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3

Erklärung

Ich versichere an Eides statt, dass die Dissertation von mir selbständig und ohne
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Abstract

Many multicellular organisms are composed of tissues. Tissues are groups of sim-
ilar cells with one or more specific tasks, and it is the combination of multiple
tissues that leads to the formation of organs and larger structures within the
body. As the complexity of an organism increases, so does the number of different
tissues. Tissue generation and differentiation thus plays crucial roles covering the
range from life processes from its early stages during embryogenesis to necessary
maintenance such as wound healing. Unfortunately, the proliferation machinery
of some cells can become defective due to multiple causes. Through this, the tis-
sue growth process may become flawed and uncontrollable. This can lead to the
multi-faceted phenomenon known as cancer. Cancer is a disease that can occur
in the entire body, and its heterogeneity makes a generally applicable treatment
difficult. While understanding the detailed origins of the cell proliferation defects
on a genetic and epigenetic level is crucial to stopping the disease before it starts,
doctors and patients are often faced with the fact that it has already progressed to
a macroscopic stage ((O(mm)) at the time of diagnosis. In this situation, it is nec-
essary to understand the laws governing the growth of tumors, in order to develop
effective treatment strategies. Computational models are a useful tool for this for
two main reasons. Firstly, because a mechanistic model capable of reproducing
experimentally observed behavior underlines our understanding of the underlying
mechanisms. Secondly, because a working model would vastly benefit treatment
via quick assessments of options without any side effects or harm to the patient.
Hence, work is ongoing to develop so-called digital twins of growing tumors. A
challenge in this endeavour is the scale-spanning nature of cancer. This means
that any model simulating macroscopic tissue and tumor growth must be capable
of doing so at single-cell resolution. Such models are computationally demanding,
and often require supercomputing infrastructures to employ. Furthermore, care
must be taken to parameterize them correctly, and large amounts of experimen-
tal data are required for this. During this doctoral project, I have worked with
and extended Cells in Silico (CiS), a highly scalable tissue simulation framework
previously developed by my group. CiS is capable of simulating biological tissues
composed of tens of millions of cells at subcellular resolution, and is therefore
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a promising candidate for simulating a digital twin. However, before doing so,
it must be extended further, and data for its parameterization must be found.
To combat the problem of in vivo data scarcity, I have employed a ”divide and
conquer” approach, in which I aimed to partially parameterize CiS by focusing
on smaller in vitro sub systems, for which data exist. During my studies, I first
focused on an investigation of the structural environment of tumors, by working
with tumor spheroids grown in collagen matrices of varying density. For this, I
performed a large number of spheroid growth simulations, in order to reproduce
the behavior of the in vitro spheroids. To analyze the agreement between in vitro
and in silico spheroids, we developed the overall deviation score (ODS). The ODS,
which is a metric for comparing the structure of two spheroids regardless of their
origin, provided an objective function for the parameterization of CiS. During this
project, we discovered that CiS needs a more realistic description for the extra-
cellular matrix in order to accurately reproduce spheroid behavior. A project to
include such a description is ongoing within my group. In the second part of my
project, I focused on the nutrient environment of tumors. Here, I incorporated a
set of detailed mouse brain vasculature data into CiS, in order to build a more real-
istic nutrient environment. I then studied the growth behavior of tumors placed in
vascular environments of different density and thickness. Within my simulations,
I found that vessel density is the main contributor to final tumor volume. Finally,
I focused on the advancement of supercomputing infrastructure by participating
in the development of a benchmarking pipeline for the JUPITER supercomputer.
Overall, my work has improved CiS, and paved the way for bringing it closer to
simulating digital twins of tumors.



Zusammenfassung

Viele multizelluläre Organismen bestehen aus verschiedenen Geweben. Gewebe
bestehen aus Gruppierungen ähnlicher Zellen mit einer oder mehreren spezifischen
Aufgaben, und die Kombination mehrerer Gewebetypen führt zu der Formation
von Organen und größeren Strukturen im Körper. Während die Komplexität
eines Organismus sich erhöht, erhöht sich auch die Menge unterschiedlicher Gewe-
bearten, und Gewebewachstum und -differenzierung sind unabdinglich sowohl für
Embryogenese als auch Wundheilung. Leider kann die Teilungsmaschinerie von
manchen Zellen aus vielerlei Gründen fehlerhaft werden. Hierdurch kann das
Gewebewachstum fehlerhaft und unkontrolliert verlaufen, was zu dem facetten-
reichen Phänomen Krebs führt. Krebs ist eine Krankheit, die im gesamten Körper
auftreten kann, und seine Heterogeneität macht eine global anwendbare Behand-
lungsstrategie schwierig. Während es für die Prävention von Krebskrankheiten
entscheidend ist, die detaillierten Ursprünge der Fehler in der Teilungsmaschinerie
auf genetischer und epigenetischer Ebene zu verstehen, sind Ärzte und Patienten
leider häufig mit der Tatsache konfrontiert, dass die Krankheit zur Zeit der Di-
agnose bereits vorangeschritten ist. In dieser Situation ist es nötig, die Gesetze
des Wachstums von Tumoren zu verstehen, um effektive Behandlungsstrategien
zu entwickeln. Computergestützte Modelle sind hier aus zwei Hauptgründen ein
nützliches Werkzeug. Erstens, weil ein mechanistisches Modell, das in der Lage
ist, experimentell beobachtetes Verhalten zu reproduzieren, unser Verständnis der
unterliegenden Mechanismen unterstreicht. Zweitens, weil ein funktionierendes
Modell die schnelle Evaluation von Behandlungen erlaubt, ohne dem Patienten
zu schaden. Daher ist die Entwicklung sogenannter digitaler Zwillinge von Tu-
moren ein Bereich aktiver Forschung. Eine Komplikation in diesem Bemühen
ist die skalenübergreifende Natur des Phänomens Krebs. Diese bedeutet, dass
ein Modell, welches makroskopisches Gewebe und Tumorwachstum simuliert, in
der Lage sein muss, dies auf zellulärer Auflösung zu tun. Solche Modelle sind
sehr rechenintensiv und müssen daher oft auf Superrechnern laufen. Desweiteren
muss die Parametrisierung eines solchen Modells korrekt durchgeführt werden, und
hierfür sind große Mengen experimenteller Daten erforderlich. Während dieses
Promotionsprojekts habe ich das Gewebesimulationsmodell Cells in Silico (CiS)
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verwendet und weiterentwickelt. CiS ist in der Lage, biologisches Gewebe beste-
hend aus vielen Millionen von Zellen bei subzellulärer Auflösung zu simulieren,
und ist daher ein vielversprechender Kandidat für die Simulation digitaler Zwill-
inge. Um dies zu tun, muss es allerdings weiter entwickelt werden, und Daten
für seine Parametrisierung müssen gefunden werden. Um das Problem des Man-
gels an in vivo Daten zu umgehen, habe Ich einen Ansatz verwendet, in dem ich
mich auf kleinere in vitro subsysteme fokussiert habe, für die Daten existieren.
Während meiner Studien habe ich mich zunächst mit der strukturellen Umge-
bung von Tumoren beschäftigt, indem ich mit Tumor Spheroiden gearbeitet habe,
die in kollagenhaltigen Medien verschiedener Dichte gezüchtet wurden. Hierfür
habe ich eine große Menge an Simulationen von Spheroidwachstum erstellt, um
das Verhalten der in vitro Spheroide zu reproduzieren. Um die Übereinstimmung
zwischen in vitro und in silico Spheroiden zu analysieren, haben wir den over-
all deviation score (ODS) entwickelt. Der ODS, der eine Metrik für den Ver-
gleich der Struktur zweier Spheroide unabhängig ihrer Herkunft darstellt, konnte
als Zielfunktion für die Parametrisierung von CiS verwendet werden. Während
dieses Projekts fanden wir heraus, dass CiS eine realistischere Beschreibung der
extrazellulären Matrix benötigt, um das Verhalten von Spheroiden akkurat zu re-
produzieren. Ein Projekt mit dem Ziel, dies zu erreichen, läuft zurzeit in meiner
Arbeitsgruppe. Im zweiten Teil meines Projekts habe ich mich auf die Nährstoff-
Umgebung von Tumoren fokussiert. Hier habe ich ein Set von hochaufgelösten
Daten der Blutgefäßstruktur eines Mäusegehirns in CiS eingebunden, um ein real-
istischeres Nährstoffumfeld zu generieren. Dann habe ich das Wachstumsverhalten
von simulierten Tumoren untersucht, die in Blutgefäßsysteme verschiedener Dichte
und Dicke platziert wurden. Innerhalb meiner Simulationen stellte sich heraus,
dass die Blutgefäßdichte den Hauptbeitrag zur finalen Tumorgröße geleistet hat.
Zuletzt habe ich zu Weiterentwicklung von Hochleistungsrechensystemen beige-
tragen, indem ich an einer Benchmark Pipeline für den JUPITER Supercomputer
teilgenommen habe. Zusammenfassend hat meine Arbeit CiS weiterentwickelt,
und den Weg zur zukünftigen Simulation digitaler Zwillinge von Tumoren geeb-
net.
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Chapter 1

Introduction and background

Cancer is one of the main remaining diseases plaguing humanity [1]. Contrary to
many other illnesses for which we now have effective cures, this one remains elusive
[2, 3]. This is due to the fact that cancer is not a singular ailment with a spe-
cific weakness, but rather denotes a collection of afflictions arising from multiple
causes [4, 5, 6]. Each of these causes brings its own complexity, and the inter-
actions between them add further to the difficulty in finding generally applicable
treatments. Thus, studying and treating cancer presents a significant challenge.
Undeterred by this, scientists continue to probe the many aspects of the disease.
To do so, the problem is tackled from multiple angles. An important pillar of this
is the extensive experimental work that continues to be done in this field. Here,
researchers utilize a wide range of methods. Single cells are studied using novel
high-throughput sequencing [7] or motility tracking [8]. On a larger scale, in vitro
tissue arrangements such as tumor spheroids [9] and tissue organoids [10] are used
to study the behavior of cancerous cells in various conditions. On the tissue scale,
the advance of in vivo treatments is also continuing [11]. The importance of the
application and advancement of such experimental methods remains. However, a
crucial way to ensure our understanding of the effects which we observe experi-
mentally is the computational study of the available data and the development of
mechanistic models. Much progress has been made, for example, on the side of
driver gene detection via whole genome analysis [12]. The application of ML-based
data analysis methods is also increasing [13]. A multitude of mechanistic tumor
models exist, which have been successfully applied to simulate aspects of tumor
growth [14, 15, 16, 17, 18, 19]. Hence, these additional pillars represent a set
of complementary approaches of growing importance. In particular, the prospect
of patient-tailored digital twins of tumors is an exciting branch of research [18].
Digital twins, which denote exact in silico representations of in vitro or in vivo
tumors, are promising, because they allow for the extensive testing of treatments
without the danger of causing harm to the patient through ineffectual options.
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1.1. CANCER 13

Furthermore, results of treatments can be obtained much faster due to the fact
that months of tumor growth can be simulated within hours or days. This further
improves their ability of high-throughput testing. The main drawback of such com-
putational models is the fact that their development requires extensive hardware
resources [17]. Specifically, the dynamics both at the single-cell level and the tis-
sue level need to be incorporated to accurately model tumor behavior [20]. Hence,
scale bridging models are required, and such models necessarily bring challenges
on the side of computational efficiency [17]. A further challenge to overcome is the
issue of model parameterization, which requires extensive amounts of data. The
ideal datasets for the parameterization of digital twins would include, for each cell
within the tissue, time-resolved details on cell behavior, such as metabolic activ-
ity, signal transduction, and location and movement within the tissue. Metabolic
activity such as glucose metabolism can be measured on a coarse level using PET
imaging [21], but such methods do not resolve single cells. In addition, cell track-
ing within live tissue is a monumental challenge, the methods for which are still
under development [22]. While the amount of data is increasing [23], and they
are expected to be applicable in the medium term [24], other strategies must be
considered during the current window of data scarcity. During the course of this
doctoral thesis, I explored the two challenges of applying a scale-bridging model
and data scarcity.

This document is structured as follows. First, I will present a summary of the
main aspects of cancer, including current treatments and in vitro model systems.
Next, I will highlight some common strategies for tissue simulation, and will then
describe our simulation framework Cells in Silico (CiS) in detail. Following this, I
will present my results in three sub topics: a study of the structural environment
of tumors, a study of the nutrient environment of tumors, and numerical aspects
related to working within a high-performance computing (HPC) environment. Fi-
nally, I will discuss the insights gained, reflect on the progress on the path to a
full digital twin, and present some possible studies for the future.

1.1 Cancer

Brown et al. use the following definition to define cancer: ”Cancer is a disease
of uncontrolled proliferation by transformed cells subject to evolution by natural
selection” [25]. Translating this to a larger scale, the term cancer groups a mul-
titude of tissue aberrations, arising from wrongly behaving cells. This can occur
in virtually any part of the body [25]. The ten most commonly found cancers
are lung, breast, prostate, colon, stomach, liver, rectal, esophagus, cervix uteri
and thyroid cancer [26]. Of these, the ones with the highest mortality rate are
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lung, liver and stomach cancer [26]. Hanahan and Weinberg have identified eight
”hallmarks” and three ”enabling characteristics”, which are common to all cancers
[4, 5, 6]. They are briefly highlighted below.

1.1.1 Hallmarks

A hallmark refers to a phenomenological description of a behavior exhibited by a
cancerous cell or the cancerous tissue it is part of. Hallmarks can have different
origins depending on the type of cancer.

Self sufficiency in growth signals Within multicellular organisms, cell divi-
sion is usually governed by external stimuli [27]. As a consequence, healthy cells
only divide when they receive signals to do so from their surrounding [28]. One
important aspect of cancerous cells is the fact that they are capable of mimicking
these external stimuli. They achieve this, for example, by producing mitotic sig-
naling molecules that affect themselves as well as other cells [29]. Alternatively,
the receptors on the cell surface are increased such that the cell is more responsive
to external stimuli [30].

Insensitivity to anti-growth signals In addition to being self sufficient in
growth, cancerous cells also need to aquire an immunity to anti-growth signals
which may be released by the body to fight them [31]. The way how this immunity
is gained is either through the removal of receptors for growth-inhibiting signal
molecules, or through the disruption of intracellular pathways triggered by them.
[32].

Evasion of apoptosis Apoptosis denotes the process of induced cell death.
This either occurs as a result of external signaling, or is triggered by internal
failsafe mechanisms [33]. Similar to the evasion of anti-growth signals, cancerous
cells must also be able to evade apoptotic signals [34]. These two hallmarks are
therefore closely related but distinct in their goal.

Limitless replicative potential Any cell is a product of one or more differen-
tiation steps originating from a dividing stem cell of equal or higher order (e.g.
multipotent, pluripotent, omnipotent) [35]. Upon reaching terminally differen-
tiated state, a cell is usually not able to divide further, and eventually reaches
senescent state [36]. Even those cells which continue to divide eventually reach
senescence, usually when their telomeres become too short [37]. In order to reach
limitless replicative potential, a cancer cell must both re-activate its division ma-
chinery and ensure its telomeres remain sufficiently long [38, 39].
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Sustained angiogenesis A growing tumor requires ever more nutrients to pro-
liferate. Once it reaches a critical size, the nutrient influx provided by the existing
vascular network surrounding the tumor becomes insufficient [40]. In this case, the
tumor can only proliferate further by inducing growth of new blood vessels towards
it. This process, known as tumor-induced angiogenesis, is achieved through the
release of pro-angiogenic signals, such as VEGF, by hypoxic cells in the center of
the tumor [40, 41]. Blood vessels then grow along the gradient of this signal [42].

Tissue invasion and metastasis In addition to inducing angiogenesis to al-
ter the immediate nutrient environment, cancerous cells may eventually leave the
tumor and invade the surrounding tissue [43]. Once such cells reach locations in
which they can thrive, they form secondary tumors [44]. Tumor-induced angio-
genesis is often accompanied by subsequent metastasis, because tumor cells then
have easy access to the entire body by traveling through the blood stream [45].

Avoiding immune destruction One of the tasks of the immune system is to
recognize and target irregularly behaving cells within the body, which are then
destroyed [46]. Hence, the tumor microenvironment (TME) is usually in a chroni-
cally inflamed state that contains many immune cells [47]. Unfortunately, this also
produces a selective pressure on cell mutants capable of evading detection by the
immune cells [48]. These can then freely divide further until the tumor population
is dominated by immune-evading cells. Evasion is achieved by targeting antigen
recognition or by altering the metabolism of T cells [49].

Deregulating cellular energetics Cancer cells often rely on anaerobic glycol-
ysis for the production of ATP, instead of the more efficient oxydative phospholy-
sation found in healthy tissue [50, 51]. There is evidence that this is beneficial for
survival in the TME, since it is highly heterogeneous, and even vascularized tumors
contain hypoxic areas [52]. Furthermore, glycolysis generates more byproducts
used for biosynthesis than oxydative phosphorylation and may therefore facilitate
faster cell proliferation [5].

1.1.2 Enabling characteristics

The hallmarks mentioned above are only a summary of behaviors attributed to
cancerous tissue. In order to aquire these behaviors, either the cell’s genome or
gene expression profile, i.e. epigenetics, need to be changed. Several enabling
characteristics govern this process.
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Genome instability and mutation In order for hallmark-enabling genome
mutations to occur within a human lifetime, the rate of mutation must be high
enough [4]. Usually, the DNA repair mechanisms of cells ensure that this is not
the case, and in order for mutations to occur fast enough, these mechanisms must
first be sabotaged [53]. A prominent example of this is the p53 tumor suppressor
protein, whose function is lost in most tumors [4].

Tissue inflammation As mentioned in the Avoiding immune distruction hall-
mark, it has been found that the TME is in a state of permanent inflammation
[47]. Here, the actions of the immune system create selective pressure which even-
tually leads to the occurence of immune-evading cancer cell types. However, it has
also been found that the conditions within non-cancerous inflamed tissue favor the
aquisition of other hallmarks [54, 5].

Nonmutational epigenetic reprogramming More recently, the role of epi-
gentics has come more into the scientific focus. Aberrantly methylated regions
[55] can induce expression of different proteins, and hence the protein landscape
of the cell is altered [56]. In this way, cancer hallmarks can arise even though the
genome itself has not been changed. This is becoming more important as more
mechanisms are being discovered [57].

1.1.3 Cancer treatment

Some cancers, such as Glioblastoma and pancreatic cancer are not yet effectively
treatable [58, 59, 60]. For others, the three traditional treatment options are
chemotherapy [61], radiotherapy [62] and surgery [63]. All three have advantages
and disadvantages [64, 62, 65]. Therefore, a combination of multiple treatments is
often used, especially since surgery may increase the chance of metastasis [65].The
optimal combination is an area of active research. However, treatment trials can
only be performed in a limited fashion for a given patient, and here, in vitro and
in silico studies may be promising [18].

1.1.4 In vitro cancer model systems

Cancer cells can be grown in vitro, and hence, experiments have been designed
which investigate their behavior in various environments [66]. Here, I outline some
commonly used model systems.

Cancer cell lines Cell lines have been extracted and cultured in vitro since the
middle of the 20th century [67]. The HeLa cell line is the oldest one in current use
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[68]. Cell lines can be grown in many different conditions, and therefore many sce-
narios can be designed to test their proliferative behavior and resilience. However,
it is not clear, how well the results from such experiments can be translated into
the in vivo context [69, 70]. This has two main reasons. Firstly, the older a cell
line is, the more it deviates from the originally extracted cells[71]. Secondly, in
vitro cells in traditional model systems exist in environments which likely do not
reproduce the conditions found in in vivo tissues. Due to the strong influence of
environmental cues on the behavior of cells, this may lead to different behavior[72].

Tumor spheroids To build an environment that is closer to real tissues, cells
are often cultured in the form tumor spheroids [73, 74]. Tumor spheroids are
spherical aggregates of a few hundred to a few million cells, which are placed into a
structural matrix. This matrix is composed of structural proteins such as collagen,
and closely resembles the ECM found in real tissue [9]. Tumor spheroids can be
used to study the invasion behavior of cells depending on their surrounding [9].
They can also function as testing grounds for new chemotherapy or radiotherapy
treatments [73, 75].

Tissue organoids While tumor spheroids usually originate from only a single
cell type, tissue organoids represent an attempt to mimic real tissues more closely
[76]. They are composed of multiple regions of different cell type, and therefore
exhibit a heterogeneous environment [74]. Organoids as a system are still in de-
velopment, but this is a strongly growing field [74, 10].

1.2 Simulation of cancerous tissue

Cancer is a disease that incorporates both single cell and tissue effects. Compu-
tational models therefore need to be capable of treating both scales in order to
accurately describe tumor growth. In this section, I first outline commonly used
models for simulating tissue. I briefly mention continuum models and mostly focus
on agent based models that resolve individual cells. Finally I describe Cells in Sil-
ico (CiS), the model that I utilized and further developed during this dissertation.

