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Zusammenfassung 

Die Dekodierung von individueller Variabilität in Kognition und der Organisation des 

Gehirns ist essentiell, um unser Verständnis der menschlichen Vielfalt in Gehirn und 

Verhalten zu verbessern. Dabei ist die individuelle Variabilität oft mit Phänotypen 

verknüpft, wobei das Geschlecht ein wichtiger Phänotyp ist, der zur individuellen 

Variabilität beiträgt. Die Erforschung der geschlechtsspezifischen Variabilität verbessert 

daher nicht nur unser Verständnis von geschlechtsspezifischer Differenzierung in kognitiven 

Prozessen und der Organisation des Gehirns, sondern hilft darüber hinaus, die Heterogenität 

in neuropsychologischen Krankheiten, bei der das Geschlecht eine wichtige Rolle spielt, 

besser zu verstehen. Das Hauptziel dieser Arbeit ist es, multivariate statistische Verfahren 

als effektive Methodik zur Identifizierung von Mustern in komplexen Datensätzen wie 

Bildgebungsdaten des Gehirns oder kognitiven Daten zu präsentieren (Kommentar). Studie 

1 zielte insbesondere auf die Untersuchung der geschlechtsspezifischen Differenzierung in 

neuropsychologischen Daten mit Hilfe von Strukturgleichungsmodellen ab. Die Ziele der 

weiteren Studien waren, die geschlechtsspezifische Variabilität in der funktionellen (Studie 

2) und strukturellen (Studie 3) Gehirnorganisation mit Hilfe von maschinellem Lernen zu 

untersuchen. In beiden Studien wurden zusätzlich methodische Aspekte untersucht, wie z. 

B. der Einfluss des Trainings-Datensatzes auf die Generalisierungsperformanz (Studie 2) 

und der Einfluss konfundierender Variablen (Studie 3). Der Kommentar erläutert die 

Bedeutung neuer methodischer Ansätze wie multivariates statistisches Lernen, um unser 

Verständnis der komplexen Natur von Geschlechtsunterschieden zu verbessern. Die 

Ergebnisse von Studie 1 zeigten, dass es geschlechtsspezifische kognitive Profile gibt, die 

auf Geschlechtsunterschiede in der kognitiven Verarbeitung zurückzuführen sind. Die 

Ergebnisse von Studie 2 zeigten Geschlechtsunterschiede in der funktionellen 

Gehirnorganisation für bestimmte Hirnregionen; wobei allgemein die höchsten 

Generalisierungsperformanz erreicht wurde, wenn Modelle zur Geschlechtsklassifizierung 

auf einem großen und heterogenen Datensatz trainiert wurden, welcher die Daten mehrerer 

Datensätze umfasste. Zusätzlich zeigten die Ergebnisse von Studie 3 

Geschlechtsunterschiede in der strukturellen Organisation des Gehirns durch eine akkurate 

Klassifizierung des Geschlechts mit Modellen, die durch Stratifikation der Gehirngrößen 

von Männern und Frauen um den konfundieren Einfluss der Gehirngröße bereinigt wurden. 

Insgesamt zeigen die vorliegenden Studien, dass multivariate statistische Ansätze die 

geschlechtsspezifische Variabilität mit strukturellen und funktionellen Bildgebungsdaten 

dekodieren können, mit besonderer Berücksichtigung methodischer Aspekte.  
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Summary 

Decoding individual variability in cognition and brain organization is essential to enhance 

our understanding of heterogeneity in the brain and behavior. Individual variability is often 

related to specific demographic phenotypes, with sex being a prominent phenotype 

contributing to individual variability. Examining how differences between males and 

females are reflected in cognitive and neuroimaging data advances the understanding of sex 

differences in cognitive processing, brain organization, and the heterogeneity of 

neuropsychological and mental diseases. To characterize common sources of variability such 

as sex, the present work aims to present multivariate statistical methods as powerful tools to 

identify patterns in complex datasets such as neuroimaging or cognitive data (commentary). 

By using multivariate statistical approaches, the present work examines sex differences in 

neuropsychological (study 1) and brain imaging data (study 2 & study 3). Specifically, study 

1 examined sex-specific cognitive profiles derived from a battery of neuropsychological tests 

using Structural Equation Modeling. Studies 2 and 3 supplement this investigation by 

examining sex-related variability in the functional (study 2) and structural (study 3) brain 

organization using Machine Learning (ML) approaches. Additionally, methodological 

considerations in ML were taken into account such as the influence of training samples on 

the generalization performance of ML models (study 2) and the influence of confounding 

variables (study 3). 

The commentary highlighted the importance of new methodological approaches such as 

multivariate statistical learning to enhance our understanding of the complex nature of sex 

differences in rich data. Study 1 identified sex-specific cognitive profiles pertaining to sex 

differences in component solutions in cognitive processing strategies. Results of study 2 

revealed sex differences in the functional brain organization for some, but not all brain 

regions, with the highest generalization performance when sex classification models were 

trained on a large and heterogeneous sample comprising the data of multiple datasets. Study 

3 demonstrated sex differences in the structural brain organization by accurately classifying 

sex with ML models that were debiased for the confounding influence of brain size by 

matching males and females for brain size. In sum, the present studies demonstrated that 

multivariate statistical approaches can effectively decode sex-related variability in cognitive 

as well as structural and functional brain imaging data while incorporating important 

methodological considerations. 
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1 Introduction 
A central aim in neuroscience and psychology is to decode the individual variability that 

drives human diversity in brain and behavior. Common sources of such variability include 

genetic, cultural, or developmental effects [5, 6], as well as specific phenotypic associations, 

e.g., the age or sex of a person [7-9]. Linking the individually exhibited variability in brain 

and behavior to these respective sources advances our understanding of brain organization 

and cognitive function [10]. 

 

A high amount of variability is introduced by the distinction between male and female 

individuals [8, 11, 12]. Examining how differences between males and females are reflected 

in cognitive and brain imaging data advances the understanding of sex-related variability in 

cognitive processing styles and brain organization. Further, there are distinct sex differences 

in the risk for neuropsychiatric and neurodegenerative disorders [13, 14] such as Alzheimer's 

disease, Depression, Anxiety, Attention-deficit/hyperactivity disorder (ADHD), Parkinson's 

disease, and Schizophrenia [15-17]. Understanding the nature of sex differences in brain and 

behavior can enhance our understanding of the sexual differentiation in a variety of 

disorders, potentially leading to the development of sex-specific treatments and prevention 

strategies [14]. 

 

There has been considerable debate in the literature regarding sex differences in cognitive 

abilities and brain organization. While sex differences in structural and functional brain 

organization, as well as cognition, have been widely studied [12, 18-35], some researchers 

have argued that the overall similarity between the sexes might be greater than the 

differences for particular brain regions and cognitive processing [8, 11, 36, 37]. However, 

much of the work to date has adopted a group differences approach  - directly comparing 

males and females - and focused on specific brain regions or selected single cognitive tasks. 

We have still yet to understand the fundamental differences between males and females on 

a global level, beyond individual regions or functions that encompass the overall 

organization of the brain or cognition.  

 

In contrast to the group differences that have been traditionally used, multivariate methods 

provide a powerful tool for identifying patterns in rich and complex datasets. Multivariate 
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analyses offer a way of articulating sex differences in brain and behavior at the global level 

by identifying differences across multiple variables and considering the interactions among 

those variables. Consequently, multivariate methods are increasingly applied to study the 

relationship between phenotypical and neuroimaging data [38-52]. The present work 

examines sex differences in neuropsychological variables as well as structural and functional 

brain organization using different multivariate methods, including Structural Equation 

Modeling (SEM) and Machine Learning (ML). Furthermore, the present work focuses on 

important methodological considerations when adopting multivariate methods to study sex 

differences to ensure the validity and interpretation of the results. 

1.1 Sex differences in cognition and the brain 

Males and females have been reported to differ across various cognitive domains. According 

to Mansouri et al. (2016 [31]), males and females exhibit different modulations of contextual 

control functions as well as overall executive control. Furthermore, sex differences have 

been found in the processing of language, showing a female advantage in most verbal tests 

[18]. This difference is reflected in a female behavioral advantage in linguistic flexibility, 

verbal fluency, speech articulation, and grammatical skills [18]. A second prominent 

example of sex differences in cognition occurs in the domain of visual-spatial attention [18, 

23-25, 33], in which males tend to outperform females in a variety of visual-spatial, problem-

solving, and mental rotation tests [18, 25, 34]. Moreover, sex differences have been observed 

in memory, particularly working memory [23, 24, 27, 28]. Specifically, sex differences were 

evident in the processing of the distinct working memory components [24], as males are 

reported to perform tasks of visuospatial processing more rapidly than females [23, 34]. 

Overall, several studies have reported sex differences in cognitive task performance across 

a variety of cognitive domains. 

