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In recent years, the application of natural language models to
protein amino acid sequences, referred to as protein language
models (PLMs), has demonstrated a significant potential for
uncovering hidden patterns related to protein structure, func-
tion, and stability. The critical functions of proteins in biological
processes often arise through interactions with small mole-
cules; central examples are enzymes, receptors, and trans-
porters. Understanding these interactions is particularly
important for drug design, for bioengineering, and for under-
standing cellular metabolism. In this review, we present state-
of-the-art PLMs and explore how they can be integrated with
small molecule information to predict protein-small molecule
interactions. We present several such prediction tasks and
discuss current limitations and potential areas for
improvement.
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Introduction
The determination of proteinesmall molecule in-
teractions is important in many scientific and industrial
fields; for example, it is important for pharmaceutical
and biotechnological research because the activities of
most enzymes and drugs depend on proteinesmall
molecule interactions [1,2]. Unfortunately, it is typi-
cally time-consuming and costly to determine such in-
teractions experimentally. Accurate machine learning

(ML) prediction models can greatly accelerate this
process by predicting various aspects of proteinesmall
www.sciencedirect.com
molecule interactions, such as specific properties of
proteinesmall molecule combinations or by identifying
promising candidate proteinesmall molecule pairs that
are likely to interact. Thereby, prediction models can
significantly reduce the large number of potential

proteinesmall molecule interaction pairs to a feasible
number of pairs that can be tested experimentally.

Predicting proteinesmall molecule interactions with
machine learning models requires the generation of
informative and meaningful numerical representations
of the proteins and small molecules. The state-of-the-
art general purpose method for numerical representa-
tions of proteins are protein language models (PLMs),
which are deep learning models originally developed for
natural language text. Similar to natural language, where

the arrangement of words follows grammatical rules and
must result in a meaningful sentence, protein sequences
follow specific constraints on the arrangement of amino
acids to result in a functional protein. Therefore, the
same methodology that is used in natural language
processing (NLP) can be successfully applied to pro-
tein sequences.

In this review, we discuss and present the various
methods and applications that have recently been used
for predicting proteinesmall molecule interactions using

PLMs. We begin with an introduction to PLMs, followed
by a discussion of numerical representation techniques
for small molecules. We then examine different ways in
which these numerical representations can be combined
to develop proteinesmall molecule interaction models.
Finally, we present several areas of application, followed
by a discussion of current limitations and potential ways
to improve predictive capabilities.
Protein–small molecule interaction models
Protein language models
The state-of-the-art general purpose method for nu-
merical representations of protein sequences is using
PLMs, in particular protein transformer encoders [3].
These models process protein sequences by partitioning
them into smaller subsequences called tokens. The

most common method is amino acid-level tokenization
(Figure 1a), but alternative strategies exist and have
been explored [4]. Each token is initially represented by
Current Opinion in Structural Biology 2025, 93:103070
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Forward process of a protein language model. (a) A protein sequence is divided in its individual amino acids. An additional classification repre-
sentation, cls, can be added if the model is to be trained for a specific protein prediction task. (b) Each aminoacid is mapped to an initial vector rep-
resentation that encodes the type of the amino acid and its position in the input sequence. Different colors represent different numeric values. (c) Multiple
transformer encoder layers are applied to update all representations by incorporating information from other representations. Different darknesses of the
arrows indicate that different amounts of information from different representations are used. (d) After the update steps, a learnable or predefined pooling
function can be applied to convert all updated amino acid representations into a single vector that can be used as the whole protein representation. (e)
Alternatively, the classification representation can be used as input to a feedforward network to predict the function or property of the protein.
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a separate numeric vector representing its type and
position within the sequence (Figure 1b). The objective
of the encoder is to improve all representations by

incorporating information from other amino acids within
the sequence (Figure 1c). The specific way in which the
amino acids are updated and what information is drawn
from other amino acids is determined by update func-
tions that are learned during the training phase of
the model.