1.2.1 Continuum models

One way of circumventing the computational cost of simulating many individual
cells is approximating populations as a continuous volumes. Partial differential
equations (PDEs) can then be used to describe nutrient flow, tissue expansion and
other effects [77]. While it is possible to simulate heterogeneous tissues and tumors
with this approach, and there has been some success [77, 78], behavior emerging



18 CHAPTER 1. INTRODUCTION AND BACKGROUND

from single-cell effects, e.g. invasion by single cells, is not tracked. For this, agent
based models are more promising.

1.2.2 Agent based models

In an agent-based model (ABM), a system is described by individual agents which
act in an environment. Each agent has a set of properties that dictate how it be-
haves and how it interacts with its environment. In an ABM, multiple such agents
exist, and while the strength of the properties of two agents can be similar, each
has their own individual set. ABMs can be applied in many disciplines, and an
agent can be, for example, a single cell [14], a person in a population model [79],
or an enzyme digesting a polymer [80]. The advantage of ABMs is that emergent
behavior can be studied by investigating the individual agent properties. On the
other hand, they are computationally expensive at increasing numbers of agents.
Furthermore, care must be taken to accurately describe the environment and the
interactions between agents. In the context of tissue modeling for example, impor-
tant agent attributes would be cell center, cell volume, adhesion strength to other
cells, cell motility strength, division rate and mutation rate. Here, the interaction
with other cells depends strongly on how the volume, surface and overall shape of
cells are described. Hence, agent-based modeling is usually combined with other
modeling frameworks, which describe the interactions between the agents [14, 81].
Some common ones are highlighted below (see also Figure 1.1).

Cells as points The simplest approach to model a tissue with cellular resolution
is to treat every cell as a point. Cellular automata (CA), for example, are lattice
models, in which each lattice point can be used to describe a single cell. The
system then evolves via nearest neighbor interactions. A very simple CA model
is Conway’s game of life [82]. Unfortunately, we have no information on cellular
surfaces or volumes using this approach.

Cells as spheres A slightly more complex formulation is the description of each
cell agent as a sphere with a center r⃗ and a radius R. The interaction between cells
can be described utilizing a hard or, more common, a soft sphere potential. Some
success has been achieved here here [83, 84]. However, this approach only rudi-
mentarily includes cell deformation , which is an important feature distinguishing
cells [85].

Edge based models In both the vertex model (VM) and the voronoi tesselation
model (VTM), cells are described as polygons whose edges connect them to their
neighbors (see Figure 1.1). These edges can change due to pressure changes or
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other effects. The difference between the two models lies in how the edges are
determined. In a VM we define the location of vertices, i.e. junction points of
three or more cells, and the edges follow from this. In the VTM on the other hand
we define the cell centers, and the edges are determined via Voronoi tesselation
[86]. VMs have been used to simulate Drosophila wing disk formation[87]. They
have also been used for studying tissue jamming transitions [88]. However, these
models still do not enable realistic cell deformation.

Cellular Potts models A significantly more detailed approach to a lattice
model is the Cellular Potts Model (CPM), developed by Graner and Glazier [89].
In the CPM, each cell is described as a connected region of lattice points which
contain the same ID. It is an extension of the Potts model [90], which is itself an ex-
tension of the Ising Model [91]. While The Potts model generalizes the Ising model
by introducing an arbitrary number of IDs instead of just 0 or 1, the CPM goes
further by defining an additional ”type” variable for each ID. Type-dependent ad-
hesion interactions between regions are then implemented. In the CPM, we define
the overall energy of the lattice with the following Hamiltonian [81]:

HCPM =
∑

c∈C

λV,τ(c)

(

v(c) − V (τ(c))
)2

Cell volumes

+
∑

c∈C

λS,τ(c)

(

s(c) − S(τ(c))
)2

Cell surfaces

+
∑

i∈Ω

∑

j∈N(i)

Jτ(ci),τ(cj)

(

1 − δci,cj

)

. Cell-cell adhesion

(1.1)

Here, λV,τ(c) is the coupling factor of the volume energy contribution for the
cell type τ(c) of the cell c, v(c) is the current volume of cell c, V (τ(c)) is the target
volume for cells of type τ(c), λS,τ(c) is the coupling factor of the surface energy
contribution for the cell type τ(c) of the cell c, s(c) is the current surface of cell c,
S(τ(c)) is the target surface for cells of type τ(c), i is the i-th point in the overall
lattice Ω, j is the j-th neighbor of all neighbors N of point i, J is the adhesion
matrix defining the adhesion strengths between all cell types, and δci,cj is the
Kronecker delta. This Hamiltonian can optionally be extended by further terms,
e.g. for including cell motility [92]. The system is propagated via the Metropolis
algorithm [93]. In each iteration, we perform randomized swaps of lattice IDs, and
review their impact on the system energy. The energy difference

∆HCPM = HCPM,new −HCPM,old (1.2)
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between the energy HCPM,new after the swap and HCPM,old before the swap is
then used to determine acceptance or rejection of the swap. The probability of
acceptance paccept is

paccept =

{

1, if ∆HCPM ≤ 0.

e
−∆HCPM

T , otherwise.
(1.3)

where T is the system temperature. Thus, we obtain a probabilistic simulation,
with which deformable cells can be described. One major advantage of the CPM
is the fact that the individual energy contributions per lattice point depend only
on nearest-neighbor interactions. This means that it is easy to parallelize such
simulations by dividing the grid into multiple sub grids [81].

Deformable cell model Off-lattice models such as deformable cell models (DFMs)
represent the cell surface at higher detail. They do this via surface triangulation
similar to finite element methods [19]. While more accurate, they also come with
high computational cost.

1.2.3 Cells in Silico

During this dissertation, I used and further developed a model called Cells in
Silico (CiS) [81]. CiS is a highly parallelizable tissue simulation framework, which
is an extension of the NAStJA stencil code solver [94, 95]. It is a hybrid model
composed of three main layers, which I describe below.

Microscale CPM layer In CiS, cell shape and adhesion interactions are de-
scribed by a parallelized CPM. The implemented CPM hamiltonian also includes
a cell motility term [92, 96], so cells are capable of self-propelled movement within
the system:

HCPM, mot = HCPM +
∑

c∈C

λmot,τ(c) · m⃗c · R⃗c Cell motility (1.4)

Here, λmot,τ(c) is the coupling factor of the motility energy contribution for the

cell type τ(c) of the cell c, m⃗c is the current motility direction of cell c, and R⃗c is its
center of mass. m⃗c can be periodically updated to introduce random or persistent
random walk behavior.

Furthermore, the CPM lattice of CiS can contain so-called solids. These are
lattice points, which are not included in the randomized swapping and are therefore
not affected by the hamiltonian. They can be used to form structures such as a
solid ECM or rigid blood vessels. Due to the excellent parallelizability of CiS, we
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can simulate tissues composed of tens of millions of cells at subcellular resolution
using modern supercomputing systems.

Mesoscale signal and nutrient interaction layer A multitude of signaling
molecules exist within biological tissues [97]. These signals govern a wide range
of phenomena, from embryogenesis to immune response, cell differentiation, cell
death etc. [97]. To include such effects, CiS therefore contains a simplified signal
exchange functionality, in which signals can diffuse between adjacent cells. The
diffusion flux F k

i,j of the k-th signal between cell i and cell j is defined as follows:

F k
i,j = Dτ(i),τ(j)

(

Ai,j

Ai

+
Ai,j

Aj

)

(

[S]kj − [S]ki

)

. (1.5)

Here, Dτ(i),τ(j) is the type-dependent diffusion constant, Ai,j is the interface
area between cell i and cell j, Ai and Aj are the overall surface areas of cell i and
cell j, and [S]ki and [S]kj are the signal concentrations within each cell [81]. Cells
can both produce and consume signals, and solids in the CPM layer can function
as sources or sinks with constant signal concentration, and thereby function as
blood vessels.

Macroscale ABM layer and interaction between the layers Finally, on
the top layer of CiS, information from the lower layers is collected, its impact is
calculated, and the cell agent properties are updated. The properties of a single
cell agent within CiS are the following:

• ID

• Type

• Volume

• Surface

• Time of birth

• Signal content

• Cell center

• Motility direction
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These properties usually change over the course of a simulation. The cell
motility can either follow a pure random walk or a persistent random walk, and
the motility direction is periodically updated accordingly. The volume, surface
and center values are updated as the CPM lattice evolves. The signal values
change depending on the mesoscale interactions. In addition to changing the
agent properties, the ABM layer also governs the effect of these properties. Cell
division and cell death are implemented here. Cells divide and die depending on
customizable conditions, e.g. the concentration of specific signals. When a cell
divides, a new agent is added, and half of the CPM lattice points belonging to the
dividing cell are changed to the ID of the new agent. In summary, the macroscale
layer combines information from the micro- and mesoscale layers and functions as
the main point of control. An example of tissue arrangements within systems of
multiple sizes is shown in Figure 1.2 (see also Appendices A and B).

1.3 Divide and conquer

The long-term goal of the development of CiS is to build a cellular digital twin of a
tumor, with which we can more deeply understand tumor growth and investigate
new treatment options. In order to reach this goal, the model first needs to be ex-
tended to include all relevant effects. Then, it must be parameterized using in vivo
data. Unfortunately, we currently lack the data required to do so. This is because
if we want to ensure that our single-cell resolving tissue model behaves correctly,
we require high-resolution data on the dynamics of in vivo tissue. Generating such
data represents a significant challenge. The experimentally reachable resolution
has increased strongly in recent years, and labeled data on static cm3-sized tissues
has already been generated at single cell resolution [23]. While preparing for the
arrival of dynamics data, we are currently pursuing a ”divide and conquer” ap-
proach. Here we study multiple in vitro sub systems to partially parameterize CiS
and gain new insights on necessary model extensions. By utilizing in vitro data we
gain the advantage of reaching high measurement resolution, at the cost of system
size. Eventually, insights from the studied sub systems will be combined with in
vivo data to scale back up. During the course of this dissertation, I performed
studies of two sub sytems. Each of them will be highlighted in the next chapter.





Chapter 2

Results

The two areas studied during this theis are the structural environment of tumors,
and the nutrient environment of tumors. Both are instrumental in tumor devel-
opment [98], and in the following I will describe the main results obtained so far.
Following this, I will discuss numerical aspects related to the highly parellized
nature of CiS..

2.1 Tumor structural environment

Within biological tissues, cells are surrounded by an extracellular matrix (ECM)
[99, 9, 98]. This ECM is composed of structural polymers such as collagen, as
well as other proteins, and many signal interactions take place between cells and
the ECM [98]. The ECM can also provide a barrier against invasion and metas-
tasis of tumors, as demonstrated in melanoma [100] and breast cancer [9, 101].
In this study we turned to data on tumor spheroids grown in collagen media of
varying density [9]. The spheroids exhibited behavior similar to a phase transition
at increased collagen density. The invasion behavior changed from predominantly
single cell invasion at low densities to collective invasion at higher densities. The
spheroid cell behavior in the two phases was reminiscent of that of molecules
within liquids versus gases. We aimed to reproduce this behavior with CiS by per-
forming simulations of spheroids surrounded by a solid ECM of varying density.
One major part of this process was the parameterization, which required a way
of comparing simulated and experimental data. For the comparison of spheroids,
no fully established metrics existed, so we developed our own. This was done by
extracting several structural features from the raw data, comparing the features
between the spheroids, and finally combining all individual comparisons into an
overall deviation score (ODS). A high value of the ODS between two spheroids
indicates significant morphological difference between them. This project has led
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to a publication [96], on which I was shared first author. The full manuscript for
this can be found in Appendix A.

After developing and using the ODS, we discovered that our model likely
lacks some key functionalities to accurately reproduce the experimentally observed
spheroid behavior. Specifically, the solid structure which we used to approximate
the ECM is likely insufficient (see also section 3). Our group has therefore started
working on including a dynamic ECM into CiS, and such studies are ongoing. In
parallel to this, I have turned to the next area: the tumor nutrient environment.
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2.2 Tumor nutrient environment

A tumor’s surrounding has strong impact on its growth. If there is insufficient
blood supply, it can only grow up to a certain size [102, 40]. Studying this envi-
ronment in an in silico context may shed new light on the detailed mechanisms
of induced angiogenesis and invasion. In this chapter I first describe a project
about including detailed mouse brain vasculature data into CiS, and then I briefly
discuss an attempt to implement tumor-induced angiogenesis within the model.

2.2.1 Static vasculature: mouse brain data

Rosenbauer et al. have previously used CiS to study the nutrient dependence of
tumor growth by placing a spherical tumor within a fluctuating nutrient environ-
ment [103]. However, one major limitation of this study was the fact that the
nutrient environment was highly simplified in the form of a radial field with a
single minimum precessing around a central axis. In order to study tumors placed
in more realistic environments, I have therefore turned to data by Di Giovanna et
al [104], who measured the vasculature of an entire mouse brain at capillary res-
olution. These data were provided in the form of light-sheet microscopy z-stacks.
I processed each of these stacks into a 3-dimensional representation, and analyzed
them with respect to the blood vessel network topology. After choosing several
stacks of interest, I incorporated their 3-dimensional blood vessel network into the
CPM layer of CiS in the form of solids. I then performed simulations of tumors
seeded in different parts of the vessel network, and investigated the dependence of
the tumor growth on the initial surrounding vessel properties. A manuscript for
this project was recently submitted for publication. The corresponding preprint
was uploaded to bioRxiv [105] and can be found in Appendix B.

The above study has led to new insights about modeling static vasculature in
CiS, and the behavior of tumors growing within existing blood vessel networks.
The next step is to find a dynamic representation, in order to simulate fully vas-
cularized tumors.

2.2.2 Dynamic vasculature: angiogenesis

Angiogenesis denotes the process of new blood vessel growth. This is induced by
signaling molecules such as VEGF (vascular endothelial growth factor), which in
turn is released by hypoxic, i.e. oxygen deprived cells [42]. New blood vessels grow
along the VEGF-gradient towards the hypoxic area. A growing tumor necessarily
has a hypoxic center after reaching sufficient volume, and hence VEGF is released,
leading to tumor-induced angiogenesis. This, as described in section 1.1, is one of
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the hallmarks of cancer. It is also clear that in order have an accurate model of the
progression from microscopic to vascularized macroscopic tumor, tumor-induced
angiogenesis must be included. The following outlines an attempt to incorporate
dynamic blood vessel growth into the existing machinery of CiS.

Blood vessel resolution considerations

The first step in implementing a dynamically growing vasculature is to find a
non-static representation of a single blood vessel. A question that needed to be
answered here was the detail at which the vessels should be modeled. I was mainly
interested in their location and growth direction, and therefore decided not to
include detailed structural considerations. Instead, I described a blood vessel as a
number of connected segments. To utilize CiS as efficiently as possible, I aimed to
use the CPM layer for this.

Elongated cells as blood vessel segments

In the original CPM, a connected region of same ID represents either a cell or
the solvent. As described in section 1.2.3, solids can also be included in CiS in
the form of static voxels with specific ID. For the inclusion of dynamic blood
vessels, I introduced a new type of region: the blood vessel segment (BVS). A
BVS functions as a coarse-grained approximation of part of a blood vessel. It
combines the lumen and vessel wall into a single object. A full blood vessel is then
described by a chain of connected BVSs. Blood vessel growth occurs by utilizing
the cell division mechanism of CiS and applying it to BVSs. There are several
requirements for this to work. First, a BVS should be elongated compared to
regular cells in the CPM. Next, adhesion interactions between two BVSs should
only occur between their tips. Thirdly, when a BVS divides, its division plane
should be orientated perpendicular to its major axis, such that elongation occurs
along this axis. Furthermore, a BVS should only be able to divide if it has less
than two neighbors, in order to ensure that only the tip of the blood vessel grows.

BVS elongation I achieved the required elongation by incorporating a new
”elongation” term into the CPM Hamiltonian:

Helongation =
∑

i∈Ω

λp(τ(ci))

√

∆r⃗i
2
−
(

∆r⃗i · p̂(ci)
)2

(2.1)

Here i is the i-th voxel in the system volume Ω, λp(τ(c(i))) is the coupling factor
for the type of the cell to which voxel i belongs, ∆r⃗i = r⃗i− r⃗CoM(c(i)) is the vector
between the i-th voxel and the center of mass of the cell it belongs to, and p̂(c(i))
is the newly introduced elongation vector of the cell. Including equation 2.1 into
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BVS division In CiS, cell division is carried out by first defining a division
plane for each dividing cell. Its voxels are then split between the two new cells.
The plane is defined by the cell center of mass and a normal vector that is chosen
randomly. For BVSs, I have adapted the mechanism to choose p̂ as the normal
vector of the division plane. This ensures that the shared surface of old and new
BVS is minimized. Finally, to enable division only for those BVSs located at the
tip of vessels, the neighbor count Nneighbors,i of each BVS i is tracked. Division is
then only possible for a BVS if Nneighbors,i is less than 2. An example of a growing
vessel network is shown in Figure 2.4.

Gradient-driven growth The mechanisms described above are already imple-
mented in CiS. However, further machinery is required in order to fully achieve
signal-gradient driven vessel extension. Importantly, a mechanism for changing
the major axis of a BVS must be included such that it can orient itself towards
the signal gradient. This change is not implemented yet, and would need to occur
either at the time of cell division or dynamically for each agent.

Evaluation of this approach

The main motivation for the usage of BVSs was that they could utilize the existing
CPM layer within CiS. However, working within this confined space necessarily
entails some limitations. First of all, connected BVSs are only metastable, and
may break over time, if adhesion parameters are not chosen correctly. Next, the
formulation of equation 2.1 does not enforce elongation in a way that mechanically
displaces other BVSs. Hence, BVSs often remain confined after division within a
growing vessel. Furthermore, the dynamic inclusion of vessel branches remains
an unsolved problem. At the current state, it is only possible to ”seed” branches
in the beginning, from which blood vessels can grow. Finally, BVS thickness is
not adjusted, which is another issue for branched structures. In line with this,
the formulation does not include the finite rate at which blood flows through the
vessels. So far, this is therefore an incomplete formulation. A dynamic blood
vessel network may be better achieved by finding a different representation (see
section 3).
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2.3 Numerical aspects

The previous two sections have focused on the biophysical studies performed during
my doctoral studies. However, these studies also involved many technical aspects,
which are of their own importance and should be mentioned. I first highlight some
pitfalls which were discovered in the development of CiS within the HPC context.
Then I briefly describe the role of CiS in the JUPITER benchmark, which was
utilized to test the components of the JUPITER exascale computer.

2.3.1 Pitfalls in HPC development

CiS is highly parallelizable, which means that a single simulation can run on thou-
sands of CPU cores. While the information that needs to be exchanged between
cores is small, for each new addition to the model the boundary exchanges need
to be thoroughly investigated. Additionally, the aspect of simulation output han-
dling, which can be neglected in smaller systems, becomes non-trivial a this level
of parallelization. During the course of this project, I found challenges in both of
these domains, examples of which are summarized below.

2.3.2 Boundary exchange considerations

In order to parallelize the CPM layer of CiS, the volume is divided into a number
of sub volumes, known as blocks. Each block is then assigned to a single worker.
Since only nearest-neighbor interactions are relevant in the CPM, most of each
block can be simulated independently. The exception is the outermost layer, or
”halo” of each block, which needs to be exchanged between neighbors.

An information exchange is also required on the agent-based layer. Here, each
worker contains its own list of cell agents. Each list contains only those cells
which have at least one voxel within the worker’s CPM layer block or within a
block neighboring it. Importantly, this means that while within a single worker’s
domain a cell agent is unique, multiple instances of this agent exist in the whole
domain. Their properties must be synchronized, such that the properties of block-
crossing cell agents, e.g. volume and surface, are correctly updated. It is here that
errors such as the following may occur.

Cell movement around boundaries Each cell agent c has a motility vector
m⃗c that the determines the direction in which it moves. To implement a random
walk, this vector must be periodically shuffled. In CiS, this shuffling takes place
only in the block in which the respective cell agent’s center of mass is located.
This information is then shared with the neighboring blocks. As seen in Figure
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Conclusion and outlook

Cancer is a complex set of diseases, each with unique causes and challenges.
This makes the development of universal treatments difficult. To combat these
challenges, scientists employ a multi-faceted approach involving experimental and
computational methods to study and combat cancer. Experimentally, researchers
analyze individual cells using advanced sequencing and motility tracking methods
[7, 8], and study the behavior of cell aggregates in in vitro tissue models like tu-
mor spheroids and organoids [9, 10]. In vivo treatments are also being further
developed, thereby enabling new insights [11]. Computational approaches, such as
ML-based analyses and mechanistic models like digital twins, complement exper-
imental efforts.

The concept of the digital twin has already been used in multiple fields, such as
aerospace engineering [108], urban planning [109], and AI training [110]. Within
those fields, tremendous success was achieved by fully representing the system of
study in digital form. To replicate such success, the concept is emerging in other
fields as well. In Biology, digital twins are very promising candidates for further-
ing the development of personalized medicine. By investigating treatment options
within an in silico context, treatments can be ruled out without causing harm to
the patient. The tailoring of such treatments to the individual is particularly useful
in cancer therapy, because cancer is such a heterogeneous disease whose progres-
sion is highly variable depending on the surrounding conditions. Therefore, digital
twins promise to augment existing medicine, which still focuses on low resolution
data and costly in vitro systems [111].