These sex differences in cognitive performance are accompanied by sex differences in 

performance-related functional magnetic resonance imaging (MRI) brain activation. Brain 

activation during cognitive task performance can be assessed using Blood Oxygenation 

Level Dependent (BOLD) imaging, which reflects changes in the blood flow and blood 

oxygenation, indicating which parts of the brain are activated [53]. For instance, sex 

differences have been reported in brain activation patterns in regions associated with 

language during a variety of language tasks [19-22]. Similarly, some studies have reported 
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that activation patterns of the brain during visual-spatial attention tasks differ between males 

and females [26, 54]. Moreover, sex differences in memory at the behavioral level are 

accompanied by differences in functional activity in working memory-related regions [29, 

30, 35]. Taken together, there are sex-related differences in behavior and brain activation 

across various cognitive domains. 

 

In addition to the sex differences in cognition, sex differences have also been reported for 

the intrinsic functional connectivity in the brain. Functional connectivity is defined as the 

temporal correlation in the BOLD signal between different regions in the brain [55]. 

Functional connectivity can be assessed while performing a specific cognitive task or during 

‘rest’, meaning when a participant is left to think for themselves and not of anything specific 

[56]. Resting-state functional connectivity (RSFC) can be used to study large-scale brain 

networks associated with trait characteristics and behavioral performances [57]. A network 

of brain regions that exhibits decreased activity during tasks but not in resting-state (RS) is 

known as the default mode network (DMN [56]). The DMN encompasses brain regions such 

as the precuneus, posterior cingulate cortex, medial prefrontal cortex, as well as the medial, 

lateral, and inferior parietal cortices [58]. So far, several studies reported sex differences in 

the DMN, with females exhibiting a higher level of connectivity than males [58-62].  

 

The basis of functional networks emerges from the structural architecture of the brain [63]; 

therefore, when examining sex differences in brain function, it is imperative to also consider 

sex differences in brain structure. The most prominent difference between male and female 

brains is the overall brain size, known as total intracranial volume (TIV), which is on average 

higher in males than in females [8, 12, 64]. Moreover, males and females are reported to 

differ in brain measures such as grey matter (GM), white matter (WM), and cerebrospinal 

fluid (CSF), with males exhibiting larger volumes than females on average [8, 11, 12]. 

Several studies have also demonstrated that the GM volumes (GMV) in several brain regions 

differ between the sexes. For instance, females show higher GMV in medial and lateral 

prefrontal areas, the superior temporal sulcus, the posterior insula, and prefrontal cortex [32], 

as well as in the right frontal pole, inferior and middle frontal gyri, pars triangularis, and 

planum temporale [12]. In contrast, males exhibit higher GMV in subcortical temporal 

structures, including the amygdala and hippocampus, as well as the temporal pole, fusiform 

gyrus, visual primary cortex, posterior cingulate gyri, precuneus, putamen, and motor areas 

[12, 32]. It is important to note that these regional differences are not fully attributable to the 
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overall differences in TIV [11], which indicates that females and males differ not only 

globally but also in more localized regions of the brain. 

1.2 Differences and Similarities between the sexes in cognition and 

the brain 

While some studies emphasize the differences between males and females, other studies 

report more similarities than differences, indicating a contradiction in the literature. The 

contradiction usually refers to the fact that while a sex difference may be significant, the 

overlap in distributions representing males and females can be greater than the difference 

between them. Such an overlap was found for several structural brain measures such as brain 

volumes, GM and WM organization, cortical thickness, cortical surface area, gyrification, 

and subregional analyses [8, 11, 64]. Furthermore, there is also a high degree of overlap in 

brain regions related to specific functions, including language lateralization in brain 

structure, which demonstrated no consistent differences among males and females in terms 

of GM distributions [22]. Moreover, Weiss et al. (2003 [54]) reported comparable patterns 

of brain activation for visual-spatial tasks for males and females. Likewise, Voyer et al. 

(2017 [24]) found that the functioning of visual-spatial working memory is more similar than 

different between the sexes. Furthermore, Zell et al. (2015 [65]) conducted a metasynthesis 

demonstrating that sex differences fluctuated across several psychological domains (for 

example, cognitive variables, social and personality variables, and well-being) but remained 

largely constant across age, culture, and generations, with most of the effects being relatively 

small.  

 

The findings of these studies corroborate a study by Hyde (2005 [36]) stating that males and 

females are more similar than different in most, but not all, psychological variables [36, 37] 

and that although differences between males and females may exist, the effect sizes of these 

differences are usually small. Hyde (2005 [36]) reviewed 46 meta-analyses covering 

different categories, including several cognitive variables, communication, social or 

personality variables, psychological well-being, and motor behaviors. In one-third of the 

cases, the effect sizes of the sex differences were small or close to zero, a few were moderate, 

and none were large [36, 37]. The finding of small effect sizes in the majority of outcomes 

(close to 80%) provides strong evidence that males and females are more similar than 

different [36]. 
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Taken together, the literature presents a contradiction regarding the extent of differences and 

similarities between males and females in terms of brain organization and cognitive 

functioning. This contradiction may stem from analyses based on the assumption of a clear-

cut sexual dimorphism of the brain. The term ‘sexual dimorphism’ refers to a well-defined 

distinction between males and females due to differences in terms of physical, biological, or 

behavioral characteristics [66]. Group comparisons contrasting males and females often rely 

on the assumption of a sexual dimorphism. However, the assumption of a sexual dimorphism 

of the brain has recently been called into question. According to Joel et al. (2015 [67]), the 

sexually dimorphic view of a ‘male brain’ and a ‘female brain’ can only hold true if 

differences in brain features are dimorphic in the sense of a high internal consistency of sex 

differences with minimal overlap between the distributions. The findings of Joel et al. (2015 

[67]), however, demonstrated an extensive overlap between the distributions of males and 

females for multiple brain measurements, including GM, WM, and connectivity 

measurements. Further analyses of internal consistency revealed that brains with features 

that are consistently at one end of the ‘maleness-femaleness’ continuum are extremely rare. 

Instead, most brains consist of a unique ‘mosaic’ of features, some of which are more 

common in females compared to males, some more common in males compared to females, 

and some common in both [67, 68]. According to these results, Joel et al. (2015 [67]) 

concluded that, although there are sex differences in the human brain, human brains do not 

fall into the distinct categories of a ‘male brain’ or ‘female brain’. These findings contradict 

the sexually dimorphic view of the human brain and highlight the need for methods that 

consider the heterogeneity and variability of the human brain and behavior when 

investigating sex-related variability. 

1.3 Sex and Gender 

One important variable that is closely linked to the phenotype sex and its associated 

variability is the gender a person identifies with. Following the linguistic guidelines for 

submission of transgender healthcare materials [69], the term ‘sex’ refers to the sex assigned 

at birth based on anatomical features, while the term ‘gender (identity)’ refers to an 

individual’s subjective identification influenced by social and psychological factors [70]. 

The congruence of sex and gender is described as ‘cisgender’ for cisgender men (CM) and 

women (CW). In contrast, transsexualism refers to the incongruence of sex and gender and 
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is often associated with gender dysphoria, which describes the clinically significant stress 

that transgender individuals experience due to this incongruence [71]. To alleviate this 

distress, transgender individuals may opt for surgery and cross-sex hormone treatment. 

While ‘transsexualism’ is an umbrella term referring to a variety of gender identities 

incongruent with the sex assigned at birth, the present work only considers transgender 

individuals identifying either as men (TM) or women (TW). Moreover, samples of cisgender 

individuals are mostly based on the “presented sex” of a person (derived based on their name, 

outer appearance, or self-reported sex) without explicitly collecting information regarding 

the coherence of sex and gender. For individuals who do not describe themselves as 

transgender, their gender identity is assumed to be coherent with their sex assigned at birth. 

It is important to acknowledge that considering sex and gender as binary variables is still a 

reductionist approach that does not account for the nuanced gender categories of individuals 

identifying between, outside, or beyond the gender binary [72].  

 

To date, only a few studies have investigated whether and how an incongruence between sex 

and gender identity might also be reflected in the brain. In general, transgender individuals 

have been reported to show an altered brain structure compared to cisgender individuals [73]. 

More specifically, regional differences were found in the putamen [74, 75], insula [76, 77], 

hypothalamus [78], cortical brain volumes, surface areas [79], and the third ventricle, leading 

to changes in the overall TIV [78], demonstrating structural brain differences between cis- 

and transgender individuals. Moreover, sex and gender are both important modifying 

variables in a variety of diseases, highlighting the need to also consider variability that is not 

only related to sex alone [16]. 

1.4 Multivariate statistical analyses 

Considering the complexity of various factors associated with the phenotype sex, it is 

imperative to utilize methods that are capable of addressing this complexity. Specifically, it 

is necessary to determine the extent to which observed patterns are genuinely related to sex 

as opposed to other sources of variability within the studied variables. Thus, the question 

arises whether males and females differ fundamentally in their intrinsic brain organization 

and cognitive function or whether they are largely similar with only minor differences. To 

address this question, the group comparisons conducted so far using univariate analyses are 

not sufficient. Univariate analyses focus only on a single dependent variable but not on the 
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potential association and interaction of multiple variables [80], which may provide a more 

nuanced comprehension of sex-related differences between individuals. 

