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A B S T R A C T

Environmental processes, such as auditory and visual inputs, often follow power-law distributions with a time- 
dependent and constantly changing spectral exponent, β(t). However, it remains unclear how the brain’s scale- 
free dynamics continuously respond to naturalistic inputs, such as by potentially alternating instead of static 
levels of the spectral exponent. Our fMRI study investigates the brain’s dynamic, time-dependent spectral 
exponent, β(t), during movie-watching, and uses time-varying inter-subject correlation, ISC(t), to assess the 
extent to which input dynamics are reflected as shared brain activity across subjects in early sensory regions. 
Notably, we investigate the level of ISC particularly based on the modulation by time-dependent scale-free 
dynamics or β(t). We obtained three key findings: First, the brain’s β(t) showed a distinct temporal structure in 
visual and auditory regions during naturalistic inputs compared to the resting-state, investigated in the 7 Tesla 
Human Connectome Project dataset. Second, β(t) and ISC(t) were positively correlated during naturalistic inputs. 
Third, grouping subjects based on the Rest-to-Movie standard deviation change of the time-dependent spectral 
exponent β(t) revealed that the brain’s relative shift from intrinsic to stimulus-driven scale-free dynamics 
modulates the level of shared brain activity, or ISC(t), and thus the imprinting of inputs on brain activity. This 
modulation was further supported by the observation that the two groups displayed significantly different β(t)- 
ISC(t) correlations, where the group with a higher mean of ISC(t) during inputs also exhibited a higher β(t)-ISC(t) 
correlation in visual and auditory regions. In summary, our fMRI study underscores a positive relationship be-
tween time-dependent scale-free dynamics and ISC, where higher spectral exponents correspond to higher de-
grees of shared brain activity during ongoing audiovisual inputs.

1. Introduction

The environment continuously bombards the human brain with 
fluctuating auditory and visual inputs. To process these inputs, the brain 
aligns its ongoing intrinsic spontaneous activity with the dynamics of 
sensory inputs, enabling the perception of the world around us. A closer 
examination of auditory and visual inputs reveals that natural phe-
nomena often exhibit fractal or scale-free dynamics (Bak, 1996; Man-
delbrot, 1999; Schroeder, 2009). A scale-free process is characterized by 
a power spectrum that follows a power-law distribution on a 
log-frequency versus log-power plot. This type of distribution is 
commonly referred to as a 1/f distribution, since power gradually de-
creases (or rarely increases) as frequency increases, without a dominant 

frequency, hence the term "scale-free" (Schroeder, 2009). The spectral 
slope or exponent (β) can be measured by fitting a linear regression to 
the log-frequency and log-power values (Bak, 1996; Mandelbrot, 1999; 
Schroeder, 2009).

Examples of auditory phenomena that exhibit scale-free dynamics 
cover human speech (Sabanal and Nakagawa, 1996; Luque et al., 2015) 
and music across various genres (Voss and Clarke, 1975; Voss and 
Clarke, 1978; Hsü and Hsü, 1991; Su and Wu, 2007; Levitin et al., 2012; 
González-Espinoza et al., 2017). Visual phenomena, such as natural 
scenes and images, also display scale-free temporal and spatial proper-
ties (Field, 1987; Nyikos et al., 1994; Field and Graham, 2007; Forsythe 
et al., 2011). Scale-free dynamics are not limited to natural phenomena; 
even human creations or artifacts, like modern movies, can exhibit 
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audiovisual properties, such as scene lengths, that follow a scale-free 
distribution over time (Cutting et al., 2010; Cutting et al., 2012; Cut-
ting et al., 2018). Given the pervasive presence of scale-free dynamics in 
environmental sensory inputs, the central question of our functional 
magnetic resonance imaging (fMRI) study is: how do the brain’s 
scale-free dynamics in auditory and visual regions continuously respond 
in a time-dependent manner to naturalistic, ongoing inputs that often 
exhibit scale-free properties themselves?

Turning from the scale-free dynamics of sensory and naturalistic 
inputs to the brain, a large body of electrophysiological and fMRI studies 
has demonstrated that human brain activity can also exhibit scale-free 
dynamics. This occurs both in the brain’s ongoing spontaneous activ-
ity during resting-state conditions and in response to stimuli during task 
states (He et al., 2010; Kasagi et al., 2017; Huang et al., 2017; Campbell 
and Weber, 2022; Campbell et al., 2022; Wainio-Theberge et al., 2022; 
Klar et al., 2023a; Klar et al., 2023b; Grosu et al., 2023). Neuroimaging 
findings have shown that scale-free neuronal dynamics optimize the 
brain’s responsiveness to, and processing of, sensory inputs (Gervais 
et al., 2023). Studies also demonstrated that the brain’s scale-free dy-
namics, as measured by the spectral exponent β, can systematically in-
crease or decrease in response to different types of event-related designs. 
In fast event-related designs, power is transiently shifted from slower to 
faster frequencies (He, 2011; Kasagi et al., 2017; Wainio-Theberge et al., 
2022). Conversely, in slow event-related designs, β can increase since 
power shifts from faster to slower frequencies (Klar et al., 2023a; Klar 
et al., 2023b). Event-related studies typically focus on the brain’s 
reactivity to temporally discontinuous or chopped-up inputs in time, 
which are often analyzed in a temporally static (monofractal) manner 
across the entire run, thus averaging over trials and inputs. However, 
such a static analysis is not ideally suited for continuous naturalistic 
inputs, which often amount to a multifractal process with ever-changing 
and thus time-dependent scale-free dynamics. To accurately capture 
such dynamics we need to assess a time-dependent spectral exponent, 
β(t), rather than a static or complete run averaged value of β (Feder, 
1988; Mandelbrot, 1999; Mahmoodi et al., 2020; Mahmoodi et al., 2023; 
West et al., 2023). Given the multifractal nature of real and continuous 
naturalistic inputs (Sabanal and Nakagawa, 1996; Luque et al., 2015; 
Voss and Clarke, 1978; Hsü and Hsü, 1991; Su and Wu, 2007; Levitin 
et al., 2012; González-Espinoza et al., 2017; Field, 1987; Nyikos et al., 
1994; Field and Graham, 2007; Forsythe et al., 2011; Cutting et al., 
2010; Cutting et al., 2012; Cutting et al., 2018) this raises the question of 
whether the brain’s scale-free dynamics in auditory and visual regions 
also exhibit a time-dependent spectral exponent in response to contin-
uous sensory inputs.

As an initial step in this direction, we ask and investigate whether 
scale-free brain dynamics are relevant during the exposure to natural-
istic inputs, which, as discussed above, are often scale-free themselves. 
An attempt to investigate this question leads us to the concept of shared 
brain dynamics across subjects during naturalistic inputs, such as when 
watching a movie while lying in the scanner. Shared dynamics are 
measurable using inter-subject correlation (ISC) (Hasson et al., 2004; 
Hasson et al., 2010; Finn et al. 2018; Sonkusare et al., 2019; Finn and 
Bandettini, 2021; Finn 2021; Nguyen et al. 2022; Kringelbach et al., 
2023). As demonstrated by recent studies, a potential indirect marker 
for input processing during naturalistic inputs is the degree of shared 
brain activity across subjects, namely ISC (Song et al., 2021; Jangraw 
et al., 2023). ISC typically measures the pairwise Pearson or Spearman 
correlations of time-series data between all possible subject pairs and 
then computes the mean or median correlation per brain region (Hasson 
et al., 2004; Hasson et al., 2010; Kauppi et al., 2010; Chen et al., 2016). 
Traditionally, ISC is calculated over the entire time-series, which aver-
ages out the time-varying nature of ISC, which, in turn, is very likely 
based on the simultaneously changing dynamics of sensory inputs 

(Hasson et al., 2004; Hasson et al., 2010; Sonkusare et al., 2019; Finn 
and Bandettini, 2021; Kringelbach et al., 2023). As a side note, ISC has 
also been applied at the subject level by averaging the ISC between one 
subject and all others to uncover individual neuronal and behavioral 
correlations (Finn et al., 2018; Nguyen et al., 2022).

Building upon the time-dependent nature of the spectral exponent 
β(t) of naturalistic sensory inputs and its potential imprint on the brain’s 
simultaneously varying β(t), a first question arises: how might a dy-
namic, time-dependent measurement of inter-subject correlation, ISC(t), 
correlate with the brain’s time-dependent spectral exponent in visual 
and auditory regions during naturalistic inputs? A potentially positive 
and significant correlation between β(t)-ISC(t) would provide inital ev-
idence that the time-varying structure of the brain’s spectral exponent 
relates to the degree of shared brain activity during continuous sensory 
inputs. However, a potentially positive β(t)-ISC(t) correlation leaves 
open the question of why the brain’s time-dependent spectral exponent 
should be correlated or even functionally associated with the degree of 
shared brain activity over time, as measured through ISC(t).

