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ABSTRACT

Bayesian nonparametric (BNP) approaches for meta-analysis have been developed to relax distributional assumptions and handle
the heterogeneity of random effects distributions. These models account for possible clustering and multimodality of the random
effects distribution. However, when we combine studies of varying quality, the resulting posterior is not only a combination of the
results of interest but also factors threatening the integrity of the studies’ results. We refer to these factors as the studies’ internal
validity biases (e.g., reporting bias, data quality, and patient selection bias). In this paper, we introduce a new meta-analysis model
called the bias-corrected Bayesian nonparametric (BC-BNP) model, which aims to automatically correct for internal validity bias in
meta-analysis by only using the reported effects and their standard errors. The BC-BNP model is based on a mixture of a parametric
random effects distribution, which represents the model of interest, and a BNP model for the bias component. This model relaxes
the parametric assumptions of the bias distribution of the model introduced by Verde. Using simulated data sets, we evaluate
the BC-BNP model and illustrate its applications with two real case studies. Our results show several potential advantages of
the BC-BNP model: (1) It can detect bias when present while producing results similar to a simple normal-normal random effects
model when bias is absent. (2) Relaxing the parametric assumptions of the bias component does not affect the model of interest and
yields consistent results with the model of Verde. (3) In some applications, a BNP model of bias offers a better understanding of the
studies’ biases by clustering studies with similar biases. We implemented the BC-BNP model in the R package jarbes, facilitating
its practical application.

1 | Introduction results. As a consequence, the resulting meta-analysis could
be misleading.

Meta-analysis methods help researchers answer questions that

require the combination of statistical results across several stud- Factors threatening the integrity and quality of studies are
ies. Very often the only available studies are of different types  called internal validity biases. For example, patient selec-
and with varying quality. Therefore, when we combine disparate  tion bias, dilution bias, reporting bias, data quality, and so
evidence at face value we are not only combining results of  forth are all forms of internal validity bias. The problem of
interest but also biases that might threaten the quality of the these types of biases is that they are not directly observ-
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TABLE 1 | Example of a meta-analysis combining disparate studies,
where researchers collected evidence across 18 observational studies on
COVID-19-infected patients. The odds ratio (OR) measures the associa-
tion between hypertension and mechanical respiratory assistance within
28 days after hospitalization. Values of OR greater than one indicate
higher risk of hypertension.

Author Design OR seOR N
Guo et al. 2020 Case series 6.48 143 187
LiJ et al. 2020 Case series 259 114 178
Mao et al. 2020 Case series 317 139 214
Wang Z et al. 2020 Case series 6.63 2.07 69
Zhang JJ et al. 2020 Case series 1.88 145 140

Cross-sectional 220 121 548

Cross-sectional 112 183 135

Cross-sectional ~ 12.60 2.49 49
Retrospective cohort 3.56 1.57 150
Deng et al. 2020 Retrospective cohort 1.51 152 112
Feng et al. 2020 Retrospective cohort 5.25 125 476
Guan W et al. 2020 Retrospective cohort 2.02 1.22 1099
Huang et al. 2020

Li X et al. 2020
Wan S et al. 2020
Xiang et al. 2020
Chen et al. 2020

Retrospective cohort 1.18 2.38 41
Liu Wetal. 2020  Retrospective cohort 249 227 78
Simone et al. 2020  Retrospective cohort 2.85 150 124
Wang D et al. 2020 Retrospective cohort 4.96 1.51 138
Wu C et al. 2020 Retrospective cohort 2.35 1.43 201
Zhang G et al. 2020 Retrospective cohort 4.37 140 221

Note: Source of the data de Almeida-Pititto et al. 2020.

able, making their correction in meta-analysis a challenging
problem.

Table 1 presents an example of a meta-analysis combining differ-
ent types of studies, where researchers collected evidence across
18 observational studies (OS) on COVID-19-infected patients
(de Almeida-Pititto et al. 2020). This meta-analysis was performed
during the COVID-19 pandemic when researchers were urgently
trying to assess evidence linking baseline risk factors, such as in
this case, hypertension, with mechanical respiratory assistance
within 28 days. We will present more details about this meta-
analysis in Section 4, but by looking at the studies’ summaries
and the different design types, we have what we call the “Anna
Karenina” principle in evidence synthesis: good quality studies
are alike, but biased ones are biased in their own way. However,
these studies were the only available evidence at that time,
and researchers faced an imperfect body of evidence to answer
their question.

In this meta-analysis, researchers estimated an alarming odds
ratio (OR) of 2.96 with a 95% confidence interval of [2.33, 3.76],
meaning that patients admitted to hospitals with hypertension
were almost three times more likely to receive mechanical
respiratory assistance than patients without hypertension. The
solid line in Figure 1 corresponds to the posterior pooled OR
by applying a noninformative Bayesian normal random effects
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FIGURE 1 | Results of the meta-analysis comparing a random effects
(RE) model (solid line) and the bias-corrected Bayesian nonparametric
(BC-BNP) model (dashed line). Posterior distributions of the pooled
odds ratio (OR) of needed for mechanical assistance for patients with
hypertension. From left to right, the vertical dashed lines correspond to
having no effect, OR = 1 (black), and the pooled estimate of the normal
random effects, OR = 2.96 (blue). The short vertical lines at the bottom
correspond to the estimated ORs from the studies.

meta-analysis model, which confirms this result. However, the
disparity of the evidence in Table 1 comes as a warning against
these results.

In this paper, we present a new meta-analysis model, called
the BC-BNP model, where BC-BNP stands for bias-corrected
Bayesian nonparametric. The aim, or at least the hope, is that
the model automatically corrects meta-analysis results affected by
internal validity bias by only using the reported effects and their
standard errors. This model relaxes the parametric assumptions
of the bias distribution of the model introduced by Verde (2021).
The general idea behind these models is that it is possible, at
least in theory, to decompose between-study heterogeneity into
two components: a component of diversity and a component
of internal validity bias (Higgins, Thompson, and Spiegelhalter
2009). We can schematically present this idea as follows:

Heterogeneity = Diversity + Bias.

The dashed curve presented in Figure 1 corresponds to the
posterior distribution of the pooled OR for the Table 1 studies
calculated by using the BC-BNP model. The posterior mean
is 1.98 with a 95% posterior interval of [0.52, 3.35]. The effect
of hypertension remains important, but it is moderated after
bias correction and is subject to greater uncertainty. This result
reduces certainty about the evidence collected in Table 1 and to
the results of a meta-analysis without bias correction.

Bayesian nonparametric (BNP) inference represents a broad and
highly-active research area in Bayesian hierarchical modeling
and computational statistics. A gentle introduction of BNP is
given by Rosner, Laud, and Johnson (2021) and Gelman et al.
(2013). These models are “nonparametric” in the sense that
they assign a stochastic process (e.g., Dirichlet process [DP],
Pélya tree [PT] process), with a theoretically infinite number of
parameters, to the statistical model. In this way, BNP avoids the
more restrictive assumption of “parametric models,” where such
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a model assumes that the data can be described by a few finite
numbers of parameters. From a pragmatic point of view, BNP
modeling allows to acknowledge uncertainty about an assumed
model, where a base distribution is assumed and realizations of
the process allow variation around this distribution.

