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Abstract
We adapt methods from quiver representation theory and Hall algebra techniques to the
counting of representations of virtually free groups over finite fields. This gives rise to the
computation of the E-polynomials of GLd(C)-character varieties of virtually free groups.
As examples we discuss counting of representations of the groups D∞, PSL2(Z), SL2(Z),
GL2(Z) and PGL2(Z).

Mathematics Subject Classification 20C07 · 16G99 · 14L30 · 14D20 · 32S35

1 Introduction

Arithmetic representation growth deals with counting the number of representations of alge-
bras over finite fields. More precisely it is the study of the following counting functions: For
A a finitely generated Fq -algebra and d ∈ N0, α ∈ N≥1 define

r ss,Ad (qα) := #ssimd
(
A ⊗Fq Fqα

)

r sim,A
d (qα) := #simd

(
A ⊗Fq Fqα

)

rabsim,A
d (qα) := #absimd

(
A ⊗Fq Fqα

)
(1)

Here we denote by isod(B) ⊇ ssimd(B) ⊇ simd(B) ⊇ absimd(B) for each d the sets of
isomorphism classes of all, of all semisimple, of all simple and of all absolutely simple left
modules M over a K -algebra B of dimension dimK (M) = d . Recall that a left B-module
M is called absolutely simple if it is simple and EndB (M) = K or equivalently ifM⊗K K
is simple for the algebraic closure K ⊇ K .

(1) defines functions r ss,Ad , r sim,A
d , rabsim,A

d on all q-powers. We call these functions
counting functions, as they count the semisimple, simple and absolutely simple mod-
ules/representations of A over Fq up to isomorphism. If the algebra A is understood, we
will usually drop it from the notation.

The counting functions (1) have been studied by S. Mozgovoy and M. Reineke in the
cases A = Fq �Q the path algebra of a finite quiver and A = Fq [Fa] the group algebra of
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a finitely generated free group. One of their main results is the following theorem (see [21,
Thm. 6.2] and [17, Thm. 1.1]).1

Theorem 1.1 If A is the path algebra of a finite quiver or the group algebra of a finitely
generated free group (over Fq respectively), then there are polynomials Rss

d , Rabsim
d ∈ Z[s]

and Rsim
d ∈ Q[s] fulfilling

∀ α ≥ 1 : Rabsim
d (qα) = rabsimd (qα) , Rsim

d (qα) = r simd (qα) , Rss
d (qα) = r ssd (qα) (2)

We call such polynomials realizing the counting functions (1) counting polynomials. More
important than themere existence of counting polynomials is the fact thatMozgovoy–Reineke
obtained certain generating formulas (see [17, Thm. 1.2]) which enable the practical compu-
tation of the counting polynomials (in low dimensions).

The main goal of this paper is to generalize Theorem 1.1 as well as the above mentioned
generating formulas to the case whereA = Fq [G] is the group algebra of a finitely generated
virtually free group (see Theorem5.4 below). Furthermorewewill investigate a few structural
properties of the counting polynomials and relate these to the geometry of GITmoduli spaces
of representations. SageMath code designed by the author for the practical computation of
the counting polynomials is provided at [10].

The main reason why we are studying virtually free groups in this paper is W. Dicks’s
characterization of hereditary group algebras (see [4, Thm. 1]): If H is a finitely generated
group and K a field, then the group algebra K [H] is (left) hereditary2 if and only if H is
virtually free and contains no elements of order char (K ). For a given finitely generated
virtually free group H there are only finitely many prime numbers for which K [H] is not
hereditary, which we will call non-suitable prime numbers. The hereditariness of the group
algebra will be needed to make certain Hall algebra techniques available (see Lemma 4.2
below), which have also been used by Mozgovoy and Reineke when proving Theorem 1.1.

This paper is organized as follows: we start by recallingmost of the relevant preknowledge
on virtually free groups and algebraic geometry within Sect. 2. Afterwards we discuss some
invariants like dimension vectors and the homological Euler form in the context of represen-
tations of virtually free groups in Sect. 3. In Sect. 4 we review some Hall algebra methods,
before we discuss the main result 5.4 in Sect. 5. Section6 is devoted to hands-on exam-
ples and we conclude in Sect. 7 with discussing a few structural properties of the counting
polynomials.

2 Preliminaries

In this section we summarize the preknowledge from group theory, representation theory and
algebraic geometry needed within this paper. All the results discussed in the Sects. 2.2–2.4
are non-original and probably well-known to the experts.

2.1 Virtually free groups

In this subsection we recall some group theoretic notions, define the class of groups that we
will work with in this paper (see Definition 2.1) and prove that this class of groups coincides

1 In the quiver case Mozgovoy–Reineke’s result was in the more general context of counting absolutely stable
representation of a fixed dimension vector. We state it in a weaker form here for expository purposes.
2 Since every group is isomorphic to its opposite, left and right hereditaryness are equivalent.
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with the class of finitely generated virtually free groups (seeLemma2.4). To understand (most
of) the content of the rest of this paper it is not necessary to comprehend all technicalities
in this subsection—Definition 2.1 and Remark 2.5 should be sufficient to be able to read
through all of the following sections.

Given three groups E,F,H as well as injective group homomorphisms ι : F ↪→ H,
κ : F ↪→ E we denote their pushout in the category of groups by H ∗F E and call it the
amalgamated free product ofH and E overF. Recall from e.g. [12, §IV.2] that ifH = 〈X | S〉
and E = 〈Y | T 〉 are presentations of the groupsH and E in terms of generators and relations,
then a presentation ofH ∗F E is given by

〈
X ∪ Y | S ∪ T ∪ {κ( f ) · ι( f )−1 | f ∈ F}〉 (3)

If we are given two embeddings ι, κ : F ↪→ H with the same codomain instead, we may
consider the induced embeddings

ι′, κ ′ : F ↪→ H ∗ C∞, ι′( f ) := ι( f ), κ ′( f ) := t−1κ( f )t

where t denotes the generator of the infinite cyclic group C∞. We denote the coequalizer of

F H ∗ C∞
ι′

κ ′

byH∗ι,κ
F (see e.g. [24, §I.1.1, Prop. 1] for the existence of colimits in the category of groups).

This construction is knownas theHigman–Neumann–Neumann extension (orHNNextension)
of H by F (see e.g. [12, §IV.2]). If H = 〈X | S〉 is a presentation, then a presentation of
H∗ι,κ

F is given by
〈
X ∪ {t} | S ∪ {t−1 · κ( f ) · t · ι( f )−1 | f ∈ F}〉 (4)

(see e.g. [12, §IV.2]).
Even though our description of amalgamated free products and HNN extensions make

sense if the homomorphisms ι and κ are not injective, we will follow the usual convention
in group theory and only consider the case where they are. However, the general machinery
of this paper works for non-injective ι, κ too (see the Remarks 2.5 and 2.7 below).

A group G is called virtually free if it contains a finite index subgroup H which itself is
a free group. However, the theory of Bass–Serre provides an equivalent characterization of
virtually free groups (see [24, §II.2.6], [8, Thm. 1]): A finitely generated group G is virtually
free if and only if it is isomorphic to the fundmental group π1(GQ) of a finite graph of finite
groups GQ .

Since we will only use the notions of graphs of groups and their fundamental groups
explicitly in the proof of Lemma 2.4 below, we will only sketch their definitions and give
references for more details. Instead we derive a rigorous notion of decomposition from it
that will be more suitable for our purposes. A graph of groups GQ consists of a connected,
non-empty undirected graph Q, a group Gi for each vertex i in Q and a group G′

j together
with two injective group homomorphisms

Gs( j)
ι j←↩ G′

j

κ j
↪→ Gt( j)

for each edge j in Q, where s( j) and t( j) are the vertices adjacent to the edge j (see [24,
§I.4.4, Def. 8]). GQ is called a finite graph of finite groups if the graph Q has finitely many
vertices and edges and if all of the groups Gi and G′

j are finite.
For any graph of groups GQ one can associate its fundamental group π1(GQ) which is a

group that contains all the groups Gi and G′
j as subgroups (see [24, §I.5.1]). Since we will
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not work with this construction explicitly, we will not discuss it here, but give two basic
examples instead:

(1) If Q has a single edge labeled j = 1 connecting two distinct vertices labeled s(1) = 0
and t(1) = 1, then a graph of groups GQ with underlying graph Q consists of three
groups G0, G1 and G′

1 and two injective group homomorphisms

ι1 : G′
1 ↪→ G0, κ1 : G′

1 ↪→ G1
The fundamental group of this graph of groups is given by the amalgamated free product
G0 ∗G′

1
G1.

(2) If Q has a single edge labeled j = 1 which is a loop at a single vertex i = 0, then a
graph of groups GQ with underlying graph Q consists of two groups G0 and G′

1 and two
injective group homomorphisms

G′
1 G0

ι1

κ1

The fundamental group of this graph of groups is given by the HNN extension G0∗ι1,κ1
G′
1

.

For all other (finite) graphs Q the fundamental groups of graphs of groups with underlying
graph Q can be obtained from combinations of the two basic examples above. We will see
this concept in the proof of Lemma 2.4 below.

We now want to define the notion of groups which are decomposable into finitely many
finite groups. However, we will afterwards prove that this property is equivalent to the group
being finitely generated virtually free, which is whywewill not use this name after the current
subsection anymore.

Definition 2.1 We say that a group G arises from a group H by loop attachment if G is
isomorphic to an HNN extension H∗ι,κ

F , where F is some finite group. We say that G arises
fromH by non-loop attachment if it is isomorphic to an amalgamated free productH ∗F E,
where F and E are some finite groups.

We say that a group G is decomposable into finitely many finite groups if it arises from
a finite group G0 by a finite sequence of loop and non-loop attachments, i.e. if there are
I , J ∈ N0, finite groupsG0, . . . ,GI andG′

1, . . . ,G′
I+J and an injectivemapφ : {1, . . . , I } →

{1, . . . , I + J } such that G = HI+J where H0 := G0 and for 1 ≤ j ≤ I + J we set

H j :=
⎧
⎨

⎩

H j−1 ∗G′
j
Gi , if j = φ(i) for some i

H j−1∗ι j ,κ j

G′
j

, if j /∈ φ({1, . . . , I })

for some given injective group homomorphisms ι j : G′
j ↪→ H j−1 and

{
κ j : G′

j ↪→ Gi , if j = φ(i) for some i

κ j : G′
j ↪→ H j−1, if j /∈ φ({1, . . . , I })

Note that I denotes the number of non-loop attachments and J the number of loop attach-
ments. Each of the finite groups Gi and G′

j is embedded into G as a subgroup in a canonical
way.

See Sect. 2.2 below for examples. We will now prove two lemmas that will simplify our
notation and which we will use in Lemma 2.4 to show that a group is decomposable into
finitely many finite groups if and only if it is finitely generated virtually free.
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Lemma 2.2 Let G be a group that is decomposable into finitely many finite groups. If we fix
integers I , J ∈ N0 as well as finite subgroups Gi ,G′

j ⊆ G, injective group homomorphisms
ι j , κ j and a map φ as in Definition 2.1, then for each 1 ≤ j ≤ I + J one can find alternative
embeddings ι j , κ j as well as integers 0 ≤ s( j), t( j) ≤ I such that ι j (G′

j ) ⊆ Gs( j) and
κ j (G′

j ) ⊆ Gt( j) as subgroups of G and such that s( j) = t( j) if and only if j /∈ φ({1, . . . , I }).

Proof First recall that every finite subgroup of an amalgamated free product G = H ∗F E is
conjugated to a subgroup of H or E (see [24, §I.4.3, Cor.]) and every finite subgroup of an
HNN extension G = H∗ι,κ

F is conjugated to a subgroup of H. (The latter is a consequence
of [7, Thm. 4].) Note that a subgroup F′ being conjugated to a subgroup of H ⊆ G means
nothing but that there is an inner automorphism 	 ∈ Aut

(
G
)
such that 	(F′) ⊆ H.

Now observe that if G = H ∗F E is an amalgamated free product defined by injective
group homomorphisms ι : F ↪→ H, κ : F ↪→ E and 	 : H → H is a group isomorphism,
then the amalgamated free product G = H ∗F E defined by ι := 	 ◦ ι and κ := κ admits
an isomorphism 	 : G → G which extends 	. Analogously if G = H∗ι,κ

F is an HNN

extension and 	 : H → H is an isomorphism, then the HNN extension G = H∗ι,κ
F with

ι := 	 ◦ ι, κ := 	 ◦ κ is the coequalizer of

F H ∗ C∞
(	∗id)◦ι′

(	∗id)◦κ ′

which admits an isomorphism 	 : G → G extending 	.
We will now apply the above facts iteratively for each 1 ≤ j ≤ I + J to prove the

claim. For j = 1 we already have ι1(G′
1) ⊆ G0 and κ1(G′

1) ⊆ Gi for some 1 ≤ i ≤ I or
κ1(G′

1) ⊆ G0, so there is nothing to do and we may set ι1 := ι1, κ1 := κ1, s(1) := 0 and
t(1) := i or t(1) := 0 respectively. So assume j ≥ 2 and that for all 1 ≤ k < j we already
have integers s(k), t(k) such that ιk(G′

k) ⊆ Gs(k) and κk(G′
k) ⊆ Gt(k).

First consider the case that j = φ(i) for some i . Then κ j (G′
j ) ⊆ Gi and we may set

t( j) := i, κ j := κ j . Moreover by applying the first paragraph of the proof multiple times
we get an inner automorphism 	 ofH j−1 such that 	(ι j (G′

j )) is contained in Gs( j) for some
0 ≤ s( j) ≤ I . By the second paragraph we may replace ι j by ι j := 	 ◦ ι j and obtain
an amalgamated free product H j = H j−1 ∗G′

j
Gi defined by ι j , κ j which is isomorphic to

H j = H j−1 ∗G′
j
Gi defined by ι j , κ j . By applying the second paragraph iteratively, we obtain

an isomorphismG ∼= GwhereG is definedby the samefinite groupsG0, . . . ,GI ,G′
1, . . . ,G′

I+J

but different embeddings ιk, κk into G for j ≤ k ≤ I + J . Moreover G satisfies ιk(G′
k) ⊆ Gs(k)

and κk(G′
k) ⊆ Gt(k) for 1 ≤ k ≤ j .

Conversely consider the case that j /∈ φ({1, . . . , I }). Analogously to the first case we
obtain an inner automorphism 	 of H j−1 such that 	(ι j (G′

j )) is contained in Gs( j) for
some 0 ≤ s( j) ≤ I and using the HNN part of the second paragraph we can replace

H j = H j−1∗ι j ,κ j

G′
j

by H j := H j−1∗ι j ,κ j

G′
j

for ι j := 	 ◦ ι j , κ j := 	 ◦ κ j . In this case we set

t( j) := s( j), because the images ofG′
j inH j are the same due to the coequalizer construction.

Again wemay apply the second paragraph of the proof iteratively to obtain a G defined by the
same G0, . . . ,GI ,G′

1, . . . ,G′
I+J and different embeddings ιk, κk into G for j ≤ k ≤ I + J ,

which is isomorphic to G and satisfies ιk(G′
k) ⊆ Gs(k) and κk(G′

k) ⊆ Gt(k) for 1 ≤ k ≤ j .
By repeating the procedure of the last two paragraphs for j + 1, j + 2, . . . , I + J we

produce a group G isomorphic to G with the claimed properties. ��
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Lemma 2.3 Let G be a group that is decomposable into finitely many finite groups. Fix
I , J ∈ N0 as well as finite groups Gi ,G′

j , a map φ and injective group homomorphisms ι j , κ j

as inDefinition 2.1. By Lemma 2.2wemay assume that there aremaps s, t : {1, . . . , I+ J } →
{0, . . . , I } such that ι j (G′

j ) ⊆ Gs( j) and κ j (G′
j ) ⊆ Gt( j) for all j and such that s( j) = t( j)

if and only if j /∈ φ({1, . . . , I }). Choose a presentation Gi = 〈Xi | Si 〉 of the finite group Gi
for each 0 ≤ i ≤ I . Then a presentation of G is given by

G =
〈

I⋃

i=0

Xi ∪ {t j | 1 ≤ j ≤ I + J , s( j) = t( j)} |
I⋃

i=0

Si ∪
I+J⋃

j=1

Tj

〉

(5)

with

Tj :=
⎧
⎨

⎩

{
κ j ( f ) · ι j ( f )−1 | f ∈ G′

j

}
, if s( j) �= t( j)

{
t−1
j · κ j ( f ) · t j · ι j ( f )−1 | f ∈ G′

j

}
, if s( j) = t( j)

Proof The proof follows directly from using the presentations of amalgamated free products
(see (3)) and HNN extensions (see (4)). ��
From the presentation (5) one can see that the order of loop attachments and non-loop
attachments can be changed a lot without changing the group G up to isomorphism. For
example it is possible to first perform all the non-loop attachments and then all the loop
attachments, because we obtain the same generators and relations via Lemma 2.3 up to
reordering. So after possibly changing the numbering of the groups Gi and G′

j we can always
write G as

G ∼=
(
. . .
((

. . .
((

G0 ∗G′
1
G1
)

∗G′
2
G2
)

· · ·
)

∗ιI+1,κI+1

G′
I+1

)
· · ·
)

∗ιI+J ,κI+J

G′
I+J

(6)

where I is the number of amalgamated free products and J the number of HNN extensions
in (6) and we have maps s, t : {1, . . . , I + J } → {0, . . . , I } which fulfill

t( j) =
{
j, if j ≤ I

s( j), if j > I
and s( j) ∈ {0, . . . , j − 1}, if j ≤ I (7)

such that the inclusions among the finite groups Gi ,G′
j (canonically considered as subgroups

of G) satisfy

Gs( j)
ι j←↩ G′

j

κ j
↪→ Gt( j) (8)

We will conclude this subsection with the proof that a group is decomposable into finitely
many finite groups if and only if it is finitely generated virtually free. Afterwards we will
throughout the paper choose a decomposition into finite groups of the form (6) for every
finitely generated virtually free group occurring and work with this specific fixed decompo-
sition (see Remark 2.5 below).

Lemma 2.4 A group G is decomposable into finitely many finite groups if and only if it is
finitely generated and virtually free.