The further investigation of this latter question leads us to recent 
studies that also applied a dynamic or time-dependent ISC analysis. 
These studies additionally demonstrated that the level or degree of ISC 
(t) can correspond with the subjects’ cognitive performance or trait 
features (Song et al., 2021; Jangraw et al. 2023;Finn et al., 2018; Nguyen 
et al., 2022). In more detail, studies formed two groups of subjects and 
revealed that different levels of ISC between the two subject groups can 
correspond with task performance during activities such as reading (see 
Figure 6 in Jangraw et al., 2023). Studies further showed that ISC 
positively correlates with changes in emotional engagement and atten-
tional focus when listening to a narrative story or watching a TV show 
episode (Song et al., 2021). Moreover, ISC levels between the two 
formed subject groups also correspond to the subjects’ reading skills, 
with higher ISC observed in the group with better reading skills (see 
Figure 6 in Wat et al). Paradigmatically, the fMRI study by Jangraw et al. 
(2023) sorted subjects into two groups based on their reading ability 
scores from behavioral tests. During scanning, subjects had to read and 
listen to stories. The authors then computed time-dependent ISC for each 
group and observed that the group with higher reading performance 
exhibited significantly higher ISC across several brain regions. One 
possible explanation by the authors was that subjects with lower reading 
performance showed more idiosyncratic responses during the tasks. 
Conversely, subjects with higher reading performance processed the 
input in a more input-driven or objective matter, thus leading to higher 
ISC. Such an interpretation is also empirically supported by another 
study that used ISC to investigate stimulus-induced correlations. This 
study demonstrated that intrinsic or idiosyncratic brain dynamics 
remain uncorrelated across subjects during naturalistic inputs, while a 
stronger imprint of stimulus dynamics or properties leads to an increase 
in shared brain activity (Simony et al., 2016). Taken together, these 
studies provide evidence that the formation of groups based on specific 
criteria can positively correspond with different levels of ISC(t) during 
naturalistic inputs, so that, paradigmatically, better task performance or 
more cognitive or emotional engagement leads to higher levels of ISC(t) 
(Jangraw et al. 2023; Song et al. 2021).

To assess the extent to which brain dynamics capture and process 
input dynamics, our fMRI study builds on the two-group approach 
(Simony et al., 2016; Song et al., 2021; Jangraw et al., 2023). However, 
instead of using behavioral data for grouping absent in the investigated 
dataset, we return to the brain’s activity itself as a basis for the two 
group formation. It is the brain’s intrinsic activity that contributes an 
active component for successful input processing, that is, the relative 
rest-to-stimulus change of neuronal dynamics carries a functional role: 
the brain’s spontaneous activity or resting-state often interacts in a 
non-additive fashion with inputs and consequently influences 
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stimulus-induced activity and conscious perception (Sadaghiani et al., 
2009; He, 2013; Huang et al., 2017; Podvalny et al., 2019; Northoff 
et al., 2024). We aim to provide evidence that the relative Rest-to-Movie 
change in the brain’s scale-free dynamics modulates the level of shared 
brain activity during naturalistic inputs. The stronger the imprint of 
input properties on brain activity, the more the intrinsic or idiosyncratic 
components of brain dynamics are reduced. This leads to an increase in 
shared brain activity or ISC (Simony et al., 2016). Consequently, ISC can 
serve as an indirect marker for the alignment between the brain’s ac-
tivity and the input it receives.

Note that “alignment” is an umbrella term, similar to “adaptation” 
(Klar et al., 2023a; Klar et al., 2023b; for a review, see Northoff et al., 
2023). In the context of our study, previous uses of the term focused on 
the intrinsic (rest) to stimulus changes in neuronal dynamics, particu-
larly when these changes play a functional role in input processing 
(Huang et al., 2017; Klar et al., 2023a; Klar et al., 2023b; Northoff et al., 
2023; Northoff et al., 2024). Our usage of the term “alignment” em-
phasizes the active component of the brain’s spontaneous activity and its 
rest-to-stimulus changes, which can significantly influence 
stimulus-induced activity (Sadaghiani et al., 2009; He, 2013; Huang 
et al., 2017; Podvalny et al., 2019; Northoff et al., 2024). In the context 
of our study, alignment refers to the modulation and successful pro-
cessing of naturalistic inputs by the brain’s scale-free dynamics, indi-
rectly assessed through ISC(t), along with their corresponding 
rest-to-movie changes.

To achieve the aforementioned aim of providing evidence that the 
relative Rest-to-Movie change of the brain’s scale-free dynamics mod-
ulates the level of ISC, we apply a sliding window analysis (Tagliazucchi 
et al., 2016; Laumann et al., 2017; Huang et al., 2018; Jangraw et al. 
2023) to reveal a time-dependent or dynamic spectral exponent β(t) and 
ISC(t) during movie-watching compared to the resting-state using the 
Human Connectome Project’s 7 Tesla dataset (https://www.humanc 
onnectome.org/). We investigate five cortical systems: the early vi-
sual, visual ventral stream, early auditory, auditory association, and 
dorsolateral prefrontal cortex (DLPFC) regions of the HCP MMP 1.0 atlas 
(Glasser et al., 2016). Our fMRI study includes four specific aims. 

Aim one: We start our study by analyzing whether the brain’s activity 
exhibits varying or time-dependent scale-free dynamics (β(t)) in 
response to the often encountered multifractal nature of naturalistic 
auditory and visual inputs (Feder, 1988; Mandelbrot, 1999; Mah-
moodi et al., 2020; Mahmoodi et al., 2023; West et al., 2023). We 
hypothesize that the standard deviation (SD) of β(t) will be signifi-
cantly higher during the movie run in visual and auditory regions 
compared to the resting-state. In contrast, the resting-state β(t) 
should remain relatively stable across regions due to the lack of 
varying input dynamics, reflected in a lower SD of β(t) during rest. 
We additionally analyze the DLPFC regions as control regions. We 
hypothesize that DLPFC regions lack significant β(t) changes be-
tween the movie and resting-state runs, due to their high anatomical 
and functional distance from early sensory input regions (Glasser 
et al., 2016; Rolls et al., 2022; Rolls et al., 2023a; Rolls et al., 2023b). 
In addition to β(t), we analyze ISC(t). We expect ISC(t) to fluctuate 
close to zero during the resting-state, but to significantly increase 
during shared inputs in the movie run in the visual and auditory 
regions.
Aim two: We expand on our analysis by applying ISC(t) alongside 
β(t) to demonstrate that the two measurements are positively 
correlated in visual and auditory regions during naturalistic inputs. 
Our hypothesis predicting a positive correlation between β(t) and ISC 
(t) in early input regions is based on the following reasoning: natu-
ralistic auditory and visual stimuli comprise complex spatiotemporal 
patterns or dynamics that the brain must track to encode or process 
the input (for reviews on such brain-input coupling or matching, see 
Lakatos et al. 2019; Northoff et al. 2023; Northoff et al. 2024). 
Supporting this idea, a recent study by Campbell et al. (2022), which 

analyzed the same HCP 7 Tesla rest and movie dataset, found a 
significantly higher spectral exponent across regions of the cerebral 
cortex during the movie run compared to the resting-state. The 
continuous nature of naturalistic inputs requires the brain to adjust 
its dynamics to slower frequencies, which facilitates the temporal 
integration of many inputs. This is in contrast to the temporal 
segregation typically required in traditional and more discontinuous 
event-related paradigms (Honey et al., 2012; Hasson et al., 2015; 
Borges et al., 2018; Wolff et al., 2022; Northoff et al., 2023). If the 
dynamics of the input more effectively imprint themselves onto brain 
activity the brain’s response becomes more stimulus-driven rather 
than being shaped by its intrinsic dynamics (Simony et al., 2016). In 
this case, we expect higher degrees of shared brain activity across 
subjects, as driven by the dynamics of external inputs and subse-
quently measured via a higher mean of ISC(t).
Aim three: Building on the analyses of aims one and two, we now 
investigate if and to what extent the brain’s relative shift from 
intrinsic to stimulus-induced scale-free dynamics modulates the de-
gree of shared brain activity during naturalistic inputs. To achieve 
this aim, we utilize ISC(t) by grouping subjects into two groups (Song 
et al., 2021; Jangraw et al., 2023) as follows: First, we group subjects 
into two groups for each brain region based on the subject-based 
Rest-to-Movie change in the standard deviation (SD) of the 
time-dependent spectral exponent β(t). Subjects with a decrease in 
Rest-to-Movie SD of β(t) are grouped in group one, while those with 
an increase are grouped in group two. We apply a region-based 
approach and grouping since we aim to understand how regional 
dynamics contribute to the level of ISC rather than focusing on 
subject-based data. Second, we compute ISC(t) during the movie run 
for the subjects in groups one and two. We hypothesize that the 
groups yield a significantly different mean of ISC(t) in visual and 
auditory regions modulated by the groups’ individual Rest-to-Movie 
SD change in scale-free dynamics.
Aim four: In addition to demonstrating that the group with either an 
increase or decrease in the Rest-to-Movie SD change in β(t) yields a 
higher mean of ISC(t) during the movie run (aim three), we further 
aim to show that the group with the higher mean of ISC(t) also ex-
hibits a stronger positive correlation of β(t) with ISC(t) in the visual 
and auditory regions during naturalistic inputs. A higher mean of ISC 
(t) together with a stronger β(t)-ISC(t) correlation within the same 
group would further support that the brain’s Rest-to-Movie SD 
change in scale-free dynamics modulates the impact of input dy-
namics on the brain revealed by higher degrees of shared brain ac-
tivity in one subject group compared to the other group. Thus, we 
hypothesize that the group with the higher mean of ISC(t) (as 
observed in aim three) also yields a higher positive β(t)-ISC(t) cor-
relation. Conversely, we predict that the group with a lower mean of 
ISC(t) (as observed in aim three) shows a lower β(t)-ISC(t) correla-
tion in the visual and auditory regions.

