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Abstract

The influence of a magnetic field on quantum states of matter gives rise to a wealth of phe-
nomena that are at the heart of modern condensed matter research. The theoretical descrip-
tion of these fascinating effects typically involves the notion of topology, which has captivated
researchers of solid-state physics for over five decades. A defining property of topologically
nontrivial states of matter is the existence of characteristic energy excitations, which either are
localized near the boundary of the system or constitute exotic quasiparticles in the bulk.

This thesis investigates three phenomena induced by magnetic fields in solid-state sys-
tems, which are either intrinsically topological or acquire topological properties in the pres-
ence of magnetic fields. The majority of this work is devoted to unconventional phases of
two-dimensional magnets, called quantum spin liquids (QSLs), which defy description within
the paradigmatic Ginzburg-Landau theory of phase transitions and exhibit striking quantum
effects. In the specific QSL studied in this thesis, an external magnetic field induces the forma-
tion of energy excitations termed Ising anyons. These exotic quasiparticles exhibit fractional
exchange statistics and are intriguing beyond the viewpoint of fundamental physics due to po-
tential applications in quantum information processing. The objective of my Publications P2
and P3 is to design novel experiments that detect andmanipulate Ising anyons in the QSL using
local electric probes, such as scanning tunneling microscopy. These studies are based on a mi-
croscopic description of specific transition metal compounds which, according to theoretical
predictions, might stabilize the QSL phase.

A major difficulty faced by previous experiments on these candidate materials is given by
trivial effects that obscure the unambiguous interpretation of results. To validate our predic-
tions in Publications P2 and P3, we therefore studied a more conventional field-induced state
of matter, namely, the (partially) polarized phase of two-dimensional magnets. The elemental
excitations of this phase are magnons and, in the case of the aforementioned transition metal
compounds, acquire topological properties. We find that magnetic impurities in the sample
can trap magnon bound states and thereby generate low-energy signatures reminiscent of the
predictions for Ising anyons. However, in Publication P4, we detail how these magnon bound
states are associated with a local spin flip transition and can, therefore, be fully characterized
using the proposed experimental set-up. This result strongly suggests that local electric probes
can distinguish Ising anyons in the putative QSL phase from trivial excitations in the polarized
state. Moreover, the discovered mechanism is generic in polarized magnets and holds promise
for applications in spintronic or magnonic devices involving van der Waals materials.

During my doctoral research, I did not only study low-dimensional magnets. In Publi-
cation P1, my collaborators and I investigated a class of topological semimetals called Weyl
semimetals. These three-dimensional conductors are characterized by low-energy excitations
which formally behave as ultrarelativistic chiral fermions. This fact entails the solid-state re-
alization of various phenomena studied in theoretical high-energy particle physics, such as
the anomalous response of massless fermions to external electromagnetic fields. On the other
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hand, Weyl semimetals host localized surface states which reflect the nontrivial topology of
these compounds and form a remarkable open energy contour termed Fermi arc. The interplay
of Fermi arcs and the anomalous response of bulk excitations in a magnetic field gives rise to
an exotic cyclotron motion which manifests intriguing non-local effects. In Publication P1, we
provide the full quantum mechanical description of this phenomenon and thereby go beyond
previous theoretical works which relied on a semiclassical approximation.

My thesis is structured as follows. Chapter 1 provides an extensive introduction to topol-
ogy in condensed matter physics and the phenomenology of Weyl semimetals and QSLs. Sub-
sequently, Chapter 2 details the putative QSL phase in the transitionmetal compounds and sets
the stage for my publications listed in Chapter 3.
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Kurzfassung

Der Einfluss eines Magnetfelds auf Quantenzustände der Materie erzeugt eine Vielzahl von
Phänomenen, die von zentraler Bedeutung für die moderne Forschung der kondensiertenMa-
terie sind. Die Beschreibung dieser faszinierenden Effekte basiert in der Regel auf Konzepten
der Topologie, die im Rahmen der Festkörperphysik die Wissenschaft seit über fünfzig Jahren
begeistern. Eine definierende Eigenschaft von topologisch nichttrivialen Materiezuständen ist
die Existenz charakteristischerAnregungen, die entweder nahe demRand einer Probe lokalisiert
sind oder exotischen Quasiteilchen im Inneren des Systems entsprechen.

Diese Thesis erforscht drei durchMagnetfelder induzierte Phänome in Festkörpern, die en-
tweder von topologischerNatur sind oder in einemMagnetfeld topologische Eigenschaften er-
halten. DieMehrheit dieser Arbeitwidmet sich unkonventionellen Phasen von zweidimension-
alen Magneten namensQuanten-Spin-Flüssigkeiten (QSF), die nicht im Rahmen der Ginzburg-
Landau-Theorie der Phasenübergänge beschriebenwerdenkönnenundbemerkenswerteQuan-
teneffekte aufweisen. In der spezifischen QSF, die hier betrachtet wird, generiert ein externes
Magnetfeld Anregungen namens Ising-Anyonen. Diese exotischen Quasiteilchen besitzen frak-
tionierte Austauschstatistiken und sind nicht nur für die Grundlagenforschung interessant,
sondernmöglicherweise für Anwendungen in der Quanteninformationsverarbeitung geeignet.
Das Ziel meiner Publikationen P2 und P3 ist die Konzipierung neuartiger Experimente, die
Ising-Anyonen in derQSFmithilfe lokaler elektrischer Proben, wie z.B.mit einemRastertunnel-
mikroskop, detektieren und manipulieren können. Diese Arbeiten basieren auf einer mikro-
skopischen Beschreibung bestimmter Übergangsmetallverbindungen, die der Theorie zufolge
eine QSF stabilieren können.

Einewesentliche Schwierigkeit, die in bisherigenExperimenten zu diesenMaterialien aufge-
treten ist, besteht in trivalen Effekten, die eine eindeutige Interpretation der Messergebnisse
verhindern können. Um unsere Vorhersagen in den Publikationen P2 und P3 zu validieren,
haben wir daher auch einen gewöhnlicheren, durch ein Magnetfeld induzierten Zustand er-
forscht, nämlich die polarisierte Phase von zweidimensionalen Magneten. Die elementaren
Anregungen in dieser Phase sind Magnonen, die im Falle der genannten Übergangsmetal-
lverbindungen topologische Eigenschaften besitzen. Es stellt sich heraus, dass magnetische
Verunreinigungen Magnonen binden und dadurch experimentelle Signale erzeugen können,
die den Vorhersagen für Ising-Anyonen ähneln. Allerdings zeigen wir in der Publikation P4,
wie gebundene Magnonzustände mit einem lokalen Spin-Flip zusammenhängen und daher in
unserem vorgeschlagenen Aufbau charakterisiert werden können. Dieses Ergebnis legt nahe,
dass lokale elektrische Proben zwischen Ising-Anyonen in der QSF und gewöhnlicheren Anre-
gungen in der polarisierten Phase unterscheiden können. Außerdem sollte der erwähnte Effekt
in einer Vielzahl von polarisierten Magneten auftreten und könnte sich daher als nützlich für
Anwendungen in der auf van-der-Waals-Materialien basierenden Spintronik erweisen.

Ich habemich inmeiner Promotion nicht nurmit niedrigdimensionalenMagneten beschäf-
tigt, sondern in der Publikation P1 auch sogenannte Weyl-Semimetalle erforscht. Die charak-
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teristischen Anregungen dieser dreidimensionale Leiter verhalten sich formal wie ultrarela-
tivistische, chirale Fermionen. Es ist daher möglich, eine Reihe von Phänomenen der theo-
retischen Teilchenphysik in diesen Festkörpern zu untersuchen, wie zum Beispiel der Einfluss
durch externe elektromagnetische Felder. Andererseits besitzen Weyl-Semimetalle nahe der
Ränder gebundene Zustände, die die nichttrivale Topologie dieser Materialien demonstieren
und eine besondereDispersionsrelation namens Fermi-Arc aufweisen. Das Zusammenspiel von
elektromagnetischen Feldern und der Fermi-Arc erzeugt eine exotische Zyklotronbewegung,
die nichtlokale Effekte verursacht. In der Publikation P1 beschreiben wir dieses Phänomen im
Rahmen der Quantenmechanik und ohne semiklassische Näherungen.

Diese Thesis ist wie folgt aufgebaut. Kapitel 1 bietet eine ausführliche Einleitung zu topol-
ogischen Konzepten in dem Feld der kondensierten Materie und zu der Phänomenologie von
Weyl-Semimetallen und QSF. Das nachfolgende Kapitel 2 erläutert die vermeintliche QSF in
den genannten Übergangsmetallverbindungen und bereitet auf meine Publikationen vor, die
in Kapitel 3 angehängt sind.
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Chapter 1

Introduction

The theoretical description underpinning all Publications listed in Chapter 3 involves topology.
This chapter gives a brief introduction to topology in condensedmatter. To this end, Section 1.1
starts with a broad overview of the general phenomenology of topologically nontrivial systems
and concludes by stating the main objective of my doctoral research. Subsequently, Sections
1.2 and 1.3 use simple models for more detailed discussions on Weyl semimetals and quantum
spin liquids, respectively. The latter section also sets the stage for Chapter 2.

1.1 New universality in condensed matter
Many-body physics seeks not only to describe specific systems but to uncover universality.
According to the paradigmatic Ginzburg-Landau theory, phase transitions are associated with
symmetry breaking, and the universality of continuous phase transitions is reflected in the
critical behavior of thermodynamic observables, that is, their independence of the microscopic
details close to the transition. In the last century of condensed matter research,1 this notion
of universality proved remarkably successful in describing both thermal phase transitions -
an archetypal example is the spontaneous magnetization of Ising ferromagnets at the Curie
temperature - and quantum phase transitions at zero temperature. It was in 1980, however,
that Klaus von Klitzing experimentally observed the integer quantum Hall effect (IQHE) [116]
and thereby discovered a new type of universality, which is not associated with any symmetry
breaking.

The original IQHE is the quantized Hall effect of a (weakly interacting) two-dimensional
(2D) electron gas as realized in a metal-oxide-semiconductor heterostructure subjected to a
strong perpendicular magnetic field. Von Klitzing found that, with astonishing accuracy (up to
one part per billion [147]), the quantized transverse conductivity is given by

σxy = e2

h
ν, (1.1)

where ν ∈ Z is an integer and roughly corresponds to the (floor) filling factor of the quantized
Landau levels in the confined electron gas. It is now well-established that the current giving
rise to σxy is transported by |ν| gapless, propagating edge states localized near the boundary of
the sample. As pointed out by Laughlin in his qualitative description of charge pumping in the

1While the Ginzburg-Landau theory was formulated conclusively only in the 1970s [147], it is based on the
seminal work [126] of Lev Landau from 1937.



2 1 INTRODUCTION

integer quantumHall phase, the existence of these edge states is a consequence of gauge invari-
ance in the bulk. As a result, the quantization of the macroscopic observable σxy in terms of the
ratio of the fundamental constants e2 and h is largely independent of microscopic details such
as the purity, size and host material of the electron gas. It is this striking new universality that
inspired extensive and ongoing research of condensed matter systems with nontrivial topology.
For the purpose of this introduction, let us trace the trajectory of these efforts in terms of a
short non-chronological (and rather incomplete) summary distinguishing between two central
concepts - band topology and topological order.

1.1.1 Band topology
In solid-state systems, the description of the IQHE in terms of Landau levels formed by free
electrons is only valid at energies near theminimumof the full band structure. The IQHE, how-
ever, is also supported by lattice models. An elegant description of itinerant electrons hopping
on a 2D lattice penetrated by a perpendicularmagnetic field is provided by theHofstadtermodel
[83], which retains translational invariance for an extended magnetic unit cell, given that the
magnetic flux through the plaquettes of the lattice is commensurate, i.e., a rational multiple
of the flux quantum Φ0 = h/e. A second model with no external but an intrinsic staggered
magnetic field was proposed by Haldane [77] for the honeycomb lattice.2 Both models support
an IQHE, which can most remarkably be understood in terms of an integer number associated
with the bulk band structure. This number is a topological invariant and called Chern number
or sometimes TKNN integer (acknowledging the seminal work [204] by Thouless, Kohmoto,
Nightingale and den Nijs). To define the Chern number, let us assume a nondegenerate band
structure and the knowledge of the single-particle eigenstates |uj(k)⟩ of the jth energy band
in momentum space parametrized by k. The Chern number Cj ∈ Z of the jth energy band
expressed in terms of the projector Pj = |uj⟩ ⟨uj| is given by

Cj = i

2π

∫︂∫︂
BZ
dkxdky Tr

[︂(︂
∂kxPj

)︂
Pj

(︂
∂kyPj

)︂
−
(︂
∂kyPj

)︂
Pj

(︂
∂kxPj

)︂]︂
, (1.2)

where integration runs over the first Brillouin zone (BZ) [7, 147]. One can show [147] that in the
case of the IQHE of lattice models, the integer ν in Eq. (1.1) is the sum of the Chern numbers
of all filled bands. This result manifests two hallmark features of systems with nontrivial band
topology. First, it shows that the topological invariant is a physical quantity that is observable
in magnetotransport experiments such as measurements of the transverse conductivity σxy .
Second, since σxy arises due to edge channels, we find that a nontrivial topological invariant of
the bulk band structure is associatedwith the emergence of edge or surface states localized near
the system’s boundary [79]. The latter feature is an instance of the celebrated bulk-boundary cor-
respondence in condensed matter systems and enables an alternative scheme of detecting band
topology in terms of surface-sensitive probes. We give examples of such techniques below. Go-
ing back to Eq. (1.2), let us also note that in Section 1.2, we detail an equivalent definition of
the Chern number Cj in terms of the Berry curvature associated with the eigenstates |uj(k)⟩.
This makes clear that a topological invariant is invariant under adiabatic transformations of the
Hamiltonian (which keep the bulk system gapped) and, therefore, suggests an intrinsic topolog-
ical protection against perturbations which do not close the energy gap. Typically, in the case of

2More precisely, the effective magnetic field in the Haldane model varies spatially on the two sublattices of
the honeycomb lattice and averages to zero. The resulting ground state is called Chern insulator.
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band topology, however, this line of arguments only holds under specific symmetry constraints,
as exemplified in what follows.

The above description in terms of the Chern number (1.2) requires nondegenerate energy
bands. So far, however, our discussion did not consider the internal spin degree of freedom of
the electrons. In the case of spinful electrons, or more precisely, systems of particles with half-
integer spin, energy bands exhibit a two-fold Kramer’s degeneracy at specific points in the BZ
if time-reversal symmetry (TRS) is present.3 A necessary ingredient for the IQHE is therefore the
breaking of TRS due to either intrinsic magnetism or an external magnetic field. In the latter
case, Kramer’s degeneracy is typically lifted by a Zeeman coupling of the spins. In fact, in all
systems studied in my research articles in Chapter 3, an external magnetic field is present, and
TRS is broken. The Chern number (1.2) thus provides a valuable concept to probe the topology
of these systems.

Let us briefly discuss electronic systems with good TRS. Such states can also be topologi-
cally nontrivial, if subject to strong spin-orbit coupling. Jumping ahead roughly 20 years, this
was first noticed by Kane and Mele, who generalized Haldane’s model [77] by including the
spin degree of freedom (thereby retaining spinful TRS) and spin-orbit coupling [101, 102]. They
found that the resulting ground states can be classified in terms of a Z2 topological invariant
which distinguishes between trivial band insulators and 2D topological insulators. A nontrivial
invariant again implies the existence of metallic edge states, which, in contrast to the IQHE, are
counter propagating for opposite spin projections and protected against hybridization due to
backscattering as long as TRS is present.4 As a result, the edge states give rise to a theoretically
proposed quantum spin Hall effect (QSHE) as analogue of the IQHE for spin transport (with-
out external magnetic field). While the QSHE is only realized under idealized conditions [147],
related charge transport phenomena were predicted [23] and experimentally observed [123] in
quantum wells.

Another important development in the study of topological insulators was the theoretical
generalization of the Z2 invariant to three spatial dimensions [67, 154]. The boundary of a 3D
topological insulator does not host edge states but surface states, which, at low energies, can
be typically described as ultra-relativistic, massless fermions (upon substituting the speed of
light by the Fermi velocity). While no quantized observable is expected in these systems and
magnetotransport signatures are somewhat elusive [147], it is possible to measure the resulting
Dirac cones of the surface-state dispersion using angle-resolved photoemission spectroscopy
(ARPES) [87] and thereby confirm the bulk topology via the bulk-boundary correspondence.
Indeed, ARPES has proven a powerful technique to detect band topology in the absence of an
external magnetic field, and guided the discovery of a by now large number of material realiza-
tions. Notably, topological insulators continue to attract the attention of the condensed matter
community in the context of topological superconductivity - a potential platform for topological
quantum computation, see below.

An alternative route to realize nontrivial band topology in three dimensions (without nec-
essarily requiring TRS) is provided by topological semimetals. Semimetals are gapless electronic
systems with characteristic points or lines in momentum space at which energy bands cross

3By “nondegenerate energy bands” we mean energy bands that do not coincide with other bands at any point
k in momentum space. In systems with spinful TRS, energy bands corresponding to opposite spin projections
coincide at the time-reversal invariant momenta, i.e., points k of the BZ with k = −k (modulo reciprocal lattice
vectors).

4This is why, according to the theoretical classification of condensed matter in two dimensions, topological
insulators represent a symmetry-protected topological phase [216]. This does not contradict the fact that there can be
a phase transition from a trivial to a topological insulator without any symmetry breaking.
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close to the Fermi energy, thereby giving rise to a low-dimensional Fermi surface. While
generic band crossings are typically unstable and easily gapped out by perturbations [6], in
some instances, they are protected by present symmetries or band topology. Due to the ab-
sence of an energy gap, however, it is impossible to define a topological invariant of the full
3D band structure within the theoretical framework of adiabatic dynamics. Instead, one can
compute topological invariants, namely the Chern number (1.2), for gapped 2D slices of the 3D
band structure which exclude the band crossings [6]. The resulting value of the invariant is
then associated with the exact nature of the band crossing, and like above encodes information
about topological surface states andmagnetotransport signatures. We illustrate this fact in Sec-
tion 1.2, where we focus on a particular class of topological semimetals, so-calledWeyl semimet-
als (WSMs), to set the stage for my Publication P1. Moreover, generally speaking, an expansion
near the band crossings yields a low-energy description in terms of massless ultra-relativistic
fermions with, typically, definite chirality. The anomalous response of these particles to elec-
tromagnetic fields is well studied in theoretical high-energy physics and allows an alternative
explanation of magnetotransport [162, 34] experimentally observed in real materials [244, 164].
Notably, the existence of a Fermi surface enables other magnetotransport probes such as mea-
surements of Shubnikov-de Haas oscillations [84, 244]. Besides this, surface-sensitive probes
such as ARPES [159, 133, 231] and, more recently, quasi-particle interferencemeasurements [155]
proved tremendously helpful in detecting a large number of topological semimetals.

By now, amyriad of confirmed topological insulators andnonmagnetic topological semimet-
als are collected in large data bases [29, 202, 250, 209]. Making theoretical predictions for mag-
netic compounds is somewhat harder [22], but recent high-throughput calculations report non-
trivial band topology in more than 20 percent of all studied magnetic materials [232]. These
efforts show that band topology is a generic property of solid state systems and an essential
concept in the modern toolbox of condensed matter theory. Apart from the long term goal
of realizing topological quantum computation, proposed applications include novel electronic
[68] and spintronic [170] devices. But our compressed summary of topology in condensedmat-
ter should not end here.

1.1.2 Topological order
So far, we have discussed non-interacting electrons in clean crystalline systems, and defined
topological invariants in terms of single-particle Bloch wavefunctions assuming translational
invariance. This was justified, since for finite but weak interaction between electrons, the IQHE
is still observable and the Chern number remains awell-defined concept [147]. Moreover, in the
presence of disorder, local topological markers in real-space and the entanglement spectrum
can probe the topology of a system without the necessity of translational invariance [175, 25].
Despite these results, however, roughly a decade after the discovery of the IQHE, experiments
showed that the above framework is insufficient to describe specific strongly correlated states
of condensed matter.5 An at the time new fabrication technique permitted higher quality of
semiconductor heterostructures hosting 2D electron gases [147], and led to the observation of
the fractional quantum Hall effect (FQHE) by Tsui, Störmer and Gossard [207].

The FQHE resembles a generalization of the IQHE, in that under appropriate conditions,
the transverse conductivity σxy in Eq. (1.1) forms quantized plateaus not only at integer filling
factors ν but also at specific fractional values ν ∈ Q, e.g. at ν = 1/3. The explanation of
these plateaus is not possible within a non-interacting single-particle picture but requires con-

5Much of this theoretical framework was, of course, developed only after the discovery of the FQHE.
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sideration of the Coulomb interactions and the extensive degeneracy of states that minimize
the kinetic energy at fractional filling [147]. Notably, for a filling factor of the form ν = 1/m,
wherem ∈ Z is an odd integer, the theoretical description (within the lowest Landau level) is
facilitated by a variational ground state proposed in a seminal work by Laughlin [127].6

The study of Laughlin’s wavefunction revealed fascinating new physics beyond band topol-
ogy and led to the introduction of a concept termed topological order by Wen and Niu [217].
Rather than giving a general definition [216], let us discuss two hallmark features of topological
order based on Laughlin’s wavefunction. First, we note that depending on the system’s geom-
etry, the ground state might not be unique but an element of a degenerate multiplet. More
precisely, the topological ground-state degeneracy on a manifold of genus g is 3g [147], i.e., 1 for
a sphere and 3 for a torus.7 Typically, the degenerate ground states cannot be distinguished by
local operators, and are, in that sense, protected against local perturbations. This fascinating
fact might enable nonlocal encoding of quantum information for robust quantum memory, as
proposed in a seminal work by Kitaev [114].

The second feature we discuss here does not concern Laughlin’s wavefunction itself but its
emergent quasiparticle excitations. Most remarkably, at filling factor ν = 1/m, these quasipar-
ticles carry only the fraction 1/m of the electron charge. The discovery of this fact constitutes
the historically first instance of fractionalization in more than one spatial dimension, that is, the
impossibility of representing the emergent (low-energy) degrees of freedom in terms of sums
of the microscopic (high-energy) degrees of freedom [147].8 We note that the fractional charge
of edge states, which emerge due to the bulk-boundary correspondence, was experimentally
observed in shot-noise measurements [184]. Moreover, besides the appearance of fractional
quantum numbers, fractionalization is typically accompanied with anyonic exchange statistics
of quasiparticles. To schematically illustrate this fascinating concept, let us consider a many-
body wavefunction Ψ(r1, ..., rN) ofN identical particles with real-space dependencies rj . We
are interested in the effect of exchanging two particles. Generally, this should accumulate a
phase θ ∈ [0, 2π) and resemble a transformation of the form

Ψ(..., rj, ..., rk, ...)→ eiθΨ(..., rk, ..., rj, ...). (1.3)

In a four dimensional space-time and under the assumption Lorentz invariance, the spin-
statistics theorem permits only two possible values for the phase θ, namely, θ = 0 in the case
of bosonic particles and θ = π for fermions. The confinement to two spatial dimensions, how-
ever, gives rise to more generality and allows, in principle, any value for θ in [0, 2π).9 Roughly
speaking, this is because in 2D, the phase is generally sensitive to the way the particles are re-
arranged and, in particular, the winding number of the exchange [196, 147]. If this is the case,
i.e., if eiθ ̸= ±1, the particles are called Abelian anyons. And indeed, in the FQHE at ν = 1/m,
elemental quasiparticle excitations correspond to a statistical angle θ = 2π/m. We note that
the theoretical description of anyons is based on braid groups, and permits a generalization
of Eq. (1.3), which describes processes that are sensitive to the order of the particle exchange.
These corresponding excitations are called non-Abelian anyons and expected in the FQHE at

6The symmetry of Laughlin’s wavefunction requires that m is odd for fermions and even for bosons.
7For finite system size, the energy splitting of the degenerate multiplet is exponentially small in the linear

system size [217].
8Fractionalization in the bulk of 1D systems is not due to topological order but typically associated with

symmetry breaking [147], as in the case of the Peierl’s instability of elastic electronic chains.
9Stability requires that θ is a rational multiple of 2π though [112]. We also note that for a more rigorous

discussion of this exchange statistics we should clarifywhatwemean by particle exchange. We do this inChapter 2.
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specific filling factors not captured by Laughlin’s wavefunction, e.g. ν = 5/2 [153]. Moreover,
it was recognized that the manipulation of non-Abelian anyons (in terms of braiding and fus-
ing) could potentially enable robust quantum information processing in a topological quantum
computer [114, 112, 158], as discussed in Chapter 2.

The long-term prospect of topological quantum computing makes topological order in-
triguing beyond the perspective of fundamental physics. To gain a deeper understanding of
this physics and the difference to band topology, it is helpful to study electronic systems, in
which the kinetic energy is frozen out and the electrons are effectively decoupled from the
lattice. This is the case in Mott insulators, which, for strong Coulomb repulsion and at low
energies, are typically described by a model of localized spins, see Chapter 2. The study of 2D
spin models takes up the majority of my Publications P2, P3 and P4. In this context, the toric
code model resembles the hydrogen atom of topological order [114]. The model describes spin-
1/2 moments (i.e., qubits) on (the edges of) a square lattice coupled by specific interactions,
and, most remarkably, gives rise to an extensive number of conserved operators, which are
each associated with a square plaquette of the lattice. This extensive symmetry allows an exact
solution for the spectrum, and a comprehensive study of its topological properties. As first dis-
cussed by Kitaev [114], the system exhibits topological ground state degeneracy on a torus, and
three different species of Abelian anyonic excitations10 - both consequences of aZ2 topological
order. However, while the toric code model proved a tremendously helpful toy model in the
fields of condensed matter and quantum error correction, it is not realized in real-world solid
state systems.

Instead, in a conventional electronic material, upon cooling to low temperatures, the spins
form long-range patterns and enter a magnetically ordered phase with lower symmetry than
the Hamiltonian, e.g. a ferromagnetic state. The resulting phase transition is captured by the
aforementioned Ginzburg-Landau theory and is associated with symmetry breaking. How-
ever, in some instances, either the lattice geometry or specific exchange anisotropy give rise
to frustration, i.e., the obstruction of the concurrent minimization of all exchange interactions
and, therefore, the ordering of spins. In this scenario, spins can maintain rotation symmetry
and give rise to a quantum spin liquid (QSL). Generally speaking, QSLs are exotic nonmagnetic
states of frustrated magnets characterized by large quantum entanglement, fractionalization
and, typically, topological order.11 We discuss this phase of matter in more detail in Section 1.2
and study a specific type of QSL in Chapter 2 as preparation for my Publications P2, P3 and
P4. At this point, however, we can infer that topological order is an essential organizing mech-
anism of many-body quantum systems in the absence of symmetry breaking. This is a sharp
difference from nontrivial band topology, which can exist in a conventionally ordered phase
under specific symmetry constraints.12

The realization and detection of QSLs are major goals of modern condensed matter re-
search. While there is no universally accepted smoking-gunmeasurement of a QSL, a variety of
experimental evidence of different QSL phases in real material candidates is available [187, 206].
In this context, inelastic neutron scattering (INS) provided a considerably successful technique
which probes the dynamical spin structure factor, i.e., the Fourier transform of the spin cor-
relations. While the INS signal of magnetically ordered states typically involves sharp Bragg

10One excitation is fermionic and one is bosonic. Albeit they are typically referred to as anyons due to their
nontrivial braiding relations.

11Gapless QSLs do not host topological order [216] nor are they described by a topological quantum field
theory. There is no agreed-upon definition of QSLs that includes all instances, where the term is used, and goes
beyond the absence of magnetic order as a defining property [187].

12For example, the integer quantum Hall state at integer filling is a flat-band ferromagnet [147].
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peaks reflecting long-range correlations, QSLs give rise to smooth features in INS data, in-
dicating broad continua of nonlocal fractional excitations [187]. We note in passing that INS
also enabled the experimental confirmation of spin fractionalization in three dimensions. This
was accomplished for spin ice, a class of (classical) 3D magnets on a pyrochlore lattice, which,
due to frustration, exhibit an extensive degeneracy of classical low-energy spin configurations
and stabilize the Coulomb phase. The latter is an instance of a classical spin liquid, which, as we
discuss in Section 1.2, gives rise to an emergent U(1) gauge field reminiscent of classical elec-
trodynamics [37]. A strong indication of the emergent gauge field as well as classical fractional
excitations were observed in INS [30, 61], albeit that spin ice is not topologically ordered in the
above sense [37].

While INS and other measurement techniques probing global observables of the sample’s
bulk might yield consistent indication of genuine topological order and fractional excitations,
they do not provide smoking guns in that they do not reveal our new notion of universal-
ity. Notably, in some instances, theoretical calculations for QSLs [112] and other topologically
nontrivial phases [165, 134] predict universally quantized transport signatures, which are asso-
ciated eitherwith emerging boundarymodes orwith local probes of fractional bulk excitations.
However, beyond idealized conditions and the well-controlled realm of quantum Hall physics,
the richness of these interacting systems commonly allows topologically trivial (or at leastmore
conventional) excitations thatmimic the predictions in terms of non-quantized but finite trans-
port signals. The most prominent instance of such an ambiguity is the zero-bias anomaly in
topological superconductors. Topological superconductivity is an exotic form of supercon-
ductivity, which, roughly speaking, is predicted in semiconductors (or topological insulators)
with strong spin-orbit coupling and proximity to a conventional superconductor [113, 66]. This
phase hosts fractional fermionic excitations termed Majorana zero modes (MZMs) at the edge
and, under specific conditions, in vortices of the superconductor [66]. In the latter case, the
bound MZMs form non-Abelian Ising anyons, thereby qualifying the system as a platform for
topological quantum computation [92, 158]. In any case, theoretical calculations for electronic
transport through a junction or a local tunneling probe predict a quantized conductance peak
of 2e2/h at zero bias voltage inside the bulk gap [165, 134, 240]. While experimental claims of
this quantized zero-bias anomaly attracted massive attention, it is now understood that these
measurements are not sufficient to distinguish MZMs from trivial in-gap states [106], such as
Andreev bound states [19]. The search for MZMs is, therefore, still on-going. As we discuss
in Chapter 2, a similar situation might arise for quantized thermal transport signatures in the
QSL type of interest.

Given these considerations, we can finally formulate the main objective of my doctoral
research. It is the design of feasible experiments that allow the unambiguous detection (and
potential manipulation) of non-Abelian anyons in quantum spin liquids using local electrical
probes and external magnetic fields. This effort is the subject of my Publications P2 and P3.
While the resulting experimental predictions are not quantized, we discuss how to distinguish
them from a more trivial explanation, which is further elucidated in my Publication P4. No-
tably, the effect described in P4 is novel and promises relevance outside the context of QSL
research. The successful detection of anyons in QSLs in terms of local probes would be of great
interest to the condensed matter community, and their manipulation could be an essential step
on the long path to a topological quantum computer.

To conclude this account of topology in condensed matter systems, let us emphasize its
incompleteness. Here, we focused on experimental phenomenology and theoretical concepts,
which play a crucial in role in the following chapters. We thereby neglected important aspects
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of the present theoretical understanding in this field, such as the overall classification in terms
of quantum field theory, the role of disorder and defects, and a description outside of equilib-
rium. Another subject we did not touch upon is nontrivial band topology of bosonic systems.
We encounter such a scenario in Chapter 2, when we briefly discuss the magnonic modes of
polarized QSL candidate materials to set the stage for my Publications P3 and P4.

1.2 Band topology of Weyl semimetals
Let us turn to a more detailed discussion of band topology in the state of matter which is the
subject of my Publication P1, that is, Weyl semimetals (WSMs). On the non-interacting level,
WSMs are characterized by gapless energy bands, which, close to the Fermi level, are nonde-
generate with the exception of a discrete number of points, where two bands touch or cross
[6]. These band crossings are calledWeyl nodes for reasons that become clear below. Since the
concurrent presence of time-reversal symmetry (TRS) and spatial inversion symmetry ensures
the degeneracy of bands at every point in the Brillouin zone (BZ), we can classify WSMs into
two families, namely systems with broken TRS and systems with broken inversion symme-
try. In the latter case, the breaking of inversion symmetry is either caused or accompanied by
strong spin-orbit coupling, which lifts the spin degeneracy.13 The required symmetry breaking
in WSMs can be provided by intrinsic mechanisms, such as a magnetization texture or a non-
centrosymmetric crystal structure, respectively, but can also be achieved by external influence,
such as strain [6]. The crossing points, i.e., the Weyl nodes, of the resulting energy bands do
not necessarily occur at high-symmetry points in the BZ but typically resemble accidental de-
generacies at arbitrary points [82]. Notably, such band crossings in 3D systems are more stable
than in one or two dimensions, since, roughly speaking, a 3D momentum space provides more
parametric freedom to tune an energy gap to zero. Thus small perturbations should merely
move the Weyl node in momentum space [6].

Given all these considerations, it might seem that Weyl nodes are generic in crystals and
that WSMs should be common in nature. Indeed, what actually restricts this material class are
the constraints that the Weyl nodes are located close to the Fermi energy, and that additional
structures in the Fermi surface, such as Fermi pockets and nodal lines, are insubstantial enough
to justify the following low-energy description. Given a band crossing of two nondegenerate
bands, we can expand in its vicinity to obtain an effective two-band model. Up to an overall
constant, we find at linear order in the momentum (setting ℏ = c = 1)

H(k) ≃ k · v0σ
0 +

3∑︂
j=1

k · vjσ
j, (1.4)

where k is the momentum measured with respect to the Weyl node and the vµ are velocity
vectors obtained from the dispersion relation. The identity σ0 and the Pauli matrices σ1 = σx,
σ2 = σy and σ3 = σz act on a pseudospin, which typically is a mix of spin and orbital
degrees of freedom. Notably, within the formalism of relativistic quantum mechanics, the
above Hamiltonian describes massless particles with conic dispersion and definite chirality
χ = sign [v1 · (v2 × v3)]. This fact becomes more evident when we consider an isotropic

13In this case, if spinful TRS is preserved, there is still a Kramer’s degeneracy at the time-reversal invariant
momenta, see Footnote 3. However, in well-defined WSMs, the energy at these points is typically large compared
to the Fermi level and the following arguments still apply.
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FIG. 1.1: Band topology of the WSM lattice model (1.9). (a) Chern number C(kz) of the upper band corresponding
to the horizontal 2D cuts indicated in the center. C(kz) is not defined at kz = ±k0. (b) Cubic bulk Brillouin zone
hosting two Weyl nodes indicated by the blue (χ = 1) and red (χ = −1) spheres. (c) Quadratic surface Brillouin
zone for a surface in the yz-plane. The Weyl node projections (blue and red circles) are connected by a schematic
Fermi arc (green curve).

cone, i.e., |v1| = |v2| = |v3| = vF , and negligible values of |v0|.14 For an appropriate choice
of the coordinate system, we then arrive at the Hamiltonian

Hχ(k) = χvF k · σ. (1.5)

Upon replacing the speed of light by the Fermi velocity vF , this is the Hamiltonian of the Weyl
equation describing Weyl fermions with chirality χ = ±1, as obtained from the massless limit
of the 3D Dirac equation and a convenient representation of the Clifford algebra. While Weyl
fermions do not appear in the standard model of fundamental particles, they are realized nat-
urally in solid state physics. Before stressing the analogy to high-energy physics further, how-
ever, let us illustrate the nontrivial band topology of WSMs in terms of the continuum Hamil-
tonian (1.5) and a simple lattice model.

1.2.1 Monopoles of Berry curvature
In Section 1.1, we introduced theChern number (1.2) as the topological invariant for latticemod-
els supporting the integer quantumHall effect and other gapped systems with broken TRS. De-
spite the absence of an energy gap, we can also employ this concept to describe WSMs. To this
end, we note that the Chern number is related to the geometrical properties of energy eigen-
states in the parameter space and, therefore, to the Berry phase. Initially introduced by Berry in
the context of adiabatic dynamics [24], the Berry phase constitutes the geometric phase a state
accumulates when a nondegenerate Hamiltonian is adiabatically varied in a general parameter
space, and it is formally defined as the line integral of the Berry connection. To define the Berry
connection for our purposes, let us assume a 3D system with translational invariance and let
|uj(k)⟩ be the eigenstate of the jth energy eigenvalue at momentum k. The corresponding

14The vector v0 tilts the Weyl cone in momentum space. Finite but small values of |v0| do not change the
topological and physical properties on a qualitative level. The corresponding systems are called type-I WSMs.
Beyond a critical value of |v0|, however, the cone crosses the Fermi level and forms Fermi pockets. The resulting
system is called type-II WSM [6] and is not further discussed here.
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Berry connection is then given by

Aj(k) = i ⟨uj(k)|∇kuj(k)⟩ . (1.6)

Roughly speaking, this quantity measures the similarity of states at different momenta some-
what like parallel transport measures the similarity of different tangent vectors on a curved
manifold [147]. The name stems from the fact that the Berry connection transforms like a vector
potential under gauge transformations |uj(k)⟩ → eiα(k) |uj(k)⟩ for scalar α(k) [230]. Thus,
the corresponding Berry phase is only gauge invariant for a closed path in momentum space.
More specifically, in three dimensions, the formal similarity to electromagnetic fieldsmotivates
the definition of the Berry curvature Bj(k) = ∇k × Aj(k) of the jth energy band. Based on
the Gauss-Bonnet theorem [147], we can then define the Chern number Cj ∈ Z of the jth band
as the quantized flux of Berry curvature through a closed 2D manifold S (in units of 2π), i.e.,

Cj(S) = 1
2π

∫︂
S
dS · Bj(k). (1.7)

In the context of 2D models, when integrating over the whole BZ (which is a closed manifold),
this definition is equivalent to Eq. (1.2) [7]. Let us apply this concept toWeyl semimetals, and, in
particular, to the simple HamiltonianHχ(k) in Eq. (1.5) describing an isotropicWeyl node with
chirality χ and eigenvalues E±(k) = ±vFk, where k = |k|. While the Berry curvature is not
defined at the Weyl node k = 0 itself, it is straightforward to show that the Berry curvature of
the upper band is given by [35]

B+(k) = χk
2k3 . (1.8)

Based on the formal similarity to classical electrodynamics, we can therefore identify the Weyl
nodes as sources or sinks or, more generally, monopoles of Berry curvature. As we discuss be-
low, this gives rise to anomalous magnetotransport which can be captured by modifying the
semiclassical equations of motion [199, 147]. Moreover, we note that the Chern number of the
upper band associated with a sphere enclosing the Weyl node is C+ = χ, i.e., the chirality.

While the definition of a global topological invariant in terms of a Chern number is impos-
sible due to the three spatial dimensions and the absence of an energy gap, we still encounter
nontrivial band topology in the vicinity of Weyl nodes. Consequently, we can apply the con-
cepts from Section 1.2 to explain the emerging physics in WSMs and, in particular, the appear-
ance of topological surface states. However, to fully characterize the energy contour of surface
states in the whole surface Brillouin zone (sBZ), we have to revert to a lattice model. For sim-
plicity, we consider a two-band model on a cubic lattice with unit lattice constant given by

Hcubic(k) = txσ
x sin kx + tyσ

y sin ky + tzσ
z (cos k0 − cos kz) , (1.9)

where we assume k0 ∈ (0, π/2] for concreteness [28]. Given an appropriate choice of the
parameters tx, ty and tz , this model describes a WSMwith broken TRS and twoWeyl nodes of
opposite chirality located at k = ±k0ẑ. The isotropic continuum description (1.5) is recovered
for tx = ty = vF and tz = vF/ sin k0 upon shifting the Weyl node with chirality ±1 to
kz = ∓k0.15

To probe the band topology of this Hamiltonian, let us consider 2D cuts of the cubic BZ,
such as the horizontal planes at different values of kz that are illustrated in Fig. 1.1(b). As long as

15Formally speaking, the expansion at k = k0ẑ should be accompanied by the unitary transformation σz , i.e.,
Hcubic(k− k0ẑ) ≃ σzH−(k)σz for k0 ≫ k.
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FIG. 1.2: Energy contour of the surface-state dispersion (1.12) for χ = +1 and different values of the angle α. (a)
At zero energy (ε = 0), the contour terminates at the projection of the Weyl node (blue point). (b) At finite energy
(ε > 0) the contour is tangential to and terminates at the projection of the bulk cone (blue circle).

a plane does not contain a Weyl node, the associated cut of the band structure resembles a 2D
insulator and we can use Eq. (1.7) to compute the associated Chern number C(kz) of the upper
band. Results are shown in Fig. 1.1(a). We find that, upon varying the position of the plane kz ,
the Chern number jumps at theWeyl nodes and, in our case, assumes finite values only between
the nodes, i.e., for |kz| < k0. In this region, the 2D cut of the bulk band structure resembles a
Chern insulator, as mentioned in Footnote 2.

Moreover, due to the required periodicity of C(kz) as function of kz , we can infer thatWeyl
nodes must appear in pairs of opposite chirality [6]. This is formally ensured by the famous
no-go theorem by Nielsen and Ninomiya [161], which states that the number of left-handed
(χ = −1) particles must equal the number of right-handed (χ = +1) particles in any lattice
realization. It follows that Weyl nodes can only be gapped in terms of pairwise annihilation,
and therefore hints at intrinsic protection of nodes against weak perturbations [6]. Moreover,
we can discern how the Nielsen-Ninomiya theorem manifests in both aforementioned hall-
mark features of band topology, namely magnetotransport signatures and the emergence of
topological boundary states. Let us begin with the discussion of the latter.

1.2.2 Fermi arcs
A 2D Chern insulator with a unit Chern number hosts exactly one topological edge mode at
a given boundary [147]. This is also the case for the 2D cuts presented in Fig. 1.1(c). From the
reiteration of this argument for planes with different orientation, we can then infer that the
zero-energy contour formed of the surface states must terminate at the projection of the Weyl
nodes on the sBZ [6]. As illustrated in Fig. 1.1, the contour thus forms an open and disjoint
segment of a curve - the so-called Fermi arc.

For a more explicit description of these unconventional surface states and as a preparation
for the calculation in my Publication P1, let us again consider the low-energy Hamiltonian (1.5)
of a single Weyl node, and let us derive the Fermi arc for a system which fills the positive half-
space x > 0 and shares a boundary with vacuum at x = 0. While the in-plane momentum
k⊥ = (ky, kz)T remains a good quantum number, we account for the breaking of translational
invariance along the x-direction in terms of the substitution kx → −i∂x. An appropriate
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boundary condition is then obtained by imposing Hermiticity of the Hamiltonian Hχ for the
half-space geometry [225, 78, 203], i.e., ⟨Ψ1|HχΨ2⟩ − ⟨HχΨ1|Ψ2⟩ = 0 for all states Ψ1 and
Ψ2 in the Hilbert space. Physically, this constraint prohibits any net current flow through the
surface.16 As further discussed in my Publication P1, Hermiticity is ensured by the sufficient
boundary condition

MαΨ(x = 0) = Ψ(x = 0) for Mα = σy cosα + σz sinα, (1.10)

where α is a free parameter. Up to overall normalization, evanescent energy eigenstates which
satisfy the boundary condition are thus of the form

Ψ(x) ∝ e−κx

(︄
1 + sinα
i cosα

)︄
, (1.11)

where we use the standard representation of Pauli matrices. Inserting our ansatz in the eigen-
problemHχΨ = εΨ yields for the energy dispersion and the inverse decay length

ε(k⊥) = χky cosα + χkz sinα, κ(k⊥) = −ky sinα + kz cosα, (1.12)

respectively [78, 203]. We note that physical solutions in the positive half-space are restricted
by the normalization constraint κ > 0. Thus, the energy contour is a semi-infinite line with
a single termination point and oriented at an angle α with respect to the kz-axis. This is illus-
trated in Fig. 1.2. At zero energy, ε = 0, this termination point is exactly given by the Weyl
node projection at k⊥ = 0, while at finite energy, the contour is tangential to the Weyl cone.

Here, we find a semi-infinite precursor of the full finite Fermi arc, since we consider only a
single Weyl node, thereby ignoring the Nielsen-Ninomiya theorem. A more appropriate con-
tinuum model should consider two Weyl nodes, which are either coupled by a mass term or
described by a quadratic dispersion [28, 36]. In our case, the latter can be obtained by expanding
Hcubic in Eq. (1.9) up to second order. Alternatively, in my Publication P1, we study a contin-
uum model of two decoupled Weyl nodes and, notably, still find physical finite Fermi arcs for
boundary conditions whichmix the two chiral sectors.17 The shape and curvature of the result-
ing arc is then controlled by free parameters of the boundary condition like above. Generally
speaking, the parametric freedom granted by imposing Hermiticity of relativistic continuum
models has drastic physical implications on the boundary spectrum, and allows us to implement
symmetries of real materials and their microscopic boundaries [3, 4]. This is certainly helpful
for modeling, since in typical WSM realizations, Fermi arcs are not straight lines connecting
isolated pairs of Weyl nodes but exhibit a much richer connectivity [218, 88].

The experimental observation of Fermi arcs enabled the first experimental confirmation of
a WSM, and was based on angle-resolved photoemission spectroscopy (ARPES) measurements
on the transition metal compound TaAs [231, 135]. TaAs and the related WSMs TaP, NbAs and
NbP crystallize in a non-centrosymmetric tetragonal lattice structure and thereby break inver-
sion symmetry [218, 88, 6]. Due to additional strong spin-orbit coupling, the band structure is
nondegenerate with the exception of 24 Weyl nodes. As revealed by careful symmetry analysis
and confirmed by soft X-ray photons in ARPES, specific surfaces of TaAs host 16 curved Fermi

16In our case, since k⊥ is conserved, the current through the surface also vanishes locally. In general, however,
it is possible to formulate boundary conditions which break translational invariance in the yz-plane and require
treatment of the full real-space Hamiltonian−iχvF∇r · σ.

17The model in Publication P1 is justified since internode scattering is typically small in real materials [6].
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arcs.18 A smaller number of Weyl nodes and a more comprehensible surface state dispersion
can be typically found inmagneticWSMswith broken TRS [22]. Although it is generally harder
to grow sufficiently large samples of this material class [6], ARPES and quasi-particle interfer-
encemeasurements confirmed aWSMphase and topological surface states in the ferromagnets
Co2MnGa [21] and Co3Sn2S2 [131, 155]. Notably, Co3Sn2S2 is a layered material, and the Fermi-
arc connectivity of the projections of the six Weyl nodes depends on the surface termination
as it differs for surface layers of Co and Sn atoms [155]. Another mechanism which controls the
connectivity was recently proposed in studies of twisted WSM interfaces [56, 1, 31] and tunnel
junctions [43]. Both the recent experimental progress on magnetic WSMs and the theoretical
studies on novel Fermi-arc states were motivation for the research which is presented in my
Publication P1 and which investigates the interplay of a Fermi arc and bulk magnetotransport.
Let us discuss the latter next.

1.2.3 Poor man’s chiral anomaly
Shortly after Paul Dirac proposed his eponymous equation and thereby set the foundation of
relativistic quantum mechanics and quantum field theory [54], Hermann Weyl introduced an
important simplification of the Dirac equation in the massless limit and for three spatial di-
mensions [219]. While, so far, Weyl fermions have not been observed in high-energy physics
experiments, in the context of condensedmatter, they naturally emerge as the low-energy exci-
tations of WSMs. Notably, this allows to probe the unconventional response of Weyl fermions
to electromagnetic fields, which, according to theory, is governed by the chiral anomaly. In
quantum field theory, anomalies are the failure of a classical symmetry in the corresponding
quantum theory. The first quantum anomaly was discovered by Adler, Bell and Jackiw in the
context of the dominant decay of a pion into two photons [20, 2]. Here, we schematically dis-
cuss the phenomenology of the chiral anomaly for Weyl fermions and how it manifests on the
level of the band structure of real materials.

To this end, let us consider the Dirac action for massless fermions in a four-dimensional
spacetime (using Einstein notation)

S(ψ) = i
∫︂
d4xψ†(x)γ0γµ∂µψ(x), (1.13)

where γµ are gamma matrices with {γµ, γν} = 2ηµν and η = diag(1,−1,−1,−1) is the
Minkowski metric. It is well established that the action has an U(1) symmetry, which corre-
sponds to the conservation of electric charge. More intriguingly, due to the absence of a mass
term, the action is also invariant under

ψ → eiθγ5
ψ, (1.14)

where θ is a scalar and γ5 = iγ0γ1γ2γ3. It is this symmetry which, given an appropriate choice
of the gamma matrices, permits the decomposition of a Dirac fermion into twoWeyl fermions
with different chirality, as discovered byWeyl [219]. Moreover, according toNoether’s theorem,
as a continuous symmetry of the action, it corresponds to the conservation of a chiral charge.
Variation of the action manifests this fact in terms of the continuity equation ∂µj

µ
5 = 0 of the

chiral current
jµ

5 = ψ†γ0γ5γµψ, (1.15)

18The situation in TaAs is even more subtle. In the case of the specific surface orientation, someWeyl nodes of
equal chirality are projected onto the same points in the sBZ, giving rise to effective Chern numbers of magnitude
two. These Weyl node projections are thus each connected to two Fermi arcs [218, 88, 6].
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FIG. 1.3: Dispersion of Landau levels (1.17) for (a) χ = −1 and (b) χ = +1. An electric field along x displaces the
manifold of occupied states (filled circles) and generates chiral fermions. Adapted from Ref. [162]

which holds both for the classical and quantized theory. The situation changes when we switch
on a static electromagnetic field and couple the fermion ψ to an U(1) gauge field aµ. Upon the
substitution ∂µ → ∂µ + ieaµ, the action (1.13) remains invariant under the transformation (1.14)
and Noether’s theorem still applies on a classical level. In the renormalized quantum theory,
however, the continuity equation is violated as one finds [162]

∂µj
µ
5 = e2

2π2 E ·B, (1.16)

where, as per usual, the electric field E and the magnetic field B are obtained from the field
strength tensor Fµν = ∂µaν − ∂νaµ. Within the path integral formalism of quantum field
theory, this surprising result arises due to the fact that the integral measure does not share the
symmetry of the action and is not invariant under the transformation (1.14). We do not present
a derivation of Eq. (1.16) within this formalism, but instead discuss how the anomaly and the
violation of chiral charge conservation arises on the level of the energy bands.

Landau quantization of a Weyl node

For this purpose, let us revisit the simple two-band model (1.5) of a single Weyl node with
chirality χ and consider the presence of a homogeneous magnetic field B = Bx̂ with B >
0. As a standard approximation [162, 34], we neglect Zeeman coupling of the spin and only
consider the orbital effect of the magnetic field, that is, the Landau quantization obtained from
minimal coupling. A detailed derivation of the bulk spectrum is included in my Publication P1.
Here, we just present results for the Landau levels (LLs) εn, which are labeled by an integer
n ∈ Z and given by

ε0(kx) = −χkx, εn(kx) = sign(n)

⌜⃓⃓⎷2|n|
ℓ2

B

+ k2
x for n ̸= 0, (1.17)

where ℓB = 1/
√
eB is the magnetic length and we set vF = c = 1 for consistency with

the above expressions and with my Publication P1. This energy spectrum is shown in Fig. 1.3.
Notably, the LLs only disperse along the x-direction parallel to the magnetic field.19 While the

19When choosing a gauge of the vector potential which retains translational invariance along an additional
direction, e.g. the Landau gauge A = Byẑ, the dispersion along this direction is flat and thereby accounts for the
extensive degeneracy of LLs.
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higher order LLs or n ̸= 0 exhibit a typical massive relativistic dispersion, the 0th LL is chiral
and gapless. The chirality of the 0th LLmanifests both in the direction of the dispersion, which
is determined by χ, as well as the spin-momentum locking of the corresponding eigenstates, as
detailed in Publication P1.

