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Zusammenfassung

Vergleich verschiedener Propensity Score-Methoden zur Schatzung der
Behandlungseffekte in nicht-randomisierten Studien mit Uberlebensdaten.

Beobachtungsstudien werden haufig in der Public Health Forschung eingesetzt, da die
Durchfiihrung von randomisierten Studien aus ethischen oder finanziellen Griinden schwierig
ist. Die Analyse von Beobachtungsdaten ist jedoch im Vergleich zu randomisierten Studien mit
groReren Herausforderungen verbunden, insbesondere im Hinblick auf das Risiko einer
Verzerrung durch Storfaktoren. In den letzten Jahrzehnten wurden viele Methoden fir die
Analyse von Beobachtungsdaten entwickelt. Eine davon ist die Propensity Score (PS) Methode.
Zahlreiche Methoden, die den PS verwenden, wurden in den letzten zehn Jahren entwickelt.
Dies erschwert fiir die Forschenden die Wahl der besten Methode. Simulationsstudien kdnnen
Aufschluss dariber geben, welche Methoden in bestimmten Situationen am besten
funktionieren. Es mangelt jedoch an Simulationsstudien zur Verwendung von PS Methoden in
Szenarien mit Uberlebensdaten, die hiufig verwendet werden.

Das Uibergeordnete Ziel dieser Arbeit ist es, diese Liicke zu schlieBen und den Anwendenden
in der Public Health Forschung eine klare Anleitung fiir die Wahl der PS Methode zu geben. Zu
diesem Zweck wurde eine detaillierte Simulationsstudie mit Simulationseinstellungen
durchgefiihrt, die durch Informationen aus veroffentlichten PS Analysen motiviert wurden,
welche durch eine systematische Suche in ,PubMed” gefunden wurden. Darliber hinaus
wurde eine neue PS Methode, die verallgemeinerte Methode der Momente-Matching-
Gewichte (GMMW), zusammen mit einem korrigierten Varianzschatzer, der fir eine
angemessene Berechnung des Konfidenzintervalls erforderlich ist, vorgeschlagen.

Die Ergebnisse der Simulationsstudie zeigten, dass alle Methoden (overlap weights (OW),
matching weights (MW) und GMMW) zur Schatzung des durchschnittlichen Behandlungs-
effekts in der Uberlappungspopulation (ATO) in fast allen Fallen die besten Ergebnisse und
den kleinsten Standardfehler des Schatzers lieferten. Ein Vergleich der Methoden ergab
ahnliche Ergebnisse hinsichtlich der Verzerrung und des Standardfehlers des Schatzers. Bei
allen Methoden zur Schatzung des durchschnittlichen Behandlungseffekts (ATE) und des
durchschnittlichen Behandlungseffekts der Behandelten (ATT) erwies sich die Entropie-
ausgleichsmethode (EB) als die beste Methode. Darliber hinaus ist die Leistung der
Standardmethode inverse Wahrscheinlichkeitsgewichtung (IPTW) bei der Schatzung des ATEs
schlecht, bei der Schatzung des ATTs jedoch recht gut (und dhnlich wie die EB). Was die
Leistung des robusten Standardfehlers betrifft, so kam es in allen Simulationseinstellungen zu
einer Uberschitzung der wahren Varianz und damit zu einer Uberdeckung des 95%-
Konfidenzintervalls. Der selbst entwickelte neue Varianzschatzer flihrte zu einer verbesserten
Abdeckung des 95%-Konfidenzintervalls fiir alle Methoden.

Zusammenfassend ldsst sich sagen, dass wir den Forschenden im Bereich Public Health
vorschlagen, in ihren Auswertungen, EB fir den Zielschatzer ATE, EB oder CBPSJ fiir den
Zielschatzer ATT und OW, MW und GMMW fiir den Zielschatzer ATO zu verwenden. Fir die
Varianzschatzung des Effektschatzers sollte bei allen Methoden die Verwendung des neu
vorgeschlagenen korrigierten robusten Varianzschatzers gegeniber dem robusten Varianz-
schéatzer bevorzugt werden.



Summary

Comparison of different propensity score methods for estimating treatment
effects in non-randomized studies with survival data.

Observational studies are frequently used in public health research, due to ethical or financial
complications for conducting randomized trials. However, observational data analysis come
with increased challenges in comparison to randomized trials especially regarding the risk of
confounding bias. In the last decades, many methods have been developed for the analysis of
observational data. One of these are the propensity score (PS) methods. In the last decade
many methods using the PS have been developed, which complicates the choice of the best
method for the applied researcher. Simulation studies can provide a guidance on which
methods perform best in specific settings. However, there is a lack of simulation studies
regarding PS usage in scenarios with survival outcome, which is frequently used.

The overarching aim of this study is to fill this gap, and provide clear guidance for the applied
public health researcher regarding the best choice of PS method. Therefore, a detailed
simulation study was conducted with simulation settings motivated by information extracted
from published PS analyses found by systematic research on ‘PubMed’. In addition, a new PS
method, the generalized method of moment matching weight (GMMW), was also proposed
along with a corrected variance estimator, which is necessary for an appropriate calculation
of the confidence interval.

