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Abstract

Machine learning has become more prevalent in recent years and is used in various
applications, including supporting decision-making processes. It can act as a tool to
predict outcomes based on historical data. In practice, this can range from predict-
ing academic performances to calculating credit risk scores for potential borrowers.
However, applications involving personal data can have harmful consequences if the
machine learning models used are biased towards certain groups of people. To prevent
discriminating subpopulations, fairness is a considerable concern.

Just recently, the European Parliament adopted the Artificial Intelligence Act (AI
Act) on March 13, 2024, which aims to regulate the use of AI in the European Union.
One of the concerns of the AI Act is the fairness of AI systems. Discrimination that is
prohibited by the European Union or national law also applies to AI systems. Since it
is expected that most of the rules will come into force on August 2, 2026, and the rules
for high-risk AI systems apply earlier, research focused on making machine learning
models fairer and responsible has become indispensable.

In this dissertation, we explore literature gaps on fairness in machine learning and
propose novel methods to fill gaps that are relevant to the AI Act. The thesis begins
by presenting works that emerged from a research project, called Responsible Academic
Performance Prediction (RAPP), which aimed to develop a responsible AI platform for
predicting academic performances. These works highlight the importance of preventing
discrimination in machine learning models. Recognizing that unfair predictions often
stem from biased data input, we focus on this root cause and propose methods to
mitigate discrimination in the data itself.

While similar methods already exist in the literature, our methods differ in that
they can handle any type of discrimination, such as intersectional discrimination or
discrimination towards non-binary groups. This is very pivotal, as most prior methods
can only deal with binary groups and mitigate discrimination between a privileged
and an unprivileged group. But in reality, populations can be categorized into more
than two groups, and discrimination can occur among any of these groups. A common
approach to make former methods work with more than two groups is to merge multiple
groups together. However, this leads to further marginalizing already underrepresented
groups and ignoring the discrimination they face. Our methods overcome this limitation
and prevent such groups from being ignored. This is done by introducing a new fairness-
agnostic framework, FairDo, that can be used with any fairness metric. The framework
itself is quite flexible, allowing users to define their own fairness metrics and objectives
to optimize the data. An option to handle privacy concerns is also provided by the
framework. For this, synthetic data can be used to optimize the data for fairness. With
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FairDo, certain statistical properties of the data regarding fairness can be fulfilled and
a step towards satisfying the AI Act is taken. This thesis further contributes with
different aspects of the introduced framework and provides a comprehensive evaluation
of the methods in the respective papers.

To strive for good scientific practice, we have made our research reproducible and
accessible by publishing all of our methods and experiments on GitHub. Specifically,
our fairness framework, FairDo, is additionally available on PyPI and comes with a
documentation page1.

1https://fairdo.readthedocs.io/en/latest/

https://fairdo.readthedocs.io/en/latest/


Zusammenfassung

Maschinelles Lernen hat sich in den letzten Jahren immer mehr in diversen Anwendun-
gen durchgesetzt, unter anderem auch zur Unterstützung von Entscheidungsprozessen.
Dies geschieht dadurch, indem maschinelle Lernmodelle mit historischen Daten trainiert
werden, um Vorhersagen zu treffen. In der Praxis kann dies von der Vorhersage
akademischer Leistungen bis hin zur Einschätzung von Kreditrisiko für potenzielle
Kreditnehmer reichen. Jedoch können solche Anwendungen, die personenbezogene
Daten beinhalten, schädliche Folgen haben, wenn die verwendeten maschinellen Lern-
modelle bestimmte Personengruppen benachteiligen. Um solch eine Diskriminierung
zu verhindern, ist es wichtig, sich mit dem Thema Fairness im maschinellen Lernen
auseinanderzusetzen.

Erst kürzlich hat das Europäische Parlament am 13. März 2024 das Artificial
Intelligence Act (AI Act) verabschiedet, welches den Einsatz von künstlicher Intelligenz
(KI) in der Europäischen Union regeln soll. Eines der Anliegen dieser Verordnung ist
die Fairness von KI-Systemen. Im Grunde gilt, dass jede Art von Diskriminierung, die
durch die Europäische Union oder nationales Recht verboten ist, auch für KI-Systeme
gilt. Da die meisten Vorschriften voraussichtlich am 2. August 2026 in Kraft treten
werden und die Vorschriften für hochriskante KI-Systeme bereits früher gelten, ist die
Forschung über Fairness im maschinellen Lernen wichtiger denn je geworden.

In dieser Dissertation untersuchen wir relevante Forschungslücken zu diesem Thema
und präsentieren Methoden, die diese Lücken füllen und für AI Act relevant sind.
Zu Beginn dieser Arbeit werden Fachartikel vorgestellt, die aus einem Forschungspro-
jekt namens Responsible Academic Performance Prediction (RAPP) hervorgegangen
sind. Das Projekt zielte darauf ab, einen sozialverträglichen Ansatz zu entwickeln, um
akademische Leistungen mithilfe von maschinellen Lernmodellen vorherzusagen. Hier-
für sollte eine Plattform für potenzielle Anwender entwickelt werden. Aus den eigenen
Vorarbeiten wird ersichtlich, wie wichtig es ist, Diskriminierung in derartigen Anwen-
dungen zu verhindern. Frühe Vorarbeiten aus der Literatur haben gezeigt, dass unfaire
Vorhersagen oft auf voreingenommene Daten zurückzuführen sind. Um die Ursache zu
bekämpfen, wurden im Rahmen dieser Arbeit verschiedene Ansätze entwickelt, die es
ermöglichen Diskriminierung in Datensätzen zu mildern bzw. zu entfernen.

Während in der Fachliteratur bereits derartige Methoden existieren, unterscheiden
sich unsere Methoden dadurch, dass sie mit jeglicher Art von Diskriminierung umge-
hen können, z. B. mit intersektionaler Diskriminierung oder Diskriminierung gegenüber
nicht-binären Gruppen. Dieses Unterscheidungsmerkmal ist von wichtiger Bedeutung
und hat relevante Auswirkungen auf die Praxis. Die meisten bisherigen Methoden
können nur mit binären Gruppen umgehen und verringern die Diskriminierung zwis-
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chen einer privilegierten und einer unterprivilegierten Gruppe. In der Realität kön-
nen Populationen jedoch in mehr als zwei soziale Gruppen eingeteilt werden, und
Diskriminierung kann zwischen jeder dieser Gruppen auftreten. Ein gängiger Ansatz,
um existierende Methoden auf mehr als zwei Gruppen anzuwenden, besteht darin,
mehrere Gruppen miteinander zu verschmelzen. Dies führt jedoch dazu, dass bere-
its unterrepräsentierte Gruppen weiter marginalisiert und die Diskriminierung, der sie
ausgesetzt sind, ignoriert werden. Beispielsweise geschieht dies, wenn eine stark un-
terrepräsentierte Gruppe mit einer anderen Gruppe zusammengeführt wird. In diesem
Fall fällt die Diskriminierung der stark unterrepräsentierten Gruppe nicht mehr auf. In
den vorzustellenden Verfahren in dieser Arbeit tauchen solche Problematiken nicht auf.
Hauptsächlich wird dies durch die Einführung eines neuen fairness-agnostischen Frame-
works, FairDo, erreicht. Das Framework kann mit jeglicher Fairness-Metrik verwendet
werden und ermöglicht es Daten entsprechend zu optimieren. Auch benutzerdefinierte
Fairness-Metriken werden unterstützt. Eine Option zum Schutz der Privatsphäre ist
ebenfalls im Framework enthalten. Hierfür werden synthetische Daten verwendet. Mit
diesem Framework können Datensätze so optimiert werden, dass bestimmte statis-
tische Eigenschaften erfüllt werden. Somit kommt man der technischen Umsetzung
des AI Acts ein Stück näher. Zusätzlich werden in dieser Arbeit weitere Aspekte des
vorgestellten Frameworks untersucht und die Methoden in den jeweiligen Fachartikeln
umfassend evaluiert.

Da gute wissenschaftliche Praxis wichtig ist, damit zukünftige Forschung auf die
vorzustellenden Arbeiten in dieser Dissertation aufbauen kann, wurden alle entsprechen-
den Methoden und Experimente für die Reproduzierbarkeit und Zugänglichkeit auf
GitHub öffentlich gemacht. Insbesondere lässt sich das Framework FairDo über PyPI
als Python-Paket installieren. Eine Dokumentationsseite2 ist ebenfalls verfügbar.

2https://fairdo.readthedocs.io/en/latest/

https://fairdo.readthedocs.io/en/latest/
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1
Introduction

1.1 Motivation
Machine learning (ML) is a subfield of artificial intelligence (AI) that deals with meth-
ods to enable computers to learn patterns from structured and unstructured data [43].
Differing from traditional logic-based/symbolic approaches, ML algorithms are often
based on statistical models, which allow them to be more flexible and versatile in solving
complex problems. ML algorithms enable data-driven predictions, which are applicable
across diverse fields such as educational data mining [8], medical diagnosis [17], and
argument mining [48].

However, predictions can be harmful for many reasons. For this, some companies
launched responsible AI principles to ensure that AI systems are fair, transparent,
safe, accountable, and respect privacy [11, 42]. Regarding these aspects, the European
Commission proposed the Artificial Intelligence Act (AI Act) to regulate the use of
AI systems in the European Union (EU) [24], which the European Parliament recently
adopted on March 13, 2024. Motivated by the AI principles and the AI Act, this
dissertation mainly focuses on the fairness aspect of responsible AI. An excerpt from
Recital 67 of the AI Act can be taken as motivation for this work [24]:

“[...] The data sets should also have the appropriate statistical properties,
including as regards the persons or groups of persons in relation to whom
the high-risk AI system is intended to be used, with specific attention to the
mitigation of possible biases in the data sets, that are likely to affect the

health and safety of persons, have a negative impact on fundamental rights
or lead to discrimination prohibited under Union law, especially where

data outputs influence inputs for future operations (feedback loops). [...]”

Early works on fairness in ML have shown that ML models can discriminate against
certain types of people due to the inherent biases in the data [33, 14, 36]. A quite
prominent example is the COMPAS system, which is used by U.S. courts to predict
the likelihoods of criminals reoffending [38, 36]. Such recidivism prediction systems
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help judges make informed decisions about sentencing and parole [38]. In 2016, a
group of investigative journalists [38] found that the COMPAS system discriminates
against African Americans and overestimates their recidivism likelihoods in comparison
to White Americans. These results raise questions about the fairness of the system and
the potential harm it can cause to already disadvantaged groups. These issues can be
found in other domains as well. Datasets from the U.S. Census Bureau, for example,
have shown to exhibit biases against females and people of color regarding income
levels [37, 33]. Another example is the bank telemarketing dataset from a Portuguese
banking institution [44]. Machine learning models trained on this dataset have shown
biases towards age and marital status in predicting whether a customer will subscribe
to a term deposit [39].

Motivated by similar findings, researchers came up with methods to counteract
biases in related systems [33, 30, 19]. In response, IBM® developed the AIF360
toolkit [15] and Microsoft® created the Fairlearn toolkit [16], both of which include
established algorithms that mitigate bias at a particular step in the ML pipeline. Miti-
gation algorithms are typically grouped into three categories [13, 20, 41]: pre-processing,
in-processing, and post-processing. Pre-processing algorithms aim to remove discrimi-
nation from the data before training the ML model. Machine learning models trained
on the discrimination-reduced data are expected to be fair. In-processing algorithms
are generally modified ML models that achieve fairness during training. This is often
done by incorporating fairness constraints into the loss function of the model. Lastly,
post-processing techniques adjust the predictions of the ML model to ensure equal
outcomes for all groups.

Even with the availability of these toolkits, there are still many challenges and
unsolved tasks in fairness-aware ML. The challenges are as broad, complex, and mul-
tifaceted as the problems of fairness and ML themselves. Regarding fairness, there are
many definitions of it, and some of them are even contradictory [28]. Depending on the
assumed worldviews, different fairness definitions are more or less suitable [28]. This
alone makes it difficult to develop an estimator that is perceived as fair by all stakehold-
ers because policies affect which worldview should be assumed [1]. Even if a fairness
definition is chosen, the field of ML is very broad, and fairness is not only applicable
to classification tasks but also to regression, clustering, recommendation systems, and
many more [13, 10, 21, 49]. Generally, AIF360 and Fairlearn revolve around classifi-
cation tasks, although Fairlearn contains a single fairness-aware regression algorithm.
Even within classification tasks, fairness for non-binary groups and multiple protected
attributes has not been sufficiently addressed [2, 3, 4]. The problems have been tackled
in theory [35, 27, 50, 34] but a practical solution that is used widely by practitioners
and is easily accessible for the research community is still missing. Another challenge
is the fairness-utility trade-off [33, 30, 22]. In many cases, improving fairness leads to
a decrease in utility (performance), and vice versa. If the “WYSIWYG” (What You
See Is What You Get) worldview [28] is assumed, then a large utility decrease is not
acceptable.

Driven by the urgent need to achieve fairness in high-risk AI systems due to the
AI Act in the EU, this dissertation tackles multiple understudied problems in fairness-
aware ML regarding classification. The works in this thesis act as examples of how to
deal with discrimination and bias theoretically and, most importantly, practically. To
aim for the standards of good scientific practices, all tools, frameworks, and algorithms
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developed in this thesis are published as open-source software on GitHub. The links
to the repositories are provided in the respective chapters.

1.2 Contributions

This thesis comes with numerous practical and theoretical contributions to the field of
fairness-aware machine learning. In the following, we summarize the most significant
contributions and outline novel aspects of this work.

1.2.1 Fairness-Agnostic Data Optimization Framework

Our framework, called FairDo [3], which stands for Fairness-Agnostic Data Optimiza-
tion, is a novel and flexible framework for fair data pre-processing. It enables the
optimization of datasets to achieve statistical fairness properties. The datasets at-
tained can be used for training machine models that will produce fairer predictions
than models trained on unprocessed datasets. The framework is released as a Python
package on GitHub1 and PyPI, and comes with a documentation page2. Shortly after
our research was published, the European Union adopted the AI Act [24], with Recital
67 implicitly encouraging the ongoing development of methods similar to ours.

Methodologically, the framework optimizes datasets for statistical fairness proper-
ties by removing or adding data points (under- and oversampling). The framework is
adaptable to different fairness metrics and can therefore be used if policies change and
different fairness definitions are required. To our knowledge, FairDo is the first pre-
processing framework that is fairness-agnostic, surpassing the limitations of existing
methods that are implemented in AIF360 [15] and Fairlearn [16]. To achieve this, we
stated multiple novel combinatorial optimization problems to describe the under- and
oversampling tasks. The objective functions of these problems are based on statistical
fairness metrics. By treating them as black-box functions, heuristics can be used as
solvers, making the framework applicable to a wide range of fairness definitions and
hence fairness-agnostic. The framework also allows the usage of exact optimization
algorithms such as brute-force search, but this is not recommended due to the NP-
hardness of the problems when treating the objectives as black-boxes. Efficient and
exact algorithms that are tailored to specific fairness objectives can be implemented
and used in the framework, too. Additionally, privacy concerns can be addressed too,
as the framework supports the use of synthetic data.

1.2.2 Tackling Discrimination in Non-binary Groups

Because non-binary groups are often understudied and mitigating discrimination in
such groups is not trivial, we applied our framework to this problem [3]. For this, we
first have to ask the question of how discrimination can be measured in non-binary
groups. By formalizing what has been discussed by Žliobaitė [53], we are able to
capture discrimination when more than two groups are present in the data. One way
is to report the maximum absolute statistical disparity between any two groups.

1https://github.com/mkduong-ai/fairdo
2https://fairdo.readthedocs.io/
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In AIF360 [15], datasets are processed in such a way that the protected attribute is
binary by merging multiple groups into one. By following our own approach, we keep
the groups as they are and treat them as separate entities. With the right objectives,
we were able to show that our framework can indeed lower the maximum discrimina-
tion obtainable between any comparing groups [3] in the Adult [37], Bank [44], and
COMPAS [38] datasets.

1.2.3 Achieving Fairness for Multiple Protected Attributes
The fairness problem becomes more complex when having to deal with multiple pro-
tected attributes. Yang et al. [50] defined three types of groups that can be formed
by multiple protected attributes: intersectional, independent, and gerrymandering in-
tersectional groups. Motivated by their work and that of Kearns et. [35], we imple-
mented an intersectional fairness metric and introduced a new metric for independent
groups [4]. By using these two metrics as objectives, we were able to show that our
framework can indeed reduce discrimination in datasets when multiple protected at-
tributes are available. This further demonstrates the flexibility of our framework.
The experimentation was also done on the Adult [37], Bank [44], and COMPAS [38]
datasets.

We note that, when using the intersectional definition, subgroups are formed by the
Cartesian product of the protected attributes. In the Bank dataset, this leads to 48
subgroups, which is a significant increase compared to algorithms that can only deal
with two groups. Our framework is able to handle this increase in groups without any
issues.

1.2.4 Incorporating Data Quality in FairDo

Data quality can be a major concern when using pre-processing techniques in general.
The process of collecting data can be exhaustive and expensive, and removing too many
data points may not be a favorable option in this case. The upsampling technique in
FairDo does not suffer from this, but the undersampling approach does. Hence, we
addressed this by incorporating a constraint and considering an additional objective
to regard for data quality in the optimization process when removing data points [6].
The constraint was introduced in our work, and with the additional objective, a novel
multi-objective optimization problem was formulated. With this, the trade-off between
fairness and data quality of the Pareto front can be visualized, and the user can choose
the solution according to his/her needs. This is a novel approach to the problem.

Regarding solving the multi-objective problem, we used our own modified version
of NSGA-II [23] to improve the quality of the Pareto front. Our main modification
consists of developing a new initialization operator that is able to generate a more
diverse set of solutions. We tested our approach against the original NSGA-II method
and were able to improve the Hypervolume indicator [52, 26] from 0.46-0.61 to 0.77-0.90
on multiple experiments [6].

1.2.5 Fair Ranking of Decision-Makers under Uncertainty
Fairness metrics must be viewed critically, as they can be misleading if the number
of samples is not taken into account. Intuitively, a decision-maker who discriminates
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against a smaller group should not be penalized as much as a decision-maker who
discriminates against a larger group. This is because statistical conclusions are less
reliable when dealing with smaller sample sizes. In cases where two decision-makers
exhibit no discrimination, our preferences invert. Here, we prefer the fair decision-
maker, where the uncertainty of his/her decision is lower. While this is intuitive,
existing measures do not capture it.

By using Bayesian statistics, we first derived an uncertainty score for group fairness
metrics [7]. The uncertainty score describes the reliability of the fairness metric when
the number of samples is taken into account. This was accomplished by modeling
group outcomes with Beta distributions and using the variances of the distributions
to form the uncertainty score. Following this, we derived a utility score that can be
used to rank decision-makers according to the pre-defined preferences mentioned above.
For this, a utility function based on TOPSIS [32] was constructed. In conclusion, the
utility score considers both fairness and uncertainty and can be used to rank decision-
makers more reliably than solely depending on disparity reports. It allows for differing
decision-makers if they exhibit the same disparity towards groups but differ in the
number of samples. The stated problem and the methodology are novel and have not
been approached in this manner before.

1.3 Structure of the Thesis

In this doctoral thesis, a collection of published works is presented to which the author
of this thesis has contributed. Each chapter presents multiple thematically-related
research papers that have been published at international conferences and workshops
or have been accepted for publication. The general structure of the chapters is as
follows: First, the topic of the chapter is introduced. A chapter contains multiple
sections, each of which presents a research paper. In each section, the research paper
is summarized, and the author’s contributions are highlighted.

In Chapter 2, we present practical works that were mainly conducted for the Re-
sponsible Academic Performance Prediction3 (RAPP) research project. The tasks in
the project guided and motivated the development of a tool for assessing fairness in
machine learning models [8]. Even if the tool was developed for use cases in higher
education, it is agnostic to the domain and can be applied to any dataset where dis-
crimination might be a problem. The second work in this chapter [1] discusses the
choice of fairness metrics that suit academic performance prediction best.

Taking the motivation of knowing how to measure bias in machine learning models,
Chapter 3 presents works that focus on preventing bias in the first place. By introduc-
ing multiple novel pre-processing techniques and proposing new measures [2, 3, 4] to
encompass wider and more general cases, the works in this chapter are able to combat
biases that have not been tackled in this way before. Specifically, our methods over-
come the shortcomings of existing methods and are able to address more challenging
scenarios such as dealing with non-binary groups and multiple protected attributes.

So far, measuring and mitigating bias sounds promising. Chapter 4 inspects this
more closely and presents problems that can arise with it. The first work in this
chapter [7] gives an example where solely reporting group disparities can result in

3https://rapp.hhu.de/en/
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misleading conclusions. By deriving and incorporating the uncertainty of the fairness
assessment itself, discrimination can be detected more reliably. The second work [6]
criticizes our own proposed pre-processing [3] technique from Chapter 3 and discusses
how the resulting fair data can be made trustworthy. By introducing a constraint and
an additional objective that both aim to preserve some of the original data’s properties,
a fair dataset that is more reliable and trustworthy can be obtained.

In Chapter 5, a conclusion is drawn and future work regarding bias mitigation and
fairness assessment is outlined. Possible future work includes improving the FairDo4

framework by implementing exact algorithms for some specific fairness objectives.

4https://github.com/mkduong-ai/fairdo
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2
Algorithmic Fairness in Machine

Learning Pipelines

This chapter presents works that are directly related and motivated by the Responsible
Academic Performance Prediction1 (RAPP) research project. The aim of the RAPP
project was to research whether at-risk students can be identified early on and whether
machine learning models can be used responsibly for such tasks.

A similar work was done by Alexander Askinadze [12] in his PhD thesis, where
he developed machine learning pipelines for dropout prediction and dashboards for
educational stakeholders. Since the responsibility of machine learning applications has
become a major concern in recent years, especially when sensitive data is involved, such
concerns were addressed in the RAPP project. In response, the project was subdivided
into three work packages, each dealing with a different aspect. The first work package
was tasked with the development of responsible machine learning models, to which the
following papers in this chapter contribute.

The first section in this chapter presents a tool developed for the project [8]. It
was used throughout the RAPP project for feature engineering, training and testing
machine learning models, and assessing their performances and fairness. By offering
a graphical user interface to compare different machine learning models, the tool was
used to interact with other work packages by reporting the results of the developed
models. The second section presents a discussion on which fairness metric suits the
RAPP project best [1]. With the specified fairness metric, the models can be evaluated
and compared more specifically. By combining the two works, machine learning models
can be developed and assessed in a responsible manner, thereby contributing to the
goals of the RAPP project.

1https://rapp.hhu.de/en/
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2.1 MLOps Tool for Responsible Academic Perfor-
mance Prediction

Paper: Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, and Stefan Con-
rad. A Responsible Academic Performance Prediction Tool for Decision-Making in
Educational Institutes. In BTW 2023, volume P-331 of Lecture Notes in Informatics.
Gesellschaft für Informatik e.V., 2023.

Personal Contribution: Manh Khoi Duong initiated the research idea. Manh Khoi
Duong and Jannik Dunkelau shared the literature research work. Manh Khoi Duong
wrote the paper with the support of Jannik Dunkelau and José Andrés Cordova. Manh
Khoi Duong and Jannik Dunkelau equally contributed to the development of the tool
presented in the paper with the assistance of José Andrés Cordova. The research un-
derwent continuous supervision by Stefan Conrad.

Status: Published

This work was motivated by the earlier stages of the interdisciplinary research project
RAPP, during which the prediction task was still in discussion. Predicting academic
performance is a very vague task and can include predicting exam grades, final grades,
dropout risks, study durations, or any other outcome. Besides the target label, several
internal discussions were held regarding the features to be used, the fairness metrics to
be considered, and the machine learning models to be applied.

In order to ease the process of developing, training, and evaluating machine learn-
ing models for this ambiguous task, we developed an MLOps tool as a graphical user
interface (GUI) that supports the entire machine learning lifecycle. To solve the am-
biguity regarding the dataset (features, target label), the tool implements an SQLite
query interface with syntax highlighting to allow users to query the loaded dataset.
By providing this query interface, feature engineering can be done directly inside the
tool with SQLite. This makes adaptations to the dataset easy and fast for the user.
Regarding the responsibility part of the research project, the GUI comes with an in-
tegrated dashboard to assess the fairness and performance of the trained models. The
dashboard includes fairness metrics, confusion matrices, and other evaluation metrics.
By visualizing the Pareto front of fairness and performance, the tool answers the re-
search question of which model to deploy in real applications. When decision trees are
used, the tool offers an option to visualize the tree structure to provide interpretable
insights into the decision-making process of the model.

For the specific datasets that were used in the RAPP project, the tool offers in-
built SQLite templates for feature engineering. The user can select which features to
use and which target label to predict. The template engine then generates a suitable
SQL query for the user. In conclusion, the tool supported the RAPP project in the
development of machine learning models with its rich functionalities.
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RAPP: A Responsible Academic Performance Prediction
Tool for Decision-Making in Educational Institutes

Manh Khoi Duong1, Jannik Dunkelau2, José Andrés Cordova3, Stefan Conrad4

Abstract: Due to the increasing importance of educational data mining for the early intervention of
at-risk students and the growth of performance data collected in educational institutes, it becomes
natural to employ machine learning models to predict student’s performances based off prior data.
Although machine learning pipelines are often similar, developing one for a specific target prediction
of academic success can become a daunting task. In this work, we present a graphical user interface
which implements a customizable machine learning pipeline which allows the training and evaluation
of machine learning models for different definitions of academic success, e. g., collected credits,
average grade, number of passed exams, etc. The evaluation is exported in PDF format after finishing
training. As this tool serves as a decision support system for socially responsible AI systems, fairness
notions were included in the evaluation to detect potential discrimination in the data and prediction
space.

Keywords: educational data mining; fairness; decision making; machine learning; academic
performance prediction

1 Introduction

Academic performance prediction (APP) systems can be used to identify at-risk students in
higher education early on, allowing the university to use resources in a targeted manner to
prevent them from achieving poor academic performances. The definition of at-risk students
varies as it depends on the context and the purpose of prevention. It can comprise of, e.g.,
higher chances of dropping out, longer study durations, and worse graduation grades. In
this case, the APP system acts as a supporting artificial intelligence (AI) system for the
university at the institutional level. However, given the impact of such systems onto the
student body, social challenges arise. Marcinkowski et al. [Ma20] surveyed the perception
of a student body of the use of such AI-based systems and show that APP is viewed as
problematic by students as far as their own data and planning are concerned. Furthermore,
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the notion of fairness-aware machine learning (FairML) [DL19, Fr19, PS20] becomes an
increasingly important topic and also found its way into educational data mining systems
[LMZ19, KLM22, HR20, KL20, LQN21, AC19].

Acknowledging these issues, we developed a tool for responsible academic performance
prediction (RAPP) which tackles two main tasks: it is a tool for (1) academic performance
prediction and acts as a (2) decision support system for the social responsibility when
employing AI in tertiary education. The first task deals with generating multiple prediction
targets and datasets for the prediction of academic performances. The goal of the second
task is to find socially acceptable machine learning (ML) models and justify their use from
the extensive fairness and interpretability evaluation in the tool. For the full deployment of
an AI system to identify at-risk students, ethical aspects and the perception by those affected
have to be researched. The fairness and interpretability evaluation plays a supportive role
to disregard or regard certain ML models by, e. g., checking whether they comply with
student’s perception of discrimination or do not discriminate through socio-demographic
features.

The source code of the RAPP tool is published under the MIT License and available online
at https://github.com/hhu-rapp/rapp-tool.

2 Related Systems

Our proposed tool combines functionalities from two different research communities:
(educational) data mining and fairness assessment. In this section, we will briefly present
selected tools already available from either community.

RapidMiner [HK16], Orange [De13], and WEKA [Ha09]—to name a few—are data mining
tools with a graphical user interface (GUI) just as the proposed tool in this paper. The
aforementioned tools mostly include data visualization, pre-processing, feature selection,
clustering, classification, regression, and evaluation metrics. The tools are modular, meaning
the pipeline and its specific configurations are highly modifiable. Their aim is to enable
data mining practitioners the comparison of machine learning models on custom datasets
without having to write code themselves.

Although not as comprehensive and powerful, tools that were explicitly developed for
educational data exist as well. They predominantly focus on a specific dataset that was
provided by a particular educational institute. Especially, they analyze and predict several
students’ data such as programming grades [Ba16], examinations of the final school
year [LMP16], students’ contributions in group programming [SA20], or students’ written
feedback [Gr20].

Fairness and transparency in machine learning have become more important in recent
years due to the awareness of potential mistreatment of AI over different demographic
groups [DL19, Fr19, PS20]. As a response, authors began developing tools to audit the

596 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad
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fairness of an ML system and to produce bias reports, to guide the selection process of a
fitting fairness metric, or to apply intervening methods to reduce exhibited bias. Examples
for such tools are Aequitas [Sa18], FairSight [AL19], Fairlearn [Bi20], or Fairness Compass
and Fairness Library [RD22]. These topics have also been recognized by the educational data
mining (EDM) community lately. To name some, Hu and Rangwala [HR20] and Kizilcec
and Lee [KL20] consider prejudice and unfairness where Le Quy and Ntoutsi [LQN21] and
Alonso and Casalino [AC19] acknowledge the explainability of the used models in EDM.

For the proposal, the RAPP tool aims to take on the preliminary works and combine
functionalities from both communities: It is a data mining tool for educational data that
includes fairness examinations and interventions to address responsibility when employing
AI in educational institutes.

3 RAPP Tool

Making it possible to easily create various datasets from a single database with desired
features and labels to train, save, and evaluate machine learning algorithms is the aim of
the developed tool. For this, the GUI provides an intuitive way to load a particular SQLite
database or a CSV file5 and specify the initial settings for the machine learning pipeline.
The demanded features and target labels can be derived by querying the database. Several
settings are detected automatically such as the prediction type (classification, regression), the
target variable (last column by default), and categorical features. The supported estimators
for classification are decision trees, random forest, support vector machine, naive bayes, and
logistic regression and for regression linear regression, elastic net, bayesian ridge, decision
tree regressor, and kernel ridge. An artificial neural network with two hidden layers is also
available for both of these task types. Experienced users can modify the configuration for
their needs. Fig. 1 displays the user interface for the settings.