In meta-analysis, BNP models have been developed to increase
the flexibility of the random effects models. Ohlssen, Sharples,
and Spiegelhalter (2007) provided an excellent practical imple-
mentation of the DP and Dirichlet process mixtures (DPMs)
in meta-analysis. The authors present the stick-and-break rep-
resentation of the DP and DPM and their implementation in
BUGS (Spiegelhalter et al. 2007). They apply these methods to
a meta-analysis of OS reporting hospitals’ performances based
on mortality rates (death in hospital within 30 days of emer-
gency admission for myocardial infarction) from the United
Kingdom.

Burr and Doss (2005) introduced a BNP model for random effects
meta-analysis based on DPMs. The motivation of the authors was
based on a meta-analysis of case-control studies that investigated
if there was an association between the presence of a certain
genetic trait and an increased risk of coronary heart disease. The
available evidence was contradictory, dispersed and motivated the
development of a flexible random effects distribution. Although
the DPM adds flexibility to the random effects, this happens at
the cost of eliminating the interpretation of a location parameter
as a pooled effect across studies. As a remedy, Burr and Doss
(2005) considered a conditional DPM (CDPM) model in which
the random effects distribution is constrained to have the median
as the pooled effect size. The R package bspmma implements the
Burr and Doss model (Burr 2012).

Branscum and Hanson (2008) developed a meta-analysis random
effects model based on mixture of Pélya Trees (MPTs), which
is a family of random partitions of the sample space. PTs lend
themselves naturally to fixing percentiles. For example, the first
partition can be located at the median of the random effects
distribution. In this way, an MPT approach allows for the desired
flexibility in the random effects distribution while retaining
the simplicity of the normal-normal meta-analysis model in
terms of evaluating a single location parameter. Using simulation
experiments with relatively large number of studies (N = 100),
the authors showed that the MPT approach works well when
normality holds as well as when it does not because the approach
anticipates the possibility of misspecification of normality. To
illustrate the MPT approach, the authors presented a meta-
analysis of prospective and retrospective OS investigating the
relationship between alcohol consumption and breast cancer.

Dunson, Xue, and Carin (2008) presented the matrix stick-
breaking process (MSBP) for flexible meta-analysis. This model
is suitable in multiparameters meta-analysis when each study
reports multiple regression coefficients, but not necessarily the
same ones in each study.

Karabatsos, Talbott, and Walker (2015) presented a BNP model for
meta-analysis regression, which is a special case of the adaptive-
modal BNP regression (Karabatsos and Walker 2012). This model
increases the flexibility of the random effects distribution and
allows nonlinear relationships in the metaregression component.

Poli et al. (2023) recently developed a multivariate PT model for
meta-analysis of S studies with time-to-event endpoints across n
possible cohorts (i.e., n < S). In this model, the independent beta
priors for the splitting probabilities in the PT construction are
replaced by a Gaussian process prior. The Gaussian process links
study-specific covariates (e.g., tumor type, treatment agent, and
biomarker status) to the PT partition in the logistic scale. In this
way, the random partition introduces correlation between any
pair of studies with similar baseline characteristics. This method
is motivated by an extensive meta-analysis of S = 174 phase I/II
studies on assessing the effect of biomarkers on clinical outcomes
in patients with solid tumors. The authors evaluate the model
using a simulation study mimicking the empirical characteristics
of the motivated meta-analysis.

These BNP meta-analysis models have increased the flexibility
of random effects distributions allowing nonlinear relationships
in metaregression and complex dependencies in multivariate
meta-analysis. Moreover, they have been successfully applied
to combine studies of different designs. However, these models
have not been specifically tailored to adjust for multiple biases
in meta-analysis.

In Verde and Ohmann (2015), we reviewed over two decades
of methods and applications of combining disparate evidence
and adjusting for bias in meta-analysis. We classified statistical
approaches in four main groups: The confidence profile method
(CPM, Eddy, Hasselblad, and Shachter 1992), cross-design syn-
thesis (CDS, Droitcour, Silberman, and Chelimsky 1993), direct
likelihood bias modeling, and Bayesian hierarchical modeling.
Within the Bayesian parametric hierarchical models, there are
approaches to combine aggregated evidence with potential risk of
bias, for example, the work of Prevost, Abrams, and Jones (2000),
Welton et al. (2009), and Dias et al. (2010). These approaches differ
in the way that the bias component is estimated and incorporated
into the meta-analysis model.

We organize this paper as following: In Section 2, we present
methodological details of the BC-BNP model. Here, we describe
a flexible model that allows inference of the population effect
in a meta-analysis subject to studies having different degrees
of internal validity bias. In Section 3, we perform a simulation
study to evaluate the BC-BNP under different scenarios, and
compare it with three alternative meta-analysis models. In Sec-
tion 4, we show the BC-BNP model in action by applying this
methodology to two meta-analyses; one meta-analysis combines
studies with different designs, and the other RCTs with varying
quality. We conclude the paper in Section 5 by highlighting
advantages, limitations, and pointing out possible extensions of
the BC-BNP model.

2 | BC-BNP Meta-Analysis Model

In this section, we present methodological details of the BC-
BNP meta-analysis model. This model is based upon a mixture
of a parametric random effects distribution, which represents the
model of interest, and a BNP model for the bias component. The
resulting random effects model is a combination of a model of
interest and a process of bias.
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The BC-BNP model has potentially two advantages. First, the
parameters of the model of interest have a simple interpretation.
Second, the bias component does not have the parametric restric-
tions presented in Verde (2021). In this way, we expect that it is
possible to isolate the model of interest and make fewer model
assumptions on the bias component. In addition, the BNP model
adds flexibility to the identification of biased studies by clustering
their results.

2.1 | Modeling Biased Evidence

Suppose that a meta-analysis of N studies has reported effect
estimates y,,,, ..., ¥y With their corresponding standard errors
SE,, SE,, ..., SEy. In this situation, we assume that the sample size
within studies, say n;, is large enough to ignore uncertainty on the
estimated standard errors SE;.

The crucial step in modeling biased evidence is to recognize that
the reported effect estimate y; is a potentially biased version of the
effect that could be observed in an “ideal study.” Therefore, the
likelihood contribution of y; corresponds to a biased study effect
6% that we model with a normal likelihood:

yil6? ~ N(6”,SE?), i=1,..,N. Q)

1

2.2 | Modeling Heterogeneity as Diversity and
Bias

Following Verde (2021), we represent the biased study effect 67 as
the combination of “three hidden variables™: 6;, §8;, and I;, where

6 =(1-1)6,+1,(6 + B, @
which is equivalent to 67 = 6; + I, §;.

The random effect 6; represents the bias-corrected study effect, 3;
models the amount of the internal validity bias of the study, and
the indicator variable I; labels if study i is biased or not, that is,
)L if study iis biased,
"~ )0, otherwise,
where Pr(I; = 1) is the probability that the study i is biased.
We assume a priori that each study has the same probability
to be biased and we denote the class probability for the biased

studies by 5. This parameter expresses the uncertainty about the
proportion of biased studies in the meta-analysis.