The most common training task for PLMs is to
randomly mask a fraction of the amino acids in a protein
sequence and train the model to predict the type of
those amino acids using information from the unmasked

amino acids. Most models use a default masking rate of
w15% but optimal rates can vary; for example, larger
models tend to perform better with higher masking
rates [5]. The recently developed ESM-3 model intro-
duced a noise schedule that varies the masking rate
during pretraining [6].

Meta AI’s ESM models [7,8], especially the ESM-2
series with models ranging from 8 million to 15 billion
Current Opinion in Structural Biology 2025, 93:103070
trainable parameters, are the most widely used PLMs.
The ESM-2 models were trained on a dataset with 65
million different protein sequences. In addition,

Elnaggar et al. [9] developed two notable and also
widely used PLMs: ProtBERT-BFD, with 420 million
parameters trained on 2.1 billion protein sequences, and
ProtT5, with 3 billion parameters trained on 45 million
proteins. All of the above models were trained using the
masking strategy described above, i.e., predicting the
type of amino acids that were masked in the
input sequence.

PLMs trained in this manner can compute updated
vector representations of each amino acid in a given

input protein sequence. To represent the complete
protein, it is desirable to compute a single vector that
summarizes this amino acid-specific information. A
common way to achieve this is to apply a pooling func-
tion to all updated amino acid representations
(Figure 1d). This can be a predefined function such as
the element-wise average of all representations, which
results in a loss of information but still captures impor-
tant structural and functional protein characteristics [9].
www.sciencedirect.com
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Protein-small molecule interaction models Kroll and Rousset 3
Alternatively, a pretrained PLM can be further trained
for a specific downstream prediction task, a process
known as fine-tuning [10]. During this process, the
model learns an appropriate pooling function, or the
model is trained to store all relevant information in an
additional vector that represents the whole protein, the
so-called classification representation (Figure 1e). After
fine-tuning, the resulting representations can serve as

task-specific protein embeddings. While fine-tuning
large PLMs typically improves performance [10], it is
computationally expensive and memory-intensive.
Parameter-efficient fine-tuning methods, such as
LoRA, mitigate these requirements by updating only a
smaller fraction of parameters and have shown promising
results in both NLPand protein language modeling [11].

The recent advances in protein structure prediction
with models such as AlphaFold 2, RoseTTAFold, and
ESMFold have enabled highly accurate structure pre-

dictions from protein sequences for many proteins
[12e14]. Building on these developments, several ap-
proaches now incorporate 3D structural information as
input to protein language models. For example, Deep-
FRI and ESM-GearNet have integrated graph neural
networks (GNNs) to capture amino acid connectivity
[15,16]. These GNNs process protein sequences
similar to standard PLMs: amino acids are tokenized,
but information exchange between tokens is restricted
to amino acids that are spatially close in the 3D protein
structure. This helps the model focus on relevant amino

acids when updating its representations, leading to
slight performance improvements in some protein pre-
diction tasks [15].

More recently, the ESM-3 model [6] has introduced a
new approach by tokenizing both the protein sequence
and its 3D structure in the model input, allowing it to
generate representations for both sequence- and
structure-based tasks. These representations can be
extracted and used for downstream protein prediction
tasks [17]. While ESM-3 could be fine-tuned for appli-
cations such as proteinesmall molecule interaction

prediction, no such studies have been published to date.

Numerical representations of small molecules
Numerical representations of small molecules can be
derived using neural networks or expert-designed
methods. This subsection provides a brief overview of
the most common approaches. One common approach is
training GNNs, which represent small molecules as
graphs, where the atoms of the molecule are interpreted
as graph nodes and the bonds as edges [18,19]. Each
atom and bond is encoded as a numerical vector that is
iteratively updated by the GNN based on neighboring
atom and bond information (Figure 2a). A second way to

learn small molecule representations with neural net-
works is through transformer encoders, which can
www.sciencedirect.com
process small molecule SMILES strings that encode the
small molecule structure including its stereochemistry
(Figure 2b) [20,21].