Proof First assume that the groupG is finitely generated virtually free. Hence,G is isomorphic
to the fundamental group π1(GQ) of a finite graph of finite groups GQ . To show that G is
decomposable into finitely many finite groups, we will recall an iterative construction of
π1(GQ) which the author learned from [11, Def. 3]:
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Choose a maximal subtree T in the graph Q, i.e. a maximal connected subgraph without
loops. Since Q is connected, T contains all vertices of Q. Let I ∈ N0 be the number of edges
in T and J ∈ N0 be the number of edges in Q not contained in T . Since T is a tree, the
number of vertices is I + 1.

Now label the edges in T from 1 to I and the vertices by the numbers 0, 1, . . . , I such
that the edge 1 connects the vertices 0 and 1, the edge 2 connects the vertex 2 to vertex 0
or 1 and so forth. Afterwards label the edges not contained in T from I + 1 to I + J . This
gives rise to maps s, t : {1, . . . , I + J } → {0, . . . , I } fulfilling (7) where the edge labeled
by 1 ≤ j ≤ I + J connects the vertices s( j) and t( j). With this notation the graph of finite
groups GQ is given by finite groups Gi for 0 ≤ i ≤ I and G′

j for 1 ≤ j ≤ I + J together
with injective group homomorphisms

Gs( j)
ι j←↩ G′

j

κ j
↪→ Gt( j)

as in (8).
Now define a group G′′ by the following two iterative processes: For j = 1 define a new

graph Q by replacing the edge j and its two adjacent vertices s( j) and t( j) by a new vertex
such that all other edges adjacent to the deleted vertices are instead adjacent to the new vertex.
Define a new graph of groups GQ with underlying graph Q and the group Gs( j) ∗G′

j
Gt( j)

attached to the new vertex while the groups attached to the other vertices and edges stay the
same. Now repeat this process for j = 2, . . . , I .

After this first iterative process we are given a graph of groups GQ where Q has J loops
labeled from I + 1 to I + J and a single vertex with a group G′ attached to it. Now apply
the following second iterative process to it: For j = I + 1 define a new graph Q by deleting
the edge j and a new graph of groups GQ with underlying graph Q and the group G′∗ι j ,κ j

G′
j

attached to its vertex while the groups attached to the other edges stay the same. Now repeat
this process for j = I + 2, . . . , I + J .

In the end we will have a graph with no edges and a single vertex and a group G′′ attached
to it. This group is given by

G′′ =
(
· · ·
((

· · ·
((

G0 ∗G′
1
G1
)

∗G′
2
G2
)

· · ·
)

∗ιI+1,κI+1

G′
I+1

)
· · ·
)

∗ιI+J ,κI+J

G′
I+J

so it is by construction decomposable into finitely many finite groups. We will show that this
group G′′ is isomorphic to G ∼= π1(GQ).

For each 0 ≤ i ≤ I let Gi = 〈Xi | Si 〉 be a presentation of the finite group Gi . Using
Lemma 2.3 we obtain the presentation

G =
〈

I⋃

i=0

Xi ∪ {tI+1, . . . , tI+J } |
I⋃

i=0

Si ∪
I+J⋃

j=1

Tj

〉

for G′′.
If we now add the additional generators t1, . . . , tI and t1, . . . , tI+J to this presentation,

but also add a suitable set of relations U , we will not change the group G′′ and end up with
the following alternative presentation

G′′ =
〈

I⋃

i=0

Xi ∪ {t1, t1, . . . , tI+J , tI+J } |
I⋃

i=0

Si ∪
I+J⋃

j=1

Tj ∪U

〉

123



   57 Page 8 of 47 F. Korthauer

where U := {ti · ti | 1 ≤ i ≤ I + J } ∪ {ti | 1 ≤ i ≤ I }. Note that this is precisely the
presentation in terms of generators and relations given in the definition of the fundamental
group π1(GQ) in [24, §I.5.1]. So G′′ is isomorphic to the finitely generated virtually free
group G.

Conversely assume that G is decomposable into finitely many finite groups. From the
discussion after Lemma 2.3 we know that G is of the form (6). Arguing as for G′′ in the first
part of the proof we see that G is isomorphic to the fundamental group of a finite graph of
finite groups and therefore finitely generated virtually free.

��
We summarize this subsection in the following remark.

Remark 2.5 In Definition 2.1 we have defined the notion of groups which are decomposable
into finitelymany finite groups. Roughly speaking these are those groupswhich can be patched
together from finitely many finite groups only using amalgamated free products and HNN
extensions. More concretely every group which is decomposable into finitely many finite
groups can be written as

G ∼=
(
· · ·
((

· · ·
((

G0 ∗G′
1
G1
)

∗G′
2
G2
)

· · ·
)

∗ιI+1,κI+1

G′
I+1

)
· · ·
)

∗ιI+J ,κI+J

G′
I+J

(9)

where I is the number of amalgamated free products and J the number of HNN extensions
in (9) and we have maps s, t : {1, . . . , I + J } → {0, . . . , I } which fulfill

t( j) =
{
j, if j ≤ I

s( j), if j > I
and s( j) ∈ {0, . . . , j − 1}, if j ≤ I (10)

such that the inclusions among the finite groups Gi ,G′
j (canonically considered as subgroups

of G) satisfy

Gs( j)
ι j←↩ G′

j

κ j
↪→ Gt( j) (11)

In Lemma 2.4 we have seen that a group is decomposable into finitely many finite groups
if and only if it is finitely generated virtually free. Throughout this paper we fix a finitely
generated virtually free group G and a decomposition (9) as well as maps s, t satisfying (10)
and (11). Since we will almost always work with the decomposition (9) and almost never
with the existence of a finite index free subgroup, the readers may feel free to replace finitely
generated virtually free with decomposable into finitely many finite groups everywhere in
the rest of the paper.

Note that in the definition of groups which are decomposable into finitely many finite
groups one could also allow non-injective group homomorphisms ι j , κ j in the decomposition
(9) as well. However, this definition would be equivalent to Definition 2.1: We will see below
that the group algebra C[G] of G is hereditary even for non-injective ι j , κ j (see Sect. 2.3, in
particular Remark 2.7). Hence, by Dicks’s characterization of hereditary group algebras G
must be virtually free (see Sect. 1).

2.2 Examples of virtually free groups

Although the general description (9) of our fixed virtually free group G might look
intimidating, the examples we want to keep in mind are quite down-to-earth. Trivially
every finite group is virtually free. Some of the easiest non-trivial examples are the groups

123



Arithmetic representation growth of virtually free groups Page 9 of 47    57 


a,b := Ca ∗ Cb which by definition are free products of finite cyclic groups Ca and Cb.
Prominent examples of this class are the infinite dihedral groupD∞ = 
2,2 and
2,3 which is
isomorphic to PSL2(Z) (see [24, §I.1.5]). We may enlarge this class of examples by picking
a common divisor c of a and b as well as embeddings Cc ↪→ Ca,Cb. This gives rise to the
virtually free group Ca ∗Cc Cb. A prominent example here is C4 ∗C2 C6 which is isomorphic
to SL2(Z) (again see [24, §I.1.5]).

The arithmetic groups GL2(Z) and PGL2(Z) are virtually free as well—they arise as
D4 ∗C2×C2 D6 and D2 ∗C2 D3 (see [29, Thm. 23.1] for the isomorphism to GL2(Z), the
isomorphism to PGL2(Z) follows by dividing out the center Z(GL2(Z)) ∼= C2). To define
the inclusions of C2 × C2 and C2 we consider the presentation

Dc = 〈s, t | s2 = t2 = 1 = (st)c〉
of the dihedral group. If c = 2a is even, we embed C2 × C2 into D2a by sending the 2
generators to s and (st)a . For arbitrary c we embed C2 into Dc by sending the generator to s.

Since the intersection of two finite index subgroups is again of finite index and subgroups
of free groups are free, every finite index subgroup of a virtually free group is again virtually
free. Hence, all congruence subgroups of the four above mentioned arithmetic groups are
virtually free as well. Another class of examples are of course the free groups: The free group
Fa on a generators arises by taking J = a trivial HNN extensions of the trivial group, i.e. in
terms of our description (9) set I = 0 and all Gi , G′

j to be the trivial group.

2.3 Group algebras of virtually free groups

In [11, §2] L. Le Bruyn discusses an analogue of graphs of groups for algebras: ForA, C two
K -algebras and ι, κ : C ↪→ A injective K -algebra homomorphisms we consider the induced
embeddings

ι′, κ ′ : C ↪→ A ∗K K [t, t−1], ι′( f ) := ι( f ), κ ′( f ) := t−1κ( f )t

where ∗K denotes the coproduct of K -algebras. We define theHNN extensionA∗ι,κ
C ofA by

C as the coequalizer of

C A ∗K K [t, t−1]ι′

κ ′

We are mostly interested in HNN extensions of algebras, because they arise as group alge-
bras of HNN extensions of groups: The group algebra functor K [−] is a left adjoint,
hence, it preserves colimits. So for every HNN extension of groups we obtain an iso-
morphism K [H∗ι,κ

F ] ∼= K [H]∗ι,κ
K [F]. (We denote the induced algebra homomorphisms

K [ι], K [κ] : K [F] → K [H] simply by ι and κ .) Moreover applying the functor K [−]
to our decomposition (9) we get a K -algebra isomorphism between K [G] and

(
. . .
((

. . .
((

K [G0] ∗K [G′
1] K [G1]

)
∗K [G′

2] K [G2]
)

. . .
)

∗ιI+1,κI+1

K [G′
I+1]

)
. . .
)

∗ιI+J ,κI+J

K [G′
I+J ] (12)

Analogous to [11, §2] we say that a K -algebra A is the fundamental algebra of a finite
graph of finite dimensional semisimple K -algebras if there are I , J ∈ N0, maps s, t :
{1, . . . , I + J } → {0, . . . , I } fulfilling (10) as well as finite dimensional semisimple K -
algebras A0, . . . ,AI and A′

1, . . . ,A′
I+J and K -algebra embeddings ι j : A′

j ↪→ As( j),
κ j : A′

j ↪→At( j) such that A is isomorphic to
(
. . .
((

. . .
((

A0 ∗A′
1
A1

)
∗A′

2
A2

)
. . .
)

∗ιI+1,κI+1

A′
I+1

)
. . .
)

∗ιI+J ,κI+J

A′
I+J

(13)
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The group algebra K [G] of the finitely generated virtually free group G is the fundamental
algebra of a finite graph of finite dimensional semisimple K -algebras whenever char (K ) is
not a prime number dividing the order of one of the finite groups Gi , 0 ≤ i ≤ I , since K [G]
is isomorphic to (12).

Recall from Sect. 1 that the group algebra K [H] of a finitely generated group H over a
field K is hereditary if and only if H is virtually free and contains no elements of order
char (K ). Using the decomposition (9) one can show that K [G] is hereditary if and only if
char (K ) does not divide the orders of the groups G0, . . . ,GI , because every finite subgroup
F ⊆ G (i.e. in particular for F cyclic of prime order) is conjugated to a subgroup of one of
the groups (Gi )i .

Recall that a K -algebra A is called formally smooth if its Hochschild cohomology
HHa(A,−) vanishes in degree a ≥ 2. This is equivalent to A satisfying a lifting property
along square-zero extensions of K -algebras (see [28, Prop. 9.3.3]). Every formally smooth
K -algebra is left and right hereditary (use e.g. [28, Lemma 9.1.9]) and the fundamental alge-
bra of a finite graph of finite dimensional semisimple K -algebras is formally smooth (see
[11, Thm. 1]). So a group algebra K [H] of a finitely generated group H is formally smooth
if and only if it is hereditary, i.e. if and only if H is virtually free and contains no elements
of order char (K ).

For (parts of) the machinery of this paper to work it is crucial that K [G] is formally
smooth, i.e. char (K ) has to be zero or a suitable prime. To make things more convenient we
will moreover assume that K is large enough which brings us to the notion of suitable fields:

Let C be a finite dimensional semisimple K -algebra, e.g. C = K [F] for F a finite group
of order coprime to char (K ). By Artin-Wedderburn theory we know that C is (isomorphic
to) a product of matrix algebras

Mδ0(D0) × · · · × Mδc−1(Dc−1) (14)

withD0, . . . ,Dc−1 finite dimensional division K -algebras.We say that C is completely split if
all simple left C-modules are absolutely simple or equivalently ifDγ

∼= K for all 0 ≤ γ < c,
i.e. C is completely split if and only if it is of the form

M1(K )c1 × M2(K )c2 × · · · × Me(K )ce (15)

for non-negative integers e, c1, . . . , ce. Note that all left C ⊗K F-modules for every field
extension F ⊇ K are defined over C.

Remark 2.6 Our notion of completely split semisimple algebras is closely related to the notion
of separable algebras. Recall from e.g. [11, §1] that a K -algebra C is called separable if it is
a finite dimensional semisimple K -algebra, say of the form (14), such that the center Z(Dγ )

is a separable field extension of K for all 0 ≤ γ < c. It is immediate from the definitions
that a completely split semisimple K -algebra is separable. Moreover one can show that for
every separable K -algebra C there is a finite field extension F ⊇ K such that C ⊗K F is
completely split (take a finite normal extension F ⊇ K containing the centers Z(Dγ ) and
use that Z(Dγ )⊗K F ∼= F [Z(Dγ ):K ]). For the purposes of this paper it is sufficient to restrict
to those separable algebras which are completely split.

We say that a field K is of suitable characteristic for the virtually free group G if G contains
no elements of order char (K ). We call a field K suitable for G if it is perfect, of suitable
characteristic and K [F] is completely split for every finite subgroup F ⊆ G.

Note that being suitable is a relative notion—it depends on which virtually free group
it refers to. The readers may convince themselves that every algebraic field extension of a
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suitable field is again suitable and (using that every finite subgroup of G is contained in a Gi
up to conjugation) that every perfect field of suitable characteristic admits a finite extension
that is suitable.

Remark 2.7 Within this paperwewill study representations of finitely generated virtually free
groups over suitable finite fields. However, all of our methods apply to the more general case
of algebras of the form (13) for Ai and A′

j completely split finite dimensional semisimple
Fq -algebras with ι j , κ j (not necessarily injective) Fq -algebra homomorphisms. Note that
such algebras are formally smooth (and in particular left and right hereditary), because the
proof of [11, Thm. 1] also applies if ι j , κ j in (13) are not necessarily injective. Moreover we
do not assume injectivity in all results involved in the proof of the main Theorem 5.4.

2.4 Geometric methods

The algebro-geometric methods in this paper are written in the language of schemes. Since
we will work almost entirely with (affine) schemes of finite type over a perfect field K ,
those readers who are less comfortable with schemes may instead think of the associ-
ated K -varieties and see K -valued points as fixed points of the natural Galois action of
AutK

(
K
)
, connected/irreducible components as orbits of the natural Galois action on the

connected/irreducible components, etc. For this whole subsection fix a field K .

2.4.1 Counting rational points

Let C be a commutative ring and X be a C-scheme. For each commutative C-algebra B, we
will denote by X(B) the set of B-valued points of X , i.e. the set of C-scheme morphisms
Spec (B) → X . If C = K is a field, we also use the term rational points for the K -valued
points X(K ).

Now assume C is of finite type over Z and X is separated and of finite type over C . A
polynomial P ∈ Z[s] is called counting polynomial of X if for every ring homomorphism
C → Fq to a finite field, we have #X(Fq) = P(q). We say that X is polynomial count if X
admits a counting polynomial.

Example 2.8 The general linear group (scheme)GLd is polynomial count, its counting poly-
nomial is given by PGLd := ∏d−1

δ=0 (sd − sδ).

Note that counting polynomials are unique and that the reduction Xred of a polynomial count
scheme X is again polynomial count with the same counting polynomial. We will need the
following two facts on polynomial count schemes:

Lemma 2.9 Let C be a commutative ring and X be a separated finite type C-scheme.

a) If P ∈ Q(s) is a rational function and#X(Fq) = P(q) for each homomorphismC → Fq ,
then P lies in the subring Z[s] (and is a counting polynomial of X).

b) If C is a subring of C and X is a polynomial count C-scheme with counting polynomial
P, then P(xy) ∈ Z[x, y] is the E-polynomial of the analytification X(C) = (X ×C

Spec (C))an and P(1) is the Euler characteristic of X(C). (See [6, Appendix] for the
definition of E-polynomials.)

See [21, Prop. 6.1] for a proof of (a) and [6, Appendix, Thm. 6.1.2] and [21, Prop. 6.1] for a
proof of (b). The notion of E-polynomials only occurs as an application/motivation, readers
only interested in the counting of representations over finite fields may ignore it.
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2.4.2 Geometry of representation spaces

The schemes we discuss in this paper arise from the representation spaces of algebras, whose
construction we will now recall. Recall that the functor Md : CAlgK → AlgK from the
category CAlgK of commutative K -algebras to the category AlgK of K -algebras which
sends C to the matrix algebra Md(C) is a right adjoint (see e.g. [20, Ch.IV, Thm. 1.1] for
a proof). We denote its left adjoint by Rd . For A a finitely generated K -algebra we call
Repd(A) := Spec (Rd(A)) the d-th representation space of A. Repd(A) is an affine finite
type K -scheme admitting a natural bijection

Repd(A)(C) ∼= AlgK (A,Md(C)) (16)

for all commutative K -algebras C , i.e. Repd(A) represents the functor CAlgK → Set,
C �→ AlgK (A,Md(C)). Denote the image of x ∈ Repd(A)(C) under (16) by ρx . The right
hand side of (16) admits a natural GLd(C)-action via conjugation for each C , hence, the
general linear group (scheme) GLd,K acts on Repd(A) in terms of a K -scheme morphism
σ : GLd,K ×K Repd(A) → Repd(A).

For a group scheme action σ : G×K X → X of a linear algebraic group G on a separated
finite type scheme X we have two notions of the orbit of a point: If x is a C-valued point of
X , then we have the orbit G(C).x ⊆ X(C)—which we call the set-theoretic orbit of x—as
well as the algebro-geometric orbit Ox . The latter is defined as the image of the orbit map

ϑx := (σ ◦ (idG ×x), pr2) : G ×K Spec (C) → X ×K Spec (C)

If x ∈ X(F) is an F-valued point for F ⊇ K a field extension, then the orbit Ox ⊆
X ×K Spec (F) is locally closed (see [13, Prop. 1.65(b)]) and we may consider it as a
reduced locally closed subscheme.

