
Heinrich Heine University Düsseldorf

Institute for Computer Science

Lehrstuhl Prof. Dr. Heider

Abschlussarbeit zur Erlangung des akademischen Grades Bachelor of Science

im Studiengang Informatik

Bachelorarbeit von

Mohammad Sharabati

Documentation-Based Software
Development for Skin Cancer Detection

Sommersemester 2024

Date of submission: 16.04.2024

Reviewers: Prof. Dr. Dominik Heider

Prof. Dr. Gunnar Klau

Declaration of Independence

I, Mohammad Sharabati, hereby declare that I have written this thesis independently

and have not used any sources and aids other than those specified. All statements taken

from other sources, either literally or analogously, are labeled as such.

Düsseldorf, 16.04.2024

(Mohammad Sharabati)

Abstract

Skin cancer is among the most common types of cancer. To aid medical professionals

in diagnosing and treating various types of skin cancer, a range of devices and software,

including dermatoscopes and digital imaging systems, are utilized. However, the develop-

ment of such software and its integration into the medical industry can be challenging for

academic institutions and researchers due to strict regulations that are often perceived as

unfeasible, complex, and time-consuming. This thesis aims to implement the development

and integration of medical software into the healthcare sector, focusing on skin cancer

detection, by developing a clinical decision support system that could assist physicians in

the diagnosis and classification of skin lesions.

The methodology is based on the adoption and integration of four academia-tailored

guidelines, namely the Quality Management System, Software Life Cycle, Risk Management,

and Usability Engineering guidelines, into the development process of the machine learning

software for the classification of skin lesions. This process is meticulously documented,

from software specification through the coding, testing, and verification phases.

In this project, a software which can calculate skin cancer risk scores in a matter of

seconds, based on a captured photograph, was developed. By proving that a structured,

guideline-based approach can lead to the efficient development of medical software closer

to regulatory standards, this project provides valuable insights into the field of medical

informatics. It emphasizes the importance of clearly documented processes in overcoming

challenges associated with regulatory approval and clinical adoption of medical software.

Zusammenfassung

Hautkrebs ist eine der häufigsten Krebsarten. Um Medizinern bei der Diagnose und

Behandlung von Hautkrebsarten zu unterstützen, werden verschiedene Geräte und Software,

wie Dermatoskope und digitale Bildgebungssysteme, eingesetzt. Die Entwicklung solcher

Software und deren Integration in die medizinische Industrie stellt jedoch für akademische

Institutionen und Forschende eine Herausforderung dar, da sie strengen Regulierungen

unterliegt, die oft als unpraktikabel, komplex und zeitintensiv empfunden werden. Diese

Arbeit zielt darauf ab, die Entwicklung und Integration medizinischer Software in den

Gesundheitssektor zu vereinfachen, mit Fokus auf Erkennung von Hautkrebs, indem ein

klinisches Entscheidungsunterstützungssystem entwickelt wird, das Ärzte bei der Diagnose

und Klassifikation von Hautläsionen unterstützen könnte.

Die Methodologie basiert auf der Annahme und Integration von vier Hauptleitlinien, nämlich

der Qualitätsmanagementsystem, Softwarelebenszyklus, Risikomanagement und Usability

Engineering Leitlinien, in den Entwicklungsprozess einer Machine-Learning Software für

die Klassifikation von Hautläsionen. Dieser Prozess wird sorgfältig dokumentiert, von der

Spezifikation der Software bis zu den Phasen des Coding, Testing und Verifizierens.

In diesem Projekt wurde demnach eine Software entwickelt, die Krebsrisikowerte anhand

eines Fotos einer Hautläsion in sekundenschnelle berechnen kann. Indem demonstriert wird,

dass ein strukturierter, richtlinienbasierter Ansatz zur effizienten Entwicklung medizinischer

Software führen kann, die näher an regulatorischer Konformität ist, bietet dieses Projekt

wertvolle Erkenntnisse für das Feld der medizinischen Informatik. Es unterstreicht die

Wichtigkeit klar dokumentierter Prozesse bei der Überwindung der Herausforderungen

im Zusammenhang mit der regulatorischen Zulassung und der klinischen Einführung

medizinischer Software.

Contents

1. Introduction 1

2. Background 3

2.1. Skin Lesions and Diagnosis . 3

2.2. Machine Learning . 5

2.2.1. Deep Learning and Convolutional Neural Networks 6

2.3. Medical Software . 8

2.3.1. Medical Device Software . 9

2.3.2. Software as a Medical Device . 9

2.4. International Standards for Medical Software 9

2.4.1. The Medical Device Regulation . 9

2.4.2. The In Vitro Diagnostic Regulation 10

2.4.3. Quality Management System . 11

2.4.4. Software Life Cycle . 12

2.4.5. Risk Management . 14

2.4.6. Usability Engineering . 14

2.5. Academia-tailored Guidelines for Medical Software 15

3. Materials and Methodology 16

3.1. Software Specification . 17

3.1.1. Python Libraries and Packages . 17

3.1.2. Qt Designer . 17

3.1.3. Documentation Platforms . 18

3.2. Machine Learning Pipeline . 18

3.2.1. Skin Lesion Dataset: HAM10000 . 19

3.2.2. Preprocessing . 19

3.2.3. Transfer Learning . 19

3.2.4. Training Process . 20

3.2.5. Chosen Model: DenseNet201 . 20

3.3. Guidelines for Software Development . 21

3.3.1. Quality Management System Guideline 21

3.3.2. Software Life Cycle Guideline . 23

3.3.3. Risk Management Guideline . 25

3.3.4. Usability Engineering Guideline . 28

3.4. Application and Implementation of the Four Guidelines 31

3.5. Software Implementation . 31

3.5.1. Coding . 31

3.5.2. Testing . 31

4. Results 33

4.1. Initial Preparation . 33

4.1.1. Setups . 33

4.2. First Documentation Stage . 34

4.2.1. Quality Management System Activities 34

4.2.2. Software Life Cycle Introduction . 35

4.2.3. Intended Purpose . 35

4.2.4. Safety Class Determination . 35

4.2.5. Software Development Planning . 36

4.2.6. Use Specification . 37

4.2.7. Iterative Design Cycle Initialization 38

4.2.8. Risk Management Planning and Risk Policy 38

4.3. Second Documentation Stage . 39

4.3.1. System and Software Requirements Specification 39

4.3.2. System and Software Documents . 40

4.3.3. Iterative Design Cycle Continuation 41

4.3.4. Mockup and Class Diagram . 41

4.4. Final Documentation Stage . 42

4.4.1. Use-related Risk Analysis . 42

4.4.2. Summative Evaluation . 42

4.4.3. Iterative Risk Management Cycle . 43

4.4.4. Verification and Release . 47

4.5. Software Implementation . 48

4.5.1. Coding . 48

4.5.2. Testing . 52

4.6. Final Software Design and Documents . 54

5. Discussion 57

Bibliography I

A. Appendix VIII

A.1. Quality Management System Project Execution Extract IX

A.2. Risk Policy . XI

A.3. Risk Table . XII

A.4. Jira Project Plan . XIII

A.5. Confluence Overview . XIV

A.6. Risk Control Measures . XV

A.7. Document Management . XVI

A.8. Quality Management System Project Planning Extract XVIII

A.9. Intended Purpose . XIX

A.10.Safety Class Determination . XX

A.11.Software Development Plan . XXII

A.12.Use Specification . XXIV

A.13.Risk Management Preparation and Planning XXV

A.14.System and Software Requirements Specification XXVI

A.15.System and Software Design . XXX

A.16.Software Architecture Description . XXXII

A.17.Configuration and Change Management . XXXVII

A.18.Iterative Design Cycle 3 and 4 . XXXVIII

A.19.Mockup Process . XLVIII

A.20.Class Diagram . XLIX

A.21.Use-related Risk Analysis . L

A.22.Summative Evaluation . LII

A.23.Risk Monitoring . LV

A.24.README.txt . LVII

A.25.Software Problem-solving Process . LVIII

A.26.Confluence Bibliography . LIX

List of Abbreviations

AI Artificial Intelligence
AKIEC Actinic Keratosis
ANN Artificial Neural Network
BCC Basal Cell Carcinoma
BKL Benign Keratosis
BSD Berkeley Software Distribution
CDSS Clinical Decision Support System
CNN Convolutional Neural Network
DF Dermatofibroma
DL Deep Learning
DoD Definition of Done
EMA European Medicines Agency
GUI Graphical User Interface
HPND Historical Permission Notice and Disclaimer
IDE Integrated Development Environment
IEC International Electrotechnical Commission
IMDRF International Medical Device Regulators Forum
IRMC Iterative Risk Management Cycle
ISO International Organization for Standardization
IVD In Vitro Diagnostic Device
IVDR In Vitro Diagnostic Medical Device Regulation
LGPL Lesser General Public License
MDCG Medical Device Coordination Groups
MDR Medical Device Regulation
MDSW Medical Device Software
MEL Melanoma
ML Machine Learning
NV Melanocytic Nevus
PSFL Python Software Foundation License
QMS Quality Management System
RM Risk Management
SaMD Software as a Medical Device
SLC Software Life Cycle
SOP Standard Operating Procedure
UDI Unique Device Identification
UE Usability Engineering
UEIDC Usability Engineering Iterative Design Cycle
UI User Interface
UOUP User Interface of Unknown Provenance
VASC Vascular Lesion

List of Figures

2.1. Sample Dermatoscopic Skin Lesion Images from the HAM10000 Dataset. . 3

2.2. Image of the Used Digital Dermatoscope with a Built-In Polarization Filter. 5

2.3. Outline of a Typical CNN Architecture. 6

3.1. Quality Management System Components. 22

3.2. Software Life Cycle Components. 23

3.3. Risk Management System Components. 26

3.4. Usability Engineering Components. 28

4.1. Process Description Plan as a Linear Sequential Model. 36

4.2. Software Development Plan. 37

4.3. Extract of the Risk Policy: The Severity Classes. 38

4.4. Extract of the Risk Policy: The Resulting Risk Matrix. 39

4.5. High-Level Functional Requirements from the System and Software Require-

ments Specification. 40

4.6. Extract from the Usability Test Protocol Table of the Summative Evaluation. 42

4.7. Iterative Risk Management Cycle 1: Hazard Analysis. 43

4.8. Iterative Risk Management Cycle 1: Risk Analysis. 44

4.9. Iterative Risk Management Cycle 2: Risk Evaluation. 44

4.10. Iterative Risk Management Cycle 2: Risk Matrix. 45

4.11. Iterative Risk Management Cycle 3: Not Acceptable Risks and the Descrip-

tion of Their Control Measure. 45

4.12. Iterative Risk Management Cycle 3: Acceptable Risks and the Description

of Their Control Measure. 45

4.13. Risk Monitoring: Final Updated Risk Table. 46

4.14. Risk Monitoring: Updated Risk Matrix. 46

4.15. Visualization of the Guideline Applications in Relation to the Different Stages. 48

4.16. Screenshot of the Welcome Page of the Software for Skin Cancer Detection. 54

4.17. Screenshot of the Data Input Page of the Software for Skin Cancer Detection. 54

4.18. Screenshot of the User History Page of the Software for Skin Cancer Detection. 55

4.19. Screenshot of the Image Capturing Page of the Software for Skin Cancer

Detection. 55

List of Tables

2.1. Exemplary Requirements and Their Descriptions Under the MDR from the

Johner Institut. 10

2.2. IVDR Key Aspects and Their Description. 11

2.3. ISO 9001 Topics and Their Description. 12

2.4. ISO 62304 Topics and Their Description. 12

2.5. ISO 82304 Topics and Their Description. 13

2.6. ISO 25010:2011 Topics and Their Description. 13

2.7. ISO 14971 Topics and Their Description. 14

2.8. IEC 62366 Topics and Their Description. 15

3.1. Python Libraries Used for the Skin Cancer Detection Software Implementation. 17

3.2. Academia-Tailored Guidelines and Their Activities 21

4.1. Database: Table users Attributes. 49

4.2. Database: Table imagesAndResults Attributes. 50

1. Introduction

In the ongoing struggle against cancer, skin cancer emerges as one of the most common

and growing concerns for global public health, with an estimated 1.5 million new cases

diagnosed worldwide in 2022, according to the World Health Organization [1]. It presents

a unique challenge: while highly treatable when identified early, it can lead to severe

consequences if diagnosed too late [2]. This discrepancy underscores the urgent need for

enhanced methods in early detection and diagnosis, which has become an important point

of research and innovation in the medical field.

The statistics are evident. As stated by experts like the US Dermatology Partners, one

of the largest dermatology practices in the US [2], or Tsao et al. [3], early skin cancer

detection and treatment can lead to a promising five-year survival rate of about 99 % for

patients with a melanoma, the most dangerous and malignant form of skin cancer, if in situ

(in initial stage). This rate drops dramatically to less than 15 % when the cancer starts

spreading during the later stages 3 or 4, turning into a metastatic melanoma. This disease

progress highlights the critical role of an early diagnosis in improving patient outcomes.

In recent years, the medical community has increasingly turned to artificial intelligence

(AI) and machine learning (ML) to revolutionize the detection and treatment of skin

cancer [4], [5]. These technologies aim to improve skin cancer diagnostics by enhancing

accuracy and efficiency. For example, a study presented at the annual European Academy

of Dermatology and Venereology (EADV) Congress 2023 [6] has revealed a significant

improvement in skin cancer detection with new AI software, correctly detecting a remarkable

99.5 % of all skin cancers. Notably, for melanomas, the detection rate in that study reached

a flawlessly accurate 100 %.

Machine learning algorithms in particular are already common practice in medicine,

providing an objective and accurate framework to support healthcare professionals in many

areas [7]. Yet, the integration of such technologies into clinical settings faces significant

hurdles, including regulatory challenges and the need for comprehensive validation to

ensure their reliability and effectiveness. Generally speaking, developing a software for

medical use is a process linked with great effort, requiring a lot of documentation, attention

to detail, and substantial time before it can be transferred to the medical industry [8].

Stringent regulations, such as the Medical Device Regulation (MDR) or the In Vitro

Diagnostic Medical Device Regulation (IVDR), exist for Medical Device Software (MDSW)

in addition to internationally recognized International Organization for Standardization

(ISO) standards on how to implement these regulation requirements. It is difficult to

constantly keep track of all the requirements and constraints, especially for academic

institutions, which often operate with limited resources [9].

1

This project faces the challenge of creating a regulatory-compliant, clinically use-

ful medical software. It follows a structured approach to developing a clinical decision

support system (CDSS) for skin cancer detection, resembling the research project ”the

virtual doctor”, an interactive AI-based CDSS [10], and leveraging a machine learning

model utilizing the HAM10000 dataset, a comprehensive collection of dermatoscopic

images [11], [12]. By applying four academia-tailored guidelines encompassing quality

management systems, software life cycle, risk management, and usability engineering, this

project not only demonstrates the feasibility of a guideline-based approach to medical

software development, but also illustrates the potential of machine learning to enhance

diagnostic processes with the herein developed CDSS for physicians, which can calculate

risk scores for seven of the most prominent skin lesion types from captured photographs in

a matter of seconds. The relevance of this work extends beyond skin cancer detection.

It highlights the importance of structured development processes in overcoming barriers

to regulatory compliance of medical software and contributes to future advancements in

medical diagnostics employing the multifaceted capabilities of AI and other technologies.

In the subsequent chapters, the thesis provides a more detailed background on skin cancer,

the diagnostic process, and machine learning. It then introduces relevant international

medical software standards and the four streamlined guidelines, before delving into the

materials and methodology employed in implementing these guidelines and developing the

CDSS. In the end, the results of the implementations are presented and discussed.

2

2. Background

2.1. Skin Lesions and Diagnosis

Skin cancer is one of the most common forms of cancer that occurs worldwide [13]. It

is estimated that one in five Americans will develop skin cancer in their lifetime, and

approximately 9,500 people in the U.S. receive a skin cancer diagnosis every day [13].

In Germany, according to a report published by the German Federal Statistical Office

(Destatis), a significant increase in skin cancer cases and related hospital treatments is

observed [14]. In 2021 alone, the number of people hospitalized with a skin cancer diagnosis

reached 105,700, marking a 75 % increase from 2001. Additionally, skin cancer deaths have

increased by 55 % since 2001, while the number of deaths due to cancer diseases overall

increased by only 10 %, highlighting a significant rise in mortality specifically related to

skin cancer compared to other forms of cancer [14].

This thesis focuses on the seven most relevant skin lesion classifications [15]. These are:

� actinic keratosis (akiec),

� basal cell carcinoma (bcc),

� benign keratosis (bkl),

� dermatofibroma (df),

� melanoma (mel),

� melanocytic nevus (nv), and

� vascular lesion (vasc).

Although other lesions exist, more than 95 % of all cases in clinical practice are covered by

those mentioned above [12]. Figure 2.1 represents some image samples for each of those

classes.

Figure 2.1.: Sample Dermatoscopic Skin Lesion Images. Taken from the HAM10000
dataset [12], in order from left to right: akiec, bcc, bkl, df, mel, nv, vasc.

Actinic keratoses (akiec) are the most common precursors of skin cancer, caused by

prolonged sun exposure. On the skin, they usually appear as a rough, scaly patch, that if

3

left untreated, often evolves into a malignant form of skin cancer, e.g. basal cell carcinoma

(bcc) [16]. Basal cell carcinomas belong to the non-melanoma skin cancers, usually appearing

as a slightly transparent bump. While slow-growing and rarely metastasizing (spreading

to other parts of the body), it can be locally aggressive and destroy surrounding tissue,

including even bones [17]. Therefore, it must be treated early to avoid extensive tissue

damage and scarring [18].

The exact cause of benign keratoses (bkl), also called seborrheic keratoses, remains unknown,

although genetic mutations are suspected, as they have been identified in some cases [19].

This lesion type varies in color and size, often appearing as waxy and ”glued-on”, and

whilst some patients complain of cosmetic unappealingness and irritation, a removal is not

necessary since they are harmless [19]. Dermatofibromas (df) are benign skin lesions that

present as a firm growth beneath the skin’s surface following a trauma or an insect bite [20].

Since those are asymptomatic and harmless, in most cases no therapy is required [21].

The most dangerous, malignant form of skin cancer is a melanoma (mel) because of its

high metastasizing potential [22]. It originates from melanocytes, which are cells that

produce melanin, a skin pigment [23]. Those cells are also the source of melanocytic nevi

(nv), the scientific name for skin moles [24]. Melanomas, while less common than bccs,

are likely to become life-threatening if not discovered and treated in early stages. Early

detection can prevent a deadly cause and increase chances of survival [2], [25].

