
Bringing Pangenomes to Proteomes:
Toolkits for Panproteome Construction,
Graph Alignments, and Epistasis Detection

Inaugural dissertation

for the attainment of the title of doctor
in the Faculty of Mathematics and Natural Sciences
at the Heinrich Heine University Düsseldorf

presented by

Fawaz Dabbaghie
from Aleppo, Syria

Düsseldorf, February, 2025

ii

From the Institute for Medical Biometry and Bioinformatics
of Heinrich Heine University Düsseldorf

Published by permission of the
Faculty of Mathematics and Natural Sciences of
Heinrich Heine University Düsseldorf

Supervisor: Prof. Dr. Tobias Marschall
Co-supervisor: Prof. Dr. Olga V. Kalinina

Date of the oral defence: 23.06.2025

Statement

I declare under oath that I have produced my thesis independently and without any undue
assistance by third parties under consideration of the “Principles for the Safeguarding of
Good Scienti̊c Practice at Heinrich Heine University Düsseldorf”.

Düsseldorf, February 27, 2025
Fawaz Dabbaghie

iii

iv Statement

Abstract

Compared to biology, the ̊eld of computer science is much younger. However, it has been
clear from the beginning that the combination of the two disciplines has had a signi̊cant
impact. In particular, the use of data structures such as graphs and sequence algorithms has
made it possible to analyze large amounts of genome sequencing data. Since the produc-
tion of the ̊rst human reference genome in the early 2000s, many studies have shown the
need for a better, more comprehensive representation of a reference genome than the linear
reference. This led to the concept of pangenomes, and in particular, graph pangenomes. A
graph pangenome is a data structure that is able to represent many linear references and
sequences of a given species simultaneously, and is speci̊cally designed to address the chal-
lenges and biases that arise when using a linear reference. However, with this advancement
came the need to adapt and develop many algorithms and software toolkits to facilitate sim-
ilar and new analyses that are regularly performed using linear references. In this thesis, we
present several software tools that perform di̔erent analysis on large genome sequencing
data. These tools employ a variety of statistical and algorithmic concepts, with a particu-
lar emphasis on bringing pangenomes to proteomes, genome graph manipulation tools, and
sequence-to-graph alignment and processing.
The ̊rst chapter puts forth the concept of a panproteome in prokaryotes, a pangenome

for the protein world. A panproteome, here, is represented as a collection of graphs repre-
senting proteins or coding regions. Moreover, we introduce PanPA, a software designed for
the construction, indexing, and aligning of panproteomes. We assess the e̎cacy of our soft-
ware by conducting experiments and providing benchmarks in diverse scenarios, employing
multiple real-world datasets. We also show that PanPA and panproteomes are useful, espe-
cially in capturing sequence alignments that would otherwise be lost in the linear or DNA
pangenome world, which further emphasizes the value of moving to the protein world.
The second chapter presents several toolkits pertinent to working and analyzing graphs

and pangenomes. We ̊rst present GFASubgraphs, a simple tool and API for working with
genome graphs, aiding users in further downstream analysis of their graphs. Second, we
introduce extgfa, that employs a similar graph API from the aforementioned tool in this
chapter. However, it further explores the concept of external memory representations of
graphs, facilitating the analysis of large genome graphs on smaller machines with limited
RAM. Third, gaftools is introduced, a joint work that introduces crucial functionality to
working with genome alignments in the GAF format. It bridges a gap in the alignment pro-

v

vi Abstract

cessing ecosystem, where it implements functionalities that were previously only available
in the linear alignment world.
The third chapter describes an ongoing work in analyzing cancer and match normal cell

lines using several sequencing platforms. In this work, we try to assemble both cell lines to
a high quality, call structural variants using several algorithms and methods, and produce a
high con̊dence set of somatic structural variants. Moreover, we investigate further the use
of graphs in aiding in the previous steps, especially to disentangle and di̔erentiate the vari-
ants and contigs that represent one cancer subclone from the other. To this end, we develop
a graph drawing toolkit called graphdraw that assists in visualizing graph components, and
extracting various important information from the assembly graphs, which enables us to
investigate parts of the graph associated with certain information more e̎ciently.
The last chapter presents a joint work on a novel statistical method and software for epis-

tasis detection between mutations in proteins is presented, we call our software EpiPAMPAS.
Subsequently, EpiPAMPAS was tested on both simulated and real data, where the results on
the simulated data were very promising, and we were able to e̎ciently detect the epistatic
interactions. For the real data, we compared our results to a previously published method
and found signi̊cant overlap in the epistatic positions detected. Furthermore, we looked
into the location of the positions detected in the 3D structure of the corresponding proteins,
and investigated the biological signi̊cance of some of these positions.

Kurzfassung

Im Vergleich zur Biologie ist die Informatik ein deutlich jüngeres Fachgebiet. Den-
noch wurde früh erkannt, dass die Kombination beider Disziplinen große Auswirkun-
gen hat. Besonders der Einsatz von Datenstrukturen wie Graphen und Sequenzalgorith-
men hat die Analyse großer Mengen an Genomsequenzierungsdaten ermöglicht. Seit der
Verö̔entlichung des ersten menschlichen Referenzgenoms in den frühen 2000er Jahren
haben zahlreiche Studien gezeigt, dass ein umfassenderes und präziseres Referenzgenom
anstelle des herkömmlichen linearen Modells notwendig ist. Dies führte zum Konzept des
Pangenome, insbesondere des Graph-Pangenome. Ein Graph-Pangenom ist eine Datenstruk-
tur, die mehrere lineare Referenzen und Sequenzen einer bestimmten Spezies gleichzeitig
darstellen kann. Die Entwicklung von Graph-Pangenomen zielte darauf ab, die Probleme
zu beheben, die bei der Nutzung linearer Referenzen auftreten. Allerdings führte dies auch
zur Notwendigkeit, eine Vielzahl von Algorithmen und Software-Toolkits anzupassen oder
neu zu entwickeln, um sowohl bestehende als auch neue Analysen zu ermöglichen, die
üblicherweise mit linearen Referenzen durchgeführt werden. In der vorliegenden Arbeit
werden mehrere Software-Tools vorgestellt, die verschiedene Analysen großer Genomse-
quenzierungsdaten ermöglichen. Die Tools basieren auf einer Vielzahl statistischer und
algorithmischer Konzepte, wobei ein besonderer Schwerpunkt auf der Verknüpfung von
Pangenomen mit Proteomen, der Bereitstellung von Werkzeugen zur Manipulation von
Genomgraphen sowie der Entwicklung von Methoden zur Sequenz-zu-Graph Alignierung
und -Verarbeitung liegt.
Im ersten Kapitel wird das Konzept eines Panproteoms bei Prokaryoten erörtert, ein

Pangenom für die Proteinwelt. Ein Panproteom wird hierbei als eine Sammlung von
Graphen dargestellt, die Proteine oder kodierende Regionen repräsentieren.Darüber hinaus
wird PanPA vorgestellt, eine Software, die für den Aufbau, die Indizierung und das Align-
ment von Panproteomen entwickelt wurde. Die Leistungsfähigkeit der Software wird durch
die Durchführung von Experimenten und die Bereitstellung von Benchmarks in verschiede-
nen Szenarien bewertet, wobei mehrere reale Datensätze verwendet werden.Es wird gezeigt,
dass PanPA und Panproteome insbesondere bei der Erfassung von Sequenzalignments nüt-
zlich sind, die sonst in der Welt der linearen oder DNA-Pangenome verloren gehen würden.
Dies unterstreicht den Wert des Wechsels in die Proteinwelt.
Im zweiten Kapitel werden mehrere Toolkits vorgestellt, die für die Arbeit und Analyse

von Graphen und Pangenomen von Relevanz sind. Zunächst wirdGFASubgraphs präsentiert,

vii

viii Kurzfassung

ein Tool und eine API für die Arbeit mit Genomgraphen, die den Benutzern bei der weit-
eren Analyse ihrer Graphen behiľich ist. Des Weiteren wird extgfa vorgestellt, das eine
Graphen-API wie das zuvor beschriebene Tool in diesem Kapitel verwendet.GFASubgraphs
erforscht das Konzept der Darstellung von Graphen in einem externen Speicher, um die
Analyse großer Genomgraphen auf kleineren Rechnern mit begrenztem RAM zu erleichtern.
gaftools ist eine Gemeinschaftsarbeit, die wichtige Funktionen für die Arbeit mit Genom-
Alignments im GAF-Format einführt. Es schließt eine Lücke im Ökosystem der Alignment-
Verarbeitung, indem es Funktionalitäten implementiert, die bisher nur in der Welt des lin-
earen Alignments verfügbar waren.
Im dritten Kapitel wird eine laufende Arbeit zur Analyse von Krebs- und normalen

Zelllinien unter Verwendung verschiedener Sequenzierungsplattformen beschrieben. Ziel
dieser Arbeit ist die Auswertung und Assemblierung beider Zelllinien in hoher Qualität, die
Bestimmung struktureller Varianten mit verschiedenen Algorithmen und Methoden sowie
die Erstellung eines Satzes somatischer Strukturvarianten mit hohem Vertrauen. Darüber
hinaus wird die Verwendung von Graphen zur Unterstützung der vorangegangenen Schritte,
insbesondere zur Enťechtung und Unterscheidung der Varianten und Contigs, die einen
Krebs-Subklon von dem anderen unterscheiden, untersucht. Zu diesem Zweck entwick-
eln wir ein Toolkit zum Zeichnen von Graphen mit dem Namen graphdraw, das bei der
Visualisierung von Graphenkomponenten und der Extraktion verschiedener wichtiger In-
formationen aus den Assemblierunggraphen hilft, wodurch wir Teile des Graphen, die mit
bestimmten Informationen verbunden sind, e̎zienter untersuchen können.
Im letzten Kapitel wird eine neue statistische Methode und Software zur Erkennung

von Epistasen zwischen Mutationen in Proteinen vorgestellt, die wir EpiPAMPAS nennen.An-
schließend wurde EpiPAMPAS sowohl an simulierten als auch an realen Daten getestet, wobei
die Ergebnisse bei den simulierten Daten sehr vielversprechend waren und wir in der Lage
waren, die epistatischen Interaktionen e̎zient zu erkennen. Bei den realen Daten wurde ein
Vergleich mit einer zuvor verö̔entlichten Methode vorgenommen, wobei eine signi̊kante
Überschneidung der erkannten epistatischen Positionen festgestellt wurde. Zudem wurde
die Lage der entdeckten Positionen in der 3D-Struktur der entsprechenden Proteine unter-
sucht und die biologische Bedeutung einiger dieser Positionen analysiert.

Acknowledgments

I would like to express my deepest gratitude to my supervisors, Prof. Dr. Tobias Marschall
and Prof. Dr. Olga Kalinina, for giving me the opportunity to pursue my PhD and for their
support, guidance, and mentorship throughout this journey. Their invaluable insights and
encouragement have been instrumental in shaping my research and me as a researcher and
as a person.
I am also grateful to my colleagues (Hufsah, Hugo, Kai, Mir, Peter, Haniyeh, Sven, and

Samarendra) for their support, collaboration, and for making our work atmosphere pleasant,
fun, and encouraging. Special thanks to Konstantinn Bonnet for the countless fruitful dis-
cussions and encouragements that enriched my work, to Jana Ebler for always being there
to answer questions, to Rebecca Serra Mari for her support and sharing the best memes, and
to my close friends Sandra, Dania, John, and Kenta for their emotional support.
I would also like to especially thank Rui, Anela, Maartin, Saheli, and Andy for their last

minute proofreading of the manuscript.
I cannot express in words my deepest appreciation and gratitude to my parents, whose

encouragement and sacri̊ces have been a constant source of strength throughout my life,
and to my brother for his unwavering support.
This journey has been long and sometimes tiring, but I am so grateful for the experience.

Since I started my ̊rst year at university in 2009, I have known that science and research
are my true passion. I am excited to keep learning, sharing what I know, and helping others
the way so many people have helped me.

ix

x Acknowledgments

Contents

Statement iii

Abstract v

Kurzfassung vii

Acknowledgments ix

Contents xi

List of Figures xv

List of Tables xxv

1 Introduction and Background 1
1.1 Genomes . 2
1.2 Genome Sequencing . 3

1.2.1 Sequence Alignment . 4
1.2.2 Genome Assembly . 10
1.2.3 Variant Calling . 12

1.3 Pangenomes . 13
1.3.1 Sequence-to-Graph Alignment . 15

1.4 File Formats . 16
1.4.1 FASTA and FASTQ Formats . 16
1.4.2 The SAM and BAM Alignment formats 17
1.4.3 Graphical Fragment Assembly Format 17
1.4.4 Graph Alignment Format (GAF) . 18

1.5 Outline . 21

2 PanPA: PanProteome Graph Builder and Aligner 23
2.1 Introduction . 23
2.2 Methods . 25

xi

xii Contents

2.2.1 Building Seed Index from MSAs . 25
2.2.2 Generating a Directed Acyclic Graph from a MSA 26
2.2.3 Aligning Query Sequences . 29

2.3 Implementation . 32
2.3.1 Indexing . 33
2.3.2 Generating Graphs . 34
2.3.3 Aligning . 35

2.4 Validation of PanPA . 35
2.4.1 Building an E. coli Panproteome . 35
2.4.2 Validating Alignments on a Panproteome of E. coli 36
2.4.3 Runtime for the E. coli Panproteome 37
2.4.4 Alignment Robustness Validation . 38

2.5 Results . 39
2.5.1 Aligning Unseen Sequences from E. coli 39
2.5.2 Comparison of PanPA, BWA and GraphAligner Using S. enterica Sequences 40
2.5.3 Aligning S. enterica Illumina Short Reads to the E. coli genome, pangenome,

and panproteome . 43
2.5.4 Using PanPA to Display Phenotypic Traits: a Case of Antimicrobial

Resistance in E. coli . 45
2.5.5 Comparing against HMMER . 45
2.5.6 Gene Order Analysis with PanPA . 48

2.6 Conclusion and Discussion . 51

3 Software Toolkits for Genome and Pangenome Graphs 53
3.1 Introduction . 54
3.2 GFASubgraph and GFA class . 55

3.2.1 GFA Class . 55
3.2.2 GFA Class Benchmarking . 56

3.3 extgfa for External Memory GFA Representation 58
3.3.1 extgfa Method . 58
3.3.2 extgfa Implementation . 61
3.3.3 extgfa Chunked and Unchunked Graphs Comparison 64

3.4 gaftools for Working with Pangenome Alignments 65
3.4.1 gaftools Commands . 65
3.4.2 Comparison and Benchmarking . 71

3.5 Conclusion and Discussion . 72

4 Multi-Platform Investigation in Cancer Structural Variants and Subclones 75
4.1 Introduction . 75
4.2 Data . 77
4.3 Results . 77

xiii

4.3.1 Genome Assembly . 77
4.3.2 Structural and Copy Number Variation Calling 79
4.3.3 SV Calls Intersection . 83
4.3.4 Graph Drawing . 87

4.4 Conclusion and Discussion . 90

5 EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruc-
tion and Mutation Counting 93
5.1 Introduction . 94
5.2 Methods . 95

5.2.1 Constructing the Dendrogram . 96
5.2.2 Sanko̔ Algorithm . 96
5.2.3 Mutation Direction and Counting . 99

5.3 Implementation . 99
5.4 Results . 101

5.4.1 Simulated Data . 101
5.4.2 Viral Data . 101

5.5 Conclusion and Discussion . 107

Summary 109

Bibliography 111

A PanPA: PanProteome Graph Builder and Aligner 131
A.1 Supplementary Tables . 131
A.2 MSA to GFA . 132
A.3 Random Sequences Selection Mechanism . 133
A.4 Aligning to Sparse MSAs . 134
A.5 Indexing Time and Space . 134
A.6 Command line tools and Parameters . 135

A.6.1 Alignment comparison of S. enterica protein sequences 135
A.6.2 Aligning short reads parameters . 137
A.6.3 Comparison with HMMER parameters 137
A.6.4 Gene Order Analysis parameters . 138

B Graph toolkits: GFASubgraphs, extgfa, and gaftools 139
B.1 GFA representation in the GFA class . 139
B.2 Bi-Connected Component Detection . 139
B.3 GFA APIs Benchmarking . 139

xiv Contents

C Multi-Platform Investigation in Cancer Structural Variants and Subclones 143
C.1 Alignments . 143
C.2 Structural Variants Calling . 144

D EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruc-
tion and Mutation Counting 149
D.1 Mutation Direction Counting . 149
D.2 Supplementary Figures . 151

E Code Availability 155

F Published articles underlying this thesis 157
F.1 BubbleGun: enumerating bubbles and superbubbles in genome graphs 157

F.1.1 Authors . 157
F.1.2 Contribution . 157
F.1.3 License and copyright information . 157

F.2 PanPA: generation and alignment of panproteome graphs 158
F.2.1 Authors . 158
F.2.2 Contribution . 158
F.2.3 License and copyright information . 158

F.3 extgfa: a low-memory on-disk representation of genome graphs 158
F.3.1 Authors . 158
F.3.2 Contribution . 158
F.3.3 License and copyright information . 159

F.4 gaftools: a toolkit for analyzing and manipulating pangenome alignments . 159
F.4.1 Authors . 159
F.4.2 Contribution . 159
F.4.3 License and copyright information . 159

F.5 EpiPAMPAS: Rapid detection of intra-protein epistasis via parsimonious ances-
tral state reconstruction and counting mutations 159
F.5.1 Authors . 160
F.5.2 Contribution . 160
F.5.3 License and copyright information . 160

List of Figures

1.1 Examples of dot matrix alignments between two sequences, ̊ve examples
are shown that represent di̔erent characteristics of the alignment that cor-
respond to structural changes or variants between the sequences. Generated
with https://en.vectorbuilder.com/tool/sequence-dot-plot.html . . . 6

1.2 Example of Needleman-Wunsch global alignment algorithm matrix with a
match score of 2, mismatch score of -1, and a gap penalty of -2. The gap
penalty here is constant, i.e., opening and extending the gap have the same
score. In this algorithm, the ̊rst row and column are initialized with the gap
penalty. The colored arrows correspond to the di̔erent tracebacks available
from the last cell, this occurs when there is more than one potential maximum
score following Equation1.1, i.e., following one or the other path both results
in an alignment with the same score. On the right side, we see the three po-
tential alignments between the two sequences that have the same score, the
colors here match the color of the traceback. In this alignment representa-
tion, the “*” represents a match, the “|” represents a mismatch, and the “_”
represent a gap. 7

1.3 Simple schematic showing how database aligners such as BLAST work. First,
the sequences are cut into equally sized “words” of length k, then these words
are matched to words in the database to ̊nd exact or near exact matches.
Once thematches are found and their locations in the squences in the database,
the word match is then extended to both directions on the target sequence and
alignments above a certain threshold are reported back. 8

1.4 This ̊gure shows a subset of the ATP Synthase alpha/beta protein family
multiple sequence alignment. This was retreived from the Pfam database with
the accession number PF00006. The di̔erent colors of certain positions in the
MSA correspond to the relative conservation in that position in the alignment.
This ̊gure was created using the NCBI Multiple Sequence Alignment Viewer
https://www.ncbi.nlm.nih.gov/projects/msaviewer/. 10

xv

https://en.vectorbuilder.com/tool/sequence-dot-plot.html
https://www.ncbi.nlm.nih.gov/projects/msaviewer/

xvi List of Figures

1.5 Sketch of the three di̔erent assemblymethods: (A) Shows the greedymethod,
where the underlying genome has a repeat (in red), causing the greedymethod
to erroneously produce two contigs instead of one, where Seq1 and Seq4 are
assembled ̊rst, preventing further extension of the contig. (B) Shows the OLC
method, ̊rst, all the overlaps between the reads are identi̊ed, then a graph
is built where each node represents a read with edges representing the over-
laps, the dotted line represents the best path taken to build the contig, where
for example, read 2 was excluded from the path as its sequence is already
covered by reads 1 and 3. In the consensus step, a majority vote is taken over
the overlapped region, eliminating the errors in the reads (marked in red).
(C) Shows the de Bruijn graph method, where k-mers are extracted from the
reads, and errors in the reads lead to erroneous k-mers, when the graph is
built from the k-mers, the divergent paths emerge from the errors. The dot-
ted line in the graph represents the path taken to build the contig, and the
erroneous nodes (in red) are skipped as k-mers resulting from errors tend to
have a low frequency. 13

1.6 The top part of this ̊gure shows a graph of four segments, the bottom part
of the ̊gure shows how this graph is represented in the GFA ̊le. In the
GFA ̊le, we see that the link going from “s1” to “s2”, the “s2” segment is in
reverse complement, and that is why in the visualization, the edge goes from
the end of “s1” to the end of “s2”, which signi̊es that we read “s1” in the
forward direction, i.e., “ACCTT” and we read “s2” in the reverse direction,
i.e., “CCTTACT”, we see then that this reverse complement sequence satisfy
the overlap requirement of 4 characters, here, the four characters overlap are
“CCTT” . 19

1.7 This is an example of an rGFA ̊le with three nodes or segments, we see that
segments “s1” and “s3” have rank 0 speci̊ed by the “SR” tag, both segments
belong to the linear reference, speci̊cally, chromosome 10 speci̊ed by the
“SN” tag. “s2” has rank 1 and belongs to another reference or sample used to
build the graph. The “SO” tag shows the o̔set of the sequence in reference. 20

1.8 This shows the GAF alignments of two sequences against the rGFA shown in
Figure 1.7 in both unstable and stable coordinates. In the stable coordinates,
if the sequence aligns to segments that belong to the linear reference, the
path string then represents the chromosome in the “SN” tag, and the following
̊elds describe the alignment coordinates, e.g., “sequence2_s”. However, if the
alignment aligns through segments that do not belong to the linear reference,
then each “SN” tag is used for each segment touched by the alignment, e.g.,
“sequence1_s”. 20

xvii

2.1 MSA to GFA: turning an MSA into a graph. The MSA in this example contains
three sequences, -MEPTPEQ, - - -T -MA, andMSETQSTQ; and the step-
by-step graph construction is shown on the panels from top to bottom. At
every step, the yellow column is the current position and the red column is
the previous one. Figure adapted from [57]. 27

2.2 This ̊gure shows an example of howwe cannot always compact linear stretches
of nodes into onde node. Here, we have three sequences of length four each,
and when we build the graph, we get four nodes, but we can only compact
the ̊rst two nodes and the second two nodes, and now we can represent the
three sequences as a node path in the output GFA ̊le. Figure taken from [57]. 29

2.3 Alignment of a sequence to a protein graph. Top: example protein graph,
which is also the compacted version of the graph made in Figure 2.1. bottom:
the corresponding DP table. The ordered graph vertices are in the columns,
and the query sequence is in the rows. Arrows between columns correspond
to the graph edges. Arrows in the DP table correspond to potential previous
cells in the DP process. Figure taken from [57]. 31

2.4 Frameshift aware alignment. The scores here are as following: match=2,
mismatch=framshift=gap=−1. We have the DNA sequenceACCTCTGACCCACCAA

aligning against the amino acid sequence PPTHQ, if we remove the G from
the DNA sequence, we actually get a perfect match. Looking at the table, we
see in the traceback, that we were able to account for the insertion and still
able to align the DNA sequence against this amin aicd sequence completely.
Figure taken from [57]. 33

2.5 Here, we show the general pipline of PanPA and its subcommands. Each sub-
command can be also run separately or more than once with di̔erent param-
eters. Figure taken from [57]. 34

2.6 Plotting the distribution of samples in the clusters. As expected, this plot
displays a characteristic U-shape. This shape emerges when looking at core
and accessory genes in a collection of samples in a species. Here the peak to
the left at 1 basically represents the unique clusters where only one sample is
represented (accessory genes), the peak to the far right represents the clusters
where all the samples were represented (core genes). Figure taken from [57]. 36

2.7 E̔ect of the di̔erent parameters on the fraction of mismach alignments,
where sequences aligned to the wrong graph. Each point is colored with
respect to the seed hits limit (the limit of how many hits can each seed point
to), and shapes correspond to the aligned hits limit (the limit of how many
graphs can one sequence align to). We see that for a small k values, a high
number of wrong alignments is produced, unless the index size is limited.
We also notice that the align seed limit has a relatively small e̔ect on the
percentage of wrong alignments. Figure taken from [57]. 38

xviii List of Figures

2.8 The e̔ect of the di̔erent k and w value combinations on alignment’s User
CPU time on the sampled sequences. We see that small values of k results in
much more time, due to the fact that smaller k values produce more promis-
cuous seeds to match to many graphs, so PanPA needs to spend more time
aligning to these graphs then ̊ltering out the alignments with low scores.
However, we can still get close to 100% correct alignments when using un-
limited seed hits, but then the time increases dramatically. On the other hand,
when using a bigger k value, the seeds will have a more unique hit to the cor-
rect graphs and PanPA doesn’t need to spend too much time aligning. Figure
taken from [57]. 39

2.9 E̔ect of the di̔erent parameters on the number of unaligned sequences when
aligning 92,196 unseen E. coli sequences. For small k values, the majority of
sequences were not aligned unless a limit for the index hits size is set (the red
marks); if the index hits size is not limited, over 99% of sequences produce
an alignment. Figure taken from [57]. 41

2.10 Unseen sequences alignment speed with the di̔erent indexing parameters.
We can clearly see that for small seeds, the alignment time increases dramat-
ically, due to the fact that smaller seeds are very promiscuous and can have
hits to too many graphs, resulting in performing many alignments that ulti-
mately result in low identity scores and be ̊ltered out. Figure taken from [57]. 41

2.11 Upset plot of the alignments of 4,839,981 sequences from the coding regions
of 1,074 S. enterica assemblies from RefSeq against E. coli. Figure taken from [57]. 43

2.12 Distribution of identity scores between BWA, GraphAligner, and PanPA from
aligning the S. enterica sequences. The pique for PanPA is shifted to the right,
meaning higher sequence identity, as amino acid sequences align with higher
identity compared to nucleotide sequences. Figure taken from [57]. 44

2.13 Visualization of parts of the protein graphs for (a) GyrA and (b) ParC using
Bandage [289]. Nodes are colored according to the number of resistant/-
susceptible strains that pass through them, with blue color representing re-
sistance, and with red representing susceptibility; the color intensity corre-
sponds to the number of strains. Additional colored lines show the paths of
the aligned 10% sequence that were set aside (45 resistant and 117 suscepti-
ble sequences), the color representing the type, and the thickness representing
the number of sequences taking that path. A thick blue line of resistant se-
quences took the blue path passing through the blue nodes, and vice versa, a
thick red line for susceptible sequences took the red path passing through the
red nodes. Figure taken from [57]. 46

xix

2.14 Gene order graph using the genes from [222], where the E. coli pangenome
graphs for these genes are used, then the reference assembly of each of the
organisms mentioned in the ̊gure are aligned back to these gene graphs.
Following the thick black arrows, that follow the E. coli assembly alignment,
we recreate the same order in [222], which further validates that our method
can capture the correct order of the genes. 50

3.1 This is a simple Uni̊ed Modeling Language (UML) diagram explaining how
the GFA class is implemented. We can see that the main graph class stores
a dictionary of node objects. A node object contains the information related
to the node, most importantly, each node object has a start and an end set
of edges, where each edge is tuple of (neighbor_id, direction, overlap),
where the direction here refers to where the edge enters the neighbor node.
The direction here is a binary, referring to 0 for the node start, and 1 for the
node end. 56

3.2 This ̊gure is a description of how the map is loaded in Minecraft. The green
square in the middle is where the player is, where this chunk is fully loaded;
then the chunks are not fully loaded the further away they are from the player,
with several levels of information being left out when loading. Figure taken
from [52]. 60

3.3 This is the extgfa pipline. First, it detects chunks in the GFA graph as de-
scribed in Section 3.3.2.1. Once the chunks are found, extgfa produces three
̊les: (1) a database dbm of key-value pairs, where the keys are the node IDs
and the values are the chunk IDs to which the node belongs to. (2) A binary
̊le that is a key-value pair, where the key is the chunk ID and the value is
a tuple of a ̊le o̔set in the GFA and the number of lines to read from that
o̔set. (3) A reordered GFA ̊le, where each chunk is written consecutively
in the ̊le. Figure taken from [52]. 63

3.4 Scatter plot comparing the chunked and unchunked versions in terms of time
and memory. We see that for the unchunked version, the time and memory
are mostly constant, because we always need to load the complete graph, and
this operation takes much more time compared to running the BFS algorithm.
In contrast, for the chuncked version, we see more variability in terms of time
and memory, which can be explained by the number of chunk loading and
unloading operations required, and the e̔ect of the maximum number of
chunks allowed in memory. Figure taken from [52]. 66

xx List of Figures

3.5 Scatter plot showing the e̔ect of the chunks queue size on both memory and
time in the chunked version of the graph. We see that the bigger the BFS
cuto̔ size is, the bigger the e̔ect of queue size. Furthermore, the queue size
has a contrasting e̔ect on time and memory; the bigger the queue, the less
time it takes to run the BFS and the more memory it requires, and vice versa.
Figure taken from [52]. 66

3.6 Here, we show a simple schematic of the incremental construction of an rGFA
using minigraph. We start with a linear sequence (black), which is marked as
rank 0 in the rGFA output ̊le. Then, minigraph aligns the next genome, hap-
lotype, or contigs. The variation between the two will generate bi-connected
components (bubbles), and nodes belonging to only the aligned sequence will
have the rank 1. This now happens incrementally with each genome added,
e.g., adding the blue genome, and depending on the alignments, new nodes
and new bi-connected components are generated in the graph to describe the
variability between the di̔erent sequences. Figure inspired by Figure 2 in [154]. 68

3.7 This ̊gure depicts the BO (A) and NO (B) tags. Blue nodes are the bubble
and orange ones are the sca̔old nodes. Figure taken from in [196]. 69

4.1 Example of how ASHLEYS report the probabilites for each cell in the Strand-
seq sequencing plate. The pipline also produces cell selections based on a
probability cuto̔, these are shown in Supplementary Figure C.1 78

4.2 This plot shows the distribution of the number of contigs and the number of
alignments for each chromosome and for both cell lines. The alignments here
were done with minimap2. 80

4.3 This plot shows the PGAS assembly contig alignments and copy number of
chromosome 8. While both haplotypes are fragmented, we can see that hap-
lotype 2 is more so. Looking at the copy number in the bottom plot. Looking
at the copy number, we see it is elivated which could indicate complex ge-
nomic rearragnements. Hence, the poor quality of the assembly. 81

4.4 Plotting the distribution of the SV calls from the 5 callers along chromosome
8 of the H2087 cancer cell line. We can see that around the centromere
(highly variable regions), PAVwas able to call many more SVs compared to the
other callers, which could explain why assembly-based callers have a higher
number of calls. 82

4.5 Copy Number variation for the matched normal BL2087 cell line with three
sequencing technologies. For Illumina and PacBio, Delly was used to calcu-
late the CNV, and for Strand-seq, Mosaicatcher was used 84

4.6 Copy Number variation for the matched normal H2087 cell line with three se-
quencing technologies. For Illumina and PacBio, Delly was used to calculate
the CNV, and for Strand-seq, Mosaicatcher was used 85

xxi

4.7 Upset plot for the intersection between the 5 callers for each cell line. We
see that the assembly-based callers, especially PAV has a high number of SVs
that do not intersect. However, we can still that there is high concordance
between 4 of the 5 callers and all 5 callers. 86

4.8 Upset plot for the intersection the SV set made from variants that showed up
in at least two callers for the H2087 cancer cell line, and the complete set of
all the SV calls of the BL2087. The bar plot with 1,376 represents the SVs
that are only in H2087, i.e., somatic SVs. 87

4.9 This ̊gure shows part of the graph extracted with graphdraw, where a somatic
insertion a̔ects a subset of the cancer raw unitigs produced from hifiasm as-
sembly, which causes a bubble in the graph. The alignments are visualized
with IGV [221] and the graph visuzlied with Bandage. This bubble can indi-
cate the di̔erence between the two subclones. 89

4.10 This ̊gure demonstrates how drawgraph draws a subgraph with a reference.
This subgraph is taken from the H2087 cell line assembly graph produced by
hifiasm . 90

5.1 Example on how Sanko̔ algorithm works on a dendrogram constructed from
13 samples/sequences. In each step, we see how the score vector is calculated
for each inner nodes using the two child nodes. Figure taken from [58] 98

5.2 An example of an MSA with 5 sequences and 3 variable positions, the middle
table to the left is the 3 possible pairs of these 3 positions in this MSA, the
middle right table is the VCF table with the information related to each sample
(0 indexing is used here), the variant position and the variant value. The last
table is the matrix representing the VCF-style table that is used to build the
dendrogram. Figure taken from [58] . 100

5.3 Boxplots for the simulated trees. Di̔erent sample sizes were used for this test.
The x-axis represented the di̔erent psame probabilities, the di̔erent colors
for the boxes represent the di̔erent f values, and the y-axis represents the
p-value measured by our method. The green line indicates the 0.05 p-value.
Figure taken from [58] . 102

5.4 Boxplot with distance distribution of all pairs in a 3D structure (in blue) and
only the epistatic interacting pairs that we detected (in red). Figure taken
from [58] . 104

5.5 Bar plot with distribution of number of detected residues as potential epistatic
pairs against the reference sequence HXB2. Figure taken from [58] 106

xxii List of Figures

5.6 This plot is showing the intersection between the individual positions detected
between our method and [140] method, and the intersection of the detected
pairs. We see that the majority of our positions were also detected in their
results. However, when it comes to pairs, the intersection is much smaller,
indicating that the pairs we detected are di̔erent from their pairs. The results
represented here are ̊ltered for a p-value smaller than 0.05 except for N1,
where we used 0.1 because there was only one pair detected with a p-value
cuto̔ of 0.05. Figure taken from [58] . 106

A.1 First Step using the subcommand build_graph: taking the six sequences here
that have three heterozygous positions. Running the command will output
a graph in GFA format and the groups information as a JSON ̊le. Same
sequences are grouped together. Where the JSON ̊le has information to
which sequences belong to which group, and the path in the graph for each
group. Second Step using the subcommand add_paths: Taking the graph
outputted from the ̊rst step and the JSON ̊le, users can either choose to add
all grapus paths to the graph with --all_groups or select a subset of groups
to add with --some_groups. For example, User can choose to visualize only
Group 1 or only seq 6. Graph visualized using gfaviz and paths are colored
using the groups in the JSON ̊le. 133

A.2 This ̊gure plots the relationship between the di̔erent parameters chosen to
build the index, and the user time it took in seconds. We see that extracting k-
mers is always faster than (w, k)-minimizers, which is expected, as extracting
a single k-mer requires less operations than extracting a window of k-mers
and taking the minimum. 135

A.3 This ̊gure plots the relationship between the di̔erent parameters chosen to
build the index, and the index ̊le size, which also represents the index size.
We see that when using k-mers index, the idnex size is bigger, compared
to (w, k)-minimizers. This is expected, as a k-mer index saves each k-mer,
while the (w, k)-minimizers only take one k-mer from a window, which then
requires less k-mers or seeds to be stored in the index in total. 136

C.1 ASHLEYS prediction for the good cells in each run of strand-seq sequencing.
For the match normal BL2087 we ended up with 53 good cells, for H2087
Plate 1 we only had 5 good cells, for H2087 Plate 2 we got 23 good cells, and
for H2087 Plate 3 we got 40 good cells. 144

C.2 Bar plots for the 5 di̔erent SV caller showing the distribution of the di̔erent
SV types for each chromosome. At each chromosome on the x-axis, the left
bar is for the BL2087 cell line and the right bar is for the H2087 cell line. . . 145

xxiii

C.3 Plot outputted by Mosaicatcher that colors the di̔erent variants found for
each cell in the strand-seq over all the chromosomes. From this visualization,
we can see there are two distinct signals that we believe corresponds to the
two di̔erent subclones in the cancer sample. 147

C.4 Example on how the node coloring command from graphdraw, colors certain
nodes based on the graph alignments provided. In this case, this was a bubble
chain from an assembly graph produced by mixing both cancer and matched
norma long reads. The long-reads are then aligned back to the graph and
used as an input for the command. 148

C.5 This ̊gure shows part of the graph extracted with graphdraw, where a somatic
insertion a̔ects a subset of the cancer raw unitigs produced from hifiasm as-
sembly, which causes a bubble in the graph. The alignments are visualized
with IGV [221] and the graph visuzlied with Bandage. This bubble can indi-
cate the di̔erence between the two subclones. 148

D.1 The tree shows the same direction and opposite direction mutations of the
second position (Pos2) while keeping (Pos1) constant. In red, is one event
in the inner tree we are looking at, where we count 1 for the same direction
mutation (top red box) if the mutation in the second position follows the ̊rst
position and mutates to the same genotype, and count 1 for opposite direction
mutations (bottom red box) if the mutation results in di̔erent genotypes.
Figure taken from [58] . 150

D.2 Intersection between the positions and the pairs of positions EpiPAMPAS de-
tected and the method from [140] for each of the viral proteins H1, H3, N1,
and N2. We can see that the overlap of positions detected is big. However,
the intersection when it comes to the pairs of interacting positions detected
is rather small between the two methods. Figure taken from [58] 152

D.3 Scatter plot of the 1D vs 3D distance of the pairs detected with EpiPAMPAS for
H1, H3, N1, N2, HIV1 subtype a, HIV1 subtype b, and HIV1 subtype c using
the structures 1RUZ, 2VIU, 3BEQ, 1NN2, 5C7K, 5C7K, and 6MYY respectively.
We see that there is a trend where the longer the 1D distance, the longer
the 3D distance. However, we would expect more of a trend where the 3D
distance is smaller indicating that the pairs detected have some interaction in
the 3D structure. Figure taken from [58] . 153

xxiv List of Figures

List of Tables

1.1 Types of records in the GFA. Each line in the GFA ̊le must start with one of
these types. Adapted from [91] . 18

2.1 Inserting random errors to the Gyra sequences before aligning back to the
graph constructed from the MSA of the same query sequences. We see that
the Average alignment identity follows properly the percentage of errors in-
troduced, which further indicates that PanPA is aligning the sequences prop-
erly. Moreover, we see that when there are no errors, the alignment path
matches the correct path of the sequences in the graph. Table taken from [57]. 40

2.2 Number of S. enterica DNA short reads aligned against E. coli’s linear reference
with BWA and against its panproteome using PanPA. Table taken from [57]. . 44

3.1 In this table, we tested the following three parameters, Load: Graph Load
Time in wall clock seconds, Mem: Memory used in megabytes, and Comp:
Components Finding Time based on BFS in wall clock seconds. Four di̔er-
ent graphs were used: The Chr22 of the HPRC Minigraph graph, the full
HPRC Minigraph graph, Chr22 of the HPRC Minigraph-Cactus graph, and
the full HPRC Minigraph-Cactus graph. Chr22 component was extracted us-
ing GFASubgraphs. It took GFASubgraphs about 30 seconds to extract all the
components of the HPRC Minigraph graph, and about 42 minutes to extract
all the components of the HPRC Minigraph-Cactus graph. The NA entries
in the table resulted from di̔erent reaspons: NA1: in mygfa’s GFA class,
there was no direct way to retrieve edges corresponding to nodes, the class
did not provide any subroutines for this. Therefore, we could not run the
component-̊nding algorithm. NA2: gfagraphs process had to be terminated
after running for more then 24 hours. Looking into their code, the reason
for this is that edges were stored in a list, and when calling the subroutine
.get_edges(), it searches the list twice to get the in and out edges, resulting
in O(n) search time for each retrieval. NA3: An assertion error in both mygfa
and gfapy when running on the HPRC Minigraph-Cactus graph, which we
were unable to solve. 59

xxv

xxvi List of Tables

3.2 This feature table outlines the functionalities of gaftools, alongside other tools
o̔ering similar capabilities. The “N/A” is for features that are only applicable
to graphs. We see that minigraph is also able to convert coordinate systems,
however, one needs to run the alignment again to change the coordinate sys-
tems. While gaftools is able to do so directly on the GAF ̊le without having
to realign the sequences. Align. stands for alignments, and coord. stands for
coordinates. Table taken from [196] . 71

3.3 Graph alignments of NA12878 ONT (Oxford Nanopore Technologies) reads
(∼14X depth of coverage) from the 1000 genomes project, aligned to HPRC-
r518 T2T-CHM13 using Minigraph. Results show that gaftools is fast and
memory e̎cient for all the commands except “realign”. Since ”realign” re-
quires Wavefront alignment, where higher runtime and memory requirement
is expected. Table taken from [196] . 72

4.1 Information on the sequencing data for both the cancer sample H2087 and
the matched normal BL2087. For Strand-seq data, the coverage is calculated
only on the high quality cells chosen by ASHLEYS, which is explained further
in Section 4.3.1 . 77

4.2 Statistics on the PGAS assemblies for both cell lines. N50 here is de̊ned as the
contig size where half of the genome sequence is covered by contigs larger
than or equal to it. Generally, the bigger the N50 value is, the better the
assembly quality. 79

4.3 Structural Variant number across the 5 callers used for the H2087 cancer
sample and the matched normal BL2087 . 82

5.1 Real-world dataset used in this study on Iňuenza A hemagglutinin and neu-
raminidase sequences. Bonferroni multiple tests correction applied. Table
taken from [58] . 103

5.2 Real-world dataset used in this study on HIV-1 Env sequences. Bonferroni
multiple tests correction applied. Table taken from [58] 103

5.3 Comparing distances between potentially epistatically interacting pairs de-
tected using our method for p-value threshold of 0.1 with all pairwise dis-
tances in the structure. Table taken from [58] 105

5.4 Comparing distances between potentially epistatically interacting pairs de-
tected using our method ̊ltered against distances between all amino acid
pairs for p-value <0.05. Table taken from [58] 105

5.5 Here we show the number of annotated positions in HIV-1 envelope protein
taken from [109], we looked at how many of the positions we detected had
annotations compared to the reference protein, and ran a Fisher exact test
to see if the iňation in the number of annotated positions to not annotated
positions is more signi̊cant in the positions we detected. Table taken from [58]107

xxvii

A.1 Number of alignments from the 4,839,981 sequences from Salmonella enterica
annotations using BWA, GraphAligner and PanPA. We see that GraphAligner
produced the most alignments. However, after ̊ltering for an alignment
length of at least 50% of the original sequence size, the number of alignments
drops drastically. For PanPA, most of the alignments were long enough and
only a small number got ̊ltered. Table taken from [57]. 131

A.2 Intersection of unique alignments of 4,839,981 sequences representing the
annotations from Salmonella enterica assemblies from RefSeq, against E. coli
linear reference, pangenome, and panproteome using BWA, GraphAligner, and
PanPA respectively. Table taken from [57]. 132

A.3 The e̔ect of the di̔erent parameters on PanPA’s performance, we see that the
identity cuto̔ does not a̔ect the alignment time much, and this makes sense,
as the alignment will be performed anyway to get an alignment identity score
and check whether it is below or above the cuto̔. Table taken from [57]. . . 132

xxviii List of Tables

Chapter 1

Introduction and Background

The rapid advances in genome sequencing technologies have undoubtedly revolutionized
our understanding of genomes, genomic diversity, genetics, evolution, and other aspects of
living organisms [236]. Since the early stages of genome sequencing, it has been clear that
computer science and algorithms are needed to process such data [254]. Moreover, with
the increased production of data and development of next- and third-generation sequenc-
ing, the need for e̎cient algorithms became even more apparent. The useful algorithms
and data structures of computer science allow scientists to disentangle the large amount of
sequencing data produced; one of the famous data structures that is widely used is a graph
data structure. Graphs and graph theory have been studied in discrete mathematics since
Leonhard Euler’s paper on the Seven Bridges of Königsberg problem in 1736 [19]. Here,
Euler was able to describe the problem more abstractly by representing the parts of the city
as the “vertices” of a graph, and the “edges” connecting these vertices as the bridges. Using
this representation, Euler was able to prove that the problem of ̊nding a route that crosses
each bridge once and only once is impossible. This led to the de̊nition of a graph as a
collection of elements called nodes or vertices, and the connections between them called
edges. Graphs allow us to represent problems more visually, and help us understand the
relationships between di̔erent elements. Fast forward to the 20th century, with the birth
of computers and computer science, there was a need for a versatile data structure that can
represent data and its relationships. To this end, the development of the graph data struc-
tures in computer science came about. Since its development in mathematics, graph data
structures has been applied to a variety of problems in and outside the ̊eld of computer
science [219, 62].
Conventional linear reference genomes, which have been widely employed to interpret

novel sequences through alignments and to comprehend newly sequenced samples, have
shown clear biases in representing the complete spectrum of genomic variation across pop-
ulations [106, 47, 35]. This limitation has prompted the development of graph pangenomes,
which have emerged as a means to circumvent the limitations and biases of linear reference
genomes [74]. Pangenomes have the capacity to encode multiple genomes in a graph struc-

1

2 Introduction and Background

ture, allowing for the simultaneous representation of multiple assemblies and their variants.
This, in turn, can be used as a more comprehensive reference. However, with this shift from
a linear reference to a graph-based reference, came the need to develop new algorithms and
software toolkits to perform similar analyses to the ones developed under the linear refer-
ence framework; for example, sequence mapping [216, 154] or variant calling [88, 72].
This thesis presents several software toolkits for pangenomes, panproteomes, sequence-

to-graph alignment, genome graph manipulation, and epistasis detection and analysis. A
detailed outline of the presented chapters can be found in Section 1.5.