The chiral anomaly emerges, if we adiabatically switch on a homogeneous electric field. For
simplicity, we consider an electric field E = Ex̂ parallel to B, thereby reducing the problem
to one spatial dimension. Since the density of states in the 0th LL per unit volume is eB/(4π2),
the electric field generates fermions at a rate [162]

Ṅχ = χe

4π2 E ·B, (1.18)

where Nχ is the total number of fermions with chirality χ. The particle generation is also
indicated in Fig. 1.3. To connect to results for a massless Dirac fermion described by Eq. (1.13),
we should consider two Weyl nodes of opposite chirality and, for now, at the same position in
momentum space. Notably, total electric charge is then conserved since Ṅ+ + Ṅ− = 0. In
case of the chiral charge, however, we find

∂µj
µ
5 = ∂0j

0
5 = Ṅ+ − Ṅ− = e2

2π2 E ·B, (1.19)

where we used that the spatial contraction ∂kj
k
5 = 0 (for k ∈ {1, 2, 3}) vanishes for homoge-

neous fields E and B. This agrees with the result (1.16) from quantum field theory, and conse-
quently, constitutes the chiral anomaly on the level of the Landau quantization.

Notably, the above derivation also holds if the two Weyl nodes are separated in momen-
tum space, as it is the case in WSMs. We briefly discuss how to attain this separation in the
action (1.13) down below. At this point, however, we can already infer important subtleties of
the low-energy description in terms of quantum field theory. To this end, we note that the gen-
eration of fermions according to Eq. (1.18) is only possible due to the infinitely deep Fermi sea
of the free continuum. As we can easily see by means of the simple model (1.9), however, this
is not given in lattice realizations of Weyl nodes. In particular, in a lattice model, the energy
bands that yield the low-energy description (1.5) for χ = ±1 must either be identical or cross
at higher energies. As the equal numbers of Weyl nodes with positive and negative chirality
are ensured by the Nielsen-Ninomiya theorem, it follows that the overall electric and chiral
charge is conserved. Conversely, we might say that the total charge conservation manifests
in the Nielsen-Ninomiya theorem [161, 162], and that WSMs merely realize a poor man’s chiral
anomaly. Besides this, the Lorentz invariance of Eq. (1.13) is, if at all, a feature of the low-energy
description but not of the full lattice model. We conclude that, even under idealized conditions,
the description of the chiral anomaly in condensed matter systems is subtle and somewhat elu-
sive [75, 34]. From this perspective, my Publication P1 resembles a study on how the chiral
anomaly is further modified in the presence of a boundary.

Experimental signatures of anomalous magnetotransport

It is nevertheless possible to predict characteristic magnetotransport signatures ofWSMs using
a low-energy description. To separate the two Weyl fermions in momentum and energy, we
can perform the substitution ∂µ → ∂µ + ibµγ

5 in the Dirac action (1.13). It is straightforward to
show that the resulting Hamiltonian describes twoWeyl nodes at k = ±b/2 with energy±b0.
More notably, upon promoting Eq. (1.14) to a local symmetry with θ(x) = −xµbµ, the above
substitution resembles a coupling between the fermion ψ and a chiral gauge field bµγ

5 [259].
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If we further include an electromagnetic gauge field aµ like above, the present symmetries of
the action then allow for an additional term ∝ θ(x)E · B, which couples the fields aµ and bµ

[259, 195, 208]. Such a term is familiar from the study of axion electrodynamics [72] and plays
an important role in the description of topological insulators [147]. As per usual, the (classical)
electric current can then be obtained by variation of the total action [34, 259]

j = e2

2π2 (E× b + b0B). (1.20)

Given the aforementioned caveats of the low-energy description, let us not go into further de-
tail but motivate a consistent expression using the cubic lattice model (1.9). As discussed above
and illustrated in Fig. 1.1, 2D slices of the band structure in the kxky-plane at fixed kz resem-
ble Chern insulators with nontrivial band topology if |kz| < k0 (for the specified parameters).
Such Chern insulators host exactly one gapless edge mode and, therefore, support an integer
quantum Hall effect with transverse conductivity σ2D

xy = e2/h. The effective stack of Chern
insulators between the Weyl nodes should then amount to a transverse conductivity [6]

σxy ∝
e2

h
k0, (1.21)

which is consistentwithEq. (1.20) forb = 2k0ẑ. This result constitutes a non-quantized anoma-
lous Hall effect (AHE) in WSMs. As confirmed by Burkov [33], the overall prefactor of the con-
ductance quantum e2/h is robust as long as the Fermi energy is close to the Weyl nodes and, in
that sense, universal and intrinsic. This is different to the AHE of generic ferromagnetic metals
[156, 230], which can exhibit a strong dependency on microscopic details [33]. The discrim-
ination of extrinsic and intrinsic contributions is crucial for an unambiguous explanation of
experiments on the AHE and the chiral anomaly.

The first successful observation of the chiral anomaly was reported in measurements of
longitudinal magnetoresistance (LMR) in the first confirmed WSM TaAs [244]. The LMR is the
change in longitudinal resistance due to the presence of a finite magnetic field. While typi-
cally small and positive in nonmagnetic materials [6, 244], a negative and large (in magnitude)
LMR is expected to arise in WSMs due to the chiral anomaly. Moreover, since the generation
rate in Eq. (1.18) is proportional to E ·B, the LMR should exhibit a strong dependency on the
field direction. The expected signatures were observed in TaAs and, importantly, alternative
explanations of the measured LMR were eliminated by additional techniques such as ARPES,
ab initio calculations and measurements of the Shubnikov de-Haas (SdH) oscillations [244]. The
latter are an instance of quantum oscillations, that is, the periodicity of an observable as a func-
tion of the inverse magnetic field strength 1/B due to Landau quantization and the existence
of a Fermi surface.

Quantum oscillations proved a powerful technique to probe WSMs and other topological
semimetals [6]. Measurements of SdH oscillations in the WSM TaP, for example, enabled the
observation of the annihilation of Weyl nodes due to the mixing of chiralities from magnetic
internode tunneling [245]. Moreover, a semiclassical description predicts the appearance of
exotic quantum oscillations in thin films (or similar nanostructures) of WSMs due to exotic
cyclotron orbits which involve both the Fermi-arc surface state and chiral LLs in the bulk -
so-calledWeyl orbits [174, 251, 243]. The nonlocal nature of Weyl orbits inspired various theo-
retical studies [70, 167, 18, 86, 160, 258], and was experimentally reported in related topological
semimetals [152, 241, 253] and non-centrosymmetric WSMs [242, 129, 157]. The comparison of
the semiclassical approximation and a full quantum mechanical description of Weyl orbits in
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magnetic WSMs is subject of my Publication P1. There, we give a detailed introduction toWeyl
orbits and employ many of the technical concepts presented in this section.

1.3 Topological order in Z2 quantum spin liquids
Let us familiarize ourselves with the states of matter which occupy the majority of this thesis,
that is, quantum spin liquids (QSLs). This effort is somewhat obscured by the fact that there is
no generally accepted definition of a QSL which includes all instances, where the term is used
[187, 118, 147]. A minimal requirement for a QSL which is agreed upon, however, states that a
QSL is neither a conventional high-temperature paramagnet nor a magnetically ordered phase
which arises due to spontaneous symmetry breaking. This is at odds with the conventional
scenario for magnetic systems, in which, upon cooling the system to low temperatures, spin
degrees of freedom spontaneously form long-range patterns which break symmetries of the
underlying theory and give rise to a thermal phase transition from a paramagnetic to an or-
dered state with long ranged correlations. Typically, the critical temperature of this transition
is well estimated by the Curie-Weiss temperature ΘCW as determined by the strength of the
spin exchange. Below the critical temperature, the Ginzburg-Landau theory provides a com-
prehensible description of the magnetically ordered phase in terms of an effective field theory
for a local order parameter [213]. Due to the tremendous success of this paradigm, we may
first discuss the microscopic mechanism which suppresses magnetic ordering. To this end, we
focus on Mott insulating systems at commensurate filling to justify the use of effective mod-
els which only involve localized spin degrees of freedom, see Chapter 2. Our considerations
eventually guide us to spin models which do not exhibit spontaneous symmetry breaking both
on the classical level and in the quantum theory, but which instead host topological order as
described above. Two comments are appropriate about these results. First, we note some QSLs
can spontaneously break symmetries of the underlying theory, such as chiral spin liquidswhich
obstruct the time-reversal symmetry of the system [187, 147]. Second, albeit that topological
order was introduced as the organizing mechanism in the absence of conventional local order,
gapless QSLs do not host topological order as a strict definition of this concept requires a finite
energy gap [216, 187]. Whilewe briefly encounter a gaplessQSL inChapter 2, themajority of this
thesis and, in particular, my Publications P2 and P3 are devoted to a specific gapped QSL. We
thus employ the concept of topological order to introduce a phenomenon which is common in
all QSLs and distinguishes these exotic states of matter from conventional paramagnets. This
phenomenon is the fractionalization of the microscopic spin degrees of freedom andmanifests
in exotic quasiparticle excitations.

1.3.1 Frustrated magnetism
To understand the microscopic mechanism that prohibits the formation of long-range order,
we consider a variety of simple toy models, starting with arguably the most studied model in
the fields of condensed matter and statistical physics. The classical Ising model is given by

HI = J
∑︂
⟨jk⟩

σjσk, (1.22)

where the σj = ±1 are Ising spins and ⟨jk⟩ denotes the bond connecting the neighboring
sites j and k on a given lattice. Here, we focus on two-dimensional (2D) lattice geometries
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FIG. 1.4: Geometric frustration for antiferromagnetic spin exchange. (a) The Néel state on the frustration-free
square lattice minimizes both HI in Eq. (1.22) and HH in Eq. (1.23). (b) The Néel state is incompatible with the
frustrated triangular lattice. (c) The 120◦ order of Heisenberg spins on the triangular lattice minimizes HH.

and antiferromagnetic coupling J > 0. On a square lattice (or any other bipartite lattice), the
low-energy physics of this model is well established and comprehensible. Starting with a high-
temperature disordered paramagnet, upon cooling to low temperatures, the system exhibits
a second-order phase transition to a Néel state. The antiferromagnetic ground state config-
uration is then unique upon global symmetry transformations and breaks the Z2 symmetry
of the Hamiltonian HI, as shown in Fig. 1.4(a). While this description applies to any bipartite
lattice, the situation changes dramatically for non-bipartite geometries such as the triangular
lattice. As illustrated in Fig. 1.4(b), the antiparallel spin alignment on a given triangle of the
lattice is not possible and the formation of a Néel state is suppressed. As a consequence, the
competing interaction terms corresponding to the bonds on a triangle cannot be minimized si-
multaneously. In any low-energy configuration, every triangle thus involves exactly one bond
interaction which is not minimized. Comparing to the simple results for the square lattice,
we can then infer that the antiferromagnetic order is obstructed by the lattice geometry. This
mechanism is termed geometric frustration. As first described in a seminal work by Wannier
[215], the large number of low-energy configurations on the triangular lattice gives rise to an
extensive ground state degeneracy and a residual entropy at zero temperature.20 We further
discuss the resulting low-energy physics of the model below, while, for now, it is sufficient to
know that the classical antiferromagnetic Ising model on the triangular lattice does not host a
magnetically ordered phase at low temperatures.

Notably, despite the name, geometric frustration still contains a dependency on the specific
spin interaction. This becomes evidentwhen describing an antiferromagnet in terms of another
hallmark model of magnetism, the classical Heisenberg model (again assuming J > 0)

HH = J
∑︂
⟨jk⟩

Sj · Sk, (1.23)

where the Sj are Heisenberg spins as formally obtained from quantum spins for S → ∞.
While, like above, the triangular lattice does not support a Néel state, the continuous sym-
metry of HH permits other configurations with low energy. Namely, at low temperature, the
neighboring spins align at an angle of 120◦ with respect to each other and thereby give rise to

20In our discussion of frustrated magnetism, we sometimes use the term ground state to describe the classical
spin configuration with the lowest energy. Moreover, we say that a degeneracy is extensive, if it scales with the
system size [213]. We note that only degenerate configurations with finite statistical weight contribute to the zero-
point entropy [215].
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FIG. 1.5: Order by disorder in the J1-J2 model in Eq. (1.24). (a) The Néel state is the classical configuration with
minimum energy for J ′ < 2J . (b) For J ′ > 2J , the large degeneracy of classical configurations with antiparallel
next-nearest neighbors is parametrized by the angle ϕ. (c) Quantum fluctuations select the ground state with
either ϕ = 0 or ϕ = π. Adapted from Ref. [118].

an antiferromagnetic phase after all, see Fig. 1.4(c). We might infer that, in the case of Heisen-
berg spins, changing the lattice geometry cannot suppress magnetic order but only select a
different ordered state. However, it is also possible to obscure spontaneous symmetry break-
ing of Heisenberg spins, if, instead of the lattice geometry, we modify the spin exchange. To
this end, let us revert to the square lattice for simplicity, and include an antiferromagnetic next
nearest-neighbor coupling

H ′
H = HH + J ′ ∑︂

⟨⟨jk⟩⟩
Sj · Sk, (1.24)

where ⟨⟨jk⟩⟩ denotes a next nearest-neighbor bond connecting j and k, i.e., a diagonal crossing
a square plaquette of the lattice, see Fig. 1.5. The HamiltonianH ′

H then constitutes the famous
J1-J2 model (for J = J1 and J ′ = J2) [41]. The model is generally frustrated for J ′ ≥ 2J ,
but, as we further detail below, we can distinguish different degrees of magnetic frustration.
Of particular interest is the highly-frustrated point J ′ = 2J , which gives rise to an extensive
degeneracy of low-energy configurations [41, 39]. This degeneracy stems from the competition
of different exchange terms in the Hamiltonian which cannot be minimized simultaneously.
Accordingly, we term this mechanism exchange frustration. And, indeed, it is currently debated
whether the quantum version of the J1-J2 model at the highly-frustrated point describes a QSL
or a valence bond crystal [179, 118].

For a more comprehensible illustration of exchange frustration, let us discuss another ex-
ample which does not require fine tuning and, notably, involves ferromagnetic spin coupling.
This model is defined on a honeycomb lattice and involves a specific anisotropic spin exchange.
To define this interaction, we note that the honeycomb lattice is tricoordinated and therefore
comprises three different types of bonds, which we label by x, y and z as done in Fig. 1.6(a).
We then consider Heisenberg spins Sj = (Sx

j , S
y
j , S

z
j )T coupled by an anisotropic Ising-like

exchange according to

HK = K
∑︂

⟨jk⟩x

Sx
j S

x
k +K

∑︂
⟨jk⟩y

Sy
j S

y
k +K

∑︂
⟨jk⟩z

Sz
jS

z
k = K

∑︂
⟨jk⟩α

Sα
j S

α
k , (1.25)

where ⟨jk⟩α refers to a bond of type α ∈ {x, y, z} connecting the neighboring sites j and k.
This is our first encounter of the (isotropic)Kitaev model [112].21 TheQSL phase captured by this

21The model is sometimes referred to as Kitaev’s honeycomb model to distinguish from other seminal models
by Alexei Kitaev [113, 114].
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FIG. 1.6: Exchange frustration of Kitaev model (1.25) due to exchange anisotropy. (a) Tricoordinated honeycomb
lattice with three different bond types x (blue), y (green) and z (red). (b) Simultaneous minimization of the bond-
dependent interaction KSα

j Sα
k for α ∈ {x, y, z} is not possible. Adapted from Ref. [206].

model for quantum spins with S = 1/2 is the focus of a detailed analysis in Chapter 2 as well
as my Publications P2 and P3. Here, we discuss the exchange frustration ofHK on the classical
level (for S → ∞). As illustrated in Fig. 1.6(b), even for ferromagnetic coupling K > 0, the
simultaneous minimization of all three interactions coupled to a given site is impossible. As a
consequence, we again obtain a large manifold of minimum-energy configurations leading to
residual entropy at zero temperature [17, 205]. We further discuss the low-energy physics of
the classical Kitaev model below. Moreover, in my Publication P4, we numerically determine
the classical ground state of the polarized Kitaev model in the presence of impurities. Such
inhomogeneities in frustrated systems typically tip the sensitive energy balance in favor of a
local distortion of the configuration, thereby acting as a so-called local relief of frustration [210,
227, 226]. In the case considered in Publication P4, this distortion is associated with a vorticity
of the classical spins near the impurity that reflects the frustration of the model [144].

Summarizing our discussion until now, we identified both the geometry and spin exchange
of the system as possible sources ofmagnetic frustration, which energetically penalizesmagnet-
ically ordered states. We did not, however, weigh in the effects of thermal or quantum fluctua-
tions on the appearance of a phase transition. To do so, we first note that the extensive ground
state degeneracy of highly-frustrated classicalmagnets is not associatedwith a global symmetry
but seemingly accidental. The effect of fluctuations can therefore vary drastically for different
ground state configurations and thereby select a specific state to maximize entropy [118]. This
counter-intuitive ordering mechanism is called order by disorder [211]. Due to thermal fluctua-
tions, for example, a frustrated systemmight order in a range of finite temperatures, but remain
paramagnetic or disordered at low and zero temperature.

Similarly, quantum fluctuations can stabilize magnetic order at low temperatures. A sim-
ple example of this is provided by the aforementioned J1-J2 modelH ′

H in Equation (1.24) on a
square lattice. For sufficiently large next-nearest neighbor coupling J ′ > 2J > 0, the antipar-
allel alignment of next-nearest neighbors is energetically preferred and results in two inter-
penetrating Néel patterns [118], see Fig. 1.5(b). On a purely classical level, the angle ϕ between
neighboring spins is completely arbitrary and gives rise to a sub-extensive ground state de-
generacy. However, when we include bosonic quantum fluctuations in terms of a standard
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Holstein-Primakoff expansion in S−1, where S is the length of the quantum spins, the energy
up to order S−1 is minimized for collinear states, i.e., ϕ ∈ {0, π} [190, 118]. The resulting spin
configuration is illustrated in Fig. 1.5(c) and represents a typical instance of order by disorder.

Given that some frustrated magnets exhibit long-range order for sufficiently strong fluctu-
ations while some do not at all, we should describe frustration quantitatively. A rough measure
of the degree of frustration in real materials is given by the frustration ratio

f = |ΘCW|
Tc

, (1.26)

where ΘCW is the aforementioned Curie-Weiss temperature and Tc is the (potentially sup-
pressed) critical temperature of the magnetically ordered phase. While conventional magnets
correspond to f ≈ 1, systems with f ≳ 10 are typically referred to as highly frustrated [205].
Notably, magnets which do not exhibit any magnetic phase transitions upon cooling to zero
temperature correspond to f → ∞. We focus on such systems in what follows, starting with
a more detailed classical description of the instances we encountered so far.

1.3.2 Coulomb phase of the classical Kitaev honeycombmodel
Above we identified two highly-frustrated models which do not stabilize magnetic order at any
finite temperature, namely, the antiferromagnetic Ising model on the triangular lattice and the
(ferromagnetic) Kitaevmodel on the honeycomb lattice. Let us investigate the phenomenology,
which emerges in the absence of order at low temperatures, and introduce the concept of a
classical spin liquid. Due to its exceptional role in this thesis, we here focus on the Kitaev model
HK in Eq. (1.25) but note that the description of the Ising model is analogous. In fact, the close
relation of antiferromagnetic coupling on the triangular lattice to ferromagnetism on its dual,
the honeycomb lattice, was already recognized by Wannier [215]. While we ultimately want to
include quantum fluctuations for S = 1/2, we stick to the classical limit S → ∞ in what
follows. Notably, since order by disorder due to thermal fluctuation is absent in the latter
regime, we can identify remarkable (albeit limited) similarities to the quantum limit that can
guide our discussion for the case S = 1/2, in particular, on the role of perturbations to HK.
We note, however, that the situation for large but finite S is more subtle [42, 189].

As a first step, we characterize themanifold of low-energy configurations ofHK in terms of
a set of local constraints reflecting the exchange frustration. To this end, we consider the set of
constraints stating that every spin has to align with one nearest neighbor along the Cartesian
axis corresponding to the bond type [17].22 To compute the energy of a configuration meeting
these constraints, we note that for every spin exactly one nearest-neighbor coupling is mini-
mized while the remaining two coupling terms vanish identically. For a lattice with N sites,
the energy then amounts to KN/2, which is indeed the global minimum of HK for K < 0
[42]. Fig. 1.7 shows a spin configuration which meets the constraints and, therefore, constitutes
a classical ground state. However, as expected, this is not the only possible configuration. To
rationalize this, it is convenient to visualize the pairs of aligned spins which minimize their
coupling as dimers consisting of two neighboring sites. We can then identify a one-to-one
correspondence between ground state configurations and dimer coverings of the honeycomb

22More formally, for a selected pair of sites j and k connected by a bond of type α, the local constraint is
Sj = Sk = ±α̂, where α̂ ∈ {â, b̂, ĉ} is a unit vector along a crystallographic direction. The arbitrary sign
± has to be accounted for in the ground state degeneracy [17]. Here, we assumed K < 0 and normalized the
Heisenberg spins. The modification for antiferromagnetic Kitaev coupling K > 0 is straightforward.
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FIG. 1.7: Coulomb phase of the classical Kitaevmodel (1.25). (a)Minimum-energy spin configuration satisfies local
constraints and corresponds to a dimer covering (orange) of the honeycomb lattice. Adapted from Ref. [183]. (b)
Emergent artificial magnetic field (cyan and orange) with zero divergence at the lattice sites (except at a boundary).
Adapted from Ref. [189].

lattice.23 Counting all possible dimer coverings estimates the ground state degeneracy to be
1.662N [17] and implies a finite residual entropy at zero temperature [205].

The theoretical description of the classical Kitaev model is further facilitated by the follow-
ing abstraction. Given a specific dimer covering, we can map the bonds to an artificial magnetic
field b, which is twice as strong on bonds covered by dimers than on bonds not covered by
dimers and which is directed by the bond types [189]. This is illustrated for the exemplar con-
figuration in Fig. 1.7. As visible there, this specific mapping ensures that the artificial magnetic
field is divergence-free at the sites of the lattice, i.e., div b = 0 for a suitable lattice divergence
[213]. Due to this emergence of magnetostatics, the low-energy state of the system is termed
Coulomb phase [80]. As mentioned in Section 1.1, the Coulomb phase is an instance of a classical
spin liquid and is clearly distinguishable from a conventional paramagnet in terms of its the-
oretical description [205].24 This is evident in the spin correlations, which, for the Coulomb
phase, drop according to a power law [189]. Moreover, the system hosts fascinating elemental
excitations. These are given violations of local constraints and, since this corresponds to a finite
divergence of b, resemble magnetic monopoles of the artificial magnetic field [147]. We do not
go into further detail but note that, in this sense, fractionalization ofHK is already observable
on the classical level. In particular, the emerging description of the classical limit is roughly
comparable to the emergence of the fractional quantum Hall effect, where, at fractional filling,
electronic configurations in the lowest Landau level minimizing the kinetic energy are also ex-
tensively degenerate [147], see Section 1.1. We might therefore expect that the Kitaev modelHK
for S = 1/2 provides an ideal incubator for fractional anyonic excitations and the accumu-
lation of large quantum entanglement. As discussed in Chapter 2, this is indeed the case and
subject of intensive investigation in my Publications P2 and P3.

We note, however, that the description of the Coulomb phase in the Kitaev model and the
drawn conclusions have to be approached with caution. Besides general conceptual subtleties

23Actually, it is a two-to-one correspondence, see Footnote 22.
24Notably, however, between the spin liquid and the paramagnetic phase, there is no thermal phase transition

but a thermal crossover [42, 189].
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FIG. 1.8: Hardcore dimer covering of the triangular lattice. The three different types of rhombohedral plaquettes
are indicated by blue, red and green. The red plaquette is flippable, while the blue and green plaquettes are not.
The brown dashed lines indicate the configuration obtained by resonant dimer move as induced by the kinetic
term of Eq. (1.27).

not mentioned here [147], the ground state degeneracy of the Kitaev model and the associated
Coulomb phase are considerably sensitive to both lattice distortions and perturbations of the
Hamiltonian [189], see Chapter 2. Instead, as discussed in Section 1.1, the prime example of the
Coulomb phase is realized in spin ice on the three-dimensional pyrochlore lattice [147]. The
pyrochlore lattice resembles a network corner-sharing tetrahedra and requires a modification
of the set of local constraints defining the ground state manifold.25 The emerging Coulomb
phase is similar to above nevertheless, and was successfully confirmed in (inelastic) neutron
scattering experiments on the pyrochlore oxides Dy2Ti2O7 and Ho2Ti2O7 [30, 61]. We do not
further discuss the rich physics of spin ice here but, instead, proceed with the quantum limit.
To this end, the above concept of dimer covering permits a straightforward generalization and
the explicit construction of a QSL state.

1.3.3 Resonating valence bond liquid
So far, our discussion of frustratedmagnetism assumed classical spins with lengthS →∞. For
a transparent characterization of quantum effects, let us now consider the opposite limit, i.e.,
S = 1/2, and let us attempt to build on our acquired understanding of classical spin liquids.
As a first step, we should ensure that quantum fluctuations do not stabilize magnetic order by
disorder as in the case of the J1-J2 model, see Fig. 1.5. To this end, let us construct a many-
body state which preserves SU(2) symmetry. It is evident that such a state cannot be given by a
simple product state of individual spin states. Instead, we should use the singlet representation
of SU(2) and, with realistic local exchange in mind, we consider a state composed of singlets
formed by neighboring spins [147]. Identifying a singlet with a dimer and imposing the hard-
core constraint that every site is part of exactly one dimer, then again guides our search for a
disordered ground state to the study of hardcore dimer coverings of the respective lattice.26

Although we can recognize an analogy to classical spin liquids at this point, our construction
of a disordered state, and in particular a QSL, is not complete. This is because, as we will see
below, emergence of long-range order is still possible if specific dimer coverings correspond to
ground states, and instead, we expect a QSL to be a specific superposition of dimer coverings.

25Namely, out of the four effective Ising spins on the corners of every tetrahedron, two spins have to point into
and two spins have to point out of the tetrahedron [37]. The name spin ice stems from the fact that the resulting
configurations are reminiscent of the proton positions in ice.

26Notably, the mapping from a singlet to a dimer is not unique. This fact implies technical subtleties when
considering dimer coverings as low-energy states of spin models [148].
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The search for this state and a Hamiltonian which is minimized by this state leads us to the
formal study of quantum dimer models.

Quantum dimer model on the triangular lattice

The first quantum dimer model was introduced by Rokhsar and Kivelson for the square lat-
tice [181] to facilitate the description of a peculiar phase of matter proposed by Anderson and
collaborators [58] and termed resonating valence bond (RVB) liquid. Notably, the RVB liquid
was initially put forward by Anderson as a nonmagnetic parent state of high-temperature su-
perconductivity in cuprates [5]. While this effort ultimately failed, the fascinating properties
of this state inspired intensive on-going research, and it is now appreciated as the historically
first description of a QSL. Here, we do not discuss the quantum dimer model for the square or
the honeycomb lattice, but instead turn to the triangular lattice for reasons that become clear
below. Possible dimer coverings of the triangular lattice are depicted in Fig. 1.8. We launch our
quantum description by promoting all possible hardcore dimer coverings c to orthonormal
quantum states |c⟩ that span our Hilbert space. Subsequently, we introduce coherent quan-
tum dynamics by defining a Hamiltonian in terms of operators that act on the rhombohedral
plaquettes of the triangular lattice. As shown in Fig. 1.8, there are three different types of rhom-
bohedral plaquettes, which are equivalent up to rotations by±60◦. If a plaquette hosts exactly
two dimers, we call it flippable and distinguish the two possible configurations by the symbols

and . The quantum dimer model is then given by [150]

HQDM = −t
∑︂

(| ⟩ ⟨ |+ | ⟩ ⟨ |) + v
∑︂

(| ⟩ ⟨ |+ | ⟩ ⟨ |) , (1.27)

where summation runs over all possible rhombohedral plaquettes, including plaquettes ob-
tained by rotation of the shape . The first term resembles the kinetic energy of the dimers
since its action induces resonant dimer moves on flippable plaquettes as indicated in Fig. 1.8.27

The second term is the potential energy and simply counts the number of flippable plaquettes.
For a qualitative discussion of the Hamiltonian familyHQDM parametrized by v/t, we as-

sume t > 0 and again employ a graphical analysis. Starting with limiting cases, we note that for
v/t → −∞, it is energetically favorable to maximize the number of flippable plaquettes. As
illustrated in Fig. 1.9(a), this is achieved for a columnar configuration of dimers. Notably, such
states break translational and rotational symmetries ofHQDM and, therefore, indicate crystal-
lization of dimers. Perturbation theory verifies, that this phenomenon persists for large but
finite −v/t and gives rise to an ordered phase [150]. This phase is termed columnar phase and
constitutes an instance of an RVB crystal.28 We encounter a similar situation for the opposite
limit v/t→∞. In this case, it is preferred to minimize the number of flippable plaquettes. As
depicted in Fig. 1.9(b), flippable plaquettes are entirely avoidedwhen dimers are placed in a stag-
gered pattern. Notably, these staggered states are annihilated by both the kinetic and potential
term in Eq. (1.27). Thus, they provide zero-energy ground states as long as the Hamiltonian is
positive semi-definite. Since this is the case for v/t ≥ 1 [148], we can identify another extended
crystalline phase. This phase is termed staggered phase and, on the triangular lattice for v/t > 1,
is characterized by a unique ground state up to global symmetry transformations.

27The names of the resonating valence bond phases stem from the analogy to the resonance of the two possible
dimer configurations of three valence electrons on the six sites of a benzene ring [147].

28We note that despite being ordered, the columnar phase is nontrivial on the triangular lattice as the number
of columnar configurations, i.e., states with maximum number of flippable plaquettes, grows exponentially with
the linear system size [150]. Monomer excitations are confined in the columnar phase [148].
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FIG. 1.9: Quantum phase diagram of the quantum dimer model on the triangular lattice parametrized by v/t. (a)
Columar state. (b) Staggered state for v/t ≥ 1. The hardcore constraint is violated at the boundary. Adapted
from Ref. [150].

Given these considerations, we might only expect a disordered phase for v/t ≲ 1. To this
end, it is helpful to study the case v = t > 0. This parameter choice is termed Rokhsar-Kivelson
(RK) point and allows to rewrite the Hamiltonian (1.27) to a sum of projectors,

HRK = t
∑︂

(| ⟩ − | ⟩) (⟨ | − ⟨ |) . (1.28)

The RK point is of particular interest as it yields an exact solution for the ground states [181].
Up to normalization, these states are equal-weight superpositions of the form [148]

|Φs⟩ ∝
∑︂
cs

|cs⟩ , (1.29)

where summation runs over all dimer coverings cs in the dynamical sector s, that is, the set of
dimer coverings closed under repeated action of the kinetic term in Eq. (1.27). As the staggered
states are annihilated by the kinetic term, it is evident that they are of the above form and
constitute ground states of HRK.29 There exist, however, also nontrivial solutions with an
arbitrary number of flippable plaquettes. To show this, let us consider a general superposition

|Ψ⟩ =
∑︂

c

Ac |c⟩ , (1.30)

whereAc are complex coefficients and the summation runs over all possible dimer coverings c.
From the specific shape ofHRK in Eq. (1.28), we can infer that |Ψ⟩ is annihilated byHRK, if and
only if the coefficient Ac of any dimer covering c with at least one flippable plaquette is equal
to the coefficients Ac′ of all dimer coverings c′ that are obtained from c by a resonant dimer
move, i.e., a transformation of the form ←→ . Notably, this set of coverings constitutes
a dynamical sector, and we then arrive at solutions of the form (1.29) [148]. Obviously, any
superposition of our degenerate ground state solutions is also a ground state. In particular, this

29Since HRK is a sum of projectors, i.e., terms with eigenvalues 0 and 1, it is clear that the ground state energy
must vanish identically.
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(a) (b)

FIG. 1.10: Topological order of the RVB liquid. (a) The winding number is the number of dimers crossing a non-
contractible reference line (red). It’s parity is invariant under dimer flips along loops (brown) with alternating
covered and uncovered bonds. (b) Two non-contractible lines (blue and red) winding around a torus permit the
definition of two non-equivalent winding numbers.

is the case for
∑︁

s |Φs⟩, that is, the equal-weight superposition of all possible dimer coverings.
From this result, we infer that with the exception of staggered states, the ground states of the
RK point are disordered. In the case of such states, the dimers do not crystallize but, instead,
form the RVB liquid as initially proposed by Anderson [58, 5].

Numerical results away from the exactly solvable RK point v/t = 1 indicate that a gapped
RVB liquid on the triangular lattice is stabilized in an extended phase for 0.8 < v/t < 1 [177].
This phase is characterized by exponentially decaying dimer correlations and, as we demon-
strate below,Z2 topological order [150]. Our qualitative discussion of the phases of the quantum
dimermodel (1.27) is summarized in Fig. 1.9. Notably, between the columnar phases and theRVB
liquid, more intricate crystalline phases are expected, which, however, are challenging numer-
ical methods due to remarkably large unit cells [151, 148].30 We also emphasize that the phase
diagram of quantum dimer models crucially depends on the lattice geometry. In particular, it
is currently believed that the RK point for any 2D bipartite lattice is not part of an extended
liquid phase but constitutes a critical point between two crystalline phases [147]. Some of the
exotic properties of the RK point, which we discuss in the following for the triangular lattice,
however, persist for bipartite geometries, such as the square and honeycomb lattice [181, 148].

Topological order in the resonating valence bond liquid

Given our first explicit encounter of a QSL, let us demonstrate the hallmark features of its
topological order based on the general discussion in Section 1.1, starting with its topological
ground-state degeneracy. To visualize this concept at the RK point (1.28), let us assume a system
with periodic boundary conditions in both spatial directions, that is, a system on a torus. As
exemplified in Fig. 1.10, we then consider a non-contractible reference line winding around the
torus with an arbitrary hardcore dimer covering, and count the dimers crossing this line to
define the winding number W1. The key step is to notice that no local resonant dimer move
can change the parity of this winding numberW1. Since the equal-weight superposition (1.29)
of the dimer coverings obtained from such moves is a ground state at the RK point (1.28), it
follows that the parity ofW1 is a quantum number or, put differently, a topological invariant of
the ground state. Repeating this argument for a reference line along the other toroidal direction

30We note that an exact solution of such a crystalline state exists for v = 0 [151]. The corresponding unit cell
involves 12 sites.
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FIG. 1.11: Elemental excitations of the RVB liquid at the RK point (1.28). (a)TwoZ2 vortices in triangular plaquettes
p and q (orange) separated by a reference line (red). (b)Twomonomers violating the hardcore constraint. (c)Dimer
flips separate the two monomers without energy cost. Adapted from Ref. [148].

yields a second winding numberW2 and permits the full characterization of a multiplet of four
degenerate ground states in terms of the parities ofW1 andW2.31 More generally speaking,
for a system geometry with genus g we can define 2g non-equivalent winding numbers and
expect a degenerate multiplet of size 4g [148]. This is the topological ground-state degeneracy
of the RVB liquid [150]. It is fundamentally different to the degeneracy of ordered ground states,
as it depends on the geometry of the system and, more importantly, cannot be characterized
by any local order parameter. Instead of the latter, we have to perform a nonlocal operation
to compute the topological invariants associated with the non-contractible lines to identify
the ground state. This reflects the fact that the winding-number parities remain unaffected not
only by resonant dimermoves described by the kinetic term in Eq. (1.27) but any local operation.
To see this, we note that under the hardcore dimer constraint, such operations are associated
with dimer flips along a closed loop with alternating covered and uncovered bonds [148] called
Wilson loop, see Fig. 1.10. Any local Wilson loop intersects a reference line an even number
of times and thus cannot change the parity. We might think of this result as an instance of
topological protection.

The second hallmark feature of topological order is fractionalization of the microscopic
degrees of freedom. This phenomenon typically manifests in elemental excitations with un-
conventional properties and, in particular, anyonic exchange statistics. The first excitations of
the RK point (1.28) that we discuss are calledZ2 vortices (or sometimes visons). They live on the
dual lattice, namely, a honeycomb lattice connecting neighboring triangular plaquettes, and are
captured by the variational wavefunction (in a given sector s) [147]

|p, q⟩ ∝
∑︂
cs

(−1)ncs (p,q) |cs⟩ , (1.31)

where p and q label triangular plaquettes hosting Z2 vortices and nc(p, q) is the number of
dimers crossing a reference line connecting p and q for the dimer covering c , as exemplified
in Fig. 1.11(a). Z2 vortices are subject of my Publications P2 and P3, and their phenomenology is
detailed in Chapter 2. For now, we are interested in their fractional character and this becomes
evident when we study the interplay with a second type of excitations of the RK point (1.28).32

To define these excitations, we have to revert to the initial spin system, which realizes the

31This statement is only exact in the thermodynamic limit, see Footnote 7. Moreover, we note that the winding
numbers define topological sectors, which each might include multiple dynamical sectors [148].

32We note, however, that numerical results indicate that vortex-like excitations are the lowest-energy excita-
tions of the gapped RVB liquid away from the critical RK point (1.28) [91].
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considered dimer coverings by forming nearest-neighbor singlet bonds.33 An elemental excita-
tion is then provided by exciting an SU(2) singlet to a triplet state. Similarly to the classical spin
liquid discussed above and as illustrated in Fig. 1.11(b), we can understand this excitation as two
local monomer defects that violate the hardcore dimer constraint. As both monomers carry a
spin of 1/2 and zero charge, they are called spinons. Most remarkably, at the RK point (1.28),
spinons can be separated to large distances without energy cost by moving dimers appropri-
ately [148, 147], and are, therefore, said to be deconfined [216]. Before employing this result to
study the relative statistics of spinons andZ2 vortices, we note that a second type of monomer
excitation can be obtained by extracting an electron from the system, thereby leaving an un-
paired spin and a hole behind [150, 147]. At the RK point (1.28) but also within the RVB liquid
phase, these monomers can again be separated without energy cost and behave like indepen-
dent particles, namely, a spinon and a so-called holon [148]. As the holon carries electric charge
and no spin, this procedure manifests spin-charge separation - a typical phenomenon in QSLs
reflecting fractionalization [187].

Let us now study the relative statistics of the two elemental excitations, i.e.,Z2 vortices and
monomers. To this end, we consider an isolated Z2 vortex connected to a distant partner by
a reference line, see Fig. 1.12(a), and envision the following protocol assuming fine-tuning to
the RK point (1.28). First, we replace a nearby dimer by two monomers as described above.
Then, we move one monomer around the Z2 vortex along a closed trajectory at no energy
cost to, finally, re-merge the two monomers and form a dimer. As indicated in Fig. 1.12(b), this
process corresponds to flipping the dimers along a Wilson loop, which intersects the reference
line an odd number of times, and therefore changes the sign of the wavefunction (1.31) [148].
Notably, this change of phase is equivalent to the Aharonov-Bohm phase for a π flux through
the triangular plaquette that hosts the Z2 vortex. While this result hints at anyonic exchange
statistics, amore elaborate discussion requires the consideration of the energies associatedwith
alternative processes. In particular, it might be energetically favorable to bind a monomer to
a Z2 vortex in terms of flux attachment and thereby change the relative statistics of monomers
[147]. Namely, the above considerations imply that the particle composed of a monomer and
Z2 vortex is a fermion while free monomers are bosons with respect to themselves [115].34

Flux attachment plays an important role in my Publication P3 as it permits the detection of Z2
vortices by observing the attached excitations. We note that more exotic and even non-Abelian
exchange statistics are enabled by modifications of the Hamiltonian or the lattice [143, 148].

Realization in spin systems

So far, we assumed dimerized spin systems to define aHamiltonian on themanifold of hardcore
dimer coverings, and eventually fine tuned the energy constants at the RK point to describe
the RVB liquid. Let us now briefly discuss what microscopic spin models yields an effective
description in terms of the quantum dimer model (1.27). Albeit that the RVB liquid was ini-
tially proposed as a ground state for antiferromagnetic Heisenberg models [58], this endeavor
is nontrivial. Besides aforementioned subtleties of the mapping from a singlet representation
to a dimer covering, see Footnote 33, this is because it is difficult to ensure that the manifold
of configurations formed by singlet bonds is sufficiently gapped with respect to other states

33Notably, this procedure enlarges our Hilbert space and introduces technical issues regarding the orthogo-
nality of different dimer coverings, which we do not touch upon in our introductory discussion [148].

34The RVB liquid belongs to the same universality class as the aforementioned toric code model due to their
mutual Z2 topological order [216, 112]. The exact solution of the toric code therefore facilitates the description of
the anyonic exchange statistics also present in the RVB liquid [114].
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(a) (b)

FIG. 1.12: (a) Two monomers replacing a dimer. One monomer can move along a closed loop (brown) aroundZ2
vortex (orange) connected to a reference line (red) (b) Dimer covering after the process has a different number of
dimers crossing the reference line. Adapted from Ref. [148].

[148]. In the case of Ising models, however, it is possible to show that the kinetic term ofHQDM
in Eq. (1.27) can be generated by various types of spin interaction terms, such as a transverse
exchange, a ring exchange or the coupling to a transverse field [149, 148]. In particular, there is
an exact correspondence between the strong coupling limit of the fully-frustrated transverse
field Ising model on the honeycomb lattice and the kinetic term of HQDM on the triangular
lattice [151, 148]. The potential term of HQDM, on the other hand, typically corresponds to an
additional multi-spin interaction [148]. Realizing quantum dimer models from SU(2) invari-
ant models is more involved and typically employs perturbed Klein models constructed from
appropriate projectors [148, 147]. The resulting models are elusive and the stabilization of the
RVB liquid in real magnets remains to be observed in experiments.

In Chapter 2, we therefore choose a different path to realize QSLs with topological order
in a spin system. From the view point of quantum dimer physics, this path is paved by a re-
laxation of the hardcore dimer constraint. Instead of imposing the number of dimers which
have to include a given site, we can merely impose the parity of this number [148]. We thereby
arrive at a Z2 gauge field which associates every bond with a bond variable uij = ±1. No-
tably, for these relaxed constraints, any plaquette is flippable, and we might, therefore, expect
much richer physics from local exchange. In Chapter 2, an emergent Z2 gauge field is crucial
for the description of the Kitaev model on the honeycomb lattice [112]. There, specific viola-
tions of the local constraints in terms of open gauge strings again turn out to be quasiparticle
excitations, namely, Z2 vortices. More generally speaking, we note that emergent gauge fields
are characteristic of QSLs and allow a rough classification [187]. Besides gapped Z2 QSLs, an
important family is given by gapless QSLs with emergent U(1) gauge fields which are reminis-
cent of electrodynamics. In the following, however, we stick to Z2 gauge fields and focus on
a gapped non-Abelian phase of the Kitaev model. Like the RVB liquid, this phase gives rise to
nontrivial topological order.
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Chapter 2

Realization of the Kitaev spin liquid

My Publications P2 and P3 study a specific type of quantum spin liquid and its solid-state re-
alization. This chapter provides a broad overview of the relevant research fields. To this end,
Section 2.1 starts with a schematic discussion of the quantum spin liquid phase described by
the Kitaev honeycomb model. The microscopic Jackeli-Khaliullin mechanism which realizes
the characteristic spin exchange of this model in candidate materials is outlined by Section 2.2.
Subsequently, Section 2.3 summarizes experimental results for the candidate material α-RuCl3
and concludes with a discussion of the polarized phase of this compound to set the stage for
my Publication P4. Finally, Section 2.4motivates the experimental set-up studied in my Publi-
cations P2 and P3. We note that this chapter employs many concepts introduced in Chapter 1
and, oftentimes, does so without explicit reference.

2.1 Kitaev honeycombmodel
In Chapter 1, we encountered the Kitaev (honeycomb) model (1.25) for classical spins and iden-
tified its anisotropic spin coupling as a source of large exchange frustration that suppresses
magnetic ordering at low and zero temperature, and instead gives rise to a classical spin liq-
uid and zero-point entropy. These results motivate us to study the quantum description of the
model for S = 1/2 as initially done in the seminal work by Kitaev [112]. A slightly more general
version of the model is given by1

H = −Kx

∑︂
⟨jk⟩x

σx
j σ

x
k −Ky

∑︂
⟨jk⟩y

σy
jσ

y
k −Kz

∑︂
⟨jk⟩z

σz
jσ

z
k = −

∑︂
⟨jk⟩α

Kασ
α
j σ

α
k , (2.1)

where σx
j , σ

y
j and σz

j are Pauli matrices and the summation runs over bonds ⟨jk⟩α. To avoid
double counting, we assume that ⟨jk⟩α denotes a bond of type α ∈ {x, y, z} connecting a site
j on a specified sublatticeA to a nearest neighbor k on the other sublattice B, as illustrated in
Fig. 2.1(a).

The Kitaevmodel is integral to this thesis and the research of topologically ordered systems
because it constitutes a rare instance of an interacting quantum model that is exactly solvable
and describes a quantum spin liquid (QSL). As we detail below, the solution for the spectrum
of H involves a spin representation in terms of Majorana fermion operators that reflects spin
fractionalization in theQSLphase. However, we can already infer on the level of the spin degrees

1The generality relative to Eq. (1.25) is given by potential anisotropy of the exchange constants Kx, Ky and
Kz . Below, however, we focus on the isotropic limit K = Kx = Ky = Kz . Moreover, note that we changed
sign convention with respect to Chapter 1 as ferromagnetic spin coupling now corresponds to Kα > 0.
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FIG. 2.1: (a) Honeycomb lattice with three different bond types x (blue), y (green) and z (red) and two sublattices
A (white) and B (black). p labels a hexagon plaquette with adjacent sites 1-6. The gray box indicates a unit cell
with two sites j ∈ A and k ∈ B. (b) The spin representation in terms of four Majoranas (green, magenta, blue
and orange). Three Majoranas are paired with neighboring sites while one Majorana is itinerant. Adapted from
Ref. [206].

of freedom that the model has a rich structure that facilitates its theoretical description. A first
indication of this is the conservation of allWilson loops [112, 76]. In the present context, theWilson
loop is the product of all spin interactions corresponding to the bonds along a closed loop.
We are particularly interested in the smallest possible loop winding around a single hexagonal
plaquette. The corresponding Wilson loop is termed plaquette operator and given by

Wp = σx
1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6, (2.2)

where the spins around a specified plaquette p are labeled according to Fig. 2.1(a). It is straight-
forward to show that a given plaquette operatorWp commutes with the Hamiltonian and all
other plaquette operators. It follows that the Kitaev model has an extensive number of con-
stants of motion. We can therefore partition the Hilbert space L into mutual eigenspaces of all
plaquette operators, and in a specific eigenspace, replace the operatorsWp by their eigenvalues
wp = ±1. Below we find that a plaquette p with wp = −1 hosts a Z2 vortex excitation and
therefore refer to the mutual eigenspaces as vortex sectors.

We note that the restriction to a vortex sector is consistent with the time-reversal symmetry
(TRS) of the system,

ΣyH
∗Σ−1

y = H, where Σy =
∏︂
j

(︂
iσy

j

)︂
, (2.3)

since every loop on the honeycomb lattice, and in particular around a plaquette, has even
length.2 Despite this symmetry and the extensive number of conserved operators, solving for
the spectrum in a specific vortex sector remains challenging, as the dimension of a vortex sector
for a lattice of 2N spins is 2N and thereby grows exponentially [118]. In fact, the conservation
of all Wilson loops is a property of the model for any spin length S, while an exact solution is
only known for S = 1/2 [17]. To find this solution, we therefore have to refine our description
of specific vortex sectors further.

2We note that this is no longer the case if we define the Kitaev model on a tricoordinated but non-bipartite
lattice. While the model remains (for the most part) exactly solvable on any tricoordinated lattice, the presence
of loops with odd length, e.g. along a triangle, can trigger spontaneous breaking of TRS resulting in a chiral spin
liquid [112, 236].
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2.1.1 Majorana fermion representation
As discussed in Chapter 1, a characteristic feature of QSLs is the fractionalization of the spin
degrees of freedom. The theoretical description of this phenomenon is typically set about by
an appropriate representation of the spin in terms of operators that are associated with the
creation or annihilation of fractional excitations. In many cases, however, these transforma-
tions do not diagonalize the Hamiltonian but require potentially uncontrolled approximations
such as a mean-field decoupling of quartic interactions [187, 118], see my Publication P2. The
representation of the spin σj on site j put forward by Kitaev is given by3

σx
j = icx

j cj, σy
j = icy

j cj, σz
j = icz

jcj, (2.4)

where cα
j for α ∈ {x, y, z} and cj are Hermitian Majorana (fermion) operators defined by the

anticommutation relations

{cj, ck} = 2δjk, {cα
j , c

β
k} = 2δjkδαβ, {cj, c

α
k} = 0. (2.5)

Using Eq. (2.5), it is straightforward to show that the representation (2.4) correctly reproduces
the algebra of Pauli matrices, i.e., {σα

j , σ
β
j } = 2δαβ and [σα

j , σ
β
k ] = 0 for j ̸= k. The represen-

tation, however, is overcomplete as it enlarges the Hilbert space. This becomes evident when
we consider the operator−iσxσyσz . While this product simply equals the identity within our
original physical Hilbert space L, its representation in the enlarged Hilbert space L̄ is given by

Dj = cx
j c

y
j c

z
jcj (2.6)

and, in particular, has eigenvalues +1 and −1. To ensure that our states |Ψ⟩ are part of the
physical subspace, i.e., |Ψ⟩ ∈ L, we therefore impose the local constraint

Dj |Ψ⟩ = |Ψ⟩ (2.7)

for all sites j. Notably, the redundancy of the representation (2.4) is related to the invariance
under the Z2 gauge transformation

cj → −cj, cα
j → −cα

j ∀α ∈ {x, y, z}, (2.8)

which is enforced by applying the gauge operatorDj .
To better understand the enlarged space L̄ and the physical relevance of Majorana opera-

tors, let us constructmore familiar fermionic creation and annihilation operators. One possible
way to do so is given by

fj = 1
2 (c2j + ic2j+1) , f †

j = 1
2 (c2j − ic2j+1) , (2.9)

respectively, as it yields the correct anticommutation relations {fj, f
†
k} = δjk and {fj, fk} =

0.4 Based on this expression, we might think of Majoranas as the real and imaginary parts of
standard complex fermions. The representation (2.4) of a single spin in terms of four Majoranas
is therefore associated with a Fock space of two complex fermions, i.e., with a dimension of
4. As the spin degree of freedom acts on a space of dimension 2, we deduce that the physical
subspace L for a lattice of 2N spins is of size 22N , while the enlarged space L̄ is of dimension
42N and thus necessitates the local constraints (2.7).5

3An alternative and equivalent solution of the Kitaevmodel involves a Jordan-Wigner transformation [60, 44].
4Majorana operators are based on the work of Ettore Majorana, who proposed a real-valued modification of

the Dirac equation to describe chargeless fermions which are their own antiparticle [57].
5We note that Eq. (2.7) is of different nature than the local constraints encountered in Chapter 1 in that viola-

tions of a constraint (2.7) do not constitute energy excitations but are merely unphysical.
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Emergent Z2 gauge field

Given a well-defined representation of the spin, we can re-express the Kitaev model (2.1) in
terms of Majorana operators. To this end, it is convenient to define the so-called bond variables

Ujk = icα
j c

α
k (2.10)

for every bond ⟨jk⟩α. Inserting the representation (2.4) and this definition into Eq. (2.1) yields

H = i
∑︂

⟨jk⟩α

KαUjkcjck. (2.11)

While this Hamiltonian is generally quartic in terms of Majorana operators, it is exactly solv-
able. This stems from the beautiful fact that every bond variableUjk commutes with the Hamil-
tonian and all other bond variables. Similarly to above, we can therefore restrict our considera-
tions to a mutual eigenspace, and replace all bond variables Ujk by their eigenvalues ujk = ±1
to thereby arrive at a quadratic solvable Hamiltonian. Based on our discussion of QSLs in
Chapter 1, we might link these formal arguments to physical meaning and say that the bond
variables Ujk manifest an emergent static Z2 gauge field.6 In a given mutual eigenspace, that is,
for a given gauge configuration {ujk = ±1}, the Kitaevmodel thus describesMajorana fermions
hopping in front of a static gauge background. As illustrated in Fig. 2.1(b), this constitutes the
fractionalization of the microscopic spin degree of freedomσj in terms of emergent gauge and
matter degrees of freedom, Ujk and cj , respectively. Let us discuss what fractional excitations
are described by these two emergent degrees of freedom, starting with the former.

