
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use:

Reconstructing rearrangement phylogenies of natural genomes

Suggested Citation:
Bohnenkämper, L., Stoye, J., & Dörr, D. (2025). Reconstructing rearrangement phylogenies of natural
genomes. Algorithms for Molecular Biology, 20, Article 10. https://doi.org/10.1186/s13015-025-00279-5

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20250630-132631-2

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Leonard Bohnenkämper, Jens Stoye & Daniel Doerr

Article - Version of Record

Bohnenkämper et al.
Algorithms for Molecular Biology (2025) 20:10
https://doi.org/10.1186/s13015-025-00279-5

RESEARCH Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Algorithms for
Molecular Biology

Reconstructing rearrangement phylogenies
of natural genomes
Leonard Bohnenkämper1,2, Jens Stoye1,2 and Daniel Doerr3,4,5*

Abstract

Background We study the classical problem of inferring ancestral genomes from a set of extant genomes
under a given phylogeny, known as the Small Parsimony Problem (SPP). Genomes are represented as sequences of ori-
ented markers, organized in one or more linear or circular chromosomes. Any marker may appear in several copies,
without restriction on orientation or genomic location, known as the natural genomes model. Evolutionary events
along the branches of the phylogeny encompass large scale rearrangements, including segmental inversions, trans-
locations, gain and loss (DCJ-indel model). Even under simpler rearrangement models, such as the classical break-
point model without duplicates, the SPP is computationally intractable. Nevertheless, the SPP for natural genomes
under the DCJ-indel model has been studied recently, with limited success.

Methods Building on prior work, we present a highly optimized ILP that is able to solve the SPP for sufficiently small
phylogenies and gene families. A notable improvement w.r.t. the previous result is an optimized way of handling
both circular and linear chromosomes. This is especially relevant to the SPP, since the chromosomal structure of ances-
tral genomes is unknown and the solution space for this chromosomal structure is typically large.

Results We benchmark our method on simulated and real data. On simulated phylogenies we observe a consider-
able performance improvement on problems that include linear chromosomes. And even when the ground truth
contains only one circular chromosome per genome, our method outperforms its predecessor due to its optimized
handling of the solution space. The practical advantage becomes also visible in an analysis of seven Anopheles taxa.

Keywords Genome rearrangement, Ancestral reconstruction, Small parsimony, Integer linear programming, Double-
cut-and-join

Introduction
The Small Parsimony Problem (SPP) is a general opti-
mization problem in phylogenetics that aims at anno-
tating the internal vertices of a given phylogenetic tree
T = (V ,E) whose leaves are already annotated, such that
the total tree distance dT =

∑

(A,B)∈E d(A,B) is mini-
mized. Here, d(A, B) is a function returning the distance
between the annotations of any two vertices A and B of
the phylogenetic tree. Traditional tree annotations may
be DNA or protein sequences, while more recently, with
the emergence of phylogenomic studies, also complete
genomes, often in form of so-called marker sequences
may be used.

*Correspondence:
Daniel Doerr
daniel.doerr@hhu.de
1 Faculty of Technology, Bielefeld University, Universitätsstraße 25,
33615 Bielefeld, NRW, Germany
2 Center for Biotechnology (CeBiTec), Bielefeld University,
Universitätsstraße 25, 33615 Bielefeld, NRW, Germany
3 Department for Endocrinology and Diabetology, Medical Faculty,
Heinrich Heine University Düsseldorf, University Hospital Düsseldorf,
Moorenstr. 5, 40225 Düsseldorf, NRW, Germany
4 German Diabetes Center (DDZ), Leibniz Institute for Diabetes Research
Germany, Auf’m Hennekamp 65, 40225 Düsseldorf, NRW, Germany
5 Center for Digital Medicine, Heinrich Heine University Düsseldorf,
Moorenstr. 5, 40225 Düsseldorf, NRW, Germany

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-025-00279-5&domain=pdf

Page 2 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

Distance functions for marker sequences usually con-
sider rearrangements and content-modifying operations
on the elements of the sequences. A useful general-
purpose distance in genome rearrangement is based on
the DCJ-indel model. Conceived by Braga et al. [1] as an
extension of the Double-Cut-and-Join model by Yanco-
poulos et al. [2], operations in the DCJ-indel model are
either genomic rearrangements, modeled by a double cut
and subsequent joining of the so created ends (DCJ), or
segmental gains and losses of arbitrary length (indels).

When each marker occurs not more than once per
genome, calculating the DCJ-indel distance between two
genomes is polynomial [1]. However, on genomes with
unrestricted distributions of markers, also called natural
genomes, calculating the DCJ-indel distance is NP-hard.
Nonetheless, efficient ILP solutions exist, such as ding
[3].

The first attempt to generalize this method from the
pairwise genomic distance to the phylogenomic SPP
under the DCJ-indel model was an ILP by Doerr and
Chauve [4], called SPP-DCJ. They did so by solving a
generalized problem, in which – as a result of some pre-
processing – adjacencies in ancestral genomes could
be absent or present, and in the latter case they may be
assigned a weight that would be taken into consideration
during optimization. One major issue in this generaliza-
tion was ding’s use of caps, telomeric markers that need
to be matched during optimization and for which the
solution space is superexponential [5]. Doerr and Chauve
went to great lengths to limit the effect of this additional
solution space, but were ultimately not able to completely
remove it from their solution.

The ILP solution presented in this manuscript com-
bines a recent reformulation of the DCJ-indel model that
allows one to forego the matching of caps [6] with the
basic modeling of SPP pioneered by SPP-DCJ. We addi-
tionally resolve another issue described in [4], which is
the dependence of SPP-DCJ on previously known candi-
dates for circular singletons, for each of which SPP-DCJ
creates a number of constraints and variables. Since the
number of circular singleton candidates in the worst case
is exponential in the number of non-telomeric extremi-
ties, the worst case size of SPP-DCJ is exponential as well.
While this problem may be less relevant when given few,
refined candidate adjacencies for ancestors, our ILP is
the first to solve the SPP for natural genomes under the

DCJ-indel model while remaining of polynomial size
w.r.t. any input data.

In practice, SPP, also known as small phylogeny prob-
lem, is central to many methods for ancestral genome
reconstruction [7]. For instance, SPP-DCJ [4] is part of
the AGO framework [8]. Other methods, such as GASTS
[9] and MGRA [10] approach SPP by iteratively con-
structing median genomes. The genome median prob-
lem asks to construct one ancestral genome to n ≥ 3
given genomes, a nevertheless NP-hard problem for
which these and most other methods resort to heuristic
or approximate solutions [9–11]. Algorithmic innova-
tions based on ILPs [3, 6, 12] made it possible to compute
exact solutions in practical applications. For instance,
Frolova et al. [13] employ DING [3] in the calculation of
pairwise DCJ indel distances to study phylogenetic rela-
tionships of pathogenic plasmids.