In the following, we will outline the two main uses and functionalities of the RAPP tool:
APP and supporting the decision-making process whilst designing a responsible APP.

3.1 Academic Performance Prediction

3.1.1 Pipeline

At the front of the RAPP tool lies the ability to setup and train APP models over the
implemented ML pipeline. The pipeline is outlined in Fig. 2. First, the pipeline’s settings
have to be specified. This includes the selection of a dataset to use for training as well as
picking the ML algorithms to train.

5 The CSV file is treated as a database.

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
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Fig. 1: RAPP’s Pipeline Settings Interface, 2022.

The data are queried over an SQLite database. While advanced users can enter custom
queries on the database for feature engineering and feature selection, predefined feature and
label sets were added for the given academic database to comfortably reuse and combine
them in any desired pairing. The user can select, for instance, features such as credit points,
grades, or number of passed exams, and target labels such as final GPA, achieved credits
until semester 𝑥, or study duration. To ease working with different sets of features and labels
we implemented an SQL templating engine which produces the final query based on the
user’s selections for a feature and a label set. This avoids combinatoric explosion which
would arise if each feature-label pair’s SQL query had to be implemented manually. The
queried database then acts as a dataset for the machine learning pipeline.

Once the dataset is obtained, the features go through the pre-processing step of one-hot
encoding any categorical features. After this, the data is split into training (80 %) and test
(20 %) data.

Each of the user’s selected models are trained on the training data. We also evaluate
the performance over the training data via 5-fold cross-validation to capture how robust
the models behave during training. The training concludes in an evaluation over various
performance metrics as well as fairness metrics. Fairness is also audited directly over the
dataset as well. The evaluation results are saved into a detailed PDF report file containing
information over the demographics of the dataset as well as the performance and fairness
results of each trained estimator.

598 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad
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Fig. 2: RAPP’s Machine Learning Pipeline, 2022.

After the trained models are evaluated, the users can decide which models they want to save
in order to use them later to predict on new data.

3.1.2 Prediction

To tackle the task of identifying at-risk students early, this tool includes a prediction interface
as shown in Fig. 3. This interface enables the user to make predictions based on individual
student’s academic data. The user can then identify students who are more likely to benefit
from the institution’s support programs.

In order to predict the students’ performances, new data from students as well as compatible
models, i. e., models that have been trained with the same features, are required in the
prediction interface. It is possible for the user to load various models trained for different
target variables to predict several targets from the same features simultaneously. Once new
data and selected models are loaded into the GUI, the features go through a pre-processing
step and are then fed into the loaded models for the prediction. Fig. 3 shows an example of
multiple targets being predicted with the data of a single student.

After the prediction has been run, the interface updates and displays the predictions of the
models for each of the selected targets. It is also possible to load multiple models for one
specific target to employ ensemble learning. In case of classification, we apply majority
voting whereas in regression tasks the mean of the predicted values is used.

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
Educational Institutes 599
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Fig. 3: RAPP’s Prediction Interface, 2022.

3.2 Decision Support System

The tool acts as a decision support system by providing the user statistical insights of the
dataset as well as an extensive evaluation of the models’ performance and fairness. The
models are automatically evaluated on the training and test data as they progress through
the pipeline. The evaluation is displayed in the GUI, part of it is shown in Fig. 4, and is also
generated as a LATEX report, that is automatically compiled as a PDF file.

Dataset. The dataset tab contains a contingency table that displays the label 𝑦 ∈ {0, 1}
and the sensitive attribute. This allows the user to comprehend the relationship between the
sensitive attributes and the students’ performances.

Performance Metrics. As for stability reasons, the evaluation for the training data is
always done with 5-fold cross-validation. The type of task that was selected beforehand
determines the suitable metrics. Classification metrics included in the tool are accuracy,
balanced accuracy, 𝐹1, recall, precision, and area under ROC. As for regression metrics,
the tool implements mean absolute error, mean squared error, max error, and 𝑅2.

600 Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, Stefan Conrad

14



RAPP: A Responsible APP Tool for Decision-Making in Educational Institutes 7

Fig. 4: RAPP’s Decision Support System Interface, 2022.

Fairness Notions. The fairness of the models’ predictions is assessed with regard to the
sensitive attributes in order to detect potential discrimination. Similarly to the performance
metrics, the notions are determined by the task type. Classification tasks implement statistical
parity, predictive equality, and equality of opportunity [DL19, BHN19]. While statistical
parity is one of the most commonly used fairness notions, recent work suggests a focus on
equalized odds (requires predictive equality as well as equality of opportunity) as the go-to
notion for APP systems [DD22]. Accordingly, the tool integrates average odds error [Be18]
which quantifies equalized odds. For regression tasks we use the individual fairness and
group fairness notion as introduced by Berk et al. [Be17].

To measure fairness criteria in classification, we use the absolute difference of the outcomes
between two groups. Generally, a lower value describes less discrimination. Because group
sizes greater than two (non-binary genders, multiple nationalities) might occur in the dataset,
we use the maximum value of the absolute differences between all group pairs [Ž17]. This
measures the maximal discrimination a classifier has achieved between two groups.

Pareto Front: Performance and Fairness Trade-Off. Due to the existence of a
performance and fairness trade-off [BFT12], the trade-off can be visually examined in
order to select the best trained models to use for predictions. The Pareto-efficient models,
i. e., models that optimize both a particular performance metric and fairness measure, can
then be identified. The fairness tab includes scatter points of the selected models in a

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
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Fig. 5: RAPP’s Pareto Front Evaluation, 2022.

performance-fairness plot (see Fig. 5). The Pareto front, i. e., the set of all Pareto-efficient
models [JS08], is shown in a different color to differentiate them from Pareto-dominated
points. Pareto-efficient models are displayed in red whereas Pareto-dominated models are
displayed in lightblue. This visualization limits the decision-making space for the user
as only Pareto-efficient models are of interest. Because Pareto optimal solutions are first
shown and the decision-maker selects her/his preferred model afterwards, this is a posteriori
method in decision-making.

In classification we aim to maximize the performance metric whereas a maximization of the
performance in regression corresponds to minimizing the error. For contextual conveniences,
we maximize the negative error in regression to yield for the same plot.

4 Case Study

The RAPP tool is developed as part of a research project concerning itself with designing a
socially responsible framework on how to approach APP in higher education. For this, we
conducted a case study over data given to us by the Heinrich Heine University Düsseldorf.
The case study was concerned mostly with probing of which prediction tasks show most-
promising performances and to estimate possible algorithmic fairness problems. Hereby, the
prediction tasks differed in their combination of input features as well as at-risk definition
for prediction.
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Prediction

Input Dropout MA Adm. SDS

ECTP + Exam stats 0.65 0.63 0.67
Grades + Exam stats 0.68 0.67 0.61
Specific modules 0.74 0.62 0.63

Tab. 1: Overview of exemplary training results over CS students in their first semester. Displaying
the best performing balanced accuracy achieved by any trained model over combinations of selected
feature sets and the prediction of student dropouts, master program admission (MA Adm.), and
finishing in standard duration of study (SDS).

As we were interested in any combination of these predefined features and prediction goals,
the RAPP tool was a great help in leveraging the combinatorial explosion problem into
a manageable set of selectable templates, allowing us to quickly train and store models
for each combination. Fig. 4 displays one such training result as reported within the tool,
allowing comparison of the trained models over various performance and fairness measures.
Tab. 1 shows exemplary results conducted with the RAPP tool over computer science (CS)
students after their first semester.

5 Limitations and Future Work

Since the tool is still in development, new opportunities for future improvements present
themselves constantly. These enhancements include changes to the tool’s architecture, as
well as making the prediction process more transparent to the user.

The tool as it currently is comes with SQL templates designed for our database in use.
However, in order to allow other educational institutions to target at-risk students, the tool
allows to write a different set of SQL templates and to load any SQLite database, making the
tool essentially database agnostic. Still, this requires proficiency with writing SQL queries
and modulating them into the templating engine, a skill that end users might not have. Here,
the ease of use could be enhanced.

While allowing to inspect potentially exhibited discrimination by the trained models, it is
not yet possible to train models with fairness-interventions in mind. In the future we would
like to incorporate ways to train models with fairness-accounting measures such as pre-, in-,
and postprocessing [DL19, Fr19, PS20]

RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making in
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6 Discussion

The tool helps in investigating which fairness constraints are met by any trained model and
thus guides the user in their decision making of which model to employ, but by no means
does the tool alone help achieving the overall goal.

Approaching RAPP includes to find a suitable definition for algorithmic fairness by involving
both, the institute’s stakeholders as well as the affected student body [KLM22]. While the
notion of equalized odds seems to be a desirable fairness constraint [DD22], the student
body appears to favor demographic parity [Ma20]. Further, the potential damage caused by
misclassifications needs to be carefully considered. All these above points are not meant
to be resolved by the RAPP tool but rather need to be part of the conceptualization when
planning to employ such a system before actual employment of the system takes place.
However, the RAPP tool helps to investigate whether potential concerns are dealt with
appropriately by the trained models or not.

7 Conclusion

In this paper, we presented the RAPP tool for developing responsible academic performance
prediction systems. The tool tackles two main tasks: designing, training, and analyzing
different APP tasks, and acting as a decision support system for selecting the best suited
models in a fairness-sensitive and socially responsible context.

For the setup of APP tasks, the concurrent design and direct comparison of different tasks,
i. e., different input features and target labels, was a main objective as the definition of
academic performances differ depending on the viewpoints of users, the student body, or the
application context. In order to assist the user which model or models are socially responsible
when being employed to target interventions at at-risk students, extensive performance
and fairness metrics are included. The metrics are viewable in the GUI itself but are also
automatically exported to a PDF file. Assessing fairness metrics and highlighting the Pareto
front of classical performance metrics and achieved fairness parities guides the user in the
decision-making process of finding the most suitable model for their desired task.

Overall, the tool provides an interface to non–machine learning engineers to train, evaluate,
and employ models in the APP domain by providing a simplified ML pipeline configuration
and highlighting crucial trade-offs of the model accuracy vs. fairness, rendering responsible
APP systems a step more accessible and approachable to everyone.
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In the previous work [8], we developed a tool for training machine learning models for
the deployment in academic performance prediction (APP). Even with the provided
evaluation capabilities of the tool, the question of which fairness metric to consider for
the APP task remains open.

In this work, the suitability of the equalized odds [30] fairness metric for APP is an-
alyzed. For this, the paper first discusses two contrasting worldviews, We’re all equal
(WAE) and What you see is what you get (WYSIWYG), introduced by Friedler et
al. [28]. With the literature review, our paper draws the conclusion that the WYSI-
WYG worldview fits the APP task better than the WAE worldview. We further discuss
fairness concerns known in the literature and compare fairness metrics with respect to
these concerns.

The paper concludes with the recommendation to use the equalized odds fairness
metric for the APP task, as it does not amplify discrimination when the WYSIWYG
worldview is assumed. Long-term impacts are thereby minimized. Still, equalized
odds comes with limitations as with any other fairness metric, and caution is advised
when interpreting the results. A further discussion and analysis of the fairness metric
in the context of APP regarding equity, individual fairness, and perceived fairness is
recommended for future work.

21



Towards Equalised Odds as Fairness Metric in Academic
Performance Prediction

Jannik Dunkelau
Heinrich-Heine-Universität Düsseldorf

D-40225 Düsseldorf, Germany
jannik.dunkelau@hhu.de

Manh Khoi Duong
Heinrich-Heine-Universität Düsseldorf

D-40225 Düsseldorf, Germany
manh.khoi.duong@hhu.de

ABSTRACT
The literature for fairness-aware machine learning knows
a plethora of different fairness notions. It is however well-
known, that it is impossible to satisfy all of them, as certain
notions contradict each other. In this paper, we take a closer
look at academic performance prediction (APP) systems and
try to distil which fairness notions suit this task most. For
this, we scan recent literature proposing guidelines as to
which fairness notion to use and apply these guidelines onto
APP. Our findings suggest equalised odds as most suitable
notion for APP, based on APP’s WYSIWYG worldview as
well as potential long-term improvements for the population.

Keywords
Worldviews, Fairness Notion, Equalised Odds, Responsible
Academic Performance Prediction

1. INTRODUCTION
Socially responsible and fairness-aware machine learning
(FairML) is becoming increasingly more important to our
society and aggregated a large body of research regarding
how to ensure fairness and non-discrimination by artificially
intelligent system [9, 13, 26, 28, 34]. As a consequence, the
notion of FairML found its way into the research of educa-
tional recommender systems as well wherever a social impact
onto the student body is at stake [17, 18, 21]. A major
part in this plays academic performance prediction (APP).
Hereby, an APP system takes data of a student as input,
predicts how the student will perform in the future, and
may hence induce an action based on this prediction which
may itself affect the student [2]. Such predictions are usually
employed as early-warning system to determine students at
risk, intervene by supplying necessary help and resources,
and increase graduation rates as a consequence [2, 3, 7, 17].
Although other utilisation of APP is possible, e.g. guiding
university admissions, we will focus on the use case of tar-
geted interventions. Given the need for socially responsible
APP systems [17, 18], the question arises as to which notion
of fairness is suitable for APP.

In the following, we review literature regarding selection of
fairness notions, derive a reduced guideline to decide between
two popular, parity-based fairness notions, demographic par-
ity and equalised odds, and apply our findings onto APP.
Our results and main contributions are the relationship of
APPs to equalised odds and the WYSIWYG worldview which
is backed by literature. Motivated by own work regarding
the conceptualisation of responsible APP, we hope to narrow
down the research focus for APP fairness notions, provide a
base-notion for new and established APP researchers alike,
and to contribute to public discourse on this matter.

2. NOTATION
In the following, let D = {(xi, yi, zi)}ni=1 ⊂ X × Y × Z,
denote the training data of individuals where X ⊂ Rd is the
d-dimensional set of input (feature) vectors characterising
each individual, Y denotes the set of measured true labels
over the individuals, and Z is the set of protected attributes
corresponding to each individual. Given a classifier h, we
denote the set of its predictions over X as Ŷ. Without loss of
generality, we assume y ∈ Y to be binary in {0, 1}. We say an
individual (x, y, z) ∈ D receives the favourable outcome if the
prediction ŷ = h(x) = 1. Otherwise, we say the individual
receives the unfavourable outcome. We say the individual
belongs to the demographic group z. Further, let X,Y, Z, Ŷ
denote random variables describing the events that, for an
individual from the training data, their features, ground
truth, protected attributes, and classifier prediction take a
specific value, respectively. Thus, P (Ŷ = 1 | Y = 1) denotes
the probability that individuals with a positive ground truth
are receiving the favourable outcome.

3. PARITY-BASED FAIRNESS NOTIONS
Parity-based fairness notions are defined over the values
of a classifier’s confusion matrix [6]. They assume fairness
once a set of predictive rates is equal for each demographic
group, for instance the positive prediction rate, true positive
prediction rate, or false positive prediction rate, as we will
see below. For this work, we focus on two such notions which
are currently prevalent in literature: demographic parity and
equalised odds. We selected these notions as they seem to
have higher citation counts as others [31] and are accounted
for by related literature as well [6, 18, 28].

Demographic parity assumes that the distribution of the
favourable outcome should be equal throughout all demo-
graphic groups. It is formally defined in Definition 1:
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Definition 1 (Demographic Parity). We say that a
classifier satisfies demographic parity if the positive predic-
tion rate is equal for all demographic groups, i.e.

P (Ŷ = 1 | Z = z) = P (Ŷ = 1) . (1)

While demographic parity is the most popular fairness met-
ric in literature, it also exhibits various short comings. For
instance, randomizing predictions for one demographic group
while having proper predictions for another can already sat-
isfy the notion [10]. It is however independent from any
possible bias in the collection of the ground truth values Y
which could have been assembled in a discriminatory way [4]
as the notion does not rely on Y at all.

As an alternative, Hardt et al. [15] proposed the notion
of equalised odds as given in Definition 2, which assumes
fairness if Ŷ ⊥ Z | Y . As equalised odds is defined over true
and false positive rates of a classifier, it is always satisfied if
Ŷ = Y which is not guaranteed for demographic parity.

Definition 2 (Equalised Odds). We say that a clas-
sifier satisfies equalised odds if it has equal true positive rates
and false positive rates for all demographic groups, i.e.

P (Ŷ = 1 | Y = 1, Z = z) = P (Ŷ = 1 | Y = 1) (2)

P (Ŷ = 1 | Y = 0, Z = z) = P (Ŷ = 1 | Y = 0) (3)

4. WORLDVIEWS
Recent literature promotes accounting for the worldview
that underlies the data [12, 18, 22, 32]. Worldviews were
introduced by Friedler et al. [12]. To define them, we must
firstly differentiate between the observable space Y and the
construct space Y ′. The observable space Y represents the
room of available observations and measurements. The train-
ing data D can only be collected from the observable space.
On the other hand, the construct space Y ′ represents the
theoretical space of the “true” data that is relevant to the
task but not measurable. For instance, assume the task to
predict whether a student will graduate within the standard
duration of study. We can collect historical information of
graduates to model the target variable Y and select charac-
teristics such as grades within the first semester or number
of passed courses per semester as features. These are part
of the observable space that is available to us. The related
construct space would contain information about how well
passed courses were understood, how motivated the students
will remain long-term, or how much time they will be able to
invest into their studies in later semesters. This information
is not accessible to us but can only be observed via assumed
proxies. Further more, the construct space is free from dis-
crimination in a sense that it would not contain the grades a
student received but rather the grade a student should have
received if no discrimination took place.

Worldviews model the expected differences between demo-
graphic groups in Y ′ and hence explain the presence of mea-
sured differences in Y [32]. Two prominent worldviews are
We’re all equal and What you see is what you get, for which
we borrow Definitions 3 and 4 of Yeom and Tschantz [32].
Both where originally formulated by Friedler et al. [12] and
seem to represent two polar ends in the fairness literature.

Definition 3 (WAE). We’re all equal (WAE) repre-
sents a world view which assumes that each demographic
group is identical to each other with respect to the target
variable in the construct space, i.e. Y ′ ⊥ Z.

Definition 4 (WYSIWYG). What you see is what
you get (WYSIWYG) is a worldview which assumes that
differences in Y are explained by differences in Y ′ and hence
that the observable space is an accurate reflection of the con-
struct, i.e. Y = Y ′.

As we consider WAE and WYSIWYG in contexts in which
we do observe discrimination in the observable space Y and
thus assume Y ̸⊥ Z, both world views contradict each other
in context of this work.

5. FAIRNESS SELECTION GUIDELINES
While literature produced a great number of fairness notions
to choose from, we know different fairness notions to be
mutually exclusive to one another, making it impossible to
satisfy all notions simultaneously [5, 12, 19, 29]. Specifically,
the notions from Section 3 above are mutually exclusive in
non-trivial cases. Hence, it is valuable to know which fairness
metric suits the prediction task most.

Makhlouf et al. [22] collected a decision diagram guiding the
fairness notion selection process. This diagram leads to the
selection of demographic parity if standards exist which reg-
ulate the ratio of admission rates for the favourable outcome
or we do not have a reliable ground truth or can assume
historical bias or measurement bias in the data. Further,
when we have a reliable ground truth or assume no historical
or measurement biases in our data, the authors advocate for
equalised odds if the emphasis is on the classification recall.
Makhlouf et al. further advance the idea that the selection
of fairness notion must be based on the explicit choice of an
underlying worldview. The worldview itself is however not
(explicitly) part of their guiding diagram. If we however focus
on the distinction between reliability of Y (and existence or
absence of biases), we can infer that a reliable Y relates to
Y ≈ Y ′ and thus WYSIWYG, and an unreliable Y relates
hence to WAE.

Friedler et al. [12] show in their initial conception of world-
views that individual fairness can be guaranteed under WYSI-
WYG while it can cause discrimination in a WAE setting. On
the flip side, demographic parity is not applicable in a WYSI-
WYG setting while it can guarantee non-discrimination for
WAE. Yeom and Tschantz [32] investigated the theoretical
impact the selection of a fairness notion has on the disparity
between groups. In their work, they prove that any model
that satisfies demographic parity on Ŷ does not amplify
existing disparity in Y ′. However, only WAE lends itself to
demographic parity, as the classification performance with
respect to Y ′ in WYSIWYG will always be suboptimal. A
model satisfying equalised odds will not amplify any disparity
in WYSIWYG but can amplify disparities if WAE holds.

Unifying the guidelines and insights from above, demographic
parity should be employed when WAE holds. That is, we de-
sire an equal distribution of the favourable outcome through-
out the groups as we accredit any measurable differences
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in our training data to prior discrimination (historical or
elsewise). Equalised odds should be favoured if WYSIWYG
holds. That is, we expect differences between groups to be
explainable by differences in the construct space Y ′. Some
literature also promotes demographic parity when the playing
field is even for the groups [8, 18] or the classifier is employed
for one group independently [21] while promoting equalised
odds otherwise [18, 21].

6. TOWARDS AN APP FAIRNESS NOTION
In this section, we will discuss the worldview that generally
seems to tie to APP systems, derive equalised odds as the
appropriate fairness notion, then take a closer look at the
benefits and drawbacks equalised odds exhibits. We conclude
with a brief overview of selected notions which we did not
consider in depth.

6.1 The APP Worldview
To evaluate which worldview gives itself to APP systems, we
investigate below which input features and target variables
promote which worldview to conclude the related fairness no-
tion. For this, we lean on the work of Alyahyan and Düştegör
[2], who report the mostly used influential features for APP
to be prior academic achievement and student demographics,
accounting for 70 % of their surveyed articles.

Prior academic achievement is mostly concerned with grade-
related features which are aggregated during university [2]:
specific course grades, grade point average (GPA), cumulative
GPA, exam results, or individual assessment grades; but also
pre-university features such as high school background or
study admission test results.

Taking grade-related features into account to predict on grad-
uation level, it feels intuitive that we are in a WYSIWYG
environment. Not because the grading of students can be
assumed to be unbiased (which it cannot, cf. [23, 24]), but
because once the grades are set, different impact onto the
graduation level prediction can be solely explained by dif-
ferent grade distributions. For instance, assume the task to
predict qualification for a subsequent master’s programme.
The qualification is decided by achieving a certain GPA at
graduation. As the grade-based input features are already
set, final GPA is rendered to a consequence and disparities
can be explained by differences in cumulative grades.

The same argument can be made for using student demo-
graphics as features. Hereby, student demographics refer
to protected attributes such as gender, race, religion, or so-
cioeconomic status [2]. In a discriminatory system which
grades minority groups worse than privileged groups, the
protected attribute effects achieving lower grades, again ren-
dering final GPA as a consequence. Hence, WYSIWYG
holds, explaining outcome disparities due to membership in
certain demographic groups. Despite this very discrimina-
tory interpretation, WAE is not an applicable worldview in
that scenario: If we assume merit to be equally distributed
throughout all demographic groups, it generally will not hold
that unevenly distributed cumulative GPAs should result in
equally distributed final GPAs.

The above observations indicate that APP assumes WYSI-
WYG. This can further be supported by the following two

argumentations. Firstly, due to unequal distribution of re-
sources among demographic groups, educational disparities
are to be expected [1]. Secondly, there is a difference between
ideal and non-ideal fairness-perspectives [11]. The fairness
ideal would imply that grade-level outcomes are equally dis-
tributed throughout groups. Our world is however non-ideal
and the fairness ideal is the target state we aim to achieve.
For this, we measure the deviation of our systems from the
fairness ideal in FairML and attempt to minimise it [11].

As WYSIWYG for APP seems to find support in litera-
ture, consequentially APP pairs with the fairness notion of
equalised odds. This aligns with (and generalises) the state-
ment of Kizilcec and Lee [18] that equalised odds is “most
appropriate in applications like student dropout prediction”.
Having singled out equalised odds as fairness notion, we will
inspect its suitability further and discard demographic parity
in the remainder of this paper.

6.2 A Closer Look at Equalised Odds
While we identified equalised odds as a fairness notion which
pairs well with APP, there are further concerns in literature
regarding the fairness notion of a FairML system which
remain to be discussed. Fazelpour and Lipton [11] note that
the approach to FairML should consider situated and system
wide as well as dynamic impacts of APP intervention while
Deho et al. [8] promote to focus on equity and need rather
than equality.

Favourable outcome revisited. In classical FairML, we as-
sume ŷ = 1 to denote a favourable outcome, such as an
approved credit loan or being hired at a new job. Intuitively,
the favourable outcome in APP for a student is to be pre-
dicted as a successful student. However, the real classification
task behind APP is rather to predict the need of interven-
tion to help the student achieve a higher performance. The
emphasis from a stakeholder’s perspective lies on the need
of action. Thus we can reframe the favourable outcome in
APP as dependent on Y . For at-risk students with y = 1
the favourable outcome is indeed ŷ = 1 so they receive the
intervention. For students who will graduate without fur-
ther intervention and thus y = 0 the favourable outcome
would be to not get flagged as at-risk, i.e. ŷ = 0. Thus, for
APP, the favourable outcome would be a perfect predictor
with ŷ = y. Such a predictor would always satisfy equalised
odds [15]. This differs from classical FairML as the students
did not apply for the interventions, contrasting loan or job
applications where we assume an approved application to be
favoured by the individual.

Long-term impacts. Liu et al. [20] show that both, de-
mographic parity as well as equal true positive rates (only
Equation 2 from equalised odds satisfied), are able to cause
improvement, stagnation, or even decline in the long-term
well-being of disadvantaged groups, depending on the settings.
While not considering the stricter notion of equalised odds,
their results still suggest that further inspection of respec-
tively underlying distributions of Y needs to be accounted
for. Contrasting this with the results of Yeom and Tschantz
[32] however, that equalised odds will not amplify discrimi-
nation when WYSIWYG holds, gives at least some kind of
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(theoretical) reassurance of the selection of equalised odds
as fairness notion. Further, due to the intervening nature
of APP as well as the favourable outcome being dependent
on Y , we can illustrate at least a partial improvement over
time. As stated above, educational disparities are to be
expected due to resources being unequally distributed and
our world being non-ideal [1, 11]. Hence, we can assume a
proportionally higher rate of y = 1 in minority groups. For
an APP system satisfying equalised odds, this would result in
a higher proportion of minority students receiving the inter-
vention. Assuming the intervention increases graduation rate
and/or graduation quality, it should increase the availability
of resources for these groups long-term. Thus, the divergence
from the fairness-ideal should be reduced. This however only
narrows the gap but will be unable to close it, as for instance
biases in grading may not be cured in this process.

From Equality to Equity. Instead of promoting equal treat-
ment as measure of fairness, Deho et al. [8] propose to focus
on equity and needed treatment instead. However, it is un-
clear from their paper whether they regard equalised odds to
be a measure of equity, whereby Jiang and Pardos [16] apply
data rebalancing techniques to boost equity for an APP sys-
tem in terms of true positive and true negative rates, hence
they use equalised odds as measure for equity. This makes
sense for APP, as the intervening nature inherently attempts
to target students at risk. However, Naggita and Aguma
[27] show that a system satisfying equalised odds can still
promote inequity. This is conditioned over the accessibility
of the system towards the demographic groups. Accessibility
is hereby defined over the notion of obstacles which obstruct
an individual to exhibit their true feature vector towards the
prediction system. Such obstructions could be due to biased
grading processes which APP alone is unable to solve.

Limitations. Corbett-Davies and Goel [6] have shown that
equalised odds, as well as all parity based notions, is subject
to the problem of infra-marginality as a unified classification
threshold is not sensible if the underlying risk distributions
are unequal for two demographic groups. In such cases,
the error scores will differ and parity cannot be achieved.
Furthermore, equalised odds is usually only satisfiable when
different classification thresholds for the demographic groups
are employed in the first place [14, 18]. In such cases, the
use of the protected attribute is needed at classification time,
which might not everywhere be legally feasible. However, Yu
et al. [33] argue that APP systems such as dropout detection
should include protected attributes, albeit the authors only
report a limited benefit in terms of fairness and performance.

Students’ Perceived Fairness. First work analyses the im-
plications and perceptions of fairness in APP systems [25, 30],
however a more thorough investigation regarding equalised
odds needs yet to be conducted. While Smith et al. [30]
report student’s focus on relational and stake fairness, which
equalised odds could cater to, Marcinkowski et al. [25] report
focus on distributional and procedural fairness dimensions.
Although equalised odds fits procedural fairness, it fails to do
so for distributional fairness which would rather be satisfied
by demographic parity instead. This could be overcome by

a weighted trade-off between both notions as suggested by
Kizilcec and Lee [18]. However, it is unclear whether the
benefits of equalised odds remain unaffected in this case or
whether the student body is willing of such a compromise.

6.3 Undiscussed Notions
We only described two fairness notions in Section 3, but
current literature provides a plethora of further notions [9,
22, 26, 31] While it is not possible for us to talk about all
of them, we will highlight selected notions and outline their
relevance for APP or why we discarded them in our work.

Next to demographic parity and equalised odds, calibra-
tion [29] and predictive parity are also popular notions in
literature. However, Yeom and Tschantz [32] showed that
neither WAE nor WYSIWYG motivate either notion.

Work that considers worldviews usually promotes individual
fairness [10] as suitable for a WYSIWYG setting [12, 18].
Individual fairness is strictly not parity based, but we in-
tended to review parity based notions specifically. However,
as both, equalised odds and individual fairness, are promoted
for WYSIWYG settings, an investigation of their relationship
should be followed up in future work.

Gardner et al. [14] introduced ABROCA scores as measure
for fairness, which rely on different ROC curves of the de-
mographic groups. While equalised odds is satisfied at in-
tersections of ROC curves, slicing analysis with ABROCA
allows for a more nuanced evaluation of the overall fairness
trends for different classification thresholds. Specifically, if
one does not require equality for the demographic groups in
Equations 2 and 3 but only requires an absolute difference
of at most ϵ, ABROCA might allow for easier selection of
classification thresholds. Whether guarantees regarding dis-
parity amplification under WYSIWYG stay true is left for
future work.

Yeom and Tschantz [32] define the notion of an α-hybrid
worldview which assumes that discrimination in Y is partially
explained in Y ′ to a ration of α ∈ [0, 1] and thus positions
itself between WAE and WYSIWYG. While the authors
present the α-disparity test as a fairness measure, the value
of α needs to be approximated by social research as well as
public discourse.