To this end, let us first clarify how the gauge configurations relate to the aforementioned
vortex sectors. The Majorana representation of the plaquette operators (2.2) is given by

Wp = U21U23U43U45U65U61, (2.12)

where the sites are labeled according to Fig. 2.1(a). The plaquette operators resemble the flux
of the Z2 gauge field. A plaquette is penetrated by a finite flux in a given gauge configuration if
it is adjacent to an odd number of negative bond variables. It is evident that this is realized by
multiple gauge configurations, and that, in particular, plaquette operators are invariant under
gauge transformations (2.8). To understand this formally, let us assume the knowledge of an
eigenstate Ψ̄{ujk} ∈ L̄ of the Hamiltonian (2.11) for a given gauge configuration {ujk}. We
then obtain a physical state Ψ{wp} ∈ L in a vortex sector {wp} in terms of the projection
Ψ{wp} = PΨ̄{ujk}, where the projector

P =
∏︂
j

(︃1 +Dj

2

)︃
(2.13)

eliminates all states which violate a local constraint (2.7). It is convenient to write P = SP0,
where

P0 = 1
2

⎛⎝1 +
∏︂
j

Dj

⎞⎠ (2.14)

is a projector that eliminates all unphysical states for a specified gauge configuration as dis-
cussed below [168, 257]. The explicit expression for the operator S can be found in Ref. [168].

6This is consistent with the fact that the bond variables ujk are not invariant under (2.8) but transform ac-
cording to ujk → −ujk (or ukj → −ukj ). We do not refer to the bond variables as conserved quantities as they
are not observable in the physical subspace of the spin model.
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Here, we just note that the action of S symmetrizes over all gauge configurations, which are
related to each other by a sequence of local gauge transformations of the form (2.8). A phys-
ical state in a vortex sector is therefore given by an equal-weight superposition of states for
equivalent gauge configurations.7 Notably, this is somewhat reminiscent of the resonating va-
lence bond (RVB) liquid state discussed in Chapter 1. Moreover, similarly to the RVB liquid, the
ground state of the Kitaev model is in the flux-free vortex sector [130, 112], while plaquettes p
withWp = −1 host static gapped Z2 vortex excitations.8

Fermionic matter excitations

The other species of fractional excitations arematter fermionswhich exist in every vortex sector.
To describe these fermions, we have to diagonalize the Hamiltonian (2.11) for a given gauge
configuration {ujk}. In the following, we sketch this calculation and refer to my Publication P3
for technical details. To this end, let us label the sites of themth unit cell by j = 2m ∈ A and
j = 2m+1 ∈ B according to Fig. 2.1(a). Based on Eq. (2.9), we thenmay introduce one complex
fermion per unit cell using (form ∈ Z)

c2m = fm + f †
m, c2m+1 = 1

i

(︂
fm − f †

m

)︂
. (2.15)

Inserting into the Hamiltonian (2.11) for a specified gauge configuration yields an expression of
the form

H{ujk} =
∑︂
m,n

tmn

(︂
f †

mfn − f †
mf

†
n + H.c.

)︂
, (2.16)

where the hopping elements tmn have an implicit gauge dependency and are given by

tmn = Kαu2m,2n+1, (2.17)

if j = 2m and k = 2n + 1 are nearest neighbors connected by a bond ⟨jk⟩α and zero oth-
erwise. The Hamiltonian H{ujk} describes free fermions without conserved particle number.
Such models are familiar in condensed matter physics and treated within the Bogoliubov-de-
Gennes formalism. On a finite lattice of N unit cells, this formalism involves a Bogoliubov
transformation to a set ofN fermionic quasiparticle operators aλ and a†

λ given by [27]

(︄
f
f †

)︄
= V

(︄
a
a†

)︄
, where f =

⎛⎜⎜⎝
f1
...
fN

⎞⎟⎟⎠ , a =

⎛⎜⎜⎝
a1
...
aN

⎞⎟⎟⎠ (2.18)

and V is a unitary 2N × 2N matrix. An appropriate choice of V then diagonalizes the free
fermion problem (2.16) and yields

H{ujk} =
N∑︂

λ=1
ελ

(︃
a†

λaλ −
1
2

)︃
, (2.19)

7The Kitaev model hosts topologically ordered phases. Depending on the geometry of the system, a vortex
sector might therefore include multiple topological sectors [112], see Chapter 1.

8Notably, the fact thatZ2 vortices are static is a property of the exactly solvable point but not of an extended
Kitaev spin liquid. Belowwe introduce realistic perturbations to the Kitaev model and thereby renderZ2 vortices
dispersive.
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where ελ ≥ 0 are the single-particle energies of the fermionic excitations. Notably, within
the physical subspace, fermionic many-body states have to satisfy a parity constraint. This is
because one can show for periodic boundary conditions that the projector (2.14) is given by

P0 = 1
2

⎡⎣1 + (−1)θ(−1)Na det(V )
∏︂

⟨jk⟩α

ujk

⎤⎦ , (2.20)

where θ is an integer that depends on the linear size of the system and Na = ∑︁
λ a

†
λaλ is the

total number of fermionic excitations [168, 257]. The projector therefore annihilates all many-
body states with a specific parity determined by the gauge configuration and geometric details.
In particular, it is possible that the overall ground state on a torus includes a single fermionic
excitation. As we discuss in my Publication P3, the parity constraint also introduces technical
subtleties to the calculation of the dynamical spin correlations.

It is another remarkable property of the Kitaev model that spin correlations are ultra local
and can be computed exactly [16, 119]. As a preparation for my Publication P3, let us briefly
sketch the calculation of the static spin correlations ⟨σα

j σ
β
k ⟩ at zero temperature. To this end,

we assume without loss of generality that site k is on sublattice B and let l ∈ A be the site that
is connected to k by the bond ⟨lk⟩β . The physical ground state |Φ0⟩ ∈ L is associated with
a state |Φg⟩ ∈ L̄ for a flux-free gauge configuration g = {umn} and with physical fermionic
parity. Since |Φg⟩ lives in a mutual eigenspace of the bond variables and since u2

lk = 1, we can
write

⟨Φ0|σα
j σ

β
k |Φ0⟩ = ulk ⟨Φg|σα

j σ
β
kUlk|Φg⟩ . (2.21)

Inserting the Majorana representation (2.4) and Eq. (2.10) shows that σα
j σ

β
k and Ulk commute

if j = l and α = β but anticommute otherwise. As Ulk is Hermitian, it follows that the above
correlation function is only nonzero if j and k are nearest neighbors and α = β corresponds
to the bond type connecting these two sites. These ultra local spin correlations reflect that the
state at zero temperature is disordered and, therefore, a QSL [16]. To compute the numerical
value of the correlation function for two nearest neighbors j = 2m ∈ A and k = 2n+ 1 ∈ B,
we revert to complex fermions and write

⟨Φ0|σα
j σ

α
k |Φ0⟩ = −ujk ⟨Φg|cjck|Φg⟩ = iu2m,2n+1 ⟨Φg|f †

mfn − f †
mf

†
n + H.c.|Φg⟩ (2.22)

Wereduced the problem to the computation of quadratic correlation functions of free fermions.
This is straightforward in terms of the Bogoliubov transformation (2.18) since the fermionic
vacuum for a given gauge configuration is annihilated by the quasiparticle operators aλ ap-
pearing in the diagonalized Hamiltonian (2.19) [27]. We again refer to my Publication P3 for
technical details and results.

For now, we conclude that with the outlined analytical method, it is possible to compute
the full energy spectrum and all two-point correlation functions of the Kitaev model. More
generally speaking, the introduced analytical machinery applies to any Hamiltonian defined
on any tricoordinated graph, which commutes with all bond variables in the enlarged Hilbert
space of the Majorana representation (2.4). This allows the exact study of disorder [257, 103,
220, 221], different lattice geometries [236, 138, 163, 81, 206], external magnetic fields [112] and
more exotic phenomena [176, 125]. For a refined discussion of the physical properties of the
original unperturbed Kitaev model (2.1), let us now turn to the low-energy regime.
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2.1.2 Flux-free ground state and Majorana zero modes
A fundamental theorem by Lieb for itinerant fermions on bipartite lattices [130] implies that
the ground state of the Kitaev model is in the flux-free vortex sector [112]. It is convenient to
describe the flux-free sector in terms of the homogeneous gauge configurationwithujk = 1 for
all bonds ⟨jk⟩α, since this endows the fermionic HamiltonianH{ujk} in Eq. (2.16)with transla-
tional invariance. The theoretical description is then facilitated by a Fourier transformation of
the complex fermions (assuming periodic boundary conditions)

fm = 1√
N

∑︂
k∈BZ

eik·rmfk, f †
m = 1√

N

∑︂
k∈BZ

e−ik·rmf †
k, (2.23)

where summation runs over the whole Brillouin zone (BZ) and rm is the location of the mth
unit cell on the lattice spanned by the lattice vectors (assuming unit lattice constant)

ê1 = 1
2
(︂
1,
√

3
)︂T
, ê2 = 1

2
(︂
−1,
√

3
)︂T
. (2.24)

The standard representation of the Hamiltonian H0 = H{ujk=1} within the Bogoliubov-de-
Gennes formalism is then given by [118, 147]

H0 =
∑︂

k∈ 1
2 BZ

(︂
f †

k, f−k

)︂(︄ ξk i∆k
−i∆k −ξk

)︄(︄
fk

f †
−k

)︄
, (2.25)

where summation runs over half of the BZ and ξk = Re(J(k)) and ∆k = Im(J(k)) are real
and imaginary parts of the function

J(k) = Kxeik·ê1 +Kyeik·ê2 +Kz, (2.26)

respectively. The Hamiltonian is then diagonalized by the Bogoliubov transformation(︄
fk

f †
−k

)︄
=
(︄

cos θk i sin θk
i sin θk cos θk

)︄(︄
ak

a†
−k

)︄
, (2.27)

where tan (2θk) = −∆k/ξk. We arrive at

H0 =
∑︂

k∈BZ
ε(k)

(︃
a†

kak −
1
2

)︃
, (2.28)

where ε(k) = |J(k)| is the single-particle dispersion.

Phase diagram of Kitaev model

For a discussion of the ground state properties, we are particularly interested in whether the
spectrum is gapped or gapless.9 As one can show, the equation J(k) = 0 has a solutionk ∈ BZ
if and only if the energy constantsKα satisfy the three triangle inequalities

|Kx| ≤ |Ky|+ |Kz|, |Ky| ≤ |Kz|+ |Kx|, |Kz| ≤ |Kx|+ |Ky|. (2.29)

9
Z2 vortices are always gapped excitations in the ideal homogeneous Kitaev model. This can change in the

presence of disorder [103, 220] or lattice distortion, see my Publication P2.
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Kx = 1 Ky = 1

Kz = 1

Ax Ay

Az

B

⟨kl⟩β

⟨kj⟩α
(jkl)αβ

k

j

l

(a) (b)

FIG. 2.2: (a) Quantum phase diagram of the Kitaev model (2.1) in the plane defined by Kx + Ky + Kz = 1 with
Kx, Ky, Kz > 0. Ax, Ay and Az label gapped Abelian phases. B is a gapless phase but gives rise to a gapped
non-Abelian phase in an external magnetic field. Adapted from Ref. [112]. (b) The triangle (jkl)αβ (orange) for
k ∈ A involved in the summation in Eq. (2.31).

The ground state of the Kitaev model is a gapless QSL if the three exchange strengths are com-
parable and a gapped QSL for strong exchange anisotropy. Notably, the triangle inequalities
are independent of the sign of the couplings Kα.10 Focusing on ferromagnetic exchange, i.e.,
Kα ≥ 0, in what follows, we then arrive at the triangular quantum phase diagram in Fig. 2.2(a)
with one gapless phase and three gapped phases.

Let us briefly discuss the latter. These three phases are algebraically distinct but related to
each other by rotations [112]. It is therefore sufficient to focus on a single phase and assume,
say, Kz > Kx + Ky . The qualitative description of these phases is particularly simple in the
anisotropic limit Kz ≫ Kx = Ky , where the spins tend to form dimers along the z bonds.
In this limit, the energy cost associated with the creation of two Z2 vortices is smaller than
the fermionic gap [118]. Moreover, a fourth-order perturbation theory in Kx/Kz allows to
map the Hamiltonian to the toric code model [112, 114], see Chapter 1. We infer that the gapped
phases belong to the same universality class as the toric code model and the RVB liquid and, in
particular, hostZ2 topological orderwithAbelian anyons. Sincewe discussed the phenomenology
of the RVB liquid and its anyonic excitations in Chapter 1, we maymove on to the gapless phase
in what follows. Moreover, the gapless phase includes the isotropic point Kx = Ky = Kz

which is most relevant for material realizations, see below.
In the gapless phase, the fermionic single-particle energy ε(k) vanishes at two pointsk0 and

−k0 in the Brillouin zone and gives rise to a conic dispersion in their vicinity. As a consequence,
the concept of topological order does not apply and particle exchange does not have well-
defined statistics but generally depends on the details of the exchange [112]. Notably, these gap-
less points are protected against small perturbations which keep time-reversal symmetry (2.3)
of the Hamiltonian intact. Thus, to open the gap and induce a topologically ordered state, we
might break TRS using a perturbation. The physically natural choice for such perturbation is
a Zeeman coupling to an external magnetic field h,

HZM =
∑︂

j

h · σj. (2.30)

This term, however, does not commute with the bond variables Ujk and, therefore, spoils the
exact solution of the Kitaev model. As a result, for finite |h| within the QSL phase, Z2 vortices

10In the presence of perturbations, the sign of the spin exchange has drastic physical implications [95, 206].
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gain a finite dispersion [98]. For analytical results, let us thus consider a perturbation which
breaks TRS but keeps the resulting Hamiltonian solvable. Themost simple choice is of the form

Hκ = κ
∑︂

(jkl)αβ

σα
j σ

γ
kσ

β
l , (2.31)

where (α, β, γ) is a cyclic permutation of (x, y, z) and (jkl)αβ denotes the triangle with ver-
tices at k and its two nearest neighbors j and l connected to k by bonds of type α and β,
respectively, see Fig. 2.2(b). Within the physical subspace, the Majorana representation of this
term is given by (taking our convention for the bonds into account)

Hκ = −iκ
∑︂

⟨jk⟩α⟨lk⟩β

UjkUlkcjcl − iκ
∑︂

⟨kj⟩α⟨kl⟩β

UkjUklcjcl, (2.32)

where Ujk are the gauge variables (2.10). Notably, this term can be derived from the Zeeman
coupling (2.30) for κ ∝ hxhyhz/K using a rough third-order perturbation theory assuming
a small magnetic field [112].11 In my Publication P2, we numerically confirm this result using a
mean-field decoupling consistent with previous results in the literature [95].

In any case, it is straightforward to check that Hκ commutes with all bond variables and
that we can obtain the full spectrum of the perturbedHamiltonian using the analytical methods
described above. In the case of the flux-free sector, a modification of the above arguments
shows that, as anticipated, a finite κ induces a finite energy gap ε(k0) ∝ κ of the fermionic
spectrum. The resulting gapped QSL phase hosts non-Abelian excitations which are subject of
my Publications P2 and P3. Moreover, it belongs to the same universality class as other non-
Abelian states of matter such as the fractional quantum Hall state at filling factor ν = 5/2 [153]
or specific topological superconductors [113, 66], which were intensively studied due to possible
applications in quantum computation [92, 158].

Non-Abelian phase in an external magnetic field

Based on our discussion of topologically nontrivial systems without TRS in Chapter 1, one
might first characterize this phase in terms of the Chern number ν ∈ Z. To this end, one can
adapt Eq. (1.2) and show that the Chern number is given by [112]

ν = sign(κ) = sign(hxhyhz), (2.33)

where we inserted the result for a perturbative magnetic field in the second equality for later
reference. This result indicates that the state does not belong to the univerality class of the
gapped phases in Fig. 2.2(a). Moreover, on a qualitative level, we can expect universal quantized
transport signatures that are associated with edge states at the system’s boundary. To confirm
this expectation, let us first discuss the bulk excitations.

It is a remarkable property of the phase that Z2 vortices obstruct the binding of Majorana
modes to matter fermions and attach Majorana zero modes (MZMs). More precisely, a vortex
sector with two isolated vortices hosts a delocalized complex fermion that is composed of two
MZMs localized near the two Z2 vortices and that has zero energy with respect to the re-
spective vortex sector. As long as the distance between Z2 vortices is large compared to an
effective correlation length, the state associated with this fermion is effectively inaccessible to

11Here, K = Kx = Ky = Kz denotes isotropic coupling. We note that the second order of the perturbation
theory results in a small anisotropy of the exchange coupling [112], see my Publication P2.
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measurements and perturbations [112]. Only upon moving the Z2 vortices close to each other
can the MZMs hybridize and form a fermion bound state at a finite energy within the bulk
gap. MZMs are theoretically predicted in other condensed matter systems such as topologi-
cal superconductors and one-dimensional states [66, 113, 57], and attracted massive attention
in the last two decades due to their potential application in topological quantum computation
[158]. This theoretically predicted implementation of robust quantum information processing
employs the non-Abelian exchange statistics of fractional excitations, as briefly outlined below.
In the context of our gapped QSL phase, the statistics of Z2 vortices are modified with respect
to the time-reversal gapped phases due to the attachment of an MZM. The composite particle
of an MZM and a Z2 vortex is called Ising anyon and its non-Abelian statistics are discussed
below.

My Publications P2 and P3 are concerned with the detection of Ising anyons. While the
observation of exchange statistics is rather elusive, boundary modes of the non-Abelian phase
are predicted to give rise to a characteristic experimental signature. For a qualitative explana-
tion of this, let us model an armchair or zigzag edge of the honeycomb lattice [4] by tuning the
exchange couplings Kα of bonds that cross a virtual edge to zero. It follows that in the limit
of zero exchange coupling, the energy cost associated with the insertion of two Z2 vortices
by flipping the sign of the corresponding bond variables vanishes [59]. The attached MZMs
of the Z2 vortices then constitute gapless edge modes in the ground state sector reflecting the
aforementioned bulk-boundary correspondence. In particular, these gapless edge modes are chi-
ral, i.e., free to propagate in only one direction [112] and the difference of left and right-moving
modes at a horizontal edge is exactly given by the Chern number ν in Eq. (2.33) [79]. In the
gapped non-Abelian QSL phase, we therefore expect a chiral mode winding around the system
and carrying a net energy current. A schematic calculation for energy current JE for a right-
moving Majorana edge mode with energy ε(k) = −ε(−k) and velocity v(k) = dε/dk yields
[100, 112].

JE =
∫︂ ∞

0

dk

2π
ε(k)v(k)

1 + eε(k)/T
= 1

2π

∫︂ ∞

0
dε

ε

1 + eε/T
= π

24T
2, (2.34)

where T is the temperature.12 Due to the analogy to the electric quantum Hall effect, we then
infer a quantized thermal Hall conductivity (introducing ℏ and the Boltzmann constant kB for
clarity)

κxy = ∂JE

∂T
= ν

2
π

6
k2

B
ℏ
T. (2.35)

Notably, this result differs from the thermal Hall conductivity generated by complex fermionic
edge modes of quantum Hall states by a factor of 1/2 [100]. This reflects the chiral central
charge of the Majorana particle or, more loosely speaking, the fact that a Majorana is “half an
electron” [112, 66, 57]. Based on our discussion of the quantumHall effect in Chapter 1, wemight
expect this universally quantized signature to be a smoking gun signature of the non-Abelian
phase. And, indeed,measurements ofκxy in thematerial candidateα-RuCl3 constitute arguably
themost prominent claim of theKitaev spin liquid [104, 239]. However, as we detail below, these
experiments are controversial and considered insufficient due to a variety of complications
that obscure their unambiguous interpretation. In my Publications P2 and P3, we, therefore,
design alternative detection schemes that locally probe the bulk excitations of the QSL, namely

12The difference to the calculation of the energy current of a complex fermionic edge mode is the range of
the integration. Roughly speaking, this is because a mode created by the Fourier transform ck of the Majorana
operators cj is annihilated by c−k. For details, see Ref. [112].
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Ising anyons. In the long term, such techniques could enable the manipulation of anyons and,
thereby, constitute an important step towards applications in quantum information processing.

2.1.3 Ising anyons for topological quantum computation
The non-Abelian statistics of its excitationsmake the Kitaev spin liquid phase appealing beyond
the perspective of fundamental physics. This is due to the long-standing proposal of topolog-
ical quantum computation by Kitaev and Freedman [65, 114]. The proposed idea is to, roughly
speaking, encode quantum information in the non-local internal degrees of freedom of topo-
logically nontrivial and degenerate states, and manipulate this information in terms of the ma-
trix structure associated with the braiding of non-Abelian excitations [92, 158, 147]. The great
advantage that is expected from such an implementation of quantum informationmemory and
processing is the intrinsic fault-tolerance with respect to local noise and decoherence. Notably,
the susceptibility to errors is currently the largest problem of existing platforms for quantum
computation and the massive overhead necessary for quantum error correction makes the ap-
plication of conventional quantum computers for practical problems (beyond the simulation
of quantum systems) in the near future seem unlikely [158, 147]. It is thus unsurprising that
the proposal of topological quantum computation sparked excitement and initiated extensive
experimental research of putative non-Abelian excitations in topological superconductors [66]
and fractional quantum Hall states [153]. However, by now it is clear that the realization of the
necessary constituents in these solid-state systems faces immense experimental challenges and,
so far, has not been successful or universally accepted [147]. At the time of writing, topological
quantum computation is, therefore, a largely academic endeavor.

Despite this pessimistic account, let us briefly extend our discussion of anyonic exchange
statistics inChapter 1. As previouslymentioned there, the possibility of anyons essentially stems
from the fact that there are two topologically distinct ways of exchanging the positions of two
particles if we restrict ourselves to two spatial dimensions. In the graphical representation 2.3 of
the world lines of two particles, we thus distinguish between a clockwise and an anticlockwise
rotation in terms of an overtake and undertake, respectively. Notably, to justify such an illustra-
tion we assume that the considered particles are sufficiently distanced from other particles and
each other during the whole indicated evolution, and that the considered many-body states are
degenerate [112, 147]. Anyonic statistics then become manifest if we compare an operation that
involves two clockwise rotations of anyons with an operation that involves one clockwise and
one anticlockwise rotation, as illustrated in Fig. 2.3(a). While the latter process should return
the system to its original state, this is not necessarily true for the first process. Instead, in the
Abelian case, the state accumulates a phase 2θ, where θ is the exchange angle in Eq. (1.3) and,
roughly speaking, the one-dimensional irreducible representation of the associated element
of the braid group [147]. The situation becomes more subtle, if we consider an ensemble of
three particles. The other operations illustrated in Fig. 2.3(b) are the same for Abelian anyons
but can differ for non-Abelian excitations as the generators of the braid group generally do
not commute [158]. The irreducible representations of these operations are, therefore, higher
dimensional and intended as the elemental unitary transformations of a topological quantum
computer. In principle, such operations could be performed by moving around a number of
Ising anyons in the non-Abelian phase of the Kitaev model as the MZMs attached to vortices
would form a degenerate subspace that could encode quantum information [147].13 However,

13And indeed, the non-Abelian QSL of the Kitaev model is subject of a recent proposal for quantum compu-
tation applications [117].
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(a) (b)

FIG. 2.3: Braiding ofworld lines. The vertical direction represents timewhile the horizontal axis represents spatial
coordinates. A clockwise rotation is represented by an overtake of a world line from the left to the right. (a) The
two operations can be inequivalent for anyons. (b) The two operations are equivalent for Abelian but generally
inequivalent for non-Abelian anyons. Adapted from Ref. [147].

instead of further elaborating, let us move on to real materials.

2.2 Jackeli-Khaliullin mechanism
The Kitaev model was initially intended as a theoretical benchmark for the study of topolog-
ically ordered states of matter as pointed out in the previous section 2.1. Due to its seemingly
artificial exchange anisotropy, one might expect that the model eludes the realization in solid-
state systems. However, as first envisioned in seminal works by Jackeli and Khaliullin [107, 93],
an intricate interplay of spin, orbital and electronic degrees of freedom can potentially generate
the characteristic spin interaction of the Kitaev model in specific transition metal compounds
[206]. These Mott insulating candidate materials are termed Kitaev materials and have been
the subject of extensive theoretical and experimental investigation for the last 15 years. While
much has been learned about Kitaev materials through this research and intriguing evidence of
unconventional magnetic states has been collected, the quest for an unambiguous experimental
observation of a quantum spin liquid (QSL) phase is still on-going. The design of novel probes
to achieve this goal is the subject of my Publications P2 and P3. Since these studies are based
on the microscopic description of Kitaev materials, we may discuss the mechanism proposed
by Jackeli and Khaliullin in the following.

2.2.1 Low-energy description of Mott insulators
As a first step, let us briefly review the derivation of the effective low-energy description of
Mott insulating systems in terms of spin Hamiltonians. Wemainly do so to fix the notation and
prepare the discussion in Section 2.4 on the electric detection schemes which are employed
in my Publications P2 and P3. Physically, this derivation reflects the fact that in the limit of
strong on-site Coulomb repulsion, the electrons are effectively decoupled from the lattice as
long as the electronic filling is commensurate. Here, we study the most simple instance of a
Mott insulator, namely the single-orbital half-filled Hubbard model [32, 108]

HH = −
∑︂
j,k,σ

tjkψ
†
jσψkσ + U

∑︂
j

nj↑nj↓, (2.36)

where U > 0 is the on-site repulsion, njσ = ψ†
jσψjσ is the number operator and ψjσ is the

(complex) annihilation operator of an electron with spin σ ∈ {↑, ↓} on site j of an arbitrary
lattice. For later purposes, we allow that the real hopping integrals tjk are inhomogeneous and
finite for arbitrary sites j and k. In fact, the only restriction we impose is the limit of strong
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repulsion U ≫ |tjk|. In this limit and at half-filling, every low-energy configuration occupies
every site with exactly one electron to avoid the large energetic penalty associated with double
occupancies. The effective Hamiltonian that acts on the low-energy subspace spanned by these
states can be obtained from a perturbative method termed canonical transformation [200, 136,
48].14 Formally, the canonical transformation is an expansion of a unitary transformation based
on the Campbell-Baker-Hausdorff formula

eΩHHe−Ω = HH + [Ω, HH] + 1
2[Ω, [Ω, HH]] + ... (2.37)

The idea is to choose the anti-Hermitian generator Ω of the transformation such that all terms
that change the number of double occupancies are eliminated up to a desired order in |tjk|/U .
To this end, it is convenient to rewrite the Hamiltonian to HH = V + T0 + T1 + T−1, where
V is the on-site term in Eq. (2.36) and

T0 = −
∑︂
j,k,σ

tjk

[︂
njσψ

†
jσψkσnkσ + (1− njσ)ψ†

jσψkσ(1− nkσ)
]︂

T1 = −
∑︂
j,k,σ

tjknjσψ
†
jσψkσ(1− nkσ), T−1 = T †

1 . (2.38)

The action of the operator Tm for m ∈ {0, 1,−1} is to change the number of double occu-
pancies V/U exactly by m, since [V, Tm] = mUTm. Through the transformation (2.37), the
relevant terms T±1 are, therefore, eliminated by a generator of the form [136]

Ω = 1
U

(T1 − T−1) . (2.39)

Up to the lowest order |tjk|/U , the transformed Hamiltonian is then given by15

e−ΩHHeΩ ≃ V + T0 + 1
U

[T1, T−1]. (2.40)

The subsequent step is a projection on the low-energy subspace using the projector

Plow =
∏︂
j

(nj↑ − nj↓)2 , (2.41)

which eliminates all states with at least one double occupancy. To this end, it is convenient to
introduce spin operators Sj using

Sα
j = 1

2
∑︂
σ,σ′

ψ†
jσσ

α
σσ′ψjσ′ , (2.42)

where σα are Pauli matrices for α ∈ {x, y, z}. For energies below the charge gap, we thereby
arrive at the effective Hamiltonian

Hlow = Plowe−ΩHHeΩPlow ≃
∑︂
j,k

Jjk

(︃
Sj · Sk −

1
4

)︃
, (2.43)

14Alternative perturbative methods are typically equivalent up to low orders in |tjk|/U [48].
15More precisely, one should expand the generator according to Ω =

∑︁∞
l=1 Ωl, where Ωl is of order

(|tjk|/U)l. The second-order term Ω2 should then satisfy [Ω2, V ] = −[Ω1, T0] etc.
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where the spin exchange is Jjk = 4t2jk/U . As expected, we obtain an effective model that
can solely be expressed in terms of localized electronic moments coupled due to virtual excur-
sions of electrons to other sites and back. If we restrict the hopping integrals tjk to nearest
neighbors j and k, we arrive at an antiferromagnetic isotropic Heisenberg model reflecting the
SU(2) symmetry of our initial Hamiltonian (2.36). Below we may discuss how to realize the
characteristic anisotropic Kitaev interaction and how to derive it using an appropriately mod-
ified canonical transformation (2.37). Moreover, for the latter discussion 2.4 of electric probes,
it is important to note that we can apply the above machinery to any observable O expressed
in terms of the electronic degrees of freedom to arrive at an effective operator [32, 108]

Olow ≃ Plowe−ΩOeΩPlow (2.44)

expressed solely in terms of the spin degrees of freedom.

2.2.2 Spin-orbit assisted Mott insulators
As outlined above, we are interested inMott insulating transition metal compounds. To realize
the Kitaev model (2.1) as the low-energy spin exchange of these materials, we have to ensure
that, first, the effective angular moments have length 1/2 and that, second, these moments are
coupled in terms of the characteristic bond-dependent interaction of the Kitaev model.

The first of these two ingredients guides us to the study of compounds with electronic 4d5

or 5d5 configurations which are subject to an octahedral crystal field and strong spin-orbit cou-
pling (SOC) [107, 93]. While this is the case for various iridates, osmates and rhenates [206],
we focus on the prominent compound α-RuCl3 for concrete examples below. As illustrated
in Fig. 2.4(a), this material is composed of Ru3+ ions positioned in octahedral cages of six Cl−

anions. The crystal field stemming from the electrostatic potential of the six ligands typically
lifts the five degenerate d orbitals of the free transitionmetal ions. Roughly speaking, this is be-
cause the axially oriented orbitals dz2 and dx2−y2 have larger spatial overlap with the p orbitals
of the ligands and thus exhibit stronger electrostatic repulsion than the non-axial orbitals dxy ,
dxz and dyz [109]. As a result, the orbitals dz2 and dx2−y2 form a high-energy multiplet eg , while
the remaining d orbitals form a low-energy multiplet t2g , see Fig. 2.4(b). In the compounds of
interest, i.e., Kitaev materials, the crystal-field splitting is typically around a few eV and repre-
sents the largest energy scale in our following consideration. We note, however, that distortion
of the ideal octahedral geometry is expected in real materials and typically lifts the degeneracy
of the t2g orbitals further [224]. In particular, trigonal distortion of the crystal field yields an
additional correction to the spin exchange [206], as discussed below.

Neglecting these corrections for now, we might restrict our description to the t2g manifold
as the ground state of 4d5 or 5d5 configurations occupies only five of its six states. The effect
of SOC is then accounted for by16

HSO = λL · S, (2.45)

where L is the angular momentum operator acting on the t2g manifold and S is the spin op-
erator. Since the t2g orbitals have effective angular momentum leff = 1 [93], we find that suf-
ficiently strong SOC λ > 0 splits the degenerate t2g manifold into a duplet with total angular
momentum jeff = 1/2 and a quartet with jeff = 3/2, as illustrated in Fig. 2.4(b). Notably, upon
switching on SOC, the low-energy hole now resides in the jeff = 1/2 duplet. For sufficiently

16Tetragonal splitting due to octahedral cages elongated along, say, the z axis can be included in terms of the
modification HSOC = λL · S + ∆zL2

z with ∆z > 0 [93].
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FIG. 2.4: (a) Ru3+ ion (blue) in octahedral cage of six Cl− ions (pink). (b) Level scheme in the presence of crystal-
field splitting (CFS) and SOC. Adapted from Ref. [224].

large λ, it is, therefore, possible to describe the low-energy physics of this compound in terms
of quantum pseudospins with length 1/2. In Kitaev materials, λ is typically around a few hun-
dred meV [206] and, as we see below, thus much larger than the hopping matrix elements. In
my Publications P2 and P3, we do not includeHSO in the canonical transformation (2.37) of the
microscopic Hamiltonian but account for SOC by a subsequent projection into the jeff = 1/2
subspace spanned by the basis states

|+⟩ = 1√
3

(− |z, ↑⟩ − i |y, ↓⟩ − |x, ↓⟩) , |−⟩ = 1√
3

(|z, ↓⟩+ i |y, ↑⟩ − |x, ↑⟩) , (2.46)

where |α, σ⟩ denotes a state with spin σ ∈ {↑, ↓} and α = x, α = y and α = z label the t2g

orbitals dyz , dxz and dxy , respectively.
Although this approximation is well-justified, we note that the hopping strength is com-

parably large in these materials and, in turn, electron correlations are moderately suppressed
due to the significant atomic overlap of the heavy transition metal ions [206]. It is, in fact, the
large SOC in these materials that reduces the electronic bandwidth and thereby enables the
formation of a Mott insulating gap. Due to this crucial role of the coupling of spin and orbital
degrees of freedom, these compounds are referred to as spin-orbit assisted Mott insulators. The
existence of a spin-orbit assisted Mott insulator with a jeff = 1/2 pseudospin was confirmed
by experiments on the perovskite iridate Sr2IrO4 in 2008 [110, 111, 206]. In this compound,
however, the pseudospins are coupled by a conventional isotropic Heisenberg exchange de-
spite the presence of strong SOC [206]. Let us therefore study what determines the dominant
pseudospin exchange and, in particular, how one can realize the characteristic interaction of
the Kitaev model.

2.2.3 Bond-directional superexchange
The entire research of the potential QSL phase of Kitaev materials is built on the remarkable
insight of Jackeli and Khaliullin [107, 93] that the relative orientation of the octahedral cages en-
closing the transition metal ions has crucial consequences on the dominant electronic hopping
path and the resulting pseudospin exchange. As illustrated in Fig. 2.5(a), in some compounds
including the aforementioned iridate Sr2IrO4, the octahedral cages share a corner. The domi-
nant hopping path that couples the electrons on neighboring ions then involves a single ligand.
As one can show in terms of a modified canonical transformation (2.37), the resulting pseu-
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(a) (b)

FIG. 2.5: Dominant exchange paths (orange) between two transition metal ions (blue) for (a) corner-sharing oc-
tahedral cages or (b) edge-sharing octahedral cages. Adapted from Ref. [206].

dospin interaction is then dominated by a superexchange in the form of an isotropic Heisenberg
coupling [93, 109]. Quantum spin liquid physics is, therefore, not expected in these compounds.

The situation, however, changes dramatically for edge-sharing octahedral cages as in the
case of α-RuCl3. For this bonding geometry, there are two alternative hopping paths mediated
by two different ligands, which, most remarkably, give rise to a destructive interference of the
symmetric Heisenberg interaction obtained from superexchange [93, 206], see Fig. 2.5(b). The
dominating spin exchange instead arises due to a hopping path coupling a pair of different t2g

orbitals, which is determined by the spatial direction of the bond. It is this bond-directional
hopping that ultimately gives rise to a largeKitaev interaction for edge-sharing octahedral cages
and constitutes the Jackeli-Khaliullin mechanism. Notably, this interaction arises due to virtual
processes involving the jeff = 3/2 quartet and is therefore scaled by Hund’s coupling of the
orbital momentum and spin.

For amore formal and comprehensible description, let us introduce themicroscopicmodel,
which is also employed in my Publications P2 and P3. The generalization of the single-orbital
Hubbard model (2.36) to a system with multiple orbitals is given by the Hubbard-Kanamori
model [99, 197]. Since we are interested in the configuration with a single hole per t2g multiplet,
it is convenient to express the Hamiltonian in terms of holes instead of electrons. To this end,
let hjασ be the annihilation operator of a hole at site j with spin σ ∈ {↑, ↓} and t2g orbital
α = x, α = y or α = z labeling dyz , dxz and dxy , respectively. With the exception of the
SOC (2.45), the on-site interactions are then described by [178, 222]

V =
∑︂

j

[︃
U − 3JH

2
(︂
N̄ j − 1

)︂2
− 2JHS2

j −
JH

2 L2
j

]︃
, (2.47)

where the U > 0 is the Coulomb repulsion, JH ∈ (0, U/3) is Hund’s coupling and N̄ j , Sj and
Lj are the total number operator, spin operator and orbital momentum operator of the holes
at site j, respectively. In terms of the spinor h†

j =
(︂
h†

jx↑, h
†
jy↑, h

†
jz↑, h

†
jx↓, h

†
jy↓, h

†
jz↓

)︂
, these

operators are given by

N̄ j = h†
jhj, Sj = 1

2h
†
j (σ ⊗ 13)hj, Lj = h†

j (12 ⊗ l)hj, (2.48)

where σ comprises the Pauli matrices acting in spin space and l involves 3 × 3 matrices rep-
resenting the effective angular momentum for leff = 1. Given the on-site interaction, the full
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Hubbard-Kanamori model is then given by [178, 197]

HHK = V + H̄SO + T, (2.49)

where H̄SO = λ
∑︁

j,α h
†
j (σα ⊗ lα)hj is the spin-orbit coupling of holes and

T = −
∑︂

⟨jk⟩α

h†
j (12 ⊗ Tα)hk (2.50)

describes the nearest-neighbor hopping on the honeycomb lattice resulting for edge-sharing
octahedra enclosing the transition metal ions.17 As indicated above, the hopping matrix ele-
ments Tα have an explicit dependency on the orbitals as well as the bond type α ∈ {x, y, z}.
The numerical values of the elements are obtained by computing the Slater-Koster parameters
for the overlaps of either two transition metal ions or one transition metal ion and one ligand
[178]. By following this approach, we include not only the dominant paths but also subdominant
hopping. In the case of a z bond, the hopping matrix is of the form [178, 222]

Tz =

⎛⎜⎝t1 t2 t4
t2 t1 t4
t4 t4 t3,

⎞⎟⎠ (2.51)

where the off-diagonal parameter t2 corresponds to the paths indicated in Fig. 2.5(b) and origi-
nally considered by Jackeli and Khaliullin [93], while the off-diagonal entry t4 arises from trig-
onal distortion of the octahedral environment and is neglected in the following. The matrices
Tx and Ty are obtained from appropriate cyclic permutations [178].

In any case, given a hopping term T , it is possible to perform a canonical transforma-
tion (2.37) of the Hamiltonian V +T at commensurate filling to obtain an effective description
at low energies, as described above. Subsequently, one can project into the jeff = 1/2 duplet
spanned by the states (2.46) for every site on the lattice. This implies a restriction to the regime

U > JH ≫ λ≫ |t1|, |t2|, |t3|.

We refer to Ref. [178] and my Publication P2 for technical details, but note that the essential
modification with respect to calculation for the single-orbital model (2.36) is the partition of
the state manifold into channels with different angular momenta. As expected, one arrives at
an isotropic ferromagnetic Kitaev interaction with exchange strength

K = −8JH

18
(t1 − t3)2 − 3t22

(U − 3JH)(U − JH) . (2.52)

However, subdominant hopping paths for finite t1 and t3 give rise to additional spin exchange
terms allowed by the honeycomb symmetry. The general model describing the pseudospins of
typical Kitaev materials (assuming an ideal octahedral geometry) is then given by [178, 206]

HJKΓ =
′∑︂

⟨jk⟩α

[︂
Jσj · σk +Kσα

j σ
α
k + Γ

(︂
σβ

j σ
γ
k + σγ

j σ
β
k

)︂]︂
, (2.53)

17Typical Kitaev materials are layered compounds with negligible interlayer coupling [206]. This justifies the
use of two-dimensional models. Moreover, we note that in my Publication P2, we also include hopping to next-
nearest neighbors as well as inhomogeneities in the hopping due to an external electrostatic potential.
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where the operators σα
j act on the effective jeff = 1/2 duplets and the prime over the sum indi-

cates that (α, β, γ) are cyclic permutation of (x, y, z). The corrections to the Kitaev interaction
are thus given by an isotropic Heisenberg coupling J as well as a specific off-diagonal exchange
Γ.18 This resulting model is called extended Kitaev model or sometimes simply JKΓ model.
The perturbations J and Γ spoil the exact solution of the Kitaev model presented in Section 2.1
and, as we discuss below, can have drastic consequences on the ground state of the model. In
any case, however, we demonstrated how an intricate balance of crystal fields, spin-orbit cou-
pling and superexchange can generate strong spin exchange anisotropy and, in particular, the
highly frustrated interaction of the Kitaev model [206].

2.2.4 Kitaev materials
Let us briefly outline the material family which involves all the necessary ingredients of the
Jackeli-Khaliullin mechanism. This endeavor is somewhat hindered by the fact that the foun-
dational works by Jackeli and Khaliullin [107, 93] launched massive experimental efforts and
what is, at the time of writing, still a quickly developing field of research. We may therefore
focus on the material platforms which are most relevant to the theory presented in my Pub-
lications P2 and P3. Moreover, for now, we are interested in the confirmation of the Jackeli-
Khaliullin mechanism and detail the experimental status of the QSL phase in Kitaev materials
in Section 2.3

The initial proposals for the realization of the Kitaev model comprised compounds of the
form X2IrO3, where X is an alkali metal [107, 40]. At that time, the variant for X=Na was
already synthesized [191] and can thus be considered the first Kitaev material [206]. Angle-
resolved photoemission spectroscopy and optical experiments confirmed that Na2IrO3 is in-
deed a Mott insulator with a gap of roughly ∆ ≃ 340 meV [50]. Due to a comparably large
SOC of roughly λ ≃ 400 meV we can then identify this compound as a spin-orbit assisted
Mott insulator despite an observed trigonal distortion of the octahedral field [206, 73, 74]. This
is consistent with both fits of the magnetic susceptibility and X-ray absorption spectroscopy,
which indicate that themagneticmoments of Na2IrO3 are close to ideal jeff = 1/2 pseudospins
due to weak mixing with the jeff = 3/2 quartet [191, 192, 194]. Collecting these results shows
that all necessary ingredients of the Jackeli-Khaliullin mechanism are present [93, 40]. And in-
deed, diffuse magnetic X-ray scattering experiments provided striking evidence for a strong
bond-directional spin exchange and, moreover, a dominant Kitaev interaction [89].

Despite this remarkable confirmation of the presented theory, Na2IrO3 is not expected to
host a QSL phase [132, 49, 237, 206]. As we further discuss below, this is because the corrections
to the Kitaev exchange in Eq. (2.53) are too large to stabilize a QSL or a related state. Parts of
the research, therefore, shifted their focus to other iridates such as α-Li2IrO3 [206, 192] and the
aforementioned compound α-RuCl3.19 The latter is arguably the most studied and prominent
Kitaevmaterial and subject of captivating experimental claims, which we discuss in Section 2.3.
Using the same or similar techniques as applied to Na2IrO3, it was verified that RuCl3 is a
Mott insulator with a charge gap of ∆ ≃ 1.2 eV and almost perfect octahedral crystal field
[173, 172, 256, 186, 206]. Despite its experimental success, we note that the SOC λ ≃ 100 meV

18Consistent with the qualitative discussion above, the Heisenberg coupling does not arise due to the superex-
change mediated by ligands but due to direct hopping between t2g orbitals [224]. In many Kitaev materials, J is
therefore expected to be much smaller in magnitude than K .

19RuCl3 has two polymorphs termed α-RuCl3 and β-RuCl3 [206]. The latter is not relevant to our consider-
ations and we drop the label α in the following.
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in RuCl3 is considerably smaller than in the iridates and thereby allows for enhanced mixing
with the jeff = 3/2 quartet and larger magnetic moments [186, 13, 120, 63, 122, 193, 206]. This is
related to the fact that estimations of the Kitaev coupling in three dimensional samples either
from numerical simulations or experimental analysis vary in the range of 5 and 10.6 meV [222,
85, 223, 198, 235], see also my Publication P3. Notably, these estimations can further change in
two-dimensional samples, as discussed in Section 2.4.

Before discussing the experiments that probe the ground state of RuCl3, let us comment on
other Kitaev materials for the sake of completeness. New Kitaev candidates can be obtained
by modifying the iridates X2IrO3 in terms of soft-chemical exchange [206]. More notably, the
material family also contains candidate materials with other tricoordinated lattices, including
triangular and three dimensional variants. As mentioned in Section 1.1, the exact solution of
the Kitaev model can be adapted for such lattice geometries and gives rise to rich phenomenol-
ogy in three dimensions [236, 138, 163, 81, 206].20 The first studied three-dimensional Kitaev
materials are the polymorphs β-Li2IrO3 [201] and γ-Li2IrO3 [146] of the well-studied iridate
candidate α-Li2IrO3 [93, 192] and are, therefore, also believed to realize the Jackeli-Khaliullin
mechanism. Recent theoretical proposals, however, also go beyond this established paradigm
and predict Kitaev physics for systems with partially filled d7, d8 or even f shells such as in
rare-earth compounds [128, 206, 94]. Moreover, as we detail in Section 2.4, recent numerical
and experimental efforts have been devoted to heterostructures of Kitaev materials and sub-
strates [234, 222, 55, 26, 254, 248, 255, 121, 252]. Such systems enable novel experimental probes
which could potentially advance our understanding of the QSL phase in Kitaev materials.

2.3 Experimental status of RuCl3
The realization of a dominant Kitaev interaction through the Jackeli-Khaliullin mechanism in
spin-orbitMott insulators [107, 93] initiated a plethora of experiments in search of the predicted
quantum spin liquid (QSL) phase and sparked heated discussions in the community. Instead of
attempting to list all reported experiments, let us summarize key aspects of the current under-
standing of their results with a strong focus on the compound RuCl3.

2.3.1 Proximate spin liquid
As outlined in Chapter 1, inelastic neutron scattering (INS) represents an established technique to
probe themagnetic ground state of solid-state systems in terms of the spin structure factor [118].
In the case of Kitaevmaterials, INS and other scattering experiments clearly demonstrated that
three dimensional (3D) samples of the studiedmaterial candidates do not host a QSL but exhibit
long-range magnetic order at sufficiently low temperatures [132, 49, 237, 13, 15, 206]. In RuCl3,
the magnetically ordered state is an antiferromagnetic zigzag phase and is observed at temper-
atures below Tc ≃ 7 K [13].21 The appearance and physics of this phase can be understood in
terms of the JKΓ model (2.53), which includes subdominant contributions that perturb the
pure Kitaev model (2.1). Notably, these perturbations spoil the exact solution of the model and,
in particular, obstruct the conservation of the plaquette operators (2.2).

20We note that Lieb’s theorem [130] discussed in section 2.1 does not necessarily apply for different lattice
geometries. In these cases, the flux sector of the ground state has to be verified numerically [236].

21Estimations of the Curie-Weiss temperature vary drastically [206] but the frustration ratio of RuCl3 is at
least f ≃ 4. Based on our discussion in Chapter 1, we infer that the material is considerably frustrated.
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lines of constant SQ in each phase are also shown. The
phase diagrams bear a remarkable resemblance to the
classical results, with the gross features of the phase
diagram preserved for both Γ > 0 and Γ < 0.
While the new 120° phase was identified, the results are

less distinctive in the regions where the Luttinger-Tisza

approach failed. Because of the suggestion of incommen-
surate phases from the classical analysis, it is likely that the
small size of cluster used may not properly capture the
behavior in this region. Nevertheless, in the classical IS
region exact diagonalization shows a spiral phase (Sp) with
correlations at wave vector Q⃗ ¼ K=2, the ordering with the
longest periodicity allowed by the cluster size. This wave
vector has magnitude jQ⃗j ≈ 1.2, roughly in line with the
range prescribed by the classical calculations. The neigh-
boring regions are also well defined, with stripy correlations
for Γ < 0 and zigzag correlations for Γ > 0, as expected
from the classical analysis. While the stripy correlations for
Γ < 0 are quite strong, the corresponding zigzag correla-
tions for Γ > 0 are weak, showing no sharp transition as one
moves into the classical IS region. At the pure Γ limits, the
correlators become short ranged,withmost of the correlators
exactly zero. From these results, we expect the gross features
of the phase diagram to be robust to finite size effects except
perhaps for the wave vector of the spiral phase.
Discussion.—Within the scope of themodel presented, the

zigzag phase observed in Na2IrO3 [2,4,6] appears only when
J isnegative.This isplausible: inEq. (3) take theSlater-Koster
parameters to have the canonical ratios tddσ∶tddπ ¼ 3∶ − 2
(assuming that tddδ ∼ 0) then 2t1 þ t3 ∼ 0 and t1ðt1 þ 2t3Þ <
0 giving J < 0 at leading order in JH=U. Additional con-
tributions to these exchanges, such as on-site oxygen inter-
actions [13] and t2g − eg contributions [18] possibly affect
the details. Further, ab initio calculations of the electronic
band structure of Na2IrO3 [16,17,20] and Li2IrO3 [43]
suggest that second and third neighbor hoppings as well as
trigonal and other structural distortionsmay not be negligible.
Some consequences of further neighbor exchange have been
discussed [14], but a proper treatment is missing—one must
include the orbital dependence of these hoppings that results
in anisotropic exchanges. Inclusion of trigonal and other
distortions allows an additional symmetric off-diagonal
exchange [44], but these have been estimated to be small
experimentally [11]. We further expect that the nearest-
neighbor model dominates over the longer range exchanges,
andso including themshouldnot alter the results qualitatively.
We emphasize that understanding the minimal model

introduced in this work is the first step towards a complete
picture of the honeycomb iridates. Evidence of symmetric
off-diagonal exchange can be seen through anisotropy in the
magnetic susceptibility. From a high-temperature expansion
of the model in Eq. (1), one finds ðΘ⊥−ΘjjÞ=ðΘ⊥þ2ΘjjÞ ¼
Γ=ð3JþKÞ independent of g-factor anisotropy, where Θjj
and Θ⊥ are the Curie-Weiss temperatures for the in- and
out-of-plane susceptibilities. Fitting to experimental data for
Na2IrO3 [1] yields the relation Γ=ð3J þ KÞ ∼ −0:3, show-
ing that if we are near the zigzag regimewhereK ≫ jJj then
there is non-negligible Γ exchange. Given that 120° and IS
order appear in proximity to the zigzag phase, these could be
promising candidates for ordering in other honeycomb
iridates such as Li2IrO3.

FIG. 3 (color online). [(a), (b)] Phase boundaries from exact
diagonalization of a 24-site cluster. Markers indicate the location
of singular features in −∂2E=∂ϕ2 or −∂2E=∂θ2, with lines to
guide the eye along the sharp phase boundaries. Colors [as in
Fig. 2(a)] and contours map magnitudes of the static structure
factor [as in Eq. (8)] for each phase. The Kitaev spin liquid is
shown in orange, whereas the spiral phase is shown in dark gray.
The HK limit lies at the boundary of each disk at θ ¼ π=2.
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FIG. 2.6: Quantum phase diagram of JKΓ model (2.53) for Γ < 0 using parametrization (2.54). The yellow, red,
magenta, green and gray phases are magnetically ordered. The small pockets near the exactly solvable points with
the label “Kitaev” are QSLs. Adapted from Ref. [178].