The remainder of the manuscript is organized as fol-
lows. In Section "Preliminaries", we give basic definitions
and previous results needed to derive our algorithm. In
Section "A new method", we explain the fundamental fea-
tures of our method (Subsections "Capping-free model"
and "On linearizability") before presenting the ILP in
Subsection "A new ILP formulation" and detailing further
methods of pre-processing to tighten the solution space
in Subsection "Pre-processing". We evaluate the perfor-
mance of our method in Section "Evaluation" and discuss
our overall findings in Section "Discussion".

Preliminaries
For the purposes of this work, we use the abstraction
to describe genomes as sequences of oriented markers.
A (genomic) marker g = (g t, gh) is a universally unique
entity consisting of marker extremities tail of g, denoted
by g t , and head of g, denoted by gh.

The structure of a genome can be described via its adja-
cencies. An adjacency {f x, gy} (with x, y ∈ {t, h}) describes
that markers f and g are neighbors on the same chromo-
some and oriented, such that extremities f x and gy are
adjacent. For ease of notation we also write f xgy for an
adjacency. Note that adjacencies can be read in either
direction, i.e. gyf x is the same as f xgy.

For the sake of a simpler formulation of the theory, we
aim for each extremity to be part of some adjacency. In

Fig. 1 A genome of five markers 11 , 12 , 21 , 31 , 41 on a single linear chromosome

Page 3 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

order to accomplish this, we use additional extremities
modeling the ends of linear chromosomes, called telom-
eres. A telomere t◦ is a universally unique entity encom-
passing a single telomeric extremity denoted by “ ◦ ”. A
genome can then be described as a graph as follows.

Definition 1 A genome A is a graph with verti-
ces E(A) ∪ T (A) , namely its marker extremities E(A)
and telomeric extremities T (A) . The set of edges is
M(A) ∪A(A) , namely its marker edges M(A) and
adjacency edges A(A) . This graph fulfills the following
properties:

1. M(A) is a perfect matching on E(A) with
M(A) = {{mt ,mh} | ∀mt ,mh ∈ E(A)} , and

2. A(A) is a perfect matching on E(A) ∪ T (A).

An example of a genome is given in Fig. 1.
Because each marker is universally unique, in order

to compare genomes we need to establish which mark-
ers are homologous. We model homology as an equiva-
lence relation (≡), that is ma ≡ mb for some markers
ma ∈ M(A) , mb ∈ M(B) and genomes A,B . Note that
this includes the case A = B , i.e. there can be homolo-
gous markers in the same genome (in-paralogs). The
equivalence class of a marker m, denoted by [m], is called
its family. If a marker m exists in A , but has no equivalent
in B or vice versa, we refer to m as singular w.r.t. A,B.

Given the equivalence relation on markers, one can eas-
ily derive an equivalence relation on extremities, namely
mt

a ≡ mt
b and mh

a ≡ mh
b if and only if ma ≡ mb . For this

derived equivalence we have mh
a ≡ mt

b for all ma,mb . We
call extremities singular if and only if their corresponding
marker is singular. One can visualize such an equivalence
relation for two genomes A,B using the Capping-Free
Multi-Relational Diagram as defined in Definition 2.

Definition 2 Given two genomes A,B
and a homology (≡), the Capping-Free

Multi-Relational Diagram (CFMRD) is a graph
CFMRD(A,B,≡) = (E ∪ T ,Eadj ∪ Eself ∪ Eext)
with E = E(A) ∪ E(B) , T = T (A) ∪ T (B) , adja-
cency edges Eadj = A(A) ∪A(B) , self edges
Eself = {m ∈ M(A) ∪M(B) | m singular w.r.t. A,B}
and extremity edges
Eext = {{u, v} | u ∈ E(A), v ∈ E(B),u ≡ v}.

An example of a genome is given in Fig. 2.
An established way to compare two genomes on a

structural level is the rearrangement distance. The rear-
rangement distance of two genomes A,B is defined as
the minimum number of operations needed to trans-
form A into B with operations restricted to a certain
model (such as DCJ-indel). When (≡) maps each marker
of genome A to at most one marker of genome B , calcu-
lating the rearrangement distance between A and B is
typically easy. We refer to such a homology as resolved.
More formally, a homology is resolved if for each genome
A and marker m ∈ M(A) the family of m contains only
itself, i.e. [m] ∩M(A) = {m} . On these homologies,
CFMRD(A,B,≡) consists only of simple cycles and
simple paths. An example of a CFMRD on a resolved
homology is shown in Fig. 3.

With a resolved homology, the DCJ-indel distance
can be calculated easily by just counting different types
of components in the CFMRD. For the purpose of this
counting, we ignore self edges. We write c for the num-
ber of cycles and pab (resp. paa , resp. pbb) for the num-
ber of paths that start in A and end in B (resp. start in
A and end in A , resp. start in B and end in B). Since the
graph is undirected, we canonize their labels by reading
paths from A to B . When the vertex the path starts or
ends in is a telomere of A (resp. B), we write A (resp. B)
in uppercase. When the path ends because the only way
to continue it would be a self edge (note that we ignore
self edges here), we write a (resp. b) in lowercase. When
a path starts and ends in the same genome, we read it
from telomere to singular extremity (note that in all other
cases, the label is symmetric).

Fig. 2 Capping-Free Multi-Relational Diagram for two genomes on an unresolved homology (≡1) with families {11, 12, 13, 14},
{21, 22}, {31, 32}, {41}, {51}.

Page 4 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

For example, the CFMRD of Fig. 3 has c = 2 , pAB = 1
(path t◦, 1t1, 1

t
3, t

◦), pab = 1 (path 4t1, 2
h
1, 2

h
2, 5

t
1), paB = 1

(path 4h1 , 3
h
1, 3

h
2, t

◦) and pAb = 1 (path t◦, 3t1, 3
t
2, 5

h
1).

There is one case, in which we need to consider self
edges, namely circular singletons. Circular singletons
are cycles that consist only of adjacency and self edges.
We denote their number by s. For a more in-depth
explanation of these terms, the interested reader is
referred to [6]. Using these terms, the following for-
mula can be used.

Theorem 1

(adapted from [6]) For two genomes A,B and a resolved
homology (⋆≡), the DCJ-indel distance is

with n the number of matched markers,
n = |{(ma,mb) ∈ M(A)×M(B) | ma

⋆
≡mb}|.

This formula holds because it is equivalent to previ-
ously proven distance formulas under the DCJ-indel
model, however it can also be derived independently.
Details are explained in [6]. To paraphrase the results
there, it is shown that two genomes are equal if and only
if their CFMRD consists of only c cycles and pAB paths
between telomeres of both genomes with n = c +

pAB
2 .

