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 A B S T R A C T

An example of Meerschaert (1990) shows that univariate marginals of an operator stable 
distribution are not necessarily stable distributions, but turned out to be semistable as shown by 
Meerschaert and Scheffler (1999). We characterize all semistable distributions that can appear 
as an univariate marginal of an operator stable law in terms of the spectral measure.

1. Introduction

Many natural phenomena exhibit an intrinsic scaling structure. To model the scaling by linear operators provides a flexible 
tool for multivariate random systems with dependent components and different scaling in each coordinate. In particular, operator 
self-similar stochastic processes and random fields have been proven to be useful models in many applications such as anomalous 
diffusion in porous media, stock market prices, or dynamics of microbes, and in a variety of diverse further fields such as electrical 
engineering, image processing, computer network traffic, or astrophysics; see Cohen et al. (2010) and the literature cited therein. 
Operator stable laws naturally appear as the distribution of an operator self-similar Lévy process at a fixed time and they are often a 
building block of further operator self-similar stochastic processes and random fields with heavy tails. For practical information on 
stochastic modeling with operator scaling we refer to Cohen et al. (2010) for stochastic processes and Biermé et al. (2007) for random 
fields. The one-dimensional marginal distributions provide useful information of the random phenomena, e.g. the distribution of 
a portfolio in a multivariate stock market model, or the concentration in a layer of a porous media flow. For multivariate stable 
laws, i.e. for diagonal operators, it is well known and easy to see that all one-dimensional marginals have stable distributions. The 
surprising fact that for general operator stable laws also semistable distributions that are not stable can appear as marginals is not 
completely understood. Our study aims to give a full answer to this phenomenon in and thus contributes to the fine structure of 
operator stable laws and to the relevance of semistable distributions.
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A probability measure 𝜈 in R𝑑 is called operator stable with exponent 𝐸 ∈ R𝑑×𝑑 if it is infinitely divisible and for all 𝑡 > 0 there 
exists 𝑎(𝑡) ∈ R𝑑 such that 

𝜈∗𝑡 = 𝑡𝐸𝜈 ∗ 𝛿𝑎(𝑡), (1.1)

where 𝜈∗𝑡 denotes the 𝑡-fold convolution power, 𝑡𝐸𝜈 is the pushforward measure of 𝜈 under the linear operator 𝑡𝐸 =
∑∞
𝑘=0

(log 𝑡)𝑘

𝑘! 𝐸𝑘, 
and 𝛿𝑥 denotes the Dirac measure in 𝑥 ∈ R𝑑 . In case (1.1) is only fulfilled for some 𝑡 = 𝑐 > 1, thus inductively for all 
𝑡 ∈ 𝑐Z = {𝑐𝑘 ∶ 𝑘 ∈ Z}, the probability measure 𝜈 is called (𝑐𝐸 , 𝑐)-operator semistable. For details on operator stable and semistable 
laws we refer to the monograph (Meerschaert and Scheffler, 2001). Throughout this paper we will assume that 𝜈 is not supported 
on any lower dimensional hyperplane, called fullness of 𝜈, and we will exclude Gaussian components of 𝜈 in which case the real part 
of any eigenvalue of an exponent belongs to ( 12 ,∞). In case 𝑑 = 1 we thus have 𝐸 = 1∕𝛼 for some 𝛼 ∈ (0, 2) and 𝜈 is simply called 
𝛼-stable, respectively (𝑐1∕𝛼 , 𝑐)-semistable. In general, the exponent 𝐸 of an operator stable or operator semistable distribution 𝜈 is 
not unique due to symmetries {𝐴 ∈ GL(R𝑑 ) ∶ 𝐴𝜈 = 𝜈} of the distribution. If 𝐸 is an exponent and 𝐴 is a symmetry for 𝜈, also 𝐴𝐸𝐴−1

is an exponent for 𝜈. Although exponents are not unique, the collection of real parts of the eigenvalues of any exponent 𝐸 for fixed 
𝜈 is unique including their multiplicity. In case 𝑑 ≥ 2 we may choose a commuting exponent 𝐸 that commutes with every symmetry. 
The existence of a commuting exponent is proven in Hudson et al. (1986) for operator stable laws and in Hazod et al. (1998) for 
operator semistable laws, where in the latter case we may have to restrict considerations to (𝑐𝑘𝐸 , 𝑐𝑘)-operator semistability for some 
𝑘 ∈ N; see also Theorem 7.2.1 in Meerschaert and Scheffler (2001) and Theorem 1.11.6 in Hazod and Siebert (2001). In general, 
𝑘 ≥ 2 may be necessary in the operator semistable situation as an example in Hazod et al. (1998) shows.

It is known by an example in Meerschaert (1990) that univariate marginals of an operator stable law are not necessarily stable 
distributions. In fact it is shown that there exists an operator stable distribution whose marginals are not necessarily in the domain 
of attraction of an univariate stable distribution. Later it turned out that such univariate marginals of an operator stable law are 
always semistable distributions, including the stable distributions, as shown in Theorem 1 of Meerschaert and Scheffler (1999). Our 
aim is to investigate to what extent the converse relation holds, i.e. to characterize all semistable distributions that can appear as 
an univariate marginal of an operator stable law.