1.1 Genomes
A genome is de̊ned as the complete set of genetic material within an organism, encompass-
ing all of its DNA. This genetic material carries the instructions necessary for the growth,
development, and functioning of an organism. The concept of the genome was ̊rst the-
orized in the early 20th century, yet it was not until the discovery of the double-helical
structure of DNA by James Watson and Francis Crick in 1953 that the molecular underpin-
nings of heredity became evident [281]. It is also important to acknowledge the seminal
contributions of Rosalind Franklin, whose pioneering research on X-ray di̔raction provided
crucial insights into the structure of DNA [43]. This breakthrough laid the foundation for
understanding how genetic information is stored and transmitted. Deoxyribonucleic acid
(DNA) is a molecule composed of two complementary strands which are twisted into a dou-
ble helix. Each strand consists of a sequence of four chemical bases: adenine (A), thymine
(T), cytosine (C), and guanine (G). These bases form speci̊c pairs – A with T, and C with
G – creating a code that speci̊es the genetic instructions for building and maintaining an
organism. A remarkable property of DNA is its capacity for autonomous replication, en-
abling it to be transmitted to later generations, thereby ensuring the persistence of genetic
information through time.

Eukaryote genomes are usually organized into chromosomes and housed in the nucleus.
Moreover, the chromosomes come in sets, called ploidy, which refers to the number of com-
plete sets of chromosomes in the cell. Most animals are diploid (e.g., Humans), meaning
they have two sets of chromosomes, one inherited from each parent. However, ploidy can
vary widely; some organisms are haploid (one set), polyploid (multiple sets, common in
plants), or aneuploid (an abnormal number of chromosomes). Ploidy levels iňuence ge-
netic diversity, evolutionary adaptability, and reproductive strategies, playing a critical role
in development, evolution, and species survival. In contrast, the DNA of prokaryotes is circu-
lar and located in the cytoplasm within a nucleoid, and lacks histones. Prokaryotic genomes
are signi̊cantly smaller and consist mostly of coding DNA, with genes often grouped into
operons that are transcribed together [29]. However, prokaryote genomes are more diverse
within and between species and genera, due to many environmental and genetic reasons,

1.2 Genome Sequencing 3

such as their rapid reproduction, horizontal gene transfer, the adaptation pressure in the
environment they live in, higher mutation rates [66, 45].

Genomes contain genes, or coding regions, which are speci̊c sequences in DNA that
code for functional products, particularly proteins. Proteins are essential to living organ-
isms because they perform a variety of critical functions, such as catalyzing biochemical
reactions as enzymes, facilitating communication between cells, and certain proteins pro-
vide structural support to the cell. According to the central dogma of biology, the ̌ow of
genetic information is unidirectional. First, the coding regions in the genome are transcribed
into messenger RNA (mRNA), then the mRNA is translated into amino acid sequences, these
amino acids are linked together to form a polypeptide, which is folded into a functional
protein.
Di̔erent individuals of the same organism do not share exactly the same genome, but

di̔er slightly, and these di̔erence are driven by various mechanisms of mutation and re-
combination. These di̔erences or variations are usually called “genetic variants” and en-
compass a wide spectrum, including single nucleotide polymorphisms (SNPs) insertions,
deletions, inversions, duplications, copy-number variations, and translocations. When vari-
ants are larger in size, typically, over 50 base pairs, they are then categorized as structural
variations. These variants can have profound e̔ects, particularly when impacting coding
regions and the resulting amino acid sequence, which can alter the structural and functional
stability of the protein. For instance, a single change in the coding region can result in a
single amino acid change, called a missense mutation, which can cause premature termi-
nation of protein translation. Consequently, these variants can lead to phenotypic e̔ects
such as susceptibility to disease, resistance to pathogens, or adaptation to environmental
conditions. For example, in humans, a SNP in the CHF gene has been shown to be associ-
ated with increased risk of molecular degeneration [30]; and in prokaryotes, some SNPs are
associated to microbial antibiotic resistance [235, 80]. Copy number variations, for exam-
ple, have been associated with Parkinson’s disease [269]. Hunter’s syndrome, a rare disease
caused by de̊ciency of the lysosomal enzyme iduronate-2-sulfatase (I2S), is caused by an
inversion of the IDS gene [24]. More complex genomic rearrangement have been associated
with the development of cancer cells [256, 15, 147].

1.2 Genome Sequencing
Genome sequencing can be de̊ned as a procedure or a method to determine the order of
the nucleotides in the genome of an organism. The various procedures that have been
developed thus far are incapable of determining the complete order of the genome se-
quence at once; rather, they can only determine smaller parts of the genome, called “reads”,
the size and accuracy of which vary depending on the technology used. One of the ̊rst
methods developed, Sanger sequencing, was a pioneering technology developed back in

4 Introduction and Background

1977 [230]. It o̔ered accuracy, however, was costly and had low throughput. Since
then, sequencing technologies have evolved substantially, particularly with the emergence
of Next-Generation Sequencing (NGS) in the mid-2000s, which revolutionized genomics by
enabling high-throughput, cost-e̔ective sequencing [236]. Key NGS platforms include Il-
lumina (sequencing-by-synthesis) [129], Roche 454 (pyrosequencing) [225], Ion Torrent
(pH-based detection) [226], and SOLiD (Sequencing by Oligonucleotide Ligation and De-
tection) [231]. These methods excel in throughput and low cost but are limited by short
read lengths and ampli̊cation-induced biases[204].
Third-generation sequencing technologies, such as PacBio SMRT sequencing [192] and

Oxford Nanopore Long Read sequencing [278], have been developed to address these limi-
tations by enabling single-molecule, real-time sequencing with ultra-long reads. While these
platforms reduce ampli̊cation biases and simplify complex genome assembly, they tend to
exhibit higher error rates and require specialized data analysis [126].
The Circular Consensus Sequencing (CCS) protocol, a feature of PacBio’s Single Molecule,

Real-Time (SMRT) sequencing technology, was presented in 2019 to solve the problem with
the error-prone long reads [284]. This protocol allows the generation of long high-̊delity
(HiFi) reads with a median predicted accuracy of 99.9%, a mean of 99.8%, and an average
length of 13.5 kilobases [284, 261]. The generation of CCS reads involves the repeated
sequencing of a circularized DNA molecule, resulting in multiple passes (subreads) that are
then combined to produce a highly accurate consensus sequence [195]. The development
of CCS reads represents substantial advancement in the ̊eld as it combines the bene̊ts of
long-read sequencing and the accuracy of short reads. This combination of features positions
CCS as a highly versatile tool for a wide range of applications, including de novo genome
assembly [37], structural variant detection [284], pangenome analysis [103], and the study
of complex regions of the genome that are challenging for short-read technologies [122].

1.2.1 Sequence Alignment
Sequence alignment algorithms are a primary application of algorithms developed to under-
stand the sequencing data produced. Here, algorithms are used to compare DNA, RNA, and
protein sequences, with the goal of identifying the similarities and di̔erences between se-
quences. One of the major application of sequence alignment is read mapping to references,
which is usually a precursor for many genomic analysis methods and pipelines [238]. More-
over, sequence alignment and mapping is important in facilitating comprehension of evo-
lutionary relationships, the identi̊cation of conserved genes across species, and detecting
the location of mutations associated with diseases [5]. Furthermore, the ability to compare
the di̔erences between sequences is crucial in building phylogenetic trees and understand
evolution better [11].
We can categorize sequence alignment algorithms into two main groups: Pairwise Align-

ments and Multiple Sequence Alignments. Pairwise alignments involve the alignment of two
sequences against each other, whereas Multiple Sequence Alignments (MSAs) perform the

1.2 Genome Sequencing 5

alignment of three or more sequences simultaneously.

1.2.1.1 Pairwise Sequence Alignments
Pairwise alignment algorithms include both local and global alignments. The former is ca-
pable of identifying regions of similarity within the sequences being aligned, i.e., in a sub-
sequence of the sequence. One of the best known local alignment algorithms is the Smith-
Waterman algorithm [251]. In contrast, global alignment algorithms attempt to align the
entire length of the sequences. A classic example of global alignment is the Needleman-
Wunsch algorithm, which was introduced in 1970 [183]. Pairwise alignment methods can
be further divided into the following three categories:

(1) Dot matrix or “the diagram” method as it was called in the original paper [93],
is a method that allows for a comprehensive visualization of the alignment landscape be-
tween two sequences. In this method, we have a matrix of dimensions n×m, where n and
m represent the length of the two aligned sequences. Furthermore, the nucleotides of one
sequence are associated with the rows of the matrix, while the nucleotides of the other are
associated with the columns. Then, for each cell in the matrix, if the characters correspond-
ing to the row and column of that cell match, a dot is drawn; otherwise, the cell remains
empty. The dots that connect to form a diagonal correspond to areas of similarity between
the two sequences. In addition, the presence of distinct diagonals (e.g., perpendicular or X-
shaped) can serve as indicators of speci̊c features associated with the degree of similarity
between the two sequences, including inversions, repeats, palindromes, frame shifts, and
other features. However, due to the limited size of the sequence alphabet, drawing a dot for
every character match across the two sequences can result in a noisy ̊gure, especially for
longer sequences. This can be mitigated by implementing a sliding window ̊lter, where a
window of size n consecutive characters is used, and a dot is only placed if a threshold σ is
met, where the threshold represents the number of matches in the window. An example of
this method is shown in Figure 1.1.
(2)Dynamic programming (DP) alignmentmethods uses dynamic programming, which

is a known algorithmic technique for solving optimization problems in computer science.
This technique breaks a bigger problem into smaller and simpler problems to solve. In this
context, a dynamic programming matrix is used to ̊nd the optimal alignment between two
sequences. This method is optimal as it explores all possible alignments between the two
sequences before reporting the best one, moreover, DP algorithms have been shown to be
mathematically optimal [94]. Famous aforementioned algorithms like Smith-Waterman or
Needleman-Wunsch are based on dynamic programming. Briěy, this algorithm starts by
constructing a dynamic programming matrix of dimensions (n+ 1)× (m+ 1), where n and
m correspond to the lengths of the two sequences being aligned. Similar to the dot matrix
method, one sequence corresponds to rows and the other to columns, and the extra row
and column are used for initialization, where this initialization di̔ers depending on the

6 Introduction and Background

Figure 1.1: Examples of dot matrix alignments between two sequences, ̊ve examples are
shown that represent di̔erent characteristics of the alignment that correspond to structural
changes or variants between the sequences. Generated with https://en.vectorbuilder.c
om/tool/sequence-dot-plot.html

algorithm used. The cells of the DP matrix are then subsequently ̊lled one by one using a
recurrence relationship to the scores of neighboring cells, depending on the algorithm used.
The objective of the DP table then is to systematically compute the optimal alignment of two
sequences, by breaking the alignment into smaller problems (substrings), a cell (i, j) in the
table then, represent the alignment score or cost for up to position (i − 1) in one sequence
and (j − 1) in the other sequence. The value of a cell represents the score—or cost—of an
alignment that ends at the corresponding characters to that cell. Moreover, there are two
ways to generate the scores and evaluate the results in the DP matrix, which are either by
looking at the highest score (score scheme), or lowest cost (cost scheme). For example, Equa-
tion 1.1 shows the recurrence relation for calculating the scores of the cells with a constant
gap penalty, where the score for a cell at position (i, j) depends on the scores of adjacent
cells. In this equation, ∆ is the gap penalty, and function sub(c1, c2) takes two characters
and returns a value that depends on whether the two characters match or mismatch. Fur-
thermore, the substitution value can be based on binary value (match or mismatch), e.g.,
edit or Levenshtein distance [146], or something more complex like using a substitution
matrix with some biological basis such as BLOSUM [116].

Score(i, j) = max

Score(i− 1, j − 1) + sub(seq[i], seq[j])

Score(i− 1, j) + ∆

Score(i, j − 1) + ∆

(1.1)

https://en.vectorbuilder.com/tool/sequence-dot-plot.html
https://en.vectorbuilder.com/tool/sequence-dot-plot.html

1.2 Genome Sequencing 7

Figure 1.2: Example of Needleman-Wunsch global alignment algorithmmatrix with amatch
score of 2, mismatch score of -1, and a gap penalty of -2. The gap penalty here is constant,
i.e., opening and extending the gap have the same score. In this algorithm, the ̊rst row and
column are initialized with the gap penalty. The colored arrows correspond to the di̔erent
tracebacks available from the last cell, this occurs when there is more than one potential
maximum score following Equation1.1, i.e., following one or the other path both results in
an alignment with the same score. On the right side, we see the three potential alignments
between the two sequences that have the same score, the colors here match the color of the
traceback. In this alignment representation, the “*” represents a match, the “|” represents
a mismatch, and the “_” represent a gap.

To ̊nd the optimal alignment after the matrix has been ̊lled, we need to ̊nd the highest
scoring or lowest costing cell, depending on the scheme used to calculate the values. Once
we locate this cell, we need to follow back the path that led to the value for that cell, or what
is called a traceback. An example of the Needleman-Wunsch global alignment algorithm is
shown in Figure 1.2, with scores calculated using Equation 1.1.
Since the development of the ̊rst DP-based algorithms for sequence alignment back in the
1970s, this algorithm has been widely used and is still further improved. For example,
using di̔erent gap penalties to resemble more biological mechanisms such as using a̎ne
gap penalty [99], or logarithmic gap penalty [33]. Furthermore, optimizations were done
on the alignment algorithm and the calculations of the scores in the DP matrix, such as
banded alignment [270], bit-vector algorithm [178], single instruction multiple data (SIMD)
alignment speedups [60, 78], and more recently, the Wavefront algorithm [164].
(3)Word or k-tuplemethods, which are heuristic methods that do not guarantee to ̊nd

the optimal alignment. However, they are more e̎cient compared to the DP-based meth-
ods. They are usually used to ̊nd alignments against a large database of sequences, where a
large proportion of the sequences in the database will not match the query sequence. One of
the most famous algorithms and tools using this method is the Basic Local Alignment Search
Tool (BLAST) [6], which has revolutionized genomics by providing a fast and accurate way
to compare sequences against large databases, aiding in gene annotation and the discovery
of novel genetic elements. This method works by cutting the sequence into substrings or

8 Introduction and Background

Figure 1.3: Simple schematic showing how database aligners such as BLAST work. First,
the sequences are cut into equally sized “words” of length k, then these words are matched
to words in the database to ̊nd exact or near exact matches. Once the matches are found
and their locations in the squences in the database, the word match is then extended to both
directions on the target sequence and alignments above a certain threshold are reported
back.

words of length k, and then comparing these words against the database to ̊nd matches
or near matches. Once matches are found, the algorithm ̊nds these words’ location on
the sequences in the database. From here, the algorithm can perform a DP-based alignment
against these potential sequences in the database that have matching words, or it can extend
the initial word found and join the various matches found on the sequence. For example,
BLAST uses what is known as a seed-and-extend algorithm, which extends the comparison
between the two sequences beyond the word matches to the left and right without allowing
insertions or deletions. BLAST then uses a modi̊ed version of a Smith-Waterman algorithm
on the top candidates to account for insertions and deletions. Figure 1.3 shows a rough
outline of the steps BLAST takes to return alignments to databases.

1.2.1.2 Multiple Sequence Alignments
MSA algorithms can align three sequences or more simultaneously, which facilitates cap-
turing certain aspects such as conserved regions, functional domains, motifs, and phylo-
genetic relationships across a family of sequences that might not be otherwise detectable
with pairwise alignments. Computationally, producing MSAs is a much more complex and
computationally-heavy procedure compared to pairwise alignment [293], and producing
an optimal solution has been shown to be an NP-complete problem [277]. However, ob-
taining high quality MSAs is crucial for many applications, especially ones related to de-

1.2 Genome Sequencing 9

tecting secondary and tertiary protein structures. Most notably, AlphaFold2 that was de-
veloped in recent years, which revolutionized the protein 3D prediction ̊eld. It relies on
high quality MSAs, as they are essential for it to produce an accurate prediction of pro-
tein structures [135]. Due to the complexity of the problem and the need for high-quality
alignments, many algorithms and heuristics have been developed. The following briěy
summarizes some of the common methods used to perform multiple sequence alignments:

(1) Dynamic Programming methods, sometimes called exact methods, where instead
of building a 2-dimensional table, similar to pairwise alignment, one needs to build an
n-dimensional table, for n sequences and ̊nd the optimal traceback. This is, of course,
impractical. However, some practical exact methods have been produced such as the on
in [159] where they greatly reduce the computational demands of dynamic programming.
More recently, an exact solution in polynomial time was suggested by [125].
(2) Progressive methods are among some of the most widely used heuristic methods,

they are more e̎cient for aligning thousands of sequences, however, do not guarantee a
global optimum alignment. They were ̊rst introduced back in 1987 [79]. The vast majority
of progressive aligners use a dynamic programming approach internally. The ̊rst step is
usually to construct a tree called a guide tree, which represents the distance relationship be-
tween the sequences. This is followed by performing pairwise alignments starting from the
most similar sequences to start the MSA, then extending the MSA one sequence at a time fol-
lowing the guide tree. Examples of software tools based on this method are ClustlW [268],
MAFFT [137], and T-coffee [187].
(3) Iterative methods are similar to progressive methods. However, they attempt to

improve the quality of the alignments by repeatedly aligning the original sequences before
adding new sequences to the growing MSA, which re̊nes the ̊nal alignments. Examples of
software tools based on this method MUSCLE [73] and PRRN, which is based on the algorithm
introduced here [100].
(4) Consensus methods try to ̊nd a better, or consensus alignments for the sequences

by combining several MSAs produced by other methods. Tools such as MergeAlign [46] and
M-Coffee [275] are an example of consensus alignments method.
(5) Probabilistic methods that use statistical models to infer the alignments. One of the

best known tools is HMMER [81, 266], which uses a Hidden Markov Model (HMM). It ̊rst
builds a probabilistic model (usually called a pro̊le HMM) of the most common sequences,
̊nding the likelihood of amino acids, insertions, and deletions at each position. Using this
HMM, HMMER can then align new sequences. HMMER is also very useful and e̎cient for
aligning distant homologous sequences.
Figure 1.4 shows an example of an MSA of the ATP Synthase alpha/beta protein family,

this MSA was taken from the Pfam database [172]. The ̊gure shows how an MSA can
visualize and emphasize conserved regions between the di̔erent sequences.

10 Introduction and Background

Figure 1.4: This ̊gure shows a subset of the ATP Synthase alpha/beta protein family multi-
ple sequence alignment. This was retreived from the Pfam database with the accession num-
ber PF00006. The di̔erent colors of certain positions in the MSA correspond to the relative
conservation in that position in the alignment. This ̊gure was created using the NCBI Mul-
tiple Sequence Alignment Viewer https://www.ncbi.nlm.nih.gov/projects/msaviewer/.

1.2.2 Genome Assembly
As stated in Section 1.2, sequencers are unable to read the complete genome at once; rather,
they read overlapping fragments of the genome repeatedly. Consequently, genome assembly
can be de̊ned as the process of reconstructing the original genome sequence from a collec-
tion of reads, while taking into account various hurdles such as the di̔erent orientations
of the reads, errors introduced to the reads by the sequencers, the highly repetitive regions
in the genomes that the reads do not cover completely, and the gaps in the coverage of the
genome due to the random sampling of the sequencers [179]. A de novo genome assembly
is the process of assembling a genome without using a reference to guide the assembly. This
circumvents any biases that might be introduced by the reference genome. Where a genome
reference is de̊ned as the representative sequence of an organism, it is usually made of sev-
eral samples of that organism, and is a mosaic of these samples. Therefore, it might not
contain all the genes or important region of the genome of a sample from that organism.
However, we map new sequences against it to ̊nd variations.
Since the production of Sanger sequencing, it has been recognized that with the more

sequencing data produced, computers and algorithms were needed to solve the assembly
problem [254]. Since then, several breakthroughs happened in terms of de novo genome
assembly. Most notably, the ̊rst draft of the human genome that was published in 2001
by the Human Genome Project [272]. Over the years, the human genome reference has
been continuously updated and improved. Nevertheless, approximately 8% of the human
genome remained unassembled until recently, with the publication of the ̊rst complete
human genome assembly by the Telomere-to-Telomere (T2T) Consortium [188]. Despite
advances in sequencing technology and assembly algorithms, the problem is not yet com-
pletely solved and e̔orts are underway to produce better assemblies. For example, Verkko is

https://www.ncbi.nlm.nih.gov/projects/msaviewer/

1.2 Genome Sequencing 11

a pipeline that attempts to produce high-quality and gapless assemblies for individual sam-
ples [218], and hifiasm produces high-quality haplotype-resolved assemblies from long
accurate reads. Algorithmically, we can roughly organize the assembly methods into the
three following categories:

(1) The greedy method is considered the simplest and most naïve way to assemble a
genome. It simply connects reads that overlap the best with each other to build a longer
contiguous segment, usually called contig. It iterates this process until no more reads can be
overlapped to continue building the contig [170]. It is called greedy because it only focuses
on the local optimum, which leads to misassemblies, especially in repeat regions [209].
This method was used in the Sanger sequencing era, with software tools such as the TIGR
assembler [258] and SSAKE [280].
(2) Overlap-Layout-Consensus (OLC) methods divide the assembly problem into three

steps; these steps help to perform a more global alignment, avoiding the inherent locality of
the greedy method [209]. The ̊rst step (overlap) is similar to the greedy methods, where
an all-against-all read comparison or alignment is performed to ̊nd common overlaps. The
overlaps do not have to match perfectly and errors are allowed. Usually, the error rate of
the sequencing technology is taken into consideration. The second step (layout), uses the
overlaps identi̊ed in the ̊rst step to construct a graph. In this graph, each node represents
a read, and each edge between two nodes indicates that the reads have an overlap above
a certain threshold. In theory, the best-case scenario is to ̊nd a path in the graph that
traverses each node once. Concatenating the sequences along the path should spell out the
complete genome from which these reads originated; such a path is called a Hamiltonian
path and is computationally challenging to ̊nd, falling in the NP-hard category. In practice,
however, algorithms and heuristics are used to ̊nd the longest possible contigs in the graph.
The ̊nal step (consensus) involves generating a consensus sequence of the paths identi̊ed
in the previous step, where a vote is taken among the overlapping regions of the reads
to determine the sequence. Early automated assembly methods that followed a similar
approach can be traced back to the 1980s [199]. Later, well-known assemblers such as
Celera [177] and Velvet [118] were developed that use the same strategy. More recently,
with advances in sequencing technologies, and the production of long, highly accurate reads,
newer assemblers have returned to a similar strategy, such as Hi̊asm [37], where its ̊rst
steps include an all-against-all alignment and overlap detection to build a graph that is used
for the assembly.
(3) De Bruijn Graph (DBG) methods use internally the so-called k-mer graphs, where

instead of representing each read as a node, consecutive subsequences of length k are ex-
tracted from each read, where subsequence overlap by k − 1 base-pairs. The nodes of the
graph represent the k-mers and the edges represent the k−1 overlap. This construction is ad-
vantageous for several reasons. It avoids the need for an all-against-all comparison between
the reads to ̊nd the overlaps, it scales better in terms of memory usage as the algorithm

12 Introduction and Background

only stores the unique k-mers instead of the complete reads, it is able to compress highly
repetitive regions, and it helps to avoid sequencing errors, as error will cause low-frequency
k-mers to appear that can be ̊ltered out [48]. This idea was ̊rst presented for genome
assembly in [128], based on an earlier proposal in [201]. Similar to the OLC approach, in
theory, if the de Bruijn graph is generated from k-mers extracted from error-free reads that
completely cover the genome, then there exists a Eulerian path in the graph, that would
spell out the underlying genome. A Eulerian path is a path that traverses each edge exactly
once and can be found in polynomial time. However, as pointed out in [167], in both of the
previous problems the goal is not to ̊nd a perfect Hamiltonian or Eulerian path. However,
in general, the assembly algorithms are more focused on ̊nding the longest possible contig
path, i.e., long segments in the graph that can be inferred to be part of the original genome
without ambiguity.

Figure 1.5 illustrates how the three di̔erent assembly methods work. The Figure shows
how the greedy method can results in shorter contigs due to misassemblies from repeat
regions in the genomes, it also illustrates how both OLC and de Bruijn graph methods can
handle errors in the reads. For the OLC method, this is done in the consensus step, and for
de Bruijn graphs assemblies, this is done be eliminating low-frequency k-mers.

1.2.3 Variant Calling
As mentioned in Section 1.1, genome variants are very important, and understanding their
mechanisms and e̔ects is crucial in understanding diversity, evolution, and diseases. The
advancement in sequencing technologies, genome assembly, and sequence mapping algo-
rithms (which were discussed in Sections 1.2, 1.2.2, and 1.2.1), facilitated the development
of methods to identify variants in organisms, which are usually termed “variant calling”.
Methods for calling variants are always under development to match the new advancement
in sequencing technology and the large amount data produced. We will not give an extensive
view on all the methods here, however, will mention some of techniques used.
Starting with molecular-based techniques, such as karyotyping, where the chromosomes

are stained the bands are visualized to detect large structural variant events [291]. This is
still used in cancer genomics to visualize large events e̔ecting the genome [276]. DAN mi-
croarray methods, such as Comparative Genomic Hybridization (array CGH) [205] methods
specialized in detecting copy-number variations, and SNP arrays methods [237] for detect-
ing certain targeted SNPs in samples. Optical Genome Mapping (OGM) methods, which uses
restriction enzymes to cut the DNA into fragments, then these fragments are assembled back
into a consensus genomic optical map, and the location and order of the restriction enzymes
can be then used to detect large-scale structural variation [240].
Sequencing-based techniques are very common and diverse, many bioinformatics tools

and algorithms have been developed for variants calling using sequencing data. For exam-
ple, tools such as GATK [166], FreeBayes [87], and DeepVariant [210] are commonly used

1.3 Pangenomes 13

Figure 1.5: Sketch of the three di̔erent assembly methods: (A) Shows the greedy method,
where the underlying genome has a repeat (in red), causing the greedy method to erro-
neously produce two contigs instead of one, where Seq1 and Seq4 are assembled ̊rst, pre-
venting further extension of the contig. (B) Shows the OLC method, ̊rst, all the overlaps
between the reads are identi̊ed, then a graph is built where each node represents a read
with edges representing the overlaps, the dotted line represents the best path taken to build
the contig, where for example, read 2 was excluded from the path as its sequence is already
covered by reads 1 and 3. In the consensus step, a majority vote is taken over the over-
lapped region, eliminating the errors in the reads (marked in red). (C) Shows the de Bruijn
graph method, where k-mers are extracted from the reads, and errors in the reads lead to
erroneous k-mers, when the graph is built from the k-mers, the divergent paths emerge from
the errors. The dotted line in the graph represents the path taken to build the contig, and
the erroneous nodes (in red) are skipped as k-mers resulting from errors tend to have a low
frequency.

for SNPs and small insertions and deletions (indels) detection from short and accurate reads.
Other tools such as Sniffles [252], PBSV [193], and Delly [215] that use long-reads (such
as the ones produced by PacBio or ONT) to detect structural variants. Tools such as PAV [70]
and SVIM-asm [114] are able to call structural variants using assemblies.

1.3 Pangenomes
This section reuses some materials from the Introduction section of [57], of which I am the ̊rst
author.

So far, we have talked about the importance of genomes, sequencing and assembling genomes,
mapping sequencing reads to references, and calling variants. We have also de̊ned that a

14 Introduction and Background

reference genome is a linear representative DNA sequence of an organism, it is built from
the sequences of one or more samples of that organism, and that the reference provides a
framework or a background against which other sequences can be compared [98, 290]. In
Section 1.2.3 we touched upon how sequencing reads from a new sample are aligned di-
rectly against the reference genome of the organism in question to gain all kinds of insight
into the sample and understand its variants. However, relying on this single mosaic linear
reference is not always a good representation of the genome of the organism, as it might
not be able to represent the complete diversity properly, which leads to this reference bias.
For example, if the query sequence contains a non-reference allele, this could lead to in-
correct or missing alignments [36], or biases in genotyping highly variable regions such as
the human leukocyte antigen (HLA) genes [28], and biases in analyzing and interpreting
ancient genomes [106]. This bias is even more pronounced in highly variable organisms
such as prokaryotes, as they evolve more rapidly and exhibit events such as horizontal gene
transfers, which results in their reference genomes to be less representative [47].
In an e̔ort to ̊nd ways to better describe this genomic variability, the terms core and

accessory genes were ̊rst coined by [265], where the “core” genes refer to essential genes
(e.g., housekeeping genes) that are present in all or nearly all isolates, and the “accessory”
genes (sometimes called “dispensable” genes) refer to the genes that are not present in ev-
ery genome or isolate sequenced. The term pangenome was ̊rst introduced by [246] to de-
scribe a database of tumor genome and transcriptome alterations, as well as relevant normal
cells. There have also been other ways to represent the variability in an organism’s genome
and reduce the reference bias, such as using alternative alleles along with the reference
genome [40], representing the pangenome as a collection of genomes with an index that
can report matches across the collection of genomes [61], extending the Burrows-Wheeler
transform (BWT) algorithm to a graph with paths representing the di̔erent sequences [247],
or using haplotype panels using a matrix with columns as variant sites and rows as haplo-
types and a positional BWT (PBWT) for sequence matching [67].

We mentioned in Section 1.2.2 how graph data structures are very useful in represent-
ing large amounts of sequencing and its relationships. In [49] they de̊ne more broadly
what characteristics of a pangenome data structure, and what functionality it needs to of-
fer to be useful and be able to replace linear references. For example, we should be able
to construct this data structure dynamically from di̔erent and independent sources, such
as raw sequencing reads, complete genome assemblies, haplotype panels, or variants. This
data structure should have some coordinate system, so we can identify loci without ambi-
guity. It should also contain other important features such as ability to visualize it, search
it, annotate it, and compare di̔erent pangenomes. With such features, the move toward
a graph-based pangenomes was clear, and graph representations of pangenomes have be-
come more widespread, providing a more complete picture of pangenomes than a simple
distinction into core and accessory genes. In graph-based models of pangenomes or “graph-

1.3 Pangenomes 15

ical pangenomes”, one represents the genomic variability of a population using a graph data
structure, where nodes are labeled with sequences and edges connect nodes representing se-
quences that are adjacent to each other in one or more genomes in a population [74]. Most
importantly, the graph contains several paths, where the concatenation of the sequence of a
path retrieves the full sequence of one sample or haplotype that was added to the graph. One
can then use these graph data structures as a reference instead of using a linear reference to
reduce reference biases [198]. However, moving from a linear reference to a graphical one
came with its own hurdles, such as graph pangenome construction. Until now, there is not
one agreed upon way to construct a pangenome, and several methods have been developed.
For example, variation-graph based models with tools such as minigraph [154], minigraph-
cactus [120], and PGGB [89]; or de Bruijn graph-based methods for pangenomes such as
Bifrost [121] and mdbg [75]. In this study [9], the authors reviewed the di̔erent methods
for constructing human pangenomes graphs, and they highlighted weaknesses and strengths
of the current methods, especially the problem with their computational e̎ciency.
Even though the pangenome ̊eld is still young, but it is developing rapidly, especially

with the publication of the ̊rst draft of a human pangenome by the Human Pangenome Con-
sortium (HPRC) [157]. Moreover, graph pangenomes have already shown their usefulness
over linear reference in di̔erent context, for example, in terms of variant and structural vari-
ant analysis in rare diseases [103], better genotyping a wide range of variants, especially for
complicated and repetitive regions [72], its application in biodiversity and conservation ge-
nomics [241], construction of personalized pangenome graph by sampling haplotypes close
to the sample analyzed, giving a subgraph of the original graph to use instead [250, 39].
Moreover, while the adoption of graph pangenomes methods has been more evident in hu-
mans, it has also been shown their importance in other organisms. For example, capturing
missing heritability in plants [294], annotation and variant calling in bacteria [131, 47],
and improving sequence alignments in viral pangenomes [65].

1.3.1 Sequence-to-Graph Alignment
This section reuses materials from the Introduction section of [57], of which I am the ̊rst author.

As described in Section 1.2.1, sequence alignment has a very important role in several ap-
plications. Therefore, when graph pangenomes were shown to have major advantages as a
new reference, came the need to adapt the alignment algorithms to align to graphs instead.
Sequence alignment and pattern matching to a string graph are not new problems; they
were described almost three decades ago. Pioneering studies include [163] where pattern
matching on hypertext was described, and [4] where an algorithm for exact pattern match-
ing to hypertext on a tree structure was developed. In 1995 [197] described regular pattern
matching on a directed acyclic graph (DAG). Later on, a simpler algorithm with similar
complexity to previous ones was developed that does pattern matching on any hypertext
graph, that was also extended for approximate pattern matching [8], then [181] improved

16 Introduction and Background

both time and space complexity for pattern matching on a string graph.
In 2002, an algorithm similar to the previous one was independently developed speci̊-

cally for biological data by [144]. Their algorithm, the Partial Order Alignment algorithm,
was used for generating an MSA in a graph representation, the algorithm allows the align-
ment of a sequence against a DAG. In essence, it is a modi̊ed version of the common
sequence alignment with dynamic programming algorithms (Section 1.2.1). This algorithm
takes into account the incoming edges to nodes when calculating the scores then the trace-
back in the DP matrix. We use this algorithm later in Chapter 2 with some modi̊cation
to work on both DNA and amino acid sequences. In recent years, several other tools have
been introduced that perform sequence-to-graph alignments with better speeds and accu-
racy. Moreover, most of the current tools are not only restricted to DAGs, but can align
against graphs with cycles, such as GraphAligner [216], Giraffe [249], AStarix [130],
and minigraph [154].

1.4 File Formats
Here, we introduce the ̊le formats that have been used throughout the thesis. Namely,
FASTA/FASTQ formats to represent sequencing data, SAM (Sequence Alignment Map)/BAM
(Binary Alignment Map) for representing linear sequence alignments, GFA (Graphical Frag-
ment Assembly)/rGFA (reference Graphical Fragment Assembly) for representing genome
graphs, and GAF (Graph Alignment Format) for representing sequence alignments on a
graph.

1.4.1 FASTA and FASTQ Formats
The FASTA ̊le format was ̊rst developed by David J. Lipman and William R. Pearson in
their paper on protein similarity search [158]. The FASTA format is a text-based format,
and it represents di̔erent genome sequence data, whether it was DNA, RNA, or amino acid
sequences. Each sequence record consists starts with a single-line representing the name or
identi̊er of the sequence, this line must start with “>”; this is then followed by one or more
lines representing the sequence [180].
Sequences in the FASTA format are expected to follow the IUB/IUPAC amino acid and
nucleic acid codes, with the following exceptions: lower-case letters, a dash or hyphen
which represent gaps in the sequence, and in amino-acid sequences, U and * are accepted
as well [180].
The FASTQ format was developed at the Wellcome Trust Sanger Institute [44]. FASTQ

is also a text-based format and is similar to FASTA, however, it also includes information
related to the sequence quality, and it is generally used to represent data coming from
genome sequencers [189]. Each record in a FASTQ ̊le consists of four lines, (1) starts with
“@” until the ̊rst white space character, which represents the sequence identi̊er, (2) the
sequence, (3) is a separation line with “+”, it used to be followed by the sequence identi̊er,

1.4 File Formats 17

but not anymore; ̊nally, (4) a string with the same length of the sequence and represent
the quality score (Phred scale) as described in [44].

1.4.2 The SAM and BAM Alignment formats
The Sequence Alignment Map format, or SAM, is a text-based and tab-delimited format for
representing sequence alignments against other sequences. The ̊le starts with a header
which is optional; only the header lines start with “@”. Alignment lines have 11 manda-
tory ̊elds describing an alignment; it includes information such as position of the align-
ment in the query sequence, alignment position in the target sequence, length of align-
ment, the CIGAR string, and so on. The Concise Idiosyncratic Gapped Alignment Report or
CIGAR string, is a string that describes the alignment in terms of matches, deletions, inser-
tion, and mismatches [153]. Additional tags can be used, and should follow the form of
“TAG:TYPE:VALUE” where the tag is made of two characters, and the type must be one of
the following: “A” for a character, “B” for an array, “f” for a real number, “H” for a hex-
adecimal, and “Z” for a string [267].
The BAM format is the binary or compressed version of the SAM format.

1.4.3 Graphical Fragment Assembly Format
The GFA or Graphical Fragment Assembly format is used to represent genome graphs. The
following information focuses on GFA1 format and is adapted from [91]. GFA2 is a superset
of GFA1, and everything that can be encoded in GFA1 can be encoded with GFA2 with the
ability to represent extra information; however, in this thesis, we only use the GFA1 format,
which we will denote as GFA from here on out.
GFA ̊les are text-based and tab-delimited, they use UTF-8 encoding but should not contain
codepoint values higher than 127. The ̊rst column or ̊eld of each line in the GFA ̊le is
a one-letter line identi̊er, and the ̊rst line of the ̊le is a header. Table 1.1 shows the
di̔erent line types. In this thesis, we only used the following four line types:
1. File header, with “H” in the ̊rst ̊eld, followed by an optional value describing the
version number.

2. Segment or node, with “S” in the ̊rst ̊eld, followed by two mandatory ̊elds, the
segment name, and the sequence. Several optional and user-de̊ned ̊elds can be
added that represent di̔erent tags and follow the SAM format tag speci̊cations [267].

3. Links or an edge that links two segments, the link line starts with an “L” in the ̊rst
̊eld, followed by ̊ve mandatory ̊elds, name of the ̊rst segment, orientation of the
̊rst segment, name of the second segment, orientation of the second segment, overlap.

4. Path lines, with “P” in the ̊rst ̊eld, followed by twomandatory ̊elds, the ̊rst comma
separated segment names and their orientations, the second is a comma separated
overlaps between the segments in the path.

18 Introduction and Background

Type Description
Comment
H Header
S Segment
L Link
J Jump (since v1.2)
C Containment
P Path
W Walk (since v1.1)

Table 1.1: Types of records in the GFA. Each line in the GFA ̊le must start with one of
these types. Adapted from [91]

Figure 1.6 shows an example of a GFA ̊le with four segments and its representation as a
graph.

1.4.3.1 Reference GFA (rGFA)
The reference GFA or rGFA format was designed to address the issue of indexing the se-
quences in the segments, as certain base can be indexed by keeping a record of the segment
ID and the o̔set from the beginning of the segment, this coordinate is called the segment
coordinate, and this is unstable, as any changes happen to a segment, for example, splitting
the segment into one or more segments will break this index. In applications like pange-
nomics, it is important to have a more stable coordinate system that can be used similar
to how we use the coordinates in the linear reference, i.e., “chromosome:o̔set” instead of
“segmentID:o̔set”. In this format, each segment needs to have three obligatory tags: (1)
“SN:Z:Value” where the value here is the name of the stable sequence that this segment
originated from; (2) “SO:i:value” where the value is an integer representing the o̔set in the
stable sequence that this segment originated from; (3) “SR:i:value” where the value is an
integer representing the rank, this rank is 0 if the segment originates from the linear refer-
ence, an integer bigger than 0 otherwise. This information has been adapted from [150].
Figure 1.7 shows an example of an rGFA containing three segments, the segments “s1” and
“s3” originate from chromosome 10 of a linear reference, therefore, they both have rank 0,
and the “SO” tag indicates where these segments are located on that chromosome. “s2” is
a segment that originates from some other sample and not a linear reference; therefore, it
has rank 1.

1.4.4 Graph Alignment Format (GAF)
The Graph Alignment Format (GAF) is a tab-delimited and text-based format for represent-
ing sequence alignments against a genome graph. It comprises 12 mandatory ̊elds. GAF
format is a superset of the Pairwise mApping Format (PAF), with the addition of having an
alignment path, which is a path in the graph where the sequence is aligned against [149].

1.4 File Formats 19

H VN:Z:1.0

S s1 ACCTT

S s2 AGTAAGG

S s3 TTACT

S s4 ACTAA

L s1 + s2 - 4M

L s1 + s3 + 2M

L s3 + s4 + 3M

L s2 - s4 + 3M

P path1 s1+,s2-,s4+ 4M,3M

P path2 s1+,s3+,s4+ 2M,3M

Figure 1.6: The top part of this ̊gure shows a graph of four segments, the bottom part of
the ̊gure shows how this graph is represented in the GFA ̊le. In the GFA ̊le, we see that
the link going from “s1” to “s2”, the “s2” segment is in reverse complement, and that is why
in the visualization, the edge goes from the end of “s1” to the end of “s2”, which signi̊es
that we read “s1” in the forward direction, i.e., “ACCTT” and we read “s2” in the reverse
direction, i.e., “CCTTACT”, we see then that this reverse complement sequence satisfy the
overlap requirement of 4 characters, here, the four characters overlap are “CCTT”

A path can be represented with stable or unstable coordinates similar to what is described
in Section 1.4.3.1. In the case of unstable coordinates, the path string is formed from seg-
ment IDs with the orientation of each segment represented as a pre̊x with the character
“>” for the forward direction, and “<” for the reverse direction (reverse complement). For
the stable coordinates, instead of using the segment IDs, the value in the “SN” tag is used.
Figure 1.8 shows an example of two alignments against the rGFA in Figure 1.7, each align-
ment is represented twice, once with unstable coordinates and once with stable coordinates.
The ̊rst sequence is “TCAGAATGCCCA” and aligns to the last four characters of “s1”, all of
“s2”, and the ̊rst four characters of “s3”. The second sequence is “TCAGCCA”, it aligns to
the last four characters of “s1” and the ̊rst four characters of “s3” with a deletion.

20 Introduction and Background

H VN:Z:1.0

S s1 CGGGGCTCAG SN:Z:chr10 SO:i:10 SR:i:0

S s2 AATG SN:Z:sample1 SO:i:5 SR:i:1

S s3 CCCAGTGA SN:Z:chr10 SO:i:20 SR:i:0

L s1 + s2 + 0M

L s3 + s3 + 0M

L s1 + s3 + 0M

Figure 1.7: This is an example of an rGFA ̊le with three nodes or segments, we see that
segments “s1” and “s3” have rank 0 speci̊ed by the “SR” tag, both segments belong to the
linear reference, speci̊cally, chromosome 10 speci̊ed by the “SN” tag. “s2” has rank 1 and
belongs to another reference or sample used to build the graph. The “SO” tag shows the
o̔set of the sequence in reference.

sequence1_u 12 0 12 + >s1>s2>s3 22 6 18 12 12 60 cg:Z:12M

sequence1_s 12 0 12 + >chr10:10-20>sample1:5-9>chr10:20-27 22 6 18

12 12 60 cg:Z:12M

sequence2_u 7 0 7 + >s1>s3 18 6 14 7 8 60 cg:Z:5M1D2M

sequence2_s 7 0 7 + chr1 18 6 14 7 8 60 cg:Z:5M1D2M

Figure 1.8: This shows the GAF alignments of two sequences against the rGFA shown in
Figure 1.7 in both unstable and stable coordinates. In the stable coordinates, if the sequence
aligns to segments that belong to the linear reference, the path string then represents the
chromosome in the “SN” tag, and the following ̊elds describe the alignment coordinates,
e.g., “sequence2_s”. However, if the alignment aligns through segments that do not belong to
the linear reference, then each “SN” tag is used for each segment touched by the alignment,
e.g., “sequence1_s”.