The JKΓ model (2.53) has been subject of extensive numerical studies [178, 224, 223, 38, 71,
214, 249]. Although it is not fully understood, these works revealed an intricate and rich quan-
tumphase diagram. Fig. 2.6 shows a section of this phase diagram for the spherical parametriza-
tion

J = − sinϕ sin θ, K = − cosϕ sin θ, Γ = − cos θ. (2.54)

There, we identify a variety of magnetically ordered phases and small pockets of QSLs near
the exactly solvable points (ϕ, θ) = (π/2, π/2) and (ϕ, θ) = (3π/2, π/2). Within this QSL
phase, Z2 vortex excitations are generally not static but dispersive. Perturbative calculations,
however, indicate a low vortex mobility [98] and thereby justify the mean-field decoupling of
the Majorana representation of Eq. (2.53) that we employ in my Publication P2.

Anyhow, the estimations for J ,K and Γ for RuCl3 depend significantly on the method and
modeling but typically yield parameters in the regime K > J > 0 and Γ < 0 [224]. For
example, density functional theory estimates [233, 224]

JDFT ≃ 0.7 meV, KDFT ≃ 5.1 meV, ΓDFT ≃ −1.8 meV,

and, therefore, locates RuCl3 in the zigzag phase as observed by experiments [13, 15].
While this disappointing result makes it seem that the desired QSL state cannot be stabi-

lized in RuCl3, various experiments nonetheless claim the observation of the intriguing physics
of the adjacent QSL phase. These claimsmay be attributed to two different strategies for how to
destabilize the zigzag ordered ground state, namely, by increasing the temperature or by apply-
ing an external magnetic field. The consideration of the former strategy brings us to the loosely
defined concept of a proximate spin liquid [13, 15, 206]. A proximate spin liquid describes a point
of a magnetically ordered phase in the zero-temperature quantum phase diagram, which is in
the close vicinity to the QSL. While perturbations to the Kitaev model such as J and Γ in the
JKΓ model might stabilize a magnetic order below the critical temperature Tc at this point,
the paramagnet above Tc could potentially show thermal signatures of the QSL phase [205], if a
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smooth path in the finite-temperature phase diagram connects the two states without travers-
ing a crossover or a phase transition [206]. As the Kitaev model at intermediate temperatures
describes itinerant fermions in front of a disordered flux background [206, 180], these thermal
signatures could indicate fractionalization or unconventional spin correlation [13, 205].

This somewhat speculative picture was proposed to explain a series of scattering experi-
ments on RuCl3 which reported intriguing similarity to the corresponding predictions in the
Kitaev spin liquid phase [185, 186, 13, 15]. Namely, the temperature dependency of the Raman
susceptibility observed by Raman scattering is consistent with the distribution of fermionic
excitations as expected in the thermal QSL [185, 186]. Moreover, INS measurements reported
a characteristic broad continuum at higher energies and more intricate features [13, 15], which
roughly agree with the expected dynamical response of the Kitaev QSL [69].22 All these results
suggest that RuCl3 is a proximate spin liquid and are, therefore, symptomatic of the desiredQSL
phase. We note that additional evidence for this intriguing claim is provided by reported mea-
surements of a non-quantized thermal Hall conductivity above the magnetic ordering temper-
ature [105], which is seemingly consistent with the prediction (2.35) for the non-Abelian phase
of the Kitaev model. We detail the thermal transport in RuCl3 in our following discussion of
experimental probes of a genuine QSL state at low temperatures. During this analysis, it also
becomes clear that the interpretation of the results reported in Ref. [105] should be approached
with care.

2.3.2 Quantum thermal Hall effect of the field-induced state
An alternative way to obstruct the magnetically ordered zigzag phase of RuCl3 is provided by
the presence of a homogeneousmagnetic field. This is evident aswe expect that upon increasing
the external field strength B, the spins in a magnetic insulator eventually align with the field
direction and form a polarized state. Notably, in the case of the pure Kitaevmodel (2.1), since the
fully polarized state is not an eigenstate of theHamiltonian, themagnetization does not saturate
for arbitrarily large B [206]. We, therefore, refer to the large-field state of Kitaev materials as
the partially polarized phase. Measurements of the specific heat indicate that an in-plane field of
Bc ≃ 8 T destroys the zigzag order and gives rise to a phase transition to a field induced state
[137, 124, 10, 188, 228, 9, 8].23 This result was confirmed by various other experiments such as
INS [14] and Raman spectroscopy [182, 229]. While the latter technique also demonstrated the
trivial partially polarized phase for B ≥ 15 T, the ground state at intermediate field strength
is currently subject of an intense debate. This is because widely recognized experiments claim
the observation of a field-induced quantum spin liquid phase for B ∼ 7-10 T [104, 239].

Before discussing these experiments in detail, we note that based on our above discussion of
proximate spin liquids this claimmight seemunsurprising. This is due to the fact that a partially
polarized state and finite-temperature paramagnet are physically very similar, in that they are
both gapped, partially magnetized and exhibit no spontaneous symmetry breaking and, there-
fore, no thermal phase transition upon increasing the temperature [206]. Wemight thus expect
remnants of the adjacent QSL phase in experimental signatures in the partially polarized state.
And, indeed, INS measurements at B ≥ 7 T show a broad continuum with remarkable sim-
ilarity [14] to the aforementioned experiments above the magnetic ordering temperature (for

22We note, however, that the INSmeasurements have to be approached with care as magnon excitations might
also form a broad energy continuum [223, 206].

23The obstruction of the ordered phase in terms of a field perpendicular to the plane requires enormous field
strength of B > 60 T [96, 145].
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B = 0) [13, 15]. While this result validates the concept of proximate spin liquids, we emphasize
that the experiments which we discuss in the following go beyond this picture, as they claim
the observation of the non-Abelian QSL phase of the Kitaev magnets. Since this phase is topo-
logically nontrivial, see Section 2.1, it should be separated from both the magnetically ordered
and partially polarized phase in terms of two phase transitions. Notably, the appearance of a
second field-induced phase transition was not observed in the measurements of the specific
heat [137, 124, 10, 188, 228] nor the majority of other experimental techniques [14, 206].24

In any case, however, the claim of the field-induced QSL phase attracted massive attention,
since it is based onwhat can be considered a universal smoking-gun signature of theQSL phase,
that is, the quantized thermal Hall effect. These spectacular measurements were performed by
the group ofMatsuda in 2018 [104] and subsequent years [239] and constitute arguably themost
prominent experiments on Kitaev materials. As we discussed in Section 2.1, chiral Majorana
edge modes propagating along the boundary of the non-Abelian QSL state carry an energy
current and give rise to a quantized thermal conductivity (2.35)

κ2D
xy = ±1

2
π

6
k2

B
ℏ
T,

which differs to a thermal conductivity in the conventional quantum Hall state by a factor of
1/2 [112]. The sign of of κ2D

xy is given by the Chern number (2.33) of the non-Abelian phase
and has an explicit dependence on the field direction. Similarly to the electronic quantum Hall
effect, this quantized value is expected to be robust against disorder as well as phononic effects
[238, 212] and dispersive Z2 vortices [98]. To access κ2D

xy , the group of Matsuda measured the
transverse thermal conductivity κxy of a RuCl3 Hall bar in an out-of-plane magnetic field and
divided the result by the number of honeycomb layers [104]. The measured values are plotted
in Fig. 2.7 and indicate a quantized plateau for magnetic fields in the range of B ∼ 7-10 T
and temperatures in the range of T ∼ 4-6 K.25 Moreover, subsequent measurements using
in-plane magnetic fields report a half-quantized plateau with a sign structure that is consistent
with the Chern number (2.33) of the Kitaev model [239] and which, notably, has no analog in
the electric quantum Hall physics. Collecting these spectacular results amounts to intriguing
evidence for a field-induced Kitaev spin liquid and, in particular, Majorana edge modes.

However, as already suggested, these experiments are controversially debated in the com-
munity and should be approached with care. One reason for restraint is the fact that, at the
time of writing, no other experimental group was able to independently reproduce these re-
sults. Instead, the group of Ong reported unconventional oscillations of κxy reminiscent of
quantum oscillations in metals [53] and exotic bosonic excitations [52], which currently lack
theoretical understanding. The pending validation by an independent group is most likely re-
lated to the significant sample dependency and the intricate role of defects [206]. Another
complication of the thermal Hall experiments, which we may highlight in the following, is the
fact that topological magnon excitations of the partially polarized phase also generate a finite
albeit non-quantized thermal Hall conductivity with a similar sign structure with respect to
the field direction [51, 47, 246]. These excitations could thus mimic the quantized effect of Ma-
jorana edge modes. Recent experimental efforts, therefore, attempted to differentiate thermal
Hall signals of bosonic and fermionic excitations [90, 247]. On the other hand, the inconclu-
sive experimental status of the field-induced QSL phase in RuCl3 calls for new experimental

24There is actually another field-induced first-order phase transition within the zigzag phase. However, this
transition keeps the system magnetically ordered and is not of interest here [12].

25The used thermometers in experiments were not expected to be reliable at lower temperatures [104, 206].
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FIG. 2.7: Thermal Hall conductivity in RuCl3 as a function of magnetic field strength at different temperatures.
The dashed line indicates the half-integer value predicted for the non-AbelianQSL phase. Adapted fromRef. [104].

techniques, which are able to clarify the existence of this exotic state of matter. As we motivate
in Section 2.4, the design of such experimental schemes is the objective of my Publications P2
and P3.

2.3.3 Topological magnons in the partially polarized phase
Let us discuss the magnonic excitations of the partially polarized phase in Kitaev materials in
more detail [141, 51, 47, 246, 249, 46]. As said, these excitations generate a finite thermal Hall
conductivity and thereby obscure the unambiguous interpretation of the quantized thermal
Hall effect of the Kitaev spin liquid phase. We, therefore, compare our predictions for the QSL
with magnonic effects in my Publication P3 and unravel the underlying mechanism for generic
polarized two-dimensional magnets in my Publication P4. An intriguing property of spin wave
excitations of the partially polarized JKΓ model (2.53) is potentially nontrivial band topology
[141, 51, 46]. Topological magnons have gathered considerable attention in the last view years
and exhibit a similar phenomenology as electronic systems with nontrivial band topology [139,
97, 142], which was partly confirmed in experiments on the prominent ferromagnet CrI3 using
INS [45]. Another signature of topological magnons is the non-quantized thermal Hall effect
which stems from to the bulk-boundary correspondence [139, 140].

Let us verify the nontrivial band topology of the JKΓ model (2.53) on the level of linear
spin-wave theory [171]. Although Kitaev materials are partially polarized by magnetic fields with
finite in-plane components, we consider a perpendicular field h along the [111] direction for
the purpose of a simple introduction. We may then rewrite the JKΓ model (2.53) for spins Sj

of arbitrary length S and in the presence of a Zeeman coupling to [141]

HJKΓ = −
∑︂

⟨jk⟩α

S†
jHαSk −

∑︂
j

h · Sj, (2.55)
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where h = h(1, 1, 1)T/
√

3 is the magnetic field and the bond-dependent nearest-neighbor
coupling is encoded in the matrices

Hx =

⎛⎜⎝J +K 0 0
0 J Γ
0 Γ J

⎞⎟⎠ , Hy =

⎛⎜⎝J 0 Γ
0 J +K 0
Γ 0 J

⎞⎟⎠ , Hz =

⎛⎜⎝J Γ 0
Γ J 0
0 0 J +K

⎞⎟⎠ . (2.56)

Within spin-wave theory, magnon excitations represent the quantum fluctuations about clas-
sical low-energy configuration. In the partially polarized phase, the classical problem is min-
imized by aligning all spins with the magnetic field. Given this configuration, it is convenient
to align the classical spins with the z axis in terms of the rotation Sj = RS̄j , where

R = 1√
6

⎛⎜⎝ 1 −
√

3
√

2
1

√
3
√

2
−2 0

√
2

⎞⎟⎠ . (2.57)

Quantum fluctuations are then accounted for by the established Holstein-Primakoff transfor-
mation [171]

S̄
z

j = S − nj, S̄
+ =

√︂
2S − njbj ≈

√
2Sbj, S̄

− = b†
j

√︂
2S − nj ≈

√
2Sb†

j, (2.58)

where nj = b†
jbj is the number operator and bj and b

†
j are annihilation and creation operators

of a Holstein-Primakoff boson on site j, respectively. Anticipating a description on the level of
linear spin wave theory, we expanded the ladder operators S+

j and S−
j up to lowest order in

nj/S. Inserting the transformation and expanding the Hamiltonian (2.55) up to lowest non-
trivial order in 1/S yields

HJKΓ = Ecl +Hsw +O
(︂
S1/2

)︂
, (2.59)

where Ecl is the classical ground state energy. In the case of a system of 2N spins, we find

Ecl = −S2N (2h/S + 3J +K + 2Γ) . (2.60)

The next order in the 1/S expansion is the quadratic spin-wave Hamiltonian

Hsw = S
∑︂

⟨jk⟩α

(︂
tαb

†
jbk + ∆αbjbk + H.c.

)︂
+ S

∑︂
j

heffb
†
jbj, (2.61)

where the effective magnetic field heff = h/S + 3J +K + 2Γ involves both the external field
and theWeiss field while the hopping amplitudes are given by

tα = −J − 1
3(K − Γ), ∆α = −1

3ei2πα/3(K + 2Γ). (2.62)

Here, α = 1, α = 2 and α = 3 label x, y and z bonds, respectively. Formally truncating the
expansion at linear order S is only justified in the limit S → ∞. However, for low magnon
densities nj , linear spin-wave theory for small spins S typically yields reasonable results and
an appropriate starting point for more elaborate methods [141, 171]. We also note that for finite
|∆α|, particle number is not conserved. We therefore obtain the spectrum of the quadratic
Hamiltonian Hsw within the bosonic variant of Bogoliubov-de-Gennes formalism. Since we
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are, for now, interested in homogeneous systems, this calculation is facilitated by a Fourier
transformation. Given a site j ∈ λ on sublattice λ ∈ {A,B} at position rj , we write

bj = 1√
2N

∑︂
k∈BZ

eik·rjbλ(k), b†
j = 1√

2N
∑︂

k∈BZ
e−ik·rjb†

λ(k). (2.63)

We skip some technical steps and refer to my Publications P3 and P4 for technical details. The
solution involves a Bogoliubov transformation of the form [27](︄

bk

b†
−k

)︄
= Wk

(︄
dk

d†
−k

)︄
, bk =

(︄
bA(k)
bB(k)

)︄
, dk =

(︄
d1(k)
d2(k)

)︄
, (2.64)

whereWk is 4× 4 matrix with the property

W−1
k = ΣzWkΣz for Σz = diag(1, 1,−1,−1). (2.65)

An appropriate choice of Wk diagonalizes the spin-wave Hamiltonian (2.61) in momentum
space. Up to a constant, we arrive at

Hsw = S
∑︂

k∈BZ

[︂
ω1(k)d†

1(k)d1(k) + ω2(k)d†
2(k)d2(k)

]︂
+ const. (2.66)

This expression describes the dispersion of magnon modes annihilated by d1(k) and d2(k).
The full analytical expression of the two magnon bands ω1(k) and ω2(k) is tedious and not
detailed here [141]. For our purposes it is sufficient to know that for small off-diagonal exchange
|Γ|, both bands are gapped according to

ω1(0) = h/S + 3Γ ≤ ω1 ≤
√︂

(h/S + 3J)(h/S + 3J + 2K + 4Γ) (2.67)

and
h/S + 6J + 2K − Γ ≤ ω2 ≤ h/S + 3J +K + 2Γ. (2.68)

For a strong polarizing magnetic field, the excitation gap ω1(k = 0) is essentially given by field
strength h > 0. In my Publication P4, we expand near the band minimum at k = 0 to derive
our continuum theory.

Anyhow, based on our general discussion in Chapter 1, we may now use our full solution
of the non-interacting system to probe its band topology by means of the Chern number (1.7).
To this end, we can express the (out-of-plane component of the) Berry curvature Ωn of the nth
band by means of the Bogoliubov transformation (2.64) using [140, 47]

Ωn(k) = i

(︄
Σz
∂W †

k
∂kx

Σz
∂Wk

∂ky

− Σz
∂W †

k
∂ky

Σz
∂Wk

∂kx

)︄
nn

, (2.69)

where the indices of the brackets indicate the nth entry on the diagonal. As detailed in Eq. (1.7),
the Chern number νn ∈ Z of nth band is then given by26

νn = 1
2π

∫︂
BZ
dkxdky Ωn(k). (2.70)

26We note that in Refs. [141, 46], a canonical transformation (2.37) in the large field limit was employed to
simplify the Hamiltonian and the subsequent calculation of the Chern number.



2.4 ELECTRICAL PROBES FOR MAGNETIC INSULATORS 55

As the total Chern number needs to vanish, we have ν1 = −ν2. Notably, in the case of the
JKΓ model (2.55) and for arbitrary field directions, the Chern number indicates a rich and in-
tricate topological phase diagram [141, 46]. For a comprehensible discussion, let us focus on the
limit of dominant Kitaev interaction, i.e., K ≫ |J |, |Γ|, and a perpendicular magnetic fields
as specified. In this particular regime, one finds |ν1| = 1 and, therefore, a topological band
structure of magnon excitations [141]. As discussed in Chapter 1, the celebrated bulk-boundary
correspondence then implies the existence of chiral edge states, which exist for energies be-
tween the two bands ω1 and ω2 and which give rise to a finite thermal Hall effect. According to
a general formula derived by Matsumoto andMurakami [139], the thermal Hall conductivity is
of the form

κxy = −T
2∑︂

n=1

∫︂
BZ
dkxdky F

(︄
ωn(k)
T

)︄
Ωn(k), (2.71)

whereF (ε) is an intricate weight function which we do not further detail here [139, 140]. How-
ever, since this function is not constant, we infer that this weighted integral of the Berry cur-
vature is not ensured to exact discrete values 2πνn. As a result, κxy is not quantized in terms
of universal values but dependent on details such as the energy scales J , K and Γ. This is an
important difference to the electronic quantum Hall effect. Nonetheless, κxy is generally finite
and has, as one can show, a sign structure with respect to the field direction which is similar to
the thermal Hall effect of the putative QSL phase [47, 246]. The observation of a robust quan-
tization is, therefore, a crucial requirement for the unambiguous confirmation of QSL state
[206].

In the context of my Publications P3 and P4, it is important to clarify the implications of
band topology on the effect of defects and impurities. By including disorder in our linear spin-
wave theory, one finds that vacancies in the lattice trap magnon bound states at energies be-
tween the bands ω1 and ω2, if the system is topologically nontrivial [144], see also my Publica-
tion P3. To comprehend this on a qualitative level, one can think of vacancies as boundaries of
atomic size and of the trapped bound states as precursors of the topological edge states. How-
ever, these topological bound states are not particularly relevant to the local experimental probe
studied in my Publication P3, since they exist at energies above excitation gap ω1(0) ∼ h/S of
the magnonic continuum while our Proposal P3 is concerned with the low-energy excitations
below the continuum gap of the QSL phase. Instead, we find that in the latter regime, topologi-
cally trivial magnon bound states can emerge in the presence ofmagnetic impurities. As detailed
inmy Publications P3 and P4, these low-energy excitations are associated with a spin flip transi-
tion and have a characteristic dependency on the field strength. Using the experimental set-up,
which we motivate in the following and detail in my publications, it should thus be possible
to identify magnetic impurities and distinguish Majorana zero modes in the QSL phase from
magnonic low-energy excitations of the partially polarized phase.

2.4 Electrical probes for magnetic insulators
Due to the inconclusive experimental status of the quantum spin liquid (QSL) phase in three di-
mensional (3D) samples of Kitaevmaterials, recent focus shifted to the genuine two dimensional
(2D) limit. Monolayer films of the Kitaev material RuCl3 can be fabricated on graphite using
exfoliation [55, 254, 255] or pulsed laser deposition [121]. Ab initio calculations indicate that
Coulomb screening in such heterostructures enhances the Kitaev interaction by more than
50% with respect to the bulk samples [26]. The improved proximity to the QSL phase was
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confirmed by Raman scattering experiments [55] and similar considerations also apply to the
original Kitaev material candidate Na2IrO3 [234, 222]. These results initiated an on-going first-
principle based exploration of the rich interplay of Kitaev materials and potential substrates
[252, 248] and the fabrication of the resulting heterostructures is pursued by multiple experi-
mental groups at the time of writing. Notably, the fabrication of 2D films on substrates enables
new experimental techniques and, in particular, local electric probes. This is the subject of my
Publications P2 and P3. To set the stage, let us motivate the appearance of electric signatures in
magnetic insulators by using a minimal model for Mott insulators - the single-orbital Hubbard
model (2.36).

2.4.1 Electric polarization of Mott insulators
The mechanism underpinning my Publication P2 is based on works by Khomskii and collabo-
rators [32, 108], which rationalized the appearance of circular currents and electric polarization
in Mott insulators with inhomogeneous spin texture. Roughly speaking, these effects arise due
virtual hopping processes within a charge state and, therefore, manifest on the level of the ef-
fective description in terms of local spins.

For a formal description, we revert to the single-orbital Hubbard model (2.36) at half fill-
ing and in the limit of strong Coulomb repulsion U ≫ |tjk|. As outlined in Section 2.2, the
effective low-energy Hamiltonian (2.43) can then be obtained by means of a canonical trans-
formation (2.37) and a subsequent projection on the low-energy subspace using the projector
Plow in Eq. (2.41). Based on Eq. (2.44), the same transformation scheme can be applied to any
observable of interest. In the case of the electric polarization, this observable is the local charge
imbalance [32, 169]

δnj =
∑︂

σ

ψ†
jσψjσ − 1, (2.72)

whichmeasures the deviation from a single occupancy on site j. The effective description (2.43)
at energies below the charge gap stems from processes, which do not change the number of oc-
cupancies. Since the Hubbard model in Eq. (2.36) implicitly assumed bond parity tjk = tkj ,
virtual second-order process involving hopping of an electron to a neighboring site and back
to its original position cannot contribute to the effective charge imbalance at low energies.
Instead, the lowest-order contribution is of third order and involves hopping along a triangle.
Notably, on a honeycomb lattice, such processes involves next-nearest-neighbor hopping . For-
mally, these considerations manifest in the fact that the first and second order of the canonical
transformation of δnj within the low-energy subspace vanish identically. One then finds the
effective charge imbalance operator [32, 108]

δn̄j = Plowe−ΩδnjeΩPlow ≃ 8
∑︂

(kl)∈△j

tjktkltlj
U3 (Sj · Sk + Sj · Sl − 2Sk · Sl) , (2.73)

where the summation runs over the set△j of all possible triangles containing site j and coupled
sites. Moreover, we introduced the spin operators (2.42). Notably, while overall charge neu-
trality is ensured by

∑︁
j δn̄j = 0, an inhomogeneous spin structure can give rise to non-zero

charge densities ⟨δn̄j⟩ ̸= 0, which encode the static spin correlations of the system [32, 169].
The resulting electrostatic field can be potentially measured using a local probe such as a scan-
ning tunneling microscopy (STM) tip.

This is the underlying idea of my Publication P2. There, we adapt the derivation of the ef-
fective charge imbalance for the three-orbital Hubbard-Kanamori model (2.49) including sub-
dominant and next-nearest hopping and compute the static spin correlations for the full JKΓ
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model (2.53) within a Majorana mean-field theory. Based on a preceding work of my collabo-
rators [169], we find that Z2 vortices in the QSL phase generate a finite charge imbalance and,
in turn, can be trapped or even created by a local electric potential. The search for a more thor-
ough characterization of Z2 vortices and, in particular, Ising anyons, guides us to the proposal
of my Publication P3.

2.4.2 Scanning tunneling spectroscopy of local magnetic moments
While my Publication P2 studies the response of the QSL to an electrostatic potential, my Pub-
lication P3 is concerned with the response to tunneling currents. This proposal is based on a
technique which enables the detection of single localized magnetic moments on a conducting
substrate using an STM tip [64, 62, 11]. While standard scanning tunneling spectroscopy probes
the density of states in a conducting material, one can access the dynamical spin correlations
of a magnetic insulating layer through the resolution of inelastic tunneling processes in the
differential conductance.

For a formal description, let us consider the set-up, which involves a Mott insulating layer
on a conducting substrate B below an STM tip A. In the most simple scenario, the latter two
are described by a spin-degenerate diagonal Hamiltonian

HAB =
∑︂
ν,τ

ενf
†
ντfντ , (2.74)

where εν is the single-particle energy and fντ is the annihilation operator of an electron with
spin τ ∈ {↑, ↓} and additional quantum numbers ν . In the case of a metallic tip and substrate,
these additional quantum numbers should include a subsystem label as well as the electronic
momentum. Anyhow, we may couple these electrons to the fermions in the Mott insulator by
means of the tunneling term

Htun =
∑︂
j,ν,σ

tjν

(︂
f †

νσψjσ + ψ†
jσfνσ

)︂
, (2.75)

where we assumed conservation of the spin. In the context of STM, the real tunneling matrix
elements tjν have an additional dependence on the position of the STM tip [64, 62]. Notably,
this term changes the particle number in the Mott insulator and it is, therefore, necessary to
work with the general Hubbard model

HH = −
∑︂
j,k,σ

tjkψ
†
jσψkσ + U

2
∑︂

j

(nj↑ + nj↓ − 1)2 (2.76)

to energetically penalize deviations from half filling in the limit of strong Coulomb repulsion.
Assuming that the tunneling strength is also much smaller than the Coulomb repulsion, i.e.,
U ≫ |tjν |, we can perform a canonical transformation (2.37) of the total Hamiltonian

Htot = HH +HAB +Htun. (2.77)

The generator of this expansion has to be chosen such that up to a desired order in (tjk, tjν)/U ,
all terms that change the number of double occupancies and total particle number are canceled.
Within the low-energy subspace spanned by states with half filling, tunneling and hopping does
not mix at second order and it is sufficient to consider both processes separately. Due to the
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SU(2) symmetry of the total Hamiltonian (2.77), the effective description of the tunneling pro-
cesses is of the form

Hcot =
∑︂

j,ν1,ν2

f †
ν1

(︂
T el

jν1ν2 + T in
jν1ν2τ · Sj

)︂
fν2 + H.c., (2.78)

where f †
ν =

(︂
f †

ν↑, f
†
ν↓

)︂
is a spinor, τ comprises Pauli matrices which act on the resulting spin

space of the tunneling electrons and the coefficients T el
jν1ν2 and T in

jν1ν2 are of order (tjν/U)2.
This term describes cotunneling between the tip and the substrate through the magnetic layer
[64, 62, 11]. While the first term in the brackets corresponds to elastic processes, we find that
the second term couples to the local moment Sj in the magnetic layer. When neglecting effects
on the metallic system HAB , these moments are still described by the low-energy Hamilto-
nian (2.43). Given the cotunneling termHcot, one might use then Fermi’s golden rule to com-
pute the current from the tip to the substrate at a given bias voltage [64, 62]. As we derive in
my Publication P3, the inelastic contribution to the resulting differential conductance encodes
the dynamical spin correlations in the frequency domain [64, 62, 59]

Cαβ
jk (ω) =

∫︂
dt eiωt ⟨Sα

j (t)Sβ
k (0)⟩ , (2.79)

which reveals important information of the excitation spectrum of the magnetic system.
This is the experimental technique studied in my Publications P3 and P4. In the former,

we adapt the outlined derivation of the cotunneling term (2.78) to the three-orbital Hubbard-
Kanamori model (2.49) and revert to the exactly solvable Kitaev model (2.1) to compute the
dynamical spin correlations Cαβ

jk (ω) [113, 119]. Focusing on a dilute gas of isolated Z2 vortices
[166], we then identify a characteristic conductance profile of Majorana zero modes. In my
Publication P4, we compare this prediction to the magnon bound states trapped by magnetic
impurities in the partially polarized phase. There, we compute the dynamical spin correlations
Cαβ

jk (ω)within linear spin-wave theory and discuss how to characterizemagnetic impurities by
varying the strength of the externalmagnetic field. By combining these results, we are confident
that scanning tunneling spectroscopy enables the unambiguous detection of the long-sought
quantum spin liquid phase in Kitaev materials.
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For a Weyl semimetal (WSM) in a magnetic field, a semiclassical description of the Fermi-arc surface state
dynamics is usually employed for explaining various unconventional magnetotransport phenomena, e.g., Weyl
orbits, the three-dimensional quantum Hall effect, and the high transmission through twisted WSM interfaces.
For a half-space geometry, we determine the low-energy quantum eigenstates for a four-band model of a WSM
in a magnetic field perpendicular to the surface. The eigenstates correspond to in- and out-going chiral Landau
level (LL) states, propagating (anti)parallel to the field direction near different Weyl nodes, which are coupled by
evanescent surface-state contributions generated by all other LLs. These replace the Fermi arc in a magnetic field.
Computing the phase shift accumulated between in- and out-going chiral LL states, we compare our quantum-
mechanical results to semiclassical predictions. We find quantitative agreement between both approaches.

DOI: 10.1103/PhysRevResearch.6.043201

I. INTRODUCTION

Two hallmark features of topological electronic systems
are their anomalous magnetotransport properties and the ex-
istence of robust boundary states. In the rich material class
of Weyl semimetals (WSMs) [1–4], these distinct features
manifest themselves in the chiral anomaly and in Fermi-arc
surface states, respectively. WSMs are three-dimensional (3D)
semimetals characterized by touching points of nondegener-
ate bands near the Fermi energy which are separated in the
Brillouin zone. These so-called Weyl nodes are effectively
described by massless relativistic Weyl fermions with con-
served chirality. In the presence of electromagnetic fields,
Weyl fermions exhibit the chiral anomaly which, on the level
of the electronic band structure, implies the formation of a
chiral zeroth Landau level (LL). This chiral LL state has a
gapless linear dispersion along a direction determined by the
chirality which is parallel or antiparallel to the magnetic field
[5–8]. On the other hand, Weyl nodes act as sources or sinks
of Berry curvature and give rise to nontrivial band topology
[3,9]. Correspondingly, topological surface states emerge near
the boundary of a WSM. Since the Nielsen-Ninomiya theorem
requires Weyl nodes to come in pairs of opposite chirality
[10], the energy contour of these surface states must terminate
at the projection of the bulk cones of two Weyl nodes on the
surface Brillouin zone and form an open disjoint curve—the
Fermi arc.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Given the experimental observation of signatures for both
the chiral anomaly and Fermi arcs [11–14], it is natural to
ask how both phenomena conspire near the boundary of a
semi-infinite WSM in a homogeneous magnetic field oriented
perpendicular to the surface. In a semiclassical picture, the
presence of the Lorentz force implies that fermions slide
along the Fermi arc connecting two Weyl node projections.
Due to the open nature of the Fermi-arc energy contour, no
closed cyclotron orbit can form on the surface. Accordingly,
fermions have to tunnel into the bulk upon reaching the chiral
termination point of the Fermi arc [15] (see Fig. 1 for a
schematic illustration in a half-space geometry). Since the
only available bulk states at low energies are provided by the
chiral LL states, semiclassics predicts that fermions will then
move through the bulk and thereby escape from the surface.
Consequently, Fermi-arc states acquire a finite lifetime in a
perpendicular magnetic field B, and thus ultimately become
unstable. Indeed, as we show in detail for the model studied
below, for B �= 0, no stable surface states exist anymore. The
true eigenstates for B �= 0 have a component representing the
zeroth-order chiral Landau levels in the bulk of the system.
For B �= 0, Fermi-arc electrons thus escape from the surface
into the bulk via chiral Landau states, and therefore acquire a
finite lifetime.

Furthermore, in a WSM slab geometry (or in similar con-
fined nanostructures), fermions in a chiral LL state move
through the bulk and eventually tunnel into the opposite sur-
face. There, they will traverse the corresponding opposite
Fermi arc (in the semiclassical picture). In the simplest sce-
nario, the fermion subsequently occupies the chiral LL state
with opposite chirality and travels back to the initial Fermi
arc state. This closed trajectory resembles an exotic cyclotron
orbit, commonly referred to as “Weyl orbit.” Such orbits are
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FIG. 1. Schematic sketch of the half-space WSM geometry
(defined by z � 0) in a homogeneous magnetic field B = Bêz per-
pendicular to the surface. The 3D WSM has two bulk Weyl nodes at
momenta k = (±k0, 0, 0)T , corresponding to the red and blue circles
for their surface projections. For B = 0, the surface projections are
connected by a Fermi-arc surface state (green curve). For B �= 0, the
low-energy bulk physics is dominated by the n = 0 chiral LLs which
have opposite chirality near different Weyl nodes (pink and light
blue arrows show the respective propagation direction). Fermions
incoming from a bulk chiral LL enter the arc at the surface. After
sliding along the arc to the opposite Weyl node surface projection (in
a semiclassical picture), they tunnel into the outgoing chiral LL [15].

predicted to cause unconventional quantum oscillations in the
magnetoconductivity, with a strong dependence on the sam-
ple thickness [15,16]. The initial prediction of Weyl orbits
sparked excitement in the WSM community and led to a vari-
ety of subsequent theoretical proposals [17], including nonlo-
cal transport experiments [18–20], the detection of chiral sep-
aration [21], and the chiral magnetic effect [22]. Weyl orbits
are also important ingredients for an unconventional so-called
3D quantum Hall effect (QHE) [23,24]. Both Shubnikov–de
Haas oscillations due to Weyl orbits and the 3D QHE were
thoroughly investigated in transport experiments for the Dirac
semimetal (DSM) Cd3As2 [25–31] (see also the review [17]).

In a DSM, Weyl nodes of opposite chirality share the same
position in momentum space but are stabilized by space group
symmetries of the crystal [3]. While the band structure is
topologically trivial, pairs of Dirac cones can be connected
by Fermi-arc surface states nevertheless. The semiclassical
argument for the surface-bulk hybridization of Weyl orbits can
be adapted to DSMs despite the formally closed energy con-
tour of surface states [15]. While clear experimental evidence
for the predicted signatures has been collected for Cd3As2

[25–30], their interpretation in terms of Weyl orbits remains
debated [17]. In particular, thin films of Cd3As2 show an
intricate dependence of the QHE on sample thickness [29,32].
Moreover, energy quantization due to Weyl orbits is difficult
to distinguish from the trivial size quantization of confined
bulk states [33]. Similar arguments might also apply to the
Weyl orbits reported in the noncentrosymmetric WSMs NbAs
[34], TaAs [35], and WTe2 [36]. So far, no Weyl orbits have
been observed in magnetic WSMs with broken time-reversal
symmetry [17]. However, recent experimental work on mag-
netic WSMs [37] and progress in quasiparticle interference
experiments [38] render near-future advances in Weyl-orbit
physics for this class of materials likely. These develop-
ments also motivated us to perform the study reported in the
present paper.

A related exciting topic concerns twisted WSM interfaces
[39–42] and tunnel junctions [43]. Upon twisting interfaces
with respect to each other, theory predicts a Fermi-arc recon-
struction, implying the existence of “homochiral” Fermi arcs
connecting Weyl nodes of equal chirality [40,41]. In a mag-
netic field perpendicular to the interface, incoming electrons
in a chiral LL may traverse the homochiral Fermi arc and
tunnel back into bulk states on the other side of the junction,
thereby achieving (almost) perfect transmission. Numerical
transport simulations show good agreement with this semi-
classical picture [43–45].

Adopting the half-space geometry, we here study the fate of
Fermi-arc surface states in WSMs in a magnetic field. We con-
struct a full quantum solution, going beyond semiclassics. To
this end, we study a four-band low-energy continuum model
for a magnetic WSM. While we find analytical solutions of
the eigenproblem for the DSM limit of two degenerate Weyl
nodes, we develop a numerical approach (with a controlled
cutoff procedure) to obtain the eigenstates for the WSM sce-
nario. We find that the eigenstates with lowest energy are
composed of in- and out-going chiral zeroth-order LLs which
are coupled by evanescent states localized near the surface.
These are generated by all remaining higher-order LLs and
cause a phase shift between in- and outgoing chiral LLs. In
a slab geometry, this phase shift is experimentally observable
through magnetoconductivity oscillations [15]. We compare
our numerical results for the phase shift to semiclassical pre-
dictions by varying the energy ε and a boundary parameter α

encoding the arc curvature in the surface momentum plane. In
addition, the energy derivative of the phase shift determines
the Fermi-arc lifetime which is finite for B �= 0. We show
how the lifetime depends on key parameters such as α, ε, and
B, and compare it to the semiclassical traversal time across
the Fermi arc.

The remainder of this paper is structured as follows. In
Sec. II we discuss the continuum WSM model employed here,
derive boundary conditions for the half-space geometry, and
present the surface state spectrum at zero magnetic field. We
include the magnetic field in Sec. III and construct the eigen-
states in the half-space geometry. In addition, we consider
the limit of a DSM and obtain analytical solutions in several
limiting cases. Subsequently, we derive the corresponding
semiclassical predictions in Sec. IV and compare them with
our quantum-mechanical results for the phase shift and for the
Fermi-arc lifetime. The paper closes with concluding remarks
in Sec. V. Details of our calculations can be found in the
Appendixes. A derivation of B = 0 Fermi-arc surface states
is given in Appendix A. Their spin and current structure are
discussed in Appendix B. We validate our numerical approach
for finite magnetic fields in Appendix C, and discuss the
Goos-Hänchen effect for the present setup in Appendix D.
Throughout this paper, we use units with Fermi velocity
vF = 1 and put h̄ = 1.

II. WSM IN HALF SPACE

In this section, we discuss the four-band WSM model
employed in our paper. The 3D model (in the absence of a
magnetic field) is introduced in Sec. II A. We then discuss
the half-space geometry in terms of boundary conditions in
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Sec. II B. The Fermi-arc surface states for B = 0 are specified
in Sec. II C (see also Appendixes A and B for further details).

A. Model

We study a four-band continuum WSM model which in 3D
space, with conserved momentum k = (kx, ky, kz )T , is defined
by the Hamiltonian [3]

H (k) = k · στ z + k0σ
xτ 0, (1)

where k0 � 0 is the only free parameter. This parameter de-
termines the distance between the Weyl nodes in momentum
space. In Eq. (1), σμ and τμ are Pauli matrices acting on effec-
tive spin and orbital degrees of freedoms, respectively, where
μ = 0 refers to the identity and μ = x, y, z otherwise. We use
σ = (σ x, σ y, σ z ). While the limit k0 = 0 describes a degen-
erate Dirac cone centered at k = 0, i.e., a Dirac semimetal,
the model exhibits two separated Weyl nodes at momenta
k = ±k0êx for k0 > 0. Due to the block diagonal structure of
H , these Weyl nodes are decoupled. Their conserved chirality
χ is associated with the orbital degree of freedom, namely the
eigenvalues χ = ±1 of τ z.

We note that adding a mass term H ′ = mσ 0τ x in Eq. (1)
couples the Weyl nodes. However, for m < k0, the Weyl nodes
are thereby only shifted in momentum space and the low-
energy description is not changed in an essential manner [3].
We thus put m = 0 throughout this paper. The two Weyl nodes
are then fully decoupled in the bulk. This key simplification
allows us to obtain explicit results in a finite magnetic field.
Importantly, in our approach, the boundary conditions will
couple both Weyl nodes. Furthermore, while Eq. (1) formally
describes a type-I WSM with broken time-reversal symmetry
and the minimum number of two Weyl nodes, we expect
our arguments to apply to any WSM involving a pair of two
isolated type-I Weyl nodes.

Below, we use the standard representation of Pauli matri-
ces. States are written in the eigenbasis of σ z and τ z, i.e., |χ〉τ
for chirality χ = ±1 and |σ 〉σ for spin σ ∈ {↑,↓}, with the
spinor representations

|+〉τ =
(

1
0

)
τ

, |−〉τ =
(

0
1

)
τ

,

|↑〉σ =
(

1
0

)
σ

, |↓〉σ =
(

0
1

)
σ

. (2)

B. Half-space geometry and boundary conditions

We next proceed to the half-space geometry defined by
z � 0, where we have a planar boundary at z = 0 as illustrated
in Fig. 1. Since the surface projections of the two Weyl nodes
are separated, topological Fermi-arc surface states with an
open energy contour connecting the projected nodes arise
[3]. Before solving for the Fermi arcs, we first derive the
general boundary condition from the constraint of Hermiticity
of the Hamiltonian. For relativistic continuum models, such
an approach typically allows for a few free parameters with
physical implications on the surface state dispersion [46–49].
We note that a more realistic modeling of the boundary might
include band bending near the surface which can drastically
change the dispersion [50,51].

For a derivation that is also valid in the presence of a
finite magnetic field, we switch to real space by using the
substitution k → −i∇r in Eq. (1). Following standard argu-
ments [46–48], we impose 〈�1|H�2〉 − 〈H�1|�2〉 = 0 for
arbitrary states �1 and �2 in the half-space geometry to infer
a sufficient boundary condition:

�
†
1 (r⊥, z = 0) jz�2(r⊥, z = 0) = 0. (3)

Here, r⊥ = (x, y)T is the in-plane position and jz = σ zτ z is
the z component of the relativistic fermion particle current
operator, j = στ z. Physically, Eq. (3) thus prohibits any local
current flowing through the surface. This condition is ensured
for states that satisfy boundary conditions of the form

M�(r⊥, z = 0) = �(r⊥, z = 0), (4)

where M is an operator with the properties

jzM = −M† jz, M2 = 1, (5)

where 1 = σ 0τ 0 is the identity. In Eq. (4), we assumed a local
boundary condition where the matrix M does not depend on
the in-plane position r⊥. To parametrize all possible choices
of M, we define the operators

Mτ
γ = τ x cos γ + τ y sin γ , Mσ

δ = σ x cos δ + σ y sin δ, (6)

in orbital and spin space, respectively. The most general
Hermitian parametrization then involves four real parameters
(α, β, γ , δ) [52]:

Mαβγ δ = cos α
(
σ zMτ

γ cos β + σ 0Mτ
γ−π/2 sin β

)
+ sin α

(
τ 0Mσ

δ cos β + τ zMσ
δ−π/2 sin β

)
. (7)

An equivalent parametrization was found in Refs. [53,54]
in the context of graphene monolayers. On general grounds,
the number of free parameters in the boundary condition in-
creases with the number of higher-energy bands in the model
Hamiltonian [55,56]. Consequently, the low-energy spectrum
is not expected to change significantly when varying param-
eters within certain submanifolds of the full parameter space.
Below, we do not exploit the complete parameter freedom in
Eq. (7) but instead focus on a simple one-parameter boundary
matrix M allowing us to describe curved Fermi arcs.

C. Boundary spectrum at zero magnetic field

Given the boundary condition (4) with the general
parametrization (7), we next construct physical Fermi arc
solutions for B = 0, which are labeled by the conserved in-
plane momentum k⊥ = (kx, ky)T . The simplest approach is to
choose a block diagonal matrix M, e.g., the parametrization
M π

2 ,0,0,δ in Eq. (7), which allows one to solve the problem
for both Weyl nodes separately. The Fermi arc of a single
Weyl node, which after a shift of kx is effectively described
by Hχ = χk · σ, then becomes a semi-infinite line which ter-
minates at the Weyl cone projection at an angle determined by
the parameter δ [46–48]. The resulting surface-state spectrum
of the four-band WSM model thus yields two semi-infinite
arcs, in contrast to physical Fermi arcs which are open curves
connecting both Weyl cone projections. Here, we will use
boundary conditions which couple different Weyl nodes. This
approach is especially convenient for B �= 0.
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To this end, we consider off-diagonal boundary matrices M
satisfying [M, σ 0τ z] �= 0. The resulting boundary conditions
couple the Weyl nodes at the surface [52]. This picture is
analogous to the one in Ref. [54], where armchair edges in
graphene monolayers are modeled by boundary conditions
that are nondiagonal in the valley degree of freedom. Below,
we assume the boundary condition (4) with

Mα = Mα,0,0,0 = σ zτ x cos α + σ xτ 0 sin α. (8)

The parametrization (8) is a simple choice that allows us to
construct physical Fermi arcs with a curvature in the surface
momentum plane controlled by the single parameter α. A
curved arc is then symmetric under midpoint reflection, and
a straight arc is found for α = 0 (mod π ). As discussed in
Appendix A, the particular choice of Mα in Eq. (8) is moti-
vated by the observation that a straight arc requires [M, jy] =
0, where jy = σ yτ z is the in-plane current operator along êy.
For a microscopic analysis of a specific material, one may
instead employ boundary matrices M containing more param-
eters (while still coupling both Weyl nodes), possibly guided
by numerical calculations for lattice models. For simplicity,
however, we focus on the one-parameter family of matrices in
Eq. (8). In Appendix A, we derive the corresponding B = 0
surface-state spectrum presented next.

We find that a physical Fermi-arc contour at energy ε is
given by ky = qα (ε, kx ), where

qα (ε, kx ) = (ε sin α − k0)(ε − k0 sin α) − k2
x sin α

cos α

√
(ε sin α − k0)2 − k2

x sin2 α

. (9)

At zero energy, the contour terminates at both Weyl node sur-
face projections (kx = ±k0, ky = 0). The termination points
kx = ±kεα for ε �= 0 are implicitly given by

ε2 = (|kx| − k0)2 + [qα (ε, kx )]2. (10)

Assuming |ε| � k0 and expanding Eq. (9) to lowest order in
ε/k0, we estimate

kεα = k0 − 4ε sin α

3 − cos (2α)
. (11)

Moreover, we find the low-energy dispersion relation

ε(k⊥) 
 k2
0 − k2

x sin2 α

k2
0 − k2

x sin4 α

×
(

k2
0 − k2

x

k0
sin α −

√
k2

0 − k2
x sin2 α

ky

k0
cos α

)
.

(12)

For α = 0, the above expressions are exact and describe a
straight arc with ε(k⊥) = −ky. For α �= 0, the arc is curved
in the surface momentum plane as illustrated in Fig. 2(a).
We note that the Fermi arc for α → π − α with the same
energy ε follows by reflection with respect to the kx axis. In
effect, this transformation yields the Fermi arc for the same
boundary condition but in the opposite half space z � 0 (see
Appendix A). We briefly discuss the in-plane spin and current
densities associated with Fermi-arc states in Appendix B.

Next, we turn to the limit k0 → 0 describing the low-
energy theory of a DSM with a single degenerate cone. While

FIG. 2. Surface-state spectrum of the four-band model (1) in a
half space for B = 0. (a) Zero-energy Fermi-arc contours in the kx-ky

plane as described by Eq. (9) for different boundary parameters α

(see also Fig. 1). (b) Surface-state contour plot in the kx-ky plane
for a DSM (k0 → 0) with α/π = 0.1 for different energies ε(k⊥) as
indicated by the color bar, using a fixed scale p0 as reference. The
surface-state termination points result from the condition in Eq. (14).

the band structure is now topologically trivial, surface states
may nonetheless exist. Such states become important for B �=
0 (see Sec. IV). Deferring technical details to Appendix A,
we find topologically trivial surface states with the dispersion
relation

ε±(k⊥) = ±
√

k2
x + k2

y cos2 α, (13)

which only exist if the condition

ky sin α > 0 (14)

is satisfied. In particular, there are no surface state solutions
for either α = 0 (mod π ), corresponding to a straight arc for
finite k0, or ε = 0. Below, we focus on those two cases for
analytical results. For finite α or ε, however, surface states
emerge which form open energy contours. These contours
shrink with decreasing energy [see Fig. 2(b)].

III. HALF SPACE IN A MAGNETIC FIELD

In this section, we include the magnetic field B = Bêz

with B > 0 and study the WSM model in Sec. II for the
half-space geometry using the boundary condition (4) defined
by the matrix Mα in Eq. (8). The parameter α determines
the curvature of the B = 0 Fermi arc solutions. In Sec. III A,
we briefly review the eigenstates for the infinite 3D problem.
In Sec. III B, we then turn to the half-space problem and
construct the low-energy quantum-mechanical eigenstates.
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A. Landau quantization

We start with the free-space WSM model and we incorpo-
rate the homogeneous magnetic field B by minimal coupling,
k → −i∇r + e

c A, where e > 0 is the (absolute value of the)
electron charge and c is the speed of light. For convenience,
we choose the Landau gauge, A = −Byêx, where Eq. (1) gives

H = −i∇r · στ z − y

�2
B

σ xτ z + k0σ
xτ 0 =

(
H+ 0
0 H−

)
τ

(15)

with the magnetic length �B = √
c/eB. Note that the chosen

gauge retains translation invariance along êx. The momentum
component kx therefore remains a good quantum number.
Below, we consider the orbital magnetic field only and neglect
the Zeeman effect by following standard arguments [5–8].
Including a Zeeman term, say, of the form HZ ∝ σ zτ 0 shifts
the position of the Weyl nodes in the xz plane. While such an
effect can be readily taken into account, we assume here for
simplicity that its contribution is insignificant compared to the
second term in Eq. (1).

When solving for LL solutions, it is convenient to consider
the Weyl nodes separately. A single Weyl node with chiral-
ity χ = ±1 and momentum k = −χk0êx is described by the
Hamiltonian Hχ in spin space using the block diagonal form
in Eq. (15). For given χ and kx, we define the bosonic ladder
operator

a†
χ = �B√

2

(
y

�2
B

− kx − χk0 − ∂y

)
, (16)

with the commutator [aχ , a†
χ ] = 1. The transverse part of

Hχ = −iχ∂zσ
z + H⊥

χ is thereby written as

H⊥
χ = − χ√

2�B

[(aχ + a†
χ )σ x + i(aχ − a†

χ )σ y]. (17)

In the infinite 3D system (without boundary), the momentum
component kz is also conserved. It is then straightforward to
obtain the well-known relativistic LLs ε

χ

nkz
labeled by non-

negative integer n ∈ N0 [3]:

ε
χ

0,kz
= −χkz, ε

χ

±,n>0,kz
= ±χ

√
2n

�2
B

+ k2
z . (18)

Here, εχ

0,kz
is the dispersion of the gapless chiral LL, while n >

0 correspond to higher-order gapped LL states. Eigenstates are
expressed in terms of harmonic oscillator eigenfunctions:

ϕn(y) = Hn(y/�B)√
2nn!

√
π �B

e− 1
2 (y/�B )2

, (19)

where Hn is the nth-order Hermite polynomial. Writing
a†

χaχϕχ
n = nϕχ

n , the wave functions

ϕχ
n (y) = ϕn

(
y − �2

Bkx − χ�2
Bk0

)
(20)

incorporate a shift with respect to the Weyl node position. In
anticipation of the half-space geometry, we label the solutions
|ψχ

nε〉 of Hχ |ψχ
nε〉 = ε|ψχ

nε〉 in terms of energy ε instead of kz.
The chiral LL with n = 0 is then described by

ψ
χ

0,ε(y, z) = e−iχεz

√
2π

(
0

ϕ
χ

0 (y)

)
σ

. (21)

Since kx is conserved, we keep plane-wave factors eikxx and the
kx dependence of observables implicit below. Similar expres-
sions as Eq. (21) hold for the wave functions of n > 0 bulk
LLs [5].

In the following, we focus on the ultraquantum regime,
|ε| <

√
2/�B. While n > 0 bulk LLs do not exist in this

regime, it is possible to construct evanescent solutions in the
half-space geometry by solving the eigenproblem for imag-
inary momentum kz = iκ with κ = κnε > 0. The evanescent
solution for n > 0 is given by

ψχ
nε(y, z) = √

κnε e−κnεz

(
χeiχγnεϕ

χ

n−1(y)

ϕχ
n (y)

)
σ

, (22)

with the inverse penetration length

κnε =
√

2n/�2
B − ε2 (23)

and the phase γnε defined by

eiγnε = − �B√
2n

(ε + iκnε ). (24)

One can rationalize the appearance of this complex phase
factor by noticing that evanescent solutions do not carry any
current along êz, i.e., 〈ψχ

nε|σ z|ψχ
nε〉 = 0 for n > 0.