Due to Theorem 3.2 in Meerschaert and Veeh (1993), in an appropriate basis R𝑑 decomposes into 𝐸-invariant subspaces such 
that 𝐸 is a block diagonal matrix 𝐸 = 𝐸1 ⊕ ⋯ ⊕ 𝐸𝑝, where each block 𝐸𝑖 = 𝑆𝑖 + 𝑁𝑖 is the sum of a semisimple matrix 𝑆𝑖, i.e. 
diagonalizable over the complex numbers, and a nilpotent matrix 𝑁𝑖 such that 𝑁𝑖𝑆𝑖 = 𝑆𝑖𝑁𝑖. Moreover, the semisimple part 𝑆𝑖 is 
either diagonal or block diagonal with blocks of the form 

𝐵𝑖 =
(

1∕𝛼𝑖 −𝑏𝑖
𝑏𝑖 1∕𝛼𝑖

)

 for some 𝛼𝑖 ∈ (0, 2) and 𝑏𝑖 > 0 (1.2)

corresponding to complex conjugate eigenvalues of 𝐸. In the latter case the nilpotent part 𝑁𝑖 is given by 

𝑁𝑖 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0
𝐼 ⋱

⋱ ⋱
0 𝐼 0

⎞

⎟

⎟

⎟

⎟

⎠

, where 𝐼 ∈ R2×2 is the identity matrix. (1.3)

By Theorem 1 in Meerschaert and Scheffler (1999), a semistable marginal can only appear in this latter case when projecting onto 
a one-dimensional subspace generated by a vector 𝑒0 ≠ 0 belonging to the kernel of the transpose 𝑁⊤

𝑖 . Thus (1.3) shows that only 
the first two coordinates of 𝑒0 with respect to the basis representation corresponding to 𝐸𝑖 can be nonzero. By first projecting the 
operator stable law onto this two-dimensional subspace, we may restrict our considerations to dimension 𝑑 = 2 without loss of 
generality.

In dimension 𝑑 = 2, we can conclude that the commuting exponent 𝐸 is either 𝐸 = 𝐷+𝑁 for a diagonal matrix 𝐷 and a nilpotent 
matrix 𝑁 , or 𝐸 is given by the semisimple part in (1.2) and, according to 𝑁 = 0 in this situation, takes the form 

𝐸 =
(

1∕𝛼 −𝑏
𝑏 1∕𝛼

)

 for some 𝛼 ∈ (0, 2) and 𝑏 > 0. (1.4)

In the latter case we have the freedom to choose any 𝑒0 ∈ R2 ⧵ {0} for the projection and by elementary calculations we get 

𝑡𝐸 = 𝑡1∕𝛼
(

cos(𝑏 log 𝑡) − sin(𝑏 log 𝑡)
sin(𝑏 log 𝑡) cos(𝑏 log 𝑡)

)

=∶ 𝑡1∕𝛼𝑅(𝑏 log 𝑡), (1.5)

where 𝑅(𝜑) corresponds to a counterclockwise rotation by the angle 𝜑; see Lemma 2.2.3 in Meerschaert and Scheffler (2001) for 
details. Taking into account the above considerations, Theorem 1 in Meerschaert and Scheffler (1999) can be restated in dimension 
𝑑 = 2 as follows.

Theorem 1.1.  Let 𝜈 be a full operator stable law in R2 with commuting exponent 𝐸 and without Gaussian component. For 𝑒0 ∈ R2 ⧵ {0}
let 𝑇0(𝑥) = ⟨𝑥, 𝑒0⟩ and denote by 𝜈0 = 𝑇0(𝜈) the corresponding marginal distribution.
(a) If 𝐸 = 𝐷 +𝑁 for a diagonal matrix 𝐷 = 1∕𝛼 ⋅ 𝐼 and a nilpotent matrix 𝑁 , then 𝜈0 is an 𝛼-stable distribution for every 𝑒0 belonging 

to the kernel of 𝑁⊤.
(b) If 𝐸 is semisimple of the form (1.4), then 𝜈  is a (𝑐1∕𝛼 , 𝑐)-semistable distribution for every 𝑒 ∈ R2 ⧵ {0}, where 𝑐 = 𝑒2𝜋∕𝑏.
0 0
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According to part (b) of Theorem  1.1 we have to choose 𝑏 = 2𝜋∕ log 𝑐 in (1.4) so that 𝑐 = 𝑒2𝜋∕𝑏 to be able to find an operator 
stable law with a genuine (𝑐1∕𝛼 , 𝑐)-semistable marginal distribution. It is also possible to generalize Theorem  1.1 from the operator 
stable to the operator semistable case with essentially the same proof as in Meerschaert and Scheffler (1999).

Lemma 1.2.  Let 𝜈 be a full (𝑐𝐸 , 𝑐)-operator semistable law in R2 for some 𝑐 > 1 with commuting exponent 𝐸 and without Gaussian 
component. Let 𝜈0 = 𝑇0(𝜈) with 𝑇0(𝑥) = ⟨𝑥, 𝑒0⟩ for some 𝑒0 ∈ R2 ⧵ {0}.

(a) If 𝐸 = 𝐷 +𝑁 for a diagonal matrix 𝐷 = 1∕𝛼 ⋅ 𝐼 and a nilpotent matrix 𝑁 , then 𝜈0 is a (𝑐1∕𝛼 , 𝑐)-semistable distribution for every 𝑒0
belonging to the kernel of 𝑁⊤.

(b) If 𝐸 is semisimple of the form (1.4) with 𝑏 = 2𝜋∕ log 𝑐, then 𝜈0 is a (𝑐1∕𝛼 , 𝑐)-semistable distribution for every 𝑒0 ∈ R2 ⧵ {0}, where 
𝑐 = 𝑒2𝜋∕𝑏.