Currently, no true digital twins of tumors exist. It is clear from the scale-
bridging nature of cancer, that a working digital twin must be able to simulate
tissues which resolve individual cells. The technology for simulating such cell ag-
gregates containing millions of cells is already available [17, 81], and modern super
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computing infrastructures allow for handling their tremendous computational cost.
On the other hand, the models capable of simulating tissue at the needed reso-
lution still require further tailoring and parameterization [17]. The challenge in
tailoring them is to determine, which biological effects need to be incorporated
into the models to fully capture tumor behavior, and at which detail these effects
need to be simulated. The amount of data available for the subsequent parameter-
ization is growing [23], but it will likely take several more years until this is ready.

The goal of this project was to investigate the requirements and pitfalls of sim-
ulating a digital twin of an in vivo tumor, and to continue the development of a
model capable of doing so. The CiS tissue simulation framework already fulfils
multiple key criteria in this regard. The most important of these criteria is its ca-
pability of simulating millions of cells at subcellular resolution. In addition to this,
the behavior of the individual cells can be widely customized, enabling the capture
of highly heterogeneous tissues. However, due to the scarcity of high-resolution
in vivo data on tumors, CiS cannot be easily parameterized. Hence, during this
project, I have employed a ”divide and conquer” approach. This means that CiS
was used in multiple studies to investigate sub systems for which high-resolution
in vitro data were available. The systems I analyzed concerned both the structural
and nutrient environments of tumors. During these studies I extended the model
where it was required:

• I added an ECM degradation mechanism in order to simulate the invasion
behavior of MDA-MB-231 breast cancer spheroids [96]. This was previously
not possible utilizing the existing machinery of CiS, in which solid ECM
could be placed, but simply acted as a barrier or adhesion surface for cells.
By implementing a stochastic method in which cells were capable of removing
adjacent ECM voxels, I was able to simulate the detachment of individual
cells from the main spheroid bulk, a behavior observed experimentally [9].

• I implemented a pipeline for loading 3-dimensional blood vessel data [104]
into the CPM layer of CiS. This led to a strong improvement of the nutrient
landscape within our simulations, which previously had to rely on a simplified
representation [103]. After performing several simulations within different
parts of the mouse brain, I was able to confirm the strong impact of vessel
density on tumor growth [105].

• I explored a novel way of implementing dynamic vasculature within the CPM
layer of CiS. After defining the blood vessel segment (BVS), I implemented
a new elongation term into the CPM hamiltonian, added cell tip-adhesion,
and neighbor-dependent division. While the goal of a functional dynamic
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vasculature was not reached, the implemented BVS-associated effects may
also provide useful for cell simulation.

• Finally, I dealt with multiple issues related to the highly parallelized nature
of CiS. This included multiple optimizations of the block boundary exchange
functionality of CiS, in which I fixed several errors. Furthermore, I improved
the parallel IO pipeline for handling large CPU node counts. Simulations
involving thousands of individual CPU cores would previously overload the
network during simulation output writing. I rectified this by dividing the
workload into sub groups of CPU cores which wrote output into individual
files. Through this, I was able to simulate systems of 4 · 4 · 4 mm3 at µm
resolution.

The study of these multiple projects has led to new insight into tumor simu-
lations. During the investigation of spheroids, we developed the overall deviation
score (ODS), a metric to quantitatively compare tumor spheroids. This metric,
based on individual cell properties and spheroid bulk properties, enabled us to
compare our simulated spheroids to experimental data provided by our collabora-
tors [96]. It was also used in a project within my group whose goal was to find the
optimal objective function for the parameterization of our model. While working
with the spheroid data, we further discovered that an extension of CiS to include
dynamic ECM is necessary to fully capture the behavior of invading cells. It is
known that such cells do not only degrade the ECM but actively remodel it [112],
and we found that this behavior cannot be neglected when trying to reproduce the
experimental data. Further studies to do so with an ECM representation relying
on elastic lattice methods are ongoing within my group.

During my studies of the nutrient environment, I performed an analysis of the
blood vessel structure within detailed vasculature data of a mouse brain [104]. I
was able to convert these data into a 3-dimensional representation and to include
them into CiS. After performing tumor growth simulations in a multitude of rep-
resentative sub parts of the mouse brain, I was able to show that tumor growth is
mainly driven by the blood vessel density, and not the network length.

There is much more that can and needs to be done on the path to a full dig-
ital twin of tumor growth. First of all, as mentioned before, tumors only induce
vascularization after reaching multiple mm in size [102, 40]. Hence, simulations
only become truly relevant for therapy development once they can include this
scale. With the included and validated blood vessel data [104] we can now tap
into a nutrient distribution network spanning multiple cm3 of tissue. Using this,
we can begin to study the growth of tumors in a clinically relevant system size.
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Hence, future projects will attempt to do so and further utilize the richness of
the data by di Giovanna et al. [104]. One obvious obstacle that still needs to
be overcome during these studies is the formulation of dynamic vasculature. The
strategy attempted in section 2.2.2 requires more work to be applicable to a fully
dynamic network. A possibility to use the existing mechanisms would be to aug-
ment a static vasculature built using the vasculature data by Di Giovanna et al.
[104]. BVSs could be seeded along this static vasculature at the start of a sim-
ulation. Their growth could then be mediated by a signal secreted by hypoxic
tumor cells, thereby mimicking VEGF-gradient driven growth. This is untested,
however, and requires further study before its efficacy can be determined. To reach
a fully dynamic network, the strategy likely must be re-thought more extensively.
An existing approach by Shirinifard et al., which also utilizes the CPM, may be
suitable [14], but still needs to be implemented and evaluated.

An aspect hat has increasingly come into focus during my work with dynamic
vasculature is that of signal and nutrient transport. As discussed in section 1.2.3,
this is currently implemented as a contact-driven diffusion process. However, on
the one hand this only works in tightly packed tissues, and on the other hand it
limits the resolution of the diffusion process to the volume of the individual cells.
A more promising approach would be the addition of a dedicated diffusion layer
that includes its own field. This would be a second discrete lattice on top of the
CPM layer, in which signals would diffuse freely. This has not been implemented
so far to keep computational cost down. However, with the advent of GPUs of
steadily increasing computational power, it is increasingly feasible to add such a
layer. Since GPUs are suited for numerically solving PDEs, they are great candi-
dates for such a task. Furthermore, newer supercomputers increasingly focus more
on GPUs than on CPUs, and therefore porting CiS to GPU usage is an attractive
prospect.

In terms of simulating treatment, simplified chemotherapy and radiotherapy
treatment mechanisms already exist within CiS [113]. However, using only these
does not fully reflect the possibilities within cancer therapy, as this also includes
others, such as immunotherapy [114] and anti-angiogenic therapy [42]. Therefore,
additional work needs to be done to include such therapy options into CiS. In order
to incorporate immunotherapy, the role of the immune system has to be included
into CiS, an aspect that has not been adressed yet. As discussed in section 1.1, this
plays a huge role in the development of tumors, and the tumor microenvironment
is usually filled with immune cells. Future work on CiS needs to incorporate an
acceptable representation of this immune action. A concern here is the metabolic
detail at which the individual cells are currently simulated. Cells contain complex
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metabolic and signaling pathways [115], and since these are not captured by CiS,
this is likely currently not sufficient to reproduce the wide range of different cell
types and behaviors observed in vitro and in vivo. Before extending the model,
immune cells must be studied, their required characteristics and capabilities need
to be defined, and data must be found on which to test the function of the sim-
ulated cells. One obvious effect that needs to be investigated is the capability of
T-cells to seek and neutralize cancerous cells.

Tumor stem cells are another aspect requiring further study. It is known that
tumor stem cells contribute to the chemotherapy resistance of tumors [116], and
thereby influence tumor robustness. Previously, Rosenbauer et al. have included
tumor stem cells within CiS [113], but this was done in a qualitative fashion. To
capture their true behavior, data is once again required.

Finally, it is clear that to truly parameterize CiS, data from many different
sources are required. Hence, it will be necessary to build a generalized frame-
work for data integration. Such a framework will need to be capable of handling
many different types of data, and of associating them to relevant model param-
eters. Once this exists, the actual process of parameterization will bring further
complexity due to the computational cost of individual simulations. Smaller scale
models can rely on repeated use of parameter fitting algorithms which iteratively
vary parameters to maximize an objective function. At larger scale, the rising
computational cost prohibits this, and therefore specialized algorithms requiring
fewer iterations are necessary.

The field of cancer research is far from exhausted. While our understanding
is constantly growing, new questions and challenges are simultaneously appear-
ing. On the experimental side, obtaining high resolution, time-resolved data of
in vivo tissue would be highly valuable, although this represents an undeniably
challenging problem. On the computational side, there is much more to do until
reliable digital twins of tumor growth are applicable and can be utilized to improve
personalized medicine. At the same time, the benefits of a working digital twin
emphasize the merit of the scientific effort in this field. Furthermore, the advent
of exascale computing underlines the fact that the technical resources necessary
for such models are increasingly available. Hence, the conditions for the further
development of digital twins are excellent. The work I performed during my dis-
sertation has moved CiS slightly closer on the road towards a fully realized digital
twin, and future work will continue on this path even further.
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Abstract

Progress continues in the field of cancer biology, yet much remains to be unveiled regarding

the mechanisms of cancer invasion. In particular, complex biophysical mechanisms enable

a tumor to remodel the surrounding extracellular matrix (ECM), allowing cells to invade

alone or collectively. Tumor spheroids cultured in collagen represent a simplified, reproduc-

ible 3Dmodel system, which is sufficiently complex to recapitulate the evolving organization

of cells and interaction with the ECM that occur during invasion. Recent experimental

approaches enable high resolution imaging and quantification of the internal structure of

invading tumor spheroids. Concurrently, computational modeling enables simulations of

complex multicellular aggregates based on first principles. The comparison between real

and simulated spheroids represents a way to fully exploit both data sources, but remains a

challenge. We hypothesize that comparing any two spheroids requires first the extraction of

basic features from the raw data, and second the definition of key metrics to match such fea-

tures. Here, we present a novel method to compare spatial features of spheroids in 3D. To

do so, we define and extract features from spheroid point cloud data, which we simulated

using Cells in Silico (CiS), a high-performance framework for large-scale tissue modeling

previously developed by us. We then define metrics to compare features between individual

spheroids, and combine all metrics into an overall deviation score. Finally, we use our fea-

tures to compare experimental data on invading spheroids in increasing collagen densities.

We propose that our approach represents the basis for defining improved metrics to com-

pare large 3D data sets. Moving forward, this approach will enable the detailed analysis of

spheroids of any origin, one application of which is informing in silico spheroids based on

their in vitro counterparts. This will enable both basic and applied researchers to close the

loop between modeling and experiments in cancer research.
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Author summary

Cells within a tumor use various methods to escape and thereby invade into healthy parts

of the body. These methods are studied experimentally by examining tumor spheroids,

spherical aggregates of hundreds to thousands of individual cells. Such spheroids can also

be simulated, and the comparison of both simulations and experiments is desirable. Here,

we present an analysis strategy for the comparison of tumor spheroids of any origin.

Using this strategy, we aim to increase the information gained from the data and improve

the collaborative potential between experimentalists and theorists.

This is a PLOS Computational Biology Methods paper.

1 Introduction

The worldwide challenge of fighting cancer is as urgent as ever [1, 2]. When trying to under-

stand the mechanisms driving the disease, one is faced with a complex and wildly inhomoge-

neous landscape of cellular properties and interactions, which vary both within and between

cancer types [3–5]. Furthermore, cancer is not one single disease, but rather refers to a large

number of diseases with shared characteristics, which are captured in the hallmarks of cancer

[2, 6]. The processes underlying these diseases, such as the rise of malignancy via loss of cell-

cell adhesion and subsequent increased motility [7], span a wide range of scales, both in space

and in time [8]. To further the understanding of cancer, it is crucial to decipher how these pro-

cesses interact and lead to the formation of macroscopic invasive tumors. Thus, combating

cancer requires input from many different domains of science, such as biology, medicine, and

pharmacology, but also physics, computer science, and mathematics [8, 9]. Unfortunately,

time-resolved analysis of in vivo tumor tissue is challenging, as due to low spatial or temporal

resolution of imaging methods, single-cell resolution 4D trajectories are not yet widely applica-

ble. To increase accessibility for analysis, the system has to be divided into smaller subsystems.

Thus, in vitro and in silico models are created, allowing the study of individual aspects of the

system. An in vitro example is the study of tumor spheroids, which represent a useful model

system for studying tumor growth and cell dynamics [10]. Tumor spheroids are spherical

arrangements of hundreds to thousands of cells, which can be placed within a structural extra-

cellular matrix (ECM), e.g. a collagen scaffold. They are widely used for studying e.g. drug

response, tissue fluidity and tumor invasion [11–13]. On the in silico side, tumor growth mod-

els of varying degree of coarse-graining are being developed [14–16], some of which are also

applied to simulate tumor spheroids [17, 18]. Thus, both experimentalists and theorists gener-

ate data for the same systems, but these studies are often not compared quantitatively. Quanti-

tative comparison is an important step towards fully leveraging the results of both groups, and

in this context requires an adaptive and robust comparison strategy for spheroid data, regard-

less of its origin. In prior studies, Browning et al. have investigated structural aspects of mela-

noma-derived spheroids by building a data-analysis pipeline for spheroid images resulting

from confocal microscopy [19], and Szymańska et al. have studied the proliferation behavior

of spheroids using Bayesian inference [20]. However, to our knowledge there is currently no

strategy for systematically comparing 3D structural data between two spheroids, which can be

obtained in vitro using stacked multiphoton microscopy images [13]. Hence, in this study, we
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want to provide a toolbox of features which may be extracted from a given 3D structure of a

spheroid, and metrics to compare these extracted features between different spheroids. These

features and metrics can be used on their own, or in combination, to obtain an overall devia-

tion score. Our strategy utilizes point cloud data, in which each point denotes the position of a

cell. Importantly, this enables the comparison of both simulated and experimental spheroids.

To demonstrate this, we applied our toolbox to previously published data that captured struc-

tural differences in triple-negative breast cancer spheroids invading into a collagenous ECM of

varying density [13]. Such experimental data were used as a motivation to simulate a variety of

spheroid behaviors in silico (see Fig 1). Using our previously developed platform “Cells in Sil-

ico” (CiS) [21], we performed multiple simulations of 3D tumor spheroids, and for this study,

we want to highlight a subset of four spheroid phenotypes: “spherical”, “spherical with far gas-

likes”, “deformed”, and “disordered”. These phenotypes emerged from different combinations

of the aforementioned parameters (see Sections 2.1 and 4.2), and will be used as examples

throughout.

In the following, we will first outline our work with CiS towards simulating spheroids and

arriving at the four phenotypes. Then, we will describe the spatial features that we extracted

from individual simulated and experimental spheroids. Next, we will discuss our strategy for

comparing these features between multiple spheroids, including the derivation of an overall

deviation score, and how it can be tuned for a specific use case. After validating our strategy

via a transformation study, we will show comparisons between exclusively simulated spher-

oids, exclusively experimental spheroids, and comparisons between simulated and experimen-

tal spheroids. We will conclude by evaluating the success of our method, and providing an

outlook for its further use.

2 Results

2.1 Adapting CiS to the simulation of spheroids

CiS is a highly scalable general-purpose framework for tissue simulation at subcellular resolu-

tion. It extends a Cellular Potts Model (CPM) with an agent-based layer, and allows the

description of various properties and phenomena, such as cell-cell adhesion, cell compressibil-

ity and cell motility, cell divison, cell mutation and cell-ECM interactions (see Section 4.1 for

more details). In order to apply it to the simulation of spheroids, we first defined the simula-

tion system and parameters to be investigated. Previous studies have identified cell-ECM inter-

actions such as adhesion, degradation and remodeling as strong components in facilitating

invasion [22–24]. Hence, we focused on the effects of different ECM alignments, cell-ECM

adhesion, ECM degradation, as well as self-propelled cell motility (see Section 4.2 for more

details). We performed multiple simulations of 3D tumor spheroids placed in a coarse-

grained, rigid ECM. In our model, this ECM can be both adhered to and degraded by cells, but

due to its rigidity, the alignment of the fibers remains constant (see Section 4.2 for more

detail). Since it is known that tumors remodel their ECM, and ECM alignment is one of the

main drivers of invasion [24], we decided to include a radially aligned ECM in our studies (see

Fig 1a). Thus, we performed multiple simulations of spheroids at different model parameters

(see Table 2). Within this parameter space, we observed four spheroid phenotypes, which were

connected by singular differences in parameter values (see Table 1). These were the following:

Spherical. Cell-cell adhesion dominated, and the cells remained in a spherical arrange-

ment, with a relatively smooth surface of the spheroid bulk throughout the simulation.

Deformed. Due to a strong increase of the cell-ECM adhesion strength, cells adhered to

and moved along the radially aligned fibers. Through a combination of cell division filling

PLOS COMPUTATIONAL BIOLOGY Development of a scoring function for comparing tumor spheroids
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gaps and cell-cell adhesion keeping the bulk intact, the spheroid lost its spherical shape and

exhibited protrusions along the ECM fibers.

Spherical with far gaslikes. Through a combination of high ECM degradation rate and

cell-ECM adhesion, cells in the outermost layer of the spheroid moved into the ECM faster

than by adhesion alone. This resulted in a halo of singular cells around an approximately

spherical spheroid bulk.

Fig 1. Simulated spheroids and emerging phenotypes. a) Cut-outs of the initial states of simulated spheroids for two ECM alignments. Each spheroid,
shown in red and containing roughly 2000 cells, was placed into an (800 μm)3 volume and surrounded by either an unaligned or radially aligned ECM
(green fibers). To improve visibility, the front half of the volume (dashed lines) is not shown b) Time evolution of simulated spheroids displaying four
different phenotypes: “spherical”, “deformed”, “spherical with far gaslikes”, “disordered”. The ECM is radially aligned for these phenotypes, and is not
shown in order to highlight the spheroid morphology. Each phenotype resulted from different combinations of parameters connected to the cell
motility, the cell-cell adhesion and the interaction with the ECM (see Section 2.1 and Table 1). Each simulation lasted 250 000 Monte-Carlo (MC) steps,
and shown are five snapshots for each simulation. A single MC step corresponds to roughly 1 s of real time in the context of this study. Throughout our
investigation, we focused on the final configuration (orange rectangle), and used five replicates from each phenotype.

https://doi.org/10.1371/journal.pcbi.1010471.g001

Table 1. Differences between the four simulated phenotypes used throughout this study.

Phenotype Cell-ECM adhesion ECM degradation period Motility magnitude

Spherical 50 1 (disabled) 0

Deformed 450 1 (disabled) 0

Spherical with far gaslikes 450 5000 MC steps 0

Disordered 450 5000 MC steps 100

Listed are the three parameters in which the phenotypes differed from each other. The remaining parameters were the same for all phenotypes, and were as follows:

ECM density: 1; ECM alignment: radially aligned; Cell-cell adhesion: 50; Random walk persistence: 0; cell division: enabled.

https://doi.org/10.1371/journal.pcbi.1010471.t001
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Disordered. The cells dissociated from each other due to high self-propelled motility.

Subsequently, the spheroid integrity was lost.

These four phenotypes visually differed between each other (see Fig 1, and the next step of

our investigation was to quantify these differences.

2.2 Individual features

We focused on the analysis of spatial properties of tumor spheroids. For this, we utilized data

containing the three-dimensional positions of all individual cell centers at one given point in

time. For the analysis of these data we considered various features which could be used indi-

vidually or as an overall deviation score (see Section 2.4). These features and their applicability

are highlighted in the following.

Cell density distribution. Analyzing the distribution of cell density is useful for determin-

ing the extent of the bulk of the spheroid, as well as its geometry. For our studies we focused

on the so-called central local density, which we defined as the fraction of cells found within

spherical layers of constant thickness and increasing radii around the spheroid center. For a

uniform spherical distribution of cells, this density is non-zero only within the spheroid bulk

(see Fig 2a). Disordered spheroids, on the other hand, exhibit a distribution over a larger

domain.

Gaslike cell distribution. The detachment of single “gaslike” cells from a spheroid has

been a recent focus [13], and can be used to distinguish between ordered and disordered

spheroids. However, the assignment strategy of the “gaslike” status needs to be well defined.

Kang et al. were able to experimentally measure the spheroid boundary [13], and defined cells

outside of this boundary as “gaslike”. Since the spheroid boundary is not tracked in our simu-

lations, we used a definition based on nearest-neighbor distances and distance from the center

of the spheroid. The set of gaslike cells G as a subset of all cells C is thus defined as follows:

G ¼ fci 2 C : dðci;OÞ > Dcrit ^ minðNiÞ > dcritg; ð1Þ

where Dcrit is the threshold distance from the spheroid center O, Ni = {d(ci, cj)jcj 2 C, cj 6¼ ci} is

the set of Euclidean distances between cell ci and all other cells, and dcrit is the threshold neigh-

bor distance. The first constraint in Eq 1 provides the context of a bulk structure, and its

parameter Dcrit can be selected considering the inflection point of the central local density. The

second constraint ensures that only detached cells are defined as gaslikes, and its parameter

dcrit was chosen by considering the mean distance between all cells. Fur our purposes we

Table 2. Simulated parameter space from which the four phenotypes were obtained.

