
Wissen, wo das Wissen ist.

This version is available at:

Terms of Use:

Certified control for train sign classification

Suggested Citation:
Roßbach, J., & Leuschel, M. (2025). Certified control for train sign classification. Science of Computer
Programming, 246, Article 103323. https://doi.org/10.1016/j.scico.2025.103323

URN: https://nbn-resolving.org/urn:nbn:de:hbz:061-20250620-091457-0

This work is licensed under the Creative Commons Attribution 4.0 International License.

For more information see: https://creativecommons.org/licenses/by/4.0

Jan Roßbach und Michael Leuschel

Article - Version of Record

Science of Computer Programming 246 (2025) 103323

Available online 13 May 2025
0167-6423/© 2025 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Certified control for train sign classification

Jan Roßbach ,∗, Michael Leuschel
Heinrich-Heine-Universität Düsseldorf, Mathematisch-Naturwissenschaftliche Fakultät, Institut Informatik, Universitätsstr. 1, Düsseldorf, 40225,
NRW, Germany

A R T I C L E I N F O A B S T R A C T

Keywords:

ATO

Artificial intelligence

Formal methods

Computer vision

Autonomous systems

Certified control makes it possible to use artificial intelligence for safety-critical systems. It is a
runtime monitoring architecture, which requires an AI to provide certificates for its decisions;
these certificates can then be checked by a separate classical system. In this article, we evaluate
the practicality of certified control for providing formal guarantees about an AI-based perception
system. In this case study, we implemented a certificate checker that uses classical computer vision
algorithms to verify railway signs detected by an AI object detection model. We have integrated
this prototype with the popular object detection model YOLO. Performance metrics on generated
data are promising for the use-case, but further research is needed to generalize certified control
for other tasks.

1. Introduction

Artificial intelligence (AI) has been increasingly used in various sectors, including transportation [1]. AI is of particular relevance
for autonomous driving systems for railways [2], inspired by successful results in other transportation sectors (mainly automotive) [3].

While this technology is of significant economic interest, reliable certification methods are necessary to ensure safe and regulated
adoption of these innovations [2]. Traditional verification approaches, such as formal methods, face difficulties due to the probabilistic
and opaque nature of AI.

The KI-LOK [4–6] research project aims to address some of these challenges by developing novel verification methods for au-

tonomous AI-based railway systems. Part of this effort is a case study [7] for shunting movements, i.e., controlling a freight train
engine in a shunting yard. A formal B [8] model has been developed [7] to analyze the shunting yard environment and ensure the
safety of the deterministic steering system through model checking with the ProB [9] model checker.

The safety of the system is conditional on correct results from the AI-based perception system, which is responsible for correct
obstacle detection and train signal classification. In this work, we attempt to move towards verification of part of this perception
system using a runtime monitor with a certified control [10] architecture. This architecture reduces the part of the system that needs
to be formally verified: namely only the certificate checker and not the AI system itself (see Section 2).

In this paper, we focus on a particular subset of the train perception system: the sign classification component. It is responsible for
detecting and classifying signs in the shunting yard to ensure safe train movements. Two important signs shown in Fig. 1 are ‘stop’
(Sh0) and ‘track-free’ (Sh1). There are four kinds of outcomes for the perception system:

1. True Positive: the AI correctly detects a sign that is present.

* Corresponding author.

E-mail address: jan.rossbach@uni-duesseldorf.de (J. Roßbach).

https://doi.org/10.1016/j.scico.2025.103323

Received 11 June 2024; Received in revised form 30 April 2025; Accepted 6 May 2025

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
http://orcid.org/0009-0005-7725-9832
mailto:jan.rossbach@uni-duesseldorf.de
https://doi.org/10.1016/j.scico.2025.103323
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2025.103323&domain=pdf
https://doi.org/10.1016/j.scico.2025.103323
http://creativecommons.org/licenses/by/4.0/

Science of Computer Programming 246 (2025) 103323

2

J. Roßbach and M. Leuschel

Fig. 1. Some Train Control Signs in a Shunting Yard.

2. True Negative: the AI correctly detects the absence of a sign.

3. False Positive: the AI incorrectly detects a signal that is not there, or detects the wrong signal.

4. False Negative: the AI fails to detect a signal that is there.

A false positive of a ‘track-free’ signal obviously can have serious safety implications, since it could mean that a stop signal is being
ignored and this could lead to a collision. Similarly, a false negative for a ‘stop’ signal can be equally problematic. Our article only
tackles case 3, reducing the false positives. The idea is that the AI perception system will produce in addition to the classification a
certificate, which can be checked by a separate (simpler) certificate checker.

• The certificate checker does not rely on AI and is much simpler to certify: it can be tested, validated or even verified using
classical technology.