The two notions of orbits are closely related to each other: If x ∈ Repd(A)(K ) is a K -
valued point of a representation space, F ⊇ K a field extension and x ′ the F-valued point
associated to x via pulling it back along Spec (F) → Spec (K ), thenOx (F) = GLd(F).x ′.3
Moreover we have the following related lemma.

Lemma 2.10 Let G be a linear algebraic group over K acting on a separated finite type
K -scheme X. Denote the algebraic closure of K by K . If x ∈ X(K ) is a K -valued point
and x ′ ∈ X(K ) is the associated K -valued point, then Ox ′ and Ox ×K Spec

(
K
)
coincide

as locally closed subsets of X ×K Spec
(
K
)
. If K is perfect, they even coincide as locally

closed subschemes.

Proof Since the orbit map ϑx ′ is the base change of ϑx , we obtain a factorization

G ×K Spec
(
K
) ϑx ′

ϕ

X ×K Spec
(
K
)

Ox ×K Spec
(
K
)

ι

Here ι is a locally closed embedding (see [27, Tag 01JY]) and ϕ is surjective by [27, Tag
01S1]. Hence, the subset Ox ×K Spec

(
K
)
coincides with Ox ′ as the latter is the image of

ϑx ′ .

3 In general the inclusion ⊆ is wrong for group scheme actions. For representation spaces it holds, because
representations of an algebra have no twisted forms i.e. ifM,N are leftA-modules andM⊗K F ∼= N⊗K F
for some field extension F ⊇ K , thenM andN are already isomorphic by the Noether-Deuring theorem (see
e.g. [3, Thm. 29.11] for a proof).
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If K is perfect, then Ox ×K Spec
(
K
)
is reduced (see [27, Tag 020I]). Since the reduced

subscheme structure on a locally closed subset is unique, Ox ′ and Ox ×K Spec
(
K
)
must

coincide. ��
The purpose of the action on Repd(A) is that K -valued points x, y ∈ Repd(A)(K ) are in
the same (set-theoretic) orbit if and only if the representations ρx and ρy are isomorphic, i.e.
there is a natural bijection isod(A) ∼= Repd (A)(K )/GLd (K ).

Within this paper we will usually not distinguish strictly between the set-theoretic orbit
GLd(K ).x of a K -valued point x , the isomorphism class of the corresponding representation
ρx : A → Md(K ) and the isomorphism class of its associated left module, which we denote
byMx . Given a leftA-moduleMwe denote the K -valued point corresponding toM under
a given choice of basis by xM. IfM is the left module associated to the point x , we will also
sometimes denote the algebro-geometric orbit Ox by OM.

Similar to the algebro-geometric orbits one defines the stabilizer S(x) of aC-valued point
x ∈ Repd(A)(C) geometrically as the fibre product defined by the pullback square

S(x) Spec (C)

(x,id)

GLd,K ×K Spec (C)
ϑx

Repd(A) ×K Spec (C)

S(x) is a closed C-subgroup scheme of GLd,K ×K Spec (C) ∼= GLd,C . Its B-valued points
for any commutative C-algebra B are given by

S(x)(B) ∼= {g ∈ GLd(B) | g.x ′ = x ′} = AutA⊗K B (Mx ⊗C B) (17)

where x ′ ∈ Repd(A)(B) is the B-valued point associated to x . So S(x)(B) is nothing but
the (set-theoretic) stabilizer subgroup in GLd(B) of the point x ′.

If ϕ : A → B is a homomorphism of finitely generated K -algebras, then functoriality
gives us an induced K -schememorphismRepd(B) → Repd(A) for each d which realizes the
restriction of scalars functor geometrically. We denote this morphism by ϕ∗. Since Repd(−)

is the composition of the contravariant equivalence Spec (−) and the left adjoint functor
Rd(−), it is a left adjoint functor from the category of (finitely generated) K -algebras to
the opposite category of affine (finite type) K -schemes, hence, it maps colimits of (finitely
generated) K -algebras to limits of affine (finite type) K -schemes. For example Repd(A ∗K

B) ∼= Repd(A) ×K Repd(B) for A,B two finitely generated K -algebras. Moreover (16)
shows that

Repd(A ⊗K F) ∼= Repd(A) ×K Spec (F)

are naturally isomorphic F-schemes for all field extensions F ⊇ K .
The geometry of representation spaces and their orbits plays a substantial role within this

paper. We will frequently make use of the following fundamental facts (see e.g. [9, §2.3] for
(c) and (d) in the caseA = C �Q the path algebra of a quiver). Due to a lack of reference that
does not assume the ground field to be algebraically closed, we will provide some proofs.

Proposition 2.11 Let K be a field, d ∈ N0 and A a finitely generated K -algebra.

(a) If A is formally smooth, then Repd(A) is a regular scheme.
(b) If x ∈ Repd(A)(F) is an F-valued point for a field extension F ⊇ K, then Ox is

geometrically irreducible and in particular connected.
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(c) If K is perfect and 0 → N → W → M → 0 a short exact sequence of finite dimensional
left A-modules, then ON⊕M ⊆ OW.

(d) If K is perfect, then an orbit OM ⊆ Repd(A) is closed if and only if the corresponding
left A-moduleM is semisimple.

Proof About (a): We will first show that the K -scheme Repd(A) is formally smooth in the
sense of [27, Tag 02H0]. So assume we are given a commutative diagram

Repd(A) Spec (B/b)

φ

Spec (K ) Spec (B)

(18)

of schemes where B is a commutative ring, b ⊆ B is a square-zero ideal and φ is given
by the canonical projection B → B/b. We have to show that there is a scheme morphism
Spec (B) → Repd(A) fitting into the diagram (18) such that it still commutes. Using the
natural bijection (16) this is equivalent to finding a K -algebra homomorphismA → Md(B)

letting the diagram

A Md(B/b)

Md(B)

commute. The latter exists by the lifting property of formally smooth K -algebras.
So the K -scheme Repd(A) is formally smooth. However, by [27, Tags 02H6 & 01TX]

this is equivalent to it being a smooth K -scheme and smooth K -schemes are always regular
(see [27, Tag 056S]).

About (b): Let F be the algebraic closure of F and x ′ the F-valued point associated to
x . By Lemma 2.10, it suffices to show that Ox ′ ⊆ Repd(A) ×K Spec

(
F
)
is irreducible.

The latter follows from Ox ′ being the image of the general linear group GLd,F under the
continuous map ϑx ′ .

About (c) and (d): If K is algebraically closed, then one may argue analogously to [9,
Thm. 2.7 & 2.10]. In general one could reformulate the proof in the language of schemes
and it would still work. However, we will instead reduce the general case to the special case
of an algebraically closed ground field.

Using Lemma 2.12 below we see that to prove (c) it suffices to show that

ON⊕M ×K Spec
(
K
) ⊆ OW ×K Spec

(
K
)

and to prove (d) it suffices to show that

OM ×K Spec
(
K
) ⊆ Repd(A) ×K Spec

(
K
) = Repd(A ⊗K K )

is closed if and only ifM is semisimple.
By Lemma 2.10, we have ON⊕M ×K Spec

(
K
) = O(N⊕M)⊗K K , which is contained in

OW⊗K K = OW ×K Spec
(
K
)
by applying (c) over K . So we have proven (c) in general.

Again using Lemma 2.10 we have OM ×K Spec
(
K
) = OM⊗K K , which is closed if and

only if M ⊗K K is a semisimple left module over A ⊗K K . Here we have used that we
already know that (d) holds over the algebraically closed field K . Furthermore semisimplicity
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of M ⊗K K is equivalent to M being semisimple (analogous to [21, Lemma 4.2(2)]). So
we have proven (d).

��
Lemma 2.12 Let K be a perfect field with algebraic closure K , X a finite type K -scheme and
U , V ⊆ X geometrically irreducible locally closed subschemes. Denote the base change of X
to K by X ′ := X ×K Spec

(
K
)
. Note that U ′ := U ×K Spec

(
K
)
and V ′ := V ×K Spec

(
K
)

are irreducible locally closed subschemes of X ′ (see [27, Tag 01JY]).
a) U ⊆ X is closed if and only if U ′ ⊆ X ′ is closed.
b) U ⊆ V if and only if U ′ ⊆ V ′.

Proof About (a): U ⊆ X is closed if and only if the open embedding U → U is an isomor-
phism. Analogously U ′ ⊆ X ′ is closed if and only if U ′ → U ′ is an isomorphism. Note that

U ×K Spec
(
K
)
coincides with U ′ = U ×K Spec

(
K
)
, i.e. taking closures commutes with

base change:
Consider the projection π : X ′ → X for which we have U ′ = π−1(U ). Note that π is a

base change of Spec
(
K
) → Spec (K ), hence, it is surjective and flat, i.e. in particular open

(see [27, Tags 01S1, 01U9 & 01UA]). Now use that a map ϕ : Z → Y between topological
spaces is continuous (resp. open) if and only if ϕ−1(W ) ⊇ ϕ−1(W ) (resp. ϕ−1(W ) ⊆
ϕ−1(W )) holds for all subsets W ⊆ Y .

So U ′ → U ′ is the base change of U → U along Spec
(
K
) → Spec (K ). Since

Spec
(
K
) → Spec (K ) is an fpqc covering,U ′ = U ×K Spec

(
K
) → U is an fpqc covering

as well and the claim follows from the fact that being an isomorphism is fpqc-local on the
base (see [27, Tag 02L4]; see [27, Tags 022B, 00VH & 02KO] for the relevant definitions).

About (b): By the definition of closures it suffices to show that

U ⊆ V ⇔ π−1(U ) ⊆ π−1(V ) (19)

Since π is surjective, the left hand side of (19) is equivalent to π−1(U ) ⊆ π−1(V ). The latter
is equivalent to the right hand side of (19) again by π being continuous and open.

��

2.4.3 E-polynomials of moduli spaces of representations

Since the isomorphism classes of representations of A are parametrized by orbits of repre-
sentation spaces, it is natural to define moduli spaces of representations of A in terms of
quotients of representation spaces. We denote the GIT quotient of Repd(A) by

M (A, d) := Repd(A)//GLd,K = Spec
(
Rd(A)GLd,K

)

(see e.g. [18, §1.2, Thm. 1.1] for the definition).
If the field K is finite or algebraically closed,4 then there is a natural bijection

M (A, d)(F) ∼= ssimd(A ⊗K F) for every algebraic field extension F ⊇ K . So for such K
we call M (A, d) the (GIT) moduli space of d-dimensional semisimple representations ofA.
It contains a (possibly empty) open subscheme Mabsim(A, d) which for K as above admits
a natural bijection Mabsim(A, d)(F) ∼= absimd(A ⊗K F) for every algebraic field exten-
sion F ⊇ K . Accordingly we call Mabsim(A, d) the (GIT) moduli space of d-dimensional
absolutely simple representations of A.

4 More generally it would be sufficient to require that K is perfect and has trivial Brauer group.
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Note that for K = Fq a finite field the counting functions r ss,Ad and rabsim,A
d count the

rational points of these GIT moduli spaces. So whenever counting polynomials Rss
d and

Rabsim
d as in Theorem 1.1 exist, they are in fact counting polynomials of these GIT moduli

spaces.
Now assume that A = A′ ⊗ Fq := A′ ⊗Z Fq is defined over Z by a finitely generated

Z-algebra A′ (e.g. A′ = Z[G] for G a finitely generated group or A′ = Z �Q for �Q a finite
quiver). One can define representation spaces and GIT moduli spaces of A′ as Z-schemes
using Seshadri’s generalization of geometric invariant theory (see [25]). In this waywe obtain
Z-schemes M (A′, d) and Mabsim(A′, d) such that for F = C and F = Fp for all primes p
in an open subset of Spec (Z) we have

M (A′, d) × Spec (F) ∼= M (A′ ⊗ F, d),

Mabsim(A′, d) × Spec (F) ∼= Mabsim(A′ ⊗ F, d)

(see [1, Appendix B, Thm. B.3]).
Hence, using Lemma 2.9(a) we see that if there are rational functions Rss

d , Rabsim
d ∈ Q(s)

which satisfy (2), they must already belong to Z[s]. Furthermore using Lemma 2.9(b) we
see that whenever the counting polynomials exist, the E-polynomials of M (A′ ⊗C, d)an and
Mabsim(A′ ⊗ C, d)an are given by Rss

d (xy) and Rabsim
d (xy).

WhenA′ = Z[G] is the group algebra of a finitely generated group G, (the analytification
of) the moduli space M (C[G], d) is also called the GLd(C)-character variety of G and
denoted by XG(GLd(C)). Since our methods enable us to compute the counting polynomials
explicitly (e.g. using the SageMath code [10]), we obtain a new approach to determine the
E-polynomials of GLd(C)-character varieties of virtually free groups. (In fact we can more
generally compute the E-polynomials of the connected components of the character varieties
individually.)

2.4.4 Associated fibre spaces and special groups

We now want to recall the construction of associated fibre spaces. Most of the facts we are
collecting here can e.g. be found in [22]. Let G be a linear algebraic group over K , H ⊆ G a
closed subgroup and X an affine K -scheme endowedwith an H -action.We define an induced
H -action on G ×K X via the natural transformation

H(C) × G(C) × X(C) → G(C) × X(C), h.(g, x) := (gh−1, h.x)

for any commutative K -algebraC . This is a free action and its respective quotient5 G×H X :=
G×K X/H is called the associated G-fibre space.

If (g, x) ∈ G(C) × X(C) is a C-valued point, we denote its image in (G ×H X)(C) by
g ∗ x . We have a natural morphism X → G ×H X given by x �→ 1 ∗ x . If Y is a K -scheme
with G-action and ϕ : X → Y is an H -equivariant morphism, then we obtain a unique
G-equivariant morphism ϕ′ such that ϕ factorizes as

X → G ×H X
ϕ′
→ Y (20)

For G and H (geometrically) irreducible we have that G ×H X is irreducible/connected if
and only if X is irreducible/connected. Moreover we have the following useful lemma (see
[26, §II.3.7, Lemma 4]).

5 In the case of free actions we will denote the GIT quotient with a single / instead of //.
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Lemma 2.13 Let ϕ : Y → G/H be a G-equivariant morphism. If e ∈ G/H(K ) is the K -point
which is the image of the unit of G and X := ϕ−1(e) with inclusion map ι : X → Y , then
the induced map ι′ : G ×H X → Y from (20) is a G-equivariant isomorphism.

We also want to recall the notion of special algebraic groups. A linear algebraic groupG over
K is special if the quotient map π : X → X/G for any affine finite type K -scheme X with a
free G-action is Zariski-locally a trivial bundle, i.e. there is an open covering X/G = ⋃

α Uα

such that for each α there is a G-equivariant isomorphism 	α admitting a commutative
diagram

π−1(Uα)
	α

π

G ×K Uα

pr2

Uα

(21)

(This is equivalent to the ordinary definition by [22, §4.3, Théorème 2] and by the fact that
all such quotient maps are principal fibre bundles (see [18, §0.4, Prop. 0.9]).)

Example 2.14 Let C be a finite dimensional semisimple K -algebra which is completely split,
i.e. C is of the form (15). Denote its (absolutely) simple left modules by L0, . . . ,Lc−1. Each
finite dimensional left C-moduleM is semisimple, i.e.

M ∼= L⊕m(0)
0 ⊕ · · · ⊕ L⊕m(c−1)

c−1

for some m ∈ N
c
0. Using the bijection (17) and EndA

(
Lγ

) = K we obtain an isomor-
phism S(xM)(B) ∼= AutC⊗K B (M ⊗K B) ∼= GLm(0)(B) × · · · × GLm(c−1)(B) for every
commutative K -algebra B. Hence, S(xM) ∼= GLm(0),K × · · · ×GLm(c−1),K which is a spe-
cial linear algebraic group. (This can be seen e.g. from the classification of special algebraic
groups in [5].)

We will later need the following well-known lemma.

Lemma 2.15 If H is a special linear algebraic group acting freely on an affine finite type
K -scheme X with quotient X/H, then the canonical injection

X(F)/H(F) → (X/H) (F) (22)

is bijective for every field extension F ⊇ K.

Proof The quotient map π : X → X/H is a prototypical example of what is called a torsor
or principal fibre bundle for the relative group scheme H ×K X/H → X/H (see e.g. [27, Tag
0497] or [22, §2.2] for the definition). Now let y ∈ (X/H) (F) be an F-valued point for some
field extension F ⊇ K . Then π−1(y) → Spec (F) is a torsor for H ×K Spec (F) as it fits
into a Cartesian square

π−1(y) Spec (F)

y

X
π

X/H

and because being a torsor is stable under base change.
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So the setπ−1(y)(F), which is canonically identifiedwith the set of sections ofπ−1(y) →
Spec (F), is either empty or carries a simply transitive action of the group H(F). Hence, the
map (22) is injective for H any linear algebraic group.

Now assume H is special. This means that the torsor π : X → X/H is locally trivial with
respect to the Zariski topology. Pick an open covering X/H = ⋃

α Uα admitting equivariant
isomorphisms 	α as in (21). Since 	α is an equivariant isomorphism, it induces an H(F)-
equivariant bijection π−1(Uα)(F) → H(F)×Uα(F). Taking quotients by H(F) we obtain
a commutative diagram

π−1(Uα)(F)/H(F)
	α

π

H(F)×Uα(F)/H(F)

pr2

Uα(F)

Since the inducedmaps pr2 and	α are bijective, the inducedmap π must be bijective too. As
the map (22) is given by glueing together the bijective maps π : π−1(Uα)(F)/H(F) → Uα(F),
it has to be bijective as well, which concludes the proof.

��
Note that Lemma 2.15 in particular applies to the case where X/H is an associated fibre space
G ×H X .

3 Some invariants of virtually free groups

For the whole section fix a perfect field K .