Proof. (a) We have 𝑁⊤𝑒0 = 0 and hence 𝑡𝑁⊤𝑒0 = 𝑒0 for all 𝑡 > 0. Then 𝑡𝐸⊤𝑒0 = 𝑡𝐷𝑡𝑁⊤𝑒0 = 𝑡1∕𝛼𝑒0 for all 𝑡 > 0. Furthermore, (1.1) for 
𝑡 = 𝑐 implies 

𝜈∗𝑐0 = 𝑇0(𝜈∗𝑐 ) = 𝑇0(𝑐𝐸𝜈 ∗ 𝛿𝑎(𝑐)) = 𝑇0(𝑐𝐸𝜈) ∗ 𝛿𝑇0(𝑎(𝑐)). (1.6)

For the Fourier transform we get
̂𝑇0(𝑐𝐸𝜈)(𝑠) = ∫R2

𝑒𝑖𝑠𝑇0(𝑥) 𝑑(𝑐𝐸𝜈)(𝑥) = ∫R2
𝑒𝑖𝑠⟨𝑐

𝐸𝑥,𝑒0⟩ 𝑑𝜈(𝑥) = ∫R2
𝑒𝑖𝑠⟨𝑥,𝑐

𝐸⊤ 𝑒0⟩ 𝑑𝜈(𝑥)

= ∫R2
𝑒𝑖𝑠𝑐

1∕𝛼𝑇0(𝑥) 𝑑𝜈(𝑥) = 𝑇0(𝜈)(𝑐1∕𝛼𝑠) = 𝜈0(𝑐1∕𝛼𝑠) = ̂(𝑐1∕𝛼𝜈0)(𝑠)

for all 𝑠 ∈ R, showing that 𝑇0(𝑐𝐸𝜈) = (𝑐1∕𝛼𝜈0). By (1.6) we get 𝜈∗𝑐0 = (𝑐1∕𝛼𝜈0) ∗ 𝛿𝑇0(𝑎(𝑐)) showing that 𝜈0 is (𝑐1∕𝛼 , 𝑐)-semistable.
(b) Since (1.6) holds, by (1.5) and 𝑅(𝑏 log 𝑐) = 𝑅(2𝜋) = 𝐼 for 𝑐 = 𝑒2𝜋∕𝑏 we get for the Fourier transform

̂𝑇0(𝑐𝐸𝜈)(𝑠) = ∫R2
𝑒𝑖𝑠⟨𝑐

𝐸𝑥,𝑒0⟩ 𝑑𝜈(𝑥) = ∫R2
𝑒𝑖𝑠𝑐

1∕𝛼
⟨𝑅(𝑏 log 𝑐)𝑥,𝑒0⟩ 𝑑𝜈(𝑥) = ∫R2

𝑒𝑖𝑠𝑐
1∕𝛼𝑇0(𝑥) 𝑑𝜈(𝑥) = ̂(𝑐1∕𝛼𝜈0)(𝑠)

for all 𝑠 ∈ R, again showing that 𝑇0(𝑐𝐸𝜈) = (𝑐1∕𝛼𝜈0). As in part (a) we conclude that 𝜈0 is (𝑐1∕𝛼 , 𝑐)-semistable. □

It is easy to see that also the following converse of Lemma  1.2 is true. Given a (𝑐1∕𝛼 , 𝑐)-semistable distribution 𝜈0 for some 𝑐 > 1
and 𝛼 ∈ (0, 2) there is a (𝑐𝐸 , 𝑐)-operator semistable law 𝜈 in R2 such that 𝜈0 appears as a marginal distribution of 𝜈. Simply choose 
𝜈 = 𝜈0 ⊗ 𝜈0 as the product measure which is (𝑐𝐸 , 𝑐)-operator semistable with diagonal exponent 𝐸 = 1∕𝛼 ⋅ 𝐼 and take 𝑒0 = (1, 0)⊤

or 𝑒0 = (0, 1)⊤ to get 𝜈0 = 𝑇0(𝜈) by projection. Note that for diagonal exponents the question whether operator semistability 
of a probability measure is characterized by semistability of its marginal distributions has been fully answered in Maejima and 
Samorodnitsky (1999) on R𝑑 and the results have been extended to 𝑝-adic vector spaces in Maejima and Shah (2006) with even 
more general scaling automorphisms.

The remaining question is whether a given semistable distribution can appear as a marginal of an operator stable law. We will 
show in Section 2 that this is not true in general and characterize all semistable distributions that can appear as a marginal of an 
operator stable law 𝜈 in R2 in terms of the spectral representation of 𝜈.

2. Main results

We first give a general projection result for infinitely divisible laws in R𝑑 without Gaussian component. Due to the Lévy-
Khintchine representation, the Fourier transform ̂𝜈 of an infinitely divisible probability measure 𝜈 in R𝑑 without Gaussian component 
can be written as ̂𝜈(𝑥) = exp(𝜓(𝑥)) for all 𝑥 ∈ R𝑑 , where the Lévy exponent 𝜓 is given by 

𝜓(𝑥) = 𝑖⟨𝑥, 𝑎⟩ + ∫R𝑑⧵{0}

(

𝑒𝑖⟨𝑥,𝑦⟩ − 1 −
𝑖⟨𝑥, 𝑦⟩

1 + ‖𝑦‖2

)

𝑑𝜙(𝑦) (2.1)

for some unique 𝑎 ∈ R𝑑 and a Lévy measure 𝜙, i.e. a 𝜎-finite measure on R𝑑 ⧵ {0} such that ∫R𝑑⧵{0} min{1, ‖𝑥‖2} 𝑑𝜙(𝑥) < ∞; 
see Meerschaert and Scheffler (2001) or Sato (1999) for details. Since 𝑎 ∈ R𝑑 and the Lévy measure 𝜙 are unique, we may identify 
𝜈 ∼ [𝑎, 0, 𝜙], where 0 corresponds to the absent Gaussian part.