• If the certificate checker is correct, all false positives will be removed.

• On the downside, the certificate checker may fail to accept true positive results, and thus transform true positives into false
negatives.

To tackle false negatives, one needs to use other measures. For example, if we know where signs are to be expected, then false
negatives can be detected. In [7] the steering system also has access to information about the topology and can thus determine at
which locations a sign must be present. If no sign is detected, one can trigger an emergency brake or pretend a Sh0 ‘stop’ sign is there.
These measures are outside the scope of this article.

We aim to reduce or eliminate false positives, e.g. incorrectly found signs, by defining a sign-specific ontology and using it for
verifying the AI output at runtime. For this we introduce a formal specification in Section 3 and show the performance gains using a
prototype implementation (see Section 4) on synthetic data in Section 5.

Our main research question is: can we

1. considerably reduce the false positives of an AI perception system,

2. without a significant increase in false negatives and

3. using a certificate checker that can be certified.

This article extends the work of [11]. It gives more relevant background information and additional details on the evaluation
methodology. It also adds a more detailed discussion of the new results and mentions the implications for future work. Since the
original publication the data generation has been redone on the basis of project internal videos, which better represent the real
world scenarios of the given case study. Originally the images were gathered from the web. We now regenerated the entire dataset
with double the amount of images and re-evaluated the monitor, confirming the general trend of the original paper and managed to
improve the F-score in several cases.

In Section 2 we introduce the case study and additional relevant background to understand the context of the work and the some
relevant concepts in more depth. Then we provide the specification for the later implementation in Section 3 and the details on the
implementation in Section 4. Finally, we evaluate how the system performs in Section 5 and discuss the results, before concluding
the paper in Section 6.

2. Background & related work

The development of autonomous railway systems has led to the establishment of a categorization system known as Grades of
Automation (GoA). This framework defines the level of independence that a train can operate at. The highest degree of automation,
GoA4, is defined by full automatic operation [12]. To achieve this, trains must possess two primary functions: Automatic Train
Protection (ATP) and Automatic Train Operation (ATO). ATP is responsible for ensuring trains follows safety protocols and avoid
collisions, while ATO handles tasks typically performed by human drivers. For both functions, there is a fundamental requirement:
the automated system must perform better than a human driver [13]. This means, that each function has an upper limit on its allowed
error rate often referred to as the tolerable hazard rate. To demonstrate a convincing safety case, it is essential to provide evidence
that error rate will not be exceeded. The accuracy levels of AI models are typically lower than this tolerable hazard rate required for
securing autonomous train perception components.

The KI-LOK project, is a collaboration Project that aims to develop a methodology for the certification of AI-based components
in train control. In the scope of the project, a case study [7] has been developed by Thales (now Ground Transportation Systems).

Science of Computer Programming 246 (2025) 103323

3

J. Roßbach and M. Leuschel

Fig. 2. Various measures to enable certifying AI-based obstacle detection.

The purpose of the case study is to demonstrate and evaluate the feasibility of the projects proposed methodology [6] for AI-based
components in train control.

The system includes an AI-based perception system and a deterministic steering system. Fig. 2 shows the interaction between the
two systems and the various measures taken to ensure the correctness of the system.

The role of the perception system is to detect and classify obstacles (persons, animals, vehicles) and railway infrastructure elements.
The steering system then makes appropriate decisions about moving the locomotive based on that information. The case study contains
a set of requirements, which includes the correct detection of a specified list of shunting train signs. In order to increase confidence in
the perception system we check the recognized signs with a runtime monitor (certificate checker). This will give stronger confidence
that detected signs are correct. In order to safeguard against unrecognized signs we will need to lean on other measures taken by the
project, like a thorough environment ontology and systematic test case generation [14].

2.1. Certified control

Certified Control [10] is an architectural framework for the real-time validation of autonomous systems and distinguishes itself
from conventional monitoring components, by removing its reliance on independent perception and instead counting on the controller
to provide a certificate containing all essential information.

This certificate serves as input for the runtime monitor, which assesses the correctness of the perception against specified criteria.
By adopting this approach, the architecture establishes a smaller trusted foundation that can potentially be subjected to a rigorous
formal verification process. The controller, which is not included in the trusted base, can utilize sophisticated algorithms such as
neural networks without needing explicit formal verification. By separating the tasks of generating visual insights and ensuring safety,
established verification methods can be used. To accomplish this, a formal acceptance specification for the certificate is necessary to
ensure compliance with safety requirements like the detected lane lines are parallel or there are no objects on the track for 100 m. This
reduces the amount of code needing verification and allows the AI components to go unverified.