The generic term for anomalies present at birth or in early childhood is vascular lesion

(vasc) [26]. Lesions of that type vary in size, shape, and color, and range from simple benign

birthmarks to other malignant malformations, with therapeutic interventions depending

on the symptoms [26].

It is not rare that a skin lesion is classified incorrectly, too late, or not at all, possibly

having a deadly consequence [27]. Therefore, it is important to correctly classify an existing

skin lesion in its early stages.

Several methods exist in diagnosing skin cancer and clinically examining skin lesions,

including incisional skin biopsies, confocal microscopies, computer-aided diagnoses, mole

mappings, and most importantly, dermatoscopies [28]. The last and commonly used method

involves the utilization of a dermatoscope (or dermoscope) [27], which is a handheld device

that provides a magnified view of the skin, thus allowing for a clear inspection of skin

lesions [29]. Some devices also come with a built-in polarization filter that nullifies surface

light reflections, resulting in an even more enhanced view of the lesion and minimizing the

occurrence of misdiagnoses. The dermatoscope used in this thesis is depicted in Figure 2.2.

4

Figure 2.2.: Image of the Used Digital Dermatoscope with a Built-In Polarization Filter
That Can Capture an Image. Polarization angle can be adjusted in the red
circled area. The green circle shows the location of the built-in camera and
should be placed on the to-be-tested skin tissue.

The first step in the identification of skin lesions is a visual examination, which includes

the practice of dermatoscopy. If a suspicious lesion is identified, raising concerns about skin

cancer, the physician may recommend a skin biopsy. During the biopsy, a small sample of

the tissue is extracted and microscopically examined more thoroughly in order to either

confirm or rule out the presence of skin cancer [30].

2.2. Machine Learning

Machine learning (ML) is a subset of artificial intelligence (AI) that focuses on systems

that learn from data. It involves training models on given datasets to make predictions or

decisions without being explicitly programmed for specific tasks [31].

After collecting and preprocessing data, which includes, amongst others, cleaning data

by removing duplicates, correcting errors, and handling missing data, a model is chosen

and trained [31]. The general training process involves optimizing model parameters to

minimize a cost function, which measures the difference between the model’s predictions

and the actual outcomes [32].

Following the training of the model, its performance is evaluated, and based on the results,

the model is optimized [31].

5

2.2.1. Deep Learning and Convolutional Neural Networks

Deep learning (DL) aims to mimic the functionality of the human brain to analyze big

data [33], [31]. The machine learning pipeline that is used for the skin cancer detection

software operates on an Artificial Neural Network (ANN), more specifically a Convolutional

Neural Network (CNN), which is a deep learning algorithm that specializes in solving

image classification or object recognition tasks [34], [35].

CNNs’ versatility and robustness in handling image data have led to their widespread

adoption in various fields, including medical image analysis, where accurate and efficient

image classification is crucial [7], [36].

The architecture of a CNN is generally composed of at least four layers, namely an input

layer that receives the image, multiple hidden layers that process the image, and an output

layer that outputs the classification [36], as visualized in Figure 2.3. The hidden layers

typically include multiple convolutional layers and pooling layers, and in the end fully

connected layers.

Figure 2.3.: Outline of a Typical CNN Architecture. Exemplary, a melanoma image from
the HAM10000 dataset [12] is the input for the input layer. Colored images
are rendered in three RGB channels. Then, convolutional layers use filters on
the input to capture spatial patterns such as edges, textures, and other image
features, while pooling layers reduce the spatial size of the representation,
improving computational efficiency and reducing overfitting [36]. The bracketed
dots illustrate that multiple sequences of convolution and pooling layers may
be integrated. In the end, fully connected layers use these extracted features
to classify images into different classifications in the output layer [36].

At the forefront of image processing within a CNN are the convolutional layers, where the

detection of features like edges or textures occurs, as shown in Figure 2.3 [36]. These layers

utilize filters or kernels, small matrices, to traverse the image to highlight specific features,

such as edges or textures, by emphasizing certain patterns and de-emphasizing others,

depending on the weights that determine the importance of features in these filters [36], [37].

Throughout the training process, the network optimizes these filters to better capture the

most relevant features [36], [34]. The stride, the distance the filter moves across the image,

is critical in determining the output feature map’s size [36]. A smaller stride yields a more

6

detailed map, while a larger stride reduces the map’s size and processing time, potentially

costing some detail loss [36].

As these filters slide across the image, they perform a convolution operation. This operation

is a mathematical process that combines the pixels of the image with the values of the

filter to generate a feature map, represented by the 2D-equation (2.1) or the 3D-equation

(2.2) [38].

y[i, j] =
∞∑

m=−∞

∞∑

n=−∞

h[m,n] · x[i−m, j − n] (2.1)

In this equation, x is the input image matrix to be convolved with h, which represents the

kernel (filter) matrix. Together they result in a new matrix y, which equals the output

image. (i, j) are the coordinates on the image output feature map, while those of (m,n)

deal with the kernel’s [38], [39].

For a 3D convolution, an additional dimension exists, so the equation incorporates a sum

over the third dimension k [40]:

y[i, j, k] =
∞∑

m=−∞

∞∑

n=−∞

∞∑

o=−∞

h[m,n, o] · x[i−m, j − n, k − o] (2.2)

In this expanded equation y again is the output matrix at position (i, j, k), while x represents

the input image at a position offset by (m,n, o) from (i, j, k), and h is the matrix of the

3D kernel at position (m,n, o). The summations over m, n, and o are for the convolution

over the three dimensions, integrating through the entire extent of the kernel in each

dimension [40].

Padding allows every element of the input, including the edges, to be the center of the

kernel operation at some point, ensuring full coverage of the input image. It is an essential

technique in CNNs, involving the addition of extra pixels around the edges of the image to

ensure filters fully cover the image edges, maintaining the spatial dimensions of the output

feature map and preserving the integrity of the image’s features [36].

The convolutional layers are followed by activation functions, which introduce non-linearity

to the network, enabling it to capture complex patterns. The Rectified Linear Unit ReLU(x)

is a common choice, maintaining positive values while converting negative values to zero,

thus filtering out less significant features [41]. Its function is defined in equation (2.3).

Other common activation functions are the sigmoid function σ(x) (2.4) or the hyperbolic

tangent tanh(x) (2.5).

7

ReLU(x) = max(0, x) (2.3)

σ(x) =
1

1 + e−x
(2.4)

tanh(x) =
ex − e−x

ex + e−x
(2.5)

Pooling layers are essential for simplifying information and reducing feature map dimension-

ality [36]. By downsampling and effectively reducing overfitting, pooling layers ensure that

the model does not merely perform well on familiar data but also possesses the capacity

to transfer its knowledge to new data. These layers allow the model to extract and learn

essential patterns, moving from sole memorization towards a deeper understanding. This

process is crucial for the model’s ability to apply its knowledge to unseen data, addressing

the issue of non-generalization and enhancing overall performance [31]. Max pooling, for

instance, retains the maximum value within each patch of the feature map, highlighting

the most significant features [42].

As the image progresses through the network, it eventually reaches fully connected layers,

which integrate all the features learned to classify the image into categories [36]. Prior to

this stage, normalization techniques might be applied to facilitate smooth and efficient

training [31].

Through the convolutions, activation, pooling, and fully connected layers, CNNs are able

to automate the process of feature extraction and classification. They can learn to identify

and highlight the most informative features of images, becoming a foundational technology

in modern image processing and computer vision. Unlike other machine learning algorithms

that require manual feature extraction, CNNs can directly learn relevant features from raw

input data, e.g. from medical images [43], making them exceptionally suited for complex

tasks like skin cancer detection.

2.3. Medical Software

Medical software encompasses a broad range of applications designed to support healthcare

professionals and patients in various aspects of healthcare, including diagnosis, treatment,

monitoring, and administration [44]. This broad category contains two relevant key

concepts, namely Medical Device Software (MDSW), which is only used in the EU, and

Software as a Medical Device (SaMD), which is not used in the EU [45], [46], among others.

8

Both terms are often used interchangeably in medical environments, even when they are

not the same [46], [45]. Understanding the used terms is crucial in grasping the evolving

area of healthcare technology.

2.3.1. Medical Device Software

Software that is an integral part of a medical device is typically referred to as medical

device software [45]. This software is designed to support the device’s intended medical

purpose, whether it’s diagnostic, therapeutic, or monitoring [46]. It can be embedded

in hardware devices [47], e.g. pacemakers or MRI machines, where the software plays a

critical role in the functioning of the device [46]. The primary characteristic of MDSW is

that it cannot typically operate independently without the medical device it supports, e.g.

X-ray software [46]. Regulatory bodies, like the European Medicines Agency (EMA) in the

European Union, strictly regulate MDSW due to its direct impact on patient health and

safety [44]. Compliance with these regulations ensures that MDSW meets stringent safety,

quality, and efficacy standards.

2.3.2. Software as a Medical Device

Unlike MDSW, SaMD is software that functions as a medical device in its own right and

is intended to be used ”for one or more medical purposes that perform these purposes

without being part of a hardware medical device”, as defined by the International Medical

Device Regulators Forum (IMDRF) [47]. SaMD can run on general-purpose devices

(e.g., smartphones, tablets, or PCs) and doesn’t necessarily require dedicated hardware to

operate [46]. Examples include software that helps diagnose skin lesions from photographs,

or consumer apps like symptom checkers developed by Ada, a global health company

that offers an AI-powered health platform designed to help users understand their health

symptoms and navigate to the appropriate care [48].

2.4. International Standards for Medical Software

All medical devices and software must undergo strict regulations and comply with inter-

national standards in different sectors. The most important and relevant internationally

recognized norms and their requirements are explained in the following sections.

2.4.1. The Medical Device Regulation

The Medical Device Regulation (MDR) must be taken into account by manufacturers of

medical products, but also by hospitals and merchants, if they want to distribute their

9

products in the European Union [49]. Table 2.1 lists some example requirements by the

MDR.

Table 2.1.: Exemplary Requirements and Their Descriptions Under the MDR from the
Johner Institut [49].

Requirement Description

Quality Management System (QMS) Manufacturers require a QMS for the develop-
ment, production, and monitoring of products
on the market.

Risk Management (RM) System The RM must ensure that the benefit of the
product’s life cycle is acceptable in regards to
possible risks.

Classification of Devices Manufacturers must determine the risk class
of every product. (Class I to Class III, with I
the lowest and III the highest risk)

Conformity Assessment Manufacturers must ensure that their devices
meet the requirements set out in the regula-
tion.

Clinical Evidence Manufacturers must provide clinical data
demonstrating the safety and performance
of their devices.

Unique Device Identification (UDI) Devices must be identifiable to facilitate trace-
ability throughout the supply chain.

Post Market Surveillance and Vigi-
lance

Manufacturers must monitor their medical
products’ performance and safety once they
are on the market, and report serious inci-
dents.

Responsible Person for Regulatory
Compliance

Manufacturers must assign a person responsi-
ble for regulatory conformity.

In order to fulfill the MDR requirements, the academia-guidelines orient themselves on

several International Organization for Standardization (ISO) certifications.

2.4.2. The In Vitro Diagnostic Regulation

One of many regulatory frameworks by the EU, the In Vitro Diagnostic Regulation (IVDR),

aims to ensure the safety, performance, and quality of In Vitro Diagnostic Devices (IVDs)

and enhance the transparency and traceability of the development and the supply chain [50].

IVDs are used to test tissue or blood samples outside the body for the diagnosis, prevention,

monitoring, or treatment of medical conditions, infections, and diseases [51]. The skin

cancer detection software is an example for an IVD. Important aspects are listed and

described in Table 2.2.

10

Table 2.2.: IVDR Key Aspects and Their Description [52].

Chapter Description

Scope and Definitions Scope of IVDs and definitions for various
terms used in the regulation.

Most Important Requirements Includes provisions for design, risk manage-
ment, documentations, etc. to ensure the
safety and performance of the IVD.

Traceability of Products UDI system to facilitate traceability and im-
prove the identification and tracking of IVDs.

Notified Bodies Requirements, tasks, and obligations for no-
tified bodies responsible for assessing confor-
mity with the regulation.

Conformity Assessment Procedures and requirements for demonstrat-
ing regulation conformity.

Performance Evaluation Process for evaluating IVDs’ performance, de-
sign, and criteria.

Post-Market Surveillance Establishment and maintenance of post-
market surveillance systems to monitor the
performance and safety of released devices.

Cooperation between Member
States, Medical Device Coordination
Groups (MDCG) and Other Experts

Collaboration, harmonization, and effective
implementation of the IVDR across the EU
regulatory network for transparency.

Confidentiality, Data Protection,
Penalties

Provisions for protecting confidential informa-
tion, compliance with data protection regula-
tions, and penalties for non-compliance with
the IVDR requirements.

2.4.3. Quality Management System

In order to document responsibilities, processes, regulations, and procedures, and to ensure

compliance and consistency throughout the development life cycle, a standardized system,

namely a quality management system (QMS), is employed. To develop a QMS, the ISO

9001 is applied. It is the most widely spread generic standard for quality management and

focuses on the establishment, maintenance, and most importantly continuous improvement

of a QMS by covering all aspects that manage the quality of an organization’s products

and services [53], including the aspects in Table 2.3.

Almost identically, the ISO 13485 incorporates mandatory QMS requirements, with the

difference being the specific focus on medical device industries’ efficiency and safety

throughout the devices complete life cycle [54].

11

Table 2.3.: ISO 9001 Topics and Their Description [53].

Topic Description

Context of the Organization External and internal factors that affect the
organization’s ability to achieve intended
QMS results.

Leadership The importance of leadership for QMS.

Planning Measures defined to achieve an organization’s
quality objectives and effectiveness improve-
ment.

Support Resources, competence, awareness, communi-
cation and documented information issues.

Operation Planning, implementation and controlling of
processes to meet customer requirements and
improve satisfaction.

Performance Evaluation The monitoring, measurement, analysis, and
evaluation of the QMS’s performance and ef-
fectiveness.

Improvement Increasing the effectiveness of QMS continu-
ously.

2.4.4. Software Life Cycle

A cost-effective and time-efficient process used to design and build high-quality software

is called a software life cycle (SLC). It emphasizes the importance of each phase from

planning to deployment. Both the IEC 62304 and IEC 82304 standards address software

development used in the healthcare industry [55], [56]. While the former focuses on life cycle

requirements specifically for MDSW, ensuring it is developed and maintained safely [55], the

latter broadens the scope to include general health software products, detailing safety and

security requirements across the product’s life cycle for manufacturers [56]. The following

Table 2.4 and Table 2.5 list some of the relevant aspects covered by the standards.

Table 2.4.: ISO 62304 Topics and Their Description [57].

Topic Description

Software Development Process Defines steps for the development of medical
software, ensuring safety and reliability.

Software Maintenance Process Guide to maintaining software post-
deployment, including updating and safety
monitoring.

Software Risk Management Process Integration of RM.

Software Configuration Management
Process

Details on how to handle configuration of soft-
ware.

Software Problem Resolution Pro-
cess

Definition of an approach to solving problems
identified during either development or post-
market.

12

Table 2.5.: ISO 82304 Topics and Their Description [58].

Topic Description

Software Product Requirements Defines general requirements for health soft-
ware products.

Software Life Cycle Processes Details life cycle requirements for the devel-
opment, maintenance, and decommissioning
of health software.

Product Validation Describes validation processes involved in re-
alizing health software products from concep-
tion to release.

Product Identification Outlines methods for uniquely identifying
health software throughout their life cycle
(similar to UDI).

Post-market Activities Focus on monitoring and improving the prod-
uct’s safety after release.

Another standard is the ISO 25010:2011, which has recently been withdrawn. It defines a

set of quality characteristics for software product and service quality, similar to the newer

ISO 25010:2023 version [59] which has been released in 2023. The ISO 25010:2011 version

was mentioned in one of the later introduced acadmia-tailored guidelines and is therefore

especially relevant, including aspects as listed in Table 2.6.

Table 2.6.: ISO 25010:2011 Topics and Their Description [60], [61].

Topic Description

Functional Suitability Requires completeness, correctness, and ap-
propriateness of software functions.

Performance Efficiency Evaluates the efficiency to the performance
in relation to used resources and conditions.

Compatibility Evaluates software co-existence with other
software and interoperability efforts.

Usability Requires the software to be easy to use, un-
derstandable and attractive to the user.

Reliability Defines requirements to evaluate the ability
of the software to maintain its performance
under stated conditions for a specific period
of time.

Security Describes the ability of the software to protect
data regarding integrity, confidentiality, and
authenticity.

Maintainability The software should be easy to modify, im-
prove, correct or adapt to changes in require-
ments and/or in the environment.

Portability Requires the software to be easy to install and
to exchange depending on the environment of
use.

13

2.4.5. Risk Management

The supplementary standard ISO 24971 assists manufacturers in applying and interpreting

the ISO 14971, an international fundamental standard for the application of risk manage-

ment (RM) to medical products throughout their life cycle. RM involves the systematic

estimation and evaluation of risks together with the identification of strategies in order

to avoid or minimize their occurrence probability and impact, thereby safeguarding the

software development process [62], [63]. ISO 14971 activities and their description can be

found in Table 2.7.

Table 2.7.: ISO 14971 Topics and Their Description [64].

Topic Description

Risk Management Plan Planning of foreseeable RM activities with
risk identification, role and responsibility as-
signment, and risk acceptance.

Risk Analysis Identification of safety characteristics of a
medical device and definition of hazardous
situations and risk severity & occurrence.

Risk Evaluation Evaluation of identified risks and placement
into acceptable or unacceptable risks.

Risk Control Definition of appropriate control measures for
identified risks.

Evaluation of Overall Residual Risks A risk evaluation of residual risks and place-
ment into acceptable and unacceptable risks.

Risk Management Review Confirmation that all overall residual risks
are acceptable and all steps in RM plan are
completed.

Production and Post Production In-
formation

Establishment of a collection of production-
related risks events and documentation during
and post-production.