3.1 Dimension vectors

Wewill now associate to every finitely generated K -algebraA a commutative monoid6 T(A)

together with a monoid homomorphism | . | : T(A) → N0 which generalizes the dimension
vector monoid from quiver representation theory (see Example 3.1(b) below). For d ∈ N0

we denote by Td(A) the set of connected components Z ⊆ Repd(A) containing a rational
point, i.e. Z(K ) �= ∅. As a set we define T(A) as the disjoint union

T(A) :=
⊔

d≥0

Td(A)

and we define the map | . | via |Td(A)| = d . To define the monoid structure on T(A) we
consider the direct sum map

⊕c,d : Repc(A) ×K Repd(A) → Repc+d(A)

For (Z , Z ′) ∈ Tc(A) × Td(A) both Z and Z ′ are connected and contain a rational point,
hence, are both geometrically connected by [27, Tag 04KV]. Therefore the product Z ×K Z ′
is connected by [27, Tag 0385]. So there is a unique connected component Z+Z ′ ∈ Tc+d(A)

containing ⊕c,d(Z ×K Z ′).

6 i.e. a set M with a binary operation + : M × M → M which is associative, commutative and admits a
neutral element 0.
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The monoid T(A) has been studied in the past under other names like component semi-
group (see e.g. [11, §4]). Since we want to emphasize the analogy to dimension vectors, we
will refer to it as the dimension vector monoid ofA and call the elementsm ∈ Td(A) dimen-
sion vectors of total dimension d. Usually we will think of dimension vectors as abstract
monoid elements. Whenever we want to refer to the connected component (associated to) m
as a geometric object, we will denote it by Repm(A).

Since the orbitOM associated to a leftA-moduleM is connected, it belongs to a unique
connected component. Denote the corresponding dimension vector by dim(M).

The dimension vector monoid T(A) is contravariant functorial in A: If ϕ : A → B is
a K -algebra homomorphism and m ∈ T(B) a dimension vector, then denote by T(ϕ)(m)

the dimension vector associated to the connected component which contains the image of
Repm(B) under ϕ∗. This defines a monoid homomorphism T(ϕ) : T(B) → T(A).

The homomorphism T(ϕ) induces maps Td(ϕ) : Td(B) → Td(A) for all d ∈ N0, because
restriction of scalars preserves the vector space dimension of modules. Since every bijective
monoid homomorphism is an isomorphism, T(ϕ) is an isomorphism if and only if the map
Td(ϕ) is bijective for every d .

Example 3.1
a) Let C be a finite dimensional semisimple K -algebra. We assume that C is completely

split, i.e. of the form (15). All left C⊗K F-modules for every field extension F ⊇ K are
defined over C. Therefore the (finitely many) algebro-geometric orbits of the K -valued
points cover Repd(C) and all of them are connected and closed by Proposition 2.11. We
deduce that the orbits of the K -valued points are nothing but the connected components
and that the map isod(C) → Td(C), [M] �→ dim(M) is bijective for every d ∈ N0.
Since there is precisely one simple left C-module for every matrix algebra factor in (15),
we have established a monoid isomorphism

T(C) ∼= N
c
0

where we define c := c1 + · · · + ce. In fact, T(C) is nothing but the submonoid of
the Grothendieck group K0(C) generated by the equivalence classes of the (absolutely)
simples in this situation. If mγ ∈ N

c
0 is the γ -th standard basis vector for 0 ≤ γ < c,

then its image |mγ | under the homomorphism | . | : T(C) → N0 is given by |mγ | = ε for
the unique 1 ≤ ε ≤ e with c1+· · ·+cε−1 ≤ γ < c1+· · ·+cε . If C = K [F] is the group
algebra of a finite group F over a suitable field K , then the monoid homomorphism | . |
(or more specifically its extension to the Grothendieck group) is often called degree map.

b) Let K �Q be the path algebra of a finite quiver �Q with vertex set v
( �Q), C ⊆ K �Q the

subalgebra spanned by the paths of length zero and ι : C ↪→ K �Q the homomorphism
given by inclusion.Wewill briefly outline howour notion of dimension vector generalizes
the well-known notion from quiver representation theory (see e.g. [11, §4]):

C ∼= K
v
( �Q

)

is a completely split finite dimensional semisimple K -algebra, so by (a) we
have

T(C) ∼= N
v
( �Q

)

0

which is usually called the dimension vector monoid of the quiver �Q. We want to show

that T(ι) : T
(
K �Q) → T(C) is a monoid isomorphism. For m ∈ N

v
( �Q

)

0 we have a
GLd,K -equivariant K -scheme isomorphism

Repm(C) ∼= GLd,K/H
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where H ∼= ∏
v∈v

( �Q
)GLm(v),K , because Repm(C) is an algebro-geometric orbit as

discussed in (a). The fibre Y := (ι∗)−1(x) ⊆ Rep|m|
(
K �Q) of any K -rational point

x ∈ Repm(C)(K ) represents the functor

C �→
∏

(v
a→w)∈a

( �Q
)
Mm(w)×m(v)(C)

i.e. Y is an affine space, in particular geometrically connected. So by Lemma 2.13 we
see that

(ι∗)−1(Repm(C)) ∼= GLd,K ×H Y

is connected. So for each d ∈ N0 the preimages of the connected components of Repd(C)
form a finite partition of Repd

(
K �Q) into closed connected subsets, i.e. the preimages

have to be the connected components of Repd
(
K �Q).

The following proposition and corollary give a complete description of the dimension vector
monoid of the group algebra K [G] of a finitely generated virtually free groupG over a suitable
field K .

Proposition 3.2 Let A be a finitely generated K -algebra, B and C completely split finite
dimensional semisimple K -algebras and ϕ1 : C → B, ϕ2, ϕ3 : C → A K-algebra homo-
morphisms.

a) Consider the K -algebra pushout A ∗C B given by ϕ1, ϕ2. The commutative square

T(A ∗C B) T(B)

T(ϕ1)

T(A)
T(ϕ2)

T(C)

(23)

is a pullback square of commutative monoids.
b) If ιA : A → A ∗K K [t, t−1] is the canonical K -algebra embedding and

	 : A ∗K K [t, t−1] → A ∗K K [t, t−1] the K -algebra automorphism 	( f ) := t−1 f t ,
then T(ιA) is an isomorphism and T(	) = id.

c) Consider the HNN extension A∗ϕ2,ϕ3
C given by ϕ2, ϕ3. The diagram

T(A∗ϕ2,ϕ3
C ) → T(A)

T(ϕ2)

⇒
T(ϕ3)

T(C) (24)

is an equalizer diagram of commutative monoids.

Proof About (a): (23) induces a homomorphism θ : T(A ∗C B) → T(A) ×T(C) T(B) with

T(A) ×T(C) T(B) = {(m, n) ∈ T(A) × T(B) | T(ϕ2)(m) = T(ϕ1)(n)}
θ is an isomorphism if and only if its restriction θd : Td(A ∗C B) → Td(A) ×Td (C) Td(B) is
bijective for every d ∈ N0. Denote the natural homomorphismsA → A∗CB andB → A∗CB
by ιA and ιB and the connected components of Repd(A) and Repd(B) by X0, . . . , Xa and
Y0, . . . Yb respectively.
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Since the contravariant functor Repd(−) maps colimits to limits, we have a natural iso-
morphism Repd(A ∗C B) ∼= Repd(A) ×Repd (C) Repd(B). This yields a decomposition

Repd(A ∗C B) =
⊔

0≤α≤a,
0≤β≤b

Xα ×Repd (C) Yβ

into open and closed subsets. Hence, each connected component Repv(A ∗C B) associated
to a dimension vector v ∈ T(A ∗C B) lies in a unique Xα ×Repd (C) Yβ and one checks that the
homomorphism θ is given by θd(v) = (mα, nβ) where mα ∈ T(A) and nβ ∈ T(B) are the
dimension vectors (associated to) Xα and Yβ . We claim that Repmα

(A)×Repd (C)Repnβ
(B) =

Xα×Repd (C)Yβ is connected and contains a rational point for each (mα, nβ) ∈ T(A)×T(C)T(B)

which proves that θd is bijective.
Denote by u := T(ϕ2)(mα) = T(ϕ1)(nβ) ∈ T(C) the dimension vector lying below

(mα, nβ). By construction both Repmα
(A) and Repnβ

(B)map into the connected component
Z := Repu(C) and we obtain an isomorphism Xα ×Repd (C)Yβ

∼= Xα ×Z Yβ . Sincemα and nβ

are dimension vectors, there are K -valued points x ∈ Repmα
(A)(K ) and y ∈ Repnβ

(B)(K ).
We set z := ϕ∗

2 (x).
By Example 3.1(a) we have Z = Oz ∼= GLd,K/S(z) and Yβ = Oy ∼= GLd,K/S(y). Since

Oz(K ) = GLd(K ).z and ϕ∗
1 restricts to aGLd,K -equivariant map Yβ → Z , we may assume

without loss of generality that ϕ∗
1 (y) = z = ϕ∗

2 (x) (for ϕ∗
1 (y) = g.z we may replace y by

g−1.y). So Xα ×Z Yβ(K ) is non-empty.
Furthermore taking fibres we obtain a commutative diagram

Xα ×Z Yβ
ιB GLd,K/S(y)

ιB−1(y) Spec (K )

idXα

ϕ
GLd,K/S(z)

ϕ−1(z) Spec (K )

(25)

where ϕ and ιB are given as the restrictions of ϕ∗
2 and ι∗B. The bottom, top and back squares

of (25) are pullback squares, hence, the front square is too and we obtain an isomorphism

ιB
−1(y) ∼= ϕ−1(z)

Applying Lemma 2.13 we obtain isomorphisms

Xα
∼= GLd,K ×S(z) ϕ−1(z), Xα ×Z Yβ

∼= GLd,K ×S(y) ιB
−1(y)

So since Xα is connected by assumption, ιB−1(y) ∼= ϕ−1(z) and Xα ×Z Yβ are connected
too.
About (b): Since Repd(K [t, t−1]) ∼= GLd,K and Repd(K ) ∼= Spec (K ) are connected, we
have isomorphisms T(K [t, t−1]) ∼= N0 ∼= T(K ) given by | . | respectively. So T(ιA) is an
isomorphism by part a).

Now if (x, g) ∈ Repd(A)(K ) × GLd(K ) = Repd(A ∗K K [t, t−1])(K ) is a K -valued
point, then 	∗(x, g) = g−1.(x, g) ∈ O(x,g)(K ). So (x, g) and 	∗(x, g) lie in the same
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connected component, because O(x,g) is connected. This proves T(	) = id.
About (c): Denote the natural projection A ∗K K [t, t−1] → A∗ϕ2,ϕ3

C by π . By construction
of the HNN extension we have π ◦ ιA ◦ ϕ2 = π ◦ 	 ◦ ιA ◦ ϕ3. So using part b) we obtain
that θ := T(ιA) ◦ T(π) : T(A∗ϕ2,ϕ3

C ) → T(A) factorizes over

Eq(T(ϕ2), T(ϕ3)) = {m ∈ T(A) | T(ϕ2)(m) = T(ϕ3)(m)} ⊆ T(A)

We will show that this induces an isomorphism T(A∗ϕ2,ϕ3
C ) → Eq(T(ϕ2), T(ϕ3)).

Denote the connected components of Repd(A) by X0, . . . , Xa . As for a) we obtain a
natural isomorphism Repd(A∗ϕ2,ϕ3

C ) ∼= Eq((ιA ◦ ϕ2)
∗, (	 ◦ ιA ◦ ϕ3)

∗) and a decomposition

Repd(A∗ϕ2,ϕ3
C ) =

⊔

0≤α≤a

(ι∗A ◦ π∗)−1(Xα)

into open and closed subsets (ι∗A ◦ π∗)−1(Xα) = (π∗)−1(Xα ×K GLd,K ) and it remains
to show that (π∗)−1(Xα ×K GLd,K ) is connected and contains a rational point if Xα =
Repmα

(A) corresponds to a dimension vector mα ∈ Eq(T(ϕ2), T(ϕ3)).
We first check using the universal property of the equalizer Repd(A∗ϕ2,ϕ3

C ) that a K -valued
point (x, g) ∈ Xα(K ) × GLd(K ) = (Xα ×K GLd,K )(K ) lies in the image of the closed
embedding π∗ if and only if

ρx ◦ ϕ2 = (ιA ◦ ϕ2)
∗(x, g) = (	 ◦ ιA ◦ ϕ3)

∗(x, g) = g−1.(ρx ◦ ϕ3) (26)

The rational points associated to ρx ◦ϕ2 and ρx ◦ϕ3 belong to the same connected component
Z ⊆ Repd(C), because we assumedmα ∈ Eq(T(ϕ2), T(ϕ3)). Again using Example 3.1(a) we
know that Z = Oz ∼= GLd,K/S(z) for some z ∈ Repd(C)(K ). Hence, there is a g ∈ GLd(K )

satisfying ρx ◦ ϕ2 = g−1.(ρx ◦ ϕ3) which yields a rational point in (π∗)−1(Xα ×K GLd,K ).
Now denote the restriction of (π ◦ ιA ◦ϕ2)

∗ to (π∗)−1(Xα ×K GLd,K ) byψ . The criterion
(26) yields that ψ−1(z) ∼= (ϕ∗

2 )
−1(z) ×K S(z). So as S(z) is geometrically irreducible by

Example 2.14, ψ−1(z) is connected if and only if (ϕ∗
2 )

−1(z) is (see [27, Tag 0385]). We now
again use Lemma 2.13 to obtain isomorphisms

Xα
∼= GLd,K ×S(z) (ϕ∗

2 )
−1(z), (π∗)−1(Xα ×K GLd,K ) ∼= GLd,K ×S(z) ψ−1(z)

So (π∗)−1(Xα ×K GLd,K ) is connected, because the connected component Xα is. ��
Corollary 3.3 If G is the finitely generated virtually free group given by (9) and K is a suitable
field for G, then T(K [G]) is given by

{

(mi )i ∈
I∏

i=0

T(K [Gi ]) | ∀ 1 ≤ j ≤ I + J : T(ι j )(ms( j)) = T(κ j )(mt( j))

}

(27)

Proof The claim follows from the decomposition (12) of K [G] and Example 3.1(a) by repeat-
edly applying part (a) and (c) of Proposition 3.2. ��

Remark 3.4 The inclusion maps K [Gs( j)]
ι j←↩ K [G′

j ]
κ j
↪→ K [Gt( j)], 1 ≤ j ≤ I + J , from (11)

form a diagram of K -algebras and applying the contravariant functor T to it gives a diagram
of (free) commutative monoids. Equation (27) is by construction a limit of this diagram of
commutative monoids. Of course every other limit of it is naturally isomorphic to (27), e.g.
one could also embed T(K [G]) into

∏I
i=0 T(K [Gi ]) × ∏I+J

j=1 T(K [G′
j ]) mapping (mi )i to

((mi )i , (T(ι j )(ms( j))) j ).

123



Arithmetic representation growth of virtually free groups Page 23 of 47    57 

An important consequence of Corollary 3.3 is that the dimension vector monoid T(K [G])
does not depend on the choice of the suitable field K : First letH be a finite group andF ⊆ H
be a subgroup. Using well-known arguments from the representation theory of finite groups
(see [23, §14.6, §15.1 & Prop. 43 in §15.5]) and Example 3.1(a) one first shows that the
monoids T(K [F]) and T(K [H]) as well as the homomorphism T(K [H]) → T(K [F]) do not
depend on K . So since T(K [G]) is the limit of a diagram of monoids which itself does not
depend on K , T(K [G]) does not depend on K as well. We will therefore drop K from the
notation and simply write T(G).

We conclude our current discussion of dimension vectors with a few general remarks.
However, the readers may feel free to skip forward to Sect. 6 for some hands-on examples
at this point. We first note another immediate consequence of the isomorphism (27): T(G) is
equippedwith an embedding into the free commutativemonoid

∏
i T(Gi ).While this does not

imply that T(G) has to be free itself, it at least shows that the monoid T(G) has the cancellation
property, i.e. it embeds as a submonoid into its associated group which is free Abelian of
finite rank.

Moreover T(G) comes with a canonical homomorphism T(G) → T(Gi ) for each 0 ≤ i ≤ I
and a canonical homomorphismT(G) → T(G′

j ) for each 1 ≤ j ≤ I+J .We say thatm ∈ T(G)

lies over mi ∈ T(Gi ) for 0 ≤ i ≤ I and u j ∈ T(G′
j ) for 1 ≤ j ≤ I + J if these are the images

ofm under the canonical homomorphisms. Note that these images uniquely determinem due
to the isomorphism (27).

For c ∈ N≥1 and m ∈ T(G) we write c|m if there is an n ∈ T(G) fulfilling m = c.n =
n + · · · + n. Such an n is necessarily unique and we denote it by m/c := n. Moreover
{c ∈ N≥1 | c|m} is a finite set—this as well as the uniqueness of m/c are immediate
consequences of the embedding T(G) ↪→ ∏

i T(Gi ). We denote

gcd(m) := max{c ∈ N≥1 | c|m} = lcm{c ∈ N≥1 | c|m} (28)

Another important property of dimension vectors is that they are additive on short exact
sequences which is the content of the next lemma.

Lemma 3.5 Let A be a finitely generated K -algebra. For every short sequence

0 → N → W → M → 0

of left A-modules we have dim(W) = dim(N) + dim(M).

Proof Recall that dim(W) is defined as (the element of T(A) associated to) the connected
component containing the algebro-geometric orbitOW and that dim(N)+dim(M) is by defi-
nition the connected component containingON⊕M. These two connected components have to
coincide, because connected components are closed andwe have the inclusionON⊕M ⊆ OW
by Proposition 2.11(c). ��
We end this subsection with a comparison between the dimension vector monoid T(A) of a
finitely generated K -algebraA and the Grothendieck group K0(A) associated toA. Even if
T(A) does not have the cancellation property, we may consider its associated Abelian group
which we denote T(A)gp. From Lemma 3.5 we see that the map

iso(A)
dim→ T(A) → T(A)gp

extends to a unique group homomorphism K0(A) → T(A)gp which is surjective: Ifm−n ∈
T(A)gp is any element, where m, n ∈ T(A) are dimension vectors, then the corresponding
connected components have to contain rational points x, y. If Mx ,My are the respective
left A-modules, then the element [Mx ] − [My] ∈ K0(A) is mapped to m − n.
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In the special case whereA is a completely split finite dimensional semisimple K -algebra,
this group homomorphism is in fact an isomorphism (see Example 3.1(a)). However, usually
the group T(A)gp of dimension vectors is much smaller than the Grothendieck group—
the dimension vector of a module carries slightly more information than its vector space
dimension, but much less information than its isomorphism class.