Similar to PLMs, both GNNs and small molecule
transformers can be pretrained by masking parts of the
input and predicting the identity of what is masked by
extracting information from the remaining input.

Alternatively, the models can be trained to predict easily
computable molecular descriptors, or, given sufficient
training data, for a specific prediction task of interest.
After training, a single numerical vector can be extracted
for each small molecule by applying a pooling function,
such as the element-wise average, to all updated nu-
merical representations (Figures 2a and b).

Alternatively, expert-designed methods can be used to
encode small molecule information without ML. These
methods are typically based on graph representations of

the molecule and produce binary vectors that encode
the presence or absence of specific substructures
(Figure 2c) [22,23]. While ML-based methods generally
provide better numerical representations [24], they also
require more computational resources because they
involve training models with millions of parameters on
large datasets.

Protein–small molecule interaction predictions with
PLMs
Proteinesmall molecule interaction prediction models
fall into two categories. Approaches in the first category
use pretrained deep learning models or expert-designed
fingerprints to generate representations of proteins and

small molecules. These representations are concate-
nated into an input vector for a separate ML prediction
model, typically a small feedforward neural network or a
gradient boosting decision tree (Figure 3a), with the
latter often performing slightly better for such predic-
tion tasks [25,26]. During training, the prediction model
extracts relevant information from the fixed input vec-
tors. Although the representations are not fine-tuned,
they work well with limited data because they often
capture essential features, and fine-tuning with small
datasets is typically less effective and can easily lead to

overfitting [27].

The second category involves end-to-end training of a
deep learning model to achieve two goals simulta-
neously: (i) generating task-specific molecule repre-
sentations and (ii) providing predictions (Figures 3b and
c). “End-to-end training” refers to the simultaneous
adjustment of model parameters for tasks (i) and (ii)
during the same process. The generation of task-specific
representations is often based on further parameter
tuning of a pretrained deep learning model (see Section

2.1). Unlike the first approach, this method extracts
more task-relevant information from the molecules
Current Opinion in Structural Biology 2025, 93:103070
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Approaches for generating numerical representations of small molecules. (a) To process small molecules with graph neural networks, the small
molecule is interpreted as a graph with atoms represented as nodes of the graph and bonds represented as edges. Each node and edge is represented
by a numeric vector. All node vector representations are iteratively updated by extracting information from neighboring bonds and atoms. A pooling
function is applied to all updated node vectors to obtain a single graph representation. (b) A small molecule is represented by a SMILES string that
encodes the molecular structure. The SMILES string is subdivided, and each subpart is represented by a numeric vector. All vectors are passed through a
small molecule transformer encoder to update the representations. A pooling function is applied to all updated token vectors to obtain a single small
molecule representation. (c) The small molecule is represented as a graph, and expert-designed functions are applied to extract structural information. A
binary vector, called a molecular fingerprint, stores the extracted information.
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but requires larger datasets and more computa-
tional resources.

Traditionally, end-to-end models first consist of two
separate but parallel blocks, each responsible for
generating the protein and small molecule vector rep-
resentations, respectively. Only after the numerical
vector representations are generated, another deep
learning block uses both representations to provide a
prediction for the proteinesmall molecule interaction of
interest (Figure 3b). However, generating numerical
representations for the protein and the small molecule
separately, without considering their interactions, is
likely to result in suboptimal representations. Recently,

ProSmith [28] and ESM-AA [29] have proposed to
combine both the protein sequence and the small
molecule structural information in the input of a single
multimodal transformer network to generate a joint
numerical representation (Figure 3c). This allows a
Current Opinion in Structural Biology 2025, 93:103070
better exchange of information during the representa-
tion generation process, and it allows capturing complex
relationships and interactions between the two different

types of molecules.

Alternative approaches for protein–small molecule
interaction modeling
Although this review focuses on the adaptation of PLMs
for predicting proteinesmall molecule interactions, in
this subsection we provide a brief overview of the
alternative computational approaches, docking, co-
folding, and molecular dynamics (MD) simulations, for
modeling these interactions.