2.4.6. Usability Engineering

Lastly, usability engineering (UE) is a process that concentrates on developing the usability

of a software, and, similar to RM, minimizing error occurrences. The IEC 62366 standard

family consists of the IEC 62366-1 and IEC 62366-2. The former applies UE to medical

devices to enhance their usability and safety for users, while the latter provides systematic

guidance on it [65], [66]. The IEC 62366 bundle ensures that medical devices are designed

and developed in a way that minimizes the risk of user error, enhances user satisfaction,

and ultimately improves patient safety and outcomes. Main topics are listed in Table 2.8.

14

Table 2.8.: IEC 62366 Topics and Their Description [65], [67].

Topic Description

General Requirements Sets expectations for integrating UE into the
medical device life cycle.

Usability Engineering Process Describes a detailed process for applying UE
throughout the design and development of
medical devices.

User Interface of Unknown Prove-
nance (UOUP)

User interfaces (UIs) brought into the design
without full usability engineering processes
applied.

Usability Specification Documenting usability goals and safety re-
quirements that the medical device needs to
meet.

Usability Validation Details methods and criteria for validating
that the device meets the specified usability
and safety requirements.

Risk Management Integrates UE in risk management for the
reduction of use-related risks.

User Interface Design Focuses on designing intuitive user interfaces
that reduce the risk of user error and are
effective.

2.5. Academia-tailored Guidelines for Medical Software

While modern healthcare essentially depends on software, the strict regulations on medical

devices result in barriers to technology transfer from research institutes to the medical

industry [9]. In recent years, multiple guidelines have been developed to remedy this cavity

by covering different aspects of medical software development.

Four guidelines were selected for this thesis, which were developed by Prof. Dr. Dominik

Heider and his coworkers, covering the following:

� Quality Management System guideline, which is based on the ISO 9001 and ISO

13485,

� Software Life Cycle guideline, based on the ISO 25010:2011 and both the IEC 62304

and IEC 82304,

� Risk Management guideline, which implements the ISO 24971 and ISO 14971,

� Usability Engineering guideline, in conformity with the IEC 62366 standard family.

These guidelines discuss various connected aspects, as elucidated later in the Materials

section. They are independent and yet intertwined with each other, for example activities

of the UE guideline refer to activities in the RM guideline, and aspects defined in the QMS

guideline apply to all guidelines.

15

3. Materials and Methodology

All materials used in this project to successfully develop the software with the guidelines

are listed below and expounded upon in the following sections.

� The four provided guidelines:

� Guideline ”Fostering reproducibility, reusability, and technology transfer in

health informatics”, authored by Anne-Christin Hauschild, Lisa Eick, Joachim

Wienbeck, and Dominik Heider and published on July 1st 2021 in iScience [68].

� Guideline ”Guideline for software life cycle in health informatics”, authored by

Anne-Christin Hauschild, Roman Martin, Sabrina Celine Holst, Joachim Wien-

beck, and Dominik Heider and published on November 9th 2022 in iScience [69].

� Unpublished manuscript ”Guideline for Risk Management in Software Health

and Medical Applications”, last accessed in April 2024 and authored by Roman

Martin, Anne-Christin Hauschild, Robin Gottschalk, Sandra Clemens, Joachim

Wienbeck, and Dominik Heider [70].

� Manuscript ”Manuscript on Usability Process”, authored by Dominik Heider,

Anne-Christin Hauschild, Joachim Wienbeck, Roman Martin, Sandra Clemens,

and Vanessa Klemt and published on July 31st 2023 as an EU deliverable research

report of the FeatureCloud project [71]. Based on Vanessa Klemt’s master’s

thesis ”Usability Engineering Guideline for Software as a Medical Device -

Implementing an Interactive xAI Platform supporting Medical Decision-Making”,

submitted on September 14th 2021 at the Philipps University of Marburg [72].

� Integrated Development Environment (IDE): JetBrains PyCharm, version 2023.3.2.

� Documentation platform: Confluence and Jira.

� Code documentation platform: HHU GitLab.

� Python packages as described in Table 3.1.

� Qt Designer software, version 5.11.1.

� Machine learning pipeline for skin cancer detection from Dmitry Degtyar’s bachelor’s

thesis ”Machine Learning based skin cancer screening”, submitted on July 8th 2023

at the Philipps University of Marburg [11]

� Personal Acer computer with six CPU cores and 16 GB main memory.

� A dermatoscope, model ”Dino-Lite DermaScope Polarizer HR” was used, funded by

the Hessian Center for Artificial Intelligence.

16

3.1. Software Specification

3.1.1. Python Libraries and Packages

Different python packages were used for the implementation of the skin cancer detection

software. Table 3.1 lists all packages used including their licenses, version, and purpose.

All licenses mentioned are permitted for use in academic settings.

Table 3.1.: Python Libraries Used for the Skin Cancer Detection Software Implementation.

Package Version License Purpose

torch 1.12.1 Modified BSD Used for creating and training the
ML-pipeline.

torchvision 0.15.2 Modified BSD Used to access pretrained CNN mod-
els.

PIL (Pillow) 9.4.0 HPND Used for opening and saving images.

sqlite3 3.41.2 Public Domain Used for the databases. Does not
require a separate server process.

sys 3.10.9 PSFL Used for accessing command-line ar-
guments, managing the Python path,
or controlling script termination.

unittest 3.10.9 PSFL Used for constructing and running
tests.

os 3.10.9 PSFL Used for managing file paths, direc-
tories, and saving and deleting files.

PyQt5 5.15.7 LGPL Used to develop the graphical user
interface (GUI) for the application
(creating windows, dialogs, and wid-
gets for user interaction).

cv2 (opencv-python) 4.8.1 3-clause BSD Used for image processing tasks,
such as reading and displaying im-
ages, or using the camera.

datetime 3.10.9 PSFL Used for manipulating dates and
times.

re 2.2.1 PSFL Used for regular expression matching
operations.

classification-pipeline 1.0 Public Domain ML pipeline.

3.1.2. Qt Designer

Qt Designer is a tool that comes with the Qt framework, used for Drag-and-Drop-designing

and building GUIs with Qt Widgets. It allows developers to create forms in a what-

you-see-is-what-you-get (WYSIWYG) manner, making it easier to arrange graphical

components like buttons, labels, or sliders on the application’s windows or dialogs [73].

17

The built-in property editor allows developers to modify the properties of selected widgets.

Properties can include things like the widget’s size, font, and background color, among

others. Furthermore, signals and slots can be used in the Qt framework for the communi-

cation between objects. The signal and slot editor in Qt Designer makes it easy to connect

widgets and define their interactions without manual coding. Developers can also preview

their designs in different styles and on different platforms directly from Qt Designer [73].

The created GUI layout is saved as a .ui file, which is an XML file describing the properties

and layout of the widgets in the interface. This .ui file can be loaded into an application at

runtime or converted into Python code using a tool like pyuic for PyQt applications [73].

The software simplifies the process of GUI design, making it more visual and less code-

intensive. It was primarily used for the software development and usability engineering

process in this thesis.

3.1.3. Documentation Platforms

Documenting code and guideline activities was done with the help of GitLab, Confluence,

and Jira as respective documentation platforms.

GitLab is a DevOps platform that combines source code management (SCM) and continuous

integration/continuous deployment (CI/CD) tools to streamline software development and

collaboration. Source code was stored and managed with Git which was provided by the

Heinrich-Heine University Düsseldorf.

Confluence on the other hand is a content collaboration tool that helps teams create, share,

and organize documentation and project plans. In this project, Confluence is mainly used

for documenting the guideline procedures, as it allows the creation of so called spaces

(wikis). It can be connected and integrated with Jira, which is a project management tool

designed for issue and project tracking, enabling teams to organize tasks, bugs, and feature

requests in an efficient manner.

Together, these tools support comprehensive project planning, development, and collabora-

tion efforts.

3.2. Machine Learning Pipeline

The core objective of the ML model used for the skin lesion classification in this thesis

is to develop a highly accurate classification system for different types of skin lesions,

utilizing the HAM10000 dataset as the primary material for training and validation of

the model [11]. The cited thesis evaluates several deep learning architectures, including

variations of DenseNet and ResNet, among others. Key aspects of the thesis are summarized

in the following sections.

18

3.2.1. Skin Lesion Dataset: HAM10000

The HAM10000 (short for Human Against Machine with 10000 Dermoscopic Images)

dataset is a collection of dermatoscopic images that are instrumental for the classification

of skin lesions [12]. It has over 10,000 images spanning seven distinct generic categories

of skin lesions, including those mentioned in the background: actinic keratoses, basal

cell carcinomas, benign keratoses, dermatofibromas, melanomas, melanocytic nevi, and

vascular lesions. Each image within the dataset has undergone rigorous clinical verification,

ensuring a high degree of accuracy and reliability for training machine learning models,

and was collected from different clinical and research institutions [12], [11].

3.2.2. Preprocessing

In the cited thesis [11], the preprocessing of dermatoscopic images for the development

of a skin lesion classification pipeline involved several steps to enhance the quality and

uniformity of the input data. First, the raw images from the HAM10000 dataset were

transformed into structured data frames. These frames contained representations of images

as multidimensional vectors of numerical pixel values, paired with corresponding disease

class identifiers. The dataset was then divided into training and validation subsets while

maintaining a uniform distribution across the classes [11].

An oversampling technique called random oversampling [74] was applied to all classes

except the majority class to equalize the number of images across classes. Afterwards, the

images underwent a series of augmentation processes, including cropping, rotation, scaling,

and distortion, to generate a more diverse set of training data. Additionally, normalization

procedures based on the equation (3.1) were applied to each image to scale the pixel values,

ensuring consistency across the dataset [11].

output[channel] =
input[channel]−mean[channel]

std[channel]
(3.1)

In the equation, output[channel] represents the resulting normalized channel value (red,

green or blue channel), while input[channel] stands for the raw channel values. The

mean[channel] is the mean value, and std[channel] is the standard deviation value of each

corresponding channel, calculated for the whole dataset [11], [75], [76], [77].

3.2.3. Transfer Learning

The model utilizes transfer learning, which is a machine learning technique where a model

developed for a particular task is reused as the starting point for a model on a second

19

task, thereby reducing dependence on large amounts of training data and accelerating

the learning process [78], [79]. It was employed to leverage knowledge from the large,

diverse ImageNet dataset to improve performance despite the relatively smaller size of the

HAM10000 dataset, thereby enhancing the models’ ability to generalize from the training

data to new, unseen images. This approach is important in contexts where collecting large

amounts of labeled data is challenging, for example in medical imaging [11].

3.2.4. Training Process

The training process for the machine learning model involves several detailed methodolog-

ical approaches, including data preparation, fine-tuning of pre-trained models, and the

application of transfer learning using CNNs.

The models that were trained included several advanced CNN architectures like DenseNet,

ResNet, InceptionV3, AlexNet, and VGG, with variations of DenseNet and ResNet explored

for their efficacy in classification tasks [80], [11]. The training utilized a cross-entropy

loss function to calculate the difference between the predicted probability distributions

and the actual label distributions. Stochastic Gradient Descent (SGD) was used as an

optimization strategy, adjusting the model’s parameters in small steps to minimize the

loss function. It uses sigmoidal annealing to adjust the learning rate, with the equation

depicted in (3.2) [81], [11]. Specifically, the learning rate is gradually increased during an

initial warm-up phase, which constitutes 10 % of the total training epochs, starting from a

lower limit (ηlow) of 0.001 to an upper limit (ηup) of 0.1.

ηt = ηlow + (ηup − ηlow) ·
1

1 + ek(2t−1)
(3.2)

In the equation, ηup sets the upper bounds, and ηlow sets the lower bounds of the desired

learning rate. The slope of the learning rate curve is adjusted with k [81], [11].

3.2.5. Chosen Model: DenseNet201

The results of Degtyar’s thesis reveal that among the various CNN architectures analyzed,

the DenseNet201 model demonstrated the best performance for classifying skin lesions. It

achieved an accuracy of 0.916 and 0.835 on the validation and test datasets, respectively.

This performance demonstrates the effectiveness of DenseNet201 in handling the specific

task of skin lesion classification. The choice of DenseNet201 for the final version of the

classification pipeline underscores its superior capability to generalize from the training

data to new, unseen images. The model aims to contribute significantly to improving and

accelerating the diagnostic process for skin lesions [11].

20

Explainability of this pipeline is not a relevant part of this thesis and therefore not

addressed.

3.3. Guidelines for Software Development

The field of medical informatics has been advancing with the integration of novel technolo-

gies, particularly AI, to enhance clinical decision-making and improve patient monitoring,

diagnostics, and prognostics [82].

AI can revolutionize healthcare and precision medicine [82]. The development of reusable

biomedical software for research is time-consuming and likely to lack quality, therefore

hindering technology transfer, reproducibility, and reusability in research communities, while

software for clinical use has to be certified and cannot lack quality. To address this issue,

the selected guidelines aim to make it easier for researchers to create high-quality software,

improve documentation, accessibility, and traceability, and ensure reproducibility [68].

Each guideline has several activities. For overview purposes, Table 3.2 lists each of the

activities described in the next sections, grouped by their respective guideline affiliation.

Table 3.2.: Academia-Tailored Guidelines and Their Activities

QMS SLC RM UE

Document Man-
agement

Software Development
Planning

Planning and
Preparation

Use Specification

Project Planning Requirements Analysis Risk Policy Use-related Risk
Analysis

Project Execution Software Architecture
and Design

Iterative Risk Man-
agement Cycle

Iterative Design
Cycle

Management Pro-
cedures

Implementation, Test-
ing and Verification

Risk Monitoring Summative Evalua-
tion

Software Release and
Legacy Software

Configuration &
Change Management

3.3.1. Quality Management System Guideline

The ultimate goal of the QMS guideline is to make it easier for researchers to create

high-quality software, improve documentation, accessibility, and traceability, and ensure

reproducibility in order to accelerate the deployment of standardized workflows in clinical

practice [68]. Some universities already have a general QMS that focuses on research and

education quality, but may not address the specific needs of medical software development.

21

The QMS guideline specifies four procedures for documentation, which are highlighted

blue in Figure 3.1. All procedures can be started at any time with no prerequisites. It is

recommended to have this guideline progressed as far as possible before starting the other

guidelines.

Figure 3.1.: Quality Management System Components [68]. The QMS consists of a QMS
Manual, Quality Policies and Quality Objectives, and Procedures to be Docu-
mented. The guideline focuses on Document Management, Project Planning
and Execution, and Management procedures.

3.3.1.1. Document Management and Management Procedures

Effective documentation is crucial for technology transfer. The first component is the

Document Management, which as the name suggests, defines any management processes

relating to documents, including where and how documents are stored and managed,

ensuring consistency and accessibility, and any other Standard Operating Procedures

(SOPs) that can be defined individually. It covers aspects such as document identification,

access, approval, version control, and retention. The Management component on the other

hand defines general management procedures, for example the procedures for QMS training

to ensure that staff members are familiar with the QMS and its associated documents, or

personnel qualification procedures that ensure that staff members are suitable for their

roles, which may involve hiring and training [68].

3.3.1.2. Project Planning

Project Planning procedures help improve project completion and support technology

transfer. This section includes procedures for choosing which QMS elements to apply,

ensuring a shared understanding of project goals, defining roles and responsibilities, em-

phasizing risk assessment and management, and creating project-specific documents with a

title, a project goal, planned start and end dates or milestones, and success and termination

criteria. For each project, a document storage (e.g. Confluence) must be prepared and

documented, as well as a list of all relevant created documents [68].

22

3.3.1.3. Project Execution

Following the Planning phase, the Project Execution phase commences. Key procedures

should cover requirements management, the definition of development environments and

tools, selection of development processes, criteria for project completion, and documentation

levels [68].

3.3.2. Software Life Cycle Guideline

The article proposes a guideline for academic software development, tailored to research

organizations’ needs. It suggests a subset of elements from standard software life cycle

processes that can significantly benefit research projects while maintaining feasibility,

especially for academic institutions with the aim to facilitate technology transfer and

improve reproducibility in a controlled and predictable manner, allowing academic advances

to be deployed faster in clinical practice [69].

The main components of this guideline are highlighted in blue in Figure 3.2.

Figure 3.2.: Software Life Cycle Components [69]. A QMS is involved in the processes
of the SLC, which include Configuration & Change Management, Legacy
Software and Software Development. The latter has several phases: Planning,
Architecture, Release, Requirements Analysis, and Testing & Verification.

The guideline for the software life cycle in medical software research encompasses various

processes, including Software Development Planning, Requirements Analysis, Software

Architecture, Software Design, Implementation, Testing, Verification, and Release.

3.3.2.1. Software Development Planning

In order to design and build high-quality software, one must plan a lot beforehand. This is

the initial and crucial step in the software life cycle, and it includes defining a brief Intended

Purpose document for the software, a Safety Class Determination based on the MDR

Qualification and Classification process as seen in Fig. 1 in Appendix A.10, and a software

development plan, which consists of a process description plan and a software development

23

plan, in the Planning phase, based on a previously selected software engineering model

such as the V-model. The accurate software development plan is the first key component

that must be defined and then regularly updated and referenced throughout the project.

Depending on the individual software development plan, variations may occur, e.g. in the

duration of tasks set. Still, all plans should roughly address used processes, deliverable

results, traceability between requirements, norms, methods, risk control measures, and

individually set SOPs [69]. According to the SLC guideline, it is recommended to define

a coding guideline or convention, including code style, nomenclature, and naming in the

software development plan, as it increases software quality [8]. It should also be one of the

constraints in having a requirement marked as complete in the Definition of Done (DoD),

which is also set in the SLC guideline. The DoD is used to check if a requirement or its

related issues are fully implemented and can be tagged as completed within Confluence

and Jira [8].

3.3.2.2. Requirements Analysis

A Requirements Analysis is performed after the software development plan is created, and

it is updated during the project. The analysis defines software inputs, outputs and perfor-

mance, but also non-functional requirements such as physical characteristics, maintenance,

or cybersecurity. High-level requirements should be clearly described in a specification

document, with a strong emphasis on traceability, which ensures a comprehensive under-

standing across various stages including design, implementation, testing, and maintenance.

Furthermore, maintenance requirements should not be neglected, as maintaining software

is as important as its initial development [69], [8].

3.3.2.3. Software Architecture and Design

The structure of the software is described in the architecture document together with

general design decisions and the maintenance plan, covering architecture characteristics that

must be supported by the system, e.g. availability, scalability, security, and architecture

decisions such as rules or constraints based on the choice of the software architecture, e.g.

monolithic or modular [69]. Software units are then defined together with their sub tasks

as epics and issues; it is possible to delegate those into a separate detailed design document

which should then also contain a mockup and a UML class diagram [69], [8].