3.2 Homological Euler form

We now want to discuss another object which again has a well-known analogue in quiver
representation theory: the (homological) Euler form. ForA a (left hereditary) K -algebra and
finite dimensional left A-modulesM,N we define

〈M,N〉A := dimK (HomA (M,N)) − dimK
(
Ext1A (M,N)

)

Example 3.6 Let C be a completely split finite dimensional semisimple K -algebra. Recall
that Cmay be written as (15). C admits precisely c := c1 +· · ·+ ce pairwise non-isomorphic
(absolutely) simple modules—choose a representative Lγ for each isomorphism class. For
two arbitrary finite dimensional left C-modules

M =
c−1⊕

γ=0

Lγ
⊕m(γ ), N =

c−1⊕

γ=0

Lγ
⊕n(γ )

we compute the homological Euler form

〈M,N〉C = dimK (HomC (M,N)) =
c−1∑

γ=0

m(γ )n(γ )

by using Schur’s Lemma for the absolutely simple modules Lγ . For m := dim(M) and
n := dim(N) we also introduce the notation 〈m, n〉C := 〈M,N〉C which is well-defined,
since dim : isod(C) → Td(C) is bijective by Example 3.1(a).

As for the dimension vector monoid we now want to compute the homological Euler form
of the group algebra of a finitely generated virtually free group G over a suitable field.

Proposition 3.7 Let A and B be left hereditary finitely generated K -algebras, C a finite
dimensional semisimple K -algebra and ϕ1 : C → B, ϕ2, ϕ3 : C → A K-algebra homomor-
phisms.

a) Consider the pushout given by ϕ1, ϕ2 and let M,N be finite dimensional left A ∗C B-
modules. The homological Euler form of A ∗C B is given by

〈M,N〉A∗CB = 〈M,N〉A + 〈M,N〉B − 〈M,N〉C
b) Consider the HNN extension A∗ϕ2,ϕ3

C and let M,N be finite dimensional left A∗ϕ2,ϕ3
C -

modules. The homological Euler form of A∗ϕ2,ϕ3
C is given by

〈M,N〉A∗ϕ2,ϕ3
C

= 〈M,N〉A − 〈M,N〉C
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Proof Let D be a finitely generated K -algebra and W a K -linear (D,D)-bimodule, i.e. a
left D⊗K Dop-module. We consider the K -linear map η : W → DerK (D,W) which sends
w ∈ W to its inner derivation η(w) = ( f �→ f .→w − w .← f ) and obtain an exact sequence

0 → Ker (η) → W η→ DerK (D,W) → Coker (η) → 0 (29)

For the bimoduleW = HomK (M,N)weobtainKer (η) = HomD (M,N) andCoker (η) ∼=
Ext1D (M,N) (see [28, Lemma 9.1.9 & Lemma 9.2.1]). Hence, (29) yields

〈M,N〉D = dimK (M) · dimK (N) − dimK DerK (D,HomK (M,N))

So we can reformulate the claimed identity a) as

dimK DerK (D,W) = dimK DerK (A,W) + dimK DerK (B,W) − dimK DerK (C,W)

for D = A ∗C B andW = HomK (M,N) and the claimed identity b) takes the form

dimK DerK (D,W) = dimK DerK (A,W) + dimK (W) − dimK DerK (C,W)

for D = A∗ϕ2,ϕ3
C and W = HomK (M,N).

For the identity (a) we use that DerK (D,W) is the K -vector space pullback induced by
ϕ∗
1 and ϕ∗

2 , hence, DerK (D,W) is the kernel of the map

(ϕ2
∗,−ϕ1

∗) : DerK (A,W) ⊕ DerK (B,W) → DerK (C,W)

which is surjective, because C is separable, i.e. every derivation of C is inner. (See Remark
2.6 for the definition of separable algebras and [2, Prop. 4.2] for the fact that an algebra over
a field is separable if and only if all of its derivations are inner.)

The identity (b) is proven similarly:

DerK (D,W)
π∗→ DerK

(
A ∗K K [t, t−1],W) (ϕ′

3)
∗

⇒
(ϕ′

2)
∗
DerK (C,W)

is an equalizer diagram of vector spaces, i.e. DerK (D,W) is the kernel of the map

DerK
(
A ∗K K [t, t−1],W) (ϕ′

2)
∗−(ϕ′

3)
∗

→ DerK (C,W)

which is surjective as well, because C is a separable K -algebra. This proves b), since we have
an isomorphism

DerK
(
A ∗K K [t, t−1],W) ∼= DerK (A,W) ⊕ W, δ �→ (δ ◦ ιA, δ(t))

(Recall that we assume the field K to be perfect within Sect. 3. Note that this proof only
needs K to be perfect so that C is separable. This could be avoided by instead assuming that
C is separable from the start.) ��
Corollary 3.8 If G is the finitely generated virtually free group given by (9) and K is suitable
for G, then 〈−,−〉K [G] is given by

〈M,N〉K [G] =
I∑

i=0

〈mi , ni 〉K [Gi ] −
I+J∑

j=1

〈u j , v j 〉K [G′
j ] (30)

where dim(M) is the dimension vector lying over mi ∈ T(Gi ) for 0 ≤ i ≤ I and u j ∈ T(G′
j )

for 1 ≤ j ≤ I + J and dim(N) is lying over ni ∈ T(Gi ) and v j ∈ T(G′
j ) respectively.

123



   57 Page 26 of 47 F. Korthauer

Proof Repeatedly apply Proposition 3.7 to the decomposition (12). ��
Since the righthand side of the formula (30) only depends on the dimension vectors dim(M)

and dim(N) and is N0-linear in both arguments, Corollary 3.8 yields that the homological
Euler form induces a well-defined N0-bilinear map

〈−,−〉K [G] : T(G) × T(G) → Z

Furthermore we see from formula (30) that 〈−,−〉K [G] does not depend on K . So we will
simply denote it by 〈−,−〉G. Moreover (30) combined with Example 3.6 shows that 〈−,−〉G
is symmetric.

As before we postpone explicit examples to Sect. 6, but the readers may feel free to skip
forward to it now.

3.3 Counting representation spaces

Now assume K = Fq is finite. We want to show in this subsection that the connected
components Repm(Fq [G]), m ∈ T(G) are polynomial count if Fq is suitable for G. As before
we start with the case of semisimple algebras.

Example 3.9 Let C be a completely split finite dimensional semisimple Fq -algebra with
(absolutely) simple left modulesL0, . . . ,Lc−1. IfM is a finite dimensional left C-module of
dimension vector m = dim(M) = ∑

γ m(γ ).dim(Lγ ) we know from Example 3.1(a) that
Repm(C) = OM ∼= GL|m|,K/S(xM). Since S(xM) ∼= ∏

γ GLm(γ ),Fq is special (see Example
2.14), we obtain

# Repm(C)(Fqα ) = #GL|m|(Fqα )/S(xM)(Fqα ) = PGL|m|
∏c−1

γ=0 PGLm(γ )

(qα)

Using Lemma 2.9(a) we see that the rational function

PC
m := PGL|m|

∏c−1
γ=0 PGLm(γ )

is in fact a counting polynomial for Repm(C). Note that the vector space dimension |m| =
dimFq (M) is given by

∑
γ m(γ ) dimFq (Lγ ) as | . | is a monoid homomorphism.

Similar to T(G) and 〈−,−〉G we give a full description of the counting polynomials of
Repm(Fq [G]).
Proposition 3.10 Let A be a finitely generated Fq -algebra, B and C completely split finite
dimensional semisimple Fq -algebras and ϕ1 : C → B, ϕ2, ϕ3 : C → A homomorphisms of
Fq -algebras. For d ∈ N0 fix dimension vectors m ∈ Td(A), n ∈ Td(B) and u ∈ Td(C).
a) Consider the pushoutA∗CB given by ϕ1, ϕ2 and assume that (m, n) is a dimension vector

in T(A)×T(C) T(B) = T(A∗C B) lying over u. If Repm(A) admits a counting polynomial

PA
m , then the rational function P

A∗ϕ2,ϕ3
C

m := PA
m PGLd /P

C
u is a counting polynomial for

Rep(m,n)(A ∗C B).
b) Consider the HNN extension A∗ϕ2,ϕ3

C and assume that m is an element of the equalizer
Eq(T(ϕ2), T(ϕ3)) = T(A∗ϕ2,ϕ3

C ) lying over u. If Repm(A) admits a counting polynomial

PA
m , then the rational function P

A∗ϕ2,ϕ3
C

m := PA
m PGLd /P

C
u is a counting polynomial for

Repm(A∗ϕ2,ϕ3
C ).
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Proof About (a): As in the proof of Proposition 3.2(a) we may express Repm(A) and
Rep(m,n)(A ∗C B) as associated fibre spaces

Repm(A) ∼= GLd,Fq ×S(z) Y , Rep(m,n)(A ∗C B) ∼= GLd,Fq ×S(y) Y

for S(y) ⊆ S(z) ⊆ GLd,Fq the stabilizers of points y ∈ Repn(B)(Fq), z ∈ Repu(C)(Fq) and
Y an affine finite type Fq -scheme with S(z)-action. Since S(y) and S(z) are special, we may
use (22) to obtain

# Repm(A ∗C B)(Fqα ) = PGLd (q
α)

#S(y)(Fqα )
#Y (Fqα ) = PGLd (q

α)

#S(y)(Fqα )

#S(z)(Fqα )

PGLd (q
α)

PA
m (qα)

Using Example 3.9 this proves part (a).
About (b): As above we use the proof of Proposition 3.2(c) to obtain

Repm(A) ∼= GLd,Fq ×S(z) Y , Repm(A∗ϕ2,ϕ3
C ) ∼= GLd,Fq ×S(z) (Y ×Fq S(z)

)

for S(z) ⊆ GLd,Fq the stabilizer of a point z ∈ Repu(C)(Fq) and we calculate

# Repm(A∗ϕ2,ϕ3
C )(Fqα ) = PGLd (q

α)#Y (Fqα ) = PGLd (q
α)

#S(z)(Fqα )

PGLd (q
α)

PA
m (qα)

��
Corollary 3.11 If G is the finitely generated virtually free group given by (9) andFq is suitable
for G, then

PG
m := PGLd

J

∏I
i=0 P

Gi
mi

∏I+J
j=1 P

G′
j

u j

= PGLd

∏I+J
j=1

∏c j−1
γ=0 PGLu j (γ )

∏I
i=0

∏bi−1
β=0 PGLmi (β)

(31)

is a counting polynomial for Repm(Fq [G]), where m ∈ T(G) is the dimension vector lying

over mi ∈ T(Gi ) ∼= N
bi
0 for 0 ≤ i ≤ I and over u j ∈ T(G′

j )
∼= N

c j
0 for 1 ≤ j ≤ I + J and

PGi
mi := P

Fq [Gi ]
mi as well as P

G′
j

u j := P
Fq [G′

j ]
u j are given by Example 3.9.

Proof We obtain PG
m by repeatedly applying Proposition 3.10 to our decomposition (12) of

K [G] (note that J is the number of HNN-extensions involved in (12)). The second expres-
sion comes from Example 3.9 by cancelling out the PGLd occurring in the numerator and
denominator of the fraction. ��
The formula (31) in particular shows that the polynomials PG

m are independent of the choice
of a finite suitable field for G.

4 Hall algebramethods

Consider the field Q(s) of rational functions in the variable s as well as its subring

Q[s](s−q) = {P/Q ∈ Q(s) | Q(q) �= 0}
where q is some fixed prime power. The Q-algebra homomorphisms

Q(s) ←↩ Q[s](s−q)

evq
� Q
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induce homomorphisms of T(G)-graded Q-algebras

Q(s)[T(G)] ←↩ Q[s](s−q)[T(G)] evq
� Q[T(G)] (32)

The homomorphism | . | : T(G) → N0 endows every T(G)-graded algebra C with an N0-
grading C = ⊕

d≥0 Cd where Cd is spanned by all homogeneous elements with degree in
Td(G). In particular C carries a canonical topology where the ideals id := ⊕

δ≥d Cδ form
a neighbourhood basis of 0. The completion Ĉ with respect to this is a topological algebra
whose underlying topological module is given by

∏
δ≥0 Cδ . We have the following facts on

completions of (graded) algebras:

Lemma 4.1 Let A be a commutative ring and C, C′ be T(G)-graded A-algebras. Denote their
completions by Ĉ and Ĉ′.

a) An element ( fδ)δ≥0 ∈ Ĉ is invertible if and only if f0 ∈ C0 is invertible.
b) Every graded homomorphism C → C′ extends uniquely to a continuous algebra homo-

morphism Ĉ → Ĉ′.

So by taking completions of (32) we obtain continuous Q-algebra homomorphisms

Q(s)[[T(G)]] ←↩ Q[s](s−q)[[T(G)]] evq
� Q[[T(G)]] (33)

We now define a second multiplication on the monoid algebras considered above: The so
called twisted multiplication on Q[T(G)] is given by bilinear extension of

tm ∗ tn := q−〈m,n〉G .tm+n

Analogously we define tm ∗ tn := s−〈m,n〉G .tm+n on Q(s)[T(G)] and Q[s](s−q)[T(G)]. Note
that the powers of q and s are well-defined for negative exponents as q is non-zero and
s /∈ (s − q). We denote the resulting T(G)-graded Q-algebras by Qq-tw[T(G)], Q(s)tw[T(G)]
and Q[s](s−q)

tw[T(G)]. As for the monoid algebras we have T(G)-graded Q-algebra homo-
morphisms analogous to (32) and continuous Q-algebra homomorphisms like (33) between
their twisted versions.

The twistedmonoid algebras are in fact isomorphic to their untwisted counterparts. To con-
struct explicit isomorphisms between themwe need amonoid homomorphismY : T(G) → Z

which satisfies

〈m,m〉G ≡ Y(m) (mod 2) ∀m ∈ T(G)

We construct a distinguished Y to show existence, but everything that follows does not
depend on this choice. For a finite group F we have an identification T(F) ∼= N

c
0 and may

take Y(m) := ∑c−1
γ=0 m(γ ). For the general case of G we can mimic our computation of the

Euler form and define

Y(m) :=
I∑

i=0

ci−1∑

γ=0

mi (γ ) −
I+J∑

j=1

c′
j−1
∑

γ=0

u j (γ )

where m ∈ T(G) is the dimension vector lying over mi ∈ N
ci
0

∼= T(Gi ) and over u j ∈ N
c′
j

0
∼=

T(G′
j ). We may now define a Q-vector space isomorphism

S : Qq-tw[T(G)] → Q[T(G)], S(tm) := q
1
2 (〈m,m〉G−Y(m))tm
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and isomorphisms Q(s)tw[T(G)] ∼= Q(s)[T(G)], Q[s](s−q)
tw[T(G)] ∼= Q[s](s−q)[T(G)] via

S(tm) := s
1
2 (〈m,m〉G−Y(m))tm . We call each of the maps S shift operator. By construction the

shift operators preserve the T(G)-grading and using that 〈−,−〉G is symmetric one can deduce
that they are isomorphisms of graded algebras. Hence, they extend uniquely to continuous
algebra isomorphisms between the completed monoid algebras.

Shift operators like S have already appeared in Mozgovoy-Reineke’s treatment of the free
group case in [17]. To get rid of the correction formYwe could also define a shift operator by

S′(tm) := q
1
2 〈m,m〉G tm . This would mean however that we have to work with Q[√q] instead

of Q, Q[√q](√s) instead of Q(s) etc.
Now fix a finite field K = Fq which is suitable for G. We briefly recall the construction

of the finitary Hall algebra H(A) of a finitely generated Fq -algebra A:
Denote by iso(A) := ⊔

d≥0 isod(A) the set of all isomorphism classes of finite dimen-
sional leftA-modules. (Analogously we denote by ssim(A), sim(A) and absim(A) the sets
of all isomorphism classes of semisimple, simple and absolutely simple modules respec-
tively.)H(A) is defined as the freeQ-vector space on the basis iso(A). The multiplication of
two basis elements [M], [N] ∈ iso(A) is defined as [M] · [N] = ∑

[W] FW
M,N[W] (where

the sum is running over all [W] ∈ iso(A)) with structure coefficients

FW
M,N := #{L ⊆ W left A-submodule | L ∼= N,W/L ∼= M}

Note that the multiplication is well-defined, because the set isod(A) is finite for all d ∈ N0.
An upper bound for its number of elements would be qd

2a where a ∈ N0 is the cardinality
of some finite set of Fq -algebra generators of A, because a representation A → Md(Fq) is
uniquely determined by the images of the generators.

Since dimension vectors are additive on short exact sequences, H(A) is T(A)-graded—
Hm(A) is the Q-linear span of {[M] ∈ iso(A) | dim(M) = m}. In particular the
homomorphism | . | : T(A) → N0 induces an N0-grading H(A) = ⊕

δ≥0 Hδ(A) where
Hδ(A) = ⊕

m∈Tδ(A) Hm(A). As for the monoid algebras (32) we may complete H(A) with
respect to this N0-grading. Denote the completed finitary Hall algebra by H((A)).

We consider the element ε := ∑
[M]∈iso(A)[M] ∈ H((A)) which is a multiplicative unit

by Lemma 4.1(a). It was shown by M. Reineke in [21, Lemma 3.4] that the coefficients eM
of the inverse ε−1 = ∑

[M] eM[M] are given by
⎧
⎨

⎩

∏

[L]∈sim(A)

(−1)aL# EndA (L)aL(aL−1)/2 , if M = ⊕

[L]∈sim(A)

L⊕aL semisimple

0, if M not semisimple
(34)

The following lemma is essentially due to M. Reineke (see [21, Lemma 3.3]).

Lemma 4.2 LetA = Fq [G] be the group algebra of the finitely generated virtually free group
G over the suitable field Fq . The Q-linear map

∫
: H(Fq [G]) → Q

q-tw[T(G)],
∫

([M]) := 1

# AutFq [G] (M)
tdim(M) (35)

is a homomorphism of T(G)-graded Q-algebras.

