃, p′, r − λ) − π(θ̃, p′, r′))2

< 0

From Equation (2.20), it follows that ζ(λ = 0, θ′) < 1 and ζ(λ, θ′) < 1 as well, such that
π(θ′, pλ, rλ) − π(θ′, p′, r′) > 0. Furthermore, ζ(λ = 0, θ̃) > 1 and hence ζ(λ, θ̃) > 1 for
λ sufficiently small (λ < ε), such that π(θ̃, pλ, rλ) − π(θ̃, p′, r′) < 0, which needed to be
shown.

Proof of Proposition 1 By assumption τ(θ) is a differentiable one-to-one strategy.
Given that τ(θ) is differentiable, it satisfies the differential equation in Equation 2.3 and
hence, also the first-order condition implied by the incentive condition in Definition 1.
Then, τ(θ) satisfies the incentive condition if

τ ′(θ)π2(θ, θ̂, p) d

dθ

⎧⎨⎩π3(θ, θ̂, p)
π2(θ, θ̂, p)

⎫⎬⎭ ≥ 0, (2.21)

which is proven in Theorem 6 of Mailath and von Thadden (2013). Note that the profit is
monotonic in belief θ̂: π2(θ, θ̂, p) = (p − c)n2(θ, θ̂, p) > 0 for p > c. That is, the platform
always has an incentive to manipulate beliefs in a way that users believe that the state is
higher than it actually is. Taking the partial derivative, yields

∂π(θ, θ̂, p)
∂θ̂

= (p − c)fθ(r) −βF 1,θ̂(r)
1 − βfθ̂(r) > 0.

Additionally, by Lemma 3 the last term is strictly positive if p > c. Thus, τ ′(θ) must
be increasing for p > c to fulfill Equation 2.21. Thus, for the platform to make positive
profits, τ must be increasing in θ. From this, Corollary 4 follows.
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Denote the equilibria inducing the equilibrium outcome in Proposition 1 by ΓS, which
only differ in their equilibrium messages. To show that the equilibrium outcome exists
under the equilibrium refinement, suppose for contradiction that it fails to be one under
the equilibrium refinement in Definition 4. Then there exists some price p′ ̸= {τ(θ)}θ∈Θ

for which some type has a strict incentive to deviate when beliefs satisfy Definition 4.
Define the cutoff r′ under p′ and set of types Θ′ as follows

r′ ≡ {r|π(θ, r, p′) = π∗,S(θ) for some θ}

Θ′ ≡ {θ|π(θ, r′, p′) = π∗,S(θ)},

where π∗,S(θ) are the equilibrium profits of type θ. ΓS fails the equilibrium refinement if
for any posterior satisfying µ(θ|p′) ⊂ Θ′ and any response r(p′), some type strictly prefers
p′ to the equilibrium action. That is, r(p′) < r′ for some type to strictly prefer p′ to the
equilibrium action.

Then, fix θ′ ∈ Θ′. By Lemma 7 for price p′, cutoff r′, and type θ′, there exists a
price-cutoff pair (pλ, rλ) such θ′ can separate itself from lower types by choosing pλ. Such
separation ensures that no lower type would choose pλ. By the definition of the equilibrium
price, τ(θ′) is the least-cost signaling price, i.e. the smallest price for which type θ′ can
separate from lower types implying that pλ ≥ τ(θ′). Thus, type θ′ has no incentive to
deviate from the equilibrium price — a contradiction.

Proof of Proposition 2 I prove the following: In an equilibrium in which p∗(θ) = p′ is
set by more than one type, the highest type of the pool θ′ can set price pλ to break the equi-
librium. For pλ, there exists r ∈ R∞(Θ∗(pλ), pλ) such that minr∈R∞(Θ∗(pλ),pλ) π(θ′, r, pλ) ≤
π∗(θ′, Σ).

Consider an equilibrium candidate in which p∗(θ) = p′ for more than one θ. Let
θ′ = sup{θ|p∗(θ) = p′} be the highest type in the pool and r′ = r(p′) be the user response
to observing price p′ in equilibrium. Since {θ|p∗(θ) = p′} is non-degenerate and µ1(θ|r, p′)
has full support on the closure of the set {θ|p∗(θ) = p′}, receivers place strictly positive
probability on the set cl{θ|p∗(θ) = p′} − {θ′}.

Given users use rationalizable strategies off-path, Lemma 1 provides a unique cutoff
for given beliefs. Then, n(θ′, p′, r′) < n(θ′, p′, r∗), where the cutoff for the highest type in
the pool is lower if users believe µ(θ′) = δθ′ (r∗) than the cutoff r′

r′ = p′ − β
∫︂

Θ
(1 − Fθ(rc))µ1(θ|r′, p)dθ,

r∗ = p′ − β(1 − Fθ′(r∗)),

such that r∗ < r′ as the users place strictly positive probability on lower types other than
θ′.
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The rest of the proof follows Ramey (1996). Take a type θ sufficiently close to the
highest type of the pool θ′ that yields r′ > r(p′, δθ). Given θ, there exist small moves up-
wards in price and receiver response (pλ, rλ) supplied by Lemma 7 that satisfies Equation
A1 and Equation A2. By taking λ sufficiently small rλ > r(pλ, θ).

For pλ, the user response is either such that Equation A1 and Equation A2 are satisfied,
or if π(θ̃, pλ, r) ≥ π(θ̃, p′, r′) for θ̃ resulting in r > rλ, then because of the single-crossing
property π(θ′, pλ, r) > π(θ′, p′, r′) such that θ′ has a stricter incentive to deviate. In
both cases, Dθ̃ ∪ D0

θ̃
⊂ Dθ′ holds, i.e. for types θ̃ there are less rationalizable strategy

profiles for which it can improve. Then, D1 criterion requires the support of µ∗(θ|pλ)
to be in [θ, θ], i.e. Θ∗(pλ) = [θ, θ] with θ′ ∈ [θ, θ]. By Equation 2.1, it must be that
r(pλ, δθ) > r(pλ, µ(Θ∗(pλ)), and Equation A1 implies that θ′ has a profitable deviation
breaking the equilibrium.

Proof of Proposition 3 Suppose Condition 1 is satisfied. I will construct the two
types of separating equilibria in Theorem 3 (i) and (ii).

(i) Price Signaling Suppose first that zero fake profiles are used in equilibrium, i.e.
ξ(θ) = 0. The incentive constraints for θ′ > θ read

(p(θ) − c)n(θ, θ, p(θ)) ≥ (p(θ′) − c)n(θ, θ′, p(θ′)) − γ [n(θ′, θ′, p(θ′)) − n(θ, θ′, p(θ′))]

(p(θ′) − c)n(θ′, θ′, p(θ′)) ≥ (p(θ) − c)n(θ′, θ, p(θ)).

Observe that the incentive constraints for upward and downward deviations are asymmet-
ric. If type θ′ deviates downward to mimic type θ, it does not need to create fake profiles
to match the lower demand. Instead, it would have to create negative fake profiles to
reduce demand—something that is not feasible. At the entry stage, users hold the belief
µ1(·) = δθ after observing the price p(θ), which leads to an entering mass of n(θ′, θ, p(θ)).
This mass is smaller than the number of users who would have entered under the true
type θ′, so the platform is constrained in demand after entry, even if the true type θ′ is
(partially) revealed afterward.

Now observe that the second incentive constraint must be binding, whereas the first
incentive constraint is slack. If the first IC were binding, the second IC would not be satis-
fied, and higher types would prefer to set the prices of lower types. Given differentiability,
the resulting differential equation is

p′(θ) = − (p(θ) − c)n2(θ, θ, p(θ))
(p(θ) − c)n3(θ, θ, p(θ)) + n(θ, θ, p(θ))

The separating strategy is the same as in Proposition 1 and is indeed separating as
p′(θ) ̸= 0 and n(θ, θ, p(θ)) ̸= n(θ′, θ′, p(θ′)), ∀θ ̸= θ′ which can easily be verified.
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Given that the equilibrium pricing strategy satisfies the differential equation and
thus local incentive compatibility, global incentive compatibility is ensured by the single-
crossing condition in Equation 2.19. For deviations from a higher type to a lower type’s
price, the argument follows as in Proposition 1. Global incentive compatibility for devia-
tions from a lower type to a higher type’s price is also satisfied—and even more straight-
forwardly. To see this, consider the following. If a deviation from p(θ) to p(θ′), as well as
from p(θ′) to p(θ′′) for θ′′ > θ′ > θ, is unprofitable (due to local incentive compatibility),
then, by the single-crossing property, a deviation of θ from p(θ) to p(θ′′) is also unprof-
itable. Additionally, when deviating from p(θ) to p(θ′) to induce belief θ′, type θ needs
to create additional fake profiles. A deviation from p(θ) to p(θ′′) requires even more fake
profiles because

n(θ′′, θ′′, p(θ′′)) − n(θ, θ′′, p(θ′′)) > n(θ′, θ′, p(θ′)) − n(θ, θ′, p(θ′))

making a global deviation even less profitable.
(ii) Price and Fake Profile Signaling Suppose θ ∈ Θ̂, where Θ̂ ⊆ [θ, θ]. Fake profiles
are given by

γξ = (p(θ) − c)n(θ, θ, p(θ)) − (p(θ) − c)n(θ, θ, p(θ)) −
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt,

and prices maximize equilibrium profits

max
p∈R+

(p(θ) − c)n(θ, θ, p(θ)) +
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt,

which results in

p∗∗,S ≡ p(θ) = − n1(θ, θ, p)
n13(θ, θ, p) + c + γ. (2.22)

The equilibrium exists under the following conditions: Let Θ̂ be such that p∗∗,S(θ) ≤
pmax(θ) holds for all θ ∈ Θ̂, where pmax(θ) is given by the differential equation

p′(θ) = −(p(θ) − c)n2(θ, θ, p(θ)) − γn1(θ, θ, p(θ))
(p(θ) − c)n3(θ, θ, p(θ)) + n(θ, θ, p(θ)) .

For p∗∗,S to maximize profits a necessary and sufficient condition is f 1,θ(r(p∗∗,S)) > 0.
Lastly, γ must be sufficiently small

2γ ≤
(︄

−F 1,θ(r)
f 1,θ(r) (1 − βfθ(r))

)︄
−F 1,θ(r)
−F 1,θ(r′) −

(︄
−F 1,θ′(r′)

f 1,θ′(r′) (1 − βfθ′(r′))
)︄

. (2.23)
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I will construct the equilibrium outcome in the next steps. The incentive constraints
for θ′ > θ are

(p(θ) − c)n(θ, θ, p(θ)) − γξ(θ)

≥ (p(θ′) − c)n(θ, θ′, p(θ′)) − γ [ξ(θ′) + (n(θ′, θ′, p(θ′)) − n(θ, θ′, p(θ′)))] ,

and

(p(θ′) − c)n(θ′, θ′, p(θ′)) − γξ(θ′)

≥ (p(θ) − c)n(θ′, θ, p(θ)) − γ [ξ(θ) − (n(θ′, θ, p(θ)) − n(θ, θ, p(θ)))] ,

if γ [ξ(θ) − (n(θ′, θ, p(θ)) − n(θ, θ, p(θ)))] > 0, or

(p(θ′) − c)n(θ′, θ′, p(θ′)) − γξ(θ′) ≥ (p(θ) − c)n(θ′, θ, p(θ)),

if γ [ξ(θ) − (n(θ′, θ, p(θ)) − n(θ, θ, p(θ)))] ≤ 0. I will show that it suffices to impose the
incentive constraint only for nearby types. For close θ to θ′, the incentive constraints are

p′(θ)[(p(θ) − c)n3(θ, θ, p(θ)) + n(θ, θ, p(θ))]

+ (p(θ) − c)n2(θ, θ, p(θ)) − γξ′(θ) ≤ γn1(θ, θ, p(θ))

p′(θ)[(p(θ) − c)n3(θ, θ, p(θ)) + n(θ, θ, p(θ))]

+ (p(θ) − c)n2(θ, θ, p(θ)) − γξ′(θ) ≥ γn1(θ, θ, p(θ)).

Setting the first constraint above to bind, implies that the second binds and vice versa.
This results in a differential equation of the fake profile strategy as a function of prices:

γξ′(θ) =

p′(θ)[(p(θ) − c)n3(θ, θ, p(θ)) + n(θ, θ, p(θ))] + (p(θ) − c)n2(θ, θ, p(θ)) − γn1(θ, θ, p(θ)).

Sequential rationality implies that once the lowest type, θ, is identified as such, it cannot
do better than setting zero fake profiles. This implies the following initial value condition
for the differential equation: ξ(θ) = 0. For a given price p(θ), the differential equation
can be solved via the Fourier method, yielding a unique solution (up to a constant):

γξ(θ) = (p(θ) − c)n(θ, θ, p(θ)) − (p(θ) − c)n(θ, θ, p(θ)) −
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt.
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Then, the equilibrium profit as a function of the price is given by

Π(θ) = (p(θ) − c)n(θ, θ, p(θ)) − γξ(θ)

= (p(θ) − c)n(θ, θ, p(θ)) +
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt.

and is maximized if prices are set to

arg max
p(θ)

(p(θ) − c)n(θ, θ, p(θ)) +
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt∀θ ∈ Θ.

Solving the maximization problem yields

p∗∗,S ≡

⎧⎨⎩ p(θ) − c = 1−Fθ(r)
fθ(r) (1 − βfθ)(r) θ = θ

p(θ) − c − γ = −F 1,θ(r)
f1,θ(r) (1 − βfθ(r)) θ ∈ (θ, θ].

The necessary and sufficient condition for p∗∗,S to maximize the platform’s profits are given
in the following. For θ = θ, the profit function is concave under the assumptions (see
Lemma 2), hence the only profit-maximizing price is the first-best price. For θ ∈ (θ, θ],
the profit function with respect to p is not necessarily single-peaked. The necessary and
sufficient conditions are given by the first-order condition

(p − c − γ)n13(θ, θ, p) + n1(θ, θ, p) = 0,

and the second-order condition

(p − c − γ)n133(θ, θ, p) + 2n13(θ, θ, p).

For any price p ∈ R+, there exists a unique cutoff r by Lemma 1. If n13 changes sign (n1

is strictly positive), there can be two price-response pairs solving the first-order condition.
To do so, reformulate both conditions in terms of the underlying distribution

(p − c − γ) −f 1,θ(r)
1 − βfθ(r) − F 1,θ(r) = 0.

By Assumption 2, the density is single-peaked and hence f 1,θ(r) changes sign only
once. If the density is right-skewed, f 1,θ(r) is strictly increasing in r. By the MLRP
assumption, which implies that the hazard rate is monotonically decreasing in θ, it is
possible to bound f 1,θ(r) by f 1,θ(r) < fθ(r)

1−Fθ(r)(−F 1,θ(r)). Then, the first-order condition
can exhibit (a) two solutions, or (b) only one solution.
(a) If the first-order solves for two solutions, one solution exists with p − c − γ < 0 if
f 1,θ < 0 and one solution exists with p− c−γ > 0 if f 1,θ > 0. The second-order condition
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is

SOC := −F 1,θ(r)
f 1,θ(r)

∂fθ(r)/∂r∂θ + f1,θ(r)f ′(r)β/1−βfθ(r)

1 − βfθ(r) + 2 −f 1,θ(r)
1 − βfθ(r) .

If f 1,θ > 0, then SOC < 0, and if f 1,θ < 0, then SOC > 0. This implies that the profit
function is well-behaved, so that p − c − γ > 0 is both the local and global maximum.
To see that the interior maximum is also the global maximum, note that profits are zero
when p = 0 and negative as p → ∞.
(b) As f 1,θ(r) is bounded from above, only one solution at p′ −c−γ < 0 with f 1,θ < 0 can
exist. In that case, the first-order condition is always larger than zero for prices higher
that p′. The solution p′ is a local minimum and the profit-maximizing prices are a corner
solution. As the profit-maximizing solution must still adhere to incentive-compatibility,
prices are chosen as high as possible given incentive-compatibility. The profit-maximizing
solution is given by (i).

If the density is left-skewed, f 1,θ(r) is strictly decreasing in θ, i.e. f 2,θ(r) < 0. The
first-order condition solves for one solution with p − c − γ > 0 and f 1,θ > 0. The price is
again profit-maximizing as the second-order condition is negative at the solution.

Lastly, to check global incentive compatibility note that prices fulfill the single-crossing
condition by Lemma 3. The single-crossing condition for fake profiles is given by

∂π(θ,θ̂,p,ξ)
∂ξ

∂π(θ,θ̂,p,ξ)
∂θ̂

= −γ

(p − c)fθ(r) (−βF 1,θ̂(r))
1−βfθ̂(r)

,

which is strictly increasing in θ if f 1,θ(r) > 0. Hence, as long as p(θ)−c−γ = −F 1,θ(r)
f1,θ(r) (1−

βfθ(r)) is solved for a price-cutoff pair resulting in a positive mark-up (p − c − γ > 0) and
a cutoff r such that f 1,θ > 0, both signals meet the strict single-crossing condition.

Assume from now on p − c − γ > 0 and f 1,θ > 0. As the fake profile strategy solves
the differential equation, it thus, satisfies local incentive compatibility. To fulfill global
incentive compatibility, for θ > θ′ (p, ξ) must satisfy

(p(θ) − c)n(θ, θ, p(θ)) +
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt ≥ (p(θ′) − c)n(θ, θ′, p(θ′)) (2.24)

− [(p(θ′) − c)n(θ′, θ′, p(θ′)) − (p(θ) − c)n(θ, θ, p(θ)) −
∫︂ θ′

θ
(p(t) − c − γ)n1(t, t, p(t))dt]

(2.25)

+ γ(n(θ, θ′, p(θ′) − n(θ′, θ′, p(θ′)). (2.26)
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and for θ < θ′

(p(θ) − c)n(θ, θ, p(θ)) +
∫︂ θ

θ
(p(t) − c − γ)n1(t, t, p(t))dt ≥ (p(θ′) − c)n(θ, θ′, p(θ′)) (2.27)

− [(p(θ′) − c)n(θ′, θ′, p(θ′)) − (p(θ) − c)n(θ, θ, p(θ)) −
∫︂ θ′

θ
(p(t) − c − γ)n1(t, t, p(t))dt]

(2.28)

− γ(n(θ, θ′, p(θ′) − n(θ′, θ′, p(θ′)). (2.29)

Observe that Equation 2.26 is harder to satisfy than 2.29 as the higher type must create
less fake profiles to mimic the lower type. Hence, rewriting Equation 2.26 yields

∫︂ θ

θ′
(p(t) − c − γ)n1(t, t, p(t))dt ≥

∫︂ θ

θ′
(p(θ′) − c + γ)n1(t, θ′, p(θ′))dt.