B. Half-space geometry

1. Coupling of Weyl nodes at the boundary

We now proceed to the half-space geometry z � 0 sketched
in Fig. 1 (see Sec. II for the B = 0 case). We first rewrite the
boundary condition (4) with the matrix Mα in Eq. (8) as

Vα (z)�(r) = 0, Vα (z) = δ(z)(1 − Mα ). (25)

Our ansatz for solving Eq. (25) is a superposition of all eigen-
states of H in Eq. (15) with given ε and kx. We focus on
the ultraquantum regime |ε| <

√
2/�B, where n > 0 LL states

only contribute through evanescent-state solutions in Eq. (22).
Combining the results of Eqs. (21) and (22) gives

|�ε〉 =
∑
χ=±

∑
n�0

cχ
nε

∣∣ψχ
nε

〉
σ
|χ〉τ, (26)

where the cχ
nε are complex coefficients which have to be de-

termined. Equation (25) states that |�ε〉 is an element of the
kernel of Vα . Matrix elements of this operator, restricted to
the subspace with fixed energy ε, are of the form

[Vα (ε)]χ,χ ′
n,n′ = τ〈χ | σ

〈
ψχ

nε

∣∣Vα (z)
∣∣ψχ ′

n′ε

〉
σ
|χ ′〉τ . (27)

For convenience, we rescale them as

[V̂α (ε)]χ,χ ′
n,n′ = (κnεκn′ε )−

1
2 [Vα (ε)]χ,χ ′

n,n′ (28)

with κ0,ε = 1/2π . Matrix elements between a chiral n = 0 LL
and n � 0 LLs with equal chirality χ are given by

[V̂α (ε)]χ,χ

0,n = δn,0 − χeiχγnε δn,1 sin α, (29)

while for n, n′ > 0, we find

[V̂α (ε)]χ,χ

n,n′ = 2δn,n′ − χeiχγn+1,ε δn,n′−1 sin α

− χe−iχγnε δn,n′+1 sin α. (30)
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Matrix elements for opposite chiralities resemble the coupling
of Weyl nodes in terms of the boundary condition. For n � 0,
we obtain

[V̂α (ε)]χ,−χ

0,n = 〈
ϕ

χ

0

∣∣ϕ−χ
n

〉
cos α. (31)

Finally, for n, n′ > 0, we find

[V̂α (ε)]χ,−χ

nn′ = cos α
(
e−iχ (γnε+γn′ε )

〈
ϕ

χ

n−1

∣∣ϕ−χ

n′−1

〉 + 〈
ϕχ

n

∣∣ϕ−χ

n′
〉)
.

(32)

The overlap 〈ϕχ
n |ϕ−χ

m 〉 involves shifted harmonic oscillator
eigenfunctions associated with different Weyl nodes. Perform-
ing the integration for n � m yields [57]

〈ϕ−
n |ϕ+

m 〉 =
∫

dy ϕn
(
y − l2

Bk0
)
ϕm

(
y + l2

Bk0
)

=
√

2n−m
m!

n!
λn−m

B Ln−m
m

(
2λ2

B

)
e−λ2

B , (33)

with the dimensionless quantity

λB = k0�B, (34)

which measures the decoupling of the Weyl nodes by the
magnetic field. In Eq. (33), Lm

n is a generalized nth-order
Laguerre polynomial. In Appendix C, we describe a recursion
relation allowing for the numerically efficient computation of
the overlaps in Eq. (33). The remaining terms follow from
the relation 〈ϕ+

n |ϕ−
m 〉 = (−1)n−m〈ϕ−

n |ϕ+
m 〉. We note that the

overlaps allow for a perturbative treatment in the large-field
limit λB � 1. Let us also mention in passing that similar ex-
pressions appear when computing matrix elements of the bulk
mass term mσ 0τ x. In that case, the coupling opens a gap in the
dispersion of the chiral LLs of the order of 〈ϕ+

0 |ϕ−
0 〉 = e−λ2

B .
This result is consistent with the WKB approximation for a
two-band WSM model with two Weyl nodes [58,59].

In any case, convergence of the overlaps limn→∞
〈ϕ+

n |ϕ−
m 〉 = 0 is ensured for arbitrary λB. This fact justifies the

introduction of a cutoff N for the LL index, n < N , reducing
the numerical solution of the boundary problem to a linear
algebra problem:

Vα (ε)cε = 0, (35)

where Vα (ε) is a 2N × 2N matrix formed by the matrix ele-
ments (27) of the lowest N LLs and cε is a vector containing
the corresponding coefficients cχ

nε. The numerical solution of
Eq. (35) then determines the eigenstates of the WSM in the
half-space geometry for B �= 0. In Appendix C, we carefully
verify the controlled nature of the above cutoff procedure and
the accuracy of the boundary condition.

Due to current conservation, coefficients with the same
(n, ε, kx ) but different chiralities have the same absolute value,
|c+

nε| = |c−
nε|. In particular, we are interested in the phase shift

θα (ε) between in- and out-going chiral n = 0 Landau states:

c−
0,ε = eiθα (ε)c+

0,ε. (36)

We note that all phases below are defined only modulo 2π .
The phase shift θα (ε) depends on the global phase choices for
the basis states in Eq. (26). While for a fixed phase choice,
θα (ε) is formally gauge invariant, observable quantities must
also be independent of the phase choice. Full gauge invariance

is ensured below by only considering phase-shift differences,
� = θα′ (ε′) − θα (ε). When combined with the corresponding
phase shift on the opposite surface in a slab geometry, one
can infer the magnetoconductivity oscillation period of the
corresponding Weyl orbit from Eq. (36) [15]. We compare our
quantum-mechanical results for � to semiclassical estimates
in Sec. IV.

We note that for a straight arc at zero energy, α = 0 (mod
2π ) and ε = 0, with the basis choice in Eq. (26), one finds

θα=0(ε = 0) = π. (37)

We verify Eq. (37) by evaluating the boundary condition
at y = �2

Bkx, where ϕ+
n (�2

Bkx ) = (−1)nϕ−
n (�2

Bkx ). By virtue of
|c+

nε| = |c−
nε| and the boundary condition, we then arrive at

c+
n,0 = (−1)n+1c−

n,0, and thus at Eq. (37).
Since eigenstates in the half-space geometry can be written

in the form (26), a nontrivial y dependence arises since the
separation between Weyl nodes in momentum space appears
in the argument of Eq. (20). As shown in Appendix D, this
observation implies that an electron incident on the surface
undergoes a shift (assuming ε > 0)

δy = −2�2
Bk0 (38)

in the y direction. This effect can be interpreted semiclassi-
cally in terms of chiral transport associated to Fermi arcs (see
Appendix B).

2. Dirac semimetal

In order to identify contributions to the phase shift (36)
picked up by fermions traversing the Fermi arc in Sec. IV,
let us briefly consider the analogous problem in the DSM
limit k0 → 0. The corresponding linear system follows from
Eq. (35) by inserting diagonal overlaps 〈ϕ−

n |ϕ+
m 〉 = δnm in

Eqs. (31) and (32). For analytical results, we focus on cases
without topologically trivial surface states for B = 0, i.e., we
consider either α = 0 (mod π ) or ε = 0.

First, for α = 0 (mod 2π ), it is straightforward to show
that the boundary condition (4) with M0 = σ zτ x is satisfied
by antisymmetric superpositions of chiral LLs:

|�ε〉 = 1√
2

(|ψ+
0,ε〉σ |+〉τ − |ψ−

0,ε〉σ |−〉τ ). (39)

With the above basis choice, we then obtain the phase shift
θα=0(ε) = θDSM

α=0 (ε) = π for arbitrary ε. Similarly, one finds
θDSM
π (ε) = 0.

Second, for ε = 0 but arbitrary α, by using γn,ε=0 = −π/2,
the linear system (35), expressed in terms of the rescaled
coefficients ĉχ

n = √
κn,ε=0cχ

n,ε=0, simplifies to

0 = ĉχ

0 + cos α ĉ−χ

0 + i sin α ĉχ

1 ,

0 = 2ĉχ
n − i sin α

(
ĉχ

n+1 − ĉχ

n−1

)
. (40)

The physical solution of the recursion relation is (we here
assume cos α > 0)

ĉ+
0 = −ĉ−

0 , ĉχ
n =

(
i tan

α

2

)n
ĉχ

0 . (41)
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FIG. 3. Gauge invariant phase shift �DSM
α (ε) vs energy ε for chi-

ral LLs in a DSM (k0 → 0) for several values of α [see Eq. (43)]. The
shown results were obtained by a numerical solution of the quantum-
mechanical problem. We use p0�B = 3 with a reference scale p0,
where ε is shown in units of p0 (with vF = 1). The ultraquantum
regime |ε| <

√
2/�B is indicated by vertical dotted lines.

Without need for a cutoff N and up to normalization, we
thereby arrive at the exact solution:

|�ε=0〉 ∝
∑
χ=±

χ
∑
n�0

1√
κn,0

(
i tan

α

2

)n
|ψχ

n,0〉σ |χ〉τ . (42)

Clearly, the phase shift is again given by θDSM
α (ε = 0) = π .

Remarkably, the superposition state (42) involves evanescent
contributions even though no surface state exists for ε = 0
with B = 0 and k0 = 0 [see Eqs. (13) and (14)]. An analogous
calculation leads to θDSM

π−α (0) = 0.
For finite α and finite ε, we solve the problem numerically

as described above. As shown in Fig. 3, we then find a finite
gauge invariant phase shift, which we define as

�DSM
α (ε) = θDSM

α (ε) − θDSM
π (ε). (43)

(The reason for subtracting the phase for α = π is explained
in Sec. IV.) For small α and ε, this phase shift turns out to be
small compared to the corresponding phase shifts in WSMs
(see Sec. IV). Since the main focus of this paper is on the
WSM case, we leave a detailed (semiclassical) discussion of
phase shifts in DSMs to future studies.

IV. RESULTS AND COMPARISON TO SEMICLASSICS

The semiclassical theory for Fermi arcs in WSMs in a
magnetic field is well established [15,16]. According to this
standard picture, fermions in the chiral LL tunnel into a
Fermi-arc state upon reaching the surface. The Lorentz force
then drives the fermion along the arc to the other Weyl cone
projection of opposite chirality, where it can tunnel back into
the bulk and thereby escape from the surface. In a slab geom-
etry, this process is repeated on the opposite surface, and the
semiclassical trajectory forms a closed Weyl orbit which can
be described using semiclassical quantization [15,16].

In the half-space geometry, the semiclassical trajectory
is open and no quantization is expected. This enables us
to disentangle bulk and surface contributions. The latter are

FIG. 4. Schematic illustration of closed trajectories in the sur-
face momentum plane used for the semiclassical calculation of the
gauge invariant phase �α (ε) in Eq. (47). A curved Fermi arc (green)
with 0 < cos α < 1 is joined with a straight Fermi arc (purple) for
α = π . Arrows indicate the direction of k̇ as described by Eq. (44).
We show the corresponding closed trajectories (a) for zero energy
(ε = 0), (b) for ε < 0, and (c) for ε > 0. For ε �= 0, the curved
arc termination points, (kx, ky ) = (±kεα, qα (ε, kεα )), differ from the
Weyl node projections (±k0, 0) corresponding to the circle centers in
panels (b) and (c). To match the arc termination points of the curved
arc and the straight reference arc, we employ a rescaling k0 → kεα

for the straight arc case. For details, see main text.

determined by the semiclassical equations of motion for an
electron moving along the Fermi arc (with k = k⊥) [15,60]:

k̇ = − 1

�2
B

vk × êz, ṙ = vk = ∇kε(k), (44)

where vk is the group velocity in the x-y plane and ε = ε(k)
is the arc dispersion relation. Here, we neglect the anomalous
velocity contribution due to the Berry curvature of generic
Fermi-arc states [60,61]. This approximation can be justified
by noting that the Berry curvature vanishes for a straight arc
and we consider the small-α case below. As a consequence, k̇
is tangential to the energy contour.

A. Phase shifts accumulated along Fermi-arc curves

We first consider the phase shift θα (ε) between the chiral
LLs in Eq. (36) for a curved Fermi arc with 0 < cos α < 1. In
a semiclassical picture, this phase shift can be estimated by a
phase-space integral of the schematic form

θα (ε) =
∫

dr ·
(

k − e

c
A

)
. (45)

For gauge invariant phases, we need closed trajectories in
real space. This issue is closely related to the fact that the
quantum-mechanical phase shift θα (ε) discussed in Sec. III B
becomes gauge invariant only after switching to a phase-shift
difference. For the semiclassical counterpart, we resolve this
issue by introducing a straight reference arc which reconnects
the termination points of the curved Fermi arc. We thereby
obtain a closed trajectory in the surface momentum plane (see
Fig. 4), where the phase �α (ε) accumulated along the trajec-
tory is gauge invariant. To ensure that also the corresponding
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FIG. 5. Comparison of quantum-mechanical results and semiclassical estimates for the gauge invariant Fermi-arc surface-state phase shift
�α (ε) [see Eqs. (46) and (48), respectively]. The phase �α (ε) is shown as a function of the parameter λB = k0�B and gives the phase
accumulated along the closed trajectories in surface-momentum space illustrated in Fig. 4. Symbols show the numerical solution of the
quantum problem, and curves show the corresponding semiclassical predictions. Integer multiples of 2π have been added to obtain smooth
curves. (a) Zero-energy case (ε = 0) for different α. (a) Case α/π = 0.1 for different energies ε.

real-space trajectory is closed, we recall that the transfor-
mation α → α + π inverts the sign of the group velocity
component vy, and thus of k̇x [see Eq. (44)]. In effect, this
allows for a closed motion in the surface momentum plane,
where the straight reference arc is chosen to have α = π .

The above procedure is straightforwardly implemented at
zero energy (ε = 0), where the arc termination points are at
(kx, ky) = (±k0, 0) for all values of α [see Fig. 4(a)]. On the
quantum level, we then consider the phase-shift difference
�α (ε = 0) = θα (0) − θπ (0), where θπ (0) = π [see Eq. (37)].

The situation becomes more intricate for ε �= 0
since now the curved arc termination points, (kx, ky) =
(±kεα, qα (ε, kεα )), differ from the corresponding Weyl
node projections at (±k0, 0). [We recall that kεα follows
by solving Eq. (10); see also the estimate in Eq. (12).
Moreover, the function qα (ε, kx ) parametrizing the Fermi-arc
contour at energy ε has been defined in Eq. (9).] For
the straight reference arc, we therefore consider a system
with rescaled Weyl node separation, k0 → kεα , at energy
ε → ε̄ = qα (ε, kεα ). The arc termination points for the
straight reference arc are then located at (±kεα, ε̄) and match
the termination points of the curved arc [see Figs. 4(b) and
4(c)]. We note that the energy of the reference arc differs from
the energy of the curved Fermi arc. We can ensure only in this
manner that both arc contours connect at their termination
points and enclose a finite area in momentum space. No
need for such a construction would arise for Weyl orbits in
a slab geometry, where tunneling processes via bulk states
take care of the corresponding momentum shifts between arc
termination points on opposite surfaces. The advantage of our
approach is that bulk states do not appear explicitly in the
semiclassical calculation.

On the quantum level, we then define the gauge invariant
phase-shift difference as

�α (ε) = θα (ε) − θ̄π [−qα (ε, kεα )] − �DSM
α (ε), (46)

where θ̄π follows by solving the linear system (35) with the
rescaled parameter λB → λ̄B = �2

Bkεα . For a comparison to

semiclassical results, in Eq. (46), we also subtract the phase-
shift difference �DSM

α (ε) [see Eq. (43)] for the corresponding
DSM case as shown in Fig. 3.

On the semiclassical level, the above gauge invariant phase
shift takes the form

�α (ε) =
∮

dr ·
(

k − e

c
A

)

= −�2
B

∫ kεα

−kεα

dkx[qα (ε, kx ) − qα (ε, kεα )]. (47)

As illustrated in Fig. 4, the phase �α (ε) in Eq. (47) corre-
sponds to the momentum-space area enclosed by the curved
Fermi arc and the straight reference arc. Assuming |ε| � k0,
we find

�α (ε) 
 �2
Bk2

0
2α cot (2α) − 1

sin α

+ 2�2
Bεk0

(
1 + α tan α − 2 cos2 α

3 − cos (2α)

)
. (48)

In Fig. 5, for small energies ε, we compare quantum-
mechanical results for �α (ε) obtained numerically from
Eq. (46) to the corresponding semiclassical predictions in
Eq. (48). We find quantitative agreement both for different
arc curvatures [see Fig. 5(a)] and for different energies [see
Fig. 5(b)]. It is worth noting that the semiclassical description
remains accurate even for large magnetic fields with λB < 1.

B. Fermi-arc lifetime and semiclassical traversal time

As discussed in Sec. I, one expects that Fermi-arc surface
states acquire a finite lifetime τα (ε) in a finite magnetic field
B �= 0. The lifetime describes the time scale for escaping into
the bulk via the chiral LLs and follows from the general
relation [62,63]

τα (ε) = dθα (ε)

dε
. (49)
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FIG. 6. Quantum-mechanical results for the Fermi-arc lifetime τα (ε) (symbols) and for the semiclassical arc traversal time tα (ε) (curves)
[see Eqs. (49) and (51), respectively], for several values of α and given in units of k−1

0 . (a) Dependence of τα and tα on λB for ε = 0. (b) τα − τ0

vs ε in the ultraquantum regime (delimited by vertical dotted lines) for λB = 3. Different symbols are for different α as in panel (a). We also
show the corresponding semiclassical traversal time differences tα − t0. The inset shows the straight-arc lifetime τα=0 vs ε, again for λB = 3.

Indeed, as first shown in a seminal work by Wigner [62], the
energy derivative of the phase shift θα (ε) encodes the time
delay of a scattered particle which in turn is directly linked
to its lifetime. We note that the phase shift (49) includes
DSM contributions. Being a physical observable, Eq. (49) is
gauge invariant. We compute Eq. (49) numerically using the
quantum-mechanical approach detailed in Sec. III.

On the semiclassical level, we define another time scale,
namely the traversal time tα (ε). This is the time required to
traverse the Fermi arc from one termination point to the other.
Since the lifetime is due to the escape of Fermi-arc electrons
into the bulk at the arc termination points, one expects that
tα (ε) is of the same order as τα (ε). Even though these two
time scales are not related to each other in a strict mathemat-
ical sense, one expects on physical grounds that they should
exhibit similar behavior. We therefore compare them in some
detail below. The semiclassical traversal time follows with
Eq. (9) in the gauge invariant form

tα (ε) = �2
B

∫ kεα

−kεα

dkx

√
1 +

(
∂qα (ε, kx )

∂kx

)2

| vk|−1. (50)

Simple analytical expressions [see Eqs. (9) and (12)] follow
for |α| � 1 by expanding in α up to second order. We then
obtain the semiclassical estimate:

tα (ε) 
 2�2
B

[
k0

(
1 + α2

3

)
− 2εα

]
. (51)

We note that for a straight arc (α = 0), the energy-independent
traversal time t0 = 2�2

Bk0 results.
In Fig. 6, we compare the semiclassical traversal time

tα (ε) to the quantum-mechanical lifetime τα (ε). As shown in
Fig. 6(a), the zero-energy lifetime diverges with increasing λB

(i.e., with decreasing magnetic field), where the stable B = 0
Fermi arcs are approached. The semiclassical traversal time
qualitatively captures this behavior, but no quantitative agree-
ment between tα (ε) and τα (ε) is found. As shown in the inset
of Fig. 6(b), the lifetime of the straight arc (α = 0) increases
with |ε| and diverges upon reaching the n = 1 bulk LL. (We

recall that our construction in Sec. III B is limited to the
ultraquantum regime. For energies above the bulk gap of the
n = 1 LL, the n = 1 LL contributes in terms of propagating
states.) Since the semiclassical estimate for t0 is independent
of energy, the energy dependence of τα (ε) shown in the inset
of Fig. 6(b) hints at quantum effects beyond semiclassics.

To compare the two time scales τα (ε) and tα (ε) for curved
arcs, we have subtracted the respective α = 0 contributions,
and consider τα − τ0 and tα − t0 in the main panel of Fig. 6(b).
We find that both quantities are approximately linear functions
of energy (at low energies). The lifetime differences τα (ε) −
τ0(ε) are again qualitatively captured by the corresponding
traversal-time differences tα (ε) − t0 (up to a constant offset).

We conclude that while the Fermi-arc lifetime τα (ε) in-
cludes quantum contributions beyond semiclassics, essential
low-energy features are captured by the semiclassical traversal
time, at least in a qualitative fashion.

V. DISCUSSION

In this paper, we have studied the eigenstates of a four-band
continuum model for a WSM in a half-space geometry, with
a magnetic field perpendicular to the surface. At low energies
in the ultraquantum regime dominated by the zeroth LL in
the bulk, eigenstates are superpositions of in- and out-going
chiral n = 0 LL states coupled by evanescent surface states
originating from n �= 0 LL states. The latter states replace the
B = 0 Fermi-arc surface state, which acquires a finite lifetime
for B �= 0 and hence is not a stable solution.

We have compared our quantum-mechanical results with
the corresponding semiclassical estimates by calculating the
phase shift between in- and out-going n = 0 chiral LL states
with the corresponding semiclassical results. These results
depend on the energy ε and on a boundary parameter α

determining the Fermi-arc curvature for B = 0. According
to Refs. [15,16], the coupling between the chiral LLs is es-
tablished by a semiclassical motion of fermions along the
arc due to the Lorentz force. For the phase shifts, we find
quantitative agreement between the quantum description and
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semiclassical estimates. Moreover, from the energy derivative
of the phase shift, one can define the lifetime of the Fermi-
arc state. By comparing the lifetime to the semiclassical arc
traversal time, we have argued that quantum contributions
beyond semiclassics are important for the lifetime. Our results
indicate that quantum corrections remain significant upon
lowering the magnetic field strength or when increasing the
Fermi energy. Understanding the lifetime of Fermi-arc surface
states in an electromagnetic environment is a prerequisite
for surface-sensitive tests such as quasiparticle interference
experiments [38]. In the future, the theoretical modeling of
such experiments could also profit from our explicit numerical
construction of the eigenstates.

Our results are, at least qualitatively, consistent with nu-
merical work on thin WSM films employing lattice models
[16,64], hybrid models [65], and wave packet simulations
[66]. The continuum approach used here employs a boundary
condition which allows one to disentangle bulk and surface
contributions to semiclassical trajectories. Our analysis shows
that a semiclassical phase-space integral along the Fermi arc
provides accurate estimates for phase shifts. When extending
our arguments to a slab geometry or to thin films, one can
describe the phase shift associated with Weyl orbits. This
phase shift is observable in quantum magnetoconductance
oscillation experiments (see Refs. [34–36] for recent reports).
Similar phase shifts are also expected to appear in transport
experiments on WSM junctions with heterochiral Fermi arcs
at the interface [43]. Our results justify semiclassical expla-
nations of these experiments and provide analytical estimates
for a minimal model that incorporates the Fermi-arc curva-
ture. Importantly, the observability of quantum oscillations
from Weyl orbits crucially depends on the comparison be-
tween the time needed to traverse the Fermi surface and the
scattering time [67]. Our estimates improve the evaluation
of the former.

A more direct measurement of the traversal time can be
devised along the lines of Ref. [19]. In the regime considered
in our paper, one can indeed consider a setup with two gates
generating an electric field on one surface and measure the
current on the opposite surface. As a consequence of the
described hybridization of bulk and surface states, a pulsed
electric field generates a current response on the opposite
surface, within a duration given by the traversal time.

We have been able to make substantial progress, and in
some cases even obtained exact analytical solutions, since
the studied four-band WSM model has decoupled Weyl
nodes in the bulk. Omitting bulk Weyl-node coupling terms,
e.g., a mass term mσ 0τ x, is typically justified for materials
with well-separated Weyl nodes. Indeed, assuming a Weyl
node separation 2k0 
 2 Å−1, Eq. (34) gives λB 
 2.57 for
B 
 1 T. The hybridization of LLs corresponding to different
Weyl nodes is then exponentially suppressed by a factor
e−λ2

B 
 0.0014. We conclude that only for much smaller k0

and/or stronger B, effects of bulk Weyl-node coupling are
expected to become relevant. For such cases, one expects a
bulk gap for the hybridized n = 0 LLs. As a consequence,
the chiral anomaly will eventually break down, and a
nonmonotonic magnetoconductance should appear [58,59].
While such phenomena are not present in our paper, they are
unavoidable in lattice models. In fact, we believe that they

obscure a semiclassical interpretation of previous numerical
studies of WSM thin films [16,64–66]. Studying the effects of
chiral mixing, e.g., by including the mass term mσ 0τ x in our
approach, is an interesting direction for future work. Notably,
numerical works in the Hofstadter regime suggest that
depending on the exact nature of the Weyl node annihilation
associated with the opening of the gap, the resulting insulating
system can be either trivial or topological [64,68]. In the latter
case, localized topological surface states might emerge in
the gap of the hybridized n = 0 LLs. Such states seem to be
outside the reach of the established semiclassical picture.

The above-mentioned subtleties are absent if the magnetic
field is oriented parallel to the axis along the Weyl node
separation (êx in our case). This scenario was studied for a
thin-film geometry [65], where a much smaller surface-bulk
hybridization was reported, consistent with the semiclassical
point of view. Magnetic fields oriented in the surface plane
generally result in qualitatively different physics [69,70] than
reported here.

Our paper has also covered the limiting DSM case. The
considered Dirac Hamiltonian is an appropriate effective
model as long as crystal symmetries protect the Dirac node
degeneracy. It would be interesting in a future study to apply
our approach and compare numerical and analytical solutions
at B �= 0 to the semiclassical description of topologically triv-
ial surface states at B = 0.

In view of the recent experimental progress on magnetic
WSMs [37], such as Co2MnGa [71] and Co3Sn2S2 [38,72],
we are optimistic that Weyl orbit physics will soon be clearly
established also beyond DSMs and noncentrosymmetric crys-
tals. The underlying physics of such compounds should be
captured by our results.

The data used for preparing the figures is available at the
zenodo website [73].
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APPENDIX A: SURFACE STATE SOLUTIONS

Here we provide detailed derivations for the B = 0 surface
states given in Sec. II C. We begin with the topologically
trivial surface states for the Dirac semimetal case, k0 = 0,
described by H = k · στ z. After the unitary transformation
Uα = exp ( i

2ασ yτ x ), we obtain

H̃α = UαHU †
α = (

kxσ
x + kyσ

y cos α − i∂zσ
z
)
τ z

+ kyσ
0τ y sin α. (A1)
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This transformation is convenient since it eliminates
the boundary parameter α from the boundary condition,
UαMαU †

α = M0 = σ zτ x [see Eq. (8)]. Note that the unitary
transformation leaves the current operator jz invariant. There-
fore, eigenstates |�̃〉 with H̃ |�̃〉 = ε|�̃〉 must satisfy the
boundary condition M0�̃(z = 0) = �̃(z = 0). We next make
a (normalized) ansatz for a surface state confined to the half-
space region z � 0:

|�〉 =
√

κ

2

(
ψ̃+

ψ̃−

)
τ

, ψ̃χ (z) = e−κz

(
1

χeiδ

)
σ

, (A2)

where δ and κ are a phase and an inverse penetration length,
respectively. These quantities have yet to be determined,
where Eq. (A2) satisfies the boundary condition for arbitrary
δ. To construct energy eigenstates, we first note that the chiral
components satisfy Mσ

δ |ψ̃χ 〉σ = χ |ψ̃χ 〉σ for Mσ
δ in Eq. (6).

Eigenstates of H̃ thus obey

(kxσ
x + kyσ

y cos α)|�〉 = εMσ
δ |�〉. (A3)

For given in-plane momentum k⊥, the phase δ = δ±(k⊥)
then follows from

cos δ±(k⊥) = kx

ε±(k⊥)
, sin δ±(k⊥) = ky cos α

ε±(k⊥)
, (A4)

with ε±(k⊥) in Eq. (13). Inserting the corresponding ansatz
into the eigenproblem of H̃ confirms that ε±(k⊥) is the energy
dispersion of the surface state and yields the inverse decay
length κ in the form

κ = ky sin α. (A5)

The normalization condition κ > 0 implies Eq. (14) for phys-
ical solutions.

Next, we construct the solution for a straight Fermi arc,
corresponding to the choice α = 0. For the purpose of gener-
ality, we here allow for a free parameter in the parametrization
(7). The trivial dependence of our results on this parameter
(see below) helps to develop physical insight. We consider the
boundary condition (4) with the matrix

M ′
γ = M0,0,γ ,0 = σ z(τ x cos γ + τ y sin γ ). (A6)

The following results for γ = 0 describe the α = 0 results in
Sec. II C since M ′

γ=0 = Mα=0 with Mα in Eq. (8). [Note that δ

in Eq. (7) is redundant for α = 0.] We choose the normalized
ansatz

|�〉 =
√

κ+κ−
κ+ + κ−

(
ψ+

eiγ ψ−

)
τ

, (A7)

with the chiral spinor components

ψχ (z) = e−κχ z

(
1

−iχ

)
σ

. (A8)

This ansatz satisfies the boundary condition. From H |�〉 =
ε|�〉, we find

ε(ky) = −ky, κχ (kx ) = k0 + χkx. (A9)

The normalization conditions κ+ > 0 and κ− > 0 for surface-
state solutions restrict the in-plane momentum kx to the open
interval −k0 < kx < k0. We thus obtain a physical Fermi arc

for a model with two decoupled Weyl nodes in the bulk.
Here it turns out that the energy dispersion ε(ky) and the
inverse penetration length scales κχ are independent of γ .
This is expected since the parametric freedom in the bound-
ary condition increases with the number of higher-energy
bands. However, in this instance, we can extend the relation
between the arc curvature and the corresponding boundary
matrix parametrization further. To this end, we note that a
straight arc is characterized by a chiral dispersion along êy,
and consequently a maximal current flows along this direc-
tion. Accordingly, the found solutions are eigenstates of the
in-plane current jy = σ yτ z, which is only possible since M ′

γ

commutes with jy. We can therefore infer the necessary con-
dition that a straight arc corresponds to a parametrization of
M with [M, jy] = 0. Note that for the parametrization Mα in
Eq. (8), this condition is only met for α = 0 mod π .

In fact, we find curved Fermi arcs for all other values of α.
For solving the surface-state problem, we here use a different
approach which applies to a large family of parametrizations.
We first consider the eigenproblem Hχ |ψχ 〉σ = ε|ψχ 〉σ for a
single Weyl node with chirality χ = ±1, described by Hχ =
χk · σ + k0σ

x. The most general evanescent and normalized
solution at given energy ε and in-plane momentum k⊥ is

ψ
χ

εk⊥ (z) =
√

κχ

ε2 + κ2
χ

e−κχ z

(
χε + iκχ

kx + χk0 + iky

)
σ

, (A10)

where κχ (ε, k⊥) =
√

(kx + χk0)2 + k2
y − ε2 is the inverse

length scale describing the decay of the surface state into the
bulk. The requirement that κ is real restricts the energy of
physical solutions to

ε2 < (|kx| − k0)2 + k2
y . (A11)

The solution with energy ε in this interval is given by

|�εk⊥〉 =
(

c+ψ+
εk⊥

c−ψ−
εk⊥

)
τ

, (A12)

where c± are complex coefficients. We now consider
the boundary condition (4) with a general Hermitian
parametrization:

M =
(

X Y
Y † Z

)
, X = X †, Z = Z†. (A13)

Here, we assume that Y is invertible, which implies the con-
dition [M, σ 0τ z] �= 0 for a physical Fermi arc (see Sec. II B).
Together with M2 = 1, we obtain the identities Z = −Y −1XY
and Y −1X 2 = Y −1 − Y †. It is then sufficient to consider the
upper two spinor components in the boundary condition (1 −
M )�εk⊥ (z = 0) = 0, since the lower two components are im-
plied. One can express the upper two components as a linear
system of equations, Bc = 0, where

B(ε, k⊥) = [(σ 0 − X )ψ+
εk⊥ (0) − Y ψ−

εk⊥ (0)] (A14)

is a 2 × 2 matrix and c = (c+, c−)T contains the coefficients
in Eq. (A12). For Mα in Eq. (8), we have Xα = σ x sin α and
Yα = σ z cos α. Solutions of the boundary condition thus sat-
isfy det(B) = 0. We then obtain a secular equation that gives
analytical solutions for ky = qα (ε, kx ), where Eq. (9) is the
only solution satisfying Eq. (A11).
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FIG. 7. In-plane spin polarization and particle current corre-
sponding to the Fermi-arc surface state for B = 0, α/π = 0.1, and
ε = 0, shown as color-scale plots in the kx-ky plane (see Appendix B).
Red and blue dots indicate the surface projections of the Weyl nodes;
arrows show the in-plane components of the spin polarization 〈s〉
(a) and of the particle current 〈j〉 (b).

We note that surface-state solutions for the opposite
half space (z � 0) with the same boundary condition (4)
follow from the transformation α → π − α. This is be-
cause the transformation κχ → −κχ < 0, necessary for
constructing physical states in this geometry, amounts to
ψ

χ

ε,kx,ky
(0) → [ψχ

ε,kx,−ky
(0)]∗. The corresponding secular equa-

tion det[B∗(ε, kx,−ky )] = 0 then yields ky = −qα = qπ−α .

APPENDIX B: SURFACE SPIN
POLARIZATION AND CURRENT

In this Appendix, we discuss the spin texture related to
sμ = σμτ 0 (with μ = x, y, z) along a Fermi arc for the B = 0
case. Getting access to this type of quantity is an advantage
of the four-band model with respect to two-band models
[49,55,56]. Furthermore, we compute the in-plane current
jμ = σμτ z generated by the Fermi arc. Given a normalized
Fermi-arc solution |�〉, we need to evaluate expectation val-
ues of the form 〈σ ντμ〉 = ∫ ∞

0 dz �†(z)σ ντμ�(z).
For a straight arc (α = 0), the corresponding solutions

in Eq. (A8) satisfy σ y|ψχ 〉σ = −χ |ψχ 〉σ , implying 〈s〉 =
kx êy/k0 and 〈j〉 = −êy.

For curved arcs with α > 0, we use the general solution
(A10) and perform the integration. The spin polarization fol-
lows from

〈sμ〉 =
∑
χ=±

|cχ |2
2κχ

ψχ †(0)σμψχ (0), (B1)

where the expression for the in-plane current only differs by a
relative sign in the sum:

〈 jμ〉 =
∑
χ=±

χ
|cχ |2
2κχ

ψχ †(0)σμψχ (0). (B2)

Above, we have suppressed the momentum dependence of cχ

and of |ψχ 〉σ .
Results obtained from the above expressions are shown

in Fig. 7. Our model correctly reproduces the main features

FIG. 8. Absolute value of the coefficients cχ
nε appearing in the

superposition (26) vs order n. Note the logarithmic scale for the
coefficients. The shown results were obtained by numerically solving
Eq. (35) for ε/k0 = 0.1, α/π = 0.1, λB = 1, with a cutoff value of
N = 70.

of Fermi arcs as experimentally detected. First and foremost,
the chiral transport is shown by the current in Fig. 7(b). In
addition, the spin polarization rotates along the arc as dictated
by the fact that the spin orientation at the two termination
points corresponds to the chirality of the Weyl nodes. This
behavior is manifest in Fig. 7(a) and in accordance with the
spin texture observed experimentally by spin-filtered angle-
resolved photoemission spectroscopy [74,75].

APPENDIX C: NUMERICAL IMPLEMENTATION
OF BOUNDARY CONDITIONS

In this Appendix, we discuss the numerical approach intro-
duced in Sec. III. Figure 8 shows representative results for
the coefficients cε in Eq. (26), which are obtained by nu-
merically solving Eq. (35) for a Landau level cutoff N = 70.
These results already indicate that the numerical scheme is
well controlled and convergent. A nontrivial benchmark that
is passed accurately by our numerical scheme is provided by
the analytical solutions (39) and (42) for a DSM with α = 0
or ε = 0, respectively.

Let us next give additional details about our numerical
approach. To avoid numerical overflow (or underflow) when
computing the matrix elements (27) for a large cutoff N , it is
convenient to compute the overlaps (33) using the recursion
relation (n � m > 1)

〈ϕ−
n |ϕ+

m 〉 = 1√
nm

(
n + m − 1 − 2λ2

B

)〈ϕ−
n−1|ϕ+

m−1〉

−
√

(n − 1)(m − 1)

nm
〈ϕ−

n−2|ϕ+
m−2〉, (C1)

with

〈ϕ−
n−m+1|ϕ+

1 〉 = n − m + 1 − 2λ2
B√

n − m + 1
〈ϕ−

n−m|ϕ+
0 〉 (C2)
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FIG. 9. Spectrum of V̂α as obtained from Eq. (28) for α/π = 0.1, with the cutoff value N = 100. Note the semilogarithmic scales. Blue
(red) dots correspond to positive (negative) eigenvalues. Since Vα is positive semidefinite, negative eigenvalues indicate numerical errors.
(a) Spectrum vs energy ε (in units of k0) in the ultraquantum regime |ε| <

√
2/�B delimited by the vertical gray line, for λB = 1. (b) Spectrum

vs λB for ε/k0 = 0.1.

and

〈ϕ−
n−m|ϕ+

0 〉 =
√

2n−m

(n − m)!
λn−m

B e−λ2
B . (C3)

With these relations, we can easily employ a LL number cutoff
of order N = 250 or even larger. For all results shown in this
paper, we have carefully checked that results do not change
when further increasing the cutoff.

Numerical solutions are then found from the kernel of
Vα (ε), i.e., from the matrix representation of Vα in the sub-
space with fixed ε and kx. Note that we physically expect a
single solution in this subspace in the ultraquantum regime.
Consequently, the spectrum of Vα (ε) should have a single zero
eigenvalue which is well separated from all other eigenvalues.
Figure 9 shows representative results for the spectrum of the
rescaled matrix V̂α obtained from Eq. (28). We find a non-
degenerate, well-separated, and vanishing eigenvalue for all
ε in the ultraquantum regime. However, for λB � 1.5 (weak
magnetic fields), numerical errors become slightly larger.
Nonetheless, our numerical solutions still satisfy the boundary
condition as demonstrated for λB = 3 in Fig. 10, where we
show the four components of the real and imaginary parts of
�(y, z = 0) and Mα�(y, z = 0), respectively. The boundary

condition �(y, z = 0) = Mα�(y, z = 0) is indeed satisfied to
high precision for all values of y.

APPENDIX D: SHIFT OF THE REFLECTED ELECTRON

The electronic Goos-Hänchen effect is a quantum phe-
nomenon, best described as a lateral shift of a wave packet
after reflection from a surface [76]. We can see an analog
of this effect in the system at hand at the level of the ex-
pectation value of the position operator. In particular, we can
read Eq. (26) in the ultraquantum regime 0 < ε <

√
2/�B as

the superposition of an incoming wave in the chiral LL with
χ = +1, an outgoing wave in the chiral LL with χ = −1,
and a series of bound states [see Eq. (21)]. Considering first
a single momentum component kx, the expectation value of
the y coordinate for an incoming electron arriving on the
surface (z = 0) is computed from the fundamental eigenmode
of the harmonic oscillator in Eq. (19) as 〈y〉in = �2

B(kx + k0).
The momentum kx is conserved in the reflection process, and
one readily sees that the electron leaving the surface has the
expectation value 〈y〉out = �2

B(kx − k0). We note that the shift
〈y〉out − 〈y〉in is gauge invariant.

Following Ref. [76], we now generalize this argument and
write an electronic wave packet formed by a superposition
of plane waves with various momenta kx and, for simplicity,

FIG. 10. Spinor components � j=1,2,3,4 of the eigenstate solution at the surface, �(y, z = 0) = (�1(y), �2(y), �3(y), �4(y))T , compared
with the corresponding components of Mα�(y, z = 0). Parameters are given by ε/k0 = 0.1, α/π = 0.1, and λB = 3. We separately show the
real and imaginary parts, which verify that the boundary condition Mα�(y, z = 0) = �(y, z = 0) is numerically satisfied to high accuracy.
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a Gaussian envelope function centered around momentum p
with spread �k. Such a wave packet, in the χ = +1 block,
has the form

�ε,in(r) = 1√
2π

∫
dkx F (kx − p)eikxxψ+

0,ε(y, z), (D1)

with F (kx ) = (
√

π�k)−
1
2 e− 1

2 (kx/�k)2
. The expectation value of

the y coordinate for the wave packet arriving on the surface
then follows as

〈y〉in = �2
B(p + k0). (D2)

Repeating the calculation for the outgoing wave packet in the
χ = −1 block,

�ε,out (r) = 1√
2π

∫
dkx F (kx − p)eikxxψ−

0,ε(y, z), (D3)

one finds 〈y〉out = �2
B(p − k0). We conclude that the electronic

Goos-Hänchen shift is given by Eq. (38). As this result is
separately valid for each kx, we expect it to hold for every
choice of the envelope function.
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We formulate aMajorana mean-field theory for the extended JKΓ Kitaevmodel in amagnetic Zeeman
field of arbitrary direction, and apply it for studying spatially inhomogeneous states harboring vortices.
This mean-field theory is exact in the pure Kitaev limit and captures the essential physics throughout
the Kitaev spin liquid phase. We determine the charge profile around vortices and the corresponding
quadrupole tensor. The quadrupole-quadrupole interaction between distant vortices is shown to be
either repulsive or attractive, depending on parameters. We predict that electrically biased scanning
probe tips enable the creation of vortices at preselected positions. Our results paves the way for the
electric manipulation of Ising anyons in Kitaev spin liquids.

A hallmark of Kitaev spin liquids is the fractionalization of spin-1/2 local
moments into Majorana fermions and a Z2 gauge field1–9. When time
reversal symmetry is broken by an external magnetic field, both types of
excitations become gapped, and vortices of the Z2 gauge field bind
Majorana zeromodes that behave as non-Abelian anyons. These properties
can be demonstrated in the exactly solvable Kitaev honeycomb model1.
Since the observation that the bond-directional exchange interactions of the
pure Kitaev model are realized in quasi-two-dimensional Mott insulators
with strong spin-orbit coupling10, identifying signatures of fractional exci-
tations in Kitaev materials has become a major goal of condensed matter
physics11–14. Most notably, there is evidence for a half-quantized thermal
Hall conductance in the candidate material α-RuCl3 at intermediate tem-
peratures and magnetic fields, but its interpretation in terms of chiral
Majorana edge modes remains controversial15–18. This ambiguity calls for
alternative experimental probes that may help distinguish a Kitaev spin
liquid from a more conventional partially polarized phase with topological
magnons19,20.

A promising route to detect and manipulate the fractional excitations
of Kitaev spin liquids is to exploit their nontrivial responses to electrical
probes. Theoretical proposals in this direction include electric dipole con-
tributions to the subgap optical conductivity21,22, scanning tunneling
spectroscopy23–27, interferometry in electrical conductance28,29, and electric
polarization and orbital currents associated with localized excitations30,31. In
fact, the charge polarization in Mott insulators can be captured by an
effective density operator written in terms of spin correlations in the low-
energy sector32,33. The effective density operator for Kitaev materials was
derived in ref. 30 starting from themulti-orbitalHubbard–Kanamorimodel
in the ideal limit where the dominant exchange path only generates the pure
Kitaev interaction10. The electric field effects then work both ways. On the

one hand, the inhomogeneous spin correlations around aZ2 vortex imply
that vortices produce an intrinsic electric charge distribution. On the other
hand, vortices are attracted by electrostatic potentials that locally modify
exchange couplings, and this effect can be used to trap and move anyons
adiabatically30,34.

In this work we generalize the theory of the electric charge
response in ref. 30 to consider the generic spin model for Kitaev
materials35,36. Our starting point is the three-orbital Hubbard–Kanamori
model which takes into account sub-dominant hopping processes that, in
addition to Kitaev (K) interactions, also generate Heisenberg (J) and off-
diagonal (Γ) exchange interactions. Using perturbation theory to leading
order in the hopping parameters, we derive an expression for the effective
charge density operator in the Mott insulating phase that contains all two-
spin terms allowed by symmetry. Since the additional interactions spoil the
integrability of the pure Kitaevmodel, we compute spin correlations using a
Majorana mean-field theory. This type of approximation has been applied
to map out the ground state phase diagram and to compute response
functions of the extended Kitaev model37–46. Here we generalize the mean-
field approach to treat position-dependent order parameters in the case
where translation symmetry is broken by the presence of vortices in theZ2
flux configuration. Including a Zeeman coupling, we show that the spatial
anisotropy of the charge distribution around a vortex varies with the
direction of the magnetic field and can be quantified by the components of
the electric quadrupole moment. We also discuss how a local electrostatic
potential renormalizes the couplings in the extendedKitaevmodel and gives
rise to an effective attractive potential for vortices. Remarkably, the effect is
stronger in the presence of non-Kitaev interactions, and we find that it is
possible to close the vortex gap by means of electric modulation of the local
spin interactions.
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Results
Mean-field theory for the extended Kitaev model
The local degrees of freedom of Kitaev materials are transition metal ions
with 4d5 or 5d5 electronic configuration and strong spin-orbit coupling4,5. In
the presence of the crystal field of an octahedral ligand cage, this config-
uration is equivalent to a single hole in a t2g orbital. Starting from a three-
orbital Hubbard–Kanamori Hamiltonian on the honeycomb lattice, in the
presence of a Zeeman coupling to an externalmagnetic fieldh, we find from
a projection scheme that the low-energy effective spin Hamiltonian is given
by the extended Kitaev (aka JKΓ) model35:

H ¼ 1
2

X
ij

X
αβ

σαi J
αβ
ij σ

β
j �

X
i

h � σ i; ð1Þ

where σi denotes the vector of the pseudospin-1/2 Pauli operators at site i.
Moreover, i and j are nearest neighbors, Jij is the bond-dependent exchange
matrix, and the indices α, β, γ∈ {x, y, z} = {1, 2, 3} label both spin
components and bonds on the honeycomb lattice. We denote by 〈ij〉γ a
nearest-neighbor bond of type γwith site i belonging to sublattice A and j to

sublattice B. For bond 〈ij〉z, we have Jhijiz ¼
J Γ 0
Γ J 0
0 0 J þ K

0
@

1
A: The

exchangematrices for x and ybonds followby cyclic permutation of the spin
andbond indices.The idealKitaev casewith J = Γ = 0 corresponds to a single
hopping pathmediated by ligands on edge-sharing octahedra with ideal 90∘

bonds10.Numerical studies show that theKitaev spin liquidphase is stable in
the regime ∣Γ∣, ∣J∣ ≪ ∣K∣35,47–49. For estimates of the hopping and exchange
parameters forα-RuCl3, see for instance refs. 5,50. In thismaterial, onefinds
a ferromagnetic Kitaev coupling (K < 0) and the leading perturbation to the
idealized Kitaev model is given by 0 < Γ < ∣K∣.

We employ a mean-field approximation for calculating spin cor-
relations in the extended Kitaev model and to verify the stability of the
spin liquid phase against integrability-breaking perturbations. For J =
Γ = h = 0, the model can be solved exactly1 using the Kitaev repre-
sentation σγi ¼ ic0i c

γ
i in terms of four Majorana fermions which obey

ðcμi Þ
y ¼ cμi and fcμi ; cνj g ¼ 2δijδμν . Throughout, we use indices μ, ν, ρ∈

{0, 1, 2, 3} to denote all four fermion flavors, in contrast with α, β, γ∈
{1, 2, 3}. Physical states must respect the local constraint
Di ¼ c0i c

1
i c

2
i c

3
i ¼ þ1. The algebra of the spin operators can be satisfied

using different representations51. It is convenient to write the Kitaev
representation in terms of the vector ci ¼ ðc0i ; c1i ; c2i ; c3i ÞT and the anti-
symmetric matrices Nγ defined by:

σγi ¼
i
2
cTi N

γci �
i
2

c0i c
γ
i � cγi c

0
i

� �
: ð2Þ

Instead of imposing Di =+1, we use the equivalent constraint52:

cTi G
γci � c0i c

γ
i � cγi c

0
i þ

X
αβ

ϵαβγcαi c
β
i ¼ 0: ð3Þ

Note that the constraints cTi G
γci ¼ 0 for γ = x, y, z are redundant. If the

constraint is implemented exactly, it suffices to impose it for a single value of
γ. However, when treating the constraints (3) numerically through the
corresponding Lagrange multipliers λγi

42,44, it is advantageous to enforce
them in a symmetricmanner for all three values of γ.We thereby rewrite the
spin Hamiltonian as:

H ¼ 1
8

P
ij

P
αβ

icTi N
αci J

αβ
ij icTj N

βcj

�1
4

P
iγ

2hγicTi N
γci � λγi ic

T
i G

γci
� �

:

ð4Þ

We decouple the quartic terms using two types of real-valued mean-field
parameters:

Uμν
ij ¼ �

icμi c
ν
j

�
; Vμν

i ¼ �
icμi c

ν
i

�
; ð5Þ

which obey Uμν
ij ¼ �Uνμ

ji and Vμν
i ¼ 2iδμν � Vνμ

i . For the exactly solvable
Kitaev model, one finds that Uμν

ij is diagonal in the indices μ, ν. In particular,
the components Uγγ

ij are related to the staticZ2 gauge field and take values
Uγγ

ij ¼ ± 1when i, j formanearest-neighborγbond, andUγγ
ij ¼ 0 otherwise.

Thus, Uγγ
ij can be viewed as an “order parameter” for the Kitaev spin liquid

phase. For comparison with the exact solution, we also define
Wp ¼

Q
hijiγ2pU

γγ
ij , where p is a hexagonal plaquette. In the pure Kitaev

model,Wp is identifiedwith the gauge-invariantZ2 flux, and thegroundstate
lies in the sector with Wp =+1 for all plaquettes. States with Wp =−1 at
isolated plaquettes are associated with vortex excitations1. Besides the link
variables Uμν

ij , in the mean-field approach we also consider the on-site
fermion bilinears Vμν

i . It follows from the Kitaev representation that
V0γ
i ¼ hσγi i. Moreover, the constraint in Eq. (3) implies Vαβ

i ¼ �V0γ
i for

(αβγ) a cyclic permutation of (xyz). Thus, there are only three independent
componentsofVμν

i at each site, and theyare related to the localmagnetization
inducedby the externalmagneticfield. In the limit ∣h∣≫ ∣K∣, ∣J∣, ∣Γ∣, we expect
to encounter a partially polarized phase characterized byVμν

i ≠0 whileUμν
ij ¼

0 for all bonds. For further detail, see the “Methods” section.

Homogeneous case
We first describe the mean-field solution for the homogeneous case, i.e., in
the absence of vortices. If the ground state does not break spin rotation or
lattice symmetries, as in the Kitaev spin liquid phase, the matrices Uμν

ij
depend only on the bond type γ, and we set Uμν

ij ¼ Uμν
γ for bonds 〈ij〉γ.