Parameter Values

ECM density 1, 2

ECM degradation period 1000 MC steps, 5000 MC steps,1 (disabled)

ECM alignment unaligned, radially aligned

Cell-cell adhesion 50, 100

Cell-ECM adhesion 50, 450

Motility magnitude 0, 50, 100

Random walk persistence 0, 0.3, 0.5

Cell division enabled

Listed are the number of values per parameter, as well as the total number of parameter combinations resulting from

this (see section 4.2 for more detail). For each simulation, five replicates were simulated.

https://doi.org/10.1371/journal.pcbi.1010471.t002
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Fig 2. Visualization of cell based features extracted from simulation data for four different phenotypes. a) Cell density distribution. Shown is,
averaged over all replicates of each phenotype, the fraction of cells within spherical layers around the spheroid center versus the radii of these layers. The
“spherical” phenotype shows a steep drop at a radius of 150 μm, while the “deformed” and “disordered” phenotypes show a long-tailed distribution. The
“spherical with far gaslikes” phenotype behaves similar to the “spherical” phenotype, except for a non-zero density above 175 μm. b) Gaslike cell
distribution. Shown are the average fractions of gaslike cells according to Eq 1 versus their normalized average distance to the spheroid center. The
fraction of gaslikes exhibited by the “spherical”, “spherical with far gaslikes” and “deformed” phenotypes is similar, but the distance from the spheroid
center is far greater for the “spherical with far gaslikes” phenotype. The “disordered” phenotype on the other hand contains many cells classified as
gaslikes across the entire spheroid volume. Their normalized average distance from the center evens out to a value slightly above 1. c) Voronoi cell
volume distribution. Shown are histograms of the average Voronoi cell volumes found in the four phenotypes. The “spherical” phenotype shows a
sharp peak around a volume of 4000 μm3, and a smaller peak around a volume of 2000 μm3. The “spherical with far gaslikes” and “deformed”
phenotypes show a similar behavior, with a slightly more pronounced tail towards larger volumes. Finally, the “disordered” phenotype shows volumes
distributed over a wide range. The range between volumes of 1500 μm3 and 5000 μm3 is magnified on the right to highlight the differences between
phenotypes in the two peaks.

https://doi.org/10.1371/journal.pcbi.1010471.g002
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selected the data by Kang et al. [13] as basis for deriving these parameters: Dcrit = 125 μm, dcrit
= 19 μm. This set G can be used to compute various properties, such as the fraction of gaslikes

and their average distance from the spheroid center. We combined these two properties in this

feature, defining it as a point p within the space spanned by them. The first property px
describes the fraction of all cells in the spheroid that are detached. The second property py
describes the mean distance of the detached cells from the spheroid center.

p ¼ px; py

� �

¼
jGj

jCj
;
1

jGj

X

i

dðci;OÞ

p
95
ðG∗Þ

 !

ð2Þ

where p95(G*) is the 95th percentile of distances of the non-gaslike cells G* = C\G from the

spheroid center, which serves as a normalization factor. We included only the non-gaslike cells

for this normalization factor, because our aim was to define the distance relative to the spher-

oid bulk. As shown in Fig 2b, the “disordered” and “spherical with far gaslikes” phenotypes

can be distinguished from the others using this feature, but it is suited less well for comparing

“spherical” and “deformed” spheroids.

Voronoi cell volume distribution. The distribution of Voronoi cell volumes within the

spheroid serves as a measure of cell deformation, as well as their confinement. To obtain these

volumes, we performed a Voronoi tessellation [25] on the cell center point cloud, during

which the system was divided into Ncells regions according to the distances between adjacent

cells. It is important to note that the Voronoi cell volumes are not the same as the biological

cell volumes, but represent a proxy in which detached cells occupy a significantly larger vol-

ume. We generated a histogram of the Voronoi cell volumes, as shown in Fig 2c). Here we

observe that the first three phenotypes are distributed sharply around a volume of roughly

4000 μm3, with a smaller spike around 2000 μm3 and a tail. The volumes of the “disordered”

phenotype are evenly distributed over a much wider range. The tail of the first three distribu-

tions is a useful artefact of the Voronoi tesselation, as it allows to extract additional informa-

tion about the bulk spheroid surface.

Spheroid surface and surface deformation. While the cell density distribution provides a

measure of the spheroid size, its information about the spheroid shape is limited. To study this

in more detail, we needed to approximate the spheroid surface, as we wanted to distinguish

deformed spheroid bulk from spherical bulk. We did this via surface triangulation using the

marching cubes algorithm [26]. To apply this algorithm we performed some preprocessing of

the point cloud data: first, we extracted the set of non-gaslikes G*, as we were only interested
in the shape of the spheroid bulk. Next, we obtained a continuous spheroid volume from the

remaining points by voxelizing our data. This voxelization was performed by mapping the sys-

tem onto a 3-dimensional density grid. The density of each grid point was set to 1 if the grid

point was closer than a threshold distance to any cell in the point cloud, and was set to 0 other-

wise. The resulting region defined by grid points of a density of 1 served as a proxy of the con-

tinuous spheroid volume. We then used the marching-cubes algorithm [26] to generate a

mesh of triangles which approximated the surface of the continuous volume, a process known

as surface triangulation (see also S4 Fig). Finally, we extracted two features from this: first, we

calculated the surface area from the triangle mesh (see Fig 3a)), and second, we analyzed the

surface deformation by investigating the orientations of the mesh vertices. This was done by

calculating, for each vertex, the scalar product between its normal vector and its origin vector,

with the spheroid center at the origin (see S4 Fig). Then these scalar products were combined

in a histogram. The vertex orientations serve as a measure of deformation, since for a perfect

sphere all scalar products are equal to 1, and a deformed sphere results in a more widely spread

distribution (see Fig 3b).
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By using these features we were able to measure and quantitatively describe different

aspects of individual tumor spheroids. This provided a basis on which we could compare two

spheroids with each other. Such a comparison required the definition of distance metrics for

each feature, which are highlighted in the following.

2.3 Individual metrics

To accomodate the different types of output data between features, we required suitable met-

rics. For the spheroid surface area, which provided a scalar value per spheroid, we used the

mean squared error (MSE). For the gaslike cell distribution, which provided a tuple of two

coordinates per spheroid, we used the Euclidean distance. Finally, for the distribution-based

features, i.e. cell density distribution, Voronoi cell volume distribution and spheroid surface

deformation, we used the 1-Wasserstein distance (WSD). The Wasserstein distance is a metric

between probability distributions, and is a common sight in mathematics, especially statistics

and computer science. The p-Wasserstein distance between two probability measures μ and ν

on the metric space ðRn; dÞ is defined as:

Wpðm; nÞ≔� inf
g2Gðm;nÞ

Z

Rn�Rn

dðx; yÞ
p
dgðx; yÞ

�1=p

ð3Þ

where Γ denotes the collection of all joint probability measures γ with marginals μ and ν [27],

and d(x, y) denotes the metric distance used to the define the metric space. Here, d(x, y) = |x −

y|. An intuitive illustration of the Wasserstein distance can be given by viewing each distribu-

tion as a pile of earth of different shape, and considering the amount of work that has to be

done to transform one pile into the other. Assuming this work to be equal to the product

between the amount of earth that has to be moved and the distance it needs to be moved, the

Fig 3. Visualization of spheroid bulk based features extracted from simulation data for four different phenotypes. Surface information was
extracted via the marching cubes algorithm [26] (see also section 2.2). a) Spheroid surface area. Shown is the average surface area found for each
phenotype. The “spherical with far gaslikes” phenotype has the smallest average surface area, due to the spherical bulk containing less cells than that of
the “spherical” phenotype. The larger average surfaces of the “deformed” and “disordered” phenotypes are due to their more irregular shape. b)
Spheroid surface deformation. Shown are histograms of the scalar products between vertex normal vectors and vertex origin vectors, with the origin
denoting the center of the spheroid. The vertices were obtained from surface triangulation of the spheroid point cloud and denote points on this surface
(see also S4 Fig). The “spherical” phenotype exhibits a sharp peak at scalar products of 1, which is less pronounced for the “spherical with far gaslikes”
phenotype. The remaining two phenotypes are spread more widely.

https://doi.org/10.1371/journal.pcbi.1010471.g003
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Wasserstein distance is the minimum amount of work that has to be done. Due to this illustra-

tion, the WSD is often referred to as “earth mover’s distance” [28].

2.4 Combination of multiple metrics

At this point, the individual features described in the previous sections could be reliably com-

pared between two spheroids using our defined metrics. Next, one of our main goals was to

combine these features and metrics into a single scalar value, which could then serve as an

overall deviation score between two spheroids (see Fig 4). This can be seen as a summary sta-

tistic, which are also used in Bayesian inference [29]. Many different questions regarding the

comparison of tumor spheroids require such a singular scalar. From an experimentalist’s view,

this could be the comparison of spheroids cultivated in different conditions, with the goal of

quantitatively determining how the change of one experimental variable influences the spher-

oid growth and invasion pattern. A problem faced by theorists running simulations is how to

optimize the model parameters to reproduce experimental results. Both problems require one

scalar distance measure like the one we aimed to derive here. Before doing so, we need to

address the fact that it is unlikely for such a distance measure to be generally applicable to all

types of tumor spheroids and experimental settings. This is due to the high dimensionality of

even a single spheroid dataset at a single point in time. To illustrate this, we consider the case

of comparing two spheroids, each containing 1000 cells. The desired distance is a function

f : R3000 � R3000 ! R. Such a function will, by design, project many different pairs of spher-

oids onto the same point in R. This property can hardly be circumvented, and is desired in a

distance measure. On the other hand, this also means that the measure has to be carefully

selected depending on the use case. Therefore, in addition to defining the overall deviation

score here, we will also propose a method to adapt the score to different use cases.

Fig 4. Sketch of the application ofNastjapy. An overall deviation score Di,j is calculated between two individual spheroids i and j (see also section 4.4).

https://doi.org/10.1371/journal.pcbi.1010471.g004
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Standardization. We first ensured that all metrics were on a similar scale. For this stan-

dardization, we used five replicates from each of the four phenotypes from our simulations,

and compared each feature, resulting in Nspheroids = 20 spheroids and Ndistances = 400 metric

distances per feature f. These distances di,j,f between spheroid i and spheroid j were then trans-

formed according to Eq 4:

di;j;f ;std ¼
di;j;f � md;f

sd;f

ð4Þ

where μd,f and σd,f respectively denote the mean and standard deviation across the Ndistances val-

ues for each feature f. Since this standardization may lead to values of di,j,f,std below zero, and

we aimed to define a positive distance for each feature, we further shifted each value by the

minimum across all di,j,f,std, finally arriving at di; j; f
∗ as defined in Eq 5:

d∗i;j;f ¼ di;j;f ;std þ jminð½d
1;1;f ;std; d1;2;f ;std; ð. . .Þ; dNspheroids;Nspheroids;f ;std

�Þj ð5Þ

Overall deviation score and use case adaptation. Next, we defined the overall deviation

score Di,j. This definition entailed merging the previously standardized d∗i;j;f via the following
linear combination:

Di;j

XNfeatures

f¼1

lf � d∗i;j;f ; ð6Þ

where λf denote the weight factors for each feature, i.e. how much it contributes to the final

deviation score Di,j. In order to optimize these values, we once again turned to our simulated

phenotypes and their five respective replicates. Because we wanted to ensure the deviation

score to distinguish between different phenotypes, we required values of λf that minimized the

intra-phenotype deviations and maximized the inter-phenotype deviations. This can be for-

mulated as a maximization problem:

max
flf g

XNfeatures

f¼1

lf

X
Nphenotypes

k¼1

X

i2Pk

X

j=2Pk

d∗i;j;f
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

inter�phenotype

�
X

i2Pk

X

j2Pk

d∗i;j;f
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

intra�phenotype

0

B
B
B
B
@

1

C
C
C
C
A

; ð7Þ

where Pk is the set of all spheroids of phenotype k. This optimization procedure can be inter-

preted as an inverse clustering. During clustering, the property described in Eq 7 is maximized

by assigning individuals to a cluster. In contrast to this, our method uses prior clustering infor-

mation to optimize the metric space itself. This shows resemblance to methods of contrastive

learning, with the notable difference that we use a linear model in our approach [30]. We

argue, that adjusting the weighting of features according to their relevance to the formation of

predefined clusters will allow to more strongly distinguish between those clusters. Assuming

that phenotypes are correctly grouped, maximizing Eq 7 already ensures that each λf > 0.

Additionally, we decided on the following constraint:

XNfeatures

f¼1

l
2

f ¼ 1 ð8Þ

This constraint is important to prevent the optimization procedure from collapsing towards

the trivial solution of setting λf !1. It also fixes each λf to the domain [0, 1]. Furthermore,
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using the square of each λfminimizes the influence of outliers across features. The optimiza-

tion of Eq 7 under consideration of this constraint was performed using the Sequential Least

Squares Programming (SLSQP) method implemented in the SciPy package [31] The contribu-

tion of each feature to the overall deviation score resulting from the optimization of the λf is
shown in Table 3.

2.5 Validation: Transformation study

Validating a metric, such as the one derived in this work, requires a set of data examples with

known relation. For this purpose, we designed a transformation study, in which we generated

multiple point clouds from a reference spheroid using transformation functions. These func-

tions were selected in such a way, that for a useful metric we expected higher distances between

reference and transformed point cloud for higher transformation strengths. On the other

hand, the metric has to remain invariant under transformations related to the frame of refer-

ence, e.g. rotation or translation of the point cloud. Therefore, we also included these transfor-

mations. Hence, we tested for the following properties:

1. invariance under rotation and translation,

2. monotony within the domain of interest: a small deviation from an original spheroid shall

result in a lower distance than a large deviation.

We investigated these properties for the five described features and the overall deviation

score by appling four transformations to a spheroid S ¼ f~Pg j ~P 2 R3 of the “spherical” phe-

notype. The transformations were represented by functions in the space of point clouds

T : S � R! S. With this approach, we aimed to verify both of the above properties. Invari-

ance is shown, when the distance does not depend on the strength of the transformation. Simi-

larly, monotony is shown, when the distance metric grows monotonously with the

transformation strength. The four transformations that we used were the following:

Rotation. Rotating each cell of the spheroid by a given angle α around an arbitrary axis i

through the spheroid center:

TRðS; aÞ ¼ fRiðaÞ~P j ~P 2 Sg; ð9Þ

where Ri(α) is the rotational matrix.

Noise. Adding a random vector drawn from a standard uniform distribution to the posi-

tion of each cell:

TNðS; aÞ ¼ f~P þ a � ~X j ~P 2 S; ~X � U
3
ð0; 1Þg; ð10Þ

Deformation. Translating each cell along the radial vector of the spheroid, modulated by

the spherical angles of the cell’s position:

TD;oðS; aÞ ¼ f~P þ a � êr � ðcosoφ þ sinoyÞ j ~P 2 Sg ð11Þ

Table 3. Fitted weight factors for each feature contributing to the overall deviation score between two spheroids.

Feature Cell density distribution Gaslike cell distribution Voronoi cell volume distribution Spheroid surface area Spheroid surface deformation

λf 0.41 0.50 0.43 0.34 0.52

The values were obtained by maximizing Eq 7, with the simulated phenotypes serving as a calibration set (see Section 2.1).

https://doi.org/10.1371/journal.pcbi.1010471.t003
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This deformation can be interpreted as adding ripples with frequency ω and amplitude α to

the spheroid surface.

Scaling. Multiplying the position of each cell by its distance to the center of the spheroid:

TSðS; aÞ ¼ fa � k~Pk �~P j ~P 2 Sg ð12Þ

This transformation affects cells with a larger distance to the spheroid center more strongly

than those close to it. The spheroid density is therefore not conserved.

A visual example for each of these four transformations is provided in Fig 5. For complete-

ness, we also mention the translation transformation, which is defined as follows:

Transformation. Changing the position of each cell by the same vector~a

TTðS;~aÞ ¼ f~P þ~a j ~P 2 Sg ð13Þ

We do not show it however, because translational invariance is ensured. This is because all

features depend only on relative and not absolute distances, and this transformation conserves

relative distance. Rotational invariance was expected due to the rotational symmetry of the

underlying features. Nonetheless, we wanted to test whether artifacts, produced by the voxeli-

zation for features related to the spheroid surface (see Section 2.2), had any notable effect. For

this reason, we included the rotation transformation. The remaining transformations were

chosen to validate the monotony of the deviation score.

We applied each transformation at increasing strength and compared the resulting spher-

oid with the untransformed version. The results of this are shown in Fig 5. Starting with the

rotation transformation in subfigure a), we observed no change in the feature distances at

increasing rotation angle, except for negligible changes in the spheroid surface derformation.

This underlines the rotational invariance of our features. For the other three transformations,

we observed monotony in all cases. Those features related to the spheroid surface could not be

meaningfully extracted when the spheroid bulk was disrupted, i.e. at high degrees of the noise

and deformation transformations (subfigures b) and c)). The gaslike distribution feature dis-

tance remained constant for small values of the scaling transformation (subfigure d)), since no

cells were classified as gaslike here. Aside from these edge-cases, our features behaved robustly.

It is interesting to note that the overall deviation score scaled approximately linearly with the

transformation strength within the domain of interest, excluding the aforementioned extreme

cases. This property can be viewed as a stronger version of the monotony property. Impor-

tantly, this was not used as a constraint when optimizing the weights, but emerged from the

procedure itself.

2.6 Validation: Comparing simulated spheroid phenotypes

As a second way to validate our methods, we now moved to the comparison of simulated

spheroids. We chose the final simulation state, after 250 000 MC steps, of five new replicates

from each phenotype. Importantly, these were not the same replicates which we used earlier

for the calibration of the weight factors. We calculated the overall deviation score for each pair.

As shown in Fig 6a), we compared individual replicates (upper triangle), and we also com-

bined replicate comparisons into an average phenotype deviation score (lower triangle).

Importantly, while it is questionable whether the “disordered” phenotype is a biologically

occuring configuration (see section 3), we chose to include it to serve as a phenotype maxi-

mally distant to the others. The deviation score was lowest when a phenotype was compared

with itself, and highest, when any phenotype was compared with the “disordered” one. The

“spherical”, “deformed” and “spherical with far gaslikes” phenotypes showed a smaller devia-

tion score between each other, but were nonetheless distinguishable. This is underlined in
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Fig 5. Feature comparison for spheroid point clouds resulting from four different transformation functions. Shown are the standardized metric
distances between the un-transformed reference spheroid and an increasingly transformed version for each data feature. In addition, the combined
deviation score is depicted in gray crosses for each transformation (see Section 2.4). Below each subfigure, we provide a top-down view snapshot of the
spheroid at three levels of transformation. Blue cells are classified as non-gaslike, and red cells are classified as gaslike. a) Rotation. Except for negligible
changes in the spheroid surface deformation feature, we observe no change at increasing rotation angle. This supports rotational invariance of our features.
b) Noise. For each feature, the distance increases at increasing noise level. Due to the loss of a solid core at high noise levels, the spheroid surface area and
deformation features are no longer sensible, and were therefore cut. The deviation score increases approximately linearly up to a noise level of 200, at which
point the features related to the spheroid surface area were cut. c) Deformation. Similar behavior to b) is observed here. Above a deformation amplitude of
120 the spheroid point cloud still contains cells classified as non-gaslike but loses its solid core. Surface area and deformation values were therefore cut
above this threshold. The deviation score increases approximately linearly up to a deformation amplitude of 120. d) Scaling. We observe increased
distances both for scale factors below and above 1. Due to the fixed values of Dcrit and dcrit (see Eq 1), the gaslike distribution feature is scale-dependent, and
also varies here. For scale factors below 1.0, no gaslikes were found, and therefore the values of this feature remained constant. The deviation score increases
approximately linearly both for scale factors smaller and larger than 1.

https://doi.org/10.1371/journal.pcbi.1010471.g005
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subfigure b), in which we show box plots of the overall deviation scores between the “spheri-

cal” phenotype and the others. Here, each phenotype comparison was clearly distinct from the

comparison of the “spherical” phenotype with itself (see also S1 Fig). Significance was deter-

mined using Welch’s t-test.

2.7 Validation: Comparing experimental spheroids

To demonstrate the fact that our deviation score can also be used for experimental data, we

again turned to the dataset on which we based our initial simulations. Kang et al. previously

investigated the invasive behavior of tumor spheroids cultured in increasing collagen concen-

trations [13]. Their data set contained cell-resolved 3D snapshots of spheroids in four different

collagen concentrations (1–2-3-4 mg/ml) at different times (days 1–2-3) during invasion (see

Fig 7a)). For each collagen concentration and day of culture, data from three individual spher-

oids were acquired using a combination of optical clearing and multiphoton microscopy.