A sufficient condition is

(θ − θ′) [(p(θ) − c − γ)n1(θ, θ, p(θ)) − (p(θ′) − c + γ)n1(θ, θ′, p(θ′))] ≥ 0,

such that the second term must be larger or equal to zero. Substituting the profit-
maximizing prices p∗∗,S into the condition and solving for γ yields

2γ ≤
(︄

−F 1,θ(r)
f 1,θ(r) (1 − βfθ(r))

)︄
−F 1,θ(r)
−F 1,θ(r′) −

(︄
−F 1,θ′(r′)

f 1,θ′(r′) (1 − βfθ′(r′))
)︄

. (2.30)

Therefore, to fulfill global incentive compatibility, γ must be sufficiently small given by
Equation 2.23.

Lastly, to guarantee that the non-negativity constraint on the fake profile strategy is
not violated, the following condition must hold: For all θ ∈ Θ̂,

pF P ≤ pmax(θ), (2.31)

where pmax(θ) is given by the differential equation p′(θ) = − (p(θ)−c)n2(θ,θ,p(θ))−γn1(θ,θ,p(θ))
(p(θ)−c)n3(θ,θ,p(θ))+n(θ,θ,p(θ)) .

Note that γξ′(θ, pmax(θ)) = 0 and γξ′(θ, pF I(θ)) > 0. Hence, the equilibrium with positive
fake profiles exists for θ ∈ Θ̂ for which the Inequality in Equation 2.31 holds.

Suppose Condition 1 is violated, then fake profiles are sufficiently costly for all types.
As the cost of fake profiles are common knowledge, users anticipate that fake profiles
cannot be used in equilibrium. Then, the equilibrium is the same as characterized in
Proposition 6 (see proof of Proposition 6).

Proof of Proposition 4 The proof follows directly from the proof of Proposition 1
by considering the incentives for some type in the pool, θ′ ∈ Θ′, to deviate from the
pooled price p′ in the first period. By Lemma 7, there continues to exist a price-cutoff
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pair (pλ, rλ) for type θ′ that makes it possible to separate from lower types. This lemma
is unaffected by the possibility of fake profiles as the strict single-crossing property holds
for the price as a signal alone.18 By the equilibrium refinement, users put strictly positive
probability µ1(θ|pλ) on a set Θ∗ in support of strictly higher types than Θ′. Thus, in turn
the cutoff decreases and the mass of entering users increases. As users cannot observe
the number of fake profiles and do not know the true demand on the platform, the
equilibrium refinement has no bite at this point and users do not revise their belief. Thus,
µ2(θ|pλ, n(θ′, µ1(θ|pλ), pλ) + ξ) puts the same probability on set Θ∗ and no user exits.
Lastly, this implies that the profit of type θ′ increases by the deviation, thereby breaking
the pooling equilibrium.

Proof Lemma 4 Given the timing of the game, users “update” their beliefs twice.
In the first period, users observe the message and hold beliefs µ1(θ|p, m, r) = m. In the
second period, users observe the perceived network size ñ = n(θ, µ1, p)+ξ and hold beliefs
µ2(θ|p, m, r, ñ). Note that π2(·) is strictly increasing if the believed state increases.

Fix the price p and message m. After users’ entry decisions, the true network size of
users in equilibrium is bounded from above. Denote by n(θ, m, p) the number of users
who enter given µ1(·) = m, and by n(θ, µ2, p) the number of users on the platform given
µ2(·). The number of users who remain on the platform are min{n(θ, m, p), n(θ, µ2, p)}.

Suppose that m ≥ θ, where m < θ is irrelevant as profits increase in m; see above.
Then to induce µ2 ≥ m, the platform must create fake profiles such that:

ξ ≥ n(m, m, p) − n(θ, m, p). (2.32)

Suppose the platform sets ξ such that µ2(·) > m, i.e., the above inequality is strict. Then,
the demand in equilibrium on the platform is n(θ, m, p) = min{n(θ, m, p), n(θ, µ2, p)}. As
demand is unaffected by the increase in fake profiles and profits decrease due to the cost
of creating them, the platform does not set ξ such that µ2(·) > m.

Suppose the platform sets ξ such that µ2(·) < m, i.e, the inequality in Equation 2.32 is
reversed. Then, demand in equilibrium on the platform is n(θ, µ2, p) and thus decreases.
Since the platform has already chosen message m in the first period and found it optimal
to do so, it will not set ξ such that µ2(·) < m. This implies that the platform induces ξ

such that µ2(·) = m, i.e, the inequality in Equation 2.32 binds.

Proof of Lemma 5 First, I will show that the indifferent type is given as the unique
solution to Equation 2.9. To get Equation 2.9, substitute the first-order condition in
Equation 2.7 into the first-order condition in Equation 2.8. The indifferent type is given

18Ramey (1996) notes that “With multiple signals, such separating movements remain possible as long
as the MRS of any one signal is strictly decreasing in type at every point of the space of signals and
responses” (p.511).



B. APPENDIX: OMITTED PROOFS 119

by the following equation evaluated at m = θ:
(︄

− n(θ, m, p)
n3(θ, m, p) + γ

n3(m, m, p)
n3(θ, m, p)

)︄
n2(θ, m, p) − γ (n1(m, m, p) + n2(m, m, p)) = 0,

which is equal to Equation 2.9 when evaluated at m = θ. Note that r(m, p) ≡ r is given
by

r = p − β(1 − Fm(r))|m=θ,

and the respective derivatives are

∂r

∂p
= 1

1 − βfm(r)

⃓⃓⃓⃓
⃓
m=θ

,

∂r

∂m
= (−βF 1,m(r))

1 − βfm(r)

⃓⃓⃓⃓
⃓
m=θ

.

Substituting the respective derivatives into Equation 2.9 yields
(︄

1 − Fθ(r)
fθ(r) (1 − βfθ(r)) + γ

fθ(r)
fθ(r)

1 − βfθ(r)
1 − βfθ(r)

)︄
· fθ(r) · (−βF 1,θ(r))

1 − βfθ(r)

= γ

⎛⎝−F 1,θ(r) + fθ(r) · −βF 1,θ(r)
1 − βfθ(r)

⎞⎠ .

Simplifying and setting θ = θ̃ yields Equation 2.10

β(1 − Fθ(r)) = γ, (2.33)

for r = p − β(1 − Fθ(r)), where p is given by Equation 2.7. Then the indifferent type
θ̃ ∈ Θ is the solution to Equation 2.10. Since the left-hand side is a constant and the
right-hand side is strictly increasing in θ, the equation has a unique solution. Define

γ ≡ β(1 − Fθ(r)),

γ ≡ β(1 − Fθ(r)).

The solution to Equation 2.10 is unique and solves for a θ̃ ∈ Θ if and only if γ ≤ γ ≤ γ.

Proof of Proposition 5 (i) Let γ ≤ γ ≤ γ. For θ < θ̃ the equilibrium strategy is
given by Equation (2.8), which is separating. Note that the relevant separating strat-
egy is defined with respect to m as users are unaware of ξ(θ) and ignore p as a sig-
nal. That is, m ̸= m′ for θ ̸= θ′. Fixing p, incentive compatibility is fulfilled as
{p, m} = arg max π(θ, m, p), i.e., m is chosen to fulfill the first-order condition in Equation
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2.8:

β[1 − Fθ(r(m, p))] = γ.

Recall that users also believe in the message and the state conveyed by the network size
off the equilibrium path. As the equilibrium outcome uniquely maximizes the platform’s
profit in each state, there exists no incentive to deviate from the equilibrium.

For θ > θ̃, types choose m = θ, resulting in pooling on the highest available message.
These types have no incentive to deviate off-path. First, note that types cannot deviate
upward in the message space: they would prefer to send a message above θ, but the type
space is bounded above by θ, making such deviations infeasible. Second, consider off-path
deviations in fake profiles for given m = θ. Since users also believe in m off-path, demand
cannot exceed n(θ, θ, p) after entry. Therefore, deviating in the fake profiles does not
attract additional users and is only costly. Lastly, consider deviations in the price. Given
that demand is n(θ, θ, p), and that price p is optimally chosen by the platform conditional
on the message m = θ, there is no profitable deviation in price either. Any deviation
would reduce profits.

(ii) Let γ < θ, then for the lowest type it holds that

β(1 − Fθ(r)) > γ, (2.34)

which implies that the lowest type sets m(θ) = θ. Since the left-hand side of the above
equation is increasing in type, all types larger than the lowest type set m(θ) = θ as well.
There exists no incentive to deviate as prices are chosen optimally given message m.

(iii) Let γ > γ, then for the highest type it holds that

β(1 − Fθ(r)) < γ, (2.35)

which implies that the highest type sets m(θ) = θ. Since the left-hand side is increasing
in type, all types smaller than the highest type set m(θ) = θ as well. There exists no
incentive to deviate as prices are equal to the full information prices.

Proof Proposition 6 The platform maximizes its profit

max
p,ξ

(p − c)n(θ, θ, p) − γξ,

subject to incentive compatibility

π(θ, θ, p(θ)) ≥ π(θ, θ′, p(θ′)).
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Additionally, the platform’s equilibrium demand is bounded above by the demand of users
that enter: n(θ, µ1, p) ≥ n(θ, µ2, p).

First, suppose that the government bans fake profiles, i.e., ξ = 0. I will characterize
the equilibrium outcome and show that if (i) the platform needs to label fake profiles, or
(ii) must mandatorily disclose fake profiles, or (iii) Condition 1 is violated, this leads to
the same equilibrium outcome.

Let ξ = 0. By Lemma 2, the unique solution to the first-order condition in Equation
2.11 is pF I(θ). Suppose that the platform randomizes over messages in equilibrium.

Now, fix the equilibrium strategy pF I(θ); this is separating as ∂pF I(θ)
∂θ

> 0 if f 1,θ(rF I) <

0, and it is differentiable. To prove that this construction is a separating equilibrium, it
must be shown that incentive compatibility is satisfied. As fake profiles are banned, the
information structure is I = [0, 1]; that is, users observe the true network size. This
implies that given separating beliefs µ1(pF I(θ)) = θ in the first period, after observing
network size n′ in the second period, users hold beliefs µ2(·) according to

µ2(·) =
{︂
θ′ ∈ Θ|n(θ′, θ, pF I(θ)) = n′

}︂
.

The equation solves for a unique θ′, as sophisticated users can predict the cutoff rc from
(µ1 = θ, pF I(θ). Due to the first-order stochastic dominance of Fθ′(r) with respect to the
true θ′, for a given r = rc, there exists only one θ′ that solves the equation.

The incentive compatibility constraints are thus

π(θ, θ, pF I(θ)) ≥ π(θ, θ, pF I(θ′)). (2.36)

By Lemma 2, pF I(θ) uniquely maximizes the profit of θ and thus, the inequality is always
satisfied. Similarly, for any out-of-equilibrium beliefs satisfying the equilibrium refine-
ment, there exists no profitable deviation for any type. Similarly to the logic above, for
a given deviation p′ and out-of-equilibrium beliefs µ′, users can predict r′ such that they
perfectly know the true state θ in the second period. Therefore, deviating from the full
information price is never profitable.

Now, consider cases (i) to (iii). In case (i), the information structure is I = {[0, 1],R+},
i.e. users can perfectly identify fake profiles. Setting pF I(θ) as separating strategy implies
that for any given amount of fake profiles, the incentive constraints are as in Equation
2.36. Since creating fake profiles is costly and the platform receives no benefit from doing
so, it chooses ξ = 0.

In case (ii), the platform must mandatorily disclose its use of fake profiles. The
equilibrium outcome with fake profiles is given by Theorem 3. The resulting profits, for
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given price and fake profile strategy ρ(τ) = (p, ξ), are

(p − c)n(θ, θ, p) − γξ,

for p ̸= pF I(θ) for θ ∈ Θ \ {θ} and ξ ≥ 0. This implies that profits are always smaller
than under full information. Hence, disclosing ξ = 0 and setting full information prices
dominates disclosing ξ > 0.

In case (iii), Condition 1 is violated. Then, there exists a separating equilibrium in
which the platform sets the full information prices and zero fake profiles. Recall that
the information structure is I = {[0, 1] + R+}. The separating equilibrium with full
information prices and zero fake profiles is incentive compatible if

(pF I(θ) − c)n(θ, θ, pF I(θ)) ≥ (pF I(θ′) − c)n(θ, θ′, pF I(θ′)) − γξ′, (2.37)

where ξ′ = n(θ, θ′, pF I(θ′)) − n(θ, θ, pF I(θ)). Since Condition 1 is violated, γ is such
that type θ is not willing to marginally or discretely increase ξ, thereby satisfying Equa-
tion 2.37. If ξ = 0, the incentive constraint reduces to Equation 2.36, which is again
satisfied.
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3.1 Introduction

Manufacturers who secretly start an illegal cartel must increase their wholesale prices for
initially often unsuspecting downstream retailers. These retailers may, however, refuse
to accept higher prices for the fear of being outcompeted by fellow downstream firms
that (continue to) receive better offers. There is evidence from cartel cases in which
manufacturers have failed to achieve a retail price increase without explicit communication
to their retailers. For example, in the German coffee cartel, the coffee roasters were only
able to sustain higher wholesale prices after coordinating a retail price increase with their
retailers (Holler and Rickert, 2022). Manufacturers coordinated prices with retailers in
cartels involving Anheuser Busch (beer), Haribo (gummi bears), Ritter (chocolate), and
Melitta (coffee). The same issue of convincing retailers to accept higher wholesale prices
appears to be the underlying problem in a number of so-called hub-and-spoke cartels.1

Although this obstacle to collusion has been widely discussed and documented in practice,
it is hitherto unmodelled.

Conceptually, we argue that with strategic uncertainty of retailers, in the sense that, if
retailers are unaware or uncertain about manufacturer collusion within a secret-contracting
setting, the simple Nash-equilibrium logic is inadequate to study the initial formation of
manufacturer collusion.2 According to this logic, retailers know the manufacturers’ strate-
gies even off the equilibrium path, which is why retailers can perfectly predict whether
manufacturers collude. We suggest that potential strategic misinterpretations and mis-
understandings are important for the feasibility of collusion in vertically related markets.

In collusion models, the number of equilibria is usually infinite, creating scope for
coordination problems. It is intuitive in the presence of competitive prices and low profits
that manufacturers attempt to replace competition with collusion. To formalize this, we
express retailers’ incorrect expectations by allowing for potentially incorrect beliefs off
the equilibrium path. In contrast to a Nash equilibrium in which downstream retailers
anticipate the specific collusive strategy, retailers may incorrectly believe that collusion is
unlikely or even infeasible. This is important not only when starting to collude, but also
for the problem of opportunism that even a monopolist faces. For instance, if retailers are
convinced of collusion, manufacturers may also exploit such beliefs. The equilibrium con-
cept of weak Perfect Bayesian Equilibrium provides sufficient freedom off the equilibrium
path to model beliefs that are not only shaped by the strategies, but also by exogenous
events, such as the experience of a firm in a different market. To capture the problem of

1See, for example, Harrington (2018) for a description of the cheese cartel in the UK.
2Strategic uncertainty and collusion have been analyzed by Blume and Heidhues (2008); however,

they consider strategic uncertainty among cartel members only. Instead, to capture the many settings
described below in which retailers did not suspect the cartel’s existence, we focus on strategic mistakes
or uncertainty by retailers.

https://www.bundeskartellamt.de/SharedDocs/Entscheidung/EN/Fallberichte/Kartellverbot/2016/B10-20-15.pdf?__blob=publicationFile&v=3
https://www.bundeskartellamt.de/SharedDocs/Entscheidung/EN/Fallberichte/Kartellverbot/2017/B10-40-14.pdf;jsessionid=0BE60F553D90E51AAA51E3747B303450.2_cid362?__blob=publicationFile&v=2
https://www.bundeskartellamt.de/SharedDocs/Entscheidung/EN/Fallberichte/Kartellverbot/2015/B10-41-14.pdf?__blob=publicationFile&v=2
https://www.bundeskartellamt.de/SharedDocs/Entscheidung/EN/Fallberichte/Kartellverbot/2016/B10-50-14.pdf?__blob=publicationFile&v=2
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the initial formation of collusion we characterize the collusive equilibrium and ask under
which conditions it can be reached.

Formally, we analyze an infinitely repeated pricing game that features private con-
tracting within each of two exclusive manufacturer-retailer pairs. We focus on manufac-
turer collusion and retailers who maximize short-term profits. The equilibrium concept of
(weak) perfect Bayesian equilibria requires that retailers’ beliefs are correct on the equilib-
rium path. Following a deviation, however, the market outcome depends on the retailers’
responses. Because these responses are shaped by the retailers’ beliefs, it is useful to con-
template which beliefs retailers hold and act upon. We study how retailers’ beliefs may
react dynamically to the actions observed in previous periods. In our model, within-period
passive beliefs capture that retailers view a deviation by one manufacturer as independent
from the other manufacturer’s behavior. Passive beliefs are also prominently considered
in the literature on private contracts in one-shot games (see, for example, Segal, 1999 and
Rey and Vergé, 2004).

In our analysis, we first consider beliefs that do not change in past behavior. For these
beliefs, we find that manufacturers employing efficient non-linear tariffs and grim-trigger
strategies are incapable of sustaining any price above the competitive price. Hence, such
non-reactive beliefs are self-fulfilling, rendering self-sustaining collusion infeasible. Two
forces are driving this result. First, a colluding manufacturer cannot commit that the
other manufacturer will offer the same contract, such that its retailer may fear that the
rival receives a better offer. Therefore, in contrast to a monopolist, it is not the lack of
own commitment that drives the result, but the inability to credibly commit in the name
of the other manufacturer. Second, in line with the above cited evidence from various
collusion cases, the retailer lacks the (equilibrium) knowledge that collusion occurs. This
effect is novel and practically important, but conceptually difficult to capture.