Moreover, Vμν
i ¼ Vμν becomes a constant matrix. More generally, we can

allow these parameters to vary with the sublattice within larger unit cells to
describe magnetically ordered phases. We then solve the mean field self-
consistency equations using a Fourier transform of the Majorana modes in
the thermodynamic limit. As a first step, we have verified that our mean-
field approach recovers the exact results for the Kitaev model1 when we set
Γ = J = h = 0. The resulting dispersion relation of Majorana fermions is
depicted by dashed lines in Fig. 1. In this case, the only dispersive band is
associated with the fermion c0. This band is gapless with a Dirac spectrum
near the K point in the Brillouin zone (BZ). In addition, there are three
degenerate flat bands associated with the fermions cγ, which are related to
the static gauge variables Uγγ

γ (whose value is independent of γ).
Moving away from the exactly solvable point, we find that all bands

become dispersive. For h = 0 and K, J, Γ ≠ 0, our results are in quantitative
agreement with a previous mean-field calculation37. Our approach also
allows us to take into account themagnetic field nonperturbatively. Figure 1
shows the dispersion for amagneticfield pointing along the crystallographic
c direction (perpendicular to the honeycomb plane), with unit vector
ĉ ¼ 1ffiffi

3
p ð1; 1; 1Þ. Here the coordinates are specified in terms of the crystal-

lographic axes x̂, ŷ and ẑ of the ligand octahedra. For later reference, the in-
plane unit vectors are â ¼ 1ffiffi

6
p ð1; 1;�2Þ and b̂ ¼ 1ffiffi

2
p ð�1; 1; 0Þ. As shown in

Fig. 2, the magnetic field opens up a gap in the fermion spectrum, as
expected for the non-Abelian Kitaev spin liquid phase. As we increase the
magnetic field, the gap at the K point increases, but the gap at the Γ point
decreases. The fermion gap Δf is given by the minimum between the
energies at the K and Γ points in the BZ. If these energies cross,Δf exhibits a
kink at the corresponding value of h (e.g., for Γ = 0 in Fig. 2). As we increase
the magnetic field, we encounter a critical value hc at which the gap either
changes discontinuously, as in a first-order transition (e.g., for Γ =−0.1∣K∣
in Fig. 2), or it vanishes and varies continuously across the phase transition
(e.g., for Γ = 0.1∣K∣ in Fig. 2). For h ¼ hĉ and h≪ hc, the fermion gap
increases with the magnetic field as Δf∝ h3, as expected from perturbation
theory1; see the inset in Fig. 2. For general field directions, the fermion gap
behaves as Δf∝ hxhyhz, closing when one component of h vanishes.
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We further assess the stability of the Kitaev spin liquid phase by
evaluating the Z2 flux parameter. In a homogeneous ground state, we
have Wp ¼ ðUγγ

γ Þ6. The result for the extended Kitaev model with J = 0
and Γ, h ≠ 0 is shown in Fig. 3 for a magnetic field along the ĉ direction
and for an in-plane field along the â direction (perpendicular to the z
bonds). As expected, Uγγ

γ decreases as we increase h or Γ. The dots in this
figure mark the transition where the gap Δf vanishes continuously. Note
that Uγγ

γ varies smoothly across the continuous transition for h k ĉ
and Γ > 0.

The results in Figs. 2 and 3 allow us to determine the parameter regime
where bothUγγ

γ andΔf vary smoothly and take values comparable to those at
the exactly solvable point. In this regime,we expect themean-field approach
to yieldqualitatively correct results for the charge response of theKitaev spin
liquid phase. By contrast, the regime of strong magnetic fields should be
identified with the partially polarized phase, whereas the regime of large ∣Γ∣
or ∣J∣ harbors magnetically ordered phases35,44,48,53. Here we do not explore
the various phases of the extended Kitaev model, whose nature is not
completely settled36. Nevertheless, our mean-field results reproduce quali-
tative features of phase diagrams reported in the literature. For instance, we
find that adding Γ > 0 increases the critical magnetic field along the ĉ
direction, but the Kitaev spin liquid phase shrinks as we tilt the field toward
the plane, in agreement with exact diagonalization results48. However, in
general the mean-field approach overestimates the value of the critical

Fig. 1 | Majorana fermion dispersion. The dis-
persion relation of Majorana fermions calculated
within the mean-field approach for the homo-
geneous system with K =−1, J = 0, Γ = 0.2, and
h ¼ 0:4ĉ, along the indicated BZ path. For com-
parison, the dashed lines show the dispersion in the
pure Kitaev limit (Γ = J = h = 0).
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Fig. 2 | Field dependence of fermion gap. Fermion gap as a function of magnetic
field for h ¼ hĉ along the ĉ axis, withK =−1, J = 0, and for three values of Γ: Γ =−0.1
(green circles), Γ = 0 (blue triangles) and Γ = 0.1 (red diamonds). The inset shows
that for weak fields the fermion gap agrees with the perturbative result to leading
order in h, Δf∝ h3.

0.0 0.2 0.4 0.6 0.8 1.0

- 0.2

0.0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8

- 0.2

0.0

0.2

0.4

0.6

0

0.2

0.4

0.6

0.8

1.0

Fig. 3 | Mean-field parameter for Kitaev spin liquid phase.Mean-field parameter
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plane; b an in-plane field h k â. White circles represent critical points where the
fermion gap closes at the Γ point in the BZ. The region labeled as KSL is identified
with the Kitaev spin liquid phase.
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magneticfield for a ferromagneticKitaevcoupling in comparisonwithmore
accurate numerical methods48,54–56.

Vortex charge density profile
Inhomogeneous spin correlations can bring on a charge redistribution in
Mott insulators32,33. We here discuss the charge density profile induced by
the presence ofZ2 vortices in aKitaev spin liquid. In the “Methods” section,
we derive the effective charge imbalance operator in terms of two-spin
operators and showhowtocompute its expectationvalue 〈δnl〉 at lattice site l
using the Majorana mean-field approach.

We consider an inhomogeneous state inwhich translation symmetry is
broken by the presence of vortices. In this case, we analyze the mean-field
Hamiltonian on a finite systemwith linear size L along the directions of the
primitive lattice vectors ê1 ¼ 1

2 âþ
ffiffi
3

p
2 b̂ and ê2 ¼ � 1

2 âþ
ffiffi
3

p
2 b̂, imposing

periodic boundary conditions. To create vortices, we initialize the mean-
field parameters in a configuration where we flip the sign of Uμν

ij on bonds
crossed by open strings. In the pure Kitaev model, this procedure generates
exact eigenstates with two localized vortices at the ends of the string. In the
extended Kitaev model, vortices become mobile excitations with effective
bandwidths governed by the integrability-breaking perturbations57,58. In
fact, for sufficiently large values of these perturbations, near the borderof the
Kitaev spin liquidphase inFig. 3,weobserve that the vortexpositions vary as
we iterate the self-consistency equations. When this happens, the string
length decreases and the vortices move closer to each other until they
annihilate, and themean-field solution converges to the vortex-free ground-
state configuration. However, for ∣Γ∣, ∣J∣, ∣h∣ ≪ ∣K∣ and well separated vor-
tices, we find a self-consistent solution with (metastable) localized vortices
which corresponds to a local energy minimum in this sector of the Hilbert
space. These results seem consistent with the real-time dynamics described
by time-dependent mean-field theory, which show that only when the
perturbations are strong enough do vortices become mobile as signaled by
the time decay of the fermion Green’s function46. In reality, the lifetime of a
vortex is limited by processes in which two vortices meet and annihilate58,
and can become arbitrarily long at low temperatures due to the low vortex
density; see Supplementary Note 1. Focusing on the regime of small per-
turbations, we can then compute static spin correlations near vortices using
position-dependent mean-field parameters Uμν

ij and Vμν
i . We consider a

configuration with four equally spaced vortices, see inset of Fig. 5b, which
preserves rotational symmetries and minimizes finite-size effects as com-
pared to a two-vortex configuration. Unless stated otherwise, we use L = 40,
so the distance between vortices is 20 unit cells. The charge imbalancenear a
vortex is then effectively the property of a single vortex and finite-size effects
only appear in long-distance tails (see Supplementary Note 2).

In ref. 30, the charge imbalance profile in the vicinity of a vortex was
investigated within the exactly solvable Kitaev model1:

HK ¼
X
hijiγ

Kγσ
γ
i σ

γ
j �

X
hijiαhjkiβ

κ σαi σ
γ
j σ

β
k ; ð6Þ

setting Kγ =K for isotropic Kitaev interactions. The three-spin interaction
breaks time-reversal symmetry while preserving integrability. The coupling
constant derived from perturbation theory in the magnetic field is1:

κ ¼ 0:338
hxhyhz
Δ2
2v

; ð7Þ

whereΔ2v ≈ 0.263∣K∣59 is the energy gap for creating two adjacent vortices at
zero magnetic field. The prefactor in Eq. (7) was obtained by fitting the
fermion gapΔf ¼ 6

ffiffiffi
3

p
κ at low fields; see the inset of Fig. 2. Ourmean-field

results for the extended Kitaev model confirm the qualitative behavior
obtained for the exactly solvable model; see Fig. 4. The charge imbalance
oscillates between positive and negative values as we vary the distance from
the center of the vortex, identified with the plaquette where Wp < 0.
Moreover, as shown in Fig. 5, the magnitude of 〈δnl〉 decays exponentially
with the distance from the vortex. The comparison with the result for Γ = 0

(dashed lines in Fig. 5) reveals thatweakΓ and/or J interactions have an only
minor effect on the ideal charge imbalance profile found in the pure Kitaev
limit30. However, changing the magnetic field direction away from the ĉ
direction can induce more pronounced charge oscillations, cf. Fig. 5b, and
thus has a more substantial effect. The value of ∣δnl∣ on sites around the
vortex is of the order of 10−6, producing local electric fields near the
detection limit of state-of-the-art atomic force microscopy30,60–62. Impor-
tantly, here we use estimates for the hopping and interaction parameters for
bulk α-RuCl3, but the charge fluctuations can be greatly enhanced if the on-
site repulsion U is screened in a monolayer by the interaction with a
substrate.

Since the mean-field approach allows us to treat the Zeeman term
nonperturbatively, we can go beyond the results of ref. 30 and analyze the
dependence of the charge redistribution on the field direction. For a field
along the ĉ direction, the charge imbalance profile is isotropic around the
position of the vortex, up to small variations due to the finite distance
between vortices in thefinite-size system.Aswe tilt themagneticfield on the
acplane (perpendicular to the zbonds), a small anisotropydevelops in away
that the charge imbalance is enhanced in the direction perpendicular to the
field. This effect can be seen in Fig. 5b as the difference between 〈δnl〉 for the
sites that belong to the hexagon that contains the vortex (three blue dots in
the center, cf. Fig. 4).

We next quantify the anisotropy in the charge distribution by com-
puting the electricmultipolemoments.Wenote that the electric quadrupole
moment has also been studied in the context of the spin nematic transition
in the vortex-free ground state of a perturbed Kitaevmodel63. In the limit of
very large distance between vortices, the electric dipole moment vanishes
because the system is invariant under spatial inversion about the vortex
center. The first nontrivial multipole moment is the traceless quadrupole
tensor, with components:

Qαβ ¼
X
l

hδnlið3RlαRlβ � jRlj2δαβÞ: ð8Þ

Here α, β∈ {1, 2, 3} and Rl ¼ Rl1âþ Rl2b̂ (with Rl3 = 0) is the position of
site l, setting the lattice spacing to unity. Due to the finite system size, we
calculate the quadrupole moment by summing over all sites within a finite
radius around the vortex. This radius is taken to be slightly smaller than half
the distance between vortices, but due to the exponential decay of 〈δnl〉with
the distance from the vortex center, changing this radius causes only
exponentially small changes in the quadrupole tensor. For a magnetic field

Fig. 4 | Charge imbalance around a vortex.Charge imbalance 〈δnl〉 in a state with a
vortex located in the central hexagon. As parameters of the Hubbard–Kanamori
model, we use t1 = 13 meV, t2 = 160 meV, t3 =−33meV, t02 ¼ �60 meV,U = 2.6 eV,
and JH = 300 meV. The values of δnl are in units of jt22t02=U3j≈ 8:739× 10�5. The
ratio between the exchange couplings calculated using Eq. (22) are Γ/∣K∣ = 0.20 and J/
∣K∣ =−0.02. We set the magnetic field h=jKj ¼ 0:2ĉ. The solid line marks the zigzag
path considered in Fig. 5.
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along the ĉ direction, the rotational symmetry implies that the quadrupole
tensor is diagonal and Q11 =Q22 =−Q33/2. As we vary the field direction,
the anisotropy is manifested in the difference between Q11 and Q22 and in
the off-diagonal element Q12. Note that Q13 vanishes identically
because Rl3 = 0.

In a first approximation, let us discuss the dependence of the quad-
rupole tensor on the magnetic field direction by treating the field pertur-
batively in the pure Kitaev model. For magnetic field directions not
perpendicular to the lattice plane, the (often discarded) contribution from
second-order perturbation theory generates an anisotropic renormalization
of theKitaev couplings. This effect is captured by theHamiltonian in Eq. (6)
with:

Kγ ¼ K � ðhγÞ2
Δ2v

: ð9Þ

In Fig. 6, we show the angular dependence of the quadrupole components
Q33,Q11−Q22 andQ12 calculated from the spin correlations for the model
in Eq. (6). The component Q33 does not change sign, but varies slightly
around an average valuewith an angular dependencequalitatively similar to
∣hxhyhz∣. In particular, Q33 is maximum for a field along the ĉ direction,

whichmay be interesting tomaximize the intrinsic electricfield produced at
positions right above the vortex. On the other hand, the difference
Q11−Q22 vanishes for h k ĉ, but is maximum when the field points along
the ẑ axis; this is the direction in which the anisotropy in the effective Kitaev
couplings ismaximized,withKz <Kx =Ky. Finally,Q12 vanishes if we tilt the
field along the high-symmetry ac plane, but becomes nonzero for more
general field directions.

The spin correlations calculatedwithin themean-field approach for the
extended Kitaevmodel lead to the same qualitative dependence on the field
direction as in Fig. 6. Tomaximize the anisotropy in the quadrupole tensor,
we focus on the directionh ¼ hẑ, inwhich case all off-diagonal components
vanish, and analyze how the diagonal components vary with the strength of
the magnetic field. Here it is convenient to introduce the dimensionless
anisotropy parameter ΔQ = (Q11−Q22)/∣Q33∣. As shown in Fig. 7, ΔQ
increases with h, and the effect is more pronounced in the presence of the Γ
interaction.Wehave also studied the caseΓ < 0 andfindqualitatively similar
results (see Supplementary Note 3).

The spatial anisotropy of the charge density profile affects the electric
quadrupole interaction between vortices. Suppose the first vortex is located
at the origin and the second one at r ¼ x1âþ x2b̂, with r = ∣r∣much larger
than the length scale in the decay of δnl. The interaction is given by the

Fig. 6 | Quadrupole moment for different field directions. Quadrupole compo-
nents as a function of magnetic field direction, calculated using the exactly solvable
Hamiltonian in Eq. (6), i.e., for J = Γ = 0. The coupling constants Kγ and κ were

calculated using Eqs. (7) and (9) with ∣h∣ = 0.2∣K∣ and Δ2v = 0.263∣K∣. The scale is in
units of t22t

0
2=U

3 and we set the lattice spacing to unity. Here we use L = 42.
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Fig. 5 | Spatial and magnetic field dependence of the charge imbalance profile.
Magnitude of the charge imbalance as a function of the position R1 along the zigzag
path represented by the black line in Fig. 4. The dots (connected by solid lines to
guide the eye) correspond to the extended Kitaev model with exchange couplings Γ/
∣K∣ = 0.2 and J/∣K∣ =−0.02. Blue and red represent positive and negative charges,
respectively. We set ∣h∣ = 0.3∣K∣ and consider two field directions: a h k ĉ, and

b h k ẑ. For comparison, dashed lines represent the corresponding mean-field
results for Γ = 0 and otherwise identical parameters. The inset in (a) shows the
corresponding case with Γ/∣K∣ = 0.35 and J/∣K∣ =−0.05 for h k ĉ (filled circles),
comparing with the results for Γ/∣K∣ = 0.2 and J/∣K∣ =−0.02 in the main plot (empty
circles). The values of δnl are in units of jt22t02=U3j. The inset in (b) shows the
geometry with four equally spaced vortices on the torus with a smaller system size.
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energy E of the quadrupole tensor Q(2) of the second vortex in the electro-
static potential V(1) generated by the first vortex:

E ¼ 1
6

X
αβ

Qð2Þ
αβ ∂α∂βV

ð1ÞðrÞ; ð10Þ

where V ð1ÞðrÞ ¼ 1
2r5

P
αβxαxβQ

ð1Þ
αβ . Since well-separated vortices generate

the same charge distribution, we now assumeQ(1) =Q(2) =Q. As a result, the
quadrupolar interaction can be written as:

E ¼ 1
12

35
r9

r � Q � rð Þ2 � 20
r7

r � Q2 � r� �þ 2
r5
tr Q2
� �� �

: ð11Þ

When the magnetic field varies along the ac plane, the quadrupole tensor is
diagonal andwe obtain E ¼ Q2

33
r5 FðΔQ; θÞ. Here θ is the angle between r and

â, and we use:

FðΔQ; θÞ ¼ 9
8 þ 5

4 cosð2θÞΔQ
þ 35

24 cos
2ð2θÞ � 2

3

	 

ΔQ2;

ð12Þ

with the property F(−ΔQ, θ) = F(ΔQ, π/2− θ). In particular, ΔQ = 0 for a
magneticfield along the ĉ direction; in this case, the quadrupolar interaction
becomes strictly repulsive and independent of θ. However, as illustrated in
Fig. 8, the interaction can change sign for some particular directions of r if
the anisotropy is strong enough. The attractive regime appears for
jΔQj >

ffiffiffiffiffiffiffi
9=7

p
≈ 1:13. According to the result in Fig. 7, this regime becomes

accessible for sufficiently large h and Γwith h along the ẑ direction.We note
that already in the pure Kitaev model, vortices have an effective interaction
that depends on the vortex separation64. The charge redistributiondiscussed
here provides amechanism tomake this interaction spatially anisotropic. In
the extended Kitaev model, where vortices acquire a small mobility58, the
charge density profile must be carried along with the slow vortex motion,
and the anisotropic interaction may cause some nontrivial dynamics in a
system of dilute vortices. Importantly, the quadrupole interaction decays
algebraically with the distance between vortices; thus, at large distances it
dominates over other sources of vortex-vortex interactions that are expected
to decay exponentially64.

Electrical manipulation of vortices
We now consider the effect of a local electrostatic potential on vortices.
Going back to theHubbard–Kanamorimodel, we couple the hole density to
a potential V0 on the six sites surrounding a hexagonal plaquette p where a
vortex is located. This local potential can be generated by the electric field of
a scanning tunneling microscope (STM) tip. Redoing the derivation of the

effective spin Hamiltonian by second-order perturbation theory, we find
that the local potential modifies the couplings on bonds between sites in p
and their nearest neighbors outside p; see Eq. (23). In addition, the local
electric potential breaks inversion symmetry and generates a
Dzyaloshinskii-Moriya (DM) interaction34. Microscopically, the DM
interaction stems fromcrystalfield splittings in the atomicHamiltonian and
asymmetries in the hopping matrix due to lattice distortions5. We investi-
gate this effect phenomenologically by adding to the effective spin Hamil-
tonian (1) the term:

HDM ¼
X
γ

X
hijiγ

Dij σαi σ
β
j � σβi σ

α
j

� �
; ð13Þ

where (αβγ) is a cyclic permutation of (xyz). The coupling Dij =D(V0) is
taken to be independent of the bond type γ but restricted to the bonds
exterior to the plaquette with the local potential. For the DM coupling, we
assume (see Supplementary Note 4):

DðV0Þ ¼ ξ1D1jKð0Þj; ξ1 ¼
eV0

U � 3JH
; ð14Þ

such that D(V0)∝V0 with a dimensionless free parameter D1. In fact, for
V0 = 0, the DM coupling is absent since it will be generated by the tip
potential.

In the solvable Kitaev model, the local electric potential lowers the
energyof an isolatedvortexwith respect to the vortex-free configuration, but
never closes the vortex gap in the absence of the DM interaction30. In that
case, this effect can be used to attract and bind vortices that have been
created by some other mechanism, such as thermal fluctuations, but it does
not induce vortices in the ground state of the system. Using the mean-field
approach, we can now analyze how the vortex gap varies with the electric
potential in the extendedKitaevmodel.Weconsider again the configuration
with four equally spaced vortices, see the inset in Fig. 5b, and apply the
electric potential on the four corresponding plaquettes. The difference
between the energy E4v of this four-vortex configuration and the energy E0v
of the vortex-free state is equal to four times the vison gap. As shown in
Fig. 9, the vison gap monotonically decreases with the applied electric
potential, and it is further reduced for nonzero Γ andfiniteDMcouplingD1.
When the gap becomes too small, we encounter difficulties in the con-
vergence of the mean-field equations. However, the extrapolation of the

Fig. 8 | Quadrupolar interaction. Function F(ΔQ, θ) that governs the sign of the
quadrupolar interaction for ΔQ > 0. For ΔQ < 0, see the relation below Eq. (12). The
dashed line marks the critical value jΔQj ¼

ffiffiffiffiffiffiffiffi
9=7

p
, below which the interaction is

always repulsive. The black solid line corresponds to F(ΔQ, θ) = 0.
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Fig. 7 | Dependence of the quadrupole anisotropy on themagnetic field strength.
Symbols represent themean-field results forΔQ = (Q11−Q22)/∣Q33∣ in the extended
Kitaev model with Γ/∣K∣ = 0.3, J = 0, and h ¼ hẑ. Dashed lines follow from the
solvable Hamiltonian in Eq. (6) withK =−1. Inset: quadrupole componentsQ33 and
Q11−Q22 (in units of jt22t02=U3j and setting the lattice spacing to unity).
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results indicates that the gap vanishes for sufficiently large V0. As a con-
sequence, we predict that it is possible to create (or remove) vortices by
modulating the local interactions, in agreement with the results of ref. 34.
We emphasize that this remarkable functionality arises due to the interplay
between Γ interactions and the local DM terms induced by an STM tip.
FromFig. 9, we observe that ξ1 ~ 0.5 is sufficient to create vortices. Using the
parameters listed in Fig. 4, we find that this corresponds to realistic tip
voltages of the order of V0 < 1 V.

Discussion
Wehave studiedhowvortices inKitaev spin liquids generate and respond to
nonuniform electric fields. While Kitaev materials are Mott insulators,
chargefluctuations canbe generatedat low energies by inhomogeneous spin
correlations that carry signatures of localized excitations. To describe this
effect, we started from the three-orbital Hubbard–Kanamori model for
Kitaev materials. Using a canonical transformation, we obtain effective
operators in the low-energy sector in terms of spin operators that act on the
pseudospin-1/2 states.The effective spinHamiltonian is the extendedKitaev
model in a magnetic field, in which the exact solvability is broken by the
Heisenberg andΓ interactions aswell as by aZeeman coupling to amagnetic
field. We generalized the effective density operator beyond the results of
ref. 30 to includeoff-diagonal terms that are absent in thepureKitaevmodel.

We have developed and applied a Majorana mean-field approach
which allows us to consider inhomogeneous parameters. While this
approach is exact for the pure Kitaev model, we have demonstrated that it
captures qualitative features of the Kitaev spin liquid phase in the extended
JKΓ model, where additional spin interactions are present. This model is
believed to describe the candidate material α-RuCl3. The electric charge
distribution follows by computing the spin correlations around vortices in
the mean-field approach. Importantly, vortices remain localized on suffi-
ciently long time scales even in the presence of small perturbations around
the Kitaev limit, as long as the system remains deep in the Kitaev spin liquid
phase. We find that the charge profile decays with the distance from the
vortex in an oscillatory fashion.

Our results allowus to calculate the intrinsic electric quadrupole tensor
of a vortex which is far away from all other vortices. The anisotropy of the
quadrupole tensor can here be controlled by the magnetic field, and
depending on the parameter regime, the interaction between different
vortices is either repulsive or attractive. The interaction is generally
enhanced by the Γ interaction.

Finally, in the presence of local STM tips near vortices, wefind that one
can close the vortex gap by applying a local electric potential to the tips. We

thus predict that one can create vortices in a Kitaev spin liquid by means of
STM tips in a controlled way. Given the recent advances in STM
technology60–62, our work paves the way for the electrical detection and
manipulation in Kitaev materials. In particular, the successful control of
Ising anyons in such materials would constitute a key step toward imple-
menting a platform for topological quantum computation.

Methods
Extended Kitaev model
The JKΓ model in Eq. (1) follows by projecting the three-orbital
Hubbard–Kanamori Hamiltonian on the honeycomb lattice,
HHK =V+Hso+ T, to the low-energy sector spanned by a single hole per
site. On-site interactions are encoded by:

V ¼
X
i

U � 3JH
2

ð�Ni � 1Þ2 � 2JHS
2
i �

JH
2
L2i

� �
; ð15Þ

whereU is the repulsive interaction strength, JH is Hund’s coupling, and the
operators �Ni, Si and Li are the total number, spin and orbital angular
momentum of holes at site i. The operator hyiασ creates a hole at site i with
spin σ∈ {↑, ↓} and orbitalα∈ {x, y, z} for yz, xz, and xy orbitals, respectively.
Defining the spinor hyi ¼ ðhyix"; hyiy"; hyiz"; hyix#; hyiy#; hyiz#Þ, we write:

�Ni ¼ hyi hi; Si ¼
1
2
hyi ðσ � 13Þhi; Li ¼ hyi ð12 � lÞhi; ð16Þ

where σ is the vector of Paulimatrices acting in spin space and l = (lx, ly, lz) is
a vector of 3 × 3 matrices that represent the effective l = 1 angular
momentum of the t2g states30. The spin-orbit coupling term Hso ¼
λ
P

iαh
y
i ðσα � lαÞhi splits thedegeneracyof the t2gmanifold.At each site, the

low-energy subspace is spanned by the states:

∣þi ¼ 1ffiffi
3

p �∣z;"�� i∣y;#�� ∣x;#�� �
;

∣�i ¼ 1ffiffi
3

p ∣z;#�þ i∣y;"�� ∣x;"�� �
;

ð17Þ

which are associated with total angular momentum jeff ¼ 1
2. Finally, the

hopping term inHK has the formT ¼ �P
ijh

y
i 12 � Tij

� �
hj: The hopping

matrix Tij in orbital space depends on the orientation of the bond between
sites i and j. We label the bonds on the honeycomb lattice by γ∈ {x, y,

z}≡ {1, 2, 3} corresponding to nearest-neighbor vectors δx ¼ 1
2 âþ 1

2
ffiffi
3

p b̂,

δy ¼ � 1
2 âþ 1

2
ffiffi
3

p b̂, and δz ¼ � 1ffiffi
3

p b̂, respectively. We parametrize

the hopping matrix for a nearest-neighbor z bond as35

Thijiz ¼
t1 t2 t4
t2 t1 t4
t4 t4 t3

0
@

1
A:The hopping matrix for x and y bonds follows

by cyclic permutation of the orbital indices. Microscopically, the hopping
parameters are associated with direct hopping between d orbitals or
hoppings mediated by the ligand ions. Neglecting trigonal distortions for
simplicity, we set t4 = 05,35.

The effective spin Hamiltonian for the Mott insulating phase can now
be derived by applying perturbation theory in the regime
U, JH≫ λ≫ t1, t2, t3. We use the canonical transformation:

~HHK ¼ eSHHKe
�S

¼ HHK þ ½S;HHK� þ 1
2 ½S; ½S;HHK�� þ � � � : ð18Þ

The anti-Hermitian operator S ¼ P1
k¼1 Sk is chosen so that Sk eliminates

the terms that change the hole occupation numbers �Ni at k-th order in the
hopping parameters. We can write Sk ¼ Sþk � S�k , where Sþk creates
excitations with �Ni ≠ 1 and S

�
k ¼ ðSþk Þ

y. For the calculation of the effective
spinHamiltonian, it suffices to consider the first-order term S1 ¼ Sþ1 � S�1 ,
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Fig. 9 | Energy of four-vortex state. Energy of the four-vortex state vs. applied
electrostatic potential V0, with the dimensionless quantity ξ1 = eV0/(U− 3JH), for
different values of Γ and of the DM coupling D1; see Eq. (14). Symbols represent
mean-field results for the extendedKitaevmodel withK =−1, J = 0 and themagnetic
field h ¼ 0:2 ĉ. The linear system size is L = 28, and solid lines are a guide to the eye
only. They were obtained by a fit to the function aþ b tanh½cðξ1 � dÞ�.
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with:

Sþ1 ¼
X
ij

X2
‘¼0

1
ΔE‘

Pð2Þ
i;‘ h

y
i ð1� TijÞhj Pð1Þ

j : ð19Þ

Here Pð1Þ
j is a projector onto the subspace of a single hole at site j and Pð2Þ

j;‘
projects onto the subspace of two holes with total angular momentum
ℓ∈ {0, 1, 2}. The excited states have energies ΔEℓ given by:

ΔE0 ¼ U þ 2JH; ΔE1 ¼ U � 3JH; ΔE2 ¼ U � JH; ð20Þ

with JH <U/3 in the Mott insulating phase. We then take
H ¼ P low

~HHKP low, where P low ¼ Q
i ∣þi

� þi

�
∣þ ∣�i

� �i

�
∣

� �
is the pro-

jector onto the low-energy subspace restricted to jeff ¼ 1
2 states at every site.

We thereby arrive at the JKΓmodel35:

H ¼
X
hijiγ

Jσi � σ j þ Kσγi σ
γ
j þ Γ σαi σ

β
j þ σβi σ

α
j

� �h i
; ð21Þ

with an implicit sum over bond type γ, and α, β chosen so that (αβγ) is a
cyclic permutation of (xyz). The couplings are:

J ¼ 1
27

ð2t1 þ t3Þ2
ΔE0

þ 6t1ðt1 þ 2t3Þ
ΔE1

þ 2ðt1 � t3Þ2
ΔE2

h i
;

K ¼ 2JH
9

ðt1 � t3Þ2�3t22
ΔE1ΔE2

; Γ ¼ 4JH
9

t2ðt1 � t3Þ
ΔE1ΔE2

:

ð22Þ

In the limit t1, t3→ 0 and t2 ≠ 0, Eq. (21) reduces to the exactly solvable
Kitaevmodel1with a ferromagneticKitaev interaction (K < 0). Finally, in the
presence of a potential V0, the respective couplings are renormalized
according to:

JðV0Þ ¼ 1
27

ð2t1 þ t3Þ2
ð1�ξ20ÞΔE0

þ 6t1ðt1 þ 2t3Þ
ð1�ξ21ÞΔE1

h

þ 2ðt1 � t3Þ2
ð1�ξ22ÞΔE2

i
;

KðV0Þ
Kð0Þ ¼ ΓðV0Þ

Γð0Þ ¼ 1þ ξ1ξ2
ð1�ξ21Þð1�ξ22Þ

;

ð23Þ

where ξℓ = eV0/ΔEℓ.

Mean-field Hamiltonian
Using the mean-field parameters in Eq. (5), the Majorana mean-field
Hamiltonian for Eq. (4) is given by:

HMF ¼
X
ij

i
4
cTi Aijcj þ

X
i

i
4
cTi Bici � C: ð24Þ

Thefirst termon the right-hand side couplesMajorana fermionsonnearest-
neighbor bonds 〈ij〉γ via the 4 × 4 bond-dependent matrix:

Aij ¼ 2
X
αβ

Jαβij N
αUijN

β: ð25Þ

The on-site term involves the matrix:

Bi ¼
X
j2V i

X
αβ

Jαβij N
αtr VT

j N
β

� �
þ

X
γ

ðλγiGγ � 2hγNγÞ; ð26Þ

where V i denotes the set of nearest neighbors of site i. Finally, the constant
term is:

C ¼ 1
8

X
ij

X
αβ

Jαβij tr VT
i N

α
� �

tr VT
j N

β
� �

þ 2tr UT
ijN

αUijN
β

� �h i
: ð27Þ

We diagonalize Eq. (24) for N unit cells of the honeycomb lattice with
periodic boundary conditions by using:

c ¼
ffiffiffi
2

p
U

d

dy


 �
; U ¼ U< U >

� �
; ð28Þ

where c is a vector defined from 8N Majorana fermions, U is a unitary
transformation, and d is a 4N-component vector of annihilation operators
of complex fermions. The columns ofU<ð > Þ correspond to the eigenvectors
of the mean-field Hamiltonian with negative (positive) energy. The mean-
field ground state is the state annihilated by all d operators, from which we
obtain the self-consistency conditions:

h icI cJ i ¼ i U<U
y
<

� �
IJ; ð29Þ

where I = (i, μ) and J = (j, ν) combine site and fermion flavor indices. We
obtain the mean-field parameters in Eq. (5) by setting i and j to be either
nearest neighbors or the same site. Together with the mean-field
Hamiltonian, Eq. (29) defines a set of self-consistent equations which we
then solve numerically.

In our approach, we require that the constraint in Eq. (3) is satisfied by
the mean-field solution as accurately as possible. Since icTi G

γci are linear
combinations of operators with eigenvalues ±1, we define the quantities
Gγ
i � 1

4 jhcTi Gγciij for the mean-field ground state average, with 0≤Gγ
i ≤ 1.

For zeromagneticfield and in the absence ofmagnetic order, the constraints
are automatically satisfied, Gγ

i ¼ 0, since V0γ
i ¼ Vαβ

i ¼ 0. To describe the
Kitaev spin liquid phase at finite magnetic field, we tune the Lagrange
multipliers λγi contained in Bi in order to minimize the violation of the
constraint measured by Gγ

i . For all results shown below, we guarantee
Gγ
i < 0:05 for all values of (γ, i). In the homogeneous case (cf. Figs. 1–3), the

largest violations occur in the vicinity of phase transitions. Away from
transitions, we instead find Gγ

i <10
�3. Similarly, in the presence of vortices,

the largest violations occur near a vortex but they are always bounded as
specified.

Charge density coefficients
Consider the hole density operator �Nl at site l in the Hubbard–Kanamori
model. Using the canonical transformation in Eq. (18), we can write the
effective charge imbalance operator in the low-energy sector as:

δnl ¼ P lowe
Sð�Nl � 1Þe�SP low: ð30Þ

We calculate δnl using perturbation theory to leading order in the hopping
matrix Tij. In systems with bond-inversion symmetry like the
Hubbard–Kanamori model, the first non-vanishing contribution appears
at third order and is associatedwith virtual processes inwhich an electron or
hole moves around a triangle30,32,33. To obtain this leading contribution, we
generalize the hopping matrix to include hopping between next-nearest-
neighbor sites on the honeycomb lattice. We denote by 〈〈ij〉〉γ a second-
neighbor bond perpendicular to nearest-neighbor γ bonds, see Fig. 10a.
Sizeable second- and third-neighbor hopping parameters have been
calculated for Kitaev materials using ab initio methods5,50. For simplicity,
we consider only thedominant second-neighborhopping,whichon zbonds

is described by the matrix Thhijiiz ¼
0 t02 0
t02 0 0
0 0 0

0
@

1
A. The corresponding

matrices for x and y bonds follow by cyclic permutation of the indices.
Assuming jt02j≪ jt1j; jt2j; jt3j, we calculate the charge density response to
first order in t02. In this approximation, we neglect the second-neighbor
exchange interaction generated by perturbation theory at order ðt02Þ2,
keeping only the nearest-neighbor exchange couplings as in Eq. (21).

Following ref. 30, we write the effective charge imbalance operator as
δnl =∑(jk)δnl,(jk), where the sumover (jk) runs overpairs of sites such that jkl
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forms a triangle, and each triangle is counted once. These triangles contain
two nearest-neighbor bonds and one next-nearest-neighbor bond, see the
examples in Fig. 10b. The calculation of δnl requires the generator of the
canonical transformation up to second order in the hopping matrices,
S ≈ S1+ S2. After the projection onto the jeff ¼ 1

2 subspace, we write the end
result in the form:

δnl;ðjkÞ ¼
X
αβ

Cα0βjkl σ
α
j σ

β
l þ C0αβjkl σ

α
kσ

β
l þ Cαβ0jkl σ

α
j σ

β
k

� �
: ð31Þ

Note that the effective density operator involves only two-spin operators
because itmust be invariant under time reversal. The coefficientsCμνρjkl canbe
calculated as explained below.We find closed-form but lengthy expressions
for general values of the hopping parameters. For t1 = t3 = 0 and t2; t

0
2 ≠ 0,

we recover the result of ref. 30, inwhich thenonzero coefficients arediagonal
in spin indices, e.g., Cαβ0jkl ∼ δαβt

2
2t

0
2=U

3. Similarly to the derivation of the
effectiveHamiltonian, the addition of the subleading hopping parameters t1
and t3 generates off-diagonal terms in δnl,(jk) which are reminiscent of the Γ
interaction. Equation (31) implies that the charge density profile of a given
state is determined by its spin correlations. Charge neutrality of the Mott
insulator, ∑l〈δnl〉 = 0, implies that there is no charge polarization in a
homogeneous statewhere 〈δnl〉 is uniform.This condition is indeed satisfied
when we impose that the spin correlations on different bonds respect
translation and rotation symmetries, which provides a nontrivial check for
the coefficients Cμνρjkl .

Let us outline some steps in the calculation of the coefficients Cμνρjkl in
Eq. (31).At thirdorder in thehopping term, the canonical transformation in
Eq. (30) gives δnð3Þl ¼ �S�2 ½�Nl; S

þ
1 � þ h.c. , where we organize the con-

tributions in terms of triangles with site l at one vertex. In this notation, the
contribution from each triangle with two other sites (jk)≡ (kj) contains two
terms, δnð3Þl;ðjkÞ ¼ δnð3Þl;jk þ δnð3Þl;kj. Explicit expressions for the matrix elements
of δnð3Þl;ðjkÞ can be found in ref. 30. The last step is to project these matrices
onto the low-energy subspace spanned by the states in Eq. (17). The
coefficients in Eq. (31) are given by:

Cμνρjkl ¼ 1
8
Tr P lowδn

ð3Þ
l;ðjkÞP lowσ

μ
j σ

ν
kσ

ρ
l

� �
; ð32Þ

where σ0 ¼ 1. Since the charge density operator is evenunder time reversal,
terms that act nontrivially on an odd number of spins vanish identically:

Cαβγjkl ¼ Cα00jkl ¼ C0α0jkl ¼ C00αjkl ¼ 0; ð33Þ

with α, β, γ∈ {1, 2, 3}. The nonzero terms can be written as in Eq. (31) and
depend on the specific triangle. The simplest coefficients are the ones that
are already present in the solvable Kitaev model30. For instance, for the top
triangle in Fig. 10b, we obtain:

C110jkl ¼ C220jkl ¼ t22t
0
2

U3

η2ð1� 2ηÞ
9ð1� ηÞ3ð1� 3ηÞ3 ; ð34Þ

where η = JH/U < 1/3. Note that this term is sensitive to the sign of the
second-neighbor hopping t02. In ref. 30, the charge imbalancewas calculated
assuming a positive value of t02, but in this work we use t

0
2 < 0 as obtained in

ref. 50 for α-RuCl3. As an example for a coefficient associated with off-
diagonal terms in δnl, which are generated by the hoppings t1 and t3, we
have:

C120jkl ¼ � t02
U3

ηðt1 � t3Þ 276η4 � 94η2 � 6ηþ 22
� �

t1 þ 26η4 � 20η3 � 7η2 � 4ηþ 5
� �

t3
	 


54ð1� ηÞ3ð1þ 2ηÞ2ð1� 3ηÞ3 :

ð35Þ

Data availability
All data supporting the findings of this paper are shown in the paper. Raw
data and code used for preparing the figures are accessible onZenodo under
https://doi.org/10.5281/zenodo.10616443.
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SUPPLEMENTARY NOTE 1: ON THE VORTEX LIFETIME

In our setup, vortices could be created by different mechanisms. Once they have been trapped by a local potential,
they can decay if they meet another vortex that has been created far away in the bulk but then has propagated
to the position of our designated vortex. As shown in Ref. [1], the time scale for two vortices to meet is given by
τV V ∼ 1/(DnV ). Here D is the diffusion constant, which is related to the vortex mobility µ by the Einstein relation,
D = µT , and nV is the density of vortices (we set the Boltzmann constant kB = 1). At temperatures T ≪ ∆2v, where
∆2v is the vison gap for creating a pair of vortices [1, 2], the diffusion constant becomes independent of the vison
dispersion and is given by D ≈ 6v2m/T , where vm is the characteristic velocity of Majorana fermion excitations. Since
in this regime the diffusion constant does not depend explicitly on the effective hopping parameter of the visons, there
is no strong dependence on the magnetic field, of arbitrary direction. On the other hand, the vortex density becomes
small at temperatures far below the vison gap, T ≪ ∆2v. For this reason, we expect the trapped vortex to have a
very long lifetime at low temperatures. In the main text, we therefore assume that vortices are effectively stable and
spatially localized entities.

SUPPLEMENTARY NOTE 2: FINITE-SIZE EFFECTS

In Supplementary Figure 1 we show how finite-size effects impact the charge distribution around vortices in
the extended Kitaev model. The coordinate R1 corresponds to the zigzag path represented in Fig. 4 of the main
text. In the thermodynamic limit and for infinitely separated vortices, the charge imbalance δnl must be symmetric
with respect to the vortex center, i.e., with respect to R1 7→ −R1. However, in a finite-size L×L geometry (periodic
boundary conditions) with vortices located at maximal distance from each other, we see deviations from the symmetric
distribution when the distance |R1| becomes comparable to the separation between two vortices. The asymmetry in the
charge distribution is substantially smaller for a configuration with four equally spaced vortices than for two vortices.
To see this, compare the data for smaller values of L in Supplementary Figure 1(a) and Supplementary Figure 1(b).
This fact can be rationalized by noting that for periodic boundary conditions, the four-vortex configuration preserves
a C3 lattice rotation symmetry about the center of a given vortex, which helps to minimize finite-size effects. As we
increase L, the results for both four-vortex and two-vortex configurations converge to the same values, especially close
to the vortex, where the charge imbalance is larger. We have verified that all results reported in the main text for
the components of the quadrupole tensor, in particular the anisotropy parameter ∆Q, are fully converged for L ≥ 40.

SUPPLEMENTARY NOTE 3: VORTEX QUADRUPOLE MOMENT FOR NEGATIVE VALUES OF Γ

When discussing the vortex charge density profile in the main text, we have focused on the parameter regime
Γ > 0, which is relevant for α-RuCl3. In Supplementary Figure 2, we show the anisotropy parameter ∆Q and other
components of the quadrupole tensor for a negative value of Γ. Comparing with Fig. 7 of the main text, we observe
that the result is qualitatively similar to that for Γ > 0.

SUPPLEMENTARY NOTE 4: DISCUSSION OF EQ. (14) IN THE MAIN TEXT

Unlike the other spin interactions included in our model, the DM interaction requires breaking bond inversion
symmetries. Starting from the Hubbard-Kanamori model, the DM interaction can be generated, for instance, by
generalizing the hopping matrix to be asymmetric, which introduces three new hopping parameters; see e.g. the
derivation in Ref. [3]. In addition, the locally applied potential V0 induces lattice distortions and introduces an
anisotropic crystal field term of the form δCF(Li ·n)2, where n is a unit vector in the direction of the local electric field
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Supplementary Figure 1: Charge profile near a vortex. Charge distribution near a vortex for different system
sizes for gauge configurations with (a) four, and (b) two maximally spaced vortices, along the path variable R1

shown in Fig. 4 of the main text. Here we fix the parameters of the Hubbard-Kanamori model so that Γ/|K| = 0.3,
J/|K| = −0.04, and the magnetic field is h = 0.2|K|ẑ. The curve for L = 40 is shown using the same scale as in
Fig. 5 of the main text. To aid visualization, the curves for other values of L have been shifted down by rescaling

the data by a factor C40−L with C = 1/
√
10.
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Supplementary Figure 2: Quadrupole anisotropy for Γ < 0. Same as Fig. 7 of the main text but for
Γ = −0.3|K|, i.e., opposite sign of Γ.

and δCF ∼ V0 is the energy scale associated with the crystal field splitting. This term enters in the atomic Hamiltonian
and modifies the expressions for the low-energy states in Eq. (17) of the main text, which would now depend on the
ratio between δCF and the spin-orbit coupling λ. Instead of introducing a large number of new parameters in our
model, we here prefer to follow a more phenomenological approach and include a single DM term which is allowed by
symmetry, with a coupling constant that increases linearly with the local potential V0. This dependence is plausible
because the DM vector for nearest-neighbor bonds vanishes in the absence of the electric potential. We also fixed
the dependence on the Hubbard interaction and Hund’s coupling to be in terms of ∆E1 = U − 3JH because this is
the lowest among the three energy scales in Eq. (20) of the main text, and it sets an upper bound for the electric
potential that can be applied before the perturbative expressions break down. We note that this dependence on ∆E1

does show up in some of the several interaction terms generated by an asymmetric hopping matrix (see Ref. [3]).

In summary, we propose Eq. (14) in the main text as the simplest expression that captures the main properties of
the DM interaction and allows one to probe its effects on the vortex gap. A more detailed study, including all possible
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DM-type terms, should be guided by material-specific parameters as determined by ab initio calculations.
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We describe scanning tunneling spectroscopic signatures of Majorana zero modes (MZMs) in Kitaev spin
liquids. The tunnel conductance is determined by the dynamical spin correlations of the spin liquid, which we
compute exactly, and by spin-anisotropic cotunneling form factors. Near a Z2 vortex, the tunnel conductance
has a staircase voltage dependence, where conductance steps arise from MZMs and (at higher voltages) from
additional vortex configurations. By scanning the probe tip position, one can detect the vortex locations. Our
analysis suggests that topological magnon bound states near defects or magnetic impurities generate spectro-
scopic signatures that are qualitatively different from those of MZMs.

DOI: 10.1103/PhysRevB.107.054432

I. INTRODUCTION

Presently a major goal in condensed matter physics is to
realize, detect, and manipulate topologically ordered phases
of frustrated quantum magnets, commonly referred to as quan-
tum spin liquids (QSLs). A famous exactly solvable paradigm
is given by Kitaev’s two-dimensional (2D) honeycomb lattice
spin model with bond-dependent anisotropic exchange which,
in a magnetic field, describes a gapped non-Abelian chiral
QSL [1]. Emergent excitations of the Kitaev spin liquid in-
clude Majorana zero modes (MZMs) bound to Z2 vortices
(“visons”), which are Ising anyons of interest for quantum
information processing, as well as gapped bulk fermions and a
chiral Majorana edge mode at the boundary. Being excitations
of an insulating magnet, they are electrically neutral. Sizable
Kitaev couplings are expected [2] and have been reported
in various material platforms for Mott insulators with strong
spin-orbit coupling, e.g., in iridate compounds or in α-RuCl3,
where the smallness of interlayer couplings justifies the use
of 2D models. For recent reviews, see Refs. [3–12]. Despite
the impressive experimental progress achieved over the past
decade, however, no consensus has emerged whether α-RuCl3

or any other known material harbors a QSL. In particular,
the half-quantized thermal Hall conductivity due to the chiral
Majorana edge mode reported in Refs. [13–15] has not been
found in other experiments [16,17]. In fact, some spin-liquid
predictions can be mimicked by topological magnons in a
polarized phase [18–20].

We here show that characteristic signatures of Ising anyons
should be seen in scanning tunneling spectroscopy (STS)
experiments [21] on a 2D Kitaev layer [22–25] by scanning
the probe-tip position in the vicinity of an isolated Z2 vortex
(located far away from all other vortices and from the sample
boundary) and/or by changing the applied voltage; see Fig. 1.
Below we will also compare our results to an alternative
scenario with topological magnon bound states near defects
or magnetic impurities, which could also cause low-energy

features in the STS tunnel conductance. Such a comparison
is important as evidenced by the corresponding topological
superconductor case [26], where the tunnel conductance has
a zero-bias anomaly with quantized peak conductance 2e2/h
due to MZM-mediated resonant Andreev reflection [27–30].
STS experiments have found such zero-bias anomalies near
vortex cores in various superconducting materials and at-
tributed them to MZMs [21,31–34]. A major obstacle to
this interpretation is that very similar conductance peaks can
be caused by conventional disorder-induced Andreev bound
states [35]. However, the magnetic QSL case is rather differ-
ent and warrants a separate investigation. The absence of a
Cooper pair condensate implies that the charge of an electron
(tunneling in from the tip via the MZM) is much harder to
accommodate. For the pure Kitaev model, the infinite charge
gap implies a vanishing tunnel conductance, G(V ) = 0.

To obtain a finite G(V ), we start from the
Hubbard-Kanamori model for Kitaev materials [2,36–
39]. Adding a tunneling Hamiltonian for the QSL couplings
to tip and substrate, see Fig. 1(a), and projecting to states
with energy below the charge gap, we obtain H = HK + Hcot,
where HK describes the Kitaev model [2] and the cotunneling
Hamiltonian Hcot encodes tip-substrate electron transfer
due to virtual excursions to high-energy intermediate states
[40–42]. We compute Hcot for arbitrary tip position and find
that it is anisotropic in spin space. One then obtains G(V )
from the dynamical spin correlations of the QSL [43–47],
which can be computed exactly [48–53]. However, in the
presence of Z2 vortices, we encounter a technical challenge
described and resolved below.

As a function of voltage, we predict a characteristic se-
quence of conductance steps linked to MZMs. By scanning
the tip location at fixed voltage, one can locate MZMs in real
space and obtain information about the vortex configurations
contributing to the conductance. It stands to reason that ex-
perimental tests of our theory will help in identifying QSLs.
(For other proposals aimed at the electric detection of QSLs,
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FIG. 1. (a) Schematic STS setup. Tunnel couplings tA and tB

connect the QSL layer to the tip and the substrate, respectively. The
differential conductance G(V ) = dI

dV follows by measuring the tunnel
current I from tip to substrate as function of the applied voltage V .
(b) Finite 2D Kitaev honeycomb lattice with L × L unit cells and
periodic boundary conditions, shown for L = 7 and a configuration
G with two Z2 vortices (shaded). Full and open circles represent the
two sublattices. Nearest-neighbor bonds 〈 jl〉α of type α ∈ {x, y, z}
are distinguished by different colors.

see Refs. [39,54–57].) Our study of an alternative topological
magnon scenario suggests that MZM signatures obtained by
STS on a Kitaev layer are easier to distinguish from other
mechanisms than in the superconducting case.

The structure of the remainder of this article is as follows.
In Sec. II, we derive the low-energy theory used for calculat-
ing the differential conductance, where technical details have
been relegated to the Appendix. We then show in Sec. III how
to compute the conductance in terms of an exact evaluation
of dynamical spin-spin correlation functions of the Kitaev
layer. Our results for the conductance profile are shown in
Sec. IV. In Sec. V, we then address a complementary topolog-
ical magnon scenario. Finally, we offer concluding remarks in
Sec. VI.

II. EFFECTIVE LOW-ENERGY THEORY

We consider the setup in Fig. 1(a), where a scanning
probe tip at position r = (x, y, d ) is tunnel-coupled to a 2D
Kitaev layer at vertical distance d . The layer is also coupled
to a metallic substrate. Throughout, we assume weak and
spin-independent tunnel amplitudes. Due to the charge gap
in the magnetic layer, electron transport at subgap voltages
V , applied between the tip [with conduction electron creation
operator �

†
Aτ (r) for spin projection τ =↑,↓] and the substrate

[with �
†
Bτ (R j ) below lattice site R j], can only take place via

cotunneling [41,43,58]. We use the Hubbard-Kanamori model
for strongly correlated d5 electrons in α-RuCl3 or related ma-
terials [2,36,37,39], where on-site correlations are captured by
a large Coulomb energy U and a Hund coupling JH . Including
a tunneling Hamiltonian for the contacts to tip and substrate,
the projection to energies below the charge gap ∼U can be
performed by a canonical transformation [2,39]. We show this
calculation in some detail in the Appendix.

TABLE I. Kitaev couplings reported from different methods for
several materials.

Material K (meV) Method

α-RuCl3 5.0 experimental analysis [60]
6.7 exact diagonalization [38]

8.0–8.25 ab initio [61,62]
10.6 density functional theory [63]

Na2IrO3 16.8 exact diagonalization [38]
16.9 quantum chemistry methods [64]
29.4 perturbation theory [65]

α-Li2IrO3 6.3–9.8 exact diagonalization [38]
Li2RhO3 2.9–11.7 quantum chemistry methods [66]

The low-energy theory is described by spin-1/2 operators,
S j = 1

2σ j , in the QSL layer, where H = HK + Hcot includes
the Kitaev model [1,2]

HK = −K
∑
〈 jl〉α

σ α
j σα

l − κ
∑

〈 jk〉α,〈kl〉β
σ α

j σ
γ

k σ
β

l , (2.1)

with 〈 jl〉α denoting a nearest-neighbor bond of type α ∈
{x, y, z}; see Fig. 1(b). The term ∝ κ describes a magnetic
field [1,52], where (αβγ ) is a cyclic permutation of (xyz) and
the sum runs over triangles ( jkl ) with two adjacent nearest-
neighbor bonds. We measure lengths in units of the lattice
spacing a0, where a0 ≈ 5.9Å for α-RuCl3 [59]. The projec-
tion scheme yields a ferromagnetic (positive) Kitaev coupling
K ∝ JH [2], where experimental analysis gives K ≈ 5 meV
for α-RuCl3 [60]. Theoretical estimates for K in different
Kitaev materials have been reported in Refs. [38,61–66]; see
Table I.

