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Abstract 

Background We study the classical problem of inferring ancestral genomes from a set of extant genomes 
under a given phylogeny, known as the Small Parsimony Problem (SPP). Genomes are represented as sequences of ori-
ented markers, organized in one or more linear or circular chromosomes. Any marker may appear in several copies, 
without restriction on orientation or genomic location, known as the natural genomes model. Evolutionary events 
along the branches of the phylogeny encompass large scale rearrangements, including segmental inversions, trans-
locations, gain and loss (DCJ-indel model). Even under simpler rearrangement models, such as the classical break-
point model without duplicates, the SPP is computationally intractable. Nevertheless, the SPP for natural genomes 
under the DCJ-indel model has been studied recently, with limited success.

Methods Building on prior work, we present a highly optimized ILP that is able to solve the SPP for sufficiently small 
phylogenies and gene families. A notable improvement w.r.t. the previous result is an optimized way of handling 
both circular and linear chromosomes. This is especially relevant to the SPP, since the chromosomal structure of ances-
tral genomes is unknown and the solution space for this chromosomal structure is typically large.

Results We benchmark our method on simulated and real data. On simulated phylogenies we observe a consider-
able performance improvement on problems that include linear chromosomes. And even when the ground truth 
contains only one circular chromosome per genome, our method outperforms its predecessor due to its optimized 
handling of the solution space. The practical advantage becomes also visible in an analysis of seven Anopheles taxa.

Keywords Genome rearrangement, Ancestral reconstruction, Small parsimony, Integer linear programming, Double-
cut-and-join

Introduction
The Small Parsimony Problem (SPP) is a general opti-
mization problem in phylogenetics that aims at anno-
tating the internal vertices of a given phylogenetic tree 
T = (V ,E) whose leaves are already annotated, such that 
the total tree distance dT =

∑

(A,B)∈E d(A,B) is mini-
mized. Here, d(A, B) is a function returning the distance 
between the annotations of any two vertices A and B of 
the phylogenetic tree. Traditional tree annotations may 
be DNA or protein sequences, while more recently, with 
the emergence of phylogenomic studies, also complete 
genomes, often in form of so-called marker sequences 
may be used.

*Correspondence:
Daniel Doerr
daniel.doerr@hhu.de
1 Faculty of Technology, Bielefeld University, Universitätsstraße 25, 
33615 Bielefeld, NRW, Germany
2 Center for Biotechnology (CeBiTec), Bielefeld University, 
Universitätsstraße 25, 33615 Bielefeld, NRW, Germany
3 Department for Endocrinology and Diabetology, Medical Faculty, 
Heinrich Heine University Düsseldorf, University Hospital Düsseldorf, 
Moorenstr. 5, 40225 Düsseldorf, NRW, Germany
4 German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research 
Germany, Auf’m Hennekamp 65, 40225 Düsseldorf, NRW, Germany
5 Center for Digital Medicine, Heinrich Heine University Düsseldorf, 
Moorenstr. 5, 40225 Düsseldorf, NRW, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00279-5&domain=pdf


Page 2 of 14Bohnenkämper et al. Algorithms for Molecular Biology           (2025) 20:10 

Distance functions for marker sequences usually con-
sider rearrangements and content-modifying operations 
on the elements of the sequences. A useful general-
purpose distance in genome rearrangement is based on 
the DCJ-indel model. Conceived by Braga et al. [1] as an 
extension of the Double-Cut-and-Join model by Yanco-
poulos et  al. [2], operations in the DCJ-indel model are 
either genomic rearrangements, modeled by a double cut 
and subsequent joining of the so created ends (DCJ), or 
segmental gains and losses of arbitrary length (indels).

When each marker occurs not more than once per 
genome, calculating the DCJ-indel distance between two 
genomes is polynomial [1]. However, on genomes with 
unrestricted distributions of markers, also called natural 
genomes, calculating the DCJ-indel distance is NP-hard. 
Nonetheless, efficient ILP solutions exist, such as ding 
[3].

The first attempt to generalize this method from the 
pairwise genomic distance to the phylogenomic SPP 
under the DCJ-indel model was an ILP by Doerr and 
Chauve [4], called SPP-DCJ. They did so by solving a 
generalized problem, in which – as a result of some pre-
processing – adjacencies in ancestral genomes could 
be absent or present, and in the latter case they may be 
assigned a weight that would be taken into consideration 
during optimization. One major issue in this generaliza-
tion was ding’s use of caps, telomeric markers that need 
to be matched during optimization and for which the 
solution space is superexponential [5]. Doerr and Chauve 
went to great lengths to limit the effect of this additional 
solution space, but were ultimately not able to completely 
remove it from their solution.

The ILP solution presented in this manuscript com-
bines a recent reformulation of the DCJ-indel model that 
allows one to forego the matching of caps [6] with the 
basic modeling of SPP pioneered by SPP-DCJ. We addi-
tionally resolve another issue described in [4], which is 
the dependence of SPP-DCJ on previously known candi-
dates for circular singletons, for each of which SPP-DCJ 
creates a number of constraints and variables. Since the 
number of circular singleton candidates in the worst case 
is exponential in the number of non-telomeric extremi-
ties, the worst case size of SPP-DCJ is exponential as well. 
While this problem may be less relevant when given few, 
refined candidate adjacencies for ancestors, our ILP is 
the first to solve the SPP for natural genomes under the 

DCJ-indel model while remaining of polynomial size 
w.r.t. any input data.

In practice, SPP, also known as small phylogeny prob-
lem, is central to many methods for ancestral genome 
reconstruction [7]. For instance, SPP-DCJ [4] is part of 
the AGO framework [8]. Other methods, such as GASTS 
[9] and MGRA [10] approach SPP by iteratively con-
structing median genomes. The genome median prob-
lem asks to construct one ancestral genome to n ≥ 3 
given genomes, a nevertheless NP-hard problem for 
which these and most other methods resort to heuristic 
or approximate solutions [9–11]. Algorithmic innova-
tions based on ILPs [3, 6, 12] made it possible to compute 
exact solutions in practical applications. For instance, 
Frolova et al. [13] employ DING [3] in the calculation of 
pairwise DCJ indel distances to study phylogenetic rela-
tionships of pathogenic plasmids.