 

Consequently, we should transition from univariate statistical methods to multivariate 

methods, which allow us to examine the relationships between multiple variables 

simultaneously. Multivariate analyses aim to identify and interpret the underlying factors of 

all the variables provided as input for the analyses [80]. Underlying factors are not directly 

observable variables that typically influence more than one observed measure and are the 

constructs researchers are most interested in [81-83]. An analysis of the underlying factors 

also allows us to evaluate whether there are fundamental differences in those factors that are 

associated with sex. Compared to univariate methods, multivariate analyses offer a more 

holistic approach by considering multiple variables simultaneously, thereby enabling the 

identification of potential sex differences in the underlying constructs of the respective 

variables. Thus, multivariate methods allow for a more accurate representation of the 

complex characteristics of the phenotype sex and further related factors in the brain and 

cognition. 

 

Multivariate statistical analyses can incorporate ML techniques, which are a key aspect of 

statistical learning. In contrast to classical statistics, statistical learning approaches do not 

primarily focus on confirmatory but exploratory data analysis to infer a model from the 

presented data inductively [84]. Furthermore, classical statistics are focused on in-sample 

estimates, whereas statistical learning methods are focused on individual predictions of out-

of-sample estimates [84]. 

1.4.1 Structural Equation Modeling 

Multivariate data analysis can be accomplished using various statistical learning approaches, 

allowing researchers to model and estimate complex relationships among multiple variables 

[82] and also to determine whether males and females show differences in these models. One 

particular method to analyze multivariate data is SEM [82]. The term ‘SEM’ is an umbrella 

term for the collection of statistical techniques that enable the examination of multiple 

variables in relation to one another [82, 85]. Specifically, SEM examines the relationship 

among underlying factors as measured by one or more indicator variables [82, 83]. These 

underlying factors influence one or more observed variables and account for the 

relationships among them [81]. An observed variable can be a participant’s response to a 
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questionnaire or any directly measured raw data, often referred to as items or indicators [82, 

83]. The underlying factors are derived from the intercorrelations shared by multiple 

indicators [81]. The overall model specifying the relationships among factors, indicators, 

and their respective correlations are evaluated to determine whether it adequately reflects 

the actual data [86]. Using SEM can reveal sex differences on a broader level than univariate 

analysis by assessing not only a single variable as an indicator but the relationships between 

multiple indicators, their respective intercorrelations, and underlying factors. Such sex 

differences may be reflected in sex-specific model accuracies, which would indicate that 

sex-stratified analyses might better reflect the actual data. Whether such differences exist 

can be evaluated based on the fit of a model to the actual data. 

 

Confirmatory Factor Analysis (CFA) is a useful method to evaluate the fit of a model. CFA 

is a specific form of SEM, which can be a part of or a precursor of SEM [81, 83] and focuses 

on measurement models assessing the relationship between indicators and their underlying 

factors ([81] Figure 1). The relationship is predefined as the model specifies the number of 

factors and the expected pattern of the indicator-factor relationship in advance based on 

theoretical grounds [81, 83, 85]. The central aim of CFA is to test this hypothesized structure 

[85] by assessing how well the variance-covariance matrix of the indicators (observed 

variables) is reproduced in the model solution of the proposed model [81], which is known 

as the model fit. The model’s fit can be evaluated using a variety of fit estimates. Considering 

multiple fit indices provides a global summary of the model fit with a more conservative and 

reliable evaluation of the model fit [81]. Overall, CFA allows for a deeper understanding of 

how a set of observed indicators is organized based on their underlying factor structure. By 

evaluating the model fit, CFA allows one to determine whether a proposed factor solution is 

an adequate model fit for the present data. In the context of multivariate analyses of sex 

differences, CFA allows assessing whether a factor solution fits both males and females 

equally well or whether individual factor solutions are required to provide an adequate model 

fit. This multivariate approach allows us to examine whether there are fundamental 

differences between males and females in the underlying factor structure of a set of variables. 
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Figure 1. Two-factor confirmatory factor analysis (CFA) with factor loadings 

1.4.2 Machine Learning 

An alternative method for addressing the complex variability in multivariate data associated 

with, e.g., the phenotype sex is ML models [87]. ML models are designed to identify patterns 

in complex data, with the fundamental goal of generalizing these patterns to new and unseen 

data [88]. Recently, ML approaches have been increasingly applied to neuroimaging data 

[39, 40, 89-91] to advance our understanding of the brain and how it functions [41]. 

Combining ML approaches with neuroimaging data has expanded the field from population-

based analyses to individualized biomarkers [40].  
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In the context of using ML to study sex differences, the sex of a person can be used as the 

outcome variable predicted by multiple input variables in a supervised ML approach. In 

supervised learning, labels are assigned to the outcome variable (target variable), e.g., the 

labels ‘male’ and ‘female’ if the sex of a person is the target variable. Within the training 

process of supervised ML, the given input data (features, e.g., structural or functional 

neuroimaging data) are related to the respective target variables of each person [92-95]. After 

learning the feature-target relationship during the training phase, the ML model should be 

able to generalize the learned patterns beyond the training data. As a result, the ML model 

is able to make predictions for the target variable in unknown data (out-of-sample predictions 

[42, 96]). The accuracy of out-of-sample predictions allows us to evaluate the model's ability 

to make personalized predictions of a person's phenotype, which is referred to as a model's 

generalization performance [88, 90, 97]. 

 

ML models that aim to predict sex by categorizing the target variable as ‘male’ or ‘female’ 

are referred to as sex classification models. Recent sex classification studies using 

neuroimaging data have utilized either structural or functional brain imaging features. 

Studies using RSFC data for sex classification have reported accuracies that range from 62% 

to 87% [51, 98-100]. Studies using structural brain imaging features for sex classification 

have reported even higher accuracies that range from 82% to 94% [76, 101-103]. Generally, 

a high sex classification accuracy indicates that the patterns within the given neuroimaging 

data differ sufficiently between males and females, allowing a classification model to derive 

individualized classifications of a person’s sex based on these patterns. However, it is 

essential to determine whether these distinct patterns rely on actual sex differences or on 

potential methodological shortcomings within the ML models. 

 

1.4.3 Methodological considerations in multivariate analyses of sex 

differences 

 

Generalizability in Machine Learning 
One important methodological consideration in ML is to ensure that the model can actually 

generalize the learned feature-target relationship to new and unknown datasets. In cases 

where the model does not capture the general feature-target pattern but rather specializes in 
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recognizing patterns specific to the training dataset, the ML model is prone to overfit. An 

overfitted model results in a high model accuracy for the training data but poor 

generalizability to other datasets [88]. It is essential to avoid overfitting as it hinders making 

individualized predictions in new data, which impedes the purpose of ML. Failure to address 

overfitting in sex classification models could lead to ungeneralizable models and an 

overinterpretation of potential sex differences in the, e.g., structural or functional 

neuroimaging features due to a high accuracy in the training sample. Therefore, it is crucial 

to evaluate and avoid overfitting so that the results of the obtained sex classification models 

truly reflect the predictability of the phenotype sex based on the respective features. 

 

In order to ensure that an ML model does not overfit and is thus able to make generalizable 

predictions in new data, it is essential to choose a suitable training dataset. Such a dataset is 

characterized by a large sample size, which is advantageous with regard to the generalization 

performance [88, 93, 104-106]. Furthermore, most ML models assume that the training data 

have a similar distribution as the test data [97]. Consequently, a discrepancy in the 

distributions of training and test data may result in poor generalization performance due to 

overfitting. It is therefore imperative that the training data is also representative of the test 

data, so that the model accuracy will not decline [97]. Hence, employing a large and 

heterogeneous training sample is useful to better represent the heterogeneity of the 

population from which we can derive potential test samples [93]. Combining several datasets 

for training purposes is advantageous to achieve such heterogeneity [107-109]. In summary, 

the choice of the training dataset involves considering a number of factors to ensure accurate 

generalization performance. It is crucial to consider these factors when selecting an 

appropriate sample for training sex classification models when analyzing sex differences 

using multivariate methods such as ML. By doing so, the results from a sex classification 

model trained on a large, heterogeneous sample are more likely to not depend on the 

respective training sample. In the present work, study 2 examines the influence of the 

training sample on the generalization performance and whether a large, heterogeneous 

dataset can provide more generalizable predictions regarding differences between males and 

females. 