Finally, we replicated our analyses assessed in the MOVIE2 run by 
also investigating the MOVIE3 and MOVIE4 runs of the same HCP 7 
Tesla dataset. Besides replicating our findings, these two additional 
movie runs also serve the purpose of probing for the movie-specificity of 
the time-dependent spectral exponent β(t) and ISC(t): we expect a 
different temporal structure of β(t) and ISC(t) in the three movie runs 
since each movie presented individual clips (with different audiovisual 
dynamics) to the same subjects. The analysis of the MOVIE3 and 
MOVIE4 runs beside MOVIE2 thus further allows us to tighten the 
relationship between β(t) and ISC(t) by demonstrating that the temporal 
structures of both measurements relate to specific temporal structures of 
the input (movie) dynamics. In short, these analyses further support the 
presumed close relationship between input and brain dynamics. Fig. 1
provides an overview of our study.

P. Klar et al.                                                                                                                                                                                                                                     NeuroImage 314 (2025) 121255 

3 

https://www.humanconnectome.org/
https://www.humanconnectome.org/


2. Methods

2.1. Subjects and study design

We included 182 subjects (male/female: 71/111; age span: 22-35 
years) from the young adults Human Connectome Project (HCP, htt 
ps://www.humanconnectome.org/) preprocessed plus ICA-FIX 
denoised 7 Tesla fMRI dataset. The scanning protocol, participant 
recruitment procedure, informed written consent forms, and consent to 
share deidentified data were approved by the Washington University 
institutional review board (van Essen et al., 2013). We investigated runs 
REST1 and MOVIE2 for our primary analysis. For supβmentary analyses, 
we investigated REST1 with MOVIE3 and REST1 with MOVIE4. During 
the REST1 run, subjects had to keep their eyes open while fixating a 
projected bright cross-hair on a dark background presented in a dark-
ened room. Subjects watched audiovisual Hollywood movie clips sepa-
rated by 20-second rest periods in the MOVIE2 and MOVIE4 runs and 
freely available films under Creative Commons licensing in the MOVIE 3 
run. The movie runs included a 20-second rest period before and after 
the final clip and between the single clips. We removed all 20-second 
rest periods from the three investigated movie runs.

2.2. Data acquisition

A Siemens MAGNETOM 7 Tesla MRI scanner housed at the Center for 

Magnetic Resonance (CMRR) at the University of Minnesota in Minne-
apolis acquired whole-brain scans. Physiological (cardiac and respira-
tory) recordings were not acquired. The scanner acquired gradient-echo 
echo-planar imaging (EPI) recordings with the following imaging pa-
rameters: time repetition = 1000 ms, time echo = 22.2 ms, flip angle =
45◦, slice thickness = 1.6 mm (85 slices, 1.6 mm isotropic voxels for 
functional runs), field of view = 208 × 208 mm (RO x PE), matrix = 130 
× 130 (RO x PE), multiband factor = 5, echo spacing = 0.64 ms, image 
acceleration factor = 2, partial Fourier sampling = 7/8, BW = 1924 Hz/ 
Px. The comβte scanning protocol is available at https://www.human 
connectome.org/hcp-protocols-ya-7t-imaging.

2.3. Preprocessing

We analyzed the so-called minimally preprocessed (Glasser et al., 
2013) and ICA-FIX denoised (Salimi-Khorshidi et al., 2014; Griffanti 
et al., 2014) 7 Tesla dataset in standard volume NIfTI space without 
applying further preprocessing steps. A comprehensive preprocessing 
description is available in Glasser et al. (2013). Briefly, the pre-
processing and ICA-FIX denoising included the following steps: (1) 
removal of spatial artifacts and distortions such as correction of MR 
gradient-nonlinearity-induced distortions for the anatomical scans; (2) 
nonlinear spatial normalization of the anatomical scans to MNI152 
space and subsequent nonlinear functional to anatomical alignment 
(normalization) with a single spline interpolation that minimizes 

Fig. 1. Conceptual overview of our study and the HCP 7 Tesla resting-state and movie-watching dataset. Our main analysis investigated the REST1 and MOVIE2 runs. 
Our replication analyses used the HCP 7 Tesla REST1 versus MOVIE3 and REST1 versus MOVIE4 runs including the same subjects.
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interpolation-induced blurring; (3) realignment of functional scans to 
compensate for subject head motion with a 6 DOF FLIRT registration of 
each frame to the single-bad reference image; (4) reduction of bias field; 
(5) normalization of the functional scans to a global mean and masking 
of the data with a final brain mask; and (6) cleaning of structured noise 
(denoising) via a pair of independent component analyses (MELODIC) 
with the FSL tool FIX to remove artefact components. The combination 
of ICA with the automated component classifier FIX was specifically 
trained on the HCP data. The HCP preprocessing pipeline excluded 
spatial smoothing, temporal filtering, slice timing correction, and mo-
tion censoring.

2.4. Time-dependent spectral exponent β(t) analysis

We applied a sliding window approach previously applied in fMRI 
studies (Tagliazucchi et al., 2016; Laumann et al., 2017; Huang et al., 
2018; Jangraw et al. 2023). Previous fMRI studies adopted various 
window lengths, spanning from seconds to minutes (Tagliazucchi et al., 
2016; Laumann et al., 2017; Huang et al., 2018; Jangraw et al. 2023). 
Generally, shorter window lengths allow for capturing short-scaled 
changes in brain activity, while longer window lengths capture dy-
namics that are more stretched across time and comprise less variability, 
consequently capturing relatively longer-lasting changes. Contrary to 
fMRI sliding window studies with sometimes arbitrary window lengths, 
our chosen 60-second window with a one-second step increase equal to 
one fMRI time repetition rests on rational grounds: First, we avoided 
choosing very short windows, such as 20- or 30-second windows, to 
preserve a significant number of sampling points for β(t) and ISC(t) 
computation. Second, we individually adjusted the frequency band to 
0.05-0.5 Hz so that the lowest frequency includes three complete cycles 
of the wavelength, increasing the precision of the power estimation in 
the Fourier transform required for the spectral exponent computation. 
Moreover, fMRI studies showed that frequencies beyond the 
often-chosen 0.1 Hz upper-frequency limit can include meaningful in-
formation not necessarily corrupted by noise (Shirer et al., 2015; Cab-
allero-Gaudes and Reynolds, 2017). We decided to expand the upper 
frequency limit to 0.5 Hz, reflecting the Nyquist frequency due to the 
sampling rate of 1 Hz (TR = 1 s) in the 7 Tesla HCP dataset. A loga-
rithmic transformation of fMRI power spectra (log-frequency and 
log-power) can follow a power-law distribution of P = 1

fβ where f is the 
frequency, P is the power, and the β is the spectral exponent. For every 
window we computed the β as follows: first, we transformed the BOLD 
signal of the time-domain into the frequency-domain via a discrete 
Fourier Transform (DFT) without applying a window function, 
smoothing, or tapering the data. We subsequently cut the power spec-
trum to the 0.05-0.5 Hz frequency band instead of band-passing the 
BOLD signal in the time-domain. The advantage of cutting the frequency 
band in the frequency-domain is that the power spectrum’s power-law 
distribution remains preserved. Conversely, band-passing in the 
time-domain induces a roll-off near the lower and upper-frequency limit, 
diminishing the power spectrum’s scale-free distribution. We finally 
applied the logarithm on the x-axis (frequency) and y-axis (power) and 
measured the spectral slope of the power distribution via a robust linear 
regression using repeated medians introduced by Siegel (1982) between 
log-frequency and log-power.