‘We model the random effect 6; as
6, ~ N(ue,72), 3)

where the parameters y, and T; represent the mean effect and
the variability due to “diversity” across bias-corrected studies,
respectively. The random effect model (3) is “the model of
interest” that we aim to isolate in the meta-analysis.

In Verde (2021), we used a parametric model for the bias effect 3;.
The advantage of a parametric model is the simple interpretation

of the parameters. However, it is not immediately clear if a bias
is discrete or continuous, or which probability distribution could
be appropriate for ;. In this paper, we relax the distribution
assumption of 3; by using a BNP prior.

More generally, let G; be the probability distribution of ;. We
propose to handle uncertainty around the bias effect by giving a
BNP prior distribution to G. In this approach, we assume that G
is random, with a prior on the space of probability distributions.
Specifically, we model the BNP prior of G; with a DP, having a
base distribution N (g, Té), and concentration parameter o:

BilGs ~ Gg, @

Gﬁl/xﬁ,rz,, an~ DP(N(/,tﬁ,rfg), oc).

The DP prior in (4) is a discrete and infinite-dimensional
parameter prior, where ug and Tz, represent the location and scale
of the base distribution. The prior expectation of the process
corresponds to the base distribution

E(Gﬁlylg,ré) =N<y,3,‘(§) ©)

and the prior variance depends on the base distribution and a:

var(Gﬁl,uﬁ,fé> = N<M5’T§) E;f(“ﬁﬁé)] ) (6)

The variance of the process (6) shows that the concentration
parameter « influences the proximity of the process to the base
distribution. In addition, a determines the number of clusters in
the process, which is elaborated later in Equation (9).

The DP prior in (4) allows to represent the random distribution
function G4 with the “stick-breaking” construction (Sethuraman
1994). In this case, G; can be expressed as

G = ), wids:, @)
k=1

where the stochastic weights w},wj,... and the support points
By, B;,... are a priori two independent sequences of random
variables, with w; >0 and 2;; w; =1, and 56; is the Dirac
delta function, which places a measure 1 on the location ;. In
the representation (7), the collection of 8}, 6; ... and w},w; ...
constitutes a realization of Gj.

The support points 87, 85, ... are independently sampled from the
base distribution:

By ~ N, 72). ®

In the presence of a positive bias, where some studies exaggerate
results, we expect that 5 > 0 and the ordinate values §}, 85, ...
will be sampled to the right from the model of interest (3).
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The random weights w; are sampled with decreasing expecta-
tions as follows:

Wi =Gk H(l —gq;) with g, ~ Beta(1,a). ©)

j<k

The stick-breaking weights w}, w3, ..., determine the amount of
clustering of the process, which is driven by the concentration
parameter .

A simple way to understand the influence of the parameter « in
the number of clusters is by observing that w; ~ Beta(1, a), then

1
1+a’

E(w)) =

In the limit when a — 0, the first weight approaches w; — 1,
and the random distribution G4 has a single support point. In
this situation, Gy is quite different from the base distribution
N (/,45,1'2). When «a increases, no finite collection of weights
dominates and each random draw of G; becomes arbitrarily close
to N (g, ré,), that is, the process becomes concentrated at the base
distribution. In Section 2.3, we will see that the value of a can
be bounded to a finite value that reflects the sample size of the
meta-analysis and the prior expected number of biased studies.

‘We can summarize the model construction of 6? as follows:

o7 N(ug, 7)), with probability (1 — %),
: N(uo, )+ X0, w8, with probability B,

(10)

In (10), the biased study effect 8 follows a convex combination
of two stochastic processes. With probability (1 — %) we obtain a
constant process, where all sequences of the process are the same,
and they correspond to model of interest (3). With probability 7%,
we obtain a random process where each sequence of the process
is different and each S, is draw from a common distribution that
we model with a DP.

This model construction aims to separate diversity and bias from
the total heterogeneity in the meta-analysis. Although the model
is a BNP model for random effects, it has the advantage that the
parameters uy and 7, have a familiar interpretation.

2.3 | Specification of Priors of Hyperparameters

Prior distributions are a fundamental part of the model, in par-
ticular for meta-analysis models intending to correct for internal
validity bias. The BC-BNP model has two sets of hyperparameters
Mg, To that corresponds to the model of interest (3), and ug,
75, 78, and a that drive the process modeling the bias (4).
We assume independent hyperpriors on these parameters, and
we provide a default setting for the simulation experiment of
Section 3 and the applications of Section 4. Although, this
default setting is specific for these applications, it can be used as
guideline for similar meta-analysis. In addition, we give a simple
approximation to the random probability distribution G,z to make
it more computationally tractable.

23.1 | Priors for the Location Parameters u, and y;

For location parameter ug, we use g ~ N(O, aﬁ), and we set the
default value o, = 10° to represent a local flat prior for .

For the bias hyperparameter uz, we use a uniform distribution:
Hg ~ Uniform(B,pyer» Bypper)- In Section 3, and in Section 4,
we set the default values By,,.. = —15 and B,,,,, = 15, which
correspond to an unknown bias in any direction. In addition, in
Section 4 we perform a sensitivity analysis by restricting the prior
of ug to positive bias, that is, we set ug ~ Uniform(0, 15).

2.3.2 | Prior for the Standard Deviation Parameters 7,
and 7,

We parametrize the prior of 74 in terms of the precision parameter
1/ 7:;, and we use a scale gamma with scale parameter S and with
degrees of freedom df as a prior: 1/7; ~ Scale.Gamma(S, df)
(Huang and Wand 2013). We set the default values S = 0.5 and
df =1.

The scale gamma distribution on 1/77 implicitly defines a prior
on the standard deviation 7, ~ S t*(df), where t*(d f) represents
the ¢t-distribution with d f degrees of freedom restricted to positive
values. In the limit as the degrees of freedom df increases
to infinity, the distribution then becomes a half-normal with
standard deviation S. Gelman (2006) called this prior a “weakly
informative prior,” and Rover et al. (2021) discussed “weakly
informative priors” in the context of the Bayesian normal-normal
meta-analysis model.

We set as default values S = 0.5 and df = 1, which implicitly
corresponds to using a half-Cauchy prior for 74. This prior
has P(7y < 0.5) =0.5 and P(ty; > 4 X 0.5) = 0.16, which covers
plausible values of 7, in the log(OR) and mean difference scale.

In a similar way, we parameterize the prior of 7z in terms of the
precision parameter 1/72, and we use a scale gamma with scale
parameter S = 0.5 and with degrees of freedom d f = 1 as default
prior for 1/ 1'2.

2.3.3 | Prior for the Probability of Bias Parameter 7%

We model the probability of bias 7? with a Beta distribution
78 ~ Beta(ay, a;), and we take the default values a, = 0.5 and
a, = 1. This prior reflects that we expect about one third of biased
studies in the meta-analysis, that is, E(7?) ~ 0.33. However, this
prior is asymmetric to the right with a spike at 7% ~ 0. Therefore,
if bias adjustment is unnecessary, posterior values of 7% will be
concentrated close to zero.