Let 𝜈 ∼ [𝑎, 0, 𝜙] and 𝜈0 = 𝑇0(𝜈) with 𝑇0(𝑥) = ⟨𝑥, 𝑒0⟩ for some 𝑒0 ∈ R𝑑 ⧵ {0}. Since 𝜈0 ∼ [𝑎0, 0, 𝜙0] is infinitely divisible, the Lévy 
exponent 𝜓0 of 𝜈0 fulfills

exp(𝜓0(𝑡)) = 𝜈0(𝑡) = 𝑇0(𝜈)(𝑡) = ∫R
exp(𝑖𝑡𝑠) 𝑑(𝑇0(𝜈))(𝑠) = ∫R𝑑

exp(𝑖⟨𝑥, 𝑡 ⋅ 𝑒0⟩) 𝑑𝜈(𝑥) = 𝜈(𝑡 ⋅ 𝑒0) = exp(𝜓(𝑡 ⋅ 𝑒0)).

Hence by the Lévy-Khintchine representation (2.1) we have

𝑖𝑡𝑎0 + ∫R⧵{0}

(

𝑒𝑖𝑡𝑠 − 1 − 𝑖𝑡𝑠
1 + 𝑠2

)

𝑑𝜙0(𝑠) = 𝜓0(𝑡) = 𝜓(𝑡 ⋅ 𝑒0) = 𝑖⟨𝑡 ⋅ 𝑒0, 𝑎⟩ + ∫R𝑑⧵{0}

(

𝑒𝑖⟨𝑡⋅𝑒0 ,𝑥⟩ − 1 −
𝑖⟨𝑡 ⋅ 𝑒0, 𝑥⟩
1 + ‖𝑥‖2

)

𝑑𝜙(𝑥)

= 𝑖𝑡
(

𝑇0(𝑎) + ∫R𝑑⧵{0}

(

𝑇0(𝑥)
1 + 𝑇0(𝑥)2

−
𝑇0(𝑥)

1 + ‖𝑥‖2

)

𝑑𝜙(𝑥)
)

+ ∫R⧵{0}

(

𝑒𝑖𝑡𝑠 − 1 − 𝑖𝑡𝑠
1 + 𝑠2

)

𝑑(𝑇0(𝜙))(𝑠).
3 
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Note that the first integral on the right-hand side exists, since elementary calculations yield
|

|

|

|

|

𝑇0(𝑥)
1 + 𝑇0(𝑥)2

−
𝑇0(𝑥)

1 + ‖𝑥‖2
|

|

|

|

|

≤ 𝐶 ⋅min{1, ‖𝑥‖2}

for some constant 𝐶 > 0. Uniqueness of the representation directly implies:

Lemma 2.1.  Let 𝜈 ∼ [𝑎, 0, 𝜙] be an infinitely divisible law in R𝑑 and 𝑇0(𝑥) = ⟨𝑥, 𝑒0⟩ for some 𝑒0 ∈ R𝑑 ⧵ {0}. Then an infinitely divisible 
distribution 𝜈0 = [𝑎0, 0, 𝜙0] in R fulfills 𝑇0(𝜈) = 𝜈0 if and only if

𝜙0 = 𝑇0(𝜙)  and (2.2)

𝑎0 = 𝑇0(𝑎) + ∫R𝑑⧵{0}

(

𝑇0(𝑥)
1 + 𝑇0(𝑥)2

−
𝑇0(𝑥)

1 + ‖𝑥‖2

)

𝑑𝜙(𝑥). (2.3)

Thus, to construct an infinitely divisible law 𝜈 ∼ [𝑎, 0, 𝜙] with marginal 𝜈0, it suffices to construct a Lévy measure 𝜙 such that 
𝑇0(𝜙) = 𝜙0 and to set 

𝑎 = ‖𝑒0‖
−2

(

𝑎0 − ∫R𝑑⧵{0}

(

𝑇0(𝑥)
1 + 𝑇0(𝑥)2

−
𝑇0(𝑥)

1 + ‖𝑥‖2

)

𝜙(𝑑𝑥)
)

⋅ 𝑒0. (2.4)

Now, let 𝜈 ∼ [𝑎, 0, 𝜙] be an operator stable law with exponent 𝐸 in which case the Lévy measure fulfills 𝑡𝐸𝜙 = 𝑡 ⋅ 𝜙 for all 
𝑡 > 0. To analyze (2.2) in this situation, we will use the following spectral representation of the Lévy measure from Theorem 7.2.5 
in Meerschaert and Scheffler (2001). For all Borel sets 𝐵 ∈ (R𝑑 ⧵ {0}) we have 

𝜙(𝐵) = ∫{‖𝜃‖0=1} ∫

∞

0
1𝐵(𝑟𝐸𝜃)

𝑑𝑟
𝑟2
𝑑𝜎(𝜃), (2.5)

where the spectral measure 𝜎, which uniquely determines 𝜙, is a bounded Borel measure on the unit sphere with respect to ‖ ⋅ ‖0. 
The norm ‖ ⋅ ‖0 fulfills that 𝑡 ↦ ‖𝑡𝐸𝑥‖0 is strictly increasing for all 𝑥 ≠ 0 and can be chosen by Lemma 6.1.5 in Meerschaert and 
Scheffler (2001) (in combination with Theorem 6.1.7 of Meerschaert and Scheffler, 2001) as

‖𝑥‖0 = ∫

1

0
‖𝑡𝐸𝑥‖ 𝑑𝑡

𝑡
.