1.5 Outline 21

1.5 Outline
This thesis presents several methods and software toolkits developed to address various
problems related to genome graphs, pangenomes, proteomes, and panproteomes. These
methods and toolkits include new concepts such as bringing pangenomes to the prokaryotic
protein world the development of panproteomes and sequence-to-panproteomes alignments;
moreover, e̎cient tools for processing and manipulating graphs and alignments, and epis-
tasis detection between variants in proteins. Each chapter starts with a brief summary intro-
ducing the chapter, the software it presents, and key results. If the chapter’s contents reuse
materials from papers, this will be indicated. Furthermore, if certain materials were not my
personal contribution, this will also be stated at the beginning of the chapter. Supplemen-
tary Chapter F also states the author list, contribution, and license of each paper underlying
this thesis.
In Chapter 2 we present PanPA, a software toolkit for building, indexing, and aligning

panproteomes. Here, we de̊ne the panproteome as a collection of graphs, where each graph
represents di̔erent sequences of a protein or a coding region. In this chapter, we show
that adapting the graph pangenome to the amino acid world is particularly advantageous
in prokaryotes, and that the panproteome of distantly related organisms can be used as a
reference that is able to capture many alignments that would otherwise be lost in the DNA
space.
In Chapter 3 we introduce several tools related to working with graphs in the GFA format,

and graph sequence alignments in the GAF format. First, we showcase GFASubgraphs, and
its internal GFA API. Following, we present extgfa, a proof-of-concept implementation of
a GFA library that can utilize ideas from video games to have a lower RAM footprint and
keeps most of the graph on the disk (external memory). Finally, we present gaftools, a
tool for downstream processing and analysis of GAF alignments to pangenomes. The aim of
gaftools is to bridge a gap between linear and graph alignment processing by implementing
several useful functionalities such as alignment ordering, indexing, viewing (subsetting), and
other functions.
In Chapter 4 we present an unpublished collaborative e̔ort in cancer genomics and

structural variant detection. Here, we use multi-platform sequencing data for the cancer
cell line NCI-H2087 and the matched normal cell line NCI-BL2087. We ̊rst assemble the
genomes of both cell lines using the PGAS pipeline, which utilizes both long HiFi reads and
single-cell strand sequencing technology. We then call structural variants using 5 di̔erent
callers using both the long HiFi reads and the assemblies. Subsequently, we intersect the
calls to generate a set of somatic structural variants for the cancer cell line. In addition, we
investigate and discuss the role of assembly graphs, graph visualization, and graph align-
ments in disentangling and potentially producing higher quality assemblies and somatic
variants for the cancer cell line.
In Chapter 5 EpiPAMPAS is introduced, a tool for detecting epistatic interactions between

22 Introduction and Background

mutations in Multiple Sequence Alignments (MSA), mainly focusing on protein sequences.
EpiPAMPAS employs a hierarchical clustering dendrogram instead of a phylogenetic tree
to understand, reconstruct, and analyze the most-likely ancestry of the sequences. Subse-
quently, uses a mutation counting method on the dendrogram to detect potential ecstatically
interacting variants.

The publications underlying this thesis are listed below, information about authors con-
tributions and license for each publication is described in Supplementary Materials F. Shared
̊rst authorship are indicated with a *:

• F. Dabbaghie, S. K. Srikakulam, T. Marschall, and O. V. Kalinina. PanPA: generation
and alignment of panproteome graphs. Bioinformatics Advances, 3(1), Jan. 2023.

• F. Dabbaghie. extgfa: A low-memory on-disk representation of genome graphs. bioRxiv,
Dec. 2024.

• F. Dabbaghie*, K. Thedinga*, G. A. Bazykin, T. Marschall, and O. V. Kalinina. Epi-
PAMPAS: Rapid detection of intra-protein epistasis via parsimonious ancestral state
reconstruction and counting mutations. bioRxiv, Dec. 2024.

• S. Pani, F. Dabbaghie, T. Marschall, and A. Soylev. gaftools: a toolkit for analyzing
and manipulating pangenome alignments. bioRxiv, Dec. 2024.

• F. Dabbaghie, J. Ebler, and T. Marschall. BubbleGun: enumerating bubbles and su-
perbubbles in genome graphs. Bioinformatics, 38(17):4217–4219, Sept. 2022. 1

1The main algorithm and code was developed during my Master’s ̊nal project under Prof. Tobias Marschall.
However, further code optimization, experiments, and paper writing were done during my PhD time.

Chapter 2

PanPA: PanProteome Graph Builder
and Aligner

This chapter introduces PanPA, a tool for generating graphs from Multiple Sequence Align-
ments (MSAs) representing individual genes or proteins, also indexes these graphs and is
able to align both amino acid and DNA sequences back to these graphs. We show that the
idea of generating graphs from protein sequences is very helpful when aligning phylogenet-
ically distant organisms that might not have a proper reference against graph made from
another organism. We also show that we were able to increase the number of aligned DNA
sequences that would be unaligned otherwise when using a linear reference.

This chapter is based on a publication in Bioinformatics Advances [57], of which I am the ̊rst
author. Materials reused from the publication will be indicated.

2.1 Introduction
This section reuses material from [57] of which I am the ̊rst author

Prokaryotes have evolved rapidly for billions of years, and due to geochemical changes on
the planet, bacteria needed to adapt in order to survive, which was the major contributor to
their vast genetic diversity [66]. When stable environments are studied, such as garden soil,
lakes, or costal seawater, which are ecosystems that do not experience extreme environmen-
tal changes, we still observe a vast diversity of prokaryotic organisms. It is expected that not
more than 1% of the bacteria in these samples can be cultivated in the lab [7]; this suggests
that the true diversity is even much larger than estimated. The number of prokaryotic cells
on earth has been estimated to be around 4 − 6 × 1030 and their cellular carbon amount is
3.5− 5.5× 1014 kg [288]. Both the advancement in sequencing technologies (Section 1.2),
and sequence alignment algorithms (Section 1.2.1) highlighted the similarities, di̔erences,
divergence, and variability between the di̔erent prokaryotic genomes [200, 127].

23

24 PanPA: PanProteome Graph Builder and Aligner

We discussed how the concept of graph pangenomes came about (Section 1.3, and their
importance in better capturing the diversity of genomes and ability to circumvent the linear
reference bias. However, if we look at the various pangenomes that have been constructed
in recent years. For example, in bacteria for E. coli [47], in plants for Cucumis sativus [155],
and in humans [154, 74], including the work of the Human Pangenome Reference Consor-
tium (HPRC) [157]; we see that they all build a pangenome for a single species in the DNA
space, which may still not be able to capture the high diversity in prokaryotes and may
not be able to produce good alignments. This problem is even more exacerbated in highly
diverse and less-studied clades, such as Actinomycetes or Myxobacteria, which are an impor-
tant source of natural products that can be used in drug discovery [90]. The diversity of
these clades is much higher than that described, due to limitations in cultivation and in-lab
growth [173]. Moreover, some of their species even lack a reference genome. In these cases,
however, sequence similarity can still be traced by looking at protein alignments instead,
i.e., looking only at the amino acid sequences in the coding regions, as these alignments will
have a higher identity compared to DNA sequence alignments. There are still several reasons
for this: 1) Amino acid sequences are evolutionarily more conserved compared to the DAN
sequence of the complete genome [134]. 2) The amino acid alphabet is larger, the “signal-
to-noise ratio” is better, e.g., two random DNA sequences will exhibit around 25% similarity
over the entire sequence and can go over 50% in certain local stretches [285]. 3) The same
amino acid can be encoded by several codons, hence, a part of the mutations in DNA are not
visible at the amino acid level. These mutations are called silent mutations [34]. 4) Some of
the errors introduced during sequencing can cause a frameshift during alignment, which can
be avoided by using amino acids [244]. 5) In amino acid sequence alignment, we usually
use a substitution matrix instead of just edit distance in DNA sequence alignment, better
capturing biological reality [20]. 6) In prokaryotes, the proportion of non-coding regions
in the genome can range from 5 to 50%. However, for the vast majority, the fraction is less
than 18% [223], further motivating a focus on coding sequences.

Here, we propose a new tool, we call PanPA (PanProteome Aligner) to conduct pange-
nomic analyzes that considers amino acid, or protein sequences. PanPA builds directed
acyclic graphs for each individual protein or protein cluster in order to represent a pangenome
as a collection of these graphs. Computing alignments in amino acid space can give a big
advantage in terms of ̊nding more sequence similarity, and being able to align more phy-
logenetically distant organisms against each other while losing relatively little genome in-
formation. In [286] they showcased how aligning in protein space introduces signi̊cant
improvements in alignment accuracy and functional pro̊ling in a metagenome scenario.
The idea of having many graphs representing a pangenome instead of one large graph was
presented in [47]; in their tool Pandora, the authors de̊ne a pangenome as a collection
of local graphs where each local graph represent some locations in the genome that can be

2.2 Methods 25

pre-de̊ned by the user. PanPA combines the two ideas of 1) having a pangenome con-
sisting of many smaller graphs, where each graph represents a protein or a protein cluster,
and 2) working in amino acid space rather than nucleotide sequences to support pange-
nomic analyzes over larger evolutionary distances. We call such a collection of graphs a
panproteome.

2.2 Methods
With PanPA, we aim to build a graphical panproteome and be able to align new DNA or
amino acid sequences back to it. We de̊ne the panproteome here as a collection of graphs
representing proteins sequences or protein clusters, i.e., each protein or protein cluster is
represented as a separate graph.
PanPA consists of three main steps, as follows:

1. Building an index from the input MSAs (described in Section 2.2.1).

2. Constructing a directed graph from each MSA (described in Section 2.2.2).

3. Aligning query sequences to these constructed graphs with the help of the index con-
structed from these MSAs (described in Section 2.2.3).

2.2.1 Building Seed Index from MSAs
This section reuses material from [57] of which I am the ̊rst author

For each sequenceN of lengthm, we de̊ne a substring s = N [i, j], where 0 f i f j f m−1,
as a substring of N starting at position i and ending at position j with a length of j − i+ 1

for the substring. A k-mer from a string N is then de̊ned as a substring of length k. We
also de̊ne a function min(S) that takes the set S = {s1, s2, . . . , sw} of size w containing w
equal-length strings and returns the lexicographically smallest string in this set; we call this
function a minimizer.
Two types of indexes are implemented in PanPA based on the types of seeds, a k-mer-based

seed index and a (w, k)-minimizer-based seed index. Theminimizer-based index was originally
developed by [239] and was ̊rst used in bioinformatics to reduce storage requirements
for sequencing data by [220]. Where a minimizer is usually the alphabetically smallest
substring in a collection of substrings representing a sequence, or the smallest substring of a
window of w equally-sized substrings from a sequence. In both cases, the index stores a key-
value map, where the keys are the k-mers or (w, k)-minimizers seeds extracted from each
sequence in the input MSAs, and the value for each key is an ordered array of MSAs where
that seed was found. This ordering is based on the number of times that seed was seen in
that certain MSA. More details on the indexing implementation is provided in Section 2.3.

26 PanPA: PanProteome Graph Builder and Aligner

To construct a k-mer-based seed index of the MSAs collection, for every string N , we
extract all the k-mers from a string, where Sseeds is the collection of the consecutive k-mer
from stringN , and de̊ned as Sseeds = {N [0, 0+k−1], N [1, 1+k−1], . . . , N [i, i+k−1]}; ∀i ∈

{0, . . . , (m− k)}, where each string N of length m will contain (m− k + 1) k-mers.
As for the (w, k)-minimizers, for each sequenceN , instead of taking the set of all consecu-

tive k-mers, we take the set Sseeds that contains the minimizer of every consecutive window
of w k-mers, i.e., we take the smallest seed in a set of seeds for each consecutive window of
seeds. Sseeds = {min(S0,w),min(S1,w), . . . ,min(Si,w)}; ∀i ∈ {0, . . . , (m− w − k + 1)}, where
Si,w is a set of w consecutive k-mers starting at position i in the string N .

2.2.2 Generating a Directed Acyclic Graph from a MSA
For this step, we developed a simple algorithm to convert each MSA into a corresponding
graph in the GFA format (see Section 1.4.3 for GFA format de̊nition), where each original
sequence from the MSA is represented in the GFA ̊le as a path, i.e., we can reconstruct the
original sequences by concatenating the strings in each node of the path. This algorithm
runs in O(n×m) time, where n is the number of sequences in the MSA and m is the length
of the alignment, and has two steps, graph generation and graph compaction.

2.2.2.1 Graph Generation
This section reuses material from [57] of which I am the ̊rst author

We de̊ne an alphabet A as the amino acid alphabet, and a matrixM = (ai,j) ∈ {A∪−}
m×n.

Each column in matrix M is a vector {A ∪ −}n and each row is a vector {A ∪ −}m. In a
nutshell, the algorithm loops through each column vector at position j where 0 f j f m−1,
and for each vector, it constructs a new node nodej(c) for each unique character c ∈ A

encountered. Subsequently, edges are added between two nodes nodej1(c1) → nodej2(c2)

(where j1 < j2) if and only if the characters c1 and c2 were consecutive in one of the row
vectors in matrix M after ignoring the character {−}. Algorithm 1 is a pseudocode for this
algorithm.
As a simple example, consider an MSA with three sequences as shown in Figure 2.1. In

this ̊gure, the columns marked yellow are the current column in the loop, and the column
in red is the previous column. The algorithm loops through the columns of the MSA, and at
each column, it scans the character in that columns, if the character is new, then a new node
is initialized for this character (lines 18–22 in Algorithm 1). Otherwise, if the character is
not new, i.e., a node was already been constructed for that letter at that column, we assign
the character a corresponding node identi̊er. After building nodes for a column j, i.e., the
current column in the loop, we synchronize with the previous column j−1 (if it exists) (lines
2–10 in Algorithm 1). For the synchronization, we go through each row i in both columns,
and for every row i we have three choices:

2.2 Methods 27

Figure 2.1: MSA to GFA: turning an MSA into a graph. The MSA in this example contains
three sequences, -MEPTPEQ, - - -T -MA, and MSETQSTQ; and the step-by-step graph
construction is shown on the panels from top to bottom. At every step, the yellow column
is the current position and the red column is the previous one. Figure adapted from [57].

1. if ci,j , ci,j+1 ∈ {−} then there is nothing to be done. For example, the ̊rst two gaps in
the second sequence in Figure 2.1)

2. if ci,j , ci,j+1 ∈ A, then we need to draw an edge between nodej(ci,j) and nodej+1(ci,j+1);

3. if ci,j ∈ A and ci,j+1 ∈ {−} then we need to keep the character ci,j “saved” and continue
going through the MSA until we reach a column j + x where ci,j+x ∈ A and x > 1,
then we can draw an edge between nodej(ci,j) and nodej+x(ci,j+x). An example of this
̊nal case in Figure 2.1 is the second sequence, where columns 4 and 5 have gaps, but
column 3 has a T ; we then keep track of this until we reach the characterM in column
6, where we construct a node for it. Now, we can draw an edge between the nodes
representing T of column 3 and M of column 6.

Since we iterate through the MSA from left to right and only draw edges between consec-
utive nodes between the current nodes and the previous ones, we guarantee that resulting
graph is directed and acyclic (DAG).

2.2.2.2 Graph Compaction
This section reuses material from [57] of which I am the ̊rst author

Linear stretches of nodes can arise while generating a graph from an MSA. A set of con-
secutive nodes {nodej1(c1), nodej2(c2), . . . , nodejn(cn)} is a linear stretch, if and only if each
node in the set has an in-degree and out-degree of one, with an exception that the ̊rst
node nodej1(c1) can have a higher in-degree and the last node nodejn(cn) can have a higher
out-degree. We can, therefore, compact these nodes into one node and concatenate their

28 PanPA: PanProteome Graph Builder and Aligner

Algorithm 1 Constructing a DAG from MSA. Taken from [57]
Matrix M {Matrix of dimensions m× n}
Map nodes {A map of node IDs: array of children IDs}
Array previous {Empty array of length n}
Array current {Empty array of length n}
Int n {Integer starting with 0}

1: for j ∈ {0 . . .m} do
2: for i ∈ {0 . . . n} do
3: if (current[i] ≡ None)&&(previous[i] ̸= None) then
4: current[i]← previous[i]
5: else if (current[i] ̸= None)&&(previous[i] ̸= None) then
6: nodes[previous[i]].append(nodes[current[i]]))
7: else
8: pass
9: end if
10: end for

11: previous← current

12: Array current {Empty array of length m}
13: Array column←M [j] {characters in column j}
14: Map seen {empty map} {character:node ID}
15: for i ∈ {0 . . .m} do
16: if column[i] ∈ seen then
17: current[i]← seen[column[i]]
18: else
19: n← n+ 1
20: nodes[n]← []
21: current[i]← n

22: seen[column[i]]← n

23: end if
24: end for
25: end for

sequences. For example, in Figure 2.1 at the last step of constructing the graph, the stretch
of nodes P → T → P → E can be compacted into one node.
There is, however, one special case one needs to take into consideration where not all

nodes in a linear stretch of nodes can be compacted. This happen because paths in the P line
in the GFA are represented as a list of nodes that their concatenation generates the original
sequence. Therefore, the path only considers the complete sequence that the node encodes,
and it cannot represent a part of the node.
As an example to this, looking at Figure 2.2, we have an MSA of three sequences each

of length 4, MTQT , - -QT , and MT - -. When we generate a DAG from this MSA, we end
up with a line graph of four nodes (M , T , Q, and T). However, we cannot merge all of the
nodes together into one node, then we will not be able to represent Seq2 or Seq3 individually

2.2 Methods 29

Figure 2.2: This ̊gure shows an example of how we cannot always compact linear stretches
of nodes into onde node. Here, we have three sequences of length four each, and when we
build the graph, we get four nodes, but we can only compact the ̊rst two nodes and the
second two nodes, and now we can represent the three sequences as a node path in the
output GFA ̊le. Figure taken from [57].

in a P line. Therefore, we can only merge the ̊rst two nodes together and the second two
nodes together. Now, we can represent all three sequences as separate P lines as shown in
the Figure.

2.2.3 Aligning Query Sequences
2.2.3.1 Amino Acid Query Alignment
This section reuses material from [57] of which I am the ̊rst author

PanPA uses a modi̊ed version of the Smith-Waterman algorithm for local alignments [251]
known as partial-order alignment [144], this algorithm is capable of performing alignment
on graphs instead of a linear sequence. In brief, the algorithm concatenates all the sequences
in the nodes into one long sequence, the target sequence. Subsequently, it builds a Dynamic
Programming (DP) table between the query and the target sequences, similar to normal
Smith-Waterman. However, in this table, we cannot simply look at the left or diagonal
cell when calculating the score for the current cell, because the previous column does not
necessarily correspond to the previous character topologically in the graph, however, we
need to make jumps through the table, following the edges in the graph. Moreover, if there
is more than one incoming edge, we need to follow each edge, calculate the scores, then
decide which score is best. As the graphs constructed from the MSAs are DAGs, the graph
can be topologically sorted generating a list of ordered vertices. The concatenation of the

30 PanPA: PanProteome Graph Builder and Aligner

sequences of the ordered vertices is the target sequence to align against (Figure 2.3).
Here, the dynamic programming matrix is de̊ned as H = (ai,j) ∈ R

(n+1)×(m+1) where
m is the size of the query sequence M , and n is the size of the concatenated sequences
N from the topologically-ordered vertices. We add one extra row and column ̊lled with
0 as the initializing row and column. Similar to the Smith-Waterman algorithm, for each
cell, we are dependent on the scores of adjacent cells describing the alignment operation
(Match/Mismatch, Insertion, or Deletion). As some characters or columns correspond to the
̊rst character of a node in the graph, instead of looking at the previous column to get the
previous character, we need to calculate the score of that cell based on all possible previous
characters following all incoming edges to that node. Therefore, for calculating the score of
cell i, j, we take the max of all scores calculated considering all characters from the incoming
edges pl, where pl is the column index that represent the previous character after following
the incoming edge. Equation 2.1 describes that the score for cell (i, j) is based on the max
score of all possible incoming edges:

Hi,j = max
∀l:pl∈Pin

(score(i, j, pl)). (2.1)

To calculate a single score for one previous character following an incoming edge, we have
three possible choices: a match/mismatch, an insertion, or a deletion, this is shown in
Equation 2.2:

score(i, j, pl) = max

Hi−1,pl + sub(N [pl − 1],M [i− 1])

Hi−1,j +∆

Hi,pl +∆

0

(2.2)

where ∆ is the gap score, and sub(c1, c2) is a function that takes two characters and returns
the substitution score, e.g., Blosum62 [116]. Since our graphs are compacted, one node can
have several characters. Therefore, if we are calculating the score for some Hi,j and the
column j does not correspond to the ̊rst character in the node, then we can simply use
Equation 2.2 with pl being j − 1.

For tracing back the alignment, we use the same approach as in the classical Smith-
Waterman algorithm, checking where the score of the cell came from to know which path
our query sequence aligned to. For example, in Figure 2.3, the bottom right corner cell has
the highest score in the table. When tracing back from there, we see two incoming edges,
one leading to the character E and the other to the character T , the traceback then jumps
to where the score 39 came from (the maximum between the two after adding the match
score). This corresponds to the character E at j = 9. Now starting the traceback at j = 9, we
see that there are no incoming edges, so we only need to look at j = 8, and so on. Once we
̊nish the traceback and stop, we conclude that our query sequence MEPTPEQ matches

2.2 Methods 31

Figure 2.3: Alignment of a sequence to a protein graph. Top: example protein graph, which
is also the compacted version of the graph made in Figure 2.1. bottom: the corresponding
DP table. The ordered graph vertices are in the columns, and the query sequence is in the
rows. Arrows between columns correspond to the graph edges. Arrows in the DP table
correspond to potential previous cells in the DP process. Figure taken from [57].

the nodes M,E,PTPE,Q, forming the path that represents “seq1” in Figure 2.3.

2.2.3.2 Frameshift-Aware DNA Query Alignment
This section reuses material from [57] of which I am the ̊rst author

When translating DNA sequences to proteins, indels can cause frameshifts, which would
cause the alignment in the amino acid space to stop short due to sequence divergence. To
account for this, we developed another alignment algorithm that is inspired by the method
in [244]. This alignment algorithm takes into account indels and the frameshifts they cause
in the DNA query sequence.
In this method, we do not translate the DNA query sequence, but align the DNA sequence

directly to the target amino acids graph unchanged. Here, when we are looping through
the rows in the DP table, every row (or character in the DNA sequence) belongs to one of
the three possible reading frames. For example, the ̊rst character/row represents the ̊rst
amino acid of the ̊rst frame, the second character/row represents the ̊rst amino acid in the
second frame, and the third character/row represents the ̊rst amino acid in the third frame.

32 PanPA: PanProteome Graph Builder and Aligner

Now, the next character/row would represent the second amino acid in the ̊rst frame, and
so on. Moreover, we modi̊ed the scoring equation to also account for frameshift errors,
which then allows the traceback to switch frames if the scores justi̊es the switch.

Figure 2.4 is an example of a DNA sequence with an insertion of one nucleotide that
causes a frameshift. The inserted nucleotide is marked in red. We see that our algorithm
was able to account for this frameshift, and when we follow the green cells that represent
the traceback, we see that it follows the complete DNA sequence, i.e., the alignment will be
reported fully as aligning against the amino acid sequence with an insertion.
To explain in more details, when ̊lling the cells in the DP table, we start from the third
nucleotide C which represents the amino acid of the codon ACC, i.e., the ̊rst amino acid
in the ̊rst frame. When we move to the next row, we are then considering the amino acid
of the codon CCT , which the ̊rst amino acid of the second frame, and so on. Looking at
Equation 2.3, we see that to get the score of a cell (i, j) in the table, we need to take into
consideration the in-frame insertion and deletion (in the equation represented with the ̊rst
three terms). However, to account for the out-of-frame scores, we introduce two more terms
to the equation. These terms represents the jump between the frames:

1. i− 4, j− 1 jump, which describes an insertion frameshift, when the DNA sequence has
an extra nucleotide that introduced a frameshift. This moves the current alignment to
the previous frame;

2. i− 2, j − 1 jump, which describes a deletion frameshift, where the DNA sequence has
one nucleotide deleted, which moves the current alignment to the next frame.

For the i− 4, j − 1 and i− 2, j − 1 jumps, we also introduce a frameshift penalty σ.

score(i, j) = max

Hi−3,j−1 + sub(trans(N [i− 2, i]),M [j − 1])

Hi−3,j +∆

Hi,j−1 +∆

Hi−4,j−1 + σ

Hi−2,j−1 + σ

0

(2.3)

where N is the DNA sequence, M is the amino acid sequence, the function trans(codon)

takes a codon and returns the equivalent amino acid, and the function sub(c1, c2) takes two
amino acids and returns the substitution score between them.

2.3 Implementation
PanPA was built using Python with the only dependency being Cython. Cython was used
mainly to optimize the core alignment algorithm. Each of the three steps mentioned in

2.3 Implementation 33

P P T H Q
0 0 0 0 0 0
0 0 0 0 0 0

A 0 0 0 0 0 0
C 0 0 0 0 0 0
C 0 2 2 1 0 0
T 0 0 0 0 0 0
C 0 0 1 1 0 0
T 0 2 4 3 2 1
G 0 0 1 1 0 0
A 0 0 1 3 2 1
C 0 1 3 3 2 1
C 0 0 1 3 2 1
C 0 2 2 2 2 1
A 0 2 3 2 2 1
C 0 0 1 2 5 4
C 0 1 1 4 3 2
A 0 2 4 3 2 4
A 0 0 1 2 4 7

Figure 2.4: Frameshift aware alignment. The scores here are as following: match=2,
mismatch=framshift=gap=−1. We have the DNA sequence ACCTCTGACCCACCAA

aligning against the amino acid sequence PPTHQ, if we remove the G from the DNA se-
quence, we actually get a perfect match. Looking at the table, we see in the traceback, that
we were able to account for the insertion and still able to align the DNA sequence against
this amin aicd sequence completely. Figure taken from [57].

Section 2.2 is implemented as a separate subcommand. The subcommands are build_index,
build_gfa, and align.
Figure 2.5 shows the pipeline of PanPA. It starts with MSA ̊les, where each MSA rep-

resents one protein or a protein cluster. This input is required by both build_index and
build_gfa modules. The subcommand align takes a FASTA ̊le with query sequences,
the graphs generated from the MSAs, and the index ̊le, to perform the alignments. The
output alignments are in GAF (Graph Alignment Format) format with unstable coordinates
(explained in Section 1.4.4).

2.3.1 Indexing
This section reuses material from [57] of which I am the ̊rst author

As explained in Section 2.2.1, the index is a key-value map, where the keys are the unique
seeds and the values are arrays of the MSAs (equivalently, graphs) where the seed belong
to. In our implementation, the value array is ordered based on the number of times that
seed showed up in an MSA, normalized by the number of sequences in that MSA. With this
ordering, users can choose a cuto̔ limit on how many graphs one seed can belong to, as

34 PanPA: PanProteome Graph Builder and Aligner

Figure 2.5: Here, we show the general pipline of PanPA and its subcommands. Each sub-
command can be also run separately or more than once with di̔erent parameters. Figure
taken from [57].

some seeds can be promiscuous, especially if a small value for k is used.
For example, if we have three MSAs m1, m2, and m3 containing 10, 7, and 3 sequences

respectively. Seed s1 was found in m1 twice, found in m2 four times, and found in m3 three
times (with the normalized counts 0.2, 0.57, and 1, respectively), and the user cuto̔ is set
to 2, then in the resulting index, the seed s1 will point to a list containing [m3,m2].
Extracting (w, k)-minimizers can be time consuming, as we need to ̊nd the lexicograph-

ically smallest k-mer in the window. Therefore, we used the Sliding Window Minimum
algorithm [32], which has a time complexity O(n) where n is the size of the input sequence.
This algorithm is described in more detail in Algorithm 1 in [132].
Supplementary Section A.5 further shows the tradeo̔ between time and index size when
using di̔erent parameters.

2.3.2 Generating Graphs
This section reuses material from [57] of which I am the ̊rst author

The implementation for converting an MSA to a GFA is based on a previous implementation
of a standalone command-line tool called msa_to_gfa [55]. More information about this
standalone tool can be found in Supplementary Section A.2.
In PanPA, each MSA is converted into a DAG in GFA format, i.e., there is a 1 to 1 cor-

respondence between the MSAs and GFAs. Therefore, when a seed in the index points to
one MSA, we can align the query sequence to the graph that corresponds to that MSA. This
subcommand is also parallelized, so the user can provide more cores to convert MSAs to
GFAs simultaneously.

2.4 Validation of PanPA 35

2.3.3 Aligning
This section reuses material from [57] of which I am the ̊rst author

Given a query sequence, we count all the seed hits from the query to the MSAs using the
index. We use the index to generate a list of MSAs (equivalently, graphs) to align against.
This list is sorted based on the number of hits. For example, if the query sequence had ̊ve
seeds, where four of them pointed to m1, and one pointed to m3, our list of matches will be
[m1,m3]. The user can also specify to how many potential MSAs/graphs can one query be
aligned against, or choose to align to all matches. If, for example, the limit of matches was
set to 1, our query sequence will only be aligned to m1. Moreover, the user can ̊lter the
alignments based on a minimum alignment identity score. PanPA uses a linear gap penalty
and the user can choose one of many substitution matrices available, such as benner [17],
BLOSUM [116], Point Accepted Mutation (PAM) [119], and many others. The user also has
control over other scores such as gap penalty and frameshift penalty.
This step is also parallelized and the user can provide more CPU to speed up the process.
More on runtime is provided in Section 2.4.3.

2.4 Validation of PanPA

This section reuses material from [57] of which I am the ̊rst author

Here, we want to con̊rm that PanPA is working as intended, that it is able to use the index
to ̊nd the correct graphs to align to, able to align to the correct paths in the graph, and that
it is able to handle errors in the sequences. To this end, in Section 2.4.1 we ̊rst construct a
panproteome of E. coli using assemblies from a public repository. Then, in Section 2.4.2, we
use sequences from the same panproteome to align back and investigate whether PanPA was
able to ̊nd the correct graph using the index and align to the correct path. We also tested
the e̔ects of di̔erent indexing parameters on the alignment accuracy. In Section 2.4.3 we
expand about the runtime using di̔erent parameters. Finally, in Section 2.4.4, we experi-
ment with the robustness of PanPA and its alignments, and how well it handle mismatches
on the query sequences.

2.4.1 Building an E. coli Panproteome
This section reuses material from [57] of which I am the ̊rst author

First, we want to validate that PanPA is able to build, index, and ̊nd correct alignments
of a panproteome. To that end, we downloaded 1,351 E. coli assemblies that were marked
as “Complete Genome” from RefSeq [190]. We extracted every amino acid sequence cor-
responding to a coding region from the annotations provided in RefSeq and clustered them

36 PanPA: PanProteome Graph Builder and Aligner

Figure 2.6: Plotting the distribution of samples in the clusters. As expected, this plot dis-
plays a characteristic U-shape. This shape emerges when looking at core and accessory genes
in a collection of samples in a species. Here the peak to the left at 1 basically represents
the unique clusters where only one sample is represented (accessory genes), the peak to the
far right represents the clusters where all the samples were represented (core genes). Figure
taken from [57].

using mmseq2 [112] with default parameters, resulting in 44,204 protein clusters. The dis-
tribution of the number of strains per cluster shown in Figure 2.6 demonstrates the charac-
teristic U-like shape, which evidences the presence of both core genes that are present in
nearly all assemblies (right peak of the plot) and accessory genes that are mostly unique to
one assembly or present in only a few (left peak of the plot). Now that we have similar pro-
teins clustered together, mafft [137] was used on each cluster to produce a corresponding
MSA. Subsequently, we converted each MSA into a corresponding DAG in GFA format, this
took PanPA about 6 minutes with 10 cores. This collections of graphs, then constitutes our
panproteome.

2.4.2 Validating Alignments on a Panproteome of E. coli
This section reuses material from [57] of which I am the ̊rst author

To validate whether PanPA aligns sequences correctly, we randomly selected 32,289 protein
sequences from our panproteome. The random selection was done by, ̊rst, randomly se-
lecting 10% of all the MSAs representing the protein clusters, then for each MSA chosen, we
randomly selected 5% of sequences in that MSA. More details on the random selection can
be found in Supplementary Section A.3. This random sample of sequences is then considered
as “ground truth”, because we know to which cluster, hence, which graph each sequences

2.4 Validation of PanPA 37

should align against. Moreover, we know the path in the graph that the alignment should
follow. We expect, of course, that PanPA aligns each of these sequences to the correct corre-
sponding graph. We constructed a pipeline using Snakemake [174] to run the indexing and
alignments steps with a combination of parameters to demonstrate the e̔ect of di̔erent
parameters on the correctness and accuracy of the alignments.
We de̊ne a “mismatched alignment” here, as the highest-scoring alignment of a se-

quence, but to a di̔erent graph than the one the sequence originated from. Figure 2.7 plots
the percentage of mismatched sequences against the di̔erent indexing combinations. When
w = 1, this is equivalent to a k-mer index, because if the window size is one, then we are
taking every k-mer in the sequence. We see that when k = 3, we get a relatively high num-
ber of mismatched alignments, unless the index stores all the seed hits (unlimited in the seed
hits limit). Whereas higher k values produce very few wrong alignments regardless which
cuto̔ was used for the index. From these results, we can recommend a k value larger than
3 when aligning against closely related species, and a cuto̔ of 5 on the index can be used
without losing too many alignments. For full sensitivity, we recommend using a small k and
not limiting the index to keep all seed hits. However, this will result in a longer alignment
time as many more alignments need to be performed. Supplementary Figure A.3 shows the
index size with di̔erent seed parameters, and we see that the number of graphs allowed per
seed does not have a major impact on the index size, compared to the choice of the seed,
i.e., whether we choose k-mer or (w, k)-minimizer.

2.4.3 Runtime for the E. coli Panproteome
This section reuses material from [57] of which I am the ̊rst author

Figure 2.8 shows the system time in seconds measured for aligning the previously mentioned
sample of 32,289 sequences aligned against the E. coli panproteome. We see in the ̊gure
that the time di̔ers tremendously depending on the k andw values chosen for the index, and
the limit of the index seeds and the alignment hits limit. Most notably, we see that using
a small k value, results in much higher alignment times due to the many hits generated,
as a small k will results in too many hits to many graphs. However, when we increase
the k value, we will have more unique seed matches that would point PanPA to align to the
relevant graph. For this ̊gure, the time hits a maximum of around 23,000 seconds for using
k = 3 and w = 1 with unlimited seed index, and 30 alignment hits limit, this also results
in over 99% of the sequences being aligned correctly. On the other hand, we can also get
over 99% of the sequences aligned to the correct graph with only around 200 seconds when
using an index with k = 9 and w = 5 and an unlimited seed index. Of course, this might not
be realistic when aligning sequences across the phylogenetic tree, where longer seeds will
be too speci̊c to ̊nd hits and one needs to use smaller seeds to ̊nd matches.

38 PanPA: PanProteome Graph Builder and Aligner

Figure 2.7: E̔ect of the di̔erent parameters on the fraction of mismach alignments, where
sequences aligned to the wrong graph. Each point is colored with respect to the seed hits
limit (the limit of how many hits can each seed point to), and shapes correspond to the
aligned hits limit (the limit of how many graphs can one sequence align to). We see that
for a small k values, a high number of wrong alignments is produced, unless the index
size is limited. We also notice that the align seed limit has a relatively small e̔ect on the
percentage of wrong alignments. Figure taken from [57].

2.4.4 Alignment Robustness Validation
This section reuses material from [57] of which I am the ̊rst author

To further test the robustness of PanPA’s alignments, and howwell does it handle mismatches
and indels in the query sequence, we used the graph that represent the MSA of the protein
GyrA used in later Results Section 2.5.4. We then aligned the 1,392 protein sequences of
GyrA that contains both antibiotic resistant and susceptible strains back to the graph. With
each alignment iteration, we randomly added errors to the sequences at a rate of 5%, i.e.,
We replaced some amino acids at random positions with some other random amino acid.
The ̊rst iteration had 0% error rate and we did 10 iteration to reach a 50% introduced error
rate.
For each alignment run, we compared the alignment’s path in the graph to the path

of the original sequence, moreover, we also looked at the alignment identity. Looking at
Table 2.1, we see that when there are no errors, all alignments match exactly the original
paths of that sequence, with an alignment identity of 1 (i.e., 100% aligned positions), as
expected. The more errors we added, the more the alignment diverged from the original
path. However, we see that the average alignment identity is consistent with the percentage
of errors introduced. Strikingly though, the average path coverage is less susceptible to the

2.5 Results 39

Figure 2.8: The e̔ect of the di̔erent k and w value combinations on alignment’s User CPU
time on the sampled sequences. We see that small values of k results in much more time,
due to the fact that smaller k values produce more promiscuous seeds to match to many
graphs, so PanPA needs to spend more time aligning to these graphs then ̊ltering out the
alignments with low scores. However, we can still get close to 100% correct alignments
when using unlimited seed hits, but then the time increases dramatically. On the other
hand, when using a bigger k value, the seeds will have a more unique hit to the correct
graphs and PanPA doesn’t need to spend too much time aligning. Figure taken from [57].

errors. This, probably, stems from the fact that in the MSA there were many stretches
of conserved sequences which results in one node after compacting, and when errors are
introduced in the sequence that would align to that node, it would still align to the node
but with mismatches.

2.5 Results
2.5.1 Aligning Unseen Sequences from E. coli
This section reuses material from [57] of which I am the ̊rst author

Using the same panproteome constructed in Section 2.4.1, we further downloaded 80 E. coli
assemblies from RefSeq that were not used in building the panproteome as they were not

40 PanPA: PanProteome Graph Builder and Aligner

Number of
sequences

Perc. of
error

introduced
Matching
paths

Mismatching
paths

Average
alignment
identity

Average
path

coverage
1392 0 1392 0 1 1
1392 5 265 1127 0.952 0.988
1392 10 50 1342 0.905 0.98
1392 15 12 1380 0.857 0.971
1392 20 2 1390 0.809 0.962
1392 25 0 1392 0.762 0.952
1392 30 0 1392 0.715 0.94
1392 35 0 1392 0.667 0.931
1392 40 0 1392 0.62 0.919
1392 45 0 1392 0.575 0.901
1392 50 0 1392 0.529 0.889

Table 2.1: Inserting random errors to the Gyra sequences before aligning back to the graph
constructed from the MSA of the same query sequences. We see that the Average alignment
identity follows properly the percentage of errors introduced, which further indicates that
PanPA is aligning the sequences properly. Moreover, we see that when there are no errors,
the alignment path matches the correct path of the sequences in the graph. Table taken
from [57].

marked as complete assemblies, and extracted the protein sequences from the corresponding
annotation ̊les. After removing redundant sequences, we were left with 92,196 sequences.
We used the same Snakemake pipeline as in the previous experiment to align these sequences
against the panproteome with the di̔erent parameter combinations. To consider an align-
ment correct, we require that its alignment identity be above 90%. After aligning, we got
an average alignment identity of about 99.8%.
We observe again that for small values of k, the majority of sequences (between 50% for

k = 3 and w = 6 and 99% for k = 3 and w = 1) did not produce an alignment (Figure 2.9).
These results emphasize the conclusion from the previous experiment, that choosing a very
small size for the seeds (e.g., k = 3) and limiting the index hits size will result in a high
number of false positive index hits that; in turn; will result in alignments with a low identity
that will be ̊ltered out due to low identity scores. When the index hits size is unlimited,
PanPA is then able to produce better alignments. Keeping in mind, that an unlimited index
will result in a much longer alignment time as there is a need to align to more sequences.
For example, for k = 3, w = 1, and unlimited index, it takes PanPA over 80,000 seconds of
User CPU time to ̊nish alignments compared to slightly over 1,000 seconds with k = 9 and
w = 1, all combinations are shown in Figure 2.10.

2.5.2 Comparison of PanPA, BWA and GraphAlignerUsing S. enterica Sequences
This section reuses material from [57] of which I am the ̊rst author

2.5 Results 41

Figure 2.9: E̔ect of the di̔erent parameters on the number of unaligned sequences when
aligning 92,196 unseen E. coli sequences. For small k values, the majority of sequences were
not aligned unless a limit for the index hits size is set (the red marks); if the index hits size
is not limited, over 99% of sequences produce an alignment. Figure taken from [57].

Figure 2.10: Unseen sequences alignment speed with the di̔erent indexing parameters.
We can clearly see that for small seeds, the alignment time increases dramatically, due to
the fact that smaller seeds are very promiscuous and can have hits to too many graphs,
resulting in performing many alignments that ultimately result in low identity scores and
be ̊ltered out. Figure taken from [57].

42 PanPA: PanProteome Graph Builder and Aligner

One major advantage of moving from DNA to the amino acids space, is the ability to have
better alignments between more phylogenetically distant organisms. Both E. coli and S.
enterica belong to the same family Enterobacteriaceae, but to di̔erent genera, hence, are
expected to be far enough apart from each other evolutionary to make a good test case for
PanPA.
In order to compare DNA and protein alignments, we downloaded 1,078 annotated as-

semblies of S. enterica from RefSeq, and extracted all DNA sequences of coding regions
and their corresponding amino acid sequences from the S. enterica annotations, obtaining
4,839,981 sequences. We compared three types/methods of alignments here:

1. DNA sequence alignments against the E. coli linear reference genome (strain K-12 sub-
strain MG1655) using BWA [152].

2. DNA sequence alignments using against the E. coli pangenome GraphAligner [216].
The was graph built from all 1,351 assemblies and was constructed using
minigraph [154]

3. Amino acid sequence alignments using PanPA against the E. coli panproteome con-
structed from the same assemblies.

Both BWA and GraphAlignerwere run with their default parameters, and PanPAwas given
an index with k = 5, w = 5, an index limit of 10, and only aligning each sequence to the top
10 graph hits. The alignments were then ̊ltered based on alignment length and alignment
identity. Only alignments with a length of over 50% of the original sequence length and
alignment identity of at least 50% were kept.
Figure 2.11 is an upset plot showing the intersection between the alignment results of

the di̔erent aligners. Out of the 4,839,981 sequences, 1,638,936 were successfully aligned
by all three aligners, while 1,694,181 could only be aligned by the graph-based methods
GraphAligner and PanPA. Strikingly, PanPA could align a further 744,033 sequences that
were not aligned by any of the other two aligners.
Furthermore, Figure 2.12 shows the distribution of alignment identity across the three

aligners tested. We can see that PanPA’s alignments have higher identity scores, which is to
be expected as in the amino acid space sequence identity is higher.
For this experiment, PanPA required around 17 minutes to build the index, and around

5 hours to align the sequences, using 2.3 Gb memory. BWA only took around 6 minutes to
run and needed around 900 Mb of memory. GraphAligner needed around 20 minutes to
run and used around 700 Mb of memory. All of the tools were run with 20 cores. PanPA
did take more time to perform the alignment compared to the other tools. However, PanPA
was able to align more sequences, and more importantly, due to the fact that PanPA uses a
non-linear substitution matrix instead of simple edit distance in the alignment algorithm,
certain algorithmic speeding tricks cannot be used by PanPA. We elaborated more on this
point in the Section 2.6. Supplementary Table A.2 contains the raw numbers of alignments

2.5 Results 43

Figure 2.11: Upset plot of the alignments of 4,839,981 sequences from the coding regions
of 1,074 S. enterica assemblies from RefSeq against E. coli. Figure taken from [57].

and intersections presented in Figure 2.11, and Supplementary Table A.1 contains the raw
alignment numbers of the three aligners used in this experiment before and after ̊ltering.

2.5.3 Aligning S. enterica Illumina Short Reads to the E. coli genome, pangenome,
and panproteome

This section reuses material from [57] of which I am the ̊rst author

As explained in Section 2.2.3.2, PanPA can perform a frameshift-aware DNA alignment
against the amino acid graphs. To ̊nd the candidate graphs to align against, similar to
amino acid query sequences, k-mer or (w, k)-minimizer seeds are extracted. PanPA then
uses the index to ̊nd to the potential graphs to align against. Since we do not know from
which strand the DNA sequences are from, PanPA also aligns both the DNA query sequence
and its reverse complement as well. If the reverse complement was aligned, this will be
reported in the output GAF ̊le with the tags st:Z:forward or st:Z:reverse. To test this,
we downloaded one S. enterica Illumina whole genome sequencing (WGS) short reads sam-
ple (SRR22756191) from NCBI SRA database [145] containing 1,110,471 sequences, this
sample is part of PulseNet USA surveillance for food-borne diseases. We proceeded to align
the DNA sequences using BWA against the linear reference of E. coli, and against the E. coli
panproteome using PanPA. We used an index with k = 5, w = 3, no seed hits index limit,
and a limit of 20 graphs for the alignment. We ̊ltered the output retaining alignments
with greater than 50% alignment sequence identity. BWA was used with default parameters.
As expected, using a distant linear reference has a major disadvantage: around 65% of the

44 PanPA: PanProteome Graph Builder and Aligner

Figure 2.12: Distribution of identity scores between BWA, GraphAligner, and PanPA from
aligning the S. enterica sequences. The pique for PanPA is shifted to the right, meaning
higher sequence identity, as amino acid sequences align with higher identity compared to
nucleotide sequences. Figure taken from [57].