Since the optical clearing procedure requires fixation, data from successive days of culture

share the same initial conditions but do not originate from the same spheroid. For more

details, see Section 4.3.

Fig 6. Deviation score comparison for four simulated spheroid phenotypes. a) Shown are the deviation scores for five replicates of each phenotype on
the upper triangle, and the average deviation score over all replicates of each phenotype on the lower triangle. A top-down view of the spheroid point cloud
for each replicate is shown next to the respective row/column. Blue cells are classified as non-gaslike, and red cells are classified as gaslike. For better
comparison, an enlarged version of each spheroid was placed at the bottom of the figure. We observe the highest deviation between the “disordered”
phenotype and the others, with the maximum deviation between the “spherical” and the “disordered” phenotypes. The “spherical”, “spherical with far
gaslikes” and “deformed” phenotypes, which are more similar from a visual perspective, show a smaller deviation score using our analysis, but are
nonetheless distinguishable. b) Box plots of the deviation score values between the “spherical” phenotype and each other phenotype. The values used here
correspond to those used for the lowest row of subfigure a). We observe that the deviation scores for the “spherical” phenotype compared with the other
phenotypes consistently lie above the maximum deviation score of the “spherical” phenotype compared with itself. Significance was determined using
Welch’s t-test.

https://doi.org/10.1371/journal.pcbi.1010471.g006
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In order to keep the scale consistent throughout this study, we used the same standardiza-

tion and weight factors as for our simulated spheroids. We compared the spheroids grown for

one day, two days, and three days, and visualized them in Fig 7. Similar to Fig 6a), in Fig 7b)

we show, for each growth duration, the deviation scores for individual replicates on the upper

triangle, and the average deviation score over a set of replicates on the lower triangle. For illus-

trative purposes and consistency, we have kept the color bar range the same as before. In

Fig 7. Deviation score comparison for in vitroMDA-MB-231 spheroids cultured in four collagen concentrations c (data provided by Kang et al [13]).
a) 2D cross-sections of 3D multiphoton microscopy image stacks depicting one replicate of each collagen concentration [13]. Spheroids were imaged at
one, two or three days after embedding in collagen, and were then fixed and imaged (see Section 4.3). b)Deviation score comparison between all spheroid
samples. For each day, the deviation scores for three replicates of each collagen concentration are shown on the upper triangle, and the average deviation
score for each collagen concentration is shown on the lower triangle. A top-down view of the spheroid point cloud for a representative replicate of each
collagen concentration is shown next to each heatmap (see S2 Fig for all replicates). Blue cells are classified as non-gaslike, and red cells are classified as
gaslike. Due to matching initial conditions, we observe low deviation scores between spheroids grown for one day. These differences increase at day 2,
where we observe an approximately linear increase of the average deviation score from c = 1 mg/ml to c = 4 mg/ml. Finally, at day 3, we observe the lowest
deviation between c = 3 mg/ml and c = 4 mg/ml. This underlines the findings by Kang et al., who observed a transition in invasion behavior between 2 mg/
ml and 3 mg/ml. c)Deviation score box plots from spheroids grown for one, two and three days respectively. The box plots for each day show the deviation
score values between c = 1 mg/ml and each other concentration. These values correspond to those used for the lowest rows in b). We observe that for
spheroids grown for one and two days, the deviation score values of c = 1 mg/ml compared with itself are similar to the deviation score values of c = 1 mg/
ml compared with the other concentrations. The differences are nonsignificant and therefore not sufficient to clearly distinguish between the
concentrations. This changes at day three, where each concentration shows a higher deviation score to c = 1 mg/ml than c = 1 mg/ml compared with itself.
Significance was determined usingWelch’s t-test.

https://doi.org/10.1371/journal.pcbi.1010471.g007
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subfigure c), we show box plots of the deviation score values between collagen 1 and each

other concentration. As expected, we observe low to nonsignificant devation between the day

1 spheroids, both in subfigure b) and c). This changes at day 2, where the difference between

collagen concentrations becomes clearer. However, while the difference is visible in the aver-

age deviation score in subfigure b), there is still strong overlap between the values across con-

centrations. Furthermore, in subfigure c) we see that the differences are not significant.

Finally, on day 3, we see the highest difference between the collagen concentration of 2 mg/ml

versus the other concentrations, while spheroids of collagen concentrations 3 and 4 mg/ml are

most similar to each other. This is consistent with qualitative observations from subfigure a),

and from prior quantifications by Kang et al. (cf., Fig 4 c) in [13]) who observed a sudden tran-

sition in single cell individualization during invasion between collagen concentrations of 2

and 3 mg/ml. Importantly, as seen in subfigure c), the deviation score reliably distinguishes

between the concentrations at day 3.

2.8 Comparing simulated and experimental spheroids

Finally, to show another aspect for which the deviation score may be used, we applied our anal-

ysis method to the comparison between simulated and experimental spheroids. For this, we

used both our simulated phenotypes, and the experimental data from spheroids grown for

three days (see Section 2.7). Since the simulation parameters used here were not fitted to the

data, but represented default parameter sets, we did not expect a high degree of similarity. On

the other hand, this provided an opportunity to investigate both the overall deviation score

and the underlying feature distances, and to demonstrate how the differences in spheroid mor-

phology manifested themselves within the features. In subfigure a) of Fig 8, we show the com-

parison between each experimental replicate (horizontal) and each simulated replicate

(vertical) on the left side. On the right side we show the average within replicates. Here, we

observed the highest deviation scores between collagen density 2 and both “spherical” (S) and

“spherical with far gaslikes” (SFG) spheroids. Visually, this is sensible when comparing the 2D

images of the replicates (see also S2 Fig for this); the round shapes of the S and SFG spheroids

differ strongly from that of spheroids in 2 mg/ml collagen, as does the number and location of

cells classified as gaslike. Furthermore, we observed the lowest deviation scores between spher-

oids in 4 mg/ml collagen and “deformed” spheroids. Here, the spheroid shape visually

matched much better between the replicate images. The deviation score between spheroids in

2 mg/ml collagen and the “disordered” (D) phenotype is also low. These visual differences and

similarities are reflected in our features, as seen within subfigure b). Here we decomposed the

overall deviation score back into its components, and thereby show the influence of each fea-

ture on it. To improve visibility, the color bar range maximum is set to half of that shown in

subfigure a). We see that the distance between the collagen density 2 spheroids and the SFG

phenotype is noticable for all features. Of these, the gaslike cell distribution and the spheroid

surface area exhibit especially high distances. Conversely, the high deviation score of the spher-

oids with collagen concentration 2 mg/ml to the S phenotype stems mostly from the difference

in surface deformation, and is less pronounced in the other features. Regarding the lowest

observed deviation scores, collagen density 4 spheroids and “deformed” spheroids match com-

paratively well for each feature, and the spheroid surface area distance between them is the

lowest of all. Collagen concentration 2 mg/ml and “disordered” spheroids also exhibit a low

deviation score between each other, due to low difference in cell density distribution, Voronoi

cell volume distribution and spheroid surface area.
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Fig 8. Deviation score comparison between in vitro spheroids grown in media at four different collagen concentrations c (data provided by Kang et al
[13]), and in silico spheroids exhibiting four different phenotypes, simulated by us. a) Shown are the deviation scores between three replicates of each
collagen concentration, grown for three days, and five replicates of each simulated phenotype, simulated for 250 000 MC steps. A single MC step
corresponds to roughly 1 s of real time in this context. Each individual deviation score is shown on the left, and the average within a pairing of collagen
concentration and phenotype is shown on the right. A top-down view of the spheroid point cloud of a representative replicate for each collagen
concentration / phenotype is shown next to both heatmaps. Blue cells are classified as non-gaslike, and red cells are classified as gaslike. See S2 Fig for an
enlarged view of all experimental spheroid point clouds, and Fig 6 for an enlarged view of all simulated spheroid point clouds. We observe the highest
average deviation scores between c = 2 mg/ml and the “spherical” phenotype. The lowest average deviation score is found between c = 4 mg/ml and the
“deformed” phenotype b) Individual metric distances for each of the features constituting the overall deviation score. Shown are the standardized and
weighted metric distances between three replicates of each collagen concentration, grown for three days, and five replicates of each simulated phenotype,
simulated for 250 000 MC steps. A single MC step corresponds to roughly 1 s of real time in this context. Due to the overall deviation score being a sum of
all weighted feature distances, the color range has been adjusted here. The highest deviation score observed in a) is a combination of high metric distances
in all features, especially the spheroid surface deformation. On the other hand, the lowest deviation score observed in a) stems from overall low values,
especially in the spheroid surface area.

https://doi.org/10.1371/journal.pcbi.1010471.g008
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2.9 Nastjapy

During our derivation of the overall deviation score and its application to various data, we

developed the Python package Nastjapy. Through this, we wanted to facilitate the use of our

procedure by others. The package can be found at http://www.gitlab.com/nastja/nastjapy.

Nastjapy allows the investigation of spheroids and other single-cell resolved data from differ-

ent origins. It thereby unifies the analysis pipeline for simulated data and data from multiple

experimental sources. See Section 4.4 for more details.

3 Discussion and conclusions

Both experimentalists and theorists produce data concerning tumor spheroids. However, both

the quantitative comparison between different experiments or simulations, and processes such

as fitting simulations to experimental data, are hindered by the lack of an adaptable distance

measure that captures the similarity of the spatial features of two spheroids. We aimed to solve

this issue via the following steps. First, we proposed a set of five relevant spatial features, which

could be extracted from spheroid point clouds. Next, we devised metrics to compare each fea-

ture, and combined all metrics into an overall deviation score. We also provided an optimiza-

tion scheme which could be used to adapt the deviation score to the specific use case. For this,

we turned to four in silico spheroid phenotypes which emerged from our simulations, and

used them to standardize and combine the metrics into the overall deviation score Di,j. We did

this by weighing individual metrics differently while maximizing a phenotype separation prop-

erty (see Eq 7). We characterized the behavior of our features by applying four different trans-

formations to a point cloud obtained from a spherical simulated spheroid. We were able to

confirm rotational invariance by analyzing the “rotation” transformation, and monotony for

the others. While the features related to the spheroid surface showed some instabilities for

higher transformation strengths in the “noise” and “deformation” transformations, this only

occured when the point cloud was so disordered that a solid core could no longer be defined.

Overall, the behavior of the features was therefore considerered suitable to quantitatively com-

pare the structure of spheroids. Interestingly, the overall deviation score did not only scale

monotonously with the strength of the studied transformations, but did so approximately line-

arly within the domains of interest. This is a useful property for a distance measure, which was

not used as a constraint, but instead emerged as a result of our optimization scheme.

During the investigation of our simulated spheroid phenotypes, we found that our devia-

tion score distinguished well between dissimilar spheroid phenotypes, as all phenotypes

showed the highest deviation score towards the “disordered” phenotype (see Fig 6). This large

distance was a value that was desired, as this phenotype did not have a solid core and was

therefore deemed to be least similar to all other phenotypes. The slightly lower deviation score

found between the “disordered” and “deformed” phenotypes can be attributed to the fact that

our spheroid surface extraction method constructs surfaces for each cluster of cells that is close

enough together to be considered solidlike. These surfaces sum up to a large overall surface

area, and are highly deformed due to their irregular structure. These features are therefore less

meaningful if a singular bulk structure is not present. On the other hand, even glioblastoma

spheroids, which originate from one of the most invasive types of cancer, have been shown to

retain a bulk structure [32]. We therefore view the “disordered” phenotype as an edge case, but

wanted to show it for completeness. Since we observed significant deviation between the other

three phenotypes (see Fig 6b) and S1 Fig), we were able to confirm that our strategy is also

applicable to more similar spheroids. We therefore consider Di,j to represent a useful metric

for the systematic quantification of spheroid similarity. This was further confirmed by our

analysis of experimentally measured spheroids generated by Kang et al. [13].
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During our analysis of the experimental spheroids, we observed that statistically significant

difference between the four collagen concentrations only occured after three days of growth

(see Fig 7c). This suggests that there exists a minimum time which is required until differences

in the spheroid structure manifest themselves sufficiently to be detected by Nastjapy. On the

other hand, this could also be used as a tool to study such timeframes in more detail, e.g. when

investigating the response time of drug or radiation treatments.

One of the possible applications of the deviation score is to use it as a reliable objective func-

tion for fitting simulated spheroids to experimental data. Therefore, we included a comparison

between simulations with unfitted, default parameters, and the aforementioned experimental

spheroid data. Here, we were able to highlight, which features contributed most towards each

deviation score, and to show that the quantities matched well with a visual comparison. Since

the “disordered” phenotype is not present in the experimental data, we expected to see high

deviation scores in the top rows of Fig 8a). However, this was not the case, which once again

stems from how the surface extraction method functions when a solid spheroid bulk is not

present. While we still consider the “disordered” phenotype as an edge-case for spheroids, this

represents an opportunity to further develop these features in the future. Distinguishing

between singular and multiple bulk structures could become relevant once we apply Nastjapy

to the analysis of more complex tissues, e.g. organoids.

The features we have defined here admittedly have some limitations. They cannot, for

example, measure the dynamics of cell movement over time. Also, spheroids or other tissues

we might want to apply this method to, may be composed of multiple different types of cells,

and we currently do not distinguish between these. However, since we implemented our strat-

egy in our freely available Nastjapy framework (see Section 4.4), it can easily be extended. We

aim to further develop this in the future, via incorporating more features. Points of interest

would be generating features spanning multiple timesteps, e.g. cell velocity correlation and

autocorrelation. Furthermore, we envision features such as the distribution of different cell

types, which will enable the application of the analysis scheme to the aforementioned non-

spheroid tissue models.

4 Materials andmethods

4.1 Model description

Cells in Silico is a framework for simulating the dynamics of cells and tissues at subcellular res-

olution, which was previously developed by our group [21]. It combines a Cellular Potts

Model (CPM) at the microscale with nutrient and signal exchange at the mesoscale and an

agent-based layer at the macroscale. This enables detailed capture of individual cell dynamics.

Furthermore, as an extension of the NAStJA framework [33] its efficiency scales excellently

with increasing system size and CPU core number. Hence, CiS has already been used for simu-

lating tissues composing millions of cells [21]. Here, we briefly outline the main properties of

the microscale, mesoscale and macroscale layers, and a more detailed description can be found

in [21].

Microscale. The CPM was developed by Graner and Glazier in 1992 [34], as an extension

of the Potts model. In it, a system of lattice points on a regular grid is propagated according to

its overall energy. Cells are defined as aggregates of points of the same type (see S5 Fig), and

the overall energy of the system is built of multiple components Ei, which dictate the morphol-

ogy of and interaction between the cells. Weighted by coupling factors λi, they are combined
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into the following Hamiltonian:

HCPM ¼
X

i

liEi

¼ lV

X

c2C

ðvðcÞ � VðtðcÞÞÞ
2

Cell volumes

þlS

X

c2C

ðsðcÞ � SðtðcÞÞÞ
2

Cell surfaces

þ
X

i2o

X

j2NðiÞ

AtðciÞ;tðcjÞ
ð1� dðci; cjÞÞ Cell‐cell adhesion

ð14Þ

where c is a cell from the set of all cells C, τ(c) is the type of cell c, s(c) and v(c) are the current

surface and volume of cell c, S(τ) and V(τ) are the target surface and volumes of cells of type τ,

A is the adhesion coefficient matrix for all cell types, N(i) are all lattice points neighboring

point i, and δ is the Kronecker delta. Eq 14 can be extended to include further effects, such as

cell motility [35] (see also Section 4.2.

Mesoscale. CiS includes the capability of introducing signals or nutrients to the system.

These can be exchanged between cells via the cell-cell interface. As this functionality is outside

of the scope of this study, we only briefly mention it here and refer the reader to [21].

Macroscale. While using the CPM layer allows for excellent reproduction of cell shape

and deformation, there are other important cellular functions which are not intrinsically cap-

tured. For example, the CPMHamiltonian does not in itself include the effect of cell division.

Furthermore, while self-propelled cell motility can be added to Eq 14 [35], the direction of the

motility vector must be periodically updated for each cell, to ensure realistic movement, e.g.

via random walk (see also Section 4.2). This requires information on the cell center location,

which must be extracted from the CPM. A third aspect, which is very important for simulating

realistic tumors, is the capability of in silico cell mutation. Here, cell parameters such as divi-

sion rate, motility magnitude, cell-cell adhesion etc. must be adjusted at the time of division.

All the aforementioned aspects are treated in the macroscale layer. It combines information

gathered from the lower layers with higher-level parameters, which results in an agent-based

system. Here, the conditions for cell division are checked, the division process is carried out,

the motility direction is updated, etc.

By combining micro-, meso- and macroscale, we gain a versatile tool, which can then be

parameterized.

4.2 Model parameters

As mentioned in section 2.1, we simulated a multitude of spheroids using CiS. We based our

simulations on experimental spheroid data provided by our collaborators [13]. Hence, each

simulated spheroid had an initial diameter of 200 μm, contained roughly 2000 cells, and was

placed in the center of a volume spanning 800 x 800 x 800 μm3. Using CiS, we propagated this

system at a range of different simulation parameter combinations, which are highlighted

below.

Extracellular matrix. The extracellular matrix (ECM) is a scaffold within tissues, which

connects cells and serves both as a structural component and cell maintenance network [36]. It

is composed of overlapping fibrous polymers, such as collagens, proteoglycans and glycopro-

teins [37]. Tumor spheroids are often placed into a collagen matrix, which serves as a proxy

for an in vivo ECM [13, 38]. To capture this in our simulations, we modeled the ECM as over-

lapping, randomly oriented fibers, which were placed within the system volume surrounding

the spheroid (see Fig 1a)). These fibers represented rigid obstacles for the cells, to which they
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could adhere, but which could not be displaced. Since in reality the ECM is not a solid struc-

ture, but can be modified and degraded by cells [39], this alone was an overly simplified

description. We therefore added a degradation effect, by which cells removed ECM lattice

points with which they were in direct contact on the CPM lattice. This occured after a set num-

ber of MC steps, as described by the ECM degradation period parameter. During each degra-

dation event, a lattice point in contact with a cell was removed with a probability of 50%. For

our simulations, we varied both the ECM density and the ECM degradation period. The ECM

density was varied between qualitative values of 729 and 1728 fibers. The ECM degradation

was either disabled, or its period was varied between 1 000 and 5 000 MC steps. Finally, we

wanted to investigate the effect of ECM alignment. Since it is known that tumors remodel

their ECM, and ECM alignment is one of the main drivers of invasion [24], we decided to

include both an unaligned and a radially aligned ECM in our studies (see Fig 1a)). We per-

formed simulations both with aligned and unaligned ECM.

Cell-cell adhesion. Changes in the adhesion strength between cells are a well known fac-

tor which facilitates invasion [7]. We therefore varied the adhesion strength parameter within

our simulations, by changing the adhesion coefficient matrix in the third component of Eq 14.

This matrix describes the strength of adhesion between different cell types, as well as the

strength of adhesion between cells and the ECM.

Cell motility magnitude and persistence. Similar to cell-cell adhesion, the cell motility is

strongly connected to the invasion properties of cells [40]. To include it, we modified the CPM

Hamiltonian by adding a directional potential to each cell with the following contribution

[35]:

HCPM;mot ¼ HCPM þ lmot �
X

c2C

~mc �~Rc; Cellmotility

~mc ¼ p � ð~RcðtÞ �~Rcðt � DtÞÞ þ ð1� pÞ �~Z

ð15Þ

where ~mc is the potential and direction a cell c experiences, Rc is the center of mass of cell c,

and~Z is a random vector obtained by a Wiener process [41]. The motility is implemented as a

modified persistent random walk of each cell. The energy contribution of each cell is the dot

product of ~Rc and ~mc , which in turn is determined by the cell’s previous movement and the

random vector~Z. The mixture of persistent and randommovement can be chosen by the per-

sistence parameter p 2 [0, 1]. Cells with p = 0 perform purely random walks, and cells with

p = 1 perform purely persistent walks. The coupling strength of this energy term to the CPM is

given by λmot.

Cell division. Including the effect of cell proliferation is crucial when simulating growing

tissues. In CiS, this is implemented as follows: upon division, half of those lattice points on the

CPM layer which belong to the dividing cell are assigned a new value, corresponding to the ID

of the new cell. The old cell is kept, but its surface, volume, age and generation are adjusted,

such that both cells resemble daughter cells of the original one. A division condition needs to

be fulfilled in order for a cell to divide. This condition is checked at every MC step. It can be

customized, and can include nutrient availability, cell volume, division probability, and cell

generation, i.e. the maximum number of divisions per original cell. Since we did not explicitly

model nutrient distribution in this study, we focused on the last three aspects. Hence, in our

simulations a cell’s volume had to be at least 90% of its target volume. Furthermore, in the

experimental data by Kang et al [13], the cell number roughly doubles after three days of

growth. Therefore, we set the division probability per MC step such that the overall cell num-

ber would double after 250 000 MC steps. Finally, we set the cell generation condition such

that each cell could only divide once.
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4.3 Experimental spheroid preparation and analysis

All experimental methods were previously reported by Kang et al. [13] and are briefly summa-

rized here. Multicellular tumor spheroids were formed by seeding highly invasive, triple-nega-

tive MDA-MB-231 breast cancer cells [42] in low-attachment 96 well plates (Corning, No.