Additionally, for each DCJ or indel operation the formula
of Theorem 1 changes by at most 1. These two facts com-
bined yield the formula as a lower bound. Additionally
[6] contains an algorithm transforming A into B using
DCJ and indel operations that is able to reach this lower
bound, proving it is a formula for the rearrangement dis-
tance under the DCJ-indel model.

When the homology is not resolved, we need to refine
the homology to be resolved. We call such a refinement

d̄DCJ−ID(A,B,
⋆
≡) = n− c +

⌈

pab +max(pAa, paB)+max(pAb, pBb)− pAB

2

⌉

+ s

a matching. More formally, a matching (⋆≡) on (≡) is a
resolved homology, such that ma

⋆
≡mb =⇒ ma ≡ mb.

Since allowing for arbitrary matchings can lead to an
excess of indels in the sorting scenario, we restrict our-
selves to the maximum matching model. A matching (+≡)
is maximum w.r.t. A,B if a maximum amount of markers
in A has a homolog in B and vice versa.

Definition 3 Given homology (≡), the DCJ-indel dis-
tance between A and B under the maximum matching
model is

When reconstructing a phylogeny, only extant genomes
are known, that is, there is no definitive information
about the adjacencies at the inner nodes. In order to cap-

ture this uncertainty, a typical approach is to generate a
large set of candidate adjacencies at each inner node that
very likely will include the correct ones. Such a set can
be viewed as a degenerate genome, which however may
contain multiple conflicting adjacencies, such as ab and
ac with b = c . (In a normal genome this cannot occur, as
the matching requirement ensures that there is only one
adjacency that involves a.) More formally, a degenerate
genome D is a graph (E(D) ∪ T (D),M(D) ∪A(D)) that
fulfills only Property 1 of Definition 1.

All possible ancestors at a certain node in the phylog-
eny are then built from disambiguations of these con-
flicting adjacencies. We call these possible ancestors
linearizations. A linearization of a degenerate genome
D is a genome A , such that E(A) = E(D) , T (A) ⊆ T (D) ,
M(A) = M(D) and A(A) ⊆ A(D) . If such a linearization
exists, we call D linearizable. We give an example of a lin-
earizable degenerate genome and one of its linearizations

dDCJ−ID(A,B,≡) = min
(
+
≡) maximum matching on (≡)

d̄DCJ−ID(A,B,
+
≡).

Fig. 3 Acrshort*cfmrd for the two genomes of Fig. 2 on a resolved homology (≡2) with families {11, 13} , {12, 14} , {21, 22} , {31, 32} , {41} , {51} . Note
that (≡2) is a matching on (≡1)

Page 5 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

in Fig. 4. Note that each genome is also a degenerate
genome with precisely one linearization, namely itself.

We can then formulate the problem we are consider-
ing in this paper as finding linearizations of all (degener-
ate) genomes in the phylogeny, such that the sum of all
DCJ-indel distances in the tree is minimized. Optionally,
we also allow to put weights on the adjacencies and take
these into account during the minimization.

Problem 1

(Weighted Small Parsimony Linearization Problem)
Given a phylogeny T = (V ,E) , a homology (≡), a weight-
ing function w for adjacencies, and a parameter α ∈ [0, 1] ,
find a linearization Li for each (degenerate) genome Di in
T, such that

is minimized.

Because the pairwise comparison of (non-degenerate)
natural genomes is already NP-hard, the Weighted Small
Parsimony Linearization Problem is NP-hard as well.
Doerr and Chauve’s algorithm SPP-DCJ, which solves
Problem 1, is therefore formulated as an ILP. Thus, we
formulate our improved algorithm in Section 3.3 as an
ILP as well.

A new method
Capping‑free model
The previous solution by Doerr and Chauve [4] was based
on a different graph structure, namely the Capped Multi-
Relational Diagram (CMRD).. The CMRD differs from
the CFMRD in the way it treats telomeres. In the CMRD
of two genomes A and B there exist additional extremity
edges between each telomere of A and each telomere of
B , leading to additional |T (A)| · |T (B)| extremity edges.

When calculating the DCJ-indel distance using the
CMRD, one must not only determine the resolved
homology, but also a matching between telomeres, that
is, on T (A)× T (B) . As identified in [5], this leads to a
superexponential increase of the solution space. As our
new method is based on the CFMRD, we can use the

(1)

�

(Di ,Dk)∈E



α dDCJ−ID(Li ,Lk ,≡) + (α − 1)
�

ab∈A(Li)∪A(Lk)

w(ab)





formula of Theorem 1 and thus avoid such an increase in
the solution space.

On linearizability
It is vital for our method that the degenerate genomes in
the phylogeny are linearizable (see Problem 1). However,
not all degenerate genomes are linearizable (see Fig. 5).
Moreover, not all methods used to infer candidate adja-
cencies for ancestors guarantee this requirement. In par-
ticular DeCoSTAR [14], a method for inferring ancestral
genomes that is integrated together with SPP-DCJ into a
larger reconstruction workflow detailed in [8], generates
conflicting ancestral adjacencies.

As far as we are aware, no algorithms testing for line-
arizability in polynomial time exist as of yet. However, we
give an algorithm here that is able to generate a lineariza-
tion if one exists, by proxy solving the testing problem.

Recall that T (D) are the telomeres and E(D) are the
extremities of a degenerate genome D . We are interested
in finding a matching M on the adjacencies A(D) of D ,
such that each extremity is part of exactly one edge in
M. This is equivalent to the linearization problem as any
telomeres not part of the matching can then be removed
and one obtains a genome.

To see how we are able to determine such a matching,
consider the weight function w that assigns to each adja-
cency edge {u, v} ∈ A(D) the number of extremities inci-
dent to it: w({u, v}) = |{u, v} ∩ E(D)|.

Lemma 1

D is linearizable if and only if a maximum weight match-
ing M on the weighted graph

(

T (D) ∪ E(D),A(D),w
)

 has
total weight |E(D)|.

Proof
Note that there are no edges {u, v} with both u, v ∈ T (D).

Assume a matching MS that covers the subset
S ⊆ E(D) . We further subdivide S into the disjoint sets
S1 and S2 . S1 contains all vertices v ∈ S that are matched
with a telomere, that is (v,u) ∈ MS with u ∈ T (D) . S2
contains the vertices that are matched with another

Fig. 4 Left: A degenerate genome. Right: A linearization of it

Fig. 5 Left: This degenerate genome is not linearizable
because of missing telomeres. Right: The genome becomes
linearizable when adding telomeres. One linearization is that of Fig. 4

Page 6 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

extremity (note that for v ∈ S2 and (v,u) ∈ MS follows
u ∈ S2). Since there are no edges between telomeres
directly, the total weight of MS is

We thus see that a matching has weight k if and only if it
covers a subset of E(D) of size k. The claim of the lemma
follows by noting that a matching can have at most
weight |E(D)| and that if such a matching ME exists, we
can use ME as the adjacencies of the linearization of D .
 �

Using Lemma 1, we can either find that there is no lin-
earization or determine one using a standard maximum
weight matching algorithm for any degenerate genome D.