3.3.2.4. Implementation, Testing, and Verification

Once the software units are defined, each one must be implemented, tested and verified

by writing source code that follows the coding style and documentations standards that

were defined earlier. The integration tests evaluate the interaction between the software

24

units and the system, including different levels of testing such as unit tests, integration

tests, system testing, and even manual testing methods like usability tests or walkthroughs.

Verification is a critical activity throughout the software development process, ensuring

that all requirements are fulfilled and documented. The documents must document test

results and their traceability to requirements, architecture, and design [69], [8].

3.3.2.5. Software Release and Legacy Software

Finally, academic software is typically released to other researches via public repositories

or journal publications. Before release, residual anomalies must be documented and all

activities defined in the software development plan must be completed, covering the entire

lifetime of the medical device software. Legacy Software, which is software that was not

developed for use as a medical device, such as libraries or packages, has to be assessed for

possible risks and then mitigated [69].

3.3.2.6. Configuration & Change Management

The Configuration and Change Management process is crucial for usability, reproducibility,

reusability, and traceability of software. In academia, often a version control system such

as GitLab, GitHub, or Redmine is used. Since it is challenging in academia to imple-

ment comprehensive configuration and change management documentation, establishing

technical and administrative procedures for configuration and change management, docu-

mentation, and tracking changes is essential [8]. Suggested steps in a change management

process include creating problem reports, problem analysis, creating change requests, and

implementing and verifying changes [69].

3.3.3. Risk Management Guideline

Transitioning medical software from academic research to industrial standards faces signifi-

cant challenges due to stringent patient safety regulations. To address this, a practical Risk

Management (RM) guideline designed for research environments is introduced, covering

Risk Policy, Analysis, Evaluation, Control, and Monitoring to mitigate risks associated

with software. Hazards are potential sources of harm, that when exposed to, can lead to

hazardous situations. The severity is the extent of harm that can occur, and probability

of occurrence is the likelihood that the harm will happen. This RM guideline is intended

to streamline the transition of medical software from concept to a compliant product by

mainly mitigating hazardous situations and the severity and probability of those occurring,

therefore facilitating a safer and more effective integration into clinical practice [70].

The main topics of this guideline are highlighted in Figure 3.3.

25

Figure 3.3.: Risk Management System Components [70]. Based on a QMS, the RM
guideline is connected to both the SLC and the following UE guideline. Main
components include the Preparation phase that leads to the Iterative Risk
Management Cycle (IRMC), which consists of a Risk Analysis phase, followed
by an Evaluation phase, and lastly a Control phase. After finishing the cycle,
the Risk Monitoring phase commences. Depending on the results of the
Monitoring phase, the IRMC might start again.

3.3.3.1. Planning and Preparation

This initial phase involves setting up the RM process, which includes planning subsequent

RM activities, defining the intended use of the medical device or software, sketching a

preliminary system design, and establishing a Risk Policy. The planning should be carried

out early in the project to initiate all relevant documentation [83].

3.3.3.2. Risk Policy

The Risk Policy is a set of principles and criteria to determine what constitutes an acceptable

risk. It is fundamental to subsequent risk decisions and is aligned with the QMS principles

and quality goals. Therefore, aspects of the Risk Policy are described in detail [83]:

� Severity Categorization: Risks are classified by their severity into three categories:

significant (death or irreversible injury), moderate (reversible injury), and negligible

(no or very little damage).

� Probability Categorization: The likelihood of risk occurrence is also classified

into three categories: high (frequent occurrence), medium (occurs a few times over

the device’s lifetime), and low (very rare occurrence).

26

� Risk Matrix: A 3x3 Risk Matrix derived from ISO 24971 is used to help researchers

determine which risks are unacceptable, generally those in the upper-right area of

the matrix (high probability and significant severity).

� Justification of Acceptance Criteria: The researcher must justify why the Risk

Matrix and acceptance criteria are suitable based on the intended use of the medical

device/software.

� Risk Acceptance: Criteria against which risk levels can be measured are defined.

The principle is that the benefits of the application should outweigh the risks, with

an emphasis on not accepting risks that could lead to death or irreversible injury.

3.3.3.3. Iterative Risk Management Cycle

IRMC 1: Risk Analysis In this phase, potential hazards associated with the software are

identified, which can involve a fault tree analysis and documenting potential risks in a risk

table. The risk table contains components, initial events, hazards, possible damages, and

an assessment of severity and probability [83].

IRMC 2: Risk Evaluation After identifying potential risks, each risk is qualitatively

estimated for severity and probability according to the Risk Policy. The Risk Evaluation

involves a deliberative estimate, and a simple risk estimation and acceptance check can be

conducted using a Risk Matrix, which was defined in the Risk Policy [83].

IRMC 3: Risk Control This phase explores possible risk control options, especially for

risks that are not acceptable. Control measures should be documented and justified in

detail. The approach is based on a priority scheme from the MDR and ISO 14971, focusing

first on security and safety by design, followed by protective measures and information

provision [83].

In the Appendix, a Risk Policy (Appendix A.2), the structure of the Risk Table (Appendix

A.3), and the Description of the Control Measures (Appendix A.6) can be found.

3.3.3.4. Risk Monitoring

Finally, this phase ensures that the overall residual risk is acceptable. Should that not be

the case, the IRMC starts again. Otherwise, the RM activities are reviewed, including

an assessment of activities to date and their documentation. A RM report is produced,

summarizing the RM process and including an intended use table, risk table, risk control

table, and overall residual risk evaluation. The RM report should be periodically updated

and forms the basis for research transfer to the industry [83].

27

3.3.4. Usability Engineering Guideline

The guideline focuses on the usability engineering (UE) process tailored for academia

and research institutes, primarily within the context of developing medical software. It is

derived from the IEC 62366 standard, and it includes activities like specifying the use of

the software, analyzing use-related risks, designing and implementing the user interface

(UI), and evaluating usability through both formative and summative approaches. The

detailed process, as visualized in Figure 3.4, aims to ensure that the software meets the

users’ needs while adhering to the regulatory standards for medical devices [71].

Figure 3.4.: Usability Engineering Components [71]. The flow chart starts by defining a Use
Specification. Then, a Use-related Risk Analysis is performed, before starting
the Usability Engineering Iterative Design Cycle (UEIDC). The UEIDC begins
with the UI Evaluation Planning phase, followed by the Derivation of UI
Requirements, then the UI Design and Implementation. Depending on the
results, the UEIDC cycle either ends here, leading to the Summative Evaluation
phase, or moves on to the Formative Evaluation phase. The cycle starts anew
then.

3.3.4.1. Use Specification

The initial step of the UE process is to create a Use Specification document that defines

the intended use of the software. It covers several key aspects [71]:

28

� Intended Medical Indication: Describes the medical purpose(s) of the software,

e.g. diagnosis, monitoring, treatment prediction, or screening, including parts of the

human body or type of tissue this software is applied to.

� Patient Population: Characterizes the demographics of the patient groups who

will use or be affected by the software.

� User Profile: Defines the different user groups (e.g. clinicians, IT personnel) and

their characteristics that could influence usability.

� Use Environment: Describes the physical or social environment where the software

will be used, including confounding variables such as noise, lighting, or distractions.

� Operating Principle: Documents the type of inputs into the software and expected

outputs.

3.3.4.2. Use-related Risk Analysis

This phase is centered on identifying potential risks associated with using the software.

It involves a detailed analysis, similar to the IRMC, to uncover any use errors, hazards,

and hazardous situations that might arise from interacting with the UI. The goal is to

preemptively mitigate risks through design adjustments [71].

3.3.4.3. Iterative Design Cycle

The UE Iterative Design Cycle (UEIDC) is a core component of the usability engineering

process, emphasizing the continuous refinement of the UI based on user feedback. It is

divided into four phases [71].

UEIDC 1: UI Evaluation Planning This phase involves detailing the UI evaluations,

planning both Formative and Summative Evaluations, their execution methods, and success

criteria [71].

� Formative Evaluation Planning: Focuses on gathering continuous feedback

during the development process to identify and fix usability issues. The plan specifies

objectives, chosen methods, evaluation focus, and timing [71].

� Summative Evaluation Planning: Involves evaluating the final implementation

of the UI to confirm that it meets the predefined acceptance criteria for usability and

safety. This planning phase outlines the objective, chosen methods, UI parts to be

assessed, and the criteria for successful evaluation.

29

UEIDC 2: Derivation of UI Requirements The second phase describes the development

of detailed specifications for the UI based on the initial requirements analysis in the SLC

guideline. This includes deriving UI requirements that ensure usability [71], such as:

� UI Requirements Derived from User Needs, Preferences, and Capabilities:

Specifies requirements based on thorough understanding of the intended users’ needs,

capabilities, and preferences for an efficient user experience.

� UI Requirements Associated with the Implementation of Risk Control

Measures: Identifies specific design requirements aimed at minimizing use-related

risks through appropriate risk control measures.

� Requirements for Accompanying Documentation and Training: Outlines

the need for clear and concise documentation and training materials that support

safe and effective use of the software.

� Design Principles, Heuristics, and Style Guides: Suggests following established

design principles and style guides to ensure UI consistency and usability.

UEIDC 3: UI Design and Implementation Here, the translation of UI specifications into

actual design concepts with a selection of UI elements, and the subsequent implementation

of these designs is covered. Prototypes (both low-fidelity and high-fidelity) should be

created and used for refining the UI design based on user feedback and the Formative

Evaluation results [71].

UEIDC 4: Formative Evaluation This phase describes the process of evaluating the UI

during its development to identify usability issues and areas for improvement. It involves

the analysis of evaluation results to determine the necessity of design changes or additional

risk control measures. This component is crucial for ensuring that the the users’ needs are

met by the UI [71].

3.3.4.4. Summative Evaluation

The Summative Evaluation is the final evaluation of the UI upon completion of the

development process. This evaluation should ideally confirm that the UI can be used safely

and effectively by the intended user group in the intended use environment. It involves

testing the UI against the acceptance criteria defined earlier in the Summative Evaluation

Planning phase, ensuring that the software meets all usability and safety requirements [71].

30

3.4. Application and Implementation of the Four Guidelines

The exact description of the guideline activities is described in the sections above. It is

important to note that there is no clear timeline as to when which parts of which guideline

should be applied and when to switch between the guidelines since they were all written

independently, which is why the decision on the practical order of implementation, as well

as the implementation itself, are part of the results.

The way the guidelines are applied depends on the project structure, the resources, and other

factors. In this project, the guidelines and all of their activities, as described previously,

were applied successively and in parallel to one another in four stages, starting with the

QMS as a central element in all guidelines. Three documentation stages existed, each

dealing with different activities of all guidelines, and one programming stage, concerned

with the coding and testing aspect of the skin cancer detection software.

The documentation was stored mainly on Confluence with the integration and help of a

Jira project plan that was set up and updates during the project.

3.5. Software Implementation

The software implementation is equivalent to the implementation and testing part of the

SLC guideline’s Implementation, Testing, and Verification document.

3.5.1. Coding

The software development was planned and carried out according to the software devel-

opment plan of the SLC guideline. Implementing the code for the user interfaces was

achieved by using Qt Designer, an open source software for Drag-and-Drop development of

GUIs. Furthermore, to write code efficiently, the PyCharm IDE was used with Python3,

version 3.8, as the chosen programming language for coding and testing, and sqlite3 for

the database implementation. The perks of PyCharm are listed in Appendix A.1 as part

of the QMS guideline’s project execution procedure.

As the project implementation progressed, changes and new functioning code lines were

committed with a description message and later pushed into the Git repository to ensure

traceability within the source code management.

3.5.2. Testing

Testing was performed manually by using unit tests in Arrange, Act, and Assert (AAA)

structure and in parallel to functionality coding, following the Test-Driven-Design (TDD)

31

principle. Usability tests were also conducted. Every test was performed multiple times

and was specifically designed not to interfere with the apps functionality itself, e.g. existing

data in database manipulation. Only if all tests passed, another epic or issue commenced.

After successfully testing and achieving a high testing coverage, the entire software was

verified and documented in the Verification document as shown in the guideline implemen-

tation’s Software Release and Verification step.

32

4. Results

In this chapter, the application and implementation of the academia-tailored guidelines

is presented. Due to the fact that an activity from one guideline might need input from

another, requiring a focus switch to working on that other guideline before being able to

continue, this section of the thesis will be divided into several application stages, in which

different activities from the guidelines are described.

Documents highly necessary for the upholding of the reading flow and the comprehension

of the following results are included in the Results chapter. The longer version of some

documents or documents generally too large and disruptive to the flow of reading to

be added as figures in this chapter, but still crucial for the results, are attached in the

Appendix and referenced.

4.1. Initial Preparation

The SLC, RM, and UE guideline all have at least one thing in common, namely the fact

that a QMS is a central organizational element in all of them. It was therefore indicated

to implement the QMS guideline first and progress it as far as possible before continuing

with the other three guidelines. The initial preparation stage therefore focused mainly on

the QMS guideline, which was also properly prepared before it was applied.

4.1.1. Setups

Selecting Confluence as the documentation platform and HHU GitLab as the code doc-

umentation platform were among the first steps taken to prepare the application of the

QMS guideline. The next step was to set up and structure the Confluence-wiki, the

Git-repository, and a local directory. For overview purposes, an additional Jira project

plan was created, which included all tasks, their progress, and their deadlines.

Confluence Wiki

A Confluence space with the name Software for Skin Cancer Detection was created at

first. The reason for choosing Confluence as the documentation platform was that it met

the essential requirements, which were general versioning, plus versioning of renamed and

deleted documents to prevent data loss, and document editing/viewing access only by

authorized users, as stated in Appendix A.7 under procedure DM-2a as part of the QMS

guideline.

33

The space served as the root directory and hosted four sub-directories, namely each of the

four guidelines, a list of abbreviations, and a bibliography, as seen on the screenshot in

Appendix A.5. The guideline’s directories each had a landing page, further sub-directories,

and sub-pages which matched their respective components.

Git and Local Repository

A Git repository with the name Software for Skin Cancer Detection was created by a

supervisor and included only the program code for the machine learning pipeline from

Degtyar [11]. After creating a local directory on a private computer for the thesis, the Git

repository was pulled and saved there.

Git as a version system and GitLab as the coding documentation platform were chosen

for meeting essential requirements such as code management properties, versioning, the

possibility of storing intermediate states in a referenceable way, the prevention of code loss,

and the possibility for simultaneous work by more than on developer on the same code, as

listed in Appendix A.7 under the QMS procedure DM-2b.

Jira Project Plan

Finally, a Jira project plan was created and linked to the Confluence space. Tasks were

defined and added here, and a deadline for those was set. Different levels were defined, each

indicating the current status of a task being either new, in progress, finished, or overdue.

Appendix A.4 shows a screenshot of the project plan.

4.2. First Documentation Stage

Considering that a documentation platform was chosen, the actual documentation of the

QMS guideline in Confluence started.

4.2.1. Quality Management System Activities

The first page of the QMS guideline was the document management, in which the responsible

person for the documentation was identified, the documentation platforms and their

requirements were listed, the documentation life cycle and change procedure were defined,

and the SOPs were documented. The Confluence page containing those procedures can be

found in Appendix A.7.

Following that, the Project Planning and Execution procedures were documented. The first

procedure in the Project Planning page described the project specific assignment in a table.

The other two planning procedures document the steps for preparing the document storage

34

and a list of all necessary documents that were created during the execution of this project.

The list of documents was updated throughout the project, with the final version depicted

in Appendix A.8. The Project Execution document had one single procedure associated

with the creation of a software development plan. A table was created and contained the

choice of the development process, the description of the development environment, the

description of build and integration steps, the description of requirements handling, the

plan for testing, and the handling of changes. In order to fill this table, the SLC guideline

had to already been started, as it contained all the relevant information for the software

development plan. The choice was made to then skip this procedure temporarily. In the

Jira project plan, a task was added with a reminder to return to this procedure as soon as

possible.

As a final step in the documentation of the QMS guideline, the Management procedures

were documented, i.e. the assignment of a responsible person for the quality management,

the implementation of training for new staff, the implementation of department meetings

with a quality management update, and an annual quality management review. This

part was especially short as the scope of this thesis did not require any new staff member

training procedures or an annual quality management review, for example.

The QMS guideline was therefore only missing the Project Execution procedure, which

required a software development plan. Hence, the SLC guideline was started next, as it

dealt with the creation of aforementioned plan.

4.2.2. Software Life Cycle Introduction

The recommended starting point is to state the intended purpose of the software in a

document, and then to describe the process and classification used for the software’s Safety

Class Determination, before proceeding with the software development plan [69].

4.2.3. Intended Purpose

This document simply described the medical purpose of the app, with the goal being the

support of medical professionals with the diagnosis of skin cancer in patients. A short

text sufficed in describing the general procedure of how the software works, why it was

developed and what needs to be known beforehand, as shown in Appendix A.9.

4.2.4. Safety Class Determination

The MDR has different requirements for different classes of software. In order to classify

the software’s safety class, the MDR Qualification and Classification process was described,

applied, and documented next. It resulted in placing the software’s safety class into the 2a

category. The train of thought is attached in Appendix A.10.

35

4.2.5. Software Development Planning

After the initial documents were created, it was possible to begin with the Software

Development Planning phase, in which a software development plan was defined. The

process description plan was created first and added as a Confluence page. The scope of

this software allowed for an uncomplicated process description plan, following the Linear

Sequential Model, as visualized in Figure 4.1.

Figure 4.1.: Process Description Plan as a Linear Sequential Model. Starting at the top
left, output documents are defined in the box below and the tasks associated
with that phase are highlighted with a dotted arrow to the right. The next
phase is always the one underneath, as displayed by the black arrows. This is
similar to the Waterfall Model.

After the process description plan was finished, the actual, more detailed software devel-

opment plan was drafted on its basis. It consisted of five phases and was based on the

Linear Sequential Model, meaning that a phase can only begin if the previous phase has

been finished successfully. Additionally, the definition of done and the coding guideline

both were drafted in the Software Development Planning page. The software development

plan’s document is depicted in Figure 4.2 and again with the DoD and coding guideline in

Appendix A.11.

36

Figure 4.2.: Software Development Plan. Phases and their tasks are on the left, with their
respective duration in the Gantt-chart on the right. Some tasks have lighter
colored bars, indicating the maximum additional days that the estimated
duration of those tasks may exceed. Red lines symbolize the fact that all
phases, except two and three, may only commence when the phase at the top
of the line is finished in its entirety.