The results of the simulation study showed that all methods (overlap weights (OW), matching
weights (MW) and GMMW) estimating the average treatment effect in the overlap population
(ATO) performed best with unbiased results in almost all settings and the smallest standard
error of the estimator. Comparing the methods, similar performances were found regarding
bias and standard error of the estimator. Across all methods estimating the average treatment
effect (ATE) and average treatment effect of the treated (ATT), entropy balancing (EB) was
found to perform best. Further, the performance of the standard method inverse probability
weighting (IPTW) is poor for estimating the ATE but reasonably well (and similar to EB) for the
ATT. Regarding the performances of the robust standard error, an overestimation of the true
variance and thus, an over-coverage of the 95% confidence interval occurred in all simulation
settings. The self-developed new variance estimator resulted in improved coverage of the 95%
confidence interval for all methods.

In conclusion, for the applied public health researcher, we propose to use EB for target
estimand ATE, EB or CBPSJ for target estimand ATT and OW, MW and GMMW for target
estimand ATO. For the variance estimation of the effect estimator, the usage of the corrected
robust variance estimator should be preferred over the robust variance estimator for all
methods.



Abbreviations

PS = propensity score

IPTW = inverse probability weighting

IPTWST = stabilized inverse probability weighting

MW = matching weights

OW = overlap weights

EBAL = entropy balancing

VBAL = variance balancing

CBPSJ = just identified covariate balancing propensity score
CBPSO = overidentified covariate balancing propensity score
GMMW = generalized method of moment matching weights
ATE = average treatment effect

ATT = average treatment effect of the treated

ATO = average treatment effect of the overlap population
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1 Introduction

In the field of public health research, the effort to establish causal relationships among
interventions, exposures, and outcomes has long been a cornerstone of improving our
understanding and enhancing population well-being [1],[2]. In complex real-world scenarios,
researchers often encounter challenges that make direct assessment of causal effects difficult
[3],[4]. The possibility of confounding variables, selection bias, and uncontrolled factors can
impede the direct interpretation of results and lead to inaccurate conclusions that may
ultimately impact health policy decisions and resource allocation [5]. Therefore, the
development of robust statistical methods is necessary, and the choice of the best method is
essential.

Propensity score methods are a sophisticated approach to mitigating confounding bias and
improving causal inference in public health research [6]. These methods provide a way to
overcome the inherent limitations of observational data, where randomization is often
impractical or impossible due to ethical reasons [7]. By systematically accounting for
imbalances in covariates and creating a quasi-experimental setting, propensity score methods
promise to isolate treatment effects and illuminate the true effects of interventions [6].

The conceptof PS methods is to use a two steps procedure for treatment effect estimation.
First, a pseudo-population is created in which the values of pre-treatment variables do not
differ between treatment groups. Second, treatment effect estimation is conducted on the
unconfounded pseudo-population instead of the original population. This methodology
enables the estimation of causal effects from observational data and makes PS methods an
important tool in the arsenal of public health research.

In the following, the main differences between RCTs and observational studies are outlined,
in particular the challenges in estimating the causal effect of an intervention in both designs.
Subsequently, the PS method and especially PS weighting will be presented. Hereby, the focus
is on underlining how PS methods can be used for causal effect estimation. Finally, the
different approaches in PS weighting are considered and embedded in the current state of

research.



1.1 Randomized trials vs. observational studies

For answering a specific research question in public health, two main classes of study types
exist: randomized trials (RCT) and observational studies [7]. As the major difference between
these two groups, the intervention in an RCT is actively given to a random set of patients in
the cohort, while, in observational studies, it is only observed which patient received which
intervention [8]. Although the difference may sound minor at first glance, it has critical
consequences on estimating the causal treatment effect.

The design of RCT implies that balanced distributions of all pre-treatment variables are
given, including those variables that are not observed or recorded [9]. Thus, for a sufficient
sample size, the in-treatment group differences of all pre-treatment covariate values should
be small. In contrast, observational studies run the risk that the pre-treatment variables value
sometimes show considerable differences between the treatment groups. Thus, the direct
calculation of the treatment effect is biased [7].

For a better understanding of the utility of an RCT, the distribution of pre-treatment
variables on the one hand, and the actual values in the dataset on the other hand, will be
examined. For simplicity, it is assumed that the dataset contains only one pre-treatment
variable, namely gender. Then, the term balanced distribution of gender is used if the
probability of being a woman in the treatment group is the same as in the control group.
Instead, the term the values of gender are balanced is used when the actual proportion of
women in the treatment group is equal to the one in the control group. It is important to
recognize that a balanced distribution does not necessarily imply balance of the actual values
in the dataset. All that is true, is that for equal covariate distribution between intervention
groups, the values of the covariate should become more similar as the sample size increases.
In the end, however, only the balance of the covariate values counts, while the balance of its
distribution is only used as a tool to achieve this.

A drawback of observational data in comparison to RCTs is, that the treatment effect
estimator can only be adjusted for differences in observed pre-treatment covariates, but this
is impossible for any unobserved pre-treatment covariate [10]. Thus, to reduce the risk of
confounding bias, animportant task in designing an observational study is to identify potential
confounding factors, e.g., through literature research [11] optimally before data collection.
However, there is always the risk of missing confounding variables, because either a variable

was not accessible or not known as a confounder at the time of the study. To conclude, RCT
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are the gold standard for assessing intervention effects as they offer the highest level of
evidence for causal effects [12].