7. CONCLUSIONS
In this work we reviewed recent literature in search of finding
a suitable fairness notion to employ in responsible APP
systems. The consensus of our search favours equalised odds
over demographic parity, calibration, or predictive parity.
After highlighting APPs relation to WYSIWYG, we further
found support of equalised odds in terms of reframing the
favourable outcome, inspecting possible long-term impacts
and partly relating to equity notions. While equalised odds
still shows limitations in its applicability, we emphasise the
need of further analysis regarding equalised odds in APP
contexts specifically: in terms of equity, relation to individual
fairness, and perceived fairness.
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3
Measuring and Mitigating Bias in

Machine Learning Datasets

In the last chapter, we have presented works [1, 8] about assessing fairness in machine
learning models. The studies were carried out as part of the RAPP project and ac-
cordingly focused on educational use cases. The studies highlight the importance of
incorporating fairness assessment when evaluating machine learning models, as biased
models can have severe societal consequences.

Many methods exist to mitigate bias in machine learning pipelines. They can be cat-
egorized into three groups, namely pre-processing, in-processing, and post-processing [13,
20, 41]. Each comes with its own advantages and disadvantages [20] regarding the user’s
needs. Because pre-processing acts on the data directly, it can be expected that mul-
tiple machine learning models will benefit from the same pre-processed dataset. This
advantage was especially important for the RAPP project, as the decision on which
machine learning model to use was not fixed and could change over time due to new
research findings, stakeholders’ needs, or legal requirements.

Following this motivation, we present three works [2, 3, 4] that focus on measuring
and mitigating bias in datasets. All works contribute with new methods and findings
for various scenarios: (1) single protected attribute with two groups [2], (2) single pro-
tected attribute with non-binary groups [3], and multiple protected attributes [4] that
can contain any number of groups. The last two papers are built upon their previous
ones and encompass more complex cases. With these works, problems that have not
been addressed thoroughly before are tackled. All the scenarios that we have dealt with
cover all possible cases that can occur in datasets with sensitive information. Method-
ologically, our methods are under- and oversampling strategies that are formulated as
combinatorial optimization problems. Due to the high dimensionality of the stated
problems, the following works employ heuristics to find approximate solutions. No-
tably, the framework introduced in the second work [3] can be seen as a generalization
of the first work [2].
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3.1 Improving Fairness for Binary Groups with Gen-
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Algorithms are only as good as the data that is provided to them [14]. If the data is
biased, then the decisions made by algorithms are most likely biased as well. Hence,
mitigating bias in data can ensure fair decisions. Many techniques [51, 25, 19] alter
the data by editing features, protected attributes, or labels. We argue in this paper
that these approaches are less interpretable and cannot be used in real-life applica-
tions safely. Another aspect is that many fairness definitions exist and fulfill different
purposes. The user should be able to choose the fairness definition that fits the applica-
tion best, and the pre-processing method should be able to handle the chosen fairness
definition.

Motivated by the rise of generative models in recent years [46, 47], we deal with
the research question of how synthetic data can be used for fairness. To make the pre-
processed data trustworthy, we formulated a combinatorial optimization problem where
synthetic data is added to the original dataset to ensure representation and fairness. To
solve the optimization problem, we developed a simple but effective heuristic. The user
is left with the choice of how many synthetic points are added to the original dataset.
Depending on the modality of the data, the user can also decide which generative
model to use. Because only synthetic data is added and features are not modified,
our approach can be considered more interpretable: The resulting data contains the
original but has additional synthetic data, where the amount is controlled by the user.

To compare our approach against popular pre-processing methods [33, 51, 25], we
used the implementations and datasets [38, 37, 31, 44] given by AIF360 [15]. All
datasets contain a protected attribute with a privileged and an unprivileged group,
where the machine learning task is to predict the binary target label. Pre-processing
methods aim to make the two groups more equal in terms of the target label. The
experiments showed that our approach is promising compared to existing methods [33,
51, 25]. The pre-processed datasets, attained with our approach, are fairer than the
original and do not negatively impact machine learning classifiers in terms of accuracy.
We also showed that our approach is indeed fairness-agnostic and can handle any
fairness definition. These results confirm that bias can be mitigated by adding synthetic
data points and alteration is not necessary.
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Abstract. Fairness is a critical consideration in data analytics and
knowledge discovery because biased data can perpetuate inequalities
through further pipelines. In this paper, we propose a novel pre-
processing method to address fairness issues in classification tasks by
adding synthetic data points for more representativeness. Our approach
utilizes a statistical model to generate new data points, which are eval-
uated for fairness using discrimination measures. These measures aim
to quantify the disparities between demographic groups that may be
induced by the bias in data. Our experimental results demonstrate that
the proposed method effectively reduces bias for several machine learn-
ing classifiers without compromising prediction performance. Moreover,
our method outperforms existing pre-processing methods on multiple
datasets by Pareto-dominating them in terms of performance and fair-
ness. Our findings suggest that our method can be a valuable tool for
data analysts and knowledge discovery practitioners who seek to yield
for fair, diverse, and representative data.

Keywords: fairness · bias · synthetic data · fairness-agnostic ·
machine learning · optimization

1 Introduction

Data analytics has grown in popularity due to its ability to automate decision-
making through machine learning. However, real-world data can contain biases
that produce unfair outcomes, making fairness in data pipelines involving
machine learning a pressing concern. Fairness in machine learning typically deals
with intervening algorithms providing equitable outcomes regardless of protected
characteristics such as gender, race, or age group.

The existing related works can be divided into three categories [5,8,20]. The
first category of methods are pre-processing methods, which aim to reduce bias
in the data. Examples of such methods include data augmentation and data
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balancing [2]. The second category of methods are in-processing methods, which
aim to enforce fairness constraints during the training procedure [15]. Exam-
ples of in-processing methods include regularization techniques and constrained
optimization [31]. The last category are post-processing methods that allow the
improvement of fairness after training by correcting the outputs of the trained
model [14].

The goal of this paper is to introduce a pre-processing method that achieves
fairness by including generated data points. This is done by utilizing a statisti-
cal model that learns the distribution of the dataset, enabling the generation of
synthetic samples. Additionally, a discrimination measure is employed to eval-
uate the fairness when incorporating the generated data points. Our method
treats the discrimination measure as a black-box, making it able to optimize
any discrimination measure defined by the user. We refer to this property of our
algorithm as fairness-agnostic. This makes it suitable for cases where a specific
fairness notion is required.

For the experimentation, multiple datasets known to be discriminatory were
used. The experiments were performed by firstly loading the datasets and then
pre-processing them using different pre-processing techniques. The pre-processed
datasets were then fed into several classifiers. The performance of each classifier
was then evaluated in terms of performance and fairness to assess the effective-
ness of the pre-processing methods. Our experiments have empirically shown
that our technique effectively lessens discrimination without sacrificing the clas-
sifiers’ prediction qualities. Moreover, it is compatible with any machine learning
model. Of the pre-processors tested, none were able to meet all of these condi-
tions. The scope and application of our method is not necessarily limited to
tabular data and classification tasks, even though experiments were conducted
on them. The method is more broadly suitable for supervised learning tasks
where the data, label, and protected attribute are available. Only the appropri-
ate discrimination measures have to be derived for the right task. Generally, our
primary contributions are:

– The introduction of a novel pre-processing technique that can optimize any
given fairness metric by pre-selecting generated data points to include into
the new fair dataset.

– We carry out a comprehensive empirical study, comparing our method against
three widely recognized pre-processors [9,13,31], using multiple datasets com-
monly found in fairness literature.

– We present interesting and valuable properties, such as the empirical evi-
dence that our method consistently improved fairness in comparison to the
unprocessed data.

2 Related Work

Many pre-processing algorithms in literature alter the dataset to achieve fair-
ness [4,9,31]. Because the methods simply return a fair dataset, they can be used
with any estimator. However, such approaches cannot be used with ease: They
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often require a parameter setting that sets how aggressive the change should be.
As the approaches differ in their methodology, it is hard to interpret the param-
eter’s setting and their unexpected effects on the data. Data alteration methods
also have a higher risk of producing data that do not resemble the original data
distribution in any ways.

Other approaches return a weight for each sample in the dataset that the esti-
mator should account for when fitting the data [1,13]. While the approaches seem
promising [1,13], they require estimators to be able to handle sample weights.
A way to account for this is to replicate samples based on their sample weights.
However, this is not computationally scalable for larger datasets or for larger
differences between the sample weights.

Another related approach is removing data samples that influence estimators
in a discriminatory way [28]. Nevertheless, this approach does not seem feasible
for smaller datasets.

Differently from related works, we present an algorithm that does not come
with the above mentioned drawbacks. Further, our approach is able to satisfy any
fairness notion that is defined for measuring discrimination or bias in the dataset.
While the work of Agarwal et al. [1] also features this property, the fairness
definitions must be formalizable by linear inequalities on conditional moments.
In contrast, our work requires the fairness definitions to quantify discrimination
in a numeric scale where lower values indicate less discrimination. This can be as
simple as calculating the differences of probabilistic outcomes between groups.

While there exist works that train fair generative models to produce data that
is fair towards the protected attribute on images [7,24,27] or tabular data [12,23],
our approach can be seen as a framework that employs generative models and
can therefore be used for any data where the protected attribute is accessible.
Specifically, our research question is not “How can fair generative models be con-
structed?”, we instead deal with the question “Using any statistical or generative
model that learns the distribution of the dataset, how can the samples drawn from
the distribution be selected and then included in the dataset such that fairness can
be guaranteed?”. Other works that generate data for fairness include generating
counterfactuals [26] and generating pseudo-labels for unlabeled data [6].

3 Measuring Discrimination

In this section, we briefly present discrimination measures that assess the fairness
of data. For that, we make use of following notation [5,8,20]: A data point or
sample is represented as a triple (x, y, z), where x ∈ X is the feature, y ∈ Y is
the ground truth label indicating favorable or unfavorable outcomes, and z ∈ Z
is the protected attribute, which is used to differentiate between groups. The sets
X,Y,Z typically hold numeric values and are defined as X = R

d, Y = {0, 1},
and Z = {1, 2, . . . , k} with k ≥ 2. For simplicity, we consider the case where
protected attributes are binary, i.e., k = 2. Following the preceding notation, a
dataset is defined as the set of data points, i.e., D = {(xi, yi, zi)}ni=1. Machine
learning models φ : X × Z → Y are trained using these datasets to predict the
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target variable y ∈ Y based on the input variables x ∈ X and z ∈ Z. We call
the output ŷ := φ(x, z) prediction.

Based on the work of [32], we derive discrimination measures to the needs
of the pre-processing method in this paper. To make our algorithm work, a
discrimination measure must satisfy certain properties which we introduce in
the following.

Definition 1. A discrimination measure is a function ψ : D → R
+, where D is

the set of all datasets, satisfying the following axioms:

1. The discrimination measure ψ(·) is bounded by [0, 1]. (Normalization)
2. Minimal and maximal discrimination are captured with 0, 1 by ψ(·), respec-

tively.

The first and second axiom together assure that the minimal or maximal discrim-
ination can be assessed by this measure. Furthermore, through normalization it
is possible to evaluate the amount of bias present and its proximity to the optimal
solution. As achieving no discrimination is not always possible, i.e., ψ(D) = 0,
we consider lower discrimination as better and define a fairer dataset as the one
with the lower discrimination measure among two datasets.

Literature [2,5,8,19,20,32] on fairness-aware machine learning have classified
fairness notions to either representing group or individual fairness. We subdivide
the most relevant fairness notions into two categories which are dataset and pre-
diction notions and derive discrimination measures from it as suggested by [32].
From now on, we denote x, y, z as random variables describing the events of
observing an individual from a dataset D taking specific values.

Dataset notions typically demand the independency between two variables.
When the protected attribute and the label of a dataset are independent, it is
considered fair because it implies that the protected attribute does not influ-
ence or determine the label. An example to measure such dependency would
be the normalized mutual information (NMI) [29] where independency can be
concluded if and only if the score is zero. Because it is normalized as suggested
by the name, it is a discrimination measure.

Definition 2 (Normalized mutual information). Let H(·) be the entropy
and I(y; z) be the mutual information [25]. The normalized mutual information
score is defined in the following [30]:

ψNMI(D) = 2
I(y; z)

H(y) + H(z)
.

Statistical parity [15,31] and disparate impact [9] are similar notions that also
demand independency, except they are specifically designed for binary variables.
Kang et al. [16] proved that zero mutual information is equivalent to statistical
parity. To translate statistical parity to a discrimination measurement, we make
use of differences similarly to Žliobaitė [32].
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Definition 3 (Statistical parity). Demanding that each group has the same
probability of receiving the favorable outcome is statistical parity, i.e.,

p(y = 1 | z = 1) = p(y = 1 | z = 0).

Because we want to minimize discrimination towards any group, we measure
the absolute difference between the two groups to assess the extent to which
the dataset fulfills statistical parity. This is also known as (absolute) statistical
disparity (SDP) [8]. A value of 0 indicates minimal discrimination:

ψSDP (D) = |p(y = 1 | z = 1) − p(y = 1 | z = 0)|. (1)

Because disparate impact [9] essentially demands the same as statistical parity
but contains a fraction, dividing by zero is a potential issue that may arise.
Therefore, its use should be disregarded [32]. Note that dataset notions can also
be applied to measure the fairness on predictions by exchanging the data label
with the prediction label.

Parity-based notions, fulfilling the separation or sufficiency criterion [2],
require both prediction and truth labels to evaluate the fairness. Contrary to
the category before, measuring solely on datasets is not possible here. Despite
this, it is still essential to evaluate on such measures to account for algorithmic
bias. Here, the discrimination measure takes an additional argument, which is
the prediction label ŷ as a random variable. According fairness notions are, for
example, equality of opportunity [10], predictive parity [2], and equalized odds [2].

Definition 4 (Equalized odds). Equalized odds is defined over the satisfac-
tion of both equality of opportunity and predictive parity [10],

p(ŷ = 1 | y = i, z = 1) = p(ŷ = 1 | y = i, z = 0) ∀i ∈ {0, 1},

where equality of opportunity is the case of i = 1 and predictive parity is the
case of i = 0, correspondingly. Making use of the absolute difference, likewise
to SDP (1), we denote the measure of equality of opportunity as ψEO(D, ŷ) and
predictive parity as ψPP (D, ŷ).

To turn equalized odds into a discrimination measure, we can calculate the
average of the absolute differences for both equality of opportunity and predictive
parity. This is referred to as average odds error [3]:

ψODDS(D, ŷ) =
ψEO(D, ŷ) + ψPP (D, ŷ)

2
. (2)

4 Problem Formulation

Intuitively, the goal is to add an amount of synthetic datapoints to the original
data to yield for minimal discrimination. With the right discrimination mea-
sure chosen, it can be ensured that the unprivileged group gets more exposure
and representation in receiving the favorable outcome. Still, the synthetic data
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should resemble the distribution of the original data. The problem can be stated
formally in the following: Let D be a dataset with cardinality n, let ñ be the
number of samples to be added to D. The goal is to find a set of data points
S = {d1, d2, . . . , dñ} that can be added to the dataset, i.e., D∪S with S ∼ P (D),
that minimizes the discrimination function ψ(D∪S). Hence, we consider the fol-
lowing constrained problem:

min ψ(D ∪ S)
subject to S ∼ P (D)

|S| = ñ. (3)

The objective (3) suggests that the samples di that are added to the dataset
D are drawn from P (D). To draw from P (D), a statistical or generative model
PG that learns the data distribution can be used. Therefore generating data
samples and bias mitigation are treated as sequential tasks where the former can
be solved by methods from literature [22]. Because the discrimination measure
ψ can be of any form, the optimization objective is treated as a black-box and
is solved heuristically.

5 Methodology

Our algorithm relies on a statistical model, specifically the Gaussian copula [22],
to learn the distribution of the given dataset P (D). Gaussian copula captures
the relationship between variables using Gaussian distributions. While assuming
a Gaussian relationship, the individual distributions of the variables can be any
continuous distribution, providing flexibility in modeling the data.

Still, the type of model for this task can be set by the user as long as it can
sample from P (D). Because discrimination functions are treated as black-boxes,
the algorithm does not require the derivatives of ψ and optimizing for it leads
to our desired fairness-agnostic property: It is suitable for any fairness notion
that can be expressed as a discrimination function. Our method handles the
size constraint in Eq. (3) as an upper bound constraint, where a maximum of ñ
samples are added to D.

Our method, outlined in Algorithm 1, begins by initializing D̂ with the biased
dataset D. Then n̂ is set as a multiplicative r > 1 of the original dataset’s size.
Lastly in the initialization, the distribution of P (D) is learned by a generative
model PG. The algorithm then draws m samples from the generative model PG

which are referred to as the set of candidates C. The next step is decisive for the
optimization (Line 9): The candidate which minimizes the discrimination most
when included in the dataset D̂ is added to D̂. The steps of drawing samples and
adding the best candidate to the dataset is repeated till D̂ has a cardinality of n̂
or the discrimination is less than the fairness threshold ε. Because ε is set to 0 by
default, the algorithm can stop earlier before the dataset reaches its requested
size if the discrimination cannot be further reduced, i.e., ψ(D̂) = 0. Because
calculating ψ(D̂∪{c}) (Line 9) does not involve retraining any classifier and solely
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Algorithm 1. Pseudocode of MetricOptGenerator
Input: D, r = 1.25, m = 5, ε = 0
Output: D̂

Initialization:
1: D̂ ← D
2: n̂ ← �r · |D|�
3: PG ← learn distribution of P (D)

Generating fair samples:
4: for i = 1 to n̂ − |D| do
5: if (ψ(D̂) ≤ ε) then
6: return D̂
7: end if
8: C ← sample m candidates from PG

9: D̂ ← D̂ ∪ {argminc∈C ψ(D̂ ∪ {c})}
10: end for
11: return D̂

evaluates the dataset, this step is practically very fast. In our implementation,
we generate a set of synthetic data points prior to the for-loop, eliminating the
sampling cost during the optimization step. We refer to Appendix A for the
proof outlining the polynomial time complexity of the presented method.

6 Evaluation

To evaluate the effectiveness of the presented method against other pre-
processors in ensuring fairness in the data used to train machine learning models,
we aim to answer following research questions:

– RQ1 What pre-processing approach can effectively improve fairness while
maintaining classification accuracy, and how does it perform across different
datasets?

– RQ2 How stable are the performance and fairness results of classifiers trained
on pre-processed datasets?

– RQ3 How does pursuing for statistical parity, a data-based notion, affect a
prediction-based notion such as average odds error?

– RQ4 Is the presented method fairness-agnostic as stated?

To especially address the first three research questions, which deal with effec-
tiveness and stability, we adopted the following experimental methodology: We
examined our approach against three pre-processors on four real-world datasets
(see Table 1). The pre-processors we compare against are Reweighing [13], Learn-
ing Fair Representation [31] (LFR), and Disparate Impact Remover [9] (DIR).
The data were prepared such that categorical features are one-hot encoded and
rows containing empty values are removed from the data. We selected sex, age,
race, and foreign worker as protected attributes for the respective datasets. Gen-
erally, the data preparation was adopted from AIF360 [3].
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Table 1. Overview of datasets.

Dataset Protected Attribute Label Size Description

Adult [17] Sex Income 45 222 Indicates individuals
earning over $50 000
annually

Bank [21] Age Term Deposit 30 488 Subscription to a
term deposit

COMPAS [18] Race Recidivism 6 167 Arrested again for a
new offense within a
period of 2 years
after initial arrest

German [11] Foreign Worker Credit Risk 1 000 Creditworthiness of
loan applicants

All hyperparameter settings of the pre-processsors were kept as they are,
given the implementation provided by AIF360 [3]. For the case of LFR, we
empirically had to lower the hyperparameter of optimizing for fairness. It was
initially set too high which led to identical predictions for all data points. For
our approach, we set r = 1.25 which returns a dataset consisting of additional
25% samples of the dataset’s initial size. The discrimination measure chosen was
the absolute difference of statistical parity (1), which all other methods also
optimize for. Further, we set m = 5 and ε = 0 as shown in Algorithm 1.

The experimental methodology for a single dataset is visualized in Fig. 1 as a
pipeline. The given dataset is firstly split into a training (80%) and test set (20%).
Afterwards, the training set is then passed into the available pre-processors.
Then, all debiased data are used to train several classifiers. We employed
three different machine learning algorithms—k-nearest neighbors (KNN), logistic
regression (LR), and decision tree classifier (DT)—to analyze the pre-processed
datasets and the original, unprocessed dataset for comparison. The unprocessed
dataset is referred to as the baseline. Finally, the performance and fairness is
evaluated on the prediction of the test set. It is noteworthy to mention that the
test sets were left untouched to demonstrate that by pre-processing the training
data, unbiased results can be achieved in the prediction space even without per-
forming bias mitigation in the test data. Due to stability reasons (and to handle
RQ2), we used Monte Carlo cross-validation to shuffle and split the dataset.
This was done 10 times for all datasets. The results from it set the performance-
fairness baseline. While our optimization focuses on SDP, we address RQ3 by
assessing the error of average odds. To answer RQ4, we refer to Sect. 6.2 for the
experimentation and discussion.
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Fig. 1. Experimental methodology visualized as a pipeline

6.1 Comparing Pre-processors

Table 2 presents the performance-fairness test results of pre-processors on differ-
ent datasets (RQ1). For the discrimination, the table displays SDP and average
odds error of the predictions on the test sets. To assess the classifier’s perfor-
mances, we used area under the receiver operating characteristic curve (AUC).
An estimator that guesses classes randomly would produce an AUC score of 0.5.
Here, higher scores imply better prediction performances. Means and standard
deviations of the Monte Carlo cross-validation results are also displayed to eval-
uate the robustness (RQ2). We note that all classifiers except of KNN were
able to handle sample weights in training, which are required for Reweighing.
Therefore Reweighing was not able to mitigate bias in KNN and performed as
well as the baseline in contrast to other approaches including ours.

Because all pre-processors aim to reduce statistical disparity (or the equiv-
alent formulation), we compare the SDP scores between the pre-processors: In
most cases, our approach produced Pareto optimal solutions with respect to
both SDP and AUC. Generally, only Reweighing and our approach appear to
consistently improve fairness without sacrificing notable prediction power. In
direct comparison, LFR improved the fairness at most across all experiments
but at the same time sacrifices prediction quality of all classifiers to such a great
extent that the predictions become essentially useless. In experiments where
LFR attained standard deviations of 0 across all scores (Table 2b, 2d), we inves-
tigated the pre-processed data and found that LFR had modified almost all
labels to a single value. As a result, the estimators were unable to classify the
data effectively, as they predicted only one outcome. The results of DIR are very
inconsistent. DIR sometimes even worsens the fairness, as seen in the COMPAS
and German datasets, where SDP and average odds error are increased in most
settings. This situation arises when there is an excessive correction of the avail-
able discrimination for the unprivileged group, leading to discrimination against
the privileged group. If the discrimination measures are defined such that the
privileged or unprivileged groups do not matter (similarly to this paper), reverse
discrimination would not mistakenly occur by our approach. This extra property
renders our method more suitable for responsible use cases.
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When comparing the average odds error rates (RQ3), our approach has suc-
cessfully reduced algorithmic bias without aiming for it under nearly all exper-
iments. The increase in the average odds error rate (mean), albeit negligible,
was observed only when training DT on the Banking data and LR in the Ger-
man dataset. In all other ten model and dataset configurations, our approach did
reduce the error rate without particularly optimizing for it. This can be expected
in practice as the independency of the label with the protected attribute (SDP)
is a sufficient condition for average odds.

Table 2. The tables displays each classifier’s mean test performance and discrimination
when trained on different pre-processed training sets. The best performing statistic for
each classifier is marked in bold. Minimal standard deviations are marked bold, too.
All values displayed are percentages.

(a) Adult

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 81.28 0.53 19.65 1.04 24.50 1.27

LFR 50.18 1.20 0.18 0.46 0.16 0.37

Our 78.91 0.52 9.68 1.19 10.55 1.26

Original 81.35 0.52 19.77 0.96 24.66 1.21

Reweighing 78.95 0.48 4.96 1.22 1.37 0.76

KNN

DIR 75.35 0.86 20.94 2.35 22.31 3.32

LFR 51.80 4.96 1.14 3.26 0.70 2.02

Our 75.26 0.60 18.84 2.91 19.80 3.54

Original 75.53 0.85 21.09 2.16 22.33 3.05

Reweighing 75.53 0.85 21.09 2.16 22.33 3.05

LR

DIR 80.12 0.59 17.84 0.46 22.80 0.49

LFR 55.35 8.64 1.33 3.05 0.80 2.02

Our 76.96 0.52 3.60 0.82 1.30 0.63

Original 80.13 0.59 17.75 0.45 22.71 0.48

Reweighing 77.29 0.51 4.63 0.57 1.90 0.71

(b) Bank

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 67.66 1.24 3.30 2.03 7.81 3.66

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 72.68 0.96 10.36 3.75 6.93 3.42

Original 72.94 1.15 10.69 1.70 6.49 2.97

Reweighing 72.81 1.16 9.58 1.99 5.93 3.07

KNN

DIR 81.42 0.82 8.43 3.69 6.56 3.16

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 86.98 0.66 9.05 3.55 5.00 3.74

Original 86.98 0.65 9.05 3.55 5.00 3.75

Reweighing 86.98 0.65 9.05 3.55 5.00 3.75

LR

DIR 91.48 0.42 3.90 1.08 3.60 2.59

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 91.25 0.51 6.72 2.24 2.87 2.00

Original 92.14 0.34 7.00 2.85 4.37 2.57

Reweighing 92.11 0.36 5.82 2.47 3.37 1.81

(c) COMPAS

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 70.75 0.53 23.58 4.70 22.06 4.71

LFR 50.26 3.97 8.32 21.12 8.05 21.17

Our 70.91 0.85 10.55 4.31 8.63 4.06

Original 70.76 0.82 21.16 3.64 19.67 3.77

Reweighing 70.35 0.97 10.22 4.02 8.98 2.80

KNN

DIR 65.78 2.88 21.74 7.64 20.58 7.03

LFR 53.58 6.15 2.29 3.67 3.00 4.20

Our 65.13 1.49 12.56 7.98 11.94 7.48

Original 64.84 2.52 15.62 7.88 14.55 8.16

Reweighing 64.84 2.52 15.62 7.88 14.55 8.16

LR

DIR 72.28 0.54 23.20 3.41 21.31 3.77

LFR 56.94 9.07 1.95 3.44 2.55 3.57

Our 71.78 0.68 2.31 1.51 5.38 1.79

Original 72.08 0.48 21.74 3.76 20.01 4.06

Reweighing 71.52 0.76 3.89 2.46 5.61 2.17

(d) German

AUC SDP AVG Odds Error

mean std mean std mean std

Model Preprocessor

DT

DIR 61.15 4.02 23.22 13.70 28.23 14.30

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 63.08 3.47 16.61 10.90 26.78 11.09

Original 62.76 3.95 15.07 11.29 27.12 10.83

Reweighing 62.71 4.65 17.53 15.03 33.15 6.73

KNN

DIR 55.42 4.44 18.70 9.28 23.91 7.47

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 54.21 4.34 12.95 2.95 13.81 3.26

Original 54.08 3.86 16.99 4.63 18.27 4.95

Reweighing 54.08 3.86 16.99 4.63 18.27 4.95

LR

DIR 78.05 2.15 20.05 11.84 29.79 14.16

LFR 50.00 0.00 0.00 0.00 0.00 0.00

Our 77.60 1.73 15.49 10.46 31.00 9.50

Original 78.10 1.67 16.79 11.10 29.83 10.54

Reweighing 78.05 1.88 16.42 11.10 30.32 10.56
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Fig. 2. Results of optimizing different discrimination objectives with our method on
the COMPAS dataset. Objectives are ordered by columns, classifiers by rows. The
y-axis displays AUC.

6.2 Investigating the Fairness-Agnostic Property

To demonstrate the fairness-agnostic property of our algorithm (RQ4), we eval-
uated our method against the baseline dataset on multiple measures and examine
whether the objective was improved (see Fig. 2). The COMPAS dataset was used
for this experiment. The chosen objectives are: the absolute value of Pearson’s
ρ, NMI (2), and the objective of disparate impact (DI) as given by [9]. All other
experimental settings remained the same as described prior, except that other
pre-processing methods were not used.

It can be observed that all discrimination measures were lowered significantly.
Generally, our method was able to optimize on any fairness notion, as evidenced
here and Sect. 6.1. It was even able to outperform algorithms that were specifi-
cally designed for a single metric, demonstrating its adaptability.
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7 Conclusion

Machine learning can be utilized for malicious purposes if estimators are trained
on data that is biased against certain demographic groups. This can have an
incredibly negative impact on the decisions made and the groups that are being
discriminated against.

The presented pre-processing method in this work is a sampling-based opti-
mization algorithm that firstly uses a statistical model to learn the distribution
of the given dataset, then samples points from this distribution, and determines
which one to add to the data to minimize the discrimination. This process con-
tinues until the predefined criteria set by the user are satisfied. The method can
optimize any discrimination measure as it is treated as a black-box, making it
more accessible for wider use cases.

The results of our experiments demonstrate that our technique is reliable and
significantly reduces discrimination while not compromising accuracy. Although
a few other methods performed similarly in a few experiments, they were not
compatible with certain estimators or even added bias to the original data.
Because fairness was improved among the experiments and our method adds
samples, it indicates that representativeness can be achieved with our method.
Our research underscores the importance of addressing bias in data and we hope
to contribute such concerns in data analytics and knowledge discovery applica-
tions.

8 Discussion and Future Work

The results of our approach demonstrate that it is possible to achieve fairness
in machine learning models using generated data points. Despite our approach
showing promise, it is important to acknowledge that our results rely heavily on
the quality of the statistical model used to generate synthetic data. For tabular
data, Gaussian copula [22] seems to be a good choice.

In future work, we aim to explore the potential of our method in making
pre-trained models fairer with our method. While retraining large models using
debiased datasets may not always be feasible from a cost-effective perspective,
our approach allows using generated data to fine-tune the model for fairness,
which provides a more efficient alternative.