Similarly, summing over all lattice sites, the cotunneling
Hamiltonian follows as

Hcot =
∑

j

�
†
A(r)[T0(r − R j )1 j + T(r − R j ) · σ j]

× �B(R j ) + H.c., (2.2)

where σ j and 1 j act in Kitaev spin space. The 2 × 2 matrices
T0 and T α , with T = (T x, T y, T z ), act in conduction elec-
tron spin space. All T -matrix elements scale ∝ tAtB/U , with
real-valued tunnel couplings tA (tB) from tip (substrate) to a
given site. We assume a constant substrate coupling tB. The
tip couplings depend on the overlap between the spherically
symmetric tip wave function and the respective t2g orbital
(labeled by α = x, y, z) for the d5 electrons. With an energy
scale t0 and a tunneling length l0 � a0, we write [41,43]

tAα (r, R j ) = t0e−|r±vα−R j |/l0 , (2.3)

with the overall coupling tA ≡
√

t2
Ax + t2

Ay + t2
Az. The vectors

vα with |vα| ≈ 0.1a0 encode the orbital overlaps, where the
± signs in Eq. (2.3) label the sublattice type of site R j ; see
the Appendix. The exponential scaling in Eq. (2.3) implies
that only a few sites near the tip location r contribute. Ana-
lytical but lengthy expressions for T0 and T are given in the
Appendix.

Simpler results emerge by approximating vα = 0, which
gives exact results for a tip located on top of a lattice site and
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otherwise causes deviations ∼10% in the tunnel couplings.
(For the figures shown below, we have used the full expres-
sions.) We then obtain

Hcot =
∑

j

tA(r − R j )tB
U

�
†
A(r)[η0 + η1τ · σ j

+ η2(τ x + τ y + τ z )(σ x + σ y + σ z ) j]�B(R j ) + H.c.,

(2.4)

with JH
U -dependent numbers η j ∼ O(1); see the Appendix.

The SU(2) spin rotation symmetry assumed in Refs. [43–45]
is in fact lowered to a Z3 symmetry around the [111] axis.

III. DIFFERENTIAL CONDUCTANCE

At this point, it is straightforward to compute the dif-
ferential conductance, G(V ) = dI

dV , from Fermi’s golden rule
[43,44,58]. In the zero-temperature limit, we find

G(V ) =
∑
jl,αβ

Cαβ

jl (r)
∫ eV

0
dωSαβ

jl (ω) = e2

h̄

∫ eV

0
dωSG(ω),

(3.1)

with the dynamical spin correlation function of the QSL,

Sαβ

jl (ω) =
∫

dt

2π
eiωt 〈�|σα

j (t )σβ

l (0)|�〉. (3.2)

The second step in Eq. (3.1) defines the averaged dynamical
spin correlator SG(ω), which follows by weighting Sαβ

jl (ω)
with its form factor,

Cαβ

jl (r) = 2e2dAdB

h̄
Tr[T α (r − R j )T

β (r − Rl )], (3.3)

with the tip (substrate) density of states dA (dB) and a trace
over conduction electron spin space. Note that dG

dV ∝ SG(V ).
The term ∝ T0 in Eq. (2.2) generates a voltage-independent
background (including a mixing term of T0 and T) not con-
tained in Eq. (3.1). However, this term is insensitive to Z2

vortices and can be disentangled from Eq. (3.1).
The correlation function (3.2) can be computed exactly

for HK by means of a Majorana representation of the spin
degrees of freedom [48–51]. By writing σα

j = ic jcα
j in terms

of Majorana fermions with a local parity constraint, Dj =
c jcx

jc
y
jc

z
j = +1, one obtains an exactly solvable noninteract-

ing Hamiltonian for “matter” Majorana fermions, {c j}, which
move in a conserved Z2 gauge field u〈 jl〉α = icα

j cα
l = ±1 [1],

HK = iK
∑
〈 jl〉α

u〈 jl〉α c jcl − iκ
∑

〈 jk〉α,〈kl〉β
u〈 jk〉α u〈kl〉β c jcl . (3.4)

All eigenstates of HK can be written as a projected tensor
product of a matter fermion state, |ϕ(G)〉, for given static
gauge field configuration |G〉,

|�〉 = P|G〉|ϕ(G)〉, (3.5)

with HK |�〉 = E�|�〉 = Eϕ(G)|�〉, where the projection P =∏
j

1+Dj

2 projects onto the physical subspace. Defining gauge-

invariant plaquette operators,

Wp =
∏

〈 jl〉α∈p

u〈 jl〉α = ±1, (3.6)

the ground state has Wp = +1 for all hexagonal plaquettes p
[1]. Plaquettes with Wp = −1 then define Z2 vortices, which
are expected near vacancies or magnetic impurities [67–69]
and harbor MZMs. In order to study the case shown in
Fig. 1(a), we will then consider |�〉 as the matter ground state
|ϕ0(G)〉 for a gauge configuration G with two well-separated
Z2 vortices. We note that G can be constructed from a zero-
vortex configuration G0 (with all bond variables u〈 jl〉α = +1
for j in sublattice A and l in sublattice B) by reversing
the bond variables along an arbitrary string connecting both
vortices.

For explicit calculations, we consider a finite honey-
comb lattice with L × L unit cells and periodic boundary
conditions. The 2N = 2L2 matter Majoranas are written as
c j = cλ(m, n), where λ ∈ (A,B) labels the sublattice and
m, n = 1, . . . , L the unit cell at R j = mê1 + nê2, with the

primitive lattice vectors ê1 = 1
2 x̂ +

√
3

2 ŷ and ê2 = − 1
2 x̂ +√

3
2 ŷ. We next define the 2N-dimensional Majorana vec-

tor c = (cA, cB )T , with the ordering convention cλ =
(cλ(1, 1), . . . , cλ(L, 1), cλ(1, 2), . . . , cλ(L, L))T , and a com-
plex fermion for each unit cell, f (m, n) = 1

2 [cA(m, n) −
icB(m, n)]. With an N-dimensional vector f formed in
analogy to cλ, the linear transformation between both repre-
sentations is given by

c = T

(
f
f †

)
, T =

(
1N 1N

i1N −i1N

)
, (3.7)

with the N × N identity 1N and T −1 = 1
2 T †. The projection

P here implies a parity constraint for the total number Nf of
f fermions and the total number Nχ of bond fermions χ〈 jl〉α =
1
2 (cα

j − icα
l ) [49–51],

(−1)Nf +Nχ = 1, (3.8)

where we assume a vanishing boundary condition twist pa-
rameter in Ref. [51]. We note that Nχ is uniquely determined
by the bond variables {u〈 jl〉α } defining the gauge configuration
G. Using the f fermions, we obtain

HK = 1

2
( f † f ) T †

(
HG

AA HG
AB

HG
BA HG

BB

)
T

(
f
f †

)
, (3.9)

where the N × N matrices HG
λλ′ for given G can be read off

from Eq. (3.4); see Ref. [39] for explicit expressions.
We next apply a unitary Bogoliubov transformation,(

f
f †

)
= UG

(
a
a†

)
, (3.10)

in order to diagonalize Eq. (3.9) in terms of new (complex)
matter fermions aμ,

HK = 1

2

N∑
μ=1

εμ

(
2a†

μaμ − 1
)
, (3.11)
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FIG. 2. Illustration of several gauge configurations Gα
j contributing to the dynamical spin correlation functions determining the tunnel

conductance. The central plaquette always refers to one of the two well-separated Z2 vortices (the other one is not shown) present in the
reference configuration G. Thick black bonds indicate a flip of the corresponding bond variable u〈 jl〉α → −u〈 jl〉α . (a) The vortex is translated by
one plaquette. (b) An additional pair of adjacent vortices at relatively large distance � (blue double arrow) is created by the bond flip. (c) Same
as (b) but for small distance �.

where εμ are the non-negative eigenenergies ordered as

0 � ε1 � ε2 � · · · � εN . (3.12)

We often use the additional index G, i.e., aμ → aG,μ and
εμ → εG,μ, to emphasize that those operators and energies
refer to the corresponding gauge configuration. The mat-
ter ground state, |ϕ0(G)〉, is determined by the conditions
aμ|ϕ0(G)〉 = 0 (for all μ) and has the energy

EG,0 = −1

2

N∑
μ=1

εG,μ. (3.13)

However, we still have to check that this state respects the
parity constraint (3.8). To that end, we first note that the parity
of the a fermions, (−1)Na with Na = ∑

μ a†
μaμ, satisfies the

relation

(−1)Nf = (−1)Na det UG, (3.14)

where we have verified that the proof for Eq. (3.14) given in
Ref. [51] for κ = 0 can be extended to κ �= 0. Equation (3.8)
can therefore be written as

(−1)Na πG = 1, πG = (−1)Nχ det UG, (3.15)

where the ground-state parity operator, πG = ±1, is gauge
invariant. For configurations with πG = −1, the matter ground
state |ϕ0(G)〉 is not in the physical subspace. One then has to
add a single fermion to the ε1 level for satisfying the parity
constraint (3.15). The corresponding changes,

|ϕ0(G)〉 → a†
μ=1|ϕ0(G)〉, EG,0 → EG,0 + ε1, (3.16)

are implicitly understood below.
We now turn to the dynamical spin correlator, where

a Fourier transformation gives the Lehmann representation
(with j in sublattice A)

Sαβ

jl (ω) =
∑
�′

〈�|σα
j |�′〉〈�′|σβ

l |�〉 δ(ω + E� − E�′ ).

(3.17)

We consider |�〉 as the matter ground state |ϕ0(G)〉 for a given
gauge configuration G (which we will later choose to contain
two vortices), with energy E0 = EG,0 in Eq. (3.13). Inserting
the Majorana decomposition into Eq. (3.17), we next observe
that cα

j commutes with all terms in HK that do not contain

u〈 jl〉α , but anticommutes with all terms that do. Starting from
G = {u〈 j′l ′〉α′ }, we then define a new gauge configuration Gα

j =
{ũ〈 j′l ′〉α′ }, see Fig. 2, with the bond variables

ũ〈 j′l ′〉α′ =
{−u〈 j′l ′〉α′ , if 〈 j′l ′〉α′ = 〈 jl〉α ,

u〈 j′l ′〉α′ , otherwise. (3.18)

With this definition, Eq. (3.17) yields [49–51]

Sαβ

jl (ω) =
∑
ϕ(Gα

j )

〈
ϕ0(G)|c j |ϕ

(
Gα

j

)〉 〈
ϕ
(
Gα

j

)|cl |ϕ0(G)
〉

× δ
(
ω + E0 − Eϕ(Gα

j )
)(

δ jl − iu〈 jl〉α δ〈 jl〉α
)
δαβ.

(3.19)

Here δ〈 jl〉α = 1 if ( jl ) form a nearest-neighbor bond of type
〈 jl〉α , and zero otherwise. Hence Sαβ

jl (ω) �= 0 is possible only
for equal spin indices (α = β) and on-site terms or nearest-
neighbor bonds. As sketched in Fig. 2, G and Gα

j are connected
by either moving a vortex by one plaquette, or by creating two
additional vortices. We note that the zero-frequency peak in
SG(ω) is connected to the configurations in Fig. 2(a). Since we
expect this peak to move to a finite but very small frequency
ω0 in practice, see Sec. IV, we have taken it into account
with the full weight of the delta function peak in the tunnel
conductance (3.1), even though the integral in Eq. (3.1) runs
over positive frequencies only.

Since matter states for two different gauge configurations
are needed in Eq. (3.19), it is convenient to use the notations

aμ = aG,μ, bμ = aGα
j ,μ

,

|0a〉 = |ϕ0(G)〉, |0b〉 = ∣∣ϕ0
(
Gα

j

)〉
, (3.20)

with the N-component spinors a = (a1, . . . , aN )T and b =
(b1, . . . , bN )T . The a matter fermions with ground state |0a〉
thus refer to the gauge configuration G, while the b fermions
with ground state |0b〉 refer to Gα

j . The corresponding ground-
state energies are denoted by E|0a〉 and E|0b〉, respectively.
From Eq. (3.10), the a and b fermions must be connected by a
unitary Bogoliubov transformation [50,51,70],(

b
b†

)
= W

(
a
a†

)
, W = U †

Gα
j
UG =

(
X ∗ Y ∗
Y X

)
, (3.21)

where the N × N matrices X and Y satisfy the relations

XX † + YY † = 1, X †X + Y T Y ∗ = 1,

XY T + Y X T = 0, X T Y ∗ + Y †X = 0.
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For det W = +1, we next observe that |0b〉 can be obtained
from |0a〉 by means of the Thouless theorem [72]. As a result,
one finds [51,73]

|0b〉 = [det(X †X )]1/4 exp
(− 1

2 a† X ∗−1Y ∗ a†
) |0a〉 . (3.22)

The matrix elements needed in Eq. (3.19) are of the form

〈ϕ0(G)|c j |ϕ(Gα
j )〉 = 〈0a|c jb

†
μ1

...b†
μn

|0b〉 , (3.23)

where μ1 � · · · � μn and n is constrained by (−1)n = πGα
j
.

One can understand this constraint by noting that Eq. (3.23),
which is a matrix element of the single fermion operator c j ,
must vanish if |ϕ0(G)〉 and |ϕ(Gα

j )〉 have the same fermion
parity. We note that for det W = 1, exactly one of the two
fermionic vacua |0a〉 and |0b〉 will not be in the physical
subspace since the πG operator will change sign when flip-
ping a bond. As discussed above, we therefore have to add a
single fermion to one of the two states. Using Eq. (3.22) and
the relation c = TUG (a, a†)T , which follows from Eqs. (3.7)
and (3.10), we can finally express all matrix elements (3.23)
exclusively in terms of a and a† operators, facilitating their
practical computation.

For a numerical implementation, we restrict the number n
of excitations in Eq. (3.23) by imposing 0 � n � nmax. Under
this truncation, exactness of the computed dynamical spin
correlations is ensured only for frequencies

ω < ωmax = E|0b〉 − E|0a〉 +
nmax+2∑
μ=1

εGα
j ,μ

. (3.24)

However, already for nmax = 2, accurate results can be ob-
tained even for ω > ωmax in the vortex-free configuration G0

[51]. For the two-vortex configuration G, rapid convergence
of the numerical results upon increasing nmax was ob-
served. Since the characteristic MZM features stem from the
low-frequency part of Sαβ

jl (ω), in all cases shown here, a trun-
cation with nmax = 2 was sufficient to reach convergence for
ω < ωmax.

However, for selected bonds 〈 jl〉α in the two-vortex con-
figuration G, we find that det W = −1. In such cases, the
Thouless theorem breaks down and X in Eq. (3.21) is a sin-
gular N × N matrix. As a result, Eq. (3.22) does not apply
anymore. For computing the STS tunnel conductance near a
single Z2 vortex, it is essential to resolve this issue. For closely
related problems, Refs. [71,72] have obtained a solution by in-
terchanging the ground-state occupancies of a single particle
and its hole partner. We follow their approach and define the
matrices X (μ) and Y (μ), see Eq. (3.21), according to

X (μ)
kl =

{
Xkl , l �= μ,

Ykl , l = μ,
Y (μ)

kl =
{

Ykl , l �= μ,

Xkl , l = μ,
(3.25)

where μ refers to the index of the interchanged particle and
hole. This interchange of columns renders X (μ) nonsingular as
it corresponds to a Bogoliubov transformation with positive
determinant. We can then use the Thouless theorem again,
such that after the operation (3.25), we can effectively use
Eq. (3.22). The thereby obtained state, |0′

b〉, has the energy
E|0′

b〉 = EGα
j ,0 + εGα

j ,μ
, and the chosen index μ should mini-

mize εGα
j ,μ

. For instance, if it corresponds to a zero mode,
εGα

j ,μ
= 0, the interchange (3.25) introduces no approxima-

tion, the energy ordering in Eq. (3.12) remains unaffected,

and |0′
b〉 captures the ground state for the b fermions. For

the configurations studied in this work, we can always find a
low-energy fermion level that approaches a zero mode in the
thermodynamic limit for κ �= 0. These low-energy modes are
well separated from the fermion continuum which has a finite
gap ∝ |κ|.

It is worth mentioning that two consistency checks are
passed successfully by our numerical calculations. First,
limV →∞

∫ eV
0 dω Sαβ

jl (ω) recovers the static equal-time spin
correlator [39]. Second, dynamical spin correlations are ra-
dially isotropic around an isolated Z2 vortex despite of the
presence of a gauge string.

IV. CONDUCTANCE SIGNATURES OF MZMs

Figure 3 shows numerical results for SG(ω) and G(V ) for
three different tip positions near an isolated Z2 vortex. The
different peaks in each SG(ω) curve have a clear physical
meaning. First, the ω = 0 peak is directly connected to MZMs
and stems from configurations Gα

j with the vortex translated
by one step. (For nonuniform Kitaev couplings, the peak can
shift to a small frequency ω0; see below.) The support for
this peak comes only from on-site terms and nearest-neighbor
bonds directly enclosing the vortex. Indeed, Fig. 3(a) shows
that the peak weight decreases rapidly with the tip-vortex dis-
tance. Second, the peaks at ω = �E2v (�) (≈ 0.1K in Fig. 3)
correspond to the energy cost for creating a configuration Gα

j
with an additional pair of adjacent vortices by flipping a bond
at distance � from the original vortex, with the fermion bound
state built from the new overlapping MZM pair unoccupied.
This peak may contain several subpeaks since various con-
figurations Gα

j with different �, and hence different �E2v (�),
may contribute to SG(ω) in this frequency range. Third, the
peak structure at ω = �E2v (�) + ε f (�) ≈ 0.25K includes the
energy cost ε f (�) for occupying the fermion bound state.
Finally, the onset of the gapped two-fermion continuum is
marked by a (small) peak at ω = �E2 f = 3

√
3

2 |κ| (≈ 0.5K
in Fig. 3).

The conductance G(V ) in Fig. 3(b) follows by integrating
SG(ω) and therefore shows steps at the voltages matching a
peak in SG(ω). One can thus measure the important energy
scales �E2v , ε f , and �E2 f by STS. However, the respective
step sizes are not universal because the peak weights in SG(ω)
depend on the tip position and on the form factors. It is
instructive to compare to the vortex-free configuration G0,
see Fig. 3(b), where G(V ) is strongly suppressed for eV <

�E2v (∞) + ε f (∞). Indeed, here the lowest-energy excitation
probed by G(V ) corresponds to adding a vortex pair and
filling the fermion bound state in order to respect the parity
constraint. In this low-voltage regime, the conductance for the
two-vortex configuration G is instead dominated by MZMs
and will be finite at small V , with a step at eV = �E2v (�).
We also observe from Fig. 3(b) that the “bulk” behavior of
G(V ), found for arbitrary tip position in configuration G0, is
approached by moving the probe tip far away from the vortex
center. We note that the zero-voltage step is particular to the
integrable Kitaev model with uniform couplings (assumed in
Fig. 3), where the eigenstates are degenerate with respect to
the vortex position. In a generic nonintegrable case, vortices

054432-5

P3 SCANNING TUNNELING SPECTROSCOPY OF MAJORANA ZERO MODES 97



BAUER, FREITAS, PEREIRA, AND EGGER PHYSICAL REVIEW B 107, 054432 (2023)

FIG. 3. STS for a Kitaev QSL in a two-vortex configuration G, see Fig. 1(b), for κ = 0.2K , L = 37, JH = 0.05U , l0 = 0.75a0, and d = l0.
For α-RuCl3, one expects K ≈ 5 meV [60]. (a) Weighted spin correlation function SG vs ω, see Eq. (3.1), for three tip positions (inset).
We plot SG(ω) in units of S0 = dAdB(t0tB/U )2, with delta function peaks replaced by Lorentzians of width �L = 0.005K due to higher-order
tunneling processes. (b) Conductance G (in units of G0 = S0

e2

h̄ ) vs V , see Eq. (3.1), for the tip positions in (a). The black dashed curve is for
the vortex-free configuration G0. The voltages V1,2 are used in Fig. 4.

are mobile but can be trapped by bond disorder, vacancies,
magnetic impurities, or by an external electrostatic poten-
tial. The V = 0 step may then shift to a small finite voltage
eV = ω0, where ω0 describes the difference in vortex creation
energies on different plaquettes. Such shifts may be useful to
distinguish MZM-induced conductance steps from the back-
ground conductance due to T0 in Eq. (2.2).

For the voltages V1,2 marked in Fig. 3(b), we show the tip-
position dependence of the conductance in Fig. 4. For V = V1,
see Fig. 4(a), the physics is dominated by the zero-frequency
MZM peak in SG(ω), and the spatial profile in Fig. 4(a) en-
codes a convolution of the (squared) MZM wave function [53]
with the form factor (3.3). However, in contrast to the standard
situation in STS [21], it is not possible to map out the MZM
wave function beyond the immediate vicinity of the vortex
because only terms from sites or bonds encircling the vortex
contribute for eV < �E2v (�). The conductance profile for
V = V2 in Fig. 4(b) reveals a dip in the center, which arises be-
cause for a tip away from the vortex, the form factors enhance
the peak contribution for eV > �E2v (�). However, this volt-
age regime involves many vortex configurations Gα

j , rendering

it difficult to extract the MZM wave function. Nonetheless,
the conductance profile allows us to detect the MZM at the
vortex location. Finally, the angular isotropy of the spatial
profile approximately found at low voltage is reduced to a
C6 symmetry at higher voltages. While this effect is hardly
visible for the tip distance d = l0 in Fig. 4, it becomes more
prominent for smaller d .

V. TOPOLOGICAL MAGNONS

In this section, we explore a different mechanism that could
in principle generate similar tunnel conductance features to
those reported above for MZMs in the spin-liquid phase. To
that end, we consider topological magnons in the polarized
phase of the Kitaev model in a magnetic field [18,19,43].
Such models have been proposed as an alternative scenario
for explaining the observed half-quantized thermal Hall con-
ductivity [18,19]. Below we clarify whether local defects or
magnetic impurities are able to generate topological magnon
bound states below the magnon gap. If present, such bound
states may produce tunnel conductance steps at voltages

(a) (b)

FIG. 4. Spatial conductance profile near a vortex (central plaquette) in the xy plane, for the parameters in Fig. 3 with (a) V = V1 and
(b) V = V2; see Fig. 3(b). Note the different color scales.
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matching the respective bound-state energies. In analogy to
the topological superconductor case, magnon-induced con-
ductance steps could then be difficult to distinguish from those
caused by MZMs in a Kitaev spin liquid.

We consider spin-S operators Sγ

i on the 2D honeycomb
lattice with Kitaev couplings. The Hamiltonian is given by

Hm = −
∑
〈i j〉γ

Ki jS
γ

i Sγ

j −
∑

j

h j · S j, (5.1)

where γ ∈ {x, y, z} ≡ {1, 2, 3} denotes the spin components
as well as the bond directions; see Sec. II. For simplic-
ity, we assume that the local magnetic fields are oriented
along the [111] direction, h j = h jc, with the unit vector c in
Eq. (A14); see the Appendix. In the homogeneous case, the
Kitaev couplings and local fields are given by Ki j = K and
h j = h, respectively. In order to model a defect, we study
inhomogeneous Kitaev couplings Ki j near a single plaque-
tte corresponding to the defect, similar to models for bond
disorder and vacancies [74–76]. Recalling that a large-spin
magnetic impurity is equivalent to a local change of the mag-
netic field at a single site [77], we model a magnetic impurity
by a local change of the field hi �= h at this site relative to the
bulk field h. We follow Refs. [18,19] and derive the linear spin
wave theory which becomes exact in the large-S limit.

We first rotate the local basis to have the magnetization
axis along the c direction. With the orthogonal matrix R =
(a b c), see Eq. (A14), we have the rotated spin operators S̃α

i =
RαβSβ

i . Next, we employ a Holstein-Primakoff transformation
to expand around the polarized state,

S̃z
i = S − b†

i bi , S̃x
i ≈

√
S

2
(bi + b†

i ),

S̃y
i ≈ −i

√
S

2
(bi − b†

i ), (5.2)

with bosonic magnon operators bi. Expanding Hm in Eq. (5.1)
in powers of 1/S, we obtain Hm = Ecl + H1 + H2 + O(S1/2).
The first term describes the classical ground state energy,
Ecl = − S2

3

∑
〈i j〉 Ki j − S

∑
j h j . The second term is linear in

the bosons,

H1 = S3/2

3

∑
i

⎛
⎝∑

γ

e−i2πγ /3Ki,i+δγ

⎞
⎠bi + H.c., (5.3)

with the in-plane nearest-neighbor vectors

δ1 = 1

2
x̂ + 1

2
√

3
ŷ, δ2 = −1

2
x̂ + 1

2
√

3
ŷ, δ3 = − 1√

3
ŷ.

(5.4)

One finds H1 = 0 for Ki j = K , but in the presence of de-
fects, H1 �= 0 indicates that we have expanded around the
wrong classical state. Due to the anisotropy of the Kitaev
interactions, the spins do not align with the [111] direction
anymore if the Z3 symmetry is broken by defect bonds. To
correct for this problem, one has to find the correct classical
state with an inhomogeneous magnetization and then apply
position-dependent R matrices in order to rotate the spins to
their local magnetization axis. While such refinements could

give quantitative corrections, we here focus on the quadratic
term,

H2 = − S

3

∑
〈i j〉γ

Ki j (b
†
i b j + b†

jbi + ei2πγ /3bi b j + e−i2πγ /3b†
jb

†
i )

+ S
∑

i

⎛
⎝hi + 1

3

∑
j

Ki j

⎞
⎠b†

i bi . (5.5)

Indeed, in general terms, the linear spin wave theory resulting
from Kitaev (or other) interactions on the 2D honeycomb
lattice must be of the form

H2 = S
∑
〈i j〉γ

(ti jb
†
i b j + t∗

i jb
†
jbi + �i jbi b j + �∗

i jb
†
jb

†
i )

+ S
∑

i

Bi b†
i bi , (5.6)

where Bi is an effective magnetic field including the Weiss
field. The misalignment of spins around defects here should
give rise to an additional position dependence in the parame-
ters ti j , �i j , and Bi in Eq. (5.6), on top of the immediate effects
of Ki j anisotropy in Eq. (5.5). In what follows, we consider
Hm � H2 as given by Eq. (5.5).

We first address the homogeneous case, where
Fourier transformation gives H2 = S

∑
k∈ 1

2 BZ �
†
kMk�k .

Here k runs over half the Brillouin zone, �
†
k =

(b†
k,A b†

k,B b−k,A b−k,B ) is a four-component spinor
(including the sublattice index), and

Mk =
(

Ak Bk

B∗
−k AT

−k

)
. (5.7)

Using the notation �k,n = ∑
γ e−i2πnγ /3eik·δγ with n ∈ {0, 1},

we have defined the matrices

Ak =
(

h + K − 1
3 K�k,0

− 1
3 K�−k,0 h + K

)
,

Bk =
(

0 − 1
3 K�k,1

− 1
3 K�−k,1 0

)
. (5.8)

This Hamiltonian can be diagonalized by a Bogoliubov
transformation. With � = diag(1, 1,−1,−1), we obtain the
magnon band dispersion from the positive eigenvalues of
�Mk. The result is illustrated in Fig. 5. We find two bands
ω1(k) and ω2(k), where analytical but lengthy expressions are
available. These topological magnon bands cover the energy
range

h < ω1(k) <
√

h(h + 2K ), h + K < ω2(k) < h + 2K.

(5.9)

The magnon band gap is thus given by �Em = h. For h →
0, the lower magnon band becomes a zero-energy flat band,
signaling the degeneracy of the classical Kitaev model at zero
field.

A. Defect from bond disorder

Next we turn to inhomogeneous Kitaev interactions, where
we model a defect by modifying the bonds Ki j → ξK around
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FIG. 5. Topological magnon bands for h/K = 0.4 (with momen-
tum unit a−1

0 ) from linear spin wave theory for the homogeneous
model (5.1).

a given plaquette representing the defect by a positive fac-
tor ξ �= 1. We have studied two different radially symmetric
bond defect patterns. In the first case, we modify only the
six bonds directly surrounding the defect plaquette. In the
second case, we instead change only the six adjacent bonds
pointing radially outward from this plaquette. The conclusions
described below are identical for both cases. We have studied
the spectrum of H2 in Eq. (5.5) by numerical diagonalization
on a finite L × L honeycomb lattice as described in Sec. III.
We observe that making the bonds stronger (ξ > 1) creates a
repulsive potential for magnons, which generates antibound
states above the top of the upper band, ε′

m > h + 2K . There
are also bound states in the gap between both bands. How-
ever, even if we make the bonds significantly weaker, ξ < 1,
we never observe bound states below the lower band, εm <

�Em. We conclude that bond defects are unlikely to produce
magnon bound states at subgap energies. At the same time, we
cannot rule out that a more complex bond defect pattern could
cause subgap features that can mimic the Majorana features
described in Sec. IV. Future work should investigate this issue
in more detail.

B. Magnetic impurity

Another limiting case is to locally modify only the mag-
netic field hi in Eq. (5.5), keeping homogeneous Kitaev
couplings Ki j = K . For a radially symmetric inhomogeneous
magnetic field profile, Z3 symmetry remains intact and the
linear-boson term H1 in Eq. (5.3) vanishes. If we change the
field only at a single site, hi = h′ �= h, with the bulk field h
acting at all other sites, we can find a single subgap bound
state for h′ < h as shown in Fig. 6. The bound-state energy
εm < �Em vanishes for h′ ≈ −1.1h for h = 0.4K . For smaller
h, the vanishing of εm occurs at lower values of h′/h < 0.
For generic values of h′/h, we find that εm is positive. The
dynamical spin correlation function then will have a peak
at ω = εm, and Eq. (3.1) yields a single steplike feature in
G(V ) at eV = εm. Except for the fine-tuned case with εm = 0,

FIG. 6. Magnon spectrum ω vs h′/h for a local magnetic field
h′ �= h at a single site. The bulk field is h = 0.4K . Shaded regions
describe continuum states; see Eq. (5.9). A single subgap bound state
can exist for h′ < h. A high-energy antibound state is visible for h′ >

h, and another bound state exists in the minigap between both bands.

this step does not occur at zero voltage as expected for the
MZM case.

For a wider field profile, with the field change extending
over several sites, we typically find several subgap bound
states. This case can be realized if the impurity is coupled
to several sites. In such cases, from the G(V ) curve alone, it
can be difficult to disentangle the effects of magnon bound
states from those due to MZMs. However, a collection of
several nearby magnetic impurities causing such a field profile
should be identifiable by concomitant STM surface topogra-
phy scans.

VI. CONCLUSIONS

Based on the above analysis, we expect that the tunnel
conductance features due to MZMs in a spin liquid will be
quite robust. For the topological magnon scenario in Sec. V,
we find that defects modeled by locally inhomogeneous
Kitaev couplings do not bind subgap magnon bound states.
On the other hand, a large-spin magnetic impurity can induce
a single subgap bound state centered at the corresponding
site. One then expects a single conductance step, where the
spatial distribution of the STS tunnel conductance peaks at
this site. For the MZM case, we instead predict a characteristic
sequence of steps and the spatial distribution should peak at
the center of the hexagon defining the vortex.

We conclude that the perspectives for STS detection of
MZMs in spin liquids appear promising. In fact, tunnel-
ing experiments on monolayers of α-RuCl3 have recently
observed interesting low-energy excitations [62]. Given the
rapid progress in encapsulating and probing atomically thin
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materials [78], detailed experimental tests of our predictions
will likely soon be available.
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APPENDIX: DERIVATION OF LOW-ENERGY THEORY

This Appendix provides a derivation of the cotunneling
Hamiltonian (2.2) with the corresponding transition matrix
elements. As starting point, we take the general Hamiltonian
Htot = HM + Vat + Htun, where HM describes noninteracting
metallic leads representing the scanning probe tip and the
substrate,

HM =
∑

ν∈{A,B}

∑
τ∈{↑,↓}

∑
k

εντ (k)c†
ντ (k)cντ (k). (A1)

The fermion annihilation operators cντ (k) with ν = A, B refer
to tip and substrate electrons, respectively, where τ is the spin
projection and εντ (k) the energy with respect to the Fermi
energy. The Pauli matrices τ used below act in the spin space
of the conduction electrons.

For the 2D Kitaev layer, we start from a Hubbard-
Kanamori model for the d5 electrons in an edge-sharing
octahedral environment, e.g., those of the Ru3+ ions in
α-RuCl3. For lowest-order perturbation theory in the tunnel
Hamiltonian Htun connecting the layer to the STM tip and
to the substrate, only the single-site atomic Hamiltonian Vat

in the Hubbard-Kanamori model is needed (see, for instance,
Ref. [39]),

Vat = U − 3JH

2
(N̄ − 1)2 − 2JH S̄2 − JH

2
L̄2 + λsoL̄ · S̄,

(A2)

with the on-site Coulomb energy U , the Hund coupling JH ,
and the spin-orbit coupling λso. The respective couplings can
be renormalized by screening processes resulting from the
presence of the tip and the substrate, but one expects U ≈

2 eV and λso � JH ,U . For definiteness, we assume JH � U .
To lowest order in Htun, contributions from different lattice
sites simply add up. The operators N̄ , S̄, and L̄ in Eq. (A2)
refer to hole number, spin, and angular momentum, respec-
tively. In terms of the hole annihilation operators hs with the
combined spin-orbital index s = (α, σ ), they are expressed as

N̄ = h†h, S̄ = 1
2 h†(σ̄ ⊗ 13)h, L̄ = h†(12 ⊗ l̄)h, (A3)

with h† = (h†
x↑, h†

y↑, h†
z↑, h†

x↓, h†
y↓, h†

z↓). The five d electrons
in a cubic crystal field occupy three t2g orbitals (xy, yz, zx),
denoted here by the complementary index α = (z, x, y). The
Pauli matrices σ̄ act in the spin space of the magnetic layer
site, and l̄ = (l̄ x, l̄ y, l̄ z ) represents the leff = 1 orbital angular
momentum of the corresponding t2g states, with explicit ma-
trix representations specified in Ref. [39]. Following standard
practice, the spin-orbit coupling λso will be taken into account
later through a projection to the lowest-lying hole states with
total angular momentum jeff = 1/2.

Electron transfer between tip (or substrate) and the Mott
insulating site is described by a tunneling Hamiltonian Htun =
T1 + T−1, where T±1 refers to changes of the hole number
by �N̄ = ±1, respectively. With the complex-valued tunnel
amplitude tντ s(k) connecting a conduction electron in lead
ν = A, B with spin τ and momentum k to the spin-orbital hole
state s = (α,−σ ) on the magnetic site,

T1 =
∑
ν,τ,s

∑
k

tντ s(k)c†
ντ (k)h†

s , T−1 = T †
1 . (A4)

We then employ H0 = HM + Vat as the unperturbed
Hamiltonian. The ground-state sector has a single hole at
the spin-liquid site, and the intermediate states have either
N̄ = 0 or N̄ = 2 holes, depending on whether T−1 or T1 is
applied to a single-hole state. In the latter case, we have
to distinguish between angular momentum channels with
L = 0, 1, 2. Following Ref. [39], we use the notation P (n)

L
for the projection operators to states with angular momentum
L and hole number n = 0, 1, 2. We omit the lower index
for n = 0, 1 because in those cases there is only a single
angular momentum channel. The projector to two-hole states
is P (2) = ∑

L P (2)
L . For a lowest-order expansion in Htun, the

Hilbert space can be truncated to have at most two holes at
the magnetic layer site, 1 � P (0) + P (1) + P (2).

Next we employ a canonical transformation to perform
the projection to the low-energy sector, which is equivalent
to a Schrieffer-Wolff transformation. Writing H̃ = eSHe−S =
H + [S, H] + · · · , the first-order generator S = S1 must then
obey [H0, S1] = Htun. Using the commutators

[H0,P (2)
L T1P (1)] =

∑
ν,τ,s

∑
k

tντ s(k)[�EL + εντ (k)] c†
ντ (k)P (2)

L h†
s P (1),

[H0,P (0)T−1P (1)] =
∑
ν,τ,s

∑
k

t∗
ντ s(k)[�E0 − εντ (k)] P (0)hs P (1)cντ (k), (A5)

and writing S1 = S(+)
1 − S(−)

1 with S(−)
1 = S(+)†

1 , the part increasing the hole number at the magnetic site is

S(+)
1 =

∑
ν,τ,s

∑
k

c†
ντ (k)

(
− tντ s(k)

�E0 − εντ (k)
P (1)h†

s P (0) +
∑

L

tντ s(k)

�EL + εντ (k)
P (2)

L h†
s P (1)

)
. (A6)
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The excitation energies �EL are given by

�E0 = U

2
+ JH , �E1 = U

2
− 4JH , �E2 = U

2
− 2JH ,

(A7)

where the energy for the transition to a state with zero holes
is the same as for the transition to two holes with L = 0. The
charge gap is set by the smallest of those energies, Eg = �E1.

The canonical transformation then results in the cotunneling
Hamiltonian

Hcot = − 1
2P (1)(T−1S(+)

1 − T1S(−)
1 )P (1) + H.c., (A8)

which accurately describes the low-energy subspace with en-
ergy scales below Eg. Inserting the above expressions, we find
the explicit representation

Hcot = −1

2

∑
ν1,τ1,s1

∑
ν2,τ2,s2

∑
k1,k2

tν2τ2s2 (k2)t∗
ν1τ1s1

(k1)

�E0 − εν1τ1 (k1)
P (1)h†

s2
hs1

P (1)c†
ν2τ2

(k2)cν1τ1
(k1)

−1

2

∑
ν1,τ1,s1

∑
ν2,τ2,s2

∑
k1,k2

∑
L

t∗
ν2τ2s2

(k2)tν1τ1s1 (k1)

�EL + εν1τ1 (k1)
P (1)hs2

P (2)
L h†

s1
P (1)cν2τ2

(k2)c†
ν1τ1

(k1) + H.c. (A9)

We next compute the required matrix elements between spin-orbital states (where σ̄ = −σ for σ =↑,↓= +1,−1),

〈s′|h†
s2

hs1
|s〉 = δs′s2δss1 , 〈s′|hs2

P (2)
L=0h†

s1
|s〉 = 1

3σ2σ1δα′α2δαα1δσ2σ̄ ′δσ1σ̄ ,

〈s′|hs2
P (2)

L=1h†
s1
|s〉 = 1

2 (δα2α1δα′α − δα2αδα′α1 )(δσ2σ1δσσ ′ + δσ2σ δσ1σ ′ ),

〈s′|hs2
P (2)

L=2h†
s1
|s〉 = δs2s1δss′ − δs2sδs1s′ − 〈s′|hs2

P (2)
L=0h†

s1
|s〉 − 〈s′|hs2

P (2)
L=1h†

s1
|s〉. (A10)

We then obtain the matrix elements of Hcot in spin-orbital space as

(Hcot )s′s = −1

2

∑
k1ν1τ1

∑
k2ν2τ2

Fs′s(k2, ν2, τ2; k1, ν1, τ1)c†
ν2τ2

(k2)cν1τ1
(k1)

−1

2

∑
k1ν1τ1

∑
k2ν2τ2

2∑
L=0

GL
s′s(k2, ν2, τ2; k1, ν1, τ1)cν2τ2

(k2)c†
ν1τ1

(k1) + H.c., (A11)

with the definitions

Fs′s(k2, ν2, τ2; k1, ν1, τ1) = tν2τ2s′ (k2)t∗
ν1τ1s(k1)

�E0 − εν1τ1 (k1)
,

GL
s′s(k2, ν2, τ2; k1, ν1, τ1) =

∑
s1,s2

t∗
ν2τ2s2

(k2)tν1τ1s1 (k1)

�EL + εν1τ1 (k1)
〈s′|hs2

P (2)
L h†

s1
|s〉. (A12)

In a low-energy approach, we can now assume low ener-
gies, |εντ (k)| � Eg, for all conduction electron states involved
in virtual processes. For simplicity, we also consider effec-
tively k-independent, spin-conserving, and spin-independent
tunneling amplitudes,

tντ s(k) = tναδτσ , (A13)

with s = (α,−σ ). Tunneling between the substrate (ν = B)
and the magnetic layer is modeled by a featureless isotropic
coupling, tBα = tB. However, the tunnel couplings connecting
the tip (ν = A) to a magnetic site depend on the t2g orbital (α)
as well as on the relative position between tip and site. For
definiteness, we model the t2g orbitals by real wave functions
with the proper symmetry. For instance, for the xy orbital
centered at R j = 0, we take �xy(r′) ∝ x′y′e−|r′ |/ld , where ld
sets the size of the orbital. Here the components of r′ refer to
the axes fixed by the octahedral environment of the magnetic
ion; see Fig. 7(a). In these coordinates, the unit vectors for the

conventional crystallographic directions are given by

a = 1√
6

⎛
⎝ 1

1
−2

⎞
⎠, b = 1√

2

⎛
⎝−1

1
0

⎞
⎠, c = 1√

3

⎛
⎝1

1
1

⎞
⎠,

(A14)

where c is perpendicular to the honeycomb plane. As the wave
function for the tip at position r, we consider

�s(r′) ∝ e−|r′−r|/ls , (A15)

with characteristic length ls.
In Fig. 7(b) we show the overlap between �xy and �s as a

function of the tip position, keeping the tip height r · c > 0
constant and varying the coordinates parallel to the honey-
comb plane. The coordinates are scaled by the effective radius
of the t2g orbitals, rd = ∫

d3r′ r′|�α (r′)|2 = 7ld/2. We denote
by vα the in-plane vector that corresponds to the relative
position of maximum overlap between the tip and the α or-
bital. Note that vα lies in the direction perpendicular to the α

bond. This shift in the position of maximum overlap can be
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a

b

(a) (b)

×10−3

FIG. 7. Orbital and spatial dependence of tunnel couplings. (a) xy orbital in the edge-sharing octahedra geometry of α-RuCl3. The red,
green, and blue lines represent the directions of x, y, and z bonds in the honeycomb plane, respectively. (b) Overlap between the xy orbital at
R j = 0 and the wave function for electrons in the tip, modeled as an s orbital centered at position r; see Eq. (A15). The arrow indicates the
point of maximum overlap, corresponding to the vector vz. Here we set ls = 4ld and r · c = 3ld .

interpreted in terms of the direction in which the α orbital
points above the plane; see Fig. 7(a). Comparing the ionic ra-
dius of Ru3+ with the lattice spacing of α-RuCl3, we estimate
|vα| ≈ 0.1a0. To capture the orbital and position dependence
in the tunnel couplings within a simple analytical expression,
we parametrize tAα (r, R j ) as given in Eq. (2.3), with tunneling
length l0 ∼ ls � a0.

For given r and R j , it is convenient to express the tunnel
couplings tAα in terms of spherical angles ϕ ∈ [0, 2π ) and θ ∈
[−π, π ], ⎛

⎝tAx

tAy

tAz

⎞
⎠ = tA

⎛
⎝cos ϕ sin θ

sin ϕ sin θ

cos θ

⎞
⎠. (A16)

Inserting the above expressions into Eq. (A12) and using
Eq. (A10), we finally perform the projection to the jeff = 1/2
subspace selected by the spin-orbit coupling. The correspond-
ing basis states are [39]

|+〉 = 1√
3

(−|z,↑〉 − i|y,↓〉 − |x,↓〉),

|−〉 = 1√
3

(|z,↓〉 + i|y,↑〉 − |x,↑〉). (A17)

The spin operator appearing in the Kitaev model for this
site, S = 1

2σ, acts in the space spanned by Eq. (A17). The
cotunneling Hamiltonian follows as

Hcot = −
∑
k1ν1

∑
k2ν2

tν1tν2

2�E0
c†
ν2

(k2)( f01 + f · σ )cν1
(k1) −

∑
k1ν1τ1

∑
k2ν2τ2

∑
L

tν1tν2

2�EL
cν2

(k2)
(
gL

01 + gL · σ
)
c†
ν1

(k1) + H.c., (A18)

with f0 and f = ( fx, fy, fz ) given by

f0 = F↑↑ + F↓↓
2

, fx = F↑↓ + F↓↑
2

, fy = i
F↑↓ − F↓↑

2
, fz = F↑↑ − F↓↓

2
, (A19)

and likewise for gL
0 and gL. For given (σ, σ ′) indices, the 2 × 2 matrices Fσσ ′ and GL

σσ ′ act in conduction electron spin space.
We find

F↑↑ = 1

3

(
cos θ (1 + i) cos θ

e−iϕ sin θ (1 + i)e−iϕ sin θ

)
, F↑↓ = 1

3

(
(1 − i) cos θ − cos θ

(1 − i)e−iϕ sin θ −e−iϕ sin θ

)
, G0

↑↑ = F↓↓
3

, G0
↑↓ = −F↑↓

3
,

G1
↑↑ = 1

6

(
(1 − i)eiϕ sin θ + 2 cos θ (1 + i) cos θ

e−iϕ sin θ (sin ϕ + cos ϕ) sin θ

)
, G1

↑↓ = 1

6

(
e−iϕ sin θ (sin ϕ + cos ϕ) sin θ

(1 − i)e−iϕ sin θ −(1 − i) cos θ

)
,

G2
↑↑ = [(cos ϕ + sin ϕ) sin θ + cos θ ]1 − F↑↑ − G0

↑↑ − G1
↑↑, G2

↑↓ = −F↑↓ − G0
↑↓ − G1

↑↓. (A20)

The remaining matrices are obtained by using a time-reversal operation,

F↓↓ = τyF ∗
↑↑τy, F↓↑ = −τyF ∗

↑↓τy, GL
↓↓ = τy(GL )∗↑↑τy, GL

↓↑ = −τy(GL )∗↑↓τy, (A21)
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with Pauli matrices τ in conduction electron spin space. In the
second term of Eq. (A18), we now use

cν2τ2
(k2)c†

ν1τ1
(k1) = −c†

ν1τ1
(k1)cν2τ2

(k2) + δν1ν2δτ1τ2δk1k2 .

The factor δτ1τ2 in the last term implies a trace over the
2 × 2 matrices for conduction electrons. As a result, only the
identity can contribute. We thereby obtain the cotunneling
Hamiltonian (2.2), where �A(r) = ∑

k cA(k) is a real-space
two-component spinor field describing conduction electrons
on the tip at position r. Likewise, �B(R) refers to the substrate
spinor field below the site with position R. Cotunneling pro-
cesses are then characterized by the transition matrices T0 and
T α , with T = (T x, T y, T z ), which act in conduction electron
spin space and are given by

T0 = − tAtB
�E0

f0 +
2∑

L=0

tAtB
�EL

gL
0,

T = − tAtB
�E0

f +
2∑

L=0

tAtB
�EL

gL. (A22)

All matrix elements scale ∝ tAtB/U , where individual contri-
butions carry JH

U -dependent factors. We emphasize that T0 and
T depend on r − R j , with the tip (site) position r (R j).

The above expressions can be simplified considerably
when neglecting the orbital-dependent shifts vα in Eq. (2.3).
This approximation becomes exact for a tip placed right on top

of a magnetic site, and otherwise causes quantitative (≈10%)
deviations in the tunnel couplings. We then obtain

f0 = 1

2
√

3
1, fα = 1

3
√

3
(τ x + τ y + τ z ) − 1

2
√

3
τα,

g0
0 = 1

6
√

3
1, g0

α = − 29

2
√

3
(τ x + τ y + τ z ) + 1

6
√

3
τα,

g1
0 = 1

2
√

3
1, g1

α = 13

2
√

3
τα,

g2
0 = 23

3
√

3
1, g2

α = − 55

9
√

3
(τ x + τ y + τ z ) + 26

3
√

3
τα,

and Hcot takes the form (2.4), where we define the JH
U -

dependent coefficients ( j = 0, 1, 2)

η j = U

2
√

3�E0

ζ j +
2∑

L=0

U

2
√

3�EL

ζ L
j (A23)

with �EL in Eq. (A7) and the numbers

ζ0 = 1, ζ 1
0 = 1

3
, ζ 2

0 = 1, ζ 3
0 = 46

3
,

ζ1 = −1

2
, ζ2 = 1

3
, ζ 0

1 = 1

6
, ζ 0

2 = −1

9
, ζ 1

1 = 0,

ζ 1
2 = 1

6
, ζ 2

1 = 1

3
, ζ 2

2 = − 7

18
.
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We predict a general local spin-flip transition mechanism caused by magnetic quantum impurities in (partially)
polarized phases of quantum magnets in the absence of conservation laws. This transition arises when a magnon
bound-state crosses zero energy as a function of the magnetic field. As an application, we study two-dimensional
(2D) van der Waals magnets described by the Kitaev-Heisenberg honeycomb model which applies to the
transition metal trihalides CrI3 and α-RuCl3. We consider the adatom and substitutional impurity positions,
and show how spin-flip transitions can be detected in scanning tunneling spectroscopy.

DOI: 10.1103/PhysRevB.110.L220403

Introduction. Understanding the fascinating properties of
the recently discovered two-dimensional (2D) van der Waals
magnets is a topic of enormous current interest; for reviews,
see Refs. [1–7]. These materials can be directly studied by sur-
face probe techniques. In particular, their local magnetization
profile has been mapped out by scanning nitrogen-vacancy
magnetometry and by magnetic force microscopy [7]. With
the atomic resolution offered by scanning tunneling spec-
troscopy (STS) [8], one may examine single-atom spin-flip
processes and spin excitations localized near impurities in
full detail [9,10]. In this Letter, we study magnetic quantum
impurities in (partially) polarized phases of 2D magnets in
the absence of conservation laws. We uncover a mechanism
for local spin-flip transitions tied to subgap magnon bound
states induced by magnetic quantum impurities. Whenever the
bound-state energy crosses zero as a function of the magnetic
field, we predict such a transition to happen. This mechanism
differs from a conventional spin-flop transition [11]. We also
develop a low-energy continuum approach showing that these
spin-flip transitions appear not only in 2D magnets, but also
in one-dimensional (1D) spin chains, and possibly even in
three-dimensional (3D) magnets.

For concrete calculations, we focus on the Kitaev-
Heisenberg (KH) honeycomb model for transition metal
trihalides [7]. This material class includes CrI3, a celebrated
2D ferromagnet with a small spin gap due to anisotropic ex-
change interactions [12–17]. A second example is the layered
Kitaev material α-RuCl3 [18–21]. In the latter, the effects
of dilute Cr3+ magnetic impurities have been linked to the
Kondo screening by a Majorana metal phase [22], but magnon
bound states may also potentially affect the low-energy spec-
trum. We note that STS observations of bound states induced
by magnetic impurities in the spin-liquid candidate TaSe2

have been interpreted as spinon-Kondo effect [23,24]. Similar
bound states have been studied in the context of the Kondo
effect in spin chains [25], a problem of relevance also for
nanographene chains [26,27].

For 2D magnets in a magnetic field, nonmagnetic impu-
rities (such as vacancies or bond defects) are generally not
expected to induce bound states below the magnon gap. For
instance, for the 2D KH model [28–34] in a partially polar-
ized phase [35–37], nonmagnetic impurities generate magnon
bound states only inside the energy gap between magnon
bands of opposite Chern number [38,39]. These bound states
are precursors of the chiral edge states in topological magnon
phases [36,37,40–42]. However, for a classical magnetic im-
purity (with spin Simp � 1), which is equivalent to a local
magnetic field, bound states below the magnon gap were pre-
dicted [39]. This effect is independent of the band topology,
see the Supplemental Material [43].