Identity >50% Identity and Length >50%
BWA 391,041 (35.2%) 48,937 (4.4%)
PanPA 801,389 (72.2%) 755,009 (68%)

Table 2.2: Number of S. enterica DNA short reads aligned against E. coli’s linear reference
with BWA and against its panproteome using PanPA. Table taken from [57].

reads could not be aligned with BWA with identity over 50%; after additional ̊ltering requir-
ing alignment length to be over 50% of the length of the DNA sequence, only 4.4% were
reported (Table 2.2). On the other hand, PanPA was able to produce alignments for 72% of
the reads with identity over 50%, and 68% of sequences could be aligned with over more
than 50% of their length. 355,462 sequences were not aligned by either aligners. In this
experiment, PanPA needed about 6 hours to align the DNA sequences using 10 threads, and
used about 1.8 Gb of memory. BWA only took 17 seconds to run with 10 threads (CPU time
162 seconds). Even though PanPA took signi̊cantly more time to run, it was able to retrieve
way more alignments than BWA. Moreover, the memory requirement was low enough that it
can easily be run on a modern personal computer in the background, or given more threads
on a high-performance computation cluster to increase the speed.

2.5 Results 45

2.5.4 Using PanPA to Display Phenotypic Traits: a Case of Antimicrobial Re-
sistance in E. coli

This section reuses material from [57] of which I am the ̊rst author

In prokaryotes, certain mutations can be associated with resistance or susceptibility to an-
tibiotics. This has been a main focus of many researchers, as resistance against antibiotics
presents a major threat to public health [59]. We explored the applicability of PanPA to iden-
tifying such mutations. To this end, we used the Pathosystems Resource Integration Center
(PATRIC) [63] database to downloaded ciprǒoxacin-resistant and susceptible strains from
E. coli. This database contains assemblies and annotations for many antibiotic-resistant and
susceptible bacterial strains. The dataset we obtained comprised 556 resistant and 1,295
susceptible genomes. We extracted two genes, parC that encodes the A subunit of topoiso-
merase IV, and gyrA that encodes the DNA gyrase subunit A. Mutations on both are associ-
ated resistance to quinolones, and particularly ciprǒoxacin in E. coli [273, 14]. For each of
these two proteins, we were able to extract 1,236 susceptible and 309 resistant sequences,
and randomly split the sequences into two sets, one containing 10% of the sequences and the
other 90% of the sequences. Subsequently, we mixed the 90% sample of both susceptible
and resistant together, generated an MSA using mafft, we then generated a graph for each
protein using PanPA. Figure 2.13 shows examples of mutations apparent in the graphs, these
resistance-associated mutations (S83L, D87N in GyrA [282, 214, 292], S80I in ParC [182])
cause the generation of bubbles in the graph. Besides these canonical resistance-associated
variants, we observed other potential variants that are present predominantly in resistant
strains: alanine, leucine, and valine at position 83 and alanine, tyrosine, and asparagine at
position 87 of GyrA, as well as arginine at position 80 of ParC. We aligned the 10% sequence
set aside to the graphs using PanPA. Visualizing the corresponding paths in Figure 2.13, one
can see that the vast majority of the sequences extracted from resistant strains are aligned to
the nodes that correspond to variants associated with resistance, and susceptible sequences
aligned to mostly nodes associated with susceptible variants.

2.5.5 Comparing against HMMER

This section reuses material from [57] of which I am the ̊rst author

HMMER is a widely used tool for searching remote homologs in protein databases [81]. HMMER
has a high sensitivity, which renders it very useful for aligning sequences that have lower
similarity due to their large phylogenetic distance from the target. In brief, HMMER builds
a hidden Markov model pro̊le for each MSA given, which is then used for aligning a new
sequence against the pro̊le.
To compare PanPA’s performance with HMMER, we consider each protein cluster as a sep-

arate pro̊le. HMMER can be then used to align new sequences against these pro̊les and

46 PanPA: PanProteome Graph Builder and Aligner

Figure 2.13: Visualization of parts of the protein graphs for (a) GyrA and (b) ParC using
Bandage [289]. Nodes are colored according to the number of resistant/susceptible strains
that pass through them, with blue color representing resistance, and with red representing
susceptibility; the color intensity corresponds to the number of strains. Additional colored
lines show the paths of the aligned 10% sequence that were set aside (45 resistant and 117
susceptible sequences), the color representing the type, and the thickness representing the
number of sequences taking that path. A thick blue line of resistant sequences took the
blue path passing through the blue nodes, and vice versa, a thick red line for susceptible
sequences took the red path passing through the red nodes. Figure taken from [57].

2.5 Results 47

choose the best hits. More formally, we performed two comparative steps between HMMER

and PanPA:

1. Building HMM pro̊les in HMMER, and generating graphs and an index in PanPA, as both
are preprocessing steps before doing alignments.

2. HMMER search step and PanPA’s alignment step, as HMMER search also produces align-
ments.

Again, we used the 44,204 protein clusters of the E. coli sample we have from previous
experiments (Section 2.4.1). For PanPA, we used the (w, k)-minimizer index for the clusters
with k = 5 and w = 3. Building HMM pro̊les from the same MSAs with hmmbuild command
of HMMER took 2 hours, 46 minutes, and 18 seconds for all 44,204 clusters. As HMMER runs
separately on each MSA, only one thread was used. However, one can use a bash script or a
Snakemake pipeline for example to run several MSAs at the same time on di̔erent threads.
For aligning, we extracted a random sample of 10,000 protein sequences from the S.

enterica sample we used in the experiment described in Section 2.5.2, and aligned these
sequences to graphs and HMMs, for PanPA and HMMER, respectively.

PanPA needed 20 minutes and 57 seconds to align all 10,000 sequences, with a minimum
alignment identity threshold of 10%. Using 10 threads brought the time down to 7 minutes
and 25 seconds. PanPA always spends about 5 minutes loading all the graphs into memory
before alignments, which means the more sequence are aligned, the smaller this overhead’s
e̔ect relative to the total runtime. PanPA used 2.2 Gb of memory, and the number of query
sequences does not a̔ect the memory pro̊le. As for HMMER, it took 19 minutes and 29
seconds to align all 10,000 sequences with hmmalign against the database of HMM pro̊les
constructed previously, and used about 1 Gb of memory and 10 cores.
Comparing the results, we found that 9,813 of the query sequences were aligned to the

same target cluster by both tools. 187 query sequences were aligned by PanPA, but not by
HMMER. However, these 187 sequences had a very low alignment sequence identity averaging
at 25%, which can explain why HMMER might have ̊ltered these out. The major reason for
PanPA performing faster compared to HMMER, is the use of the index that guides PanPA on
where to align and thus reduces the search space considerably. HMMER, on the other hand,
aligns each query sequence to each pro̊le, which makes the runtime linear in the number
of clusters. PanPA’s ability to run in multiple threads also has a major role in reducing the
alignment time. For example, in this alignment experiment, the actual alignment time for
PanPA (excluding the graph loading step) was 15 minutes and 47 seconds using 1 thread,
but only 2 minutes and 13 seconds when using 10 threads.

In conclusion, for the preparation step, PanPA needed, in total, around 24 minutes to
generate both the index and the graphs, HMMER on the other hand needed around 2 hours.
For the aligning step, PanPA needed around 7 minutes to align all sequences and HMMER

48 PanPA: PanProteome Graph Builder and Aligner

needed around 19 minutes. More details about time and memory requirements for this
experiment are in Supplementary Table A.3.

2.5.6 Gene Order Analysis with PanPA

It has been shown that the order of genes or coding regions in prokaryotic genomes has
some signi̊cant e̔ects, particularly regarding aspects such as genome organization, gene
function prediction, and evolutionary conservation. For example, looking at evolutionary
conservation, in [222], they found that although gene order is less conserved compared to
the amino acid sequence of genes, speci̊c operons or genes that are transcribed together
remain more conserved. These types of conservation can provide useful insights into the
evolutionary relationships between di̔erent organisms. In [68], they analyzed many mi-
crobial chromosomes and found connection between GC-content in regions between the
operons is higher compared to other non-coding regions, and they concluded that this is
related to the ability to conserve the operonic gene order. Moreover, gene order and gene
order conservation can be very useful in predicting the function of unknown genes and pro-
teins. This case was made in [260], where genes that maintain the same order even over
long phylogenetic distances, can indicate very strong evolutionary pressure to keep these
genes together. This occurs despite lateral gene transfer events. The conservation and im-
portance of gene order has also been studied in plants [12, 274] and eukaryotes [69] as well.

One way to look at the gene order, is to build a graph where each node represents a
gene, and each directed edge between two nodes represents the order of these two genes
in relation to each other. This idea was demonstrated also in [84], where they developed
an algorithm to detect conserved gene clusters and align orthologous gene orders. More
recently, this was also demonstrated in [156], where they generate the gene graphs from
long-read alignments against a linear reference genome, and they built a gene graph from
the alignments. As PanPA is able to align DNA sequences to amino acid graphs, and is able
to perform local alignments, i.e., if part of the query sequence aligns to one graph, and an-
other part aligns to another graph, both alignments will be reported separately in the output
GAF ̊le. Therefore, we are then able-for a long query sequence that goes through several
graphs-to order the graphs or proteins that the query sequence aligns to. Thus, PanPA is also
able to bring the idea of gene graphs to the panproteome world.

To demonstrate this, we used some of the genes and prokaryotes used in Figure. 5
in [222]. In their Figure, they show a gene order table, where they used E. coli as the
template and compared the gene order of other organisms against it. We reused the panpro-
teome of E. coli built in Section 2.4.1. First, we wanted to check whether we can retrieve the
same order presented in [222], to do that, we aligned the E. coli reference with accession
number “GCF_000005845” back to the panproteome. However, as PanPA builds a complete
DP table in the alignment step, using the complete reference genome as a query sequence

2.5 Results 49

would be extremely costly. Therefore, to solve this, we simply cut the reference genome
into overlapping windows of 10kb, with an overlap of 5kb. The reason we kept an overlap
is to make sure that the windows extracted always include a complete coding region. For
example, if our window is from position 5,000 to 15,000 and half of the coding region is
before the position 15,000 and the other half is after, then we lose that coding region in
the alignment, but this coding region will be captured in the next window from 10,000 to
20,000.
Using this idea, we generated 929 DNA query sequences of 10kb each from the E. coli

genome, and then aligned them back against the E. coli panproteome. This took around
5 minutes for and used only 100 Mb of memory. Looking at the output alignments, we
̊rst ordered them based on the subsequence original coordinates, then, if more than one
protein graph aligned to the same subsequence, we ordered the aligned proteins based on
their location on the subsequence alignment. Additionally, if the reverse complement of the
DNA subsequence is aligned, then we need to reverse the order of the genes. This resulted
in the same order of genes shown in [222] (Shown in Figure 2.14 following the thick black
arrows), i.e., PanPA was able to retrieve the correct gene order from aligning DNA sequences
to a panproteome.
To compare other organisms, we downloaded four reference genomes of the following

organisms: Bacillus subtilis, Mycobacterium tuberculosis, Haemophilus iňuenzae, and Ther-
motoga maritima with the RefSeq accession numbers GCF_000009045, GCF_000195955,
GCF_000165525, and GCF_000230655 respectively. Similar to how we processed the E.
coli reference genome, we extracted overlapping DNA subsequences from each assembly,
aligned them back to the E. coli panproteome, and looked at the gene orders in the resulting
alignments. The results are shown in Figure 2.14. We colored each species with a di̔erent
color, and gave E. coli thicker, darker arrows because it forms the backbone of the graph
generated. We see that the more phylogenetically distant the organism is, the fewer matches
we found (e.g., B. subtilis and T. maritima). However, for closer organisms such as H. iňuen-
zae, which is also under in the same class as E. coli (Gammaproteobacteria), we see that they
share most of the genes, but in almost completely the opposite order.
With this simple example, we were able to show that PanPA is, indeed, capable of not only

performing ̊ne-grained alignments against the panproteome graphs. Moreover, it can also
utilize long and accurate DNA reads to extract the gene order and generate gene graphs. As
mentioned at the beginning of this section, gene order graphs are interesting and important
to study in terms of evolutionary relationship between these genes, and there are already
recent studies looking into this further. Therefore, bringing this to the panproteome world
would be interesting and useful.

50 PanPA: PanProteome Graph Builder and Aligner

Figure 2.14: Gene order graph using the genes from [222], where the E. coli pangenome
graphs for these genes are used, then the reference assembly of each of the organisms men-
tioned in the ̊gure are aligned back to these gene graphs. Following the thick black arrows,
that follow the E. coli assembly alignment, we recreate the same order in [222], which fur-
ther validates that our method can capture the correct order of the genes.

2.6 Conclusion and Discussion 51

2.6 Conclusion and Discussion
In this chapter we presented PanPA, a command-line toolkit for building panproteomes, in-
dexing them, and aligning DNA and amino acid query sequences against them. We showed
that building individual graphs to represent proteins and using this collection of graphs as
a “reference” yields several positive results. To explore this further, we ̊rst investigated
whether the idea behind PanPA works, and whether it has the ability to produce correct
alignments. This was demonstrated in Section 2.4, where we showed that PanPA produces
correct alignments when aligning the same sequences back to the panproteome graphs. We
further argued that aligning over longer phylogenetic distances has its importance, espe-
cially for prokaryotes that are not well studied or do not have a standard reference, and
therefore, moving to an amino acid space can increase both the number of alignments and
alignment identity, which was then demonstrated in Section 2.5.2, where Figure 2.12 il-
lustrated that alignments of S. enterica against E. coli panproteome did indeed have higher
alignment identity. Figure 2.11 represented the intersection of the numbers of alignments
captured, where PanPA was clearly able to align more sequences compared to the aligners
in the DNA space. Later, in Section 2.5.3 we aligned DNA reads against the E. coli panpro-
teome, and showed that PanPA is also able to handle DNA alignments, even if they have
indels that result in a frameshift, as PanPA is able to perform frameshift-aware alignments as
explained in Section 2.2.3.2. Furthermore, in Section 2.5.4, we showcased the e̔ectiveness
of PanPA in uncovering genetic mechanisms underlying phenotypic traits, including antimi-
crobial drug resistance. We see that this can be very useful in aligning new sequences to very
well studied panproteomes, and be able to extract phenotypic traits or annotate sequences
that were not aligned in the DNA space. In Section 2.5.5, we compared the alignments of
PanPA with HMMER, which is a very famous tool for homologs search and can also align a pro-
tein sequence to protein HMM pro̊les. Comparing the results, we see that both PanPA and
HMMER almost completely aligned the sequences to the same graphs/pro̊les, with only very
few alignments that HMMER was not able to align. However, this does not necessarily points
out a weakness in HMMER, as these few alignments had a very low alignment identity score.
As a last use case, we showed in Section 2.5.6 how PanPA can reconstruct the gene order
using long and accurate DNA sequences aligned against the panproteome, by utilizing the
alignment locations, a gene graph can be constructed where the nodes represent genes and
edges represent the gene adjacency in the genome being investigated. Such a gene graph
was shown in Figure 2.14.

We demonstrated that PanPA operates e̎ciently in terms of computational resources. It
is readily deployable on any modern laptop or desktop without requiring access to high-
performance computing clusters. Additionally, PanPA supports parallelization, allowing
users to high performance computational clusters to signi̊cantly accelerate the alignment
process. However, one drawback of PanPA, is that it performed slower compared to other

52 PanPA: PanProteome Graph Builder and Aligner

linear aligners it was compared against, namely BWA and GraphAligner. One reason is that
PanPA constructs a full dynamic programming (DP) table, ̊lls all its cells, and employs
several substitution matrices with di̔erent scores instead of relying on edit distance. Con-
sequently, PanPA cannot utilize optimization techniques such as bounded edit distance [270]
or the fast bit-vector algorithm for string matching [178], which has also been extended to
graphs [217] and allows for much faster alignments. The performance bottleneck of PanPA
is not in the number of graphs within the panproteome, but in the size of these graphs and
the sparsity of their corresponding MSAs. For example, Supplementary Section A.4 shows
that PanPA can handle very sparse MSAs, however, at a reduced speed. Therefore, further
algorithmic improvements and optimizations are needed to enable PanPA to handle more
complex graphs, such as those representing alignments of sparse protein families. Never-
theless, PanPA still performed e̔ectively on real datasets, and its small memory footprint
allows it to run on local machines or small compute nodes, where the use of additional
CPUs can further speed up the alignment process. Another improvement or an avenue for
further investigation, is the downstream analysis of the alignments produced by PanPA. In
this chapter, we have mainly focused on the inner workings of PanPA and on validating
that the alignments produced are correct and useful in di̔erent settings. However, panpro-
teomes can tackle a problem such as annotation, e.g., genetic and coding region information
can be embedded in the graph’s paths; when reads or contigs are then aligned, one can use
the alignment path to infer characteristics about the aligned sequence. Moreover, one can
further investigate the usefulness of PanPA in helping to disentangle metagenomic sequenc-
ing samples, e.g., by analyzing the alignments, one can better cluster the sequencing reads
as a preprocessing step to metagenomic assembly. Another avenue to explore further is the
use of the alignments for small variants detection and calling, This was shown for example
in [47], where they were able to recover more rare SNPs using a pangenome of E. coli, which
would otherwise not be detected with conventional linear reference methods.

Chapter 3

Software Toolkits for Genome and
Pangenome Graphs

This chapter introduces methods and software toolkits for working with both GFA graphs
and GFA sequence-to-graph alignments. The toolkits all share a common graph infrastruc-
ture and are outlined below:
(1) GFASubgraph [53] is a command line tool and an Application Programming Inter-

face (API) for working and manipulating GFA graphs, it provides important functionalities
for the user such as reading, writing, ̊nding subgraphs, removing nodes, edges, and other
utilities for working with GFA graphs. A basic implementation of the GFA graph API was
̊rst developed as part of [56]. (2) extgfa is also a GFA graph command line tool and API
that uses parts of the graph API from GFASubgraphs. extgfa however, allows for an exter-
nal memory representation of the graph which enables the user to investigate large graphs
without having to load it completely into memory RMA/Memory. (3) gaftools is a com-
mand line tool for working with pangenome sequence alignments in GAF format. gaftools
provides the user with several utilities for working and manipulating GAF ̊les, such as
viewing (subsetting), sorting, realigning, changing coordinates type, and other utilities. My
role in this project was mainly focused on implementing internal functionality and classes
for working with the GFA graphs, especially sorting the graph, which is a precursor for other
functionalities in gaftools.

The work in Section 3.3 related to the extgfa tool, reuses materials from the preprint [52]
of which I am the sole author. The work in Section 3.4 related to gaftools reuses materials
from [196] in which I am a co-author. Speci̊cally, I contributed to the GFA class infrastructure of
gaftools, GFA ordering (Section 3.4.1.1), realignments parallelization (Section 3.4.1.3), and in
writing the manuscript. Figures 3.7 and 3.6 were done by myself, Table 3.2 is a joint contribution,
and Table 3.3 is a contribution of the other authors of the paper.

53

54 Software Toolkits for Genome and Pangenome Graphs

3.1 Introduction
This section reuses materials from [52] of which I am the sole author, and [196] of which I am
co-author.

As discussed in Sections 1.2.2 and 1.3, genome graphs are an important component in mod-
ern genome analysis. Especially with the recent transition from a linear reference to a
graphical one, it led to a growing demand for software tools that can e̔ectively perform
various important analysis tasks. Tasks such as storing, processing, and analyzing the graphs
e̎ciently, particularly as the size of the graphs increasing with more data. For instance,
looking at some of the graphs generated by the Human Pangenome Consortium [157], e.g.,
the raw graph produced using the Minigraph-Cactus method [120] has a ̊le size of 48
GB that contains 92,879,580 vertices, and the graph produced using the Pangenome Graph
Builder pipeline (PGGB) [89] has a raw size of 89 GB and contains 110,884,673 vertices.
Therefore, it is not a trivial task to be able to work with such graphs e̔ectively, especially
given that the graph size will only increase with the addition of more assemblies. To ad-
dress these challenges, several software toolkits have been developed for working with large
genome graphs [88, 151, 89]. Additionally, algorithms for search, subgraph detection, and
indexing of genome graphs have been developed [248, 136, 56]. These toolkits, however,
generally load the complete graph in Random Access Memory (RAM), even when if only a
small part of the graph is required. Despite this plethora of tools and software implemented
to analyze genome graphs, there remains a signi̊cant gap in the availability of user-friendly,
interactive software libraries that allow users to investigate these graphs.
Since graph data structures have been studied in the computer science ̊eld for decades,

and the obstacle of processing large graphs is not particularly a new one, computer scientists
have investigated the possibilities of using external or disk memory instead of RAM, e.g.,
external-memory breadth-̊rst search [168], external-memory depth-̊rst search [117], and
other external-memory algorithms [38]. However, in these theoretical studies, researchers
have mostly focused on extending a speci̊c algorithm to allow external memory, but have
not presented a multipurpose external-memory graph data structure in which any graph
algorithm can then be implemented.

In this chapter, we present several graph toolkits geared towards working with genome
graphs, and alignments against these graphs. First, we introduce GFASubgraph, a simple
Python toolkit and interface for manipulating graphs, it provides functionalities such as read-
ing, writing, extracting subgraphs or neighborhoods in the graph, and other functionalities.
We then present extgfa, a proof-of-concept Python toolkit and interface that introduces the
idea of an external memory representation of graphs in the Graphical Fragment Assembly
(GFA) format. Furthermore, we show that extgfa is able to reduce the memory pro̊le by
more than one order of magnitude on large graphs. Finally, we introduce gaftools, also a

3.2 GFASubgraph and GFA class 55

Python toolkit for working with GAF sequence alignments, speci̊cally against rGFA graphs.
gaftools introduces several important functionalities that close the gap between manipu-
lating alignments against linear references, and alignments against a graph reference, such
as sorting, indexing, viewing, and realigning.

3.2 GFASubgraph and GFA class
GFASubgraphs is a command-line toolkit designed for manipulating GFA graphs. Speci̊-
cally, extracting subgraphs and graph components into separate GFA ̊les to facilitate visu-
alization of smaller parts of large graphs, or to study components separately further down-
stream. It is a dependency-free tool that allows for easy installation and deployment on
di̔erent systems. Internally, GFASubgraphs implements a GFA class API that users can in-
terface with to implement their own algorithms and tools for downstream processing.
The main reason behind developing such a tool was the lack of simple tools for manipulating
and working with GFA graphs in Python.

3.2.1 GFA Class
GFASubgraph internally implements an updated version of the GFA API developed in [56].
This Graph class can be simply imported by the user and it o̔ers the ability to read, write,
investigate, and manipulate GFA graphs in Python.
Figure 3.1 shows a simple Uni̊ed Modeling Language (UML) diagram of the GFA class

implementation. We see that the main GFA class simply contains each segment or node as an
object stored in a dictionary or a hash table, with the key being the node ID as a string. It also
implements simple functionality such as adding, removing, accessing neighbors or children
of nodes. The Node class on the right side shows what a node object stores. Genome graphs
are bidirectional, i.e., they can be traversed in both directions, taking into consideration the
direction of the sequence in the segment. Therefore, in this graph class representation, an
edge or a link has four mandatory attributes: (1) “from” node ID, (2) “from” node direction,
(3) “to” node ID, (4) “to” node direction. Where the direction can tell us whether we need
to take the forward or the reverse complement of the sequence in the node.
In our implementation, edges are stored in each node object, and each node object has

two sets: one for edges from the start of the node and one for edges from the end of the
node. Consequently, taking one node, its ID indicates the “from” attribute of the edge, for
the “from” direction, this is taken based on whether we look at the “start” or “end” sets in
the node object, it is binary encoded (0 for start and 1 for end). The tuples in these sets
store the “to” node ID , the “to” direction, and the overlap value. Storing edges in the node
object directly allows for faster access to the edges compared to other implementations of
GFA graphs we have found, where both nodes and edges are stored in separate map data
structures causing a single graph operation (such as ̊nding neighboring nodes) to trigger
multiple hash calls. However, our model then requires slightly more memory because both

56 Software Toolkits for Genome and Pangenome Graphs

Figure 3.1: This is a simple Uni̊ed Modeling Language (UML) diagram explaining how the
GFA class is implemented. We can see that the main graph class stores a dictionary of node
objects. A node object contains the information related to the node, most importantly, each
node object has a start and an end set of edges, where each edge is tuple of (neighbor_id,
direction, overlap), where the direction here refers to where the edge enters the neighbor
node. The direction here is a binary, referring to 0 for the node start, and 1 for the node
end.

directions of an edge are stored in both connected nodes. For example, in the graph shown in
Figure 1.6, node “s3” will have one edge from the start connecting it with “s1” and one edge
from the end connecting it with “s4”. The start edge would then be a tuple encoding (s1,
1, 2) where the ̊rst element in the tuple is the other node’s ID, the second is the direction
(0 for start and 1 for end), meaning that “s3” connects to “s1” from its end, and the number
2 indicates the overlap size. The GFA class can also load a GFA graph without loading the
sequence (low-memory version), which can save memory especially for graphs that have
fewer nodes but encode very long sequences, such as assembly graphs. Supplementary
Materials section B.1 provides more information on how the graph shown in Figure 1.6 is
stored internally using the GFA class.

3.2.2 GFA Class Benchmarking
GFASubgraph or its API is not the only Python implementation for GFA graphs developed to
date. Accordingly, a comparative analysis was conducted with other implementations that
we were able to ̊nd, install, and interface with through their respective APIs. We compared
with gfapy [96], gfagraphs [64], and mygfa [50]. All of these tools have been implemented
in Python, and provide a GFA graph API for working with the graphs. In this comparison,
both low-memory and standard implementations of the GFA class in GFASubgraphs were
used.
Three aspects were compared: the time required to load a graph from a GFA ̊le, the

memory consumed after graph is fully loaded, and the time required to ̊nd all the con-
nected components using the Breadth-First-Search (BFS) algorithm. To test the limits of all
compared implementations, four di̔erent pangenome graphs with varying sizes from the

3.2 GFASubgraph and GFA class 57

recently published HPRC pangenome graphs were used [157]:

• The complete HPRC Minigraph graph (V1.0 CHM13) [154].

• Chromosome 22 component of the HPRC Minigraph graph.

• The complete HPRC Minigraph-Cactus graph (V1.1 CHM13) [120].

• Chromosome 22 component of the HPRC Minigraph-Cactus graph.

To extract the component representing chromosome 22, we used GFASubgraphs to ex-
tract all components, and used the component with nodes tagged with “Chr22” in their
“SN” tags. It took GFASubgraphs about 30 seconds to extract all the components of the
HPRC Minigraph graph and output them into a separate GFA ̊le; and it took it about 40
minutes to do the same for the HPRC Minigraph-Cactus graph. Table 3.1 shows the values
for graph loading time, memory, and component search time for all the tools. The evalu-
ation was performed by writing a custom script to load the graph using the API provided
by each tool. Subsequently, a BFS-based component ̊nding function was implemented.
More details regarding the implementation of this test can be found in Supplementary Ma-
terials Section B.3. Looking at the table, we see that the GFA graph implementation of
GFASubgraphs demonstrated its ability to load all graphs regardless of their size. It also
showed the best performance in terms of load time, memory pro̊le, and BFS component
search time compared to the other tools. We see that both gfagraphs and mygfa exhib-
ited comparable graph loading times to GFASubgraphs, however, GFASubgraphs’s API still
performed better. Conversely, gfapy had a graph-loading time that was about an order of
magnitude higher than the other tools. We also note that both gfapy and mygfa encoun-
tered an assertion error that we were unable to solve; these errors prevented them from
loading the complete HPRC Minigraph-Cactus graph. In terms of memory consumption,
GFASubgraphs consumed the least amount of memory compared to the other tools. In par-
ticular, the low-memory version which shows the most bene̊t for the HPRC Minigraph; this
makes sense, of course, since this graph has fewer nodes compared to other HPRC graphs,
with many nodes representing very long sequences. This is due to the way the graph was
constructed using minigraph [154]. More on Minigraph’s graph construction pipeline can
be found in Section 3.4.1.1 and Figure 3.6.

Finally, GFASubgraphs and its graph API showed the most e̎cient performance in terms
of component ̊nding time, successfully identifying components for all the graphs tested.
mygfa was unfortunately incapable of producing results in this test, primarily due to the
lack of inherent functionality for retrieving edges of nodes. After examining mygfa’s source
code, we found that all edges are stored in a separate array, and that there is no invokable
subroutine that connects the nodes stored in a Node ID-Node Object dictionary to the corre-
sponding edges. On the other hand, both gfapy and gfagraphs have the ability to retrieve
edges from nodes in their APIs, with gfapy performing well for small graphs, and its runtime

58 Software Toolkits for Genome and Pangenome Graphs

for this step not scaling up as fast as gfagraphs. After further investigation into gfagraphs,
we found that it does not scale well with larger graphs, the main reason attributed to its
subroutine for retrieving edges, which involves a linear search of the entire edges array for
both incoming and outgoing edges of a node, resulting in an O(n) time complexity for each
edge search call.

3.3 extgfa for External Memory GFA Representation
In this section of the chapter we present extgfa, a proof-of-concept method and its im-
plementation for a general purpose external memory representation of a graph in the GFA
format that is inspired by open-world video games and how they manage memory usage.
We demonstrate that this implementation improves the memory pro̊le when running an
algorithm such as BFS on a large graph, and is able to reduce the memory pro̊le by more
than one order of magnitude for certain BFS parameters.

3.3.1 extgfa Method
3.3.1.1 External memory in video games
This section reuses materials from [52] of which I am the sole author.

In procedurally generated or open-world video games, storing the entire world in memo-
ry/RAM1 is extremely ine̎cient and, for many games, simply infeasible. To address this,
game developers needed to come up with ways to keep only small parts of the world in mem-
ory while the rest is kept on disk (external memory), and develop a way to dynamically load
more parts from disk seamlessly, without a̔ecting the performance of the game [86, 207].
A notable example of such a game is Minecraft [169], a procedurally generated open-world
video game, where the game’s world is constructed from di̔erent blocks consisting of vari-
ous materials (e.g., sand, rock, grass, etc.). Furthermore, the game’s world is organized into
chunks, each measuring 16 × 16 blocks and extending up to 30 million blocks in each car-
dinal direction. To keep the gameplay as smooth and playable as possible, and to prevent
the game from overloading the memory, chunks are stored on disk and only loaded into
memory when the player is of a certain distance from the chunk [171].
Figure 3.2 shows an abstract representation of the concept behind video games, such as

Minecraft. The green block, corresponding to the player’s location, represents the part of
the map that has been fully loaded into memory. The adjacent yellow blocks represent parts
of the map that are only partially loaded into memory. These can include distant features
such as trees, mountains, and houses, which have not yet been fully populated with all of the

1From here on out, we use memory and RAM interchangeably to mean the fast Random Access Memory, in
comparison to using “external memory” to mean the slower external disk memory

3.3 extgfa for External Memory GFA Representation 59

GFA-
Subgraph
Low Memory

GFA-
Subgraph gfapy gfagraphs mygfa

HPRC
Minigraph
Chr22

Load
Sec 0.3 0.33 29.8 0.89 3.5
Mem
Mb 33.11 95.18 112.08 181.4 122.38
Comp
Sec 0.04 0.04 2.22 178.81 NA1

HPRC
Minigraph

Load
Sec 10.24 12.12 478.92 26.96 161.26
Mem
Mb 673.09 3,978.7 5,391.97 4,727.03 4,167.56
Comp
Sec 1.56 1.67 66.27 NA2 NA1

HPRC
Minigraph
-Cactus
Chr22

Load
Sec 67.7 73.12 2,907.01 200.29 198.04
Mem
Mb 3,522.65 3,637.63 7,841.62 8,205.19 8,086.15
Comp
Sec 19.7 18.4 245.25 NA2 NA1

HPRC
Minigraph
-Cactus

Load
Sec 910.63 909.66 NA3 13,994.27 NA3
Mem
Mb 109,764.87 114,985.98 NA3 623,875.88 NA3
Comp
Sec 298.03 304.46 NA3 NA2 NA3

Table 3.1: In this table, we tested the following three parameters, Load: Graph Load Time
in wall clock seconds, Mem: Memory used in megabytes, and Comp: Components Finding
Time based on BFS in wall clock seconds.
Four di̔erent graphs were used: The Chr22 of the HPRC Minigraph graph, the full HPRC
Minigraph graph, Chr22 of the HPRCMinigraph-Cactus graph, and the full HPRCMinigraph-
Cactus graph. Chr22 component was extracted using GFASubgraphs. It took GFASubgraphs
about 30 seconds to extract all the components of the HPRC Minigraph graph, and about 42
minutes to extract all the components of the HPRC Minigraph-Cactus graph. The NA entries
in the table resulted from di̔erent reaspons:
NA1: in mygfa’s GFA class, there was no direct way to retrieve edges corresponding to
nodes, the class did not provide any subroutines for this. Therefore, we could not run the
component-̊nding algorithm. NA2: gfagraphs process had to be terminated after running
for more then 24 hours. Looking into their code, the reason for this is that edges were stored
in a list, and when calling the subroutine .get_edges(), it searches the list twice to get the
in and out edges, resulting in O(n) search time for each retrieval. NA3: An assertion error
in both mygfa and gfapy when running on the HPRC Minigraph-Cactus graph, which we
were unable to solve.

60 Software Toolkits for Genome and Pangenome Graphs

Figure 3.2: This ̊gure is a description of how the map is loaded in Minecraft. The green
square in the middle is where the player is, where this chunk is fully loaded; then the
chunks are not fully loaded the further away they are from the player, with several levels
of information being left out when loading. Figure taken from [52].

game’s aspects. This technique preserves the feeling of a vast, open world while conserving
memory. Finally, the red blocks represent unloaded parts of the map.
In the context of the game, the player’s direction of movement dictates the status change

of the map block (e.g., green, yellow, or red). Speci̊cally, the farther away the chunks are
from the player, the more their status changes and they become inactive, i.e., they are un-
loaded from memory onto the disk, while other chunks in the direction of the player’s move-
ment are loaded from disk into memory. This process then maintains a constant number of
loaded map chunks in memory and prevents the game from overloading the memory.

3.3.1.2 Graph Chunking Pipeline
This section reuses materials from [52] of which I am the ̊rst author.

The main takeaway of memory management in open world games is that the whole world
does not need to be loaded into memory, only the map chunks that surround the player.
Inspired by this, we developed the following pipeline to chunk the GFA graph and create
an index that allows us fast access to parts of the graph stored on disk, instead of keeping
the entire graph in memory, this then allows us to dynamically load and unload parts of the
graph between disk and memory. The pipeline consists of the following steps:

• 1. Cutting the graph into neighborhoods: This step aims to partition the graph into
non-overlapping chunks, where each chunk is a connected subgraph or community
smaller than the original graph. Community detection in graphs is an old problem
that has been studied and explored for decades; many algorithms have already been
developed to solve this problem with varying degrees of sensitivity, speci̊city, and

3.3 extgfa for External Memory GFA Representation 61

time and memory complexity [143]. More about the speci̊c algorithms tested and
used in extgfa can be found in Section 3.3.2.

• 2. Recursive chunking: Depending on the algorithm used to cut the graph into
chunks, the chunks may not be balanced in terms of the number of nodes, and the sizes
may vary tremendously. It is not strictly necessary for this method to have similarly
sized chunks, however, this helps in keeping the loading and unloading times and
memory usage of chunks uniform across the chunked graph. To accomplish that, an
upper and a lower threshold for the number of nodes per chunk is used to limit the
size of the chunks. The upper threshold is de̊ned as the maximum number of nodes
a chunk may have before it is recursively cut into smaller chunks; the lower threshold
is de̊ned as the minimum number of nodes a chunk may have before getting merged,
if possible, with a neighboring chunk. This step is run recursively until the remaining
chunks have a size between the upper and lower thresholds.

• 3. Producing reordered GFA and indexes: After the previous steps, we are left with
a set of non-overlapping chunks with sizes between the upper and the lower thresh-
olds, where all the chunks jointly comprise the original graph. Using this information,
we can reorder the GFA ̊le, such that the nodes and edges of a chunk are written
consecutively in the ordered GFA ̊le, forming a continuous block in the GFA ̊le, be-
fore starting with the next chunk. While writing the reordered GFA ̊le to disk, we
keep track of the chunk’s start o̔set and number of lines, enabling us to later load
any arbitrary chunk from the ̊le into memory without having to read the complete
GFA ̊le. We also create a database linking each node ID to its corresponding chunk
ID, allowing us to retrieve the chunk id and the chunk for any node dynamically and
quickly.

3.3.2 extgfa Implementation
3.3.2.1 Graph Partitioning
This section reuses materials from [52] of which I am the sole author.

extgfa is written in Python and uses the NetworkX library to execute the community al-
gorithms [108]. Thereafter, it uses a custom GFA class similar to the one presented in
Section 3.2.1 to read, write, and manipulate GFA graphs. For the graph cutting step, we
tested several graph community detection algorithms already implemented in the NetworkX
library, such as the Kernighan-Lin algorithm [138], edge betweenness partition [83], Lou-
vian communities [21], and the Clauset-Newman-Moore greedy modularity maximization
algorithm [41]. We found that the last algorithm worked best compared to the others; it
was relatively fast even for large graphs, and produced communities that were similar in
size in terms of the number of nodes.

62 Software Toolkits for Genome and Pangenome Graphs

In short, the Clauset-Newman-Moore greedy modularity maximization algorithm tries
to ̊nd sets of nodes or “communities”, where each community is more densely connected
internally than to other communities. This is achieved by starting with each node as its
own community, then merging pairs of communities that maximize the “modularity”, until
further merging does not increase the modularity. Modularity here can be simply explained
as the value that maximizes the number of edges in a community compared to the number
of edges between communities [185].
In extgfa, after recursively detecting communities/chunks using the Clauset-Newman-

Moore algorithm, we arbitrarily assign a unique integer ID starting from 1 to each produced
chunk. From there, we can now generate three ̊les that encapsulate the information of the
chunks and allow dynamic loading and unloading of chunks between external disk storage
and ram. Figure 3.3 shows an example graph represented in a GFA ̊le format and visualized
with Bandage [289], with the three ̊les generated by our implementation, which are:

1. A reordered GFA ̊le, where chunks are written consecutively as blocks in the output
̊le.

2. A chunk o̔set index, it consists of key-value pairs, where the key is the integer chunk
ID and the value is a tuple of two values; the ̊rst value points to the start o̔set in the
reordered GFA ̊le for that chunk, and the second value is the number of lines to read
starting from the o̔set.

3. A dbm2 ̊le built with the shelve library in Python, this ̊le represents an external
database (not stored in RAM) of key-value pairs, where the key is the node’s string ID
and the value is the integer chunk ID.

With the three ̊les generated, we now have the ability for any node in the graph, to
retrieve the chunk ID to which that node belongs to using the dbm ̊le. Subsequently, using
the o̔set index, we can load the chunk from the reordered GFA ̊le without having to load
the entire graph into memory. Note, however, that with this formulation, we cannot edit
the graph, i.e., remove or add nodes and edges, as this would require rebuilding of both the
dbm database, the o̔sets, and the reordered GFA ̊le.

3.3.2.2 Chunked Graph Class
This section reuses materials from [52] of which I am the sole author.

We have implemented two similar graph classes, Class::Graph and Class::ChGraph, where
the former loads the GFA graph completely, i.e., stores all the nodes and edges in memory,
while the latter uses the three ̊les previously generated to dynamically load and unload
chunks as needed. Both classes have the same internal functions and data structures, which

2A dbm is a library or a database with single hashed keys that point to some value and provide fast access to
the data stored. Values can be retrieved from this database without having to load the data-base into memory.

3.3 extgfa for External Memory GFA Representation 63

Figure 3.3: This is the extgfa pipline. First, it detects chunks in the GFA graph as described
in Section 3.3.2.1. Once the chunks are found, extgfa produces three ̊les: (1) a database
dbm of key-value pairs, where the keys are the node IDs and the values are the chunk IDs to
which the node belongs to. (2) A binary ̊le that is a key-value pair, where the key is the
chunk ID and the value is a tuple of a ̊le o̔set in the GFA and the number of lines to read
from that o̔set. (3) A reordered GFA ̊le, where each chunk is written consecutively in the
̊le. Figure taken from [52].

allows a direct comparison between them, and gives the user the ability to reuse the same
code with one or the other class.
With the Class::ChGraph, there is no need to load any nodes or chunks at the beginning,

only once the user tries to retrieve a node, the class retrieves the chunk ID associated with
that node using the node ID-chunk ID database. It then ̊nds the o̔set and number of lines
to read in the reordered GFA ̊le, and ̊nally retrieves the chunk that the node belongs to.
In addition, the user can set a cuto̔ on how many chunks can be loaded into memory before
older chunks are removed. This is done using a First-In-First-Out (FIFO) queue that keeps
track of the chunks loaded. When the speci̊ed threshold is exceeded, the ̊rst chunk that
was loaded is removed from memory and new a chunk is loaded and added to the queue.

64 Software Toolkits for Genome and Pangenome Graphs

This queue is used to mimic how some video games unload the chunks that are farther away
from the player as the player moves.
Both classes implement basic functionality related to graphs, such as ̊nding edges,

nodes, node contents (sequence, length, tags, etc.), graph traversals, and other function-
ality. Additionally, Class::ChGraph is able to automatically detect when it needs to load or
unload a chunk without user intervention, allowing for a seamless implementation without
the need for the user to manually manage what needs to loaded or unloaded.

3.3.3 extgfa Chunked and Unchunked Graphs Comparison
This section reuses materials from [52] of which I am the sole author.

To test extgfa, the graph representing chromosome 22 from the HPRC PGGB V1 graph [89]
was used. This graph consists of 3,759,736 vertices and 5,224,421 edges. To cut the
graph into chunks, we used the Clauset-Newman-Moore algorithm as described in the Sec-
tion 3.3.2.1. We set the upper threshold to |V |/2000 and the lower threshold to |V |/5000,
where |V | denotes the number of nodes in the graph. This process resulted in 3,084 chunks
with an average number of nodes of 1,219 per chunk.

To evaluate the performance of both graph classes, a standard BFS algorithm was im-
plemented using the two classes. The algorithm start at a random node in the graph and
traverses the graph until it either reaches a user-speci̊ed size cuto̔ (BFS size) or ̊nds
no additional nodes to traverse. In this experiment, a random starting node was selected
and the BFS algorithm was executed with di̔erent BFS cuto̔ sizes (50, 100, 1,000, 5,000,
10,000, 50,000, 100,000, 500,000, and 1,000,000). Additionally, for the chunked version,
we ran each BFS cuto̔ size experiment with 7 di̔erent chunk queue sizes (1, 5, 10, 50,
100, 500, 1,000).
Figure 3.4 shows a scatter plot comparing running the BFS algorithm on both classes

with the di̔erent BFS cuto̔ sizes; the top plot shows the memory pro̊le and the bottom
plot shows the time pro̊le. Looking at the top plot, we see that the unchunked version
(fully loading the graph) has a constant memory pro̊le of approximately 8 GB for all the
BFS cuto̔ sizes. This is expected, of course, because the unchunked version loads the entire
graph into memory before running the algorithm, which would always result in the same
memory pro̊le regardless of the BFS size. In contrast, for the chunked graph version, the
memory pro̊le is much smaller, and is a̔ected by the BFS cuto̔ size, with a maximum
memory usage of approximately 3 GB. This is to be expected, since the smaller the BFS
cuto̔ size is, the fewer chunks need to be loaded and held in memory. Looking at the
bottom plot, which shows the time pro̊le, the unchunked version behaves similarly to the
top plot, with a constant time pro̊le of about 90 seconds, but with a slight increase in time
at a BFS cuto̔ size of 1,000,000. This is due to the additional time required to run the BFS
algorithm.