Additionally, our evaluation deals with datasets where the protected attribute
is a binary variable, which leaves some use cases untreated. Neglecting to rec-
ognize non-binary groups can lead to overlooking those who are most in need
of attention. Similarly, research on dealing with multiple protected attributes at
the same time could be done. This is to make sure that no protected group is
being disadvantaged. Previous studies have touched on this subject [1,4,32], but
we hope to reformulate these issues as objectives that work with our approach.

42



188 M. K. Duong and S. Conrad

A Proof of Time Complexity

Theorem 1 (Time complexity). If the number of candidates m and fraction r
are fixed and calculating the discrimination ψ(D) of any dataset D takes a linear
amount of time, i.e., O(n), Algorithm 1 has a worst-case time complexity of
O(n2) where n is the dataset’s size when neglecting learning the data distribution.

Proof. In this proof, we will focus on analyzing the runtime complexity of the
for-loop within our algorithm as the steps before such as learning the data distri-
bution depends heavily on the used method. The final runtime of the complete
algorithm is simply the sum of the runtime complexities of the for-loop that is
focus of this analysis and the step of learning the data distribution.

Our algorithm firstly checks whether the discrimination of the dataset D̂ is
already fair. The dataset grows at each iteration and runs for �rn	−n = �n(r−1)	
times. For simplicity, we use n(r − 1) and yield,

n(r−1)−1∑

i=0

n + i =
n(r−1)∑

i=1

n + i + 1

=
n(r−1)∑

i=1

n +
n(r−1)∑

i=1

i +
n(r−1)∑

i=1

1

= n2(r − 1) +
(n(r − 1))2 + (n(r − 1) + 1)

2
+ n(r − 1) ∈ O(n2),

making the first decisive step for the runtime quadratic.
The second step that affects the runtime is returning the dataset that min-

imizes the discrimination where each of the m candidates c ∈ C is merged
with the dataset, i.e., ψ(D̂ ∪ {c}). The worst-case time complexity of it can be
expressed by

n(r−1)∑

i=1

m(n + i) = m ·
n(r−1)∑

i=1

n + i = m ·
⎛

⎝
n(r−1)∑

i=1

n +
n(r−1)∑

i=1

i

⎞

⎠

= m ·
(

n2(r − 1) +
(n(r − 1))2 + (n(r − 1))

2

)
∈ O(n2),

which is also quadratic. Summing both time complexities makes the overall com-
plexity quadratic. 
�

Although the theoretical time complexity of our algorithm is quadratic, mea-
suring the discrimination, which is a crucial part of the algorithm, is very fast and
can be assumed to be constant for smaller datasets. Conclusively, the complexity
behaves nearly linearly in practice.

In our experimentation, measuring the discrimination of the Adult
dataset [17], which consists of 45 222 samples, did not pose a bottleneck for
our algorithm.
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3.2 Mitigating Bias for Non-binary Protected At-
tributes with FairDo

Paper: Manh Khoi Duong and Stefan Conrad. Towards Fairness and Privacy: A Novel
Data Pre-processing Optimization Framework for Non-binary Protected Attributes. In
Data Science and Machine Learning, volume 1943 of Communications in Computer and
Information Science. Springer Singapore, 2023.

Personal Contribution: Tackling the limitations of the previous work [2], Manh
Khoi Duong solely developed a novel and generalized framework to account for fairness
and privacy in data pre-processing. Manh Khoi Duong single-handedly implemented
the framework, published it as a Python package on GitHub1 and PyPI under the name
FairDo [3], and conducted the experiments. All parts of the paper were written by
Manh Khoi Duong. Stefan Conrad supervised the work.

Status: Published

In this paper, we addressed the limitations of our previous work [2] by extending the
methodology to cover non-binary protected attributes. For this, a discrimination mea-
sure that handles this case was used. Furthermore, we introduced a novel optimization
framework, FairDo [3], which is more flexible and generalizable. Due to its flexibility,
we can employ any type of heuristic to solve the optimization problem, making our
prior work [2] a special case of this framework. The two main optimization problems
introduced in our framework involve removing and adding data points to minimize
discrimination. Each serves a different purpose.

Existing works often focus on binary protected attributes. Specifically, all imple-
mented pre-processing methods [33, 51, 25, 19] in AIF360 [15] are only able to deal
with binary protected attributes. But in reality, protected attributes often contain
more than two groups, such as nationality or age groups. This is a major limitation of
existing fairness libraries. To make the pre-processing methods work, AIF360’s sample
datasets are modified to have binary protected attributes. This is done by merging
multiple groups together so that only two groups remain. The two groups are then
considered the privileged and unprivileged groups.

Our framework avoids these limitations by allowing for non-binary protected at-
tributes. When a protected attribute is non-binary, measuring the discrimination be-
comes non-trivial. Since multiple ways to measure such discrimination exist [53], our
introduced optimization framework can account for any fairness metric. We call this
property fairness-agnostic. This is achieved by treating the optimization objective as
a black-box function. This makes our framework flexible and generalizable. To solve
the optimization problem, heuristics are used. In our experiments, genetic algorithms
have been shown to be most effective. Our framework can also employ synthetic data
for fairness and therefore handles privacy concerns as well.

1https://github.com/mkduong-ai/fairdo
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Manh Khoi Duong(B) and Stefan Conrad
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Abstract. The reason behind the unfair outcomes of AI is often rooted
in biased datasets. Therefore, this work presents a framework for address-
ing fairness by debiasing datasets containing a (non-)binary protected
attribute. The framework proposes a combinatorial optimization prob-
lem where heuristics such as genetic algorithms can be used to solve for
the stated fairness objectives. The framework addresses this by finding a
data subset that minimizes a certain discrimination measure. Depending
on a user-defined setting, the framework enables different use cases, such
as data removal, the addition of synthetic data, or exclusive use of syn-
thetic data. The exclusive use of synthetic data in particular enhances
the framework’s ability to preserve privacy while optimizing for fairness.
In a comprehensive evaluation, we demonstrate that under our frame-
work, genetic algorithms can effectively yield fairer datasets compared
to the original data. In contrast to prior work, the framework exhibits a
high degree of flexibility as it is metric- and task-agnostic, can be applied
to both binary or non-binary protected attributes, and demonstrates effi-
cient runtime.

Keywords: Fairness · Data privacy · Non-binary · Fairness-agnostic ·
Genetic algorithms

1 Introduction

Machine learning has become an increasingly important tool for decision-making
in various applications, ranging from income [17] to recidivism prediction [18].
However, the use of these models can perpetuate existing biases in the data
and result in unfair treatment of certain demographic groups. One of the key
concerns in the development of fair machine learning models is the prevention of
discrimination regarding protected attributes such as race, gender, and religion.

This work was supported by the Federal Ministry of Education and Research (BMBF)
under Grand No. 16DHB4020.
c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
D. Benavides-Prado et al. (Eds.): AusDM 2023, CCIS 1943, pp. 105–120, 2024.
https://doi.org/10.1007/978-981-99-8696-5_8 47
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Fig. 1. The pipeline consists of three steps: (1) The user sets the sample set S and other
settings, including the objective, discrimination measure, and protected attribute; (2)
Synthetic data is generated if needed; (3) A solver optimizes the fairness objective to
yield a biased-reduced subset Dfair from the user-selected set S. If S = G was chosen,
the user obtains a bias-reduced synthetic dataset that does not leak privacy-related
information.

While most of the existing literature focuses on classification problems where
the protected attribute is binary [2,4,6,7,10,20,24,28], the real world presents
a more complex scenario where the protected attribute can consist of more than
two social groups, making it non-binary. While works that discuss and deal with
non-binary protected attributes exist, and we do not neglect their existence [5,
14,29], we view it as a necessity to contribute further to this field by providing a
flexible framework that accommodates various fairness notions and applications,
including data privacy, to strive for the employment of responsible artificial
intelligence in practice.

Since bias is rooted in data, we introduce an optimization framework that
pre-processes data to mitigate discrimination. In the context of fairness, pre-
processing ensures the generation of a fair, debiased dataset. We address the
challenges associated with non-binary protected attributes by deriving appro-
priate discrimination measures. To prevent discrimination, we formulate a com-
binatorial optimization problem to identify a subset from a given sample dataset
that minimizes a specific discrimination measure, as depicted in Fig. 1. Depend-
ing on the provided sample dataset, which may also include synthetically gen-
erated data, the framework allows for the removal of such data points or the
inclusion of synthetic ones to achieve equitable outcomes. By using generated
data, we can utilize our method in applications where data privacy is a concern.
Since the discrimination objective is stated as a black box, heuristics, which
do not assess the analytical expression of the discrimination measure during
optimization, are needed to solve our stated problem. Our formulation makes
the framework fairness-agnostic, allowing it to be used to pursue any fairness
objective.

The experimentation was carried out on the Adult [17], Bank [22], and COM-
PAS [18] datasets, all known to exhibit discrimination. We compared the dis-
crimination of the datasets before and after pre-processing them with different
heuristics on various discrimination measures. The results show that genetic
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algorithms [12] were most effective in reducing discrimination for non-binary
protected attributes. To summarize, the primary contributions of this paper are:

– We present an optimization framework that renders different approaches for
yielding fair data. The approaches include removing, adding generated data,
or solely using generated data.

– We underscore the framework’s ability to handle cases where data privacy is
a significant concern.

– Our methodology is designed to handle a protected attribute that can be
non-binary, offering broader applicability.

– We carry out an extensive evaluation of the proposed techniques on three
biased datasets. The evaluation focuses on their effectiveness in reducing dis-
crimination and their runtimes.

– We publish our implementation at https://github.com/mkduong-ai/fairdo as
a documented Python package and distribute it over PyPI.

2 Related Work

Recently, related works have equivalently formulated subset selection problems
to achieve fairness goals [7,26]. While in the work of Tang et al. [26], a distri-
bution is generated that represents the selection probability of each feasible set
to maximize the global utility on average, our work aims to return a definite
subset. To achieve fairness according to any defined criteria, our formulation
treats discrimination measures as black boxes. These measures can encompass
both group and individual fairness notions, distinguishing our work from that of
Tang et al. [26], whose framework is limited to group fairness.

Previous studies have also utilized synthetic data to address fairness and
privacy concerns [7,19]. Both of these studies employed heuristics similar to
our approach. In particular, Liu et al. [19] specialized on generating synthetic
data using a genetic algorithm to satisfy specific privacy definitions [3,8]. While
our framework does not generate privacy-preserving data specifically, it utilizes
synthetic data, which can be generated with such methods. Similarly to our
work, Duong et al. [7] leveraged synthetic data by introducing a sampling-based
heuristic for selecting a subset of such data points to minimize discrimination.
Our work generalizes the work of Duong et al. [7] as their approach can be viewed
as a special case of ours. Additionally, our formulation offers greater flexibility
compared to the approach of Duong et al. [7], as it allows for any heuristic to
tackle the task and is also not limited to binary protected attributes.

3 Measuring Discrimination

In this section, we introduce the notation used to derive discrimination measures
for assessing dataset fairness: A data point or sample is represented as a triple
(x, y, z), where x ∈ X is the feature, y ∈ Y is the ground truth label indicating
favorable or unfavorable outcomes, and z ∈ Z is the protected attribute, which
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is used to differentiate between groups. The sets X,Y,Z typically hold numeric
values and are defined as X = R

d, Y = {0, 1}, and Z = {1, 2, . . . , k} with k ≥ 2.
For instance, in the context of predicting personal attributes, we can use X to
represent numeric values that encode particular aspects of a person. Y typically
describes the positive or negative outcome that we aim to predict for the person.
Z can denote any protected attribute, such as race, which can be used to identify
the person as Caucasian, Afro-American, Latin American, or Asian. We assume
that z is not included as a feature in x. To be able to differentiate between
groups, k ≥ 2 must hold. If k > 2, the protected attribute Z is said to be non-
binary. Following the definition, a dataset, denoted as D = {di}n

i=1, consists of
data points, where a single sample is defined as di = (xi, yi, zi). Machine learning
models are trained using these datasets to predict the target variable y based on
the input variables x and z. Finally, we denote a discrimination measure with
ψ : D → [0, 1], where D is the set of all datasets.

In the following, x, y, z are noted as random variables that can take on specific
values.

3.1 Absolute Measures

To deal with non-binary groups, Žliobaitė [29] suggested in her work to compare
groups pairwise. For this, she presented three possible ways which are com-
paring each group with another, one against the rest for each group, and all
groups against the unprivileged group. The author further discussed options to
aggregate the results. Although Žliobaitė [29] stated textually how to measure
discrimination for more than two groups, we express them mathematically in this
work. To treat groups equally without presuming which group is unprivileged
and to get the full picture, we choose to make use of comparing each group with
another. We first introduce the common fairness notion statistical parity [16,28],
which demands equal positive outcomes for different groups in Z = {1, 2, . . . , k}.
It is usually defined for binary groups, but we present the non-binary cases [29].

Definition 1 (Statistical parity). Demanding that each of the k groups have
the same probability of receiving the favorable outcome is statistical parity, i.e.,

P (y = 1 | z = 1) = . . . = P (y = 1 | z = k)
⇐⇒ P (y = 1 | z = i) = P (y = 1 | z = j) ∀i, j ∈ Z.

As the group size k grows, the satisfaction of statistical parity becomes less
probable. Because of this, the equality constraints are treated softly by deriv-
ing differences between the groups. Consequently, smaller differences imply more
equality. For binary groups, the difference is often referred to as statistical dis-
parity (SDP) [6].
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Definition 2 (Sum of absolute statistical disparities). Let there be k
groups, then the sum of absolute statistical disparities is calculated as follows [29]:

ψSDP-sum(D) =
∑

i,j∈Z
i�=j

|P (y = 1 | z = i) − P (y = 1 | z = j)|

=
k∑

i=1

k∑

j=i+1

|P (y = 1 | z = i) − P (y = 1 | z = j)|.

Because the total number of comparisons is k(k−1)
2 [29], the average discrimina-

tion between all groups becomes:

ψSDP-avg(D) =
2

k(k − 1)
·

k∑

i=1

k∑

j=i+1

|P (y = 1 | z = i)

− P (y = 1 | z = j)|.
Definition 3 (Maximal absolute statistical disparity). Maximal absolute
statistical disparity measures the absolute statistical disparity between all pairs
i, j ∈ Z and returns the maximum value. Specifically, it is given by:

ψSDP-max(D) = max
i,j∈Z

|P (y = 1 | z = i)

− P (y = 1 | z = j)|.
Žliobaitė [29], after consulting with legal experts, recommends using the max-

imum function to aggregate disparities, though the choice depends on the ethical
context of the specific use case. Discrimination measures can be seen as social
welfare functions. Minimizing the sum of absolute statistical disparities is analo-
gous to the utilitarian viewpoint [21], which aims to maximize the general utility
of the population. If one decides to care for the least well-off group, then min-
imizing the maximal absolute statistical disparity corresponds to the Rawlsian
social welfare [25].

4 Optimization Framework

Inspired by related works that identify unfair data samples [15,27], we propose
a method to remove such samples for fairness. The task is formulated as a com-
binatorial problem where the aim is to determine a subset Dfair of a given set S
such that the discrimination of the subset ψ(Dfair) is minimal, as shown in Fig. 1.
Depending on the application, set S can be the original data D, a synthetic set
G with the same distribution as D, or their union D ∪ G.

4.1 Problem Formulation

To state the problem mathematically, let note S = {s1, s2, . . . , sñ} and further
introduce a binary vector b with the same length as S, i.e., b = (b1, b2, . . . , bñ). To
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define the combinatorial optimization problem, each entry bi in b is examined
whether it is 1 (bi = 1), in which case the corresponding sample si in S is
included in the subset Dfair. Therefore, the fair set is defined with

Dfair = {si ∈ S | bi = 1, i = 1 . . . ñ}. (1)

The objective f : 0, 1ñ → [0, 1] can then be expressed by:

fS,ψ(b) = ψ(Dfair)
⇐⇒ fS,ψ(b) = ψ({si ∈ S | bi = 1, i = 1 . . . ñ}), (2)

where fS,ψ is defined as the discrimination of a subset Dfair of the given set
S and ψ evaluates the level of discrimination on Dfair. Note that the decision
variable is b, for which Dfair can be obtained. The subindices S and ψ of fS,ψ

can be seen as settings for the objective. Ignoring the subindices, we write out
the combinatorial optimization problem as follows:

min
b

f(b) (3)

subject to bi ∈ {0, 1} ∀i = 1, . . . , ñ.

Because the set of feasible subsets P(S) grows exponentially regarding the car-
dinality of S, we employ heuristics to solve our stated problem.

In the following subsections, we discuss different and useful settings of S that
serve different purposes with their corresponding advantages and disadvantages.

4.2 Removing Samples (S = D)

By setting S = D, it is intended to determine data points in the training set that
can be removed to prevent discrimination. Intuitively, having an overexposure
of certain types of samples that fulfill stereotypes can result in a discriminatory
dataset. In such situations, the most practical step is to remove the affected
samples.

However, this method is not recommended if the given dataset is small. Like-
wise, some could argue that minorities can be easily removed by this method.
Luckily, this can be prevented by choosing the right discrimination measure.

4.3 Employing only Synthetic Data (S = G)

To employ synthetic data, this method relies on a statistical model. The statis-
tical model is used to learn the distribution of the original data P (D). By doing
so, synthetic samples G can be drawn from the learned distribution G ∼ P (D).

Relying solely on synthetic data is particularly important in use cases where
data privacy and protection are major concerns and the use of real data is
prohibited. Of course, synthetic data is not necessarily disjoint from the original
dataset and can therefore be a privacy breach itself. For tabular and smaller
datasets, this can be naively mitigated by removing such privacy breaching points
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from the synthetic data by setting S = G \ D. Other ways include populating
differential privacy techniques in the data generation process [1,8,13,19].

When generally using synthetic data, one cannot easily ensure that the cor-
responding label of the features is correct. Training machine learning models on
synthetic data can therefore lead to higher error rates when predicting on real
data. Despite the distribution of the synthetic data following the distribution
of the real dataset, it depends heavily on the method used when it comes to
generating qualitative, faithful data.

4.4 Merging Real and Synthetic Data (S = D ∪ G)

Another approach to generate a non-discriminatory dataset is to merge the orig-
inal dataset D with synthetic data G that has been generated with a statistical
model as described in Sect. 4.3. By combining the two sets S = D∪G, it is possi-
ble to increase the size of the resulting dataset while avoiding over-representation
of discriminatory samples.

One advantage of this method is that it can improve the quality of the data
by utilizing both the real D and synthetic data G. The resulting dataset can
be larger and more diverse, which can lead to greater robustness when training
machine learning models. If the dataset is too small to apply removal techniques
(S = D) or relying solely on synthetic data (S = G) appears unreliable, merging
the two sets may be a viable option.

However, this method is not without its limitations and comes with dis-
advantages when generally using synthetic data, e.g., quality and faithfulness.
Different from the method described in Sect. 4.3, this method is not applicable
for purposes with privacy concerns as samples from the real data are not omitted.

4.5 Adding Synthetic Data

A different approach that requires a new formulation of the objective is to include
synthetic data points without deleting any samples from the real data. As well, a
set of generated data points G must be given, and the research question is which
of the generated points can lead to a fairer distribution when including them
in the original dataset. The possible use case for this problem is to fine-tune
machine learning models that have already learned from an unfair dataset. This
is mostly useful for large machine learning models where resources are scarce
to retrain the whole model. Following the preceding notation, the fair dataset
becomes:

Dadd
fair = D ∪ {si ∈ S | bi = 1, i = 1 . . . ñ} (4)

and we express the corresponding objective fadd
S,ψ by:

fadd
S,ψ (b) = ψ(Dadd

fair )

⇐⇒ fadd
S,ψ (b) = ψ(D ∪ {si ∈ S | bi = 1, i = 1 . . . ñ}), (5)

where S is set to G to achieve the described approach. Certainly, S can also be
set to D or any other set operation on D with G. Although such settings are
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possible, they do not serve any meaningful purposes. However, one could argue
that setting S = D can act as a reweighing method. Still, we argue against
facilitating duplicates in a dataset with intent, as no additional information is
provided.

As seen, our framework offers many advantages due to its versatility and
therefore potential use in a broad range of applications. By choosing the appro-
priate objective function, discrimination measure, and sample set, the formula-
tion is tailored to the specific intent and use case. Because the formulation is
agnostic to the solver, it can serve multiple purposes without modifying solvers.

Table 1. Overview of Datasets

Dataset Entries Cols. Label Protected
Attribute

Description

Adult [17] 32 561 22 Income Race: White,
Black, Asian-
Pacific-Islander,
American-
Indian-Eskimo,
Other

Indicates
individuals
earning over
$50,000 annually

Bank [22] 41 188 53 Term deposit
subscription

Job: Admin,
Blue-Collar,
Technician,
Services,
Management,
Retired,
Entrepreneur,
Self-Employed,
Housemaid,
Unemployed,
Student,
Unknown

Shows whether
the client has
subscribed to a
term deposit.

COMPAS [18] 7 214 8 2-year
recidivism

Race: African-
American,
Caucasian,
Hispanic, Other,
Asian, Native
American

Displays
individuals that
were rearrested
for a new crime
within 2 years
after initial
arrest

5 Heuristics

This section presents heuristics that specifically solve combinatorial optimization
problems. These include: a baseline method that returns the original dataset, a
simple random heuristic, and genetic algorithms with different operators.
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1. Original: Uses the original data by returning a vector of ones b = 1ñ.
2. Random Heuristic: Generates a user-defined number of random vectors,

with each entry having a 50% chance of being zero or one, and then returns
the best solution.

3. Genetic Algorithm (GA): The workflow of GAs [9] involves generating
an initial population of candidate solutions and then repeatedly performing
selection, crossover, and mutation operations over several generations. In our
implementation, the GA terminates earlier if improved solutions were not
found within 50 generations. Following operators were used in our experi-
mentation [11]:

– Selection: Elitist, Tournament, Roulette Wheel (see [11] for more details)
– Crossover: Uniform (each entry of the offspring has the same probability

of either inheriting the entry from the first or second parent)
– Mutation: Bit Flip (flips a fixed amount of random bits for each vector,

that is 
pm · ñ�, where pm ∈ [0, 1] is the mutation rate)

6 Evaluation

In our evaluation, we conducted multiple experiments to address the following
research questions:

– RQ1 How do the heuristics perform in making the datasets fairer?
– RQ2 How does runtime vary among the heuristics?
– RQ3 How stable are the results across the runs?
– RQ4 Is there a clear winner? If yes, which method is recommended for prac-

tical use?

To answer these research questions, we specifically designed experiments for
the Adult [17], Bank [22], and COMPAS [18] datasets. Both the Adult and COM-
PAS datasets include race as a non-binary protected attribute, whereas the Bank
dataset utilizes the job as a non-binary protected attribute. All datasets were
prepared and cleansed in the same manner: Categorical features were one-hot
encoded, with the exception of the protected attribute and the label. Addition-
ally, rows containing missing values were excluded from all datasets. Table 1
shows details about the datasets used in our experiments after the preparation
and cleansing steps.

Following the dataset preparation, we executed two distinct experiments.
The first experiment (Sect. 6.1) was dedicated to hyperparameter tuning of the
GAs, adjusting both population sizes and the number of generations to pin-
point optimal configurations. Armed with these optimal settings, our second
experiment (Sect. 6.2) focused on comparing different selection operators within
GAs (RQ1). Our aim was to determine which operator yielded the best per-
formance. This experiment included comparisons to several baseline methods,
one of which simply returned the original data. By expanding our evaluation to
multiple discrimination measures in this phase, we can comprehensively assess
the effectiveness of GAs in reducing discrimination in datasets.
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The experimental methodology involves the application of heuristics to pro-
duce a binary mask, which yields fair data. We then measure the discrimination
of the resulting dataset. To ensure stability in our findings (RQ3), each experi-
ment was repeated 15 times. We additionally recorded the runtime of each trial
to tackle RQ2. Depending on the experiment, we employed suitable heuristics
that aim to solve each objective with the associated discrimination measure, as
listed in Table 2. For instance, each heuristic either optimizes fS,ψ or fadd

S,ψ with
varying settings of S and ψ as given in the table. In order to perform experiments
with synthetic data, we generated data that has the same size as the original
dataset, i.e., |G| = |D|. The statistical model used to generate synthetic data is
Gaussian copula [23] which is fast and performs well on tabular data. For privacy-
sensitive use cases, we advise utilizing privacy-preserving techniques [1,8,13,19].
All experiments were conducted on an Intel(R) Xeon(R) Gold 5120 processor
clocking at 2.20GHz.

Table 2. Configuration details of heuristics, objectives, and discrimination measures
for each experiment.

Experiment Heuristics Objectives (f , S) Disc. Measures (ψ)

Hyperparam GA Remove, Merge, Add Sum SDP
Comparison Original, Random,

GA (Elitist, Tournament,
Roulette Wheel)

Remove, Merge, Add Sum SDP, Max SDP

6.1 Hyperparameter Tuning

For the genetic algorithm, we performed hyperparameter tuning, exploring var-
ious population sizes [20, 50, 100, 200] and generations [50, 100, 200, 500], all
using tournament selection, uniform crossover, and bit flip mutation at a rate of
5%. These configurations are described in Sect. 5. We evaluated the algorithm
on three distinct objectives and set ψSDP-sum as the discrimination measure.

Discrimination. As seen in Fig. 2, the heatmaps display the average discrim-
ination (including the standard deviation) of GAs solving various objectives on
different datasets. Each heatmap shows hyperparameters that were set for the
experimentation. Across the different objectives and datasets, there is a consis-
tent trend indicating that utilizing larger populations combined with a higher
number of generations typically results in less discrimination. This is particularly
evident when contrasting scenarios with a population size of 20 and 50 gener-
ations, which, on average, have discrimination scores higher by 0.1. However,
the improvements in discrimination plateau beyond certain thresholds. Specifi-
cally, once the number of generations surpasses 200 or when the population size
exceeds 100, there is no significant further decrease in discrimination observable.
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Fig. 2. Heatmaps showing discrimination scores (ψSDP-sum) after pre-processing with
genetic algorithms using different population sizes (y-axis) and generations (x-axis).
Rows depict the results of Adult, Bank, and COMPAS datasets, while columns repre-
sent the objectives.

Runtime. For brevity reasons, we display the runtimes solely for the Bank
dataset in Fig. 3, given its larger size and the similarity of the results across
other datasets. The outcome of this analysis pointed towards an optimal setting
of a population size of 100 combined with 500 generations. Under our specifica-
tions, executing the GA with these settings takes, on average, between 1.5 and
4.5min. While increasing the population size further did not show significant
improvements in reducing the bias in the datasets, it proved to be more efficient
in terms of the runtime.

6.2 Comparing Heuristics

After determining that a population size of 100 with 500 generations offered
optimal results w.r.t. discrimination and time, this configuration was maintained
for all subsequent experiments. Here, three GAs were compared, each differing
by their selection operator: elitist, tournament, and roulette wheel selection. All
GAs were set with uniform crossover and bit flip mutation at a rate of 5% to
perform the experiments. Additionally, we established both the original dataset
and the random heuristic as baselines.

Discrimination. Table 3 presents the discrimination results of our experiments.
It is evident that all tested algorithms are stable, as reflected by the low standard
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Fig. 3. Heatmaps showing runtimes in seconds for the Bank dataset after pre-
processing with genetic algorithms using different population sizes (y-axis) and gener-
ations (x-axis).

Table 3. Displayed are the mean discrimination scores, accompanied by standard
deviations, from 15 runs. The heuristics were evaluated across multiple objectives using
varying discrimination measures on the Adult, Bank, and COMPAS datasets. Best
results are marked bold.

Objective Method Sum SDP Max SDP
Adult Bank COMPAS Adult Bank COMPAS

Add 1. Original 1.07 ± 0.02 1.83 ± 0.09 1.17 ± 0.06 0.23 ± 0.00 0.09 ± 0.00 0.17 ± 0.01
2. Random 1.03 ± 0.02 2.27 ± 0.07 0.94 ± 0.03 0.21 ± 0.00 0.11 ± 0.00 0.15 ± 0.01
3. Elitist 0.82 ± 0.02 1.54 ± 0.06 0.59 ± 0.03 0.16 ± 0.00 0.07 ± 0.00 0.10 ± 0.00
4. Tournament 0.97 ± 0.02 2.06 ± 0.06 0.80 ± 0.03 0.20 ± 0.00 0.10 ± 0.00 0.13 ± 0.00
5. Roulette 1.03 ± 0.02 2.31 ± 0.08 0.94 ± 0.05 0.21 ± 0.00 0.11 ± 0.00 0.15 ± 0.01

Merge 1. Original 1.07 ± 0.02 1.83 ± 0.09 1.17 ± 0.06 0.23 ± 0.00 0.09 ± 0.00 0.17 ± 0.01
2. Random 0.80 ± 0.03 1.46 ± 0.09 0.76 ± 0.08 0.16 ± 0.01 0.07 ± 0.00 0.12 ± 0.01
3. Elitist 0.21 ± 0.04 0.42 ± 0.07 0.11 ± 0.05 0.04 ± 0.01 0.02 ± 0.00 0.01 ± 0.00
4. Tournament 0.58 ± 0.04 1.17 ± 0.09 0.51 ± 0.04 0.11 ± 0.01 0.05 ± 0.00 0.09 ± 0.01
5. Roulette 0.85 ± 0.05 1.49 ± 0.09 0.79 ± 0.09 0.16 ± 0.01 0.07 ± 0.00 0.12 ± 0.01

Remove 1. Original 0.97 ± 0.00 4.81 ± 0.00 1.89 ± 0.00 0.17 ± 0.00 0.25 ± 0.00 0.27 ± 0.00
2. Random 0.71 ± 0.02 4.07 ± 0.07 0.72 ± 0.03 0.12 ± 0.00 0.19 ± 0.00 0.12 ± 0.01
3. Elitist 0.25 ± 0.02 1.41 ± 0.12 0.20 ± 0.07 0.05 ± 0.00 0.07 ± 0.01 0.01 ± 0.00
4. Tournament 0.57 ± 0.02 3.29 ± 0.08 0.56 ± 0.04 0.11 ± 0.00 0.15 ± 0.01 0.09 ± 0.01
5. Roulette 0.75 ± 0.03 4.15 ± 0.10 0.75 ± 0.08 0.13 ± 0.00 0.20 ± 0.01 0.12 ± 0.01

deviations (RQ3). All heuristics were able to reduce the discrimination available
in the datasets in most cases. Elitist selection consistently outperformed other
methods, offering notable improvements in fairness compared to the original
datasets (RQ1). We emphasize that the measures handle non-binary attributes,
providing flexibility in targeting various fairness goals. Further, by the range
of discrimination measures utilized, our methodology can aim for diverse fair-
ness goals, be it the enhancement of the utilitarian social welfare (ψSDP-sum)
or Rawlsian social welfare (ψSDP-max), as evidenced. An interesting observation
from our study is the varied discrimination levels based on the specific measure
used, as seen in the Bank dataset, where its discrimination is either highest or
lowest when compared with other datasets. This is due to the higher number of
groups, leading to more group comparisons that affect the overall discrimination
score. When examining the objectives, removing both the synthetic and original
data tends to outperform others. This observation is particularly evident in the

58



Towards Fairness and Privacy: A Novel Data Pre-processing Framework 117

Merge objective. Given the consistent performance of the elitist selection in our
tests, we strongly recommend its use for those aiming to achieve the best fairness
outcomes (RQ4).