While we can test whether genomes are linearizable
using this maximum weight matching algorithm, previ-
ous versions of SPP-DCJ modified the given degenerate
genomes by adding telomeres, such that they are guar-
anteed to be linearizable, which may still be desirable on
noisy data (see Subsection 3.2.2). We detail these meth-
ods briefly in the following subsections.

Local guarantees
The first method of guaranteeing linearizability relies on
the following lemma.

Lemma 2

A perfect matching M ⊆ A(D) in a degenerate genome
D = (E(D) ∪ T (D),M(D) ∪A(D)) corresponds to a lin-
earization of D.

Proof
Observe that in the M-induced degenerate genome
D
′ = (E(D) ∪ T (D),M(D) ∪M) each node is incident to

exactly one adjacency edge. Further each connected com-
ponent corresponds to a linear component where both
degree-one nodes correspond to telomeres, or a circular
component where each node corresponds to a marker
extremity. �

However, the converse is not true: Since not all telom-
eric extremities must be covered, D may still be lineariz-
able even if no perfect matching may be derived from D.

∑

{u,v}∈MS

w({u, v}) =
∑

{u,v}∈MS ,u or v∈S1

w({u, v})+
∑

{u,v}∈MS ,u,v∈S2

w({u, v})

= |S1| + 2
|S2|

2
= |S|

In an earlier version of SPP-DCJ [4], a simple approach
was introduced that complements each degenerate genome
D with additional telomeres and telomeric adjacencies to
ensure linearizability. To this end, D is decomposed into

connected components that are independently tested. If the
size of a component, i.e., the number of its vertices, is even,
and it is either linear, circular, or fully connected, then it is
considered as locally linearizable. Otherwise, each extrem-
ity v of the component is complemented with a telomere tv ,
and a telomeric adjacency {v, tv} is added to the degenerate
genome, ensuring that it is linearizable as a whole.

Allowing each extremity to be connected to a telomere
Given the uncertainty about inferred ancestral adjacen-
cies, even when a component is locally linearizable,
individual adjacencies of that component might still be
wrongly inferred by the pre-processing and thus might be
erroneously included in the linearization, simply because
otherwise a linearization might not be possible.

In order to prevent this behavior, we offer a mode in
which each extremity is connected to an (artificially
introduced) telomere to reflect this uncertainty. In con-
trast to the method described above, we do this even in
components with local guarantees.

This approach was previously practically unsound
because of inefficient handling of telomeres. Now it may
become the standard mode of operation, as it allows to
find reasonable solutions in case of noisy input data,
while the computational overhead introduced by the
addition of the artificial telomeres remains moderate. We
refer to this mode as the safer linearization mode in sub-
sequent sections.

A new ILP formulation
Algorithm 1 gives an overview of our method with addi-
tional tables detailing parts of the ILP.

In principle, our algorithm solves Problem 1 in the
same way as SPP-DCJ [4], namely it determines lineari-
zations while simultaneously computing the distances
between nodes in the phylogeny with the objective of
minimizing the total distance. However, for ease of read-
ability, we separate the linearization and distance compu-
tation into two different subsections.

On the global level, the linearizations Li are derived
for each (degenerate) genome Di . On the local level, the
resulting linearizations are compared to each other along

Page 7 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

the branches of the phylogeny. Each branch gives rise to
a pairwise comparison by means of the CFMRD. In doing
so, the selection of adjacencies of a derived genome is
propagated from across CFMRDs, thus ensuring global
consistency.

The main differences between our algorithm and that
in [4] are found in the local level, as this is where the
CFMRD plays a role.

Global level
The global level deals with the setting of adjacencies or
telomeres of (ancestral) genomes. For each (marker or
telomeric) extremity v, we determine its presence or
absence with a binary variable gv . For markers, the head
extremity is present if and only if the tail extremity is
(see Constraint C.01). Since there is often uncertainty
about the precise copy number of markers in ancestral
genomes, we allow user-determined bounds (LAF ,H

A

F)
for the number of markers in each family F in ancestral
genome A (C.02). If not specified, these bounds default
to the maximum, requiring each marker to occur, that is
they collapse to

Each extremity present is then required to be part of
exactly one (possibly telomeric) adjacency (C.03), which
ensures a properly linearized genome.

Local level
The local level deals with each edge of the tree separately,
making use of the CFMRD of the corresponding genome
pair. Since this part is entirely local to the edge in ques-
tion, we presume that each vertex vi of the CFMRD has
a unique identifier among all other CFMRDs , making all
its variables globally unique. In order to limit the range of
the general variable yvi , we also assign each vertex a rank
i that is local and unique only within the specific CFMRD
. We map each extremity to its identifier for the global
level by the function γ.

In order to compute decompositions of CFMRDs, we
make use of a capping-free formulation for the com-
putation of the pairwise DCJ indel distance derived in
[6]. This formulation is based on the distance formula
found in Theorem 1.

(C.01A) gv = 1 v ∈ {mt ,mh} form ∈ M with LA[m] = HA

[m] = |[m] ∩M|.

The formulation counts cycles cE as well as the six
different types of paths relevant to Theorem 1, namely
pab,pAa,paB,pAb,pBb,pAB . Each counting variable pX
is set by summing up binary report variables rXv that
are set to 1 once per component on a specific vertex v
(see Constraints C.09 to C.13 and C.18). These counters
are then combined to the terms of the formula in Con-
straints C.14 to C.17 and C.04 to C.08. The constraints
for ensuring the reporting variables being set cor-
rectly can be found in Tables 1, 2 and 3. For a complete
description of this part of the ILP the interested reader
is referred to [6].

We make only few major changes in our local sec-
tion w.r.t. the ILP described in [6]. Firstly, we deter-
mine whether an adjacency edge e is set (xe = 1) by
“inheriting” this value from the linearization gener-
ated in the global section (see C.21) of the correspond-
ing adjacency. Secondly, we allow only vertices that are
part of the linearized genome (gv = 1) to contribute
to the count of components that decrease the formula
(zv = 1), see C.22. To enforce the Maximum matching
model, for any family we allow self edges only in one of

the two genomes (C.23). If it is clear from the bounds,
in which genome the family will be overrepresented,
the self edges in the underrepresented genome can be
removed and the constraint can be dropped.