We then turn to beliefs that adapt to observed past behavior of the manufacturers.
First, we consider beliefs that (correctly) anticipate the manufacturers’ trigger strategies.
The retailers thus implicitly understand not only that manufacturers collude, but also how
they collude. For such beliefs that capture perfect anticipation of the collusive behavior,
collusion at industry-profit-maximizing prices is feasible and may be stable with respect to
unilateral deviations, contrasting the result with non-reactive beliefs. Note that there are
indeed cases in which upstream firms were apparently able to establish collusion without
having to resort to communication with downstream firms.3 At the same time, however,
collusion may not be opportunism-proof because the manufacturers may have a joint

3A number of cartels have been detected in the automotive industry, where suppliers coordinated
on high prices at the expense of carmakers and eventually final consumers. The cases involved rolling
bearings (Frankfurter Allgemeine Zeitung, “Schaeffler has to pay a cartel fine of 370 million euros”,
03/19/2014), safety belts, airbags, and steering wheels (Tagesschau, “Millions in fines against auto sup-
pliers”, 03/05/2019), and doors and electric window lifts (European Commission, “Antitrust: Commis-
sion fines car parts suppliers of € 18 million in cartel settlement”, 09/29/2020); last accessed 1/31/2025.
Recently, authorities in several European countries have started an investigation into the market for fra-

https://www.faz.net/aktuell/wirtschaft/unternehmen/autozulieferer-schaeffler-muss-370-millionen-euro-kartellstrafe-zahlen-12853682.html
https://www.tagesschau.de/wirtschaft/eu-autozulieferer-101.html
https://www.tagesschau.de/wirtschaft/eu-autozulieferer-101.html
https://ec.europa.eu/commission/presscorner/detail/de/ip_20_1774
https://ec.europa.eu/commission/presscorner/detail/de/ip_20_1774
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incentive to lower prices, similarly to the monopolist in Hart et al. (1990). We show that
the opportunism condition is more restrictive than the stability condition.

Opportunism-proofness relates to the concept of renegotiation-proofness introduced
by Farrell and Maskin (1989) in the sense that opportunism-proofness is a necessary con-
dition for renegotiation-proofness. We apply their concept to the coalition of colluding
manufacturers and define opportunism in this context as a joint deviation from the col-
lusive agreement. This reflects that manufacturers may want to renegotiate the collusive
wholesale price if a joint deviation is profitable for given actions of the retailers. More-
over, to ensure that manufacturers do not want to renegotiate the wholesale price during
the punishment phase, we additionally consider a condition on credible punishment. If
both conditions on opportunism-proofness and credible punishment are met, the collusive
equilibrium is renegotiation-proof.

Collusion with trigger strategies usually is not renegotiation-proof (see, for example,
Bernheim and Ray, 1989 and Farrell and Maskin, 1989): firms have an incentive to jointly
deviate in the punishment phases by renegotiating higher prices, which undermines the
credibility of the necessary threat to punish. Although a few solutions for certain set-
tings are known, such as asymmetric punishment, the problem of renegotiation appears
to be simply ignored in the applied literature.4 We find that if the colluding firms sell
via retailers using private contracts, renegotiation-proof equilibria with the usual sym-
metric punishment exist. If retailers fully anticipate the collusive strategy, they expect
a punishment phase once a manufacturer deviates by making an out-of-equilibrium offer.
This expectation of punishment can render punishment credible because retailers are not
willing to accept the original collusive contracts during the punishment phase. Hence,
if the stricter opportunism-proofness condition holds, with beliefs that anticipate a col-
lusive strategy, collusion can become a renegotiation-proof equilibrium of the game for
sufficiently patient manufacturers.

The case descriptions mentioned in the first paragraph reveal that manufacturers oc-
casionally struggle to establish collusion because retailers do not accept the increased
wholesale prices. This raises the question under which condition retailers’ responses al-
low for the formation of collusion. We formally define the formability of collusion that
requires the existence of a potential path from a non-collusive history to collusion. For
example, with beliefs that anticipate collusion with grim-trigger strategies, retailers’ re-
sponses make collusion impossible after observing a single period of competition. Hence,

grances and fragrance ingredients involving the world’s largest manufacturers. See, for example, Tagess-
chau, “DAX group Symrise under suspicion of collusion”, 03/08/2023; last accessed 1/31/2025.

4An exception is McCutcheon (1997). We differ from McCutcheon (1997) who builds on the model
of costly renegotiation proposed by Blume (1994). By contrast, following Farrell and Maskin (1989)
we assume that renegotiation is costless and establish that the collusive equilibrium can nevertheless be
renegotiation-proof when considering renegotiation between the collusive players.

https://www.tagesschau.de/wirtschaft/unternehmen/symrise-kartellverdacht-duft-aromenhersteller-101.html
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pure grim-trigger beliefs and also history-independent beliefs do not support the formation
of collusion.

We introduce an adaptive belief, whereby retailers expect collusion or competition
depending on the past behavior of the manufacturers. These intuitive beliefs can describe
settings in which players cannot perfectly anticipate the actions of other players in parts
of the game but are able to learn and adapt to the equilibrium. We parameterize the
adaption speed that specifies how fast a retailer that believes in competitive prices but
receives collusive wholesale price offers switches to believing in collusive prices. The
adaption speed may range from a single period to many periods. We find that collusion
can be formable with these adaptive beliefs, but such adaptive beliefs perform poorly
in the punishment phase in the sense that punishment is not renegotiation-proof. We
find that a faster speed of adaption makes collusion easier to form but harder to sustain:
collusion becomes less opportunism-proof.

In summary, our key contributions are as follows. First, from an application point
of view, we show that, in a vertically related structure, manufacturer collusion may be
difficult to establish. We even find that, for certain retailer beliefs and supply contracts,
collusion cannot be enforced at all. Also, we demonstrate that the opportunism problem,
which is well established in the monopoly context, has rich implications for the theory of
cartel stability and formation because it may occur during both collusive and punishment
periods. Furthermore, starting to collude can be complicated because retailers may not
be willing to accept the new collusive contract. Starting to collude is in various instances
more difficult than sustaining collusion. Second, from a conceptual point of view, we go
beyond the stability condition, which is the main focus of the analysis in many theories
on collusion, and model other factors that may hinder collusion.

The remainder of the article is structured as follows. Section 3.2 relates our model
to the relevant literature. We set up the model in Section 3.3 and subsequently analyze
beliefs that are independent of the history of the game in Section 3.4.1. In Section 3.4.2,
we study trigger beliefs and adaptive beliefs. We review symmetric beliefs in Section
3.5.1 and analyze linear wholesale prices in Section 3.5.2. We provide a competition
policy discussion in Section 3.6, where we relate our theory to business practices which
manufacturers may use to deal with the problem of formation and opportunism. These
practices include communicating non-binding price increase announcements, resale price
maintenance, vertical integration, communication between retailers, downsizing of packs,
and buyback policies. Section 3.7 concludes.
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3.2 Related Literature

Our paper contributes to four aspects that have been analyzed in the literature: (i) man-
ufacturer collusion, (ii) a monopolist’s opportunism problem, (iii) downstream retailers’
types of beliefs, and (iv) cartel formation.

Manufacturer collusion. Nocke and White (2007) and Normann (2009) analyze tacit
collusion among manufacturers in vertical relationships but, in contrast to us, focus on
whether vertical integration makes tacit collusion easier to sustain. Both articles consider
perfect Bertrand competition among manufactures and compare an industry with no
integration to one in which one pair of firms is vertically integrated. In Nocke and White
(2007), manufacturers compete in two-part tariffs. The authors show that it is easier
for manufacturers to sustain collusion in a scenario with vertical integration. Normann
(2009) shows that this finding carries over to a situation in which manufacturers set
linear prices, even though double marginalization leads to different collusive and deviation
profits. Piccolo and Miklós-Thal (2012) find similar results for the case in which retailers
have full bargaining power. Under public contracts, Schinkel et al. (2008) show that,
when manufacturers have full bargaining power but need to make sure that retailers
do not sue for private damages, upstream collusion requires low wholesale prices and
possibly negative franchise fees. Piccolo and Reisinger (2011) analyze the impact of
exclusive territories granted to retailers on the feasibility of manufacturer collusion. Under
observable contracts, establishing exclusive territories has two opposing effects on collusive
stability. Exclusive territories soften punishment but they also reduce deviation profits.
The second effect is due to the fact that, when a manufacturer deviates, retailers of
competing products adjust their prices, whereas retailers of the same product do not.
Because the effect on deviation tends to dominate, exclusive territories tend to facilitate
tacit collusion.

Our contribution to this literature is twofold: First, we study the opportunism prob-
lem that colluding manufacturers face with secret contracting. Second, we demonstrate
the relevance of retailers’ behavior under strategic uncertainty for establishing and main-
taining collusion.5

Opportunism problem. We relate to the classic opportunism problem of a monop-
olist in a vertical structure with secret contracting and two-part tariffs (Hart et al., 1990;
O’Brien and Shaffer, 1992; McAfee and Schwartz, 1994) as colluding manufacturers are

5The literature also contains explanations of how resale price maintenance (RPM) can facilitate man-
ufacturer collusion but abstracts from the relevance of retailer beliefs. Jullien and Rey (2007) study
how (RPM) affects collusion when only the retailers observe local shocks on demand. They assume that
colluding manufacturers reveal all wholesale prices to all retailers. Hunold and Muthers (2020) show that,
absent any uncertainty and asymmetric information, RPM can still facilitate manufacturer collusion when
there is retail bargaining power. They focus on subgame perfect Nash equilibria.
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similar to a monopolist in that they are competing with themselves when making coor-
dinated offers to different retailers. In such a scenario, the upstream firm that deals with
multiple competing downstream firms through bilateral contracts may – as discussed
further below – encounter the following problem: The upstream firm is interested in
maintaining high prices and profits but it cannot commit to refraining from opportunistic
moves. Indeed, the upstream firm has an incentive to increase bilateral surplus with one
downstream firm, which is anticipated by the other downstream firm(s). The existence
of this opportunism problem has been evoked as an explanation for vertical mergers and
various vertical restraints as measures aimed at restoring the upstream firm’s market
power (O’Brien and Shaffer, 1992; McAfee and Schwartz, 1994; Rey and Vergé, 2004).
The restraints include exclusive dealing, non-discrimination clauses, and industry-wide
RPM. We also relate to Gaudin (2019) who shows that, in the framework of Hart et al.
(1990), linear contracting can lead to higher retail prices absent collusion as well. Do and
Miklós-Thal (2021) explore shortcomings of the seminal papers by considering a version
of sequential (re)contracting between upstream and downstream firms. The opportunism
problem that we study in detail has been neglected in the collusion literature so far and
we establish that it has important consequences. We complement the literature by in-
troducing an opportunism-proofness condition that is related to concept of renegotiation
proofness by Farrell and Maskin (1989).

Beliefs. The literature on secret contracting between manufacturers and retailers, which
dates back to Hart et al. (1990), McAfee and Schwartz (1994) and Segal (1999), empha-
sizes the relevance of the retailers’ beliefs. The literature mostly focuses on passive,
symmetric, or wary beliefs in static settings. Whereas passive beliefs suppose that the
agents treat unexpected offers as mistakes, symmetric beliefs could correspond to a rule of
thumb, where agents conjecture that identical principals make identical offers (Pagnozzi
and Piccolo, 2011). Wary beliefs – according to which a retailer anticipate that rivals get
the offer that maximize the manufacturer’s profits – are often used when passive beliefs
are implausible or induce non-existence of equilibria (Rey and Vergé, 2004; Rey and Ti-
role, 2007; Miklós-Thal and Shaffer, 2016). Empirical evidence on passive and symmetric
beliefs was tested by Zhang (2021) and Martin et al. (2001) in experiments. Moreover,
Aoyagi et al. (2024) study beliefs in finitely and infinitely repeated games experimentally
and find that the same history of play can lead to different beliefs, and the same belief can
lead to different action choices. We contribute to this literature by providing an in-depth
analysis of how retailers’ beliefs affect manufacturer collusion in a dynamic setting with
secret contracting. In our analysis, we show how the retailers’ contract acceptance deci-
sions change depending on their perception of the collusive strategy ranging from fully
anticipating the collusive (trigger-) strategies to not expecting any collusion.
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In repeated games, the notion of passive beliefs differs across papers as the exact
notion from static settings cannot be applied. Within this literature, our paper is most
closely related to Piccolo and Reisinger (2011), Gilo and Yehezkel (2020), and Liu and
Thomes (2020). In an extension, Piccolo and Reisinger (2011) consider secret contacting
to investigate strategic delegation in a model with colluding manufacturers. The authors
consider a perfect Bayesian equilibrium with passive beliefs. Their use of passive beliefs
requires that those are correct on and off the equilibrium path. Similar to their approach,
Liu and Thomes (2020) use weak perfect Bayesian equilibrium and consider passive beliefs
as well as symmetric beliefs. They do not define passive beliefs explicitly but employ
them in the sense that out-of-equilibrium offers do not change the expectation about
the other manufacturer (in deviation periods). In punishment periods, they assume that
retailers understand that there is punishment going on, such that the outcome is the
competitive outcome of the stage game. Thereby, they implicitly assume that the beliefs
of retailers are correct in the punishment period, which is the case if retailers anticipate
the complete strategy of the manufacturers. That is, their definition is equivalent to a
definition of passive beliefs whereby retailer beliefs are consistent with the strategy profile
of the manufacturers in any subgame.

This consistency does not follow from the definition of weak PBE, which is silent on
beliefs in nodes that are not reached on the equilibrium path with positive probability.
It presumes that retailers have a correct expectation even in subgames that they never
observe, given the strategy of the manufacturers, and thus cannot have any experience
with. The beliefs thus rely on information that retailers cannot obtain on the equilibrium
path. In addition, in this game, a similar equilibrium path can be sustained by many
different manufacturer strategies that imply different behaviors off the equilibrium path.
Thus, it is also theoretically impossible for retailers to predict the off-equilibrium behavior
with certainty. In this context, we consider different beliefs explicitly as they correspond
to different understandings about how the market works.

Gilo and Yehezkel (2020) study secret contracts and vertical collusion involving retail-
ers and a single manufacturer. Their approach mirrors ours in the sense that they analyze
the role of the manufacturer in retailer collusion, whereas we look at the retailers’ role in
manufacturer collusion. The major difference is that we abstract from retailer collusion by
assuming short-lived retailers, whereas repeated retailer interaction is at the heart of their
analysis. Gilo and Yehezkel consider symmetric pure-strategy, perfect Bayesian equilibria.
Whereas the asymmetry in information about the contracts is similar, the timing differs
from ours because the retailers in their model are those who offer contracts. They use the
concept of “rational beliefs,” which they define as players anticipating the rational action
of others in off-equilibrium situations. They argue that this implies that manufacturers
and retailers both understand whether a period is collusive or not after a deviation.
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Cartel formation. The literature on cartel membership formation has focused on a
variety of different aspects. In this literature, the question of how to initiate cartels
typically focuses, among other things, on contracts (Selten, 1973; d’Aspremont et al.,
1983), on stochastic opportunities to form a cartel (Harrington and Chang, 2009), on
the heterogeneity with regard to capacities and umbrella pricing (Bos and Harrington,
2010), on signals and beliefs of producers (Harrington and Zhao, 2012; Harrington, 2017),
on antitrust as a facilitating factor (Andersson and Wengström, 2007; Bos et al., 2013,
2015), on quality differentiation (Bos et al., 2020), and the ability to overcome strategic
uncertainty absent communication (Blume and Heidhues, 2008). Selten (1973) analyzes
the case of quantity competition and assumes that cartels can be enforced via contracts,
and that a cartel acts as a Stackelberg leader. He shows that a cartel is stable in the
sense that outsiders do not want to be part of the cartel, and insiders cannot profitably
leave the cartel as long as the number of cartel members is relatively small. d’Aspremont
et al. (1983) obtain a similar result for the case of price leadership.

Harrington and Chang (2009) consider a set of heterogeneous industries in which
stochastic opportunities to form a cartel arise to explain the birth and death of cartels and
to inform antitrust authorities about the extent of cartels that have not been discovered.
Bos and Harrington (2010) endogenize the composition of a cartel in an industry in which
heterogeneous firms differ in their capacities. They show that non-all-inclusive cartels
set umbrella prices, and that mergers involving moderate-sized firms may result in the
most severe coordinated effects. Harrington and Zhao (2012) analyze whether different
types of players (patient and impatient) manage to cooperate via grim-trigger strategies
when players signal and coordinate through their actions. The authors show that there is
always a positive chance of cooperation, but cooperation may fail altogether. Moreover,
the longer cooperation does not occur, the less likely it is to occur in the next period.
Harrington (2017) focuses on mutual beliefs to coordinate prices. In the context of price
leadership, firms are assumed to commonly believe that price increases will be at least
matched. The firms, however, lack any shared understanding about who will lead, when
they will, and at what prices. Sufficient conditions are derived, which ensure that supra-
competitive prices emerge, but price is bounded below the maximal equilibrium price.

In contrast to the literature on cartel membership formation, we address the question
whether firms can transit to a collusive equilibrium once they have reached – possibly
explicitly – a common understanding to collude in a currently non-collusive industry. We
thereby focus on the process of establishing collusive outcomes that firms need to go
through until they may reach a stable collusive equilibrium. At the core of our analysis
is the response of retailers in the transition process.
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3.3 Model

We study manufacturer collusion in an infinitely repeated stage game with time t =
0, . . . , ∞.6 There are two symmetric manufacturers, MA and MB, that compete by selling
horizontally differentiated products to their exclusive retailers RA and RB. Each manu-
facturer makes an exclusive and secret two-part tariff offer with a unit wholesale price wi

and a franchise fee Fi to its retailer, with i ∈ {A, B}.7. In general, with more than two
manufacturers, retailers may interact with only a subset of the manufacturers, yielding a
similar setting as the one we study with two pairs of exclusive manufacturers and retailers.