3.4 gaftools for Working with Pangenome Alignments 65

In the case of the chunked version, however, considerable variability in the time pro̊le
is observed, especially for large BFS cuto̔ sizes. This is due to two reasons. First, as the
BFS size increases, more chunk loading operations must be performed, including database
lookups, ̊nding the chunk location in the reordered GFA ̊le, and loading the chunks into
memory. Second, the maximum number of chunks allowed in memory contributes to the
time variability for certain BFS sizes. As mentioned in Section 3.3.2.2, once the chunk FIFO
queue is full, older chunks must be unloaded from memory. Since extgfa does not yet
implement multithreading, the loading and unloading are done sequentially on the same
thread rather than concurrently. This, in turn, has a negative e̔ect on the processing time.
To explore the e̔ect of chunk queue size on both time and memory, and to further

explain the variability in the runtime of the chunked version, individual values for each
run of BFS on the chunked graph version only are shown as a scatter plot in Figure 3.5.
The points are colored from light blue to dark blue based on the smallest to largest queue
size. We see that for smaller BFS cuto̔ sizes, the e̔ect of the chunks queue size becomes
negligible. This can be attributed to the fact that for smaller BFS cuto̔ sizes, we only need
to load one or very few chunks into memory. However, the e̔ect increases as the cuto̔ gets
larger. These results underscores the expected tradeo̔ between memory consumption and
execution time. As the number of loaded chunks increases, more nodes are also loaded into
memory, facilitating rapid access to nodes and edges, and accelerating the BFS algorithm.
Conversely, when a only a small number of chunks are loaded, less memory is used, but
more execution time is now required to load more chunks to access their nodes and edges,
thereby hindering the e̎ciency of the BFS algorith.

3.4 gaftools for Working with Pangenome Alignments
In this section, we present gaftools, a multi-purpose toolkit written in Python for working
with graph sequence alignments against pangenome graphs. Gaftools introduces several
important functionalities that are standard in world of linear sequence alignment, but have
not been extended to the graph alignment formats. Some of these functionalities include
sorting, indexing, subsetting (viewing), and generating statistics on the alignments. It also
it introduces a realignment step using the wavefront alignment algorithm [164] to realign
sequences on the graph with higher accuracy.

3.4.1 gaftools Commands
In the following sections, we will describe the di̔erent functionalities that gaftools pro-
vides to users in more details.

66 Software Toolkits for Genome and Pangenome Graphs

Figure 3.4: Scatter plot comparing the chunked and unchunked versions in terms of time
and memory. We see that for the unchunked version, the time and memory are mostly
constant, because we always need to load the complete graph, and this operation takes
much more time compared to running the BFS algorithm. In contrast, for the chuncked
version, we see more variability in terms of time and memory, which can be explained
by the number of chunk loading and unloading operations required, and the e̔ect of the
maximum number of chunks allowed in memory. Figure taken from [52].

Figure 3.5: Scatter plot showing the e̔ect of the chunks queue size on both memory and
time in the chunked version of the graph. We see that the bigger the BFS cuto̔ size is,
the bigger the e̔ect of queue size. Furthermore, the queue size has a contrasting e̔ect on
time and memory; the bigger the queue, the less time it takes to run the BFS and the more
memory it requires, and vice versa. Figure taken from [52].

3.4 gaftools for Working with Pangenome Alignments 67

3.4.1.1 GFA Ordering and GAF Sorting
This section reuses materials from [196], speci̊cally materials that were my contribution to the
work.

One of the problems in moving from a linear reference to a graphical reference, is having a
coherent and consistent coordinate system. In the linear world, when processing sequence
alignments against a reference genome, unique coordinates can be given to the alignment,
e.g., alignment start, alignment end, indels location, etc., using the coordinates on the ref-
erence genome. Additionally, having these coordinates can help in operations such as sort-
ing and indexing the alignments, which, in turn, allows for faster access to subsets of the
alignments. However, in pangenomes, the graph structure lacks the simple coordinate sys-
tem of the linear world, which hinders the ability to easily sort, index, or manipulate the
alignments. To tackle this issue, we advise an ordering and sorting approach here specif-
ically designed for reference graphs (rGFAs) (Section 1.4.3.1). This functionality is called
order_gfa and it is a subcommand of gaftools.
Before delving into the method itself, we need to shed some light on why this works only

on rGFAs and not all GFAs, particularly, on the rGFAs produced by minigraph. Minigraph
has two main functionalities, the incremental generation of a reference graph (in rGFA) and
the alignment of long sequences (such as contigs, or complete genomes) against the gen-
erated graph. The graph generation step is based on sequence-to-graph alignments, where
minigraph internally uses a modi̊ed version of minimap2 [148] to allow for seed-chaining
and alignment of a longer query sequence, where other sequence graph aligners such as
the ones presented in [216, 88] are unable to do so. Minigraph does not perform a base-
resolution alignment, however, it uses chains of local hits to ̊nd the approximate mapping
location on the graph. Figure 3.6 shows a simple schematic of the recursive graph building.
In this ̊gure, minigraph starts with the ̊rst genome in red, denoted here as the reference
genome (rank 0). When adding the next genome (drawn in green), we see that part of the
second genome does not align to the reference genome, resulting in the generation of two
nodes, or a bubble 3, where the source and sink of the bubble are the parts of the refer-
ence genome. Next, adding a third genome (drawn in blue), we see that it also creates a
bubble with the reference, and this third genome will get the rank 2. In the ̊nal graph
generated, all the reference segments (with rank 0) should form a continuous path If this
path is followed, one can reconstruct the reference of rank 0. Furthermore, we see that we
end up with two bi-connected components that share an articulation point in the middle.
Because of this incremental way of building the graph, and having a linear reference as the
backbone of the graph, and not performing base resolution alignments, all result is a graph
with a chain of bi-connected components representing the structural variants between the
added sequences, and with articulation points between the bubbles that always belong to

3Here, we de̊ne the bubble as a bi-connected subgraph with two disjoin paths, the articulation points are
called source and sink

68 Software Toolkits for Genome and Pangenome Graphs

the reference genome. Here, we call these articulation points “sca̔old nodes”.

Figure 3.6: Here, we show a simple schematic of the incremental construction of an rGFA
using minigraph. We start with a linear sequence (black), which is marked as rank 0 in
the rGFA output ̊le. Then, minigraph aligns the next genome, haplotype, or contigs. The
variation between the two will generate bi-connected components (bubbles), and nodes be-
longing to only the aligned sequence will have the rank 1. This now happens incrementally
with each genome added, e.g., adding the blue genome, and depending on the alignments,
new nodes and new bi-connected components are generated in the graph to describe the
variability between the di̔erent sequences. Figure inspired by Figure 2 in [154].

The gaftools command order_gfa utilizes the features of the rGFA built with minigraph
to devise an ordering. First, it detects the bi-connected components, and for that, we imple-
mented a detection algorithm inspired by the implementation in NetworkX [108], which is
based on the algorithm presented in [123]. This is described in more details in the Supple-
mentary Materials Section B.2. Furthermore, gaftools internally uses a similar graph data
structure/class as the one described in Section 3.2. Once we ̊nd all the articulation points
and bi-connected components, we can chain the components using the shared articulation
points, and order them based on the coordinates on their “SO” tag. With this ordering,
we can introduce new tags to the nodes that rěect this ordering, these new tags are called
“BO” (Bubble Order) and “NO” (Node Order) tags. The BO tags are used to sequentially label
(starting from 1) the bi-connected components detected and ordered in the graph. All nodes
in a bi-connected component receive the same BO tag. The NO tags are used to sequentially
label (starting from 1) the nodes within the bi-connected component. This is based on the

3.4 gaftools for Working with Pangenome Alignments 69

Figure 3.7: This ̊gure depicts the BO (A) and NO (B) tags. Blue nodes are the bubble and
orange ones are the sca̔old nodes. Figure taken from in [196].

lexicographic order of the node IDs within the bi-connected component. Figure 3.7 shows
a simple chain of four bi-connected components and ̊ve sca̔old nodes. Part (A) and (B) of
the ̊gure show the assigned BO and No tags, respectively. Articulation points are given the
value 0 for their NO tags. Now, we can sort the GAF alignments using the BO and NO tags,
where we ̊rst consider the BO tag, and the alignment that aligns to a node with the smaller
BO tag comes ̊rst in the sorted output. If the BO tags are the same for two alignments, we
look at the NO tags, if these are also the same, then we look at the alignment position in the
segment.

3.4.1.2 GAF Indexing and Viewing
This section is adapted from [196], and the work presented here was done by Samarendra Pani.

The view subcommand has a similar functionality to the one in SAMtools, where it can
“view” or extract a subset of the ordered GAF alignments based either on reference genome
coordinates or graph node IDs. This subcommand is also able to perform conversion be-
tween the “stable” and “unstable” coordinate systems (these systems were described in Sec-
tion 1.4.3.1), using the information in the rGFA graph. An example of this conversion,
looking at Figure 1.8, gaftools would then convert the node’s unstable coordinates (align-
ments marked with “_u”), to the contig or reference-based stable coordinates (alignments
marked with “_s”). Furthermore, gaftools also provides an indexing scheme for the sorted
GAF alignments; the index provides fast access to the alignments when using the view sub-
command. The index here is an hashmap lookup, with unique keys as the segment or node

70 Software Toolkits for Genome and Pangenome Graphs

IDs, and the values are arrays of o̔sets pointing to the alignments that have aligned against
these segments in the GAF ̊le. This then allows fast access to the alignments if the user
desires so subset alignments that mapped to a speci̊c segment in the graph.

3.4.1.3 Wavefront (Re)Alignment
This section is adapted from [196], and the work presented here was done by Arda Soylev, with
the alignment parallelization part done by myself.

An important feature of gaftools is the ability to realign an alignment from the input GAF
̊le. Here, we realign the sequence to the path in the GAF ̊le provided, i.e., we extract
the sequence of path in the graph, and realign the sequence from the GAF to the sequence
extracted from the path. We use the wavefront algorithm [164] as it is fast, and uses gap-
a̎ne penalty between the two sequences aligned, which results in better alignments. The
reason for performing realignments, is that in [253] they have found that other sequence
to graph aligners had some problems aligning certain sequences. For example, they found
that GraphAligner produced alignments with gaps at positions that did not make sense bio-
logically; and minigraph was not able to align some sequences continuously and produced
fragmented or clipped alignments for one sequence. In addition, gap-a̎ne penalty is better
at capturing certain qualities that are more biological when aligning two sequences against
each other, compared to edit-distance based alignments. To speed up the realignment pro-
cess, gaftools is able to use multiple CPU threads and parallelize the process.

3.4.1.4 Miscellaneous Functionalities
This section is adapted from [196], the ̊rst functionality was contributed by myself, and the sec-
ond and third contributed by the other authors.

Our software also provides several other functionalities that are useful to users in down-
stream analysis steps, such as:

1. Retrieving the sequence of a certain path provided in the graph using the find_path
subcommand.

2. Generating statistics for the GAF alignment ̊le, such as, number of primary and sec-
ondary alignments, total aligned bases, and average mapping scores (average qual-
ity, identity, and mapping ratio), using the stat subcommand. Using the extended
mode with the --cigar ̌ag, gaftools reports more information related to the CIGAR
string of the alignments, such as the number of insertions, deletions, matches, and
mismatches.

3. Introduction of phasing to alignments, adding information about which haplotype the
alignment maps to is added. Here, we add the tag “ps:Z:” for the phase set information,

3.4 gaftools for Working with Pangenome Alignments 71

Graph alignments Linear alignments
gaftools vg minigraph SAMtools

Coord. Conversion ✓ - ✓ N/A
Align. Subsetting ✓ ✓ - ✓

Align. formats GAF VG,GAM,GAF GAF SAM, BAM, CRAM
Align. Indexing ✓ ✓ - ✓

Graph ordering ✓ - - N/A
Align. sorting ✓ ✓ - ✓

Haplotype tags ✓ - - -
(Re)align ✓ - - -
Path to Sequence ✓ - ✓ N/A
Align. statistics ✓ ✓(GAM) - ✓

Table 3.2: This feature table outlines the functionalities of gaftools, alongside other tools
o̔ering similar capabilities. The “N/A” is for features that are only applicable to graphs. We
see that minigraph is also able to convert coordinate systems, however, one needs to run the
alignment again to change the coordinate systems. While gaftools is able to do so directly
on the GAF ̊le without having to realign the sequences. Align. stands for alignments, and
coord. stands for coordinates. Table taken from [196]

and the tag “ht:Z:” for the haplotype. This information is based on the output of
WhatsHap [165], speci̊cally using the output of its haplotag command.

3.4.2 Comparison and Benchmarking
This section is adapted from [196], and the work presented here is a contribution by all authors.

Looking at the recently developed pangenome toolkits, we see that gaftools o̔ers a dis-
tinctive set of features not found in other tools. In particular, gaftools introduces utilities
that were previously only available for linear sequence alignments. A comparison of the fea-
tures provided by gaftools with those of other tools, both graph-based and linear-based, for
graph and alignment processing is presented in Table 3.2. The tools included in this compar-
ison are vg and minigraph, which work with graphs and graph alignments, and SAMtools,
which works with linear alignments. As shown in Table 3.2, a checkmark indicates that a
given toolkit is capable of performing that speci̊c functionality. We can see from the table
that gaftools is capable of performing a multitude of functionalities that bridges the gap
between the di̔erent tools.
To test our tool, we ran it on the Oxford Nanopore Technologies (ONT) long reads of

the sample NA12878 sample from the 1000 Genomes Project [1]. This sample had a depth
coverage of approximately 14X. The sample was then aligned against the HPRC Minigraph
graph, which was constructed using the CHM13 reference using minigraph. Table 3.3 shows
the runtime and memory consumption of each command provided by gaftools. The results
show that gaftools is fast and consumes a reasonable amount of memory, with the excep-
tion of realign, which consumes a signi̊cant amount of memory and time. The reason

72 Software Toolkits for Genome and Pangenome Graphs

Command Runtime (hh:mm) Memory (GB)
view <0:01 <1
view --format 0:20 2.2
index 0:01 2.2
order_gfa 0:01 2.2
sort 0:08 3.2
phase 0:05 1.8
realign 64:34 47
find_path <0:01 5.5
stat 0:04 1.7
stat --cigar 0:40 1.7

Table 3.3: Graph alignments of NA12878 ONT (Oxford Nanopore Technologies) reads
(∼14X depth of coverage) from the 1000 genomes project, aligned to HPRC-r518 T2T-
CHM13 using Minigraph. Results show that gaftools is fast and memory e̎cient for all the
commands except “realign”. Since ”realign” requires Wavefront alignment, where higher
runtime and memory requirement is expected. Table taken from [196]

why realignment is an outlier in terms of time and memory, is that it uses the Wavefront
alignment algorithm, which requires a considerable amount of resources for long sequences.
However, the realignment is parallelized, so the time can be reduced if more memory and
CPU cores are available.

3.5 Conclusion and Discussion
In this chapter, we have presented a collection of toolkits for working with genome graphs in
the GFA format and with sequence-to-graph alignments in the GAF format. We believe that
such toolkits are very valuable to ̊ll the gaps created by moving from the linear-reference
world to the graph-reference world.
We ̊rst (Section 3.2.1) described the design and implementation of a simple and e̎cient

GFA graph Python API. This API allows the user to easily work with and manipulate with
GFA graphs. Furthermore, we demonstrated the use of this API in GFASubgraph, a tool
capable of extracting subgraphs and components from large graphs for downstream analysis
and visualization purposes. This implementation of a GFA class also serves as an important
building block for both extgfa and gaftools that were presented here. It also highlights
the importance of having an easy-to-use and fast software API for working with genome
graphs, where other functionality can then be easily built on top of this infrastructure. This
also gives researchers the ability and freedom to implement their own ideas without having
to redesign this data structure.
We then introduced extgfa (Section 3.3), a method for a low memory GFA graph rep-

resentation inspired by the world of video games and their ability to provide players with
open-world maps without exceeding the limits of the RAM. Although we labeled this imple-
mentation as a proof-of-concept implementation, it is, however, operational for examining

3.5 Conclusion and Discussion 73

numerous subgraphs or loci in large graphs. It is ̌exible enough to allow users to implement
their own algorithms using the API provided. Further improvements to the design and im-
plementation are still possible. For example, implementing a prefetching scheme that loads
neighboring chunks behind the scenes before the algorithm reaches that part of the graph.
Or, loading only the topological information of a chunk and not all of the node’s information
such as sequence and tags. We see that this concept of external memory is also very impor-
tant for graph visualization, since the current visualization tools such as [289, 97] cannot
handle very large graphs. Therefore, integration techniques such as the one in extgfa can
be used to chunk the graph and visualize only what is needed, which can help tremendously
and allow users with smaller machines to work with very large graphs.
Finally, we presented gaftools (Section 3.4), a versatile tool for working with sequence-

to-graph alignments in the GAF format. We demonstrated the various utilities provided by
gaftools and their bene̊ts, such as realignment, graph ordering, alignment indexing and
sorting, alignment viewing, and so on. We believe that gaftools serves as a ̊rst step in
addressing some of the missing functionality and algorithms that are readily available for
alignments in the linear reference world, but have not yet found their way into the graph
world. One drawback of gaftools is that it only works on rGFAs produced by minigraph, as
it requires the graph to have a linear chain of bubbles/bi-connected component, when col-
lapsed, result in a line graph of reference segments. However, continuous work is still being
done to allow other rGFAs (e.g., produced by minigraph-cactus orPGGB) to be utilized.
Looking at the rapid advancement in pangenomics, and the continuous production of

large graphs, the need for e̎cient tools is de̊nitely clear. The tools presented in this
chapter can be seen as ̊rst steps towards closing the gap between the linear reference world
and the graph pangenomics world. We believe that the tools presented here can serve
as a stepping stone to build better, and more e̎cient software to perform similar tasks.
Particularly, re-implementing an improved graph data structure in a typed programming
language such as C or Rust; as such programming languages o̔er much more e̎ciency
in terms of speed and memory consumption. Moreover, there is a need in standardizing
the GFA format and producing a binary indexable version of it, which can further help in
avoiding the task of loading the complete graph in memory for any analysis. E̔orts done
in the linear reference world, such as the production of HTSlib [25] for working with SAM,
BAM, CRAM, and VCF ̊les can serve as a great example for what to aim for in the future,

74 Software Toolkits for Genome and Pangenome Graphs

Chapter 4

Multi-Platform Investigation in
Cancer Structural Variants and
Subclones

This chapter presents an unpublished collaborative work on cancer cell line NCI-H2087 and
its matched normal cell line NCI-BL2087. First, we assemble both samples using sequencing
reads from di̔erent technologies, and we investigate the quality of these assemblies and the
potential causes of a fragmented assembly. In addition, we generate a set of high con̊dence
somatic structural variants by using ̊ve di̔erent variant callers and intersecting the calls to
purify the set of somatic SVs. We further investigated the role of genome graphs and their
visualization to aid in the subclonal assembly and structural variant detection problem. To
that end, we develop a graph toolkit called graphdraw that helps in extracting parts of the
graph based on their alignments, moreover, can draw parts of the graph along a reference
for better visualization.

This work is in collaboration with Dr. Jan Korbel and his research group at EMBL, they have
provided us with data and important incites to bring this project together. My role in this project was
focused on the graph investigation, development of graphdraw, and SV calling and intersection.
The assemblies generated with the PGAS pipelie were done by Dr. Peter Ebert, and Figure C.3 was
generated by Dr. Bernardo Rodriguez-Martin who also provided continuous supervision on the
project.

4.1 Introduction
The hallmarks of cancer are a set of functional capabilities acquired by cells during its
development. The hallmarks comprise six capabilities: (1) sustaining proliferative signaling,
(2) evading growth suppressors, (3) resisting cell death, (4) enabling replicative immortality,
(5) inducing the formation of new blood vessels for the cancer, and (6) activating invasion
and metastasis [110]. The list of hallmarks is subject to variation, with additional hallmarks

75

76 Multi-Platform Investigation in Cancer Structural Variants and Subclones

being added to the list, such as the ability to evade immunity destruction [82], and the
ability to reprogram cellular energy metabolism to sustain the continuous growth of the
cancer [202]. The combination of these hallmarks results in the cancer’s ability to survive,
multiply, and spread [110].
Cancers generally originate from a single cell, which undergoes a series of somatic mu-

tations, resulting in the acquisition of the aforementioned hallmarks by the cell’s progeny.
However, the descendants of this cell can undergo diverse sets of mutations, separation, and
evolutionary selection, thereby giving rise to genetic heterogeneity and the emergence of
distinct populations of cells within a single tumor [262]. These genetically distinct popu-
lations from one cancer are called “subclones”, and due to the genetic di̔erences between
the subclones, their behavior and response to cancer treatments can di̔er [27]. Conse-
quently, subclone detection and reconstruction are imperative to understand the cancer and
to iňuence the cancer’s progression and therapy options [262].
With the rapid advancements of sequencing technology and sequence algorithms (Sec-

tion 1.2), scientists were able to understand cancer better, attempt to reconstruct cancer sub-
clones, detect important variations, and apply this to personalized clinical treatments [104].
With these advancements, large cancer studies have identi̊ed that structural variants (SVs)
are the predominant class of driver mutation in many cancer types [51]. Moreover, due
to the di̎culties in detecting SVs compared to point mutations (SNPs), they remain un-
derexplored [51]. Large studies such as [206] produced a comprehensive catalog of cancer
somatic mutations; and most notable in recent years, the Pan-Cancer Analysis of Whole
Genome (PCAWG) Consortium analyzed a large number of cancer whole-genomes and their
matched normal, across many cancer types allowing for the detection of a large number of
cancer-associated structural variants [2]. Furthermore, studies also showed that cancer does
not necessarily accumulate mutations gradually, but “cellular crisis events” can occur in one
of the cells causing what is called “chromothripsis”, where hundreds of genomics rearrange-
ments take place [256]. This also adds to the di̎culty of assembling and constructing high
quality SV call sets. However, multi-platform sequencing studies, such as [76], attempt
to combine di̔erent sequencing technologies and leverage their characteristics in order to
identify a set of high-quality somatic SVs in cancer.

In this chapter, we investigate the cancer and matched normal cell lines pair (NCI-H2087
and NCI-BL2087), where NCI-H2087 is a cell line from stage 1 adenocarcinoma, and NCI-
BL2087 is a B lymphoblast cell line from peripheral blood. We use di̔erent sequencing
technology to capture di̔erent levels of information. Moreover, we assemble both cell lines
and call the structural variants using ̊ve di̔erent computational methods. Subsequently,
using thematch normal structural variants, we attempt to curate a set of high-quality somatic
structural variants.

4.2 Data 77

PacBio Illumina Strand-seq
avg. cov avg. len. avg. cov. len. avg. cov. len.

BL2087 39.5 16,032 268.5 151 2.1 81
H2087 40.4 19,101 180 151 2.8 81

Table 4.1: Information on the sequencing data for both the cancer sample H2087 and the
matched normal BL2087. For Strand-seq data, the coverage is calculated only on the high
quality cells chosen by ASHLEYS, which is explained further in Section 4.3.1

4.2 Data
In this work, we used three di̔erent sequencing technologies on both cell lines. PacBio CCS
or HiFi long reads (Section 1.2), Illumina paired-end short reads, and single cell Strand-seq
reads [77]. For the Strand-seq data, three separate plates at di̔erent dates were used, each
containing 96 cells for the H2087 cell line, and only one plate for the BL2087. Table 4.1
shows information about average coverage and sequence length for each technology for
both cell lines.
Single-cell template strand sequencing (Strand-seq) is a technology that uniquely re-

solves the individual homologs withing a cell by limiting the sequencing to template strand
of the DNA during replication. This method exploits the directionality of DNA, distinguish-
ing each strand based on its 5′–3′ orientation. By culturing cells with a thymidine ana-
log (bromodeoxyuridine or BrdU) for one cell division cycle, incorporates it in the nascent
strand during DNA replication; this is followed by the degradation of the nascent strand
to isolate and sequence the template strand [77, 228]. This approach bypasses genomic
preampli̊cation and avoids amplifying labeled nascent strands to preserve directionality of
the template strnad [228]. The resulting single-cell libraries are multiplexed, pooled, and
sequenced on an Illumina platform [77]. Strand-seq o̔ers several capabilities, it can sort
long-reads or contigs by chromosome, which improves de novo assembly [92], order and
orient contigs [191], and provides a chromosome-wide phase signal regardless of physical
distance [213, 211, 229, 115].

4.3 Results
4.3.1 Genome Assembly
To assemble the cell lines, we used both the Strand-seq and HiFi reads together in a pipeline
called PGAS [212]. First, Strand-seq libraries usually require an initial quality control step,
which has been conventionally done manually by domain experts. However, in [102], they
developed the Automatic Selection of High-quality Libraries for the Extensive analYsis of
Strand-seq data (ASHLEYS) pipeline. This pipeline uses a linear support vector classi̊er
(SVC) trained on a large data-set evaluated by domain experts for Strand-seq cells quality
control. We used ASHLEYS to assess the quality of our Strand-seq data on both cell lines, we

78 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Figure 4.1: Example of how ASHLEYS report the probabilites for each cell in the Strand-seq
sequencing plate. The pipline also produces cell selections based on a probability cuto̔,
these are shown in Supplementary Figure C.1

then only used the cells that ASHLEYS predicted as good cells in the assembly step. Figure 4.1
shows an example of the probabilities that ASHLEYS produces for each cell on a plate. Here,
we use the cells that have a probability of over 50%. Supplementary Figure C.1 shows the
predictions for all the plates.

The Phased Genome Assembly using Strand-seq (PGAS) pipeline is a comprehensive
worǩow designed to produce high-quality, haplotype-resolved diploid genome assemblies
by integrating long-read sequencing data with Strand-seq technology [212]. The process
of PGAS begins by generating de novo assemblies from the long reads; this assembly is an
unphased or “squashed” haploid assembly. Subsequently, Strand-seq reads are aligned to
the contigs generated in the assembly step to infer their strand inheritance patterns, and
using this pattern, we can cluster the contigs so that, ideally, all contigs in a cluster are from
the same chromosome. In the next step, both long reads and Strand-seq data are aligned
back to the clustered contigs to call heterozygous single-nucleotide variants (SNVs), which
serve as markers for phasing. These SNVs are phased globally using WhatsHap [165], com-
bining Strand-seq, and PacBio reads to reconstruct chromosome-length haplotypes [212].
The phased SNVs are then used to tag and separate long reads by haplotype, followed by
independent de novo assemblies for each parental homolog. Several tools can be used for the
long-reads assembly within PGAS, however, in this chapter, hifiasm [37] is used to perform
the assembly step.
Table 4.2 shows basic statistics for the assemblies produced by PGAS using the HiFi long-

reads and the selected high-quality cells from the Strand-seq reads. We can see from the
assembly statistics that the assembly for the matched normal cell line BL2087 has fewer
contigs and a higher N50 score compared to the cancer cell line H2087. This is expected as
PGAS and hifiasm are designed for deiploid genomes and aim to produce a diploid assembly.
Moreover, due to the structural variant accumulation [51], subclonal heterogeneity [263],

4.3 Results 79

Num. Contigs Assembly Size (bp) N50 (bp)
BL2087 Hap.1 853 3,146,273,789 53,691,686

Hap.2 723 3,129,660,653 66,540,667
H2087 Hap.1 1746 3,254,831,318 20,826,101

Hap.2 1544 3,214,936,662 24,144,225
Table 4.2: Statistics on the PGAS assemblies for both cell lines. N50 here is de̊ned as the
contig size where half of the genome sequence is covered by contigs larger than or equal to
it. Generally, the bigger the N50 value is, the better the assembly quality.

chromothripsis [256], breakage-fusion-cycles (BFB) [147], and other genome rearrange-
ment events in cancers result in a lower quality assembly compared to germline cell lines.
Moreover, Figure 4.2 plots the distribution in the number of contigs and the number of
alignments for each chromosome for both cell lines. We can see that there is a correlation
between the number of contigs and number of alignments. However, we also notice that for
some chromosomes, the number of alignments is much higher than the number of contigs.
For example, Chromosome 8 in BL2087 and Chromosome 2 in H2087, they have a small
number of contigs but a high number of alignments. This can happen when the assembler
is able to assemble a complex region, that the aligner later struggles to align contiguously.
Figure 4.3 shows the alignments along the reference of the contigs produced by PGAS for
H2087 for chromosome 8, and the copy numbers. The plot shows clear fragmentation of
both haplotypes and elevation of the copy number, which can point to complex genomic
rearrangements events.

4.3.2 Structural and Copy Number Variation Calling
The detection of structural variants is an important task in many genomic studies, especially
in cancer research, due to their role in cancer development [51]. Therefore, many methods,
algorithms, and software tools have been developed using di̔erent sequencing technolo-
gies for SV detection [3]. To this end, we performed SV calling and copy number variation
(CNV) calling using several software tools and methods.

For the SV calling, we used ̊ve di̔erent SV callers; the ̊rst set of SV callers include
Delly [215], pbsv [193], and Sniffles [252] which are sequencing-based callers, i.e., they
use the long reads to call the variants. The other callers are PAV [70] and SVIM-asm [114]
which are assembly-based callers, and they use the contigs to call the variants. Using two
di̔erent approaches increases the chance that any structural variants not detected by one
group of callers will be detected by the other group. Table 4.3 shows the number of variants
for each category of structural variants for both cell lines. Furthermore, the commands
and software tool versions used for long-reads alignment and SV calling are described in
Supplementary Sections C.1 and C.2.
We see from Table 4.3 that the number of SVs in the matched normal sample is higher

80 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Figure 4.2: This plot shows the distribution of the number of contigs and the number of
alignments for each chromosome and for both cell lines. The alignments here were done
with minimap2.

than the ones in the cancer sample. This might sound counter-intuitive, given that cancers
go through more mutations and accumulate SVs. However, one reason is related to the di̎-
culty for callers to call SVs in cancer samples due to their complexity [271], another reason
is the loss of parts of the chromosome (aneuploidy) and complex rearrangements [15]. We
also see that assembly-based callers are able to call more variants compared to the others.
This can be attributed to the fact that assembly-based callers are better at detecting large SVs
that long-read-based callers fail to detect [160]. Moreover, they are more robust against cov-
erage ̌uctuation [160]. Figure 4.4 for example, shows the distribution of SVs for all callers
along chromosome 8 for the H2087 cancer cell line. We see that around the centromere, PAV
reports more variants compared to the other callers. The centromere region is highly vari-
able and contains complex repeats, which may explain why assembly-based callers may call
variants there, whereas read-based callers produce poor quality alignments for such regions
and discard them. However, this does not necessarily mean that the assembly-based callers
are calling true structural variants in these complex regions, and could be false positives.
Supplementary Figure C.2 plots the numbers of SVs across each chromosome per caller and
per sample.
Copy number variations are a type of duplication or deletion, i.e., they are a type of

structural variation. Here, the CNV we detect is more on macroscale level, based on the
depth of alignment over the reference, usually followed by a normalization step to calculate
the gains or the gains or losses in copy number across these windows. We used the three

4.3 Results 81

Figure 4.3: This plot shows the PGAS assembly contig alignments and copy number of chro-
mosome 8. While both haplotypes are fragmented, we can see that haplotype 2 is more so.
Looking at the copy number in the bottom plot. Looking at the copy number, we see it is
elivated which could indicate complex genomic rearragnements. Hence, the poor quality of
the assembly.

82 Multi-Platform Investigation in Cancer Structural Variants and Subclones

H2087 DEL>50bp INS>50bp INV DUP BND
PBSV 11,825 12,290 20 3,108 442
Snȋes 11,956 10,146 100 100 231
Delly 12,137 9,990 156 248 255
PAV 15,687 15,833 50 0 0
SVIM-asm 16,627 16,215 38 81 557

BL2087 DEL>50bp INS>50bp INV DUP BND
PBSV 14,036 14,169 26 3,688 86
Snȋes 13,878 11,343 45 82 124
Delly 14,577 11,153 90 189 138
PAV 19,299 19,284 51 0 0
SVIM-asm 18,728 18,415 31 83 205

Table 4.3: Structural Variant number across the 5 callers used for the H2087 cancer sample
and the matched normal BL2087

Figure 4.4: Plotting the distribution of the SV calls from the 5 callers along chromosome
8 of the H2087 cancer cell line. We can see that around the centromere (highly variable
regions), PAV was able to call many more SVs compared to the other callers, which could
explain why assembly-based callers have a higher number of calls.

4.3 Results 83

sequencing technologies available for calling the CNVs. For Strand-seq sequencing, we used
Mosaicatcher2 [283] which is based on the older version developed here [229], and we only
used the high-quality cells selected by ASHLEYS. For CNV calling on both short Illumina reads
and long PacBio HiFi reads, Delly was used. Commands and versions used can be found
in Supplementary Section C.2. Figures 4.5 and 4.6 show the copy number variations for
all three sequencing technologies and for both cell lines. We see that all three technologies
show similar CNV pro̊les, however, with di̔erent resolutions. This further con̊rms the
quality of the data. We see for the cancer cell line, the copy number is very variable between
and within the chromosomes, which is expected in cancers [245]. As for the matched normal
cell line, we see that some chromosomes, such as chromosomes 8 and 12, have an elevated
copy number (3 instead of 2); this can result from chromosomal instability due to prolonged
culturing of the cell line [113], or aneuploidy due to cellular stress in the cell culture [295].
This can also occur due to sequencing or lab errors, however, less likely in our case, as it
was reported by all three sequencing technologies.

4.3.3 SV Calls Intersection
To intersect the SV callsets produced, we using this pipeline produced by Dr. Jana Ebler [71],
however, slightly edited to work on our SV calls. The ̊rst step in the pipeline is to add all
variants to a list and sort based on the start position of the variant. The second step goes
through all the variants, and a variant is added to a cluster if its start position is not bigger
than the end of the previous variant plus an o̔set (here 200). The previous end here is
the maximum between the ̊rst end of the cluster and the current end. Once a cluster is
generated, we check if we can “merge” the variants in the cluster, i.e., check if they match
under certain criteria, which are:

• Between two variants of the same type, the reciprocal overlap is 50% of the length of
the variant.

• Or, between two variants of the same type, the di̔erence between the start position
and end position is smaller than 200 and they di̔er by at most 50% in length.

When a cluster is merged, the variants in the cluster are compared to the ̊rst variant
in the cluster; where the variants in the cluster are ordered based on the input order of
the SV calls to the pipeline. The ̊rst variant in the cluster becomes the representative
SV of the cluster; this means that the comparison depends on the order of the input SV
calls, which can be helpful if the most accurate SV caller is ̊rst in the order. However,
when we tested di̔erent combinations of input orders in our case, the di̔erences in the
intersection results were negligible. Furthermore, we validated the pipeline’s intersection
with svpack match [194] that matches the SV calls from one set to another. We compared
our H2087 SV calls intersection with the svpack intersection and got nearly the same results,
which gave us further con̊dence that the pipeline used is producing trusted intersections.

84 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Figure4.5:CopyNumbervariationforthematchednormalBL2087celllinewiththreesequencingtechnologies.ForIlluminaandPacBio,
D
e
l
l
ywasusedtocalculatetheCNV,andforStrand-seq,

M
o
s
a
i
c
a
t
c
h
e
rwasused

4.3 Results 85

Figure4.6:CopyNumbervariationforthematchednormalH2087celllinewiththreesequencingtechnologies.ForIlluminaandPacBio,
D
e
l
l
ywasusedtocalculatetheCNV,andforStrand-seq,

M
o
s
a
i
c
a
t
c
h
e
rwasused

86 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Figure 4.7 shows an upset plot of the SV calls intersection for both cell lines. In both cell
lines, assembly-based callers have a high number of unique calls that were not intersected
with other callers. Further investigation is needed to determine why assembly-based callers
have a high number of unique variants that do not intersect with other callers. One reason
could be the low quality of the assemblies or their sensitivity to complex regions in the
genomes that result in higher false positives. resulting in higher false positives. However,
this could also indicate that their calls are not fully reliable.

Figure 4.7: Upset plot for the intersection between the 5 callers for each cell line. We
see that the assembly-based callers, especially PAV has a high number of SVs that do not
intersect. However, we can still that there is high concordance between 4 of the 5 callers
and all 5 callers.

To create a somatic set of SVs, we need to intersect the calls between the cancer and the
matched normal samples, and extract only those SVs that are unique to the cancer sample.
However, we want to be very strict in this intersection and eliminate potential false positives.
Therefore, we ̊rst extracted a set of SVs from the cancer sample where the SV was present in
at least two of the ̊ve callers. This resulted in a set of 21,629 SVs. In addition, we ̊ltered the
SVs in the centromere region, which is more prone to false positives due to the complexity of
the region, which resulted in a set of 20,471 SVs. Subsequently, we intersected this set with

4.3 Results 87

Figure 4.8: Upset plot for the intersection the SV set made from variants that showed up in
at least two callers for the H2087 cancer cell line, and the complete set of all the SV calls of
the BL2087. The bar plot with 1,376 represents the SVs that are only in H2087, i.e., somatic
SVs.

all the matched normal calls, i.e., the combination of all ̊ve callers, which produced a set of
116,239 SVs. In this way, any SV in this “2-callers” cancer SV set that might match any SV
from any caller in the matched normal is ̊ltered out. Figure 4.8 shows the upset plot of this
described intersection; we see that we retrieve 1,157 somatic SVs. The numbers of SVs for
the cancer 2-callers set might seem incorrect in the ̊gure, but the reason for this elevated
number is that the pipline calculates all pair matches, i.e., one SV in the cancer sample
might match to more than one SV in the matched normal sample (because we combined
all the callers together). Therefore, the same SV in the cancer call set might appear more
than once in the ̊nal intersection table produced, and this table is then used to produce the
̊gure in the pipeline. However, this does not a̔ect the ̊nal column in the upset plot (only
H2087 sample), because these variants are cancer-callset speci̊c, so they do not show up
more than once in the table.

4.3.4 Graph Drawing
To understand our results better, and investigate the subclones of the cancer sample and the
̊nal set of somatic SVs obtained. We decided to focus our attention on the raw assembly
graphs that hifhiasm produces along with the contigs. These graphs contain more infor-
mation that is sometimes lost when hifiasm attempts to produce diploid contigs. To this
end, we developed a graph toolkit we call graphdraw [54] that aids in such investigation
and o̔ers several useful subcommands:

88 Multi-Platform Investigation in Cancer Structural Variants and Subclones

(1) Graph coloring: Colors an assembly graph based on chromosomes. It uses the
alignments of the node sequences in the graph against a reference genome to retrieve the
chromosome information of the node to color it.
(2) Contig alignment plotting: This command plots the contig alignments along the

chromosomes for one or both haplotypes, as well as the copy number variation if available.
Figure 4.3 is produced using this subcommand, and the coloring of the alignments shown is
random. However, alignments belonging to the same contig will be colored the same, i.e., if
a contig is not completely aligned, but instead is partially aligned, each of these alignments
will produce a separate line in the plot, but with the same color.
(3) Node coloring: This command colors the graph based on two sequence-to-graph

alignment samples, where it counts for each node the number of alignments from the ̊rst
sample and the second sample, then the node is colored red or blue (sample 1 or sample 2)
if the number of reads from one sample crosses a threshold, by default is 90%. For example,
Supplementary Figure C.3 constructed using Mosaicatcher2 by Dr. Bernardo Rodriguez-
Martin shows the potential subclones in the Strand-seq reads. Therefore, we can pool the
reads of each subclone together and align them back to the assembly graph, using this
command, we can then color the nodes where one subclone is predominantly represented.
An example of the nodes coloring can be seen in Supplementary Figure C.4, where in this
case, the graph shows a bubble chain from an assembly graph produced by mixing both
cancer and matched norma HiFi long reads. The long-reads are then aligned back using
GraphAligner [216] to the graph and used as an input for the command. Red nodes indicate
one sample, the blue ones indicate the other, and the black indicate that both samples
aligned across the node.
(4) Subgraph extraction: This command allows the user to extract a subgraph from the

graph based on reference coordinates. First, the sequences in the nodes need to be aligned
to a reference, then using the alignments, graphdraw extracts the nodes that align to these
coordinates. Furthermore, it gives the user the option to extract a neighborhood of nodes
around the nodes that aligned to the speci̊ed coordinates using Breadth-̊rst search (BFS).
It also produces a Bandage [289] acceptable CSV ̊le with coloring and information about
the nodes that aligned to the coordinates speci̊ed. The subgraph extracted and colored in
Figure 4.9 was produced using this command, and it shows the e̔ects of a somatic inser-
tion on the unitigs1 alignments and how this, in turn, a̔ects the graph. Speci̊cally, the
insertion a̔ects a subset of the unitigs and causes a bubble to form, using graphdraw, we
supply the graph, the alignments of the unitigs, and the coordinates of the insertion, to also
explore the neighborhood around the insertion, we provide graphdraw with a neighborhood
size. Moreover, graphdraw colors the nodes that aligned to the coordinates provided in red,
to distinguish them form the neighboring nodes/unitigs. This exercise then allows us to
investigate better such structural variants.

1Here, we are talking about the raw unitigs graph that hifiasm produces that keeps all haplotype information
before it does any merging to produce primary unitigs and contigs

4.3 Results 89

(5) Subgraph drawing: Similar to the previous command, this command also extracts
a subgraph from the assembly graph based on alignment coordinates. However, this com-
mand draws the graph and does not depend on other graph visualization tools. Particularly,
most genome graph visualization tools visualize the graph topologically, e.g., using force-
directing layout algorithms; however, without consideration to the sequence alignments of
the nodes to a reference. Therefore, this command draws a subgraph but orders and places
the nodes based on their alignments to a reference. Figure 4.10 shows an example from the
H2087 cell line assembly graph produced by hifiasm, the nodes are ̊rst placed according
to their alignment location on the reference, then edges are added using the information in
the input graph ̊le. Red nodes indicate an alignment on the reverse strand, where this is
inferred from the BAM alignment ̊le.

Figure 4.9: This ̊gure shows part of the graph extracted with graphdraw, where a somatic
insertion a̔ects a subset of the cancer raw unitigs produced from hifiasm assembly, which
causes a bubble in the graph. The alignments are visualized with IGV [221] and the graph
visuzlied with Bandage. This bubble can indicate the di̔erence between the two subclones.

90 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Figure 4.10: This ̊gure demonstrates how drawgraph draws a subgraph with a reference.
This subgraph is taken from the H2087 cell line assembly graph produced by hifiasm

4.4 Conclusion and Discussion
In this chapter we presented preliminary results for the analysis of the cancer cell line H2087
and its matched normal cell line BL2087. We ̊rst described the di̔erent sequencing data we
have for both cell lines (Seciton 4.2). The data consists of short Illumina reads, long PacBio
HiFi reads, and single-cell Strand-seq reads. We also presented some simple statistics on this
data in terms of coverage and average read length for both cell lines. Next, we described the
work done to assemble both cell lines (Section 4.3.1), where the single-cell Strand-seq data is
leveraged in the PGAS pipeline to aid in better clustering and assembling the long HiFi reads.
We also discussed the reasons behind having a lower quality assembly for the cancer sample.
Structural variants were called on both samples using ̊ve di̔erent callers (Section 4.3.2),
the callers were grouped into two groups; three callers of which are long read alignment
based, and the other two are assembly-based. This guarantees a wide range of structural
variants to be detected. Subsequently, we described our protocol to intersect the di̔erent
SV callsets (Section 4.3.3). This is not a trivial problem, and there is not one standard
way to do this task. However, this pipeline has been used in other projects successfully;
we also compared its results to another tool, which gave us similar results. Moreover, to
guarantee a higher quality ̊nal somatic SV set, we applied a more stringent ̊ltering on
the H2087 cell line compared to the BL2087. To investigate the assembly graphs further,
we presented a simple graph toolkit called graphdraw that o̔ers a set of useful utilities for
further analyzing genome graphs and assemblies (Section 4.3.4). The subgraph extraction
and subgraph drawing commands are particularly useful in facilitating the analysis of certain
parts of the assembly graph that are of interest. For example, in Figure C.5 we used IGV to
visualize the alignments of the raw unitigs produced by hifiasm, and the somatic mutations
to guide us to areas of interest in the graph. In particular, we see in that ̊gure how the
somatic insertion only a̔ects a subset of the unitigs, which might indicate that some of the

4.4 Conclusion and Discussion 91

unitigs belong to one of the subclones in the cancer cell line; this also shows in the graph
produced, where we see that small variants and SNPs cause smaller bubbles to form in the
graph, however, the big bubbles caused by the somatic insertion. Another such example can
be seen in Supplementary Figure C.5, where small variants cause a small bubble to form.
However, when zooming out in the graph, we see that the somatic insertion caused a bigger
bubbles to form. This kind of analysis was made possible using graphdraw, that allows us
to quickly separate and visualize subgraphs.
There are still several other avenues to further explore in this project to obtain yet better

assemblies and structural variant callsets. For example, properly analyzing the alternative
contig graphs produced by the hifiasm assembly step of PGAS. These graphs consist of all
contigs that the assembler was not able to assemble; these contigs could be, of course, caused
by errors. However, more likely in our case, they contain important information related to
the cancer subclones, where the assembler ignores in favor of ̊tting a diploid assembly on
the sample. Another way to improve the assembly is to produce ultra-long Nanopore reads2,
which then enables us to run other assembly pipelines such as Verkko [218]. In our project,
this has been attempted, however, the ̊rst batch of ultra-long reads were of low quality,
and further lab optimizations to the technique are required before producing another set.
The use of assembly graphs along with Strand-seq data has been shown to be bene̊cial, for
example, in this study [115], they were able to produce chromosome-scale haplotypes for a
diploid genome by leveraging Strand-seq signal with assembly graph topology. Therefore,
we believe that digging deeper into the assembly graphs and taking advantage of the special
features of Strand-seq data may be the key to unraveling the subclones and even allowing
us to generate complete assemblies for each subclone in the future.