07201680) in the presence of 2.5% v/v Matrigel (Corning, No. 354234) [43]. Using this

approach,*1000 cancer cells coalesced into a spherical aggregate (i.e., a tumor spheroid) of

300-to-400μm in diameter over the course of 48 hours. Once formed, individual spheroids

were fully embedded into a 3D fibrous gel prepared using rat-tail collagen I (Corning, No.

354249) [44]. As shown in Kang et al. [13], by varying the collagen concentration between 1

and 4 mg/ml, one can tune the fiber density and overall mechanical properties of the collagen

network surrounding each tumor spheroids. MDA-MB-231 spheroids were then cultured in

such 3D micro-environments for either 1 hour (Day 0), 24 hours (Day 1), 48 hours (Day 2), or

72 hours (Day 3). While at Day 0 all cells remained within the main spheroid (solid-like

phase), over the course of 3 days tumor spheroids progressively developed strikingly different

patterns of invasion as a function of collagen concentration, including single cell invasion in

1–2 mg/ml collagen (gas-like phase) and collective invasion in 3–4 mg/ml collagen (liquid-like

invasion) [13]. For each time point, spheroids were fixed, optically cleared [45], stained with

DAPI (Fisher Scientific, No. D1306), and imaged using a Bruker Ultima Investigator multi-

photon microscope equipped with a long working distance 16x water-immersion objective

(Nikon, 0.8 N.A., 3mm working distance) to enable whole-spheroid imaging [13]. The 3D

positions of DAPI-stained cell nuclei were finally identified using a customMatlab code devel-

oped by Kang et al. [13] and used herein as point cloud data to extract features from experi-

mental spheroids. In this work we used point cloud data from spheroids imaged at days 0–1-2-

3 in collagen concentrations of 1–2-3-4 mg/ml, n = 3 per group, except for day 0 in 1 mg/ml

(n = 2), and day 2 in 2 mg/ml (n = 9).

4.4 Nastjapy

To facilitate the use of the analysis pipeline presented in this study, we developed the Python

package Nastjapy, which can be found at http://www.gitlab.com/nastja/nastjapy. For this

study, Nastjapy served three functions:

1. providing a unified interface for processing data from multiple different sources

2. performing efficient and parallel feature extraction and analysis

3. adaptating and computing the deviation score for specific applications.

We have implemented multiple loading functions into Nastjapy, such that it can treat

spheroids and other single-cell resolved data from different sources. It currently supports load-

ing point cloud data in the CSV, HDF5, SQLite and matlab file formats. These data are loaded

into so-called DataHandler objects, which are structured the same way regardless of the origin

of the data. Hence, except for the data contained in it, the DataHandler object of a simulated

spheroid is the same as that of an experimentally measured spheroid. Each DataHandler object

includes functionalities for visualizing the point cloud data, and extracting the features dis-

cussed in section 2.2. Furthermore two or more DataHandler objects can be compared with

each other. For this, the timesteps to be compared between the spheroids are mapped to each

other, and the metric distances are then calculated for each extracted feature. Extracting all fea-

tures for many different spheroids, possibly at multiple points in time, as well as the compari-

son between a large number of spheroids, can quickly become computationally expensive. We

have therefore added the option to parallelize the feature extraction for individual
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DataHandler objects on multiple CPU cores via MPI. As we discussed in section 2.4, we have

implemented a use case adaptation method, in which the feature distances are standardized,

and the weight factors for each feature distance are optimized to maximize the relation stated

in Eq 7. All functions neccessary to perform this for a set of DataHandler objects are imple-

mented in Nastjapy.

Supporting information

S1 Fig. Deviation score box plots for simulated phenotypes. a) Each phenotype compared to

the “deformed” phenotype. b) Each phenotype compared to the “spherical with far gaslikes”

phenotype. c) Each phenotype compared to the “disordered” phenotype. Significance was

determined using Welch’s t-test.

(TIF)

S2 Fig. Top-down view of spheroid point clouds obtained from in vitroMDA-MB-231

spheroids grown in collagen media at four different concentrations c. Spheroids were

imaged after one, two and three days of growth, and three replicates were imaged per concen-

tration and growth duration. Blue cells are classified as non-gaslike, and red cells are classified

as gaslike.

(TIF)

S3 Fig. Deviation score box plots of in vitro spheroids grown in media at four different col-

lagen concentrations (data provided by Kang et al [13]). The horizontal axis denotes the

growth duration of the spheroids within the respective boxplot, and the vertical axis denotes

the reference collagen concentration. Significance was determined using Welch’s t-test.

(TIF)

S4 Fig. Visualization of the spheroid surface deformation feature on a triangulated spher-

oid surface. Shown is the surface, composed of many connected triangles, as well as an exam-

ple of the normal and origin vectors of two triangle vertices. During the feature extraction, the

scalar product between these two vectors is calculated for each vertex in the triangle mesh, and

grouped in a histogram. Non-deformed surfaces will contain more vertices in which the two

vectors are approximately parallel (left example), while strongly deformed surfaces will contain

many vertices in which there is a strong deviation between the two (right example).

(TIF)

S5 Fig. Sketch of the three layers of Cells in Silico (CiS). A 3D Cellular Potts Model (CPM,

shown in 2D for illustrative purpose) at the microscale is combined with nutrient and signal

exchange at the mesoscale and an agent-based layer at the macroscale. This enables detailed

capture of individual cell dynamics. Adapted from [46].

(TIF)
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Abstract

Cancer remains a leading cause of mortality. Multidisciplinary studies probe

its complex pathology to increase treatment options. Computational modeling

of tumor growth on high-performance computing resources offers microscopic

insight into its progress and a valuable avenue for advancing our understanding.

However, the effective initialization and parameterization of the underlying mod-

els require high-resolution data from real tissue structures. Here, we leveraged

high performance computing resources and a massive dataset of a mouse brain’s

entire vascular network. We processed these image stacks into detailed three-

dimensional representations, identified brain regions of interest, and conducted

a series of large-scale simulations to investigate how tumor growth is influenced

by local vascular network characteristics. By simulating tumor growth with sub-

cellular resolution, we can probe to which extent vessel density and vessel network

length influence tumor growth. We determined that vessel density is the primary

determinant of growth rate. Finally, our results allowed us to extrapolate tumor

cell growth predictions for the entire mouse brain, highlighting the critical role of

vascular topology in tumor progression. Such increasingly realistic simulations of

cancer cells and their microenvironment enable researchers to increasingly bridge

the gap between basic biology and clinical practice, ultimately supporting the

development of more effective personalized cancer therapies.

Keywords: Tumor simulation, mouse brain, vasculature
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where they provide insights into tissue mechanics and cellular processes in embryogen-
esis and wound healing. This multidisciplinary approach facilitates the development of
comprehensive models that can inform various stages of cancer development and ther-
apeutic response. These can vary in resolution and scope, from modeling cellular and
molecular dynamics at a fine scale to examining tissue-wide phenomena [6, 7]. The ulti-
mate goal of many research initiatives is to develop “digital twins” of tumors: highly
realistic, computational representations of tumors within healthy tissue that mimic
their real-life counterparts [8–10]. These digital twins promise to revolutionize person-
alized medicine, enabling simulations of disease progression and treatment response
specific to an individual’s unique biological profile. Building such a model requires an
accurate and dynamic morphology of both the healthy and tumorous tissue. It needs
to capture the growth behavior of tumors as they interact with the cellular environ-
ment, migrate, and displace other cells. A key factor in these simulations is nutrient
availability, as nutrient gradients largely dictate tumor growth dynamics and progres-
sion patterns [11, 12]. The transition from avascular (limited to nutrient diffusion) to
vascularized growth phases is a significant turning point in tumor development, where
angiogenesis, the formation of new blood vessels, provides the tumor with an essen-
tial nutrient supply. Without this transition, tumors cannot grow beyond a critical
volume of around 1-3 mm³ before nutrient limitations halt further expansion. There-
fore, the study of nutrient supply mechanisms and vascularization processes is a focal
point in cancer research, with numerous studies investigating how nutrient gradients
impact tumor viability and aggressiveness[13–15]. Previous simulations relied on ide-
alized representations of nutrient distributions, such as simple radial gradients that
assume uniformity in nutrient availability[16]. However, these models lack the com-
plexity of real tissue environments, where nutrient distribution is influenced by an
intricate vascular network. A more realistic depiction of the tissue microenvironment
requires detailed information about vascular topology, particularly at the capillary
level, which is essential for understanding how tumors respond to spatially heteroge-
neous nutrient supplies. Here, we aim to go beyond idealized models by integrating
data that closely approximates actual tissue environments. Leveraging recent advances
in fluorescent microscopy and image processing, we utilize high-resolution data from
Di Giovanna et al. [1], which provides a capillary-scale map of the entire vascular net-
work within a mouse brain. Such data allow us to incorporate highly realistic tissue
morphology into our simulations, capturing the nuanced interactions between tumor
cells and their vascular surroundings. Our approach takes advantage of computational
resources and simulation frameworks. High-performance computing clusters, now more
accessible than ever, support these complex models by handling vast datasets and
performing simulations at sub-cellular resolution. A key factor in executing these sim-
ulations is the parallelization and scalability of simulation software; the CiS (Cells
in Silico) framework [17], used in our study, demonstrates effective performance scal-
ing across thousands of computing nodes, making it a suitable tool for handling the
demands of high-resolution, three-dimensional simulations.
In the following, we will first outline the dataset, describing the imaging techniques
and data processing methods used to achieve a detailed three-dimensional representa-
tion of vascular topology. We will then discuss the integration of these vascular maps
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into our simulation pipeline and present our analysis of how variations in vascular
network characteristics influence tumor growth patterns. A critical question in tumor
growth is the dependence of growth on the local microenvironment and accessibility
of nutrients. Here, large scale simulations provide sub-cellular insight and identify key
factors catalyzing growth. Finally, we will summarize the insights gained from these
simulations and propose directions for future research, including potential applications
in the development of patient-specific cancer therapies.

2 Results

2.1 Vascular Data Processing for Large-Scale Simulations

To inform our simulations based on the vascular network topology, we first processed
the raw data into analyzable structures. Here, we detail this processing pipeline.

2.1.1 Raw Microscopy data

Di Giovanna et al. measured the entire vascular network of a mouse brain at capillary
resolution [1] (see Figure 1 and 2). The raw data generated by them are available in
the form of z-stacks of light sheet microscopy images [1]. Each stack contains 2160
microscopy images with a resolution of 2048 × 2048 px. One px represents an area of
0.65× 0.65 µm2, and the spacing between each image is 2µm in z-direction. Hence, a
single stack depicts a volume of 1331×1331×4320 µm3. Furthermore, adjacent stacks
have an overlap of roughly 300µm in x- and y-direction.

2.1.2 Processing into 3D volumes

Processing the data into a usable form presents several challenges. First, since they
are raw microscopy images, they contain noise. Secondly, there may be artifacts from
the experimental procedure, especially at the edges of each stack. Therefore, the first
step in obtaining a three-dimensional representation of all stacks was to denoise them.
Towards this goal, we built binary masks from the microscopy images of each of them.
This was done by applying a threshold filter on each image. All images were then
combined in a three-dimensional array. The resulting array contains the value 1 in
locations where a blood vessel was present, and the value 0 otherwise. Next, we rescaled
this three-dimensional binary mask. By doing so we matched the native resolution of
our model, such that 1 voxel represents a volume of 1µm3. This was done for each
individual microscopy stack. Finally, in order to obtain a roughly cubic geometry for
our simulations, we split each stack into four substacks along the z-axis. The final
volume of the binary mask of each substack was therefore V = 1331×1331×1080 µm3.

2.1.3 Stitching multiple stacks

We implemented a method that enables us to stitch neighboring regions into a single
stack. This addresses the second challenge of the raw data by minimizing artifacts at
the stack edges. See SI appendix A for more details.
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sources. The remaining volume was populated with healthy tissue cells, maintaining
a density consistent with mouse brain cell populations (∼130,000 cells) [20]. A single
initial tumor, consisting of approximately 10 cells, was then seeded.

Nutrient diffusion was modeled using the CiS compound diffusion layer (see
section 4.1), with a single nutrient acting as a proxy for oxygen, glucose, and other
essential compounds delivered by blood vessels. Tumor cells could proliferate if they
met the necessary nutrient threshold. With each division, a tumor cell could undergo
a mutation affecting either its cell-cell adhesion strength or its motility. Addition-
ally, each cell consumed nutrients, and tumor cells would die if their nutrient levels
dropped below a critical threshold.

It is important to note that the traditional CPM, as used here, does not fully
capture the intricate morphologies of neurons and glial cells. Nonetheless, CPMs are
widely applied in similar studies for tissue modeling [21, 22]. We argue that this sim-
plification is justified, as the primary cell-cell interactions driving these simulations
— adhesion forces and nutrient diffusion — are closely related to the shared surface
area between cells. Introducing more complex cell shapes would mainly result in two
effects: (a) increasing shared surface area for cells already in contact, effectively mod-
ifying adhesion and diffusion parameters for all cells uniformly, and (b) creating small
shared surfaces between cells previously not in contact. Since the first effect would
scale uniformly and the second effect introduces minimal interaction, the impact of
these adjustments would be limited. Moreover, adding complex shapes would signifi-
cantly increase both model and computational complexity, with only marginal gains
in accuracy.

More details on the model parameters are provided in section 4.2 and in SI table 1.
We performed eight simulations for each centroid substack obtained in section 2.1.4.
In each simulation, the tumor was seeded at one of eight points. These points were
at one third and two thirds of each simulation box diagonal. Each simulation ran for
an total amount of 250 000 MC steps. A snapshot of a single simulation after 100 000
Monte Carlo (MC) steps is provided in Figure 4.

2.2.2 Tumor growth behavior

To compare all simulations, we first calculated the local blood vessel properties in the
vicinity of each tumor. For this we chose a sphere of radius 250 µm around the initial
tumor center. We then calculated the local density ρlocal and local network length
fraction fl,local within this sphere. For the calculation of fl,local we had to further
refine our procedure, since we noted artifacts which distorted the skeletonization. After
applying a post-processing pipeline of morphological operations, this was improved.
Finally, we determined the number of tumor cells at the end of each simulation and
compared the quantities in Figure 5. While the relationship between the network
length fraction and the final tumor cell count is less clear, the dependence of the final
tumor cell count on the local blood vessel density shown in Figure 5 b) roughly follows
a logistic curve:
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tumor growth is the local vessel density, and that the final cell count roughly follows
a logistic curve. While there are some outliers in Figure 5 b), these show that the
final tumor cell count is not determined solely by the starting position of the tumor,
but also its surrounding further from it (see also SI Figure 4).

The network length fraction, which approximates the distribution of vessel thick-
nesses, does not appear to have significant influence on the final tumor size. This
was surprising to us, since we expected that a higher network length fraction would
correspond to a larger surface area of the vessels, leading to increased nutrient
diffusion.

Using a logistic curve fitted to the local density data, we predicted the tumor
growth in the entire brain. Strong tumor growth was predicted mainly in the dense
regions in the center of the lower two planes of the brain. One major caveat to men-
tion here is that we used the global vessel density per stack for the prediction, and did
not look at more localized vessel properties. This effectively represents an averaging
of larger volumes, thus losing information about inhomogeneities. Hence, we might
miss some regions which locally surpass the established threshold. Furthermore, as
seen in the left pane of Figure 6, there are some residual brightness artifacts from the
microscopy, which may influence the results.

This study shows that there still is a large amount of information to be gained
from the existing experimental data on tumors. We aim to utilize these data for fur-
ther studies of more realistic tumors. In particular, the stitching procedure that we
mentioned in section 2.1 could be used to simulate tumors of multiple mm3 in vol-
ume. Such system sizes would enable us to perform in silico radio- and chemotherapy
treatment studies in the future. Furthermore, it is a step on the way to simulating
fully vascularized macroscopic tumor growth with our model. Our future studies will
focus on implementing tumor-induced angiogenesis, the remaining step on this path.

4 Materials and Methods

4.1 Model description

Cells in Silico was developed by our group as a framework for simulating the dynamics
of cells and tissues at subcellular resolution [16, 17, 23]. It is a hybrid model composed
of a Cellular Potts Model (CPM), nutrient and signal exchange functionalities, and
an agent-based layer. With it, we can capture individual cell dynamics in detail. Fur-
thermore, it is an extension of the NAStJA framework [24]. Being specifically designed
for deployment in High Performance Computing environments, its efficient scaling
behaviour allows the simulations of even macroscopic tissues [17, 25]. Hence, CiS has
already been used for simulating tissues composing millions of cells [17]. Here, we
briefly outline the main properties of the individual layers. A detailed description can
be found in [17].
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CPM layer

The CPM is an extension of the Potts model, developed by Graner and Glazier [26]. In
it, we describe cells as connected voxels of same value on a three-dimensional regular
grid. The value of individual voxels may change over time depending on the energy of
the system. This energy is described by the following Hamiltonian:

HCPM =
∑

i

λiEi

= λV

∑

c∈C

(

v(c)− V (τ(c))
)2

Cell volumes

+ λS

∑

c∈C

(

s(c)− S(τ(c))
)2

Cell surfaces

+
∑

i∈ω

∑

j∈N(i)

Aτ(ci),τ(cj)

(

1− δ(ci, cj)
)

Cell-cell adhesion

(2)

where λi is the weight factor for the energy contribution Ei, c is a cell from the
set of all cells C, τ(c) is the type of cell c, s(c) and v(c) are the current surface and
volume of cell c, S(τ) and V (τ) are the target surface and volumes of cells of type
τ , A is the adhesion coefficient matrix for all cell types, N(i) are all lattice points
neighboring point i, and δ is the Kronecker delta. Equation 2 can be extended to
include further effects, such as cell motility [27]. In order to propagate the system, we
utilize the Metropolis algorithm [28]. First, we change the values of randomly picked
voxels into those of a respective neighboring voxel and calculate the energy difference
∆E between the old and new system state:

∆E = HCPM,new −HCPM,old (3)
We then decide whether to accept or reject the change. The acceptance probability

paccept is calculated as follows:

paccept =

{

1, if ∆E ≤ 0.

e
−∆E

T , otherwise.
(4)

Here, T is the temperature of the system. Upon successive propagation steps, cells
will expand, compress, deform and move, thereby mimicking their behavior in real
tissue. CiS also includes the possibility to add ”solid” voxels to the system. Such voxels
cannot change their value, and no other voxels can assume a value associated with a
solid. This enables us to add structures such as fixed blood vessels.

Compound-exchange layer.

In addition to detailed cellular structure, CiS contains functionalities for adding com-
pounds such as signals or nutrients to the system. These are exchanged between cells
via the cell-cell interface. Solids on the CPM layer can act as sources, thereby mim-
icking nutrient supplying blood vessels. The flux Jk

i,j of compound k between two cells
i and j is calculated as:
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Jk
i,j = Dτ(i),τ(j)

(

Ai,j

Ai

+
Ai,j

Aj

)

(

[S]kj − [S]ki

)

(5)

where Dτ(i),τ(j) is the diffusion constant between cells of type τ(i) and τ(j), Ai,j is
the interface area between cell i and cell j, Ai and Aj are the overall surface areas of
cell i and cell j, and [S]ki and [S]kj are the compound concentrations within each cell.
The aforementioned solids in the CPM layer can also function as compound sources or
sinks. The impact of the compound on the system is defined on the agent based layer.

Agent based layer (ABL).

On the ABL, each cell within the tissue is tracked as an individual agent. The prop-
erties of each agent are adjusted based on information from the other two layers, and
their effects are calculated. Furthermore, cellular functions that are not intrinsically
captured by the CPM or the diffusion model, such as cell division and cell death, are
implemented here. The use of an ABL also allows us to include cell mutation into the
framework: upon each cell division, the properties of the two daughter cells can be
changed, such that new cell types emerge.

By combining all three layers, we gain a versatile tool, which can then be
parameterized to describe a wide range of system dynamics.

4.2 Model parameters

CiS contains many parameters which influence the behavior of the simulated tissue.
Here we highlight those used in this study.

Cell-cell adhesion

Adhesion interactions between cells are known to vary within tissues, and especially
within tumors. They mediate tissue fluidity and effects such as the epithelial-to-
mesenchymal transition (EMT) demonstrate their importance [29]. In our simulations,
healthy cells adhere to each other and to tumor cells at a strength of 50AU, which we
define as the baseline adhesion. Tumor cells can have an adhesion strength between 0
and 140AU (see Cell mutation paragraph below).