We here include quantum fluctuations of the magnetic
impurity by using exact diagonalization (ED) for small lat-
tices, linear spin wave (LSW) theory in the thermodynamic
limit, and a low-energy continuum theory. Quantum effects
are shown to qualitatively change the scaling properties of the
sub-gap bound-state energy. Depending, in particular, on the
values of the bulk (S) and the impurity (Simp) spins and on the
impurity position type (e.g., adatom versus substitutional), the
bound-state energy can reach zero multiple times as a function
of the magnetic field. Whenever this happens, we predict a
discontinuity in the local magnetization of the impurity and/or
its neighboring bulk spins. Such local spin-flip transitions
manifest themselves as pronounced steps in the field depen-
dence of the zero-bias STS conductance. By scanning the STS
conductance at finite bias voltage, one obtains information
about the bound-state energy. Moreover, by performing spatial
STS scans, the impurity type can be fully resolved.

General setup. We consider 2D spin Hamiltonians of the
form (h̄ = e = 1 below)

H =
∑

〈 j,k〉
ST

j Hj,kSk −
∑

j

h j · S j, (1)

where S j = (Sx
j , Sy

j , Sz
j )

T is a spin operator at site j, 〈 j, k〉
denotes a bond between neighboring sites, Hj,k are spin-spin
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FIG. 1. Sketch of a (small part of a) 2D magnet with honeycomb
lattice structure (bulk spins are shown in blue) and a single magnetic
quantum impurity (yellow). Coordinate unit vectors (â, b̂, ĉ) and
nearest-neighbor bond types (x, y, z) are also indicated. We assume
h = hĉ. (a) Adatom position of the impurity with isotropic exchange
coupling JK > 0 to a single bulk spin. (b) Substitutional position,
where the impurity replaces one bulk spin and interacts through
isotropic couplings JK > 0 with the three neighboring bulk spins.
Here we schematically illustrate that, in general, the classical spin
configuration minimizing the energy can be inhomogeneous due to
spin canting in the vicinity of the impurity [43–47].

coupling matrices, and the vector h j is proportional to the
local magnetic field at site j. For simplicity, we consider a
homogeneous field h = hĉ, see Fig. 1. The bulk sites are
occupied by spins S, and there is a single magnetic impu-
rity with spin Simp. We denote the impurity site by j = 0,
which is included in the summations in Eq. (1). The bulk
spins reside on a honeycomb lattice, where we consider two
types of impurity locations as illustrated in Fig. 1. In the
adatom case, the magnetic impurity couples to a single bulk
spin. In the substitutional case, one replaces a single bulk
spin by the impurity spin which then couples to the three
neighboring bulk spins. For other configurations, e.g., if the
impurity is located in the center of a hexagonal plaquette
and thus couples to six bulk spins, results can be obtained
by adapting our calculations for the cases considered here.
For anisotropic exchange interactions, spin-rotational sym-
metry is absent, but the bulk spin coupling matrix Hj,k can
be constrained by the space group symmetry of the lattice
[48]. As a paradigmatic model for transition metal trihalides,
we consider the KH honeycomb model [49] for bulk spin
S = 3/2 and ferromagnetic bulk exchange coupling Jb > 0.
For CrI3, first-principles calculations and analysis of experi-
mental data [50–52] indicate a subdominant antiferromagnetic
Kitaev coupling K < 0. However, other studies [15,53] in-
stead reported evidence for a dominant ferromagnetic Kitaev
coupling. Below we take the parameters from Ref. [52], but in
the SM, we also present results for the idealized ferromagnetic
(K > 0, Jb = 0) Kitaev model with S = 1/2 [28]. We note
that it is straightforward to generalize our approach to include
other couplings, e.g., Dzyaloshinskii-Moriya interactions be-
tween next-nearest neighbors.

For the impurity-bulk spin couplings in Fig. 1, we instead
consider an isotropic antiferromagnetic exchange coupling,
H0, j = JK13 with JK > 0. This is a natural assumption if
the impurity atom has no orbital degeneracy [22]. Next, we
recall that for a free magnetic ion with spin S, orbital angu-
lar momentum L, and total angular momentum J , the Landé

factor is gL = 3
2 + S(S+1)−L(L+1)

2J (J+1) [54]. This value is typically a

good approximation for 4 f ions like Yb3+, where crystal field
effects are weak and J follows from Hund’s rules. However,
for 3d ions like Cr3+, L is quenched by crystal field effects
and hence gL = 2 for all S. For Ru3+ ions in α-RuCl3, the
intricate interplay between orbital degeneracy, crystal field,
and spin-orbit coupling [55] implies that gL is an anisotropic
tensor [54], with gL ≈ 1.3 for magnetic fields along the ĉ
direction [56]. Assuming a homogeneous external magnetic
field, we absorb the Bohr magneton and the bulk Landé factor
into h j = h in Eq. (1) for bulk sites ( j �= 0). For the impurity
spin ( j = 0), we set

h0 = gh, g = gimp
L /gbulk

L , (2)

where g is the relative Landé factor of the impurity compared
to the bulk spins. For instance, for Ru3+ ions and h = hĉ, one
finds g ≈ 1.5 and Simp = 1/2 both for Co adatoms [23] and
for Ti3+ ions at substitutional sites.

Let us first summarize several key aspects. We assume that,
without the impurity, the system is in a gapped (partially)
polarized phase with magnons as low-energy excitations,
where the magnon gap is basically set by the magnetic field,
and study subgap magnon bound states induced by a single
magnetic quantum impurity. The impurity coupling JK now
competes with the magnetic field h. In a classical picture,
h tries to polarize all spins in the same direction, but spins
coupled by JK align in opposite directions if JK � |h|. For the
adatom case with Simp = S, the limit JK → ∞ corresponds
to singlet formation between the impurity and a bulk spin,
where both spins are frozen out and can be described as a
vacancy. However, for the KH honeycomb model, a vacancy
does not induce subgap bound states [38,39]. As one varies
JK/|h| between the weak- and strong-coupling limits, either
the impurity or the bulk spin has to flip against the magnetic
field. In the adatom case with Simp �= S and/or in the substitu-
tional case, the strong-coupling limit may have a residual spin,
and thus multiple transitions are possible. Below we describe
such discontinuous spin transitions in the quantum case and
show how they can be detected in STS. We emphasize that
the magnetic-field energy scale characterizing the spin-flip
transition is not set by the magnon gap but by the typically
much smaller impurity coupling scale JK .

KH model. The bulk spin couplings Hj,k in Eq. (1) include
an isotropic ferromagnetic Heisenberg coupling Jb > 0, and
a bond-dependent Kitaev contribution K . For instance, for a
z-bond in Fig. 1, we have Hj,k = −diag(Jb, Jb, Jb + K ). Bulk
interactions for bonds of type γ ∈ {x, y} then follow by cyclic
permutation of (α, β, γ ) in Hα,β

j,k . In CrI3, bulk spins (Cr3+

ions) have S = 3/2 [6]. Magnetic impurities at substitutional
sites could be, e.g., V3+ ions with Simp = 1 [57] where we
obtain g = 1 from Eq. (2). However, adatom impurities should
be neutral, e.g., Co atoms with Simp = 1/2 [23], again re-
sulting in g = 1. Ab initio calculations for CrI3 [58] favor
impurity locations in the hexagon center, while for Ni atoms,
the adatom location is also possible. However, with a scanning
probe tip, one can move around impurities at will [23].

We show ED and LSW results for S = 3/2 in Fig. 2. While
ED is a numerically exact method, it is limited to small system
size. LSW theory instead allows us to treat the thermodynamic
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FIG. 2. ED and LSW results for the KH model with S = 3/2,
K/Jb = −0.2, JK/Jb = 0.5, and h = hĉ. For all cases studied here,
g = 1 in Eq. (2). The shaded region indicates the magnon continuum
ω > ωg in the thermodynamic limit, with the magnon gap ωg = h.
ED results refer to a cluster with 2 × 2 unit cells (nine sites for the
adatom case) and periodic boundary conditions. Adatom impurity:
(a) Excitation spectrum ω/Jb (relative to the ground state) versus
magnetic field h/Jb for Simp = 1/2. ED (LSW) results correspond to
red dots (black lines). The dashed vertical line indicates the classical
spin flip transition. (b) Spin projections 〈S0,1 · ĉ〉 vs h/Jb for the case
in panel (a). Yellow squares (lines) correspond to ED (LSW) results
for the impurity spin. Results for the coupled bulk spin are shown as
blue triangles (ED) and blue lines (LSW), respectively. Substitutional
impurity: (c) ω/Jb vs h/Jb and (d) 〈S0,1 · ĉ〉 vs h/Jb for Simp = 1.

limit, where the first step is to determine the classical spin
configuration that minimizes the energy. In general, there can
be spin canting as schematically illustrated in Fig. 1(b). One
then performs a Holstein-Primakoff transformation to boson
operators describing the magnons. In principle, the linearized
theory becomes exact for large S [36,37,39,54]. Since the
impurity breaks translation invariance, one diagonalizes the
quadratic LSW Hamiltonian in real space. This can be done
for fairly large lattices, allowing for an extrapolation to the
thermodynamic limit [43].

Remarkably, both methods give almost perfect agreement
for an adatom impurity with Simp = 1/2, see Figs. 2(a) and
2(b). Here a subgap magnon bound state appears whose en-
ergy vanishes for h/Jb ≈ 0.8. For h 
 JK , the bound state
merges with the magnon continuum as expected from the
impurity screening scenario discussed above. As seen in
Fig. 2(b), the spin projections 〈S0,1 · ĉ〉 of the impurity spin
and (to much lesser degree) the coupled bulk spin exhibit
discontinuous jumps at h/Jb ≈ 0.8. Importantly, the transition
obtained within LSW theory is due to quantum fluctuations on
top of a uniformly polarized spin configuration. By contrast, a
classical transition might be expected when the energy of the

configuration with the flipped impurity spin falls below the
energy of the uniform configuration. Calculating these ener-
gies within LSW theory up to order S (in the 1/S expansion)
[43], we find that this semi-classical criterion underestimates
the critical magnetic field, see the dashed vertical line in
Fig. 2(a).

We next address the substitutional case. For Simp = 1/2,
we find similar results as for the adatom case above. Below
we instead focus on Simp = 1, see Figs. 2(c) and 2(d), where
marked differences between ED and LSW results emerge.
In particular, ED results indicate two spin transitions associ-
ated with multiple zeros of the bound-state energy. However,
the LSW spectrum calculated for the uniform classical spin
configuration (with polarized impurity) captures only one
transition. In Figs. 2(c) and 2(d), we show the LSW spectrum
and spin projections for a configuration in which the impurity
spin is allowed to rotate to minimize the classical energy [43].
This continuous rotation of the impurity spin breaks the exact
C3 lattice symmetry. However, such a spontaneous symmetry
breaking is not possible for a single degree of freedom with
local interactions since there are only finite energy barriers to
other broken-symmetry states and quantum fluctuations can
restore the symmetry. In fact, we never observed transverse
components of the impurity spin in ED. Another indication
of the failure of LSW theory is that the predicted magnon
bound-state energy vanishes in the regime where the classical
spin rotates (which is where ED identifies multiple transi-
tions). In this case, the putative classical configuration cannot
be stable because one can add magnons without energy cost.
Given the excellent agreement between ED and LSW results
in Figs. 2(a) and 2(b), we believe that ED captures the ther-
modynamic limit also in Figs. 2(c) and 2(d). The transitions
at h/Jb ≈ 2.2 and h/Jb ≈ 2.55 are again predominantly due
to discontinuities in the local magnetization. They correspond
to zeros of the energy for excitations with n magnons in the
bound state, where n � 2Simp. For higher Simp, one can thus
expect more spin transitions.

Low-energy continuum approach. For the adatom case and
h = hĉ, we can analytically determine the scaling of the
subgap magnon bound-state energy Eb < 0 (relative to the
magnon gap ωg) in the regime JK 
 h, where Eq. (1) affords
an effective continuum description [43]. The bulk magnon
dispersion can be approximated by ω(k) ≈ ωg + k2

2m . (For the

KH model, ωg = h and m−1 = J + K
3 − K2

h+3J+K , independent
of the sign of K .) The low-energy Schrödinger equation for
a single magnon described by ψ (r) with r = (rx, ry)T then
contains an attractive δ-function potential due to the impurity

− 1

2m
∇2ψ (r) − Veff (Eb)δ(r)ψ (r) = Ebψ (r), (3)

with the energy-dependent coupling strength Veff (Eb) =
JK Simp(1 + JK S

εa+|Eb| ), where εa is an energy scale for the
impurity. (For the KH model, εa = gh − ωg − JK S.) For
a classical magnetic impurity with Simp → ∞ at constant
JK Simp [39,59,60], we obtain the nonperturbative scaling law
Eb ∝ −e−cb/(mJK ) [61], where cb is of order unity. However, for
a quantum impurity, we find a qualitatively different scaling,
Eb 
 gh − ωg − JK S + O(J2

K ), in accordance with our numer-
ical ED and LSW results. By varying the magnetic field, the
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FIG. 3. STS conductance for the KH model with an adatom
magnetic impurity from LSW theory, cf. Figs. 2(a) and 2(b), with
K = −0.2Jb, JK = 0.5Jb, S = 3/2, Simp = 1/2, and g = 1. The ref-
erence conductance G0 = 2πdAdB|tbulk|2 involves densities of states
dA and dB for tip and substrate, and we use cotunneling amplitudes
timp and tbulk for the impurity and bulk spins, respectively. The STM
tip and the impurity position are characterized by l0 = rz = 0.5a0,
timp/tbulk = 1.5, and R0 = R1 + 0.2a0ĉ, where a0 is the lattice con-
stant and l0 the tip resolution. The bulk spin at site R1 is coupled to
the impurity at site R0. (a) V = 0 conductance versus magnetic field
h for a tip above the impurity as schematically depicted in the inset.
(b) Conductance derivative dG/dV (in arbitrary units) versus bias
voltage. Different curves correspond to uniformly spaced field values
ranging from h = 0.05Jb (bottom) to h = 1.25Jb (top curve), shifted
vertically to aid visualization. The δ-function peaks are broadened
by a Lorentzian of width 0.01Jb. The dots track the bound-state
energy. (c,d) Colorscale plots for the spatial profile of the zero-bias
conductance near the magnetic impurity (which is in the center of
the respective panel) for two field values: (c) h = 0.65Jb (below the
transition) and (d) h = 1.164Jb (above the transition).

bound-state crosses zero energy (i.e., Eb = −ωg), and a dis-
continuous local spin-flip transition occurs. The low-energy
Eq. (3) is not limited to the KH model but applies to many
other 2D magnets as well. With minor modifications, it also
describes 1D and 3D magnets, underlining the generality of
the found spin-flip mechanism. This mechanism is qualita-
tively different from a conventional spin flop transition [11]

which involves a first-order transition without magnon gap
closing, see Ref. [43].

STS conductance. We next discuss how the above spin
transitions can be observed in STS. Known expressions for
the zero-temperature STS conductance G(V, rt ) at bias volt-
age V and tip position rt = (rx, ry, rz )T [38,39,62–67] are
summarized in the SM [43], involving a form factor and the
dynamical spin correlation function of the 2D magnet. (Here
the z-axis is aligned with ĉ.) The zero-bias STS conductance
is expressed by the spin expectation values 〈Sα

j 〉, and can
thus directly reveal spin transitions. We illustrate the STS
conductance in Fig. 3 for an adatom impurity with Simp = 1/2,
cf. Figs. 2(a) and 2(b). The step in the field dependence of the
zero-bias conductance seen in Fig. 3(a) directly follows from
the spin transition in Fig. 2(b). At low but finite bias voltage,
Fig. 3(b) illustrates that the conductance derivative dG/dV
exhibits a pronounced peak whenever the voltage matches the
subgap magnon bound-state energy. By varying both the mag-
netic field and the bias voltage, one can thus map out the field
dependence of the bound-state energy. Finally, see Figs. 3(c)
and 3(d), in spatial scans of the zero-bias conductance, the
conductance switches from a minimum to a maximum near
the impurity site when increasing h/Jb across the transition at
h/Jb ≈ 0.8, consistent with Fig. 3(a).

Conclusion. Magnetic impurities in 2D magnets can give
rise to magnon bound states at very low energies. Such states
can cause similar behavior in STS as fractional excitations
such as spinons or Z2 vortices in spin liquids. To distinguish
such phases, one could characterize magnon bound states
by STS by first exposing the system to a strong field. In a
second step, one lowers the field to reach the putative spin
liquid phase, where detailed STS predictions are available
[39,66,67]. In any case, we expect that the predicted spin
transitions due to zero-energy magnon bound states will soon
be observed.

The data underlying the figures in this paper can be found
at the zenodo site [68].
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We here provide (i) details about linear spin wave theory in the presence of a single magnetic
quantum impurity, (ii) derive analytical results for the sub-gap magnon bound state energy in the
weak-coupling limit, (iii) discuss the tunneling conductance expression, and (iv) show data for the
idealized Kitaev honeycomb model. Equation (X) in the main text is referred to as Eq. (MX) below.

Below we provide additional details and derivations
concerning the results presented in the main text. For
concrete results, we focus on a paradigmatic model for
2D van der Waals magnets like CrI3, namely the Kitaev-
Heisenberg (KH) model on the honeycomb lattice [1–4].
Leaving aside the so-called Γ exchange terms [5], this
model is also expected to describe the physics of α-RuCl3
layers. We discuss in Sec. I our formulation of linear
spin wave (LSW) theory in the presence of a magnetic
quantum impurity for the Hamiltonian in Eq. (M1). As
discussed in the main text, the corresponding results
show excellent agreement with exact diagonalization
(ED) results for small systems in the adatom case with
Simp = 1/2. For the substitutional impurity with Simp =
1, however, we saw in the main text that the continuous
rotation of the impurity spin in the classical background
of the LSW theory artificially breaks exact symmetries
and can lead to spurious results. In Sec. II, we derive
analytical results for the sub-gap magnon bound state
energy which are valid in certain limits and shown in the
main text. Next, in Sec. III, known expressions for the
scanning tunneling spectroscopy (STS) conductance are
summarized, including a brief outline of their derivation.
Finally, we address the idealized Kitaev honeycomb
model in Sec. IV.

I. LSW THEORY

As one method for studying partially polarized phases
of 2D magnets with a single magnetic quantum impurity,
see Eq. (M1), we use LSW theory [6]. One starts by
determining the classical spin configuration minimizing
the energy, see Sec. IA. After rotating the local spin
quantization axis to the corresponding classical spin
axis, one performs a Holstein-Primakoff transformation
to introduce boson operators for the magnon degrees of
freedom. We consider a linear approximation, where
the Hamiltonian can be diagonalized by a Bogoliubov
transformation, see Sec. I B. In Sec. I C, we briefly
describe how one can obtain dynamical spin correlations
from this approach, which enter the STS conductance

(a) (b)
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FIG. 1. Examples for classical spin configurations near a
magnetic impurity of substitution type in the KH model.
Arrows represent spin components in the ab plane, where the
color scale indicates the magnitude of the in-plane component.
Orange-colored symbols show the out-of-plane components of
the impurity spin. Parameters are chosen as in Fig. 2(c) of
the main text, i.e., S = 3/2, Simp = 1/2, K/Jb = −0.2, and
JK/Jb = 0.5. Panel (a) shows results for h/Jb = 1.2, i.e.,
below the spin transitions. Panel (b) is for h/Jb = 3.5, i.e.,
above the spin transitions.

in Sec. III. In Sec. ID, we discuss estimates for the
regime where discontinuous spin transitions occur based
on comparing the energies of the competing classical
configurations. Finally, in Sec. I E, we contrast the found
spin-flip transition mechanism from conventional spin-
flop transitions [7].

A. Classical spin configuration and spin canting

The first step is to find the classical spin configuration
that minimizes the energy. In frustrated magnets,
inhomogeneities can locally tip the energy balance and
disturb the local spin environment, a phenomenon
dubbed local relief of frustration [8]. Because a classical
adatom magnetic impurity effectively acts as a local
field, a local distortion (“spin canting”, schematically
illustrated in Fig. 1(b) of the main text) occurs in the
neighboring bulk spins with respect to the uniform case.
For a substitutional impurity, the situation is similar, as
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the bulk spins neighboring the impurity feel an imbalance
in their local exchange field. In noncollinear long-ranged
ordered phases, such local distortions decay as a power
law in space and lead to nontrivial spin textures [9–
11]. In polarized phases, magnons are gapped and we
expect an exponential decay of the texture, limiting it to
the immediate vicinity of the impurity. We numerically
determine the classical ground state by sequentially
anti-aligning the spins with their local exchange field.
To ensure convergence, we start from distinct initial
conditions and select as the ground state the spin texture
with the lowest energy. This procedure allows us to
obtain canted spin texture and gauge the competition
between the impurity-bulk exchange coupling JK > 0
and the external magnetic field strength h in determining
the local spin configuration.

As an example, we show results for the KH honeycomb
model with a substitutional magnetic impurity. Figure 1
illustrates the classical spin configuration for the same
parameters as in Fig. 2(c) of the main text. Here
we choose two values of the magnetic field along the
ĉ direction, where the impurity spin in the classical
configuration is either antiparallel [Fig. 1(a)] or parallel
[Fig. 1(b)] to the field direction. This way, we avoid
the regime near the transitions where the classical state
incorrectly predicts a smooth rotation of the impurity
spin. As shown in Fig. 1, we observe a vortex-like pattern
for the bulk spin components in the ab plane, both above
and below the transition. In contrast to the spurious
rotation of the impurity spin discussed in the main text,
the vortex-like pattern for the bulk spins respects the
discrete Z3 spin-rotation symmetry around the impurity
site. A similar pattern has been observed near a vacancy
in the KH model [12].

B. Holstein-Primakoff transformation

Given the classical spin configuration, we apply a
local rotation that aligns the z-axis with the local spin
polarization, Sj = RjS̃j , where Rj is an orthogonal
matrix. For polarized phases with a homogeneous spin
configuration, Rj = R is site independent and there
is no spin canting. For instance, assuming that all
spins are polarized by a magnetic field perpendicular
to the honeycomb plane, h = hĉ, the spin basis used
for representing the KH honeycomb model is rotated
according to [13]

R =




1√
6

−1√
2

1√
3

1√
6

1√
2

1√
3−2√

6
1√
2

1√
3


 . (1)

In any case, given the orthogonal matrices Rj , we next
employ a standard Holstein-Primakoff transformation in
order to represent spin operators in terms of bosonic

operators bj and b†j describing magnons [6],

S̃z
j = Sj − nj , S̃+

j =
√
2Sj − nj bj ≈

√
2Sj bj ,

S̃−
j = b†j

√
2Sj − nj ≈

√
2Sj b

†
j , (2)

where nj = b†jbj . The polarized impurity spin at j = 0
is included in Eq. (2), where S0 = Simp generally differs
from the value for bulk spins, Sj ̸=0 = S.

To leading order in 1/S, the Hamiltonian can be
written as

H = Ecl +Hsw +O
(
S1/2

)
, (3)

where Ecl ∼ O
(
S2

)
is the classical ground state energy

and Hsw ∼ O (S) is the LSW Hamiltonian,

Hsw =
∑

⟨j,k⟩

[
tj,kb

†
jbk +∆j,kbjbk + h.c.

]
+

∑

j

heffj b†jbj .

(4)
For S → ∞, the LSW approach, neglecting all terms
beyond Hsw in Eq. (3), becomes formally exact (but
see below and the main text for subtleties related to
the classical reference configuration). The parameters
tj,k and ∆j,k in Eq. (4) follow from the rotated spin-
spin interaction matrices, H̃j,k = RT

j Hj,kRk with Hj,k in
Eq. (M1), as

tj,k =

√
SjSk

2

[(
H̃xx

j,k − iH̃xy
j,k

)
+
(
H̃yy

j,k + iH̃yx
j,k

)]
,

∆j,k =

√
SjSk

2

[(
H̃xx

j,k − iH̃xy
j,k

)
−
(
H̃yy

j,k + iH̃yx
j,k

)]
(5)

Note that the anomalous couplings ∆j,k change the total
number of magnons. The effective field heffj involves
both the external field and a contribution from spin
interactions. For bulk sites (j ̸= 0), we find

heffj = h̃z −
∑

k∈Vj

SkH̃
zz
j,k, (6)

where Vj denotes the set of nearest neighbors of j and h̃z

is the z-component of the rotated field h̃ = RT
j h. At the

impurity site (j = 0), the effective field is given by

heff0 = gh̃z −
∑

k∈V0

SH̃zz
j,k = gh− |V0|SJK , (7)

where |V0| = 1 for an adatom and |V0| = 3 for a
substitutional impurity. The second equality only holds
for a polarized uniform spin configuration, where h̃z = h.
The factor g has been defined in Eq. (M2).

The quadratic Hamiltonian (4) can be diagonalized by
a Bogoliubov transformation. For a decoupled adatom
impurity (JK = 0) and a fully polarized system, we
can diagonalize the Hamiltonian in momentum space and
obtain analytical expressions for the magnon dispersion
relation. The magnon gap is given by ωg = h for the
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KH model. For JK > 0, we perform a Bogoliubov
transformation in real space for a finite system with
periodic boundary conditions, and then extrapolate to
the thermodynamic limit.

As shown in Fig. 2 of the main text, sub-gap magnon
bound states appear for arbitrarily small exchange
coupling JK > 0. Within LSW theory, the discontinuous
spin transition is well described by calculating ⟨S̃z

j ⟩ =

Sj − ⟨b†jbj⟩ for the adatom case in the uniform classical
configuration. Even without changing the classical
state, the discontinuity in the quantum correction
to the magnetization is possible because there is a
rearrangement of the eigenvectors in the Bogoliubov
transformation when the lowest eigenvalue (associated
with the magnon bound state) goes through zero.

C. Dynamical spin correlations

Let us briefly sketch how to obtain dynamical spin
correlations from this approach. The Bogoliubov
transformation yields the single-particle eigenenergies ωn

with bosonic eigenoperators b̃n and b̃†n. We can thereby
rewrite Eq. (4) as

Hsw =
∑

n

ωnb̃
†
nb̃n +∆E, ∆E =

1

2

∑

n

ωn. (8)

The Lehmann representation of the dynamical spin
correlations appearing in the STS conductance
expression, see Eq. (24) below, is given by

Cαβ
jk (ω) =

∑

ν

⟨Φ0|Sα
j |Φν⟩ ⟨Φν |Sβ

k |Φ0⟩ δ(ω + E0 − Eν),

(9)
where |Φν⟩ are many-body eigenstates with energy Eν ,
including the ground state |Φ0⟩ with energy E0. Within
LSW theory, the matrix elements ⟨Φ0|Sα

j |Φν⟩ are finite
only for states of the form

|Φν⟩ ∝ |Φ0⟩ , |Φν⟩ ∝ b̃†n |Φ0⟩ or |Φν⟩ ∝ b̃†nb̃
†
m |Φ0⟩ . (10)

We can thereby rationalize the emergence of zero-, one-
and two-magnon contributions in the nonlinear STS
conductance. However, we find that the two-magnon
contribution of the bound state vanishes within LSW
theory. For the pure Heisenberg model (K = 0) in a
perpendicular magnetic field above the transition, i.e.,
for h ≫ JK , this follows analytically from magnon
number conservation, i.e., ∆j,k = 0 in Eq. (5). This fact
implies that spin expectation values do not fluctuate for
magnetic fields above the spin flip transition within LSW
theory. This analytical argument does not hold below the
transition or for finite Kitaev interaction, but we here
have verified the absence of two-magnon contributions
numerically.

D. Classical spin flip

In the main text, we mentioned that LSW theory
provides an estimate for a classical spin flip transition.
At strong magnetic fields, h ≫ JK , the classical ground
state is homogeneous and fully polarized. On the other
hand, as we decrease the ratio h/JK , at some point a spin
flip will be energetically preferred in the classical ground
state configuration. The energy cost of flipping the spin
at site j is given by 2Sjh

eff
j , with the effective field in

Eq. (6) for a bulk spin and in Eq. (7) for the impurity.
For an adatom impurity, the classical configuration with
a flipped spin has lower energy than the uniform classical
state if the magnetic field falls below the critical value
h∗ = max

(
h∗imp, h

∗
bulk

)
, where

h∗imp =
S

g
JK , h∗bulk =

∑

k∈Vj′

SkH̃
zz
j′,k (11)

correspond to a spin flip of the impurity and the bulk
spin j′ ∈ V0 coupled to the impurity, respectively. Note
that for g ≫ 1, we have h∗ = h∗bulk, meaning that in this
case we expect the bulk spin to flip against the magnetic
field as we decrease h/JK .

Applying Eq. (11) for an adatom impurity with Simp =
1/2 and the same parameters as in Fig. 2(a,b) of the main
text, we obtain the estimate h∗/Jb ≃ 0.75 for the classical
spin flip transition. However, this estimate is based on
comparing the classical energies at order S2. If we include
quantum corrections to the ground state energy only at
order S, the estimate for the classical spin flip shifts to
the much smaller value h∗/Jb ≃ 0.42, indicated as dashed
vertical line in Fig. 2(a) of the main text. Moreover,
the latter estimate neglects a possible spin canting in
the classical configuration near the flipped spin. (In the
adatom case, this can only happen if the bulk spin is
flipped.) We stress that, while this semiclassical analysis
tells us that a spin flip must occur as we decrease h/JK ,
the comparison with ED indicates that the discontinuous
spin transition of a Simp = 1/2 magnetic impurity is
better described by quantum fluctuations on top of the
uniform spin configuration.

E. Difference to spin-flop transitions

We here describe the difference between the spin-
flip transitions discovered in this work and the well-
known spin-flop transition in an applied field [7]. The
“classical” spin-flop mechanism occurs, e.g., for an
antiferromagnetic XXZ model in an external field applied
along the direction of the sublattice magnetization. For
an easy-axis anisotropy, Jz > Jx,y, the low-field state
remains a Néel state along the z-axis. At a critical
field hc, the spin flops to the canted state in which
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the spins now have a projection in the x-y plane that
spontaneously breaks the spin rotation symmetry along
the z-axis. This transition is of first order, and there
is no reason for the magnon gap to close due to the
anisotropies. In general, one expects a gap closing only
at the transition to the polarized phase.

The situation described in our work is very distinct.
We are in a (partially) polarized phase, where spin-
flip transitions only take place in the vicinity of a
magnetic quantum impurity. In the adatom position,
for instance, the impurity and the bulk spin that
interact antiferromagnetically cannot acquire in-
plane components nor rotate continuously toward the
polarized state because the local interactions in the
quantum impurity problem cannot spontaneously break
the (discrete) rotation symmetry along the ĉ direction.
In contrast to the mean-field-like argument of the
spin-flop transition [7], the local spin-flip transitions
described here involve the gap closing of a magnon
bound state, which then leads to jumps in the local
magnetization.

II. ANALYTICAL RESULTS FOR BOUND
STATE ENERGIES

In this section, we consider an adatom impurity
position and a perpendicular magnetic field, h = ĉ. We
study the KH model in the weak-coupling limit JK ≪ h.
As shown below, we arrive at a simple structure of the
resulting continuum theory describing the magnon bound
state and the associated spin-flip transition whenever
the bound state energy crosses zero. This continuum
argument shows that the predicted spin-flip transitions
can occur in general 2D magnets, i.e., not only in van
der Waals magnets described by the KH honeycomb
model. Moreover, repeating similar arguments for 1D
spin chains (and to some extent, even 3D magnets), spin-
flip transitions are expected to occur as well. In our
example, there is no spin canting and we stay away from
spin transitions. Our goal is to obtain analytical results
for the sub-gap magnon bound state energy.

Under the above conditions, we can treat the adatom
as a weak perturbation to the homogeneous system.
We take the continuum limit of the LSW Hamiltonian
(4) by expanding the free magnon spectrum about the
band minimum at the Γ point. The magnon dispersion
is then approximated by ω(k) ≈ ωg + k2

2m , where ωg

is the magnon gap and the mass term is isotropic.
We here consider a partially polarized phase without
spontaneous symmetry breaking. While anisotropic
exchange interactions such as the Kitaev interaction K
may contribute to ωg in general, in the partially polarized
phase of the KH model, the magnon gap increases
with the magnetic field according to ωg = h without

contributions due to K. Moreover, we find

m−1 = J +
K

3
− K2

h+ 3J +K
. (12)

We recall that for K ̸= 0, magnon number is not
conserved, see Eq. (4). In the unperturbed free-
magnon Hamiltonian, this effect is taken care of by
the Bogoliubov transformation that gives the magnon
dispersion to order k2. Next, we take the continuum limit
of the impurity contribution, where we expand the bulk
modes in terms of momentum eigenstates and neglect
terms beyond zeroth order in k. As a result, the Kondo
interaction and the Zeeman term for the impurity spin
give

Himp = −JKSimpb
†(R1)b(R1)

+JK
√
SSimp[b

†(R0)b(R1) + h.c.]

+(gh− SJK)b†(R0)b(R0) + const., (13)

where b(R) annihilates a boson at position R, with R0

and R1 being the positions of the impurity and the
bulk spin coupled to the impurity, respectively. We
single out the impurity mode by introducing the notation
a = b(R0), whereas all the bulk modes are represented
by b(r) with r ∈ R2 a vector in the plane that contains
the honeycomb lattice. Setting R1 = 0 and measuring
the energies with respect to the lower threshold ωg of
the magnon continuum, we write the effective low-energy
Hamiltonian in real space as

Heff =

ˆ

d2r b†(r)

[
−∇2

2m
− V0δ(r)

]
b(r)

+ εaa
†a+ w

[
a†b(r = 0) + b†(r = 0)a

]
. (14)

Here, V0 = JKSimp is the strength of an attractive
potential for the bulk magnons induced by the
magnetization of the impurity. The energy of the bosonic
state associated with the impurity (measured from the
bulk magnon gap ωg) is

εa = gh− ωg − JKS. (15)

Note that the occupation a†a of this state can change
due to quantum fluctuations of the impurity. Finally,
w = JK

√
SSimp is an effective hybridization due to the

transverse part of the Kondo interaction. The classical
magnetic impurity limit [14, 15] corresponds to taking
Simp → ∞ and JK → 0 while keeping the product V0 =
JKSimp constant. In this limit, one finds w → 0, i.e., the
a boson decouples from the b(r) bosons. Then the only
effect of the impurity is to act as a static local field on
the bulk degrees of freedom.

Noting that the effective Hamiltonian (14) conserves
the total magnon number, we use an Ansatz for a general
single-particle state,

|Ψ⟩ =
(
ˆ

d2r ψ(r)b†(r) + ϕaa
†
)
|0⟩, (16)
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where ψ(r) and ϕa are wave functions and |0⟩ is the
vacuum state, identified with the ground state of the
unperturbed Hamiltonian (for JK = 0). The Schrödinger
equation, Heff |Ψ⟩ = E |Ψ⟩, where the energy E is
measured relative to ωg, yields the coupled equations

− 1

2m
∇2ψ(r)− V0δ(r)ψ(r) + wϕaδ(r) = Eψ(r),

εaϕa + wψ(0) = Eϕa. (17)

From Eq. (17), we observe that a bound state solution
with E = Eb < 0 satisfies the relation

ϕa = − wψ(0)

εa + |Eb|
. (18)

Substituting Eq. (18) into the first equation in Eq. (17),
we obtain the Schrödinger equation (M3) for a δ-function
potential with a renormalized coupling that depends on
the energy itself,

Veff(Eb) = V0 +
w2

εa + |Eb|
. (19)

For a classical magnetic impurity, w → 0 implies
that Veff = V0 is constant. Hence Eq. (M3) can
be solved after imposing a large-momentum cutoff Λ
[16]. The resulting bound state energy is exponentially
small at weak coupling but depends on V0 and m in a
nonperturbative manner,

Eb ≃ − Λ2

2m
e−2π/(mV0). (20)

For a quantum impurity, on the other hand, we obtain
a qualitatively different scaling of the bound state energy.
In this case, Veff(Eb) becomes large if εa is negative and
εa ≈ Eb. In particular, for the KH model with g = 1, we
have ωg = h and then εa = −JKS < 0 for any JK > 0.
In general, the binding energy is given by the solution of
the equation

2m|Eb|
Λ2

= exp

[
− 2π

mVeff(Eb)

]
, (21)

In the regime |Veff(Eb)| ≫ 1, we can approximate

2m|Eb|
Λ2

≈ 1− 2π

mV0 +
mw2

εa+|Eb|
, (22)

which is a quadratic equation in |Eb|. The low-energy
solution is

Eb = εa +O(w2) = gh− ωg − JKS +O(J2
K), (23)

as quoted in the main text. For g = 1, the binding
energy vanishes for JK → 0 and scales linearly with
JK at weak coupling. The linear dependence predicted
by Eq. (23), without any free fitting parameter, is in
excellent agreement with our numerical results for the
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FIG. 2. Magnon spectrum ω for the KH model with an
adatom quantum magnetic impurity vs impurity coupling JK

(both ω and JK are in units of the bulk exchange coupling
Jb > 0). We set S = 3/2, Simp = 1/2, h/Jb = 0.5, and
K/Jb = −0.2, where the field is along the ĉ direction. (a) The
symbols represent the bound state energy calculated by LSW
theory for g = 1 (blue squares) and g = 5 (red dots). The
solid line for g = 1 gives the analytical prediction (23). The
shaded region represents the magnon continuum ω > ωg = h.
(b) Binding energy for g = 5 in the weak-coupling regime,
plotted on a logarithmic scale vs Jb/JK .

lattice model, see Fig. 2(a). For g > 1, the binding energy
is exponentially small at weak coupling, see Fig. 2(b), but
it crosses over to the linear dependence as one increases
JK . The condition w2/εa ∼ V0, see Eq. (19), gives the
estimate JK ∼ (g−1)h

2S for the crossover scale. In the
strong-coupling regime, i.e., above the spin transition,
the bound state eventually merges with the continuum
and disappears for sufficiently large JK .

III. ON THE STS CONDUCTANCE

In this section, we summarize known results for the
STS conductance which have been used for generating
Fig. 4 in the main text. For the tip position r and bias
voltage V , the zero-temperature STS conductance can be
written as [12, 15, 17–22]

G(V ) = G0

∑

j,k

tjt
∗
k

|tbulk|2
Fj,k(r)

∑

α

ˆ eV

0

dω Cα,α
j,k (ω),

(24)
where tj=0 = timp and tj ̸=0 = tbulk are cotunneling
amplitudes discussed below. This expression holds in the
weak-coupling limit, where the tip (and the substrate) are
kept sufficiently distant from both the impurity and the
bulk spins in order to allow for a perturbative treatment
of the respective tunneling processes. The conductance
reference scale used in Eq. (24) is defined as

G0 = 2πdAdB |tbulk|2, (25)
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where dA (dB) is the density of states of the tip
(substrate) at the Fermi level. Moreover, the function

Fj,k(r) = exp

(
−|Rj − r|+ |Rk − r|

l0

)
(26)

encodes the tip position dependence. The spin sites
(including the impurity) are denoted by Rj , and l0 is
a length characterizing the STS resolution. Finally, the
dynamical spin correlation function of the magnet (in the
absence of tip and substrate) is given by

Cα,β
j,k (ω) =

ˆ

dt eiωt⟨Φ0|Sα
j (t)S

β
k (0)|Φ0⟩, (27)

using the ground state |Φ0⟩ of the 2D magnet. We note
that on top of the inelastic contribution (24), there is a
featureless voltage-independent elastic cotunneling term
[15, 19]. For finite bound state energy, the zero-bias
conductance obtained from Eq. (24) is expressed in terms
of spin expectation values ⟨Sα

j ⟩ only,

G(V = 0) = G0

∑

α

∣∣∣∣
∑

j

tj
|tbulk|

e−|Rj−r|/l0⟨Sα
j ⟩

∣∣∣∣
2

. (28)

We conclude that local spin-flip transitions are directly
visible as steps in the zero-bias STS conductance.

Let us briefly describe the main ideas behind the
derivation of Eq. (24). In order to describe electrical
transport through a 2D magnet, one has to start from
a model that retains the charge degrees of freedom,
e.g., the Hubbard-Kanamori model. By a Schrieffer-
Wolff transformation to the low-energy spin sector,
one then obtains the Hamiltonian (M1) in terms of
the spin operators Sj . We now include tunneling
processes with amplitude tA(r−Rj) connecting a normal-
conducting scanning probe tip at position r, described
by noninteracting fermion operators cA,τ (r) for spin
projection τ ∈ {↑, ↓}, to lattice site Rj of the 2D
layer. Here we assume that tA is independent of the
momentum and the spin of the tunneling electrons.
Similarly, we include tunneling processes with constant
amplitude tB connecting the respective site in the 2D
layer to a 2D substrate described by noninteracting
fermion operators cB,τ (Rj). Below, Pauli matrices τ =
(τx, τy, τz) and the identity τ0 act in conduction electron
spin space. Applying a Schrieffer-Wolff transformation
in the presence of these tunneling terms now yields an
effective cotunneling Hamiltonian connecting the tip and
the substrate via the 2D magnetic layer, see [12, 15, 17–
19] for details,

Hcot =
∑

j

t∗A(r−Rj)tB
U

c†A(r)
(
η0τ01j +

+ η1τ · Sj

)
cB(Rj) + H.c., (29)

where the sum runs over all lattice sites of the 2D magnet
in Eq. (M1), including the impurity site. Here, U is a

Coulomb interaction energy scale of the 2D layer, and
c†A/B = (c†A/B,↑, c

†
A/B,↓). The numbers η0 and η1 depend,

in particular, on the ratio of the Hund’s rule coupling JH
and the parameter U , and are of order unity [15]. (In
general, they are different for bulk and impurity sites.)
We note in passing that in general there is also a spin-
rotation-symmetry breaking contribution [15] which we
have neglected in Eq. (29). We assume an exponential
distance dependence of the tunneling matrix elements,
tA(r −Rj) ∝ e−|r−Rj |/l0 , where the length scale l0 sets
the resolution of the scanning probe tip. We also assume
a constant and spin-independent (non-polarized) density
of states in the relevant energy range for both the tip
(dA) and the substrate (dB).

A computation of the current I(V ) from tip to
substrate, and thus of the differential conductance
G(V ) = dI/dV , can now be performed by perturbation
theory in Hcot. To that end, we proceed along standard
steps, see, e.g., Ref. [15]. Within Fermi’s golden rule, the
squared matrix elements of η0τ01j+η1τ ·Sj appear. The
termG ∝ η20 is associated with elastic tunneling processes
and gives rise to a background conductance which is
independent of voltage and tip position. The term G ∝
η0η1 is also independent of voltage but generally depends
on the tip position as it involves the spin expectation
values ⟨Sα

j ⟩. However, it vanishes under the above
assumption of a non-polarized tip and substrate. Finally,
the term G ∝ η21 depends on voltage in a nontrivial
manner since it probes the dynamical spin correlations
of the 2D magnet. This term is shown in Eq. (24).
Accounting for the exponential distance dependence of
tA through the form factors Fj,k in Eq. (26), all other
microscopic factors in Eq. (29) appear only via the overall
scale G0 in Eq. (25) for the cotunneling conductance, and
through cotunneling amplitudes tj . For the latter, we
distinguish between bulk sites (with tj ̸=0 = tbulk) and
the impurity site (with tj=0 = timp). The ratio timp/tbulk
may vary substantially depending on the impurity type
(adatom vs substitutional). In Fig. 3 of the main text,
we considered timp > tbulk, assuming a stronger overlap
of the tip wavefunction with Co adatoms than with Cr3+
ions in the honeycomb layer. After the above steps, one
arrives at Eq. (24).

The conductance is thereby expressed in terms of
dynamical spin correlations of the 2D magnet in the
absence of tip and substrate, see Sec. I C. These
correlations exhibit a peak at the bound state energy
which translates to a step in the conductance. As
discussed in the main text, one can thereby track the
energy of the bound state as a function of the external
magnetic field by measuring G(V ) or dG/dV . Moreover,
G(V = 0) can directly monitor atomic-scale spin-flip
transitions.
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FIG. 3. ED and LSW results for a magnetic quantum
impurity in the adatom configuration for the ferromagnetic
Kitaev model (K > 0, Jb = 0) with S = Simp = 1/2,
JK/K = 1.5, g = 1.5, and h = hĉ. (a) Excitation
spectrum vs magnetic field. ED (LSW) results correspond
to red dots (black lines). ED results were obtained for a
system of 2× 2 unit cells with periodic boundary conditions.
(b) Spin projections ⟨S0,1 · ĉ⟩ vs h/Jb. Yellow squares
(lines) correspond to ED (LSW) results for the impurity spin.
Results for the coupled bulk spin are shown as blue triangles
(ED) and blue lines (LSW), respectively.

IV. KITAEV HONEYCOMB MODEL

We here show results for the ferromagnetic 2D Kitaev
honeycomb model with Jb = 0 and K > 0 [13] in the
partially polarized phase, which may serve as idealized
model for α-RuCl3 in a strong magnetic field. For
the bulk spins (Ru3+), we effectively have S = 1/2.
Using Co atoms as examples for the adatom magnetic
impurities [23], we have Simp = 1/2 with g ≈ 1.5. In
contrast to Fig. 2(b) of the main text, we now find
that the discontinuity in the local magnetization at the
transition (h/K ≈ 1.05) is larger for the bulk than for
the impurity spin. In fact, the magnetization of the bulk
spin becomes slightly negative for magnetic fields just
below the transition. While the spin flip of the bulk
spin is expected to occur for the large-g limit, we here
observe that it can happen already for moderate values
of g > 1. Despite of the small system size used in the
ED calculations, LSW and ED results agree rather well
for large magnetic fields. However, Fig. 3 shows that
they significantly deviate for h/K < 0.7, i.e., once the
bound state approaches the continuum. However, since
the main emphasis of our work is on spin-flip transitions
associated with zero-energy bound states, we do not
study this regime here in detail.

In Fig. 4, we show the spatial profile of the STS zero-
bias conductance for the Kitaev model near the adatom
impurity studied in Fig. 3. Similar to our results for
the KH model in Fig. 3 of the main text, the zero-bias
conductance is significantly enhanced in the vicinity of
the impurity for magnetic fields above the transition.
In the present case, however, both the impurity and
the coupled bulk spin show positive magnetization. In

<latexit sha1_base64="Mogn3pkSnl8VRtF36cdcd59zSPk=">AAAB8XicbVBNS8NAEJ3Ur1q/oh69LBahXmoiUr0IRQ/1WMF+YBvKZrtpl242YXcjlNB/4cWDIl79N978N27bHLT1wcDjvRlm5vkxZ0o7zreVW1ldW9/Ibxa2tnd29+z9g6aKEklog0Q8km0fK8qZoA3NNKftWFIc+py2/NHt1G89UalYJB70OKZeiAeCBYxgbaTHWql57Zye1XpOzy46ZWcGtEzcjBQhQ71nf3X7EUlCKjThWKmO68TaS7HUjHA6KXQTRWNMRnhAO4YKHFLlpbOLJ+jEKH0URNKU0Gim/p5IcajUOPRNZ4j1UC16U/E/r5Po4MpLmYgTTQWZLwoSjnSEpu+jPpOUaD42BBPJzK2IDLHERJuQCiYEd/HlZdI8L7uVcuX+oli9yeLIwxEcQwlcuIQq3EEdGkBAwDO8wpulrBfr3fqYt+asbOYQ/sD6/AEkl49J</latexit> G
(V

=
0)
/G

0

<latexit sha1_base64="u2TwwKMVTyridKtO0sT6Dd/dTzA=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJeyKRI9BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJb42aRbKLpldwa6TLyMFEmGWrfw1elFPAlBIZfMmLbnxuinTKPgEib5TmIgZnzEBtC2VLEQjJ/OLp7QU6v0aD/SthTSmfp7ImWhMeMwsJ0hw6FZ9Kbif147wf6VnwoVJwiKzxf1E0kxotP3aU9o4CjHljCuhb2V8iHTjKMNKW9D8BZfXiaN87JXKVfuLorV6yyOHDkmJ6REPHJJquSW1EidcKLIM3klb45xXpx352PeuuJkM0fkD5zPH1VakLY=</latexit>

(c)
<latexit sha1_base64="IUOYbY/vMmvCz0r+kBqv5b5ADcY=">AAAB8XicbVBNS8NAEN34WetX1aOXYBHqpSQi1WPRi8cK9gPbUDabSbt0swm7E7GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDPPTwTX6Djf1srq2vrGZmGruL2zu7dfOjhs6ThVDJosFrHq+FSD4BKayFFAJ1FAI19A2x/dTP32IyjNY3mP4wS8iA4kDzmjaKSHHsITZpXgbNIvlZ2qM4O9TNyclEmORr/01QtilkYgkQmqddd1EvQyqpAzAZNiL9WQUDaiA+gaKmkE2stmF0/sU6MEdhgrUxLtmfp7IqOR1uPIN50RxaFe9Kbif143xfDKy7hMUgTJ5ovCVNgY29P37YArYCjGhlCmuLnVZkOqKEMTUtGE4C6+vExa51W3Vq3dXZTr13kcBXJMTkiFuOSS1MktaZAmYUSSZ/JK3ixtvVjv1se8dcXKZ47IH1ifP1bgkLc=</latexit>

(d)

0.2

0.4

0.6

0.8

1.0

1.2

<latexit sha1_base64="FMQ07mDyp4bHdDFF/HFT8o3twL0=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJeyKRI9BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJbY2aRbKLpldwa6TLyMFEmGWrfw1elFPAlBIZfMmLbnxuinTKPgEib5TmIgZnzEBtC2VLEQjJ/OLp7QU6v0aD/SthTSmfp7ImWhMeMwsJ0hw6FZ9Kbif147wf6VnwoVJwiKzxf1E0kxotP3aU9o4CjHljCuhb2V8iHTjKMNKW9D8BZfXiaN87JXKVfuLorV6yyOHDkmJ6REPHJJquSW1EidcKLIM3klb45xXpx352PeuuJkM0fkD5zPH1JOkLQ=</latexit>

(a)
<latexit sha1_base64="8dgaeLR4X2FyPbpmDy1pwKzqOhI=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJeyKRI9BLx4jmAcmS5iddJIhs7PLTK8YlvyFFw+KePVvvPk3TpI9aGJBQ1HVTXdXEEth0HW/nZXVtfWNzdxWfntnd2+/cHDYMFGiOdR5JCPdCpgBKRTUUaCEVqyBhYGEZjC6mfrNR9BGROoexzH4IRso0RecoZUeOghPmJaCs0m3UHTL7gx0mXgZKZIMtW7hq9OLeBKCQi6ZMW3PjdFPmUbBJUzyncRAzPiIDaBtqWIhGD+dXTyhp1bp0X6kbSmkM/X3RMpCY8ZhYDtDhkOz6E3F/7x2gv0rPxUqThAUny/qJ5JiRKfv057QwFGOLWFcC3sr5UOmGUcbUt6G4C2+vEwa52WvUq7cXRSr11kcOXJMTkiJeOSSVMktqZE64USRZ/JK3hzjvDjvzse8dcXJZo7IHzifP1PUkLU=</latexit>

(b)

FIG. 4. Spatial profile of the zero-bias STS conductance near
an adatom magnetic impurity for the ferromagnetic Kitaev
model, with the same parameters as in Fig. 3. Results
obtained from LSW theory for two field values: (a) h =
0.854K (below the transition), (b) h = 1.33K (above the
transition).

fact, below the critical field, the conductance has a local
maximum when the tip is right above the impurity, in
contrast to the local minimum observed in Fig. 3(c) of
the main text. This difference can be rationalized by
noticing that the parameter choice timp > tbulk used in
Fig. 4 favors contributions due to cotunneling via the
impurity site. The corresponding impurity spin still has
a small positive magnetization even below the transition,
see Fig. 3(b), in contrast to the negative magnetization
observed below the transition in Fig. 2(b) of the main
text.
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