Due to the fact that ancestral genomes may be degen-
erate, the number of possible circular singletons can be
as large as the number of possible circular chromo-
somes. Listing all candidates, such as is done in [6] and
in SPP-DCJ [4], leads to a combinatorial explosion on
certain input data. Particularly, when all possible adja-
cencies are present in the degenerate genome, any non-
empty subset of singular markers can form a circular
singleton. A lower bound on the number of candidates

is therefore
∑|Eself|

i=1

(

|Eself|
i

)

= 2|Eself| − 1 . To avoid an

exponential worst case size of our ILP, we use a new

Table 1 Shao-Lin-Moret constraints [12]

(C.27) xe = xd for all sibling edges e, d

(C.28) yvi + j(1− xuj vi) ≥ yuj ∀ujvi ∈ Eadj ∪ Eext

j(1− xuj vi) ≥ yuj ∀ujvi ∈ Eself

(C.29) izvi ≤ yvi ∀v ∈ E ∪ T

Table 2 Reporting for regular vertices

(C.30) lv ≤ 1− xuv ∀uv ∈ Eself , u ∈ E(A)

lv ≥ xuv ∀uv ∈ Eself , u ∈ E(B)

(C.31) lv ≤ lu + (1− xuv) ∀uv ∈ Eext

lu ≤ lv + rab
uv + (1− xuv) ∀uv ∈ Eadj , u ∈ E(A)

lu ≤ lv + (1− xuv) ∀uv ∈ Eadj , u ∈ E(B)

(C.32) rcv ≤ zv ∀v ∈ E(A)

(C.33) rabu ≤ xuv ∀uv ∈ Eself , u ∈ E(A)

Page 8 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

technique for counting circular singletons without list-
ing all candidates when the number of candidates is
larger than a given (polynomial) threshold, which we
arbitrarily set at twice the number of self edges. The
constraints for this technique are listed in Table 4 and
described in the following.

Algorithm 1 Capping-free Small Parsimony

A circular singleton manifests in the graph as a cycle
of alternating adjacency and indel edges. The idea of
the technique is to have a general integer variable w that
is required to increase at each adjacency edge in a walk
of the cycle. There must then be one point in the walk
in which it decreases again. Detecting this, one can

Page 9 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

then report a circular singleton. For this to work, the
walk needs a direction. This is accomplished by anno-
tating the vertices with a binary variable dv that “flips”
across each pair of connected vertices (see C.24). We
then require w to be the same for vertices connected by
an indel edge (see C.25) and for it to increase by 1 in
the direction of the vertex that has dv = 1 (see C.26).
We require this except when vertices are not con-
nected (1− xuv = 0) or when reporting a circular sin-
gleton (rsu = 1 or rsv = 1). In this case, the constraint is
automatically fulfilled by adding the maximum length
of circular singletons K to the left hand side of the
inequation.

Size of the ILP
For each CFMRD , the local level of the ILP assigns a
constant number of variables to each vertex and edge
(see Table 6). Additionally there is a constant number
of constraints associated with each vertex and edge (see
Tables 1, 2, 3, 4). For each edge in the phylogeny, there
is a constant number of constraints and variables per
edge or vertex in the global level (see C.01 to C.03 and
Table 5 respectively). The size of the ILP is thus linear
with respect to the total size of all CFMRDs of the tree.

Pre‑processing
We provide two pre-processing options aimed at reduc-
ing the solution space. Firstly, we give the option to
calculate an initial solution the solver starts with – guar-
anteeing that an approximate solution will be found, but
also providing an immediate upper bound on the prob-
lem. The algorithm to compute such a solution proceeds
in two steps, corresponding to the global and local level
of the ILP respectively. In the first step, the algorithm
determines linearizations for all ancestral genomes
using the algorithm described in Section 3.2, taking into
account the weights of the adjacencies. As a second step,
decompositions for each CFMRD are determined by
greedily fixing cycles in order of ascending length in the
graph.

The second option for pre-processing allows us to
bound the solution from below by using knowledge not
available to the solver. To see how this method works,
consider two genomes A,B and a degenerate genome D .
Transforming A into a linearization of D and this lineari-
zation into B must use at least as many DCJ- and indel-
operations as transforming A into B via any intermediate
genome C with the same copy-numbers of families as
D . This idea can be generalized to multiple intermediate
genomes. Thus, by precomputing the distance d(A,B)
between leaves using ding [6] while taking into account
the number of occurrences per family, we can derive the
following additional global constraint:

Table 3 Reporting for telomeres

(C.34) lv = 0 ∀v ∈ T (A)

lv = 1 ∀v ∈ T (B)

(C.35) lu ≤ lv + rAB
v + rAb

v + (1− xuv) ∀uv ∈ Eadj, v ∈ T (A)

lu ≤ lv + raB
u + (1− xuv) ∀uv ∈ Eadj, u ∈ T (B)

(C.36) rABv ≤ zv ∀v ∈ T (A)

(c.37) 1− yv ≤ rAb
v + rAa

v
v ∈ T (A)

1− yv ≤ raB
v + rBb

v
v ∈ T (B)

(C.38) yvi ≤ i(1− rRv) v ∈ T (A), R ∈ {Ab, Aa}

yvi ≤ i(1− rR
v) v ∈ T (B), R ∈ {aB, Bb}

(C.39) rABv ≤ lu + (1− xuv) ∀uv ∈ Eadj, v ∈ T (A)

rAbv ≤ lu + (1− xuv) ∀uv ∈ Eadj, v ∈ T (A)

raBv ≤ 1− lu + (1− xuv) ∀uv ∈ Eadj, v ∈ T (B)

Table 4 Reporting circular singletons

(C.24) du + dv + xuv ≤ 2 ∀uv ∈ Eadj ∪ Eself

du + dv − xuv ≥ 0 ∀uv ∈ Eadj ∪ Eself

(C.25) wu = wv ∀uv ∈ Eself

(C.26) K(1− xuv + rs
u + rs

v)+ wv ≥ wu + dv − du ∀uv ∈ Eadj

Table 5 Domains - global level

(D.01) gv ∈ {0, 1} for each genome X ,
∀v ∈ E(X) ∪ T (X)

(D.02) fE ,nE ,cE ,sE ∈ N0 ∀E ∈ E(T)

(D.03) p
xy
E , pmax a

E , pmax b
E ∈ N0 ∀E ∈ E(T) ∀x , y ∈ {A, B, a, b}, x �= y

(D.04) qE ∈ Z ∀E ∈ E(T)

(D.05) wE ∈ R ∀E ∈ E(T)

Table 6 Domains - local level. For each edge (A,B) ∈ E(T) with
CFMRD(A,B) = (E ∪ T , Eall) with Eall = Eadj ∪ Eext ∪ Eself:

(D.06) xe ∈ {0, 1} ∀e ∈ Eall

(D.07) yvi ∈ {0, ..., i} vi ∈ E ∪ T

(D.08) zv , lv ∈ {0, 1} v ∈ E ∪ T

(D.09) dv ∈ {0, 1} v ∈ E

(D.10) wv ∈ N0 v ∈ E

(D.11) rabv ∈ {0, 1} ∀v ∈ E(A)

(D.12) rAav , rAbv , rABv ∈ {0, 1} ∀v ∈ T (A)

(D.13) raBv , rBbv ∈ {0, 1} ∀v ∈ T (B)

(D.14) bf ∈ {0, 1} for each family f

Page 10 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

Evaluation
We implemented Algorithm 1 and made it publicly avail-
able1. We refer to this algorithm as SPP-DCJ-v2 in the fol-
lowing. We performed a number of different experiments
evaluating the solving time under different conditions as
compared to SPP-DCJ as well as precision and recall for
the safer linearization mode.