Although RCTs are the gold standard for causal inference, there are still good reasons for
researcher to use observational studies. First, due to the high cost in terms of time and money,
the sample size in RCT will generally be small in comparison to observational studies [13]. A
small sample size in an RCT increases the risk of larger differences between treatment groups
in observed and unobserved pre-treatment variables values and within this the risk of
confounding bias. Second, the duration of a randomized trial is often limited in time and
statements regarding long-term effects may therefore not be possible. Third, the effect in an
RCT tendsto be estimated underideal conditions among highly selected populations, whereby
the populations used in observational studies tend to be closer to the real-world setting [14].
Fourth, there are research questions that RCTs are not feasible to answer for ethical reasons,
and in these cases observational studies are the only choice. For example, the impact of
aircraft noise on the quality of people’s life should be examined. In this case, an RCT is
obviously not possible for ethical reasons.

Many studies have examined how treatment effect estimator of RCT differ to those of
observational studies based on the same research question. First studies were conducted in
the 1970s and 1980s and found observational studies inflate positive treatment effect in
comparison with RCTs [15],[16],[17],[18]. However, later studies conducted in the 2000s came
to the conclusion that there is little evidence of systematic differences between both methods
[19],[20]. They argue that observational studies used in the earlier comparisons were
methodologically weaker and that less statistical methods had been available for the analyses
at that time. For example, the conceptual PS methods paper was published in 1983 [21]. An
actual comparison in 2014 found less evidence for differences in treatment effect estimates
between RCT and observational studies. The authors stated that publications in which RCT and
observational studies draw different conclusions regarding the treatment effect are easily

remembered, while those revealing effect estimators to match are easily forgotten [22].

1.2 Propensity score methods

Propensity score methods are a relative new method to account for confounding bias in the
treatment effect estimator and thus are especially helpful for the analysis of observational

data. The conceptual idea of the PS was developed by Rubin and Rosenbaum in 1983 [21].
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Based on their results, several new methods for using the PS to adjust for differences in pre-
intervention variables were developed, which resulted in an increased usage in applied
research since the early 2000s (see Figures 1a, 1b). The idea of PS methods is to remove
confounding bias by creating a pseudo-population in which the values of all observed pre-
treatment covariates are balanced between treatment groups. This pseudo-population is then
used in a second step to estimate the intervention effect.

Overall, PS methods pursue two competing goals. On the one hand, the pseudo-population is
intended to be as similar as possible as the pre-treatment covariates values to avoid
confounding bias in treatment effect estimation. On the other hand, the size of the pseudo-
population should be as close as possible to the one of the original population, because higher
sample sizes lead to treatment effect estimators with lower variances and, thus, smaller

confidence intervals [23].
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and ‘propensity score weighting’ (b).

In total, four main PS approaches to remove confounding bias exist: PS matching, PS
weighting, PS stratification, and PS adjustment. In this work, the focus will be set on PS
weighting including also a brief introduction to PS matching for better interpretation of the
conceptual ideas and challenges of PS methods. Thus, | will refer to PS methods for the group

of PS weighting methods or PS matching methods in in the following.



1.2.1 Subpopulation

An important task for researchers using PS methods is to define a target population the
treatment effect should be estimated for. PS methods will then generate a pseudo population
in which the values of the pre-treatment covariates are similar to those of the preselected
target population. There are three broad target populations with each having its own
treatment effect that does not necessarily need to be identical to the others. The first one is
the total population represented by the complete cohort with the resulting treatment effect
called the average treatment effect (ATE). In this case, the values of the pseudo-population in
each treatment group need to mimic the values of all samples in the cohort. The second
population is the population of treated patients for which the term average treatment effect
of the treated (ATT) is used for the treatment effect. Hereby, the values in the pseudo-
population should be as similar as possible to the values of pre-treatment covariates in the
treatment group. The third population is the one of best overlap between pre-treatment
covariates, which effect is named the average treatment effect of the overlap (ATO) in which
the values of the covariates are moved into an area of greatest overlap for each treatment
group. For this target population, it is impossible to exactly define how the values in the
pseudo-population should look like, as the different methods choose slightly different regions
of best covariate overlap. Li et al. [15] noted that the overlap pseudo-population is the one
being closest to an RCT. However, the right choice of the target population always depends
on the specific research question. As a hypothetical example, the effectiveness of a smoking
cessation program on reducing smoking rates and improving health outcome should be
assessed. This program includes counseling, nicotine replacement, and support groups. The
study population consists of smokers either having participated in the program (intervention
group) or not (control group). In this case, the researcher would want to estimate the ATT if it
is assumed that only individuals with covariate values similar to those in the intervention
group might participate in such a smoking cessation program. The ATE would be the desired
estimate if the interest is in the intervention effect in the complete study population (for
example if itis mandatory to participate in such a program). Lastly, the ATO should be chosen
if the interest is to mimic a randomized trial, thus focusing on individuals with similar

probability of being in the program or not.



In the next sections, the following notation will be used 7€ {0, 1} for the binary treatment
variable, '€ R7 is the covariate vector of the 7z pre-treatment covariates and ¥ will be used

as the outcome variable.

1.2.2 Propensity score matching

The idea to match each sample of one intervention group to a sample in the other intervention
group that is similar in its pre-treatment covariates was developed early by researchers
[24],[25],[26]. All samples without matching partners are then excluded from treatment effect
estimation. Thus, a pseudo-population is derived —the matched population —with similar pre-
treatment covariate values between treatment groups. However, in this approach, the critical
point is the definition of similarity between patients for the 7z dimensional pre-treatment
covariate vector. Therefore, Rosenbaum and Rubin presented a highly noted conceptin which
they showed that, instead of balancing all covariates, it is sufficient to balance the PS (7). The
latter is defined as the probability of being in the intervention group given a set of pre-
intervention covariate values
m:=P(T=1|X=x) (1.2)

[21]. This reduces the number of variable values to balance from 7z to 1, but it brings along
another problem, namely the requirement to estimate PS. Rosenbaum and Rubin proposed
to use a logistic regression approach for PS estimation [21], which is still the standard
approach nowadays. Recent studies compared the performance of PS matching with PS being
estimated by either a logistic regression model or a machine learning approach and found they
were very similar [27].