 

Besides selecting a suitable training set, it is essential to evaluate the ML model within the 

training process to prevent the model from overfitting and ensure accurate and generalizable 

predictions. This is accomplished by utilizing a method called cross-validation (CV). Within 
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this process, the data is split into training and test data, and the test data is used to evaluate 

the model after it has been trained. In a 10-fold CV, the data is split into 90% training data 

and 10% test data. This is an iterative process, with each iteration involving testing on a 

different set of 10% data (Figure 2). The CV process involves adjusting the model 

parameters with each iteration, therefore increasing the likelihood of high generalization 

performance for out-of-sample predictions. It is thus possible to obtain a more reliable 

estimate of its accuracy and to make accurate out-of-sample predictions. Both sex 

classification studies (studies 2 & 3) in the present work incorporate the CV process into the 

analyses to ensure reliable and generalizable results.  

 

 
Figure 2. 10-fold cross-validation (CV). 
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Dimensionality 

To ensure a high generalization performance for out-of-sample predictions, it is equally 

important to examine the feature input provided by the dataset. For instance, neuroimaging 

data frequently contains features with a high dimensionality, which presents a number of 

challenges known as the “curse of dimensionality” [93]. One of these challenges is that the 

higher the dimensionality of the features, the greater the risk that the model will overfit [110]. 

Similarly, the higher the dimensionality of the input feature space, the more data is required 

to ensure that the model actually learns the underlying feature-target associations in order to 

prevent the model from overfitting. For appropriate model training, feature dimensionality 

must be balanced with the number of available subject data, or, ideally, there should be more 

subject data than feature dimensionality [93, 111]. Overall, it is therefore essential to reduce 

highly dimensional data to achieve generalizable predictions in ML. 
 

The principal component analysis (PCA) is a multivariate analysis technique that can be used 

for dimensionality reduction and to gain a better understanding and exploration of data [112]. 

PCA reduces complex multivariate datasets to their essential features [112] to provide an 

overview of complex multivariate datasets [112, 113] and is therefore frequently applied to 

reduce high dimensional data [114]. In the present work, PCA was applied in studies 1 and 

3 to reduce the dimensionality of neuropsychological performance measures and structural 

neuroimaging data, respectively. 

 

An alternative approach to reduce feature dimensionality when working with neuroimaging 

data is to use a parcellation of the brain. A brain parcellation is the delineation of distinct 

spatial partitions in the brain, referred to as brain parcels [115]. Brain parcellations are 

fundamental for decoding the human brain [115] as they provide insights into organizational 

principles of the brain along brain structure, function, or connectivity. In addition, they 

provide a biologically informed data reduction strategy to summarize the data of thousands 

of voxels into a manageable set of brain regions [115]. In the present work, study 2 followed 

a parcelwise approach to reduce the dimensionality of the RSFC in order to avoid the curse 

of dimensionality while enabling the assessment of spatially specific effects. Taken together, 

employing informed dimensionality reduction techniques is crucial to circumvent 

overfitting, thus establishing the groundwork for high generalization performances in 

multivariate analyses.  
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Choice of algorithm 

To address the sex classification analyses in the present work, various ML algorithms could 

be applied to differentiate between the sexes. Previous work demonstrated successful 

generalization results for sex classification analyses based on structural [76] and functional 

[51] neuroimaging data using a support vector machine (SVM) algorithm. Following these 

approaches, the present ML studies also utilized SVM. Using the supervised SVM algorithm 

[116-118] for sex classification analyses involves classifying individuals into one of two 

classes - male or female - based on the labels of the input features. The goal of SVM is to 

separate the two classes with the widest gap possible, known as the hyperplane (Figure 3 

[116, 117]). Upon successfully training the model, new data should be classified accordingly 

based on its position relative to the hyperplane, anticipating accurate generalization of the 

model. 

Figure 3. Support Vector Machine (SVM) Functionality 
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Confounding variables 

While aiming for accurate and robust out-of-sample predictions, it is also essential to ensure 

that the target variable is actually predicted by the features of interest. A major concern in 

this context is the methodological issue of confounding variables. A confounding variable is 

a variable that is associated not only with the features of interest but also with the target 

variable [119]. The presence of a confounding variable within the features used as ML input 

might bias the predictions of the target variable. In a biased prediction, the causal feature-

target effect can be either hidden by the confounder, or the confounder may suggest an effect 

where none exists [120]. As a result, confounding effects can lead to spurious conclusions 

or cause important associations to be missed [121]. Therefore, it is crucial to appropriately 

control for confounding variables in multivariate analyses to ensure accurate individualized 

predictions.  

 

A prominent example of a confounding variable in examining sex differences in 

neuroimaging data is the overall brain size difference between males and females. 

Particularly in the context of structural brain imaging data, TIV is not of primary interest but 

is nonetheless embedded in the features derived from the structural data [122]. TIV can bias 

predictions when using e.g. GMV as structural brain imaging data for training a sex 

classification model. In this case, a TIV-biased model will rather learn to classify males and 

females based on the overall difference in TIV at the expense of learning sex-differentiating 

patterns in the GMV structures, which are the actual features of interest [122]. These biased 

predictions occur since TIV alone is an effective predictor of a person’s sex [123].  

 

Different methodologies to control for confounding variables exist, such as randomization, 

restriction, and matching for the respective confounding variable [119, 124]. However, most 

studies reported a reduced sex classification accuracy with TIV-controlled compared to TIV-

uncontrolled structural brain information [123, 125, 126]. Thus, while it is critical to control 

for confounding variables in multivariate analyses, it is so far unclear whether it is also 

possible to maintain a high level of classification accuracy in spite of removing information 

such as TIV. In the present work, study 3 addresses this problem by evaluating two methods 

to control for confounding variables, using the example of TIV as a confounder in structural 

sex classification analyses. 
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1.5 Aims of the thesis 

We have elaborated on the ongoing debate in the literature regarding the extent of sex 

differences in brain and cognition. Despite significant differences in specific cognitive 

domains and brain regions reported by studies using group comparisons, males and females 

may share more similarities than differences in the overall organization of the brain and 

cognition. In order to investigate sex differences more globally, it is essential to use statistical 

methods that allow to assess sex differences beyond one single variable to examine whether 

males and females differ in the overall organization of the brain and cognition. Multivariate 

analysis approaches, including e.g. SEM and ML, provide suitable statistical tools for 

addressing this complexity. Furthermore, multivariate statistical learning approaches 

utilizing sex classification analyses enable modeling complex relationships and generalizing 

to new data. For this purpose, it is crucial to ensure an appropriate learning of the feature-

target association by carefully considering several methodological considerations. 

 

The present work presents multivariate methods as powerful tools to disentangle the 

complex pattern of sex-related variations in cognition and brain organization (commentary). 

Specifically, the present studies examine sex-related variability in cognition using SEM 

(study 1) as well as functional (study 2) and structural (study 3) brain imaging data using 

ML models. In light of the methodological considerations inherent in sex classification 

analyses, study 2 examined the impact of the training sample on the generalization 

performance and study 3 examined the effective removal of confounding variables. Taken 

together, the findings of studies 2 and 3 aim to ensure a valid interpretation of sex differences 

in brain organization using sex classification analyses. Overall, all three studies utilize 

multivariate statistical methods based on data-driven approaches to examine sex differences 

on a holistic level, encompassing multiple variables.  

 

Commentary 

Wiersch, L., & Weis, S. (2021). Sex differences in the brain: More than just male or female. 

Cognitive Neuroscience, 12(3-4), 187-188. 

The commentary in the present work emphasizes the significance of innovative 

methodological approaches such as statistical learning, as these multivariate techniques offer 

effective tools to disentangle the complex patterns of variability provided by multivariate 

data. The usage of these tools is particularly valuable in assessing how large and meaningful 
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the differences between the sexes are in relation to the overall variability in cognitive and 

neuroimaging data. 

 

Study 1 

Jockwitz, C., Wiersch, L., Stumme, J., & Caspers, S. (2021). Cognitive profiles in older 

males and females. Scientific Reports, 11(1), 6524. 

Study 1 examined sex-related variability in cognition based on neuropsychological 

performance measures. Based on the assumption that males and females exhibit differences 

in their cognitive processing in neuropsychological tasks, we expected these differences to 

be reflected in the form of sex-specific cognitive profiles. Using a PCA, neuropsychological 

performance was first decomposed into cognitive components. The derived component 

solutions were then evaluated using CFA to assess whether males and females demonstrated 

fundamental differences in their component solutions. 

 

Study 2 

Wiersch, L., Friedrich, P., Hamdan, S., Komeyer, V., Hoffstaedter, F., Patil, K. R., ... & 

Weis, S. (2024). Sex classification from functional brain connectivity: Generalization to 

multiple datasets. Human Brain Mapping, 45(6), e26683. 

In study 2, we systematically investigated the generalization performance in sex 

classification analyses based on functional neuroimaging data. Specifically, we investigated 

which kind of training sample is best suited to optimize the generalization performance in 

sex classification models. For this purpose, we compared sex classifiers trained on the 

parcelwise RSFC profile of either single samples or compound samples containing data from 

four different datasets with varying sample characteristics. In order to evaluate the 

generalization performance of each of the models derived according to the different training 

samples, the models were tested on multiple datasets. 