Docking methods predict how a small molecule binds
within the binding site of a protein by using sampling

algorithms and scoring functions to identify the lowest
energy conformation [30]. Docking is widely used in
structure-based virtual screening for drug discovery
www.sciencedirect.com
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Protein–small molecule interaction predictions can be achieved by different approaches. (a) Small molecule representations are computed using
an expert-designed method or a pretrained deep learning model, a GNN, or a transformer network. A protein representation is computed using a
pretrained transformer network. Both representations are concatenated to produce a single vector containing both small molecule and protein information.
This vector is used as input to a deep learning or machine learning model, such as a gradient boosting model. This model is trained for a protein–small
molecule interaction prediction task. (b) Small molecule representations are generated using a deep learning model with trainable parameters. In parallel,
protein representations are computed using a transformer network with trainable parameters. The resulting small molecule and protein vectors are
concatenated and fed to a deep learning model, such as a feedforward neural network, which outputs a prediction. All trainable parameters are adjusted
in the same training process. (c) A small molecule SMILES string and the protein amino acid sequence are fed as input to the same transformer network
with trainable parameters. This model can account for the interactions of the protein and small molecule while generating a common numerical repre-
sentation. The resulting vector is used as input to a trainable deep learning model to provide a prediction. All trainable parameters are adjusted in the
same training process. GNN, graph neural network.
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[31], helping to identify potential drug candidates. Its
accuracy depends on the scoring function used to esti-
mate binding affinity and typically requires prior

knowledge of the binding site.

Co-folding methods predict proteineligand complexes
by integrating protein folding with ligand docking, often
using deep learning. Recent transformer-based models
such as AlphaFold 3 (AF3) citeabramson2024 and
RoseTTAFold All-Atom (RFAA) [32] are the most
prominent models in this area. Both methods build on
previous protein structure predictors (AlphaFold 2 and
RoseTTAFold) and extend them to predict biomole-
cular complexes, including proteins bound to small

molecules, nucleic acids, and ions. AF3 and RFAA use
end-to-end learning and large structural datasets to
model interactions. Co-folding methods can provide
accurate predictions, but they require extensive training
data and struggle to predict affinities for unseen ligands
[33]. Furthermore, while the models can provide confi-
dence scores that correlate with the quality of the
binding pose, they are primarily optimized for structure
prediction and cannot be easily fine-tuned for down-
stream protein tasks.
www.sciencedirect.com
MD simulations provide a time-resolved view of atomic
interactions within proteineligand complexes,
capturing conformational dynamics and binding kinetics

[34]. They use force fields to compute atomic in-
teractions and integrate equations of motion to model
molecular trajectories. While valuable for refining
docking predictions, MD simulations are computation-
ally expensive, particularly for high-throughput
screening or slow binding processes [35].

In contrast, traditional PLMs do not require a protein’s
3D structure and can be easily fine-tuned to predict not
only whether binding occurs but also different types of
interactions, such as inhibition, activation, or catalytic

activity. However, the black box nature of PLMs limits
the interpretability of the underlying bind-
ing mechanisms.

Protein–small molecule interaction
prediction tasks
Predicting enzyme kinetic parameters
Proteinesmall molecule interaction models are essential
for predicting enzyme kinetic parameters such as turn-
over numbers kcat and Michaelis constants KM, which
Current Opinion in Structural Biology 2025, 93:103070
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define an enzyme’s catalytic rate and affinity for its
substrate(s), respectively. Knowledge of these parame-
ters is important for characterizing the catalytic prop-
erties of enzymes and for parameterizing genome-scale
metabolic models. Traditionally, missing kinetic param-
eters have been estimated using data from closely
related enzymes with measured kinetic parameters, but
recently developed ML models have demonstrated su-

perior performance [36].