2https://nanoporetech.com/document/ultra-long-dna-sequencing-kit-sqk-ulk114

https://nanoporetech.com/document/ultra-long-dna-sequencing-kit-sqk-ulk114

92 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Chapter 5

EpiPAMPAS: Epistasis Detection Using
Parsimonious Ancestral State
Reconstruction and Mutation
Counting

This chapter introduces EpiPAMPAS, an R and Python command-line tool for epistasis detec-
tion between mutations. EpiPAMPAS employs a statistical method that uses a hierarchical
clustering dendrogram instead of a phylogenetic tree, Sanko̔ parsimony algorithm, and
mutation counting for epistatic interaction detection. The e̎cacy of EpiPAMPAS was eval-
uated through testing on both simulated and real sequencing data. In the context of the
simulated data, our tool was able to detect the simulated epistatic pairs of mutations e̔ec-
tively. In a real-world application, we tested the iňuenza proteins N1, N2, H1, H3, and
HIV-1 envelope protein subtypes A, B, and C. Our results on the Iňuenza A proteins show
that EpiPAMPAS detects a smaller number of interacting paris than comparable statistical
approaches. However, the overlap between the detected positions with another approach is
signi̊cant. Furthermore, some of the amino acids from the detected pairs have been previ-
ously identi̊ed as deleterious for viral ̊tness.

This chapter is based on this publication [58], of which I am a co-̊rst author. The original
statistical method was developed by the other co-̊rst author Kristina Thedinga, and expanded by
myself on protein sequences. All results and ̊gures generated on the real data were performed
by myself. Results and ̊gures on the original statistical method and simulated data were done
by Kristina Thedinga (Figure 5.1, Figure D.1, and Figure 5.3). In this chapter, materials used
from [58] will be indicated.

93

94
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

5.1 Introduction
This section reuses some materials from [58] of which I am a ̊rst co-author

The term “epistasis” was ̊rst introduced by William Bateson in 1902, where he described
the phenomenon as a form of genetic interaction whereby the expression of one gene can
be either suppressed or activated by another gene [16]. Subsequently, in 1907, Muriel
Wheldale Onslow provided a comprehensive account of epistasis in her paper on the color
inheritance of Antirrhinum Majus. For example, she talked about how the color of factor I is
ivory, although this is dependent on the modi̊cation of factor L: If factor L modi̊es factor
I, then the color of factor I is magenta [287].

Since then, several de̊nitions of epistasis have been presented and can be generalized to
describe the complex interactions between genes or genetic loci that cause a phenotypical
e̔ect [203]. Studies have discussed many roles of epistasis, especially in its e̔ects on
evolution. For example, the importance of epistasis in adaptation and selection [111]. Or
in protein evolution, where epistasis impacts how mutations alter protein structure and
function, as it a̔ects the evolutionary trajectories of protein by restricting or opening new
pathways [255].
Other studies have also shown that epistatic interactions between mutations are possi-

ble [22, 161, 227], and more recently, in the context of compound heterozygosity of rare
variant pairs within genes in humans [107]. In [141], they showed that up to 70% of
rare missense mutations are deleterious, and are associated with ̊tness loss. However, it
has been shown that epistasis then plays an important role in compensating against these
deleterious mutations, and can help restore lost ̊tness [224, 257, 208]. Moreover, this
compensatory e̔ect plays a role in human diseases [133]. This positive compensation via
epistasis is called “positive epistasis” [26]. The opposite, i.e., when the interaction between
mutations causes loss of ̊tness is called “negative epistasis” [13]. Epistasis is also a major
driver of evolution in viruses, especially that viruses evolve faster and are under stronger
adaptive pressure to evade immunity. This has been observed in viruses like iňuenza
A [259, 31, 162], other RNA viruses such as vesicular stomatitis RNA virus [232], and in
the human immunode̊ciency virus type-1 (HIV-1) [26].

Given the important role epistasis in evolution, the development of robust statistical and
algorithmic models for its detection is imperative. To this end, many statistical methods
have been developed for detecting epistasis in di̔erent scenarios and settings. For example,
in this study [242], the authors looked into 36 computational methods for detecting epista-
sis, and categorized them into three major categories; methods that search for epistasis using
exhaustive search, stochastic search, or heuristic search. Another group of research did an
extensive survey on the di̔erent statistical methods for epistasis detection as well [186].

5.2 Methods 95

A majority of the reviewed models were based on the use of genotypes and phenotypes of
the Single Nucleotide Polymorphisms (SNPs) and their interactions; however, they did not
take into consideration the complete sequence. By contrast, other methods, such as those
outlined in [139, 95], examined mutual information using sequence alignments. Neverthe-
less, these methods did not consider the phylogenetic relationships between the sequences,
a consideration that subsequent methods did incorporate [124, 243, 85].

In this chapter, we focused on the method presented in [140] for detecting epistasis in
proteins using both sequence alignments and phylogeny. This method assumes that under
positive epistasis, nonsynonymous substitutions at linked sites follow each other in rapid
succession. The method initially constructs a phylogenetic tree from the sequences using
a maximum likelihood model using PHYML [105]. Subsequently, their method measures an
“epistasis statistic” E(i, j), where i and j are designated as “leading” and “trailing” sites,
respectively. This statistic basically detects an acceleration of non-synonymous substitu-
tion at the trailing site j, after a non-synonymous substitution at the leading site i. They
applied their method on the sequence data of the surface proteins hemagglutinin and neu-
raminidase of iňuenza A virus subtypes H3N2 and H1N1. Furthermore, they were able to
detect numerous epistatic interactions between di̔erent sites, with some having been pre-
viously con̊rmed in vitro by other researchers and associated with drug resistance against
oseltamivir. [10, 175].
Here, we propose a fast and simple method that relies on hierarchical clustering of se-

quences instead of full phylogeny reconstruction. Additionally, instead of detecting events
that happen faster or slower than expected after each other (as introduced in [140, 184]),
our method, however, detects pairs of mutations that happen more than once independently
in this proxy of the phylogenetic tree. We demonstrate the robustness of the method on sim-
ulated data and further apply it to Iňuenza A HA and NA sequences for a direct comparison
with [140] and HIV-1 envelope protein from subtypes A, B, and C. We also demonstrate an
agreement of our results with [140] and evaluate the spatial distribution of the epistatically
interacting pairs in the protein three-dimensional structures.

5.2 Methods
This section reuses materials from [58] of which I am a ̊rst co-author

As an overview, EpiPAMPAS bases the detection of epistasis on a dendrogram, instead of a
properly calculated phylogenetic tree, representing the evolutionary relationships between
the analyzed samples. The dendrogram is built on multiple sequence alignments (MSA) of
amino acid sequences using hierarchical clustering with Ward’s clustering criterion [279,
176]. EpiPAMPAS then exhaustively goes through each pair of variable positions in the MSA
and label the leaf nodes with the genotype. Subsequently, using the Sanko̔ parsimony

96
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

algorithm, it reconstructs the most-likely genotype of the inner nodes in the dendrogram
which correspond to the ancestral states. Using the reconstructed genotypes, our method
counts the number of mutations in a certain direction of one position in comparison to the
other position, and tries to ̊t the counts to a binomial distribution of 0.5 probability. In
the following subsections, the di̔erent steps will be explained in more details.

5.2.1 Constructing the Dendrogram
This section reuses materials from [58] of which I am a ̊rst co-author

EpiPAMPAS constructs a dendrogram from the sequences in the MSA using the Ward error
sum of squares hierarchical clustering. The goal here is to distinguish between false positives
caused by the population structure and true positives arising from epistatic interactions. This
approach results in a tree that resembles a phylogenetic tree but requires less computational
power to construct. We hypothesize that this representation will be a reliable one, as closely
related samples will exhibit similar variant patterns, leading to their close clustering on the
tree.
The leaf nodes of the tree can then be labeled with the genotype of a speci̊c variable

position under investigation. In the context of EpiPAMPAS, the genotype is binary in nature,
because we look at two amino acids for each position at a time, with the tree-building
process being constrained to sequences that contain one of these amino acids. As illustrated
in Figure 5.1, the tree is constructed using 13 samples/sequences and is labeled with their
respective genotypes.

5.2.2 Sanko̔ Algorithm
This section reuses materials from [58] of which I am a ̊rst co-author

The Sanko̔ parsimony algorithm [233, 234, 42] is an algorithm designed to reconstruct the
sequences in the internal nodes of a ̊nite tree where the leaves represent some sequences
belonging to a ̊nite alphabet, this reconstruction is performed with minimal costs, where
costs are derived from a cost matrix, associating a cost for transitioning between di̔erent
letters in the alphabet.
In our case, the alphabet simply consists of {0, 1}, which represents the two possible

states the sample can have for a certain variable position in the sequence, i.e., the two
possible genotypes in that position. To reconstruct the states of the inner nodes in the den-
drogram, which correspond to the ancestral genotype in the sequence position of interest,
the Sanko̔ parsimony is applied to the dendrogram with labeled leaves. The Sanko̔ par-
simony algorithm counts the minimal number of evolutionary changes or mutations in a
phylogenetic tree – here represented by the dendrogram – to ̊nd the most likely ancestral
state. Initially, each node of the phylogenetic tree is assigned a cost vector. This cost vector

5.2 Methods 97

contains one cell for each possible state of the node storing the minimal evolutionary cost,
which is the minimal number of evolutionary changes in the phylogenetic subtree rooted
at this node. As mentioned, in our case, the states are 0 or 1. Initially, the cell in the cost
vector corresponding to the evolutionary state observed in each leaf node is set to 0, since
there are no evolutionary changes necessary to reach the observed state, and all other cells
in the cost vector are set to in̊nity since they are infeasible for the leaf node. The cost
vectors of the inner nodes are still unknown at this point, so they are also assigned in̊nity.
Then, starting from the leaf nodes, the cost vectors of all inner nodes up to the root of the
phylogenetic tree are calculated according to the following formula:

S
(p)
i = min

j
(cij + k

(l)
j) +min

k
(cik + k

(r)
k) (5.1)

where i is the evolutionary state, p denotes the parent node whose cost vector is to be cal-
culated, l and r are the two child nodes of p with already known cost vectors S(l) and S(r),
and cij and ci,k are entries of the cost matrix C containing the costs of evolutionary changes
from state i to state j, which in our case are 0 if i = j and 1 if i ̸= j. Thus, the total cost for
reaching the states of the leaf nodes in the subtree of node p from a state i in node p is the
cost of transitioning from state i to the states of the child nodes of p plus the minimal cost
to reach the states of the leaf nodes from the child nodes.

5.2.2.1 Sanko̔ Algorithm Example
In Figure 5.1, we see an example of a dendrogram with 13 samples (leaf nodes), and the
cost vector for each node in the tree is calculated step-by-step in the ̊gure. Here, our cost
vector S(p) has two possible states representing the genotype. If more than two genotypes
are available for that position in the MSA, we subset our samples and take all combinations
of two genotypes for a pair of positions and calculate a tree based on this subsample. In this
Figure, genotypes are labeled as “o” and “x”, where the left cell in the cost vector represents
the genotype “o” and the right cell represents the “x” genotype. When initializing the tree
with the cost vector of the leaf node, the genotype of that leaf node gets value 0, and the
other genotype is assigned ∞. For example, looking at the left pair of leaf-nodes, the ̊rst
one has the genotype “x” and is initialized with [∞, 0], and the second leaf node has the
genotype “o” and is initialized with [0,∞]. Once the leaf nodes are labeled, we can start
calculating the values for each parent node using Equation 5.1. Because our cost value is of
size two, and we only have two genotypes, we can expand that equation and calculate the
values for each node as follows:

node[o] = min(lcn[o], lcn[x] + 1) +min(rcn[o], rcn[x] + 1)

node[x] = min(lcn[o] + 1, lcn[x]) +min(rcn[o] + 1, rcn[x])

98
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Figure 5.1: Example on how Sanko̔ algorithm works on a dendrogram constructed from
13 samples/sequences. In each step, we see how the score vector is calculated for each inner
nodes using the two child nodes. Figure taken from [58]

where node[o] is the value for genotype “o” in the node, and node[x] the value for genotype
“x”; lcn means “left-child node”, and rcn means “right-child node”. For example, looking at
step 4 in the ̊gure, in the middle we have the calculated vector [1, 2], under that node, we
have two leaf nodes ([0, 2], and [1, 1]), the ̊rst value “1” was calculated with (min(0, 2+1)+

min(1, 1 + 1) = 0 + 1 = 1), and the second value “2” was calculated with (min(0 + 1, 2) +

min(1+1, 1) = 1+1 = 2). The same goes for the root node [4, 4], this was calculated using the
two child nodes ([2, 1] and [2, 4]), and the ̊rst value calculated with (min(2, 1+1)+min(2, 4+

1) = 2+2 = 4), and the second value calculated with (min(2+1, 1)+min(2+1, 4) = 1+3 = 4).

5.3 Implementation 99

5.2.3 Mutation Direction and Counting
This section reuses materials from [58] of which I am a ̊rst co-author

As mentioned in Section 5.2.1, samples or sequences that are close together will probably
have a similar mutation pro̊le and cluster together in the tree. However, variants caused
by epistasis are more likely to occur by samples that are less closely related, and would be
located further from each other on the tree. Furthermore, EpiPAMPAS takes into account the
order in which mutations occur within the dendrogram to distinguish between epistatic and
random e̔ects. The underlying idea is that if there are epistatic interactions between two
protein locations that are being mutated over time, mutation events at these two locations
will most likely not occur independently of each other due to selection pressure. For in-
stance, if two locations a and b are linked by epistasis and a mutation introducing a variant
at location a takes place that decreases the ̊tness of the organism, it is likely that location
b will also be mutated, compensating the e̔ect of the variant at location a. On the other
hand, if locations a and b both have variants compensating each other, it is less likely that
a mutation changing only one of the locations a or b occurs.
After reconstructing the ancestral evolutionary states of the pair of protein locations that

are analyzed for epistasis with the Sanko̔ parsimony, each of the two protein locations is
analyzed for mutation directions with respect to the other location. To this end, mutations
in both directions are counted across the whole dendrogram for each of the two locations. If
somewhere in the dendrogram the protein location under consideration mutates to the same
state (i.e., 0 or 1) as the other location in the pair at the same node in the dendrogram, this
is considered a same direction mutation, while mutations leaving the pair of protein loca-
tions in di̔erent evolutionary states are counted towards the opposite direction mutations.
Pairs of protein locations that are mutated independently are expected to show comparable
numbers of same direction and opposite direction mutations and should thus ̊t into a bino-
mial distribution with a probability of 0.5, while location pairs linked by epistasis do not
mutate independently and are expected to deviate from the binomial distribution. Hence,
to detect epistasis, we apply two-tailed binomial tests with probability 0.5 on the counts of
same direction and opposite direction mutations obtained from the dendrogram for each of
the locations in the pair to obtain p-values. Supplementary Section D.1 and Supplementary
Figure D.1 expand more on this step.

5.3 Implementation
This section reuses materials from [58] of which I am a ̊rst co-author

EpiPAMPAS is mostly written in R and requires a minimum number of external libraries to
run. A Python preprocessing script is used to convert an MSA into several tables, which
is then utilized by the R module. Figure 5.2 presents an example of an MSA comprising

100
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Figure 5.2: An example of an MSA with 5 sequences and 3 variable positions, the middle
table to the left is the 3 possible pairs of these 3 positions in this MSA, the middle right table
is the VCF table with the information related to each sample (0 indexing is used here), the
variant position and the variant value. The last table is the matrix representing the VCF-
style table that is used to build the dendrogram. Figure taken from [58]

̊ve sequences. It illustrates the preprocessing of these sequences by the Python module,
resulting in the generation of a VCF and a table listing all possible pairs of variant loci. Sub-
sequently, the VCF is converted into a matrix, with rows representing samples and columns
representing potential variant positions, and values denoting the “genotype” in the R mod-
ule. For each pair of positions, only the samples that contain that pair of positions in the
matrix are retained. That is to say, in the event that a gap was present at a given position,
such as in sequence 1 position 7, the value in the matrix will be designated as “NA”. The
matrix is then used to construct the dendrogram through the implementation of hierarchical
clustering, and the most probable genotype is reconstructed (the genotype that necessitates
the minimal number of mutations) employing Sanko̔ parsimony.

5.4 Results 101

5.4 Results
5.4.1 Simulated Data
This section reuses materials from [58] of which I am a ̊rst co-author

To test that our dendrogram-based algorithm does actually detect a pair of mutations that
independently happen in the same direction, simulated dendrograms were used. In the ̊rst
step, balanced dendrograms are constructed from n samples, where each node has exactly
two child nodes. We then mark the nodes with the same genotype “0” which denotes that
for a pair of positions, both positions have the wildtype genotype. We start introducing
same direction mutations where both positions mutate to have the same genotype, and
opposite direction mutations where they have di̔erent genotypes. This introduction is done
with di̔erent probabilities, where psame is the probability of introducing same direction
mutations, and popposite is the probability of introducing opposite mutations. We vary psame

between 0 and 0.5 with 0.05 steps, and popposite is de̊ned with the following equation:
popposite = psame

f
where f is a factor that relates between psame and popposite, and takes a

value between 1 and 4.
Mutations are introduced starting from the root node of the tree, where each node is

mutated with probability psame+popposite, and if the mutation is introduced at some node v,
the genotype is propagated through the subtree rooted at v. Here, we limit the psame to 0.5 to
make sure to never have a total probability of over 1, when summing up both probabilities.
This mutation procedure is repeated 100 times for each parameter combination and each
number of samples (10, 50, 100, 500) to get a representative pool of results.
Testing on simulated data con̊rms the validity of our approach (Figure 5.3). We see

that the higher the value for psame
1, the lower the p-values are detected by our method.

Moreover, larger values of f (which result in smaller values for popposite compared to psame)
also result in more signi̊cant p-values. We can also see that the number of samples a̔ects
the p-value reported by our method, where the bigger the sample size is, the more signi̊cant
the reported p-value is.

5.4.2 Viral Data
This section reuses materials from [58] of which I am a ̊rst co-author

Two viral datasets were used for testing our method. First, we used the same dataset of
Iňuenza A hemagglutinins and neuraminidases of subtypes H1, H3 and N1, N2, respec-
tively, as in the [140] study in order to enable a direct comparison with their results. The
second dataset is the HIV-1 envelope gp160 glycoprotein (Env) sequences from HIV-1 sub-
types A, B, and C, taken from the Los Alamos National Laboratory (LANL) HIV Sequence

1Higher psame indicates more mutations in the same direction, but only if psame is larger than popposite

102
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Figure 5.3: Boxplots for the simulated trees. Di̔erent sample sizes were used for this test.
The x-axis represented the di̔erent psame probabilities, the di̔erent colors for the boxes
represent the di̔erent f values, and the y-axis represents the p-value measured by our
method. The green line indicates the 0.05 p-value. Figure taken from [58]

Database [142].

We ran EpiPAMPAS on each MSA of the proteins, EpiPAMPAS then produces a table with all
possible variable pair-positions for each MSA and the corresponding p-value for the pair af-
ter counting the mutations and ̊tting the binomial distribution as described in Section 5.2.3.
As EpiPAMPAS only considers two amino acids at one position at a time, in the cases where

5.4 Results 103

more than two amino acids can be observed in a certain position, we take all combinations
of two amino acids when running EpiPAMPAS, i.e., for a pair of positions, our algorithm can
be run more than once to investigate all combinations, which can lead to iňated p-values
due to multiple testing. This is corrected with Bonferroni correction in those cases. Further-
more, to investigate the potential functional impact of the detected epistatic interactions,
we looked into their location in the corresponding protein three-dimensional structures. For
each protein, a structure from the Protein Data Bank [18] was chosen. For the Iňuenza
proteins we used the same structures as described in [140], and for the HIV-1 envelope we
searched for the most complete structures of gp120 and gp41 (the end products in the env
gene) from the corresponding subtypes using StructMAn [101]. Tables 5.1 and 5.2 show the
number of sequences for each protein MSA, the number of pair-positions with a signi̊cant
p-value after the Bonferroni correction, and the protein structures chosen for each protein.

Protein H1 H3 N1 N2
Number of Sequences 1219 2149 1836 2339
Number of Pairs p-value <0.1 7 33 19 18
Number of Pairs p-value <0.05 3 23 1 7
Number of Pairs p-value <0.01 1 5 0 3
Structure PDB ID 1RUZ 2VIU 3BEQ 1NN2

Table 5.1: Real-world dataset used in this study on Iňuenza A hemagglutinin and neu-
raminidase sequences. Bonferroni multiple tests correction applied. Table taken from [58]

Protein HIV-1
Sub. A

HIV-1
Sub. A

HIV-1
Sub. A

Number of Sequences 223 2035 1265
Number of Pairs p-value <0.1 310 485 320
Number of Pairs p-value <0.05 145 348 202
Number of Pairs p-value <0.01 53 183 105
Structure PDB ID 6B0N 6B0N 6MYY

Table 5.2: Real-world dataset used in this study on HIV-1 Env sequences. Bonferroni mul-
tiple tests correction applied. Table taken from [58]

For the Iňuenza proteins, after ̊ltering pairs with p-value less than 0.05, we were left
with only very few pairs, therefore, we opted to take a more relaxed cuto̔ of 0.1. Notably,
in [140], they predicted many more epistatically interacting pairs, in line with their men-
tioned higher false discovery rate (FDR). Nevertheless, the results of both methods agree
very well (Figure 5.6, right). Both methods detect the same sets of amino acid positions;
however, the predicted interacting pairs (Figure 5.6, left) are largely di̔erent. Only for H1,
we detect three interacting pairs, which were all discovered by [140].

To calculate the pairwise distance between the detected pairs, the sequences weremapped

104
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Figure 5.4: Boxplot with distance distribution of all pairs in a 3D structure (in blue) and
only the epistatic interacting pairs that we detected (in red). Figure taken from [58]

onto their corresponding structures, and the pairwise distances between the nearest atoms
in the corresponding amino acids were calculated. We compared the distance distribution
of detected pairs with the background distance distribution of all amino acids in the cor-
responding protein three-dimensional structures using the Wilcoxon signed-rank test (Ta-
bles 5.3 and 5.4). We see that in iňuenza, the proteins H1, H3, and N1 had a signi̊cant
p-value but only in H3 the distance was signi̊cantly smaller (Figure 5.4). However, with
H1 and N1, the number of pairs was much smaller compared to H3. For HIV1 we see that
the p-value is signi̊cant for subtypes B and C, but looking at Figure 5.4, the average dis-
tances are not that di̔erent. Moreover, the corresponding AUC values are low, indicating
that this signi̊cance probably is simply due to the higher number of detected pairs in these
datasets.
In the HIV1 dataset, looking at the overlap between the pairs for each subtype, we found

that between subtypes A and B only 2 pairs were the same, between A and C also only 2
pairs, and between A and C only 4 pairs overlap; this is a small number compared to the
actual number of pairs for each subtype which is 145, 348, and 202 for subtypes A, B, and
C respectively. This points to the evolutionary diversity between the subtypes that has been
seen before, which adds to the challenges of e̔ectively controlling the virus [264].
In iňuenza, some mutations have been associated with resistance to oseltamivir, e.g.,

mutation in position 274 the mutation from Histidine to Tyrosine (H274T) has been shown

5.4 Results 105

Protein H1 H3 N1 N2
Test statistic W 35391.5 908535.5 6539.5 6885
P-value 0.04 0.005 0.051 0.466
AUC 0.79 0.35 0.97 0.48

Table 5.3: Comparing distances between potentially epistatically interacting pairs detected
using our method for p-value threshold of 0.1 with all pairwise distances in the structure.
Table taken from [58]

Protein HIV-1
Sub. A

HIV-1
Sub. B

HIV-1
Sub. C

Test statistic W 309836.5 1005287 642826
P-value 0.308 0.0002 0.088
AUC 0.52 0.6 0.54

Table 5.4: Comparing distances between potentially epistatically interacting pairs detected
using our method ̊ltered against distances between all amino acid pairs for p-value <0.05.
Table taken from [58]

to give the virus resistance to oseltamivir drug [175]. Moreover, mutations at position 222
between Arginine and Glutamine (R222Q) and at position 234 between Histidine and Ty-
rosine (H234Y) regain the viral resistance against the drug [23]. Both R222Q and H234Y
were detected by our method with signi̊cant p-values.

Comparing our detected positions in the HIV sequences with a list of biologically relevant
residues, such as those in the CD4 binding site or antigenic epitopes taken from [109],
looking at Table 5.5 we see that the fraction of amino acid residues in biologically important
regions from [109] among detected potentially epistatically interacting positions is around
39%, 43%, and 42% for HIV-1 subtypes A, B, and C respectively. For all amino acids in
Env, the fraction of the ones in biologically relevant regions is around 32%. To see if this
increase of percentage is signi̊cant, we ran a Fisher exact test, and we see that for HIV-1
subtypes B and C, the p-value is smaller than 0.05. The structural classes (e.g., interactions
with other proteins or small ligands, core and surface residues) of all detected positions
were evaluated using StructMAn and compared to the background distribution of structural
classes for all Env amino acids (Figure 5.5). Potential epistatically interacting positions
from all three subtypes follow a similar trend with slight depletion from the core compared
to the background. Interestingly, there is no enrichment on the protein-protein interaction
interfaces, which is in a slight contrast with the previous observation, since most biologically
relevant residues from [109] signify an interaction with another protein, and epistatically
interacting residues are enriched among them. Hence, epistatically interacting residues must
be less common in the interaction interfaces between the Envelop subunits in the trimer.

106
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Figure 5.5: Bar plot with distribution of number of detected residues as potential epistatic
pairs against the reference sequence HXB2. Figure taken from [58]

Figure 5.6: This plot is showing the intersection between the individual positions detected
between our method and [140] method, and the intersection of the detected pairs. We see
that the majority of our positions were also detected in their results. However, when it
comes to pairs, the intersection is much smaller, indicating that the pairs we detected are
di̔erent from their pairs. The results represented here are ̊ltered for a p-value smaller
than 0.05 except for N1, where we used 0.1 because there was only one pair detected with
a p-value cuto̔ of 0.05. Figure taken from [58]

5.5 Conclusion and Discussion 107

Protein HIV-1 Sub. A HIV-1 Sub. B HIV-1 Sub. C HXB2
With Annotations 25 72 41 279
Without Annotations 39 93 55 577
Percentage % 39.06 43.63 42.70 32.59
Fisher exact test 0.177 0.0044 0.031 NA

Table 5.5: Here we show the number of annotated positions in HIV-1 envelope protein
taken from [109], we looked at how many of the positions we detected had annotations
compared to the reference protein, and ran a Fisher exact test to see if the iňation in the
number of annotated positions to not annotated positions is more signi̊cant in the positions
we detected. Table taken from [58]

5.5 Conclusion and Discussion
This section reuses materials from [58] of which I am a ̊rst co-author

In this chapter, we presented EpiPAMPAS, a novel statistical method for detecting epistatic
interactions between mutations. Our approach is based on the counting of same-direction
mutations on a dendrogram after reconstructing the most-likely genotype of the ancestors
in the dendrogram. Our method is di̔erent compared to other tree-based methods by not
requiring a phylogenetic tree, which reduces the computational burden, especially for an ex-
haustive method that checks for all mutation-pair combinations. We evaluated our method
through a comparative analysis of both simulated (Section 5.4.1) and real viral protein data
(Section 5.4.2), demonstrating its e̎cacy in the former context. For the viral protein data,
we compared our results to another tree-based method, and we found that EpiPAMPAS iden-
ti̊ed many positions that were also reported by [140], but reported fewer positions in total.
However, the interactions between the positions were detected di̔erently (Figure 5.6). Fur-
thermore, we identi̊ed that some of the epistatic interacting positions EpiPAMPAS detected
are known to be deleterious from the literature, but provide resistance against certain an-
tiviral drugs. From the protein structure perspective, we did not identify a clear signal that
the pairs detected are closer to each other in the 3D protein structure compared to all pos-
sible pairs of mutations (Figure 5.4 and Tables 5.3 and 5.4). One reason for this is that our
statistical de̊nition of epistasis does not rěect the actual ̊tness-based de̊nition. A more
plausible explanation is that the sequence data on viral proteins, despite our comprehen-
sive e̔orts to collect it, is inadequate for detecting epistasis. Two arguments support this
perspective. First, the simulation data demonstrates very good performance. Second, for
certain datasets, we observe a maximum of one pair at p < 0.05. An alternative explanation
could be that the simulation method does not accurately rěect the underlying mechanisms
of epistasis compensation, leading to a positive bias in our simulation results. Ultimately,
we believe that EpiPAMPAS does provide comparable results to other methods that are much
more computationally intensive, and can provide valuable insights in pinpointing potential
epistatically-interacting pairs of mutations before further analysis.

108
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Summary

This dissertation has presented published and unpublished research related to algorith-
mic methods and software toolkits for various genomic analysis, especially, in the ̊eld
of genome graphs and pangenomics. In Chapter 1, the general concepts in this ̊eld were
introduced, speci̊cally the algorithms and toolkits developed so far to solve problems such
as sequence alignment and mapping, sequence assembly, genome graphs, and pangenomes.
In Chapter 2, we presented the concept of a panproteome and PanPA, a software toolkit for
building, indexing, and aligning panproteomes. We de̊ned a panproteome as a collection of
graphs, where each graph represents a multiple sequence alignment of a protein or a protein
cluster. We argued and demonstrated that especially in the case of prokaryotes, building
such panproteomes andmoving to the amino acid space is indeed bene̊cial. We showed that
the amino acid space improves the sequence alignment by comparing PanPA to other linear
reference and graph sequence aligners in the DNA space, where we were able to align more
sequences that would, otherwise, not be aligned by the other tools. We also developed a
frameshift-aware alignment algorithm to improve the alignments of DNA sequences against
panproteomes, enabling PanPA to align raw sequencing reads directly with better precision.
Furthermore, the utility of PanPA in unveiling genetic mechanisms underlying phenotypic
traits, including antimicrobial drug resistance, was demonstrated. Finally, we showed the
ability of PanPA to infer the gene ordering of a genome from its sequences. In Chapter 3, we
presented three software toolkits for working with genome graphs and sequence-to-graph
alignments. First, we presented GFASubgraph, a toolkit and API for manipulating genome
graphs e̔ectively. It o̔ers users various utilities to aid in building their own downstream
analysis. We compared GFASubgraph e̎cacy to several other genome graph toolkits imple-
mented in the Python programming language. Our tool demonstrated the best performance
in terms of memory footprint and processing speed, even when dealing with large graphs.
Next, we introduced extgfa, another software toolkit and API designed for working with
genome graphs, and build upon GFASubgraph. Inspired by the design principles of some
video games, it o̔ers a method for partitioning large graphs and only loading the neces-
sary parts of the graph into memory, with the remaining parts residing on the disk. The
API operates seamlessly behind the scenes to load and unload parts of the graph between
memory and disk, enabling users to investigate and manipulate large graphs on personal
machines with limited memory. Finally, we presented gaftools, a collaborative software
toolkit for working with sequence-to-graph alignments. Gaftools attempts to bridge the

109

110 Summary

gap between the linear reference and the pangenome reference software ecosystem; it pro-
vides utilities for reference graph ordering, indexing and viewing alignments based on their
alignment location, realigning sequences using the Wavefront alignment algorithm, and
other functionalities. A distinguishing feature of the toolkits presented in this chapter is
the utilization of a uniform graph processing module, which underscores the signi̊cance of
designing an e̎cient genome graph programming library. This library then can seamlessly
integrate with other toolkits and pipelines, thereby enhancing the e̎ciency of graph-based
research in the scienti̊c community. Chapter 4 presents unpublished collaborative work
in analyzing and assembling a cancer cell line and its matched normal. In this work, we
employ several sequencing technologies to produce high-quality assemblies and structural
variant sets. Moreover, using the matched normal, we produce a set of somatic mutations
with high con̊dence. Subsequently, we investigate further the e̔ect of subclones and the
heterogeneity in cancer and their negative e̔ect on producing higher-quality assemblies
and structural variants. To facilitate this investigation, we have developed a graph toolkit
called graphdraw, which assists in visualizing graph components, coloring important nodes,
and enabling us to swiftly ascertain the location and impact of subclonal SVs on the assem-
bly graph. Moreover, this graph investigation sheds light on the potential role of assem-
bly graphs in disentangling cancer subclones and haplotypes, and their role in producing
high quality cancer assemblies. Chapter 5 presents EpiPAMPAS, a novel statistical method
designed to detect epistatic interactions between mutations in protein multiple sequence
alignments. A pivotal aspect of the method is its ability to circumvent the construction
of a phylogenetic tree, which is computationally intensive. Instead, it employs a hierar-
chical clustering dendrogram in lieu of the tree, and the Sanko̔ parsimony algorithm to
reconstruct the most probable ancestral states. Subsequently, a mutation direction counting
method is utilized to deduce potential compensating mutations. To assess the e̎cacy of
our method, we tested on both simulated and real datasets. Furthermore, we compared our
tool to another tree-based method and found that EpiPAMPAS identi̊ed several positions
that were also reported by the other method. Additionally, we observed that some of the
epistatically interacting positions detected by our method were previously documented in
the literature as deleterious. Subsequent investigation of the pairs detected in terms of pro-
tein 3D structure, we did not ̊nd a clear signal that these pairs are closer to each other in
3D space. A reason behind this could be that our de̊nition of epistasis does not rěect the
actual ̊tness-based de̊nition; or simply the amount of viral protein data we analyzed was
inadequate and a further collection of data is needed. Finally, the methods presented in this
dissertation seek to bridge the gap towards transitioning to the graph pangenome space.
Furthermore, they underscore the signi̊cance of this transition and the advantages it o̔ers
for the genome research ̊eld. Additionally, they highlight the importance of well-designed
and e̎cient genome graph and sequence-to-graph alignment data structures to address the
various challenges that accompany this transition.

Bibliography
[1] 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature,
526(7571):68–74, Sept. 2015.

[2] L. A. Aaltonen, F. Abascal, A. Abeshouse, H. Aburatani, D. J. Adams, et al. Pan-cancer analysis
of whole genomes. Nature, 578(7793):82–93, Feb. 2020.

[3] M. U. Ahsan, Q. Liu, J. E. Perdomo, L. Fang, and K. Wang. A survey of algorithms for the
detection of genomic structural variants from long-read sequencing data. Nature Methods, 20
(8):1143–1158, June 2023.

[4] T. Akutsu. A linear time pattern matching algorithm between a string and a tree. In Combinato-
rial Pattern Matching, volume 684 of Lecture Notes in Computer Science, pages 1–10, Berlin/Hei-
delberg, 1993. Springer-Verlag.

[5] S. F. Altschul and M. Pop. Chapter 20.1: Sequence alignment. In Handbook of Discrete and
Combinatorial Mathematics. 2nd edition. CRC Press/Taylor and Francis, 2017.

[6] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local alignment search
tool. Journal of Molecular Biology, 215(3):403–410, Oct. 1990.

[7] R. I. Amann, W. Ludwig, and K. H. Schleifer. Phylogenetic identi̊cation and in situ detec-
tion of individual microbial cells without cultivation. Microbiological Reviews, 59(1):143–169,
1995.

[8] A. Amir, M. Lewenstein, and N. Lewenstein. Pattern matching in hypertext. Journal of Algo-
rithms, 35(1):82–99, Apr. 2000.

[9] F. Andreace, P. Lechat, Y. Dufresne, and R. Chikhi. Comparing methods for constructing and
representing human pangenome graphs. Genome Biology, 24(1), Nov. 2023.

[10] F. Y. Aoki, G. Boivin, and N. Roberts. Iňuenza virus susceptibility and resistance to os-
eltamivir. Antiviral Therapy, 12(4 Pt B):603–616, 2007.

[11] H. Ashkenazy, I. Sela, E. Levy Karin, G. Landan, and T. Pupko. Multiple sequence alignment
averaging improves phylogeny reconstruction. Systematic Biology, 68(1):117–130, June 2018.

[12] M. Aydın Akbudak and V. Srivastava. E̔ect of gene order in dna constructs on gene expression
upon integration into plant genome. 3 Biotech, 7(2), May 2017.

[13] R. B. R. Azevedo, R. Lohaus, S. Srinivasan, K. K. Dang, and C. L. Burch. Sexual reproduction
selects for robustness and negative epistasis in arti̊cial gene networks. Nature, 440(7080):
87–90, Mar. 2006.

111

112 Bibliography

[14] S. Bagel, V. Hüllen, B. Wiedemann, and P. Heisig. Impact of gyrA and parC mutations on
quinolone resistance, doubling time, and supercoiling degree of escherichia coli. Antimicrobial
Agents and Chemotherapy, 43(4):868–875, Apr. 1999.

[15] T. M. Baker, S. Waise, M. Tarabichi, and P. Van Loo. Aneuploidy and complex genomic
rearrangements in cancer evolution. Nature Cancer, 5(2):228–239, Jan. 2024.

[16] Bateson, Mendel, and Leighton. Mendel’s principles of heredity, by W. Bateson. Cambridge
[Eng.]University Press„ 1902.

[17] S. A. Benner, M. A. Cohen, and G. H. Gonnet. Amino acid substitution during functionally
constrained divergent evolution of protein sequences. Protein Engineering, Design and Selection,
7(11):1323–1332, 1994.

[18] H. Berman, K. Henrick, and H. Nakamura. Announcing the worldwide protein data bank.
Nature Structurla Biology, 10(12):980, Dec. 2003.

[19] N. Biggs, Lloyd, and R. J. Wilson. Graph theory, 1736-1936. Clarendon Press, Feb. 1986. ISBN
0198539169.

[20] O. R. P. Bininda-Emonds. transalign: using amino acids to facilitate the multiple alignment
of protein-coding DNA sequences. BMC Bioinformatics, 6:156, June 2005.

[21] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities
in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008,
Oct. 2008.

[22] J. D. Bloom, S. T. Labthavikul, C. R. Otey, and F. H. Arnold. Protein stability promotes
evolvability. Proceedings of the National Academy of Sciences of the United States of America
(PNAS), 103(15):5869–5874, Apr. 2006.

[23] J. D. Bloom, L. I. Gong, and D. Baltimore. Permissive secondary mutations enable the evolu-
tion of iňuenza oseltamivir resistance. Science, 328(5983):1272–1275, June 2010.

[24] M.-L. Bondeson, N. Dahl, H. Malmgren, W. J. Kleijer, T. Tönnesen, et al. Inversion of the
ids gene resulting from recombination with ids-related sequences in a common cause of the
hunter syndrome. Human Molecular Genetics, 4(4):615–621, 1995.

[25] J. K. Bon̊eld, J. Marshall, P. Danecek, H. Li, V. Ohan, A. Whitwham, T. Keane, and R. M.
Davies. Htslib: C library for reading/writing high-throughput sequencing data. GigaScience,
10(2), Jan. 2021.

[26] S. Bonhoe̔er, C. Chappey, N. T. Parkin, J. M. Whitcomb, and C. J. Petropoulos. Evidence for
positive epistasis in hiv-1. Science, 306(5701):1547–1550, Nov. 2004.

[27] S. W. Brady, J. A. McQuerry, Y. Qiao, S. R. Piccolo, G. Shrestha, et al. Combating subclonal
evolution of resistant cancer phenotypes. Nature Communications, 8(1), Nov. 2017.

[28] D. Y. C. Brandt, V. R. C. Aguiar, B. D. Bitarello, K. Nunes, J. Goudet, et al. Mapping bias
overestimates reference allele frequencies at the hla genes in the 1000 genomes project phase
i data. G3 Genes|Genomes|Genetics, 5(5):931–941, May 2015.

113

[29] T. A. Brown. Genome anatomies. In Genomes. 2nd edition. Wiley-Liss, 2002.

[30] B. Calippe, X. Guillonneau, and F. Sennlaub. Complement factor h and related proteins in
age-related macular degeneration. Comptes Rendus Biologies, 337(3):178–184, Mar. 2014.

[31] F. Carrat and A. Flahault. Iňuenza vaccine: the challenge of antigenic drift. Vaccine, 25
(39-40):6852–6862, Sept. 2007.

[32] K. Carruthers-Smith. Sliding window minimum implementations. https://people.cs.uct.
ac.za/~ksmith/articles/sliding_window_minimum.html, 2011. [Accessed 20-03-2022].

[33] R. A. Cartwright. Logarithmic gap costs decrease alignment accuracy. BMC Bioinformatics, 7
(1), Dec. 2006.

[34] J. V. Chamary, J. L. Parmley, and L. D. Hurst. Hearing silence: non-neutral evolution at
synonymous sites in mammals. Nature Reviews Genetics, 7(2):98–108, Feb. 2006.

[35] N.-C. Chen, B. Solomon, T. Mun, S. Iyer, and B. Langmead. Reference ̌ow: reducing reference
bias using multiple population genomes. Genome Biology, 22(1), January 2021.

[36] N.-C. Chen, B. Solomon, T. Mun, S. Iyer, and B. Langmead. Reference ̌ow: reducing reference
bias using multiple population genomes. Genome Biology, 22(1):1–17, 2021.

[37] H. Cheng, G. T. Concepcion, X. Feng, H. Zhang, and H. Li. Haplotype-resolved de novo
assembly using phased assembly graphs with hi̊asm. Nature Methods, 18(2):170–175, Feb.
2021.

[38] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengro̔, et al. External-memory
graph algorithms. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’95, page 139–149, USA, 1995. Society for Industrial and Applied Mathematics.
ISBN 0898713498.

[39] R. Chikhi, Y. Dufresne, and P. Medvedev. Constructing and personalizing population
pangenome graphs. Nature Methods, 21(11):1980–1981, Oct. 2024.

[40] D. M. Church, V. A. Schneider, T. Graves, K. Auger, F. Cunningham, et al. Modernizing
reference genome assemblies. PLoS Biology, 9(7):e1001091, July 2011.

[41] A. Clauset, M. E. J. Newman, and C. Moore. Finding community structure in very large
networks. Physical Review E, 70(6), Dec. 2004.

[42] J. C. Clemente, K. Ikeo, G. Valiente, and T. Gojobori. Optimized ancestral state reconstruction
using sanko̔ parsimony. BMC Bioinformatics, 10:51, Feb. 2009.

[43] M. Cobb and N. Comfort. What Rosalind Franklin truly contributed to the discovery of DNA’s
structure. https://www.nature.com/articles/d41586-023-01313-5, 2023. [Accessed
24-01-2025].

[44] P. J. A. Cock, C. J. Fields, N. Goto, M. L. Heuer, and P. M. Rice. The sanger FASTQ ̊le
format for sequences with quality scores, and the solexa/illumina fa0stq variants. Nucleic
Acids Research, 38(6):1767–1771, Dec. 2009.

https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html
https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html
https://www.nature.com/articles/d41586-023-01313-5

114 Bibliography

[45] F. M. Cohan and A. F. Koeppel. The origins of ecological diversity in prokaryotes. Current
Biology, 18(21):R1024–R1034, Nov. 2008.