The competing goals pursued by PS matching and shared by PS weighting are highlighted
by the idea of PS matching. When matches are restricted to be extremely similar, a small
pseudo-population with high similarity is obtained. Conversely, the consequence of including
patients with low similarity results is a larger pseudo-population (excluding less samples) that

is more different in regard of the pre-treatment covariate values.

1.2.3 Propensity score weighting

Another approach to create a pseudo-population with balanced pre-treatment covariate

values is the PS weighting method. PS weighting was first developed in the early 2000.sand



has fast gained attention in science (see Figure 1(b)). The main idea of PS weighting for
creating a pseudo-population with balanced pre-treatment covariate values is that a weight
w:>0, /=1, ..., nis calculated for each patient, which reflects the importance of each sample.
Hereby, larger weights indicate higher importance. For example, a weight w=2 means that the
corresponding participant is counted twice.

Moreover, PS weighting can be seen as a generalization of PS matching in which the weights
are restricted to w,= 1 if a matching partner was found and the sample is alternatively
weighted as w;=0. Beyond that, PS matching can be only used to estimate the ATE or the ATT,
but ATO estimation is not possible [28]. In contrast, PS weighting can be used to create a

pseudo-population with any pre-treatment covariate distribution [13].

There are three main approaches to calculate the weight vector w, which reflect the
difference in balance definition (balance of covariate values vs. balance of covariate
distribution). The first approach, the modelling approach, tries to balance the distribution of
all observed pre-treatment covariates. The second approach, the balancing approach, tries to
balance some aspects of the values of the observed pre-treatment covariates. Finally, the
hybrid approach tries to balance the distribution of all observed pre-treatment covariates as
well as some aspects (predefined set of moments) of the observed pre-treatment covariate
values.

There are some main differences between the approaches and their methods in term of
achieved balance and the target estimand (see Table 1). First, the modelling and the hybrid
approach balance the pre-treatment covariate distribution between treatment groupsin case
the assumed PS model is correct. This results in the asymptotic balance of all pre-treatment
covariate values. Second, the balancing and some hybrid approach methods (CBPSJ, GMMW)
result in exact balance of pre-treatment covariate moments. Third, only hybrid (GMMW) and
modelling approach methods (OW, MW) can assess the highly relevant overlap population,
whereas balancing approach methods cannot.

To assess the performance of a PS weighting method, it is necessary to measure how well
the objectives of the PS method, namely the similarity between the values of the pretreatment
covariates in the weighted pseudo-population and the sample size in the pseudo-population,
have been achieved. The discussion has so far focused on balancing the pre-treatment

covariates values. However, the specific definition of balance of the pre-treatment covariates
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values has not been stated. For the balance task, several measurements exist of which some
compare the average value of each covariate between treatment groups, such as the

standardized difference [29] or the z-difference [30], while others

Approach Method Exact balance Balance distribution Target estimand

IPTW no yest ATE, ATT
Modelling IPTWST no yest ATE, ATT

MW no yest ATO

ow yes” yest ATO

EB yes no ATE, ATT
Balancing

VB yes no ATE, ATT

CBPSJ yes yest ATE, ATT
Hybrid CBPSO no yest ATE, ATT

GMMW yes® yest ATO

Table 1: Difference between the pseudo-populations created by the different propensity score
weighting methods. “Only if the propensity score was estimated via a logistic regression model.
tOnly if the propensity score model is correctly specified. IPTW=inverse probability weighting,
IPTWST = stabilized inverse probability weighting, MW= matching weights, OW = overlap
weights, EB = entropy balancing, VB = variance balancing, CBPSJ = just identified covariate
balancing propensity score, CBPSO = overidentified covariate balancing propensity score,
GMMW = generalized method of moment matching weights, ATE = average treatment effect,
ATT = average treatment effect of the treated, ATO= average treatment effect of the overlap

population.

compare the whole distribution of each covariate, e.g., the Kolmogorov-Smirnov test [31] or
graphical comparisons like side-by-side boxplots [32]. To analyze the sample size in the
weighted pseudo-population, the effective sample size is frequently used [23]. The ESS
represents the size of an unweighted sample that results in the same precision as the weighted

sample [33]. For a weight vector w € R" calculated by PS weighting, the ESS is defined via



n )2
ESS(w): % The ESS is equivalent to the raw sample size (72) in the unweighted case (w;
i=1"1i

1.2.4 Propensity score weighting vs. classic regression

For assessing the treatment effect, a regression approach is frequently chosen. In this
approach, the outcome of interest is taken as the dependent variable and the intervention
variable and all potential confounder variables are included as independent covariates.
Hereby, the choice of the regression model depends on the class of the outcome variable, e.g.,
a Cox model for survival outcome or a logistic regression model in case of a binary outcome.
The usage of PS weighting methods has several advantages in comparison to the regression
approach. First, in PS weighting, balancing the pre-intervention covariates is independent of
the outcome as weight calculation isindependent of the outcome [34]. Thus, PS weighting can
be seen as part of the study design and independent of treatment effect estimation [35]. In
contrast, adjusting for confounding and treatment effect estimation is conducted in the same
step in the regression approach [36]. Thisis problematic as it might lead scientists to fit several
models with different sets of confounders until they reach the desired or expected answer
[37].