Table 4. Mean runtimes in seconds of different methods solving different objectives
with varying discrimination measures on the Adult, Bank, and COMPAS datasets.

Objective Method Sum SDP Max SDP
Adult Bank COMPAS Adult Bank COMPAS

Add 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 50 ± 1 107 ± 12 14 ± 0 51 ± 6 103 ± 7 13 ± 0
3. Elitist 320 ± 105 605 ± 224 53 ± 21 334 ± 80 636 ± 179 79 ± 23
4. Tournament 122 ± 38 209 ± 50 39 ± 17 119 ± 37 216 ± 74 34 ± 12
5. Roulette 82 ± 26 131 ± 46 26 ± 9 82 ± 40 132 ± 48 26 ± 12

Merge 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 46 ± 3 67 ± 1 15 ± 2 44 ± 4 66 ± 1 15 ± 3
3. Elitist 283 ± 103 359 ± 143 79 ± 25 286 ± 111 397 ± 161 75 ± 28
4. Tournament 127 ± 39 185 ± 69 36 ± 11 131 ± 61 169 ± 51 44 ± 19
5. Roulette 69 ± 21 127 ± 53 28 ± 9 83 ± 33 118 ± 31 29 ± 14

Remove 1. Original 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0
2. Random 23 ± 1 44 ± 1 11 ± 0 22 ± 1 47 ± 11 11 ± 0
3. Elitist 138 ± 66 281 ± 119 52 ± 18 176 ± 68 290 ± 80 50 ± 15
4. Tournament 78 ± 13 119 ± 25 24 ± 9 73 ± 27 132 ± 46 25 ± 7
5. Roulette 58 ± 27 72 ± 19 22 ± 8 52 ± 24 71 ± 24 18 ± 7

Runtime. An analysis of the runtimes is presented in Table 4. The original
method consistently took 0 s (rounded) to finish. At second comes the random
method and lastly GAs. The elitist operator took the longest, with runtimes
approximately three times slower than the quickest operator, the roulette wheel.
Tournament selection comes in between. Most experiments were finished in 5min
or less, which is still very efficient. Regarding the measures, the runtimes when
optimizing ψSDP-max appeared negligibly higher compared to ψSDP-sum, so it can
be disregarded. Generally, larger datasets yielded longer runtimes, revealing a
linear relationship between dataset size and runtime. In addressing the research
question posed in RQ4, it becomes evident that the elitist operator is superior
among the tested methods. Despite being the slowest method, it is still very
efficient at reducing discrimination on datasets consisting of up to 41 188 samples,
as seen in our experimentation.

7 Conclusion

We introduced a novel and flexible optimization framework to reduce discrimi-
nation and preserve privacy in datasets. The framework accommodates various
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intents such as data removal, synthetic data addition, and exclusive use of syn-
thetic data for privacy reasons. Notably, the objectives in our framework are
designed to be independent of specific discrimination measures, allowing users
and stakeholders to address any form of discrimination without modifying the
solvers.

Due to the relatively sparse work existing on dealing with non-binary
attributes, particularly regarding established methods, we tackled non-binary
protected attributes in our experiments by deriving discrimination measures
based on the work of Žliobaitė [29] and showed that our framework allowed
the effective and fast reduction of discrimination by employing heuristics.

8 Future Work and Discussion

Future work could include extending the usability of this framework by deriv-
ing different discrimination measurements. Thus, handling multiple protected
attributes as well as regression tasks can be done without modifying the gen-
eral methodology. Additionally, formulating and integrating constraints into the
objective function can also be done, which further enhances the responsibility
of our approach. For instance, we could consider constraints such as group sizes
and add penalties if samples of minorities get removed.

Although we aim for fairness and data privacy with our framework, it is
still important to engage with diverse stakeholders to identify unintended con-
sequences and address possible ethical implications. Particularly, an extensive
discussion and analysis of the used objective and discrimination measure for
a specific application should be done to ensure that the data aligns with the
desired fairness goals.
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In our earlier work, we introduced a fairness-agnostic pre-processing framework [3].
We showed that our framework can be used to mitigate bias in datasets with a single
protected attribute, even if it is non-binary, proving the superiority of our framework
over existing methods. Since it is common for datasets to have multiple protected
attributes and our framework should be able to handle them, we aim to experiment
on this problem with this paper. From the promises of our framework, we expect it to
work seamlessly as long as the proper fairness metric is defined.

The following paper contributes in mainly two aspects [4]. Firstly, we found that
there is no established notion to cover the fairness of datasets with multiple protected
attributes. Further, choosing a fairness metric for datasets generally can become over-
whelming, especially when multiple attributes come into play. Hence, we introduce a
notation that covers multiple protected attributes and provide a guideline for choos-
ing the right fairness metric depending on specific cases. Secondly, we propose a new
fairness metric, opposed to the existing ones, that can be used to measure the fairness
of datasets with multiple protected attributes but is less prone to overestimating bias.
Related works often use an intersectional approach, which leads to exponentially more
groups to consider. When aggregating the results, the bias can be overestimated [40].
In contrast, our proposed metric treats each protected attribute independently and
aggregates the results afterwards.

Finally, the paper concludes with experiments on real-world datasets to show the
effectiveness and adaptability of our framework to minimize discrimination for multiple
protected attributes using several metrics. We also discuss the shortcomings of the
existing framework Fairlearn [16] for comparison. We argue that our framework
is superior, as data integrity constraints are kept intact and not violated. The pre-
processing technique CorrelationRemover in Fairlearn transforms discrete target
labels to continuous values. By changing the statistical data type, the same fairness
metrics and classification algorithms can no longer be used, which makes comparing
CorrelationRemover with our framework infeasible.
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Measuring and Mitigating Bias for Tabular Datasets with
Multiple Protected Attributes⋆

Manh Khoi Duong1,*, Stefan Conrad1

1Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany

Abstract
Motivated by the recital (67) of the current corrigendum of the AI Act in the European Union, we propose and
present measures and mitigation strategies for discrimination in tabular datasets. We specifically focus on datasets
that contain multiple protected attributes, such as nationality, age, and sex. This makes measuring and mitigating
bias more challenging, as many existing methods are designed for a single protected attribute. This paper comes
with a twofold contribution: Firstly, new discrimination measures are introduced. These measures are categorized
in our framework along with existing ones, guiding researchers and practitioners in choosing the right measure
to assess the fairness of the underlying dataset. Secondly, a novel application of an existing bias mitigation
method, FairDo, is presented. We show that this strategy can mitigate any type of discrimination, including
intersectional discrimination, by transforming the dataset. By conducting experiments on real-world datasets
(Adult, Bank, COMPAS), we demonstrate that de-biasing datasets with multiple protected attributes is possible.
All transformed datasets show a reduction in discrimination, on average by 28%. Further, these datasets do not
compromise any of the tested machine learning models’ performances significantly compared to the original
datasets. Conclusively, this study demonstrates the effectiveness of the mitigation strategy used and contributes
to the ongoing discussion on the implementation of the European Union’s AI Act.

Keywords
Machine Learning, Bias Mitigation, Intersectional Discrimination, Fairness, AI Act

1. Introduction

Discrimination in artificial intelligence (AI) applications is a growing concern since the adoption of
the AI Act by the European Parliament on March 13, 2024 [1]. It still remains a significant challenge
across numerous domains [2, 3, 4, 5]. To prevent biased outcomes, pre-processing methods are often
used to mitigate biases in datasets before training machine learning models [6, 7, 8, 9]. The current
corrigendum of the AI Act [1] emphasizes this in Recital (67):

“[...] The data sets should also have the appropriate statistical properties, including as regards
the persons or groups of persons in relation to whom the high-risk AI system is intended to be
used, with specific attention to the mitigation of possible biases in the data sets [...]”

Since datasets often consist of multiple protected attributes, pre-processing methods should be able
to handle these cases. However, only a few works have addressed this issue [7, 10, 11, 12, 13] and
de-biasing such datasets is still an ongoing research topic. In addition, there is no straightforward
approach to managing multiple protected attributes, as shown in Figure 1.

Our paper mainly focuses on how to measure and mitigate discrimination in datasets where multiple
protected attributes are present. In our first contribution, we provide a comprehensive categorization
of discrimination measuring methods. Besides introducing new measures for some of these cases, we
also categorize existing measures from the literature. Some of the listed measures specifically address
intersectional discrimination and non-binary groups. The second contribution deals with bias mitigation.
For this, we use our published pre-processing framework, FairDo [9], that is fairness-agnostic. The
fairness-agnostic property makes it possible to define any discrimination measure that should be
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Figure 1: Stick figures can be differentiated by their color and shape. In intersectional discrimination, attributes
are intersected, which leads to new subgroups. In non-intersectional, each attribute is treated independently, i.e.,
colors and shapes are not intersecting in this case.

minimized. By implementing the introduced measures, we can therefore mitigate biases for multiple
protected attributes. Another advantage of FairDo is that it preserves data integrity and does not
modify the features of individuals during the optimization process, unlike other methods [14, 3, 7].

We evaluated our methodology on popular tabular datasets with fairness concerns, such as Adult [15],
Bank [16], and COMPAS [17]. We used different discrimination measures to evaluate the effectiveness of
the bias mitigation process. Because a successful mitigation process does not guarantee that the outcomes
of machine learning models are fair, we trained machine learning models on the transformed datasets
and evaluated their predictions regarding fairness and performance. The code for the experiments can
be found in the accompanying repository: https://github.com/mkduong-ai/fairdo/evaluation.

The results of the bias mitigation process as well as the performance of the machine learning models
are promising. They indicate that achieving fairness in datasets with multiple protected attributes
is possible, and FairDo is a proper framework for this task. Overall, our work contributes technical
solutions for stakeholders to enhance the fairness of datasets and machine learning models, aiming for
compliance with the AI Act [1].

2. Preliminaries

To handle multiple protected attributes, we define 𝒵 = {𝑍1, . . . , 𝑍𝑝} as a set of protected attributes. It
can represent the set of sociodemographic features such as age, gender, and ethnicity. These factors
may make individuals vulnerable to discrimination. Each protected attribute 𝑍𝑘 ∈ 𝒵 is formally a
discrete random variable that can take on values from the sample space 𝑔𝑘. In this context, we refer 𝑔𝑘
to groups that describe distinct social categories of a protected attribute. For example, let 𝑍𝑘 represent
gender; then 𝑔𝑘 is a set containing the genders male, female, and non-binary. To avoid limitations to a
particular group fairness notion, we introduce a generalized notation based on the works of Žliobaitė
[2], Duong and Conrad [9] in the following.

Definition 2.1 (Treatment). Let 𝐸1, 𝐸2 be events and 𝑍𝑘 be a random variable that can take on values
from 𝑔𝑘, then we call the conditional probability

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖)

treatment, where 𝑖 ∈ 𝑔𝑘 . 𝐸1 describes some favorable outcome, such as getting accepted for a job, while 𝐸2

often represents some additional information about the individual, such as their qualifications.

Definition 2.2 (Fairness Criteria). With the definition of treatment, we can define fairness criteria that
demand equal treatment for different groups. Let 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖) and 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗) be
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treatments, then we call the following equation:

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖) = 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗)

a fairness criterion, for all 𝑖, 𝑗 ∈ 𝑔𝑘.

Definition 2.2 allows us to define various group fairness criteria, including statistical parity [18],
predictive parity [3], equality of opportunity [19], etc. They all demand some sort of equal outcome for
different groups and can be defined by configuring the events𝐸1, 𝐸2. For instance, statistical parity [18]
requires that two different groups have an equal probability of receiving a favorable outcome (𝑌 = 1).

Example 2.1 (Statistical Parity [18]). To define statistical parity for the attribute 𝑍𝑘 using our notation,
we set 𝐸1 := (𝑌 = 1) and 𝐸2 := Ω. By setting 𝐸2 to the sample space Ω, we compare the probabilities of
the event 𝑌 = 1 across different groups without conditioning on any additional event:

𝑃 (𝑌 = 1 | Ω, 𝑍𝑘 = 𝑖) = 𝑃 (𝑌 = 1 | Ω, 𝑍𝑘 = 𝑗)

⇐⇒ 𝑃 (𝑌 = 1 | 𝑍𝑘 = 𝑖) = 𝑃 (𝑌 = 1 | 𝑍𝑘 = 𝑗),

where 𝑖, 𝑗 ∈ 𝑔 represent different groups.

In real-world applications, achieving equal probabilities for certain outcomes is not always possible.
Due to variations in sample sizes in the groups, it is common to yield unequal treatments, even when
they are similar. Thus, existing literature [2] uses the absolute difference to quantify the strength of
discrimination.

Definition 2.3 (Disparity). Let 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖) and 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗) be two treatments, then we
refer to

𝛿𝑍𝑘
(𝑖, 𝑗, 𝐸1, 𝐸2) = |𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖)− 𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗)|

as the disparity, for all 𝑖, 𝑗 ∈ 𝑔𝑘. Trivially, 𝛿𝑍𝑘
is commutative regarding 𝑖, 𝑗. In practice, it prevents

reverse discrimination due to the absolute value.

Definition 2.4 (Discrimination). We use𝜓 : D → R to denote some discrimination measure that quantifies
the discrimination inherent in any dataset 𝒟 ∈ D. A dataset 𝒟 consists of features, protected attributes,
and labels for each individual. The explicit form of 𝜓 depends on the cases introduced in Section 3.

3. Measuring Discrimination for Multiple Attributes

We found that numerous scenarios arise when dealing with multiple protected attributes. We categorize
these scenarios based on the number of groups, denoted as |𝑔|, and the number of protected attributes,
denoted as |𝒵|. By going through all cases, we present possible approaches from the literature as well
as our own suggestions to measure discrimination.

3.1. Single Protected Attribute (|𝒵| = 1)

In the case of having only one protected attribute, i.e., |𝒵| = |{𝑍1}| = 1, we distinguish between
cases by the number of available groups |𝑔| in the dataset. We categorize the cases by |𝑔| = 0, 1, 2, and
|𝑔| > 2.

3.1.1. No Groups (|𝑔| = 0)

When there are no groups, the measurement of discrimination is impossible if no assumptions are being
made. Discrimination can be assessed through proxy variables [20]; however, this approach can be
imprecise and may introduce new biases. This case is equivalent to having no protected attribute, i.e.,
|𝒵| = 0.
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3.1.2. Single Group (|𝑔| = 1)

Similarly to the case of having no groups, discrimination cannot be measured when having only one
group. For this, we propose practices where prior information can be incorporated:

1. No discrimination: As no difference towards any other group can be measured, returning a
discrimination score of 0 is one viable option.

𝜓(𝒟) = 0. (1)

2. Difference to optimal treatment: Another way is to return the absolute difference of the group’s
outcome to the optimal treatment. For example, group 𝑖 has an 80% chance of receiving the favor-
able treatment. Ideally, having a 100% chance would represent the optimal scenario. Therefore,
the discrimination score is 20% in this case. It is given by:

𝜓(𝒟) = |𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖)− 1|. (2)

3. Difference to expected treatment: We can use the expected treatment as a reference point. For
example, we know that a company has a 50% acceptance rate for job applications. Now a machine
learning classifier is trained to predict whether an applicant will be accepted and the model’s
predictions result in a 60% acceptance rate for group 𝑖. Hence, the model is positively biased
towards group 𝑖 by 10%. This can be formulated as:

𝜓(𝒟) = |𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖)− 𝑝expect.|, (3)

where 𝑝expect. is the expected treatment. It can describe the average treatment across all groups [21]
or some other prior information that is not included in the dataset.

3.1.3. Binary Groups (|𝑔| = 2)

Without using any prior information, we can calculate the discrimination score by taking the absolute
difference between the treatments of the two groups, as advised by Žliobaitė [2]. The discrimination
measure 𝜓 is then simply given by the disparity as mentioned in Definition 2.3.

3.1.4. Non-binary Groups (|𝑔| > 2)

While the case for binary attributes is straightforward, it becomes non-trivial for non-binary attributes
that arise naturally in real-world data. We can fall back to |𝑔| = 2 by calculating the absolute difference
between every distinct group 𝑖, 𝑗 ∈ 𝑔. Because the discrimination between 𝑖 and 𝑗 is the same as
between 𝑗 and 𝑖, only

(︀|𝑔|
2

)︀
pairs need to be compared and we use an aggregation function agg(1) to

report the differences [2]. Lum et al. [22] refers to measures that aggregate or summarize discrimination
scores as meta-metrics. The aggregate can be the sum or maximum function, depending on the use case.
The result for a single protected attribute 𝑍𝑘 with two or more groups can be computed as follows:

𝜓(𝒟) = agg(1)

𝑖,𝑗∈𝑔𝑘,𝑖<𝑗
𝛿𝑍𝑘

(𝑖, 𝑗, 𝐸1, 𝐸2), (4)

where 𝛿𝑍𝑘
is the disparity as defined in Definition 2.3 and 𝑖 < 𝑗 ensures that each pair is considered

only once (assuming label-encoded groups). According to Žliobaitė [2] and her personal discussions
with legal experts, she advocates using the maximum function, i.e.,

𝜓(𝒟) = max
𝑖,𝑗∈𝑔𝑘,𝑖<𝑗

𝛿𝑍𝑘
(𝑖, 𝑗, 𝐸1, 𝐸2) (5)

= max
𝑖∈𝑔𝑘

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑖)−min
𝑗∈𝑔𝑘

𝑃 (𝐸1 | 𝐸2, 𝑍𝑘 = 𝑗). (6)

Equation (5) describes the maximum discrimination obtainable between two groups. An alternative and
equivalent formulation is given in Equation (6) [7]. The latter is computationally more efficient as it
requires 𝒪(2|𝑔|) operations compared to 𝒪(|𝑔|2) operations for the former.
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A more general approach to measuring discrimination is to calculate some form of correlation
coefficient between the protected attribute and the outcome. The correlation coefficient can be calculated
using Pearson’s correlation [23], Spearman or Kendall’s rank correlation [24, 25]. The discrimination
measure can then be defined as the absolute value of the correlation coefficient:

𝜓(𝒟) = |Corr(𝐸1, 𝑍𝑘)|. (7)

This approach can be applied to any number of groups. Fairlearn provides a pre-processing method
that removes the correlation between the protected attribute and the outcome by transforming the
data [7]. However, the given approach violates data integrity constraints as categorical attributes are
transformed into continuous values. Moreover, zero correlation does not imply independence between
two variables.

3.2. Multiple Protected Attributes (|𝒵| > 1)

There are several ways to measure discrimination for multiple protected attributes (|𝒵| > 1). Based
on the works of Kearns et al. [21], Yang et al. [11] and Kang et al. [13], we categorize them into two
approaches: intersectional and non-intersectional (see Figure 1). Intersectional approaches consider the
intersection of identities. The overlapping of such identities forms subgroups [21]. Non-intersectional
approaches treat each protected attribute independently [11].

3.2.1. Intersectional Discrimination

The central idea of intersectionality is that individuals experience overlapping forms of oppression or
privilege based on the combination of multiple social categories they belong to. In the following, we
will introduce definitions to formulate intersectional discrimination, which is based on the work of
Kearns et al. [21].

Definition 3.1 (Subgroup [21]). Let 𝒵 = {𝑍1, . . . , 𝑍𝑝} be a set of discrete random variables representing
protected attributes that can take on values from corresponding groups 𝑔1, . . . , 𝑔𝑝. A subgroup 𝑖 is defined
as 𝑖 = (𝑖1, . . . , 𝑖𝑝) ∈ 𝑔1× . . .×𝑔𝑝. In other words, a subgroup encompasses multiple groups from different
protected attributes.

Definition 3.2 (Subgroup Treatment). Let 𝑖 be a subgroup as defined in Definition 3.1 and let 𝒵 =
{𝑍1, . . . , 𝑍𝑝} be a set of discrete random variables. Subgroup treatment is then defined as:

𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖1, . . . , 𝑍𝑝 = 𝑖𝑝).

Definition 3.3 (Subgroup Disparity). Let 𝒵 = {𝑍1, . . . , 𝑍𝑝} be a set of discrete random variables. Let
𝑖, 𝑗 ∈ 𝑔1 × . . .× 𝑔𝑝 be two subgroups with 𝑖 = (𝑖1, . . . , 𝑖𝑝) and 𝑗 = (𝑗1, . . . , 𝑗𝑝). The disparity between
two subgroups is denoted as �̂�𝒵 and is given by:

�̂�𝒵(𝑖, 𝑗, 𝐸1, 𝐸2) = |𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖1, . . . , 𝑍𝑝 = 𝑖𝑝)− 𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑗1, . . . , 𝑍𝑝 = 𝑗𝑝)|.

Similarly to Equation (4), we can calculate the discrimination score for multiple protected attributes by
aggregating disparities across all subgroups. A subgroup can be treated like a normal group. According
to Definition 3.1, there are theoretically at least 2𝑝 subgroups, where 𝑝 is the number of protected
attributes. However, not all subgroups may be available in the dataset. For unavailable subgroups, the
disparity cannot be calculated as the corresponding treatment is undefined.

Let us denote the set of available subgroups as 𝐺avail ⊆ 𝑔1 × . . . × 𝑔𝑘. To finally capture the
discrepancies across all available subgroup pairs, an aggregation function agg(1) is applied to the
subgroup disparities �̂�𝒵 :

𝜓intersect(𝒟) = agg(1)

𝑖,𝑗∈𝐺avail

�̂�𝒵(𝑖, 𝑗, 𝐸1, 𝐸2). (8)
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Table 1
Example dataset of individuals receiving a favorable (𝑌 = 1) or unfavorable (𝑌 = 0) outcome. The dataset
shows four individuals with their respective age group and sex.

Individual Age Sex Outcome (𝑌 )

1 Old Male 1
2 Old Female 0
3 Young Male 0
4 Young Female 1

Equation (8) represents the aggregated discrimination between all available subgroups in the dataset.
When using the maximum function as the aggregator, the calculations are equivalent to Equation (5)
and Equation (6). The only difference is that the conditionals are now subgroups instead of groups:

𝜓intersect(𝒟) = max
𝑖,𝑗∈𝐺avail

�̂�𝑍𝑘
(𝑖, 𝑗, 𝐸1, 𝐸2) (9)

= max
𝑖∈𝐺avail

𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑖1, . . . , 𝑍𝑝 = 𝑖𝑝)− min
𝑗∈𝐺avail

𝑃 (𝐸1 | 𝐸2, 𝑍1 = 𝑗1, . . . , 𝑍𝑝 = 𝑗𝑝).

Kang et al. [13] also dealt with intersectional discrimination in their work by introducing a multivariate
random variable 𝑍 where each dimension represents a protected attribute. Their fairness objective
is to minimize the mutual information between the outcome and the multivariate random variable.
By minimizing the mutual information, the outcome is independent of the protected attributes, which
is a desirable property for fairness [14, 26]. In this context, zero mutual information implies the
absence of intersectional discrimination [13]. However, this approach relies on expensive techniques to
approximate the mutual information. Using our notation, their formulation can be written as [13]:

𝜓MI(𝒟) = MI(𝐸1, 𝑍), (10)

where MI denotes the mutual information.

3.2.2. Non-intersectional Discrimination

The problem with measuring discrimination for intersectional groups is that it has an upward bias
when using meta-metrics [22]. This is because the number of subgroups grows exponentially with the
number of protected attributes. This leads to many subgroups where the number of samples in each
subgroup is possibly small, resulting in larger noise in the treatment estimates [22].

Besides intersectional groups, Yang et al. [11] listed a non-intersectional definition of groups, called
independent groups. Building on the definition of independent groups, we propose an appropriate
approach to measure discrimination for this type of groups. It is more suitable when dealing with a
large number of subgroups or when intersectional discrimination is not deemed important. Our non-
intersectional approach treats each protected attribute independently and aggregates the discrimination
scores across all protected attributes. For this, a second aggregate function with agg(2) is introduced,
yielding the following equation:

𝜓indep(𝒟) = agg(2)

𝑍𝑘∈𝒵

{︃
agg(1)

𝑖,𝑗∈𝑔𝑘,𝑖<𝑗
𝛿𝑍𝑘

(𝑖, 𝑗, 𝐸1, 𝐸2)

}︃
. (11)

The first-level aggregator agg(1) aggregates disparities within a protected attribute, considering unique
pairs of groups 𝑖 and 𝑗. The second-level aggregator agg(2) then combines the results across all protected
attributes. By applying both operators, we obtain a discrimination measure that captures disparities
between groups across multiple attributes.
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3.2.3. Example

Let us consider a dataset with two protected attributes, age and sex (see Table 1). The set of protected
attributes is 𝒵 = {𝑍1, 𝑍2} = {Age, Sex} and the set of available subgroups in the dataset is 𝐺avail =
{Old, Young} × {Male, Female}. We measure discrimination using statistical disparity. For simplicity,
all aggregation functions are set to the maximum function. The intersectional approach yields the
following discrimination score:

𝜓intersect(𝒟) = max
𝑖,𝑗∈𝐺avail

�̂�𝒵(𝑖, 𝑗, (𝑌 = 1),Ω) (12)

= max
𝑖,𝑗∈𝐺avail

�̂�{Age, Sex}(𝑖, 𝑗, (𝑌 = 1),Ω)

= max
𝑖∈𝐺avail

𝑃 (𝑌 = 1 | 𝑍1 = 𝑖1, 𝑍2 = 𝑖2)− min
𝑗∈𝐺avail

𝑃 (𝑌 = 1 | 𝑍1 = 𝑗1, 𝑍2 = 𝑗2)

= |𝑃 (𝑌 = 1 | Age = Old, Sex = Male)− 𝑃 (𝑌 = 1 | Age = Young, Sex = Male)| = 1,

while the discrimination score for the non-intersectional approach is given by:

𝜓indep(𝒟) = max
𝑍𝑘∈𝑍

{︂
max

𝑖,𝑗∈𝑔𝑘,𝑖<𝑗
𝛿𝑍𝑘

(𝑖, 𝑗, (𝑌 = 1),Ω)

}︂
(13)

= max
{︀
𝛿Age(Old,Young, (𝑌 = 1),Ω), 𝛿Sex(Male, Female, (𝑌 = 1),Ω)

}︀
= max{|0.5− 0.5|, |0.5− 0.5|} = max{0, 0} = 0.

The non-intersectional approach yields a discrimination score of 0 because the disparities for both
protected attributes are 0. This is quite different from the intersectional approach, which reports a
discrimination score of 1. As seen, the results can differ depending on the approach.

4. Experiments

Our experimentation follows a pipeline consisting of data pre-processing, bias mitigation, model training,
and evaluation. To mitigate bias in tabular datasets with multiple protected attributes, we used the
sampling method, FairDo [9], that constructs fair datasets by selectively sampling data points. The
method is very flexible and only requires the user to define the discrimination measure that should be
minimized. In our case, we are interested in a dataset that has minimal bias across multiple protected
attributes. The experiments revolve around the following research questions:

• RQ1 Is it possible to yield a fair dataset with FairDo, where bias for multiple protected attributes
is reduced?

• RQ2 Are machine learning models trained on fair datasets more fair in their predictions than
those trained on original datasets?

4.1. Experimental Setup

Datasets and Pre-processing The tabular datasets employed in our experiments include the
Adult [15], Bank [16], and COMPAS [17] datasets. They are known for their use in fairness research and
contain multiple protected attributes. We pre-processed the datasets by applying one-hot encoding to
categorical variables and label encoding to protected attributes. Table 2 shows important characteristics
of the datasets after pre-processing.

Each dataset was divided into training and testing sets using an 80/20 split, respectively. We ensured
that the split was stratified (if possible) based on protected attributes to maintain representativeness
across different groups in both sets.
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Table 2
Overview of Datasets

Dataset Samples Feats. Label Protected Attributes Description
Adult [15] 32 561 21 Income Race: White, Black, Asian-

Pacific-Islander, American-
Indian-Eskimo, Other
Sex: Male, Female

Indicates individuals
earning over $50,000
annually

Bank [16] 41 188 50 Term
deposit
subscription

Job: Admin, Blue-Collar,
Technician, Services, Manage-
ment, Retired, Entrepreneur,
Self-Employed, Housemaid,
Unemployed, Student, Unknown
Marital Status: Divorced,
Married, Single, Unknown

Shows whether the
client has subscribed
to a term deposit.

COMPAS [17] 7 214 13 2-year
recidivism

Race: African-American, Cau-
casian, Hispanic, Other, Asian,
Native American
Sex: Male, Female
Age Category: <25, 25-45, >45

Displays individuals
that were rearrested
for a new crime
within 2 years after
initial arrest.

Bias Mitigation Applying the bias mitigation method FairDo [9] to the datasets can be regarded as
a pre-processing step, too. This is because the method simply returns a dataset that is fair with respect
to the given discrimination measure. FairDo [9] offers a variety of options to mitigate bias, and we
chose the undersampling method that removes samples. In this option, the optimization objective is
stated as [9]:

min
𝒟fair⊆𝒟

𝜓(𝒟fair), (14)

where 𝒟 is the training set of Adult, Bank, or COMPAS, and 𝜓 is the fairness objective function. We
experimented with both 𝜓intersect and 𝜓indep as objectives functions. Bias mitigation is only applied to
the training set and the testing set remains unchanged. FairDo internally uses genetic algorithms to
select a subset of the training set that minimizes the objective function. We used the same settings and
operators as provided in the package and only adjusted the population size (200) and the number of
generations (400).