2.5. Time-dependent inter-subject correlation ISC(t) analysis

Hasson et al. (2004) introduced inter-subject correlation (ISC) 
analysis in fMRI. ISC can be implemented as a model-free approach for 
computing shared temporal patterns of brain activity between subjects, 
often measured during the presentation of naturalistic audiovisual in-
puts, such as during movie-watching or listening to music and speech 
(Hasson et al., 2004; Hasson et al., 2010; Hasson et al., 2015). Our fMRI 
analysis investigated a time-dependent ISC(t) via the same sliding 

window approach applied for the time-dependent spectral exponent β(t) 
analysis (60-second window with a one-second step increase). We 
computed ISC(t) as follows: first, we calculated each subject’s mean 
time-series by averaging the time-series across all voxels per region. 
Next, we applied a fourth-order forward-backward (effectively an 
eight-order) Chebyshev Type I bandpass filter with the same frequency 
band of 0.05-0.5 Hz following our β(t) analysis on each subject’s 
time-series. We subsequently computed the pairwise Pearson correlation 
coefficient between subjects for every window. Finally, we calculated 
the median Pearson correlation across subjects as a centrality statistic 
based on correlation coefficients of the lower triangle of the correlation 
matrix (excluding the diagonal line and upper triangle) for every win-
dow per region. Especially when using the pairwise correlation 
approach to compute ISC, the median can provide a more accurate 
summary of the Pearson correlation values across subjects than the 
mean (Chen et al., 2016). Choosing the median ISC instead across sub-
jects also makes converting the r-values using the Fisher Z transform 
before taking the mean and converting the mean back to an r-value 
unnecessary, hence overcoming the back-and-forth transformation 
(Chen et al., 2016).

2.6. Regions of interest (ROIs)

We assessed (1) visual, (2) auditory, and (3) dorsolateral prefrontal 
cortex (DLPFC) regions of the HCP MMP 1.0 atlas (Glasser et al., 2016). 
The rationale behind the visual and auditory regions rests on the 
continuous audiovisual inputs from the movie clips. The DLPFC regions 
serve as control regions. 

(1) Visual regions (11 regions): The visual regions include the early 
visual cortex and the ventral stream that spans from the visual 
cortex into the temporal lobe. The decision for the ventral stream 
(known as the “what pathway”) instead of analyzing the dorsal 
stream extending into the parietal lobe (known as the “where 
pathway”) rests on the well-established evidence that the ventral 
stream subserves visual object identification and recognition 
(Kriegeskorte et al., 2008; Bell et al., 2008), better matching the 
HCP movie-watching runs, whereas the dorsal stream primarily 
processes information about the position of objects relative to 
one’s position in space It nonetheless requires consideration that 
the dorsal stream can also process simβ visual features (Pelekanos 
et al., 2016). Two fully independent visual streams might thus be 
a non-warranted simplification since the two streams include 
reciprocal interactions (Pelekanos et al., 2016). The early visual 
cortex comprises regions V1, V2, V3, and V4. The ventral stream 
comprises V8, ventral visual comβx (VVC), PIT comβx, fusiform 
face comβx (FFC), and three ventro-medial visual areas (VMA1, 
VMA2, and VMA3).

(2) Auditory regions (13 regions): The auditory regions include the 
early auditory A1, lateral belt comβx (LBC), medial belt comβx 
(MBC), para belt comβx (PBC), and retro-insular cortex (RIC). The 
auditory association cortex includes regions A4, A5, TCVp, 
STCVa, STSvp, STSva, STGa, and TA2. The auditory regions 
comβment the visual regions based on the audiovisual nature of 
the presented movie.

(3) DLPFC regions (13 regions): The DLPFC regions include areas 8C, 
8Av, i6-8, s6-8, SFL, 8BL, 9p, 9a, 8Ad, p9-46v, a9-46v, 46, and 9- 
46d.

In addition to the HCP MMP 1.0 atlas publication (Glasser et al., 
2016), a comprehensive anatomical and functional overview of the vi-
sual, auditory, and DLPFC regions is provided in the “Supplementary 
Neuroanatomical Results For A Multi-modal Parcellation of Human 
Cerebral Cortex” file available at https://www.nature.com/articles/na 
ture18933. The HCP MMP 1.0 atlas used multi-modal magnetic reso-
nance images from the Human Connectome Project and defined 180 
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areas per hemisphere based on cortical architecture, function, connec-
tivity, and topography in a group average of 210 healthy young adults.

2.7. Formation of two subject groups per region

We applied a two-region group approach to use ISC(t) as adopted by 
previous studies (Song et al., 2021; Jangraw et al., 2023). Instead of 
grouping subjects based on behavioral data, we form two groups based 
on the brain’s relative Rest-to-Movie change in scale-free dynamics since 
the brain’s spontaneous activity often interacts in a non-additive fashion 
with inputs and consequently influences stimulus-induced activity and 
conscious perception (Sadaghiani et al., 2009; He, 2013; Huang et al., 
2017; Podvalny et al., 2019; Northoff et al., 2024). We computed the 
Rest-to-Movie SD change of the time-dependent spectral exponent β(t) 
on a subject-based level individually for each region as follows: first, we 
computed the SD of β(t) in resting-state and movie runs per subject and 
region. In the second step, we formed two groups. Subjects with a 
Rest-to-Movie SD decrease of β(t) are grouped into group one per region, 
while we assign subjects with an increase to group two per region. This 
two-group approach allowed us to individually compute the 
region-based β(t) and ISC(t) in the movie run for groups one and two.

2.8. Statistics and reproducibility

We used the Bonferroni-Holm correction, also known as Holm’s 
method (Holm, 1979), that controls the family-wise error rate (FWER) to 
counterbalance the problem of multiple comparisons (Neyman, 1937) 
due to repeating tests in statistical analyses. The reported p-values in our 
study are thus always Bonferroni-Holm adjusted p-values and use the 
following asterisk notation: p < 0.05*, p < 0.01**, and p < 0.001***. 
The advantage of the Bonferroni-Holm correction over the standard 
Bonferroni correction is that the former is less conservative and more 
powerful (Holm, 1979). The Bonferroni-Holm correction decreases the 
likelihood of type II (false negative) errors, meaning that potentially 
meaningful differences are deemed non-significant compared to the 
standard Bonferroni method. Briefly, after defining the significance 
threshold alpha (ɑ), where we set ɑ = 0.05 in our analysis, the 
Bonferroni-Holm correction for multiβ comparisons functions as follows: 
(1) all obtained p-values are rank-ordered by their size, beginning with 
the smallest to the biggest p-value, with m being the number of p-values; 
(2) if the first p-value in the list of sorted p-values is greater than or equal 
to ɑ/m, no p-values are significant; (3) after the first p-value potentially 
gains significance, the second p-value is then compared to ɑ/m. If the 
second p-value is greater than or equal to ɑ/(m-1), the remaining 
p-values are not significant. Otherwise, the procedure is repeated for the 
remaining p-values. We applied the Bonferroni-Holm correction indi-
vidually for each analysis or family of tests. Specifically, we repeated the 
p-value correction for each analysis across the three modalities (visual, 
auditory, and DLPFC regions). For example, when we conducted three 
tests comparing the rest versus movie mean of ISC, we accordingly ob-
tained three p-values which we corrected using the Bonferroni-Holm 
method.

2.9. Supplementary replication analyses

We conducted two complete and successful replication analyses 
where we investigated the REST1 and MOVIE3 and the REST1 and 
MOVIE4 runs instead of the REST1 and MOVIE2 runs (as for our primary 
analysis). In detail, our replication analyses include: 

(1) Rest vs. movie differences in β(t): We investigated the mean and 
SD in the movie compared to the resting-state run in the REST1 
versus MOVIE3 (Supplementary Figure 3a) and REST1 versus 
MOVIE4 (Supplementary Figure 3b) runs. Noteworthy, a visual 
inspection and comparison shows that β(t) showed a different 
temporal structure between all three movie runs, providing 

further evidence that the time-dependent β(t) is a potential 
response to each movie’s individual ever-changing input β(t).

(2) Rest vs. movie differences in ISC(t): We investigated the mean of 
ISC(t) in the movie compared to the resting-state run in the 
REST1 versus MOVIE3 (Supplementary Figure 4a) and REST1 
versus MOVIE4 (Supplementary Figure 4b) runs. As observed for 
β(t), a visual inspection and comparison between the three 
assessed movie runs shows that ISC(t) yielded a different tem-
poral structure between all three movie runs.

(3) Spearman correlation between β(t) and ISC(t) in the movie run 
for all subjects: We investigated the β(t)-ISC correlations in 
MOVIE3 (Supplementary Figure 5a) and in MOVIE4 (Supple-
mentary Figure 5b).

(4) ISC(t) for groups 1 and 2 in the movie run: We investigated the 
mean of ISC(t) in Group 1 compared to Group 2 in MOVIE3 
(Supplementary Figure 6a) and in MOVIE4 (Supplementary 
Figure 6b).

(5) Spearman correlation between β(t) and ISC(t) for groups 1 and 2 
in the movie run: We investigated the β(t)-ISC correlation in 
Group 1 compared to Group 2 in MOVIE3 (Supplementary 
Figure 7a) and MOVIE4 (Supplementary Figure 7b).

(6) Scale-free dynamics based on the Supplementary resting-state 
and movie runs: We also checked that the complete (instead of 
sliding window-based) runs exhibit scale-free dynamics. We 
computed the power spectrum in the same frequency band (0.05- 
0.5 Hz) as for our sliding window analysis but based on the 
complete runs. Supplementary Figure 9 shows the complete run 
power spectra for the visual, auditory, and DLPFC regions.