Proof Since the proof is completely analogous to [21, Lemma 3.3], we will not give all
details. Since (35) is a homomorphism of T(G)-graded Q-vector spaces, it suffices to show
that

∫
([M]) · ∫ ([N]) = ∫

([M] · [N]) for all [M], [N] ∈ iso(Fq [G]).
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Denote m := dim(M), n := dim(N). By Lemma 3.5, the coefficients FW
M,N are zero

unless dim(W) = m + n. So both
∫
([M]) · ∫ ([N]) and ∫ ([M] · [N]) are in the Q-linear

span of tm+n and it remains to prove the formula

∑

[W]∈iso(Fq [G]),
dim(W)=m+n

FW
M,N

# AutFq [G] (W)
= q−〈m,n〉G

#
(
AutFq [G] (M) × AutFq [G] (N)

)

Recall from Sect. 1 that Fq [G] is hereditary, because Fq is suitable. So by the definition of
the homological Euler form, we have

q−〈m,n〉G =
# Ext1

Fq [G] (M,N)

# HomFq [G] (M,N)

and it suffices to prove the so called Riedtmann formula

#
(
AutFq [G] (M) × AutFq [G] (N)

)
FW
M,N =

# Ext1
Fq [G] (M,N)W # AutFq [G] (W)

# HomFq [G] (M,N)
(36)

for all [W] with dim(W) = m + n, where Ext1
Fq [G] (M,N)W ⊆ Ext1

Fq [G] (M,N) denotes
the set of equivalence classes of extensions with middle termW.

Let PW
M,N ⊆ HomFq [G] (N,W) × HomFq [G] (W,M) be the set of short exact sequences

0 → N → W → M → 0. The group AutFq [G] (M) × AutFq [G] (N) acts freely on PW
M,N

via (	M,	N).(ϕ, θ) := (ϕ ◦ 	−1
N ,	M ◦ θ), where the number of orbits is given by FW

M,N.

Hence, the left hand side of (36) can be identified with #PW
M,N.

On the other hand AutFq [G] (W) acts on PW
M,N via

	W.(ϕ, θ) := (	W ◦ ϕ, θ ◦ 	−1
W )

and the set of orbits can be identified with Ext1
Fq [G] (M,N)W. Moreover the orbit of (ϕ, θ)

has # AutFq [G] (W)/# HomFq [G] (M,N) elements, because

HomFq [G] (M,N) → S((ϕ, θ)), ω �→ idW +ϕ ◦ ω ◦ θ

defines a group isomorphism to the stabilizer subgroup S((ϕ, θ)) ⊆ AutFq [G] (W). This

proves that the right hand side of (36) coincides with #PW
M,N as well.

��
The map

∫
is called a Hall algebra integral. By Lemma 4.1(b) it extends uniquely to a

continuous Q-algebra homomorphism between the completions.
We summarize the situation with the following commutative diagram:

Q(s)tw[[T(G)]]
S∼=

Q[s](s−q)
tw[[T(G)]] evq

S∼=

Q
q-tw[[T(G)]]

S∼=

H((Fq [G]))
∫

Q(s)[[T(G)]] Q[s](s−q)[[T(G)]] evq
Q[[T(G)]]

Most of the actual computations we are interested in happen in the ring Q(s)[[T(G)]] while
our knowledge of the representation theory of Fq [G] comes from the completed Hall algebra
H((Fq [G])). So the rough idea for proving results like the main theorem is the following: First

123



Arithmetic representation growth of virtually free groups Page 31 of 47    57 

we observe an interesting identity inH((Fq [G])), then we map it toQ[[T(G)]] and search for a
certain kind of lift of it along evq . (Mostly we want the lift to be independent of the choice of
the prime power q .) Afterwards we can manipulate the obtained identity withinQ(s)[[T(G)]].

5 Counting polynomials

After introducing a lot of machinery we now come back to our original objective of counting
functions and relate them to our machinery. Let Fq be a suitable finite field for G. For each
dimension vector m ∈ T(G) define the refined counting functions

rabsimm (qα) := #{[M] ∈ absim(Fqα [G]) | dim(M) = m}
r simm (qα) := #{[M] ∈ sim(Fqα [G]) | dim(M) = m}
r ssm (qα) := #{[M] ∈ ssim(Fqα [G]) | dim(M) = m}

(37)

The refined counting functions r ssm and rabsimm again count the rational points of GIT moduli
spaces. We describe these using the following lemma.

Lemma 5.1 All connected components Repm(Fq [G]) ⊆ Rep|m|(Fq [G]) are GL|m|,Fq -
invariant closed subschemes. Their GIT quotients

M(Fq [G],m) := Repm(Fq [G])//GL|m|,Fq
are the connected components of M (Fq [G], |m|). Moreover there is a GL|m|,Fq -invariant
open subscheme Repabsimm (Fq [G]) ⊆ Repm(Fq [G]) for each m ∈ T(G) such that

Mabsim(Fq [G],m) := Repabsimm (Fq [G])//GL|m|,Fq = M(Fq [G],m) ∩ Mabsim(Fq [G], |m|)
The connected components of Mabsim(Fq [G], d) are given by those Mabsim(Fq [G],m), m ∈
Td(G), which are non-empty. Moreover all of the spaces Repabsimm (Fq [G]), Repm(Fq [G]),
Mabsim(Fq [G],m) and M (Fq [G],m) are irreducible if non-empty.

Proof By Proposition 2.11(a) the representation space Rep|m|(Fq [G]) is regular. Hence, its
connected components Repm(Fq [G]) are in fact even irreducible (see e.g. [27, Tags 033M&
0569]). Since furthermoreGL|m|,Fq is geometrically irreducible,GL|m|,Fq ×Fq Repm(Fq [G])
must be irreducible (see [27, Tag 038F]). So the image of the restricted action

GL|m|,Fq ×Fq Repm(Fq [G]) ⊆ GL|m|,Fq ×Fq Rep|m|(Fq [G]) → Rep|m|(Fq [G])
is irreducible and in particular connected and contained in the connected component
Repm(Fq [G]), which proves the GL|m|,Fq -invariance of the connected components.

Since the quotient map Rep|m|(Fq [G]) → M (Fq [G], |m|) is surjective and maps pairwise
disjoint invariant closed subsets to pairwise disjoint closed subsets (see e.g. [18, Proof of Thm.
1.1]), the setsM (Fq [G],m) form ∈ Td(G) form a partition ofM (Fq [G], d) into finitelymany
pairwise disjoint closed connected subsets, i.e. they must be the connected components.

Nownote that the subgroup of scalarmatricesGm ⊆ GL|m|,Fq acts trivially.Hence, there is
a naturalPGL|m|,Fq -action on Repm(Fq [G]) for eachm ∈ T(G). The subsets Repabsimm (Fq [G])
are given by the respective locus of stable points with respect to this PGL|m|,Fq -action, which
is always invariant and open (see e.g. [18, §1.4], note that what nowadays is called stable
point is called properly stable point within [18]).

To prove the claim about the connected components of Mabsim(Fq [G], d)we now observe
that for each m ∈ T(G) the open subset Repabsimm (Fq [G]) ⊆ Repm(Fq [G]) is either empty or
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irreducible and in particular connected. The rest of the proof is now analogous to the second
paragraph above.

��

The refined counting functions r ssm and rabsimm count the rational points of the connected
components of our moduli spaces discussed in Lemma 5.1, i.e. for all α ≥ 1 we have

r ssm
(
qα
) = #M (Fq [G],m)(Fqα ), rabsimm

(
qα
) = #Mabsim(Fq [G],m)(Fqα ) (38)

We can recover the original counting functions (1) from the refined ones via the formula
rxyzd = ∑

|m|=d r
xyz
m . Moreover we define

r simm,c(q
α) := #{[M] ∈ sim(Fqα [G]) | dim(M) = m, dimFqα

(
EndFqα [G] (M)

)
= c}

Analogously to [21, §4] we obtain the identities

rabsimm (qα) = r simm,1(q
α), r simm,c(q

α) =
{

1
c

∑
γ |c μ(γ )rabsimm/c (qαc/γ ), if c|m

0, else
(39)

(Thefirst identity holds just by the definition of absolutely simplemodules, the second identity
can be obtained from Galois descent and Möbius inversion.) Here μ : N≥1 → {−1, 0, 1}
denotes the (classical) Möbius function. Since T(G) embeds into a free commutative monoid,
C[[T(G)]] can be embedded into a formal power series ring C[[t1, . . . , ta]], i.e. wemay interpret
the elements of C[[T(G)]] as formal power series. Important examples are

rxyz(qα) :=
∑

m∈T(G)

rxyzm (qα)tm ∈ Q[[T(G)]]

where xyz ∈ {absim, sim, ss}. Our goal is to lift the power series rxyz(qα) reasonably along
the homomorphism evqα from equation (33), the coefficients Rxyz

m of such a lift Rxyz will be
the counting polynomials we are aiming for.

We now briefly recall the construction of plethystic exponentials and logarithms. First
note that Q(s)[[T(G)]] is a local ring with maximal ideal

m :=
{ ∑

m∈T(G)

fmt
m ∈ Q(s)[[T(G)]] | f0 = 0

}

which is open. The subset 1 + m is open as well and is a topological group with respect to
multiplication. (m,+) and (1+m, ·) are isomorphic as topological groups, mutually inverse
continuous isomorphisms are given by

m
log←−−−−→
exp

1 + m, exp( f ) :=
∑

α≥0

f α

α! , log(1 + f ) :=
∑

β≥1

(−1)β+1

β
f β

Note that exp and log are equally well-defined for Q[s](s−q)[[T(G)]] and Q[[T(G)]] and that
they commute with the homomorphisms (33), e.g. exp ◦ evq( f ) = evq ◦ exp( f ) for each
f ∈ m ∩ Q[s](s−q)[[T(G)]].
For each a ∈ N≥1 we consider the Adams operation

ψa : Q(s)[[T(G)]] → Q(s)[[T(G)]], ψa

(
∑

m

fmt
m

)

:=
∑

m

fm(sa)ta.m
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which is a continuous Q-algebra homomorphism. They give rise to the mutually inverse
continuous group automorphisms

m
�−1
←−−−−→

�
m, �( f ) :=

∑

α≥1

ψα( f )

α
, �−1( f ) =

∑

β≥1

μ(β)
ψβ( f )

β

(see e.g. [15, Lemma 20]).
The plethystic exponential and plethystic logarithm are defined by Exp := exp ◦� and

Log := �−1 ◦ log. They are by definition mutually inverse continuous group isomorphisms,
i.e. they in particular fulfill the usual functional equations

Exp( f + g) = Exp( f )Exp(g), Log( f g) = Log( f ) + Log(g)

Moreover the same identities hold for convergent infinite sums and products. Exp and Log
can alternatively be defined onQ((s))[[T(G)]]whereQ((s)) denotes the field of formal Laurent
series. By some calculations in Q((s))[[T(G)]] one can prove

Exp

(
1

1 − sc
tm
)

=
∑

b≥0

⎛

⎝
b∏

β=1

(1 − scβ)

⎞

⎠

−1

.tb.m (40)

(See e.g. [14, Lemma 2.2] for the case c = 1, then useQ(s) ∼= Q(sc).) Using the theorem of
Krull–Remak–Schmidt for a product factorization of the power series r ss(q) and the second
formula in (39) one can prove the following lemma.

Lemma 5.2 If q is the number of elements in the finite suitable field Fq , then the power series

E(q) :=
∑

m∈T(G),
β≥1

1

β
rabsimm (qβ)tβ.m

is convergent in Q[[T(G)]] and satisfies exp(E(q)) = r ss(q).

See [15, Lemma 5] for the completely analogous proof in the case of absolutely
indecomposables instead of absolutely simples. In Theorem 5.4 we will reformulate this
lemma in terms of the plethystic exponential Exp.

We are now ready to prove the existence of counting polynomials for the refined counting
functions (37). We begin our proof with a lemma about the element ε−1 = ∑

[M] eM[M]
discussed at (34).

Lemma 5.3 Let Fq be suitable for G. Denote by
∫ : H((Fq [G])) → Q

q-tw[[T(G)] the Hall
algebra integral defined in (35). We consider

∫ (
ε−1

) ∈ Q
q-tw[[T(G)]] as an element of

Q[[T(G)]] within this lemma. This element satisfies

log

(∫ (
ε−1)

)
=

∑

m∈T(G)

∑

δ|m

1

δ(1 − qδ)
rabsimm/δ

(
qδ
)
tm

Proof Using that the coefficients eM of ε−1 are given by (34), a computation completely
analogous to the proof of [16, Thm. 4.2] shows

∑

[M]∈iso(Fq [G])

eM
# AutFq [G] (M)

tdim(M) =
∏

m∈T(G),
c|m

⎛

⎜
⎝
∑

b≥0

⎛

⎝
b∏

β=1

(1 − qcβ)

⎞

⎠

−1

.tb.m

⎞

⎟
⎠

r simm,c(q)
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in Q[[T(G)]]. So we may apply (40) to obtain

∫ (
ε−1) =

∏

m∈T(G),
c|m

(
evq ◦Exp

(
1

1 − sc
tm
))r simm,c(q)

By applying log and using Exp = exp ◦� we deduce

log

(∫ (
ε−1)

)
=

∑

m∈T(G),
c|m

r simm,c(q)

(
log ◦ evq ◦ exp ◦�

(
1

1 − sc
tm
))

If we now use the identity exp ◦ evq = evq ◦ exp and the definitions of evq and �, this
formula simplifies to

log

(∫ (
ε−1)

)
=

∑

m∈T(G),
c|m

r simm,c(q)
∑

β≥1

1

β(1 − qcβ)
tβ.m

Applying the second formula in (39) yields

log

(∫ (
ε−1)

)
=

∑

m∈T(G)

∑

β≥1

∑

c|m

∑

γ |c

1

cβ(1 − qcβ)
μ(γ )rabsimm/c

(
qc/γ

)
tβ.m (41)

The rest of the proof is done by a substitution. Note that the index set
{
(m, β, c, γ ) ∈ T(G) × N

3≥1 | c|m, γ |c}

of the sum in (41) is in bijection with the set
{
(n, a, δ, γ ) ∈ T(G) × N

3≥1 | γ |a}

via the mutually inverse bijections (m, β, c, γ ) �→ (m/c, βγ, c/γ , γ ) and
(n, a, δ, γ ) �→ ((δγ ).n, a/γ , δγ, γ ). Substitution with respect to it shows that

log

(∫ (
ε−1)

)
=

∑

n∈T(G)

∑

a≥1

∑

δ≥1

∑

γ |a

1

aδ(1 − qaδ)
μ(γ )rabsimn

(
qδ
)
t (aδ).n

If we now use, that the Möbius function satisfies

∑

γ |a
μ(γ ) =

{
1, a = 1

0, a > 1

we obtain the simplified formula

log

(∫ (
ε−1)

)
=

∑

n∈T(G)

∑

δ≥1

1

δ(1 − qδ)
rabsimn

(
qδ
)
tδ.n

The proof ends by another substitution with respect to the bijection

T(G) × N≥1 → {(m, δ) ∈ T(G) × N≥1 | δ|m}, (n, δ) �→ (δ.n, δ)

��
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To formulate our main result below we define the power series

F := S

⎛

⎝
∑

m∈T(G)

PG
m

PGL|m|
tm

⎞

⎠ ∈ Q[s](s−qα)[[T(G)]] (42)

where α ∈ N≥1 is arbitrary and PG
m are the polynomials defined in (31). Note that F does

not depend on the given integer α.

Theorem 5.4 Let Fq be suitable for the finitely generated virtually free group G. Define the
power series

Rabsim := (1 − s)Log
(
S−1 (F−1)) , Rss := Exp

(
Rabsim) (43)

for F as defined in (42) and denote their coefficients by Rabsim
m and Rss

m respectively. For each
dimension vector m ∈ T(G) these coefficients satisfy Rabsim

m , Rss
m ∈ Z[s] and

∀ α ≥ 1 : Rabsim
m

(
qα
) = rabsimm

(
qα
)
, Rss

m

(
qα
) = r ssm

(
qα
)

(44)

In fact, Rabsim
m , Rss

m are the unique polynomials satisfying (44).

Proof The uniqueness statement follows immediately from the fact that two polynomials in
a single variable have to coincide if they take the same values on infinitely many arguments.
For the rest of the claim it suffices to show that Rabsim

m , Rss
m ∈ Q[s](s−qα) for each α and

that Rabsim
m , Rss

m fulfill (44), because by (38) this would show that Rabsim
m , Rss

m ∈ Q[s](s−qα)

are rational functions counting the rational points of separated finite type Fq -schemes. So by
Lemma 2.9(a) they would automatically be in the polynomial ring Z[s]. For each α ≥ 1 we
consider the continuous Q-algebra homomorphism

S ◦
∫

: H((Fqα [G])) → Q[[T(G)]]

Using that Aut (Mx ) ∼= S(x)(Fqα ) by (17) and #(GL|m|(Fqα ).x) = PGL|m| (q
α)/#S(x)(Fqα ) for

x ∈ Repm(Fq [G])(Fqα ) and m ∈ T(G), we compute
∫

(ε) =
∑

m∈T(G),
dim(M)=m

1

# Aut (M)
tm =

∑

m∈T(G)

# Repm(Fq [G])(Fqα )

PGL|m|(q
α)

tm = evqα

(
S−1(F)

)

Hence,
∫ (

ε−1
) = evqα

(
S−1 (F−1

))
for α ≥ 1. Since we have a power series

∫ (
ε−1

) ∈
Q

q-tw[[T(G)]] for each power qα , we consider the expression
∫ (

ε−1
)
as a function in q-powers

and denote its value in qα by
∫ (

ε−1
)
|qα .

Now define for m ∈ T(G) and α ≥ 1

�m :=
∑

δ|m

1

δ(1 − sδ)
Rabsim
m/δ

(
sδ
) ∈ Q(s) , λm(qα) :=

∑

δ|m

1

δ(1 − qαδ)
rabsimm/δ

(
qαδ

) ∈ Q

By definition of � we have
∑

m �mtm = �
(
(1 − s)−1Rabsim

) = log ◦S−1 (F−1
)
. On the

other hand we have
∑

m∈T(G)

λm
(
qα
)
tm = log

(∫ (
ε−1)

|qα

)
= evqα ◦ log ◦S−1 (F−1)

by Lemma 5.3, where we use that log commutes with the evaluation homomorphism evqα .
Hence, �m(qα) = λm(qα) holds for all m, α. Via induction on gcd(m) it can now be seen
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that Rabsim
m ∈ Q[s](s−qα) and Rabsim

m (qα) = rabsimm (qα) for all α ≥ 1. (For the definition of
gcd(m) see (28) above.)