Model Training We utilized the scikit-learn library [27] to train various machine learning
classifiers, namely Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), and
Artificial Neural Network (ANN). These classifiers were trained on both the original and fair datasets.
Classifiers trained on the original datasets serve as a baseline for comparison. We used the default
hyperparameters given by scikit-learn package for each classifier.

Evaluation Metrics We evaluated the models’ predictions on fairness and performance using the
test set. For fairness, we assessed 𝜓intersect and 𝜓indep. For the classifiers’ performances, we report the
area under the receiver operating characteristic curve (AUROC) [28], where higher values indicate better
performances. Because removing data points can compromise the overall quality of the data, we also
report the number of subgroups before and after bias mitigation to check for representativeness.

Trials For each dataset and discrimination measure combination, the bias mitigation process was
repeated 10 times. The results were averaged over the trials to obtain a more robust evaluation.

4.2. Results

Fair Dataset Generation Table 3 shows the average discrimination before and after mitigating
bias in the training sets. On all datasets, discrimination was reduced after applying FairDo. Without
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Table 3
Average discrimination and number of subgroups before and after pre-processing the training sets with FairDo.

Dataset Metric Disc. Before Disc. After Subgroups Before Subgroups After
Adult 𝜓indep 20% 13% 10 10

𝜓intersect 31% 16% 10 10
Bank 𝜓indep 24% 5% 48 48

𝜓intersect 33% 15% 48 46.2
COMPAS 𝜓indep 30% 5% 34 34

𝜓intersect 100% 17% 34 28.8

considering group intersections, discrimination was reduced by 7%, 19%, and 25% for Adult, Bank, and
COMPAS, respectively. When considering intersectionality, the discrimination was reduced by 15%,
18%, and 83%. Hence, discrimination was reduced by 28% on average across all datasets, thus answering
RQ1 positively. When comparing the discrimination scores, it can be observed that the intersectional
discrimination scores are generally higher. This is because in the intersectional setting, more subgroups
are considered, which potentially leads to larger differences between them [21].

We also report the number of subgroups before and after bias mitigation to assess the impact of
the undersampling method on the dataset. The removal of subgroups can only be observed in the
intersectional setting. In the COMPAS dataset 5.2 out of 34 subgroups were removed on average,
indicating the largest amount of subgroups removed across all datasets. While the Bank dataset consists
of 48 subgroups, only 1.8 subgroups were removed on average. Because the COMPAS dataset’s initial
intersectional discrimination score is 100%, removing more subgroups seems inevitable to reduce bias.

Model Performance and Fairness Figure 2 shows the results of the classifiers’ performances on
the test set. The classifiers’ performances are displayed on the y-axis, while the discrimination values
are shown on the x-axis. We note that the axes do not share the same scale across the subfigures for
analytical purposes.

Classifiers trained on fair datasets did not suffer a significant decline in performance compared to
those trained on original datasets. In all cases, only a slight decrease of 1%-3% in performance can be
noted. This indicates that the bias mitigation process does not compromise the dataset’s fidelity and,
therefore, the classifiers’ performances. Regarding discrimination, a significant reduction is evident.
The x-axis scales are much larger than the y-axis scales, suggesting that changes in discrimination
are larger than changes in performance. For example, the RF classifier trained on the Bank dataset
(Figure 2g) shows a decrease in intersectional discrimination from 38% to 15%, while the performance
only decreases by 2%. Similar results can be observed for the other classifiers and datasets as well,
successfully addressing RQ2. The results suggest that FairDo can be reliably used to mitigate bias in
tabular datasets for various measures that consider multiple protected attributes. Still, we advise users
to carefully perform similar analyses when applying the method to their datasets.

5. Discussion

The results of our experiments show that the presented measures detect discrimination in datasets
with multiple protected attributes differently. When using the intersectional discrimination measure,
more groups are identified and compared to each other. While subgroups are not ignored by this
measure, measuring higher discrimination scores by random chance becomes more likely [21, 22]. In
contrast, treating each protected attribute separately prevents this issue but may lead to overlooking
discrimination. The choice of measure is up to the stakeholders and depends on the context of the dataset
and the regulations that apply to the AI system. We generally recommend using the intersectional
discrimination measure if the number of individuals in each subgroup is large enough to draw statistically
significant conclusions. Otherwise, treating each protected attribute separately is more suitable.

By using the mitigation strategy FairDo [9], the resulting datasets in the experiments have improved
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Figure 2: Results on the test set. The x-axis represents the discrimination values (legend indicates used
measure) and the y-axis represents the classifiers’ performances. We compare the pre-processed (fair)
data with the original data. The points/stars represent averages, and the error bars display the standard
deviations of the AUROC and discrimination values over 10 trials.

statistical properties regarding fairness. Whether intersectionality was considered or not, reducing
discrimination in datasets was possible. At the current state, the AI Act [1] does not explicitly mention
intersectional discrimination nor how to deal with multiple protected attributes generally. While recital
(67) states that datasets “should [...] have the appropriate statistical properties”, it does not specify what
these properties are. Hence, our work serves as an initial guideline for what these properties could be
and how to achieve them in practice.

6. Conclusion

Datasets often come with multiple protected attributes, which makes measuring and mitigating dis-
crimination more challenging. Most existing studies only deal with a single protected attribute, and
works that consider multiple protected attributes often focus on intersectionality. In opposition to
this, we proposed a new non-intersectional measure that treats each protected attribute separately.
This is more suitable when the number of subgroups is too large or the number of individuals in each
subgroup is small. We used both intersectional and non-intersectional measures as objectives and
applied the FairDo framework to mitigate discrimination in multiple datasets. The experiments show
that discrimination was reduced in all datasets and on average by 28%. Machine learning models trained
on the bias-mitigated datasets also improved their fairness while maintaining performance compared
to models trained on the original datasets.
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4
Enhancing Trust in Assessing and

Mitigating Bias

So far, we have covered works that deal with assessing and mitigating bias in datasets
and machine learning models [2, 3, 4]. Assessing bias is an essential step to detect
whether a dataset or a model is biased. Based on the assessment, mitigation methods
such as FairDo [3] can be applied to reduce the measured bias in the dataset. However,
assessment and mitigation methods do not come without challenges regarding their
trustworthiness. Specifically, when dealing with underrepresented minority groups,
assessing bias becomes less reliable and prone to estimation errors due to small sample
sizes. This makes it difficult to trust the results and the decisions made based on them.
Regarding the mitigation methods, they may introduce new biases or reduce the data
quality and therefore impact the performance of machine learning models negatively.

Early works [35, 27] have pointed out the challenges of assessing discrimination for
underrepresented groups. Kearns et al. [35]’s subgroup fairness definition underweights
the discrimination of small groups, and Foulds et al. [27] proposed a Bayesian approach
to estimate two intersectional fairness metrics. However, these works do not address
the trustworthiness aspect and do not deal with disparity metrics that are used in
practice and advised by Žliobaitė [53].

To address these challenges, we propose a new fairness assessment method that
incorporates the uncertainty of the bias estimation [7]. In addition to the disparity, an
uncertainty metric is provided which quantifies the reliability of the disparity metric.
This allows the comparison between different models or decision-makers that exhibit
the same amount of bias but come with a different amount of samples. Regarding our
method FairDo, we consider the amount of data that is removed during the mitigation
process and provide users with the option to control the trade-off between fairness and
data lost [6]. By visualizing the Pareto frontier of the trade-off, we ease the decision-
making process for users.
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4.1 Enhancing Trust in Disparity Measures

Paper: Manh Khoi Duong and Stefan Conrad. (Un)certainty of (Un)fairness: Preference-
Based Selection of Certainly Fair Decision-Makers. In ECAI 2024: 27th European
Conference on Artificial Intelligence, volume 392 of Frontiers in Artificial Intelligence
and Applications. IOS Press, 2024.
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Disparity measures are commonly used to assess the discrimination inherent in datasets
or machine learning models. They particularly report differences between the outcomes
of different social groups. These outcomes can be, for example, the acceptance rates
of applicants for a job. However, disparity measures do not account for the number of
samples in each group. Most often, they are calculated based on the number of positive
outcomes in each group. This frequentist approach can lead to sampling errors if the
number of samples in a group is small. Drawing conclusions from samples that do not
represent the population can lead to under- or overestimation of discrimination.

In our paper, we refer to the outcomes of specific groups as group treatments. Using
Bayesian statistics [29], we first model the posterior distributions of group treatments,
which represent the uncertainties in their estimations. With the posteriors, it is possible
to display the 95% credible intervals of group treatments. This already allows for a
more comprehensive assessment of discrimination. Our paper goes one step further by
introducing a utility function that maps the disparity and its uncertainty to a scalar
value. This allows for the ranking of multiple machine learning models not only by
their disparity but also by the certainty of their disparity.

Our paper comes with theoretical results and guarantees. The practical implications
of our approach are demonstrated in the paper with a job hiring example. Essentially,
we differentiate between decision-makers (e.g., machine learning models, humans) that
have the same disparity but different uncertainties. For example, a recruiter who
exhibits a disparity of 100% but discriminates against only a few applicants is preferred
over a recruiter with the same disparity who discriminates against more applicants.
This is because we are more certain about the disparity of the latter. The utility value
of the former is higher than the utility value of the latter in our approach. The utility
values represent the preferences we have over decision-makers.
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Abstract. Fairness metrics are used to assess discrimination and
bias in decision-making processes across various domains, including
machine learning models and human decision-makers in real-world
applications. This involves calculating the disparities between prob-
abilistic outcomes among social groups, such as acceptance rates
between male and female applicants. However, traditional fairness
metrics do not account for the uncertainty in these processes and
lack of comparability when two decision-makers exhibit the same
disparity. Using Bayesian statistics, we quantify the uncertainty of
the disparity to enhance discrimination assessments. We represent
each decision-maker, whether a machine learning model or a human,
by its disparity and the corresponding uncertainty in that disparity.
We define preferences over decision-makers and utilize brute-force
to choose the optimal decision-maker according to a utility function
that ranks decision-makers based on these preferences. The decision-
maker with the highest utility score can be interpreted as the one for
whom we are most certain that it is fair.

1 Introduction

Traditional fairness metrics have played an important role in quan-
tifying disparities between different social groups in data, machine
learning predictions, and decision-making systems [27, 26, 5, 1].
However, they fail to address the inherent uncertainty present in real-
world data, i.e., aleatoric uncertainty, particularly when minorities
or generally data samples are underrepresented. Our work is moti-
vated by comparing machine learning models regarding their fairness
in any socially responsible application. We use the umbrella term
decision-maker which can refer to any system or human that makes
decisions based on data. Therefore, our work deals with both human
and algorithmic decision-makers and is not limited to either of them.
Still, for simplicity, our examples only involve humans.

We consider an illustrative scenario (see Figure 1) in a hiring set-
ting in which two different companies, labeled A and B, sought to
hire applicants. We also assume that all applicants in this scenario
have equal qualifications and do not differ in any way except for the
social group they belong to. Company A notably only accepted yel-
low candidates and rejected all blue candidates. Company B acted
in the same way but received significantly fewer applications. When
using statistical disparity [6, 4] to assess discrimination from both
companies, we obtain the same score, which is 100%, signifying the

∗ Corresponding Author. Email: duong@hhu.de.

disparity of the chances between yellow and blue candidates of get-
ting accepted. Intuitively, we are more certain about the decisions
being made by company A than company B. In the case of com-
pany B, the rejection of blue candidates can be attributed to random
circumstances. In this case, we would judge companyA as more dis-
criminatory than company B because we are more certain that A
is unfair and very uncertain about the unfairness of B. But if both
companies accepted all applicants, the disparity would be 0%, and
we would conversely judgeB as more discriminatory thanA. This is
because we are certain thatA is fair, while we are uncertain about the
fairness ofB. Lastly, when comparing between uncertain fair and un-
certain unfair decision-makers, we would prefer the former over the
latter. These examples underscore the importance of quantifying and
assessing uncertainty in discrimination evaluations.

In the context of this example, we use the notation A � B to
signify a preference relation, indicating that company A is preferred
over company B. The preferences we obtain are as follows:

fair certain � fair uncertain, (1)

fair uncertain � unfair uncertain, (2)

unfair uncertain � unfair certain, (3)

where unfair and fair refer to a disparity of 100% and 0%, respec-
tively. With these trivial preferences, following research questions
arise:

• RQ1: How do we quantify the uncertainty of a decision-maker’s
(un)fairness?

• RQ2: How do we compare decision-makers that exhibit different
levels of disparity and uncertainty on a continuous scale? How do
we express preferences over them and rank them accordingly?

• RQ3: How do we select the optimal decision-maker according to
our preferences?

We note that the task of selecting the most preferable decision-maker
cannot be done by determining the Pareto front because uncertain
cases can seem more or less fair than certain cases depending on the
circumstances. This can be observed in the preferences (2) and (3).
Furthermore, disparity and uncertainty are not necessarily discrete
values, making it non-trivial to compare between decision-makers
that are represented by them. To answer the research questions, our
paper’s structure and contributions are as follows:

• We first introduce a notation generalizing various group fairness
criteria, eliminating the limitation to a particular group fairness
criterion in our work.
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• Using our notation, we demonstrate how to quantify uncertainties
of group disparities exhibited by decision-makers using Bayesian
statistics [13] (RQ1).

• Representing decision-makers by their disparate treatments of
groups and the uncertainty of it, we formally define preferences
over decision-makers (RQ2). By introducing a utility function,
that assigns a value to each decision-maker, we are able to select
the optimal decision-maker from a set of decision-makers (RQ3).
The utility values allow ranking decision-makers according to our
preferences.

• We evaluate our methodology on synthetic and real-world datasets
to demonstrate its practical usability and necessity.

• We draw ethical conclusions by discussing the implications of our
work and the importance of incorporating uncertainty in discrim-
ination assessments.

• The implementation of the proposed scores and exper-
iments can be found at https://github.com/mkduong-ai/
fairness-uncertainty-score.

         Recruiter          Applicant      ---- Rejected      ---- Accepted

Company A Company B

Figure 1. Both companies, A and B, discriminate against applicants by
only accepting yellow candidates and rejecting all blue candidates. The
statistical disparity score for both companies is 100%. Nevertheless,

company B received fewer applicants, making its case more uncertain.
Which decision-maker do we favor regarding fairness in such a case? What

if both companies accepted all applicants? Who do we favor then?

2 Related Work

Fairness metrics have been widely studied in the literature [27, 26, 5,
1] and have been used to assess discrimination in various domains.
Common are group fairness metrics that report disparities between
social groups. In its simplest form, the disparity is calculated as the
(absolute) difference between the outcomes of two groups, e.g., the
acceptance rates between males and females in a job application pro-
cess [4]. Any other probabilistic outcome can be used as well [6].
It gets more complex when more than two groups are involved. In
this case, aggregating pairwise differences [27, 8] or similarly using
meta-metrics [20] are common approaches. For example, the maxi-
mum disparity possible can be reported in such a case [27]. Depend-
ing on the aggregation method, the intended social welfare is differ-
ent [8]. When dealing with multiple protected attributes, subgroups
(white male, black woman, etc.) can be formed by the cross-product
of the protected attributes. However, exponentially many subgroups

can be formed in this way, and any classifier can be accused of dis-
criminating against some subgroup. To prevent this, Kearns et al.
[17] proposed to ignore subgroups that represent a small fraction of
the population. Foulds et al. [11] generally criticized ignoring small
subgroups, as minorities are often vulnerable to discrimination. Still,
both works [17, 11] employ a disparity calculation to measure fair-
ness. Hence, the disparity serves as a base for discrimination assess-
ment in several problem settings.

However, relying solely on the disparity to assess discrimination
can be problematic. Such a measurement can be uncertain, for in-
stance, when samples underrepresent a population due to data spar-
sity [16, 22, 12]. Lum et al. [20] showed that meta-metrics are statis-
tically biased upwards when more groups are involved. This effect is
attributed to the increased number of comparisons between groups,
which raises the likelihood of observing greater disparities. The au-
thors combated this by deriving a correction term to de-bias the dis-
parity. Foulds et al. [11] addressed a similar problem where they used
a Bayesian approach to estimate the fairness of underrepresented,
small subgroups. They did it as follows: Subgroups are essentially in-
tersections of protected attributes, which can be represented by joint
and marginal distributions. Under the frequentist perspective, empir-
ical counts can be used to estimate such probabilities. This comes
with disadvantages when the counts are small or when the subgroups
are not present in the data. In such cases, the estimates are uncer-
tain or undefined due to division by zero. Foulds et al. [11] proposed
learning the marginal distribution with probabilistic models, allow-
ing for uncertainty quantification. Singh et al. [24] and Tahir et al.
[25] shared a similar concern about uncertainty in fairness assess-
ments and argued that uncertainty can lead to unfairness.

We follow a similar strategy to Foulds et al. [11] in our work. We
differ by allowing for a more general uncertainty quantification of
fairness that is not limited to subgroups. Additionally, our uncer-
tainty measure is normalized to ensure comparability. Upon quan-
tifying the uncertainty, we express preferences over pairs of dispari-
ties and uncertainties, which is not done in the work by Foulds et al.
[11]. Further, we combine the disparity and uncertainty into a single
utility score, allowing for a straightforward comparison and ranking
of decision-makers. The ranking reflects preferences over decision-
makers, which we introduce in this work.

3 Preliminaries

Protected attributes such as ethnicity, nationality, and gender make
individuals vulnerable to discrimination. We define Z, which repre-
sents a protected attribute, as a discrete random variable that can take
on values from the set g. We refer to g as groups that are distinct
categories an individual can belong to. For example, let Z represent
the gender, then g is a set containing the genders male, female, and
non-binary. Further, Y denotes the outcome of an individual, which
is a binary random variable and Ŷ is the predicted outcome. For both,
Y and Ŷ , we use the values 1 and 0 to indicate positive and negative
outcomes, respectively. We define E1 and E2 as events, which are
subsets of the sample space Ω. The sample space Ω is the set of all
possible outcomes of an experiment.

With the intention of avoiding limitations on a particular group
fairness criterion, we introduce a generalized framework through the
following definition:

Definition 1 (Treatment). We refer to the conditional probability of
E1 given that E2 occurs and Z takes on the value i ∈ g, i.e.,

P (E1 | E2, Z = i),
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as the treatment of group i.

Using this notation, we can generalize group fairness notions that
are based on conditional probabilities, including statistical parity,
equality of opportunity, predictive parity etc. [4, 14, 26]. These crite-
ria typically demand equal outcomesE1 for different groups i, j ∈ g
given the same events E2. Expressed with our notation, we yield:

P (E1 | E2, Z = i) = P (E1 | E2, Z = j). (4)

In our case, E1 often represents a dichotomous outcome, such as
Y = 1 or Y = 0. Therefore, P (E1 | E2, Z = i) can be inter-
preted as the success probability of a Binomial distribution. In the
following, we demonstrate examples of common group fairness cri-
teria expressed with our notation by only specifying E1 and E2.

Example 1 (Statistical Parity [4]). Statistical parity requires equal
positive outcomes between groups:

P (Y = 1 | Z = i) = P (Y = 1 | Z = j),

where i, j ∈ g represent different groups. To equivalently express it
with our notation, we set E1 := (Y = 1) and E2 := Ω. By setting
E2 equal to the sample space, we compare the probabilities of the
event Y = 1 across different groups without conditioning on any
additional event.

Example 2 (Equality of Opportunity [14]). To achieve equality of
opportunity, we have to set E1 := (Ŷ = 1) and E2 := (Y = 1),
which results in:

P (Ŷ = 1 | Y = 1, Z = i) = P (Ŷ = 1 | Y = 1, Z = j).

This is equivalent to equal true positive rates across groups.

Example 3 (Predictive Parity [26]). Predictive parity aims for equal
predictive accuracy across different groups. To achieve this with our
notation, we set E1 := (Y = 1), E2 := (Ŷ = 1) and yield:

P (Y = 1 | Ŷ = 1, Z = i) = P (Y = 1 | Ŷ = 1, Z = j).

This is equivalent to equal positive predictive values across groups.

Because achieving equal probabilities for certain outcomes is not
always possible due to variations in sample sizes in the groups, it
is common to yield unequal probabilistic outcomes, even when the
outcomes are similar. Hence, existing literature [27] use the abso-
lute difference between the probabilities to quantify the strength of
discrimination.

Definition 2 (Disparity). We define the difference between the treat-
ments of the groups i, j ∈ g in the following:

δZ(i, j, E1, E2) = |P (E1 | E2, Z = i)− P (E1 | E2, Z = j)|,

and refer to it as disparity. The disparity satisfies all properties of a
mathematical metric regarding i, j and is also referred to as fairness
metric.

Higher differences indicate increased discrimination. Trivially, δZ
is commutative regarding i, j. Establishing δZ provides a fundamen-
tal foundation for various scenarios. For instance, it allows us to ag-
gregate pairwise differences between groups, particularly when deal-
ing with attributes that are non-binary [27, 10, 7, 9].

4 Quantifying Uncertainty

As shown in Equation (4), we can describe fairness criteria by de-
manding equal treatments. However, the treatment of a group i ∈ g
can often exhibit uncertainty due to the limited number of samples. In
this section, we contrast frequentist and Bayesian approaches to esti-
mate the treatment probabilities P (E1 | E2, Z = i). We then model
the uncertainty of the disparity δZ using the variances of the posterior
distributions. Finally, we define a decision-maker by its disparity and
the corresponding uncertainty, enabling an enhanced discrimination
assessment.

4.1 Estimating Treatment Probabilities

Earlier, we defined treatment as the probability of group i ∈ g re-
ceiving some specific event E1 given E2. Let us consider the hir-
ing process as an example again, then P (E1 | E2, Z = i) could
represent the chances of group i receiving a job offer E1 under the
condition of having a certain qualification E2. This example depicts
a Binomial distribution, where the outcome is binary. When having
samples from the hiring process, we can denote the number of appli-
cants in group i as:

ni = |{Z = i} ∩ E2|, (5)

and those of group i who received a job offer as:

ki = |E1 ∩ {Z = i} ∩ E2|. (6)

4.1.1 Frequentist Approach

In frequentist statistics, the probability of a Binomial distribution is
estimated using empirical counts1. For shorthand, let’s denote pi :=
P (E1 | E2, Z = i), then the estimate is given by:

p̂i =
|E1 ∩ {Z = i} ∩ E2|

|{Z = i} ∩ E2| =
ki
ni

. (7)

With more samples, the estimate becomes more accurate, i.e.,
limni→∞ p̂i = pi. In practice, ni can be small and therefore the
estimate p̂i can be quite different from the true probability pi.

4.1.2 Bayesian Approach

In Bayesian statistics [13], the quantification of uncertainty involves
modeling pi as a random variable rather than setting it to a fixed con-
stant as in Equation (7). We start with a prior distribution p(pi) that
represents our beliefs before observing any data D. When estimat-
ing parameters for a Binomial event, the Beta distribution, denoted
with B(α, β), is commonly used as the prior distribution [13]. Simi-
larly to the Binomial distribution, it models binary outcomes. It does
this with two shape parameters, α and β. To yield a non-informative
uniform prior [13], both parameters are usually set with

αprior = 1, (8)

βprior = 1.

This setting is motivated by the principle of indifference in Bayesian
statistics and aligns with Laplace’s rule of succession. In the next
step, the prior distribution

p(pi) = B(αprior, βprior) (9)

1 Maximum likelihood estimation
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is updated. The updated distribution is known as the posterior distri-
bution p(pi|D), which models the distribution of pi after observing
data D and represents our current beliefs.

According to Gelman et al. [13], the posterior can be obtained by
adding the corresponding number of successes and failures to the
shape parameters of the prior distribution. Specifically, the parame-
ters for the posterior are:

α
(i)
post. = αprior + ki, (10)

β
(i)
post. = βprior + ni − ki.

With the posterior distributions:

p(pi|D) = B(α(i)
post., β

(i)
post.) (11)

for each group i ∈ g in hand, we can compare the group disparities
more comprehensively. The posterior distributions allow us to derive
alternative definitions for treatment and disparity. Since pi and pj
are not single probabilities under this paradigm, the definitions of
treatment and disparity undergo notational modifications.

Definition 3 (Bayesian Treatment). We denote the expected value of
the posterior p(pi|D) as E(pi|D). It is given by [13]:

E(pi|D) =
α
(i)
post.

α
(i)
post. + β

(i)
post.

and is the Bayesian estimate of pi.

Definition 4 (Bayesian Disparity). Denoting pi and pj with the ex-
pected value, the Bayesian disparity δ(Bay.)

Z becomes:

δ(Bay.)
Z (i, j, E1, E2) = |E(pi|D)− E(pj |D)|.

δ(Bay.)
Z differs from δZ marginally if the number of samples is small.

We leave the choice of the disparity definition to the user. We suggest
using Bayesian disparity, if there is an initial belief that both groups
have a 50% chance of receiving the favorable outcome. If such a
belief is not present, the frequentist disparity is more suitable and
less biased. We use the frequentist disparity in our work.

4.2 Modeling (Un)certainty of (Un)fairness

As seen in Figure 2, even with same frequentist treatments for group
i and j (80%), the posterior distributions are vastly different. This is
due to the different group sizes ni and nj and is signified by the vari-
ances of the posteriors. Hence, the variances of the posterior distribu-
tions describe the underlying uncertainties. We denote the variance
with σ2

B and it is defined by [13]:

σ2
B(α, β) =

αβ

(α+ β)2(α+ β + 1)
. (12)

Due to interpretability reasons, we aim to normalize the variance
to the closed interval [0, 1], where 0 represents no uncertainty and 1
represents maximum uncertainty. For this, it is essential to consider
a few characteristics of the variance. Notably, σ2

B is monotonically
decreasing with respect to the shape parameters α and β, i.e., larger
parameters lead to a smaller variance. Given that these shape param-
eters are natural numbers, the largest achievable variance of the pos-
terior distribution, derived from Equation (11), is given by σ2

B(1, 2),
or equivalently σ2

B(2, 1). We employ this maximum variance as a
scaling factor, resulting in the following normalized variance σ̂2

B:

σ̂2
B(α, β) :=

σ2
B(α, β)
σ2
B(1, 2)

. (13)

Figure 2. Group i comprises ni = 100 individuals, with ki = 80
receiving the favorable outcome, while group j consists of nj = 10

individuals, of which kj = 8 experience the favorable outcome. The figure
displays the probability density functions of the posteriors. The filled areas
mark the 95% credible intervals of each distribution. Noticeable, we are less
certain about the data from group j. In frequentist statistics, both groups are
treated equally, but the Bayesian approach enables differentiating the groups.

When comparing the disparities between two groups i, j ∈ g, we
can use both normalized variances of the posteriors to obtain the un-
certainty of the disparity and answer research question RQ1 with the
following definition.

Definition 5 (Uncertainty). We define the uncertainty of the disparity
between two groups i, j ∈ g as the mean of the normalized variances
of their posterior distributions:

σ̄2
δZ (i, j, E1, E2) =

σ̂2
B(α

(i)
post., β

(i)
post.) + σ̂2

B(α
(j)
post., β

(j)
post.)

2
.

By taking the average, the uncertainties from both groups are com-
bined. A higher uncertainty score indicates a lower precision of the
disparity estimate and vice versa. A maximum uncertainty of 1 is
achieved if both groups consist of a single individual. We can now
define a decision-maker by its disparity and the corresponding un-
certainty in the following definition.

Definition 6 (Decision-Maker). A decision-maker D ∈ [0, 1]2 is
defined by its disparity and the corresponding uncertainty:

D = (δZ , σ̄
2
δZ ).

5 Ranking Decision-Makers

In this section, we begin by defining preferences over decision-
makers, establishing the criteria for what is deemed to be more or
less fair. Subsequently, we formulate a utility function that maps
decision-makers to values that represent the preferences and enables
ranking, thus answering research question RQ2. A higher utility
value indicates a more preferred decision-maker. To autonomously
select the optimal decision-maker, we iterate through all candidates
to find the decision-maker with the maximal utility value (RQ3). Ad-
ditionally, we introduce the concept of indifference curves, offering
insights into cases where two different decision-makers are equally
preferred. The preference definitions in this section are mainly in-
spired by the work of Levin and Milgrom [19] and were adapted to
fit our context.

5.1 Preferences

We recall the preferences (1)-(3) from Section 1 we have over
decision-makers. We first introduce the definition of a preference
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relation and then define the preferences (1)-(3) formally using the
definition of a decision-maker.

Definition 7 (Preference Relation). We denote a strict preference
relation with � or ≺ and write D1 � D2 to signify that decision-
maker D1 is preferred over D2. The symbol ∼ denotes indifference,
i.e., D1 ∼ D2 means that D1 and D2 are equally preferred. The
strict preference relation is transitive, while the indifference relation
is reflexive and transitive.

Definition 8 (Trivial Preferences). We have following preferences
over decision-makers:

fair certain � fair uncertain : (0, 0) � (0, 1)

fair uncertain � unfair uncertain : (0, 1) � (1, 1)

unfair uncertain � unfair certain : (1, 1) � (1, 0)

Due to transitivity, we can derive additional preferences:

fair certain � unfair uncertain : (0, 0) � (1, 1)

fair certain � unfair certain : (0, 0) � (1, 0)

fair uncertain � unfair certain : (0, 1) � (1, 0)

The listed preferences are trivial and extreme cases, where a
decision-maker is characterized by extreme instances of (un)fairness
and (un)certainty, i.e., D ∈ {0, 1}2. We note that listing all prefer-
ences over decision-makers, as defined in Definition 8, is impossible
because infinite decision-makers exist in the continuous space, thus
making the preference relation incomplete. We call any preference
that is not trivial a non-trivial preference.

Definition 9 (Non-Trivial Preference). D1 � D2 is a non-trivial
preference if and only if D1, D2 ∈]0, 1[2.

Modeling non-trivial preferences can be challenging as we are
comparing decision-makers that are neither extremely fair, unfair,
certain, nor uncertain. However, it is possible to infer non-trivial pref-
erences from the trivial ones, as we will show in the next section.