As argued in the Introduction, in dimension 𝑑 = 2 we can restrict our considerations to commuting exponents 𝐸 of the form (1.4) 
with 𝑏 = 2𝜋∕ log 𝑐. Then (1.5) implies ‖𝑡𝐸𝑥‖ = 𝑡1∕𝛼‖𝑥‖ and we easily calculate ‖𝑥‖0 = 𝛼‖𝑥‖ for all 𝑥 ∈ R2. Hence, for simplicity we 
will choose ‖ ⋅ ‖0 as the Euclidean norm ‖ ⋅ ‖ in the sequel. In this case the spectral measure is given by 𝜎(𝐴) = 𝜙{𝑡𝐸𝜃 ∶ 𝜃 ∈ 𝐴, 𝑡 > 1}
for Borel sets 𝐴 ⊆ T = {‖𝜃‖ = 1} and captures the dependence structure, whereas the exponent 𝐸 is responsible for the scaling.

Now, let 𝜈0 ∼ [𝑎0, 0, 𝜙0] be a (𝑐1∕𝛼 , 𝑐)-semistable distribution in R for some 𝑐 > 1 and 𝛼 ∈ (0, 2). Then by Corollary 7.4.4 
in Meerschaert and Scheffler (2001) the Lévy measure 𝜙0 is given by 

𝜙0(𝑡,∞) = 𝑡−𝛼ℎ1(log 𝑡)  and 𝜙0(−∞,−𝑡) = 𝑡−𝛼ℎ2(log 𝑡) (2.6)

for all 𝑡 > 0 and some non-negative log(𝑐1∕𝛼)-periodic and bounded functions ℎ1, ℎ2 such that ℎ1 + ℎ2 > 0. This result goes back to 
Kruglov (1972, Theorem 1) or Mejzler (1973, Theorem 4.1). Since 𝑇0(𝜙) = 𝜙0 by Lemma  2.1, using (2.6), (2.5), the representation 
of 𝑅 in (1.5) and a change of variables 𝑠 = 𝑡−𝛼𝑟 we get 

ℎ1(log 𝑡) = 𝑡𝛼 ⋅ 𝜙0{𝑠 ∶ 𝑠 > 𝑡} = 𝑡𝛼 ⋅ 𝑇0(𝜙){𝑠 ∶ 𝑠 > 𝑡} = 𝑡𝛼 ⋅ 𝜙{𝑥 ∶ 𝑇0(𝑥) > 𝑡} = 𝑡𝛼 ∫{‖𝜃‖=1} ∫

∞

0
𝟏{𝑇0(𝑟𝐸𝜃)>𝑡}

𝑑𝑟
𝑟2
𝑑𝜎(𝜃)

= 𝑡𝛼 ∫{‖𝜃‖=1} ∫

∞

0
𝟏{𝑇0(𝑅(𝑏 log 𝑟)𝜃)>𝑟−1∕𝛼 𝑡}

𝑑𝑟
𝑟2
𝑑𝜎(𝜃) = ∫{‖𝜃‖=1} ∫

∞

0
𝟏{𝑇0(𝑅(𝑏 log 𝑠+𝑏𝛼 log 𝑡)𝜃)>𝑠−1∕𝛼}

𝑑𝑠
𝑠2
𝑑𝜎(𝜃).

(2.7)

Write 𝜃 = (cos𝜑, sin𝜑)⊤ =∶ 𝑇 (𝜑), where 𝑇 ∶ [0, 2𝜋) → {‖𝜃‖ = 1} is the transformation to polar coordinates, and define the bounded 
Borel measure 𝜇 ∶= 𝑇 −1(𝜎) in [0, 2𝜋). Recall the periodic functions ℎ1, ℎ2 from (2.6) which determine the positive and negative tail 
of the Lévy measure 𝜙0. For 𝑠 > 0 we further introduce the 2𝜋-periodic non-negative functions

ℎ∗1(𝑠) ∶= ℎ1
(

− 𝑠
𝑏𝛼

)

 and 𝑓1(𝑠) ∶= ∫

∞

0
𝟏{𝑇0(𝑇 ((𝑏 log 𝑟−𝑠)(mod 2𝜋)))>𝑟−1∕𝛼}

𝑑𝑟
𝑟2

as well as

ℎ∗2(𝑠) ∶= ℎ2
(

− 𝑠
𝑏𝛼

)

 and 𝑓2(𝑠) ∶= ∫

∞

0
𝟏{𝑇0(𝑇 ((𝑏 log 𝑟−𝑠)(mod 2𝜋)))<−𝑟−1∕𝛼}

𝑑𝑟
𝑟2
.

Lemma 2.2.  With the above notations we have ℎ∗1 = 𝑓1 ∗ 𝜇 and ℎ∗2 = 𝑓2 ∗ 𝜇. Hence for the Fourier coefficients we get

ℎ̂∗1(𝑘) = 𝑓1(𝑘) ⋅ 𝜇(𝑘)  and ℎ̂∗2(𝑘) = 𝑓2(𝑘) ⋅ 𝜇(𝑘)  for all 𝑘 ∈ Z.