Following the software development plan, the rest of the documents needed for the SLC

guideline compliance should have been created, starting with the Requirements Elicitation

phase, which was followed by the System Design phase, then the Implementation & Testing

phase, and lastly, the Verification & Release phase. However, for those documents, several

activities from the UE and the RM guideline must have started already. The residual tasks

regarding the documents mentioned for the SLC guideline were therefore updated in the

Jira project plan with a note to return to those as soon as base preparations for the UE

and RM guideline were conducted.

4.2.6. Use Specification

Defining a more detailed version of the Intended Purpose document of the SLC guideline,

a Use Specification, was the initial step in applying usability engineering. It detailed [71]:

� The intended medical indication.

� The patient population.

� Parts of the human body or type of tissue applied to.

� The user profile.

� The use environment.

� The operating principle.

37

This document was finished in its entirety, as shown in the screenshot in the Appendix

A.12, before proceeding to start the Iterative Design Cycle (UEIDC) of the Usability

Engineering guideline.

4.2.7. Iterative Design Cycle Initialization

The first UEIDC started off with the first phase, the User Interface Evaluation Planning,

in which the contents of the Formative and Summative Evaluation plans were defined

with the chosen evaluation method of observing and inquiring representative users, e.g.

with usability tests. Then, as described in the second phase of the UEIDC, user interface

requirements are derived. This step has been delegated to be documented in the System and

Software Requirements Specification, a document introduced later in the SLC guideline, for

overview purposes. Additionally, only after at least having a draft of the Use Specification

document, the Use-related Risk Analysis could start. This led to the preparation of

adapting the RM guideline.

4.2.8. Risk Management Planning and Risk Policy

In order to apply risk management to the project, a planning document was drafted, which

included the location of the RM documents and a table depicting the schedule of planned

RM activities such as the risk analysis phase, evaluation phase, control phase, initial

monitoring, and monitoring intervals, together with the identity of the person who was

responsible for the procedures. The document also contained the intended purpose table,

derived from the SLC guideline’s Intended Purpose document and the UE guideline’s Use

Specification. It is attached in Appendix A.13. The next step here was to create the Risk

Policy, which contained a Risk Matrix, defining what risks are acceptable or unacceptable,

based on the three-class severity and probability classifications proposed in the guideline.

The Risk Policy’s Risk Matrix and the severity classes are depicted in Figures 4.3 and 4.4.

Figure 4.3.: Extract of the Risk Policy: The Severity Classes. They are either negligible (no
damage/very little damage), moderate (reversible injury occurs), or significant
(death or irreversible injury).

38

Figure 4.4.: Extract of the Risk Policy: The Resulting Risk Matrix. Dark-grayed out cells
are unacceptable risks, while white cells are acceptable. The probability of the
occurrence is categorized as either high (occurs frequently), medium (occurs a
few times during the lifetime of the SaMD), or low (occurs very rarely).

As the software is only a supportive instrument, it was determined that it is very unlikely

that risks exist that have a high frequency and are significant or moderate, or medium

frequent risks with a moderate/significant severity.

4.3. Second Documentation Stage

After the fundamental, preparing activities of the UE and RM guideline were done, the

second documentation stage began. In this stage, mainly the SLC and UE guidelines were

the focus.

4.3.1. System and Software Requirements Specification

This document of the SLC guideline consisted of all task outputs for phase two, the

Requirements Elicitation, of the software development plan in Figure 4.2. Since this

software was standalone, it was not possible to clearly distinguish between system and

software requirements [69], as such, they were combined. The content of this document

included, amongst others, a table of high-level functional requirements as seen in Figure 4.5.

39

Figure 4.5.: High-Level Functional Requirements from the System and Software Require-
ments Specification.

Moreover, a list of other functional requirements, a table of non-functional requirements, a

list of constraints, a technical interface description, a runtime environment, and the UI

requirements from the UE guideline were added. These specific collected requirements can

be found in Appendix A.14.

4.3.2. System and Software Documents

Following the software development plan, in the System and Software Design document,

the acceptance criteria as well as epics were defined. The acceptance criteria are as follows:

1. All unit tests pass.

2. Test coverage of at least 50 %.

3. Risk score calculations are reproducible.

4. The stakeholder is satisfied.

The epics included the app icon and each screen in the app, namely:

1. The welcome page.

2. The data input page.

3. The user history page.

4. The image preview page.

Additionally, each of those pages had their sub-tasks or elements (issues) listed below. For

the welcome page, those were the app layout, the welcome text, and the process start

40

button. The issues in the data input page included the user information class, user data

entries, and three buttons for navigation and importing user data. In the history page

epics, the issues were the back navigation button, the new image button, and the image

and results history preview. Finally, the image preview page covered the results chart and

the implementation of a restart, a capture image, and a save results & image button. The

app icon epic deals with the creation of the app icon. The complete design document is

found in Appendix A.15.

Next, the structure of the software was described in the Software Architecture Description

document, including general design decisions such font sizes for example, an app icon, the

screen and window designs, software maintenance, and the detailed design of each page, as

depicted in Appendix A.16.

Finally, in Appendix A.17 the Configuration and Change Management document was

created.

4.3.3. Iterative Design Cycle Continuation

Designing the user interface and implementing it was the next step before proceeding with

the actual coding. The third phase of the UEIDC discussed the choice of UI elements,

e.g. buttons for navigating through the app, the placement of the GUI elements, visual

details, the interaction design, and the versions of the user interface. Knowing how the

architecture and the software design were supposed to look like, it was possible to create

prototypes of the UI with different tools such as figma or wireframes.cc. Here, one version

was implemented first, however, when proceeded with the UEIDC phase four, the Formative

Evaluation phase, changes had to be made. Ultimately, the UEIDC had to start anew,

until after three times, a viable version was created, which also served as a mockup in the

SLC guideline’s System and Software Design document. The documentation of phases 3

and 4 of the UEIDC can be found in Appendix A.18.

4.3.4. Mockup and Class Diagram

Eventually, after creating wireframes in the UI Design phase in the UEIDC phase three, a

basis for a more detailed mockup was given. The class diagram was created immediately

after. The mockup process can be viewed in Appendix A.19 and the class diagram, due to

its large size and small font rotated, in Appendix A.20. The software was now ready to be

coded and the QMS guideline’s Project Execution table, as reminded by the Jira project

plan, has been documented. Note that for the flow of this thesis, the coding process which

was a part of the SLC guideline’s Implementation, Testing, and Verification document,

follows after the final documentation stage.

41

4.4. Final Documentation Stage

After the coding of the software, the only procedures left to be documented were the IRMC

of the RM guideline including the Risk Monitoring, the Summative Evaluation and the

Use-related Risk Analysis of the UE guideline, and the Software Release and Verification

document of the SLC guideline.

4.4.1. Use-related Risk Analysis

The Use-related Risk Analysis, as depicted in Appendix A.21, contained a risk sheet of a

collection of potential use errors, hazards, and situations related to usability. It started

off with the identification of safety-related UI characteristics in a table with potential

use errors, then an analysis of all possible consequences triggered by human errors was

performed, before identifying hazard-related use scenarios. In the end, risk control measures

were listed, according to the risk control types from Appendix A.6. The risks are included

in the IRMC of the RM guideline in the next sections.

4.4.2. Summative Evaluation

The Summative Evaluation then consisted of, additionally to its base contents, a final list of

hazard-related use scenarios. It also contained the usability test protocol, with exemplary

usability tests and their descriptive evaluation. One of those tests is depicted in Figure 4.6.

As a key document, the entire Summative Evaluation is added in Appendix A.22.

Figure 4.6.: Extract from the Usability Test Protocol Table of the Summative Evaluation.

42

4.4.3. Iterative Risk Management Cycle

The results of the Summative Evaluation were transferred to the IRMC and then it was

judged whether the overall residual risk of the SaMD was acceptable or not [83], [72]. In

this project, only one IRMC had to be performed. In the first phase, a hazard analysis

table identified four hazards, which are illustrated in Figure 4.7, and eight risks as seen in

Figure 4.8, which were assessed in the Evaluation phase afterwards according to the Risk

Policy.

Figure 4.7.: IRMC 1: Hazard Analysis. Four possible hazards were identified. The H1
hazard is that a patient may receive no treatment, as perhaps incorrectly
suggested by a result of the SaMD output. Similarly, for H2 a patient may
receive a wrong treatment as a result of the SaMD output. The hazard H3 is
that other systems might get a faulty SaMD output as an input and therefore
deliver unexpected results. Lastly, the analyzed hazard H4 is that sensitive
patient data may be involuntarily disclosed, deleted or manipulated.

43

Figure 4.8.: IRMC 1: Risk Analysis. The table is exemplary and not exhaustive.

A screenshot of the Risk Evaluation table is depicted in Figure 4.9. It is important to note

that the Risk Evaluation also included UE risks from the Use-related Risk Analysis of the

UE guideline.

Figure 4.9.: IRMC 2: Risk Evaluation. The table includes use-related risks.

Figure 4.10 displays the Risk Matrix that was filled, indicating the occurrence of three

unacceptable risks.

44

Figure 4.10.: IRMC 2: Risk Matrix. Following the matrix, three unacceptable risks were
identified: R2, R3, and R6.

The risks were subsequently controlled in the Risk Control phase later as seen in Figures

4.11 and 4.12, mostly with the inherent safety-by-design control measure.

Figure 4.11.: IRMC 3: Not Acceptable Risks and the Description of Their Control Measure.

Figure 4.12.: IRMC 3: Acceptable Risks and the Description of Their Control Measure.
Control measures are not mandatory to implement as those risks are accept-
able, it is however favorable.

The project success had to be evaluated here and it was concluded that no danger is

imminent as there are no highly critical and not controllable risks making the project

45

continuation impossible. Finally, the IRMC concluded with the Risk Monitoring document,

which showed the updated Risk Table and Risk Matrix after controlling the unacceptable

risks, as seen in Figures 4.13 and 4.14.

Figure 4.13.: Risk Monitoring: Final Updated Risk Table. Stricken entries no longer pose
a risk as they have been mitigated.

Figure 4.14.: Risk Monitoring: Updated Risk Matrix. No unacceptable risks exist anymore.

No residual risks were found and as such, the project was finished from the RM perspective.

46

4.4.4. Verification and Release

In the last step in adapting the guidelines, the Verification document and the Software

Release document of the SLC guideline were created. The Verification document was part

of the large Implementation, Testing, and Verification document, and explained how the

DoD, as defined early on in the development plan, was used as a scheme to tag an epic

or an issue as finished, and how the coding guideline specified in that same document

was also individually screened for. The verification of all epics, issues and above listed

implementations was given by testing rigorously and achieving a testing code coverage of

73 % for the entire project structure, which surpassed the 50 %-minimum required coverage

set in the acceptance criteria.

Finally, since the software development plan was finished and the code was compliant with

the DoD, the coding guideline, the Requirements Specification, the project architecture,

and the detailed design, as well as other relevant documents, licenses, and third-party

libraries, the app was complete from the developmental point of view.

In order to release the software, an interactive checklist in the Software Release document

was assessed and accepted. It included the following points:

� All known rest anomalies have to be documented and evaluated.

� Documentation of the procedure and the software development environment have to

be recorded as well as the version of the released software.

� All activities and tasks of the software development plan must be completed and

documented.

� The medical device software, all configuration elements, and the documentation have

to be filed for the whole lifetime of the medical device software.

This simple checklist was the final procedure, meaning that all activities of the QMS, SLC,

RM, and UE guidelines were now fully implemented. The workflow chart in Figure 4.15

visualizes the different application stages including the guideline focus switches.

47

Figure 4.15.: Visualization of the Guideline Applications in Relation to the Aforementioned
Stages. On the left, the guidelines and their activities are listed. On the right,
the timeline from left to right is depicted, with purple blocks representing the
QMS guideline, blue the SLC, green the RM, and orange the UE guideline.
The black blocks illustrate which guideline is being focused on at the time,
with the connecting red lines visualizing the jumps between the guidelines.
Lastly, on the bottom of the chart, the initial preparation stage, the first,
second, and final documentation stage, as well as the coding stage are depicted,
each having a darker grey tone in the graph for better stage allocation and
overview.

4.5. Software Implementation

This section describes the programming and testing process of the software for skin cancer

detection. The source code is available on GitLab, including a README file attached in

Appendix A.24 with a brief instructive description and installation remarks.

4.5.1. Coding

Firstly, as mentioned before, the app icon and the following user interfaces were defined as

epics: the welcome page, data input page, history page, and image preview page. Their

issues were also added.

48

Following this step, the basis was given for implementing the code for those interfaces

with Qt Designer. Having created the interfaces’ .ui-files, the local folder and the GitLab

repository, which existed already thanks to the QMS guideline’s Document Management

process, were updated to include these files.

The final layout of the screens is depicted in the final version in the UI Design and

Implementation step of the UEIDC, found in Appendix A.18.

After embedding the .ui-files into the project, the prerequisites for implementing function-

ality were given. The buttons which connected all screens were implemented afterwards,

allowing bi-directional navigation identically to the depiction of the mockup process in

Appendix A.19, and the introduction of app logic:

� The ”Start”-button on the welcome screen (state 0) leads to the data input screen

(state 1).

� The ”Back”-button on the data input screen leads back to the welcome screen.

� The ”Proceed”-button on the data input screen leads to the history screen (state 2),

or if it is a new user, to the image preview screen (state 3).

� The ”Back”-button on the history screen leads back to the data input screen.

� The ”New image”-button on the history screen leads to the image preview screen.

� The ”Restart”-button on the image preview screen leads back to the welcome screen.

Having created the basic navigation logic, a database with two tables was created next.

The first table users stored all user information, including a clearly identifiable user ID, the

first and last name, the birth date, an additional information text, and contact information

such as the home address, email address, and phone number. The attributes, their type,

and purpose can be found in Table 4.1.

Table 4.1.: Database: Table users Attributes.

Attribute Name Attribute Type Required? Purpose

id Integer, primary
key

Yes Used to clearly identify a user.

firstName Text Yes Stores user’s first name.

lastName Text Yes Stores user’s last name.

birthdate Text Yes Stores user’s birth date.

homeAddress Text No Stores user’s home address.

email Text No Stores user’s contact email ad-
dress.

phoneNumber Text No Stores user’s contact phone
number.

additionalInfo Text No Stores any additional notes.

49

The second table imagesAndResults saved details of images captured with the dermatoscope,

as well as the calculated results of the machine learning pipeline. All attributes, their type,

and their purpose can be found in the following Table 4.2.

Table 4.2.: Database: Table imagesAndResults Attributes.

Attribute Name Attribute Type Required? Purpose

id Integer, primary
key

Yes Used to clearly identify an im-
age.

dateTaken Integer Yes Stores the date of the taken im-
age.

imageName Text Yes Saves the local name of the im-
age.

physicianEntry Text No Stores the physician’s assess-
ment (0 = none, 1 = akiec, ...)

resultAkiec Integer Yes Stores the calculated akiec risk
score.

resultBcc Integer Yes Stores the calculated bcc risk
score.

resultBkl Integer Yes Stores the calculated bkl risk
score.

resultDf Integer Yes Stores the calculated df risk
score.

resultMel Integer Yes Stores the calculated mel risk
score.

resultNv Integer Yes Stores the calculated nv risk
score.

resultVasc Integer Yes Stores the calculated vasc risk
score.

belongsToUserId Integer, foreign
key

Yes Stores the userId from the user
it belongs to from the users ta-
ble.

Subsequently, implementations were coded for the data input screen, including:

� The line edit fields on the data input screen were activated and inputs into them are

saved in variables if ”Proceed”-button is clicked.

� The ”Proceed”-button now requires at least three inputs: the first name and last

name line edits, and the birthday date edit; if one input is missing, an ’invalid input’

error window pops up and the button will not change the logic to show the history

(or image preview) screen.

Following that step, database connections were established among other implementations,

including:

50

� Data input screen:

� Create a new user in the database if a user with the inputted first name, last

name and birthday does not exist.

� Update a user if a user that exists by cross referencing first name, last name

and birthday has a new entry, e.g. new phone number, or wants an optional

entry removed, e.g. home address.

� Import a user if ”Import data”-button is pressed by inputting a userId in an

external dialog window.

� History screen:

� List all previous user entries/images by selecting them from the database.

Embedding the machine learning pipeline that calculates risk scores and finalizing it was

divided into the following tasks:

� Defining the camera.

� Starting the camera when the ”New image”-button on the history page is clicked, or

when the ”Proceed”-button on data input screen is clicked and the user is new and

has no history.

� Implementing a new ”Capture”-button that captures an image and saves it temporar-

ily in a sub-folder.

� Sending that captured image through the ML pipeline and displaying classification

risk scores.

� Adding functionality to the ”Save”-button, that saves an image including risk score

results to the database, links it to the user, and saves images and results as independent

files locally.

� Eliminating a risk that could result in storage-disorganization by having captured

images that were not explicitly saved by clicking on the ”Save”-button be overwritten

if the ”Capture”-button was pressed again.

� Eliminating a saving error by disabling the ”Save”-button until an image was captured.

� Closing the camera when the ”Restart”-button is pressed.

� Resetting results and deleting non-saved captured images if app is closed or ”Restart”-

button is pressed.

The software requirements were updated which resulted implementing the additional

following functions:

51

� The ”Import data”-button on the data input screen now asks for a full name in the

”last name, first name” format instead of asking for a userId.

� The physician entry column on the history table in the history screen now allows a

physician to choose a value from a drop-down menu and the system updates that

value consequently in the database.

� The images listed in the history table of a user in the history screen can now be

clicked on and previewed.

Finally, after the Summative Evaluation process, all other set requirements were double

checked and verified:

� All high-level functional requirements are fulfilled.

� All other functional requirements are fulfilled.

� All non-functional requirements are fulfilled.

� All constraints are checked.

� All UI requirements are fulfilled.

4.5.2. Testing

Two different people were invited to test the software and report any noticed mishaps.

Fortunately, during usability testing, only two typos were discovered and one input

error, which were subsequently corrected. The usability test protocols are described in

Appendix A.22.

This is the list of all tests conducted and a description for each. How each test worked is

documented in the Git source code in commentary form. All tests passed.

1. Test for existence of the app.

2. Test if app switches to welcome screen if ”Back”-button is clicked on data input

screen.

3. Test if app switches to data input screen when ”Start”-button is clicked on welcome

screen.