 

Study 3 

Wiersch, L., Hamdan, S., Hoffstaedter, F., Votinov, M., Habel, U., Clemens, B., ... & Weis, 

S. (2023). Accurate sex prediction of cisgender and transgender individuals without brain 

size bias. Scientific Reports, 13(1), 13868. 

In study 3, we addressed the methodological consideration of confounding variables, 

particularly how to control for the influence of TIV bias in sex classification analyses. 

Specifically, two approaches for removing confounding information were evaluated: 
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featurewise confound removal of TIV information and stratifying training samples for TIV. 

Finally, we evaluated the efficacy of each approach with regard to successful debiasing for 

TIV while retaining accurate model performances. 

1.6 Ethics vote 

In study 1, data was obtained from the 1000Brains dataset [127]. All participants in this 

dataset gave written informed consent, and all experiments were performed in accordance 

with relevant guidelines and regulations. The 1000BRAINS study protocol was approved by 

the Ethics Committee of the University of Duisburg-Essen (reference number: 11-4678, 12-

5199-BO). 

 

The ethics committee of the medical faculty of the RWTH Aachen approved the acquisition 

of data for one sample used in study 3 (EK 088/09). Further usage of data analyzed in study 

3 and 2 was approved by the Ethics Committee of the Medical Faculty of the Heinrich-

Heine-University Düsseldorf (4039, 4096, 5139, 2018-317-RetroDEuA). All data were 

collected in research projects approved by a local Review Board, for which all participants 

provided written informed consent. All experiments were performed in accordance with 

relevant guidelines and regulations. 
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the brain: More than just male or female. Cognitive 
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ABSTRACT
Sex diferences in the brain are widely studied, but results are often inconsistent and it is assumed 
that many negative mndings are not even being reported. The lack of consistent mndings might be 
based on the highly questionable assumption of a clear-cut sexual dimorphism in brain structure 
and function, that underlies commonly used group comparisons between males and females. 
Without having to rely on this assumption, state of the art statistical learning methods based on 
large neuroimaging data sets might ofer the tools necessary to disentangle the complex pattern of 
sex-related variations in brain structure and organization.
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Employing a qualitative review and an activation like-
lihood estimation (ALE) meta-analysis of eight functional 
magnetic resonance imaging (fMRI) papers, Spets and 
Slotnick claim to have identimed compelling evidence for 
substantial sex diferences in brain activity during long- 
term memory retrieval. Unfortunately, their methodolo-
gical approach is questionable. In an era of very large- 
scale neuroimaging (e.g., >5000 subjects in (Ritchie et al., 
2018)), all studies included in their meta-analysis com-
prise (much) less than 50 subjects. Small participant 
numbers have been shown to impact the reliability of 
cognitive neuroscience studies (Thirion et al., 2007), 
a problem that can, in principle, be circumvented by 
proper use of meta-analyses. However, the present ALE 
analysis ignores the clear recommendation – based on 
a simulation study by the authors of the ALE approach 
(Eickhof et al., 2016) – to include at least 17 experi-
ments. When even including less than ten experiments, 
ALE scores of a single experiment may already be close 
to signimcance relative to the overall null-distribution 
and results of the meta-analysis might simply regect 
results of a single experiment (Eickhof et al., 2009; 
Muller et al., 2018).

Furthermore, considering that sex diferences as well 
as long-term memory are highly researched topics, the 
inclusion of only eight studies in the meta-analysis in 
itself might point towards a mle drawer problem, where 
negative mndings on diferences between the sexes are 
simply not reported. This assumption is supported by 
results of a large meta-analysis involving 179 studies, 

which indicates an excess of false positives as well as 
a strong publication bias in the sex diferences literature 
(David et al., 2018).

Looking beyond the present study, the above con-
siderations point to a much more fundamental pro-
blem in sex diferences research in neuroimaging 
(and in general): The commonly adopted group com-
parison approach simply is not suvcient to capture 
the complex nature of sex diferences in the brain. 
Still, the vast majority of sex diferences research is 
based on the highly questionable assumption of 
a clear-cut sexual dimorphism in the brain, which 
would only be justimed if male and female brain 
features could be assumed to cluster distinctively 
and consistently at opposite ends of a single-gender 
continuum (Rippon et al., 2014).

On the contrary, recent research (Joel et al., 2015; 
Weis et al., 2020) based on big data sets indicates that 
it is time to move away from considering sex diferences 
in the brain as mxed, in-variant over time, or binary with 
sharply demned category boundaries (Rippon et al., 
2014). Rather, most brain features appear to be highly 
overlapping between the sexes (Joel et al., 2015), indi-
cating that sex diferences in the brain are not demned 
by biological sex alone but rather modulated by a variety 
of factors, some of which might even be dynamically 
changing over relative short time frames (e.g., the 
female menstrual cycle).

In an era of very large-scale neuroimaging, new meth-
odological approaches like statistical learning are 
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needed to understand the complex nature of sex difer-
ences in the brain. In fact, the actual question that 
should be asked is not whether or not sex diferences 
exist in the brain, but rather how large and meaningful 
such diferences are in relation to variation within each 
sex as well as sex-independent inter- and intra-individual 
variance. While we agree with the authors in that we 
should ‘question the widespread practice of collapsing 
across sex in the meld of cognitive neuroscience,’ much 
more detailed research is needed to actually understand 
sex diferences in the brain to an extent that is transfer-
able to real-life and clinical applications. Almost inevita-
bly, such studies will have to rely on very large 
neuroimaging data sets (Ritchie et al., 2018) in combina-
tion with appropriate statistical learning approaches 
(Weis et al., 2020).
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Cognitive profiles in older males 
and females
C. Jockwitz1,2*, L. Wiersch3, J. Stumme1,2 & S. Caspers1,2

Males and females are subject to differences in cognitive processing strategies, i.e. the way males and 
females solve cognitive tasks. So far primarily reported for younger adults, this seems to be especially 
important in older adults, who also show sex differences in cognitive impairments. Therefore, 
the aim of the current study was to examine the older adult population with respect to cognitive 
profiles derived from a large variety of cognitive functions. Using an exploratory component analysis 
with consecutive confirmatory factor analysis in a sample of 676 older adults, neuropsychological 
performance data in a variety of cognitive domains was decomposed into cognitive components. A 
general cognitive profile based on the whole group fits unequally well on the two sexes. Importantly, 
cognitive profiles based on either males or females differ in terms of their composition of cognitive 
components, i.e. three components in males versus four components in females, with a generally 
better model fit in females. Thus, related to the established differences in processing styles between 
males and females the current study found a rather decomposed (or local) cognitive profile in females 
while males seem to show a holistic (or global) cognitive profile, with more interrelations between 
different cognitive functions.

!ere has been a longstanding debate about whether males and females di"er in terms of cognitive abilities. 
Males are o#en supposed to outperform females in visual spatial tasks, while females outperform males in 
terms of verbal and episodic memory  tasks1–6. While these sex stereotypes are well accepted in our  society7, 
there is a non-negligible amount of studies showing exactly the opposite, namely that men and women do not 
di"er in most of the cognitive tasks, also referred to as the “Gender Similarity Hypothesis”8,9. !at is, cognitive 
performance di"erences on average show an e"ect size of d = 0.22 (range: 0.05–0.57) which is interpreted as 
rather small di"erences. Using a meta-synthesis approach, Zell et al.10, however, concluded that sex di"erences 
in terms of psychological and cognitive variables is rather small but stable across ages, generations and cultures.

Besides investigating sex di"erences in absolute cognitive performance outcome measures (i.e. females 
remember more words from a word list as compared to males), recent studies rather focussed on sex di"erences 
in cognitive processing styles, i.e. the way males and females solve a given cognitive  task11,12. For example, in 
spatial navigation tests, females were found to use local landmarks to %nd a speci%c route, while males rather 
construct cognitive maps of the  environment11,13,14. Interestingly, when males and females are instructed to 
actively choose a landmark-based style, females outperform males in this  task13. Similarly, in a verbal &uency 
task, Weiss et al.15 as well as Lanting et al.16 showed that the males’ processing strategy is typically characterized 
by a systematic and extensive scan of the word space of a given category before moving to the next one (e.g. listing 
jobs, males would %rst list all jobs within a hospital, then within an office etc.). In contrast, females switch more 
o#en between di"erent categories. Changing the instructions, i.e. inducing more switches between categories, 
led to superior performance of  females12. !us, based on previous research investigating speci%c cognitive tasks, 
it has been established that males and females use di"erent cognitive processing strategies: Males seem to use 
a rather holistic processing style with a focus on global aspects of the task (i.e. having in mind the whole map 
of a city when performing a spatial navigation task). Females instead use a decomposed processing style with a 
focus on more local aspects of the task (i.e. remember more details of a given word list). Similar sex di"erences 
in terms of a global versus local focus have been found for other tasks such as mental rotation  tasks17, number-
comparison-task18 and Navon  paradigms19.