The remainder of the manuscript is organized as fol-
lows. In Section "Preliminaries", we give basic definitions 
and previous results needed to derive our algorithm. In 
Section "A new method", we explain the fundamental fea-
tures of our method (Subsections  "Capping-free model" 
and  "On linearizability") before presenting the ILP in 
Subsection "A new ILP formulation" and detailing further 
methods of pre-processing to tighten the solution space 
in Subsection  "Pre-processing". We evaluate the perfor-
mance of our method in Section "Evaluation" and discuss 
our overall findings in Section "Discussion".

Preliminaries
For the purposes of this work, we use the abstraction 
to describe genomes as sequences of oriented markers. 
A (genomic) marker g = (g t, gh) is a universally unique 
entity consisting of marker extremities tail of g, denoted 
by g t , and head of g, denoted by gh.

The structure of a genome can be described via its adja-
cencies. An adjacency {f x, gy} (with x, y ∈ {t, h} ) describes 
that markers f and g are neighbors on the same chromo-
some and oriented, such that extremities f x and gy are 
adjacent. For ease of notation we also write f xgy for an 
adjacency. Note that adjacencies can be read in either 
direction, i.e. gyf x is the same as f xgy.

For the sake of a simpler formulation of the theory, we 
aim for each extremity to be part of some adjacency. In 

Fig. 1 A genome of five markers 11 , 12 , 21 , 31 , 41 on a single linear chromosome
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order to accomplish this, we use additional extremities 
modeling the ends of linear chromosomes, called telom-
eres. A telomere t◦ is a universally unique entity encom-
passing a single telomeric extremity denoted by “ ◦ ”. A 
genome can then be described as a graph as follows.

Definition 1 A genome A is a graph with verti-
ces E(A) ∪ T (A) , namely its marker extremities E(A) 
and telomeric extremities T (A) . The set of edges is 
M(A) ∪A(A) , namely its marker edges M(A) and 
adjacency edges A(A) . This graph fulfills the following 
properties: 

1. M(A) is a perfect matching on E(A) with 
M(A) = {{mt ,mh} | ∀mt ,mh ∈ E(A)} , and

2. A(A) is a perfect matching on E(A) ∪ T (A).

An example of a genome is given in Fig. 1.
Because each marker is universally unique, in order 

to compare genomes we need to establish which mark-
ers are homologous. We model homology as an equiva-
lence relation ( ≡ ), that is ma ≡ mb for some markers 
ma ∈ M(A) , mb ∈ M(B) and genomes A,B . Note that 
this includes the case A = B , i.e. there can be homolo-
gous markers in the same genome (in-paralogs). The 
equivalence class of a marker m, denoted by [m], is called 
its family. If a marker m exists in A , but has no equivalent 
in B or vice versa, we refer to m as singular w.r.t. A,B.

Given the equivalence relation on markers, one can eas-
ily derive an equivalence relation on extremities, namely 
mt

a ≡ mt
b and mh

a ≡ mh
b if and only if ma ≡ mb . For this 

derived equivalence we have mh
a  ≡ mt

b for all ma,mb . We 
call extremities singular if and only if their corresponding 
marker is singular. One can visualize such an equivalence 
relation for two genomes A,B using the Capping-Free 
Multi-Relational Diagram as defined in Definition 2.

Definition 2 Given two genomes A,B 
and a homology ( ≡ ), the Capping-Free 

Multi-Relational Diagram (CFMRD) is a graph 
CFMRD(A,B,≡) = (E ∪ T ,Eadj ∪ Eself ∪ Eext) 
with E = E(A) ∪ E(B) , T = T (A) ∪ T (B) , adja-
cency edges Eadj = A(A) ∪A(B) , self edges 
Eself = {m ∈ M(A) ∪M(B) | m singular w.r.t. A,B} 
and extremity edges 
Eext = {{u, v} | u ∈ E(A), v ∈ E(B),u ≡ v}.

An example of a genome is given in Fig. 2.
An established way to compare two genomes on a 

structural level is the rearrangement distance. The rear-
rangement distance of two genomes A,B is defined as 
the minimum number of operations needed to trans-
form A into B with operations restricted to a certain 
model (such as DCJ-indel). When ( ≡ ) maps each marker 
of genome A to at most one marker of genome B , calcu-
lating the rearrangement distance between A and B is 
typically easy. We refer to such a homology as resolved. 
More formally, a homology is resolved if for each genome 
A and marker m ∈ M(A) the family of m contains only 
itself, i.e. [m] ∩M(A) = {m} . On these homologies, 
CFMRD(A,B,≡) consists only of simple cycles and 
simple paths. An example of a CFMRD on a resolved 
homology is shown in Fig. 3.

With a resolved homology, the DCJ-indel distance 
can be calculated easily by just counting different types 
of components in the CFMRD. For the purpose of this 
counting, we ignore self edges. We write c for the num-
ber of cycles and pab (resp. paa , resp. pbb ) for the num-
ber of paths that start in A and end in B (resp. start in 
A and end in A , resp. start in B and end in B ). Since the 
graph is undirected, we canonize their labels by reading 
paths from A to B . When the vertex the path starts or 
ends in is a telomere of A (resp. B ), we write A (resp. B) 
in uppercase. When the path ends because the only way 
to continue it would be a self edge (note that we ignore 
self edges here), we write a (resp. b) in lowercase. When 
a path starts and ends in the same genome, we read it 
from telomere to singular extremity (note that in all other 
cases, the label is symmetric).