In addition, if we have information about the proportion of low-
quality studies that might be at risk of bias, this information can
be incorporated in the analysis by eliciting the values of a, and
a,. Suppose that after evaluating the quality of the N studies, we
suspect that 78 is around 7#® and it would be fairly surprising that
it could be greater than Q,,,,. Then, we calculate a, and a,, such
that the median of the distribution is #% and the 90% quantile is

Qbias’

50f17

85U8017 SUOWIWOD BA1E81D) 3|qeotjdde 8y} Aq psuIsnob ae sl VO '8sn JO S9Nl 1oy Akeld1 8UIIUO AB]1M UO (SUONIPUOO-PUE-SLUIBIALIOY A8 | 1M ARed1Bu1|Uo//:Sdy) SUONIPUOD pue WIS | 81 89S *[5202/S0/ST] U0 Akelqi8uliuO A8|IA *HOpRSSNd Y101 (g IgsspUe-] pun SEISIAIUN A] 700, [WIG/Z00T 0T/10p/W0 A8 |im Ake.q Ul |uoy/Sdiy wouy pepeojumoq ‘T ‘5202 ‘9E0vTZST



2.3.4 | Finite Truncation of the DP and the Prior for «

Bayesian models with infinite-dimensional parameters require
special strategies for using Markov chain Monte Carlo (MCMC)
techniques to approximate posterior distributions. Two popular
approaches in DP modeling are: marginalization and truncation
of the process. Marginalization leads to a Polya urn schema
that allows efficient MCMC algorithms. The disadvantage of
marginalization is that we cannot make inference about functions
of the process, for example, calculate the expected value E(Gy).

Truncation allows to have a finite parameter approximation for
the distribution of the process. A recent overview of truncated
Dirichlet process (TDP) is given by Griffin (2016), and further
developments using algorithms for adaptive empirical truncation
are provided by Arbel, De Blasi, and Priinster (2019) and Zhang
and Dassios (2023).

A TDP approximates G; with a maximum of K components:
D wids & Y widg an
k=1 k=1

In practical terms, this approximation allows clustering the bias
effects f; into a maximum of K clusters, where the maximum
number of clusters K is empirically adapted on the applica-
tion context.

A pragmatic way to choose K is by making the expected prob-
ability of the final component wy =1 - 211;_11 w; to be small:

E(wg) =e. (12)

After K —1 random breaks, the remaining probability has
expectation

K-1 ) K-1 g &
E(l—;wk> =E<H(1—qk)) = <1+oc> .13

From (12) and (13), we have

log(e)

K=1+—>"_, (14)
a
log ;)
and by taking € = 0.01 we can approximate K as
K~145a (15)

On the other hand, the maximum number of clusters K™** is
related to the prior distribution of «, that we choose to be

a ~ Uniform(0.5, a%*). (16)

We take the lower bound of 0.5 to avoid very low values of w; that
may produce numerical issues.

Therefore, by using (15), and the upper bound of the prior (16), we
can approximate the maximum number of clusters by

Kmeax =1 4 5qmex, 17)

Now, the prior expectation of 7 is

ay

E(n®) = )
a, +a

which gives as an expected number of biased studies in the meta-
analysis NZ:

Ne=N(—% ). (18)
a, +a;

In practice, the maximum number of clusters K™** in the bias
component should not exceed the expected number of biased
studies N2. Then, we have

Q,
K”’“"=1+Sa’"’”<N< 0 ) (19)

a, +a,

and solving for a™%* resulted that this hyperconstant should be

e <} (@2D0r) ”

5 a,+a,

We follow this pragmatic approach to specify a™** and K" in
our applications.

2.4 | Implementation, Bayesian Computations,
and Reporting Results

The models presented in this paper are implemented in the R
package jarbes (Verde 2024). The name of the package stands
for Just a rather Bayesian Evidence synthesis. This package
implements a number of Bayesian meta-analysis models within
the family of hierarchical metaregression (HMR) models. The
main characteristic of HMR models is the explicit modeling of
the bias process in CDS and cross-evidence synthesis, that is,
when different study types, for example, RCT, OS, and different
data types, aggregated data (AD) with individual participant data
(IPD) are combined in a meta-analysis. The model presented in
Section 2 is an example of an HMR, where AD data from studies
of different types or varying quality are combined.

The implementation of the functions in jarbes follows the same
strategy as the package bamdit (Verde 2018), where each function
represents a Bayesian meta-analysis model. Once the user selects
a model’s function, the function automatically writes the BUGS
language script needed to perform the MCMC computations. The
function sends the BUGS script to JAGS (Plummer 2003), and
results are sent back to R.

The JAGS software has an internal directed acyclic graph (DAG)
representation of the model. The software automatically factor-
izes the DAG and chooses the sample algorithm for each node,
the algorithm decides the sampler according to local conjugate
between the parent—child distribution. After this process, a hybrid
Gibbs sampler is used for MCMC simulations.

The function becmixmeta() implements the BC-BNP model pre-
sented in Section 4. The outcome of this function is an R
object from the class “bcmixmeta,” which contains the MCMC
simulations, the model parameterization, the data used in the
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calculations, the JAGS script, and so forth. In particular, the JAGS
script created during the application of bcmixmeta() could be
useful to practitioners interested in expanding the model or using
other MCMC software, such as MultiBUGS, Stan, or Nimble.

Another useful functionality is a diagnostic function, which
recognizes the “bcmixmeta” object and plots the posterior results
of A =y — g against 7%, This diagnostic plot was developed
in Verde (2021) to assess if the bias correction was necessary. If
the 95% posterior interval of A overlaps the horizontal line at
E(274|Data) then bias correction is not needed.

We summarize the results of the meta-analyses by reporting the
posterior distributions of the hyperparameters: u,, 74, ug, Tg,
and 72. At the level of the studies, we present the posterior
probabilities that a study is biased, the posteriors of the bias
effect 67, and the bias-corrected effect 6;,. For each posterior
distribution, we present the mean, the standard deviation, and
the 95% posterior interval.

2.5 | Coclustering Studies

One potential advantage of the BC-BNP model is the ability to
identify subgroups of studies that tend to visit the same cluster in
the MCMC iterations. This model feature could help clustering
similar studies and identify those that disagree with others, and
learn about disparate sources of bias across studies.

Let L; be the cluster label of study i, where L = 1 indicates the
cluster of the unbiased studies and L = 2,...,K + 1 the different
clusters in the bias component. In each MCMC iteration ¢, we
monitor the coclustering between studies by calculatingan N x N
matrix S* of the indicator variables S;, I where

1 ifL,=L;
St = ! J 21
b {0 ifL #L;. =

The variable S;f indicates whether or not two studies visit the

same cluster at iteration t. Therefore, S , the average of the matrix
of S* after T iterations, estimates the coclustering probability
between studies.