While the effectiveness of this architecture in lane line detection for regular vehicles is promising [10], its applicability to other
autonomous perception tasks such as sign classification and object detection remains uncertain. Therefore, we aim to investigate
the applicability and effectiveness of such a certified control architecture in the context of the case studies train control perception
system.

2.2. Other related work

Other attempts at verifying an autonomous train perception systems notably include [2,15]. The authors propose a multi-sensor
pipeline relying on the statistical independence of the different perception mechanisms to control hazards and ensure suitable model
performance. The goal is to show possible ways of certifying according to the ANSI/UL 4600 [16] standard, which provides a frame-

work for integrating AI into fully autonomous systems.

The standard gives practical guidelines and advice for a possible safety case, notably including the entire autonomy pipeline and
AI algorithms. We also hope to provide methods to aid with a verification according to this standard, while a full certification is
currently out of reach. Other approaches to formal runtime monitor verification of AI systems use safety shields [17]. There have
also been proposals for formalizing image specification, including spatial model checking [18] and attempts to formalize vision
ontology [19,20].

Science of Computer Programming 246 (2025) 103323

4

J. Roßbach and M. Leuschel

Fig. 3. Visual Examples of Successful and Failing Monitor Checks.

3. Specification and ontology

The selected sign classes for verification are Sh0, Sh1, and Wn7 as depicted in Fig. 1. While these look similar, the semantic
content is different. Sh0 means stop and the others signal safe passage. This makes properly locating and distinguishing them a
safety-critical issue. To achieve this, we employ an AI object detection system in the controller. Once the AI system has detected a
sign, the classification and the part of the image in its bounding box are sent to the verifier. The monitor verifies if this part of the
image aligns with the expected ontology. This provides additional confidence, that what has been detected is not a false positive.

It is often challenging to provide a precise formal definition of an image class based solely on its features. Instead, we focus directly
on detectable image characteristics. In this context, we can observe that the images include two semi-circles with only orientation
as the distinguishing feature. This characteristic feature allows us to define the sign using the contours and orientation angles of the
feature.

For a given image tensor 𝐼 with height ℎ and width 𝑤, consider the set of contours (sets of points) denoted as 𝐶(𝐼), which are
identified by a contour detection algorithm [21]. Let 𝑆0 be the set of images belonging to the Sh0 class. Also define 𝐴 ∶ 𝐶(𝐼)→ℝ+

as the area function, which calculates the area of a given contour. Similarly, let 𝜎 ∶ 𝐶(𝐼) → ℤ+ be an orientation function that
determines the angle between the contour and the horizontal axis. We can then express membership of an image to one of the classes
by considering an image a member of the set 𝑆0 if it contains a pair (𝑐1, 𝑐2) ∈ 𝐶(𝐼)×𝐶(𝐼), which full-fills all the following conditions,
given some pre-determined error tolerances 𝛿𝑖, 𝑖 ∈ {1,2,3,4,5}1 and an expected angle 𝑎 that depends on the class in question.

1. 𝐴(𝑐1)(1 − 𝛿1) ≤𝐴(𝑐2) ≤ (1 + 𝛿1)𝐴(𝑐1)
2. (1 − 𝛿2)𝜎(𝑐1) ≤ 𝜎(𝑐2) ≤ (1 + 𝛿2)𝜎(𝑐1)
3. 𝛿3ℎ ≤𝐴(𝑐𝑖) ≤ 𝛿4ℎ, 𝑖 ∈ 1,2
4. 𝛿3𝑤 ≤𝐴(𝑐𝑖) ≤ 𝛿4𝑤, 𝑖 ∈ 1,2
5. 𝑐1 ∩ 𝑐2 = ∅
6. |𝜎(𝑐𝑖) − 𝑎| ≤ 90𝛿5, 𝑎 = 0

For the remaining two classes, the expected angle 𝑎 in the final condition varies to 45 for Sh1 and 90 for Wn7. Otherwise, the
definitions are identical. The conditions one to six define an Sh0 sign as an image with two contours that have similar angles and
orientations. The orientation should be within a certain error threshold. Also, the definition expects, that the areas do not overlap.
While ideally, we expect an orientation of zero, variations can occur due to different photo angles. Thus, the inclusion of an error
term accounts for this discrepancy in measurement accuracy.

This definition is not flawless and permits the possibility of false positives. This implies that there may be instances where images
that do not depict the intended sign could potentially be accepted (see Fig. 3a). However, incorporating this check reduces the
likelihood of such occurrences compared to those without it. The stringency of the monitoring process needs to be weighed against
the decrease in true positives to strike a suitable balance. Adjustments can be made by selecting appropriate 𝛿 values within certain
limits.

Defining such a specification now allows us to define a requirement to prove the monitor correct, assuming that the underlying
contour detection algorithm is correctly implemented.

REQ: The implementation accurately verifies whether an image meets the ontology requirements of a specific class.