3.3.1 Set-Up

Timing and information. In each period, the following stage game unfolds:

1. Each manufacturer makes a private contract offer to its retailer.

2. Each retailer decides whether to accept its offer. Post contract acceptance, the fixed
fees are sunk.

3. The retailers simultaneously and non-cooperatively set their retail prices pi, i ∈
{A, B}.

The manufacturers’ contract offers and the retailers’ contract acceptance decisions are
secret. Hence, a retailer cannot observe the contract offered to the rival. Moreover, when
competing in the downstream market, the retailers are unable to observe each others’
input prices and, thus, are forming beliefs about their rival’s contract.

At the end of each period, all actions are revealed to all players. All players thus
know the complete history of the game at the end of a period. We focus on the secret
contracting problem between manufacturers and retailers and avoid that manufacturer
collusion is directly hampered by the long-term unobservability of manufacturers’ actions
to each other.8

The supergame is a game of complete information but unobservable actions. The
manufacturers are long-lived and discount next-period profits with the common discount
factor δ with 0 < δ < 1. The retailers have a discount factor of zero, such that they do
not take future profits into account. This assumption ensures that the retailers cannot

6We use the terms manufacturer for upstream firms and retailer for downstream firms. Our arguments
naturally extend to any stage in a supply chain.

7An extension to retailers serving the products of both manufacturers as common agents is interesting
but not straightforward. In this case, a retailer would receive offers of both manufacturers but would
remain uninformed about the offers that other retailers receive. This may lead to a variant of the classic
opportunism problem (Hart et al., 1990) and to non-existence of equilibria (Rey and Vergé, 2010)

8Note that we do not consider a scenario in which the (colluding) manufacturers try to get retailers on
board, that is, there is no communication between manufacturers and retailers on the issue of collusion.
This appears to be in line with the cartel cases mentioned in the Introduction.
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collude. One can similarly assume that the retailers are short-lived but one should keep
in mind that the retailers do see the history of the game.9

Assumptions on costs, demand, and profits. All (fundamental) costs are zero. We
assume that the outside option (opportunity cost) of each retailer is equal to zero. We
consider general demand functions that fulfill the standard properties summarized in

Assumption 5. Demand Di(pi, p−i) (with i ∈ {A, B})

• decreases in the own price pi (∂Di(pi, p−i)/∂pi < 0),

– increases in the other product’s price p−i (∂Di(pi, p−i)/∂p−i > 0), and

– the own-price effect dominates the cross-price effect
(|∂Di(pi, p−i)/∂pi| > ∂Di(pi, p−i)/∂p−i).

To ensure that there exists a unique and stable equilibrium in the downstream market,
we assume that the Hessian matrix of Di(pi, p−i) has a negative and dominant main
diagonal. This results in well-behaved retail profits that are twice differentiable and
concave. Note that this also implies that the retailers’ reactions behave normally, such
that ∂pi (wit, p−i) /∂wit > 0 and, consequently, ∂Di (pi, p−i) /∂pi < 0 hold.10

Our assumptions on retailer profits mostly carry over to manufacturer profits because
manufacturers internalize retailer profits using two-part tariffs. In some cases, however,
manufacturers’ true actions and retailers’ beliefs differ in such a way off the equilibrium
path that the behavior of the manufacturers’ profit is not identical to that of the retailers’
profit. In those cases, we analogously assume that manufacturers’ profits are well behaved,
such that optimal behavior can be derived from the respective first-order conditions. We
comment on these cases below.

Equilibrium concept. We consider (pure-strategy) weak perfect Bayesian equilibria
(weak PBE) and focus on symmetric equilibria.11 We use the formal definition of a weak
perfect Bayesian equilibrium from Mas-Colell et al. (1995): A profile of strategies and a
system of beliefs is a weak PBE in extensive form games if it has the following properties:

1. The strategy profile is sequentially rational for the given belief system (each player
maximizes expected utility at each node).

9Related literature assumes that retailers are short-lived or only live for one period. See, for example,
Piccolo and Reisinger, 2011 and Jullien and Rey, 2007. Such an assumption rules out hub-and-spoke
collusion as well as vertical collusion Gilo and Yehezkel (2020), where retailers are a part of the collusion.

10This can be shown by applying the implicit function theorem on the retailer’s first-order condition
for optimal pricing.

11The game defined includes two groups of players, manufacturers and retailers. Within each group, the
players are symmetric. The equilibria we study are strongly symmetric in the sense that the (symmetric)
manufacturers use a common continuation strategy on and off the equilibrium path (Athey et al., 2004;
Jullien and Rey, 2007). The retailers play symmetric equilibrium actions in the downstream market.
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2. The system of beliefs is derived from the strategy profile through Bayes’ rule when-
ever possible.

This implies that the retailers’ beliefs are consistent with equilibrium strategies on the
equilibrium path. However, when observing an out-of-equilibrium offer, the second con-
dition does not apply as this information set is reached with zero probability, meaning
that Bayes’ rule does not restrict these beliefs. Throughout the analysis we focus on the
case that the manufacturers correctly anticipate the retailer beliefs.

We impose an additional condition of “no-signaling-what-you-don’t-know” for most of
the analysis.

Condition 1. The belief of retailer i (about its rival retailer −i) at the beginning of
period t + 1 depends only on the history up to date t (Ht), but not on the action of
manufacturer i at date t (“no-signaling-what-you-don’t-know”).

This condition captures the idea that the deviation of one manufacturer should not
signal (private) information about the other manufacturer. Hence, a retailer’s belief should
not change.12 Condition 1 has an intuitive interpretation in our game: A deviation of
one manufacturer should not change the retailer’s belief about the other manufacturer’s
contract offer. The condition, then, is equivalent to within-period passive beliefs.

We use weak PBE in conjunction with Condition 1 to be explicit about our equilib-
rium definition as there is a lack of clarity in the literature about the definition of perfect
Bayesian equilibrium (PBE). According to the definition in Fudenberg and Tirole (1991a),
our equilibrium would be considered a PBE. Other definitions of PBE, e.g., in González-
Díaz and Meléndez-Jiménez (2014), require subgame perfection, which we do not want
to generally impose. In our setting, subgame perfection would require that the retail-
ers correctly anticipate the manufacturers’ actions in information sets that are reached
with zero probability. We explicitly want to allow for retailers’ incorrect judgment in
these nodes. For instance, this allows retailers to misjudge which of the different trigger
strategies manufacturers employ if they feature the same equilibrium path but different
off-equilibrium punishment strategies.

12Condition 1 is derived from the definition of the PBE that Fudenberg and Tirole (1991a,b) provide.
This definition is suited for games of incomplete information with independent types. Because in our
game of complete information the private information of the retailers is generated by manufacturers’
actions, the concept can only be applied analogously. Similarly to Pagnozzi and Piccolo (2011), we adapt
condition B(iii) (“no-signaling-what-you-don’t-know”) on p. 332 in Fudenberg and Tirole (1991a) to
our game. Originally, the condition means that, in a signaling game, the actions of other players with
independent types have no effect on beliefs about a player’s type if this player acts the same. In our
setting, because retailers act simultaneously, one retailer cannot observe the other retailer’s action such
that the condition translates into: A retailer cannot infer anything about a rival’s current pricing from
the current action of its own manufacturer.

The condition is also in the spirit of sequential equilibrium, where (out-of equilibrium) beliefs are
naturally passive within a period because deviations are the result of a random mistake (“tremble”).
Note that we cannot apply sequential equilibrium because we have a continuous action space.
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Our game is reduced-form but reflects a game that could be richer, for instance, by
including a cheap-talk stage. If retailers consider it possible that manufacturers may com-
municate, manufacturers’ actions might be correlated when a deviation occurs. Given this
interpretation, Condition 1 does not naturally capture the spirit of sequential equilibrium
in this “extended game.”13

Each retailer forms a belief about the contract offer made to the rival and about
how the rival reacts to its contract offer when accepting the contract in the second stage.
Following Rey and Vergé (2004), we focus on retailers that form beliefs about the resulting
retail price of the rival, which is the payoff-relevant information that retailers are lacking.14

In our setting there is a unique mapping from the belief a retailer has about its rival’s
wholesale price to the expected retail price of the rival.15

3.3.2 Formability and Renegotiation-Proofness

We focus on the phenomenon of collusion among manufacturers and aim to address ad-
ditional issues beyond the standard stability and incentive compatibility problem. In
particular, we shed light on the possibility for manufacturers to form collusion, that is,
the transition from a competitive to a collusive market outcome. Moreover, we highlight
the robustness of collusion to the opportunity of manufacturers to renegotiate, both dur-
ing the collusive phase and after a deviation. Both issues are theoretically and empirically
appealing because collusion in real-world markets has various important aspects besides
the stability problem. To characterize whether the collusive equilibrium allows for rene-
gotiation or cartel formation, we define conditions that can be checked in a similar fashion
to the traditional stability condition.

Definitions. First, we characterize how manufacturers can overcome the coordination
problem by defining under which conditions collusion is formable in the sense that collu-
sion can be started and maintained. For example, suppose that manufacturers have been
competing for a large number of periods and want to start collusion with trigger strate-
gies. Formability addresses the question whether the system of retailers’ beliefs allows for
a transition path to a collusive equilibrium. We define a weak PBE as formable if there
is a transition path to a collusive equilibrium in the sense that, in this transition, each
player maximizes its expected utility under the belief system of the weak PBE. Thus,
formability is an additional property of an equilibrium that imposes a condition on the
system of beliefs.

13For instance, the symmetric beliefs we consider in Section 3.5.1 violate Condition 1 but capture the
idea that retailers may anticipate communication between manufacturers.

14See Section 3 in Rey and Vergé (2004).
15For any history Ht and Assumption 5, retailer expect a certain level of wholesale prices that results

in a unique expected price level at the rival of pe
it. We prove this in Proposition 1.
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Definition 1. (Formable) A collusive weak PBE C, consisting of a strategy profile and a
system of beliefs, is formable if there exists a (transition) strategy profile, such that for
the system of beliefs of C after an arbitrary history Ht0 :

1. In the transition phase starting in period t0 and lasting for x periods, with x < ∞,
until t0+x (exclusively), the strategy profile in the continuation game is sequentially
rational for the system of beliefs of C;

2. The collusive phase starts in period t0 + x. In that continuation game, the strategy
profile of C, adjusted with t0 + x as the first period, together with the system of
beliefs of C, is a weak PBE.

Note that beliefs in the transition phase can be incorrect, such that the strategy profile
and system of beliefs after the alternative history do not generally constitute a weak
PBE.16 The number of transition periods x can be long, such that our definition is not
restrictive with regard to the speed of formation.

Next, we define how the concept of renegotiation-proofness relates to our model.
Specifically, we rely on the notion of renegotiation-proofness by Farrell and Maskin (1989).
We adapt the concept by restricting renegotiation to manufacturers. Renegotiation takes
place implicitly in our model whenever manufacturers have a collective interest in revising
their agreement. Formally, we hold retailers’ beliefs and strategies constant when checking
that there is no other equilibrium that Pareto-dominates it. This assumption is in line
with other theories on renegotiation-proofness (see, for example, Bernheim et al., 1987
and Bernheim and Ray, 1989).17

Definition 2. A collusive weak PBE C, consisting of a strategy profile and a system of be-
liefs, is weakly renegotiation-proof if it features opportunism-proofness and renegotiation-
proof punishment:

1. (Opportunism-Proofness) A collusive equilibrium strategy for given beliefs (a weak
PBE) is said to be opportunism-proof if the manufacturers, on the equilibrium path,
do not benefit from jointly changing their contract offers.

2. (Renegotiation-Proof Punishment) A wPBE has the property of renegotiation-proof
punishment if there is no punishment period in which the manufacturers would
benefit if they jointly changed their contract offers.

16The definition, however, requires that the strategy profile of the continuation game starting with t0
is perception perfect, i.e., sequentially rational given the beliefs.

17Our approach is line with the original idea presented by Farrell and Maskin (1989) who consider
subgame perfect Nash equilibria (SPNE) in a collusive game and treat the buyers as non-strategic.
Similarly, renegotiation-proofness is usually applied to the parties of a relational contract only, in our case
the collusive agreement, e.g., Buehler and Gärtner (2013); Goldlücke and Kranz (2013). Alternatively,
one can understand our approach as applying the exact concept of Farrell and Maskin (1989) to the
reduced form SPNE taking retailers’ strategies and beliefs from the wPBE as fixed.
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The first condition excludes the scope for opportunistic manufacturer behavior during the
collusive phase. Because demand does not change over time, manufacturers have no incen-
tive to renegotiate the collusive price on the equilibrium path, but a coordinated one-shot
deviation (against their retailers) may be profitable. Without opportunism-proofness,
the implicit “collusive agreement” between the manufacturers is not renegotiation-proof.
Whereas opportunism-proofness considers renegotiation-proofness of the collusive strat-
egy on the collusive path, the criterion of renegotiation-proof punishment does so for
the punishment phase after deviations. Intuitively, the condition states whether man-
ufacturers want to negotiate the terms of the price war that follows after a unilateral
deviation. Together, opportunism-proofness and renegotiation-proof punishment ensure
weak renegotiation-proofness of the equilibrium analogously to the definition in Farrell
and Maskin (1989). Strong renegotiation-proofness requires that not only all the con-
tinuation game equilibria do not invite joint deviation, but also that there is no other
renegotiation-proof strategy profile that Pareto-dominates the candidate equilibrium of
the whole game.

Discussion. In a standard model of horizontal collusion, the usual stability condition
is necessary for collusion and also sufficient if the manufacturers can coordinate on the
collusive outcome through a “meeting of the minds.” If, however, colluding upstream firms
sell to competing downstream firms, stability is not sufficient. Retailers might not accept
the new contract offers with collusive prices, especially if the contract offers to downstream
rivals are secret. Our formation condition captures the feasibility of the manufacturers
to implement a collusive agreement vis-a-vis the downstream firms. For example, in the
coffee cartel, collusion among the coffee roasters turned out to be unsuccessful because
their retailers did not accept the collusive wholesale prices (Holler and Rickert, 2022).
Collusion only became successful after introducing resale price maintenance.

Furthermore, we consider renegotiation of the collusive strategy and the option to
renegotiate after a deviation. The collusive strategy is often viewed as all or nothing and
cannot be adjusted. We show that manufacturers might want to adjust their collusive
strategy (against their retailers) in a stable market environment, which we refer to as
opportunism. Additionally, we check whether manufacturers can and want to renegotiate
in the punishment phase after a deviation. As stated by Levenstein and Suslow (2006),
“one of the most clearly established stylized facts is that cartels form, endure for a pe-
riod, appear to break down, and then re-form again”. They report that cheating and
disagreement in cartels happens quite often but cartels frequently have multiple episodes
of cooperation. Hence, it might be that cartel members renegotiate during price wars to
return to the collusive outcome. As referenced in Levenstein and Suslow (2006), empiri-
cists are able to differentiate between bargaining price wars and price wars that are part
of a punishment strategy. We will show that collusion can be sustainable while not being
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renegotiation-proof and while being renegotiation-proof, explaining both kinds of price
wars.

3.4 Solution

3.4.1 History-Independent Beliefs

In this section, we consider retailer beliefs that are independent of the history of actions
in the game. Such beliefs arise naturally when the manufacturers’ equilibrium strategies
are stationary. For example, the competitive equilibrium in which both manufacturers
set the competitive wholesale prices in each period is consistent with retailers having a
constant and thus history-independent belief about wholesale prices. With these history-
independent beliefs, we show that collusion is infeasible.

Definition 3. (History-Independent Beliefs) The price expectation pe
−it of retailer i in

period t about the price of retailer −i is independent of the history of the actions in the
game up to period t − 1 and independent of the offer (wit, Fit) made by its supplier in
period t.

The proposed belief refinement above defines the retailers’ out-of-equilibrium beliefs
about the retail price of their competitor to be independent of the history. As discussed
before, the fact that beliefs are passive within a period follows from Condition 1. The
definition, however, does not impose a restriction on how the beliefs react to the past play
of actions.

We first solve for the equilibrium of the game that results when both manufacturers
maximize stage-game profits. In the last stage within each period, on the equilibrium
path, each retailer has accepted the contract, but the rival’s wholesale price remains secret.
Each retailer i faces the own wholesale price wit and holds a history-independent belief
pe

−it about the retail price of the rival. The retailers set the retail prices pit simultaneously.
Thus, the profit of retailer i is

πit

(︂
pit, pe

−it

)︂
= (pit − wit) Di

(︂
pit, pe

−it

)︂
− Fit.

Retailer i maximizes its profit with respect to pit. The first-order condition is

Di

(︂
pit, pe

−it

)︂
+ (pit − wit)

∂Di

(︂
pit, pe

−it

)︂
∂pit

= 0 (3.1)

and defines retailer i’s reaction function pi

(︂
wit, pe

−it

)︂
. Anticipating the pricing outcome

and resulting profits, each retailer decides whether to accept the wholesale tariff offered
by its manufacturer in the second stage. Under Assumption 1, there exists a unique
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symmetric Nash equilibrium in the downstream market for offers (wit, Fit) made by the
manufacturers given retailers accept the offers.

In the first stage, the manufacturers offer their wholesale tariffs. Under manufacturer
competition, each manufacturer i maximizes its profit, anticipating that its retailer sets
a price of pi

(︂
wit, pe

−it

)︂
:

max
wit,Fit

wit · Di

(︂
pi

(︂
wit, pe

−it

)︂
, p−i(w−it, pe

it)
)︂

+ Fit,

subject to the retailer’s participation constraint

(︂
pi
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wit, pe

−it

)︂
− wit

)︂
· Di

(︂
pi

(︂
wit, pe

−it

)︂
, pe

−it

)︂
− Fit ≥ 0. (3.2)

The profit is determined by two parts. The variable part consists of the units sold times
the unit wholesale price, and the fixed part consists of an up-front payment from the
retailer to the manufacturer. The maximum fixed payment cannot be larger than the
revenue that the retailer earns. This participation constraint binds in equilibrium.

Consider the one-shot game. In the one-shot equilibrium, the belief of the retailer
about the retail price of the rival coincides with the expectation of the manufacturer
about the retail prices. This implies p−i(w−it, pe

it) = pe
−it.