4. Test if app switches to data input screen if ”Back”-button is clicked on history screen.

5. Test if app stays on data input screen if ”Proceed”-button is clicked when not all

required fields have been filled.

6. Test if app switches to history screen is ”Proceed”-button is clicked when at least all

required fields have been filled.

7. Test if app updates the user data in database if ”Proceed”-button is clicked.

52

8. Test if app creates a new user in database if ”Proceed”-button is clicked and user

does not already exist.

9. Test if app switches to image preview screen instead of history screen if ”Proceed”-

button is clicked and the input is valid with a new user.

10. Test if app retrieves correct user from database when ”Import data”-button is clicked.

11. Test if app imports no user and gives error if ”Import data”-button is clicked but

given name is not valid.

12. Test if app opens the image when clicked on the cell with image name in history

table.

13. Test if app does not open anything if any other cell is clicked except the image name

cell.

14. Test if app changes physician entry in database when drop-down menu choice is

changed in history table.

15. Test if app disables ”Save”-button when switching to image preview page.

16. Test if results get reset or show n/a when switching to image preview page.

17. Test if app switches to welcome page if ”Restart”-button on image preview page is

clicked.

18. Test if app saves a captured image temporarily when ”Capture”-button is clicked.

19. Test if app deletes a captured temporary image that was not saved when app is

closed.

20. Test if temporary captured image gets updated with a new temporary image with

the same name and id if ”Capture”-button is clicked and image was not saved.

21. Test if ”Save”-button gets enabled when ”Capture”-button is clicked.

22. Test if app switches to image preview page when ”New image”-button is clicked on

history page.

23. Test if app saves the image locally when ”Save”-button is clicked on image preview

page.

24. Test if app closes the camera when the ”Restart”-button is clicked on image preview

page.

25. Test if app closes the camera when app is exited.

26. Test if birthday gets decoded correctly for database input.

53

4.6. Final Software Design and Documents

The final version of the app is depicted in Figures 4.16 to 4.19.

Figure 4.16.: Screenshot of the Welcome Page of the Software for Skin Cancer Detection.

Figure 4.17.: Screenshot of the User Data Input Page of the Software for Skin Cancer
Detection.

54

Figure 4.18.: Screenshot of the User Entry History Page of the Software for Skin Cancer
Detection.

Figure 4.19.: Screenshot of the Image Capturing Page of the Software for Skin Cancer
Detection, with a lesion in the camera preview.

55

All relevant documents as collected in the list of documents during the QMS guideline’s

Project Planning phase are either attached in the Appendix or added as figures. They

include the Safety Class Determination (Appendix A.10), the Intended Purpose document

(Appendix A.9), the Software Development Plan consisting of the Process Description Plan

and the Development Plan (Figures 4.1 and 4.2), the System and Software Requirements

Specification (Appendix A.14), the Software Architecture Description (Appendix A.16),

the System and Software Design document (Appendix A.15), the Mockup (Appendix A.19

and Class Diagram A.20), the Software Problem-Solving Process (Appendix A.25), the

Risk Policy (Appendix A.2), the Risk Monitoring document (Appendix A.23), the Use

Specification (Appendix A.12), and the Summative Evaluation (Appendix A.22).

56

5. Discussion

The core objective of this thesis was to develop a clinical decision support system aimed

at enhancing the accuracy and efficiency of skin cancer detection by integrating four

academia-tailored guidelines, documenting their processes thoroughly. To conclude, these

guidelines collectively contributed to a robust development framework, culminating in

software close to regulatory standards. Leveraging the machine learning classification

pipeline [11], the final software is able to analyze dermatoscopic images and classify skin

lesions into seven prevalent categories.

The application of the Quality Management System guideline [68] ensured rigorous documen-

tation and management processes, while the Software Life Cycle guideline [69] application

facilitated a systematic development process, from planning to implementing. The Risk

Management guideline [70] helped with identifying and mitigating potential risks associated

with software usage, prioritizing patient safety and data security. Centered on optimizing

the user interface and experience, the software was iteratively refined during the application

of the Usability Engineering guideline [71].

Although these four guidelines were implemented completely and successfully, the process

of applying them faced a few challenges, possibly due to the independent yet intertwined

nature of the guidelines, including redundancy of activities or ambiguity. For example, the

intended purpose statement, while primarily referenced and discussed in the SLC guideline,

also appears in the RM guideline, which expects identical content. Another example is the

location of saved documents. The QMS guideline and the RM guideline both specify where

documents are stored and who has access to them, leading to potential redundancy. This

is perhaps not a major issue in this project with a clear scope, but possibly in projects

with a larger, more complex structure. Suppose a project is fully developed using other

guidelines and is only missing a risk management component. Then, the RM guideline is

used exclusively in an independent manner, possibly even supplementing other guidelines

should they be missing an Intended Purpose document.

Another challenge in applying the guidelines was the fact that there is no clear timeline

for when activities from different guidelines should start. Internally, each guideline has a

comprehensive timeline for its own activities, but not for activities requiring input from

another guideline, such as the Requirements Specification of the SLC guideline, which

requires user interface requirements stemming from the Iterative Design Cycle phase two of

the UE guideline. These recursively require results from phase one of the UEIDC, leading

to unpredictable and costly switches in applying those guidelines. A clear interconnected

timeline or a fifth supplementary guideline that assists in applying and interpreting the

academia-tailored guidelines could be beneficial, similar to the international supplementary

ISO 24971 standard which assists in implementing the ISO 14971.

57

One should further note that the software development plan employed in this thesis, as

defined in the SLC guideline, follows the Linear Sequential Model, which is a straightforward

software development model, similar to the Waterfall Model. These linear models only

allow developers to move onto the next phase as soon as the previous one finishes, and

developers cannot go back to previous phases. While they are a suitable and sufficient

choice for this project, larger, more complex projects are likely to encounter problems

progressively [84]. The authors conclude that the Waterfall Model is not suitable to be

used in large-scale software development [84]. Agile software development is an alternative

approach that is often implemented in organizations, sometimes even in combination with

a linear model [85]. Since this thesis only applies a Linear Sequential Model, it may have

limitations in regards to projects using a different methodology, such as an agile one.

Additionally, due to the fact that a prototype of the ML classification pipeline [11] existed

prior to the establishment of the software development plan, the execution of the plan was

more manageable.

Critically, despite efforts to design a user-friendly CDSS, real-world integration into clinical

workflows presents significant challenges that require more testing and refinement [9].

During this project, only limited testing was possible. Nonetheless, usability tests were

performed during the UE guideline application in order to identify possible use-related

risks and to test the user interface. Unfortunately, this project conducted those tests with

users not belonging to the intended user group as set by the Use Specification in the UE

guideline. Ideally, only physicians should have been the group of people to perform the

usability tests. Since that was not the case, those tests did not correctly replicate the

intended use environment.

Similarly to ”the virtual doctor”, the research project dealing with the development of a

CDSS [10], this project aims to adapt a similar concept and follow in its footsteps in a

way that not only physicians can profit from the provided diagnostic assistance, but also

patients at risk for developing skin cancer. It not only aligns with the important goal of

advancing medical diagnostics but also serves as a testament to the potential of integrating

artificial intelligence in healthcare.

In comparison to studies which primarily focused on the technical aspects of machine

learning models for skin lesion classification [7], [11], this work extends the discussion to

include the full software development process. While previous research has highlighted the

accuracy and efficiency of machine learning algorithms in diagnosing skin cancer [6], the

findings here contribute to a broader understanding of how such technologies could be

systematically developed and documented to allow integration into the healthcare sector.

By emphasizing the importance of a well-documented development process, this thesis also

addresses the challenge to achieve regulatory compliance in academic medical software

development.

58

While the software developed in this project has promising results in skin lesion classifica-

tion, it is important to note that achieving near-regulatory compliance does not equate to

immediate clinical deployment. This distinction highlights the ongoing need for further rig-

orous validation to meet the full spectrum of clinical and regulatory requirements, especially

since the strict regulations for medical software development can pose additional significant

barriers such as complex approval processes and high compliance costs, which can deter

rapid innovation and implementation [9], therefore limiting this study in that perspective.

Still, the project’s approach to documenting and adhering to specified guidelines serves

as a valuable blueprint for future developments in medical software, suggesting that the

path to clinical adoption may be accelerated by adopting such comprehensive development

strategies.

Consequently, this project not only complements existing research by providing an ex-

emplary precedent and roadmap for the development of similar applications, but also

for future projects aiming to navigate the complex process of medical software certifica-

tion, documentation, and deployment. The results underscore the potential of structured,

guideline-based approaches in accelerating the development of medical software, thereby

narrowing the gap to achieving regulatory standards, marking a crucial step towards clinical

adoption. By demonstrating a viable pathway to approaching regulatory compliance, this

project could assist potential future work in the integration of AI in medical fields and

a critical reevaluation of how academic innovations can be translated into healthcare

technologies more effectively. This essentially progresses research in a way that could

positively contribute to improvements in patient care and outcomes.

59

Bibliography

[1] WHO – World Health Organization. Skin cancer. url: https://www.iarc.who.int/

cancer-type/skin-cancer/#:~:text=Introduction&text=Skin%20cancers%

20are%20the%20most, people%20died%20from%20the%20disease. (visited on

04/06/2024).

[2] Why Is Melanoma So Dangerous as a Cancer? 2022. url: https : / / www .

usdermatologypartners.com/blog/why-is-melanoma-dangerous/ (visited on

03/14/2024).

[3] Hensin Tsao, Michael B. Atkins, and Arthur J. Sober. “Management of Cutaneous

Melanoma”. In: The New England Journal of Medicine 351.10 (2004), pp. 998–1012.

doi: 10.1056/NEJMra041245. url: https://doi.org/10.1056/nejmra041245.

[4] Qianwei Liu et al. “Mapping the landscape of artificial intelligence in skin cancer

research: a bibliometric analysis”. In: Frontiers in oncology 13 (2023). 13 Oct. 2023,

p. 1222426. doi: 10.3389/fonc.2023.1222426.

[5] Sai Nitisha Tadiboina. “The Use Of AI In Advanced Medical Imaging”. In: Journal

of Positive School Psychology 6.11 (2022), pp. 1939–1946.

[6] Dr. Kashini Andrew et al. Improved AI tool shows high sensitivity rates in skin cancer

detection. doi: https://doi.org/10.55788/f9840392. url: https://conferences.

medicom-publishers.com/specialisation/dermatology/eadv-2023/improved-

ai-tool-shows-high-sensitivity-rates-in-skin-cancer-detection/ (visited

on 04/06/2024).

[7] Bhuvaneshwari Shetty et al. “Skin lesion classification of dermoscopic images using

machine learning and convolutional neural network”. In: Scientific Reports 12.1 (Oct.

2022). doi: 10.1038/s41598-022-22644-9. url: https://www.nature.com/

articles/s41598-022-22644-9.pdf.

[8] Sabrina Celine Holst. “Software Life Cycle Guideline for Software as a Medical Device

- Implementing a Prototype App”. MA thesis. Philipps University Marburg, 2021.

[9] Mona Riemenschneider, Joachim Wienbeck, André Scherag, et al. “Data Science

for Molecular Diagnostics Applications: From Academia to Clinic to Industry”. In:

Systems Medicine 1.1 (2018), pp. 13–17. doi: 10.1089/sysm.2018.0002. eprint:

https://doi.org/10.1089/sysm.2018.0002. url: https://doi.org/10.1089/

sysm.2018.0002.

[10] Sebastian Spänig, Agnes Emberger-Klein, Jan-Peter Sowa, et al. “The virtual doctor:

An interactive clinical-decision-support system based on deep learning for non-invasive

prediction of diabetes”. In: Artificial Intelligence in Medicine 100 (2019), p. 101706.

issn: 0933-3657. doi: https://doi.org/10.1016/j.artmed.2019.101706. url:

https://www.sciencedirect.com/science/article/pii/S0933365719301083.

I

[11] Dmitry Degtyar. “Machine Learing based skin cancer screening”. Philipps University

Marburg, 2023.

[12] Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. “The HAM10000 dataset, a

large collection of multi-source dermatoscopic images of common pigmented skin

lesions”. In: Scientific Data 5 (2018), p. 180161. doi: 10.1038/sdata.2018.161.

url: https://doi.org/10.1038/sdata.2018.161.

[13] Hautkrebs Fakten & Statistiken. 2023. url: https://www.skincancer.org/de/skin-

cancer-information/skin-cancer-facts (visited on 01/14/2024).

[14] Statistisches Bundesamt (Destatis). “Zahl der stationären Hautkrebsbehandlungen

binnen 20 Jahren um 75 % gestiegen”. In: Statistisches Bundesamt (2023). url:

https://www.destatis.de/DE/Presse/Pressemitteilungen/Zahl-der-Woche/

2023/PD23_21_p002.html (visited on 03/18/2024).

[15] K. M. Hosny, M. A. Kassem, and M. M. Fouad. “Classification of Skin Lesions into

Seven Classes Using Transfer Learning with AlexNet”. In: Journal of digital imaging

(2020). url: https://doi.org/10.1007/s10278-020-00371-9.

[16] Leonie Pape-Werlich, Dres. Schlegel, and Schmidt Medizinische Kommunikation

GmbH. Warnsignal der Haut - aktinische Keratose. 2024. url: https://www.tk.

de/techniker/gesundheit-und-medizin/behandlungen-und-medizin/haut-

und-geschlechtskrankheiten/warnsignal-der-haut-aktinische-keratose-

2017604 (visited on 03/10/2024).

[17] Dr. med. Andreas Arnold. “Diagnostik und Therapie von nicht melanozytären Haut-

tumoren Basalzellkarzinom und Plattenepithelkarzinom im Fokus”. In: hautnah

dermatologie (2016). url: https://doi.org/10.1007/s15012-016-2070-6.

[18] Lowell A. Goldsmith, Stephen I. Katz, Barbara A. Gilchrest, et al. In: Fitzpatrick’s

Dermatology in General Medicine, 8e. New York, NY: The McGraw-Hill Companies,

2012. url: accessmedicine.mhmedical.com/content.aspx?aid=1000185991.

[19] Denise M. Aaron. Seborrhoische Keratosen. 2022. url: https://www.msdmanuals.

com / de - de / profi / erkrankungen - der - haut / gutartige - hauttumoren, -

wucherungen-und-vaskul%C3%A4re-l%C3%A4sionen/seborrhoische-keratosen

(visited on 03/10/2024).

[20] David J Myers and Emily P Fillman. “Dermatofibroma”. In: StatPearls [Internet].

Treasure Island (FL): StatPearls Publishing (2022). url: https://www.ncbi.nlm.

nih.gov/books/NBK470538/.

[21] Prof. Dr. med. Peter Altmeyer, Prof. Dr. med. Martina Bacharach-Buhles, and

Alexandros Zarotis. Dermatofibrom. 2020. url: https://www.altmeyers.org/de/

dermatologie/dermatofibrom-1752 (visited on 03/10/2024).

[22] Melanoma Overview: A Dangerous Skin Cancer. 2022. url: https : / / www .

skincancer.org/skin-cancer-information/melanoma/ (visited on 03/11/2024).

II

[23] What is melanoma skin cancer? 2024. url: https://www.cancerresearchuk.org/

about-cancer/melanoma/about (visited on 03/11/2024).

[24] A. Hunter Shain and Boris C. Bastian. “From melanocytes to melanomas”. In: Nature

Reviews Cancer 16.6 (Apr. 2016), pp. 345–358 (). doi: 10.1038/nrc.2016.37.

[25] Neun Zahlen zum Thema Hautkrebs. 2021. url: https : / / www . aok . de / pk /

magazin/koerper- psyche/krebs/neun- zahlen- zum- thema- hautkrebs/ (vis-

ited on 03/18/2024).

[26] Vascular Lesions. url: https :/ /www .mayoralderm .com / vascular- lesions/

(visited on 03/11/2024).

[27] Abhishek et al. Bhattacharya. “Precision Diagnosis Of Melanoma And Other Skin

Lesions From Digital Images”. In: AMIA Joint Summits on Translational Science

proceedings 2017 (July 2017), pp. 220–226.

[28] Tests for skin cancer. 2023. url: https://www.cancerresearchuk.org/about-

cancer/skin-cancer/getting-diagnosed/tests (visited on 03/10/2024).

[29] Giuseppe Argenziano and et al. “Dermoscopy of pigmented skin lesions: Results of

a consensus meeting via the Internet”. In: Journal of The American Academy of

Dermatology 48.5 (2003), pp. 679–693. doi: 10.1067/mjd.2003.281.

[30] Institute of Medicine (US) Committee on Medicare Coverage Extensions. Extending

Medicare Coverage for Preventive and Other Services. Screening for Skin Cancer.

Ed. by M.J. Field, R.L. Lawrence, and L. Zwanziger. National Academies Press (US),

2000. Chap. 3. url: https://www.ncbi.nlm.nih.gov/books/NBK225258/.

[31] Matt Crabtree. What is Machine Learning? Definition, Types, Tools & More. 2023.

url: https://www.datacamp.com/blog/what-is-machine-learning (visited on

03/07/2024).

[32] Crypto1. Gradient Descent Algorithm: How does it Work in Machine Learning?

2024. url: https://www.analyticsvidhya.com/blog/2020/10/how- does-

the-gradient-descent-algorithm-work-in-machine-learning/ (visited on

03/07/2024).

[33] Johanna Ronsdorf. Microsoft erklärt: Was ist Deep Learning? Definition & Funk-

tionen von DL. 2020. url: https://news.microsoft.com/de-de/microsoft-

erklaert-was-ist-deep-learning-definition-funktionen-von-dl/ (visited

on 03/13/2024).

[34] Was ist ein Convolutional Neural Network? url: https://de.mathworks.com/

discovery/convolutional-neural-network.html (visited on 03/11/2024).

[35] Zoumana Keita. An Introduction to Convolutional Neural Networks (CNNs). 2023.

url: https://www.datacamp.com/tutorial/introduction-to-convolutional-

neural-networks-cnns (visited on 03/11/2024).

III

[36] R. Yamashita, M. Nishio, R.K.G. Do, et al. “Convolutional neural networks: an

overview and application in radiology”. In: Insights into Imaging 9 (2018), pp. 611–

629. doi: 10.1007/s13244-018-0639-9. url: https://doi.org/10.1007/s13244-

018-0639-9.