Although sex-related di"erences in cognitive processing styles do not necessarily result in di"erences in per-
formance in everyday life, i.e. males and females perform equally good in an everyday multitasking  paradigm20, 
they give rise to the question of whether males and females do not only di"er in single cognitive abilities. Rather, 
the two sexes might generally di"er in the overall composition of their cognitive abilities. So far, studies mostly 
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focus on cognitive pro%les that are prede%ned based on speci%c cognitive theories or derived from data-driven 
approaches (e.g. principal component analyses)21–25. For example, single cognitive abilities are o#en categorized 
into cognitive domains, such as attention, memory and executive functions, based on correlations between 
performance in the tasks  administered21. Performance within the cognitive domains, then, together represent 
cognitive pro%les. Typically, such approaches are based on an entire group including both, males and females. 
However, whether these cognitive components and pro%les re&ect the cognitive architecture equally well across 
the two sexes remains unclear. !e relation between performance in distinct cognitive tasks might be di"eren-
tially related to each other in males and females and therefore might form di"erent sex-speci%c cognitive pro%les.

Particularly interesting in this aspect is the older adult population, since sex di"erences in cognitive perfor-
mance were found to persist until late adulthood and might even lead to di"erences in cognitive impairments 
during older age and  disease2,22,23. So far, the majority of studies investigate cognitive performance during aging 
while correcting for sex di"erences. Averaged over the two sexes, cognitive performance decline is well estab-
lished during the aging  process24–27 with a signi%cant decline starting in the mid 50’s24, especially in the domains 
of executive functions, working memory and episodic memory. However, previous studies not only showed 
that sex-di"erences in cognitive performance persist until late  adulthood2,22,23, they also reported unbalanced 
prevalence in neurodegenerative diseases that are accompanied by di"erent cognitive impairments, i.e. males 
rather su"er from MCI and Parkinson’s disease, while females are more o#en a"ected by Alzheimer’s  disease28,29. 
Potentially, di"erent interrelations between cognitive functions might explain parts of these di"erent age-related 
trajectories and therefore depict a promising research topic. To examine this, the current study took advantage 
of a large older adult population of males and females between 55 and 85 years from the 1000BRAINS cohort, 
matched for age and education, and examined the sex-speci%city of cognitive pro%les based on a large variety 
of neuropsychological functions. Using a data-driven approach, neuropsychological test performance was %rst 
decomposed into cognitive components. A#erwards the di"erent component solutions were statistically com-
pared between the two sexes. Based on the sex-speci%c strategies found when investigating speci%c cognitive 
tasks (i.e. global versus local processing strategies), we would expect these di"erences to be also re&ected in 
sex-speci%c cognitive pro%les.

Methods
Subjects. Subjects included in the current study were drawn from  1000BRAINS31, a population-based epi-
demiological cohort study, recruited from the Heinz-Nixdorf recall study that has been conducted in the Ruhr 
area in  Germany32. Along the line of being population-based, exclusion from the study was based on eligibil-
ity for MR measurements for scienti%c purposes. From the initial cohort of 1314 subjects, 968 subjects being 
55 years and older were selected to assess the older adult population. 20 subjects had to be excluded due to 
missing variables of interest for the current study  (DemTect33: n = 18; or information on education: n = 2). Fur-
thermore, subjects missing more than three values of the neuropsychological assessment (n = 2; for all other 
subjects missing values (ranging from 0 to 2.1% depending on the test) were replaced by the median of the 
respective age- (< 60; 60–64; 65–69; 70–74; 75–79; < 79) and sex-group. Subjects representing outliers (n = 83; 
outliermax > mean + 3*SD; outliermin < mean ( 3*SD) in at least one of the cognitive variables were removed 
from the dataset. To establish similar demographic conditions in the two sex groups, propensity score match-
ing (method = "nearest", caliper = 0.25; implemented in R: matchit, version 3.0.3) was used to match males and 
females for age and education (measured by  ISCED30) which resulted in a %nal sample size of 676 subjects 
between 55 and 87 years of age: 338 males with a mean age of 66.9 years (SD = 6.7) and a mean ISCED score of 6.3 
(SD = 1.74) and 338 females with a mean age of 66 years (SD = 6.5) and a mean ISCED score of 6.1 (SD = 1.86). 
All participants gave written informed consent before participating in 1000BRAINS. All experiments were per-
formed in accordance with relevant named guidelines and regulations. !e study protocol was approved by the 
local Ethics Committee of the University of Essen.

Neuropsychological assessment. All subjects underwent intensive neuropsychological testing during 
their participation in  1000BRAINS31. In total, 16 di"erent cognitive functions, namely selective attention, pro-
cessing speed, problem solving, concept shi#ing, susceptibility to interference, %gural &uency, phonematic and 
semantic verbal &uency, vocabulary, verbal episodic memory, %gural memory, visual-, visual-spatial- and verbal 
short-term/working memory were assessed. For cognitive functions and tests used, as well as raw mean scores 
for males and females, see Table 1.

Statistical analyses. First, sex di"erences in cognitive performance were examined for the di"erent cogni-
tive functions assessed in 16 di"erent neuropsychological tests using Independent Sample T-Tests. E"ect sizes 
were calculated using Cohen’s d. A#erwards, we calculated z-scores for each variable followed by Pearson cor-
relations between all neuropsychological variables included in the current analysis for the whole group, as well 
as for males and females separately.

!e major research question in this study concerned whether males and females would show di"erent cog-
nitive pro%les, i.e. di"erent compositions of cognitive components. To investigate this, we divided our analyses 
in two parts (for an overview of analyses, see Fig. 1, part A and part B). In the %rst part (part A), we extracted 
cognitive components for both, the whole group (n = 676) including males and females, as it is commonly done 
in research investigating cognitive performance (e.g.  see46–51, as well as for males (n = 338) and females (n = 338) 
separately to identify commonalities as well as di"erences in cognitive pro%les between the two sexes. For all the 
groups (whole, males and females) a two-step approach was applied:
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(1) Data reduction We reduced the cognitive performance data into independent cognitive components by 
using exploratory principal component analysis (ePCA) with Varimax rotation (implemented in the “psych” 
package, R Studio), as one of the most commonly used technique for data  reduction52. !e number of 
extracted components was based on the eigenvalue criterion (eigenvalue > 1). !is resulted in three inde-
pendent data-driven component solutions: whole ePCA based on the whole group, male ePCA within 
males only, females ePCA within females.

(2) Component solution validation within respective groups To validate the obtained component solutions in 
their respective group (whole ePCA, male ePCA, females ePCA), a con%rmatory factor analysis (CFA, 
implemented in the “lavaan” package, R Studio) was set up with Maximum Likelihood estimator with robust 
standard errors and a Satorra-Bentler scaled test statistic. In detail, each component solution represents a 
measurement model that is composed of a speci%c number of cognitive components, with each including a 
speci%c number of cognitive performance tests. In the current study, we based the measurement models on 
the component solutions obtained by ePCA and included all cognitive performance tests with a component 
loading of at least 0.453.

Table 1.  Descriptives of neuropsychological variables including cognitive functions, tasks used, mean and 
standard deviation (SD) and Min; Max values, T value of group comparison with corresponding p value and 
e"ect size measured with Cohen′s d. Values written in bold indicate signi%cant di"erences between groups 
(p < .05). STM = short-term memory, WM = working memory.

Cognitive Function Test description Females: mean ± SD (Min; Max) Males: mean ± SD (Min; Max) T-value p- value Cohen’s d
Age 65.99 ± 6.5 (55.2;85.4) 66.87 ± 6.65 (55.1;85.4) ( 1.735 0.083 0.132
DemTect DemTect33: Global cognitive score 15.55 ± 2.22 (8;18) 14.17 ± 2.36 (8;18) 7.860 0.000 ( 0.587

ISCED97 International Classification30: Education classifica-
tion 6.1 ± 1.86 (3;10) 6.29 ± 1.74 (3;10) ( 1.370 0.171 0.109

Problem solving
Leistungsprüfungssystem 50 + (Subtest 3)34: Number 
of correctly identified non-matching figures among 
geometrical figures

20.39 ± 4.71 (8;35) 20.82 ± 5.13 (8;34) ( 1.132 0.258 0.084

Visual STM Block-Tapping-Test35: Number of correctly repeated 
blocks, forwards 6.32 ± 1.76 (2;10) 6.57 ± 1.65 (2;10) ( 1.937 0.053 0.154

Visual WM Block-Tapping-Test35: Number of correctly repeated 
blocks, backwards 4.69 ± 1.65 (1;10) 5.04 ± 1.7 (0;10) ( 2.738 0.006 0.208

VisualSpatial STM
Visual pattern (Jülich version; similar to 36): Num-
ber of memorized patterns presented in a grid of 
black and white squares

7.32 ± 1.7 (4;12) 8.06 ± 1.68 (4;12) ( 5.711 0.000 0.443

Verbal STM
Zahlennachsprechen (from Nürnberger Alters-
Inventar37): Number of correctly repeated digits, 
forwards