While this work provides a verification of 𝑅𝐸𝑄 for the given implementation in the next section, such a verification can trivially
be obtained in any serious production environment for a given monitor. One only has to show that the implementation specifies the
correct values and does the correct conditional comparisons, which can be done via typical program verification tools such as Z3 [22].

4. Implementation

While the following implementation is not yet verified in terms of REQ, we aim to do so in future work. Here we provide a prototype,
which is developed enough to indicate the potential usefulness of such an implementation. Given an image and an expected class,

1 In the prototype implementation the tolerance values used were 𝛿1,2,5 = 0.2, 𝛿3 = 0.1 and 𝛿4 = 0.3.

Science of Computer Programming 246 (2025) 103323

5

J. Roßbach and M. Leuschel

Table 1
Raw numbers for Models on Generated Data.

Model Detected TP FP
n 58003 40563 17440
s 52096 49052 3044
m 51733 41598 10135

(a) Results without Monitor

Model Detected TP FP
n 58003 32902 1
s 52096 39843 1
m 51733 37793 0

(b) Results with Monitor

Table 2
Model Metrics on Generated Data (values rounded to two decimal places).

Model Precision Recall 𝐹1

n 0.69 0.71 0.70
s 0.94 0.68 0.79
m 0.80 0.64 0.71

(a) Results without Monitor

Model Precision Recall 𝐹1

n 1.00 0.66 0.79
s 1.00 0.64 0.78
m 1.00 0.62 0.77

(b) Results with Monitor

it either validates or rejects the image. We then integrated it with a YOLOv8 object detection model and measured the influence on
common performance metrics (see. Table 2b). In the following sections, we present details on the implementation of the controller
and monitor components.

4.1. Controller

The AI-based controller component is responsible for finding and correctly recognizing the sign in the image, which is a task that
is out of reach for traditional computer vision algorithms but can be effectively solved by advanced deep learning models, such as the
popular YOLO [23] architecture. In contrast to image classification, the task of object detection has to also find the object’s location
in the image. It will return the bounding box of the object or objects found in the given image and a corresponding class prediction.

Our controller implementation uses a fine-tuned YOLOv82 model. We trained three model variants on a manually labeled custom
sign-detection dataset [24]. These were the nano, small and medium (abbreviated n, s and m in Table 1 and Table 2), versions of the
model with 3.2M, 11.2M and 25.9M parameters respectively. The training was done for 200 epochs with a batch size of 16. They
achieved mAP50 values of 0.827, 0.90 and 0.93 on the test set.

From the model results the controller generates a certificate – in the sense of certified control (see Section 2) – consisting of the
following components:

1. The original image itself.

2. The assigned class result.

3. The bounding box, represented as a tuple in the format (𝑥, 𝑦,𝑤,ℎ), with values normalized to fit the dimensions of the image.

This Python object is then given to the monitor. In a production implementation, it would be preferable to serialize and send this
data to a statically typed version of the monitor for optimal security.

4.2. Monitor

The monitor is responsible for verifying the correctness of the controllers class predictions for each object found in the given
image. It takes the certificate and verifies that the part of the original image inside the given bounding box matches the specified
ontology of the predicted class result. If the class prediction is correct and the bounding box is reasonably accurate, we expect the
monitor to accept the image. In case of a false positive model prediction it is very unlikely, but not impossible, that the monitor will
accept the certificate.

The implementation utilizes Python’s OpenCV [25] library to apply simple, well-tested computer vision algorithms to the given
images. To start with, the bounding box image is cropped from the original image and re-sized to 206x206. It is then converted
to grayscale to facilitate contour detection. After, the contour detection is performed using OpenCV’s findContours function. Subse-

quently, a filtering process is applied to the contours to ensure their area falls within the specified size boundaries (refer to Section 3).
Then, the area and orientation of the detected contours is calculated to determine if some of them fit the requirements for the ontol-

ogy. The area of each contour is extracted using an available function within OpenCV. In addition, we utilize OpenCV once again by
fitting a line through each contour as a means of determining its orientation. With that, we can calculate the orientation using the
following equation.

𝜎(𝑐) =
180arccos(𝑒1 ⋅ 𝑣)

𝜋|𝑣|

2 https://github.com/ultralytics/ultralytics.

https://github.com/ultralytics/ultralytics

Science of Computer Programming 246 (2025) 103323

6

J. Roßbach and M. Leuschel

Fig. 4. Generated Data Example. (The image is slightly pixelated for copyright reasons.)

Next, we evaluate the remaining contours in pairs to determine if they satisfy the similarity conditions for area and orientation (refer
to Section 3 for details). If a pair is found that meets these conditions, we verify if its orientation aligns with the expected orientation
for the corresponding class. If it does, the monitoring system considers this as a valid certificate. However, if any of these criteria are
not met, the certificate will be rejected.