The optimality condition of the manufacturer problem implies that the only solution
has wit = 0. Denote the competitive wholesale price by wP and the resulting retail price
by pP = pi(0, pP ). We have the following result:

Lemma 1. With history-independent beliefs, in the equilibrium with competing manufac-
turers, the wholesale prices are equal to zero (wP = 0), resulting in a competitive retail
price level of pP .

The intuition behind the result is that, with selling the product at marginal costs of
zero, each manufacturer ensures that retailers maximize the joint profits of a manufacturer-
retailer pair, which can then be extracted via the fixed fee.

This history-independent benchmark defines the competitive level of wholesale prices
which is at wi = 0, the corresponding fixed fees, and the resulting retail prices. The
fixed fee is equal to the retailer’s profit, Fi = πi(pP , pP ), corresponding to a non-colluding
industry. In the next steps, we analyze the equilibrium of the repeated game if retailers
hold history-independent beliefs. To show that firms are unable to collude on a price
different from the competitive wholesale price of zero, we take the whole dynamic game
into account. Manufacturers may collude using any dynamic strategy (for example, grim-
trigger strategies). Each strategy, however, is a mapping from the previous history to an
action chosen in period t.
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Proposition 1. Suppose retailers hold history-independent beliefs. Then, there exists a
unique symmetric perfect Bayesian equilibrium in which the manufacturers set wholesale
prices equal to zero and extract all profits of retailers via the fixed fee. Collusion cannot
increase prices above the competitive level.

This impossibility result can be interpreted as showing that the beliefs that support the
competitive equilibrium cannot support a collusive equilibrium. Thus, for manufacturers
in a competitive industry striving to start collusion, their joint will is not sufficient to
increase prices above the competitive level. The strict impossibility result does not extend
to linear tariffs but depends on efficient contracts (See Section 3.5.2).18

The intuition for the result is that the punishment strategy that underlies any collusive
equilibrium becomes ineffective with these beliefs. Each manufacturer can ensure a profit
larger than the collusive profit level that only depends on its own actions and the belief of
its own retailer but is independent of the action of the other manufacturer. That payoffs
are independent of the other manufacturer’s action eliminates any credible punishment.
Punishment, however, is necessary for collusion and thus there is an incentive to deviate
from any supra-competitive price level.

Next we consider beliefs that are consistent with collusion. They are history-dependent
and meet Condition 1, which implies that they are within-period passive.

3.4.2 Belief Dynamics

Consider beliefs that depend on the history of the game. We focus on the history of
wholesale prices and disregard the history of retail prices, such that the retailers’ beliefs
cannot directly depend on the competing retailers’ past actions. Otherwise, such beliefs
could support retail collusion, which we want to abstract from.19 Thus, the relevant
history of the game in period t is Ht ≡ [(wA0, wB0) ; . . . ; (wAt−1, wBt−1)], that is, the set of
the pairs of wholesale prices that the manufacturers have set in all periods up to period
t − 1. More formally, for each retailer i, the belief is a function pe

−it(Ht).

Grim-Trigger Beliefs

We construct history-dependent beliefs that have a grim-trigger property. For this, con-
sider that manufacturers play grim-trigger strategies as described below.

18The classical opportunism problem can be mitigated under linear contract as shown by Gaudin
(2019), where the monopolist achieves supra-competitive (marginal) wholesale prices. In contrast, with
two-part tariffs, the monopolist sets the wholesale prices (w) equal to its marginal costs (McAfee and
Schwartz, 1994).

19Suppose that each retailer believes that the price of the competitor is the monopoly price unless
they have observed a different price in the past in which case they would believe that the price is the
competitive price. Such beliefs could support a collusive action profile even with otherwise history-
independent strategies.
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We focus on industry-profit-maximizing collusion, such that wC = wM .20 Any devi-
ation by one manufacturer causes the other manufacturer to set the punitive price wP

forever. Because we are solving for perfect Bayesian equilibria, the punishment with wP

must be individually rational. This implies that wP = 0 must hold in equilibrium, which
follows from the logic presented in the proof of Proposition 1: Otherwise, each manufac-
turer would have an incentive to deviate from a wP ̸= 0 in a punishment period in which
future beliefs and actions are fixed and unaffected by current actions. In punishment
periods, each manufacturer must thus maximize short-term profits.

Collusive strategy. We consider collusion at the prices that maximize the integrated
industry profit:

pM = max
pi

pi · Di (pi, p−i) + p−i · D−i (p−i, pi) , (3.3)

and define wM implicitly through pM = pi

(︂
wM , wM

)︂
. Denote the maximal industry profit

by

ΠM := pM · Di

(︂
pM , pM

)︂
+ pM · D−i

(︂
pM , pM

)︂
. (3.4)

The optimal collusive wholesale price wM and the respective belief about the retail price,
pM , are then determined by equation (3.3) as well. Thus, whenever the manufacturers
collude at the industry-profit-maximizing wholesale prices wM , each manufacturer earns
a profit of

ΠC := ΠM

2 .

The optimal collusive wholesale price maximizes the joint profit of the manufacturers
given that the retailers’ belief is identical to that price. The collusive profits are Pareto-
optimal for the manufacturers if there is no joint deviation that is more profitable (see
Definition 1). If weak renegotiation-proofness is fulfilled, then the equilibrium is also
strongly renegotiation-proof because the profit on the equilibrium path would be Pareto-
efficient for the colluding manufacturers.

Histories and beliefs. If manufacturers play grim-trigger strategies, their actions are
only conditional on two kinds of histories: the collusive history HC, where both manufac-
turers have only played wC , and the deviation histories HD (any history other than HC).
Define the grim-trigger strategy as follows: Manufacturers set the collusive wholesale price
wC in the first period. Then, in the tth period, if both manufacturers have set the collusive
price in each of the t − 1 previous periods (history HC), they set the collusive wholesale
price wC ; otherwise, after histories HD, manufacturers set a punishment price wP ̸= wC

20Qualitatively, our results do not rely on the assumption that manufacturers collude on the monopoly
price level. Collusion at the industry-profit maximizing level, however, facilitates renegotiation-proofness.
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forever. Grim-trigger beliefs match these strategies by assigning two different beliefs to
these histories. Grim-trigger beliefs pe

i (H) are thus history-dependent and differentiate
between the two histories HC and HD. Grim-trigger beliefs can be interpreted as the be-
liefs resulting from a subgame-perfect PBE with retailers fully anticipating manufacturers’
strategies in every subgame.

Definition 4. (Grim-trigger beliefs)

• In the first period, retailers believe that the rival sets a retail price of pC .

– As long as both manufacturers play wC , that is, the collusive history HC pre-
vails, each retailer believes that the other retailer sets pC in the current period.

– Once one manufacturer has deviated, the history is HD, and both retailers
believe that the other retailer sets the competitive price pP . This corresponds to
a situation in which both retailers have common knowledge that the wholesale
prices are wP = 0 in the current period.

Given the passive nature of beliefs in a period (Condition 1), the beliefs are not correct
in deviation periods. Neither a retailer that is offered the equilibrium contract updates
its belief, nor updates the retailer that receives a deviating offer.

Because a deviation does not occur on the equilibrium path, the beliefs are nevertheless
correct on the equilibrium path. Off the equilibrium path, the retailers’ beliefs anticipate
that manufacturers play grim-trigger strategies in that they also punish a deviation by
one manufacturer in period t in all future periods.

Equilibrium. To determine an equilibrium of the dynamic game, we must consider
deviations from the collusive strategy. In equilibrium, each manufacturer realizes per-
period profits of ΠC = ΠM/2. In a deviation period, both retailers believe that the
wholesale price is wC and anticipate that the other retailer sets pC . This results in a
belief pe

it := pi

(︂
wit, pC

)︂
. Suppose that manufacturer i maximizes its deviation profit in

period t in view of history HC. When there is a deviation, that is, wit ̸= wC holds, grim-
trigger beliefs imply that the level of wit has no impact on future beliefs. The deviation
profit is given by

wit · Di

(︂
pi

(︂
wit, pC

)︂
, pC

)︂
+
[︂
pi

(︂
wit, pC

)︂
− wit

]︂
· Di

(︂
pi

(︂
wit, pC

)︂
, pC

)︂
(3.5)

= pi

(︂
wit, pC

)︂
· Di

(︂
pi

(︂
wit, pC

)︂
, pC

)︂
.
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Maximizing with respect to wit yields the first-order condition

∂pi

(︂
wit, pC

)︂
∂wit

Di

(︂
pi

(︂
wit, pC

)︂
, pC

)︂
+

∂Di

(︂
pi

(︂
wit, pC

)︂
, pC

)︂
∂pi

∂pi

(︂
wit, pC

)︂
∂wit

pi(wit, pC) = 0

⇐⇒
∂pit

(︂
wit, pC

)︂
∂wit

∂Dit

(︂
pit

(︂
wit, pC

)︂
, pC

)︂
∂pit

wit =0.

(3.6)

The last step follows from the first-order condition of the retailers in equation (3.1).
Inserting the expression in the first line above yields the second line. Because the first
two factors in equation (3.6) are non-zero, the manufacturer optimally deviates to wD = 0.
This results in

ΠD := pi(0, pC) · Di

(︂
pi(0, pC), pC

)︂
.

After any deviation by a manufacturer, the beliefs revert to pe
−i = pP forever, that is, the

belief in the punishment period. This results in profits of

ΠP := pP · Di(pP , pP ), (3.7)

where pP = pit(0, pP ) is the competitive price.
Collusion is sustainable when no manufacturer wants to deviate from the grim-trigger

strategy. Using the one-shot deviation principle, the relevant incentive constraint for
stability is

ΠC

1 − δ
≥ ΠD + δΠP

1 − δ
. (3.8)

The left-hand side contains the present value on the equilibrium path and the right-
hand side the present value of a deviation. We can rewrite the incentive constraint for
manufacturer i as follows:

pC · Di(pC , pC)
(1 − δ) ≥ pi(0, pC) · Di

(︂
pi(0, pC), pC

)︂
+ δ

1 − δ

(︂
pP · Di(pP , pP )

)︂
. (3.9)

This inequality is equivalent to the incentive constraint for standard horizontal collusion
(when manufacturers and retailers are pairwise integrated), where the following order
holds: ΠD > ΠC = ΠM/2 > ΠP .

Let us check whether the equilibrium is opportunism-proof (see Definition 1). Jointly,
the manufacturers may have an incentive to reduce their wholesale prices for given beliefs.
Suppose HC is the history of the game, such that each retailer believes that its competitor
sets pC and anticipates to set pi

(︂
wit, pC

)︂
. First, we show that jointly deviating manufac-

turers set a wholesale price of wit = w−it < 0 to maximize spot profits. To see this, let us
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inspect the profit per manufacturer in the case of a joint deviation:

ΠJD :=1
2 max

wit,w−it
wit · Di

(︂
pi(wit, pC), p−i(w−it, pC)

)︂
+
[︂
pi(wit, pC) − wit

]︂
· Di

(︂
pi(wit, pC), pC

)︂
+w−it · D−i

(︂
p−i(w−it, pC), pi(wit, pC)

)︂
+
[︂
p−i(w−it, pC) − w−it

]︂
· D−i

(︂
p−i(w−it, pC), pC

)︂
.

We assume that this profit is quasi-concave, such that we can use first-order conditions.21

We rewrite the first-order conditions in equation (3.1) by applying symmetry. This is
possible because we assume that the manufacturer profits are well behaved in the sense
that the optimal joint action of the manufacturers is symmetric. This yields

⎡⎢⎢⎣Di

(︂
pi(w, pC), p−i(w, pC)

)︂
− Di

(︂
pi(w, pC), pC

)︂
⏞ ⏟⏟ ⏞

<0

⎤⎥⎥⎦+ w
∂pi

∂wit⏞ ⏟⏟ ⏞
>0

⎡⎢⎢⎢⎣∂Di

∂pi

+ ∂D−i

∂pi⏞ ⏟⏟ ⏞
<0

⎤⎥⎥⎥⎦ = 0, ∀i.

(3.10)
Equation (3.10) only holds for w < 0. Hence, manufacturers optimally deviate to w <

0 jointly. A manufacturer makes a higher profit in the case of a joint deviation than
when deviating unilaterally: ΠJD > ΠD. To explain the last inequality, note that the
manufacturers could replicate the profit of ΠD for each of them by setting w = 0. The
manufacturers, however, optimally set a price w below zero because this yields strictly
larger profits. Setting a price below zero has a negative externality on the rival retailer
that they do not internalize; it enables them to profitably exploit the incorrect beliefs.
Following a deviation, the manufacturers make profits ΠP in future periods due to the
grim-trigger beliefs. This results in the following opportunism-proofness condition

ΠC

1 − δ
≥ ΠJD + δΠP

1 − δ
. (3.11)

Comparing equation (3.11) with equation (3.8), the only difference is the deviation profit
on the right-hand side. Because ΠJD > ΠD, the condition for opportunism-proofness is
harder to satisfy than the stability condition above.

Proposition 2. With grim-trigger beliefs, there exists an equilibrium in which manu-
facturers are able to sustain collusion on the industry-profit-maximizing wholesale price
using grim trigger-strategies if the discount factor is high enough to satisfy equation (3.9).
This condition is equivalent to the incentive constraint when manufacturers and retailers
are pairwise integrated, that is, under horizontal collusion. Under the stronger condition
(3.11), collusion is also opportunism-proof. The punishment is renegotiation-proof, but
collusion is not formable.

21Note that this holds for linear demand. In general, quasi-concavity depends on higher-order deriva-
tives of demand at different loci of demand.
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First, in contrast to Proposition 1, manufacturers are able to sustain collusion when
retailers hold grim-trigger beliefs. Intuitively, grim-trigger beliefs allow for punishment,
which is ineffective with history-independent beliefs. Moreover, the equilibrium above
satisfies subgame perfection, that is, retailers correctly anticipate the manufacturers’ ac-
tions in information sets that are reached with zero probability. Retailers have consistent
beliefs on the equilibrium path in the collusive phase and in punishment phase subgames,
as grim-trigger beliefs mirror the manufacturer’s grim-trigger strategies. Second, as de-
rived above, the opportunism problem gives rise to the incentive condition (3.11) that
is harder to satisfy (that is, only for more patient firms) than condition (3.8) for stable
collusion. Hence, opportunism can make cartels less sustainable. Similar to the literature
on the opportunism problem in single-shot games, this result depends on the beliefs. Due
to their passive beliefs, the retailers do not react immediately to opportunism, which al-
lows the manufacturers to “trick” the retailers because the price that retailers expect will
turn out to be incorrect if manufacturers jointly deviate. This joint deviation differs from
a unilateral deviation of one manufacturer-retailer pair from a candidate equilibrium in
which instead the belief of the deviating retailer is correct. In the latter case, it is optimal
for the deviating manufacturer to set the wholesale price equal to the true costs. In the
former case of a joint deviation, each retailer wrongly believes that the other retailer will
buy at a high wholesale price and will thus sell at a high price, such that demand is high.
It is, hence, profitable for the manufacturer to set a high fixed fee in return for a marginal
wholesale price below costs because the retailer believes that it can sell a large quantity.
A marginal wholesale price below costs, however, only becomes profitable for a manufac-
turer when the retailer has a wrong belief. It could thus signal the retailer that its belief
is wrong because, if it were correct, the manufacturer’s offer would be dominated by an
offer with a wholesale price of w = 0. The stricter condition for opportunism-proofness
is thus an implication of the passive nature of the beliefs. We later consider symmetric
beliefs, where retailers’ beliefs instantly react to any change in wholesale prices.

If marginal wholesale prices below marginal costs are impossible (for instance, due to
competition law), the incentive constraint for opportunism and for stability are identical,
implying that any stable cartel is also opportunism-proof. In any case, the opportunism
problem is mitigated under grim-trigger beliefs compared to the one-shot game, or history-
independent beliefs, because retailers with grim-trigger beliefs react to the deviation from
the expected cartel wholesale prices by adapting their beliefs from the next period on to
the level of competitive prices. This effectively punishes manufacturer opportunism, such
that joint deviations are not profitable when manufacturers are sufficiently patient.

Interestingly, however, we find that under grim-trigger beliefs, collusion is not formable.
Because these beliefs are unforgiving, they are beneficial in supporting the collusive equi-
librium, but do not allow for new cycles of collusion, even after a long time.
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The characterized equilibrium is also renegotiation-proof in the sense of (Farrell and
Maskin, 1989). Because the opportunism-proofness condition (3.11) ensures that manu-
facturers have no incentives to deviate jointly from the collusive agreement, and credible
punishment is fulfilled as well, the equilibrium is weakly renegotiation-proof. Because the
equilibrium features collusion on the industry-profit-maximizing prices that are Pareto-
optimal for the manufacturers, the equilibrium is also strongly renegotiation-proof.

Corollary 1. The equilibrium with grim-trigger beliefs described in Proposition 2 is
strongly renegotiation-proof if the opportunism-proofness condition (3.11) is satisfied.

Note that this corollary extends naturally to general trigger-strategies and more gen-
eral beliefs as employed in the next section. Recall that the concept of renegotiation-
proofness is applied to the coalition of manufacturers; but the result may be more general
if retailers are allowed to be part of the negotiation, as long as beliefs are not affected. Re-
call that we focus on collusion in which retailers do not take part. Fixing beliefs, however,
manufacturers leave zero profits to retailers, making them effectively indifferent in rene-
gotiation, such that a renegotiation-proof equilibrium would also be renegotiation-proof
when including retailers.

For reference, consider a standard model of horizontal collusion absent a vertical di-
mension. In our model, this arises when each manufacturer-retailer pair is vertically
integrated. Suppose that firms collude with grim-trigger strategies at the industry-profit-
maximizing level and the usual stability condition is met. Such a collusion is formable
because switching to grim-trigger strategies is an equilibrium of the continuation game
independent of the history of actions in the game. Collusion is then also opportunism-
proof because joint profits are maximized. In this industry structure, punishment is not
renegotiation-proof because the firms would prefer to renegotiate to return to collusive
prices. Hence, there are no renegotiation-proof equilibria in the case of standard horizon-
tal collusion. By contrast, we will show that secret contracting can feature renegotiation-
proof punishment and that opportunism-proofness can impose additional conditions on
collusion.