Fig. 2 Capping-Free Multi-Relational Diagram for two genomes on an unresolved homology ( ≡1 ) with families {11, 12, 13, 14}, 
{21, 22}, {31, 32}, {41}, {51}.
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For example, the CFMRD of Fig. 3 has c = 2 , pAB = 1 
(path t◦, 1t1, 1

t
3, t

◦ ), pab = 1 (path 4t1, 2
h
1, 2

h
2, 5

t
1 ), paB = 1 

(path 4h1 , 3
h
1, 3

h
2, t

◦ ) and pAb = 1 (path t◦, 3t1, 3
t
2, 5

h
1).

There is one case, in which we need to consider self 
edges, namely circular singletons. Circular singletons 
are cycles that consist only of adjacency and self edges. 
We denote their number by s. For a more in-depth 
explanation of these terms, the interested reader is 
referred to [6]. Using these terms, the following for-
mula can be used.

Theorem 1

(adapted from [6]) For two genomes A,B and a resolved 
homology ( ⋆≡ ), the DCJ-indel distance is

with n the number of matched markers, 
n = |{(ma,mb) ∈ M(A)×M(B) | ma

⋆
≡mb}|.

This formula holds because it is equivalent to previ-
ously proven distance formulas under the DCJ-indel 
model, however it can also be derived independently. 
Details are explained in [6]. To paraphrase the results 
there, it is shown that two genomes are equal if and only 
if their CFMRD consists of only c cycles and pAB paths 
between telomeres of both genomes with n = c +

pAB
2  . 

Additionally, for each DCJ or indel operation the formula 
of Theorem 1 changes by at most 1. These two facts com-
bined yield the formula as a lower bound. Additionally 
[6] contains an algorithm transforming A into B using 
DCJ and indel operations that is able to reach this lower 
bound, proving it is a formula for the rearrangement dis-
tance under the DCJ-indel model.

When the homology is not resolved, we need to refine 
the homology to be resolved. We call such a refinement 

d̄DCJ−ID(A,B,
⋆
≡) = n− c +

⌈

pab +max(pAa, paB)+max(pAb, pBb)− pAB

2

⌉

+ s

a matching. More formally, a matching ( ⋆≡ ) on ( ≡ ) is a 
resolved homology, such that ma

⋆
≡mb =⇒ ma ≡ mb.

Since allowing for arbitrary matchings can lead to an 
excess of indels in the sorting scenario, we restrict our-
selves to the maximum matching model. A matching (+≡) 
is maximum w.r.t. A,B if a maximum amount of markers 
in A has a homolog in B and vice versa.

Definition 3 Given homology ( ≡ ), the DCJ-indel dis-
tance between A and B under the maximum matching 
model is

When reconstructing a phylogeny, only extant genomes 
are known, that is, there is no definitive information 
about the adjacencies at the inner nodes. In order to cap-

ture this uncertainty, a typical approach is to generate a 
large set of candidate adjacencies at each inner node that 
very likely will include the correct ones. Such a set can 
be viewed as a degenerate genome, which however may 
contain multiple conflicting adjacencies, such as ab and 
ac with b  = c . (In a normal genome this cannot occur, as 
the matching requirement ensures that there is only one 
adjacency that involves a.) More formally, a degenerate 
genome D is a graph (E(D) ∪ T (D),M(D) ∪A(D)) that 
fulfills only Property 1 of Definition 1.

All possible ancestors at a certain node in the phylog-
eny are then built from disambiguations of these con-
flicting adjacencies. We call these possible ancestors 
linearizations. A linearization of a degenerate genome 
D is a genome A , such that E(A) = E(D) , T (A) ⊆ T (D) , 
M(A) = M(D) and A(A) ⊆ A(D) . If such a linearization 
exists, we call D linearizable. We give an example of a lin-
earizable degenerate genome and one of its linearizations 

dDCJ−ID(A,B,≡) = min
(
+
≡) maximum matching on (≡)

d̄DCJ−ID(A,B,
+
≡).

Fig. 3 Acrshort*cfmrd for the two genomes of Fig. 2 on a resolved homology ( ≡2 ) with families {11, 13} , {12, 14} , {21, 22} , {31, 32} , {41} , {51} . Note 
that ( ≡2 ) is a matching on ( ≡1)
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in Fig.  4. Note that each genome is also a degenerate 
genome with precisely one linearization, namely itself.

We can then formulate the problem we are consider-
ing in this paper as finding linearizations of all (degener-
ate) genomes in the phylogeny, such that the sum of all 
DCJ-indel distances in the tree is minimized. Optionally, 
we also allow to put weights on the adjacencies and take 
these into account during the minimization.

Problem 1

(Weighted Small Parsimony Linearization Problem) 
Given a phylogeny T = (V ,E) , a homology ( ≡ ), a weight-
ing function w for adjacencies, and a parameter α ∈ [0, 1] , 
find a linearization Li for each (degenerate) genome Di in 
T, such that

is minimized.

Because the pairwise comparison of (non-degenerate) 
natural genomes is already NP-hard, the Weighted Small 
Parsimony Linearization Problem is NP-hard as well. 
Doerr and Chauve’s algorithm SPP-DCJ, which solves 
Problem  1, is therefore formulated as an ILP. Thus, we 
formulate our improved algorithm in Section  3.3 as an 
ILP as well.

A new method
Capping‑free model
The previous solution by Doerr and Chauve [4] was based 
on a different graph structure, namely the Capped Multi-
Relational Diagram (CMRD).. The CMRD differs from 
the CFMRD in the way it treats telomeres. In the CMRD 
of two genomes A and B there exist additional extremity 
edges between each telomere of A and each telomere of 
B , leading to additional |T (A)| · |T (B)| extremity edges.