Second, a general problem of the regression approach is that it always estimates a
treatment effect, even when treatment groups are completely different [37]. In contrast, PS
weighting identifies that it is impossible to balance the pre-treatment covariates adequately
and, thus, treatment effect estimation is impeded.

Third, PS weighting is conceptual better suited for modelling the effect in cases of rare
outcome events. As an example, 500 observations of a binary outcome variable may include
only 20 events. If a logistic regression approach for treatment effect estimation is used, it is
recommended to have at least 10 [38],[39] or even 20 [40] events per variable included in the
model. Thus, even with 10 events per variable only one pre-treatment variable can beincluded
in the logistic regression model as it is necessary to include the treatment variable. In such a
situation, the researcher has the choice of either confounding bias due to pre-treatment
covariates not included in the model or of having an unstable treatment effect estimator as
the model contains too many covariates. In PS weighting, that problem is avoided as the

treatment variable is the only independent variable in the outcome regression model.
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Moreover, there is a fundamental difference between PS weighting and the regression
approach, namely that they estimate different effects. The regression approach adjusted for
pre-treatment covariates estimates a conditional effect, that is the average effect of
treatment on the individual. The PS weighting approach instead estimates a marginal effect,
which is the average effect of treatment on the population [41]. For collapsible measures, the
two effects are the same, but for non-collapsible measures, such as the odds ratio used in
logistic regression model or the hazard ratio as used in the Cox model, they are different.
Hereby, the marginal effect is generally closer to the null effect than the conditional effect.
The choice of a conditional or a marginal effect estimator depends on the research question,
but it should be noted that randomized controlled trials estimate the marginal effect. Thus,
whenever researchers want to answer the same research question as in RCT, the regression
approach should not be used if the effect measure is not collapsible.

Finally, another option is to combine PS weighting and the regression model [42]. In this
approach, PS weighting is first used to calculate weights that balance the pre-treatment
covariates between treatment groups. In a second step, a weighted regression model is used,
in which all pre-treatment covariates are included asindependent covariates. As long as either
the PS model or the outcome regression model is correctly specified, the resulting treatment
effect estimatoris unbiased. However, in this approach equivalent to the standard regression
approach, treatment effect estimation and adjustment for confounding variables are done in
the same step and all the drawbacks previously mentioned still hold. Likewise, this approach

also estimates a conditional treatment effect rather than a marginal.

1.2.5 Examples of propensity score methods in public health

In this chapter, | present three examples of studies using PS methods in public health research.

Results of this study are currently prepared for publication.

The first example is a Chinese study in which the relationship between retirement and health
was analyzed. Observational data were taken from the ‘China Health and Retirement
Longitudinal Study’ (CHARLS) cohort [43]. Two different PS matching methods were used to
adjust for potential differences at baseline. The set of variables, which was adjusted for,

contained standard patient information like age and sex as well as emotional support
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(frequency at which respondents saw their children), health behavior (e.g., smoking (yes/no),
chronic disease (yes/no)), and social characteristics (medical insurance (yes/no)).

The authors found an odds ratio of 0.78 [95%Cl: 0.65-0.94, P = 0.026] for self-reported physical
pain and 0.76 (95% Cl: 0.62-0.93, P = 0.023) for depression comparing retired to working
people [44]. These results suggest that retirement benefited health, which is an important
aspect for political decision making. On the one hand, early retirement causes costs that need
to be paid by the public. On the other hand, deteriorating health also increases public costs.

Thus, both aspects need to be taken into account by decision makers.

The second example is a US study in which the impact of an enriched medical home
intervention using community health workers on immunization adherence among young
children was analyzed [45]. Vaccination of children is very important for several reasons. First,
the vaccination protects children from potentially life-threatening diseases [45]. Second, a
high vaccination rate in a community also protects non-vaccinated children [45]. For their
study, the scientists analyzed the data of 311 children with 110 individuals belonging to the
intervention group and 201 children being in the usual care group. The authors adjusted for
potential in-group-differences by usinginverse probability of treatment weights in which they
adjusted for the variables: gender, race, maternal education, living situation, insurance,
mother’s health rating, prenatal care, maternal depression screening, mother’s report about
whether adults in neighborhood care about her child, frequency of reading, number of books
read, child care use, and car ownership.

The study found an increase of 20.9% [4.6%, 37.2%)] for newborn and 16.8% [4.1%, 29.5%] for
infants in up-to-date immunization proportions when comparing the intervention group to

the usual care group [45].

The third one is the currently ongoing ‘10,000 Steps’ Duesseldorf project [46]. This study
examines how complex interventions to promote physical activity influence physical activity.
Physical inactivity is the fourth largest risk factor for mortality worldwide and is one of the
main drivers contributing to the etiology of noncommunicable diseases, such as type 2
diabetes, cardiovascular diseases, and certain cancers [47]. Currently, only 43% of woman and

48% of men in Germany meet the WHO and American College of Sports Medicine
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recommendations for physical activity [46]. Therefore, an increase in physical activity is
important for public health.

To examine the intervention effect, 400 people in the intervention city Duesseldorf and 400
people in the control city Wuppertal were randomly selected [46].

PS weighting is intended to be used to adjust for potential baseline differences in the control
group and the intervention group. More concrete matching weights are planned to be used
to adjust for the number of steps taken before study entry, age, gender, level of education,

and household income.