We deduce the claim for Rss from Lemma 5.2. Since we have already proven with the
last paragraph that Rabsim

m ∈ Z[s] for all m, we have that �
(
Rabsim

) ∈ Q[s][[T(G)]]. Hence,
Rss = exp ◦�

(
Rabsim

) ∈ Q[s][[T(G)]] too. Moreover one checks immediately that E(qα) =
evqα ◦�

(
Rabsim

)
for all α. So Lemma 5.2 shows that evqα

(
Rss
) = exp(E(qα)) = r ss(qα)

for all α ≥ 1. ��

Note that the counting polynomials are independent of the choice of the suitable field Fq ,
because all objects involved in (42) and (43) are.As already stated inRemark2.7 all statements
in Theorem 5.4 hold in the more general setting of representations of algebras of the form
(13) for Ai and A′

j completely split finite dimensional semisimple Fq -algebras with ι j , κ j

(not necessarily injective) K -algebra homomorphisms.
The proof of the following corollary is immediate from Theorem 5.4 and (39).

Corollary 5.5 Let Fq be suitable for G. For m ∈ T(G), c ≥ 1 define

Rsim
m,c :=

{
1
c

∑
γ |c μ (γ ) Rabsim

m/c

(
sc/γ

)
, if c|m

0, else

and Rsim
m := ∑

c|m Rsim
m,c. The polynomials R

sim
m,c, R

sim
m ∈ Q[s] satisfy

∀ α ≥ 1 : Rsim
m,c

(
qα
) = r simm,c

(
qα
)
, Rsim

m

(
qα
) = r simm

(
qα
)

6 Examples

6.1 Examples for Sect. 3

In this section we want to provide explicit examples of the objects discussed within this
paper. As all invariants we associated to a virtually free group are derived from the invariants
associated to its finite subgroups, we will start with applying the Examples 3.1(a), 3.6 and
3.9 to explicit finite groups. Since our invariants are independent of the choice of a suitable
field K , we may without loss of generality work over K = C.

6.1.1 Example: finite Abelian groups

AssumeF is a finiteAbelian group of order #F = a. Every (absolutely) simple representation
of F is of dimension 1. Hence, C[F] ∼= C

a , T(F) ∼= N
a
0 and | . | : Na

0 → N0 is given by
|m| = ∑

α m(α). 〈−,−〉F and PF
m are given by

〈m, n〉F =
a−1∑

α=0

m(α)n(α), PF
m := PGL|m|/

∏a−1
α=0 PGLm(α)

(45)

More generally: If F is any finite group, then 〈−,−〉F and PF
m are given by (45) where a is

the number of generators of the free commutative monoid T(F).
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6.1.2 Example: dihedral groups

Now consider the dihedral group Dc of order 2c. First consider the case c = 2a even:
There are 4 (absolutely) simple representations of dimension 1 and a−1 (absolutely) simple
representations of dimension 2. Hence, C[D2a] ∼= C

4 × M2(C)a−1, T(D2a) = N
a+3
0 and

|m| = ∑3
γ=0 m(γ ) + 2

∑a+2
γ=4 m(γ ).

If c = 2a + 3 is odd, we have 2 (absolutely) simple representations of dimension 1 and
a + 1 of dimension 2. So we have C[D2a+3] ∼= C

2 × M2(C)a+1, T(D2a+3) = N
a+3
0 and

|m| = ∑1
γ=0 m(γ ) + 2

∑a+2
γ=2 m(γ ).

6.1.3 Example: amalgamated free products of cyclic groups

We now consider the amalgamated free product Ca ∗Cc Cb. Denote the embeddings of Cc by
ι : Cc ↪→ Ca and κ : Cc ↪→ Cb. For each (absolutely) simple representation of Cc there are
a/c ones of Ca and b/c ones of Cb which are restricted to it:

We only show the case for ι as the other one is analogous. By basic arithmetic we may
always pick the generators of Cc = 〈s | sc = 1〉 and Ca = 〈t | ta = 1〉 such that ι(s) = ta/c,
because ι maps each generator of Cc to an element of order c. Let ξa ∈ C be a primitive a-th
root of unity and set ξc := ξ

a/c
a which is a primitive c-th root of unity.

The a pairwise non-isomorphic (absolutely) simple representation of Ca are given by
ρα : C[Ca] → M1(C), ρα(t) := ξα

a , for 0 ≤ α < a. Restricting ρα along ι to Cc gives
ρα ◦ ι : C[Cc] → M1(C), ρα ◦ ι(s) := (ξα

a )a/c = ξα
c . We now conclude by observing that

for all γ ∈ {0, 1, . . . , c − 1} we have #{0 ≤ α < a | α ≡ γ (mod c)} = a/c.
After reordering the basis elements of T(Ca) = N

a
0 we may assume that T(ι) is given by

m �→ (
∑a/c−1

δ=0 m(γ + δc))γ as well as the analogous formula for T(κ). Hence, by Corollary
3.3 T(Ca ∗Cc Cb) is given by

N
a
0 ×N

c
0
N
b
0 =

{
(m, n) ∈ N

a
0 × N

b
0 | ∀ 0 ≤ γ < c :

a/c−1∑

δ=0

m(γ + δc) =
b/c−1∑

ε=0

n(γ + εc)
}

with |(m, n)| = ∑
α m(α) = ∑

β n(β). By Corollary 3.8 and (45) the Euler form is given by

〈(m, n), (u, v)〉Ca∗CcCb =
a−1∑

α=0

m(α)u(α) +
b−1∑

β=0

n(β)v(β)

−
c−1∑

γ=0

a/c−1∑

δ=0

b/c−1∑

ε=0

m(γ + δc)v(γ + εc)

Note that by permuting the entries ofNa
0×N

b
0 we obtain amonoid isomorphismN

a
0×N

c
0
N
b
0

∼=
(
N
a/c
0 ×N0 N

b/c
0

)c ∼= T(Ca/c ∗ Cb/c)
c.

6.1.4 Example: PGL2(Z) and GL2(Z)

Our last two examples in this subsection are the groupsPGL2(Z) ∼= D2∗C2D3 andGL2(Z) ∼=
D4 ∗C2×C2 D6. Using Corollary 3.3 and the computation of T(Dc) above, one can compute
that T(PGL2(Z)) is isomorphic to

{
(m, n) ∈ N

4
0 × N

3
0 | m(0) + m(1) = n(0) + n(2),m(2) + m(3) = n(1) + n(2)

}
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with |(m, n)| = ∑
γ m(γ ) = n(0) + n(1) + 2n(2) and that T(GL2(Z)) is isomorphic to

{(m, n) ∈ N
5
0 × N

6
0 | (∗)} where (∗) are the four relations

m(0) + m(1) = n(0) + n(4),m(4) = n(1) + n(5) = n(2) + n(5),m(2) + m(3) = n(3) + n(4)

and with |(m, n)| = 2m(4) +∑3
γ=0 m(γ ) = 2n(4) + 2n(5) +∑3

δ=0 n(δ).

6.2 Examples of counting polynomials

We now want to present some examples for the counting polynomials. A first trivial example
are the counting polynomials of a finite group F: Here dim : iso(C[F]) → T(F) is bijective
by Example 3.1. Hence, Rss,F

m = 1 for all m ∈ T(F) and Rabsim,F
m = 1 if the unique

[M] ∈ iso(C[F]) of dim(M) = m is (absolutely) simple and zero otherwise.
For G an arbitrary finitely generated virtually free group given by (9) one first needs to

compute the free commutativemonoids T(Gi ) and T(G′
j ) as well as the homomorphisms T(ι j )

and T(κ j ) between them as we have done above for some examples, i.e. one has to classify
the representation theory of these finite groups e.g. over C. The rest of the computation of
the counting polynomials can be done by a computer, e.g. using the SageMath code [10]. All
of the examples below (and in fact many more) have been computed in this way.

6.2.1 Example: (generalized) infinite dihedral group

First consider the group Gc := C2c ∗Cc C2c. Gc is a finite central extension of the infinite
dihedral group D∞ = C2 ∗ C2. We will therefore call the groups Gc, c ≥ 1, generalized
infinite dihedral groups. As discussed above their dimension vector monoids can be written
as T(Gc) ∼= (

N
2
0 ×N0 N

2
0

)c
. For the dimension vector m = (m0, . . . ,mc−1) we have

Rabsim
m =

⎧
⎪⎨

⎪⎩

1, if |m| = 1

s − 2, if ∃ γ s.t. mγ = (1, 1, 1, 1) & mδ = (0, 0, 0, 0) ∀ δ �= γ

0, else

(46)

Inparticular all absolutely simple representations ofGc over a suitablefieldoccur in dimension
1 or 2. The group Gc is among the few groups for which it is possible to determine all the
polynomials Rabsim

m explicitly. In fact, we not only count but classify all absolutely simple
representations of Gc in Sect. 6.4 below.

6.2.2 Example: PSL2(Z)

We now consider PSL2(Z) ∼= C2 ∗ C3 with T(PSL2(Z)) ∼= N
2
0 ×N0 N

3
0. For |m| ≤ 4 those

Rabsim,PSL2(Z)
m which are non-zero are listed below.

m Rabsim,PSL2(Z)
m

((1, 0), (1, 0, 0)) 1
((1, 0), (0, 1, 0)) 1
((1, 0), (0, 0, 1)) 1
((0, 1), (1, 0, 0)) 1
((0, 1), (0, 1, 0)) 1
((0, 1), (0, 0, 1)) 1
((1, 1), (1, 1, 0)) s − 2

m Rabsim,PSL2(Z)
m

((1, 1), (1, 0, 1)) s − 2
((1, 1), (0, 1, 1)) s − 2
((2, 1), (1, 1, 1)) s2 − 3s + 3
((1, 2), (1, 1, 1)) s2 − 3s + 3
((2, 2), (2, 1, 1)) s3 − 3s2 + 5s − 4
((2, 2), (1, 2, 1)) s3 − 3s2 + 5s − 4
((2, 2), (1, 1, 2)) s3 − 3s2 + 5s − 4
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For |m| ≤ 5 all non-zero Rabsim,PSL2(Z)
m in a given total dimension |m| coincide. However,

from total dimension |m| = 6 on this fails as the following polynomials show.

m Rabsim,PSL2(Z)
m m Rabsim,PSL2(Z)

m

((4, 2), (2, 2, 2)) s5 − 4s4 + 6s3 − 7s2 + 9s − 6 ((3, 3), (1, 3, 2)) s5 − 3s4 + 5s3 − 7s2 + 9s − 6
((3, 3), (3, 2, 1)) s5 − 3s4 + 5s3 − 7s2 + 9s − 6 ((3, 3), (2, 1, 3)) s5 − 3s4 + 5s3 − 7s2 + 9s − 6
((3, 3), (2, 3, 1)) s5 − 3s4 + 5s3 − 7s2 + 9s − 6 ((3, 3), (1, 2, 3)) s5 − 3s4 + 5s3 − 7s2 + 9s − 6
((3, 3), (3, 1, 2)) s5 − 3s4 + 5s3 − 7s2 + 9s − 6 ((2, 4), (2, 2, 2)) s5 − 4s4 + 6s3 − 7s2 + 9s − 6
((3, 3), (2, 2, 2)) s7 + 3s6 − 10s5 + 3s4 + 14s3 − 27s2 + 35s − 23

The examples above suggest that there are symmetries on the sets Td(PSL2(Z)) along
which the counting polynomials stay the same. This is indeed the case for all of the groups
Ca ∗Cc Cb and we will discuss these symmetries in Sect. 7 below.

6.2.3 Example: SL2(Z)

Recall thatSL2(Z) is isomorphic to the amalgamated free productC4∗C2C6. The polynomials

Rabsim,SL2(Z)
m are basically the same as those for PSL2(Z). More generally we have the

following result.

Proposition 6.1 Let a, b ∈ N≥1 be natural numbers, c ∈ N≥1 be a common divisor of a and
b and Ca ∗Cc Cb be the amalgamated free product of the respective cyclic groups defined by
injective group homomorphismsCc ↪→ Ca,Cb. If m = (m0, . . . ,mc−1) ∈ T(Ca/c∗Cb/c)

c ∼=
T(Ca ∗Cc Cb) is any dimension vector, then we have

R
absim,Ca∗CcCb
m =

{
R
absim,Ca/c∗Cb/c
mγ

, if ∃ γ s.t. mδ = 0 ∀ δ �= γ

0, else

Proof Let Fq be a suitable field for Ca ∗Cc Cb and ρ : Fq [Ca ∗Cc Cb] → Md(Fq) be an
absolutely simple representation. Since Fq is suitable, there are primitive a-th, b-th and c-th
roots of unity. We consider the presentation

Ca ∗Cc Cb = 〈 f , g | f a/c = gb/c, f a〉
and denote h := f a/c = gb/c. Since h ∈ Cc = Z(Ca ∗Cc Cb) is in the center and the only
endomorphisms of ρ are scalarmultiples of the identity, ρ(h) = z.1d is a scalarmatrix, where
z is a c-th root of unity. Note that z only depends on the isomorphism class of ρ, because
z.1d ∈ GLd(Fq) is a fix point of the conjugation action. Hence, we have a well-defined map
φ : absimd(Fq [Ca ∗Cc Cb]) → μc(Fq), [M] → zM, where μc(Fq) denotes the group of
c-th roots of unity in Fq .

Let m = (m0, . . . ,mc−1) ∈ T(Ca/c ∗ Cb/c)
c be the dimension vector of ρ. Recall that

every representation ofCc is given by a diagonalizable matrix with eigen values fromμc(Fq)

associated to its generator h, that the dimension vector of a representation of Cc counts the
multiplicities of the eigen values and that the dimension vector uniquely determines the
isomorphism class of the representation (see Example 3.1(a)). The fact that ρ(h) is a scalar
matrix shows that ρ restricted to Cc is a direct sum of d copies of the same one-dimensional
representation. This shows that mγ is zero for all but one 0 ≤ γ < c.

Furthermore note that we may consider absimd(Fq [Ca/c ∗ Cb/c]) as a subset of
absimd(Fq [Ca ∗Cc Cb]) via restriction along the surjective homomorphism

π : Ca ∗Cc Cb → Ca/c ∗ Cb/c
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i.e. wemap a representation ρ ofCa/c∗Cb/c to ρ◦π . This identifies the set absimd(Fq [Ca/c∗
Cb/c]) with the fibre φ−1(1), because h generates Cc = Ker (π).

We now construct a bijection between an arbitrary fibre φ−1(z), z ∈ μc(Fq), and the fibre

φ−1(1). First choose za ∈ μa(Fq) and zb ∈ μb(Fq) satisfying za/c
a = z and zb/cb = z. If

ρ : Fq [Ca ∗Cc Cb] → Md(Fq) is an absolutely simple representation, whose isomorphism
class is in φ−1(z), then define a representation ρ via

ρ( f ) := z−1
a .ρ( f ), ρ(g) := z−1

b .ρ(g)

ρ is again absolutely simple and the map ρ �→ ρ induces the required bijection φ−1(z) →
φ−1(1) = absimd(Fq [Ca/c ∗ Cb/c]). Hence,

R
absim,Ca∗CcCb
m (q) = R

absim,Ca/c∗Cb/c
mγ

(q)

for all suitable fields Fq . In particular the polynomials must coincide. ��

However, the analogous statement for the counting polynomials R
ss,Ca∗CcCb
m is false.

6.3 Counting polynomials of character varieties

We now want to give examples for the counting polynomials Rss,G
d . Recall that these give

the E-polynomials of the character varieties XG(GLd(C)) = M (C[G], d) as discussed in
Sect. 2.4.3. All the polynomials listed in this subsection can be computed by evaluating
the formulas (42) and (43) for the dimension vector monoids computed in Sect. 6.1. The
computations have been carried out using the SageMath code [10].

d Rss,PSL2(Z)
d

1 6
2 3s + 15
3 2s2 + 12s + 26
4 3s3 + 9s2 + 24s + 39
5 6s4 + 6s3 + 24s2 + 36s + 54
6 s7 + 3s6 − 2s5 + 25s4 + 56s2 + 41s + 71
7 6s8 + 12s7 − 30s6 + 54s5 + 36s3 + 54s2 + 66s + 90
8 3s11 + 9s10 + 9s9 − 33s8 + 66s7 − 60s6 + 81s5 + 24s4 + 33s3 + 93s2 + 66s + 111

The highest d for which the author has computed Rss,PSL2(Z)
d so far is d = 12. Rss,PSL2(Z)

12
is given by s25 + 3s24 + 18s23 + 38s22 + 67s21 + 48s20 − 49s19 − 210s18 − 186s17 +
329s16 + 738s15 − 1131s14 + 141s13 + 264s12 + 657s11 − 1067s10 + 542s9 − 216s8 +
753s7 − 786s6 + 508s5 + 313s4 − 224s3 + 476s2 − 143s + 215.

d Rss,PSL2(Z)
d

1 12
2 6s + 66
3 4s2 + 60s + 232
4 6s3 + 51s2 + 282s + 615
5 12s4 + 60s3 + 288s2 + 876s + 1356
6 2s7 + 6s6 − 4s5 + 144s4 + 264s3 + 1062s2 + 2092s + 2636
7 12s8 + 36s7 − 24s6 + 132s5 + 624s4 + 864s3 + 2916s2 + 4212s + 4680
8 6s11 + 18s10 + 18s9 + 12s8 + 324s7 − 369s6 + 1122s5 + 1575s4 + 2532s3 + 6366s2 + 7620s + 7761
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d Rss,GL2(Z)
d

1 4
2 s + 14
3 8s + 28
4 3s2 + 26s + 56
5 20s2 + 56s + 88
6 s4 + 8s3 + 59s2 + 101s + 147
7 8s4 + 36s3 + 128s2 + 156s + 212
8 2s6 + 6s5 + 34s4 + 96s3 + 223s2 + 242s + 323
9 4s7 + 16s6 − 8s5 + 148s4 + 140s3 + 400s2 + 320s + 440
10 s9 + 8s8 + 20s7 + 23s6 + 35s5 + 306s4 + 206s3 + 647s2 + 435s + 628

d Rss,PGL2(Z)
d

1 4
2 14
3 4s + 28
4 s2 + 13s + 55
5 8s2 + 32s + 84
6 6s3 + 18s2 + 60s + 132
7 4s4 + 16s3 + 44s2 + 96s + 180
8 s6 + 5s5 + 11s4 + 40s3 + 64s2 + 152s + 253
9 4s7 + 12s6 − 20s5 + 80s4 + 16s3 + 156s2 + 188s + 324
10 6s8 + 22s7 − 16s5 + 154s4 − 6s3 + 256s2 + 242s + 426
11 4s10 + 20s9 + 36s8 − 72s7 + 72s6 + 56s5 + 100s4 + 148s3 + 228s2 + 372s + 524
12 s13 + 4s12 + 19s11 + 27s10 − 25s9 − 15s8 + 209s7 − 268s6 + 303s5 + 178s4 + 60s3 + 438s2 + 420s + 659

6.4 Classification for generalized infinite dihedral groups

Wewill now classify all absolutely simple representations ofGc = C2c∗Cc C2c over a suitable
ground field. This will in particular prove that the counting polynomials Rabsim,Gc

m are given
by (46). Recall that the dimension vector monoid of Gc is given by T(Gc) ∼= (

N
2
0 ×N0 N

2
0

)c
.