When calculating the DCJ-indel distance using the 
CMRD, one must not only determine the resolved 
homology, but also a matching between telomeres, that 
is, on T (A)× T (B) . As identified in [5], this leads to a 
superexponential increase of the solution space. As our 
new method is based on the CFMRD, we can use the 

(1)

�

(Di ,Dk )∈E



α dDCJ−ID(Li ,Lk ,≡) + (α − 1)
�

ab∈A(Li)∪A(Lk )

w(ab)





formula of Theorem 1 and thus avoid such an increase in 
the solution space.

On linearizability
It is vital for our method that the degenerate genomes in 
the phylogeny are linearizable (see Problem 1). However, 
not all degenerate genomes are linearizable (see Fig.  5). 
Moreover, not all methods used to infer candidate adja-
cencies for ancestors guarantee this requirement. In par-
ticular DeCoSTAR [14], a method for inferring ancestral 
genomes that is integrated together with SPP-DCJ into a 
larger reconstruction workflow detailed in [8], generates 
conflicting ancestral adjacencies.

As far as we are aware, no algorithms testing for line-
arizability in polynomial time exist as of yet. However, we 
give an algorithm here that is able to generate a lineariza-
tion if one exists, by proxy solving the testing problem.

Recall that T (D) are the telomeres and E(D) are the 
extremities of a degenerate genome D . We are interested 
in finding a matching M on the adjacencies A(D) of D , 
such that each extremity is part of exactly one edge in 
M. This is equivalent to the linearization problem as any 
telomeres not part of the matching can then be removed 
and one obtains a genome.

To see how we are able to determine such a matching, 
consider the weight function w that assigns to each adja-
cency edge {u, v} ∈ A(D) the number of extremities inci-
dent to it: w({u, v}) = |{u, v} ∩ E(D)|.

Lemma 1

D is linearizable if and only if a maximum weight match-
ing M on the weighted graph 

(

T (D) ∪ E(D),A(D),w
)

 has 
total weight |E(D)|.

Proof
Note that there are no edges {u, v} with both u, v ∈ T (D).

Assume a matching MS that covers the subset 
S ⊆ E(D) . We further subdivide S into the disjoint sets 
S1 and S2 . S1 contains all vertices v ∈ S that are matched 
with a telomere, that is (v,u) ∈ MS with u ∈ T (D) . S2 
contains the vertices that are matched with another 

Fig. 4 Left: A degenerate genome. Right: A linearization of it

Fig. 5 Left: This degenerate genome is not linearizable 
because of missing telomeres. Right: The genome becomes 
linearizable when adding telomeres. One linearization is that of Fig. 4
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extremity (note that for v ∈ S2 and (v,u) ∈ MS follows 
u ∈ S2 ). Since there are no edges between telomeres 
directly, the total weight of MS is

We thus see that a matching has weight k if and only if it 
covers a subset of E(D) of size k. The claim of the lemma 
follows by noting that a matching can have at most 
weight |E(D)| and that if such a matching ME exists, we 
can use ME as the adjacencies of the linearization of D .  
 �

Using Lemma 1, we can either find that there is no lin-
earization or determine one using a standard maximum 
weight matching algorithm for any degenerate genome D.

While we can test whether genomes are linearizable 
using this maximum weight matching algorithm, previ-
ous versions of SPP-DCJ modified the given degenerate 
genomes by adding telomeres, such that they are guar-
anteed to be linearizable, which may still be desirable on 
noisy data (see Subsection 3.2.2). We detail these meth-
ods briefly in the following subsections.

Local guarantees
The first method of guaranteeing linearizability relies on 
the following lemma.

Lemma 2

A perfect matching M ⊆ A(D) in a degenerate genome 
D = (E(D) ∪ T (D),M(D) ∪A(D)) corresponds to a lin-
earization of D.

Proof
Observe that in the M-induced degenerate genome 
D
′ = (E(D) ∪ T (D),M(D) ∪M) each node is incident to 

exactly one adjacency edge. Further each connected com-
ponent corresponds to a linear component where both 
degree-one nodes correspond to telomeres, or a circular 
component where each node corresponds to a marker 
extremity.   �

However, the converse is not true: Since not all telom-
eric extremities must be covered, D may still be lineariz-
able even if no perfect matching may be derived from D.

∑

{u,v}∈MS

w({u, v}) =
∑

{u,v}∈MS ,u or v∈S1

w({u, v})+
∑

{u,v}∈MS ,u,v∈S2

w({u, v})

= |S1| + 2
|S2|

2
= |S|

In an earlier version of SPP-DCJ [4], a simple approach 
was introduced that complements each degenerate genome 
D with additional telomeres and telomeric adjacencies to 
ensure linearizability. To this end, D is decomposed into 

connected components that are independently tested. If the 
size of a component, i.e., the number of its vertices, is even, 
and it is either linear, circular, or fully connected, then it is 
considered as locally linearizable. Otherwise, each extrem-
ity v of the component is complemented with a telomere tv , 
and a telomeric adjacency {v, tv} is added to the degenerate 
genome, ensuring that it is linearizable as a whole.

Allowing each extremity to be connected to a telomere
Given the uncertainty about inferred ancestral adjacen-
cies, even when a component is locally linearizable, 
individual adjacencies of that component might still be 
wrongly inferred by the pre-processing and thus might be 
erroneously included in the linearization, simply because 
otherwise a linearization might not be possible.

In order to prevent this behavior, we offer a mode in 
which each extremity is connected to an (artificially 
introduced) telomere to reflect this uncertainty. In con-
trast to the method described above, we do this even in 
components with local guarantees.

This approach was previously practically unsound 
because of inefficient handling of telomeres. Now it may 
become the standard mode of operation, as it allows to 
find reasonable solutions in case of noisy input data, 
while the computational overhead introduced by the 
addition of the artificial telomeres remains moderate. We 
refer to this mode as the safer linearization mode in sub-
sequent sections.

A new ILP formulation
Algorithm 1 gives an overview of our method with addi-
tional tables detailing parts of the ILP.