5.2 Ranking with Utility Values

By introducing a utility function u, we can translate preferences over
decision-makers into utility values that enable proper comparison,
i.e.,

D1 � D2 =⇒ u(D1) > u(D2). (14)

Importantly, the utility function must satisfy all trivial preferences
from Definition 8. However, this still leaves us open with infinitely
many decision-makers that are not covered by the defined prefer-
ences, specifically for any D ∈]0, 1[. Therefore, we need to define a
utility function that is able to assign a value to all possible decision-
makers. By doing so, we can rank all decision-makers accordingly
to the defined preferences and the undefined, non-trivial preferences.
For the latter, we assume that these preferences can be implied from
the utility:

D1 � D2 ⇐= u(D1) > u(D2). (15)

Definition 10 (Utility Function). Let D = [0, 1]2 be the set of all
decision-makers, a utility function u : D → R is total and must
fulfill all preferences from Definition 8, that is:

u(0, 0) > u(0, 1)

u(0, 1) > u(1, 1)

u(1, 1) > u(1, 0),

including all derived preferences due to transitivity.

By demanding totality, we ensure that the utility function is able
to assign a value to every decision-maker D ∈ [0, 1]2. A possible
utility function is given by the following example.

Example 4 (TOPSIS Utility). Motivated by TOPSIS [15], we cal-
culate the utility of decision-makers based on their distances to the
ideal solution (0, 0) and the worst solution (1, 0). Because utility is
to be maximized, distances should be penalized accordingly. We de-
fine utopsis : [0, 1]

2 → [−1, 1] with:

utopsis(δZ , σ̄
2
δZ ) =

∥
∥(δZ , σ̄

2
δZ )− (1, 0)

∥
∥
2
− ∥

∥(δZ , σ̄
2
δZ )− (0, 0)

∥
∥
2

=
√

(δZ − 1)2 + (σ̄2
δZ

)2 −
√

(δZ)2 + (σ̄2
δZ

)2.

Theorem 1. utopsis is a utility function as it is total, fulfills all pref-
erences from Definition 8, and preserves the transitive preferences.

Proof. Trivial. utopsis is total by definition, i.e., a value utopsis(D) ex-
ists for allD ∈ D. Next, input the values from Definition 8 and show
that all preferences including the transitive ones hold.

The idea behind utopsis is that the decision-maker that is closer
to the ideal decision-maker (0, 0) and farther away from the worst
decision-maker (1, 0) is rewarded with a higher utility value. The
utility function is not unique and can be replaced by any other func-
tion fulfilling the requirements from Definition 10. Since we mod-
eled the utility function in Example 4 to favor certainly fair decision-
makers and disfavor certainly unfair ones, we can be sure that any
decision-maker with a higher utility value is more preferred than any
other by rational users that have the same preferences as in Defini-
tion 8.

Because a normalized score is more intuitive, stakeholders might
prefer to use the utility function from the following example.

Example 5 (Normalized Utility). We define a normalized utility
function unorm : [0, 1]2 → [0, 1] with:

unorm(δZ , σ̄
2
δZ ) =

utopsis(δZ , σ̄
2
δZ

) + 1

2
. (16)

Theorem 2. unorm is a utility function as it is total, fulfills all prefer-
ences from Definition 8, and preserves the transitive preferences.

Proof. Trivial. Apply the same steps as in the proof of Theorem 1.

5.3 Objective Function and Selecting Optimal
Decision-Maker

Let us have a set of decision-makers D = {D1, D2, . . . , Dm}, then
the approach to choose the optimal decision-maker D∗ is given by
solving the following optimization problem:

D∗ = argmax
Di∈D

u(Di).

For a finite set of decision-makers, this can be solved efficiently with
brute-force search in O(m).

5.4 Indifference Curve

When two decision-makers have the same utility, they are indifferent
to each other, i.e., D1 ∼ D2. In such cases, the user is left with free
choices to select their optimal decision-maker. All points having the
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same utility value lie on an indifference curve. It can be derived by
solving the following equation:

u(D1) = u(D2). (17)

Let us denote D1 = (a1, a2), D2 = (b1, b2), then we specifically
solve:
√

(a1 − 1)2 + a2
2 −

√

a2
1 + a2

2 =
√

(b1 − 1)2 + b22 −
√

b21 + b22.

(18)
Depending on which variable (a1, a2, b1, b2) is treated as a con-

stant, the analytical solution can become excessively long. We did
find such solutions for the indifference curve with symbolic compu-
tation [21], but they are not insightful. We found a trivial solution
with:

u(D1) = u(D2) = 0. (19)

For this case, the curve is given when a1 = b1 = 0.5 and a2, b2 can
be any value in [0, 1]. This means that decision-makers are indiffer-
ent as long as their disparities are both 50%. Utility values are also
negative if the disparity is higher than 50% and positive if it is lower.

6 Experiments

Before diving into the experiments, we revisit the example from Fig-
ure 1. We calculate the disparity and uncertainty for the two re-
cruiters, A and B, and list the utility values using utopsis in Table 1.
When comparing the disparities, both recruiters are indifferent as
they are equally unfair towards group j. According to the utility val-
ues, recruiter B has a higher utility than A and is therefore more
preferred. This aligns with the intuition that we are more uncertain
about B’s unfairness than A’s.

Table 1. Revisiting example given in Figure 1.

Recruiter ni ki nj kj p̂i p̂j DM (δZ , σ̄2
δZ

) Utility

A 3 3 3 0 100% 0% (1.000, 0.480) -0.629
B 1 1 1 0 100% 0% (1.000, 1.000) -0.414

To explore our methodology more extensively, we conduct exper-
iments on synthetic and real-world datasets. We use synthetic data
to have full control over the disparities and uncertainties of decision-
makers. This is done by setting different group treatments and vary-
ing the group sizes.

6.1 Synthetic Data

We first generate group sizes (ni, nj) ∈ {1, 5, 10, 50}2. Each group
i ∈ g can receive any number of favorable outcomes ki based on its
size ni. For example, if ni = 5, then ki can be any natural number in
[0, 5]. Decision-makers are then created by calculating the disparity

Table 2. Four decision-makers with the highest and lowest utility values
from the synthetic data created in the experiments.

Rank ni ki nj kj p̂i p̂j DM (δZ , σ̄2
δZ

) Utility

1 50 50 50 50 100% 100% (0.000, 0.006) 0.994
2 50 0 50 0 0% 0% (0.000, 0.006) 0.994
3 50 49 50 49 98% 98% (0.000, 0.013) 0.988
4 50 1 50 1 2% 2% (0.000, 0.013) 0.988
4897 50 0 50 49 0% 98% (0.980, 0.009) -0.958
4898 50 49 50 0 98% 0% (0.980, 0.009) -0.958
4899 50 50 50 0 100% 0% (1.000, 0.006) -0.994
4900 50 0 50 50 0% 100% (1.000, 0.006) -0.994

and uncertainty through all possible combinations of group sizes and
treatments. This results in 4 900 decision-makers. We then calculate
the utility value using utopsis for each decision-maker.

We list four decision-makers with the highest and lowest util-
ity values from the synthetic data in Table 2. The most favorable
decision-makers, with the same highest utility values, are those
where all individuals from both groups either receive the favorable
or unfavorable outcome, i.e., ki, kj ∈ {0, ni} with ki = kj . Groups
are essentially treated equally and consist of large sample sizes. The
least favorable decision-makers are the ones, where the disparity is
maximized and the uncertainty is lowest. This aligns with the intu-
ition that decision-makers, where we know that they are without a
doubt unfair, are less preferred.

6.2 COMPAS Dataset

We use the COMPAS [18] dataset to evaluate decision-makers. The
dataset contains information about defendants and their criminal his-
tories. We compare different machine learning models, namely Lo-
gistic Regression (LR), Support Vector Machine (SVM), Random
Forest (RF), and k-Nearest Neighbors (KNN), that predict whether
a defendant will be rearrested within two years. These models act
as decision-makers in our context. The dataset consists of 7 214 sam-
ples, and we use an 80/20 split for training and testing. Different from
the processed versions of COMPAS in other fairness libraries [2, 3],
the protected attribute ‘race’ has not been reduced to two categories
but is utilized in its original form. To calculate the disparity for this,
we report the following difference [27, 3]:

δZ = max
i∈g

P (Ŷ = 0 | Z = i)−min
j∈g

P (Ŷ = 0 | Z = j), (20)

where Ŷ = 0 is the predicted outcome on the test set, noting that it is
considered the favorable outcome as it indicates that a defendant will
not be rearrested. Using this formula, the most and least privileged
groups can differ for each model.

Table 3 displays the results of the experimentation on the COM-
PAS dataset. The models are ranked based on their utility values with
utopsis. We also report the accuracy of each model. The Logistic Re-
gression model has the highest utility value and is therefore the most
preferred. Interestingly, we observed that Asians are always the most
privileged group, while Native Americans are always the least priv-
ileged group. Nearly all Asians receive a favorable outcome, while
only a few Native Americans do. Both groups come with a small
sample size and are therefore associated with high uncertainty. In this
real-world scenario, ranking models by their utility values aligns with
ranking them by the disparity δZ . This is because the utility function
is designed to favor decision-makers with lower disparities. However,
utility values contain information about the uncertainty of the dispar-
ities. Moreover, as illustrated in the example from Table 3, utility
values are essential for distinguishing between decision-makers who
exhibit the same level of disparity. In cases where both disparity and
uncertainty are equal, the utility values are also the same. This is the
case for the SVM and RF models in our experiment. For this, we ad-
vise considering the accuracy of the models as well. To conclude, LR
has the highest utility value and accuracy, making it the most suitable
model for recidivism prediction in this case.

6.3 Summary of Results

Our work addresses three key research questions. Firstly, we es-
tablish a method to distinguish between decision-makers exhibiting
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Table 3. Results from the COMPAS dataset.

Model Most Privileged (i) Least Privileged (j) ni ki nj kj p̂i p̂j DM (δZ , σ̄2
δZ

) Utility Accuracy

LR Asian Native American 6 6 4 2 100% 50% (0.500, 0.431) 0 72%
KNN Asian Native American 6 5 4 0 83.33% 0% (0.833, 0.366) -0.508 66.81%
SVM Asian Native American 6 6 4 0 100% 0% (1.000, 0.288) -0.753 71.10%
RF Asian Native American 6 6 4 0 100% 0% (1.000, 0.288) -0.753 70.20%

the same levels of discrimination by integrating uncertainty into our
analysis (RQ1). This involves modeling the uncertainty of the mea-
sured disparity of outcomes between groups. Using both disparity
and uncertainty, we define a decision-maker and establish our prefer-
ences among them. Secondly, to compare decision-makers within the
continuous space of preferences, we introduce a utility function that
evaluates each candidate. The utility values are then used to rank all
decision-makers according to the defined preferences (RQ2). Lastly,
to identify the optimal decision-maker, we introduce an optimiza-
tion objective, allowing us to select the most suitable candidate, thus
addressing RQ3. The synthetic and real-world experiments demon-
strate the practical usability and necessity of our methodology to re-
liably assess the fairness of decision-makers.

7 Discussion

While we answered all research questions prior, we want to discuss
several aspects of our methodology, including the scope of our work,
in this section.

It is important to model the utility function in such a way that
it reflects the user’s preferences. This is because non-trivial prefer-
ences are implied by the utility function. Here, we refer the reader
to methods that map multiple criteria to a single value, such as TOP-
SIS [15] or the Analytic Hierarchy Process [23]. Ranking decision-
makers based on the utility function is a good starting point to check
if the preferences are correctly modeled.

Another important aspect is the indifference curve. We found that
decision-makers are indifferent to each other as long as their dis-
parities are both 50%. Here, the utility function is not sufficient to
differentiate between decision-makers, and the choice is left to the
user. We discourage choosing such a decision-maker where the un-
certainty is close to zero. This is because 50% disparity is quite high
in practice. Decision-makers with a higher level of uncertainty are
more preferred in such cases.

Our methodology is not invulnerable to manipulation. For exam-
ple, if a human decision-maker is aware of the internal workings of
our method, he or she could artificially increase the uncertainty of
their disparity to appear less discriminatory. In a hiring scenario, this
can be done by generally rejecting candidates coming from a very
marginalized group where the number of samples is small. In such
a case, minority groups should be grouped together into one large
group to avoid this kind of manipulation.

8 Conclusion

When dealing with small sample sizes, particularly in the case of mi-
nority groups, we are often uncertain about the collected data and
the information derived from it. Group fairness metrics aim to report
how different groups are treated based on some specified events and
outcomes, disregarding uncertainty. Therefore, we first introduce a
method utilizing Bayesian statistics to quantify the uncertainty of the
disparity of group treatments and employ them to enhance the assess-
ment of discrimination. With both the disparity and the uncertainty,

we define decision-makers and derive preference relations over them.
By introducing a utility function that aligns with these preferences
and is defined for every possible decision-maker, we are able to se-
lect the most preferred decision-maker with the largest utility from
a set of candidates using brute-force. Our methodology comes with
proven guarantees, and we have demonstrated its behavior on syn-
thetic and real-world datasets.

The implications of our work are noteworthy, as we are able to dif-
ferentiate between systematic discrimination and random outcomes
and have defined preferences in such cases. Decision-makers ex-
hibiting discrimination on fewer samples are more preferred than
those exhibiting discrimination on larger sample sizes. Similarly, a
certainly fair decision-maker is preferred over an uncertainly fair
decision-maker. The latter is when the decision-maker receives fewer
samples. Our methodology can be used for a wide range of applica-
tions, including evaluating machine learning models as well as hiring
and admission processes at companies and universities. Additionally,
the utility function can also be incorporated into the loss function of
a machine learning model to penalize decisions that are certainly un-
fair.

Ethics Statement

With our proposed utility score, we address the issue of reporting
discrimination in uncertain cases. The proposed score can protect
decision-makers from discrimination accusations when the dispar-
ity they exhibited is uncertain, while also ensuring that those who
are clearly discriminatory are appropriately penalized. Consequently,
the societal impact of our work is positive. Still, further research is
needed to investigate the impact of our method on several real-world
applications.
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4.2 Trusting Fair Data by Incorporating Data Qual-
ity Measures

Paper: Manh Khoi Duong and Stefan Conrad. Trusting Fair Data: Leveraging Qual-
ity in Fairness-Driven Data Removal Techniques. In Big Data Analytics and Knowledge
Discovery, volume 14912 of Lecture Notes in Computer Science. Springer Cham, 2024.

Personal Contribution: Manh Khoi Duong developed the idea to enhance trust
of FairDo [3]. The methodology of the research was implemented completely by Manh
Khoi Duong. Manh Khoi Duong wrote all parts of the paper. Stefan Conrad super-
vised the work.

Remark: The following paper [5] is an extended version of the conference paper,
containing additional details and results.

Status: Published

Pre-processing data for fairness is a double-edged sword. While such methods are
able to mitigate bias, data quality and integrity often come with compromises. One
of the most popular fairness Python libraries, AIF360, implements four pre-processing
techniques to mitigate bias [33, 51, 25, 19], of which three transform and edit the
features. Only one technique, Reweighing [33], assigns weights to the samples that are
used in the training process. Fairlearn [16] is another Python library that provides
a set of algorithms to mitigate bias. It includes a pre-processing technique called
CorrelationRemover that transforms the features to remove the correlation with the
sensitive attribute.

All of the aforementioned techniques (with the exception of Reweighing) have one
common drawback: They alter the data in an uninterpretable way [2]. We argue that
our methods [2, 3] are more interpretable because they are over- and undersampling
techniques. Data is either added or removed, but features are not altered. This is
a huge advantage because data points exist in the original or synthetic dataset (used
for oversampling). This is not the case for feature transformation techniques. Still,
specifically when removing data, a lot can happen, and certain guarantees are needed
to ensure that the data can be trusted.

In this paper, we propose a modification of a fairness metric and introduce several
novel optimization problems to enhance trust in fairness-driven data removal tech-
niques. Specifically, our work guarantees that no protected group is completely re-
moved from the dataset during the removal process. Additionally, users are introduced
to a new objective, which is to minimize the number of removed samples. Similarly
to the fairness-utility trade-off [18], users can now decide the extent to which they are
willing to compromise fairness to keep the data intact. All methods are implemented
and extended in the FairDo [3] package. The updated package includes new solvers for
the stated multi-objective optimization problems.
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Trusting Fair Data: Leveraging Quality in
Fairness-Driven Data Removal Techniques⋆

Manh Khoi Duong1[0000−0002−4653−7685] and
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Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
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Abstract. In this paper, we deal with bias mitigation techniques that
remove specific data points from the training set to aim for a fair rep-
resentation of the population in that set. Machine learning models are
trained on these pre-processed datasets, and their predictions are ex-
pected to be fair. However, such approaches may exclude relevant data,
making the attained subsets less trustworthy for further usage. To en-
hance the trustworthiness of prior methods, we propose additional re-
quirements and objectives that the subsets must fulfill in addition to
fairness: (1) group coverage, and (2) minimal data loss. While removing
entire groups may improve the measured fairness, this practice is very
problematic as failing to represent every group cannot be considered fair.
In our second concern, we advocate for the retention of data while min-
imizing discrimination. By introducing a multi-objective optimization
problem that considers fairness and data loss, we propose a methodol-
ogy to find Pareto-optimal solutions that balance these objectives. By
identifying such solutions, users can make informed decisions about the
trade-off between fairness and data quality and select the most suitable
subset for their application. Our method is distributed as a Python pack-
age via PyPI under the name FairDo1.

Keywords: Fairness · Bias mitigation · Data quality · Coverage · AI
Act.

1 Introduction

Machine learning models are often trained on biased data, which can lead to
biased predictions [5]. A common approach to addressing fairness concerns is to
use bias mitigation techniques. They can be categorized into pre-processing,
in-processing, and post-processing [16]. Pre-processing techniques aim to re-
move bias from the training data before training a machine learning model, in-
processing techniques modify the learning algorithm, and post-processing tech-
niques adjust the predictions.
⋆ Manuscript submitted to the 26th International Conference on Big Data Analytics

and Knowledge Discovery (DaWaK 2024).
1 https://github.com/mkduong-ai/fairdo
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Because bias can be introduced at various stages during data preparation
steps, pre-processing techniques can be integrated into the data preparation
pipeline to ensure that the training data is fair. Some of the pre-processing tech-
niques involve the removal of certain data points from the training set [20,8,9].
By removing certain data points, the machine learning model is trained on a
fair subset and its predictions are expected to be fair as well. These techniques
aim to fix representation bias in the data. While they tackle the root cause of
the problem, they are deemed problematic as they may lead to the exclusion of
relevant data.

In this paper, we explore multiple problems that can arise from the removal
of data points and propose a decision-making methodology for selecting a subset
that is more trustworthy for the user. One particular problem is the removal
of groups as a whole, i.e., lack of coverage. For instance, the elimination of
non-privileged groups can be considered fair by various fairness metrics, yet it
fails to align with our main objective, which is to represent every group fairly
in the resulting dataset. Removing entire groups can be seen as equivalent to
underreporting discrimination. Another problem we tackle is the amount of data
removed. When removing too many data points, the resulting dataset may not
accurately represent the original data and data quality is compromised. Hence,
our second objective is to retain as much data as possible. With this additional
objective, there is a trade-off between fairness and the amount of data removed.

In summary, our main contributions are as follows:

– We present two additional criteria, coverage and data loss, to enhance trust-
worthiness for fairness-driven data removal techniques.

– We propose a multi-objective optimization problem that considers fairness
and data loss. Using NSGA-II [6], we find Pareto-optimal solutions that the
user can choose from.

– We provide an extensive and empirical evaluation of our proposed method-
ology on three real-world datasets (Adult [14], Bank [17], COMPAS [15])
and evaluate the attained subsets by training machine learning models on
them. We assess the models’ fairness and performances by comparing them
to models trained on the original datasets.

– We publish our methods in an open-source and documented Python package
FairDo that can be used on-the-fly to pre-process datasets. It comes with
several tutorials and examples.

2 Related Work

While there are many bias mitigation techniques, and some of them are imple-
mented in popular Python packages such as AIF360 [1] and Fairlearn [2], the
included pre-processing techniques are not able to deal with non-binary groups
and at the same time transform the data in an uninterpretable way by edit-
ing features and labels. The package FairDo [9] aims to address these issues.
It is a highly adaptive framework for removing data points to achieve fairness.
In this framework, it is possible to deal with binary, non-binary groups, and
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multiple protected attributes if the fairness metric is defined accordingly. While
the resulting fair datasets are more interpretable, as they are subsets of the
original dataset, data removal can also be viewed critically. One can argue that
their framework offers other solutions, such as adding synthetic data points to
the original data for fairness. However, all solutions are based on data removal
within their framework.

Drawing inspiration from prior research that has addressed group represen-
tativeness [7,19,4], we extend the methodology of Duong et al. [9] accordingly.
There are many ways to define representativeness. The work of Stoyanovich et
al. [19] explores two main definitions: proportional representation and coverage.
Proportional representation ensures that the dataset contains a representative
number of data points from each group. Coverage, on the other hand, ensures
that the dataset covers the entire population. We aim for coverage in our work
and argue that aiming for proportional representation is not feasible because the
group counts are given beforehand and not much can be done about it during
the data removal process. Coverage only requires each group to be represented
at least once in the dataset and is hence a more relaxed constraint.

The work of Catania et al. [4] is also related to our work. They propose a
constraint-based optimization approach for their problem, which is to mitigate
biases in datasets during a selection-based query. We deal with selecting a subset
that optimizes a certain fairness objective and do not consider being in a query
setting.

3 Preliminaries

Following definitions are primarily based on the work of Žliobaitė [22] and taken
from Duong et al. [9]. We applied minor modifications to fit the definitions to
the context of this paper.

3.1 Measuring Discrimination

Protected attributes such as race, gender, and nationality make individuals vul-
nerable to discrimination. Generally, we use Z to represent a protected attribute
and Y to denote the outcome for an individual. Formally, we define Z and Y as
discrete random variables. Z can take on values from the sample space g, which
represents social groups such as male, female, and non-binary. For Y , we use the
values 1 and 0 to indicate positive and negative outcomes, respectively. Further,
we denote zi and yi to refer to the values of the i-th individual.

Definition 1 (Dataset). We define a dataset D as a set of data points di:

D = {di}ni=1,

where n is the number of data points in the dataset. A data point can be defined
as a triplet (xi, zi, yi), where xi is the feature vector, zi is the protected attribute,
and yi is the outcome.
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Fairness criteria are often based on conditional probabilities, and typically de-
mand some equal outcome between groups [13,21]. One of the most common
fairness criteria is statistical parity [3].

Definition 2 (Statistical Parity [3]). Statistical parity requires equal positive
outcomes between groups:

P (Y = 1 | Z = i) = P (Y = 1 | Z = j),

where i, j ∈ g represent different groups.

Typically, the probabilities are estimated using sample statistics. Because achiev-
ing equal probabilities for certain outcomes is not always possible, existing lit-
erature [22] present measures to quantify the level of discrimination.

Definition 3 (Statistical Disparity [22]). Statistical disparity is defined as
the absolute difference between the probabilities of the positive outcome Y = 1
between two groups i, j ∈ g:

δZ(i, j) = |P (Y = 1 | Z = i)− P (Y = 1 | Z = j)|.

Establishing δZ provides a fundamental foundation for various scenarios. For
instance, it allows us to aggregate pairwise differences between groups, partic-
ularly when dealing with attributes that are non-binary [22]. This allows us to
quantify discrimination for more than two groups.

Definition 4 (Disparity for Non-binary Groups). We introduce an aggre-
gate function agg(1) as a function that takes a set of values and returns a single
value. The function agg(1) can represent, for example, the sum or maximum
function. With agg(1), we can compute the discrimination for a single protected
attribute Z with any amount of groups. Simplifying notation, we write ψ(D) to
represent the discrimination measure for a dataset D:

ψ(D) = agg(1)

i,j∈g,i̸=j
δZ(i, j).

Example 1 (Maximal Statistical Disparity). The maximal statistical disparity is
defined as:

ψSDP-max(D) = max
i,j∈g,i̸=j

δZ(i, j).

It describes the maximum discrimination obtainable between two groups.

There are many ways to measure discrimination in a dataset. In this paper, we
focus on the maximal statistical disparity as it provides an interpretable measure
of discrimination and is recommended in the work of Žliobaitė [22]. Still, our
framework can be extended to other measures as well, that is, any ψ that maps
a dataset to a positive value. Our framework only assumes that the objective
is to minimize ψ. We use the term discrimination measure and fairness metric
interchangeably to refer to ψ.
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3.2 Fair Subset Selection

Duong et al. [9] proposed a framework for removing discriminating data points
from a given dataset D = {di}ni=1. They stated the problem as finding a subset
Dfair ⊆ D, which minimizes the discrimination in that subset. This describes
following combinatorial optimization problem:

min
Dfair⊆D

ψ(Dfair). (1)

To make the problem solvable, the authors [9] introduced a binary decision
variable bi for each sample di ∈ D, where bi = 1 indicates if the sample di is
included in the fair subset Dfair and 0 otherwise. More formally Dfair is defined
as:

Dfair = {di ∈ D | bi = 1}. (2)

Defining b = (b1, b2, . . . , bn) ∈ {0, 1}n as a solution vector, finding the optimal
subset Dfair is equivalent to solving for the optimal binary vector b∗:

b∗ = argmin
b∈{0,1}n

ψ({di ∈ D | bi = 1}) (3)

Because finding the exact optimal solution b∗ is an NP-hard problem if ψ is
treated as a black-box, the authors [9] employed genetic algorithms to heuristi-
cally solve the problem.

4 Enhancing Trust in Fair Data

When having a fair dataset, we want to ensure that the dataset is still faithful to
its original version. To enhance the trustworthiness, we introduce two additional
criteria. The two criteria roughly describe a form of quality assurance for the
fair subset. Overall, we have three criteria:

– Fairness: We want to minimize the discrimination in the attained subset [9].
– Coverage: All groups must be included in the fair subset.
– Data Loss: The fair subset should resemble the original dataset by retaining

as much data as possible.

4.1 Coverage

When we compare the discrimination scores between two datasets, one could
naively assume that the dataset with the lower score should be preferred over
the other. However, simply comparing the discrimination scores is not sufficient.
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Table 1: A dataset and two of its possible subsets Dfair,Dcov. ⊆ D. Both subsets
achieve perfect fairness scores but only Dcov. satisfies coverage.

Table 2: D
di z y
1 0 1
2 1 1
3 2 0
4 2 1

Table 3: Dfair
di z y
1 0 1
2 1 1
3 2 0
4 2 1

Table 4: Dcov.
di z y
1 0 1
2 1 1
3 2 0
4 2 1

Example Table 2 represents the original dataset D, and Table 3 depicts a subset
Dfair ⊆ D, purposely selected to achieve fairness. The discrimination scores are
ψSDP-max(D) = 0.5 and ψSDP-max(Dfair) = 0. Despite Dfair yielding a perfect
fairness score, group 2 is missing in that set. Another fair subset Dcov. ⊆ D is
shown in Table 4, which includes all groups and hence satisfies coverage. It also
achieves a perfect fairness score, ψSDP-max(Dcov.) = 0. We even argue that any
dataset Dcov. satisfying coverage is more preferred than any other dataset that
does not, regardless of their fairness scores.

Incorporating Coverage We want to construct a fairness metric ψ̂ that re-
flects our preference regarding coverage: The subset that satisfies coverage is
always preferred over the subset that does not. However, if both subsets sat-
isfy coverage, we want to compare them based on the fairness metric ψ. Thus,
a penalty is only applied if a group is missing. In this case, ψ̂ must have a
higher value than the maximum discrimination achievable in ψ to enforce the
preference.

Definition 5 (Penalized Discrimination). The highest disparity possible for
ψSDP-max is 1. Let |gm| be the number of missing groups and ϵ > 0, then we
penalize ψSDP-max as follows to enforce preferring coverage over non-coverage:

ψ̂SDP-max(D) = max(ψSDP-max(D), [|gm| > 0] · (1 + ϵ)),

where [|gm| > 0] is an indicator function, which returns 1 if |gm| > 0 and 0
otherwise. Setting ϵ to any positive value ensures that the penalty is higher than
the maximum discrimination score.

4.2 Data Loss

By data loss, we refer to the similarity between the fair subset and its original.
There are several ways to measure data loss by this means. But some methods
require knowledge of the true underlying distribution of the data, which has to
be expensively estimated. Therefore, we use an efficient measure, which is the
relative amount of data removed.
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Definition 6 (Data Loss). The relative amount of the data removed is given
by:

L(D,Dfair) = 1− |Dfair|
|D|

,

where Dfair ⊆ D. A lower value indicates less data is removed, and therefore is
better.

5 Optimization Objectives

We have three objectives to optimize for: fairness, coverage, and data loss. Two of
the objectives, fairness and coverage, can be combined into a single objective, as
shown in Definition 5. The third objective, data loss, can be treated in multiple
ways, which we will discuss in the following.

5.1 Multi-objective Optimization

If there are no preferences provided regarding fairness and data loss, we have
to treat the problem as a multi-objective optimization problem. The aim is to
minimize both discrimination ψ̂ and data loss L. The optimization problem is
written as follows:

min
Dfair⊆D

(ψ̂(Dfair),L(D,Dfair)). (4)

Solvers for multi-objective optimization problems aim to find the Pareto front,
which is the set of solutions that are not dominated by any other solution. A
solution is dominated if there is another solution that is better in at least one
objective and not worse in any other objective.

5.2 Single-objective Optimization

If the importance of fairness and data loss is known beforehand, the problem
can be transformed into a single-objective optimization problem by using the
weighted sum of the objectives:

min
Dfair⊆D

αψ̂(Dfair) + (1− α)L(D,Dfair), (5)

where α ∈ [0, 1] is a weighting factor that determines the importance of fairness
over data loss. A value of α = 0.5 indicates that both objectives are equally
important and is set as the default value in our experiments. When α values are
set lower, the user prioritizes data fidelity more than fairness.