5. Experiments, results & discussion

In contrast to the automotive field, which benefits from large-scale image datasets like KITTI [26] for efficient object detection
model evolution using road scene images, the railway industry faces limitations in terms of relevant datasets [27]. Recently, interesting
multi-sensor benchmark datasets [28] have started to emerge, but do not fit our particular use case.

This lack of labeled, high-quality data poses a challenge when it comes to training and validating AI-based systems for this
particular case. When evaluating the performance of the prototype, we have to confront this lack of data in the field. Since the
relevant publicly available datasets do not cover the classes in question, we resort to custom labeling for training and a data generation
approach for the evaluation of the system.

5.1. Evaluation data generation

For the image generation of the evaluation data, we chose a small number of base images of the signs in question, which are
put through different random perturbation combinations and then pasted in random amounts – one to four – onto images from train
footplate rides, gathered by industry project partners.

We generated 45472 unique images this time, containing 74935 signs in total. There are up to four signal per picture, which is
typical of a shunting yard. Fig. 4a shows one image that has been generated by this process. This image happens to contain a real train
switch signal, that happens to be confused for an Sh1 Sign by the YOLO model (see Fig. 4b) and rejected by the monitor. However;
such native signals in the source images have been ignored for the later analysis, because they are not labeled.

The following perturbations were applied to the base images before cutting them onto the video frames:

1. Horizontal Flip

2. Gaussian Noise (Salt and Pepper with Levels of 0.05 and 0.075)

3. Scaling (To square images of 50, 100, 213, 416 and 832 px and back)

4. Blur (normalized box filter with kernel sizes 3, 5, 7)

5. Brightness change (levels 0.5,1.5)

In Fig. 3 we see examples of these images with monitor visualizations applied. It shows cut YOLO bounding boxes with the contours,
lines and corresponding orientations detected by the monitor. Fig. 3a shows one of the few remaining false positives.

The image fits all the defined criteria of the 𝑆0 ontology for these 𝛿 values but is not actually of that class. Given stricter tolerances
(e.g. 90𝛿5 < 8) this mistake would not occur.

For the evaluation, we used the trained YOLOv8 model (see Section 4.1) on the generated images to detect the signs. For each
detection result, we determine the closest label – in terms of L2 distance of the two box centers – to the detection result. If the detected
class matches the label class, we count it as a true positive, otherwise a false positive. This method ignores how well, or poorly, the
detected bounding box matches the label bounding box, but we omit this for simplicity here.

Science of Computer Programming 246 (2025) 103323

7

J. Roßbach and M. Leuschel

After determining the status of the detection as true positive or false positive, we crop the part of the image inside the detected
bounding box, and send it to the monitor (see Section 4.2). If the original result was a true positive, but the monitor rejected it, we
count it as a false positive in Table 1b. Otherwise it stays a true positive. If the original result was a false positive, and the monitor
accepted it, it stays a false positive. Otherwise it becomes a true negative.

5.2. Results

The results of the evaluation can be found in Table 1 and Table 2. Table 1 shows the raw results of how many signs of the 74935
available signs were detected by the model and how many true positives and false positives were detected with (in Table 1b) and
without (see Table 1a) the monitor. In Table 2 we see how those numbers translate to several relevant performance metrics. Precision
is the ratio of true positives to the number of model detections. Meaning a ratio of how many of the objects detected by the model turn
out to be accurately detected and correctly classified. Recall is the ratio of true positives to the number of actual positives, meaning
how many of the actual ground truth signs in the dataset were detected by the model. The F-score is the harmonic mean of precision
and recall.

In terms of runtime performance, the monitor checks a certificate in approximately 0.7 ms on an Intel i5-12600K processor. In
comparison, the inference of the YOLOv8 model will range from 2 ms – for the nano model variant – to 8 ms for the m version. This
means that the performance overhead is likely not a major concern in a production environment.

5.3. Discussion

The results show that the monitor is able to successfully prevent almost all of the safety-critical false positives, leading to a
precision of around 99.9982%. We also observe the expected drop in recall, due to the fact that the monitor rejects true positives.
This is an essential trade-off of the approach. If the model does detect a sign correctly, but it can not be verified, for instance because
the contour detection algorithm fails or the features are slightly outside of the expected range given in Section 3, the monitor will
add a false negative and the recall will drop accordingly. For instance, the n model in Table 1 shows 40563 true positives before and
32902 after the monitor was applied. This implies that 7661 new false negatives were added by the monitor.