In principle, our algorithm solves Problem  1 in the 
same way as SPP-DCJ [4], namely it determines lineari-
zations while simultaneously computing the distances 
between nodes in the phylogeny with the objective of 
minimizing the total distance. However, for ease of read-
ability, we separate the linearization and distance compu-
tation into two different subsections.

On the global level, the linearizations Li are derived 
for each (degenerate) genome Di . On the local level, the 
resulting linearizations are compared to each other along 
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the branches of the phylogeny. Each branch gives rise to 
a pairwise comparison by means of the CFMRD. In doing 
so, the selection of adjacencies of a derived genome is 
propagated from across CFMRDs, thus ensuring global 
consistency.

The main differences between our algorithm and that 
in [4] are found in the local level, as this is where the 
CFMRD plays a role.

Global level
The global level deals with the setting of adjacencies or 
telomeres of (ancestral) genomes. For each (marker or 
telomeric) extremity v, we determine its presence or 
absence with a binary variable gv . For markers, the head 
extremity is present if and only if the tail extremity is 
(see Constraint C.01). Since there is often uncertainty 
about the precise copy number of markers in ancestral 
genomes, we allow user-determined bounds (LAF ,H

A

F ) 
for the number of markers in each family F in ancestral 
genome A (C.02). If not specified, these bounds default 
to the maximum, requiring each marker to occur, that is 
they collapse to

Each extremity present is then required to be part of 
exactly one (possibly telomeric) adjacency (C.03), which 
ensures a properly linearized genome.

Local level
The local level deals with each edge of the tree separately, 
making use of the CFMRD of the corresponding genome 
pair. Since this part is entirely local to the edge in ques-
tion, we presume that each vertex vi of the CFMRD has 
a unique identifier among all other CFMRDs , making all 
its variables globally unique. In order to limit the range of 
the general variable yvi , we also assign each vertex a rank 
i that is local and unique only within the specific CFMRD 
. We map each extremity to its identifier for the global 
level by the function γ.

In order to compute decompositions of CFMRDs, we 
make use of a capping-free formulation for the com-
putation of the pairwise DCJ indel distance derived in 
[6]. This formulation is based on the distance formula 
found in Theorem 1.

(C.01A) gv = 1 v ∈ {mt ,mh} form ∈ M with LA[m] = HA

[m] = |[m] ∩M|.

The formulation counts cycles cE as well as the six 
different types of paths relevant to Theorem 1, namely 
pab,pAa,paB,pAb,pBb,pAB . Each counting variable pX 
is set by summing up binary report variables rXv  that 
are set to 1 once per component on a specific vertex v 
(see Constraints C.09 to C.13 and C.18). These counters 
are then combined to the terms of the formula in Con-
straints C.14 to C.17 and C.04 to C.08. The constraints 
for ensuring the reporting variables being set cor-
rectly can be found in Tables 1, 2 and 3. For a complete 
description of this part of the ILP the interested reader 
is referred to [6].

We make only few major changes in our local sec-
tion w.r.t. the ILP described in [6]. Firstly, we deter-
mine whether an adjacency edge e is set ( xe = 1 ) by 
“inheriting” this value from the linearization gener-
ated in the global section (see C.21) of the correspond-
ing adjacency. Secondly, we allow only vertices that are 
part of the linearized genome ( gv = 1 ) to contribute 
to the count of components that decrease the formula 
( zv = 1 ), see C.22. To enforce the Maximum matching 
model, for any family we allow self edges only in one of 

the two genomes (C.23). If it is clear from the bounds, 
in which genome the family will be overrepresented, 
the self edges in the underrepresented genome can be 
removed and the constraint can be dropped.

Due to the fact that ancestral genomes may be degen-
erate, the number of possible circular singletons can be 
as large as the number of possible circular chromo-
somes. Listing all candidates, such as is done in [6] and 
in SPP-DCJ [4], leads to a combinatorial explosion on 
certain input data. Particularly, when all possible adja-
cencies are present in the degenerate genome, any non-
empty subset of singular markers can form a circular 
singleton. A lower bound on the number of candidates 

is therefore 
∑|Eself|

i=1

(

|Eself|
i

)

= 2|Eself| − 1 . To avoid an 

exponential worst case size of our ILP, we use a new 

Table 1 Shao-Lin-Moret constraints [12]

(C.27) xe = xd for all sibling edges e, d

(C.28) yvi + j(1− xuj vi ) ≥ yuj ∀ujvi ∈ Eadj ∪ Eext

j(1− xuj vi ) ≥ yuj ∀ujvi ∈ Eself

(C.29) izvi ≤ yvi ∀v ∈ E ∪ T

Table 2 Reporting for regular vertices

(C.30) lv ≤ 1− xuv ∀uv ∈ Eself , u ∈ E(A)

lv ≥ xuv ∀uv ∈ Eself , u ∈ E(B)

(C.31) lv ≤ lu + (1− xuv) ∀uv ∈ Eext

lu ≤ lv + rab
uv + (1− xuv) ∀uv ∈ Eadj , u ∈ E(A)

lu ≤ lv + (1− xuv) ∀uv ∈ Eadj , u ∈ E(B)

(C.32) rcv ≤ zv ∀v ∈ E(A)

(C.33) rabu ≤ xuv ∀uv ∈ Eself , u ∈ E(A)
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technique for counting circular singletons without list-
ing all candidates when the number of candidates is 
larger than a given (polynomial) threshold, which we 
arbitrarily set at twice the number of self edges. The 
constraints for this technique are listed in Table 4 and 
described in the following.