Proof.  First note that by (1.5) we have

𝑅(𝑏 log 𝑟 − 𝑠)𝑇 (𝜑) =
(

cos(𝑏 log 𝑟 − 𝑠) − sin(𝑏 log 𝑟 − 𝑠)
)(

cos𝜑
)

=
(

cos(𝜑 + 𝑏 log 𝑟 − 𝑠)
)

= 𝑇 ((𝜑 + 𝑏 log 𝑟 − 𝑠)(mod 2𝜋)).

sin(𝑏 log 𝑟 − 𝑠) cos(𝑏 log 𝑟 − 𝑠) sin𝜑 sin(𝜑 + 𝑏 log 𝑟 − 𝑠)

4 
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From (2.7) and 𝑏 log 𝑐
2𝜋 = 1 it follows that

ℎ∗1(𝑠) = ℎ1
(

− 𝑠
𝑏𝛼

)

= ∫{‖𝜃‖=1} ∫

∞

0
𝟏{𝑇0(𝑅(𝑏 log 𝑟−𝑠)𝜃)>𝑟−1∕𝛼}

𝑑𝑟
𝑟2
𝑑𝜎(𝜃) = ∫

2𝜋

0 ∫

∞

0
𝟏{𝑇0(𝑅(𝑏 log 𝑟−𝑠)𝑇 (𝜑))>𝑟−1∕𝛼}

𝑑𝑟
𝑟2
𝑑𝜇(𝜑)

= ∫

2𝜋

0 ∫

∞

0
𝟏{𝑇0(𝑇 ((𝜑+𝑏 log 𝑟−𝑠)(mod 2𝜋)))>𝑟−1∕𝛼}

𝑑𝑟
𝑟2
𝑑𝜇(𝜑) = ∫

2𝜋

0
𝑓1(𝑠 − 𝜑) 𝑑𝜇(𝜑) = (𝑓1 ∗ 𝜇)(𝑠).

A similar calculation also shows that ℎ∗2 = 𝑓2 ∗ 𝜇 holds, concluding the proof. □

We now analyze the function 𝑓1 and its Fourier coefficients in more detail. Write 𝑒0 = ‖𝑒0‖ ⋅ (cos 𝜃0, sin 𝜃0)⊤ for some 𝜃0 ∈ [0, 2𝜋), 
i.e. 𝜃0 = 𝑇 −1(𝑒0∕‖𝑒0‖). Then we get 

𝑇0(𝑇 ((𝑏 log 𝑟 − 𝑠)(mod 2𝜋))) =
⟨(

cos(𝑏 log 𝑟 − 𝑠)
sin(𝑏 log 𝑟 − 𝑠)

)

, 𝑒0

⟩

= ‖𝑒0‖ ⋅ cos(𝑏 log 𝑟 − 𝑠 − 𝜃0). (2.8)

Lemma 2.3.  Let 𝑔1 be the 2𝜋-periodic non-negative function given by

𝑔1(𝑡) ∶= ∫

∞

1
𝟏{cos(𝑏 log 𝑟−𝑡)>𝑟−1∕𝛼}

𝑑𝑟
𝑟2
, 𝑡 ∈ R.

Then 𝑔1 has Fourier coefficients

𝑔1(𝑘) =
2

1 − 𝑖𝑘𝑏 ∫

𝜋∕2

0
cos(𝑘𝑡) ⋅ (cos 𝑡)𝛼(1−𝑖𝑘𝑏) 𝑑𝑡, 𝑘 ∈ Z,

and for the function 𝑓1 we have

𝑓1 = ‖𝑒0‖
𝛼
(

𝑔1 ∗ 𝛿(−𝜃0−𝛼𝑏 log ‖𝑒0‖)(mod 2𝜋)

)

.

Proof.  For the Fourier coefficients of 𝑔1 we get by Fubini’s theorem and a change of variables 𝑠 = 𝑡 − 𝑏 log 𝑟

𝑔1(𝑘) = ∫

2𝜋

0
𝑒𝑖𝑘𝑡 ∫

∞

1
𝟏{cos(𝑏 log 𝑟−𝑡)>𝑟−1∕𝛼}

𝑑𝑟
𝑟2
𝑑𝑡 = ∫

∞

1 ∫

2𝜋

0
𝑒𝑖𝑘𝑡 𝟏{cos(𝑏 log 𝑟−𝑡)>𝑟−1∕𝛼} 𝑑𝑡

𝑑𝑟
𝑟2

= ∫

∞

1
𝑒𝑖𝑘𝑏 log 𝑟 ∫

𝜋

−𝜋
𝑒𝑖𝑘𝑠 𝟏{cos(𝑠)>𝑟−1∕𝛼} 𝑑𝑠

𝑑𝑟
𝑟2

= 2∫

∞

1
𝑒𝑖𝑘𝑏 log 𝑟 ∫

𝜋

0
cos(𝑘𝑠) 𝟏{cos(𝑠)>𝑟−1∕𝛼} 𝑑𝑠

𝑑𝑟
𝑟2

= 2∫

∞

1
𝑟𝑖𝑘𝑏 ∫

𝜋∕2

0
cos(𝑘𝑠) 𝟏{cos(𝑠)>𝑟−1∕𝛼} 𝑑𝑠

𝑑𝑟
𝑟2
,

where we used that 𝑠↦ 𝟏{cos(𝑠)>𝑟−1∕𝛼} is an even function that vanishes on [ 𝜋2 , 𝜋]. Another application of Fubini’s theorem gives us

𝑔1(𝑘) = 2∫

𝜋∕2

0
cos(𝑘𝑠)∫

∞

(cos 𝑠)−𝛼
𝑟𝑖𝑘𝑏−2 𝑑𝑟 𝑑𝑠 = 2

1 − 𝑖𝑘𝑏 ∫

𝜋∕2

0
cos(𝑘𝑠) ⋅ (cos 𝑠)𝛼(1−𝑖𝑘𝑏) 𝑑𝑠.