While solving the same problem, SPP-DCJ adds
another parameter β to the optimization which gives fur-
ther negative weight to telomeres. In short, the optimiza-
tion function of SPP-DCJ is equivalent to the form
Minimize

We can simulate this behavior in our ILP by decreasing
the assigned weight of telomeric adjacencies and by using
a re-scaled α.

When comparing to SPP-DCJ, we thus used default set-
tings for SPP-DCJ with α′ = 1

2 , β
′ = 1

4 . This corresponds
in our ILP to α = 2

3 and reducing the weight of each tel-
omeric adjacency by 1, so we used these parameters for
SPP-DCJ-v2 when comparing to SPP-DCJ.

We used gurobi version 12.0.0 on a single thread and
with a time limit of 1 hour (3600 seconds) to solve the
ILPs unless specified otherwise.

Performance on linear genomes
In order to compare the behavior of SPP-DCJ and SPP-
DCJ-v2 in the presence of multiple linear chromosomes,
we used the simulator ffs-dcj introduced in [6]. The simu-
lator performs a number of DCJs, indels and duplications
with fixed rates for a given tree topology. In this experi-
ment, we used a fixed balanced tree topology, namely

(C.opt)
∑

E ∈ E(T)

E on path between A,B

fE ≥ d(A,B) for all pairs of leaves A,B.

α′
∑

E∈E(T)

fE + β ′
∑

E∈E(T)

#telomeres in decompositions of E − (1− α′ − β ′)
∑

E∈E(T)

wE

(((A : 1.0, B : 1.0)F : 1.0), ((C : 1.0, D : 1.0)G : 1.0))Root
; . We simulated 30 operations per branch on genomes
of size 100 markers. More detailed settings (such as rates
of duplications and indels) can be found in Table 7. The
experiment was run for 2, 4, 6, 8, 10, 12, 14 and 16 lin-
ear chromosomes at the root of the tree with 10 repli-
cates for each step. We then proceeded to introduce 30
adjacencies of adversarial noise for each sample at the
inner nodes utilizing a script provided by the SPP-DCJ
repository.

We then ran SPP-DCJ and SPP-DCJ-v2 on degenerate
genomes consisting of the true and noise adjacencies. In

Table 7 Parameters for ffs-DCJ for the linear chromosome
experiment

Duplication rate 0.4

Zipf parameter duplication 6.0

Deletion Rate 0.2

Insertion Rate 0.1

Zipf parameter indel 4.0

1 https:// github. com/ codia lab/ spp- dcj and can be installed with conda
install -c conda-forge -c bioconda spp-dcj

order to ensure a fair comparison, we did not perform
the performance optimizing pre-processing steps from
Section "Pre-processing" or give any ranges for marker
multiplicities in ancestral genomes for SPP-DCJ-v2. The
results in solving time are shown in Fig. 6.

We see that SPP-DCJ-v2 on average needed more than
two orders of magnitude less solving time than SPP-
DCJ and even comparing the best run of SPP-DCJ to the
worst of SPP-DCJ-v2 per step, the difference is still about
one order of magnitude.

A majority of SPP-DCJ runs did not complete within
the time limit. The performance of SPP-DCJ also
dramatically worsens with increasing numbers of linear
chromosomes, such that no ILPs were solved within the
time limit for 16 chromosomes.

SPP-DCJ-v2 in turn was also affected by the rising
numbers of linear chromosomes, but the effect is less
drastic. In fact, the solving time for SPP-DCJ-v2 is well
below a minute for all samples.

Performance on circular genomes
As we have seen in Section "On linearizability", even
when in the ground truth all linearizations of chromo-
somes are circular, additional telomeres might still be
necessary to ensure that all degenerate genomes are
linearizable.

In order to examine this effect, we used the same
pipeline as in [4] to simulate trees and genomes of
100 markers for each tree using ZOMBI [15] with
tree scales ranging from 5 to 20 with 50 samples per
step (for all parameter settings see Table 8). We then

https://github.com/codialab/spp-dcj

Page 11 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

inferred degenerate genomes using DeCoSTAR [14]
and solved the resulting SPP instances using SPP-DCJ
and SPP-DCJ-v2, the latter again without additional
pre-processing. We visualize the resulting solving times
in Fig. 7.

Genomes generated by ZOMBI are circular, so one
might assume that there is only negligible difference in
runtime between SPP-DCJ and SPP-DCJ-v2. However,
the results indicate that the improved handling of the
solution space by SPP-DCJ-v2 allows it to solve problem

instances with up to twice the tree scale as SPP-DCJ with
comparable solving times.

Unexpectedly, the median solving times of SPP-DCJ-v2
decrease after a maximum at tree scale 15. We conjec-
ture that this might be because enough rearrangements
accumulate to make the genomes behave as if not related,
making the problem easier to solve. SPP-DCJ however
seems not to benefit from this effect in the tested tree
scale and time range as the median solving time reaches
the time limit for a tree scale of 11 and does not recover.

Evaluation of the safer linearization mode
We used the same pipeline to simulate genomes of 1000
markers with ZOMBI, inferring degenerate ancestral
genomes with DecoSTAR over a range of tree scales with
five samples per step. All other parameters are the same
as in Table 8. This time, however, we used SPP-DCJ-v2
with both the default and the safer linearization modes
and examined the precision and recall of recovered
adjacencies. In this experiment, we used α = 0.5 with
weight 0 for the telomeric adjacencies added to ensure
linearizability (see Section "On linearizability").

The results, illustrated in Fig. 8, indicate that while our
method displays very high precision and recall rates in
both modes, the safer linearization mode has a minor,
but consistent advantage over the default setting, espe-
cially considering precision. The trend in the data shows
that this gap could widen further on more noisy data.