Algorithm 1 Capping-free Small Parsimony

 

A circular singleton manifests in the graph as a cycle 
of alternating adjacency and indel edges. The idea of 
the technique is to have a general integer variable w that 
is required to increase at each adjacency edge in a walk 
of the cycle. There must then be one point in the walk 
in which it decreases again. Detecting this, one can 
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then report a circular singleton. For this to work, the 
walk needs a direction. This is accomplished by anno-
tating the vertices with a binary variable dv that “flips” 
across each pair of connected vertices (see C.24). We 
then require w to be the same for vertices connected by 
an indel edge (see C.25) and for it to increase by 1 in 
the direction of the vertex that has dv = 1 (see C.26). 
We require this except when vertices are not con-
nected ( 1− xuv = 0 ) or when reporting a circular sin-
gleton ( rsu = 1 or rsv = 1 ). In this case, the constraint is 
automatically fulfilled by adding the maximum length 
of circular singletons K to the left hand side of the 
inequation.

Size of the ILP
For each CFMRD , the local level of the ILP assigns a 
constant number of variables to each vertex and edge 
(see Table  6). Additionally there is a constant number 
of constraints associated with each vertex and edge (see 
Tables  1, 2, 3, 4). For each edge in the phylogeny, there 
is a constant number of constraints and variables per 
edge or vertex in the global level (see C.01 to C.03 and 
Table  5 respectively). The size of the ILP is thus linear 
with respect to the total size of all CFMRDs of the tree.

Pre‑processing
We provide two pre-processing options aimed at reduc-
ing the solution space. Firstly, we give the option to 
calculate an initial solution the solver starts with – guar-
anteeing that an approximate solution will be found, but 
also providing an immediate upper bound on the prob-
lem. The algorithm to compute such a solution proceeds 
in two steps, corresponding to the global and local level 
of the ILP respectively. In the first step, the algorithm 
determines linearizations for all ancestral genomes 
using the algorithm described in Section 3.2, taking into 
account the weights of the adjacencies. As a second step, 
decompositions for each CFMRD are determined by 
greedily fixing cycles in order of ascending length in the 
graph.

The second option for pre-processing allows us to 
bound the solution from below by using knowledge not 
available to the solver. To see how this method works, 
consider two genomes A,B and a degenerate genome D . 
Transforming A into a linearization of D and this lineari-
zation into B must use at least as many DCJ- and indel-
operations as transforming A into B via any intermediate 
genome C with the same copy-numbers of families as 
D . This idea can be generalized to multiple intermediate 
genomes. Thus, by precomputing the distance d(A,B) 
between leaves using ding [6] while taking into account 
the number of occurrences per family, we can derive the 
following additional global constraint:

Table 3 Reporting for telomeres

(C.34) lv = 0 ∀v ∈ T (A)

lv = 1 ∀v ∈ T (B)

(C.35) lu ≤ lv + rAB
v + rAb

v + (1− xuv) ∀uv ∈ Eadj, v ∈ T (A)

lu ≤ lv + raB
u + (1− xuv) ∀uv ∈ Eadj, u ∈ T (B)

(C.36) rABv ≤ zv ∀v ∈ T (A)

(c.37) 1− yv ≤ rAb
v + rAa

v
v ∈ T (A)

1− yv ≤ raB
v + rBb

v
v ∈ T (B)

(C.38) yvi ≤ i(1− rRv ) v ∈ T (A), R ∈ {Ab, Aa}

yvi ≤ i(1− rR
v ) v ∈ T (B), R ∈ {aB, Bb}

(C.39) rABv ≤ lu + (1− xuv) ∀uv ∈ Eadj, v ∈ T (A)

rAbv ≤ lu + (1− xuv) ∀uv ∈ Eadj, v ∈ T (A)

raBv ≤ 1− lu + (1− xuv) ∀uv ∈ Eadj, v ∈ T (B)

Table 4 Reporting circular singletons

(C.24) du + dv + xuv ≤ 2 ∀uv ∈ Eadj ∪ Eself

du + dv − xuv ≥ 0 ∀uv ∈ Eadj ∪ Eself

(C.25) wu = wv ∀uv ∈ Eself

(C.26) K(1− xuv + rs
u + rs

v)+ wv ≥ wu + dv − du ∀uv ∈ Eadj

Table 5 Domains - global level

(D.01) gv ∈ {0, 1} for each genome X , 
∀v ∈ E(X) ∪ T (X)

(D.02) fE ,nE ,cE ,sE ∈ N0 ∀E ∈ E(T )

(D.03) p
xy
E , pmax a

E , pmax b
E ∈ N0 ∀E ∈ E(T ) ∀x , y ∈ {A, B, a, b}, x �= y

(D.04) qE ∈ Z ∀E ∈ E(T )

(D.05) wE ∈ R ∀E ∈ E(T )

Table 6 Domains - local level. For each edge (A,B) ∈ E(T ) with 
CFMRD(A,B) = (E ∪ T , Eall) with Eall = Eadj ∪ Eext ∪ Eself:

(D.06) xe ∈ {0, 1} ∀e ∈ Eall

(D.07) yvi ∈ {0, ..., i} vi ∈ E ∪ T

(D.08) zv , lv ∈ {0, 1} v ∈ E ∪ T

(D.09) dv ∈ {0, 1} v ∈ E

(D.10) wv ∈ N0 v ∈ E

(D.11) rabv ∈ {0, 1} ∀v ∈ E(A)

(D.12) rAav , rAbv , rABv ∈ {0, 1} ∀v ∈ T (A)

(D.13) raBv , rBbv ∈ {0, 1} ∀v ∈ T (B)

(D.14) bf ∈ {0, 1} for each family f
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Evaluation
We implemented Algorithm 1 and made it publicly avail-
able1. We refer to this algorithm as SPP-DCJ-v2 in the fol-
lowing. We performed a number of different experiments 
evaluating the solving time under different conditions as 
compared to SPP-DCJ as well as precision and recall for 
the safer linearization mode.

While solving the same problem, SPP-DCJ adds 
another parameter β to the optimization which gives fur-
ther negative weight to telomeres. In short, the optimiza-
tion function of SPP-DCJ is equivalent to the form
Minimize

We can simulate this behavior in our ILP by decreasing 
the assigned weight of telomeric adjacencies and by using 
a re-scaled α.