For 𝑓1 from Lemma  2.2 we get using (2.8) and a change of variables 𝑤 = ‖𝑒0‖𝛼𝑟

𝑓1(𝑠) = ∫

∞

0
𝟏{‖𝑒0‖ cos(𝑏 log 𝑟−𝑠−𝜃0)>𝑟−1∕𝛼}

𝑑𝑟
𝑟2

= ‖𝑒0‖
𝛼
∫

∞

0
𝟏{cos(𝑏 log(‖𝑒0‖−𝛼𝑤)−𝑠−𝜃0)>𝑤−1∕𝛼}

𝑑𝑤
𝑤2

= ‖𝑒0‖
𝛼
∫

∞

1
𝟏{cos(𝑏 log𝑤−𝑠−𝛼𝑏 log ‖𝑒0‖−𝜃0)>𝑤−1∕𝛼}

𝑑𝑤
𝑤2

,

which shows that 𝑓1(𝑠 − 𝜃0 − 𝛼𝑏 log ‖𝑒0‖) = ‖𝑒0‖𝛼𝑔(𝑠). An application of the Fourier transform easily gives us 𝑓1 = ‖𝑒0‖𝛼 ⋅
(

𝑔1 ∗ 𝛿(−𝜃0−𝛼𝑏 log ‖𝑒0‖)(mod 2𝜋)

)

. □

Remark 2.4.  A similar calculation shows that the function

𝑔2(𝑡) ∶= ∫

∞

1
𝟏{cos(𝑏 log 𝑟−𝑡)<−𝑟−1∕𝛼}

𝑑𝑟
𝑟2
, 𝑡 ∈ R,

fulfills 𝑓2 = ‖𝑒0‖𝛼
(

𝑔2 ∗ 𝛿(−𝜃0−𝛼𝑏 log ‖𝑒0‖)(mod 2𝜋)

)

 and for every 𝑘 ∈ Z has Fourier coefficient 𝑔2(𝑘) = (−1)𝑘𝑔1(𝑘). Since (−1)𝑘 = 𝑒𝑖𝑘𝜋 , we 
easily get 𝑓2(𝑡) = 𝑓1(𝑡−𝜋) and by Lemma  2.2 we conclude ℎ∗2(𝑡) = ℎ∗1(𝑡−𝜋), thus ℎ2(𝑡) = ℎ1(𝑡−

1
2 log(𝑐

1∕𝛼)) for all 𝑡 ∈ R. Hence ℎ2 is a 
phase shift of ℎ1 by half the period. This will also follow from our main theorem below, therefore we will not provide the detailed 
calculations.

Our main result is a combination of the Lemmas  2.1–2.3 that we rather formulate on T = {‖𝜃‖ = 1} ⊆ R2 than on [0, 2𝜋). 
Therefore, we introduce the functions

ℎT = ℎ∗1◦𝑇
−1  and 𝑔T = 𝑔1◦𝑇

−1

with the above transformation 𝑇 ∶ [0, 2𝜋) → T to polar coordinates.
5 
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Fig. 1. Numerical approximation of the graph of 𝑔1(2𝜋𝑡) for 𝑡 ∈ [0, 1] and various values of 𝛼 ∈ (0, 2) and 𝑐 > 1. Top row: 𝑐 = 12 and (from left to right) 𝛼 = 0.01, 
𝛼 = 0.5, 𝛼 = 1, 𝛼 = 1.99. Bottom row: 𝛼 = 1.2 and (from left to right) 𝑐 = 1.1, 𝑐 = 5, 𝑐 = 42, 𝑐 = 6456.

Theorem 2.5.  Let 𝜈 = [𝑎, 0, 𝜙] be an operator stable law in R2 with commuting exponent 𝐸 of the form (1.4) for 𝑏 = 2𝜋∕ log 𝑐 > 0 and 
with corresponding spectral measure 𝜎. Let 𝜈0 = [𝑎0, 0, 𝜙0] be a (𝑐1∕𝛼 , 𝑐)-semistable distribution in R with Lévy measure 𝜙0 given by (2.6) 
and corresponding 2𝜋-periodic functions ℎ∗1 and ℎ∗2. Then for every 𝑒0 = ‖𝑒0‖ ⋅ (cos 𝜃0, sin 𝜃0)⊤ ∈ R2 ⧵ {0} and 𝑇0(𝑥) = ⟨𝑥, 𝑒0⟩ we have 
𝑇0(𝜈) = 𝜈0 if and only if the following three conditions hold:

(i) For the positive tail of 𝜙0 we have
ℎT = ‖𝑒0‖

𝛼
(

𝛿
‖𝑒0‖−𝛼𝐸𝑒0 ∗ 𝑔T ∗ 𝜎

)

,

where the function 𝑔T ∶ T → (0,∞) only depends on 𝐸 and is uniquely given by the Fourier coefficients 𝑔T(𝑘) = 𝑔1(𝑘) from Lemma 
2.3 with 𝑏 = 2𝜋

log 𝑐 .