7.63 ± 1.84 (4;13) 7.66 ± 2.02 (4;13) ( 0.179 0.858 0.013

Verbal WM
Zahlennachsprechen (from Nürnberger Alters-
Inventar37): Number of correctly repeated digits, 
backwards

6.79 ± 1.65 (2;12) 6.87 ± 1.77 (2;12) ( 0.653 0.514 0.049

Figural memory Benton-Test38: Number of errors during free recall 
of 20 remembered figures

( 16.33 ± 7.57
(( 40; ( 2)

( 16.17 ± 7.56
(( 36; ( 1) ( 0.275 0.784 ( 0.021

Selective attention Alters-Konzentrations-Test39: Time(s) to recognize 
target figures among distractors

( 33.54 ± 8.74
(( 64.78; ( 17)

( 33.66 ± 8.38
(( 65.87; ( 18.22) 0.183 0.855 0.014

Interference

Farb-Wort-Interferenztest (Jülich version; similar 
to: Bäumler40; Stroop41): Time(s) to name ink 
color of words with color meaning but printed in 
a different color (subtracted by the time(s) to read 
color words)

( 39.63 ± 16.64 (( 110.6; ( 9.47) ( 43.36 ± 17.58 (( 109.97; ( 3.66) 2.833 0.005 0.212

Figural &uency
Fünf-Punkte-Test (Jülich version; similar to: Regard 
et al.42): Number of unique drawn patterns by con-
necting five points in 3 min

26.15 ± 6.89 (4;44) 26.38 ± 7.22 (11;49) ( 0.425 0.671 0.032

Episodic memory Verbaler Gedächtnistest43: Number of free recalled 
words in five trials from a list containing 15 words 45.76 ± 10.05 (2;66) 38.61 ± 10.01 (6;65) 9.262 0.000 ( 0.714

Phonematic &uency Regensburger Wortflüssigkeitstest44: Number of 
produced words beginning with the letter “B” 19.32 ± 6.04 (4;37) 17.49 ± 5.93 (5;37) 3.992 0.000 ( 0.310

Semantic &uency Regensburger Wortflüssigkeitstest44: Number of 
produced words belonging to the category “jobs” 24.47 ± 6.19 (11;44) 23.39 ± 6.76 (6;43) 2.153 0.032 ( 0.159

Processing speed
Trail Making Test (taken from CERAD-Plus45): 
Time(sec.) to connect randomly arranged digits in 
ascending order

( 38.62 ± 11.71 (( 79.41; ( 16.06) ( 40.22 ± 13
(( 84.18; ( 16.13) 1.677 0.094 0.123

Concept shi#ing
Trail Making Test (taken from CERAD-Plus45): 
Time(sec.) to alternately connect letters and num-
bers in ascending order (TMT B), then calculating:
TMT B-TMT A

( 48.71 ± 28.33 (( 183.44; ( 1.78) ( 54.28 ± 32.46 (( 166.6;0.67) 2.375 0.018 0.171

Vocabulary Wortschatztest46: Number of correctly identified 
real words among five pseudo-words 30.96 ± 4.34 (16;40) 30.8 ± 4.17 (16;40) 0.493 0.622 ( 0.039
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Figure 1.  Flowchart presenting the study design.
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To examine model %t of the respective ePCA’s, we used comparative %t index (CFI), tucker lewis index (TLI), 
root mean square error of approximation (RMSEA) and standardized root mean square residual (SRMR). Qual-
ity of model %t was assessed based on frequently reported %t indices indicating excellent model %t at CFI > 0.95, 
TLI > 0.95, RMSEA =< 0.06, SRMR < 0.0954,55. All initial models were subsequently re%ned to increase model %t: 
From the initial model, we %rst modelled residual covariances (included when residual covariances were > 0.1) 
between variables and components, and a#erwards, removed non-signi%cant variables from the model, if present.

A#er this measurement model con%guration, we attempted to validate the established models across the 
two sexes (Fig. 1, part B). To do so, we %rst examined measurement invariance for all three models (whole CFA, 
male CFA, female CFA). Measurement invariance addresses the question whether a scale measures the same 
attribute in di"erent groups of subjects. Hence, in the current study, measurement invariance would test whether 
the di"erent cognitive component solutions, i.e. cognitive pro%les would be the same across males and females. 
Measurement invariance was tested with the following aspects: (1) con%gural invariance: the measurement mod-
els derived from the CFA would %t equally well in males and females (same data structure across variables); (2) 
loading invariance: loadings of variables onto a cognitive component would be the same for males and females 
(groups have the same factor loadings); (3) intercept invariance: males and females would show the same inter-
cept on the measured variables (groups have same intercepts of the observed variables); (4) mean invariance: 
males and females would show the same means on the measured variables (groups have the same means across 
the observed variables). In a second step, we applied a strict cross-validation by applying the sex-speci%c models 
to the other sex group only to test whether the male component solution would also obtain a good %t in females 
and vice versa. Model %t changes across the models were considered as signi%cant with a change in CFI > 0.0156 
and a signi%cant likelihood chi square di"erence test (p < 0.05).

Results
!e current study assessed sex di"erences in cognitive pro%les between older males and females based on a 
large battery of cognitive tests assessing attention, memory, executive and language functions. Di"erences in 
performance between males and females were already observed at single test level in several of the 16 neuropsy-
chological tests used in the current study. For example, males performed signi%cantly better in tasks requiring 
visual and visual-spatial abilities, e.g. visual-spatial memory, whereas females performed better in tasks requiring 
verbal abilities, such as episodic learning, phonematic and semantic &uency (see Table 1).

Investigating intercorrelations between cognitive performance scores of the di"erent cognitive functions 
revealed a second interesting and important observation: While we overall found high intercorrelations between 
the assessed cognitive performances, these intercorrelations do not seem to be identical in males and females, 
already hinting at di"erences in cognitive pro%les for the two sexes (for chord diagrams for the whole group, 
males and females separately as well di"erences between males and females, see Fig. 2, for Pearson correlation 
values between cognitive task, see Supplement, Tables S1–S3). Sex di"erences in cognitive performance cor-
relations are shown in Fig. 2d. Noticeably, females show higher correlations between verbal and non-verbal test 
performance while males show higher correlations between verbal, non-verbal and executive functions (e.g. 
interference, concept shi#ing and problem solving).

Principal component analyses and confirmatory factor analyses for the whole group and 
males and females separately. Based on the correlations between cognitive performance tests, ePCA 
was applied to individual cognitive performance measurements of the whole group as well as males and females 
separately. Extraction of components was based on the eigenvalue criterion (eigenvalue > 1, see Supplement, 
Table S4). !ree components were extracted for the whole group (eigenvalues: 4.94, 1.48, 1.19) as well as when 
assessing males only (eigenvalues: 5.08, 1.58, 1.25). Regarding females only, the optimal component solution 
consisted of four cognitive components (eigenvalues: 4.97, 1.36, 1.09, 1.02). For all eigenvalues, see Supplement, 
Table S4.

For the whole group, the extracted components were dominated by the following functions: !e %rst com-
ponent covered a variety of non-verbal cognitive functions such as visual working memory, attention, execu-
tive functions and memory. !e second component included &uency as well as memory. !e third component 
was dominated by verbal functions, such as verbal working memory and vocabulary (Fig. 3a, for component 
loadings of all groups, see Supplement, Table S5). A#erwards, we extracted %t values for the PCA-derived three-
component model using CFA. All variables were found to signi%cantly contribute to the components (> 0.4), 
However, %t values of the initial model were not to be considered as of sufficient quality (CFI = 0.894; TLI = 0.866; 
RMSEA = 0.07, SRMR = 0.053). A#er model re%nement via inclusion of residual covariances and exclusion of 
non-signi%cant variables, the model improved signi%cantly, but did not reach the threshold for being an excellent 
model in all %t indices (CFI = 0.941; TLI = 0.921; RMSEA = 0.054, SRMR = 0.045). !e resulting model is shown 
in Fig. 3b (for results of the CFA for all groups, see Supplement, Table S6 and S7).

!e male model (Fig. 3c,d), also a three-component model, consisted of a %rst component that included 
&uency, memory, attention and executive function, a second component that was dominated by visual work-
ing memory and executive functions and a third component including verbal working memory and executive 
functions. !e initial male model revealed %t values not to be considered as of sufficient quality (CFI = 0.883, 
TLI = 0.854, RMSEA = 0.071, SRMR = 0.06). A#er additional re%nement, the male model %tted on males revealed 
%t indices of: CFI = 0.94, TLI = 0.923, RMSEA = 0.051, SRMR = 0.049. !is is a signi%cant increase in model %t 
although it still does not reach the threshold for being an excellent model.