Trigger Beliefs

In this section, we define trigger beliefs and derive the conditions for the sustainability
and for other properties of collusion. First, consider that the manufacturers play trigger-
strategies similar to the grim-trigger strategy above, but a deviation is forgiven after κ

periods.
We define trigger-strategies as in Green and Porter (1984): Let κ denote a time length

measured in periods.
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Define period t to be collusive if

(a) t = 0, or

(b) t − 1 was collusive and wit−1 = wC for all i, or

(c) t − κ was collusive and wit−κ ̸= wC for some i.

Define t to be reversionary otherwise. Manufacturer i sets

wit =

⎧⎪⎨⎪⎩wC if t is collusive,

wP if t is reversionary.

Assume that the collusive price equals the monopoly price (wC = wM), as defined in
Subsection 3.4.2. Any deviation by one manufacturer causes the other manufacturer to
carry out a punitive action of wP = 0. Again, wP = 0 must hold because a deviation
during the reversionary periods is not punished as the future actions and beliefs are fixed.
Hence, the punishment action must be the same as the short-term optimal action, that is
wP = 0 as we demonstrated before. This maximizes the manufacturer profits because it
aligns the incentives of retailer and manufacturer. Similar to the previous section, trigger
beliefs emerge when considering a wPBE in which manufacturers use trigger strategies
instead of grim-trigger strategies.

Definition 5. (Trigger beliefs)
Choose a collusive price level pC and a punishment price level pP . Formally, the

retailers’ beliefs correspond to the manufacturer strategies for collusive and reversionary
periods as defined above:

pe
−it =

⎧⎪⎨⎪⎩pC if t is collusive,

pP if t is reversionary.

When both manufacturers play trigger-strategies with actions wC and wP , the retailers’
corresponding trigger-beliefs are correct on the collusive equilibrium path. They are also
correct in the punishment phase.

Qualitatively, our insights for grim-trigger strategies carry over to more general trig-
ger strategies. Trigger strategies with limited punishment imply stricter conditions for
stability and opportunism-proofness compared to grim-trigger strategies. Nevertheless,
they may be attractive for very relevant reasons that we do not model, including cost and
demand shocks as well as other uncertainty that could result in unwarranted punishment,
which – in case of grim-trigger strategies – would be very costly. We summarize our
findings in the following proposition:
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Proposition 3. With trigger beliefs, there exists an equilibrium in which manufacturers
are able to sustain collusion on the industry-profit-maximizing wholesale price (with trigger
strategies) if the discount factor is high enough to satisfy condition (3.21). This condition
is equivalent to the incentive constraint when manufacturers and retailers are pairwise in-
tegrated. Furthermore, the condition requires more patience than under grim-trigger beliefs
and strategies. Only under the stricter Condition (3.22), collusion is also opportunism-
proof. Punishment is always renegotiation-proof, and collusion is never formable.

The derived equilibrium with trigger beliefs is Pareto-efficient as well as subgame
perfect and features renegotiation-proof punishment. If, in addition, the manufacturers
are patient enough for the condition of opportunism-proofness to hold, the equilibrium is
strongly renegotiation-proof.

Corollary 2. The equilibrium with trigger beliefs described in Proposition 3 is strongly
renegotiation-proof if the opportunism-proofness condition (3.22) is satisfied.

Adaptive Beliefs

After analyzing beliefs that anticipate collusion with (grim-)trigger strategies, we provide
a simple example of a belief system where retailers are initially agnostic whether manu-
factures collude or compete. These beliefs try to capture that retailers learn heuristically
about future wholesale price offers by adapting to past observed behavior. Imposing
Condition (1) implies that retailers do not revise their belief within a period, but they
’learn’ afterwards from manufacturers’ observed behavior.We introduce adaptive beliefs
to analyze equilibria with (grim-)trigger strategies. We characterize the beliefs in a way
that they only depend on the actions of the manufacturers in the last T periods and not
on the full history of the game.

Definition 6. (Adaptive Beliefs)
Beliefs are passive within each period t, that is, wit does not affect the belief pe

−it.

Beliefs are dynamic: pe
−it can depend on the history of past wholesale prices. There are

three relevant histories:

1. In period t, the manufacturers offer contracts that are identical to the ex ante beliefs
in period t. Then, both retailers retain the same belief in period t + 1.

2. In period t, both manufacturers play the same w ∈ W ∗ that differs from the ex
ante beliefs of the retailers in period t. The same holds for all previous periods up
to t − (T − 1), with T ∈ {1, 2, ....} being a parameter measuring the adaptation
length in periods. In t + 1, both retailers hold the new (passive) belief p∗. The
set W ∗ contains wholesale prices that the retailers accept as possible equilibria (for
example, the collusive wholesale price wC).
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3. In period t, at least one of the manufacturers does not play a price consistent with a
retailer’s ex ante belief, and it is not the case that both manufacturers play a price
w ∈ W ∗. In t + 1, both retailers hold the new belief pP , where pP is the wholesale
price of the perfect Bayesian Nash equilibrium of the stage game (Nash reversal).

The definition of adaptive beliefs differs from the definition of (grim-) trigger beliefs in
that we allow retailers to take on any new belief w ∈ W ∗ after observing w for sufficiently
many periods (see point 2). The remaining requirements (point 1 and 3) are also present
for (grim-) trigger beliefs.

In the following, we use the example of grim-trigger strategies to analyze the necessary
incentive constraints implied by opportunism-proofness, renegotiation-proof punishment,
and formability of collusion that arise from considering adaptive beliefs. We also solve for
trigger strategies and present the results in the proposition, relegating the exposition to
the proof.

Stability. The stability condition for collusion, once established, is

ΠC

1 − δ
≥ ΠD + δΠP

1 − δ
. (3.12)

In this case, retailers with adaptive beliefs already have the belief pC and revert to the
belief pP after a deviation. Hence, with grim-trigger strategies, the condition is the same
as the incentive condition (3.8). As a consequence, collusion is stable if manufacturers are
sufficiently patient (δ is large enough). Again, the condition is identical to the stability
condition under horizontal collusion.

Formability. Formability is fulfilled if there exists a transition path to the collusive
wPBE, where – on the path – the manufacturers’ actions are mutually best responses.
Suppose that, starting from any history in period s, the manufacturers both start to play
the collusive wholesale price wC with the usual grim-trigger strategies that punish any
deviation. If the manufacturers want to form collusion, the worst history in terms of our
beliefs is that there was competition in s − 1 (with profits ΠP ). This implies that, for
the next T periods, the retailers’ beliefs are fixed at pP , such that the manufacturers can
extract lower transfers. Hence, in the transition periods, the manufacturer profits are
lower than under competition, ΠF < ΠP . The reason is that the beliefs are identical in
both cases, and whereas the manufacturers play their unique best response to the belief
in periods of competition, which results in ΠP , they play a worse action with respect to
stage-game profits as response to the same belief in transition periods, resulting in a profit
of ΠF .

With grim-trigger strategies, manufacturers have an incentive to jointly start to collude
in a competitive period, such that they eventually arrive at the collusive equilibrium path
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if
ΠP

1 − δ
≤ 1 − δT

1 − δ
ΠF + δT

1 − δ
ΠC . (3.13)

The left-hand side contains the present value of perpetual competition. The first term
on the right-hand-side is the discounted profit of the T periods in which retailers’ belief
is pP , while manufacturers actually set wC ; the second term is the discounted profit of
perpetual collusion starting after T formation periods.

Because the manufacturer profits are lower during the formation period than under
competition, each manufacturer may have an incentive to deviate to a lower wholesale
price during formation. Deviating during the formation phase yields a period profit of
ΠF,D but triggers a punitive action forever. Consider the incentives to stick to wC in the
formation phase. No manufacturer wants to deviate unilaterally in the formation phase,
which implies that actions in the transition are mutually best responses, if

1 − δT

1 − δ
ΠF + δT

1 − δ
ΠC ≥ ΠF,D + δΠP

1 − δ
. (3.14)

Comparing the inequalities (3.13) and (3.14) shows that the latter is stricter if and only
if ΠF,D ≥ ΠP . This is always the case, as we demonstrate in the proof of Proposition
4. Hence, the deviation condition (3.14) is not only necessary but also sufficient for
formability. Note that formability decreases in T , that is, it holds for a smaller set of
discount factors because the left-hand side decreases in T . This holds because an increase
in T , which only affects the left-hand side of condition (3.14), shifts the weight ΠC to the
smaller term ΠF .

Renegotiation-proofness. Collusion is opportunism-proof if the manufacturers have
no incentive to deviate jointly from the collusive price. Suppose the manufacturers jointly
behave opportunistically in the present period. They can earn an opportunism profit of
ΠJD by lowering wi and increasing Fi for each retailer. As a result, the retailers believe
in competition in the next period. Confronted with competitive beliefs, the reformation
phase starts so that the manufacturers need to play wC for T periods to convince retailers
of collusive prices again. This yields the following condition of opportunism-proofness:

ΠC

1 − δ
≥ ΠJD + δ

⎛⎝
(︂
1 − δT

)︂
1 − δ

ΠF + δT

1 − δ
ΠC

⎞⎠ . (3.15)

Collusion is formable and opportunism-proof if the manufacturers are sufficiently patient,
that is, if condition (3.14) for formability and condition (3.15) for opportunism-proofness
hold. Increasing the adaptation length T of the beliefs makes collusion less formable but
more opportunism-proof, that is, relaxes condition (3.15), but tightens condition (3.14).
Opportunsim-proofness is harder to satisfy than stability whenever collusion is formable.
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To see this, compare the right-hand side of condition (3.15) with the stability condition
(3.12) and note that ΠJD > ΠD.

Punishment is not renegotiation-proof whenever collusion is formable. To see this,
note that whenever the formability condition holds, and the manufacturers are supposed
to punish, they are better off forming collusion again. This implies that formation domi-
nates competitive pricing in the punishment phase and manufacturers prefer to enter the
cooperative phase again. Note that grim-trigger strategies are a special case of trigger
strategies with κ → ∞. For trigger strategies, we generalize the result in the following
proposition focusing on collusion at industry-profit maximizing wholesale prices:

Proposition 4. With adaptive beliefs and trigger strategies, the stability condition is the
same as for vertically integrated collusion with the equivalent trigger strategies. Stability
increases in the number of punishment periods κ. Collusion is formable and opportunism-
proof if δ is sufficiently large. Increasing the adaptation periods T of the retailer beliefs
makes collusion less formable but more opportunism-proof. Punishment is not renegotiation-
proof for any κ > 0 whenever collusion is formable, but collusion may be sustained even
without punishment, that is, for κ = 0.

The take-away is that there exists an equilibrium with adaptive beliefs in which col-
lusion is formable, sustainable, and opportunism-proof. Formability requires that beliefs
can adapt to collusion after a ’history’ of competition or punishment. The adaptivity can
have the cost that punishment is not renegotiation-proof. This is different from trigger-
beliefs where retailers do not accept collusive contracts after a deviation. Instead, with
adaptive beliefs they do so, such that, whenever an adaptive belief features formability,
punishment is not renegotiation-proof. An interesting observation is that, for adaptive
beliefs, there is a trade-off between opportunism-proofness and formability: The longer
beliefs take to adapt the harder it is to start collusion, whereas opportunistic behavior
that counts on restarting collusion becomes less of a problem. This moreover implies that
an equilibrium with adaptive beliefs is not subgame perfect in constrast to an equilibrium
with (grim-) trigger beliefs.

As a polar case, we find that the strategy to always collude, the degenerate trig-
ger strategy with a punishment length of zero, can support a collusive equilibrium. If
manufacturers play “always collusion”, the incentive constraint for stability is

ΠC

1 − δ
≥ ΠD + δ

(︄
1 − δT

1 − δ
ΠF + δT

1 − δ
ΠC

)︄
. (3.16)

Note that the stability is supported by the beliefs because deviation requires a new
formation of collusion of length T . While this strategy is the least stable strategy, it is
the only strategy that features formability and, in addition, features renegotiation-proof
punishment.
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Corollary 3. For κ > 0, there exists a strongly renegotiation-proof equilibrium that is
not formable if T and δ are sufficiently large. For κ > 0 and if the formability conditions
(3.13) and (3.14) hold, there is no renegotiation-proof equilibrium with trigger strategies.
For κ = 0, a strongly renegotiation-proof equilibrium exists if the opportunism-proofness
condition (3.15) holds (which implies stability).

3.5 Extensions

3.5.1 Symmetric Beliefs

After considering passive beliefs, we turn to the analysis of the case that retailers have
symmetric beliefs defined as follows:

Definition 7. (Symmetric Beliefs) The price expectation pe
−it of retailer i in period t

about the price of retailer −i is pi (wit, p(wit)).

In other words, when a retailer receives an unexpected offer deviating from the candi-
date equilibrium, the retailer revises its belief and believes that its rival has received the
same offer by its manufacturer. Symmetric beliefs are history-independent because they
only rely on the information contained in the current wholesale price offer. We assume
that manufacturers play (grim-)trigger as in the previous sections. The case of symmetric
beliefs is also analyzed in Liu and Thomes (2020) who consider the linear demand case
and, hence, offer closed-form solutions for the critical discount factor. Symmetric be-
liefs may be particularly plausible if retailers expect that manufacturers coordinate their
actions and expect that they do this in a symmetric way.

We focus again on industry-profit-maximizing collusion that naturally arises when
manufacturers jointly maximize their profits given symmetric beliefs. Denote the price
expectation of retailer i with symmetric beliefs by pe

it as above. This allows the manu-
facturer to essentially choose the symmetric price level, such that the joint maximization
problem of the manufacturers can be rewritten as

ΠC := 1
2 max

p
p · Di (p, p) + p · D−i (p, p) = ΠM .

Hence, the joint-profit-maximizing wholesale price of the manufacturers is equal to the
industry-profit-maximizing price. Moreover, this implies that any joint deviation by the
manufacturers will always be the industry-profit-maximizing price if retailers hold sym-
metric beliefs. In contrast to (grim-)trigger beliefs, where the optimal joint deviation of
the manufacturers is to charge a wholesale price below zero, such a deviation is not op-
timal because only the collusive price maximizes the manufacturers’ profits. Because the
manufacturers collude at the Pareto-efficient level, collusion is opportunism-proof. Addi-
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tionally, punishment is not renegotiation-proof because the manufacturers would prefer
to revert back to collusion in every punishment period.

Collusion is formable because symmetric beliefs instantly adapt to the new wholesale
price in every period. Manufacturers only need to agree on the collusive price and set it
in any period. In a period in which the manufacturers set wholesale prices of wC , the
retailers’ expectations are immediately equal to pi

(︂
wC , p(wC)

)︂
= pi(wC , pC) = pC , which

corresponds to the expectation of collusion. Forming collusion immediately leads to stable
collusion as long as the stability condition is fulfilled.

From Pagnozzi and Piccolo (2011), we know that symmetric beliefs affect competition
between vertically separated manufacturers. Competition is less fierce due to a so-called
belief effect, which increases the competitive wholesale price above marginal costs. If
punishment, however, relies on the competitive wholesale prices and profits, the stability
of collusion is affected. Manufacturers must be more patient to satisfy the condition of
stable collusion.

Symmetric beliefs violate the “no-signaling-what-you-don’t-know” Condition 1.22 We
thus look for a perfect Bayesian equilibrium in the context of symmetric beliefs:

Proposition 5. With symmetric beliefs, there exists a collusive equilibrium with (grim-)
trigger strategies if condition 3.27 holds. Collusion is also formable if the stability condi-
tion holds. Collusion is always opportunism-proof, but punishment is not renegotiation-
proof. If condition 3.27 holds, both the competitive equilibrium and the collusive equilib-
rium are not renegotiation-proof.

With symmetric beliefs there is no opportunism problem because lowering the whole-
sale prices negatively affects the belief such that retailers do not accept collusive contracts.
Because the symmetric belief follows the manufacturers’ actions, there is no long-term re-
sponse of retailers and thus retailers do not discipline the manufacturers as, for example,
the retailers’ response does when they are holding trigger beliefs. This implies that forma-
tion, in the sense of needing to convince retailers, is not an issue with symmetric beliefs.
As a downside for collusion, symmetric beliefs do not support the renegotiation-proofness
of punishment because they make the punishment phase prone to renegotiation incen-
tives. The reason is that the retailers always accept the collusive contracts, believing that
wholesale prices are at the collusive level in the whole industry. During a punishment
phase both manufacturers are able to renegotiate a joint increase of their wholesale prices
again, which in turn will be accepted by each retailer. Therefore, manufacturers are able
to return to the Pareto-dominant collusive equilibrium. This intuition also applies to the
competitive equilibrium given that the manufacturers discount factor is sufficiently large
to potentially support collusion.

22Pagnozzi and Piccolo (2011) discuss this observation and also show that, with common cost shocks,
symmetric beliefs can be consistent with a PBE.
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3.5.2 Linear Wholesale Prices

For this extension we restrict the manufacturers’ contracts to be linear. Each manufac-
turer offers a contract that only includes a wholesale price wi.

Let us reconsider the case of history-independent beliefs. For two-part tariffs we have
shown that there is no collusive equilibrium. In contrast, for linear tariffs we construct
grim-trigger equilibria and show that for sufficient patience an equilibrium with collusive
prices above the competitive price level always exists. Let us first define the competitive
equilibrium. The one-shot wholesale prices with correct beliefs pN ≡ p∗(wN , wN) are
defined by

wN = arg max
w

wD(p∗(w, pN), p∗(wN , pN)).

This results in the competitive profits ΠN = maxw wD(p∗(w, pN), pN). Playing wN in
each period and retailers believing pN is a wPBE of the repeated game.

Consider that manufacturers collude symmetrically at wholesale price of wC using
grim-trigger strategies. We denote the wholesale prices in punishment periods by wP . A
deviation manufacturer chooses a wholesale price denoted by wD.