However, the results still show an overall improved F-score in some of the models. This is due to the fact, that the drop in recall
is small enough and these models have a lower precision on the dataset, making the jump to 1.0 in precision more significant for the
F-score. In general, a model with better precision will benefit the least from the monitor in terms of raw performance gains. It should
however be said, that the performance improvements in these results are not the purpose of the work and are not expected translate
to actual systems. Instead, the monitor is only meant to give additional assurance about safety-critical properties and avoid potential
hazards caused by false positives.

The model also still shows a high number of false negatives, e.g. signals that were not detected by the model, which is likely
due to the difference in training and evaluation data. Indeed, the evaluation data was artificially generated and has a quite different
distribution from the real-world training data. Hence, we did not expect the trained model to perform to a high level. But this is not
a problem: the contribution of this paper is not the model, but the runtime monitor that surrounds it.

Additionally, the data permutations in the evaluation data are relatively strong to simulate rough edge cases and occlusions. Fig. 5
shows an example of how a low brightness permutation in the evaluation data can cause a false negative. The sign in the bottom
left corner is not detected because the features are barely visible. This is done intentionally to provoke a large number of mistakes
on the part of the model, so that we can observe changes in performance due to the monitor. The goal of the work is to present an
implementation for a runtime monitor that reduces the number of false positives in a given AI implementation, and not to show that
the model does not make mistakes or verify that it is better than a human driver in any realistic scenario. The monitor however can
not verify a non-existing AI result, meaning the high number of false negatives have to be addressed by other techniques.

This could be done with model improvements through longer training or more training data, or through other parts of the system.
Other external techniques could include providing the system with prior knowledge on when signs are expected on the track. This
would allow the system to detect when a false negative has occurred and respond appropriately.

Because of the monitor’s simplicity it can potentially be formally verified, assuming the underlying computer vision algorithms
are at some point proven to be correct. As previously mentioned in Section 3 they are widely used and therefore “proven-in-use” but
not yet formally verified. However, this is currently a more realistic goal than verifying the AI algorithms themselves [10].

6. Conclusions and future work

This work presents a novel approach for improving the reliability of perception systems for autonomous train systems. It demon-

strates the potential of the certified control architecture in this context. The architecture employs a monitoring mechanism that rejects
detections failing to meet specified criteria, thereby almost entirely eliminating false positive detections. To test the approach we
created a specific implementation for a given case study on a generated dataset, demonstrating significant improvements in precision
and F-score compared to the original model without monitoring. Our results suggest that this technique has the potential to produce
more reliable perception systems for railway systems.

For future work, we aim to extend the monitor to detect other types of objects and create a more advanced implementation in
a type safe language and formally verify it along the lines of 𝑅𝐸𝑄. This implementation should then be tested in real production
environments in order to determine if the observed performance gains hold up in practice.

Science of Computer Programming 246 (2025) 103323

8

J. Roßbach and M. Leuschel

Fig. 5. Example of strong augmentation causing a false negative: the Sh0 sign in the lower left of the image is not detected by the Yolo model due to strong pixelation.

We are also focusing on more broad application of the method for different real-world use cases. One of them being the verification
of train track segmentation task in context of a train odometry case study. We aim to develop tools for working with this technology
including integration with popular open source visualization tools.

CRediT authorship contribution statement

Jan Roßbach: Writing – review & editing, Writing – original draft, Visualization, Software, Methodology, Investigation, Conceptu-

alization. Michael Leuschel: Writing – review & editing, Supervision, Project administration, Funding acquisition, Conceptualization.

Funding

This part of the KI-LOK project funded by the “Bundesministerium für Wirtschaft und Energie”; grant # 19/21007E.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
interests: Michael Leuschel reports financial support was provided by Bundesministerium für Wirtschaft und Energie. If there are
other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] D. Ristić-Durrant, M. Franke, K. Michels, A review of vision-based on-board obstacle detection and distance estimation in railways, Sensors (2021), https://

doi.org/10.3390/s21103452.

[2] J. Peleska, A.E. Haxthausen, T. Lecomte, Standardisation considerations for autonomous train control, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications
of Formal Methods, Verification and Validation. Practice, Springer Nature, Switzerland, 2022, pp. 286–307.

[3] R. Tang, L. De Donato, N. Besinovic, F. Flammini, R.M. Goverde, Z. Lin, R. Liu, T. Tang, V. Vittorini, Z. Wang, A literature review of artificial intelligence
applications in railway systems, Transp. Res., Part C, Emerg. Technol. 140 (2022) 103679, https://doi.org/10.1016/j.trc.2022.103679.

[4] G. Hemzal, T. Strobel, J. Großmann, B.-H. Schlingloff, M. Leuschel, S. Sadeghipour, J. Firnkorn, KI-LOK – a joint test procedure project for AI-based components
used in railway operations, Signal + Draht (2021).