We define the dissimilarity distance between studies as D = 1 —
S, and we display the coclustering results using a heatmap plot
generated by the R package pheatmap (Kolde 2019). The heatmap
is generated by clustering columns and rows of D with the default
hierarchical clustering algorithm in R (method = “complete”).

3 | A Simulation Study

This simulation study aims to determine whether the posterior
distributions of the BC-BNP model can detect bias under simula-
tion conditions where bias is present and can confirm the absence
of bias under data simulation condition where bias is not present.
The simulation study is designed to have similar characteristics
to the meta-analyses that are presented in Section 4.

We compare the performance of the BC-BNP model with three
alternative meta-analysis models: (1) The usual normal-normal
“Bayesian random effects,” which corresponds to (3) without bias
correction, (2) an “Oracle Bayesian random effects,” where biased
studies were manually excluded before running the previous
model, and (3) the parametric BC model (Verde 2021). We run the
four models with the default hyperpriors presented in Section 2.3.
Further computational details and results can be found in the
R code supplement in the folder “Simulations-Section-3” of
Supporting Information of the paper.

3.1 | Simulation Model and Different Levels of
Bias

To simplify the presentation, we work in the scale of the logarithm
of the odds ratio (i.e., log(OR)), which would be a typical situation
in practice. For a meta-analysis of size N, we simulate the studies’
results using a normal-normal random effects model:

il6;,SE; ~ N(6;,SE;), and 6;|us, 7o ~ N(Me,‘fé)

(i=1,2..,N), (22)

where y; is the simulated log(OR), and 6; the effect of study i.
The parameters uy and 7, represent the pooled log(OR) and the
between-studies standard deviation, respectively.

In model (22), SE; is the standard error of y;, which is equivalent to
v/02/n;. The parameter o is the within-study standard deviation,
and n; is the sample size of study i. Thus, by marginalization over
the study effect 6;, the model (22) is equivalent to

Vi ~ N(pg, 7 + 0% /m;). (23)

For each simulated scenario, the sample sizes n; are generated
at random from those of the real studies presented in Section 4.
For a meta-analysis of size N = 20, we sample n; from the data
in Section 4.2, and for N = 30 we sample n; from the data in
Section 4.1.

For all scenarios, we set the pooled log(OR) at 4 = 1,and 7 = 0.5,
representing “a fairly high” heterogeneity in the log(OR) scale
(Spiegelhalter, Abrams, and Myles 2004, 170). The standard error
of the log(OR) derived from a 2 x 2 table is approximately given by
SE, =0/ \/ﬁl . We set the value of 0 = 4.95, which was empirically
determined by calculating the median of o from the studies,
analyzed in Section 4.

Given a sample of simulated data y,, ..., yy, we generate B biased
studies by taking a random sample without replacement of B
studies out of N. The selected studies are shifted by a mean
bias g, that is, y, + uz (b = 1,..., B). We add uncertainty of the
amount of bias by considering that a study could have a mild,
large, or extreme bias. We introduce this feature by considering
three possible values of the mean bias: ug” , ,ué, and ,ug , where

ugf = Q, + 1.50IQR, yg =Q,+225IQR, and

i = Qs +3.0IQR. (24)
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TABLE 2 | Configuration of the simulated scenarios: We considered
two total sample sizes for the meta-analysis, N = 20, and N = 30, and
four percentages of the number of biased studies, 0%, 10%, 30%, and 50%.
For each percentage, we consider different distributions of biased studies:
mild, large, and extreme bias.

N %Bias Biasedstudies Mild Large Extreme

20 0% 0 0 0 0
10% 0 1 1
30% 6 2 2 2
50% 10 3 3 4

30 0% 0 0 0 0
10% 1 1 1
30% 9 3 3 3
50% 15 5 5 5

The quantities Q; and IQR correspond to the third quartile and
the inter-quartile range of (23), respectively. For a particular simu-
lation scenario, Q; and IQR are calculated by taking the marginal
variance of y at var(y) = % + 02 /fi, where i = 1/N ZL n;.

3.2 | Scenarios

Table 2 presents the configuration of the simulated scenarios.
We consider eight possible scenarios corresponding to two meta-
analysis sample sizes, N = 20 and N = 30, and four percentages
of biased studies, 0%, 10%, 30%, and 50%. For each scenario, we
include studies with mild, large, and extreme bias. For example,
in the scenario with N = 20 and 50% biased studies, we assigned
three studies with mild bias, three studies with large bias, and four
studies with extreme bias.

For all models, we compare the resulting posterior distributions
of ug and 7,. In addition, for the BC-BNP model, we present the
forest plot comparing the biased 6% and bias-corrected effects 6,
and the heatmap plot for coclustering.

3.3 | Simulation Results

The results for N = 20 and N = 30 were fairly similar. Therefore,
in this section, we present the results for N = 20. The results for
N =30 are summarized in the supplementary material of this
section.

Each panel of Figure 2 shows the posterior distributions of u, for
the meta-analysis models, and the different amounts of biased
studies. In the nonbiased scenario, the Bayesian random effects
model shows a posterior of u4 centered at the true value of uy = 1.
However, this model is sensitive to the biased studies, where the
inclusion of two biased studies shifted the posterior to the right.
As expected, the Oracle model performs correctly in all scenarios.

The lower panels of Figure 2 present the results of the parametric
BC and the BC-BNP. We see that in the nonbiased scenario, the
posteriors of uy are correctly centered at the true value of yy = 1.

In the biased scenarios, the parametric and the BC-BNP remained
robust against biased studies.

The four panels of Figure 3 present the posterior of 7, for each
model and different biased scenarios. Similarly to the posterior of
Mg, the Bayesian random effects model performed correctly in the
nonbiased scenario, and was very sensitive to biased studies. The
lower panels of Figure 3 show that the posteriors of the parametric
BC and the BC-BNP performed correctly in the nonbiased and the
biased scenarios.

Taking the scenario of N = 20 and 50% of biased studies, Figure 4
illustrates the resulting forest plot with the posterior medians and
the 95% posterior intervals comparing the biased effect 6%, and
the bias-corrected effect 8 of each study. The figure displays the
amount of bias correction performed by the BC-BNP model at the
study level. For example, study number 1 has P(I; = 1|Data) =
0.04, and bias correction is not required. In this case, the posterior
medians and the 95% intervals of 6% and 6, overlapped.

Different situations correspond to studies numbered 16, 19, and
20, which are generated with large, moderate, and extreme biases,
respectively. These studies have the following posteriors prob-
ability of been biased: P(I;, = 1|Data) = 0.92, P(I,, = 1|Data) =
0.90, and P(I,, = 1|Data) = 1.00. For these studies, Figure 4
illustrates an adaptive bias correction toward the true value yy; =
1. In particular, for the extremely biased study number 20, the
posteriors of 65 and 6,, do not overlap.