TurNuP and EITLEM are the state-of-the-art for kcat
prediction [37,36]. TurNuP uses protein embeddings
from the pretrained ESM-1b model and expert-
designed small molecule fingerprints (Figure 3a) [36],
while EITLEM uses transfer learning to learn from
related tasks and fine-tunes a protein transformer
network (Figure 3b). For enzymes with less than 40 %
sequence identity compared with all training enzymes, a
naive homology-based inference, i.e. averaging over the

kcat values of the most similar training enzymes, results
in predicting only 2 % of the variance in kcat values [36].
In contrast, TurNuP and EITLEM can explain about a
third of the variance for those enzymes [37,36].

Although DLKcat [38] reports higher overall perfor-
mance metrics than TurNuP and EITLEM, the model
generalizes poorly to unseen enzymes. It has been
shown that DLKcat performs worse than a simple
homology-based approach for enzymes with less than
60 % sequence identity compared with all training en-

zymes [39].

For KM prediction, the current state-of-the-art models
EITLEM and ProSmithKM [28,37] achieve a coefficient
of determination R2 greater than 0.5. R2 measures the
proportion of the variance in the observed values that is
explained by the predictions and thus these models can
predict more than half of the variance in KM values.
UniKP shows slightly lower performance and uncertain
generalizability to unseen enzymes [40].

The enzyme specificity constant kcat/KM is a valuable

but less frequently predicted kinetic parameter, likely
due to limited training data compared with kcat and KM

[37,41]. Predicting this constant, as done in UniKP and
EITLEM [40,37], has several advantages: kcat/KM can be
measured directly under certain conditions, typically
with higher accuracy than KM measurements, which are
often estimated by curve fitting. More reliable input
data improves model performance, allowing kcat/KM

models to explain more variance in observations with
less training data [37,40].

Small molecule scope of proteins
Substrate scope of enzymes
Determining substrates for enzymes is critical for
pharmaceutical research and bioengineering, including
Current Opinion in Structural Biology 2025, 93:103070
drugs, food, and biofuel production [42]. The largest
protein database, UniProt, has high-quality annotations
including the substrate(s) for only 1 % of the 36 million
enzymes it stores [43]. Recent advances in PLMs have
led to the development of enzyme substrate prediction
models, helping to identify whether a small molecule is
a substrate for a given enzyme [44,29,28,45].

Enzymeesubstrate prediction models can be specific
to a protein family [46] or general to all enzymes.
General models, which are typically more accurate
[44], are ideally trained on all available experimentally
validated enzymeesubstrate pairs. The enzyme sub-
strate prediction (ESP) model [44], the first general
enzymeesubstrate prediction model, uses a fine-tuned
version of the ESM-1b model to generate protein rep-
resentations and a GNN to generate task-specific small
molecule representations. Both vectors are concate-
nated and input to a gradient boosting binary classifier

(Figure 3a), achieving a prediction accuracy of 91.5 %.
This accuracy was improved to 92.3 % by ESM-AA [29]
and to 94.2 % by ProSmith [28]. ESM-AA and ProSmith
use multimodal transformers to facilitate the exchange
of relevant information between the protein and small
molecules during computation of their numerical rep-
resentations (Figure 3c). Recently, FusionESP further
improved prediction accuracy to 94.8 % on the same
test set by integrating contrastive learning to generate
more discriminative substrate and non-substrate rep-
resentations [45]. The performance of all approaches

drops for substrates not seen during model training. For
example, ProSmith’s Matthews correlation coefficient
(MCC) drops from 0.85 for training known substrates
to 0.29 for unseen substrates.

Current enzymeesubstrate prediction models achieve a
true positive rate ofw80% and a false positive rate ofw
5% [28,44]. For an enzyme of unknown function, if 200
potential substrate candidates are tested, of which only
one is a true substrate, the models will incorrectly
identify about 10 molecules as substrates and correctly
identify the true substrate 80 % of the time.