3. Results

3.1. Higher Mean and SD of the time-dependent spectral exponent β(t) 
during naturalistic inputs compared to the resting-state

For aim one, we hypothesized that the brain’s scale-free dynamics 
exhibit a time-dependent spectral exponent β(t) in auditory and visual 
regions during naturalistic inputs. We measured a significantly higher 
mean and standard deviation (SD) of β(t) in the movie run in visual and 
auditory regions compared to the resting-state. Note that the p-values of 
all our analyses underwent Bonferroni-Holm correction (see method 
section for details). 

Mean results: We observed a significantly higher mean of β(t) in the 
movie run compared to the resting-state in visual (t = -4.5, p =
0.001) and auditory (t = -7.47, p < 0.001) regions. The DLPFC re-
gions lacked a significant rest versus movie mean difference (t =
-0.02, p = 0.987).
SD results: We also observed a significantly higher SD of β(t) in the 
movie run compared to the resting-state in visual (t = -11.58, p <
0.001), auditory (t = -12.9, p < 0.001) and DLPFC regions (t = -3.53, 
p = 0.004). Fig. 2a displays β(t) in the resting-state and the movie 
run, while Fig. 2b shows the statistical results.

We replicated the significantly higher mean and SD of β(t) in the 
movie run compared to the resting-state in the REST1 versus MOVIE3 
comparison (Supplementary Figure 1a) and in the REST1 versus 
MOVIE4 comparison (Supplementary Figure 1b). A visual inspection of 
β(t) in Figure 2a reveals that β(t) remains relatively stable during the 
resting-state. In contrast, during the movie runs, β(t) exhibits a distinct 
temporal structure that varies between the visual and auditory regions. 
Furthermore, β(t) in the visual and auditory regions differs substantially 
across all three movie runs (MOVIE2, MOVIE3, and MOVIE4). We pro-
pose that the distinct audiovisual inputs of the three movies require 
different responses in the brain’s scale-free dynamics, as reflected in the 
varying β(t) profiles observed across the three movies. Finally and in yet 
another control analysis, we also investigated whether the complete 
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resting-state and movie runs (rather than the sliding window-based 
analysis) exhibit power-law distributions. To do this, we computed the 
power spectrum over the same frequency band (0.05–0.5 Hz) used in our 
time-dependent or sliding window analysis. Supplementary Figure 9 
displays the power spectra for the complete runs in the visual, auditory, 
and DLPFC regions in the rest and movie runs.

3.2. Higher mean of time-dependent ISC(t) during naturalistic inputs 
compared to the resting-state

Aim one also involved measuring the time-dependent ISC(t) during 
both the resting-state and the movie run. We hypothesized, and 
observed, that ISC(t) fluctuates around zero in the resting-state, while 
the mean of ISC(t) significantly increased during the movie run in the 

Fig. 2. Time-dependent spectral exponent β(t) in the REST1 and MOVIE2 runs. a) β(t) in visual, auditory, and DLPFC regions. b) Paired t-tests between REST1 and 
MOVIE2. (SD standard deviation, significance asterisks p < 0.05 *, p < 0.01 **, p < 0.001 ***, p-value correction = Bonferroni-Holm, error bars = 95% confi-
dence interval).

Fig. 3. Time-dependent ISC(t) in the REST1 and MOVIE2 runs. a) ISC(t) in visual, auditory, and DLPFC regions. b) Paired t-tests between REST1 and MOVIE2. 
(significance asterisks p < 0.05 *, p < 0.01 **, p < 0.001 ***, p-value correction = Bonferroni-Holm, error bars = 95% confidence interval).
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visual (t = -14.12, p < 0.001), auditory (t = -8.29, p < 0.001), and 
DLPFC (t = -7.2, p < 0.001) regions. We replicated the significantly 
higher mean of ISC(t) in the movie run compared to the resting-state in 
the visual, auditory, and DLPFC regions in both the REST1 versus 
MOVIE3 comparison (Supplementary Figure 2a) and the REST1 versus 
MOVIE4 comparison (Supplementary Figure 2b). As observed for β(t) in 
the visual and auditory regions in Fig. 2a, ISC(t) also exhibits a specific 
temporal structure that differs substantially across the three movie runs 
(MOVIE2, MOVIE3, and MOVIE4).

3.3. Correlation between β(t) and ISC(t) during naturalistic inputs

We observe a similar temporal structure between β(t) and ISC(t) (Figs 
2a and 3a) for the visual and auditory regions in the movie run. Inter-
estingly, a similar temporal structure between β(t) and ISC(t) can also be 
seen for the MOVIE3 and MOVIE4 runs (see Supplementary results). 
This observation leads us to our second aim, namely to demonstrate a 
positive correlation between β(t) and ISC(t). We used Spearman’s rank 
correlation to assess the relationship between β(t) and ISC(t) for each 
region individually (Fig. 4). 

Visual regions: We obtained significant and positive β(t)-ISC(t) cor-
relations in all visual regions (p < 0.001 for every visual region). The 
average correlation across all visual regions is ρ = 0.5.
Auditory regions: We also observed significant and positive β(t)-ISC 
(t) correlations in all auditory regions (p < 0.001 for every auditory 
region). The average correlation across all auditory regions is ρ =
0.72.
DLPFC regions: The DLPFC regions showed a mix of positive and 
negative correlations, which were generally weaker than those 
observed in the visual and auditory regions. Given the mix of positive 
and negative correlations, the average correlation across all DLPFC 
regions was ρ = -0.11.

We replicated the positive β(t)-ISC(t) correlations in the MOVIE3 run 
(visual regions mean ρ = 0.42; auditory regions ρ = 0.65; DLPFC regions 
ρ = -0.06) as shown in Supplementary Figure 3a, and in the MOVIE4 run 
(visual regions mean ρ = 0.55; auditory regions ρ = 0.63; DLPFC regions 

ρ = 0) as shown in Supplementary Figure 3b. The moderate to strong 
β(t)-ISC(t) correlations in the visual and auditory regions suggest that 
the temporal structure or level of β(t) systematically varies with the level 
of ISC(t), highlighting their functional connection: higher β(t) levels are 
positively correlated with higher ISC(t) levels.

3.4. The rest-to-movie SD change in β(t) modulates the mean of ISC(t) 
during naturalistic inputs

So far, aim one demonstrated that the brain’s scale-free dynamics 
exhibit a time-dependent spectral exponent β(t) in the three assessed 
movie runs, especially in visual and auditory regions. In aim two we also 
demonstrated that β(t) positively correlates highly with ISC(t) in visual 
and auditory regions. Our analyses rested on a region-based level. When 
zooming in and assessing the subject-based level β(t), we observe a high 
variance between the single subjects’ SD of β(t) during naturalistic in-
puts, shown in Fig. 5 for the early visual and early auditors regions. 
(Note that Supplementary Figure 4 shows the subject-based β(t) for the 
movie run in the ventral stream and auditory association regions, while 
Supplementary Figure 5 shows the same in the DLPFC regions.)

Previous studies have shown that the brain’s intrinsic spontaneous 
activity often interacts non-additively with external inputs, meaning 
that neuronal activity during inputs can be significantly modulated by 
the change in brain activity from rest to stimulus states (Sadaghiani 
et al., 2009; He, 2013; Huang et al., 2017; Podvalny et al., 2019; 
Northoff et al., 2024). Building on the high variability in the 
time-dependent structure of β(t) across subjects, we now assess how 
different degrees of Rest-to-Movie SD changes in scale-free dynamics 
impact the level or mean of ISC(t) during naturalistic inputs. To achieve 
this, we use the two-group approach described in the introduction and 
methods sections of our study (Song et al., 2021; Jangraw et al., 2023). 
Briefly, we created two groups for each region based on the 
subject-specific Rest-to-Movie SD change of β(t). Subjects with a 
decrease in Rest-to-Movie SD of β(t) are placed in Group 1, while those 
with an increase are assigned to Group 2 for each region. This approach 
allowed us to investigate whether Group 1, with a Rest-to-Movie SD 
decrease in β(t), or Group 2, with an increase, shows a significantly 
higher mean of ISC(t) in the movie run. Fig. 6a presents the results for 

Fig. 4. Spearman’s rank correlation between β(t) and ISC(t) in the MOVIE2 run. We correlated the windows of β(t) with the windows of ISC(t) in every region. Every 
data point in the scatterplots represents one window or data point of β(t) and ISC(t). (significance asterisks p < 0.05 *, p < 0.01 **, p < 0.001 ***, p-value correction 
= Bonferroni-Holm, error bars = 95% confidence interval).
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the two groups, where each data point represents the Rest-to-Movie SD 
decrease or increase for each subject per region. Fig. 6b shows four 
paradigmatic subjects with a Rest-to-Movie SD decrease and four sub-
jects with a Rest-to-Movie SD increase in visual region V1 and auditory 
region A1.

We analyzed ISC(t) individually for both groups, as shown in Fig. 7a, 
and statistically compared the mean ISC(t) between the groups, as 
shown in Fig. 7b. 