In all three examples described above, it is not possible to perform randomized studies to
answer the research questions due to ethical reasons. However, PS methods can be used to
adjust for potential in-group differences at baseline and result in a more efficient estimation

of the intervention effect.

1.3 Aim of this thesis

In the previous chapters, | showed that PS methods play an important role in public health
research. The advantages and disadvantages of observational studies compared to controlled
(randomized) trials were presented. Furthermore, it was demonstrated to what extent PS
methods, especially PS weighting methods, can be valuable tools in the analysis of
observational studies.

Different approaches to calculate these weights can be grouped into three main categories:
modeling, balancing, and hybrid. Researchers need to choose the most suitable methods for
their analyses. To investigate the weighting methods with highest performance, simulation
studies have been conducted, but most of these focused either on the modelling or the
balancing approach. The studies that consider both approaches usually limit themselves to
using IPTW as the only modeling approach method or EBAL as the only balancing approach
method. To the best of our knowledge, there is no publication that examines a larger set of
methods from all approaches with a survival time outcome. Further, the choice of the
parameters used in these simulation studies did not necessarily mimic real world data.
Therefore, we conducted an extensive simulation study with a larger set of methods for all
three approaches. Aiming for maximal practical relevance, settings in the simulation were

informed by published studies that applied PS methods to real data. The detailed findings and
12



methodology of the simulation results are presented in the published paper ‘Balancing versus
modelling in weighted analysis of non-randomized studies with survival outcomes: A

simulation study’.
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2 Balancing versus modelling in weighted analysis of non-
randomized studies with survival outcomes: A simulation study.

Filla, T., Schwender, H., Kuss, O. (2024), Statistics in Medicine.
43(17), 3140-3163.
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3 Discussion

3.1 Main findings

This primary goal of this thesis was to provide clear guidance for the applied researcher
regarding appropriate methods when applying PS methods to survival data analyzed by a Cox
regression model. For maximal practical relevance, a large simulation study was performed
which settings mirrored published PS analysis sets with respect to outcomes as well as
covariates as close as possible. All major analysis methods were included. The simulation study
drew four main conclusions. First, none of the three approaches (modelling, balancing, hybrid)
outperformed the others in all settings. More precise, EB had the best performance across all
methods estimating the ATE or ATT for most simulation settings. In contrast, VB as the other
balancing approach method resulted in large bias for ATE and ATT in some settings. Second,
the methods estimating the ATO performed best across all settings regarding the bias and
standard error of the estimator. This was expected as these methods use the overlap
population as the target population and weight the distribution of the covariates into an area
of best overlap. Third, the performance of IPTW was poor for the target estimand ATE, but
reasonably well and similar to EB for target estimand ATT. Fourth, the standard robust
variance estimator overestimated the variance for all methods and target estimands, which
resulted in an over-coverage of the 95% confidence interval for all methods. In comparison,
the corrected robust variance estimator resulted in improved variance estimation for all

methods.

3.2 Detailed findings

Both methods of the balancing approach had difficulties in numerical stability in settings with
low sample sizes. EB failed to converge in 1.8% of the simulated data sets for target estimand
ATT and in 0.3% of the simulated data sets for ATE. VB had even stronger convergence issues
in 2.8% of the simulated data sets for ATT and in 4.9% of the simulated data sets for ATE. For
both methods, non-convergence occurred mainly in simulation settings with bad covariate
overlap and low sample size, which is not surprising as these are the most challenging settings

for all methods. The convergence problem did not only occur in our simulated data sets but
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also in the example data set. Potential explanations for the non-convergence are the lack of a
solution to the balancing equations and the failure in finding the solution. At least for some
settings the latter case was true as EB or VB found a solution, whereas the other method failed.
According to Wang et al. [48], these convergence issues are a disadvantage of all methods that
aim for exact balance in comparison to those methods with approximate balance as only the

latter guarantee convergence.

Comparing the results of the simulation study for treatment effect estimation to the results
of previous published simulation studies, the results match in most of the cases.

This work suggests good performances of IPTW and EB for the target estimand ATT. Thisisin
line with Amusa et al. [49], who conducted a simulation study with a similar design as the one
in our analysis. The authors compared the performances of IPTW and EB in a setting with ten
covariates, a logit model with parameters very similar to the ones used in this work in the bad
overlap settings, and a survival outcome analyzed via a Cox regression model. They also used
the robust variance estimator for coverage estimation. Equivalent to our study, they found a
similar bias among both methods, but the EB had superior performances for the mean squared
error. In our work, the relative efficiency comparing EB and IPTW with target estimand ATT
was similar, and in settings with a correctly specified PS model even slightly lower for the IPTW

method. The reason for this could be found in the higher effective sample size for IPTW.

We found EB to perform excellent across both target estimands (ATE and ATT) and all settings.
In our study, EB outperformed the other methods for target estimand ATE and was one of the
top performing methods for ATT. This fits to the results of previous simulation studies in which

EB was found to perform best across all compared methods [50],[51],[52].