[37] Rany ElHousieny. “Understanding Neural Networks and Deep Learning”. In:

Medium.com – Techiepedia (2024). url: https://levelup.gitconnected.com/

understanding-neural-networks-and-deep-learning-0039ab6bf2a0.

[38] Sneha H.L. “2D Convolution in Image Processing”. In: EETech Media, LLC.

(2018). url: https://www.allaboutcircuits.com/technical-articles/two-

dimensional-convolution-in-image-processing/.

[39] Piotr Skalski. “Gentle Dive into Math Behind Convolutional Neural Networks”. In:

Medium.com – Towards Data Science (2019). url: https://towardsdatascience.

com / gentle - dive - into - math - behind - convolutional - neural - networks -

79a07dd44cf9.

[40] Lei Qu, Changfeng Wu, and Liang Zou. “3D Dense Separated Convolution Module for

Volumetric Medical Image Analysis”. In: Applied Sciences 10.2 (2020). issn: 2076-3417.

doi: 10.3390/app10020485. url: https://www.mdpi.com/2076-3417/10/2/485.

[41] Shiv Ram Dubey, S. K. Singh, and Bidyut Baran Chaudhuri. “Activation Functions

in Deep Learning: A Comprehensive Survey and Benchmark”. In: Cornell University

(Sept. 2021). doi: 10.48550/arxiv.2109.14545. url: http://arxiv.org/pdf/

2109.14545.

[42] Sai Balaji. Binary Image classifier CNN using TensorFlow. 2020. url: https://

medium.com/techiepedia/binary-image-classifier-cnn-using-tensorflow-

a3f5d6746697 (visited on 03/08/2024).

[43] M. Li, Y. Jiang, Y. Zhang, et al. “Medical image analysis using deep learning

algorithms”. In: Frontiers in Public Health 11:1273253 (2023). doi: 10.3389/fpubh.

2023.1273253. url: https://doi.org/10.3389/fpubh.2023.1273253.

[44] Medical devices. url: https://www.ema.europa.eu/en/human- regulatory-

overview/medical-devices (visited on 03/27/2024).

[45] Daniel Reinsch. Software als Medizinprodukt – Software as Medical Device. 2023. url:

https://www.johner-institut.de/blog/regulatory-affairs/software-als-

medizinprodukt-definition/ (visited on 03/24/2024).

[46] Anne-Sophie Grell. SaMD versus MDSW: what’s the difference between Software as a

Medical Device and Medical Device SoftWare? 2021. url: https://qbdgroup.com/

en/blog/samd-mdsw-difference/ (visited on 03/24/2024).

[47] Wade Schroeder. Ultimate Guide to Software as a Medical Device (SaMD). 2023. url:

https://www.greenlight.guru/blog/samd-software-as-a-medical-device

(visited on 03/25/2024).

IV

[48] Is Ada a medical device? url: https://ada.com/help/is- ada- a- medical-

device/ (visited on 03/31/2024).

[49] Luca Salvatore. Medical Device Regulation MDR – Medizinprodukteverordnung

(2017/745). 2024. url: https://www.johner-institut.de/blog/regulatory-

affairs/medical-device-regulation-mdr-medizinprodukteverordnung/ (vis-

ited on 03/09/2024).

[50] Andy Kahles et al. “Struktur und Inhalt der EU-IVDR: Bestandsaufnahme und

Implikationen für die Pathologie”. German. In: Pathologie (Heidelberg, Germany)

43.5 (2022), pp. 351–364. doi: 10.1007/s00292-022-01077-1. url: https://www.

ncbi.nlm.nih.gov/pmc/articles/PMC9118816/.

[51] In vitro diagnostics. url: https://www.who.int/health- topics/in- vitro-

diagnostics#tab=tab_1,%20https://health.ec.europa.eu/medical-devices-

sector/overview_en (visited on 03/11/2024).

[52] Dr. Kai Moritz Eder. In vitro Diagnostic Medical Device Regulation (IVDR) –

Verordnung über In-vitro-Diagnostika (2017/746). 2024. url: https://www.johner-

institut.de/blog/regulatory-affairs/ivdr-in-vitro-diagnostic-device-

regulation/ (visited on 03/11/2024).

[53] ISO 9001:2015 – Quality management systems – Requirements. Standard. Geneva,

Switzerland: International Organization for Standardization, 2015.

[54] ISO 13485:2016 – Medical devices – Quality management systems – Requirements

for regulatory purposes. Standard. Geneva, Switzerland: International Organization

for Standardization, 2016.

[55] IEC 62304:2006+A1:2015 – Medical device software - Software life-cycle processes.

Tech. rep. International Electrotechnical Commission, 2015.

[56] IEC 82304-1:2016 – International Standard Health software. Tech. rep. International

Electrotechnical Commission, 2016.

[57] Richard Bellairs. What Is IEC 62304? Overview + Compliance Tips. 2019. url:

https://www.perforce.com/blog/qac/what-iec-62304 (visited on 03/12/2024).

[58] Daniel Reinsch. IEC 82304 – Was die Norm zu
”
Health Software“ fordert. 2016.

url: https:/ /www.johner - institut.de/ blog/iec- 62304- medizinische -

software/iec-82304/ (visited on 03/12/2024).

[59] ISO/IEC 25010:2011 – Systems and software engineering – Systems and software

Quality Requirements and Evaluation (SQuaRE) – System and software quality models.

Tech. rep. The British Standards Institution, 2011.

[60] Jill Britton. What Is ISO 25010? 2021. url: https://www.perforce.com/blog/

qac/what-is-iso-25010 (visited on 03/10/2023).

[61] Sascha Block. ISO 25010 – Kriterien zur Qualitaet von Software. 2023. url: https:

//inztitut.de/blog/glossar/iso-25010 (visited on 03/10/2024).

V

[62] ISO 14971:2019 – Medical devices – Application of risk management to medical devices.

Standard. Geneva, Switzerland: International Organization for Standardization, 2019.

[63] CEN ISO/TR 24971:2020 – Medical devices – Guidance on the application of ISO

14971. Technical Report. Geneva, Switzerland: International Organization for Stan-

dardization, 2020.

[64] ISO 14971 Explained. url: https://stendard.com/en-sg/blog/iso-14971/

(visited on 03/11/2024).

[65] IEC 62366-1 (2015) – Medical devices - Part 1: Application of usability engineering to

medical devices (Edition 1.0). Tech. rep. International Electrotechnical Commission,

2015.

[66] IEC TR 62366-2 (2016) – Medical devices - Part 2: Guidance on the application

of usability engineering to medical devices (Edition 1.0). Tech. rep. International

Electrotechnical Commission, 2016.

[67] Usability & IEC 62366-1. url: https : / / www . johner - institut . de / blog /

category/iec-62366-usability/ (visited on 03/12/2024).

[68] Anne-Christin Hauschild, Lisa Eick, Joachim Wienbeck, et al. “Fostering reproducibil-

ity, reusability, and technology transfer in health informatics”. In: iScience 24.7 (July

2021), p. 102803. doi: 10.1016/j.isci.2021.102803.

[69] Anne-Christin Hauschild, Roman Martin, Sabrina Celine Holst, et al. “Guideline for

software life cycle in health informatics”. In: iScience 25.11 (Nov. 2022), p. 105534.

doi: 10.1016/j.isci.2022.105534.

[70] Roman Martin, Anne-Christin Hauschild, Robin Gottschalk, et al. “Guideline for

Risk Managament Manuscript”. In: iScience ().

[71] Dr. Dominik Heider, Dr. Anne-Christin Hauschild, Dr. Joachim Wienbeck, et al.

“Deliverable Result D3.8 – Manuscript on Usability Process.” In: FeatureCloud (2023).

url: https://featurecloud.eu/results/ (visited on 04/10/2024).

[72] Vanessa Klemt. “Usability Engineering Guideline for Software as a Medical Device

– Implementing an Interactive xAI Platform supporting Medical Decision-Making”.

MA thesis. Philipps University Marburg, 2021.

[73] Leodanis Pozo Ramos. Qt Designer and Python: Build Your GUI Applications Faster.

url: https://realpython.com/qt-designer-python/ (visited on 03/17/2024).

[74] Nisith Kumar Pati et al. “Oversampled Two-dimensional Deep Learning Model

for Septenary Classification of Skin Lesion Disease”. In: National Academy Science

Letters (2022). doi: 10.1007/s40009-022-01175-x. url: https://doi.org/10.

1007/s40009-022-01175-x.

VI

[75] Khairul Islam et al. “Melanoma Skin Lesions Classification using Deep Convolutional

Neural Network with Transfer Learning”. In: IEEE (Apr. 2021). doi: 10.1109/

caida51941.2021.9425117. url: https://doi.org/10.1109/caida51941.2021.

9425117.

[76] Peshawa Muhammad Ali and Rezhna Faraj. Data Normalization and Standardization:

A Technical Report. Tech. rep. Jan. 2014. doi: 10.13140/RG.2.2.28948.04489.

[77] Ziad Alqadi et al. “Features Analysis of RGB Color Image based on Wavelet Packet

Information”. In: International Journal of Computer Science and Mobile Computing

(3 Mar. 2020), pp. 149–159.

[78] Jason Brownlee. A Gentle Introduction to Transfer Learning for Deep Learning. 2019.

url: https://machinelearningmastery.com/transfer-learning-for-deep-

learning/ (visited on 03/15/2024).

[79] Hee Jin Kim et al. “Transfer learning for medical image classification: a literature

review”. In: BMC Medical Imaging 22.1 (Apr. 2022). doi: 10.1186/s12880-022-

00793-7. url: https://doi.org/10.1186/s12880-022-00793-7.

[80] Hee Jin Kim et al. “Transfer learning for medical image classification: a literature

review”. In: BMC Medical Imaging 22.1 (Apr. 2022). doi: 10.1186/s12880-022-

00793-7. url: https://doi.org/10.1186/s12880-022-00793-7.

[81] Kensuke Nakamura et al. “Learning-Rate Annealing Methods for Deep Neu-

ral Networks”. In: Electronics 10.16 (Aug. 2021), p. 2029. doi: 10 . 3390 /

electronics10162029. url: https://www.mdpi.com/2079-9292/10/16/2029/

pdf.

[82] Adeola Adenubi, Ayorinde Oduroye, and Adeniyi Akanni. “ARTIFICIAL INTELLI-

GENCE (AI) IN HEALTHCARE: TRANSFORMING DIAGNOSIS AND TREAT-

MENT”. In: ResearchGate (Mar. 2024).

[83] Robin Gottschalk. “Risk Management Guideline for Software as a Medical Device

and Example Implementation for a Federated Learning Application”. MA thesis.

Philipps University Marburg, 2021.

[84] Kai Petersen, Claes Wohlin, and Dejan Baca. “The Waterfall Model in Large-Scale

Development”. In: Product-Focused Software Process Improvement. Ed. by Frank

Bomarius, Markku Oivo, Päivi Jaring, et al. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 386–400. isbn: 978-3-642-02152-7.

[85] Alok Mishra and Yehia Ibrahim Alzoubi. “Structured software development versus

agile software development: a comparative analysis”. In: International Journal of

System Assurance Engineering and Management 14.4 (Aug. 2023), pp. 1504–1522.

issn: 0976-4348. doi: 10.1007/s13198-023-01958-5. url: https://doi.org/10.

1007/s13198-023-01958-5.

VII

A. Appendix

The attachments included below are extracts of the wiki and constitute an important

reference material for this thesis. The wiki can be accessed only via an invite. If invited, it

is found under the following link:

https://scdsoftware.atlassian.net/wiki/spaces/SD/overview

The source code for the software is stored in this HHU Git-repository, also only accessible

via invite:

https://git.hhu.de/buy09tay/software-for-skin-cancer-detection

To request an invitation to either one of the two platforms, please contact the following

e-mail address:

Mohammad.Sharabati@uni-duesseldorf.de

VIII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

A.1. Quality Management System Project Execution Extract

IX

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

View <README= file and read Installation-section

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

A.2. Risk Policy

XI

A.3. Risk Table

XII

A.4. Jira Project Plan

XIII

A.5. Confluence Overview

XIV

A.6. Risk Control Measures

XV

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

A.7. Document Management

XVI

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

A folder with the name <Software for Skin Cancer Detection= was created in this Confluence Wiki and in the

A.8. Quality Management System Project Planning Extract

XVIII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

The app9s purpose is to support medical professionals with the diagnosis of skin cancer in patients. By

A.9. Intended Purpose

XIX

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

A.10. Safety Class Determination

XX

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

Definition of 8done9

A.11. Software Development Plan

XXII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

A.12. Use Specification

XXIV

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Detection - Bachelor9s thesis

Doctor9s offices, hospitals

A.13. Risk Management Preparation and Planning

XXV

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Take a picture through the software9s user interface.

A.14. System and Software Requirements Specification

XXVI

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

App9s loading time

The patient9s information must be secure and protected.

This project is a university project within the scope of a bachelor9s thesis.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

Allows for possibilities to integrate other API9s, for example User Management Systems.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

A.15. System and Software Design

XXX

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

A.16. Software Architecture Description

XXXII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

<Software for Skin Cancer Detection= is the name of the window.

Headline reading <Welcome!=

<Start=-button at the bottom right.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

"

"

Headline reading <User information=.

<Import data=-button at the bottom in the middle.

<Proceed=-button at the bottom right.

<Back=-button at the bottom left.

Headline reading <User history=.

<New image=-button at the bottom right.

<Back=-button at the bottom left.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

Headline reading <Capture new photo=.

A square-shaped live preview of camera9s view on the left side of the screen.

<Save=-button at the bottom right.

<Restart=-button.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

The first row heading reads <Classification=.

The second row heading reads <Risk score=.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

A.17. Configuration and Change Management

XXXVII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

"

A.18. Iterative Design Cycle 3 and 4

XXXVIII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Swapping of <Last name< and <Birthdate< in data input screen.

Change of <Birthdate< input format from <TT/MM/YYYY< to <DD/MM/YYYY<.

Adding <*= to required inputs in data input screen.

<Import data<-button now asks for a userId to load the user in an external window.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

New <Capture<-button on image preview screen instead of using the key <Q<.

<Save<-button on image preview screen is disabled until a picture is captured to minimize software

<Import data<-button now asks for the first and last name of the user to load the user in an external

���
�	������������
	�������
��
���

	�
�����������
�

5������)
���)�	�4����4(������
	�
$�!�)�	 '"�����4��))��4����4�

�	8�?�)
	�

`��))�
�����\�]VT�
��
	���	���������
���`��)����
��
�	
����\����
�)�)	8�4�(\��������G����]�	8�T�	���)
���4P
`��))�]?�)
	�
T�
����	(����!	G�����8����	G	���	�
���
	���G�	���!	G���`��))�
�����\�]BT�
�����
�	�\
�!��

hkjig�cfgbdga
�d�|����fg�d��gfcfg�j�d��
?�)��)����)��	�G�����!�'�'''�
�� �'''q���
�� �'''�!�	���G�	�
�
	��
!	
��q�'�'''����!	
���	�4��8��\
���G��	�G��G����!�'�'' �
��'�sss�
	����	�
�	��!	
���)��l�����G����
���)������)q�
���!����!	
����G�	�
��)�����)�
���
)������)���4��G���))�

¤³²µ¨°²¸¬­«±¯

¦¨«²²ª©ª¬«°ª§¥���	��������(���������(�����������4�����������!����������8���������8)

¤ª²£¸�¬§±³��������'�'''���'�'''����'�'''����'�'''����'�'''���'�'''���'�'''

���
�	������������
	�������
��
���

Â)�����)
��\

5������)
���)�	�4����4(������
	�
$�!�)�	 '"�����4��))��4����4�

È����!	G�Î	��

ã������)
��\�����)����!	G�)�	�4���)��
)��`��8���)���
���)��	��(����8����4�(\��������G����
����!	G��	�4á���
��)��
��\��������

ð '"�'ï�ï'ï"����������������

ð 'ê�'ï�ï'ï"����������������

�
��'"'ïï"' ���G�������������������?���'"'ïï"' ��4�

�
��'ê'ïï"' ���G�������������������?���'ê'ïï"' ��4�

���
�	������������
	�������
��
���

Â)��������!	
���

5������)
���)�	�4����4(������
	�
$�!�)�	 '"�����4��))��4����4�

`�����4

5��)
��	!�

�)
��	!�

Î��
�4	
�

¦§¥°«¬°¸ª¥©§±�«°ª§¥ +//ª°ª§¥«¨¸¥§°³²

:�!��	44��))

��!	���	44��))

`�������!(��

Î	�� �!���
�4	
	

`��)������
�����!���
��)��������(������

��á

áOOOO

���
�	������������
	�������
��
���

B����!�S

l�	���\��������)��G�
��)�	�����	
���P
`��)����	4�
���)��
�	����)��)�������	
����
�����G��\�(������������4��GP
k
l���)��
��)�)��
�	��q�\���!�)
�(��	������)�4���\)���	�P
`��)����
��
�	
�
�����)��
)����
��)�)��
�	���	������\�
��(���)�4����)�����
����	�4�	G��)�)�k
�
��)��������	\�	�)�()
�
�
������	�������	���Z	!��	
����

Â)����)
���
���)

`��)��!	���)����	�4��!	
�)������)�������
�4�k
���(���������	�\�4	
	���
���4q��!	G�)�
	����	�4���)��
)����)��
�4�

:�����)�	�G����	���	��
����G��
�� ��
����)���4	
	����
�����Z
��	G���
�� ã�������8���)��!	G�)�	�4���)��
)����
����	G��	�
���
��
	�
����	������!	G�����
�����Z
��	G��(\����))��G�
�����\�}V�����
�����\(�	�4�
�� ?�)��
)�	������)��
�4������	���!	G���)�
	����
��
	���)����\���)	8��
�����)��
)��
��
��������
���)��	��(��
	����(\����))��G�}V�q�

	�4�
�������)��
)�	������)��
�4q�(�
����\�)	8�4���)��
)������(��)
���4�
y� `��))�
�����\�}B��
���Z�
�	�\
�!�q�����)��
���}Z��(�

���	
�
���
�����G�
����
���

���4���

5������)
���)�	�4����4(������
	�
$�!�)�	 '"�����4��))��4����4�

�
	�

B����!��������

�	
	�����
�������

:�)
��\�������

�!	G��`��8����������

A.19. Mockup Process

XLVIII

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�

�
�
�
�
�
�
�
�
�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	

^
`
�
�
�
�
W
�
B
Z

X
�
9
9
�
�
�
�
9
9
1
I

X
�
�
Q
�
�
V
�
J
=
<
�
	
�
:
1
H

X
�
�
Q
�
�
V
�
J
=
<
�
	
�
]
1
H

X
�
�
Q
�
�
V
�
J
=
<
�
	
�
2
1
H

X
�
�
Q
�
�
V
�
J
=
<
�
	
�
/
1
I

X
�
V
�

�
�
�
�
Y
�
�
V
C
�
3
1
H

X
�
�
�

=
�
�
R
�
�
�
1
H

X
�
�
�
+
�
�
�
�
�
�
�
�
1
H

X
�
�
�
�
�
�
�
�
<
�
=
V
�
�
�
1
H

X
�
=

�
�
[
�
�
	
�
5
�
<
�
*
�
�
V
�
�
�
R
�
=

R
=
Q
�
1
�
=
Q
�
�
�
�
*
0
�
S

�
�
V
=
�
�
�
�
�
�
�
�
*
F
�
�
�
=
=
�
�
�
L

X
�
V
�
�
�
	
�
[
�
3
�
>
1
�
�
3
�
>
�
�
�
�
*
0
�
�
=
Q
�
�
�
�
*
F
�
S

X
�
V
�
�
�
	
�
<
�
*
�
�
V
�
�
�
D
�
�
�
*
1
V
=
�
�
=
)
=
>
�
�
&
Y
=
�
�
=
)
=
>
H

X
�
3
�
�

�
�
*
[
�
�
	
�
1
�
�
	
�
�
[
�
�
	
�
H

X
�
V
�
=
�
�
D
+
�
�
�
1
�
+
�
�
�
�
�
%
�
V
V
�

�
$
H

X
�
3
�
V
=
3
�
)
�
�
�
�
3
�
*
1
�
�
�
�
�
3
�
�
�
�
�
�
�
�
�
�
	
F
�
�
�
�
�
�
�
	
"
!