Visual regions: Group 1 yielded a higher mean of ISC(t) in the visual 
regions than Group 2 (t = 5.8, p < 0.001).
Auditory regions: Group 1 also yielded a higher mean of ISC(t) in the 
auditory regions than group 2 (t = 3.14, p = 0.002).
DLPFC regions: The DLPFC lacked a significant difference in the 
mean of ISC(t) between both groups (t = 0.99, p = 0.33).

We replicated the significantly higher mean of ISC(t) in Group 1 for 
the MOVIE3 run in both the visual (t = 7.64, p < 0.001) and auditory (t 
= 3.52, p < 0.001) regions, as shown in Supplementary Figure 4a, and 
for the MOVIE4 run in the visual (t = 6.37, p < 0.001) and auditory (t =
2.58, p = 0.004) regions, as shown in Supplementary Figure 4b. As 
previously observed in the analysis of all subjects, while ISC(t) was 
generally higher for Group 1 compared to Group 2, the temporal 
structure of ISC(t) differed between the three movie runs.

3.5. Higher positive β(t)-ISC(t) correlation in Group 1 than in Group 2 
during naturalistic inputs

As previously investigated for all subjects in aim two, we repeated 
the β(t)-ISC(t) correlation analysis for the two groups. We hypothesized 
that Group 1, which showed a higher mean of ISC(t) in the visual and 
auditory regions during the movie run, would also exhibit a stronger 
positive correlation between the temporal structures of β(t) and ISC(t). 

Visual regions: We observed significant and positive β(t)-ISC(t) cor-
relations in all visual regions (p < 0.001 for every visual region) for 
Group 1. The average correlation across all visual regions for Group 1 
is ρ = 0.59. The average correlation across all visual regions for 
Group 2 is lower than in Group 1, ρ = 0.40. The statistical compar-
ison between Group 1 and Group 2 in the visual regions yielded 
significantly higher β(t)-ISC(t) correlations for Group 1 (t = 1.94, p =
0.034).
Auditory regions: We also observed significant and positive β(t)-ISC 
(t) correlations in all auditory regions (p < 0.001 for every visual 
region) for Group 1. The average correlation across all auditory re-
gions for Group 1 is ρ = 0.74. The average correlation across all 
auditory regions for Group 2 is lower than in Group 1, ρ = 0.65. The 
statistical comparison between Group 1 and Group 2 in the auditory 
regions lacked a significant difference (t = 1.44, p = 0.082).
DLPFC regions: The DLPFC regions in Group 1 yielded a mixture of 
positive and negative correlations that were generally weaker than in 

Fig. 5. Subject-based β(t) and its SD in the MOVIE2 run in early visual (left side) and early auditory (right side) regions. Every graph represents the β(t) of one subject 
per region. (SD standard deviation, n = 182 subjects).
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the visual and auditory regions. Due to the weaker positive and 
negative correlations, the average correlation across all DLPFC re-
gions in Group 1 amounts to zero ρ = -0.04. We observed a similar 
mixed pattern for Group 2 with an average correlation across all 
DLPFC regions of ρ = -0.16. The statistical comparison between 
Group 1 and Group 2 in the DLPFC regions lacked a significant dif-
ference (t = 1.09, p = 0.288). Fig. 8a displays the β(t)-ISC(t) corre-
lation for Group 1, Fig. 8b for Group 2, and Fig. 8c shows the 
statistical comparisons between the two groups. We replicated the 
significantly higher β(t)-ISC(t) correlation in Group 1 compared to 
Group 2 in the MOVIE3 run in the visual regions (t = 1.8, p = 0.045) 
shown in Supplementary Figure 5. The MOVIE4 lacked significant 
differences in the visual, auditory, and DLPFC regions, as shown in 
Supplementary Figure 6.

Taken together with the previous two-group analysis during the 
movie run (Fig. 7), the β(t)-ISC(t) correlation demonstrates that that 
Group 1 (Rest-to-Movie SD decrease of β(t)) yielded both a significantly 
higher mean of ISC(t) in visual and auditory regions and a significantly 
higher β(t)-ISC(t) correlation in visual and auditory regions than Group 
2 (Rest-to-Movie SD increase of β(t)).

4. Discussion

Our fMRI study represents an initial step in demonstrating that the 
brain’s scale-free dynamics exhibit a time-dependent structure in 
response to continuous naturalistic auditory and visual inputs. The 
brain’s dynamic rather than static spectral exponent β(t) demonstrated 
by our first aim is a likely response to the multifractal nature often 
encountered in real-world and naturalistic inputs (Feder, 1988; 

Mandelbrot, 1999; Mahmoodi et al., 2020; Mahmoodi et al., 2023; West 
et al., 2023). In contrast to the movie run, we observed a stable spectral 
exponent β(t) with only minor fluctuations and no distinct temporal 
structure in the resting-state, as subjects maintained a constant fixation 
on a bright crosshair against a dark background in a darkened room. The 
observed spectral stability suggests that, in the absence of dynamic 
auditory and visual inputs, the brain’s scale-free dynamics do not 
require significant adjustments with inputs, resulting in a stable spectral 
exponent in the resting-state.

In contrast and during movie-watching, the brain’s spectral exponent 
β(t) displayed a temporal structure that also diverged between visual 
and auditory regions, likely reflecting the ever-varying properties spe-
cific to auditory and visual inputs. Additionally, the temporal structure 
of scale-free dynamics in the visual and auditory regions differed across 
the three analyzed movie runs (see Supplementary Figures 1a and 1b), 
likely due to the audiovisual characteristics that are distinctive of each 
movie clip. More generally, we show that the spectral exponent of a 
biological system, such as the brain, aligns with the time-dependent or 
multifractal spectral exponents of incoming inputs; this notion is rooted 
in the complexity matching framework originating from the biological 
domain of fractal physiology (West et al., 2023; Mahmoodi et al., 2023; 
West, 2024).

For our second aim, we demonstrated that the time-dependent 
spectral exponent β(t) positively correlates with time-dependent inter- 
subject correlation (ISC(t)) in both visual and auditory regions. How can 
we explain the positive β(t)-ISC(t) correlation, so that higher spectral 
exponents go along with higher degrees of shared brain activity in 
response to inputs? First, recall that in the analysis for aim one, we found 
a significant increase in the mean of the spectral exponent during the 
presentation of naturalistic inputs. This is a likely result due to the more 

Fig. 6. The Figure illustrates the formation of two groups per region based on the subject-based Rest-to-Movie SD change in scale-free dynamics, enabling a sub-
sequent group-based ISC(t) analysis. a) Subjects with a Rest-to-Movie SD decrease of β(t) are grouped into Group 1 (left side of the Figure), while we group subjects 
with an increase into Group 2 (right side of the Figure). Every data point reflects the Rest-to-Movie SD change of β(t) for each subject per region. b) Shown are four 
paradigmatic subjects with a Rest-to-Movie SD decrease (left side) and four subjects with a Rest-to-Movie SD increase (right side) in visual region V1 and auditory 
region A1.
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complex and fractal nature of the audiovisual properties in the movie, 
compared to the eyes-open resting-state where subjects are exposed to 
monotonous scanner noise while visually fixating on the head coils and 
MRI scanner walls. As the movie’s audiovisual input dynamics more 
strongly influence brain activity, the brain’s response becomes 
increasingly stimulus-driven and less shaped by its intrinsic dynamics 
(Simony et al., 2016).

Additionally, the movie’s continuous audiovisual inputs very likely 
possess a higher fractal or nested temporal structure than the brain’s 
stimulus-free resting-state, forcing the brain’s dynamics to elevate their 
spectral exponent over time, as per the complexity matching phenom-
enon (West et al., 2023; Mahmoodi et al., 2023; West, 2024). Studies of 
complexity matching demonstrated that a less complex system, such as 
the brain with a lower spectral exponent that we observed the 
resting-state, aligns with a more complex system, such as the movie’s 
audiovisual inputs, by increasing its complexity, such as via the spectral 
exponent, as observed in the movie run (West et al., 2023; Mahmoodi 
et al., 2023; West, 2024). In conclusion, subjects who align their 
scale-free dynamics more closely with those of the input exhibit more 
similar brain activity during continuous naturalistic inputs, since an 
improved brain-input matching naturally results in a stronger footprint 
of the input on brain dynamics in early sensory regions leading to higher 
ISC.

Importantly, the positive correlation between β(t) and ISC(t) follows 
previous findings from an electrocorticographic study by Honey et al. 
(2012), where the authors observed that steeper power spectrum slopes 
or exponents were associated with higher degrees of shared brain ac-
tivity or ISC during intact movie conditions, as opposed to scrambled 
movie conditions. Again, naturalistic ongoing inputs (Feder, 1988; 
Mandelbrot, 1999; Mahmoodi et al., 2020; Mahmoodi et al., 2023; West 
et al., 2023) and intact movies (Cutting et al., 2010; Cutting et al., 2012; 
Cutting et al., 2018) exhibit a time-dependent or multifractal spectral 
exponent due to their ever-changing contents, which is lost when inputs 

undergo scrambling or shuffling, then resulting in a stable or constant 
white noise process.