[46] P. W. Collingridge and S. Kelly. Mergealign: improving multiple sequence alignment perfor-
mance by dynamic reconstruction of consensus multiple sequence alignments. BMC Bioinfor-
matics, 13(1), May 2012.

[47] R. M. Colquhoun, M. B. Hall, L. Lima, L. W. Roberts, K. M. Malone, M. Hunt, et al. Pandora:
nucleotide-resolution bacterial pan-genomics with reference graphs. Genome Biology, 22(1):
267, Sept. 2021.

[48] P. E. C. Compeau, P. A. Pevzner, and G. Tesler. How to apply de bruijn graphs to genome
assembly. Nature Biotechnology, 29(11):987–991, Nov. 2011.

[49] Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises
and challenges. Brie̊ngs in Bioinformatics, 19(1):118–135, Jan. 2018.

[50] Cornell Capra: Computer architecture and programming abstractions at Cornell University.
mygfa. https://github.com/cucapra/pollen/commit/7e9f6207ea9f4321c3664d34a9eca
81c9c9c07ea, 2024.

[51] M. R. Cosenza, B. Rodriguez-Martin, and J. O. Korbel. Structural variation in cancer: Role,
prevalence, and mechanisms. Annual Review Genomics Human Genetics, 23:123–152, Aug.
2022.

[52] F. Dabbaghie. extgfa: A low-memory on-disk representation of genome graphs. bioRxiv, page
2024.11.29.626045, Dec. 2024.

[53] F. Dabbaghie. Gfasubgraph. https://github.com/fawaz-dabbaghieh/gfa_subgraphs/co
mmit/255d48e4ec01f63e126a2b637ee42ed2f7da684c, 2024.

[54] F. Dabbaghie. graphdraw. https://github.com/fawaz-dabbaghieh/graphdrawing_toolk
it/commit/e3ba6d0fa68ec40c13aa6590a95f1ddab746be67, 2024.

[55] F. Dabbaghie. MSA to GFA. https://github.com/fawaz-dabbaghieh/msa_to_gfa/commit/
cffa15d50951e7b3fccf80fdf38849c8840b5d55, 2024.

[56] F. Dabbaghie, J. Ebler, and T. Marschall. BubbleGun: enumerating bubbles and superbubbles
in genome graphs. Bioinformatics, 38(17):4217–4219, Sept. 2022.

[57] F. Dabbaghie, S. K. Srikakulam, T. Marschall, and O. V. Kalinina. PanPA: generation and
alignment of panproteome graphs. Bioinformatics Advances, 3(1), Jan. 2023.

[58] F. Dabbaghie, K. Thedinga, G. A. Bazykin, T. Marschall, and O. Kalinina. EpiPAMPAS: Rapid
detection of intra-protein epistasis via parsimonious ancestral state reconstruction and count-
ing mutations. bioRxiv, page 2024.12.13.628430, Dec. 2024.

[59] P. Dadgostar. Antimicrobial resistance: implications and costs. Infection and drug resistance.
Taylor & Francis, 2019.

[60] J. Daily. Parasail: SIMD c library for global, semi-global, and local pairwise sequence align-
ments. BMC Bioinformatics, 17(1), Feb. 2016.

https://github.com/cucapra/pollen/commit/7e9f6207ea9f4321c3664d34a9eca81c9c9c07ea
https://github.com/cucapra/pollen/commit/7e9f6207ea9f4321c3664d34a9eca81c9c9c07ea
https://github.com/fawaz-dabbaghieh/gfa_subgraphs/commit/255d48e4ec01f63e126a2b637ee42ed2f7da684c
https://github.com/fawaz-dabbaghieh/gfa_subgraphs/commit/255d48e4ec01f63e126a2b637ee42ed2f7da684c
https://github.com/fawaz-dabbaghieh/graphdrawing_toolkit/commit/e3ba6d0fa68ec40c13aa6590a95f1ddab746be67
https://github.com/fawaz-dabbaghieh/graphdrawing_toolkit/commit/e3ba6d0fa68ec40c13aa6590a95f1ddab746be67
https://github.com/fawaz-dabbaghieh/msa_to_gfa/commit/cffa15d50951e7b3fccf80fdf38849c8840b5d55
https://github.com/fawaz-dabbaghieh/msa_to_gfa/commit/cffa15d50951e7b3fccf80fdf38849c8840b5d55

115

[61] A. Danek, S. Deorowicz, and S. Grabowski. Correction: Indexes of large genome collections
on a pc. PLOS ONE, 10(5):e0128172, May 2015.

[62] R. Das and M. Soylu. A key review on graph data science: The power of graphs in scienti̊c
studies. Chemometrics and Intelligent Laboratory Systems, 240:104896, Sept. 2023.

[63] J. J. Davis, A. R. Wattam, R. K. Aziz, T. Brettin, R. Butler, et al. The PATRIC bioinformatics
resource center: expanding data and analysis capabilities. Nucleic Acids Research, 48(D1):
D606–D612, Jan. 2020.

[64] S. Dubois. gfagraphs. https://github.com/dubssieg/gfagraphs/commit/7947b18115fde
ae34aafa91fefa9a057b58b754b, 2024.

[65] D. Duchen, S. Clipman, C. Vergara, C. L. Thio, D. L. Thomas, et al. A hepatitis b virus (hbv) se-
quence variation graph improves sequence alignment and sample-speci̊c consensus sequence
construction for genetic analysis of hbv. bioRxiv, Jan. 2023.

[66] P. V. Dunlap. Microbial diversity. In S. A. Levin, editor, Encyclopedia of Biodiversity (Second
Edition), pages 280–291. Academic Press, Waltham, second edition edition, 2001. ISBN 978-
0-12-384720-1.

[67] R. Durbin. E̎cient haplotype matching and storage using the positional burrows–wheeler
transform (pbwt). Bioinformatics, 30(9):1266–1272, Jan. 2014.

[68] A. Dutta, S. Paul, and C. Dutta. GC‐rich intra‐operonic spacers in prokaryotes: Possible rela-
tion to gene order conservation. FEBS Letters, 584(22):4633–4638, Oct. 2010.

[69] M. Dávila López, J. J. Martínez Guerra, and T. Samuelsson. Analysis of gene order conserva-
tion in eukaryotes identi̊es transcriptionally and functionally linked genes. PLoS ONE, 5(5):
e10654, May 2010.

[70] P. Ebert, P. A. Audano, Q. Zhu, B. Rodriguez-Martin, D. Porubsky, et al. Haplotype-resolved
diverse human genomes and integrated analysis of structural variation. Science, 372(6537),
Apr. 2021.

[71] J. Ebler. callset-comparison. https://github.com/eblerjana/callset-comparison/comm
it/ad8c0f4bcbe4a0d03d6a97fa4573eac77965b1eb, 2024.

[72] J. Ebler, P. Ebert, W. E. Clarke, T. Rausch, P. A. Audano, et al. Pangenome-based genome
inference allows e̎cient and accurate genotyping across a wide spectrum of variant classes.
Nature Genetics, 54(4):518–525, Apr. 2022.

[73] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5):1792–1797, Mar. 2004.

[74] J. M. Eizenga, A. M. Novak, J. A. Sibbesen, S. Heumos, A. Gha̔aari, G. Hickey, et al.
Pangenome graphs. Annual Review of Genomics and Human Genetics, May 2020.

[75] B. Ekim, B. Berger, and R. Chikhi. Minimizer-space de bruijn graphs: Whole-genome assembly
of long reads in minutes on a personal computer. Cell Syst., 12(10):958–968.e6, Oct. 2021.

https://github.com/dubssieg/gfagraphs/commit/7947b18115fdeae34aafa91fefa9a057b58b754b
https://github.com/dubssieg/gfagraphs/commit/7947b18115fdeae34aafa91fefa9a057b58b754b
https://github.com/eblerjana/callset-comparison/commit/ad8c0f4bcbe4a0d03d6a97fa4573eac77965b1eb
https://github.com/eblerjana/callset-comparison/commit/ad8c0f4bcbe4a0d03d6a97fa4573eac77965b1eb

116 Bibliography

[76] J. Espejo Valle-Inclan, N. J. M. Besselink, E. de Bruijn, D. L. Cameron, J. Ebler, et al. A multi-
platform reference for somatic structural variation detection. Cell Genom, 2(6):100139, June
2022.

[77] E. Falconer, M. Hills, U. Naumann, S. S. S. Poon, E. A. Chavez, et al. Dna template strand
sequencing of single-cells maps genomic rearrangements at high resolution. Nature Methods,
9(11):1107–1112, Oct. 2012.

[78] M. Farrar. Striped Smith-Waterman speeds database searches six times over other SIMD im-
plementations. Bioinformatics, 23(2):156–161, Jan. 2007.

[79] D.-F. Feng and R. F. Doolittle. Progressive sequence alignment as a prerequisitetto correct
phylogenetic trees. Journal of Molecular Evolution, 25(4):351–360, Aug. 1987.

[80] J. Figueroa, D. Castro, F. Lagos, C. Cartes, A. Isla, et al. Analysis of single nucleotide polymor-
phisms (snps) associated with antibiotic resistance genes in chilean piscirickettsia salmonis
strains. Journal of Fish Diseases, 42(12):1645–1655, Oct. 2019.

[81] R. D. Finn, J. Clements, and S. R. Eddy. HMMER web server: interactive sequence similarity
searching. Nucleic Acids Research, 39(Web Server issue):W29–37, July 2011.

[82] K. Fischer, P. Ho̔mann, S. Voelkl, N. Meidenbauer, J. Ammer, et al. Inhibitory e̔ect of tumor
cell–derived lactic acid on human t cells. Blood, 109(9):3812–3819, Jan. 2007.

[83] S. Fortunato. Community detection in graphs. Physics Reports, 486(3–5):75–174, Feb. 2010.

[84] W. Fujibuchi. Automatic detection of conserved gene clusters in multiple genomes by graph
comparison and p-quasi grouping. Nucleic Acids Research, 28(20):4029–4036, Oct. 2000.

[85] K. Fukami-Kobayashi, D. R. Schreiber, and S. A. Benner. Detecting compensatory covariation
signals in protein evolution using reconstructed ancestral sequences. Journal of Molecular
Biology, 319(3):729–743, June 2002.

[86] Gamin Industry. How can you optimize memory usage for large open-world games?, 2024.
URL https://www.linkedin.com/advice/0/how-can-you-optimize-memory-usage-large
-open-world-vh7ae. [Accessed 22-11-2024].

[87] E. Garrison and G. Marth. Haplotype-based variant detection from short-read sequencing,
2012.

[88] E. Garrison, J. Sirén, A. M. Novak, G. Hickey, J. M. Eizenga, et al. Variation graph toolkit im-
proves read mapping by representing genetic variation in the reference. Nature Biotechnology,
36(9):875–879, October 2018.

[89] E. Garrison, A. Guarracino, S. Heumos, F. Villani, Z. Bao, et al. Building pangenome graphs.
Nature Methods, 21(11):2008–2012, Oct. 2024.

[90] K. Gerth, S. Pradella, O. Perlova, S. Beyer, and R. Müller. Myxobacteria: pro̊cient producers
of novel natural products with various biological activities–past and future biotechnological
aspects with the focus on the genus sorangium. Journal of Biotechnology, 106(2-3):233–253,
Dec. 2003.

https://www.linkedin.com/advice/0/how-can-you-optimize-memory-usage-large-open-world-vh7ae
https://www.linkedin.com/advice/0/how-can-you-optimize-memory-usage-large-open-world-vh7ae

117

[91] GFA Format Speci̊cation Working Group. Gfa-spec, 2024. URL https://gfa-spec.github
.io/GFA-spec/GFA1.html. [Accessed 18-11-2024].

[92] M. Ghareghani, D. Porubskỳ, A. D. Sanders, S. Meiers, E. E. Eichler, et al. Strand-seq enables
reliable separation of long reads by chromosome via expectationmaximization. Bioinformatics,
34(13):i115–i123, June 2018.

[93] A. J. Gibbs and G. A. Mcintyre. The diagram, a method for comparing sequences: Its use with
amino acid and nucleotide sequences. European Journal of Biochemistry, 16(1):1–11, Sept.
1970.

[94] R. Giegerich, C. Meyer, and P. Ste̔en. A discipline of dynamic programming over sequence
data. Science of Computer Programming, 51(3):215–263, June 2004.

[95] G. B. Gloor, L. C. Martin, L. M. Wahl, and S. D. Dunn. Mutual information in protein mul-
tiple sequence alignments reveals two classes of coevolving positions. Biochemistry, 44(19):
7156–7165, May 2005.

[96] G. Gonnella and S. Kurtz. Gfapy: a ̌exible and extensible software library for handling
sequence graphs in python. Bioinformatics, 33(19):3094–3095, June 2017.

[97] G. Gonnella, N. Niehus, and S. Kurtz. Gfaviz: ̌exible and interactive visualization of GFA
sequence graphs. Bioinformatics, 35(16):2853–2855, Dec. 2018.

[98] S. Goodwin, J. D. McPherson, and W. R. McCombie. Coming of age: ten years of next-
generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351, May 2016.

[99] O. Gotoh. An improved algorithm for matching biological sequences. Journal of Molecular
Biology, 162(3):705–708, 1982.

[100] O. Gotoh. Optimal alignment between groups of sequences and its application to multiple
sequence alignment. Bioinformatics, 9(3):361–370, 1993.

[101] A. Gress, V. Ramensky, J. Büch, A. Keller, and O. V. Kalinina. StructMAn: annotation of
single-nucleotide polymorphisms in the structural context. Nucleic Acids Research, 44(W1):
W463–8, July 2016.

[102] C. Gros, A. D. Sanders, J. O. Korbel, T. Marschall, and P. Ebert. ASHLEYS: automated quality
control for single-cell strand-seq data. Bioinformatics, 37(19):3356–3357, Apr. 2021.

[103] C. Groza, C. Schwendinger-Schreck, W. A. Cheung, E. G. Farrow, I. Thi̔ault, et al. Pangenome
graphs improve the analysis of structural variants in rare genetic diseases. Nature Communi-
cations, 15(1), Jan. 2024.

[104] Y.-F. Guan, G.-R. Li, R.-J. Wang, Y.-T. Yi, L. Yang, et al. Application of next-generation
sequencing in clinical oncology to advance personalized treatment of cancer. Chinese Journal
of Cancer, 31(10):463–470, Oct. 2012.

[105] S. Guindon and O. Gascuel. A simple, fast, and accurate algorithm to estimate large phyloge-
nies by maximum likelihood. Systematic Biology, 52(5):696–704, Oct. 2003.

https://gfa-spec.github.io/GFA-spec/GFA1.html
https://gfa-spec.github.io/GFA-spec/GFA1.html

118 Bibliography

[106] T. Günther and C. Nettelblad. The presence and impact of reference bias on population ge-
nomic studies of prehistoric human populations. PLOS Genetics, 15(7):e1008302, July 2019.

[107] M. H. Guo, L. C. Francioli, S. L. Stenton, J. K. Goodrich, N. A. Watts, et al. Inferring compound
heterozygosity from large-scale exome sequencing data. Nature Genetics, 56(1):152–161, Dec.
2023.

[108] A. Hagberg, P. J. Swart, and D. A. Schult. Exploring network structure, dynamics, and function
using NetworkX. Technical Report LA-UR-08-05495; LA-UR-08-5495, Los Alamos National
Laboratory (LANL), Los Alamos, NM (United States), Jan. 2008.

[109] A. Hake and N. Pfeifer. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies
shows a trend towards resistance over time. PLoS Computation Biology, 13(10):e1005789,
Oct. 2017.

[110] D. Hanahan and R. A. Weinberg. Hallmarks of cancer: The next generation. Cell, 144(5):
646–674, feb 2011.

[111] T. F. Hansen. Why epistasis is important for selection and adaptation: Perspective. Evolution,
67(12):3501–3511, Aug. 2013.

[112] M. Hauser, M. Steinegger, and J. Söding. MMseqs software suite for fast and deep clustering
and searching of large protein sequence sets. Bioinformatics, 32(9):1323–1330, May 2016.

[113] Z. He, A. Wilson, F. Rich, D. Kenwright, A. Stevens, et al. Chromosomal instability and its
e̔ect on cell lines. Cancer Reports, 6(6), Apr. 2023.

[114] D. Heller and M. Vingron. SVIM-asm: structural variant detection from haploid and diploid
genome assemblies. Bioinformatics, 36(22–23):5519–5521, Dec. 2020.

[115] M. Henglin, M. Ghareghani, W. T. Harvey, D. Porubsky, S. Koren, et al. Graphasing: phasing
diploid genome assembly graphs with single-cell strand sequencing. Genome Biology, 25(1),
Oct. 2024.

[116] S. Heniko̔ and J. G. Heniko̔. Amino acid substitution matrices from protein blocks. Pro-
ceedings of the National Academy of Sciences of the United States of America (PNAS), 89(22):
10915–10919, Nov. 1992.

[117] J.-H. Her and R. Ramakrishna. An external-memory depth-̊rst search algorithm for general
grid graphs. Theoretical Computer Science, 374(1):170–180, 2007.

[118] D. Hernandez, P. François, L. Farinelli, M. Østerås, and J. Schrenzel. De novo bacterial genome
sequencing: Millions of very short reads assembled on a desktop computer. Genome Research,
18(5):802–809, Mar. 2008.

[119] R. T. Hersh, R. V. Eck, and M. O. Dayho̔. Atlas of protein sequence and structure, 1966.
Systematic Zoology, 16(3):262, Sept. 1967.

[120] G. Hickey, J. Monlong, J. Ebler, A. M. Novak, J. M. Eizenga, et al. Pangenome graph construc-
tion from genome alignments with minigraph-cactus. Nature Biotechnology, 42(4):663–673,
May 2023.

119

[121] G. Holley and P. Melsted. Bifrost: highly parallel construction and indexing of colored and
compacted de bruijn graphs. Genome Biology, 21(1), Sept. 2020.

[122] T. Hon, K. Mars, G. Young, Y.-C. Tsai, J. W. Karalius, et al. Highly accurate long-read hi̊
sequencing data for ̊ve complex genomes. Scienti̊c Data, 7(1), Nov. 2020.

[123] J. Hopcroft and R. Tarjan. Algorithm 447: e̎cient algorithms for graph manipulation. Com-
munications of the ACM, 16(6):372–378, June 1973.

[124] T. A. Hopf, J. B. Ingraham, F. J. Poelwijk, C. P. I. Schärfe, M. Springer, C. Sander, and D. S.
Marks. Mutation e̔ects predicted from sequence co-variation. Nature Biotechnology, 35(2):
128–135, Jan. 2017.

[125] A. Hosseininasab and W.-J. van Hoeve. Exact multiple sequence alignment by synchronized
decision diagrams. INFORMS Journal on Computing, Sept. 2020.

[126] Y. Hu, L. Fang, C. Nicholson, and K. Wang. Implications of error-prone long-read whole-
genome shotgun sequencing on characterizing referencemicrobiomes. iScience, 23(6):101223,
June 2020.

[127] P. Hugenholtz. Exploring prokaryotic diversity in the genomic era. Genome Biology, 3(2):
reviews0003.1, Jan. 2002.

[128] R. M. Idury and M. S. Waterman. A new algorithm for dna sequence assembly. Journal of
Computational Biology, 2(2):291–306, Jan. 1995.

[129] Illumina. Sequencing Technology | Sequencing by synthesis. https://emea.illumina.com/
science/technology/next-generation-sequencing/sequencing-technology.html, 2020.
[Accessed 25-01-2025].

[130] P. Ivanov, B. Bichsel, H. Mustafa, A. Kahles, G. Rätsch, et al. Astarix: Fast and optimal
sequence-to-graph alignment. In R. Schwartz, editor, Research in Computational Molecular
Biology, pages 104–119, Cham, 2020. Springer International Publishing.

[131] M. Jaillard, L. Lima, M. Tournoud, P. Mahé, A. van Belkum, V. Lacroix, and L. Jacob. A fast
and agnostic method for bacterial genome-wide association studies: Bridging the gap between
k-mers and genetic events. PLoS Genetics, 14(11):e1007758, Nov. 2018.

[132] C. Jain, A. Rhie, H. Zhang, C. Chu, B. P. Walenz, et al. Weighted minimizer sampling improves
long read mapping. Bioinformatics, 36(Suppl_1):i111–i118, July 2020.

[133] D. M. Jordan, S. G. Frangakis, C. Golzio, C. A. Cassa, J. Kurtzberg, Task Force for Neonatal
Genomics, et al. Identi̊cation of cis-suppression of human disease mutations by comparative
genomics. Nature, 524(7564):225–229, Aug. 2015.

[134] I. K. Jordan, I. B. Rogozin, Y. I. Wolf, and E. V. Koonin. Essential genes are more evolutionarily
conserved than are nonessential genes in bacteria. Genome Research, 12(6):962–968, May
2002.

[135] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, et al. Highly accurate protein structure
prediction with alphafold. Nature, 596(7873):583–589, July 2021.

https://emea.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html
https://emea.illumina.com/science/technology/next-generation-sequencing/sequencing-technology.html

120 Bibliography

[136] M. Karasikov, H. Mustafa, G. Rätsch, and A. Kahles. Lossless indexing with counting de bruijn
graphs. Genome Research, 32(9):1754–1764, May 2022.

[137] K. Katoh and D. M. Standley. MAFFT multiple sequence alignment software version 7: im-
provements in performance and usability. Molecular Biology and Evolution, 30(4):772–780,
Apr. 2013.

[138] B. W. Kernighan and S. Lin. An e̎cient heuristic procedure for partitioning graphs. The Bell
System Technical Journal, 49(2):291–307, feb 1970.

[139] B. T. Korber, R. M. Farber, D. H. Wolpert, and A. S. Lapedes. Covariation of mutations in the
V3 loop of human immunode̊ciency virus type 1 envelope protein: an information theoretic
analysis. Proceedings of the National Academy of Sciences of the United States of America (PNAS),
90(15):7176–7180, Aug. 1993.

[140] S. Kryazhimskiy, J. Dusho̔, G. A. Bazykin, and J. B. Plotkin. Prevalence of epistasis in the
evolution of iňuenza a surface proteins. PLoS Genetics, 7(2):e1001301, Feb. 2011.

[141] G. V. Kryukov, L. A. Pennacchio, and S. R. Sunyaev. Most rare missense alleles are deleterious
in humans: implications for complex disease and association studies. The American Journal of
Human Genetics, 80(4):727–739, Apr. 2007.

[142] C. Kuiken, B. Korber, and R. W. Shafer. HIV sequence databases. AIDS Reviews, 5(1):52–61,
Jan. 2003.

[143] A. Lancichinetti and S. Fortunato. Community detection algorithms: A comparative analysis.
Physical Review E, 80(5), Nov. 2009.

[144] C. Lee, C. Grasso, and M. F. Sharlow. Multiple sequence alignment using partial order graphs.
Bioinformatics, 18(3):452–464, Mar. 2002.

[145] R. Leinonen, H. Sugawara, M. Shumway, and International Nucleotide Sequence Database
Collaboration. The sequence read archive. Nucleic Acids Research, 39(Database issue):D19–21,
Jan. 2011.

[146] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10:707, feb 1966.

[147] C. Li, L. Chen, G. Pan, W. Zhang, and S. C. Li. Deciphering complex breakage-fusion-bridge
genome rearrangements with ambigram. Nature Communications, 14(1), Sept. 2023.

[148] H. Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):
3094–3100, Sept. 2018.

[149] H. Li. The graph alignment format (gaf), 2019. URL https://github.com/lh3/gfatools/
blob/master/doc/rGFA.md#the-graph-alignment-format-gaf. [Accessed 18-11-2024].

[150] H. Li. The reference gfa (rgfa) format, 2019. URL https://github.com/lh3/gfatools/blob
/master/doc/rGFA.md#the-reference-gfa-rgfa-format. [Accessed 18-11-2024].

[151] H. Li. gaftools. https://github.com/lh3/gfatools, 2022. [Acessed 16-02-2025].

https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment-format-gaf
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-graph-alignment-format-gaf
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-reference-gfa-rgfa-format
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md#the-reference-gfa-rgfa-format
https://github.com/lh3/gfatools

121

[152] H. Li and R. Durbin. Fast and accurate long-read alignment with Burrows-Wheeler transform.
Bioinformatics, 26(5):589–595, Mar. 2010.

[153] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, et al. The sequence alignment/map
format and SAMtools. Bioinformatics, 25(16):2078–2079, 2009.

[154] H. Li, X. Feng, and C. Chu. The design and construction of reference pangenome graphs with
minigraph. Genome Biology, 21(1):265, oct 2020.

[155] H. Li, S. Wang, S. Chai, Z. Yang, Q. Zhang, et al. Graph-based pan-genome reveals structural
and sequence variations related to agronomic traits and domestication in cucumber. Nature
Communications, 13(1):682, Feb. 2022.

[156] H. Li, M. Marin, andM. R. Farhat. Exploring gene content with pangene graphs. Bioinformatics,
40(7), July 2024.

[157] W.-W. Liao, M. Asri, J. Ebler, et al. A draft human pangenome reference. Nature, 617(7960):
312–324, May 2023.

[158] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity searches. Science, 227
(4693):1435––1441, Mar. 1985.

[159] D. J. Lipman, S. F. Altschul, and J. D. Kececioglu. A tool for multiple sequence alignment.
Proceedings of the National Academy of Sciences, 86(12):4412–4415, June 1989.

[160] Y. H. Liu, C. Luo, S. G. Golding, J. B. Io̔e, and X. M. Zhou. Tradeo̔s in alignment and
assembly-based methods for structural variant detection with long-read sequencing data. Na-
ture Communications, 15(1), Mar. 2024.

[161] M. Lunzer, G. B. Golding, and A. M. Dean. Pervasive cryptic epistasis in molecular evolution.
PLoS Genetics, 6(10):e1001162, Oct. 2010.

[162] D. M. Lyons and A. S. Lauring. Mutation and epistasis in iňuenza virus evolution. Viruses,
10(8):407, Aug. 2018.

[163] U. Manber and S. Wu. Approximate string matching with arbitrary costs for text and hyper-
text. In Advances in Structural and Syntactic Pattern Recognition, volume 5 of Series in Machine
Perception and Arti̊cial Intelligence, pages 22–33. World Scienti̊c Publishing Co Pte Ltd, Feb.
1993.

[164] S. Marco-Sola, J. C. Moure, M. Moreto, and A. Espinosa. Fast gap-a̎ne pairwise alignment
using the wavefront algorithm. Bioinformatics, 37(4):456–463, Sept. 2020.

[165] M. Martin, M. Patterson, S. Garg, S. O. Fischer, N. Pisanti, et al. WhatsHap: fast and accurate
read-based phasing. bioRxiv, page 085050, 14 Nov. 2016.

[166] A. McKenna, M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, et al. The genome analysis
toolkit: A mapreduce framework for analyzing next-generation dna sequencing data. Genome
Research, 20(9):1297–1303, July 2010.

[167] P. Medvedev and M. Pop. What do eulerian and hamiltonian cycles have to do with genome
assembly? PLOS Computational Biology, 17(5):e1008928, May 2021.

122 Bibliography

[168] K. Mehlhorn and U. Meyer. External-Memory Breadth-First Search with Sublinear I/O, page
723–735. Springer Berlin Heidelberg, 2002. ISBN 9783540457497.

[169] Microsoft. Minecraft. https://minecraft.net, 2024. [Accessed 22-11-2024].

[170] J. R. Miller, S. Koren, and G. Sutton. Assembly algorithms for next-generation sequencing
data. Genomics, 95(6):315–327, June 2010.

[171] Minecraft Wiki. Minecraft fandom chunk. https://minecraft.fandom.com/wiki/Chunk,
2024. [Accessed 20-09-2024].

[172] J. Mistry, S. Chuguransky, L. Williams, M. Qureshi, G. A. Salazar, et al. Pfam: The protein
families database in 2021. Nucleic Acids Research, 49(D1):D412–D419, Jan. 2021.

[173] K. I. Mohr. Diversity of Myxobacteria-We only see the tip of the iceberg. Microorganisms, 6
(3), Aug. 2018.

[174] F. Mölder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-Tinch, et al. Sustainable data
analysis with snakemake. F1000 Research, 10(33):33, Jan. 2021.

[175] A. Moscona. Global transmission of oseltamivir-resistant iňuenza. The New England Journal
of Medicine, 360(10):953–956, Mar. 2009.

[176] F. Murtagh and P. Legendre. Ward’s hierarchical agglomerative clustering method: Which
algorithms implement ward’s criterion? Journal of Classi̊cation, 31(3):274–295, Oct. 2014.

[177] E. W. Myers, G. G. Sutton, A. L. Delcher, I. M. Dew, D. P. Fasulo, et al. A whole-genome
assembly of drosophila. Science, 287(5461):2196–2204, Mar. 2000.

[178] G. Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM, 46(3):395–415, May 1999.

[179] E. W. Myers Jr. A history of dna sequence assembly. it - Information Technology, 58(3):
126–132, June 2016.

[180] National LIbrary of Medicine. Query input and database selection, 2024. URL https://blas
t.ncbi.nlm.nih.gov/doc/blast-topics/. [Accessed 18-11-2024].

[181] G. Navarro. Improved approximate pattern matching on hypertext. Theoretical Computer
Science, 237(1):455–463, Apr. 2000.

[182] M. Nawaz, K. Sung, O. Kweon, S. Khan, S. Nawaz, et al. Characterisation of novel mutations
involved in quinolone resistance in escherichia coli isolated from imported shrimp. Interna-
tional Journal of Antimicrobial Agent, 45(5):471–476, May 2015.

[183] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology, 48(3):443–453,
1970.

[184] A. D. Neverov, S. Kryazhimskiy, J. B. Plotkin, and G. A. Bazykin. Coordinated evolution of
iňuenza a surface proteins. PLoS Genetics, 11(8):e1005404, Aug. 2015.

https://minecraft.net
https://minecraft.fandom.com/wiki/Chunk
https://blast.ncbi.nlm.nih.gov/doc/blast-topics/
https://blast.ncbi.nlm.nih.gov/doc/blast-topics/

123

[185] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review E, 69(2), Feb. 2004.

[186] C. Niel, C. Sinoquet, C. Dina, and G. Rocheleau. A survey about methods dedicated to epistasis
detection. Frontiers in Genetics, 6, Sept. 2015.

[187] C. Notredame, D. G. Higgins, and J. Heringa. T-co̔ee: a novel method for fast and accurate
multiple sequence alignment 1 1edited by j. thornton. Journal of Molecular Biology, 302(1):
205–217, Sept. 2000.

[188] S. Nurk, S. Koren, A. Rhie, M. Rautiainen, A. V. Bzikadze, et al. The complete sequence of a
human genome. Science, 376(6588):44–53, Apr. 2022.

[189] NYU Center For Genomics and Systems Biology in New York and Abu Dhabi. Fastq format,
2024. URL https://learn.gencore.bio.nyu.edu/ngs-file-formats/fastq-format/.
[Accessed 18-11-2024].

[190] N. A. O’Leary, M. W. Wright, J. R. Brister, S. Ciufo, D. Haddad, et al. Reference sequence
(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.
Nucleic Acids Research, 44(D1):D733–45, Jan. 2016.

[191] K. O’Neill, M. Hills, M. Gottlieb, M. Borkowski, A. Karsan, et al. Assembling draft genomes
using contibait. Bioinformatics, 33(17):2737–2739, May 2017.

[192] PacBio. Sequencing 101: from DNA to discovery — the steps of SMRT sequencing. https:
//www.pacb.com/blog/steps-of-smrt-sequencing/, 2020. [Accessed 26-01-2025].

[193] Paci̊cBioscience. pbsv. https://github.com/PacificBiosciences/pbsv, 2018. [Accessed
27-02-2024].

[194] Paci̊cBioscience. pbsv. https://github.com/PacificBiosciences/svpack, 2020. [Ac-
cessed 05-05-2024].

[195] Paci̊cBiosciences. How does CCS work. https://ccs.how/how-does-ccs-work.html,
2020. [Accessed 02-02-2025].

[196] S. Pani, F. Dabbaghie, T. Marschall, and A. Soylev. gaftools: a toolkit for analyzing and
manipulating pangenome alignments. bioRxiv, Dec. 2024.

[197] K. Park and D. K. Kim. String matching in hypertext. In Z. Galil and E. Ukkonen, editors,
Combinatorial Pattern Matching, 6th Annual Symposium, CPM 95, Espoo, Finland, July 5-7, 1995,
Proceedings, volume 937 of Lecture Notes in Computer Science, pages 318–329. Springer, Aug.
1995.

[198] B. Paten, A. M. Novak, J. M. Eizenga, and E. Garrison. Genome graphs and the evolution of
genome inference. Genome Research, 27(5):665–676, May 2017.

[199] H. Peltola, H. Söderlund, and E. Ukkonen. Seqaid: a dna sequence assembling program based
on a mathematical model. Nucleic Acids Research, 12(1Part1):307–321, 1984.

[200] N. T. Perna, G. Plunkett, 3rd, V. Burland, B. Mau, J. D. Glasner, et al. Genome sequence of
enterohaemorrhagic escherichia coli O157:H7. Nature, 409(6819):529–533, Jan. 2001.

https://learn.gencore.bio.nyu.edu/ngs-file-formats/fastq-format/
https://www.pacb.com/blog/steps-of-smrt-sequencing/
https://www.pacb.com/blog/steps-of-smrt-sequencing/
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/svpack
https://ccs.how/how-does-ccs-work.html

124 Bibliography

[201] P. A. Pevzner. l-tuple dna sequencing: Computer analysis. Journal of Biomolecular Structure
and Dynamics, 7(1):63–73, Aug. 1989.

[202] L. M. Phan, S.-C. J. Yeung, and M.-H. Lee. Cancer metabolic reprogramming: importance,
main features, and potentials for precise targeted anti-cancer therapies. Cancer Biol. Med., 11
(1):1–19, Mar. 2014.

[203] P. C. Phillips. Epistasis — the essential role of gene interactions in the structure and evolution
of genetic systems. Nature Reviews Genetics, 9(11):855–867, Nov. 2008.

[204] R. Pinard, A. de Winter, G. J. Sarkis, M. B. Gerstein, K. R. Tartaro, et al. Assessment of
whole genome ampli̊cation-induced bias through high-throughput, massively parallel whole
genome sequencing. BMC Genomics, 7(1), Aug. 2006.

[205] D. Pinkel and D. G. Albertson. Comparative genomic hybridization. Annual Review of Genomics
and Human Genetics, 6(1):331–354, Sept. 2005.

[206] E. D. Pleasance, R. K. Cheetham, P. J. Stephens, D. J. McBride, S. J. Humphray, et al. A
comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463
(7278):191–196, Dec. 2009.

[207] Polydin Art Studio. The essentials of video game optimization, 2023. URL https://polydi
n.com/video-game-optimization/. [Accessed 22-11-2024].

[208] A. Poon and L. Chao. The rate of compensatory mutation in the DNA bacteriophage phiX174.
Genetics, 170(3):989–999, July 2005.

[209] M. Pop. Genome assembly reborn: recent computational challenges. Brie̊ngs in Bioinformatics,
10(4):354–366, May 2009.

[210] R. Poplin, P.-C. Chang, D. Alexander, S. Schwartz, T. Colthurst, et al. A universal snp and
small-indel variant caller using deep neural networks. Nature Biotechnology, 36(10):983–987,
Sept. 2018.

[211] D. Porubsky, S. Garg, A. D. Sanders, J. O. Korbel, V. Guryev, et al. Dense and accurate whole-
chromosome haplotyping of individual genomes. Nature Communications, 8(1), Nov. 2017.

[212] D. Porubsky, P. Ebert, P. A. Audano, M. R. Vollger, W. T. Harvey, et al. Fully phased human
genome assembly without parental data using single-cell strand sequencing and long reads.
Nature Biotechnology, 39(3):302–308, Dec. 2020.

[213] D. Porubský, A. D. Sanders, N. van Wietmarschen, E. Falconer, M. Hills, et al. Di-
rect chromosome-length haplotyping by single-cell sequencing. Genome Research, 26(11):
1565–1574, Sept. 2016.

[214] E. Rakici, A. Altunisik, K. Sahin, and O. B. Ozgumus. Determination and molecular analysis
of antibiotic resistance in gram-negative enteric bacteria isolated from pelophylax sp. in the
eastern black sea region. Acta Veterinaria Hungarica, 69(3):223–233, Sept. 2021.

[215] T. Rausch, T. Zichner, A. Schlattl, A. M. Stütz, V. Benes, et al. DELLY: structural variant
discovery by integrated paired-end and split-read analysis. Bioinformatics, 28(18):i333–i339,
Sept. 2012.

https://polydin.com/video-game-optimization/
https://polydin.com/video-game-optimization/

125

[216] M. Rautiainen and T. Marschall. GraphAligner: rapid and versatile sequence-to-graph align-
ment. Genome Biology, 21(1):253, Sept. 2020.

[217] M. Rautiainen, V. Mäkinen, and T. Marschall. Bit-parallel sequence-to-graph alignment. Bioin-
formatics, 35(19):3599–3607, Oct. 2019.

[218] M. Rautiainen, S. Nurk, B. P. Walenz, G. A. Logsdon, D. Porubsky, et al. Telomere-to-telomere
assembly of diploid chromosomes with verkko. Nature Biotechnology, 41(10):1474–1482, Feb.
2023.

[219] F. Riaz and K. M. Ali. Applications of graph theory in computer science. In 2011 Third
International Conference on Computational Intelligence, Communication Systems and Networks,
pages 142–145, jul 2011.

[220] M. Roberts, W. Hayes, B. R. Hunt, S. M. Mount, and J. A. Yorke. Reducing storage require-
ments for biological sequence comparison. Bioinformatics, 20(18):3363–3369, Dec. 2004.

[221] J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz, and J. P.
Mesirov. Integrative genomics viewer. Nature Biotechnology, 29(1):24–26, Jan. 2011.

[222] I. B. Rogozin. Computational approaches for the analysis of gene neighbourhoods in prokary-
otic genomes. Brie̊ngs in Bioinformatics, 5(2):131–149, Jan. 2004.

[223] I. B. Rogozin, K. S. Makarova, D. A. Natale, A. N. Spiridonov, R. L. Tatusov, et al. Congru-
ent evolution of di̔erent classes of non-coding DNA in prokaryotic genomes. Nucleic Acids
Research, 30(19):4264–4271, Oct. 2002.

[224] J. I. Rojas Echenique, S. Kryazhimskiy, A. N. Nguyen Ba, and M. M. Desai. Modular epistasis
and the compensatory evolution of gene deletion mutants. PLOS Genetics, 15(2):e1007958,
Feb. 2019.

[225] M. Ronaghi, M. Uhlén, and P. Nyrén. A sequencing method based on real-time pyrophosphate.
Science, 281(5375):363–365, July 1998.

[226] N. Rusk. Torrents of sequence. Nature Methods, 8(1):44–44, Dec. 2010.

[227] M. L. M. Salverda, E. Dellus, F. A. Gorter, A. J. M. Debets, J. van der Oost, et al. Initial
mutations direct alternative pathways of protein evolution. PLoS Genetics, 7(3):e1001321,
Mar. 2011.

[228] A. D. Sanders, E. Falconer, M. Hills, D. C. J. Spierings, and P. M. Lansdorp. Single-cell template
strand sequencing by strand-seq enables the characterization of individual homologs. Nature
Protocols, 12(6):1151–1176, May 2017.

[229] A. D. Sanders, S. Meiers, M. Ghareghani, D. Porubsky, H. Jeong, et al. Single-cell analy-
sis of structural variations and complex rearrangements with tri-channel processing. Nature
Biotechnology, 38(3):343–354, Dec. 2019.

[230] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-terminating inhibitors.
Proceedings of the National Academy of Sciences, 74(12):5463–5467, Dec. 1977.

126 Bibliography

[231] T. Sanju. SOLiD Sequencing: Principle, Steps, Applications, Diagram. https://microbenot
es.com/solid-sequencing/, 2024. [Accessed 26-01-2025].

[232] R. Sanjuán, J. M. Cuevas, A. Moya, and S. F. Elena. Epistasis and the adaptability of an rna
virus. Genetics, 170(3):1001–1008, July 2005.

[233] D. Sanko̔. Minimal mutation trees of sequences. SIAM Journal on Applied Mathematics, 28
(1):35–42, 1975.

[234] D. Sanko̔ and P. Rousseau. Locating the vertices of a steiner tree in an arbitrary metric space.
Mathematical Programming, 9(1):240–246, Dec. 1975.

[235] A. Santos-Lopez, C. Bernabe-Balas, M. Ares-Arroyo, R. Ortega-Huedo, A. Hoefer, et al. A natu-
rally occurring single nucleotide polymorphism in a multicopy plasmid produces a reversible
increase in antibiotic resistance. Antimicrobial Agents and Chemotherapy, 61(2), Feb. 2017.

[236] H. Satam, K. Joshi, U. Mangrolia, S. Waghoo, G. Zaidi, et al. Next-generation sequencing
technology: Current trends and advancements. Biology, 12(7):997, July 2023.

[237] C. P. Schaaf, J. Wiszniewska, and A. L. Beaudet. Copy number and snp arrays in clinical
diagnostics. Annual Review of Genomics and Human Genetics, 12(1):25–51, Sept. 2011.

[238] S. Schbath, V. Martin, M. Zytnicki, J. Fayolle, V. Loux, and J.-F. Gibrat. Mapping reads on a
genomic sequence: An algorithmic overview and a practical comparative analysis. Journal of
Computational Biology, 19(6):796–813, June 2012.

[239] S. Schleimer, D. S. Wilkerson, and A. Aiken. Winnowing: local algorithms for document
̊ngerprinting. In Proceedings of the 2003 ACM SIGMOD international conference on Management
of data, SIGMOD ’03, pages 76–85, June 2003.

[240] I. Schrauwen, Y. Rajendran, A. Acharya, S. Öhman, M. Arvio, et al. Optical genome mapping
unveils hidden structural variants in neurodevelopmental disorders. Scienti̊c Reports, 14(1),
May 2024.

[241] S. Secomandi, G. R. Gallo, R. Rossi, C. Rodríguez Fernandes, E. D. Jarvis, et al. Pangenome
graphs and their applications in biodiversity genomics. Nature Genetics, 57(1):13–26, Jan.
2025.

[242] J. Shang, J. Zhang, Y. Sun, D. Liu, D. Ye, and Y. Yin. Performance analysis of novel methods
for detecting epistasis. BMC Bioinformatics, 12(1), Dec. 2011.

[243] B. Shapiro, A. Rambaut, O. G. Pybus, and E. C. Holmes. A phylogenetic method for detecting
positive epistasis in gene sequences and its application to RNA virus evolution. Molecular
Biology and Evolution, 23(9):1724–1730, Sept. 2006.

[244] S. L. Sheetlin, Y. Park, M. C. Frith, and J. L. Spouge. Frameshift alignment: statistics and
post-genomic applications. Bioinformatics, 30(24):3575–3582, Dec. 2014.

[245] A. Shlien and D. Malkin. Copy number variations and cancer. Genome Medicine, 1(6):62,
2009.

https://microbenotes.com/solid-sequencing/
https://microbenotes.com/solid-sequencing/

127

[246] F. Sigaux. Cancer genome or the development of molecular portraits of tumors. Bulletin de
l’Académie Nationale de Médecine, 184(7):1441–7; discussion 1448–9, 2000.

[247] J. Siren, N. Valimaki, and V. Makinen. Indexing graphs for path queries with applications in
genome research. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(2):
375–388, Mar. 2014.

[248] J. Siren, N. Valimaki, and V. Makinen. Indexing graphs for path queries with applications in
genome research. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11(2):
375–388, March 2014.

[249] J. Sirén, J. Monlong, X. Chang, A. M. Novak, J. M. Eizenga, et al. Pangenomics enables geno-
typing of known structural variants in 5202 diverse genomes. Science, 374(6574):abg8871,
Dec. 2021.

[250] J. Sirén, P. Eskandar, M. T. Ungaro, G. Hickey, J. M. Eizenga, et al. Personalized pangenome
references. Nature Methods, 21(11):2017–2023, Sept. 2024.