If there exists an equilibrium with a collusive price level of wC , the beliefs have to
be correct on the equilibrium path and equal pe = p∗(wC , pe). We construct such an
equilibrium with time-constant beliefs to show the existence of a collusive equilibrium.
If manufacturer A deviates in a period, the belief of the retailer of the non-deviating
manufacturer B are still incorrectly at pe. Similarly, in punishment periods, both retailers
may hold incorrect beliefs, expecting the price to be at the collusive level, whereas the
actual price level depends on wP that is generally not equal to wC . Different to the case
of two-part tariffs, wrong retailers do not render collusion impossible with linear tariffs
as the retailers mechanically accept different wholesale price levels, so that the effect of
the wholesale prices on manufacturer profits are maintained.

Let us define the profits necessary to evaluate the stability of collusion:

ΠC ≡ wCD(pe, pe),

ΠD = max
w

w · D(p∗(w, pe), pe).

The punishment prices being mutual best responses yields

wP = arg max
w

w · D(p∗(w, pe), p∗(wP , pe)),

ΠP =wP · D(p∗(wP , pe), p∗(wP , pe)),

where p∗(wP , pe) < pe holds for any wP < wC .
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Assumption 6. We assume that at the locus at wC = wD = wP = wN , the implicitly
defined wholesale prices wN ,wD, and wP are unique and 0 < ∂wD(wC)

∂wC < 1 and 0 <
∂wP (wC)

∂wC < 1 hold.

This assumption holds globally for linear demand. The assumption implies that the
wholesale prices have the usual ordering in a neighborhood around the competitive price
level: If wC > wN , that is, if there is effective collusion, then wC > wD > wP > wN holds
(see proof of Proposition 6).

An equilibrium with grim-trigger strategies exists if there is a critical discount factor
below one, such that the stability condition holds. This can be rewritten as

ΠD − ΠC < ΠC − ΠP . (3.17)

Proposition 6. Suppose that retailers hold history-independent beliefs and Assumption
6 holds. With linear wholesale prices, there is a collusive equilibrium with wC > wN if
manufacturers are sufficiently patient. This collusive equilibrium is also formable.

While collusive equilibria with linear tariffs and prices just above the competitive
price level exist if manufacturers are sufficiently patient, linear tariffs reduce the ability of
manufactures to extract retail rents. Thus, overall, linear tariffs do not necessarily result
in higher profits for manufacturers than two-part tariffs.

3.6 Policy Discussion

Our results provide new insights for various business practices from the perspective of
competition policy.

Resale price maintenance (RPM). There is an ongoing policy debate about RPM
that is typically considered anti-competitive in European competition policy and more
benign in the US, at least since the Supreme Court’s Leegin decision.23 Our theory
suggests that RPM can be pro-collusive by helping colluding manufacturers to convince
retailers that competing products will have high prices. For this it is necessary that
RPM is not just implemented as a secret contract clause but rather communicated in a
way that competing retailers become aware of it. This may happen through the trade
press, press releases, or other announcements – at least if RPM is legal. If it is illegal,
recommended retail prices, which may for instance be printed on the products’ price tags,
or so-called minimum advertised price (MAP) restrictions can serve a similar purpose if
the manufacturers incentivize the retailers to not deviate from them.24

23See Leegin Creative Leather Products, Inc. v. PSKS, Inc., 551 U.S. 877 (2007).
24See Asker and Bar-Isaac (2020) for a review of MAP restrictions. They also find that MAP facilitates

collusion among manufacturers, where our model adds an additional channel, namely to overcome the
opportunism problem towards retailers.
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Vertical integration. Vertical integration is often viewed as beneficial by solving var-
ious coordination issues within supply chains, such as that of double marginalization.
A major concern, however, is market foreclosure (Rey and Tirole, 2007). Our theory
suggests that vertical integration can facilitate collusion because retailers no longer need
to be convinced of higher competing prices, which, as we show, may fail under various
retailer beliefs. A potential downside of vertical integration is that, in certain cases, pun-
ishments for a deviation from collusion may not be renegotiation proof, although it can
be for certain retailer beliefs under vertical separation (see Corollary 1).

Communication. Communication within supply chains is generally viewed to be ben-
eficial to overcome coordination problems, whereas communication between competitors
about sales prices and similar strategic variables is typically considered to be suspicious
and may constitute a violation of the cartel prohibition.25 Our theory suggests that com-
munication among competing retailers about simultaneous new wholesale tariff offers of
different manufacturers may help to turn competitive retailer beliefs into collusive beliefs,
which facilitates manufacturer collusion. Hence, communication between retailers might
not only facilitate collusion among them, but can also facilitate collusion in the upstream
market.

Collusion through downsizing of packs. There are instances of coordinated down-
sizing of pack sizes by manufacturers, as observed in the chocolate case in Germany
(Ritter). In their detailed analysis of a washing powder cartel in Europe, Laitenberger
and Smuda (2015) report that the three firms involved engaged in various anticompetitive
practices. As one such practice, the firms agreed on indirect price increases by keeping
prices unchanged when, among others, the product volume or the number of wash loads
per package was reduced. The collective reduction of the pack sizes while maintaining the
old price of the larger pack may be used to reduce strategic uncertainty for retailers. The
colluding manufacturers do not have to implement a price increase, which, depending on
the retailer beliefs, may fail. Instead, it might be sufficient to show their retailers smaller
packs of the competing brands to convince them that selling the smaller pack at the old
price is competitive. If manufacturers present the retailers in a price negotiation with
actually downsized packs of the own and a competing product, the claim may be more
credible than the claim that other retailers face higher wholesale prices for competing
products, especially if the adjustment of pack size is costly.

Buyback policies. Buyback policies can reduce the risk of retailers ending up with
unsold units if their prices are not competitive. If retailers need to be convinced that the

25See the “Guidelines on the applicability of Article 101 of the Treaty on the Functioning of the Euro-
pean Union to horizontal co-operation agreements”, European Commission, Commission Communication
2023/C 259/01.

https://www.bundeskartellamt.de/SharedDocs/Entscheidung/EN/Fallberichte/Kartellverbot/2015/B10-41-14.pdf?__blob=publicationFile&v=2
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higher (collusive) wholesale prices are competitive to accept the manufacturer’s contract,
a buyback policy that insures the retailer in case its offer is not competitive can help.

3.7 Conclusion

Our approach of explicitly characterizing belief systems and discussing the equilibria con-
sistent with such beliefs differs from the usual logic of Nash equilibrium, where players
know other players’ strategies fully. In particular, we consider that retailers do not fully
anticipate the collusive strategy of manufacturers. While retailers’ beliefs are correct on
the equilibrium path, that is, retailers predict the correct price level in any collusive equi-
librium, the existence of such an equilibrium depends also on retailers playing their role
in the punishment phase which is necessary to support the equilibrium. We analyze three
problems for the existence and plausibility of manufacturer collusion. First, the collusive
equilibrium may fail to exist due to a lack of effective punishment. Second, the collusive
equilibrium may lack credibility if the implied agreement is not renegotiation-proof, ei-
ther on the collusive equilibrium path or during a punishment phase. In this context, we
find that an opportunism problem, like the one a monopolist with secret contracts faces,
is recreated by colluding firms.26 Third, a collusive equilibrium may be implausible if
formation, such as the transition from a competitive market to a collusive market, is not
possible given the retailers’ reactions.

When retailer beliefs do not anticipate manufacturer collusion, we demonstrate that
collusion is infeasible with two-part tariffs. Such beliefs may arise in industries that have
long-standing competitive conduct. Belief differences between industries may explain
why some industries stay competitive, whereas other industries give birth to collusion
repeatedly. Because these beliefs give rise to equilibria of the infinitely repeated game
and, consequently, are correct on the equilibrium path, they are self-fulfilling and may
never be challenged.

When retailer beliefs react to observed past actions, trigger-based manufacturer collu-
sion becomes feasible and the punishment may even be renegotiation-proof, although this
would not be the case under vertical integration of the industry. We show that oppor-
tunism can still be the most important challenge for the colluding manufacturers, more
so than the usual unilateral deviation incentives.

Trigger beliefs and particularly grim-trigger beliefs can feature renegotiation-proof
punishment and opportunism-proofness because they make it difficult for manufacturers
to obtain high wholesale prices again after a breakdown. However, they do not allow for
the formation of collusion. Formation requires that, to transition from a competitive to a

26This highlights that communication among manufacturers may be a source of misinterpretation for
retailers. This contrasts the understanding that communication usually reduces strategic uncertainty, as
discussed by Blume (1994) and Blume and Heidhues (2008).
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collusive outcome, beliefs must adapt to the change in contract offers. The intuition here
is that trigger beliefs cannot handle the transition from a non-collusive state to successful
collusion because they would be too “pessimistic” about the future whenever they observe
a non-collusive price in the history of the game.

We introduce new beliefs that are adaptive to the manufacturers’ pricing over time.
These retailer beliefs facilitate the formation of manufacturer collusion. As the beliefs do
not mirror the collusive strategy, they do not support renegotiation-proof punishment;
they may still support a credible collusive strategy because retailers “punish” deviation
by believing in competitive conduct after a deviation. Adaptive beliefs can also satisfy
the conditions for stability and opportunism-proofness.

Because manufacturer cartels are ubiquitous, our results can help competition au-
thorities to screen markets. Our model shows that, whenever supply contracts are not
public or easily renegotiable, the ability to form and sustain collusion critically depends
on retailers’ beliefs about the supply conditions of other retailers. This may make it
easier to sustain collusion in markets in which the retailers are used to manufacturer
collusion. Our findings suggest that it should be in the interest of colluding manufactur-
ers to manage and influence their retailers’ beliefs about the conditions in the wholesale
market. One conjecture is thus that the opportunism problem may be one of the causes
behind the widespread use of resale price maintenance and hub-and-spoke arrangements
when manufacturers collude. A more direct control of retail prices by manufacturers in
form of resale-price maintenance may circumvent the problem of skeptical retailer be-
liefs. Similarly, coordinated downsizing of packages by manufacturers, as observed in the
chocolate case in Germany, may be used to reduce strategic uncertainty for retailers.27

Consequently, coordinated behavior and communication of manufacturers vis à vis their
retailers may deserve more antitrust scrutiny because such coordination can be essential
for making manufacturer cartels work.

Competition authorities should also be aware that announcements by industry asso-
ciations to raise prices can help member firms to overcome the opportunism problem in
the context of collusion. When such an announcement comes from an authoritative body,
downstream firms can expect that price increases will affect the whole industry and that
they will not lose out vis à vis their competitors when accepting higher input prices.

Another aspect that should be of interest for competition authorities is that (sudden)
changes of (industry-wide) input prices – for example, due to inflation or an uncertain
economic environment – can be used by manufacturers to increase their prices collusively
to a larger extent than such cost changes would imply. These changes may lead to a

27See Section 3.1.
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situation in which downstream firms’ expectations are less skeptical with regard to price
increases, such that the transition to supra-competitive prices and profits is facilitated.28

28Recent developments in the retail food sector point in this direction (see, for example, Der Spiegel,
“Is retail ripping off consumers?”, 03/23/2023; last access 06/25/2023).

https://www.spiegel.de/wirtschaft/service/lebensmittelpreise-zockt-der-einzelhandel-die-verbraucher-ab-a-a1234d36-ac88-4067-be5b-64cc85b8f8e1
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A Appendix: Omitted Proofs

Proof of Lemma 1. Plugging p−i(w−it, pe
it) = pe

−it in the manufacturer problem 3.2.
Simplifying yields

Πit

(︂
wit, pe

−it

)︂
= pi

(︂
wit, pe

−it

)︂
· Di

(︂
pit

(︂
wit, pe

−it

)︂
, pe

−it

)︂
.

Maximizing with respect to wit gives the first-order condition

∂pi

(︂
wit, pe

−it

)︂
∂wit

Di

(︂
pi

(︂
wit, pe

−it

)︂
, pe

−it

)︂
(3.18)

+
∂Di

(︂
pi

(︂
wit, pe

−it

)︂
, pe

−it

)︂
∂pi

∂pi

(︂
wit, pe

−it

)︂
∂wit

pi

(︂
wit, pe

−it

)︂
= 0

⇐⇒
∂pi

(︂
wit, pe

−it

)︂
∂wit

∂Di

(︂
pi

(︂
wit, pe

−it

)︂
, pe

−it

)︂
∂pi

wit = 0. (3.19)

Because the first term on the left-hand side in the previous line is assumed to be strictly
positive and the second term is assumed to be strictly negative (Assumption 5), the only
solution to the first-order condition is wit = 0.

Proof of Proposition 1. Step (i): Let us construct this equilibrium by showing that
it is uniquely optimal for each manufacturer to set (wi = 0, Fit = π∗

i (wi = 0, pe
−it)) in each

period independent of the strategy of the other manufacturer.
The participation constraint of the retailer is binding in equilibrium because otherwise

the manufacturer could increase profits by raising the fixed fee without affecting pe
−it by

the assumption of passive beliefs. Hence, Fit = π∗
i (wi = 0, pe

−it)) holds.
On the equilibrium path, pe

−it = p∗
−it, that is, retailers’ beliefs are correct and thus

identical to manufacturer’s conjectures such that the in-period manufacturer profits can
be simplified as in the stage game to:

Πit

(︂
wit, pe

−it

)︂
= pi

(︂
wit, pe

−it

)︂
· Di

(︂
pit

(︂
wit, pe

−it

)︂
, pe

−it

)︂
.

Note that this in-period profit is insulated from the actual actions of the other man-
ufacturer, and wit only affects the manufacturer profits through the price setting of the
retailer. Because the manufacturers’ profit in each period, on any equilibrium path, only
depends on wit and the belief pe

−it, the discounted equilibrium profits of a manufacturer
do not depend on the strategy of the other manufacturer either. Fixing pe

−it, equation
(3.19) implies that wi = 0 is optimal (independent of w−it in each period). Hence, there
is an equilibrium path with each manufacturer setting wi = 0 in every subgame and a
matching time-constant belief by retailers, where the time-constant retail price follows
because the retail price equilibrium is unique for wi = w−i = 0.
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Step (ii) Next, we exclude other equilibrium paths in which wit ̸= 0 by contradiction:
Suppose that there is an equilibrium path with wit ̸= 0 in some periods. It follows from
equation 3.19 that each manufacturer can increase current period profits through setting
wit = 0 and Fit = π(0, pe

−it), resulting in Πit

(︂
0, pe

−it

)︂
. In particular, in every period,

manufacturer i can ensure at least a profit of Π(0, pe) = maxp π(0, pe) = maxp pD(p, pe),
which is independent of the actual wholesale price of the other manufacturer. This profit
is strictly larger than the profit in any candidate equilibrium with w′ ̸= 0. Formally,
this is Π(w′, pe) < Π(0, pe) ⇔ w′D(pe) + (pe − w′) D(pe) = peD(pe) < maxp pD(p, pe),
where the strict inequality follows from the uniqueness of the maximizer and the strict
monotonicity of pi in wi .

Since each manufacturer can ensure this deviation profit of Π(0, pe) in any period in-
dependently of the other manufacturers actions, a profitable deviation from any candidate
equilibrium with w′ ̸= 0 always exists and this deviation is immune to punishment by the
other manufacturer.

As we employ beliefs about pe
it instead of beliefs about we

it, we establish that this is
equivalent in our setting if retailers have common knowledge about the belief system and
expect sequentially rational choices of their rivals. More precisely, for any history Ht and
belief we

it, there exists a unique implied belief. Expecting a sequentially rational choice
implies that the belief of retailer A, pe

Bt, is the result of pe
Bt = arg maxpBt

πB(we
Bt, we

At =
w2e

At), where w2e
At is the higher-order belief of retailer A about retailer B’s belief. The

identity we
At = w2e

At follows from common knowledge about the belief system and Condition
1. Due to condition 1 beliefs are within-period passive, such that the higher-order belief
w2e

At is independent of retailer A’s private information wAt. Common knowledge about
the belief system implies then that retailers hold correct conjectures about higher order
beliefs. Therefore, given we

−it, retailer i correctly predicts w2e
it and thus the unique pe

−it =
arg maxp−it

π−i(we
−it, w2e

it ). This follows from Assumption 5, which implies that there is a
unique solution to the maximization problem.

Proof of Proposition 2. We established in the main text that manufacturers are able
to sustain collusion if equation (3.9) is fulfilled. To show that the incentive constraint is
the same if manufacturers and retailers are pairwise integrated, it is sufficient to prove
that the profits are the same: Πj

V = Πj
I for j = C, D, P (V : vertical, I: integrated).

Because we define ΠC
V to be half of the integrated industry-maximizing profit (3.4), the

profit from collusion in the integrated case ΠC
I is the same.

The deviation profit ΠD
V is given by the first line of equation (3.5) and simplifies

further in the second line because the manufacturers’ true actions and retailers’ beliefs are
aligned. The second line, however, is equal to the maximization problem of an integrated
manufacturer that maximizes the profit with respect to the retail price. Lastly, the
punishment profits are aligned as well, following the same argument as before. The
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punishment profits are given by equation (3.7). Manufacturers set wP = 0, which results
in the same retail prices and profits as in a vertically integrated industry.

To see that punishment is renegotiation-proof, note that with grim-trigger beliefs, any
deviation leads to the belief pP forever such that the current actions of the manufacturers
have no effect on the belief of retailers. To establish this, we check for a joint action by
manufacturers that would yield a Pareto improvement for manufactures. Note that it is
the best response is, in each period, for each manufacturer, to set w = 0 individually.
Next, we consider the profit maximization for manufacturers when they would optimize
jointly during a punishment period:

1
2 max

wit,w−i,t
wit · Di

(︂
pi(wit, pP ), p−i(w−it, pP )

)︂
+
[︂
pi(wit, pP ) − wit

]︂
· Di

(︂
pi(wit, pP ), pP

)︂
+w−it · D−i

(︂
p−i(w−it, pP ), pi(wit, pP )

)︂
+
[︂
p−i(w−it, pP ) − w−it

]︂
· D−i

(︂
p−i(w−it, pP ), pP

)︂
.

We again assume that this profit is quasi-concave such that we can use first-order con-
ditions. Using the retailers’ first-order conditions and applying symmetry, using that
manufacturer profits are well-behaved by assumption such that the optimum is symmet-
ric, the first-order conditions can be rewritten as

⎡⎢⎢⎣Di

(︂
pi(w, pP ), p−i(w, pP )

)︂
− Di

(︂
pi(w, pP ), pP

)︂
⏞ ⏟⏟ ⏞

≥0

⎤⎥⎥⎦+ w
∂pi

∂wit⏞ ⏟⏟ ⏞
>0

⎡⎢⎢⎢⎣∂Di

∂pi

+ ∂D−i

∂pi⏞ ⏟⏟ ⏞
<0

⎤⎥⎥⎥⎦ = 0 ∀i.