One might wonder why the β(t)-ISC(t) correlation is strongly positive 
rather than negative, and how the correlation might differ during non- 
continuous, event-related inputs. The positive β(t)-ISC(t) correlation 
can be explained by the fact that higher spectral exponents indicate a 
shift of power from faster to slower frequencies, which supports higher 
degrees of temporal integration necessary for processing continuous 
inputs, such as during movie-watching (Honey et al., 2012; Hasson et al., 
2015; Borges et al., 2018; Wolff et al., 2022; Northoff et al., 2023). 
Recall from the introduction that higher spectral exponents correspond 
to longer temporal correlations, as indicated by higher values of the 
Hurst exponent in the time-domain (Mandelbrot, 1999; Link-
enkaer-Hansen et al., 2001; Hardstone et al. 2012). One of our findings 
demonstrated a significantly higher mean of the time-dependent spec-
tral exponent in sensory regions during inputs compared to the 
resting-state. This observation was also made in a recent fMRI study 
using the same HCP 7 Tesla dataset (Campbell et al., 2022): the authors 
found a significantly higher spectral exponent across multiple cortical 
regions during inputs than in the resting-state. Conversely, higher de-
grees of temporal segregation are required in fast event-related designs, 
where β can decrease (He, 2011; Kasagi et al., 2017; Wainio-Theberge 
et al., 2022).

Thus, higher spectral exponents likely allowed a better imprinting of 
audiovisual input properties on the brain’s ongoing neuronal dynamics, 
as reflected by higher degrees of ISC including a positive β(t)-ISC(t) 
correlation. But what would the β(t)-ISC(t) correlation potentially look 
like if subjects underwent an event-related design, with temporally 
discontinuous or discrete inputs rather than continuous and contiguous 
inputs? In this case, neuronal dynamics would likely need to decrease 
their spectral exponent to optimize the processing of the temporally 
segregated inputs effectively, as previously shown by other studies (He, 
2011; Kasagi et al., 2017; Wainio-Theberge et al., 2022), then likely 

Fig. 7. Time-dependent ISC(t) during the MOVIE2 run in two groups. a) The left side of the plot shows Group 1 (based on the Rest-to-Movie SD decrease of β(t)) and 
the right side of the plot shows Group 2 (based on the Rest-to-Movie SD increase of β(t)). b) Independent t-tests between Group 1 and Group 2 in visual, auditory, and 
DLPFC regions. (Significance asterisks p < 0.05 *, p < 0.01 **, p < 0.001 ***, p-value correction = Bonferroni-Holm, error bars = 95% confidence interval).
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resulting in a significant negative rather than a positive β(t)-ISC(t) 
correlation.

For the third aim, we first assessed the subject-based β(t) in the movie 
run and observed high inter-individual differences in the SD of β(t), 
shown in Figure 5 and in Supplementary Figures 7 and 8. Previous 
studies showed that the brain’s spontaneous activity often interacts in a 

non-additive fashion with inputs to impact stimulus-induced activity 
(Sadaghiani et al., 2009; He, 2013; Huang et al., 2017; Podvalny et al., 
2019; Northoff et al., 2024). We then asked whether the brain’s relative 
Rest-to-Movie SD change, that is, a decrease or increase from the resting- 
to the movie-state, modulates ISC(t) during the movie via the formation 
of two subject groups (Song et al., 2021; Jangraw et al., 2023) based on 

Fig. 8. Spearman’s rank correlation between β(t) and ISC(t) in the MOVIE2 run in two groups. We correlated the windows of β(t) with the windows of ISC(t) in every 
region. Every data point in the scatterplots represents one window or data point of β(t) and ISC(t). a) β(t)-ISC(t) correlation in Group 1. b) β(t)-ISC(t) correlation in 
Group 2. c) Independent t-tests between Group 1 and Group 2 in visual, auditory, and DLPFC regions. (significance asterisks p < 0.05 *, p < 0.01 **, p < 0.001 ***, p- 
value correction = Bonferroni-Holm, error bars = 95% confidence interval).
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the Rest-to-Movie SD change in scale-free dynamics.
We grouped subjects with Rest-to-Movie SD decrease of β(t) into 

Group 1 and subjects with an increase in Group 2 and then individually 
measured the mean of ISC(t). The two groups indeed yielded very 
different degrees of ISC during the movie’s inputs, with Group 1 showing 
significantly higher ISC in visual and auditory regions than Group 2 in 
the three assessed movie runs, with the only exception for the auditory 
regions in MOVIE3. A possible theoretical inference is that higher de-
grees of variability in intrinsic (resting-state) scale-free dynamics only 
must reduce or dampen their fluctuations to support a higher impact by 
external inputs, thus increasing ISC when brain dynamics are less driven 
by intrinsic dynamics and more strongly shaped by external input dy-
namics (Simony et al. 2016). Although accounting for event-related 
designs, fMRI (Huang et al., 2017) and electrophysiological (White 
et al., 2012; Ito et al., 2020; Wolff et al., 2021) also provided evidence 
that higher degrees of pre-stimulus activity result in higher trial-to-trial 
variability quenching during inputs that, in turn, correlated with better 
stimulus processing and task performance (see also Northoff et al., 2024
for a review).

Finally, we aimed to strengthen the evidence that the brain’s relative 
Rest-to-Movie SD change in scale-free dynamics modulates the level or 
mean of ISC during the movie state. First, note that we demonstrated 
that Group 1 (Rest-to-Movie SD decrease of β(t)) showed a significantly 
higher mean of ISC(t) during naturalistic inputs. Second, Group 1 also 
had a significantly higher positive β(t)-ISC(t) correlation in visual and 
auditory regions than Group 2. We infer that the higher β(t)-ISC(t) 
correlation in Group 1 relates to the initially observed higher mean of 
β(t) during naturalistic inputs than in the resting-state in the analysis of 
aim one: as previously discussed, higher spectral exponents induce a 
shift of power away from faster to slower frequencies to support higher 
degrees of temporal input integration during the processing of contin-
uous inputs (Honey et al., 2012; Hasson et al., 2015; Borges et al., 2018; 
Wolff et al., 2022; Northoff et al., 2023). Group 1 employed a higher 
shift towards steeper spectral exponents and thus temporal integration 
of continuous inputs, thus allowing a better imprinting of the movie’s 
audiovisual properties on brain dynamics in these subjects, finally 
leading to higher levels of ISC(t) and a better β(t)-ISC(t) correlation than 
in Group 2.

4.1. Limitations

We subsequently discuss the limitations of our study. First, we 
discuss a seeming contradiction between the results shown in Fig. 2 and 
the results shown in Fig. 7. The SD of the region-based β(t) is signifi-
cantly higher in the movie run than in the resting-state for all subjects. 
We argued that the β(t)’s higher SD during the movie run results based 
on the likely ever-changing β(t) of the movie’s auditory and visual in-
puts. At the same time, Group 1 (Rest-to-Movie SD decrease of the β(t)) 
has a significantly higher mean of ISC(t) during the movie run than 
Group 2 (Rest-to-Movie SD increase of the β(t)), as shown in Fig. 7. A 
question thus arises: why does Group 1 with a SD decrease yield higher 
ISC than Group 2 with a SD increase? We offer the following explanation 
of these seemingly contradicting findings. First, on the subject-based 
level, subjects show very different temporal structures of the β(t) in 
the resting-state, as paradigmatically shown for four subjects in Fig. 6b. 
We thus obtain a relatively flat or stable β(t) when taking the region- 
based mean across subjects in the resting-state. The relatively flat β(t) 
partially results because higher and lower β values across time generally 
lack an overlap across the subjects, thus resulting in a rather flat β(t) on 
the region-based level. Second, in the movie run, the temporal structure 
of the β(t) is likely more similar across subjects due to constantly shared 
audiovisual inputs since subjects all watched the same movie clips. The 
shared temporal structure of β(t) during the movie run is thus not 
canceled out in the averaging (region-based) process across subjects as 
in the resting-state, therefore yielding a distinct temporal structure of 
the region-based β(t) individually for each of the three assessed movie 

runs, as shown in Fig. 2 and Supplementary Figure 1.
How can we address that the two groups, (Rest-to-Movie SD decrease 

versus increase in scale-free dynamics) exhibited significantly different 
degrees of ISC(t) in visual and auditory regions in the movie condition? 
A comprehensive model that fully explains the significance of the vari-
ance of the dynamic PLE is necessary for a complete interpretation. 
However, we can still formulate some hypotheses based on existing 
frameworks and findings.