(ii) For the negative tail of 𝜙0 we have ℎ2(𝑡) = ℎ1(𝑡 −
1
2 log(𝑐

1∕𝛼)) for all 𝑡 ∈ R.
(iii) The drift coefficients 𝑎0 ∈ R and 𝑎 ∈ R2 fulfill (2.3).

Proof.  By Lemma  2.1 we have to show that 𝜙0 = 𝑇0(𝜙) is equivalent to the fulfillment of (i) and (ii). Since 𝜙0 = 𝑇0(𝜙) is equivalent to 
(2.7) together with a corresponding result for ℎ2, it is equivalent to the statement of Lemma  2.2. Since 𝜇 = 𝑇 −1(𝜎), the combination 
of Lemmas  2.2 and 2.3 shows equivalence to the fulfillment of (i) and a corresponding statement for ℎ2. Note that the Dirac measure 
in Lemma  2.3 has to be interpreted on T as a rotation by

(

cos(−𝜃0 − 𝛼𝑏 log ‖𝑒0‖)
sin(−𝜃0 − 𝛼𝑏 log ‖𝑒0‖)

)

= 𝑅
(

𝑏 log(‖𝑒0‖−𝛼)
)

⋅
(

cos(𝜃0)
sin(𝜃0)

)

=
(

‖𝑒0‖
−𝛼)1∕𝛼𝑅

(

𝑏 log(‖𝑒0‖−𝛼)
)

⋅ ‖𝑒0‖
(

cos(𝜃0)
sin(𝜃0)

)

= ‖𝑒0‖
−𝛼𝐸𝑒0 ∈ T,

where we used (1.5). Finally, the above mentioned corresponding statement of (i) for ℎ2 is (ii), since the roles of ℎ1 and ℎ2
interchange when switching from 𝑒0 to −𝑒0. This only has an effect on the Dirac measure in (i), which changes to 𝛿−‖𝑒0‖−𝛼𝐸 𝑒0  and 
gives the phase shift by half the period. □

The phase translation in Theorem  2.5(ii) shows that not every semistable distribution in R can appear as a marginal of an 
operator stable law in R2. The following remark shows that even ℎ1 cannot be an arbitrary log(𝑐1∕𝛼)-periodic function such that 
𝑡↦ 𝑡−𝛼ℎ1(log 𝑡) is non-increasing.

Remark 2.6.  Note that a change of variables 𝑠 = 𝑟−1 for 𝑔1 in Lemma  2.3 gives 

𝑔1(𝑡) = ∫

∞

1
𝟏{cos(𝑏 log 𝑟−𝑡)>𝑟−1∕𝛼}

𝑑𝑟
𝑟2

= ∫

1

0
𝟏{cos(−𝑏 log 𝑠−𝑡)>𝑠1∕𝛼} 𝑑𝑠 = 𝜆

({

𝑠 ∈ (0, 1) ∶
(

cos(−𝑏 log(𝑠 𝑒𝑡∕𝑏))
)𝛼 > 𝑠

})

, (2.9)

which for fixed 𝑡 ∈ R is the Lebesgue measure of the set of points in the unit interval where the continuous function 𝑠 ↦
(

cos(−𝑏 log(𝑠 𝑒𝑡∕𝑏))
)𝛼 lies above the diagonal. Varying the scaling factor 𝑒𝑡∕𝑏 of this function, continuously changes the value of the 

Lebesgue measure for this set in the variable 𝑡, which shows that 𝑔1 is continuous. As a consequence of Theorem  2.5(i) also ℎT and 
thus ℎ1 are continuous. This rules out semistable distributions with a discontinuous tail function of the Lévy measure 𝜙0. E.g., for 
𝑐 = 2 and 𝛼 = 1 the semistable limit distribution of successive gains in the St. Petersburg game appearing in Martin-Löf (1985) has 
a discrete Lévy measure 𝜙0 on 2Z with 𝜙0({2𝑘}) = 2−𝑘 for all 𝑘 ∈ Z such that for 𝑡 ∈ [2𝑛, 2𝑛+1) we get by (2.6)

ℎ1(log 𝑡) = 𝑡 ⋅ 𝜙0(𝑡,∞) = 𝑡
∞
∑

𝑘=𝑛+1
2−𝑘 = 𝑡 ⋅ 2−𝑛

for all 𝑛 ∈ Z, which is a sawtooth function with discontinuities in 2Z.
6 
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Example 2.7.  To get an impression of how the periodic function 𝑔1 looks like, we plotted the graph of 𝑔1(2𝜋𝑡) for 𝑡 ∈ [0, 1]
numerically using (2.9) for various values of 𝛼 ∈ (0, 2) and 𝑐 > 1 in Fig.  1.

In case 𝜎 = 𝛿−‖𝑒0‖−𝛼𝐸𝑒0  all these functions are valid examples for the function ℎ∗1 = 𝑔1 by Theorem  2.5(i). Note that the Lévy 
measure 𝜙 of the operator stable law 𝜈 is then concentrated on the orbit {−𝑠𝐸𝑒0 ∶ 𝑠 > 0}, whereas by (2.6) and Theorem  2.5(ii) the 
Lévy measure 𝜙0 of the semistable distribution 𝜈0 = 𝑇0(𝜈) is fully determined by the periodic function ℎ1(𝑡) = ℎ∗1(−𝑏𝛼𝑡) = 𝑔1(−𝑏𝛼𝑡).
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