Evaluating the Effect of Initial Solution and Lower Bounds
We ran the ZOMBI pipeline again with the param-
eters detailed in Table 8 for tree scales 5, 10, 15, and
20, generating 50 samples each. This time, we ran only

Fig. 6 Solving times for SPP-DCJ and SPP-DCJ-v2 on simulated genomes with increasing numbers of telomeres. Solid lines represent corresponding
median values

Table 8 Parameter settings for ZOMBI and DeCoSTAR for
the tree scale and precision experiments. For the sake of
benchmarking SPP-DCJ-v2, ZOMBI parameters for genome
evolution were chosen to represent an elevated degree of
genome evolution, both in terms of gene content innovation
(duplication+loss) and rearrangement (inversion+transposition)

ZOMBI

DUPLICATION f:2

INITIAL_GENOME_SIZE 100

LOSS f:2

LOSS_EXTENSION g:0.8

ORIGINATION f:0

INVERSION f:2

INVERSION_EXTENSION g:0.5

TRANSPOSITION f:2

TRANSPOSITION_EXTENSION g:0.5

DeCoSTAR

use.boltzmann 1

boltzmann.temperature 1.0

nb.sample 1000

Page 12 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

SPP-DCJ-v2 and examined the effect of providing an
initial solution or lower bounds for the ILP. The average
solving and pre-processing times are given in Fig. 9.

While there is a slight trend in decreasing solving
times with additional pre-processing, the time needed
to apply the pre-processing itself dominates much of
the runtime, especially on lower tree scales. Even on

high tree scales, the benefit for the solving time seems
to be outweighed by the time needed to complete the
pre-processing. We therefore do not recommend com-
puting an initial solution, unless no approximate solu-
tion would be found otherwise. In the same vein, we do
not recommend precomputing lower bounds, unless
they were already used to construct the phylogeny.
Possibly the precomputation of lower bounds could be

Fig. 7 Solving times for SPP-DCJ and SPP-DCJ-v2 on genomes generated by ZOMBI on a range of trees with increasing branch lengths
with ancestral adjacencies inferred by DecoSTAR. Solid lines represent corresponding median values

Fig. 8 Mean precision, recall and F1 score for default and safer linearization mode for varying tree scales. Transparent ranges indicate minimum
to maximum range of the five tested samples per step

Fig. 9 Average pre-processing and solving times of 50 samples for variants of SPP-DCJ-v2. NN - no additional pre-processing, IN - initial solution
precomputed, IB - initial solution and lower bounds precomputed

Page 13 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

improved by only precomputing distances for certain
pairs of leaves, and not all of them, which decreases the
runtime while possibly keeping the positive effects on
solving time.

Reconstructing the ancestral X chromosomes of seven
mosquitos
We further evaluated our method on biological data
from seven Anopheles species whose inferred phy-
logeny is depicted in Fig. 10. Gene annotations from
protein coding genes of the X chromosome of present-
day mosquitos were obtained from VectorBase [16].
Chromosome sizes fluctuated at around 600 genes.
We then used the ancestral gene order (AGO) pipeline
[8] to obtain candidate ancestral adjacencies. Using
AGO, multiple sequence alignments were computed
with MACSE [17], based upon which gene trees were
inferred and reconciled with the species tree with IQ-
TREE [18]. Finally, candidate ancestral adjacencies
were computed with DeCoSTAR.

We ran SPP-DCJ and SPP-DCJ-v2 with varying optimi-
zation levels to generate corresponding ILPs and initial
solutions where applicable. Additionally, we generated
an ILP based on SPP-DCJ-v2, for which we allowed copy

numbers in ancestral families to deviate by one from the
maximum number of copies. The resulting ILPs were
then input to gurobi 12.0.0, which ran on 10 threads with
a time limit of 12 hours on the same machine for all ILPs.

We visualize the gaps reported by gurobi over time in
Fig. 11. For all variants of SPP-DCJ-v2 gurobi found solu-
tions with significantly closer gaps than for SPP-DCJ. In
fact, results as close as the final result for SPP-DCJ were
found for all versions of SPP-DCJ-v2 within the first 25
minutes of solving time.

As before, the pre-processing optimizations have only a
minor effect on the quality of the result at the end of solv-
ing time. Indeed, the effect is most strongly visible within
the first few minutes of solving time, after which gurobi’s
own heuristic solutions start to overshadow the initial
solutions found in pre-processing.

Interestingly, allowing for uncertainty about the multi-
plicity of the families in ancestral genomes did not slow
computation, but had an immense speed up effect. This
suggests that doing so allows to find solutions better fit-
ting the given phylogeny and adjacencies.

Discussion
We presented SPP-DCJ-v2, the first ILP of polynomial size
to solve the Small Parsimony Problem for natural genomes
under the DCJ-indel model. Using a more efficient repre-
sentation of the solution space, the Capping-Free Multi-
Relational Diagram, we were able to significantly improve
upon the performance of its predecessor, SPP-DCJ. Addi-
tionally, we introduced a new method of ensuring lineariz-
ability that is more robust when applied to (potentially
noisy) real data because linearization is not the main con-
straint any more. We also introduced a feature that allows
users to specify their own bounds on marker multiplicities
in ancestral genomes, which may help in ambiguous cases

Fig. 10 Cladogram for seven Anopheles taxa

Fig. 11 Gaps reported by gurobi with increasing solving times for SPP-DCJ and variants of SPP-DCJ-v2 until a time limit of 720 minutes. Right:
Zoomed in on the first 25 minutes. NN - no additional pre-processing, IN - initial solution precomputed, IB - initial solution and lower bounds
precomputed, IBF - initial solution and lower bounds precomputed, with variable ancestral family sizes

Page 14 of 14Bohnenkämper et al. Algorithms for Molecular Biology (2025) 20:10

on real data. We evaluated our method on simulated data
and found it to be more efficient than its predecessor. Addi-
tionally bounds on the solution space do not seem to help
performance, especially when considering the additional
time needed for pre-processing, but could potentially be
helpful on very large problem instances. Finally, we dem-
onstrated that our approach is efficient enough to derive
good solutions for SPP on real phylogenies within reason-
able time frames.

Acknowledgements
LB thanks Tizian Schulz for helpful discussions on the linearization problem.
DD thanks Cedric Chauve for providing the Anopheles dataset.

Author contributions
DD initiated, JS and DD directed the research project. LB conceived and
implemented the algorithms and performed the experimental analysis. LB
drafted, JS and DD contributed to writing the manuscript. All authors read and
approved its final version.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Competing interests
The authors declare no competing interests.

Received: 31 January 2025 Accepted: 7 May 2025

References
 1. Braga MDV, Willing E, Stoye J. Double cut and join with insertions and

deletions. J Comput Biol. 2011;18(9):1167–84. https:// doi. org/ 10. 1089/
cmb. 2011. 0118.

 2. Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permu-
tations by translocation, inversion and block interchange. Bioinformatics.
2005;21(16):3340–6. https:// doi. org/ 10. 1093/ bioin forma tics/ bti535.

 3. Bohnenkämper L, Braga MDV, Doerr D, Stoye J. Computing the rearrange-
ment distance of natural genomes. J Comput Biol. 2021;28(4):410–31.
https:// doi. org/ 10. 1089/ cmb. 2020. 0434.