Recently, a framework addressing the dynamic repertoire of the 
brain, based on the number of available brain states, was proposed to 
explain certain phenomena, such as epilepsy (McIntosh & Jirsa, 2019; 
Hadriche et al., 2013). This framework prompted researchers to 
examine the variance in time-dependent measures of brain activity. For 
instance, Hudetz et al. (2015) found that the variance in time-dependent 
regional homogeneity (ReHo) of the BOLD signal decreases under 
anesthesia. Similarly, Lord et al. (2019) observed a significant reduction 
in the transition probabilities of recurrent patterns of leading eigen-
vectors derived from dynamic functional connectivity (calculated using 
phase-locking values) under psilocybin. In another study, Atasoy et al. 
(2017) discovered that the time-dependent probability distribution of 
connectome harmonics significantly increases with LSD. These findings 
suggest the importance of time-dependent variance in measurements of 
brain activity. Specifically, one might hypothesize that a greater avail-
ability of brain states, that is, a richer dynamic repertoire, facilitates 
better adaptation to external inputs. In the context of our results, an 
increase in variability from the resting-state to the movie state might 
indicate a diminished or smaller repertoire in the resting-state (than in 
subjects that simply had to decrease their variability in response to in-
puts), resulting in a relatively reduced capacity to uniformly process the 
movie’s audiovisual inputs across subjects and consequently lower 
inter-subject correlation (ISC).

It is noteworthy that the spectral exponent β, measured in the 
frequency-domain, corresponds to other measurements, such as the 
Hurst exponent (H) in the time-domain. The Hurst exponent captures 
long-range temporal correlations (LRTCs). Temporal correlations of a 
signal that refer to repeating patterns in the time-series, where earlier 
data points can either positively or negatively correlate with later data 
points, across both short and long timescales (Hardstone et al., 2012). A 
Hurst exponent greater than 0.5 indicates persistent behavior, meaning 
that an increase in the value at a given time is likely to be followed by 
another increase, and a decrease by another decrease. A time-series with 
H > 0.5 indicates LRTCs and may correspond to a power-law distribu-
tion in the power spectrum (Linkenkaer-Hansen et al., 2001). 
Conversely, a Hurst exponent less than 0.5 signifies anti-persistent 
behavior or anticorrelated noise, where an increase is more likely to 
be followed by a decrease, and vice versa, as seen in mean-reverting or 
oscillatory dynamics (Mandelbrot, 1999). Finally, a Hurst exponent of 
0.5 indicates a time-series akin to white noise, which lacks temporal 
correlations, and the power spectrum exhibits β = 0, with approximately 
equal power across all frequencies. Why did we investigate a 
time-dependent spectral exponent instead of, paradigmatically, a 
time-dependent Hurst exponent? We raised the question of how spe-
cifically naturalistic inputs, often comprising scale-free auditory and 
visual dynamics (Bak, 1996; Mandelbrot, 1999; Schroeder, 2009), 
impact scale-free brain dynamics. We consequently chose a measure-
ment which captures scale-free dynamics, that is, measured via the 
relative power distribution along the frequency band by the spectral 
exponent.

We refrained from measuring the spectral exponent β via the irreg-
ular resampling auto-spectral analysis (IRASA) method (Wen and Liu, 
2016). The IRASA is sometimes applied in electro- and magnetoen-
cephalography studies to separate fractal from oscillatory components 
due to the high alpha peak or oscillation that disrupts the otherwise 
scale-free spectrum in electrophysiological recordings 
(Wainio-Theberge et al., 2022). One problem with fMRI is that the 
IRASA method includes down-sampling of the signal, reducing the 
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upper-frequency end of an already limited frequency band by half. In 
our case, IRASA would reduce the Nyquist frequency from 0.5 Hz to 0.25 
Hz due to the 7 Tesla HCP dataset’s sampling rate of 1 Hz. A reduction of 
the frequency band by excluding faster frequencies would have funda-
mentally limited the principal aim of investigating the response to 
quickly varying audiovisual inputs. Moreover, higher frequencies of the 
blood-oxygenation-level-dependet (BOLD) signal can carry meaningful 
information (Shirer et al., 2015; Caballero-Gaudes and Reynolds, 2017). 
In addition to a further frequency band limitation due to using IRASA, 
we already constrained the lower frequency from 0.01 Hz to 0.05 Hz for 
the 60-second window analysis to include at least three cycles for the 
lowest frequency, allowing a better estimation of power in the respective 
lower frequency ends. Therefore, constraining the lower and 
upper-frequency ends would have resulted in a significantly shortened 
frequency band.

Although previous fMRI studies demonstrated the usability of ISC(t) 
as a marker for task performance or its association with traits such as 
paranoia (Finn et al., 2018), assessing ISC(t) for two groups which were 
based on neuronal (instead of behavioral) dynamics is novel. Future 
studies should aim to directly investigate the movie’s visual and audi-
tory inputs in addition to brain activity. Analyzing the movie’s and the 
brain’s scale-free dynamics allows a direct investigation of how brain 
dynamics align with naturalistic inputs. The time-dependent approach 
can then be applied to the visual and auditory inputs, respectively, 
allowing to precisely examine to what extent brain dynamics match with 
input dynamics, such as within the complexity matching framework to 
assess the relationship between scale-free systems on neuronal and 
behavioral grounds (West et al., 2023; Mahmoodi et al., 2023; West, 
2024). We should also note that ISC(t) does not depend solely on 
objective input properties that are processed similarly across subjects. 
Instead, shared or dissimilar brain activity also depends on how cogni-
tively and emotionally engaging the input individually for each subject 
is (Nastase et al., 2019). When subjects cognitively and emotionally 
engage with the input, or when they show higher performance in spe-
cific tasks, they can exhibit higher ISC(t) in stimulus- or task associated 
brain regions than subjects with less refined capabilities or engagement 
(Song et al., 2021; Jangraw et al., 2023).

Another limitation is that the 7 Tesla HCP dataset lacked behavioral 
data or recordings. Following the above, interesting results could be 
obtained by linking behavioral data, such as psychological scores 
regarding stimulus perception or task performance, with scale-free brain 
dynamics and their relation to input tracking. Paradigmatically, another 
study using ISC(t) (Jangraw et al., 2023) demonstrated that a group with 
higher ISC(t) also showed better task performance than a group with 
lower ISC(t) (see Fig 6 in Jangraw et al., 2023). Uncovering the links 
between brain, psychological, and behavioral dynamics on 
temporal-dynamical and spatial (topographical) grounds follows the 
neurophenomenological approach (Klar, 2021; Northoff et al., 2023) 
and is striven for by the Temporo-Spatial Theory of Consciousness 
(TTC), where temporo-spatial dynamics reflect the so-called common 
currency between neuronal and psychological dynamics (Northoff and 
Zilio, 2022; Huang, 2023).

Finally, the term “naturalistic” when used for the kind of paradigm 
employed in this study, lacks a precise definition valid for various types 
of media or movies. A recent review on the usage of naturalistic stimuli 
in neuroimaging (Grall and Finn, 2022) discussed aspects of so-called 
naturalistic stimuli relevant to consider concerning study design and 
for the interpretation of the obtained brain activity results. Paradig-
matically, researchers should address why the chosen stimulus, such as a 
movie, is really naturalistic for the specific research aim of the study. 
Grall and Finn (2022) correctly pointed out that naturalness is not a 
single dimension and that different movies or clips can induce a vastly 
different range of human cognitions and emotions. We consider the 
continuous presentation of audiovisual inputs based on movie re-
cordings that included real-life human interactions or natural sceneries 
as substantially better suited to investigate time-dependent scale-free 

brain dynamics than event-related designs. Commonly used 
event-related designs lack a coherent and ongoing stimulus presentation 
to induce a significant time-dependent spectral exponent of brain 
activity.

4.2. Conclusion

How do the brain’s scale-free dynamics respond to continuous, 
naturalistic inputs and how do scale-free dynamics modulate the level of 
shared brain activity across subjects? To investigate these questions, we 
introduced a combined measurement of both a time-dependent spectral 
exponent β(t) and of time-dependent ISC(t). Our fMRI study provided 
initial evidence that the brain’s time-dependent spectral exponent 
modulates and positively correlates with the level of shared brain ac-
tivity or ISC during naturalistic inputs. We demonstrated that the brain’s 
relative Rest-to-Movie SD change in scale-free dynamics can support the 
level of ISC and thus the imprint of input on brain dynamics through a 
two-group approach (Simony et al. 2016; Song et al., 2021; Jangraw 
et al., 2023). Together, our fMRI study provides initial evidence that the 
brain’s time-dependent spectral exponent, β(t), in auditory and visual 
regions is related to shared brain activity, indirectly marking the 
imprinting of input dynamics on brain dynamics through shared fluc-
tuations. A future study should directly investigate the time-dependent 
spectral exponent of both inputs and brain activity, following the com-
mon currency approach between input, neuronal, and mental dynamics 
(Northoff et al. 2023; Northoff et al. 2024), that is, temporo-spatial 
alignment, as proposed by the Temporo-Spatial Theory of Conscious-
ness (TTC) (Northoff et al., 2024). In brief, the TTC mechanism of 
temporo-spatial alignment suggests that brain dynamics in early sensory 
regions must align and match with input dynamics to encode environ-
mental stimuli. This is in line with the novel complexity matching 
framework introduced by the biological domain of fractal physiology.
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