However, both objectives do not necessarily map to the same scale and there-
fore require normalization to make them comparable. Specifically, ψ̂ requires
normalization depending on the fairness metric used. Introducing β as the nor-
malization factor, the single-objective optimization problem is then:

min
Dfair⊆D

αψ̂(Dfair)

β
+ (1− α)L(D,Dfair). (6)
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There are two meaningful choices for β: We either care about the absolute or
relative discrimination score compared to the original dataset. For the absolute
score, β is set as the theoretical maximum value of ψ̂. In the case of ψ̂SDP-max,
setting β = 1 or β = 1+ϵ are both viable and similar options if ϵ is small enough.
For the relative score, β is set as the discrimination score of the original dataset,
β = ψ̂(D). Hence, any discrimination score under 1 implies a reduction of dis-
crimination. The score can be interpreted as the percentage of discrimination
removed or added.

We note that normalizing is not required in the multi-objective optimization
approach as the objectives are treated separately and the used heuristic compares
candidate solutions based on the Pareto order. Only selecting a single solution
from the Pareto front requires weighting the objectives.

6 Heuristics

To make the framework flexible and agnostic to the fairness metric, we have to
use heuristics that only require function evaluations. For this, we use genetic
algorithms to solve the optimization problems in Equations (4) and (6). To solve
the single-objective problem, we use the genetic algorithm borrowed from Duong
et al. [9]. For the multi-objective optimization problem, we use our own modified
version of the NSGA-II [6] algorithm as described in the following.

6.1 NSGA-II Modification

We added the possibility to select between methods that initialize the population
in our modified NSGA-II [6] algorithm. We created our own initializer that
initializes the population with variable bias.

Generally, all employed algorithms operate on a population of solutions.
In our implementation, the population is encoded as a binary matrix P ∈
{0, 1}M×n, where each row bi ∈ {0, 1}n represents a solution, i.e.,

P = (b1,b2, . . . ,bM )⊤, (7)

and M is the population size.

Random Initializer A common approach to initialize a population is to ran-
domly assign each entry in the binary matrix P to 0 or 1 with a certain proba-
bility p [10]. Usually, the probability is set to 0.5. Trivially, for all bi ∈ P, the
expected number of 1s is:

E(bi) →
n

2
, (8)

as n approaches infinity. This implies that each subset is expected to be half the
size of the original dataset.

Hence, this initialization method is not suitable for our problem, as we aim to
minimize the number of removed data points and require a diverse population.
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Variable Initializer To address the issues with the prior method, we propose
an initializer, which creates individuals with varying probabilities p. The user
can specify the range of the probabilities [pmin, pmax], and the initializer will cre-
ate individuals with probabilities evenly distributed within the specified range.
This leads to a more diverse population, where some individuals have less data
removed than others. The default range is set to [pmin, pmax] = [0.5, 0.99].

7 Evaluation

To evaluate the proposed framework, we conducted multiple experiments. Fol-
lowing research questions guided our evaluation:

– RQ1 Which configuration of genetic operators is best suited for the NSGA-II
algorithm in the context of bias mitigation in datasets?

– RQ2 What is the impact of pre-processed datasets on the fairness and per-
formance of machine learning models, as compared to models trained on
unprocessed data?

Each following subsection corresponds to one of the research questions. Each
experiment was conducted on the same objectives, datasets, and other settings
as listed below. The specific details for each experiment are detailed in the cor-
responding subsections.

Objectives The objectives are ψ̂SDP-max (Definition 5) with ϵ = 0.01 and L
(Definition 6). Both are to be minimized.

Datasets We conducted all experiments on three popular datasets in the fair-
ness literature: Adult [14], Bank [17], and Compas [15], providing a compre-
hensive examination across various domains. They all serve as baselines for our
experiments.

Trials We conducted 10 trials for each configuration in the experiments to
ensure the reliability of our results.

7.1 Hyperparameter Optimization

The aim is to find solutions for the optimization problem in Equation (4) using
the NSGA-II algorithm. To find the best genetic operators for it, we conducted
hyperparameter optimization. We use grid search to go through all configurations
of genetic operators. For each operator combination, we evaluated the resulting
Pareto front using the hypervolume indicator (HV) [11]. Due to the stochastic
nature of GAs, we conducted 10 trials for each combination. We used a popula-
tion size of 100 and the number of generations was set to 200. This was done on
all given datasets.
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Table 5: Hyperparameter optimization results showing hypervolume indicator
values for different genetic operators. Best results are highlighted in bold.
Initializer Selection Crossover Mutation Adult Bank Compas

Random Elitist 1-Point Bit Flip 0.49 ± 0.00 0.47 ± 0.00 0.53 ± 0.00
Shuffle 0.47 ± 0.01 0.44 ± 0.01 0.52 ± 0.03

Uniform Bit Flip 0.48 ± 0.00 0.45 ± 0.00 0.51 ± 0.01
Shuffle 0.46 ± 0.01 0.43 ± 0.01 0.49 ± 0.01

Tournament 1-Point Bit Flip 0.49 ± 0.00 0.47 ± 0.00 0.53 ± 0.00
Shuffle 0.50 ± 0.01 0.46 ± 0.00 0.57 ± 0.02

Uniform Bit Flip 0.49 ± 0.00 0.47 ± 0.00 0.54 ± 0.00
Shuffle 0.52 ± 0.01 0.47 ± 0.01 0.61 ± 0.02

Variable Elitist 1-Point Bit Flip 0.87 ± 0.00 0.89 ± 0.00 0.90 ± 0.00
Shuffle 0.85 ± 0.00 0.78 ± 0.00 0.83 ± 0.01

Uniform Bit Flip 0.85 ± 0.00 0.78 ± 0.00 0.85 ± 0.00
Shuffle 0.84 ± 0.00 0.77 ± 0.00 0.82 ± 0.01

Tournament 1-Point Bit Flip 0.87 ± 0.00 0.86 ± 0.00 0.89 ± 0.00
Shuffle 0.85 ± 0.00 0.78 ± 0.00 0.84 ± 0.01

Uniform Bit Flip 0.87 ± 0.00 0.81 ± 0.00 0.88 ± 0.00
Shuffle 0.85 ± 0.00 0.78 ± 0.00 0.84 ± 0.01

Hyperparameters There are several known methods we can choose from for
each genetic operator (initializer, selection, crossover, mutation) [12,10]. We only
considered those that return binary vectors, as our solutions are binary. For all
selection methods, we used two parents. Furthermore, the bit flip mutation rate
was set to 5%.

Metric To goal is to maximize the hypervolume indicator (HV) [11]. It measures
the volume between the Pareto front and a reference point. A higher hypervolume
indicates more coverage of the solution space and hence a better Pareto front.
We use the nadir point (1, 1) as the reference point. A value of 1 indicates the
theoretically best possible solution and a value of 0 indicates the worst.

Results The results are displayed in Table 5. We display the mean and standard
deviation of the hypervolume indicator for each dataset and genetic operator
combination from the trials. To answer RQ1, we observed best results with
variable initializer, elitist selection, 1-point crossover, and bit flip mutation in our
experiments. Remarkably, the results confirm that the variable initializer suits
our problem better than the random initializer as it outperformed the latter in all
datasets by a significant margin. We also observed that elitist selection slightly
outperformed the binary tournament selection method. Bigger differences can
be observed in the crossover and mutation operators. We note that all results
were very consistent, as the maximum standard deviation was 0.01 and most
often 0.00 when rounding to two decimals.
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7.2 Bias Mitigation and Classification Performance

The aim of this experiment is to assess the performances of various machine
learning classifiers trained on datasets pre-processed for fairness using our method-
ology. Specifically, we aim to evaluate the effectiveness in mitigating bias while
maintaining classification accuracy. For this, we also trained the models on the
unprocessed datasets, serving as a baseline.

Train and Test Split For each dataset, we split the data into training and
testing sets, ensuring stratification based on sensitive attributes to preserve rep-
resentativeness across groups. We used a 80-20 split for training and testing,
respectively.

Bias Mitigation After splitting, we either applied the multi-objective optimiza-
tion approach or the single-objective optimization approach to mitigate bias in
the training data. The test data was left completely unprocessed.

For both approaches, we experimented with different normalization factors
β ∈ {(1 + ϵ), ψ̂(D)}. The population size was set to 200 and the number of
generations was set to 400.

For the multi-objective approach, we used the NSGA-II algorithm with the
best genetic operators identified in the former experiment. Because we get a
Pareto front of solutions, we need to select one solution for the evaluation. We
selected the solution from the Pareto front PF based on β as follows:

argmin
Dfair∈PF

ψ̂SDP-max(Dfair)

β
+ L(D,Dfair).

For the single objective, we used the genetic algorithm from Duong et al. [9]
with the same genetic operators as the NSGA-II algorithm for comparison. We
used the solution that is returned when solving the optimization problem in
Equation (6). An alpha value of 0.5 was set to equally weigh the objectives.
However, we note that β also influences the selection of the solution.

Machine Learning Models We trained several machine learning classifiers
implemented by the scikit-learn library [18], including Logistic Regression
(LR), Support Vector Machines (SVM), Random Forest (RF), and Artificial
Neural Networks (ANNs), on both the pre-processed fair data and the original,
unprocessed data.

Metrics Using the test set, we evaluated the models’ predictions on fairness
and performance. For fairness, we used the maximal statistical disparity (see
Example 1). We used this instead of the penalized version because there is no
need to penalize the test set for coverage. We note that the test set automatically
contains all groups due to the stratification in the train-test split. For the classi-
fiers’ performances, we report the area under the receiver operating characteristic
curve (AUROC), where higher values indicate better performance.
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Table 6: Fairness and relative size of the pre-processed training sets compared
to the original training sets. Best results are in bold.

Dataset Approaches ψ̂SDP-max(D) ψ̂SDP-max(Dfair) |Dfair|/|D|

Adult Single β = ψ̂(D) 17% 5% 54%
Single β = (1 + ϵ) 17% 16% 99%
Multi β = ψ̂(D) 17% 8% 54%
Multi β = (1 + ϵ) 17% 17% 99%

Bank Single β = ψ̂(D) 25% 6% 51%
Single β = (1 + ϵ) 25% 25% 99%
Multi β = ψ̂(D) 25% 11% 53%
Multi β = (1 + ϵ) 25% 25% 99%

Compas Single β = ψ̂(D) 21% 1% 54%
Single β = (1 + ϵ) 21% 15% 94%

Multi β = ψ̂(D) 21% 3% 53%
Multi β = (1 + ϵ) 21% 15% 96%

Results Table 6 shows the maximal statistical disparity values of the original
and pre-processed training sets, as well as the relative size of the pre-processed
training sets compared to the original training sets. Notably, setting β = ψ̂(D)
results in a much lower discrimination than setting β = (1 + ϵ), but also in
a higher data loss. We observe only small differences between the single- and
multi-objective approaches in the discrimination values when setting β = ψ̂(D).
The classifiers’ results are displayed in Fig. 1. We compare the classifiers’ perfor-
mances on the test set using both the single- and multi-objective optimization
approaches. For each approach, we varied the normalization factor β as described
above. We use error bars to display the mean and standard deviation of the AU-
ROC and the maximal statistical disparity values from the 10 trials.

We do not observe a clear trend in the results regarding improving or wors-
ening fairness and performance. This emphasizes that the pre-processed datasets
can indeed be used reliably as training data. Only the experiment shown in Fig. 1i
stands out, where the predictions on the pre-processed data are significantly less
fair than on the original data.

When comparing the classifiers, SVM seems to be least affected by the pre-
processed datasets, mostly apparent in Fig. 1b and Fig. 1f. Further, fairer clas-
sifiers tend to have lower performances, indicating a trade-off between fairness
and performance.

Contrasting the approaches with different β parameters, we do not see a clear
winner. Notable is the result of the single-objective approach with β = (1+ ϵ) in
Fig. 1i, where its fairness did not worsen. The experiment in Fig. 1h shows an
interesting result, where less fair predictions achieve better performances. This
also indicates that a fairness-performance trade-off is indeed available.

We can conclude that the pre-processed datasets can be used reliably as train-
ing data, but an improvement in fairness can only be guaranteed in the training
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Fig. 1: Results on the test set using two approaches with varying β parameters.
x-axis and y-axis represent discrimination and performance metrics, respectively.

set and not necessarily in the test set. Evidence of a fairness-performance trade-
off was found in the results. This explains why fairness was rarely improved in the
experiments and why the classifiers’ performances were not negatively affected.
The protected attributes seem to correlate with the target variable, making it
difficult to remove the discrimination without changing the data significantly.

8 Discussion

In this section, we reflect on key aspects of our approach, particularly focusing
on data quality and the trade-off between fairness and data loss.

8.1 Data Quality

We extend the work of Duong et al. [9] by introducing new constraints and
objectives that the resulting dataset must fulfill. To our knowledge, we are the
first to specifically aim for data quality while pre-processing datasets for fair-
ness. Some techniques in the literature [2,1] violate several data integrity con-
straints and transform the dataset in a way that makes it unusable. For example,
CorrelationRemover in Fairlearn [2] projects discrete features into continuous
features. Categorical features such as the label are also affected by it, making
it impossible to train classifiers for comparative purposes. The pre-processed
datasets from our work do not come with these issues, making them more useful
in practice.
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8.2 Trade-off

We proposed a multi-objective optimization problem where the objectives are
fairness and data loss. Solving this problem results in a set of Pareto-optimal
solutions where each solution is a fair subset. The user can then choose the most
suitable subset for their application using the weighted sum of the objectives.
Here, we proposed a parameter β that weights the fairness objective. The choice
of β has to be made by the user and depends on the size of the dataset and the
importance of fairness in the application. Our suggested values for β serve as
initial guidance, allowing users to further adjust based on their needs.

9 Conclusion

In this paper, we developed a data pre-processing technique that aims to re-
move discriminating data points for fairness while maintaining data quality. We
introduced two additional criteria, coverage and data loss, to enhance the trust-
worthiness of the resulting dataset. Using our methods, the fairness of the dataset
can be improved without compromising the quality of the data. By evaluating
our methodology on machine learning models using three real-world datasets,
the results show that the models’ fairness and performances were not affected
significantly by the data removal process compared to models trained on the
original datasets. This indicates that the pre-processed datasets are reliable and
can be used for further analysis.
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5
Conclusion

In this thesis, multiple novel contributions to the field of fairness in machine learning
have been made. The following section provides a summary of the key findings gained
from this work and discusses their implications in practice. In the last section, future
research directions are outlined.

5.1 Concluding Remarks
The increasing reliance on machine learning models in decision-making processes can
have significant implications for individuals and society as a whole. Specifically, the
problem of fairness in machine learning has been addressed from multiple perspectives
in this dissertation.

In Chapter 2, we have explored these critical issues in a specific case study within
an academic setting [8, 1]. As such, it is crucial to ensure that machine learning models
are fair and unbiased to prevent discrimination against vulnerable subpopulations.

With the identified problems and challenges in mind, Chapter 3 presents several
novel methods [2, 3] to mitigate discrimination in datasets, aiming to train fairer ma-
chine learning models. The introduced algorithms address the limitations of existing
methods and fill the gaps in the literature. For example, most pre-processing methods
transform and edit the data [33, 51, 25, 19]. To maintain the integrity of the dataset,
MetricOptimizer [2] and the FairDo framework [3] are able to utilize synthetic data
to incorporate it into the biased original dataset to improve fairness. This is partic-
ularly useful when the original dataset is small and changes to it are unwanted. The
use of synthetic data can also help to protect the privacy of individuals by obfuscat-
ing the original data. Further, we were able to deal with types of discrimination that
prior methods were not able to handle, such as discrimination towards non-binary and
intersectional groups [2, 3, 4].

For completeness, Chapter 4 aims to enhance trust by critically examining the
reliability of group fairness metrics and the introduced FairDo framework [3]. We
show that fairness metrics can be misleading and propose a problem where solely

103



considering group disparities is not sufficient to conclude the fairness of a decision-
making system [7]. We address this by introducing a new measure that considers
the uncertainty when measuring discrimination. In another study [6], we improved the
FairDo framework when users decide to remove samples from the dataset. In such cases,
there is a risk of removing too many samples or entire groups, which is undesirable.
For this reason, we introduced a new multi-objective optimization problem to balance
fairness and data removal; users can decide how much fairness they want to achieve
and how much data they are willing to remove.

The methods introduced in the papers in Chapter 3 and Chapter 4 deal with dif-
ferent aspects that are part of our fairness framework FairDo. These methods are
designed to be used in conjunction with each other to provide flexibility in solving
fairness problems. For example, it is possible to aim for fairness for multiple protected
attributes and at the same time consider the quality of the data by using the discrim-
ination measures from Section 3.3 and the multi-objective optimization problem from
Section 4.2.

To summarize, this dissertation has made several contributions to the field of fair-
ness in machine learning. We motivated the need for fair machine learning mod-
els, solved it by introducing novel pre-processing methods, and finally enhanced prior
methods to raise trust. These contributions are particularly relevant as they directly
tackle some aspects of the AI Act [24], which will soon come into force [45]. Our work
thus aligns with upcoming regulatory requirements by addressing current challenges,
emphasizing its practical importance.

5.2 Future Work
While this thesis has made novel and important contributions to fill the literature gap
regarding fairness in machine learning, there are still many areas that can be further
explored.

Our pre-processing methods [2, 3, 4, 5] come with the advantage that any fairness
metric can be used as the objective function. This is realized by treating the objective
function as a black-box. However, this flexibility implies that only heuristics can be
used in practice. The only exact method to deal with this type of optimization problem
is brute-force search, which is not feasible for large datasets. Future work could focus
on developing exact solvers tailored to specific fairness metrics to improve the efficiency
of the optimization process and to guarantee the global optimality of the solution.

Regarding the FairDo package [3], there is room to expand the package by in-
corporating additional optimization algorithms that address both single-objective and
multi-objective optimization problems as stated in Chapter 3. Furthermore, the pack-
age can be extended with more metrics, datasets, and any other functionality. Because
we follow a functional programming paradigm, the package can be easily extended and
maintained.

Generally, the proposed methods are not limited to classification tasks, as shown
in the experiments, but are also applicable to regression tasks. By using fairness
metrics specifically designed for regression tasks, such as individual fairness, additional
experiments could be conducted to show the effectiveness of the proposed methods.
Additionally, experiments on other datasets can be conducted as well, besides using
popular and well-known datasets from the fairness literature.
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The possibilities are endless, and we hope that this thesis will inspire future re-
searchers to continue to address one of these aspects and make use of our tools [8],
methods [2, 3, 4, 5], and fairness measures [7].

105



106



6
Publications

Contributing Publications

[1] Jannik Dunkelau and Manh Khoi Duong. Towards Equalised Odds as Fairness
Metric in Academic Performance Prediction. Fairness, Accountability, and Trans-
parency in Educational Data 2022 Workshop, 2022.

[2] Manh Khoi Duong and Stefan Conrad. Dealing with Data Bias in Classification:
Can Generated Data Ensure Representation and Fairness? In Robert Wrembel,
Johann Gamper, Gabriele Kotsis, A. Min Tjoa, and Ismail Khalil, editors, Big Data
Analytics and Knowledge Discovery, volume 14148 of Lecture Notes in Computer
Science, pages 176–190. Springer Cham, 2023.

[3] Manh Khoi Duong and Stefan Conrad. Towards Fairness and Privacy: A Novel
Data Pre-processing Optimization Framework for Non-binary Protected Attributes.
In Diana Benavides-Prado, Sarah Erfani, Philippe Fournier-Viger, Yee Ling Boo,
and Yun Sing Koh, editors, Data Science and Machine Learning, volume 1943 of
Communications in Computer and Information Science, pages 105–120. Springer
Singapore, 2023.

[4] Manh Khoi Duong and Stefan Conrad. Measuring and Mitigating Bias for Tab-
ular Datasets with Multiple Protected Attributes. In Roberta Calegari, Virginia
Dignum, and Barry O’Sullivan, editors, Proceedings of the 2nd Workshop on Fair-
ness and Bias in AI co-located with 27th European Conference on Artificial Intel-
ligence (ECAI 2024), Santiago de Compostela, Spain, October 20th, 2024, volume
3808 of CEUR Workshop Proceedings. CEUR-WS.org, 2024.

[5] Manh Khoi Duong and Stefan Conrad. Trusting Fair Data: Leveraging Quality in
Fairness-Driven Data Removal Techniques. CoRR, abs/2405.12926v3, 2024. Ex-
tended version.

107



[6] Manh Khoi Duong and Stefan Conrad. Trusting Fair Data: Leveraging Quality in
Fairness-Driven Data Removal Techniques. In Robert Wrembel, Silvia Chiusano,
Gabriele Kotsis, A Min Tjoa, and Ismail Khalil, editors, Big Data Analytics and
Knowledge Discovery, volume 14912 of Lecture Notes in Computer Science, pages
375–380. Springer Cham, 2024.

[7] Manh Khoi Duong and Stefan Conrad. (Un)certainty of (Un)fairness: Preference-
Based Selection of Certainly Fair Decision-Makers. In ECAI 2024 - 27th European
Conference on Artificial Intelligence, volume 392 of Frontiers in Artificial Intelli-
gence and Applications, pages 882–889. IOS Press, 2024.

[8] Manh Khoi Duong, Jannik Dunkelau, José Andrés Cordova, and Stefan Conrad.
RAPP: A Responsible Academic Performance Prediction Tool for Decision-Making
in Educational Institutes. In BTW 2023, volume P-331 of Lecture Notes in Infor-
matics, pages 595–606. Gesellschaft für Informatik e.V., 2023.

Other Publications
[9] Manh Khoi Duong. Automated Architecture-Modeling for Convolutional Neural

Network. In BTW 2019 – Workshopband, volume P-290 of Lecture Notes in Infor-
matics, pages 163–172. Gesellschaft für Informatik e.V., 2019.

108



Bibliography

[10] Alekh Agarwal, Miroslav Dudik, and Zhiwei Steven Wu. Fair regression: Quan-
titative definitions and reduction-based algorithms. In Kamalika Chaudhuri and
Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 120–129. PMLR, Jun 2019.

[11] Google AI. AI principles progress update. https://ai.google/static/
documents/ai-principles-2023-progress-update.pdf, 2023. Accessed: 01
October 2024.

[12] Alexander Askinadze. From Collecting, Integrating, and Visualizing Student Data
to Predicting Student Dropout and Performance. PhD thesis, Heinrich Heine Uni-
versity Düsseldorf, 2020.

[13] Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fairness and Machine
Learning. fairmlbook.org, 2019.

[14] Solon Barocas and Andrew D. Selbst. Big data’s disparate impact. California
Law Review, 104(3):671–732, 2016.

[15] Rachel K. E. Bellamy, Kuntal Dey, Michael Hind, Samuel C. Hoffman, Stephanie
Houde, Kalapriya Kannan, Pranay Lohia, Jacquelyn Martino, Sameep Mehta,
Aleksandra Mojsilovic, Seema Nagar, Karthikeyan Natesan Ramamurthy, John T.
Richards, Diptikalyan Saha, Prasanna Sattigeri, Moninder Singh, Kush R. Varsh-
ney, and Yunfeng Zhang. AI fairness 360: An extensible toolkit for detecting, un-
derstanding, and mitigating unwanted algorithmic bias. CoRR, abs/1810.01943,
2018.

[16] Sarah Bird, Miro Dudík, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa
Milan, Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker. Fairlearn: A
toolkit for assessing and improving fairness in AI. Technical report, Microsoft,
May 2020.

[17] Kirill Bogomasov, Daniel Braun, Andreas Burbach, Ludmila Himmelspach, and
Stefan Conrad. Feature and deep learning based approaches for automatic report
generation and severity scoring of lung tuberculosis from CT images. In Working
Notes of CLEF 2019 - Conference and Labs of the Evaluation Forum, volume 2380
of CEUR Workshop Proceedings. CEUR-WS.org, 2019.

109

https://ai.google/static/documents/ai-principles-2023-progress-update.pdf
https://ai.google/static/documents/ai-principles-2023-progress-update.pdf


[18] Toon Calders, Faisal Kamiran, and Mykola Pechenizkiy. Building classifiers with
independency constraints. In 2009 IEEE International Conference on Data Mining
Workshops, pages 13–18, 2009.

[19] Flavio Calmon, Dennis Wei, Bhanukiran Vinzamuri, Karthikeyan Natesan Ra-
mamurthy, and Kush R Varshney. Optimized pre-processing for discrimination
prevention. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc., 2017.

[20] Simon Caton and Christian Haas. Fairness in machine learning: A survey. ACM
Computing Surveys, 56(7), 2024.

[21] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, and Sergei Vassilvitskii. Fair
clustering through fairlets. In Proceedings of the 31st International Conference
on Neural Information Processing Systems, NIPS’17, page 5036–5044, Red Hook,
NY, USA, 2017. Curran Associates Inc.

[22] Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness:
A critical review of fair machine learning. CoRR, abs/1808.00023, 2018.

[23] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evo-
lutionary computation, 6(2):182–197, 2002.

[24] European Commission. Artificial Intelligence Act, Corrigendum, 19
April 2024. https://www.europarl.europa.eu/doceo/document/
TA-9-2024-0138-FNL-COR01_EN.pdf, April 2024. Accessed: 01 October
2024.

[25] Michael Feldman, Sorelle A. Friedler, John Moeller, Carlos Scheidegger, and
Suresh Venkatasubramanian. Certifying and removing disparate impact. In Pro-
ceedings of the 21th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, KDD ’15, page 259–268. Association for Computing
Machinery, 2015.

[26] C.M. Fonseca, L. Paquete, and M. Lopez-Ibanez. An improved dimension-sweep
algorithm for the hypervolume indicator. In 2006 IEEE International Conference
on Evolutionary Computation, pages 1157–1163, 2006.

[27] James R. Foulds, Rashidul Islam, Kamrun Naher Keya, and Shimei Pan. Bayesian
modeling of intersectional fairness: The variance of bias. In Proceedings of the 2020
SIAM International Conference on Data Mining (SDM), pages 424–432, 2020.

[28] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. On the
(im)possibility of fairness. CoRR, abs/1609.07236, 2016.

[29] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari,
and Donald B. Rubin. Bayesian Data Analysis. CRC press, 1995.

110

https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138-FNL-COR01_EN.pdf
https://www.europarl.europa.eu/doceo/document/TA-9-2024-0138-FNL-COR01_EN.pdf


[30] Moritz Hardt, Eric Price, Eric Price, and Nati Srebro. Equality of opportunity in
supervised learning. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016.

[31] Hans Hofmann. German credit data. https://archive.ics.uci.edu/ml/
datasets/Statlog+%28German+Credit+Data%29, 1994. Accessed: 01 October
2024.

[32] Ching-Lai Hwang and Kwangsun Yoon. Methods for Multiple Attribute Decision
Making, pages 58–191. Springer Berlin Heidelberg, Berlin, Heidelberg, 1981.

[33] Faisal Kamiran and Toon Calders. Data preprocessing techniques for classification
without discrimination. Knowledge and Information Systems, 33(1):1–33, 2012.

[34] Jian Kang, Tiankai Xie, Xintao Wu, Ross Maciejewski, and Hanghang Tong. In-
fofair: Information-theoretic intersectional fairness. In 2022 IEEE International
Conference on Big Data (Big Data), pages 1455–1464, 2022.

[35] Michael Kearns, Seth Neel, Aaron Roth, and Zhiwei Steven Wu. Preventing fair-
ness gerrymandering: Auditing and learning for subgroup fairness. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
2564–2572. PMLR, Jul 2018.

[36] Keith Kirkpatrick. It’s not the algorithm, it’s the data. Communications of the
ACM, 60(2):21–23, Jan 2017.

[37] Ron Kohavi. Scaling up the accuracy of naive-bayes classifiers: A decision-tree
hybrid. In Proceedings of the Second International Conference on Knowledge Dis-
covery and Data Mining, KDD’96, page 202–207. AAAI Press, 1996.

[38] Jeff Larson, Julia Angwin, Surya Mattu, and Lauren Kirch-
ner. Machine bias. https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing, May 2016.
Accessed: 01 October 2024.

[39] Tai Le Quy, Arjun Roy, Vasileios Iosifidis, Wenbin Zhang, and Eirini Ntoutsi. A
survey on datasets for fairness-aware machine learning. WIREs Data Mining and
Knowledge Discovery, 12(3):e1452, 2022.

[40] Kristian Lum, Yunfeng Zhang, and Amanda Bower. De-biasing “bias” measure-
ment. In Proceedings of the 2022 ACM Conference on Fairness, Accountability,
and Transparency, FAccT ’22, page 379–389, New York, NY, USA, 2022. Associ-
ation for Computing Machinery.

[41] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. A survey on bias and fairness in machine learning. ACM Computing
Surveys, 54(6), 2021.

111

https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


[42] Microsoft. Responsible AI Standard, v2. https://cdn-dynmedia-1.microsoft.
com/is/content/microsoftcorp/microsoft/final/en-us/microsoft-brand/
documents/Microsoft-Responsible-AI-Standard-General-Requirements.
pdf?culture=en-us&country=us, 2022.

[43] Tom Michael Mitchell. Machine Learning, volume 1. McGraw-Hill Education,
1997.

[44] Sérgio Moro, Paulo Cortez, and Paulo Rita. A data-driven approach to predict
the success of bank telemarketing. Decision Support Systems, 62:22–31, 2014.

[45] Future of Life Institute. AI act historic timeline. https://
artificialintelligenceact.eu/developments/, 2024. Accessed: 01 Oc-
tober 2024.

[46] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela
Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Train-
ing language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 35:27730–27744, 2022.

[47] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn
Ommer. High-resolution image synthesis with latent diffusion models. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10684–10695, 2022.

[48] Julia Romberg. Machine-assisted Text Classification of Public Participation Con-
tributions. PhD thesis, Heinrich Heine University Düsseldorf, 2023.

[49] Yifan Wang, Weizhi Ma, Min Zhang, Yiqun Liu, and Shaoping Ma. A survey on
the fairness of recommender systems. ACM Transactions on Information Systems,
41(3), Feb 2023.

[50] Forest Yang, Moustapha Cisse, and Sanmi Koyejo. Fairness with overlapping
groups. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[51] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. Learning
fair representations. In Sanjoy Dasgupta and David McAllester, editors, Pro-
ceedings of the 30th International Conference on Machine Learning, volume 28 of
Proceedings of Machine Learning Research, pages 325–333. PMLR, 2013.

[52] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative
case study and the strength pareto approach. IEEE Transactions on Evolutionary
Computation, 3(4):257–271, 1999.
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