For the same scenario, N = 20 and 50% of biased studies, the
heatmap of Figure 5 illustrates the coclustering results. At the
bottom of the figure, we labeled the columns with the posterior
probability of bias P(I;|Data), and on the right, we labeled the
rows with the studies’ numbers and the true bias status. For
example, in the top left corner, Study-13 is detected to have “large
bias” with a posterior probability of bias of 0.512. The heatmap
shows that the studies are grouped into two distinct clusters
corresponding to the unbiased and biased studies. However, a
unique feature of the BC-BNP model is the possibility to explore
coclustering within the biased studies generated by the DP. In this
example, five studies (20, 9, 17, 4, and 12) and two studies (10, 16)
shared the same cluster, while the remaining three biased studies
(7,13, and 19) did not cocluster with the others.

3.4 | Conclusions of the Simulation Results

The simulation experiment of this section was neither extensive
nor fully conclusive but it was challenging for any meta-analysis
model. The aim was to evaluate the BC-BNP under different
situations that represented the case studies of Section 4, and
that can be found in practice. We can summarize the trends in
the results of our simulation experiment as follows: (1) For the
scenarios generated, the BC-BNP model can detect bias at the
study level when bias is present, and can detect nonbias when
bias is absent. (2) The bias correction is adaptive according to the
level of bias (no bias, mild, large, and extreme). (3) The posteriors
of ug and 7, are robust against biased studies. (4) It is possible to
explore the coclustering of bias studies. These conclusions were
the same for N = 20 and N = 30.
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N = 20: Effect of B biased studies (B =0, 2, 6, 10)
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FIGURE 2 | Simulation results for N = 20: Comparison of four meta-analysis models and the effect on the posterior distribution of g by increasing

the number of biased studies B = 0, 2, 6, 10. The models are: Bayesian random effects, Oracle Bayesian random effects (i.e., biased studies excluded), BC

parametric, and BC nonparametric. The dashed vertical line corresponds to ug = 1.

4 | Applications

In this section, we present two real meta-analyses. In each one,
we apply the BC-BNP model using two settings of the prior
distributions. First, we apply the BC-BNP model with informative
priors, where the prior distribution of u; reflects the direction of
bias, and the prior distribution of 772 is elicited using some quality
information from the studies. Second, a sensitivity analysis is
performed using the default priors of the BC-BNP model. In
addition, we compare the results of the BC-BNP model with the
parametric BC model and the Bayesian random effects model.

In the Supporting Information of the paper, we present the R
script to run the analyses of this section. The numerical results
are based on four parallel MCMC chains, with a length of 50,000
iterations. In each chain, we discarded the first 10,000 iterations
as a burn-in period, and we apply the remaining 40,000 iterations
to approximate the posterior distributions.

4.1 | Meta-Analysis of RCTs With Varying Quality:
Stem-Cell Treatment and Cardiovascular Disease
Patients

Nowbar et al. (2014) performed a meta-analysis consisting in N =
31 RCTs of heart disease patients, where a treatment based on

bone marrow stem cell was assessed for efficacy. In each trial,
patients were randomized to a treatment group receiving bone
marrow stem cell or a control group receiving placebo treatment.
The primary endpoint was the ejection fraction. The treatment
effect was defined as the difference in means of the ejection
fraction between groups. The data of this meta-analysis can be
found in dataframe “stemcells” in the R package jarbes (Verde
2024).

What makes this meta-analysis particularly interesting is the
large heterogeneity between studies and the context in which
these 31 RCTs were published. On the one hand, there was a
high interest in assessing the efficacy of this type of treatment,
but on the other hand, the varying quality of the published RCTs
cast doubts on their results (Francis et al. 2013), and further
investigation has found evidence of scientific misconduct (Abbott
2014).

In particular, Nowbar et al. (2014) investigated if the num-
ber of detected discrepancies in the published studies were
correlated with efficacy. In this context, discrepancies were
defined as two or more reported facts that cannot both be
true because they are logically or mathematically incompati-
ble. The median number of discrepancies in the meta-analysis
were 7, with a range of [0, 55], and only three studies have
0 discrepancies.
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N = 20: Effect of B biased studies (B=0, 2, 6, 10)
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Simulation results for N = 20: Comparison of four meta-analysis models and the effect on the posterior distribution of 74 by increasing

the number of biased studies B = 0, 2, 6, 10. The models are: Bayesian random effects, Oracle Bayesian random effects (i.e., biased studies excluded), BC
parametric, and BC nonparametric. The dashed vertical line corresponds to 74 = 0.5.

To assess the heterogeneity between studies, we applied a
noninformative Bayesian normal random effects model to this
meta-analysis. The results showed a posterior pooled mean
difference of p; = 2.92 with 95% posterior interval of [1.43, 4.37],
which pointed out efficacy. However, the posterior between-
studies standard deviation oy = 3.44, with a posterior 95% interval
[2.40, 4.80] shows a very large heterogeneity. In addition, the
predictive 95% posterior predictive interval of a future study
effect 6"% was [—4.09, 9.93], indicating no efficacy. We can
suspect that the heterogeneity was a clear combination of studies’
internal validity biases and diversity, making this meta-analysis
an interesting case study for the BC-BNP model.

We apply the BC-BNP model presented in Section 2 to this
meta-analysis, using weakly informative priors for the model of
interest. For the bias component, we elicit the hyperparameters
as follows:

* We assume a positive direction of bias with a prior ug ~
Uniform(0, 15).

¢ For illustration, we elicit the prior of 7% ~ Beta(ay,, a;) by
using the number of discrepancies reported by Nowbar et al.
(2014), where 18 studies have five or more discrepancies. We
calculate a, and a; such that the median of the Beta(a,, a,) is
18/31 ~ 0.581 and its 90th quantile is 28/31 ~ 0.903, which

result in @, = 1.51 and a; = 1.17. It is worth mentioning that
in a real application, this prior should be elicited without
using the data of the meta-analysis.

* For the concentration parameter o we used a uniform dis-
tribution a ~ Uniform(0.5, a™%*), and by using (20) we have
that oM = 3.29, and KM% = 17.

 For a prior-to-posterior sensitivity analysis we used the default
priors, without bias direction uz ~ Uniform(-15,15), and
78 ~ Beta(0.5, 1), which resulted in «™®* = 1.87, and KM%* =
10.

The solid line in Figure 6 presents the posterior distribution of
the uy using a normal-normal random effects model, while the
dashed line corresponds to the BC-BNP with informative priors.
The posterior mean of ug using the BC-BNP supports inferring no
efficacy with a posterior mean and 95% posterior interval of 1.12
[—2,29, 2.92], respectively. The dotted line presents the resulting
posterior of uy by applying the BC-BNP with default priors. In
this case, the posterior mean was 1.51 [—0.74, 3.17]. This analysis
shows that the conclusion of the lack of efficacy was not sensitive
with respect to the priors of the bias component.

In addition, the posterior of uy using the parametric BC with
default priors resulted in a posterior mean of 1.45, with a
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N = 20: 95% posterior intervals of studies' effects
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FIGURE 4 | Simulation resultsfor N = 20: Forest plot comparing for
each study the 95% posterior interval of the biased effect 6% and the bias-
corrected effect 8. The dashed vertical line corresponds to pg = 1.
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FIGURE 5 | Simulation results for N = 20: Heatmap of coclustering
between studies sharing the same cluster. The label of the columns
corresponds to the posterior probability of bias P(I;|Data) and the label
of the rows to the true bias status (No B = no bias, Mild B = mild bias, and
Large B = large bias).

posterior 95% interval of [—1.27, 2.99], which is consistent with
the BC-BNP model.