Substrate scope of transporters
Transport proteins make up only w10% of all cellular
proteins [47] and are even less well studied than en-
zymes in terms of structure and function. Recent
transporteresubstrate prediction models assess the
likelihood whether a small molecule is a substrate for a
given transporter [48,49]. The SPOT model [48],
similar in approach to the enzymeesubstrate prediction
model ESP achieves a recall of 83.1 % and a precision of
88.0 % on an independent test set. In contrast, a naive

homology-based approach, which assigns substrates
based on the three most similar transporters with known
functions, yields a recall of 80.9 % and a much lower
precision of 56.8 % on the same test set [48].
www.sciencedirect.com
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Drug–target interactions
Identifying small molecule interactions with target
proteins is a key challenge in drug discovery, which has
traditionally relied on inefficient and costly high-
throughput screening. Advances in AI are reducing
costs by accelerating the identification of drug candi-
dates, improving predictions of efficacy and safety, and
enabling drug repurposing. Even small gains in predic-
tive accuracy can save tens to hundreds of millions of
dollars per drug by reducing late-stage failures [50].
Exscientia, for example, reported an 80 % cost reduction

and 70 % faster development process using AI [51].

Machine learning (ML)-based drugetarget interaction
(DTI) prediction focuses on predicting binding affinity,
inhibition, and other key interactions to guide drug
design. Many advances and novel prediction approaches
have been developed and published in the last two
years. For example, ConPLex uses contrastive learning
on PLM-derived embeddings to distinguish true
drugetarget interactions from non-binding compounds
[52]. NHGNN-DTA and PGraphDTA combine PLM-

based sequence data with protein structure data, using
graph neural networks or protein contact maps to refine
affinity predictions [53,54]. DTI-LM andMIFAM-DTI,
on the other hand, integrate ESM protein embeddings
with small molecule embeddings using graph attention
networks (GATs) [55,56]. All of these approaches
generate separate embeddings for proteins and small
molecules (Figure 3b) but some allow information flow
between the two types of molecules.

The recent trends highlight the importance of direct

information exchange between proteins and small mol-
ecules. ProSmith and ESM-AA [28,29] fine-tune
multimodal transformers to process both types of mol-
ecules in a common input sequence (Figure 3c), allow-
ing easy and direct information exchange between the
two types of molecules.

Predicting variant effects
Bioengineering of proteins to improve protein properties
or to obtain novel functions is a key task in bioindustry.
PLMs have been used to predict protein variants with
desired properties [57,6,58]; for example, DLKcat [38]
and UniKP [40] integrate small molecule information
with PLMs to predict kinetic parameters of enzyme
variants. However, it has been shown that DLKcat pri-

marily estimates the average kcat value of training mu-
tants for the same enzyme rather than accurately
predicting mutation effects [39]. When evaluating pre-
dictions beyond this average, a negative correlation
emerges, highlighting the limitations of current PLM-
based models in capturing mutation effects on
enzyme kinetics.

On the other hand, sequence alignment-based methods
such as GEMME [59] and SIFT [60] can predict
www.sciencedirect.com
mutation effects and outperform some PLM-based ap-
proaches [61]. GEMME has not yet been used to pre-
dict mutation effects on enzyme kinetics but used for
the related task of identifying functionally critical resi-
dues and those essential for thermodynamic stability
[61]. The recent efforts to combine GEMME with
PLMs have further improved prediction performance
[62] and may also offer a promising way to improve

predictions of mutation effects on kinetic parameters.
Discussion
The development of successful prediction models for
proteinesmall molecule interactions depends primarily
on two key components: training datasets and model
architecture, including molecule representation
methods. While over 200 million proteins have been
sequenced [43], which can successfully be used for
unsupervised pretraining of PLMs, for downstream
prediction tasks, current models are often limited by
insufficient training data, both in terms of quantity and

quality [63]. For example, Bar-Even et al. [64] found
that up to 20 % of entries in BRENDA [41], the main
resource for experimental KM and kcat values, differ from
their reference papers, likely due to copying errors and
misinterpretation of units. Beyond such obvious errors,
measurements of kinetic parameters can be highly var-
iable. In large kinetic databases, kcat values for the same
enzymeereaction pair often differ severalfold between
measurements from different labs [36].