When comparing to SPP-DCJ, we thus used default set-
tings for SPP-DCJ with α′ = 1

2 , β
′ = 1

4 . This corresponds 
in our ILP to α = 2

3 and reducing the weight of each tel-
omeric adjacency by 1, so we used these parameters for 
SPP-DCJ-v2 when comparing to SPP-DCJ.

We used gurobi version 12.0.0 on a single thread and 
with a time limit of 1 hour (3600 seconds) to solve the 
ILPs unless specified otherwise.

Performance on linear genomes
In order to compare the behavior of SPP-DCJ and SPP-
DCJ-v2 in the presence of multiple linear chromosomes, 
we used the simulator ffs-dcj introduced in [6]. The simu-
lator performs a number of DCJs, indels and duplications 
with fixed rates for a given tree topology. In this experi-
ment, we used a fixed balanced tree topology, namely 

(C.opt)
∑

E ∈ E(T )

E on path between A,B

fE ≥ d(A,B) for all pairs of leaves A,B.

α′
∑

E∈E(T )

fE + β ′
∑

E∈E(T )

#telomeres in decompositions of E − (1− α′ − β ′)
∑

E∈E(T )

wE

(((A  :  1.0,  B  :  1.0)F  :  1.0),  ((C  :  1.0,  D  :  1.0)G  :  1.0))Root
;  . We simulated 30 operations per branch on genomes 
of size 100 markers. More detailed settings (such as rates 
of duplications and indels) can be found in Table 7. The 
experiment was run for 2, 4, 6, 8, 10, 12, 14 and 16 lin-
ear chromosomes at the root of the tree with 10 repli-
cates for each step. We then proceeded to introduce 30 
adjacencies of adversarial noise for each sample at the 
inner nodes utilizing a script provided by the SPP-DCJ 
repository.

We then ran SPP-DCJ and SPP-DCJ-v2 on degenerate 
genomes consisting of the true and noise adjacencies. In 

Table 7 Parameters for ffs-DCJ for the linear chromosome 
experiment

Duplication rate 0.4

Zipf parameter duplication 6.0

Deletion Rate 0.2

Insertion Rate 0.1

Zipf parameter indel 4.0

1 https:// github. com/ codia lab/ spp- dcj and can be installed with conda 
install -c conda-forge -c bioconda spp-dcj

order to ensure a fair comparison, we did not perform 
the performance optimizing pre-processing steps from 
Section  "Pre-processing" or give any ranges for marker 
multiplicities in ancestral genomes for SPP-DCJ-v2. The 
results in solving time are shown in Fig. 6.

We see that SPP-DCJ-v2 on average needed more than 
two orders of magnitude less solving time than SPP-
DCJ and even comparing the best run of SPP-DCJ to the 
worst of SPP-DCJ-v2 per step, the difference is still about 
one order of magnitude.

A majority of SPP-DCJ runs did not complete within 
the time limit. The performance of SPP-DCJ also 
dramatically worsens with increasing numbers of linear 
chromosomes, such that no ILPs were solved within the 
time limit for 16 chromosomes.

SPP-DCJ-v2 in turn was also affected by the rising 
numbers of linear chromosomes, but the effect is less 
drastic. In fact, the solving time for SPP-DCJ-v2 is well 
below a minute for all samples.

Performance on circular genomes
As we have seen in Section  "On linearizability", even 
when in the ground truth all linearizations of chromo-
somes are circular, additional telomeres might still be 
necessary to ensure that all degenerate genomes are 
linearizable.

In order to examine this effect, we used the same 
pipeline as in [4] to simulate trees and genomes of 
100 markers for each tree using ZOMBI [15] with 
tree scales ranging from 5 to 20 with 50 samples per 
step (for all parameter settings see Table  8). We then 

https://github.com/codialab/spp-dcj
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inferred degenerate genomes using DeCoSTAR [14] 
and solved the resulting SPP instances using SPP-DCJ 
and SPP-DCJ-v2, the latter again without additional 
pre-processing. We visualize the resulting solving times 
in Fig. 7.

Genomes generated by ZOMBI are circular, so one 
might assume that there is only negligible difference in 
runtime between SPP-DCJ and SPP-DCJ-v2. However, 
the results indicate that the improved handling of the 
solution space by SPP-DCJ-v2 allows it to solve problem 

instances with up to twice the tree scale as SPP-DCJ with 
comparable solving times.

Unexpectedly, the median solving times of SPP-DCJ-v2 
decrease after a maximum at tree scale 15. We conjec-
ture that this might be because enough rearrangements 
accumulate to make the genomes behave as if not related, 
making the problem easier to solve. SPP-DCJ however 
seems not to benefit from this effect in the tested tree 
scale and time range as the median solving time reaches 
the time limit for a tree scale of 11 and does not recover.

Evaluation of the safer linearization mode
We used the same pipeline to simulate genomes of 1000 
markers with ZOMBI, inferring degenerate ancestral 
genomes with DecoSTAR over a range of tree scales with 
five samples per step. All other parameters are the same 
as in Table  8. This time, however, we used SPP-DCJ-v2 
with both the default and the safer linearization modes 
and examined the precision and recall of recovered 
adjacencies. In this experiment, we used α = 0.5 with 
weight  0 for the telomeric adjacencies added to ensure 
linearizability (see Section "On linearizability").

The results, illustrated in Fig. 8, indicate that while our 
method displays very high precision and recall rates in 
both modes, the safer linearization mode has a minor, 
but consistent advantage over the default setting, espe-
cially considering precision. The trend in the data shows 
that this gap could widen further on more noisy data.