X
�
�
�
�
�
J
�
�
�
�
1
�
�
�
�
[
3
�
�
�
�
�
�
�
	
H

X
�
=

�
�
[
�

�
�
R
�
�
�
=
	

�
�
�
1
F
�
�
�
�
�
�
�

X
�
	
�
�
Y
�
�
�
�
�
�
�
�
>
[
3
1
F
�
�
�
�
�

k
�
h
�
�
�
�
�
�
�
�
�

�
�
�
�
W
y
w
�
�
Z

�
�
�

�
�
�
�
�
�
�
�
�
�
	

^
`
�
�
�
�
W
�
B
Z

X
�
�
�
�
�
�

D
>
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
:
�
�
)
�
V
C
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
]
�
�
�
�
�
�
�
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
]
�
�
)
�
V
C
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
�
�
*
�
5
�
<
�
	
�
]
�
�
<
�
=
V
�
�
3
Y
�
�
V
C
�
3
�
�
3
[
�
+
�
�
�
3
[
�

�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
2
�
�
<
�
=
V
�
�
3
Y
�
�
V
C
�
3
�
�
3
±
�
�
�
3
[
�

�
�
D
>
�
�
�
�
�
	
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�

3
�
�
�
�
�
�
�
�
[
�
R
�
�
�
�
�
�
�

�
�
�
<
�
=
V
�
�
3
Y
�
�
V
C
�
3
5
�
D
>
�
�
�
�
�
	
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
Y
�
�
�
�
�
�

�
Q
�
�
�
�
[
�
R
�
�
�
�
�
�
�

�
�
�
<
�
=
V
�
�
3
Y
�
�
V
C
�
3
�
�
3

�
Q
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
/
�
�
<
�
=
V
�
�
3
Y
�
�
V
C
�
3
�
�
3
±
�
�
�
3
[
�

�
�

�
Q
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
[
�

=
�
�
�
Y
=
�
�
�
V
�
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
R
=
�
�

=
�
[
�

=
�
�
Y
=
�
�
�
V
�
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
Y
�
�
�
5

�
�
�
[
�
�
	
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
Y
�
�
�
R
=
�
�

=
�
5

�
�
�
�
*
�
�
�
�
	
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
/
�
�
3
�
�
+
�
)
�
�
�
=
�
R
�
�
�
�
�
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
/
�
�
3
�
�
�
�
�
�
�

=
�
�
+
�
�
�
�
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
:
�
�
�
�
�
�
�
�
�
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
�
+
�
�
5
�
�
[
�
�
	
�
J
�
�

=
�
�
�
�
�
*

�
�
�
Y
�

�
�
�
�
3
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
R
�
�
�
�
�
�
J
�
�

[
�
�
	
�

�
�
�
�

Y
�
=
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�

3
�
�
�
�
Y
�

�
�
�
�
3
[
�
�
	
�

�
�
�
Y
�

�
�
�
�
Y
�
�
V
C
�
3
�
	
�
�
�
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
�
+
�
)
�
�
�
=
�
D
�
�
�
�
�
3

�
�
�
Y
�

�
�
�
�
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
Q
�
�
V
�
�
�
J
=
<
�
	
�
/
�
�

�
Q
[
�
�
	
�
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
�
�
+
�
�
[
�
�
	
�

�
�
�
�
�
+
�
3
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
Y
�
�
�
�
�
Y
�
=
�
�
�

�
�
�
�
�
�
�
�
�
�
Y
�
�
V
C
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
Y
�
�
�
�
�
Y
�
=
�
�
�

�
�
�
�

Y
�
=
�
�
3
1
F
�
�
�
�
�
�

X
�
�
�
�
�
R
�
V
=
3
�
)
�
�
�
�
3
�
*
1
F
�
�
�
�
�
�

Ç
Ä
�
h
h
W
�
W
Ç
�
�
W
�
B
½
`
W
`
�
Ä
W
B
�

^
`
�
�
�
�
W
�
B
Z

X
�
9
9
�
�
�
�
9
9
1
Ú

X
�
�
�
�
�
�
�
�
�
á
�
9
�
=
3
�
�
1
�
�
�
9
V
�
�
�
�
�
�
�
�
�
�
*
F
�
�
R
�
�
�
�

�
�

X
�

�
�

�
=
V
�
�
�
9
�
�
�
	
�
1

�
�
�
9
�
=
9
�
�
�
	
�
�
�
%
�
�
�
C
$
F
�
�
�
�
ß

X
�
V
�
�
�
�
�
�
*
1

�
�
�
9
�
=
9
�
�
�
	
�
�
�
%
�
�
�
C
$
F
�
�
R
�
V
�
"
È

û
�
�
�
y
�
h
�

�
�
�
�
�
�
�
�
�
�

�
�
V
=
�
�
�
V
�
�
=
�
�
�
Y
=
�
�
�
V
�
�
=
L

�
�
V
�
�
�
=
�
�
�
Y
�
�
�
=
�

k
�
y
Ä
�
Z

�
�
�
�
�
�
�
1
�
3
0
�
�
�
�
�
�

�
�
�
0
�
�
�
�
�

�
�
�
0
�
�
�
�
�
�
3
�
�
�
0
�
�
=
�
�
�
3
3
�
�
�
�
0
�

�
�
�
�
�
0
�

�
=
�
�

�
�
�
�
�
0
�
�
3
3
�
�
�
=
�
�
�
[
�
�
=
I

�
�
�
�
�
	
�
�
�
�
3
�
�
�
�
�
�
�
1
�
3
0
�
3
�
�
�
J
�
C
�
�
0
�
�
�
�
	
�

�
�
�
0
�

�
*
�
�
V
�
�
�
D
�
�
�
*
0
�

�
�
�
�
�
�
�
C
�
�
V
0
�
�
�
�
�
�
�
)
V
V
0
�
�
�
�
�
�
�
)
C
�
0
�
�
�
�
�
�
�
R
�
0
�
�
�
�
�
�
�
�
�
�
0
�

�
�
�
�
�
�

+
0
�
�
�
�
�
�
�
±
�
�
V
0
�
��
�
�
=
�
	
�
J
=
�
�
�
�
[
3
F

5
�
Ä
Ç
�
/
�
�
Ç
�
�
�
B

�
�
Q
�
�
V
=
�
�
�
V
�
�
�
�
�
�
&
�
�
�
�

�
�
3
=
Q

�
�
�
�
V
�
�
�
�
�
�
Q
�
3
	
�
�
�
�
&

�
3
	
�
�

�
�
�
�
�
�
�
3
�
�
V
C
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
�
�
�
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
Q
�
�
V
=
�
�
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
)
�
G

�
�
�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
�
�
)
�
�

`
/
�
d
�
Y
�
�
b
W
�
�
�
Ç
�
�
�
B

�
�
�
�
�
	
�
<
�
�
+
�
�
Q
�
V
�
�
�
�
�
�
&
�
�
�
�

�
�
3
=
Q

�
�
�
�
V
�
�
�
�
�
�
Q
�
3
	
�
�
�
�
&

�
3
	
�
�

�
�
�
�
V
�

�
�
�
�
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
�
3
�
�
V
C
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
�
�
�
�
�
&
k
�
�
�
z

�
�
�
�
�
�
�
C
�
�
V
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
�
V
V
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
�
C
�
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
3
�
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
�
+
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
+
�
�
V
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
�
	
�
<
�
�
+
�
�
Q
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
	
�
�
�
�
�
�
�
&
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
+
�
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
)
�
G

�
�
�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
�
�
)
�
�

�
W
h
�
�
�
�
�
Ç
�
�
�
B

�
�
�
�
�
�
=
�
*
�
V
�
�
�
L

�
�
�
�
V
�
�
�
�
�
�
Q
�
3
	
�
�
�
�
&

�
3
	
�
�

�
�
�
�
�
�
V
C
]
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
�
3
�
�
V
C
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
�
�
=
�
*
�
�
�
�
�
�
&
J
�
�
�
�

�
3
	
�
�

�
�
�
�
�
�
�
�
=
�
*
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
Q
[
�
�
	
�
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
)
�
G

�
�
�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
�
�
)
�
�

Ç
�
�
�
`
B
`
w
�
�
Ç
�
�
�
B

�
�
3
�
�
�
[
�

�
�
�
V
�
�
�
�
�
�
&
�
�
�
�

�
�
3
=
Q

�
�
�
�
V
�
�
�
�
�
�
Q
�
3
	
�
�
�
�
&

�
3
	
�
�

�
�
�
�
�
3
3
�
�
�
=
�
�
�

=
�
�
�
�
�
&
<
�
�
�
�
J
�
>
�
D
3
�
�

�
�
�
�
�
�
V
C
:
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
�
�
�
3
�
�
�
�
�
&
R
�
�
�
D
3
�
�

�
�
�
�
3
�
�
�
[
�

�
�
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
D
3
�
�

�
�
�
�
�
�
�
3
�
�
V
C
J
�
>
�
�
�
&
J
�
>
�
)
�
=
Q
�
�
G

�
�
�
�
�
�
�
�
�

�
�
�
�
�
&
�
�
�
�
D
3
�
�

�
�
�
�
�
=
�
�
�
3
3
�
�
�
�
�
�
&
<
�
�
�
�
J
�
>
�
D
3
�
�

�
�
�
�
�
�

=
�
�
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
�
�

�
�
�
�
�
&
�
�
�
�
D
3
�
�

�
�
�
�

�
=
�
�

�
�
�
�
�
�
�
&
�
�
�
�
D
3
�
�

�
�
�
�

�
=
V
�
�
3
)
�
�
�
=
�
�
�
&
<
�
�
�
)
�
�
�
=
L

�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
)
�
G

�
�
�
�
�
�
�
�
�
�
�
�
�
&
�
�
�
�
�
�
)
�
�

û
ø
÷
öú
ôó
õ
òó
ù

A.20. Class Diagram

XLIX

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

A.21. Use-related Risk Analysis

L

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

<Proceed=-button is clicked on empty first name user data

<Proceed=-button is clicked on empty last name user data

<Import data=-button is clicked and user submits invalid

<Save=-button cannot be clicked and is disabled unless an

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

"

"

No risk. Images are only saved by clicking on the respective <Save<-

A.22. Summative Evaluation

LII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

<Tester, TestUser=.
the name <Tester, TestUser=. He was not provided with any

<Start=-button and landed on the data input screen. There, he
read the informative text and clicked on the <Import data=-

user name: <teste=, the software autorecommended the
name <Tester, TestUser= and the user confirmed by pressing
Enter. He clicked on the <Ok=-button, leading to the closing

in the line edit fields, the user clicked on the <Proceed=-

menu and simply chose the user <Tester, TestUser=.

The user clicked on the <New image=-button. He landed on

grabbing the image and clicking on the <Capture=-button.

values. He proceeded to click on the now activated <Save=-

encouraging the developing team to display an <Image
saved successfully.=-text after saving an image for

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

guideline9s UEIDC successfully.

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

A.23. Risk Monitoring

LV

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Documentation-based Machine Learning Software for Skin Cancer Detection

Name

Software for Skin Cancer Detection - Part of a Bachelor's thesis

Description

The general purpose of this app is to allow users to capture images of skin lesions and get risk scores for that lesion.

The app works like this:

 1) Enter user data or import existing user by id. Required: First and last name, birthdate (identifiers).

 2) Add voluntary Contact information or Additional information. These inputs can be updated for an existing user

 if user is imported and changes are simply made before clicking on the Proceed-button.

 3) After proceeding: For existing users, a history of previous entries is displayed. These include:

 Date of entry, IMG name, and risk scores for each classification.

 For new users, go to 6).

 4) By clicking on the cell containing the IMG name, the image is opened as a preview.

 5) Click on the New Image-Button to start Image preview and take a new picture + entry.

 6) The camera opens and you are able to capture an image of a lesion by clicking on the Capture-button.

 7) Results are displayed then, and images and results can then be saved by clicking on Save.

 Multiple pictures can be taken, only Images + Results are saved if the Save-button is clicked.

 8) After finishing, one may either just close the app or click Restart in order to add entries for other users.

Installation

In order to run this app, please refer to the Wiki for technical requirements.

This app runs on PyCharm. Just start the Software.py application and import all needed packages.

Before starting, make sure to specify the correct filepath for images and results to be saved, or else the tests won't run.

Change the fpath-variable in both TestSoftware.py and Software.py to your desired path. Also, set all (2 code lines) cv

camera instances to 1 instead of 0, if the connected dermatoscope is your second camera. Comments clarify.

In the database, do not remove the first user in users-table (TestUser Tester). He is crucial for test purposes.

Also do not remove the first Image Entry (IMG_1) neither here nor in local folders. It is also crucial for testing.

The rest is voluntary.

If you choose to delete imagesAndResults entries, make sure to also delete the corresponding IMG and RES files in

your local folder!

Do this in the root directory (software_for_skin_cancer_detection): 'pip install .' to install the package.

Support

Contact mosha104@hhu.de for questions, feedback, support and potential access to the Wiki.

Authors and acknowledgment

Thank you, Jan Ruhland and Roman Martin, for your supervision and helpful assistance both in developing this software

and in my thesis work!

License

Most imports and packages are open source. Licensed libraries/modules, as the PyQt5, are licensed under GPL/LGPL,

which

both allow the use for academia & private programming. Details in Wiki under Licenses.

Project status

Project is finished, some tests still need implementing & finishing aesthetics must be implemented, however, the most

important functionalities, tests and design work. Ready for release.

A.24. README.txt

LVII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

A.25. Software Problem-solving Process

LVIII

Software for Skin Cancer Detection 3 Software for Skin Cancer Detection

 3

Hauschild, A.-C. " Eick, L. " Wienbeck, J. " Heider, D. (2021):

Hauschild, A.-C. " Martin, R. " Holst, S. C. " Wienbeck, J. " Heider, D. (2022):

Martin, R. " Hauschild, A.-C. " Gottschalk, R. " Clemens, S. " Wienbeck, J. " Heider, D. (2024; in

Heider, D. " Hauschild, A.-C. " Wienbeck, J. " Martin, R. " Clemens, S. " Klemt, V. (2023):

. Master9s thesis at Philipps University Marburg.

. Master9s thesis at Philipps University Marburg.

Usability Engineering Guideline for Software as a Medical Device 3 Implementing
. Master9s thesis at Philipps

A.26. Confluence Bibliography

LIX

	Introduction
	Background
	Skin Lesions and Diagnosis
	Machine Learning
	Deep Learning and Convolutional Neural Networks

	Medical Software
	Medical Device Software
	Software as a Medical Device

	International Standards for Medical Software
	The Medical Device Regulation
	The In Vitro Diagnostic Regulation
	Quality Management System
	Software Life Cycle
	Risk Management
	Usability Engineering

	Academia-tailored Guidelines for Medical Software

	Materials and Methodology
	Software Specification
	Python Libraries and Packages
	Qt Designer
	Documentation Platforms

	Machine Learning Pipeline
	Skin Lesion Dataset: HAM10000
	Preprocessing
	Transfer Learning
	Training Process
	Chosen Model: DenseNet201

	Guidelines for Software Development
	Quality Management System Guideline
	Software Life Cycle Guideline
	Risk Management Guideline
	Usability Engineering Guideline

	Application and Implementation of the Four Guidelines
	Software Implementation
	Coding
	Testing

	Results
	Initial Preparation
	Setups

	First Documentation Stage
	Quality Management System Activities
	Software Life Cycle Introduction
	Intended Purpose
	Safety Class Determination
	Software Development Planning
	Use Specification
	Iterative Design Cycle Initialization
	Risk Management Planning and Risk Policy

	Second Documentation Stage
	System and Software Requirements Specification
	System and Software Documents
	Iterative Design Cycle Continuation
	Mockup and Class Diagram

	Final Documentation Stage
	Use-related Risk Analysis
	Summative Evaluation
	Iterative Risk Management Cycle
	Verification and Release

	Software Implementation
	Coding
	Testing

	Final Software Design and Documents

	Discussion
	Bibliography
	Appendix
	Quality Management System Project Execution Extract
	Risk Policy
	Risk Table
	Jira Project Plan
	Confluence Overview
	Risk Control Measures
	Document Management
	Quality Management System Project Planning Extract
	Intended Purpose
	Safety Class Determination
	Software Development Plan
	Use Specification
	Risk Management Preparation and Planning
	System and Software Requirements Specification
	System and Software Design
	Software Architecture Description
	Configuration and Change Management
	Iterative Design Cycle 3 and 4
	Mockup Process
	Class Diagram
	Use-related Risk Analysis
	Summative Evaluation
	Risk Monitoring
	README.txt
	Software Problem-solving Process
	Confluence Bibliography