 4. Doerr D, Chauve C. Small parsimony for natural genomes in the DCJ-indel
model. J Bioinform Comput Biol. 2021;19(06):2140009. https:// doi. org/ 10.
1142/ S0219 72002 14000 96.

 5. Rubert DP, Braga MDV. Efficient gene orthology inference via large-scale
rearrangements. Algorithms Mol Biol. 2023;18:14. https:// doi. org/ 10. 1186/
s13015- 023- 00238-y.

 6. Bohnenkämper L. Recombinations, chains and caps: resolving problems
with the DCJ-indel model. Algorithms Mol Biol. 2024;19:8. https:// doi. org/
10. 1186/ s13015- 024- 00253-7.

 7. El-Mabrouk N. Predicting the evolution of syntenies-an algorithmic
review. Algorithms. 2021;14(5):152. https:// doi. org/ 10. 3390/ a1405 0152.

 8. Cribbie EP, Doerr D, Chauve C. AGO, a framework for the reconstruction
of ancestral syntenies and gene orders. In: Setubal JC, Stoye J, Stadler PF,
editors. Comparative genomics methods molecular biology. New York:
Humana; 2024. p. 247–65.

 9. Xu AW, Moret BME. GASTS: parsimony scoring under rearrangements.
Berlin: Springer; 2011. p. 351–63.

 10. Avdeyev P, Jiang S, Aganezov S, Hu F, Alekseyev MA. Reconstruction of
ancestral genomes in presence of gene gain and loss. J Comput Biol.
2016;23(3):150–64. https:// doi. org/ 10. 1089/ cmb. 2015. 0160.

 11. Xia R, Lin Y, Zhou J, Feng B, Tang J. A median solver and phylogenetic
inference based on double-cut-and-join sorting. J Comput Biol.
2018;25(3):302–12. https:// doi. org/ 10. 1089/ cmb. 2017. 0157.

 12. Shao M, Lin Y, Moret BME. An exact algorithm to compute the double-
cut-and-join distance for genomes with duplicate genes. J Comput Biol.
2015;22(5):425–35. https:// doi. org/ 10. 1089/ cmb. 2014. 0096.

 13. Frolova D, Lima L, Roberts LW, Bohnenkämper L, Wittler R, Stoye J, Iqbal Z.
Applying rearrangement distances to enable plasmid epidemiology with
pling. Microb Genom. 2024. https:// doi. org/ 10. 1099/ mgen.0. 001300.

 14. Duchemin W, Anselmetti Y, Patterson M, Ponty Y, Bérard S, Chauve C,
Scornavacca C, Daubin V, Tannier E. DeCoSTAR: reconstructing the ances-
tral organization of genes or genomes using reconciled phylogenies.
Genome Biol Evol. 2017;9(5):1312–9. https:// doi. org/ 10. 1093/ gbe/ evx069.

 15. Davín AA, Tricou T, Tannier E, Vienne DM, Szöllősi GJ. Zombi: a phyloge-
netic simulator of trees, genomes and sequences that accounts for dead
linages. Bioinformatics. 2019;36(4):1286–8. https:// doi. org/ 10. 1093/ bioin
forma tics/ btz710.

 16. ...Amos B, Aurrecoechea C, Barba M, Barreto A, Basenko EY, Bażant W,
Belnap R, Blevins AS, Böhme U, Brestelli J, Brunk BP, Caddick M, Callan
D, Campbell L, Christensen MB, Christophides GK, Crouch K, Davis K,
DeBarry J, Doherty R, Duan Y, Dunn M, Falke D, Fisher S, Flicek P, Fox B,
Gajria B, Giraldo-Calderón GI, Harb OS, Harper E, Hertz-Fowler C, Hickman
MJ, Howington C, Hu S, Humphrey J, Iodice J, Jones A, Judkins J, Kelly
SA, Kissinger JC, Kwon DK, Lamoureux K, Lawson D, Li W, Lies K, Lodha D,
Long J, MacCallum RM, Maslen G, McDowell MA, Nabrzyski J, Roos DS,
Rund SSC, Schulman SW, Shanmugasundram A, Sitnik V, Spruill D, Starns
D, Stoeckert CJ Jr, Tomko SS, Wang H, Warrenfeltz S, Wieck R, Wilkinson
PA, Xu L, Zheng J. VEuPathDB: the eukaryotic pathogen, vector and host
bioinformatics resource center. Nucleic Acids Res. 2021;50(D1):898–911.
https:// doi. org/ 10. 1093/ nar/ gkab9 29.

 17. Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. MACSE v2:
toolkit for the alignment of coding sequences accounting for frameshifts
and stop codons. Mol Biol Evol. 2018;35(10):2582–4. https:// doi. org/ 10.
1093/ molbev/ msy159.

 18. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, Haese-
ler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylo-
genetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4.
https:// doi. org/ 10. 1093/ molbev/ msaa0 15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1089/cmb.2011.0118
https://doi.org/10.1089/cmb.2011.0118
https://doi.org/10.1093/bioinformatics/bti535
https://doi.org/10.1089/cmb.2020.0434
https://doi.org/10.1142/S0219720021400096
https://doi.org/10.1142/S0219720021400096
https://doi.org/10.1186/s13015-023-00238-y
https://doi.org/10.1186/s13015-023-00238-y
https://doi.org/10.1186/s13015-024-00253-7
https://doi.org/10.1186/s13015-024-00253-7
https://doi.org/10.3390/a14050152
https://doi.org/10.1089/cmb.2015.0160
https://doi.org/10.1089/cmb.2017.0157
https://doi.org/10.1089/cmb.2014.0096
https://doi.org/10.1099/mgen.0.001300
https://doi.org/10.1093/gbe/evx069
https://doi.org/10.1093/bioinformatics/btz710
https://doi.org/10.1093/bioinformatics/btz710
https://doi.org/10.1093/nar/gkab929
https://doi.org/10.1093/molbev/msy159
https://doi.org/10.1093/molbev/msy159
https://doi.org/10.1093/molbev/msaa015

	Titelblatt_Bohnenkämper_final
	Bohnenkämper_Reconstructing
	Reconstructing rearrangement phylogenies of natural genomes
	Abstract
	Background
	Methods
	Results

	Introduction
	Preliminaries
	A new method
	Capping-free model
	On linearizability
	Local guarantees
	Allowing each extremity to be connected to a telomere

	A new ILP formulation
	Global level
	Local level
	Size of the ILP

	Pre-processing

	Evaluation
	Performance on linear genomes
	Performance on circular genomes
	Evaluation of the safer linearization mode
	Evaluating the Effect of Initial Solution and Lower Bounds
	Reconstructing the ancestral X chromosomes of seven mosquitos

	Discussion
	Acknowledgements
	References