(3.20)
This holds for w = 0. Hence, playing w = 0 is the best manufacturers can do such

that there is no continuation game that can be reached by manufacturers and that yields
larger profits.

To see that collusion is not formable, consider any history with wi ̸= wC in t = 0.
With this history, grim-trigger beliefs imply that the belief is pP forever, which violates
the second condition of the definition of formability that a collusive PBE can be obtained
in some future period for any history.

Proof of Proposition 3. Consider the conditions that are needed to sustain collusion.
After any deviation by a manufacturer, the beliefs revert to pe

−i = pP for κ periods, which
results in profits of ΠP = pP · Di(pP , pP ). After κ periods, however, the retailers believe
in collusion at a price of pC again. Collusion is sustainable when no manufacturer wants
to deviate from the trigger strategy given by the incentive condition:

ΠC

1 − δ
≥ ΠD + δ

(︄
1 − δκ

1 − δ
ΠP + δκ

1 − δ
ΠC

)︄
. (3.21)
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This condition is more difficult to fulfill than the incentive condition (3.9) for grim-trigger
strategies and beliefs. The punishment in condition (3.21) is less harsh and ends after κ

periods, such that the expression on the right-hand side is larger than in the condition
with grim-trigger strategies. Recall that manufacturers make the same profits as pairwise
integrated manufacturer-retailer pairs (Proposition 2). Note that the individual profits,
ΠC , ΠD, and ΠP , are still identical to an integrated firm’s profits. This implies that the
stability condition (3.21) is the same for vertically separated and vertically integrated
manufacturer-retailer pairs whenever they play trigger strategies of length κ.

To check whether the equilibrium is opportunism-proof, we must consider a revised
version of condition (3.11) that applies to trigger beliefs. Because trigger beliefs are
forgiving after κ periods, a joint deviation of both manufacturers is not “punished by the
beliefs” forever.29 Hence, the conditions can be written as

ΠC

1 − δ
≥ ΠJD + δ

(︄
1 − δκ

1 − δ
ΠP + δκ

1 − δ
ΠC

)︄
. (3.22)

Again, the opportunism-proofness condition (3.22) resembles the stability condition (3.21),
except that ΠJD > ΠD, which makes the condition harder to meet. If condition (3.22)
holds, collusion is robust against joint deviations by the manufacturers, that is, oppor-
tunistic behavior.

The punishment is renegotiation-proof because, in a punishment phase, both retailers
believe wP = 0 to which the best response is w = 0 as well. Beliefs are constant in the
wholesale price played in the punishment phase. Thus, the argument in Subsection 3.4.2
applies, such that focusing on short-term best responses is valid.

To see that collusion is not formable with trigger beliefs, consider an argument by
contradiction. Formability requires that the PBE under consideration can arise after an
arbitrary history of the game. Let us consider a specific history. Suppose that, for the first
κ periods, the manufacturers do not collude. With this history, all the following periods
starting with period κ + 1 are labeled as non-collusive. It follows that it is impossible for
retailers to hold collusive beliefs at any future point of the game. Recall that periods are
only labeled collusive after the first period if in period t, the previous period t − 1 was
collusive or period t − κ was collusive.

Proof of Proposition 4. Similarly to the incentive constraints above the proposition
for grim-trigger strategies, we can also describe the incentive constraints when manufac-
turers play more general trigger strategies. The difference between these strategies is the
length of the punishment phase κ. Because neither the formation condition (3.13) nor the

29By contrast, the grim-trigger beliefs switch forever to the competitive price level in response to a
deviation. This effectively punishes the manufacturers that face pessimistic retailers from then on.
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opportunism-proofness condition (3.15) rely on punishment between the colluding firms,
the conditions remain the same.

In the remainder of the proof, we characterize the stability condition and the stability
condition of the formation phase for trigger strategies. If firms play trigger strategies with
punishment length κ, the incentive constraint for stability is

ΠC

1 − δ
≥ ΠD + δ

(︄
1 − δκ

1 − δ

)︄
ΠP + δκ+1

(︄
1 − δT

1 − δ

)︄
ΠF + δκ+1 δT

1 − δ
ΠC .

As in all the above cases, the punishment must be wP = 0 because there is no unilateral
action in a punishment phase that has any effect on future beliefs. Because the future
beliefs and actions of the rival manufacturer are fixed in any punishment period, each
manufacturer must play the one-shot best response of wP = 0.

The deviation of one manufacturer triggers a punishment of length κ ∈ [0, ∞). After
the punishment phase, collusion is resumed, but the adaptive retailer beliefs require a
formation phase of length T . A deviation in the formation phase is not profitable if

1 − δT

1 − δ
ΠF + δT

1 − δ
ΠC ≥ ΠF,D+δ

(︄
1 − δκ

1 − δ

)︄
ΠP +δκ+1

(︄
1 − δT

1 − δ

)︄
ΠF +δκ+1 δT

1 − δ
ΠC , (3.23)

which simplifies to

δT
(︂
ΠC − ΠF

)︂
≥
(︄

(1 − δ)
1 − δκ+1

)︄
ΠF,D − ΠF + δ

(︄
1 − δκ

1 − δκ+1

)︄
ΠP . (3.24)

Next, we show that condition (3.13) is always stricter than condition (3.23). We also
demonstrate that this is the relevant condition for formation. To see this, we consider the
polar cases that correspond to a strategy “always collude” for κ = 0 and the grim-trigger
strategy as κ → ∞. We already know from the analysis before the proposition that the
postulated relation of the conditions holds for κ → ∞.

For κ = 0, the incentive constraint for formation can be written as

δT
(︂
ΠC − ΠF

)︂
≥ ΠP − ΠF .

A deviation from the collusive price in the formation phase results in a profit of ΠF,D.
However, for κ = 0, no punishment is triggered. The stability condition for formation
becomes

1 − δT

1 − δ
ΠF + δT

1 − δ
ΠC ≥ ΠF,D + δ

(︄
1 − δT

1 − δ

ΠF

1 − δ
+ δT

1 − δ
ΠC

)︄
,

which simplifies to
δT
(︂
ΠC − ΠF

)︂
≥ ΠF,D − ΠF . (3.25)
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Observe that a deviation in the formation phase is not profitable under a stricter condi-
tion than the incentive condition for formation if ΠF,D ≥ ΠP . Additionally, a necessary
condition is ΠC ≥ ΠF,D because the discount factor δ is in the range (0, 1). Because δ < 1,
the left-hand side of condition (3.25) decreases in T , such that formability becomes harder
to satisfy the larger T .

Thus, for both cases of κ = 0 and κ→ ∞, we demonstrated that sticking to the
formation phase requires higher values of δ (the condition is more strict) if ΠF,D ≥ ΠP .
Let us now analyze intermediary values of κ.

Inequality (3.24) differs from the formation incentives. Recall that the formation
condition (3.13) is

δT
(︂
ΠC − ΠF

)︂
≥ ΠP − ΠF

and thus independent of κ. For a given value of δ, the weight of the term ΠF,D is
strictly monotonically decreasing in κ, whereas the weight of ΠP is strictly monotonically
increasing in κ. Hence, the condition ΠF,D ≥ ΠP is sufficient for any κ ∈ [0, ∞) to
guarantee that condition (3.24) is tighter than condition (3.13). This implies that the
stability condition for formation is the relevant condition for general trigger strategies.

Next, we show that
ΠF,D ≥ ΠP

holds because the profit of i increases in the wholesale price of the competitor for given
beliefs due to the fact that this increases the price of the competing retailer and increases
demand for i. The profit under competition is

ΠP
(︂
wi = 0, pe

−i = pP
)︂

= pi

(︂
0, pP

)︂
⏞ ⏟⏟ ⏞

pP
i

·Di

(︂
pP , pP

)︂
.

A firm that deviates from formation plays wi = 0 because this maximizes the unilateral
spot profit. The deviation profit ΠF,D is similar to the punishment profit and only consists
of the revenue pi (·) · Di (·) . For ΠF,D, however, both the manufacturer and the retailer
expect a higher wholesale price of wC of the other manufacturer, yielding a higher price
at the competing retailer. Because profits increase in the rival’s price, ΠF,D >ΠP holds.

Finally, observe that punishment is not renegotiation-proof whenever collusion is
formable. To see this consider that the formability condition implies that is better to
jointly deviate to a new formation of collusion in any period in which punishment profits
are expected. This also implies that only in the case κ = 0, formability and renegotiation-
proof punishment are both met because punishment is not part of the strategy.

Proof of Corollary 3. The equilibrium path is always Pareto-efficient by assumption,
such that any weakly renegotiation-proof equilibrium is also strongly renegotiation-proof.
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To find the critical value of T , such that collusion is not formable, but opportunism-
proof for κ > 0, we must compare the relevant conditions. If collusion is not formable,
punishment will be renegotiation-proof. The equilibrium is thus weakly renegotiation-
proof for certain values of T . As shown in the proof of Proposition 4, the relevant condition
for formation is the condition whereby a deviation from formation is not profitable:

δT
(︂
ΠC − ΠF

)︂
≥
(︄

1 − δ

1 − δκ+1

)︄
ΠF,D − ΠF + δ

(︄
1 − δκ

1 − δκ+1

)︄
ΠP > 0.

Because δ < 1, this condition is violated for sufficiently large T , such that δT and thus
the left-hand side of the formation condition becomes arbitrarily small.

The condition for opportunism-proofness 3.15 can be written as

δT
(︂
ΠC − ΠF

)︂
≤ 1

δ

[︂
ΠC − (1 − δ) ΠJD − δΠF

]︂
.

Because for δ < 1, the left-hand side of the opportunism-proofness condition also becomes
arbitrarily small as T increases. Hence, there exists a T , such that the opportunism
condition holds, whenever the right-hand side is non-negative (which holds for sufficiently
large δ), while the formation condition is violated.

Proof of Proposition 5. We will show all results for general trigger strategies as defined
in Subsection 3.4.2, which includes grim-trigger strategies as a subcase for κ → ∞. Let
us first consider the stability condition. As argued in the text before the proposition,
manufacturers collude on the industry-maximizing level and earn profits of ΠC = ΠM/2.
If the manufacturers make a one-sided deviation from the collusive agreement, they must
consider that changing their wholesale price also influences the belief of their own retailer.
A deviating manufacturer maximizes the following problem:

wD = arg maxwi
wit · Di

(︂
pi(wit, p(wit)), p−i(wC , p(wC))

)︂
+ (pi(wit, p(wit)) − wit) · Di (pi(wit, p(wit)), p(wit))) .

This results in a profit ΠD for the deviating manufacturer. Note that wD > 0. Pun-
ishment is assumed to be carried out on the competitive wholesale price level. The
competitive benchmark corresponds to the case analyzed in Pagnozzi and Piccolo (2011).
Under symmetric beliefs, manufactures solve

max
wi

wit · Di (pi (wit, p(wit)) , p−i (w−it, p(w−it)))

+ (pi(wit, p(wit)) − wit) · Di (pi (wit, p(wit)) , p(wit)) .
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This results in ΠP . By using the envelope theorem, the first-order condition simplifies to

wi
∂Di(·)

∂pi⏞ ⏟⏟ ⏞
<0⏞ ⏟⏟ ⏞

<0

+ (p(wi, p(wi)) − wi) · ∂Di(·)
∂p−i⏞ ⏟⏟ ⏞

>0⏞ ⏟⏟ ⏞
belief effect:>0

= 0. (3.26)

Applying symmetry to equation (3.26) defines the equilibrium wholesale prices wP .
Note that the second term of (3.26) is positive at wi = 0, which implies that wP >

0. Under competition, with symmetric beliefs, prices are above the price level under
competition with passive beliefs. The stability condition is given by

ΠC

1 − δ
≥ ΠD + δ

(︄
1 − δκ

1 − δ
ΠP + δκ

1 − δ
ΠC

)︄
. (3.27)

To see why collusion is formable with symmetric beliefs, recall the definition of forma-
bility. Symmetric beliefs allow for forming collusion if there exists a strategy profile, such
that for this belief, best responses are played in period t ≥ s, and there exists a weak
PBE that results in payoff V C . Given any history before period s – the period in which
collusion is about to be formed –, manufacturers play mutually best responses in the
following periods when setting wholesale prices that result in the collusive price defined
by equation (3.3). The joint profit maximization of both manufacturers and setting wC

is a weak PBE if the stability condition for collusion – equation (3.27) – is fulfilled. In
this equilibrium, both manufacturers earn a payoff of V C = ΠC/(1 − δ). Hence, collusion
is formable according to our definition.

As in Subsection 3.4.2, it should be considered whether there exist incentives to deviate
from formation. Due to symmetric beliefs, collusion is in place directly after it is formed,
such that the condition for deviating from formation is identical to deviating from collusion
in equation (3.27).

To check whether collusion is opportunism-proof, we consider the joint maximization
problem of the manufacturers. As shown in the text, this leads to the Pareto-efficient
wholesale price level. That is, manufacturers always prefer to set wC when jointly max-
imizing. Thus, there is no scope for opportunistic behavior because the beliefs directly
react to any change in wholesale prices. Following the same argument, punishment is not
renegotiation-proof because manufacturers would prefer to renegotiate and jointly revert
to setting wC .

The competitive equilibrium is not renegotiation proof whenever a collusive equilib-
rium with higher manufacturer profits exists. Hence, if condition 3.27 holds, there exists
a Pareto-dominant equilibrium for manufacturers that can be reached by a joint deviation
of the manufacturer. With symmetric beliefs retailers are immediately willing to accept
the collusive contract expecting wholesale prices to increase in the whole industry.
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Proof of Proposition 6. If 0 < ∂wD(wC)
∂wC |wC=wD < 1 holds, then increasing wC implies

wC > wD. Then, wC > wN (by construction) implies that wD > wN . Using wC > wD, we
show that

wD > wP holds: Note that wD > wP ⇔ pe > p∗(wP , pe)⇔wP < wC . The last
inequality follows again from the argument that starting at wC = wN , increasing wC

implies by ∂wP (wC)
∂wC < 1 that wC > wN implies wC > wP . Hence, wC > wP implies that

wD > wP must hold.
Rewrite condition (3.17) as

2ΠC − ΠP − ΠD > 0.

This can be rewritten to
∫︂ wc

wp
wD(p∗(w, pe), p∗(w, pe))dw +

∫︂ wc

wD
wD(p∗(w, pe), pe)dw

=
∫︂ wD

wp
wD(p∗(w, pe), p∗(w, pe))dw +

∫︂ wc

wD
w [D(p∗(w, pe), pe) + D(p∗(w, pe), pe)] dw.

(3.28)
Note 2ΠC −ΠP −ΠD = 0 holds at wC = wN . Thus if, at this locus, the derivative of (3.28)
with respect to wC is positive, then the stability condition holds for some wC > wNand
some δ < 1. Thus, there is a collusive equilibrium if, at wC = wN ,

∂

(︄∫︂ wD

wp
wD(p∗(w, pe), p∗(w, pe))dw +

∫︂ wc

wD
w [D(p∗(w, pe), pe) + D(p∗(w, pe), pe)] dw

)︄
/∂wC > 0.

Note that, at wC = wN , it holds that wD = wP = wN = wC . By Leibniz integral rule we
have

∂

(︄∫︂ wD

wp
wD(p∗(w, pe), p∗(w, pe))dw +

∫︂ wc

wD
w [D(p∗(w, pe), pe) + D(p∗(w, pe), pe)] dw

)︄
/∂wC

= wDD(p∗(wD, pe), p∗(wD, pe))wD ′ − wP D(p∗(wP , pe), p∗(wP , pe))wP ′

+
∫︂ wD

wp
[wD(p∗(w, pe), p∗(w, pe))]′ dw + wC

[︂
D(p∗(wC , pe), pe) + D(p∗(wC , pe), pe)

]︂
−wD

[︂
D(p∗(wD, pe), pe) + D(p∗(wD, pe), pe)

]︂
wD ′ +

∫︂ wc

wD
[w [D(p∗(w, pe), pe) + D(p∗(w, pe), pe)]]′ dw
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Evaluation the derivative at wD = wP = wN = wC = w∗ yields

wDD(p∗(wD, pe), p∗(wD, pe))wD ′ − wP D(p∗(wP , pe), p∗(wP , pe))wP ′

+
∫︂ wD

wp
[wD(p∗(w, pe), p∗(w, pe))]′ dw⏞ ⏟⏟ ⏞

=0

+wC
[︂
D(p∗(wC , pe), pe) + D(p∗(wC , pe), pe)

]︂

−wD
[︂
D(p∗(wD, pe), pe) + D(p∗(wD, pe), pe)

]︂
wD ′ +

∫︂ wc

wD
[w [D(p∗(w, pe), pe) + D(p∗(w, pe), pe)]]′ dw⏞ ⏟⏟ ⏞

=0

.

Define D∗ = D(p∗(w∗, pe), p∗(w∗, pe)) = D(p∗(w∗, pe), pe) with p∗(w∗, pe) = pe. The above
expression can then be rewritten as

w∗D(p∗(w∗, pe), p∗(w∗, pe))(wD ′ − wP ′)+

w∗ [D(p∗(w∗, pe), pe) + D(p∗(w∗, pe), pe)] (1 − wD ′)

= w∗D∗(2 − wD ′ − wP ′).

As w∗D∗ > 0, this is larger than zero if and only if

wD ′ + wP ′ < 2,

where wD ′ = ∂wD(wC)
∂wC |wD=wC . This holds if wD ′ < 1 and wP ′ < 1, which holds by

Assumption 6.
Formability requires that the wPBE can be reached from an arbitrary history through

a sequentially rational transition. For the collusive wPBE, the system of beliefs in this
case is simply that, starting in period t0, the beliefs are constant in wC for both retailers.
Thus, if the stability condition for collusion holds, collusion is a wPBE of the continuation
game starting in period t0 (there is no transition required).
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