Evaluating the Effect of Initial Solution and Lower Bounds
We ran the ZOMBI pipeline again with the param-
eters detailed in Table  8 for tree scales 5,  10,  15,   and 
20, generating 50 samples each. This time, we ran only 

Fig. 6 Solving times for SPP-DCJ and SPP-DCJ-v2 on simulated genomes with increasing numbers of telomeres. Solid lines represent corresponding 
median values

Table 8 Parameter settings for ZOMBI and DeCoSTAR for 
the tree scale and precision experiments. For the sake of 
benchmarking SPP-DCJ-v2, ZOMBI parameters for genome 
evolution were chosen to represent an elevated degree of 
genome evolution, both in terms of gene content innovation 
(duplication+loss) and rearrangement (inversion+transposition)

ZOMBI

DUPLICATION f:2

INITIAL_GENOME_SIZE 100

LOSS f:2

LOSS_EXTENSION g:0.8

ORIGINATION f:0

INVERSION f:2

INVERSION_EXTENSION g:0.5

TRANSPOSITION f:2

TRANSPOSITION_EXTENSION g:0.5

DeCoSTAR 

use.boltzmann 1

boltzmann.temperature 1.0

nb.sample 1000
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SPP-DCJ-v2 and examined the effect of providing an 
initial solution or lower bounds for the ILP. The average 
solving and pre-processing times are given in Fig. 9.

While there is a slight trend in decreasing solving 
times with additional pre-processing, the time needed 
to apply the pre-processing itself dominates much of 
the runtime, especially on lower tree scales. Even on 

high tree scales, the benefit for the solving time seems 
to be outweighed by the time needed to complete the 
pre-processing. We therefore do not recommend com-
puting an initial solution, unless no approximate solu-
tion would be found otherwise. In the same vein, we do 
not recommend precomputing lower bounds, unless 
they were already used to construct the phylogeny. 
Possibly the precomputation of lower bounds could be 

Fig. 7 Solving times for SPP-DCJ and SPP-DCJ-v2 on genomes generated by ZOMBI on a range of trees with increasing branch lengths 
with ancestral adjacencies inferred by DecoSTAR. Solid lines represent corresponding median values

Fig. 8 Mean precision, recall and F1 score for default and safer linearization mode for varying tree scales. Transparent ranges indicate minimum 
to maximum range of the five tested samples per step

Fig. 9 Average pre-processing and solving times of 50 samples for variants of SPP-DCJ-v2. NN - no additional pre-processing, IN - initial solution 
precomputed, IB - initial solution and lower bounds precomputed
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improved by only precomputing distances for certain 
pairs of leaves, and not all of them, which decreases the 
runtime while possibly keeping the positive effects on 
solving time.

Reconstructing the ancestral X chromosomes of seven 
mosquitos
We further evaluated our method on biological data 
from seven Anopheles species whose inferred phy-
logeny is depicted in Fig.  10. Gene annotations from 
protein coding genes of the X chromosome of present-
day mosquitos were obtained from VectorBase [16]. 
Chromosome sizes fluctuated at around 600 genes. 
We then used the ancestral gene order (AGO) pipeline 
[8] to obtain candidate ancestral adjacencies. Using 
AGO, multiple sequence alignments were computed 
with MACSE [17], based upon which gene trees were 
inferred and reconciled with the species tree with IQ-
TREE [18]. Finally, candidate ancestral adjacencies 
were computed with DeCoSTAR.

We ran SPP-DCJ and SPP-DCJ-v2 with varying optimi-
zation levels to generate corresponding ILPs and initial 
solutions where applicable. Additionally, we generated 
an ILP based on SPP-DCJ-v2, for which we allowed copy 

numbers in ancestral families to deviate by one from the 
maximum number of copies. The resulting ILPs were 
then input to gurobi 12.0.0, which ran on 10 threads with 
a time limit of 12 hours on the same machine for all ILPs.

We visualize the gaps reported by gurobi over time in 
Fig. 11. For all variants of SPP-DCJ-v2 gurobi found solu-
tions with significantly closer gaps than for SPP-DCJ. In 
fact, results as close as the final result for SPP-DCJ were 
found for all versions of SPP-DCJ-v2 within the first 25 
minutes of solving time.

As before, the pre-processing optimizations have only a 
minor effect on the quality of the result at the end of solv-
ing time. Indeed, the effect is most strongly visible within 
the first few minutes of solving time, after which gurobi’s 
own heuristic solutions start to overshadow the initial 
solutions found in pre-processing.

Interestingly, allowing for uncertainty about the multi-
plicity of the families in ancestral genomes did not slow 
computation, but had an immense speed up effect. This 
suggests that doing so allows to find solutions better fit-
ting the given phylogeny and adjacencies.

Discussion
We presented SPP-DCJ-v2, the first ILP of polynomial size 
to solve the Small Parsimony Problem for natural genomes 
under the DCJ-indel model. Using a more efficient repre-
sentation of the solution space, the Capping-Free Multi-
Relational Diagram, we were able to significantly improve 
upon the performance of its predecessor, SPP-DCJ. Addi-
tionally, we introduced a new method of ensuring lineariz-
ability that is more robust when applied to (potentially 
noisy) real data because linearization is not the main con-
straint any more. We also introduced a feature that allows 
users to specify their own bounds on marker multiplicities 
in ancestral genomes, which may help in ambiguous cases 

Fig. 10 Cladogram for seven Anopheles taxa

Fig. 11 Gaps reported by gurobi with increasing solving times for SPP-DCJ and variants of SPP-DCJ-v2 until a time limit of 720 minutes. Right: 
Zoomed in on the first 25 minutes. NN - no additional pre-processing, IN - initial solution precomputed, IB - initial solution and lower bounds 
precomputed, IBF - initial solution and lower bounds precomputed, with variable ancestral family sizes
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on real data. We evaluated our method on simulated data 
and found it to be more efficient than its predecessor. Addi-
tionally bounds on the solution space do not seem to help 
performance, especially when considering the additional 
time needed for pre-processing, but could potentially be 
helpful on very large problem instances. Finally, we dem-
onstrated that our approach is efficient enough to derive 
good solutions for SPP on real phylogenies within reason-
able time frames.
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