Figure 7 shows the model diagnostic for the direction of bias.
The left panel displays the joint posterior distribution between
the bias correction A = yg — 4y and the probability of bias 7"
resulted from the BC-BNP analysis with informative priors. The
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FIGURE 6 | Results of the BC-BNP model applied to efficacy of
stem-cell treatment for cardiovascular disease patients. The posterior
distributions of the pooled difference in means between treatments are
displayed for the BC-BNP with informative priors (dashed line), the BC-
BNP with default priors (dotted line), and the normal-normal random
effects model (solid line).

right panel shows the resulting posteriors using the BC-BNP with
default priors. These diagnostic plots show that results remain
stable after applying the two priors’ settings.

With respect to the structure of the bias model, the posterior
distributions of the number of clusters K showed lower number
of clusters for default priors. For the informative priors, K has a
posterior median of 6 with a 95% posterior interval [2, 10], and for
default priors a median of 4 and a 95% posterior interval of [1, 8].

The forest plot in Figure 8 presents the effect of the bias correction
at the study level using the BC-BNP model with default priors.
The main pattern observed in this forest plot is a shrinkage
and bias correction effect for studies with larger values of 68
in the direction of the posterior mean E(uy|Data) = 1.51. The
bias correction is adaptive; for example, studies 1, 5, 24, and 31
have posterior probabilities of being biased of 0.24, 0.88, 0.96, and
0.96, respectively.

In study 1, where bias correction is unnecessary, both posteriors
overlap. For studies 5, 24, and 31, a strong bias correction is
automatically performed in the direction of the posterior mean
of uy = 1.51. It is worth mentioning that in the presence of bias
the posteriors of 6 are wider than the posterior of 6% for studies 5,
24, and 31, which is “the price” we pay for bias correction at the
study level.

The heatmap of Figure 9 shows a coclustering structure that
resulted in three clusters. Cluster 1 corresponds to the unbiased
studies with a posterior probability of bias in the range [0-0.21],
cluster 2 with a range of [0.32-0.56], and four studies coclustered
at the bottom right with a range of [0.76-1].

Nowbar et al. (2014) reported a lack of information about
sequence allocation (randomization) in the Risk of Bias evalua-
tion was linked with exaggerated treatment effects. Among the
five studies in cluster 2, three did not provide clear informa-
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FIGURE 7 | Stem-cell treatment and cardiovascular disease patients case study. Sensitivity analysis of the priors for the bias component in the

BC-BNP model: Joint posterior distribution of the mean bias and probability of bias. The scatter plots correspond to random samples from the MCMC
iterations. Left panel: Using informative prior distributions has concentrated the range of the posterior distributions. Right panel: Effect of using default
priors for the bias direction and the probability of bias. The posterior of the bias remains stable, and more concentrated than the left panel.
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case study. BC-BNP model with default priors, forest plot comparing
for each study the posterior distributions of the biased study effect 6%
(biased), and the biased-corrected 6. The vertical dashed line corresponds
to E(ug|Data) = 1.51.
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FIGURE 9 | Heatmap of coclustering analysis of studies using
default priors for the bias component. The labels of the columns
correspond to the posterior probability of bias P(I;|Data) and the labels
of the rows correspond to the cluster label and the study number. In
this example, the BC-BNP model generated three clusters: Cluster 1
corresponds to a posterior probability of bias in the range [0-0.22], cluster
2 with a range of [0.32-0.56], and four studies coclustered at the bottom
right with a range of [0.76-1].

tion about sequence allocation while none of the four studies
in cluster 3 had clear information. These results suggest that
coclustering may be useful in linking the lack of study quality to
exaggerated results.
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4.2 | Generalized Evidence Synthesis of the
Relationship Between Hypertension and Severity in
COVID-19 Patients

This case study, which we briefly presented in the introduction,
is a meta-analysis of OS performed by de Almeida-Pititto et al.
(2020). The aim of the authors was to evaluate the impact of
diabetes, hypertension, cardiovascular disease, and the use of
angiotensin converting enzyme inhibitors/angiotensin II receptor
blockers (ACEI/ARB) with the primary outcomes (1) COVID-19
severity (including need for invasive mechanical ventilation or
intensive care unit admission or O2 saturation less than 90%) and
(2) intrahospital mortality due to confirmed COVID-19.

We illustrate the BC-BNP model by analyzing the relationship
between hypertension and COVID-19 severity, where the number
of included studies was N = 18. From these 18 studies, five were
case series, three were cross-sectional, and 10 were retrospective
cohorts. According to their study design, these studies are at the
lower level of clinical evidence (Guyatt et al. 1995). Therefore, the
18 studies in this meta-analysis are prone to internal validity bias.

This type of meta-analysis, which combines studies of different
types, is called Generalized Evidence Synthesis. There are two
simple approaches for this type of meta-analysis. On the one
hand, we can ignore study types and combine all studies using
a random effects meta-analysis model. This is the approach that
was applied by de Almeida-Pititto et al. (2020). On the other hand,
we can perform a meta-analysis by study types, this approach
has the assumption that the variability between study types is so
large that we cannot gain any information by combining studies’
results. We can expect that neither ignoring study types nor
assuming that results are extremely different is the best way to
synthesize these data.

We apply the BC-BNP model by using weakly informative priors
for the model of interest. For the bias component, we elicit the
hyperparameters as follows:

* We truncate the bias prior to be positive A ~ Uniform(0, 15).

* For the probability of bias 78 ~ Beta(a,, a), we elicit the a,
and a, by using the distribution of the different study types.
We calculate a, and a, such most of the studies in this meta-
analysis are at risk of internal validity bias. We arbitrarily take
that the median of the Beta(a,, a,;) is 15/18 ~ 0.83 and its
90th quantile is 17/18 ~ 0.944, which results in a, = 8.6 and
a, = 1.97. This is an informative prior with higher probability
values for large values of 5.

* For the concentration parameter o, we use a uniform distri-
bution a ~ Uniform(0.5, ™), by using (20) a™®* = 2.73. In
this setup, the maximum number of clusters is KM% = 15,

* We perform a sensitivity analysis of the direction of bias
setting the default prior u; ~ Uniform(—15,15) and the bias
information of the study types by using 7., ~ Beta(0.5,1).
This prior resulted in a™%* = 1 and the maximum number of
clusters KMo~ = 6.

The solid line in Figure 10 shows the posterior distribution of the
OR using a normal random effects model that shows a strong

association between hypertension and complications, 2.96 [2.33,
3.76], while the dashed line corresponds to the bias-corrected
posterior using the BC-BNP with informative priors that indicates
far less support for there being an association 1.98 [0.52, 3.35].
The dotted line shows the resulting posterior when we ignore
bias direction and study types, the OR has a mean posterior of
2.57 [1.60, 3.86]. The posterior of the OR using the parametric BC
with default priors resulted in a posterior mean of 2.60 [1.96, 3.53],
which is consistent with the default BC-BNP model.