To accurately assess the performance of a model, it is

important to evaluate its ability to generalize to unseen
proteins. This requires careful test set construction, and
simply randomly splitting the data can be misleading,
especially when datasets contain many related proteins,
such as enzyme variants. Including proteins in the test
set that are highly similar to those in the training set can
inflate performance metrics while masking poor pre-
dictive power for truly novel proteins as demonstrated
by some models performing worse than baseline com-
parisons when tested on dissimilar sequences [38,39].
Therefore, to ensure a fair assessment of generalization,

test sets should ideally consist of proteins with low
maximum sequence similarity (e.g. below 20e40 %) to
any protein used during training.

An important choice in the construction of
proteinesmall molecule interaction prediction models
is the method of protein encoding. While the trend has
favored ever larger modelsdexemplified by the growth
within the ESM series from ESM-1b’s 650 million pa-
rameters to ESM-2’s 15 billion and ESM-3’s 98
billiondrecent evidence suggests that performance

gains may be plateauing. Studies comparing models with
a wide range of parameters, including the ESM-2 family,
have found that medium-sized models perform as well
as their much larger counterparts on many biological
Current Opinion in Structural Biology 2025, 93:103070
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benchmarks. For example, for predicting mutational
fitness effects, an ESM-2 model with 150 million pa-
rameters showed slightly better performance than a 20-
fold larger ESM-2 variant with 3 billion parameters [65].
Coupled with the significant computational cost of
training and deploying ultra-large models, which often
leads researchers to opt for smaller, more practical ver-
sions, these observations suggest that simply increasing

model size without changing architecture or training
techniques may yield diminishing returns.

Beyond predicting interaction likelihoods or kinetic
parameters of proteinesmall molecule pairs, modeling
the accurate three-dimensional structure of
proteinesmall molecule interactions remains a critical
challenge. Approaches such as docking provide
structure-based predictions but often depend on known
binding sites and reliable scoring functions [31]. More
recently, co-folding techniques, exemplified by Alpha-

Fold 3 [66] and RoseTTAFold All-Atom [32], have
emerged as powerful tools capable of generating high-
resolution geometric predictions (poses) for
proteineligand complexes, demonstrating high accu-
racy, particularly for systems similar to those in their
training data [33]. However, their ability to generalize to
truly novel ligand or pocket types can be limited by their
reliance on learned patterns, and they can be compu-
tationally intensive. In contrast, sequence-based PLM
approaches, while typically lacking detailed geometric
precision, have greater ability to predict interaction

likelihood or strength and show stronger generalization,
especially in low-data scenarios or for novel entities,
making them suitable for large-scale screening [28].

The choice between co-folding approaches and PLM-
based methods often depends on the research goal: co-
folding can provide highly accurate structure predic-
tion for known systems, PLMs allow a large-scale
screening and better generalization capabilities.
Increasingly, the field is moving toward hybrid models
that integrate the strengths of both, such as using PLM
embeddings within structure-aware graph networks

[15,16] or enhancing co-folding models with sequence-
level insights, aiming to bridge the gap between struc-
tural detail and predictive generalization [67].

While proteinesmall molecule interaction prediction
methods that incorporate 3D structuredoften by
encoding amino acid connectivity through graph neural
networksdshow only marginal performance gains over
sequence-based approaches [15,16,68], this may be
because sequence-based PLMs already capture essen-
tial protein structural information at the amino acid

level. More complementary approaches also incorporate
the 3D atomic structure of the protein, showing greater
performance gains over alternative methods [69]. These
methods work well even when no experimental protein
structure data are available, but only protein structure
Current Opinion in Structural Biology 2025, 93:103070
prediction methods can be used [69]. This suggests that
a future trend may be to integrate methods that encode
the 3D atomic structure of proteins.
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