[251] T. F. Smith and M. S. Waterman. Identi̊cation of common molecular subsequences. Journal
of Molecular Biology, 147(1):195–197, Mar. 1981.

[252] M. Smolka, L. F. Paulin, C. M. Grochowski, D. W. Horner, M. Mahmoud, et al. Detection of
mosaic and population-level structural variants with Snȋes2. Nature Biotechnology, 42(10):
1571–1580, Jan. 2024.

[253] A. Soylev, J. Ebler, S. Pani, T. Rausch, J. Korbel, and T. Marschall. Svarp: pangenome-based
structural variant discovery. bioRxiv, Feb. 2024.

[254] R. Staden. A strategy of dna sequencing employing computer programs. Nucleic Acids Research,
6(7):2601–2610, 1979.

[255] T. N. Starr and J. W. Thornton. Epistasis in protein evolution. Protein Science, 25(7):
1204–1218, July 2016.

[256] P. J. Stephens, C. D. Greenman, B. Fu, F. Yang, G. R. Bignell, et al. Massive genomic rear-
rangement acquired in a single catastrophic event during cancer development. Cell, 144(1):
27–40, Jan. 2011.

[257] J. F. Storz. Compensatory mutations and epistasis for protein function. Current Opinion in
Structural Biology, 50:18–25, June 2018.

[258] G. G. Sutton, O. White, M. D. Adams, and A. R. Kerlavage. TIGR assembler: A new tool
for assembling large shotgun sequencing projects. Genome Science and Technology, 1(1):9–19,
1995.

[259] Y. Suzuki. Natural selection on the iňuenza virus genome. Molecular Biology and Evolution,
23(10):1902–1911, Oct. 2006.

[260] J. Tamames. Evolution of gene order conservation in prokaryotes. Genome Biology, 2(6), June
2001.

128 Bibliography

[261] L. Tang. Circular consensus sequencing with long reads. Nature Methods, 16(10):958–958,
Sept. 2019.

[262] M. Tarabichi, A. Salcedo, A. G. Deshwar, M. Ni Leathlobhair, J. Wintersinger, D. C. Wedge,
P. Van Loo, Q. D. Morris, and P. C. Boutros. A practical guide to cancer subclonal reconstruc-
tion from DNA sequencing. Nature Methods, 18(2):144–155, Feb. 2021.

[263] M. Tarabichi, A. Salcedo, A. G. Deshwar, M. Ni Leathlobhair, J. Wintersinger, et al. A prac-
tical guide to cancer subclonal reconstruction from dna sequencing. Nature Methods, 18(2):
144–155, Jan. 2021.

[264] B. S. Taylor, M. E. Sobieszczyk, F. E. McCutchan, and S. M. Hammer. The challenge of HIV-1
subtype diversity. The New England Journal of Medicine, 358(15):1590–1602, Apr. 2008.

[265] H. Tettelin, V. Masignani, M. J. Cieslewicz, C. Donati, D. Medini, et al. Genome analysis of
multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial “pan-
genome”. Proceedings of the National Academy of Sciences, 102(39):13950–13955, 2005.

[266] The Eddy-Rivas Laboratory. Hmmer. https://github.com/EddyRivasLab/hmmer, 1997.
Accessed 06-03-2023.

[267] The SAM/BAM Format Speci̊cationWorking Group. Sequence alignment/map optional ̊elds
speci̊cation, 2024. URL https://github.com/samtools/hts-specs/blob/master/SAMta
gs.pdf. [Accessed 18-11-2024].

[268] J. D. Thompson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-speci̊c gap
penalties and weight matrix choice. Nucleic Acids Research, 22(22):4673–4680, 1994.

[269] M. Toft and O. A. Ross. Copy number variation in parkinson’s disease. Genome Medicine, 2
(9), Sept. 2010.

[270] E. Ukkonen. Algorithms for approximate string matching. Information and Control, 64(1):
100–118, Jan. 1985.

[271] I. A. E. M. van Belzen, A. Schönhuth, P. Kemmeren, and J. Y. Hehir-Kwa. Structural vari-
ant detection in cancer genomes: computational challenges and perspectives for precision
oncology. npj Precision Oncology, 5(1), Mar. 2021.

[272] J. C. Venter, M. D. Adams, E. W. Myers, P. W. Li, R. J. Mural, et al. The sequence of the
human genome. Science, 291(5507):1304–1351, Feb. 2001.

[273] J. Vila, J. Ruiz, P. Goñi, and M. T. De Anta. Detection of mutations in parc in quinolone-
resistant clinical isolates of escherichia coli. Antimicrobial Agents and Chemotherapy, 40(2):
491–493, Feb. 1996.

[274] T. J. Vision. Gene order in plants: a slow but sure shȗe. New Phytologist, 168(1):51–60,
Aug. 2005.

[275] I. M. Wallace. M-Co̔ee: combining multiple sequence alignment methods with t-co̔ee.
Nucleic Acids Research, 34(6):1692–1699, Mar. 2006.

https://github.com/EddyRivasLab/hmmer
https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf
https://github.com/samtools/hts-specs/blob/master/SAMtags.pdf

129

[276] T. S. K. Wan. Cancer cytogenetics: Methodology revisited. Annals of Laboratory Medicine, 34
(6):413–425, Nov. 2014.

[277] L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of Compu-
tational Biology, 1(4):337–348, 1994.

[278] Y. Wang, Y. Zhao, A. Bollas, Y. Wang, and K. F. Au. Nanopore sequencing technology, bioin-
formatics and applications. Nature Biotechnology, 39(11):1348–1365, Nov. 2021.

[279] J. H.Ward, Jr. Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, 58(301):236–244, Mar. 1963.

[280] R. L. Warren, G. G. Sutton, S. J. M. Jones, and R. A. Holt. Assembling millions of short dna
sequences using SSAKE. Bioinformatics, 23(4):500–501, Dec. 2006.

[281] J. D. Watson and F. H. C. Crick. Molecular structure of nucleic acids: A structure for deoxyri-
bose nucleic acid. Nature, 171(4356):737–738, Apr. 1953.

[282] M. A. Webber, M. M. C. Buckner, L. S. Redgrave, G. I̊ll, L. A. Mitchenall, et al. Quinolone-
resistant gyrase mutants demonstrate decreased susceptibility to triclosan. Journal of Antimi-
crobial Chemotherapy, 72(10):2755–2763, Oct. 2017.

[283] T. Weber, M. R. Cosenza, and J. Korbel. Mosaicatcher v2: a single-cell structural variations
detection and analysis reference framework based on strand-seq. Bioinformatics, 39(11), Oct.
2023.

[284] A. M. Wenger, P. Peluso, W. J. Rowell, P.-C. Chang, R. J. Hall, et al. Accurate circular con-
sensus long-read sequencing improves variant detection and assembly of a human genome.
Nature Biotechnology, 37(10):1155–1162, Aug. 2019.

[285] R. Wernersson and A. G. Pedersen. RevTrans: Multiple alignment of coding DNA from aligned
amino acid sequences. Nucleic Acids Research, 31(13):3537–3539, July 2003.

[286] A. Westbrook, J. Ramsdell, T. Schuelke, L. Normington, R. D. Bergeron, W. K. Thomas, et al.
PALADIN: protein alignment for functional pro̊ling whole metagenome shotgun data. Bioin-
formatics, 33(10):1473–1478, May 2017.

[287] M. Wheldale. The inheritance of ̌ower colour in antirrhinum majus. Proceedings of the Royal
Society of London, Series B, 79(532):288–305, July 1907.

[288] W. B. Whitman, D. C. Coleman, and W. J. Wiebe. Prokaryotes: the unseen majority. Proceed-
ings of the National Academy of Sciences, 95(12):6578–6583, 1998.

[289] R. R. Wick, M. B. Schultz, J. Zobel, and K. E. Holt. Bandage: interactive visualization of de
novo genome assemblies. Bioinformatics, 31(20):3350–3352, Oct. 2015.

[290] K. C. Worley, S. Richards, and J. Rogers. The value of new genome references. Experimental
Cell Research, 358(2):433–438, Sept. 2017.

[291] L. Yang. A practical guide for structural variation detection in the human genome. Current
Protocols in Human Genetics, 107(1), Aug. 2020.

130 Bibliography

[292] X. Yu, D. Zhang, and Q. Song. Pro̊les of gyra mutations and Plasmid-Mediated quinolone
resistance genes in shigella isolates with di̔erent levels of ̌uoroquinolone susceptibility.
Infection and Drug Resistance, 13:2285–2290, July 2020.

[293] C. Zhang, Q. Wang, Y. Li, A. Teng, G. Hu, et al. The historical evolution and signi̊cance of
multiple sequence alignment in molecular structure and function prediction. Biomolecules, 14
(12):1531, Nov. 2024.

[294] Y. Zhou, Z. Zhang, Z. Bao, H. Li, Y. Lyu, et al. Graph pangenome captures missing heritability
and empowers tomato breeding. Nature, 606(7914):527–534, June 2022.

[295] J. Zhu, H.-J. Tsai, M. R. Gordon, and R. Li. Cellular stress associated with aneuploidy. Devel-
opmental Cell, 44(4):420–431, Feb. 2018.

Appendix A

PanPA: PanProteome Graph Builder
and Aligner

A.1 Supplementary Tables
This section reuses material from [57] of which I am the ̊rst author

In this section we present three supplementary tables:

1. Table A.1 contains the raw alignments numbers of the Salmonella enterica sequence
alignments using three di̔erent tools.

2. Table A.2 contains the di̔erent intersection numbers between the di̔erent aligners

3. Table A.3 shows the e̔ect of the di̔erent parameters on PanPA’s performance in the
context of its comparison against HMMER.

Aligner BWA GraphAligner PanPA
Num. alignments 2,699,361 26,009,077 8,684,414
Num. ̊ltered alignment 50% length 1,645,224 4,399,906 7,897,707
Num. ̊ltered alignments 50% id 1,645,224 4,399,906 7,897,707
Num. ̊ltered alignments 70% id 1,645,222 4,384,913 5,273,200

Table A.1: Number of alignments from the 4,839,981 sequences from Salmonella enterica
annotations using BWA, GraphAligner and PanPA. We see that GraphAligner produced the
most alignments. However, after ̊ltering for an alignment length of at least 50% of the
original sequence size, the number of alignments drops drastically. For PanPA, most of the
alignments were long enough and only a small number got ̊ltered. Table taken from [57].

131

132 PanPA: PanProteome Graph Builder and Aligner

Intersection Number of align-
ments ≥ 50% identity

Number of align-
ments ≥ 70% identity

Not Aligned 744,964 1,012,744
BWA 1 1
BWA - GraphAligner 4,084 4,090
BWA - PanPA 1,294 1,294
GraphAligner 12,488 52,357
Graphaligner - PanPA 1,694,181 1,643,479
PanPA 744,033 487,086
BWA - GraphAligner - PanPA 1,638,936 1,638,930

Table A.2: Intersection of unique alignments of 4,839,981 sequences representing the an-
notations from Salmonella enterica assemblies from RefSeq, against E. coli linear reference,
pangenome, and panproteome using BWA, GraphAligner, and PanPA respectively. Table taken
from [57].

Number
of se-
quences

Identity
cuto̔
percent-
age

Num-
ber of
threads

Graph
limit

Align-
ing time
mm:ss

total time
mm:ss

memory

10,000 40 1 10 15:47 20:14 2.2 Gb
10,000 40 10 10 2:13 7:25 2.2 Gb
10,000 10 1 10 16:09 20:57 2.2 Gb
10,000 10 10 10 2:16 7:02 2.2 Gb
Table A.3: The e̔ect of the di̔erent parameters on PanPA’s performance, we see that
the identity cuto̔ does not a̔ect the alignment time much, and this makes sense, as the
alignment will be performed anyway to get an alignment identity score and check whether
it is below or above the cuto̔. Table taken from [57].

A.2 MSA to GFA
A simple command-line toolkit was ̊rst developed for converting an MSA to a GFA, it is
called msa_to_gfa. Later, its internal functionality was integrated into PanPA.
This toolkit takes an MSA as an input and generates a DAG output in the GFA format. How-
ever, it outputs the path as a separate JSON ̊le where each original sequence in the MSA
has one continuous path in the output GFA. Moreover, it generates groups of sequences
that share the same path. This grouping can be useful when coloring the paths in a graph
visualizer like gfaviz [97], where each path will get a color, and when many paths share
the same node, it can overcrowd the visualization. Therefore, a group can have one color
and it represents several paths.

Supplementary Figure A.1 shows an example of six sequences in an MSA, their variations
generate three bubbles. using msa_to_gfa, we convert the MSA to a GFA and get a JSON
̊le with the paths for each sequence and three groups, where the sequences that follow the
same path are grouped together. Namely, sequences 1, 2, and 3 form group 1; sequence 4

A.3 Random Sequences Selection Mechanism 133

Figure A.1: First Step using the subcommand build_graph: taking the six sequences here
that have three heterozygous positions. Running the command will output a graph in GFA
format and the groups information as a JSON ̊le. Same sequences are grouped together.
Where the JSON ̊le has information to which sequences belong to which group, and the
path in the graph for each group. Second Step using the subcommand add_paths: Taking
the graph outputted from the ̊rst step and the JSON ̊le, users can either choose to add
all grapus paths to the graph with --all_groups or select a subset of groups to add with
--some_groups. For example, User can choose to visualize only Group 1 or only seq 6.
Graph visualized using gfaviz and paths are colored using the groups in the JSON ̊le.

forms group 2; and sequences 5 and 6 form group 3.

A.3 Random Sequences Selection Mechanism
This section reuses material from [57] of which I am the ̊rst author

The 32,289 sequences from the E. coli panproteome that were chosen for testing were chosen
at random using a script that can be found on PanPA’s repository, it takes two arguments as
input, both integers from 0 to 100 representing the percentage of di̔erent protein clusters
to choose at random, and how many sequences to choose from each MSA. We gave the script
the inputs 10 and 5, which then chooses at random 10% of the protein clusters, and then

134 PanPA: PanProteome Graph Builder and Aligner

from each cluster chooses 5% of the sequences at random. Because we know from which
cluster each sequence belongs to, we can calculate the number of matches after doing the
alignments.

A.4 Aligning to Sparse MSAs
This section reuses material from [57] of which I am the ̊rst author

To further evaluate and test the limits of PanPA, we tried to build a graph and align se-
quences back to a protein family, we took an MSA from Pfam (PF00006.28) representing
the ATP Synthase Alpha/Beta family. Due to the nature of protein families, the MSAs tend
to be very sparse as the sequences are evolutionary-related, but in terms of sequence iden-
tity, it is rather low. In cases like this, the graph resulting from the MSA tends to also be
sparse, i.e., contains many nodes representing small substrings and many edges. For this
protein family, the MSA contained 40,339 sequences. It took PanPA around 3 seconds to
build the GFA, and about 2 minutes to align back a sample of 1,000 sequences of the same
MSA back using 1 thread. This is relatively high compared to a more conserved MSA, for
example, taking the MSA representing the gene Araa from the E. coli panproteome which
contains 21,657 sequences and it only took PanPA about 10 seconds to align a sample of
1,000 sequences back to this graph using 1 thread.
The case of the ATP family can be considered an extreme case, as this MSA is quite sparse
with many gaps, and the graph constructed consists of 13,463 nodes with a total concate-
nated sequence of length 15,303. Therefore, PanPA needs to build for each query sequence,
a DP table the size of n × 15303 where n is the size of the query sequence. Moreover, the
average number of incoming edges has an e̔ect here: in this example, for instance, each
node had - on average - 5 incoming edges, which means that for calculating each cell in the
DP table, PanPA needs to follow 5 di̔erent paths and calculate the scores before choosing
the best one. However, this is an extreme case of an MSA and PanPA can still handle such
graphs and alignments, albeit slower.

A.5 Indexing Time and Space
This section reuses material from [57] of which I am the ̊rst author

Supplementary Figures A.2 and A.3 show the relationship between the di̔erent indexing
parameters and the indexing time and size, respectively. We can see that there is a tradeo̔
between time and index size, as extracting k-mers as seeds is faster than extracting (w, k)-
minimizers. However, the index size is bigger when the seeds are k-mers. This is expected,
as minimizers only take one k-mer out of a window of size w, which means that it includes
less seeds in total in the ̊nal index, compared to taking each k-mer in the sequences as a

A.6 Command line tools and Parameters 135

Figure A.2: This ̊gure plots the relationship between the di̔erent parameters chosen to
build the index, and the user time it took in seconds. We see that extracting k-mers is always
faster than (w, k)-minimizers, which is expected, as extracting a single k-mer requires less
operations than extracting a window of k-mers and taking the minimum.

seed for the index.

A.6 Command line tools and Parameters
A.6.1 Alignment comparison of S. enterica protein sequences
For aligning the DNA sequences from S. enterica against the E. coli reference genome, we
use BWA with the following parameters:
$ bwa mem e_coli_reference_GCF_000005845.2_ASM584v2.fasta

salmonella_refseqdna.fasta -t 60 >

salmonella_refseqdna_ecoli_ref_genome_bwa.sam

136 PanPA: PanProteome Graph Builder and Aligner

Figure A.3: This ̊gure plots the relationship between the di̔erent parameters chosen to
build the index, and the index ̊le size, which also represents the index size. We see that
when using k-mers index, the idnex size is bigger, compared to (w, k)-minimizers. This is
expected, as a k-mer index saves each k-mer, while the (w, k)-minimizers only take one k-
mer from a window, which then requires less k-mers or seeds to be stored in the index in
total.

We used GraphAligner for aligning S. enterica DNA sequences against E. coli pangenome
that was built using minigraph with the following parameters:
$ GraphAligner -f salmonella_refseq_dna.fasta -g e_coli_pangenome.

gfa -a salmonella_refseqdna_ecoli_pangenome.gaf -x vg --threads

60 2> graph_align.log

for building the pangenome , these commands were used

this command is the initial one to build a graph

minigraph -xggs -t20 e_coli_reference_GCF_000005845.2_ASM584v2.

fasta e_coli_reference_GCF_000005845.2_ASM584v2.fasta >

e_coli_pangenome.gfa

updating the graph by adding one assembly every step

assemblies_locations.txt is a list of each E. coli assembly to

update the graph

$ while read r;do minigraph -xggs -t20 e_coli_pangenome.gfa $r >

tmp && mv tmp e_coli_pangenome.gfa;done < assemblies_locations.

txt

PanPA was used with the following parameters:
$ PanPA --log_file salmonella_aa.log align -d e_coli_gfa/ --index

A.6 Command line tools and Parameters 137

index_k_5_w_5_seed_lim_10.pickle -r salmonella_aa.fasta.gz -o

salmonella_aa_ecoli_panproteome.gaf --min_id_score 0.5 --cores

50 2> panpa_time.log

A.6.2 Aligning short reads parameters
For aligning the short reads a sample of S. enterica from SRA database with accession number
SRR22756191. The following command was used for BWA:
$ bwa mem -t 5 reference_ecoli_GCF_000005845/ SRR22756191.fasta >

alignments_SRR22756191.sam

For PanPA, the following command was used:
$ PanPA --log_file running_new_fs_panpa.log align -d

index_k_5_w_3_seed_lim_0.pickle -r SRR22756191.fasta --dna -c 10

-o SRR22756191_ecoli_panproteome_sf_panpa.gaf --min_id_score

0.35 --seed_limit 20

A.6.3 Comparison with HMMER parameters
The following parameters were used with PanPA to align the 10,000 sequences of S. enterica
against the E. coli panproteome.
$ PanPA --log_file panpa_alignment_10k_10core.log align -d

e_coli_gfa/ --index e_coli_msas_index_k5_w3_no_limit.index -r

random_10k_sequences.fasta -c 10 -o panpa_10k_alignments_0.4

min_10core.gaf --min_id_score 0.4 --seed_limit 10

As for running HMMER, ̊rst, we need to convert each MSA into an HMM pro̊le using
hmmbuild

#!/bin/bash

home_dir=e_coli_hmms/

msa_dir=/e_coli_msa/

start=`date +%s`

for f in $msa_dir/*;

do

base_fasta=$(basename --suffix .fasta $f)

hmmbuild $base_fasta.hmm $f

#echo $base_fasta.hmm

#echo $f

done

138 PanPA: PanProteome Graph Builder and Aligner

end=`date +%s`

echo it took `expr $end - $start` seconds to run hmmer on all

clusters > ../hmmer_time.txt

Compressing all the hmms into one file using hmmpress

$ hmmpress all_hmms

which would produced an indexed file with all hmmer profiles

for search hmmsearch was used

$ hmmsearch --cpu 10 --tblout random_10k_sequences.txt -o

hmmsearch_10k_output_mt.txt -A hmmsearch_10k_alignment.sto

all_hmms random_10_sequences.fasta

The table produced by HMMER has the sequence hits against pro̊les, which we used to match
with the alignments produced by PanPA

A.6.4 Gene Order Analysis parameters
In this experiment, we aligned genome assemblies back to a selection of gene graphs to ̊nd
the order of these genes in these assemblies. We ̊rst needed to cut the assemblies into
smaller overlapping sequences, as the complete genome assembly is too big to build one DP
table for; we used a custom script for extracting these sequences (the script is available on
the github repository of PanPA)
$ python3 extract_seqs_from_ref.py reference_file.fna 10000 >

overlapping_sequences.fasta

Before aligning back these sequences against the graphs, we need to generate an index for
the graphs of interest, we used the following parameters
$ PanPA --log_file build_index.log build_index -d gene_msas/ -o

k_5_w_4_index -k 5 -w 4 --seed_limit 20

We can now use the index built and the overlapping sequences to align to the gene graphs
of interest
$ PanPA --log_file align_ref.log align -d gfas/ --dna --index

k_5_w_4_index -r overlapping_sequences.fasta -o

overlapping_sequences.gaf --cores 2 --min_id_score 0.9 --

seed_limit 10

We can then analyze the output GAF ̊le to infer the gene order, this is done using a custom
script that is also present on PanPA’s repository.
$ python3 get_order_from_gaf.py overlapping_sequences.gaf

Appendix B

Graph toolkits: GFASubgraphs,
extgfa, and gaftools

B.1 GFA representation in the GFA class
Below, shows how the GFA in Figure 1.6 is stored in the GFA class in Python.

1 from GFASubgraphs.Graph import Graph

2 graph = Graph("example.gfa")

3 # to retrieve the edges at the end of node s1 for

4 print(graph['s1'].end)

5 # {('s3', 0, 2), ('s2', 1, 4)}

6 # We see how s1 connects to s3 from its start and to s2 from its end

7 # Looking at s2 end for example , graph['s2'].end, we get

8 graph['s2'].end

9 # {('s1', 1, 4)}

10 # indicating that s2 end connects to s1 end with an overlap of 4

B.2 Bi-Connected Component Detection
The bi-connected algorithm used attempts to ̊nd articulation points and bi-connected com-
ponents using a non-recursive depth-̊rst search that tracks the highest level reached by
back edges in the DFS tree. A node is an articulation point if there is no back edge from any
successor to any predecessor in the DFS tree. By tracking all edges traversed by the DFS, we
can obtain the bi-connected components, since all edges of a bi-component will be traversed
consecutively between articulation points.

B.3 GFA APIs Benchmarking
In order to compare to the di̔erent Python APIs for working with GFA graph, we used the
following script that implements a simple component ̊nding algorithm based on breadth-

139

140 Graph toolkits: GFASubgraphs, extgfa, and gaftools

̊rst search algorithm, and we interfaced with each tool according to their description.
1 import GFASubgraph.Graph

2 import gfapy

3 import gfagraphs

4 import mygfa

5
6 def get_neighbors(nodeid , graph , library):

7 if library in {0, 1}: # gfasubgraph

8 return graph[nodeid].neighbors()

9
10 if library == 2: # gfapy

11 node = graph.try_get_segment(nodeid)

12 return [x.to_name for x in node.all_references] + [x.from_name for x in node.

all_references]

13
14 if library == 3: # gfagraphs

15 neighbors = set()

16 for e in graph.get_edges(nodeid):

17 neighbors.add(e[0][0])

18 neighbors.add(e[0][1])

19 return list(neighbors)

20
21 def bfs(graph , start , library):

22 visited = set() # To keep track of visited nodes

23 queue = deque([start]) # Initialize the queue with the starting node

24
25 while queue:

26 node = queue.popleft() # Dequeue a node

27 if node not in visited: # Only process if it's not visited

28 visited.add(node) # Mark the node as visited

29
30 # Add all unvisited neighbors to the queue

31 neighbors = get_neighbors(node, graph , library)

32 for neighbor in neighbors:

33 if neighbor not in visited:

34 queue.append(neighbor)

35 return visited

36
37
38 def find_component(graph , start_node , visited , library):

39 queue = []

40 cc = set()

41 queue.append(start_node)

42 visited.add(start_node)

43 while len(queue) > 0:

44 start = queue.pop()

45 if start not in cc:

46 cc.add(start)

47 else:

B.3 GFA APIs Benchmarking 141

48 continue

49
50 visited.add(start)

51 neighbors = get_neighbors(start , graph , library)

52 for n in neighbors:

53 if n not in visited:

54 queue.append(n)

55 return cc

142 Graph toolkits: GFASubgraphs, extgfa, and gaftools

Appendix C

Multi-Platform Investigation in
Cancer Structural Variants and
Subclones

C.1 Alignments
For aligning the long reads, both pbmm2 and minimap2 were used. We aligned against both
the CHM13-T2T and GRCh38 human genome references. For indexing and calculating align-
ment depth, samtools 1.6 was used. We needed to run alignments with pbmm2 because
the output alignments are needed for using pbsv caller. However, internally, pbmm2 uses
minimap2 and produce similar results. The following commands were used for the align-
ments:
these are the versions for pbmm2 and

pbmm2 : 1.13.1 (commit v1.13.1)

pbbam : 2.5.0 (commit v2.5.0)

pbcopper : 2.4.0 (commit v2.4.0)

boost : 1.81

htslib : 1.17

minimap2 : 2.26

zlib : 1.2.13

example pbmm2 parameters

$ pbmm2 align --log-level INFO -J 4 -j 6 --preset CCS --sort --bam-

index BAI --sample "BL2087" --rg '@RG\tID:m64093_221017_073615 '

and an example command for minimap2

$./minimap2 -ax map-hifi -t 10 /home/fawaz/projects/cancer_project

/chm13_t2t_ref/chm13v2.0.fa temp/h2087_reads.fastq.gz

143

144 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Figure C.1: ASHLEYS prediction for the good cells in each run of strand-seq sequencing. For
the match normal BL2087 we ended up with 53 good cells, for H2087 Plate 1 we only had
5 good cells, for H2087 Plate 2 we got 23 good cells, and for H2087 Plate 3 we got 40 good
cells.

For Illumina whole-genome short reads, bwa mem 0.7.17-r1188was used for alignments
with default parameters.

Figure C.1 shows the predictions obtained by ASHLEYS for all the plates for both cell
lines.

C.2 Structural Variants Calling
Figure C.2 shows a bar plot for the numbers of the SV types for each chromosome for both
cell lines.

(1) Using the alignments produced by pbmm2, we can run pbsv 2.9.0 commit v2.9.0-2-

gce1559a. The following commands were used for the structural variants calling with pbsv:
first we need to run pbsv discover

$ pbsv discover --hifi -b human_chm13v2.0_maskedY_rCRS.trf.bed --

region $i $in_bam.bam $in_bam.$i.svsig.gz

C.2 Structural Variants Calling 145

Figure C.2: Bar plots for the 5 di̔erent SV caller showing the distribution of the di̔erent
SV types for each chromosome. At each chromosome on the x-axis, the left bar is for the
BL2087 cell line and the right bar is for the H2087 cell line.

146 Multi-Platform Investigation in Cancer Structural Variants and Subclones

this is looped for each chromosome separately and the tandem

repeats are used from here

https://github.com/PacificBiosciences/pbsv/tree/master/

annotations

then we need to run pbsv call on each chromosome

$ pbsv call -j 4 $ref $in_bam.*.svsig.gz $in_bam.pbsv.vcf

(2) Delly2 was used on both short and long reads variant calling and copy number
variation calling. We used version 1.2.6 that uses Boost version 1.74.0 and HTSlib

version 1.15.1. First, duplicate aligned reads needed to be marked, this was done
using sambamba 1.0.0 LDC 1.28.1 / DMD v2.098.1 / LLVM12.0.0 / bootstrap LDC -

the LLVM D compiler (1.28.1). default parameters were used for sambamba markdup,
and the output was indexed with samtools 1.6. For getting the copy number variations
using delly2 cnv we need mappability maps, which can be found in https://gear-genom
ics.embl.de/data/delly/. For the long reads, the author of delly2 suggested the param-
eters used. For short Illumina reads, to mark the duplicates, samtools fixmates was ̊rst
used then samtools markdup was used to mark the duplicated, before running delly2 with
default parameters.
to run Delly2 on long reads for SV calling, we first need to mark

the duplicate reads with sambamb

$ sambamba markdup input.bam output.bam

$ samtools index output.bam

once duplicates are marked, we used delly lr

$ delly lr -g chm13.fa -o structural_variants.vcf in_bam.bam

For calling copy number variations

parameters recommended by Delly's author Tobias Rausch

$ delly cnv -i 10000 -j 10000 -w 10000 -g chm13.fa -m T2T-CHM13v1

.1.fa.r101.s501.gz -c in_bam.delly.cnv.cov.gz -o in_bam.delly.

cnv.bcf in_bam.bam >> delly_cnv_t2t.log 2>&1

To run delly on the short reads alignemnts , it requires sorted,

indexed, and duplicate -marked bam files

$ samtools sort -n -o tmp_sorted.bam -O BAM alignment.bam

$ samtools fixmates -m tmp_sorted.bam fixmates.bam

$ samtools sort -O sorted_fixmates.bam tmp_fixmates.bam

$ samtools markdup -r -s sorted_fixmates.bam final.bam

$ delly call -g example/ref.fa -o sr.bcf example/sr.bam

$ bcftools convert -O v $in_bam.delly.cnv.bcf > $in_bam.delly.cnv.

https://gear-genomics.embl.de/data/delly/
https://gear-genomics.embl.de/data/delly/

C.2 Structural Variants Calling 147

Figure C.3: Plot outputted by Mosaicatcher that colors the di̔erent variants found for
each cell in the strand-seq over all the chromosomes. From this visualization, we can see
there are two distinct signals that we believe corresponds to the two di̔erent subclones in
the cancer sample.

vcf

(3) We used sniffles2 version 2.2 for calling the variants. It also requires a BED ̊les
with the tandem repeats and we used the same one that was used for running pbsv
$ sniffles --input $in_bam.bam --reference chm13.fa --vcf $in_bam.

sniffles.vcf --tandem-repeats human_chm13v2.0_maskedY_rCRS.trf.

bed --threads 6

(4) pav version 2.3.4 for calling the variants on the assemblies produced by PGAS. Default
parameters were used.
(5) We also used SVIM-asm version 1.0.3 to call structural variants on the assemblies
produced by PGAS, and default parameters were used.
(6) We also used Hificnv version 0.1.7-70e9988 for calling copy number variation on
the long-reads alignments produced by pbmm2.
$ hificnv --bam $in_bam.bam --ref chm13.fa --threads 6 --output-

prefix $in_bam >> hificnv_bl2087_t2t.log 2>&1

148 Multi-Platform Investigation in Cancer Structural Variants and Subclones

Figure C.4: Example on how the node coloring command from graphdraw, colors certain
nodes based on the graph alignments provided. In this case, this was a bubble chain from
an assembly graph produced by mixing both cancer and matched norma long reads. The
long-reads are then aligned back to the graph and used as an input for the command.

Figure C.5: This ̊gure shows part of the graph extracted with graphdraw, where a somatic
insertion a̔ects a subset of the cancer raw unitigs produced from hifiasm assembly, which
causes a bubble in the graph. The alignments are visualized with IGV [221] and the graph
visuzlied with Bandage. This bubble can indicate the di̔erence between the two subclones.

Appendix D

EpiPAMPAS: Epistasis Detection Using
Parsimonious Ancestral State
Reconstruction and Mutation
Counting

This appendix reuses materials from [58] of which I am the ̊rst co-author

D.1 Mutation Direction Counting
Once we ̊nished with the Sanko̔ algorithm and constructed the state of the inner nodes,
i.e., reconstruct the most likely genotype of the inner nodes. We traverse the tree starting
from the root and count the number of same and opposite direction mutations. We do two
counting runs; ̊rst, we consider the ̊rst position in the protein position-pair as constant and
count the mutation direction in the second position (as seen in Supplementary Figure D.1).
Second, we consider the second position in the protein position-pair as constant and count
the mutation direction of the ̊rst position.
Supplementary Figure D.1 also shows the two tables of the two possible counts, where same
direction mutations are the sum (b2 + c2) and opposite direction mutations are the sum
(a2 + d2).
In our method, we expect that variants/positions that do not have an epistatic interaction
would ̊t a binomial distribution with a probability of 50%, and the ones with an epistatic
interaction would deviate from this distribution. EpiPAMPAS o̔ers the user to do a two-sided
or one-sided binomial distribution, where a one-sided binomial can be then used to test if
the count of one direction occurs more often than the other direction.

149

150
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Figure D.1: The tree shows the same direction and opposite direction mutations of the
second position (Pos2) while keeping (Pos1) constant. In red, is one event in the inner tree
we are looking at, where we count 1 for the same direction mutation (top red box) if the
mutation in the second position follows the ̊rst position and mutates to the same genotype,
and count 1 for opposite direction mutations (bottom red box) if the mutation results in
di̔erent genotypes. Figure taken from [58]

D.2 Supplementary Figures 151

D.2 Supplementary Figures
Supplementary Figure D.2 showcases the di̔erent Venn diagrams for the comparison be-
tween EpiPAMPAS results and the results from [140]. Each row in the ̊gure represents
a di̔erent protein, the venn diagrams on the left are for the intersection of the positions
detected by both methods, and the ones on the right show the intersection of the pairs
detected.
Supplementary Figure D.3 shows scatter plots between the 1D and the 3D distance of

the pairs detected in the proteins.

152
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Figure D.2: Intersection between the positions and the pairs of positions EpiPAMPAS de-
tected and the method from [140] for each of the viral proteins H1, H3, N1, and N2. We can
see that the overlap of positions detected is big. However, the intersection when it comes to
the pairs of interacting positions detected is rather small between the two methods. Figure
taken from [58]

D.2 Supplementary Figures 153

Figure D.3: Scatter plot of the 1D vs 3D distance of the pairs detected with EpiPAMPAS for
H1, H3, N1, N2, HIV1 subtype a, HIV1 subtype b, and HIV1 subtype c using the structures
1RUZ, 2VIU, 3BEQ, 1NN2, 5C7K, 5C7K, and 6MYY respectively. We see that there is a trend
where the longer the 1D distance, the longer the 3D distance. However, we would expect
more of a trend where the 3D distance is smaller indicating that the pairs detected have
some interaction in the 3D structure. Figure taken from [58]

154
EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction

and Mutation Counting

Appendix E

Code Availability

The following list provides the URLs of the software and toolkits developed as part of this
thesis:

1. The implementation of PanPA is available as an open-source code under the MIT license
here: https://github.com/fawaz-dabbaghieh/PanPA

2. The implementation of msa_to_gfa is available as an open-source code under the MIT
license here: https://github.com/fawaz-dabbaghieh/msa_to_gfa

3. The implementation of GFASubgraph is available as an open-source code under the
MIT license here: https://github.com/fawaz-dabbaghieh/gfa_subgraphs

4. The implementation of extgfa is available as an open-source code under the MIT
license here: https://github.com/fawaz-dabbaghieh/extgfa

5. The implementation of gaftools is available as an open-source code under the MIT
license here: https://github.com/marschall-lab/gaftools

6. The implementation of EpiPAMPAS is available as an open-source code under the MIT
license here: https://github.com/kalininalab/EpiPAMPAS

7. The implementation of graphdraw is available as an open-source code under the MIT
license here: https://github.com/fawaz-dabbaghieh/graphdrawing_toolkit

155

https://github.com/fawaz-dabbaghieh/PanPA
https://github.com/fawaz-dabbaghieh/msa_to_gfa
https://github.com/fawaz-dabbaghieh/gfa_subgraphs
https://github.com/fawaz-dabbaghieh/extgfa
https://github.com/marschall-lab/gaftools
https://github.com/kalininalab/EpiPAMPAS
https://github.com/fawaz-dabbaghieh/graphdrawing_toolkit

156 Code Availability

Appendix F

Published articles underlying this
thesis

F.1 BubbleGun: enumerating bubbles and superbubbles in genome
graphs

Themanuscript “BubbleGun: enumerating bubbles and superbubbles in genome graphs” [56]
was published in Bioinformatics. Author information, author contributions, license and copy-
right information are listed in the subsections below.

F.1.1 Authors
Fawaz Dabbaghie, Jana Ebler, Tobias Marschall.

F.1.2 Contribution
As stated in the manuscript:
T.M. and F.D. designed the project and wrote the paper. F.D. implemented BubbleGun. J.E.
helped with the bubble validation pipeline.

F.1.3 License and copyright information
As stated in the online version of the manuscript:
This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

157

https://creativecommons.org/licenses/by/4.0/

158 Published articles underlying this thesis

F.2 PanPA: generation and alignment of panproteome graphs
The manuscript “PanPA: generation and alignment of panproteome graphs” [57] was pub-
lished in Bioinformatics Advances. Author information, author contributions, license and
copyright information are listed in the subsections below.

F.2.1 Authors
Fawaz Dabbaghie, Sanjay K. Srikakulam, Tobias Marschall, Olga V. Kalinina.

F.2.2 Contribution
As stated in the manuscript:
F.D., T.M., and O.V.K. conceived the study. F.D. wrote PanPA, ran experiments, and wrote
the manuscript. S.K.S. contributed to part of the code. T.M. and O.V.K. supervised the
work and edited the manuscript. All authors read and approved the ̊nal version of the
manuscript.

F.2.3 License and copyright information
As stated in the online version of the manuscript:
This is an Open Access article distributed under the terms of the Creative Commons At-
tribution License (https://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original
work is properly cited.

F.3 extgfa: a low-memory on-disk representation of genome
graphs

The manuscript “extgfa: a low-memory on-disk representation of genome graphs” [52] was
published as a preprint in bioRxiv. Author information, author contributions, license and
copyright information are listed in the subsections below.

F.3.1 Authors
Fawaz Dabbaghie.

F.3.2 Contribution
This manuscript only has myself as an author and I am responsible for all the work in the
manuscript.

https://creativecommons.org/licenses/by/4.0/

F.4 gaftools: a toolkit for analyzing and manipulating pangenome alignments 159

F.3.3 License and copyright information
As stated in the online version of the manuscript:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a
license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0
International license http://creativecommons.org/licenses/by-nc/4.0/.

F.4 gaftools: a toolkit for analyzing andmanipulating pangenome
alignments

The manuscript “gaftools: a toolkit for analyzing and manipulating pangenome align-
ments” [196] was published as a preprint in bioRxiv. Author information, author contribu-
tions, license and copyright information are listed in the subsections below.

F.4.1 Authors
Samarendra Pani, Fawaz Dabbaghie, Tobias Marschall*, and Arda Söylev*.
The * indicates shared last authorship.

F.4.2 Contribution
The contribution is not mentioned in the preprint. However, S.P is the ̊rst author, and
both T.M and A.S share the last authorship and supervised the work. As for this work,
I contributed to the internal GFA class, graph ordering, and parallelizing the realignment
step. I also contributed to writing the manuscript.

F.4.3 License and copyright information
As stated in the online version of the manuscript:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a
license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0
International license http://creativecommons.org/licenses/by-nc/4.0/.

F.5 EpiPAMPAS: Rapid detection of intra-protein epistasis via par-
simonious ancestral state reconstruction and counting mu-
tations

The manuscript “EpiPAMPAS: Rapid detection of intra-protein epistasis via parsimonious an-
cestral state reconstruction and counting mutations” [58] was published as a preprint in
bioRxiv. Author information, author contributions, license and copyright information are
listed in the subsections below.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

160 Published articles underlying this thesis

F.5.1 Authors
Fawaz Dabbaghie*, Kristina Thedinga*, Georgii A Bazykin, TobiasMarschall†, Olga V. Kalinina†.
The * indicates shared ̊rst authorship, and the † indicates shared last authorship.

F.5.2 Contribution
The contribution is not mentioned in the preprint. However, K.T developed the original
statistical method and did the simulated data experiments. I developed themethod further to
work on protein sequences and performed all the experiments on the real viral data obtained
from G.B, and compared the results to another method. Both T.M and O.V.K supervised the
work and share last authorship.

F.5.3 License and copyright information
As stated in the online version of the manuscript:
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a
license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0
International license http://creativecommons.org/licenses/by-nc/4.0/.

http://creativecommons.org/licenses/by-nc/4.0/

	Statement
	Abstract
	Kurzfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction and Background
	Genomes
	Genome Sequencing
	Sequence Alignment
	Genome Assembly
	Variant Calling

	Pangenomes
	Sequence-to-Graph Alignment

	File Formats
	FASTA and FASTQ Formats
	The SAM and BAM Alignment formats
	Graphical Fragment Assembly Format
	Graph Alignment Format (GAF)

	Outline

	PanPA: PanProteome Graph Builder and Aligner
	Introduction
	Methods
	Building Seed Index from MSAs
	Generating a Directed Acyclic Graph from a MSA
	Aligning Query Sequences

	Implementation
	Indexing
	Generating Graphs
	Aligning

	Validation of PanPA
	Building an E. coli Panproteome
	Validating Alignments on a Panproteome of E. coli
	Runtime for the E. coli Panproteome
	Alignment Robustness Validation

	Results
	Aligning Unseen Sequences from E. coli
	Comparison of PanPA, BWA and GraphAligner Using S. enterica Sequences
	Aligning S. enterica Illumina Short Reads to the E. coli genome, pangenome, and panproteome
	Using PanPA to Display Phenotypic Traits: a Case of Antimicrobial Resistance in E. coli
	Comparing against HMMER
	Gene Order Analysis with PanPA

	Conclusion and Discussion

	Software Toolkits for Genome and Pangenome Graphs
	Introduction
	GFASubgraph and GFA class
	GFA Class
	GFA Class Benchmarking

	extgfa for External Memory GFA Representation
	extgfa Method
	extgfa Implementation
	extgfa Chunked and Unchunked Graphs Comparison

	gaftools for Working with Pangenome Alignments
	gaftools Commands
	Comparison and Benchmarking

	Conclusion and Discussion

	Multi-Platform Investigation in Cancer Structural Variants and Subclones
	Introduction
	Data
	Results
	Genome Assembly
	Structural and Copy Number Variation Calling
	SV Calls Intersection
	Graph Drawing

	Conclusion and Discussion

	EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction and Mutation Counting
	Introduction
	Methods
	Constructing the Dendrogram
	Sankoff Algorithm
	Mutation Direction and Counting

	Implementation
	Results
	Simulated Data
	Viral Data

	Conclusion and Discussion

	Summary
	Bibliography
	PanPA: PanProteome Graph Builder and Aligner
	Supplementary Tables
	MSA to GFA
	Random Sequences Selection Mechanism
	Aligning to Sparse MSAs
	Indexing Time and Space
	Command line tools and Parameters
	Alignment comparison of S. enterica protein sequences
	Aligning short reads parameters
	Comparison with HMMER parameters
	Gene Order Analysis parameters

	Graph toolkits: GFASubgraphs, extgfa, and gaftools
	GFA representation in the GFA class
	Bi-Connected Component Detection
	GFA APIs Benchmarking

	Multi-Platform Investigation in Cancer Structural Variants and Subclones
	Alignments
	Structural Variants Calling

	EpiPAMPAS: Epistasis Detection Using Parsimonious Ancestral State Reconstruction and Mutation Counting
	Mutation Direction Counting
	Supplementary Figures

	Code Availability
	Published articles underlying this thesis
	BubbleGun: enumerating bubbles and superbubbles in genome graphs
	Authors
	Contribution
	License and copyright information

	PanPA: generation and alignment of panproteome graphs
	Authors
	Contribution
	License and copyright information

	extgfa: a low-memory on-disk representation of genome graphs
	Authors
	Contribution
	License and copyright information

	gaftools: a toolkit for analyzing and manipulating pangenome alignments
	Authors
	Contribution
	License and copyright information

	EpiPAMPAS: Rapid detection of intra-protein epistasis via parsimonious ancestral state reconstruction and counting mutations
	Authors
	Contribution
	License and copyright information