[5] G. Hemzal, T. Strobel, M. Leuschel, J. Großmann, D. Knoblauch, M. Kucheiko, N. Grube, R. Krajewski, KI-LOK - Ein Verbundprojekt über Prüfverfahren für
KI-basierte Komponenten im Eisenbahnbetrieb, Signal + Draht (2023).

[6] J. Roßbach, O. De Candido, A. Hammam, M. Leuschel, Evaluating ai-based components in autonomous railway systems, in: A. Hotho, S. Rudolph (Eds.), KI 2024:
Advances in Artificial Intelligence, Springer Nature, Switzerland, Cham, 2024, pp. 190–203.

[7] J. Gruteser, D. Geleßus, M. Leuschel, J. Roßbach, F. Vu, A formal model of train control with ai-based obstacle detection, in: B. Milius, S. Collart-Dutilleul, T.
Lecomte (Eds.), Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification, Springer Nature, Switzerland, 2023,
pp. 128–145.

[8] J. Abrial, A. Hoare, The B-Book: Assigning Programs to Meanings, Cambridge University Press, 2005.

[9] M. Leuschel, M. Butler, ProB: a model checker for B, in: Proceedings FME, in: LNCS, vol. 2805, 2003, pp. 855–874.

[10] D. Jackson, V. Richmond, M. Wang, J. Chow, U. Guajardo, S. Kong, S. Campos, G. Litt, N. Aréchiga, Certified control: an architecture for verifiable safety of
autonomous vehicles, CoRR, arXiv:2104.06178, 2021, https://doi.org/10.48550/arXiv.2104.06178.

[11] J. Roßbach, M. Leuschel, Certified control for train sign classification, in: Proceedings Fifth International Workshop on Formal Methods for Autonomous Systems
395 (2023) 69–76, https://doi.org/10.4204/eptcs.395.5.

[12] N. Bešinović, L. De Donato, F. Flammini, R.M.P. Goverde, Z. Lin, R. Liu, S. Marrone, R. Nardone, T. Tang, V. Vittorini, Artificial intelligence in railway transport:
taxonomy, regulations, and applications, IEEE Trans. Intell. Transp. Syst. 23 (9) (2022) 14011–14024, https://doi.org/10.1109/TITS.2021.3131637.

https://doi.org/10.3390/s21103452
https://doi.org/10.3390/s21103452
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib20992980AABD5A7F60D21A8A92A7583Es1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib20992980AABD5A7F60D21A8A92A7583Es1
https://doi.org/10.1016/j.trc.2022.103679
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibC413413EAC8888B4B4461D7760A45C87s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibC413413EAC8888B4B4461D7760A45C87s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib3BDBD3BE11434255B5B88EBE1DC88B0Cs1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib3BDBD3BE11434255B5B88EBE1DC88B0Cs1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibA01F3BC76A9723F8C64A61EDDCD9E74Fs1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibA01F3BC76A9723F8C64A61EDDCD9E74Fs1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib7F5FA92D084FB339C7B3702A753AAB98s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib7F5FA92D084FB339C7B3702A753AAB98s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib7F5FA92D084FB339C7B3702A753AAB98s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib2F310B8810210CE22F6EB009927AF76As1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib385E54735CBF7E164D5CA45C7419D3A9s1
https://doi.org/10.48550/arXiv.2104.06178
https://doi.org/10.4204/eptcs.395.5
https://doi.org/10.1109/TITS.2021.3131637

Science of Computer Programming 246 (2025) 103323

9

J. Roßbach and M. Leuschel

[13] J. Athavale, A. Baldovin, M. Paulitsch, Trends and functional safety certification strategies for advanced railway automation systems, in: 2020 IEEE International
Reliability Physics Symposium (IRPS), 2020.

[14] J. Grossmann, N. Grube, S. Kharma, D. Knoblauch, R. Krajewski, M. Kucheiko, H.-W. Wiesbrock, Test and training data generation for object recognition in
the railway domain, in: P. Masci, C. Bernardeschi, P. Graziani, M. Koddenbrock, M. Palmieri (Eds.), Software Engineering and Formal Methods. SEFM 2022
Collocated Workshops, Springer International Publishing, Cham, 2023, pp. 5–16.

[15] J. Peleska, F. Brüning, M. Gleirscher, W. ling Huang, A stochastic approach to classification error estimates in convolutional neural networks, CoRR, arXiv:

2401.06156, 2023.

[16] U.L. Inc, 4600 standard for evaluation of autonomous products, Tech. Rep., Underwriters Laboratories Inc., 2020.

[17] B. Könighofer, F. Lorber, N. Jansen, R. Bloem, Shield synthesis for reinforcement learning, in: T. Margaria, B. Steffen (Eds.), Leveraging Applications of Formal
Methods, Verification and Validation: Verification Principles, Springer International Publishing, Cham, 2020, pp. 290–306.