Cell motility magnitude and persistence

The CPM Hamiltonian of CiS includes the possibility of adding a cell motility term
[27]:

HCPM, mot = HCPM + λmot ·
∑

c∈C

m⃗c · R⃗c, Cell motility

m⃗c = p ·
(

R⃗c(t)− R⃗c(t−∆t)
)

+ (1− p) · η⃗

(6)

Here m⃗c represents the potential and direction of a cell c, Rc(t) and Rc(∆t) repre-
sent the center of mass of cell c at MC step t and ∆t, respectively, and η⃗ is a random
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vector obtained by a Wiener process [30]. Each cell follows a modified persistent ran-

dom walk. The energy contribution of each cell is the dot product of R⃗c and m⃗c. m⃗c

is obtained using the cell’s previous movement and the random vector η⃗. By varying
the persistence parameter p ∈ [0, 1], we can mediate the contribution of persistent and
random movement. At p = 0 a cell performs a purely random walk, while at p = 1 it
performs a purely persistent walk [31]. Finally, we mediate the coupling strength of
the motility term to the CPM via λmot. In our simulations, healthy cells have a motil-
ity strength of λmot,healthy = 0AU. The motility of tumor cells varies between 0 and
105AU (see Cell mutation paragraph below).

Nutrient content

Cells require nutrients to proliferate, and a growing tumor is strongly limited by the
nutrients supplied by the surrounding vasculature. We therefore defined a ”nutrient”
compound on the diffusion layer. For simplicity, this single nutrient combines oxygen
and all other nutrients supplied by blood vessels. It is released from solids on the CPM
layer to adjacent cells. The solids act as a reservoir with a constant concentration of
4AU. Therefore, the nutrient amount of all cells lies between 0 and 4AU. The diffusion
constant between vessels and cells, and between any two cells is D = 0.1AU, and
diffusion takes place once every 10 MC steps. Finally, each cell consumes nutrients:
healthy cells use 0.05AU nutrients every 10 MC steps. We assume that tumor cells
are less efficient and therefore use 0.1AU nutrients every 10 MC steps [32].

Cell division rate

Cell agents within CiS are capable of cell division. When this occurs, the cell is split
across a randomly oriented division plane on the CPM layer. Half of the voxels belong-
ing to the old cell are assigned a new value which corresponds to the ID of the new
cell. The volume, surface, age and generation properties of the old cell agent are then
adjusted, until finally both cells resemble daughter cells of the original one. In order
for division to occur, a division condition must be fulfilled. This condition is customiz-
able and can include a number of different terms, e.g. oxygen content, cell volume, cell
generation and a random component. Since the healthy tissue in our simulations are
meant to model a coarse-grained tumor environment, only the tumor cells are capable
of division. Our assumption here is that the surrounding tissue is in a steady-state of
division and death. In order for a tumor cell to divide, its volume must be at least
60% of its target volume, and its nutrient content must be greater than or equal to
1AU. Furthermore, we set the division probability such that a cell divides roughly
every 10 000 MC steps.

Cell mutation

Upon division, a cell can mutate, thereby changing some of its agent properties. We
decided to focus on two commonly used properties: the cell motility and adhesion
strength [33]. A cell has a 10% chance to increase or decrease either its motility
or adhesion strength upon division. Since we did not see significant influence of the
mutation properties on the simulations, we only briefly mention this here.
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Cell death

While cell agents are capable of division, they can also die. In real tissues cells can
die due to multiple reasons, but for simplicity here we decided to only focus on the
nutrient availability. Hence, a cell will die if its nutrients drop below 0.1AU.

4.3 Loading of blood vessel data into CiS

CiS is parallelized using the Message Passing Interface (MPI), and therefore workers
have sperate memory address spaces [17]. Each worker is used to simulate a sub part
of the overall CPM volume, which we call a block. We have implemented the loading of
the blood vessel data such that each worker loads its individual file at the start of the
simulation. These files are generated prior to running the simulation. We first specify
the number and size of blocks in each dimension, and split the blood vessel binary
mask into accordingly sized sub volumes. These sub volumes are then written out as
files named n.raw, with n being the MPI rank to which the sub volume belongs. Each
file contains a list of voxel values, which is the flattened version of the respective sub
volume. The flattening is done in C-order (row major).

4.4 Data visualization

The visualization of the three-dimensional binary masks and the simulations presented
a challenge, since non-specialized data visualization frameworks have difficulty to do so
at this scale (which are up to giga or even tera-voxel). It was achieved using volcanite
(to be published) based on previous work [34].
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Abstract—Benchmarks are essential in the design of modern
HPC installations, as they define key aspects of system compo-
nents. Beyond synthetic workloads, it is crucial to include real
applications that represent user requirements into benchmark
suites, to guarantee high usability and widespread adoption of a
new system. Given the significant investments in leadership-class
supercomputers of the exascale era, this is even more important
and necessitates alignment with a vision of Open Science and
reproducibility. In this work, we present the JUPITER Bench-
mark Suite, which incorporates 16 applications from various
domains. It was designed for and used in the procurement
of JUPITER, the first European exascale supercomputer. We
identify requirements and challenges and outline the project
and software infrastructure setup. We provide descriptions and
scalability studies of selected applications and a set of key
takeaways. The JUPITER Benchmark Suite is released as open
source software with this work at github.com/FZJ-JSC/jubench.

Index Terms—Benchmark, Procurement, Exascale, System De-
sign, System Architecture, GPU, Accelerator

I. INTRODUCTION

The field of High Performance Computing (HPC) is gov-

erned by the interplay of capability and demand driving each

other forward. During the design and purchase phase of super-

computer procurements for public research, the capability of

a machine is usually assessed not only by theoretical, system-

inherent numbers, but also by effective numbers relating to ac-

tual workloads. These workloads are traditionally benchmark

programs that test specific aspects of the system design — like

the floating-point throughput, memory bandwidth, or internode

latency. While these synthetic benchmarks are well-suited for

the assessment of distinct features, for a more integrated

and realistic perspective, they should be complemented by

application benchmarks. Application benchmarks use state-

of-the-art scientific applications to assess the performance

of integrated designs. Complex application profiles utilize

various types of hardware resources dynamically during the

benchmark’s runtime, showcasing real-world strengths and

limitations of the system.

This paper introduces the JUPITER Benchmark Suite, a

comprehensive collection of 23 benchmark programs metic-

ulously documented and designed to support the procurement

of JUPITER, Europe’s first exascale supercomputer. On top of

7 synthetic benchmarks, 16 application benchmarks were de-

veloped in close collaboration with domain scientists to ensure

relevance and rigor. Additionally, this paper offers valuable

insights into the state-of-the-practice of exascale procurement,

shedding light on the challenges and methodologies involved.
Preparations for the procurement of JUPITER were

launched in early 2022 and finally came to fruition with the

awarding of the contract in October 2023. JUPITER is funded

by the EuroHPC Joint Undertaking (50%), Germany’s Federal

Ministry for Education and Research (25%), and the Ministry

of Culture and Science of the State of North Rhine-Westphalia

of Germany (25%), and is hosted at Jülich Supercomputing

Centre (JSC) of Forschungszentrum Jülich. As part of the

procurement, the benchmark suite was developed to motivate

the system design and evaluate the proposals committed for

the Request for Proposals. The suite focuses on application

benchmarks to ensure high practical usability of the system.

This work presents the JUPITER Benchmark Suite in detail,

highlighting design choices and project setup, describing the

benchmark workloads, and releasing them as open source

software. The suite includes 23 benchmarks across different

domains, each with unique characteristics such as compute-

intensive, memory-intensive, and I/O-intensive workloads. The

applications are grouped into three categories: Base, repre-

senting a mixed base workload for the system, High-Scaling,

highlighting scalability to the full exascale system, and syn-

thetic, determining various key hardware design features. The

benchmark suite represents a first step towards Continuous

Benchmarking to detect system anomalies during the produc-

tion phase of JUPITER.
The main contributions of this paper are:

• An in-depth description of the use of benchmarks in HPC

procurement, including relevant background information.
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• The description of a novel methodology to assess exascale

system designs in the form of High-Scaling benchmarks.

• The development of suitable benchmark workloads based

on a representative set of scientific problems, applica-

tions, and synthetic codes.

• Scalability results on the preparation system for all ap-

plication benchmarks of the suite.

• Insights and best practices learned from application scal-

ing and the procurement process in general.

• Release of the full JUPITER Benchmark Suite as open

source software.

After providing background information (section II) and

details on the used infrastructure (section III), the suite’s indi-

vidual benchmarks are presented in section IV. Key takeaways

are provided in section V, followed by a conclusion and

outlook in section VI.

II. BACKGROUND

A. Requirements

The main requirements of the benchmark suite stem from

the need to represent existing and upcoming user communities

in the system design process. This ensures a fitting design and

fosters adoption of the system by users. The suite must cover

the wide user portfolio of the HPC center, containing typical

applications from various domains utilizing the current HPC

infrastructure, and also represent expected future workloads.

Moreover, it is essential to ensure diversity in terms of meth-

ods, programming languages, and execution models, since

such diversity is an inherent characteristic of the application

portfolio for upcoming large-scale systems.

The context of a procurement poses high requirements for

replicability, reproducibility, and reusability [1]. Replicability,

i.e., the seamless execution on the same hardware by the de-

veloper, is an elementary requirement to guarantee robustness.

Beyond that, reproducibility describes the seamless execution

on different hardware by someone else, making it a key

requirement in the context of the procurement since both the

site and the system provider must be able to run the suite to

obtain the same results. Ensuring reusability, i.e., designing

the framework for easy adaptation for a variety of tasks in the

future, is essential to justify the substantial investment involved

in the creation of the suite.

Vendors participating in the procurement process must also

invest considerable time in system-specific adjustments while

meeting the procurement’s requirements and complying to its

rules, usually within short time scales. Therefore, it is in

everyone’s best interest to have clear, well-defined guidelines

and, ideally, to leverage an existing benchmark suite to build

on established expertise.

B. JUPITER Procurement Scheme

The procurement for the JUPITER system uses a Total-

Cost-of-Ownership-based (TCO) value-for-money approach,

in which the number of executed reference workloads over the

lifespan of the system determines the value. Given the size of

state-of-the-art supercomputers as well as their corresponding

power consumption, costs for electricity and cooling are a

substantial part of the overall project budget. Using a mixture

of application benchmarks as well as synthetic benchmarks,

operational costs are computed in a well-defined procedure.

While synthetic benchmarks allow for assessing key perfor-

mance characteristics, they do not allow a realistic assessment

of resource consumption during the lifetime of the system for

TCO. Therefore, a greater emphasis is placed on application

performance rather than on synthetic tests.

Given the targeted system performance of 1EFLOP/s with

64 bit precision, an additional novel benchmark type focusing

on the scale of the system is introduced — High-Scaling

benchmarks. A subset of applications able to fully utilize

JUPITER is identified and use cases were defined to make

them part of this novel category. In the course of the paper,

we will refer to either High-Scaling benchmarks or Base

benchmarks, to differentiate between both.

The JUPITER system is envisioned to consist of two con-

nected sub-systems, modules in the Modular Supercomputing

Architecture (MSA) concept [2]. JUPITER Booster is the

exascale-level module utilizing massive parallelism through

GPUs for maximum performance with high energy efficiency

(FLOP/J). JUPITER Cluster is a smaller general-purpose

module employing state-of-the-art CPUs for applications with

lower inherent parallelism and stronger memory demands.

Both compute modules are procured jointly, together with

a third module made of high-bandwidth flash storage. The

benchmark suite has dedicated benchmarks for all modules,

partly even benchmarks spanning Cluster and Booster, dubbed

MSA benchmarks. Execution targets of the benchmarks are

listed in the last columns of Table II.

During the procurement, the results of the execution of the

benchmark suite for a given system proposal are weighted and

combined to compute a value-for-money metric. The outcomes

are compared and incorporated with other aspects into the final

assessment of the system proposals.

C. Implementation for JUPITER

The previous two sections outline general requirements

for the JUPITER Benchmark Suite. Their assessment and

implementation is laid out in the following and are visually

sketched in Fig. 1.

Based on an analysis of current and previous compute-

time allocations on predecessor systems, the suite covers a

variety of scientific areas and includes applications from the

domains of Weather and Climate, Neuroscience, Quantum

Physics, Material Design, Biology, and others. Beyond that,

diversity in workloads is realized: Artificial-Intelligence-based

(AI) methods as well as classical simulations, codes based on

C/C++ and Fortran, OpenACC and CUDA. Various applica-

tion profiles are included, such as memory-bound or sparse

computations. Future trends of workloads, e.g., the uptake

of machine learning algorithms, are inferred from general

trends in research communities and from recent changes in

allocations on the predecessor system.
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TABLE I
RELATION OF BENCHMARKS OF THE JUPITER BENCHMARK SUITE TO

DOMAINS§ AND Berkeley Dwarfs [16]; OTHER USE-CASES OF THE

APPLICATIONS MIGHT HAVE OTHER PROFILES.
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Benchmark Domain Dwarfs

Amber* MD • •

Arbor Neurosci. • • •

Chroma-QCD QCD • • •

GROMACS MD • •

ICON Climate • •

JUQCS QC •

nekRS CFD • • •

ParFlow* Earth Sys. • •

PIConGPU Plasma • •

Quantum Espresso Materials Sci. • • •

SOMA* Polymer Sys. • •

MMoCLIP AI (MM) •

Megatron-LM AI (LLM) •

ResNet* AI (Vision) •

DynQCD QCD • • •

NAStJA Biology • •

Graph500 Graph Graph Traversal (D. 9)

HPCG CG •

HPL LA •

IOR Filesys. Input/Output

LinkTest Network P2P, Topology

OSU Network Message Exchange, DMA

STREAM Memory Regular Access
* The benchmarks were prepared for the procurement, but not actually used.
§ The following abbreviations are used: MD - Molecular Dynamics; QCD -
Quantum Chromo Dynamics; QC - Quantum Computing; CFD - Computa-
tional Fluid Dynamics; MM - Multi-Modal; LLM - Large Language Model;
LA - Linear Algebra; P2P - Point-to-Point; DMA - Direct Memory Access.

While dwarfs can be viewed as a set of blueprints for

application-inspired synthetic benchmarks, their simplicity by

design prevents them to fully capture all dynamics of real

applications. To address this issue in supercomputer co-design,

more complex and versatile computational motifs, termed

octopodes, are proposed by Matsuoka, Domke, Wahib, et

al. [17].

SPEC [18], [19] is one of the most extensive, well-

known benchmarking initiatives aimed at commercial users.

The benchmark suite SPECaccel2023 uses the offloading

APIs OpenACC and OpenMP to measure performance with

computationally intensive parallel applications, following the

principle “same source code for all”. Benchmarks for the use

case of system design and exascale procurement [20] have

specific requirements (see subsection II-A) and are typically

not made publicly available due to concerns regarding sensitive

information and elaborate implementation. The PRACE Uni-

fied European Applications Benchmark Suite [21] represents a

step towards a culture of open sharing, but its future support is

uncertain. Other notable efforts include the CORAL-2 bench-

marks [22] used for procurement of the three exascale systems

in the US, and the recently developed NERSC-10 Benchmark

Suite [23] used in an ongoing procurement. HPC centers

can benefit from each other’s experience, driven by a spirit

of Open Science, reproducibility, and sustainable software

development [1]. The integration of DevOps principles, such

as Continuous Benchmarking, is gaining popularity to support

these aims [24], [25].

III. BENCHMARK INFRASTRUCTURE

A. Preparation Systems

The JUPITER Benchmark Suite was prepared on JUWELS,

in particular JUWELS Booster, a top 20 system [26] hosted at

JSC [27]. JUWELS Booster was installed in 2020 and provides

a performance of 73PFLOP/s(th) peak and 44PFLOP/s for

the HPL. The system is connected to the JUST 5 storage

system [28]. JUWELS Booster provides 936 GPU nodes

integrated into 39 Eviden BullSequana XH2000 racks, with

2 racks (48 nodes) building a cell in the DragonFly+ topology

of the high-speed interconnect. Each node has 4 NVIDIA

A100 GPUs and 4 NVIDIA Mellanox InfiniBand HDR200

adapters, with one adapter available per GPU. 2 AMD EPYC

Rome 7402 CPUs (2 × 24 cores) are connected to 512GB
DDR4 memory.

Preparations for the High-Scaling benchmarks utilized a

50PFLOP/s(th) sub-partition of the JUWELS Booster.

JUWELS provides general software dependencies through

EasyBuild [29]. Reproducibility is achieved by either using up-

stream installation recipes, easyconfigs, or upstreaming custom

recipes.

B. JUBE

Every benchmark is implemented in the JUBE [3] work-

flow environment to facilitate productive development and

reproducibility. In benchmark-specific definition files, JUBE

scripts, parameters and execution steps (compilation, compu-

tation, data processing, verification) are defined. These are

then interpreted by the JUBE runtime, resolving dependencies

and eventually submitting jobs for execution to the batch

system. By inheriting from system-specific definition files,

platform.xml, batch submission templates are populated

and independence of the underlying system is achieved. The

various sub-benchmarks and variants are implemented by tags,

which select different versions of parameter definitions. After

execution, the benchmark results are presented by JUBE in a

concise tabular form, including the FOM.

Within the JUPITER procurement, the JUBE scripts are

part of the documentation. They exactly define execution

parameters and instructions with descriptive annotations. A

textual documentation is provided as part of the benchmark-

accompanying description.

C. Descriptions

Beyond the execution reference through JUBE scripts, each

benchmark is accompanied by an extensive description. All

descriptions are normalized, using identical structure with

similar language. Example parts are information about the

source and the compilation, execution parameters and rules,

4



TABLE II
OVERVIEW OF COMPONENTS OF THE JUPITER BENCHMARK SUITE. SOME DEFINING DETAILS ARE GIVEN. IF USED, SIGNIFICANT

LIBRARIES ARE SHOWN (ALL BENCHMARKS USE MPI FOR DISTRIBUTION). FOR HIGH-SCALE BENCHMARKS, THE SUPER-SCRIPT

INDICATES THE AVAILABLE MEMORY VARIANTS (TINY, SMALL, MEDIUM, LARGE). FOR MODULE/DEVICE, THE FOLLOWING

ABBREVIATIONS ARE USED: B
G

– EXECUTION ON GPUS OF JUPITER BOOSTER, B
C

– EXECUTION ON THE CPUS OF JUPITER

BOOSTER, C
C

– EXECUTION ON THE CPUS OF JUPITER CLUSTER, M
GCGC

– MSA EXECUTION WITH CPUS OF JUPITER CLUSTER

AND GPUS OF JUPITER BOOSTER.

Application Features Execution Targets

Benchmark

Name

Progr. Language,

[Libraries, ]Prog. Models
Licence

Nodes

Base

Nodes

High-Scale

Module/

Device

NMem Vars B
G

B
C

C
C

M
GCGC

Amber* Fortran, CUDA Custom 1 ✓

Arbor C++, CUDA/HIP BSD-3-Clause 8 642
T,S,M,L ✓

Chroma-QCD C++, QUDA, CUDA/HIP JLab 8 512
S,M,L ✓

GROMACS C++, CUDA/SYCL LGPLv2.1 3/128 ✓

ICON Fortran/C, OpenACC/CUDA/HIP BSD-3-Clause 120/300 ✓

JUQCS Fortran, CUDA/OpenMP None 8 512
S,L ✓ ✓

nekRS C++/C, OCCA, CUDA/HIP/SYCL BSD-3-Clause 8 642
S,M,L ✓

ParFlow* C, Hypre, CUDA/HIP LGPL 4 ✓

PIConGPU C++, Alpaka, CUDA/HIP GPLv3+ 8 640
S,M,L ✓

Quantum Espresso Fortran, ELPA, OpenACC/CUF GPL 8 ✓

SOMA* C, OpenACC LGPL 8 ✓

MMoCLIP Python, PyTorch, CUDA/ROCm1 MIT 8 ✓

Megatron-LM Python, PyTorch/Apex, CUDA/ROCm1 BSD-3-Clause 96 ✓

ResNet* Python, TensorFlow, CUDA/ROCm1 Apache-2.0 10 ✓

DynQCD C, OpenMP None 8 ✓

NAStJA C++, MPI MPL-2.0 8 ✓

Graph500 C, MPI MIT 4/16/all ✓

HPCG C++, OpenMP, CUDA/HIP BSD-3-Clause 1/4/all ✓ ✓

HPL C, BLAS, OpenMP, CUDA/HIP BSD-4-Clause 1/16/all ✓ ✓

IOR C, MPI GPLv2 -/> 64
§ ✓ ✓

LinkTest C++, MPI/SIONlib BSD-4-Clause+ all ✓ ✓ ✓

OSU C, MPI, CUDA BSD 1/2 ✓ ✓ ✓

STREAM C, CUDA/ROCm/OpenACC Custom 1 ✓ ✓

NMem Vars B
G

B
C

C
C

M
GCGC

Benchmark

Name

Progr. Language,

[Libraries, ]Prog. Models
Licence

Nodes

Base

Nodes

High-Scale

Module/

Device

A
p
p
li

ca
ti

o
n

S
yn

th
et

ic

* The benchmarks were prepared for the procurement, but not actually used.
1 For PyTorch and TensorFlow, CUDA and ROCm backends are available; through extensions, also backends for Intel GPUs exist (not
in mainline repositories).
§ IOR features two sub-benchmarks, easy and hard. The number of nodes is a free parameter in easy. In hard, it can also be chosen
freely, as long as more than 64 nodes are taken.

detailed instructions for execution and verification, sample

results, and concluding commitment requests. In all relevant

sections, relations to the JUBE scripts are made in addition to

the textual descriptions. For the vendors, the use of JUBE is

recommended but not mandatory.