The left panel of Figure 11 shows the joint posterior distribution
between the bias correction A and the probability of bias 7%/ by
using informative priors. We see a high probability of bias and
strong concentration of the bias correction. We can compare this
result with the right panel of Figure 11, which shows the same
joint posterior by using the default priors. Clearly, the use of
informative priors plays an important role in this meta-analysis.

These results show that the assessment of the study quality, and
the bias direction strongly influence the conclusions from this
meta-analysis. Therefore, given the low level of clinical evidence
of these N = 18 studies, we could conclude that there is great
uncertainty about the strength of an association.

Regarding the structure of the bias model, the posterior distri-
butions of the number of clusters K are as following: For the
informative priors, K has a median of 4 with a 95% posterior
interval [1, 8], while for the default priors, K has a median of 2
with a 95% posterior interval of [1, 5].

The forest plot of Figure 12 presents the effect of the bias
correction using the BC-BNP with informative priors. We can see
that the effect of informative priors is to shift the posteriors of 6
to the posterior mean E(uy|Data) = 0.59.

We can compare the results for studies 1, 8, and 18. Under the BC-
BNP model with informative priors, these studies have posterior
probabilities of being biased of 0.95, 1, and 0.90, respectively. For
studies 1, 8, and 18, we observe a shift to the left in the posteriors
of 6 due to the bias correction effect. In order to interpret these
results, we can refer to Table 1, where the estimated OR for studies
1(Gua et al. 2020), 8 (Xiang et al. 2020), and 18 (Zhang et al. 2020),
were 6.48, 12.60, and 4.37, respectively.

The heatmap of Figure 13 shows that the cocluster information
using the default priors agglomerated studies in three clusters.
Xiang et al. (2020) is the only study in cluster 3, while the other
two studies shared cluster 2. In this example, the BC-BNP model
has detected studies with overestimated ORs and low-quality
study design. It is worth mentioning that we requested a risk
of bias evaluation from de Almeida-Pititto et al. (2020), but this
evaluation was neither published nor sent to us. This case study
shows that the BC-BNP model can be a useful tool to assess risk
of bias by only using information about the reported effects and
their standard errors.

5 | Discussion and Conclusion

Meta-analysis deals with combining indirect evidence in statis-
tics, where meta-analysis of RCTs represents the highest level
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FIGURE 10 | COVID-19-infected patients case study. Results of the BC-BNP model applied to the relationship between hypertension and
complications. The posterior distributions of the pooled OR are displayed for the BC-BNP with informative priors (dashed line), the BC-BNP with
default priors (dotted line), and the normal-normal random effects model (solid line). The vertical dashed line corresponds to OR=1.
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FIGURE 11 | COVID-19-infected patients case study. Sensitivity analysis of the priors for the bias component in the BC-BNP model: Joint posterior
distribution of the mean bias and probability of bias. The scatter plots correspond to random samples from the MCMC iterations. Left panel: Using
informative prior distributions has concentrated the range of the posterior distributions. Right panel: Effect of using default distributions for the bias

direction and the probability of bias.

of clinical evidence. However, the COVID-19 pandemic showed
that urgent informed decisions sometimes have to be based
on imperfect pieces of evidence, evidence that may contain
conflicting results, or be prone to bias.

In this paper, we presented the BC-BNP model, which aims to
automatically correct for internal validity bias in meta-analysis by
relaxing the parametric assumptions of the bias model introduced
by Verde (2021).

We evaluated the BC-BNP model using simulated data sets and
we illustrate its application with two real case studies. Our results
showed several potential advantages of the BC-BNP in practical
applications. First, the BC-BNP model can detect bias when
present and yields results similar to a simple normal-normal
random effects model when bias is absent. Second, relaxing the
parametric assumptions of the bias component does not affect
the model of interest and provides results consistent with Verde
(2021) model. Third, having a BNP component of bias may offer a
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FIGURE 12 | COVID-19-infected patients case study using BC-BNP
with informative priors. Forest plot comparing for each study the posterior
distributions of the biased study effect 82, and the biased-corrected 8. The
vertical dashed line corresponds to E(ug|Data) = 0.59.

better insight into the nature of biases by clustering studies with
similar biases.

The setup of the default hyperpriors we provided represent a
neutral elicitation on the direction of bias and a relative optimistic
assumption about the number of studies at risk of bias. However,
external validity bias represents unobserved external factors that
cannot be directly estimated from studies’ results. Therefore, we
recommend performing a sensitivity analysis on the direction of
bias and on the number of studies at risk of bias.

The examples in Section 4 demonstrated the extent to which bias
correction is possible and whether this correction remains stable
after a sensitivity analysis. For the stem-cell example, the results
were consistent across different hyperpriors, indicating that there
is sufficient observed information to assert the presence of bias.
However, in the COVID example, the results differed between the
informative and default priors. In this case, the BC-BNP model
indicates that combining results at face value maybe misleading,
and a prior elicitation is crucial to arrive at useful conclusions.

The BNP component of the BC-BNP model demonstrates its
potential as an exploratory tool for clustering studies with varying
levels of bias. We can expect this feature to be even more useful
in more complex meta-analysis models (e.g., metaregression,
hierarchical meta-analysis of subgroups), but it remains a topic
for further research.

There are several potential extensions of the BC-BNP model that
we did not cover in this paper. One important topic is using
exact likelihood contributions in the meta-analysis model. In
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FIGURE 13 | Heatmap of coclustering analysis of studies using
default priors for the bias component. The labels of the columns
correspond to the posterior probability of bias P(I;|Data) and the labels
of the rows correspond to the cluster label and first author of the study.
In this example, the BC-BNP model generated three clusters: The cluster
1 corresponds to studies with a probability of bias in the range [0-0.287],
the cluster 2 to [0.332-0.648], and a single study, Xiang et al. (2020), is
assigned to cluster 3 representing an extreme reported result. Note: Source
of the data de Almeida-Pititto et al. 2020.

this paper, we simplify this point by assuming normal likelihood
approximations, but we know that different endpoint types may
influence meta-analysis results. An important type of bias in
meta-analysis is the publication bias, where small-sample studies
may overreport significant results. A possible extension of the BC-
BNP could involve modifying the base distribution of the DP to
include the sample sizes of the studies and correct for publication
bias. Other important extensions include a hierarchical BC-
BNP model combining several studies subgroups within each
publication, and external validity bias correction by combining
AD and IPD in meta-analysis (Verde 2017). Furthermore, a
methodological comparison of BNP models in meta-analysis and
the extent to which these models indirectly correct for bias
remains an open research topic.

This work leads to two important conclusions. First, extending
the flexibility of the random effects distribution is a valuable
approach. One practical aspect, demonstrated empirically in this
paper, is the possibility to obtain results that are robust against
biased studies. Second, ignoring internal validity bias in meta-
analysis constitutes a form of model misspecification that can
lead to misleading conclusions. The approach presented in this
paper offers a promising solution to this important problem
in meta-analysis.
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