[18] V. Ciancia, D. Latella, M. Loreti, M. Massink, Model checking spatial logics for closure spaces, Log. Methods Comput. Sci. 12 (4) (2016), https://doi.org/10.

2168/LMCS-12(4:2)2016.

[19] D. Porello, M. Cristani, R. Ferrario, Integrating ontologies and computer vision for classification of objects in images, in: Proceedings of the Workshop on
Neural-Cognitive Integration in German Conference on Artificial Intelligence, 2013, pp. 1–15.

[20] R.I. Minu, K.K. Thyagharajan, Semantic rule based image visual feature ontology creation, Int. J. Autom. Comput. 11 (5) (2015), https://doi.org/10.1007/

s11633-014-0832-3.

[21] S. Suzuki, K. be, Topological structural analysis of digitized binary images by border following, Comput. Vis. Graph. Image Process. 30 (1) (1985) 32–46, https://

doi.org/10.1016/0734-189X(85)90016-7.

[22] L. de Moura, N. Bjørner, Z3: an efficient smt solver, in: C.R. Ramakrishnan, J. Rehof (Eds.), Tools and Algorithms for the Construction and Analysis of Systems,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 337–340.

[23] J. Redmon, S.K. Divvala, R.B. Girshick, A. Farhadi, You only look once: unified, real-time object detection, in: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA, 2016, pp. 779–788.

[24] KILOK, Sign detection dataset, https://universe.roboflow.com/kilok/sign-detection-4oqe4, may 2023.

[25] Itseez, Open source computer vision library, https://github.com/itseez/opencv, 2015.

[26] A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The kitti vision benchmark suite, in: 2012 IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3354–3361.

[27] M.J. Pappaterra, F. Flammini, V. Vittorini, N. Bešinović, A systematic review of artificial intelligence public datasets for railway applications, Infrastructures
6 (10) (2021), https://doi.org/10.3390/infrastructures6100136.

[28] R. Tilly, P. Neumaier, K. Schwalbe, P. Klasek, R. Tagiew, P. Denzler, T. Klockau, M. Boekhoff, M. Köppel, Open sensor data for rail 2023, https://doi.org/10.

57806/9MV146R0, 2023.

http://refhub.elsevier.com/S0167-6423(25)00062-0/bibD6E8B8A67C893E950303DA8526086CF9s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibD6E8B8A67C893E950303DA8526086CF9s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibBB8C164657799CA336CC3844CF6752F0s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibBB8C164657799CA336CC3844CF6752F0s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bibBB8C164657799CA336CC3844CF6752F0s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib2D714AF0FDCAA63F3A69D2178C3C08D5s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib2D714AF0FDCAA63F3A69D2178C3C08D5s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib9937EBEDFF3336628287FF222AE2A6A0s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib360BCFE121D7EA26E8AF227B80FCE49Ds1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib360BCFE121D7EA26E8AF227B80FCE49Ds1
https://doi.org/10.2168/LMCS-12(4:2)2016
https://doi.org/10.2168/LMCS-12(4:2)2016
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib79E7107B2AE45B2C05D4D5C716226AADs1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib79E7107B2AE45B2C05D4D5C716226AADs1
https://doi.org/10.1007/s11633-014-0832-3
https://doi.org/10.1007/s11633-014-0832-3
https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.1016/0734-189X(85)90016-7
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib56AFDE8DBBC963B96BE5C404FA014721s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib56AFDE8DBBC963B96BE5C404FA014721s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib1F49A1C996658C7B5F2DAF6EAB89AFC6s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib1F49A1C996658C7B5F2DAF6EAB89AFC6s1
https://universe.roboflow.com/kilok/sign-detection-4oqe4
https://github.com/itseez/opencv
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib594426C8DA077BFAD240F1EE13614D86s1
http://refhub.elsevier.com/S0167-6423(25)00062-0/bib594426C8DA077BFAD240F1EE13614D86s1
https://doi.org/10.3390/infrastructures6100136
https://doi.org/10.57806/9MV146R0
https://doi.org/10.57806/9MV146R0

	Titelblatt_Roßbach_final
	Roßbach_Certified
	Certified control for train sign classification
	1 Introduction
	2 Background & related work
	2.1 Certified control
	2.2 Other related work

	3 Specification and ontology
	4 Implementation
	4.1 Controller
	4.2 Monitor

	5 Experiments, results & discussion
	5.1 Evaluation data generation
	5.2 Results
	5.3 Discussion

	6 Conclusions and future work
	CRediT authorship contribution statement
	Funding
	Declaration of competing interest
	References