PDFs generated from the benchmark descriptions are part of

the committed procurement documentation, including hashes

of archived benchmark repositories.

D. Git and Submodules

All components of a benchmark are available in a single

Git repository as a single source of truth. A common structure

is established, containing description, JUBE scripts, auxiliary

scripts, benchmark results, and the source code of the bench-

marked application. Utilizing the attached issue tracker, project

management and collaboration are facilitated.

Per default, the sources are included as references in the

form of Git Submodules. Submodules enable a direct linkage

to well-defined versions of source code, but do not unneces-

sarily clutter the benchmark repository by static, potentially

extensive copies. They are well integrated into the Git work-

flow and easily updated. In cases where inclusion as a Git

Submodule is not possible, scripts and detailed instructions

for download are provided.

For delivery as part of the procurement specification pack-

age, each benchmark repository is archived as a tar file.

If too large for inclusion in the Git repository, input data is

provided as a separate download, including a verifying hash.

E. Project Management

The benchmark suite development efforts were supported

efficiently by clear project management workflows over several

months.

A core team of HPC specialists and scientific researchers

initiated the process early, curating a list of potential bench-

marks based on their expertise and experience with existing
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HPC systems, while also incorporating insights from previous

procurements. In close collaboration with domain scientists,

this list was gradually refined to ensure a balanced and diverse

selection that met the requirements outlined in subsection II-A.

Competent teams, each led by a team captain, were re-

sponsible for individual applications. GitLab issues were used

to document biweekly meetings and track per-application

progress in the form of a pre-defined checklist with 11 points

(ranging from source code availability, over JUBE integration,

to description creation). Collaborative hack days facilitated

collaboration while running the benchmarks on the preparation

system.

IV. BENCHMARKS

This section describes the JUPITER Benchmark Suite, con-

taining 23 benchmarks: 7 synthetic and 16 application bench-

marks. In the procurement process, the number of application

benchmarks was reduced to 12. Table II gives an overview of

all benchmarks, including application features and execution

targets.

With this work, the JUPITER Benchmark Suite is re-

leased as open source software at https://github.com/FZJ-JSC/

jubench, with individual repositories for each benchmark [30]–

[52].

A. Application Benchmarks

In the following, we describe in detail eleven of the applica-

tion benchmarks, divided into Base and High-Scaling bench-

marks. The benchmarks are based on prominent workloads in

the HPC community and were specifically developed for the

suite. Given their complex computational dynamics, a certain

level of technical and scientific background is necessary and

will be provided accordingly. The remaining benchmarks,

Amber, ParFlow, SOMA, ResNet, and DynQCD, are briefly

introduced first for completeness; they are either using closed-

source software (DynQCD) or were ultimately not used for the

JUPITER procurement (the others).

• Amber [53], [54] is a popular commercial molecular

dynamics code for biomolecules. The Satellite Tobacco

Mosaic Virus (STMV) case from the Amber20 bench-

mark suite [55] (1 067 095 atoms) is chosen. The code is

mainly optimized for single GPU calculations and is not

intended to scale beyond a single node.

• ParFlow [56], [57] is a massively-parallel, open source,

integrated hydrology model for surface and subsurface

flow simulation. The ClayL test from ParFlow’s test suite

(simulating infiltration into clay soil) is selected, with a

problem size of 1008× 1008× 240 cells [58].

• SOMA [59] performs Monte Carlo simulations for the

“Single Chain in Mean Field” model [60], studying the

behaviour of soft coarse-grained polymer chains in a

solution.

• ResNet [61] uses convolutions and residual connections

for training deep neural networks and serves as a refer-

ence model in computer vision tasks. The suite includes

ResNet50, implemented in TensorFlow with Horovod.

• DynQCD [62] is a CPU-only code which per-

forms numerical simulations for Lattice Quantum-

Chromodynamics (LQCD). The benchmark generates 600

quark propagators using a conjugate gradient solver for

sparse LQCD fermion matrices, with high demands to the

memory sub-system.

1) Base Benchmarks (Selection): The Base benchmarks are

designed to incentivize system designs that optimize the time

to solution. They are first executed on a reference number of

nodes on the preparation system (see subsection II-C). Figure 2

gives an overview of application runtimes and respective

strong scaling behaviors for surrounding number of nodes.

While the absolute number can be used to judge system

designs quantitatively, the strong scaling behavior can be used

as an additional data point to understand the overall design

qualitatively. Note the example for reading the graph in the

figure caption.
a) GROMACS: GROMACS [63]–[66] is a versatile

package to perform molecular dynamics simulations, focus-

ing on biochemical molecules and soft condensed matter

systems. The application integrates Newton’s equations of

motion for systems with hundreds to millions of particles and

provides time-resolved trajectories. Two biological systems

from the Unified European Applications Benchmark Suite

(UEABS) [21] are used, test cases A and C. Test case A

simulates a GluCl ion channel embedded in a membrane.

Test case C contains 27 replicas of the STMV with about

28 000 000 atoms and allows testing the scalability of system-

supplied Fast Fourier Transform (FFT) libraries.
b) ICON: The ICOsahedral Non-hydrostatic model

(ICON) [67] is a modelling framework for weather, climate,

and environmental prediction used for operational weather

forecasting at the German Weather Service. ICON also pro-

vides an Earth System Model for climate simulations, i.e., a

general circulation model of the atmosphere, including a land

module [68] and an ocean model [69]. While the atmosphere

part has been ported to GPUs [70], the ocean component is still

running on CPUs only. ICON is available under a permissive

open source licence. The JUPITER benchmark case is based

on the atmosphere component, with global forecast simulation

in two resolutions, resulting in two sub-benchmarks: R02B09

(5 km grid point distance) and R02B10 (2.5 km grid point

distance) [71]. The coarser resolution is targeted for execution

on 120 nodes, and the finer resolution is for 300 nodes. While

reasonable scaling to 2× the node count (240 nodes and 600

nodes, respectively) is possible, this is not the usual mode of

operation for ICON. These simulations are crucial for ICON’s

development towards a storm-resolving climate model with

1 km resolution or even less [72]. A unique aspect of the

ICON benchmark is its large input dataset: R02B09 requires

1.8TB of data, R02B10 needs 4.5TB. Therefore, the ICON

benchmark also tests the performance of I/O operations on a

system.
c) Megatron-LM: Megatron-LM [73] is a prominent

codebase in Natural Language Processing (NLP), known for

its vast scale and performance capabilities. It employs the
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memory transfers. The Base benchmark simulates n = 36
qubits requiring 1TiB of GPU memory. The High-Scaling

benchmark contains two memory variants: a large memory

variant with n = 42 qubits requiring 64TiB (L) and a small

memory variant with n = 41 qubits requiring 32TiB of GPU

memory (S). Rules are given for extrapolation to an Exascale

setup using n = 46 (L) or n = 45 qubits (S). For all test cases,

verification is done using the theoretically known results [105].

In addition, an MSA version of the JUQCS benchmark

simulates n = 34 qubits on both JUWELS Cluster and Booster

simultaneously. The total amount of memory is split into two

parts, with 128GiB residing on the CPU nodes and 128GiB
residing on the GPU nodes. MPI is used for communication

between the Cluster and the Booster, and the number of MPI

tasks is similarly split into two. On the Cluster, each MPI task

launches 12 OpenMP threads, with one thread per CPU core.

On the Booster, each MPI task controls one of the GPUs.

d) nekRS: nekRS [110] is a fast CFD solver designed

for GPUs that solves the low-Mach Navier-Stokes equations

(NSEs), potentially coupled with multiphysics effects. nekRS

has been run at scale on many large supercomputers, featuring

excellent time-to-solution due to its high GPU throughput,

and was nominated for the 2023 Gordon-Bell Award [111].

nekRS uses high-order spectral elements [112] in which the

solution, data, and test functions are represented as locally

structured N th-order tensor product polynomials on a set of

E globally unstructured curvilinear hexahedral brick elements.

There are two key benefits to this strategy. First, high-order

polynomial expansions significantly reduce the number of un-

knowns (n ≈ EN3) needed to achieve engineering tolerances.

Second, the locally structured forms allow tensor product sum

factorization, which yields low O(n) storage cost and O(nN)
work complexity [113]. The leading order O(nN) work terms

can be cast as small dense matrix-matrix products with good

computational intensity [114]. nekRS is written in C++ and the

kernels are implemented using the portable Open Concurrent

Compute Abstraction (OCCA) library [115] for abstraction

between different parallel languages/hardware architectures.

The benchmark case is derived from a Rayleigh-Bénard

convection (RBC) application [116], [117] which simulates

turbulence induced by a temperature gradient — a typical

case executed at scale.The simulation domain is a sheet. It

is much more extended in the periodic directions than in the

wall-bounded direction. The chosen polynomial order is 9 with

600 time steps per run. Verification is based on pre-computed

results and derived tolerances. The High-Scaling benchmark

variants use between 28 836 900 (small, ∼11 229 per GPU)

and 57 760 000 (large, ∼22.492 per GPU) elements, which

is more than the minimum number of elements required for

the "strong scaling limit" of 7000− 8000 elements per GPU.

The Base benchmark case uses 719 104 elements resulting in

22 472 elements per GPU.

e) PIConGPU: PIConGPU is an open source, fully rela-

tivistic particle-in-cell (PIC) code designed for studying laser-

plasma interactions and astrophysical phenomena. It uses the

PIC algorithm with several key components, namely, parti-

cle initialization, charge calculations using grid interpolation,

field calculations using densities, and time-marching due to

Lorentz force. This approach allows particles to interact via

fields on the grid rather than direct pairwise interactions,

reducing computational steps from N2 to N for N particles.

PIConGPU employs a unique data model with asynchronous

data transfers to handle the computational challenge. It can

simulate complex plasma systems with billions of particles on

GPU clusters [118]. PIConGPU is developed with a hardware-

agnostic approach using the Alpaka library [119], [120], pro-

viding outstanding performance across all supported platforms,

like CPUs, AMD and NVIDIA GPUs, and FPGAs [121]. The

benchmark suite uses a 3D test-case simulating the Kelvin-

Helmholtz Instability (KHI), a non-relativistic shear-flow in-

stability, utilizing a pre-ionized hydrogen plasma with peri-

odic boundary conditions. While relevant for various research

communities, the nature of shear-flows and the use of periodic

boundary conditions does not impose a significant load imbal-

ance throughout the simulation. Therefore, the performance of

the code is based on its structure rather than the physics of the

problem. In the KHI use case, the number of particles per cell

is kept constant to 25, using as many cells as the GPU memory

allows. A grid size of x⃗ = (4096, 2048, 1024) is chosen for the

small memory variant, and extended to (4096, 2048, 2048) (M)

and (4096, 4096, 2560) (L) for the larger variants. PIConGPU

employs domain decomposition for distribution, dividing the

computational domain into smaller subdomains along three

dimensions. To distribute along these three dimensions, the

maximum number of nodes that can be utilized is limited to

640, rather than 642.

B. Synthetic Benchmarks

The JUPITER Benchmark Suite also includes seven well-

known synthetic benchmarks: Graph500, HPCG, HPL, IOR,

LinkTest, OSU, and STREAM (including a GPU variant).

The IOR and LinkTest implementation are presented in the

following, highlighting some unique aspects of the setup.

a) IOR: IOR is the de facto standard for measuring I/O

performance and is being used by the IO500 [122] to compare

the I/O characteristics of storage systems. The benchmark

provides a large list of parameters such as block size, transfer

size, API, and task reordering, which in turn allows simulating

multiple I/O patterns. To target the high-bandwidth, NVMe-

based JUPITER storage module, the upper and lower bounds

on the mean read and write bandwidth are our focus in the

Benchmark Suite. Similar to IO500, two variants of the IOR

are implemented, Easy and Hard. The Easy variant requires

a transfer size of 16MiB, with each process writing to its

own file. The Hard variant uses a transfer size of 4KiB and

a block size of 4KiB, with all processes writing and reading

a single file. The setup forces multiple processes to write to

the same file system data block, stressing the filesystem with

the lock processes. The remaining parameters were selected to

avoid caching effects. The number of nodes is a free parameter

(with a lower bound) to allow for optimization on the level of

parallelism that the underlying file system can provide.
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b) LinkTest: LinkTest [123] is designed to test point-to-

point connections between processes in serial or parallel mode

and is capable of handling very large numbers of processes.

It is an essential tool in network operations, used mostly

internally by system administrators for acceptance testing,

maintenance, and troubleshooting.

The JUPITER Benchmark Suite utilizes LinkTest’s bisection

test, to concisely evaluate interconnectivity between parts of

the system’s network, quantified by a single metric. In the

bisection test, a number of test processes (one per high-

speed network adapter) is separated to two equal halves of

the system, and messages are bounced between partnering

processes in parallel (bidirectional mode). To achieve optimal

bandwidth, the message size is set to 16MiB. An assessment

is made mainly based on the minimum bisection bandwidth.

V. LESSONS LEARNED

We developed the JUPITER Benchmark Suite building upon

our experience from previous HPC system procurements. The

suite constitutes a substantial expansion from those earlier

endeavours, and should be considered as a living object

that will continue to evolve over time. In the following, we

summarize the lessons learned, covering first the perspective

of application developers, then the benchmark suite creation,

and finally the overall procurement process.

A. Application Development

The applications of the JUPITER Benchmark Suite not

only need to be executed on current large-scale resources like

JUWELS Booster, but also need to be extrapolated to larger

future resources, amplifying scaling challenges.

To understand the performance characteristics on a future

system better, it proved useful for some application developers

to create models of their applications. JUQCS, for example,

has a non-trivial weak scaling behaviour. In the benchmark,

the execution time is reported in relation to an ideal scenario,

enabling comparability. A model was developed for nekRS

to predict the performance of a later part of the simulation

early in the process, allowing much shorter and more resource-

efficient benchmarks. During scalability studies for PICon-

GPU, a model for the scaling behaviour could be developed,

informing valid simulation parameters for the benchmark

setup.

While the approximate scale of the future system is known,

the details of the setup are not. When domain decomposition is

important for performance, preliminary studies are usually em-

ployed to determine the best parameters for production runs.

But decomposition studies are impossible in the benchmark

context, especially for an unknown system design. Through

labour- and resource-intensive investigation, estimates, rules,

or scripts for ideal domain decomposition were devised, e.g.,

for Chroma-QCD, PIConGPU, NAStJA, and DynQCD. This

also documented the experience of individual researchers,

improving reproducibility. To understand different scaling

regimes of the application, a network communication model

was developed for JUQCS. The model can be employed

to understand topological aspects of the high-speed network

of current and future systems, for example with respect to

congestion.

The preparation for future system designs had a direct

effect on application development. For example, it became

apparent for Arbor developers that they need to optimize

memory usage, as memory capacity and bandwidth will

continue to extend more slowly compared to compute per-

formance. During benchmark preparation, they also needed

to trade highly-valued user experience for scalability, as the

approach of referring to connection endpoints with labels

did not scale as required. A short-term solution (using local

indexing) was found for the suite, and a hash-based solution

is being developed upstream. On a similar note, Chroma-QCD

authors needed to patch the code to facilitate execution on the

envisioned scale. Unexpected effects can occur depending on

the extrapolation method to the future system. For Chroma-

QCD, it was found out that the employed benchmark is not

guaranteed to converge, and a cut-off after a certain number

of iterations is a more robust approach.

Result verification is essential for a benchmark suite to

ensure the validity of submitted results. Yet, the experience

with verification during the suite preparation varied. Some

results could be verified either exactly (JUQCS), or within

a certain numerical limit by comparing to a pre-computed

solution (Chroma-QCD); more involved simulations were ver-

ified by extracting key metrics from the computed solution

for comparison to a model (ICON, nekRS). The verification

of some applications with iterative algorithms, which were

stopped before convergence, relied on framework-inherent

verification and required key data in the output (PIConGPU,

Megatron-LM) — arguably the weakest form of verification.

B. Benchmark Design

Creating a vast benchmark suite that picks up the status quo

in workloads, and bringing it to mature levels, is a resource-

intensive endeavour. Beyond the human resources, compute

resources of the reference system constitute a significant

investment. To use these resources efficiently, it is important to

design benchmarks with runtimes as short as possible, while

keeping it as large as needed. Short runtimes also enable

swift turn-around times for rapid prototyping – especially

useful in a large suite. The size of the input data and the

files generated at runtime should be minimized to ensure that

the benchmark suite is easy to handle. For reproducibility,

non-core application parts like pre-processing or data-staging

should be kept short. Modelling domain decomposition effects,

also beyond typical production execution profiles, is further

consuming resources.

Preparing for target system designs with unknown details

and scales beyond available resources is a demanding task.

Care should be taken to consider future hardware trends in

the benchmark design. To explicitly accommodate different

compute-to-memory ratios, up to four memory variants of

benchmarks were introduced. On the preparation system, the

memory variants can be used to study artificially-limited com-
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pute profiles and determine possible bottleneck shifts on future

systems. With unknown hardware, algorithmic behaviours

might shift as well, and iterations may not converge. A more

robust approach is to not compute until convergence, but stop

after a predetermined amount of iterations.

Some parameters in the benchmark suite are free to chose,

like the number of nodes, others are fixed, for example

simulation parameters. Thorough execution rules and mod-

ification guidelines determine the envisioned outcome and

need to be developed as part of the suite. Beyond general

rules, benchmarks may explicitly deviate to either loosen or

tighten rules. Parameter validation should be part of the overall

verification process; further extending on the importance of the

verification task.

C. Procurement

Using application benchmarks in the procurement of HPC

systems is essential to realistically represent user requirements

when deciding the configuration of the future system. An

additional challenge was given by the particular system ar-

chitecture of JUPITER, in which two compute modules of

very disparate sizes, a small CPU-only module and an exascale

GPU-accelerated module, are coupled together with a shared

storage module. It took some discussions until finding the

right number and balance between CPU and GPU benchmarks,

which ended up being in the ratio of about 1:5.

To formulate and develop the benchmarks, it proved fruitful

to collaborate closely with the domain researchers intending

to utilize the system. Established relationships in joint projects

are especially productive, while it is more difficult for new

user domains. A fundamental limitation of our approach is

the reliance on existing application codes executed on

current systems. By design, disruptive approaches are not well

covered and a tendency to favour evolutionary technology is

introduced. However, considering the effort associated with

adopting new technologies among HPC users, this focus on

incremental developments is justified. Still, predicting future

system usage trends is crucial — like the AI applications in

the suite, which aim at representing a user domain expected

to gain importance over time. However, the rapidly evolving

software and algorithms in this domain make it hard to

accurately estimate their future needs. It is therefore important

to consider the most recent breakthroughs in AI beyond the

HPC context, including also commercially-driven domains.

The time window for the development of the JUPITER

Benchmark Suite was limited by the constraints of the procure-

ment process. The endeavour started several months before

the procurement, and required dedicated work by tens of

people. Clear management structures and collaboration plat-

forms were essential tools for extensive collaboration. In

particular, transparent communication with all bidders was

crucial, which was possible thanks to the dialogue phase that

was part of the procurement. The suite development fostered

collaboration, team-building, and knowledge-sharing. Code

and environment optimizations were openly shared between

benchmark developers and vendors, iteratively improving the

benchmarks further. The suite itself is now open source and

can benefit the wider HPC community.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the JUPITER Benchmark Suite,

which has been successfully employed in the procurement

process of the exascale system JUPITER. The suite has served

as a valuable tool in assessing HPC system performance during

the procurement and beyond. The benchmark applications (see

section IV) were chosen to represent the workloads on the

future system after careful consideration of requirements and

constraints. Bidders used this suite to test different technolo-

gies, put together their proposals, and prepare and commit

the associated performance numbers. The procuring entity

selected the vendor based on these values, together with

multiple additional evaluation criteria. At the time of writing,

the JUPITER system is being installed. The benchmark suite

will be employed again during the acceptance procedure.

The JUPITER Benchmark Suite lays a foundation to further

extend and automate HPC system benchmarking. Facilitated

by the reusable design of the suite, Continuous Benchmark-

ing will be realized as future work, employing the CI/CD

features of GitLab in conjunction with novel tools such as

Jacamar [25]. Running the suite at regular intervals (e.g.,

after maintenances), we will ensure that the system does

not see performance degradation over its lifetime or after

updates. Application optimization for JUPITER will continue

during the system deployment and installation phase, utilizing

experiences gained and tools created. We will strive for fur-

ther improvements regarding the reproducibility of individual

benchmarks, including a focus on verification. Also, individual

technical enhancements are in progress (for example, using

git-annex for the large input data).
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