Our results suggest a mixed performance of VB. On the one hand, VB showed the worst
performance across all methods with biased estimator for ATE and ATT in some settings even
when the PS model was correctly specified. On the other hand, promising results were found
regarding the effective sample size and empirical standard error with similar or even better
resultsthan EB. In a previous simulation study with a continuous outcome and target estimand
ATE, Chattopadhyay et al. [23] found VB outperforming IPTW in all scenarios. However, in

comparison to linear regression for estimating the hazard ratio, which was used in our study,
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it is not sufficient to balance only the first moment of all covariates, but the whole covariate
distribution. Therefore, bias might be introduced by remaining imbalances in higher covariate
moments or interactions. In general, this could be solved by also balancing these. However, in
real world settings it remains unclear to which degree it is necessary. Increasing the number
of moments to balance also increases the variability of the weights and thus results in larger
standard error for the estimator. This was shown in a simulation study comparing IPTW, CBPSJ,
and EB to methods using machine learning techniques, which balanced the complete
distribution of covariates including interactions and higher moments [52]. The methods
balancing the complete distribution showed good performances in general, but for settings
with many covariates or a low number of samples, large variances of the estimators were

found [52].

For estimating the ATE, the methods CBPSJ and CBPSO created pseudo-populations with
covariate distributions that did not necessarily match those of the whole cohort. The average
values of the covariates in the pseudo-populations were found to be different to those of the
original unweighted cohort. As a possible explanation, per construction CBPSJ and CBPSO do
not necessarily weight the covariates of the pseudo-population to the whole cohort. In fact,
they rather weight the covariates to an area of good covariate overlap. For target estimand
ATT, this problem does not exist as the weights for the treatment group are fixed and the

control group is weighted towards the treatment group.

The performance of all methods estimating the ATO was very good in all settings and results
were similar across the applied methods. This is in line with previous simulation studies that
also showed good performance in balance and higher preserved sample sizes compared to
IPTW [13]. Also, another study comparing the performances of OW and MW found both

methods to perform well with small differences across methods [53]

The self-developed method GMMW outperformed MW in terms of achieved balance
measured via the absolute weighted standardized difference. This was expected as GMMW
was designed to remove any imbalance of the covariates moment, which is exactly what is
measured by the weighted standardized difference. When comparing the performance of

GMMW in terms of bias or the standard error of the estimator, the results were very similar
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to MW. However, as the bias is related to the achieved balance and the strength of the
covariable outcome effect, probably an improvement in bias for stronger confounder
outcome effects (effect was fixed Sc = 0.5) would be found. Thisis considered to be important
for two reasons. First, if a researcher prefers MW to OW method due to the asymptotic
equality to PS-matching (and within this more intuitive interpretation), GMMW offers better
balance of the pre-treatment covariates. Second, in case of more than two treatment groups,
also the OW method does not provide an exact but only an asymptotically balance of the
covariates. Thus, in this case both GMMW and the new method generalized method overlap
weights (GMOW) could be calculated. | expect that GMMW and GMOW method would then
increase efficiency for treatment effect estimation with more than two treatment groups.
Indeed, first results confirmed this assumption and we found an improved performance for

many settings. The manuscript is currently being prepared for submission.

As another important finding of the present study, the coverage of the 95% confidence
interval using robust variance estimator was too high independent of the method used or the
target estimands. This matches to the result of Austin [54] who also found an over-coverage
in a simulation study with survival outcomes and IPTW. The standard robust variance
estimator has the disadvantage of assuming the weights values to be given instead of being
estimated. Therefore, the variability that is introduced by estimating the weights is added to

the standard error of the treatment effect estimator of the final Cox-model.

The corrected robust variance estimator takes into account the uncertainty of weight
estimation and was originally proposed by Shu et al. [55] for IPTW with target estimand ATE
and was expanded to IPTW with target estimand ATT, OW, MW, and GMMW in this work. The
corrected robust variance estimator performed better in all settings across all methods than
the robust variance estimator.

The corrected robust variance estimator was found to give adequate coverage for IPTW with
target estimand ATE for large sample sizes or good covariate overlap. However, it
underestimates the true variance in settings in which sample size and treatment prevalence
are low. Thisisin line with the results of Shu et al [55] who found similar results for low sample
size, high censoring proportion, and low treatment prevalence. Amusa et al. [49] conducted a

simulation study using a survival outcome and IPTW weights with target estimand ATE. They
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found an over-coverage of about 97.5% in settings with low treatment prevalence, while the
coverage was reduced to about 92.5% in settings with high treatment prevalence. However,
this under-coverage was most likely related to a biased estimator in these settings and, thus,
their results match the ones presented in this work.

For the performance of the coverage using the corrected robust variance estimator with IPTW
and target estimand ATT, adequate coverage in all settings was found, including those with
low sample sizes. When using the corrected robust variance estimator for OW, MW, and
GMMW, the coverage appeared to be adequate for all settings with a null treatment. However,
in those settings with a non-null treatment effect, the true variance was slightly
underestimated. The coverage results for the balancing approach methods using the robust
variance estimator were similar to these of the other approaches with an increased coverage
in all settings, although both methods calculated the weights directly and avoided estimation

of the PS.

3.3 Limitations

This work has some limitations that might have affected our results and the conclusions we
draw. First, more weighting methods exist that would have been worth to discuss here. For
example, the energy balancing method is another promising approach that fits to the
balancing approach methods and minimizes the energy distance between treatment groups
[56]. Nevertheless, the set of methodsto use is limited in every simulation study and best was

done to include different methods for each of the three approaches.