Proposition 6.2 Let K be a suitable field for Gc, i.e. char (K ) does not divide 2c and K is
perfect and contains a primitive 2c-th root of unity. Denote its group of 2c-th roots of unity
by μ2c(K ). Consider the presentation Gc = 〈 f , g | f 2 = g2, f 2c = 1〉. In dimension 1
all representations ρ : Gc → GL1(K ) are absolutely simple and pairwise non-isomorphic.
They are given by the set {(x, y) ∈ μ2c(K ) | x2 = y2} via the bijection ρ �→ (ρ( f ), ρ(g)).

All other absolutely simple representations ρ of Gc have dimension 2 and their isomor-
phism classes are in bijection with the set

{(x, y) | x ∈ μ2c(K )/{±1}, y ∈ K \ {±x}}
where an explicit representative is given by

(ρ( f ), ρ(g)) =
((

x 0
0 −x

)
,

(
y 1

x2 − y2 −y

))
(47)

Proof The case of dimension 1 is elementary. For dimension d ≥ 2 we first note that ρ( f )
and ρ(g) are diagonalizable with eigen values in μ2c(K ), because char (K ) is suitable.

Now take h := f 2 = g2. As h ∈ Z(Gc) is in the center, ρ(h) = z.1d is a scalar matrix
with z ∈ μc(K ) if ρ is absolutely simple. Denote the two square roots of z by ±x . By
construction ρ( f ) and ρ(g) have no eigen values except for ±x . Since a common eigen
vector of ρ( f ) and ρ(g) would contradict the simplicity of ρ, each eigen value of ρ( f ) and
ρ(g) has to have multiplicity ≥ 1. So we may assume without loss of generality that

ρ( f ) =
(
x .1d1 0
0 −x .1d2

)
(48)
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with d1 = d − d2 �= 0, d . Note that the stabilizer subgroup S := S(ρ( f )) ⊆ GLd(K ) of the
matrix ρ( f ) with respect to the conjugation action on GLd(K ) is given by block diagonal
matrices and can be canonically identified with GLd1(K ) × GLd2(K ). Consider the set

Y :=
{
V ∈ GLd(K ) |

((
x .1d1 0
0 −x .1d2

)
, V

)
∈ Repabsimd (K [Gc])(K )

}

of matrices which together with the matrix (48) define an absolutely simple representation.
The orbits of the conjugation action of S on Y are in canonical bijection with the GLd(K )-
orbits of the subset X ⊆ Repabsimd (K [Gc])(K ) given by

X :=
{
ρ′ ∈ Repabsimd (K [Gc])(K ) | GLd(K ).ρ′( f ) = GLd(K ).

(
x .1d1 0
0 −x .1d2

)}

because X is canonically in GLd(K )-equivariant bijection with the associated fibre space
GLd(K ) ×S Y . (Note that X is the subset of all absolutely simple representations for which
the matrix ρ′( f ) is conjugated to (48).) So it suffices to show that the set of S-orbits of Y is
empty for d ≥ 3 and for d = 2 given by

{(
y 1

x2 − y2 −y

)
∈ GL2(K ) | y ∈ K \ {±x}

}

Let ρ(g) = (
L M
N W

)
be any element of Y where L ∈ Md1×d1(K ), M ∈ Md1×d2(K ) etc. The

action of GLd1(K ) × GLd2(K ) ∼= S on Y is given by

(t1, t2).

(
L M
N W

)
=
(
t1Lt

−1
1 t1Mt−1

2
t2Nt−1

1 t2Wt−1
2

)

Since ρ is simple, we know that t1Mt−1
2 , t2Nt−1

1 �= 0 for all (t1, t2) as otherwise the linear
subspace 0×Kd2 or Kd1 ×0 of Kd would define a non-trivial subrepresentation contradicting
the simplicity of ρ.

For d = 2 we have d1 = d2 = 1 and may take (t1, t2) = (1, M) to get (t1, t2).ρ(g) =(
L ′ 1
N ′ W ′

)
. As the multiplicity of both eigen values ±x of ρ(g) must be 1 as well, we have

Tr(ρ(g)) = 0.Using this andρ(g)2 = z.12 we obtain that y := L ′ = −W ′ and N ′ = x2−y2.
This proves the claim for dimension 2.

Now assume ρ were an absolutely simple representation of dimension d ≥ 3. First we
note that d1 = d2: Denote by c1 and c2 the multiplicities of the eigen values±x for the matrix
ρ(g). We have seen above that 0 < c1, c2 < d . Since every simultaneous eigen vector of
ρ( f ) and ρ(g) would span a subrepresentation of ρ, the multiplicities have to fulfill

cγ + dδ ≤ d ∀ 1 ≤ γ, δ ≤ 2 (49)

The inequalities (49) yield that d = 2r is even and r = c1 = c2 = d1 = d2. Furthermore we
may assume for ρ(g) = (

L M
N W

)
with L, M, N ,W ∈ Mr×r (K ) that M = 1r :

By standard linear algebra arguments we may find (t1, t2) ∈ GLr (K )2 s.t. t1Mt−1
2 =(

1rk(M) 0
0 0

)
and to obtain M = 1r it remains to show that rk(M) = r . We write L =

(
L1 L2
L3 L4

)
and W =

(
W1 W2
W3 W4

)
as block matrices with L1,W1 ∈ Mrk(M)×rk(M)(K ). With the
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straightforward computation

z.1d = ρ(g)2 =

⎛

⎜
⎜
⎝

∗ ∗ L1 + W1 W2

∗ ∗ L3 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎞

⎟
⎟
⎠

we see that W2 = 0. This means that the last r − rk(M) basis elements span a subrepresen-
tation, so by simpleness of ρ we have r = rk(M).

By again using ρ(g)2 = z.1d we may deduce ρ(g) =
(

L 1r

z.1r−L2 −L

)
. Now let v ∈ K

r

be an eigen vector of L considered as a matrix over K . One checks easily that
(
v
0

)
and

(0
v

)

span a two dimensional subrepresentation of the base extension ρ ⊗K K which contradicts
our assumption that ρ is absolutely simple. ��

Proof of (46) Recall fromSect. 6.1.3 that the dimension vectormonoidT(Gc) ∼= (N2
0×N0N

2
0)

c

is given by

{
(m0, . . . ,mc−1) ∈ (N2

0 × N
2
0

)c | ∀ 0 ≤ γ < c : mγ (0) + mγ (1) = mγ (2) + mγ (3)
}

Since all one-dimensional representations are absolutely simple andpairwise non-isomorphic,
Rabsim
m = 1 for all m ∈ T1(Gc). Moreover from Proposition 6.2 we know that Rabsim

m = 0 for
|m| �= 1, 2 as there are only absolutely simple representations of Gc in dimension 1 and 2.

Now assume ρ := ρx,y is the absolutely simple representation of Gc of dimension 2 given
by (47). Then ρ(h) = z.12 for h := f 2 = g2 where z := x2 is a c-th root of unity. Hence,
ρ restricted to Cc has a single simple subrepresentation up to isomorphism occurring with
multiplicity 2, i.e. there is a γ ∈ {0, 1, . . . , c − 1} such that

mδ(0) + mδ(1) = mδ(2) + mδ(3) =
{
2, if δ = γ

0, else

However, as in the proof of Proposition 6.2 both eigen values ±x must have multiplicity 1
for both ρ( f ) and ρ(g), i.e. mγ = (1, 1, 1, 1).

If we choose a primitive 2c-th root of unity ξ2c, then

dim(ρξ
γ
2c,y

) = (m0, . . . ,mc1) with mδ =
{

(1, 1, 1, 1), if δ = γ

0, else

for all 0 ≤ γ < c. (Note that the representations ρξ
γ
2c,y

and ρ
ξ
c+γ
2c ,y are isomorphic as

ξ c2c = −1.) Hence, #(Repabsimdim(ρx,y)
(Fq [Gc])(Fq)) = #(Fq\{±x}) = q − 2. ��

7 Structural properties

We now discuss some of the main structural properties of the counting polynomials: their
degree and the symmetries occuring among them.As before denote byG the finitely generated
virtually free group fixed throughout this paper and denote the counting polynomials Rabsim,G

m

and Rss,G
m simply by Rabsim

m and Rss
m .
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7.1 Degrees of counting polynomials

Proposition 7.1 Let m ∈ T(G) be an arbitrary dimension vector and Fq be suitable for G.
The polynomial Rss

m is monic of degree dim M (Fq [G],m). If Rabsim
m �= 0, then Rabsim

m is monic
too and of the same degree

dim M (Fq [G],m) = dim Mabsim(Fq [G],m) = 1 − 〈m,m〉G (50)

Proof We first recall a well-known theorem about counting polynomials which is due to S.
Lang and A.Weil: Let X be a polynomial countFq -scheme. If X is geometrically irreducible,
then its counting polynomial is monic of degree dim (X) (see [19, Thm. 7.7.1]). This proves
the claim on Rss

m , since it is a counting polynomial of M (Fq [G],m) which is geometrically
irreducible, because the connected component Repm(Fq [G]) surjects onto M (Fq [G],m) ∼=
M (Fq [G],m)×Fq Spec

(
Fq

)
and is irreducible byLemma5.1. (In particularwe have Rss

m �= 0

as M (Fq [G],m)(Fq) is non-empty, because Repm(Fq [G])(Fq) is.)
The claim on Rabsim

m is proven analogously by replacing Repm(Fq [G]) with its open sub-
scheme Repabsimm (Fq [G]) and it remains to prove the two equations in (50): The first equation
follows from Mabsim(Fq [G],m) ⊆ M (Fq [G],m) being open and non-empty if Rabsim

m �= 0.
For the second equation we note that there is an induced PGL|m|,Fq -action on representation
spaces that operates freely on Repabsimm (Fq [G]) and that its quotient Repabsimm (Fq [G])/PGL|m|,Fq is
isomorphic to Mabsim(Fq [G],m). Hence,

dim Mabsim(Fq [G],m) = dim Repabsimm (Fq [G]) − dim PGL|m|,Fq
Moreover we have dim Repabsimm (Fq [G]) = dim Repm(Fq [G]), because Repm(Fq [G]) is
geometrically irreducible. So the second equation in (50) is equivalent to the identity
deg PG

m = |m|2 − 〈m,m〉G which can be verified using our general formula (31). ��

7.2 Symmetries of counting polynomials

In Sect. 6.2 we have seen that the counting polynomials are invariant with respect to certain
symmetries on the dimension vectors of some virtually free groups G. More specifically there
is a finite group SG acting on K [G] for K suitable and by functoriality on each Td(G), d ∈ N0

such that Rabsim
m = Rabsim

n and Rss
m = Rss

n if m, n ∈ Td(G) belong to the same SG-orbit. We
will now sketch the construction of this group and its action on K [G]. While the general
procedure works for arbitrary finitely generated virtually free groups we will only make it
explicit in the special case that the finite groups Gi occurring in (9) are Abelian.

Let K be a field which is suitable for G. Hence, all of the finite dimensional group algebras
in (12) are of the form

C ∼= M1(K )c1 × M2(K )c2 × · · · × Me(K )ce

We construct the group SG and its action iteratively and we start with the case of (group
algebras of) finite groups: The symmetric group Scε acts naturally on Mε(K )cε via
τ.(M1, . . . , Mcε ) = (Mτ(1), . . . , Mτ(cε )) for each 1 ≤ ε ≤ e, hence, SC := Sc1 × · · · × Sce
acts on C via K -algebra automorphisms.

Nowassume A, B,C are finite groups acting via K -algebra automorphisms on K -algebras
A,B, C and assume we are given group homomorphisms A, B → C and K -algebra homo-
morphisms C → A,Bwhich are A- and B-equivariant. Then A×C B acts naturally onA∗CB
via K -algebra automorphisms.
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Finally assume we have group homomorphisms ϕ, θ : A → C and K -algebra homo-
morphisms ι, κ : C → A such that ι is A-equivariant with respect to ϕ and κ via θ . Then
Eq(ϕ, θ) ⊆ A acts naturally on A∗ι,κ

C via K -algebra automorphisms.
All of the discussion so far works without any assumptions on the involved algebras.

However, to iteratively get an induced action on K [G] from the actions on the group algebras
K [Gi ] and K [G′

j ] we need group homomorphisms SGs( j) → SG′
j

← SGt( j) for each j such

that the embeddings K [Gs( j)] ←↩ K [G′
j ] ↪→ K [Gt( j)] become SGs( j) - and SGt( j) -equivariant.

If G′
j is the trivial group for each j , this obstruction is trivial and we obtain an action of

∏I
i=0 SGi on K [G].
However, in general this is a non-trivial combinatorial task which is why we assume from

now on that Gi is Abelian for each 0 ≤ i ≤ I .7 Hence, each of the C above is of the form Kc,
c = dimK (C) with an action of the symmetric group Sc. We consider an injective K -algebra
homomorphism ι : Kc ↪→ Kb and denote by e′

γ , 0 ≤ γ < c the γ -th standard basis vector

of Kc and by eβ , 0 ≤ β < b the β-th standard basis vector of Kb. Both (e′
γ )γ and (eβ)β

are systems of pairwise orthogonal central primitive idempotents. Moreover note that all
idempotent elements of Kb are of the form

∑

β∈J
eβ

for some subset J ⊆ {0, 1, . . . , b − 1}. Hence, there is a partition

I := {0, 1, . . . , b − 1} =
c−1⊔

γ=0

Iγ (51)

such that ι(e′
γ ) = ∑

β∈Iγ eβ , because the elements (ι(e′
γ ))γ are pairwise orthogonal idem-

potents summing up to ι(1) = 1.
Now recall that each (absolutely) simple Kb-module is isomorphic to precisely one of the

principal ideals Kb·eβ = eβ ·Kb and that the (absolutely) simple Kc-modules analogously are
given by Kc ·e′

γ = e′
γ ·Kc. By construction of the partition (51) we have ι∗(Kb ·eβ) ∼= Kc ·e′

γ

for each β ∈ Iγ . Now consider the subgroup

Sb := {τ ∈ Sb | ∀ 0 ≤ γ < c : ∃! 0 ≤ τ(γ ) < c : τ(Iγ ) = Iτ(γ )} (52)

of permutations τ on the set I that preserve the partition (51). We obtain a group homomor-
phism Sb → Sc, τ �→ τ with respect to which the K -algebra embedding ι is Sb-equivariant.

To obtain the group SG and its action we now apply the above procedure for all 1 ≤ j ≤
I + J to the algebra homomorphisms ι j : K [G′

j ] ↪→ K [Gs( j)], κ j : K [G′
j ] ↪→ K [Gt( j)] and

the groups SGs( j) , SGt( j) and SG′
j
. This replaces the finite groups SGi by subgroups SGi ⊆ SGi

analogously to (52) admitting group homomorphisms SGs( j) → SG′
j
← SGt( j) for each j with

respect to which ι j and κ j become equivariant. (Note that some of the groups SGi might
end up being trivial depending on the occurring combinatorics.) Now deploying the iterative
process described above, where for each 1 ≤ j ≤ I we form a fibre product over SG′

j
and

for each I + 1 ≤ j ≤ I + J we form an equalizer over SG′
j
, we obtain the group SG as a

limit of the groups SGi and the groups SG′
j
with an induced action on K [G] via K -algebra

automorphisms.

7 Of course one could also consider a hybrid situation where for each j we have G′
j being trivial or Gs( j) and

Gt( j) being Abelian.
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By functoriality every group action on K [G] via K -algebra automorphisms yields an
induced action on M(Fq [G], d), Mabsim(Fq [G], d) and Td(G) for each d ∈ N0. If m, n ∈
Td(G) lie in the same orbit, then we obtain isomorphisms

Mabsim(Fq [G],m) ∼= Mabsim(Fq [G], n), M(Fq [G],m) ∼= M(Fq [G], n)

So in particular the counting polynomials for m and n coincide.

Example 7.2 We consider the case of G = Ca ∗Cc Cb for a, b ≥ 2, c a common divisor of
a, b. As discussed in Sect. 6.1.3 we may reorder the basis elements of Na

0, N
b
0 and N

c
0 such

that T(ι) : Na
0 → N

c
0 is given by m �→ (

∑a/c−1
δ=0 m(γ + δc))γ and analogously for T(κ).

Hence, the partitions (51) of I := {0, . . . , a − 1} and J := {0, 1, . . . , b − 1} are given by
Iγ = {α | α ≡ γ (mod c)}, Jγ = {β | β ≡ γ (mod c)} for all 0 ≤ γ < c. This determines
the subgroups Sa ⊆ Sa and Sb ⊆ Sb.

The action of SG = Sa ×Sc Sb on T(Ca ∗Cc Cb) ∼= N
a
0 ×N

c
0
N
b
0 coincides with the restriction

of the natural Sa × Sb-action on N
a
0 × N

b
0.

Remark 7.3 Note that our construction of the finite group SG and its action depends on the
choice of decomposition (9) which we fixed for our finitely generated virtually free group
G. However, since the sets of dimension vectors Td(G) and the counting polynomials Rabsim

m
and Rss

m up to reordering only depend on the isomorphism class of G, the symmetries among
the counting polynomials also do not depend on the choice of decomposition. An interesting
question to consider would be how the groups and their actions obtained from the above
procedure for different decompositions are related.
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