Further, some authors propose to combine the regression model and the use of the PS [57],
which we did not do in our study. Hereby and equivalent to the modelling approach methods,
the PS is estimated in a first step. In contrast to the modelling approach, in the second step of
the combined approach, the pre-intervention covariates are added as independent variable
in the weighted outcome regression model, while in the traditional modelling approach only
the treatment variable is used. In this approach, the researcher must estimate the PS correctly
or define the covariate outcome association correctly to obtain valid results. The approach
has been criticized by other authors, because it cancels out the advantage of the PS being part
of the study design and independent of the outcome as the treatment effect depends on how

the covariate outcome association is modelled. Thus, it might temp to work towards the
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desired or anticipated result. Therefore, we decided not to include this approach in our

simulation.

In addition, all methods were run with their default settings, and it is possible that some
methods might show improved performances by carefully tuning their settings. For example,
trimming the weights can be conducted or samples with extreme PSs could be deleted in IPTW
methods. However, the researcher should be aware that both actions change the covariate
distribution and as a consequence the final treatment effect estimand. Hereby, trimming
weights is equivalent to making the covariate distribution more similar and within this
weighting the covariate distribution to an area of best overlap. However, the choice of the
weighting method should depend on the specific research question. Thus, trimming is not
adequate if, for example, the ATE should be estimated. If the focus is on estimating the ATO,
a previous simulation study showed that overlap weight consistently outperforms trimmed
IPTW [58]. Therefore, we decided not to include trimming for IPTW weights. Beyond that,
balancing approach methods could be tuned by not exactly fulfilling the balancing constraints,
but allowing some level of imbalance. As a disadvantage of that approach, the introduced bias
by allowing some imbalance for a specific covariate depends not only on the level of imbalance
but also on the strength of the covariate-outcome effect. Thus, it is complicated to set a good

cutoff value for the allowed level of imbalance.

The PS was always estimated via a logistic regression model, although other methods, such as
machine learning methods, might be suitable candidates. We decided on our procedure for
two reasons. First, in the 50 published PS publications analyzed for the design of the simulation
study, we found that most of the studies used a logistic regression approach for PS estimation.
Second, previous studies did not result in systematically worse performance of logistic
regression models in comparison to machine learning algorithms. To be more concrete, one
simulation study found machine learning algorithms to slightly improve the performance of
IPTW in scenarios with both moderate non-additivity and moderate non-linearity of the PS
model [59]. Another study found the results of logistic regression model to be similar to those
of neural networks and only slightly worse than those of a random forest model [60]. In a third
study, Goller et al. [61] found random forest model to perform worse than logistic regression

model.
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As another potential limitation, we only used the robust variance estimator and corrected
robust variance estimation to estimate the variance. Here, the bootstrap estimator might be
another promising approach [60]. Equivalent to the corrected robust variance estimator, the
bootstrap estimator accounts for the weights being estimated rather than fixed by
incorporating the weight estimation step into the bootstrap procedure. In comparison to the
corrected robust variance estimator, the bootstrap estimator has the advantage of being
easily applicable to all weighting procedures, while the corrected robust variance estimator
needs to be developed for all weights independently. Austin [54] found the bootstrap
algorithm to perform well in a variety of settings. Thus, especially for balancing approach
methods for which no corrected robust variance estimator exists so far, it might be a
promising method. However, the bootstrap algorithm also has some disadvantages. First, it
can be very time-consuming, especially for the methods in which the weight estimation step
is computational challenging (e.g., balancing approach methods with large sample size).
Second, for datasets with low number of events, bootstrapping can result in bootstrap
samples with very little number of events and the outcome model might result in extreme
effect estimates making the variance estimator unstable. Such a behavior was observed by
Shu et al. [55], who found the bootstrap variance estimator to overestimate the true variance
in settings with high censoring rate and low sample size. In summary, it would have been
computationally extremely heavy to incorporate the bootstrap algorithm as not only the
treatment effect estimation step but also the weight estimations step needs to be repeated.
Therefore, we did not incorporate this algorithm into our simulation. Nevertheless, it would
be very interesting and worth further investigation to compare the performance of the
corrected robust variance estimator and the bootstrap algorithm especially in settings with

lower sample size and/or higher censoring rate.

4 Conclusions

In summary, this work clearly demonstrated advantages and disadvantages of different
weighting approaches and compared the performances of different variance estimators,

which are important for assessing the strength of intervention effects. For the target estimand
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ATT, our simulation results suggest to use either EB or CBPSJ. For target estimand ATE, we
recommend the usage of EB. For target estimand ATO, all three studied methods showed
excellent performance and, thus, all the three approaches can be recommended.

We recommend the corrected robust variance estimator for variance estimation for methods
IPTW with target estimand ATE and ATT as well as for all methods estimating the ATO. For all
other methods, we assessed the robust variance estimator only and researchers should be
aware that the variance is overestimated for all methods in these cases.

The application of our recommendations to the described public health analyses (chapter
1.2.5) confirmed for the '10.000 steps’ [46] study the intended method MW to be adequate.
For the Chinese retirement study [44], our study suggests to use OW, MW or GMMW. Finally,
for the children vaccination study [45] the authors aimed to assess the whole population (ATE)

and therefore, our study suggests to use EB rather than the original used IPTW.

In the future, further research is needed to evaluate the performance of different variance
estimation methods and, in particular, to compare the corrected robust variance estimator
with the bootstrap estimator. In addition, it would be interesting to evaluate the performance
of different PS weighting methods and variance estimators in the case of multiple indication
groups and a survival outcome. Finally, it would be of great importance to develop PS
weighting methods for continuous indication variables in the overlap population.

While these future directions are important for advancing the field, the results of this thesis
already provide significant contributions, which will help to further improve the quality of
propensity score analysis in public health studies by providing clear and valuable implications

for the applied users.
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