!e female component solution (Fig. 3e,f) revealed one component dominated by visual memory and work-
ing memory, a second component including &uency and vocabulary and executive functions, a third component 
that consisted of executive functions and memory and a fourth component including verbal working memory 
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and vocabulary (for variable loading on the di"erent components, see Supplement, Table S5). !e initial female 
model %tted on females revealed %t indices of: CFI = 0.964, TLI = 0.953, RMSEA = 0.037, SRMR = 0.039. Although 
this model ful%lled the requirements for being an excellent model, we additionally re%ned the model by the same 
conditions we did before. !is resulted in an additional signi%cant increase in model %t (CFI = 0.984, TLI = 0.979, 
RMSEA = 0.025, SRMR = 0.034).

Taken together, the investigation of data-driven cognitive components in the three groups (whole group, males 
and females) hint at di"erent compositions of cognitive components in older males and females (i.e. three versus 
four components, for an additional overview of three versus four component solutions for the whole group, males 
and females, see Supplement, Figure S1). Comparing these to the again slightly di"erent component solution 
derived from the whole group (including both males and females) raises the question of whether these so far 
descriptively compared di"erences would be statistically meaningful, which was tested a#erwards.

Measurement invariance and cross‑validation. In the second part of the study (Fig. 1, part B), we 
addressed the distinctiveness of cognitive components between males and females by using measurement invari-
ance and cross-validation. In detail, we started with the component solution that was derived from the whole 
group (including males and females) and tested whether this whole group cognitive component solution would 

Figure 2.  Chord diagrams of correlations between cognitive performance tests: (a) whole group, (b) females 
and (c) males, (d) di"erences in correlation coefficients between males and females: blue = males > females, 
red = females > males.
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Figure 3.  Exploratory Principal Component Analysis (ePCA) and Con%rmatory Factor Analysis (CFA): 
(a,c,e): ePCA for the whole group, males and females. (b,d,f): CFA for the whole group, males and females. PrbS 
problem solving, VsSTM visual spatial short-term memory, VsWM visual spatial working memory, VSS visual 
working memory, VrSTM verbal short-term memory, VrWM verbal working memory, FM %gural memory, SA 
selective attention, In interference, FF %gural &uency, EM episodic memory, PF phonemic &uency, ST semantic 
&uency, PrcS processing speed, CS concept shi#ing, Vc vocabulary.
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be statistically the same across males and females, i.e. invariant (for CFA model estimates, see Supplement, 
Table S8). Model %t indices did not reach the threshold for measurement invariance in terms of con%gural 
model (i.e. same data structure: CFI = 0.939, RMSEA = 0.055) and loading invariance (i.e. same factor loadings: 
CFI = 0.938, RMSEA = 0.053), it did even less so in the intercept (i.e. same intercept: CFI = 0.893, RSMEA = 0.067) 
and means invariance (i.e. same means: CFI = 0.871, RSMEA = 0.073). !us, the cognitive component solution 
derived from the whole group, as it is o#en done in research investigating cognitive performance, does not seem 
to be completely generalizable over males and females. !is, in turn, leads to the question which group (males or 
females) would %t better to the whole group component solution. While the model %t increased when the whole 
group model was applied to females only (whole group: CFI = 0.941; TLI = 0.921; RMSEA = 0.054, SRMR = 0.045; 
females: CFI = 0.962, TLI = 0.949, RSMEA = 0.043, SRMR = 0.043), it signi%cantly decreased when investigating 
males only (CFI = 0.919, TLI = 0.892, RSMEA = 0.065, SRMR = 0.058). !us, the current results indicate that the 
overall composition of cognitive components derived from the whole group is better suited for the female group 
as compared to the male group.

In a %nal cross validation, we applied the di"erent cognitive component models obtained by either the whole 
group, males or females to the other groups, e.g. male component solution %tted onto the female group and vice 
versa (for %t indices, see Table 2). Applying the whole group model to males and females separately revealed an 
excellent model %t for the female group and a worse model %t for the male group. Applying the female cogni-
tive component model to the male group reveals an overall insufficient model %t, which underpins the results 
obtained by the examination of measurement invariance. In turn, applying the male component model to the 
female group revealed a reasonable %t, with excellent %t indices. !us, while males’ cognitive performance does 
not seem to be sufficiently explained by the female model, female’s cognitive performance can be sufficiently 
composed into both, male and female component solutions, with a slightly better %t of the female cognitive com-
ponent model. Nevertheless, applying the male component solution to the female group revealed high covariances 
between the components (> 1), which indicates collinearity between the components. !us, the validation of 
the component solutions indicate that separate cognitive component solutions might better describe a cognitive 
pro%le as compared to a common component solution.

Discussion
Using a data-driven approach, the current study examined sex-speci%c cognitive pro%les based on a large variety 
of cognitive functions in older males and females. Our results show that a general model consisting of cogni-
tive components that combine numerous cognitive tasks calculated based on the whole group (including both, 
males and females) %t unequally well on the two sexes. Males and females di"er in terms of their composition 
of cognitive components, i.e. three components in males versus four components in females, with a generally 
better model %t in females. !us, the current study found a rather decomposed (or local) cognitive pro%le in 
females while males seem to show a holistic (or global) cognitive pro%le, with more interrelations between dif-
ferent cognitive functions.

In a %rst step, we systematically examined sex di"erences in 16 di"erent cognitive functions, namely selec-
tive attention, processing speed, problem solving, concept shi#ing, susceptibility to interference, %gural &uency, 
phonematic and semantic verbal &uency, vocabulary, verbal episodic memory, %gural memory, visual-, visual-
spatial- and verbal short-term/working memory. We showed that older women perform better in verbal &uency, 
verbal episodic memory, processing speed and interference while older men signi%cantly performed better on 
visual and visual-spatial working memory tasks. Importantly, these di"erences were rather small with only visual 
short-term memory and episodic memory showing medium e"ect sizes. Hence, the results are in line with a large 
amount of previous studies showing that males and females di"er in some but not all cognitive functions and 
that these di"erences tend to be  small5,9,10. !us, in normal older adults, we were able to show that those tasks 
requiring high verbal versus visuospatial processing show the largest sex di"erences.

Further, de Frias et al.2 presented long-term sex di"erences in cognitive performance in a sample of adults 
with an age range from 35 to 80 years (at baseline). Over a period of ten years, women remained better in 
tasks assessing verbal episodic memory and verbal &uency, while men outperformed women in tasks assess-
ing visuospatial functions. Additionally, and in line with Maitland et al.57 and Pauls et al.58 we showed that sex 

Table 2.  Model %t indices for male and female re%ned models applied to the di"erent groups. Values in bold 
reach the threshold for being an excellent model.

Model Group X2 CFI TLI RMSEA SRMR
WHOLE WHOLE 201.647 0.941 0.921 0.054 0.045
WHOLE MALES 165.421 0.919 0.892 0.065 0.058
WHOLE FEMALES 109.756 0.962 0.949 0.043 0.043
MALE WHOLE 221.151 0.95 0.935 0.045 0.04
MALE MALES 175.919 0.94 0.923 0.051 0.049
MALE FEMALES 142.817 0.959 0.947 0.04 0.043
FEMALE WHOLE 247.081 0.939 0.921 0.05 0.04
FEMALE MALES 207.401 0.917 0.891 0.061 0.051
FEMALE FEMALES 117.601 0.979 0.972 0.029 0.036
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di"erences, especially in the verbal versus spatial domains remain stable even in older ages. !us, the current 
study adds to the notion that, even in later decades of life, sex di"erences in verbal versus visuospatial cognitive 
functions persist.

!e observed sex di"erences in cognitive performance might be due to di"erent processing styles to solve 
cognitive problems. Men usually inspect new scenes in a more ‘global’ way (e.g. having in mind the whole map in 
a spatial navigation task), while women usually prefer to inspect tasks more locally (i.e. remember more details 
of a given word list)18,19,59. !is might explain why men outperform women with respect to visual-spatial tasks 
and why women perform better in verbal episodic memory. Based on these task speci%c di"erences between the 
two sexes, the main goal was to investigate whether we could extend this global versus local phenomenon, to 
cognitive pro%les in males and females, i.e. the relations between cognitive abilities. Using a data-driven ePCA 
we revealed a three-component solution for the whole including: (1) a non-verbal component composed of 
tasks including attention, executive functions and (working-) memory, (2) a mixed component including verbal 
and non-verbal &uency and memory functions and (3) a verbal short-term/working memory. !is data-driven 
cognitive component solution shows the high complexity between cognitive functions, i.e. verbal &uency tasks 
require a large memory span and vice versa, an observation that has been found to be impaired in amnestic mild 
cognitive  performance60. It furthermore shows that cognitive components do not necessarily comply with the 
classical theory-driven cognitive domains of attention, executive functions, working and episodic memory and 
language functions, an observation that has already been described by  Harvey21.

Noticeably, CFA was used to examine the model %t indices of this component analysis and whether this 
component solution %t equally well to males and females. !e overall model shows an acceptable, although 
not excellent %t (CFI > 0.95)54,55 for the whole group (even a#er re%nement of the model by including residual 
covariances between cognitive variables and exclusion of non-signi%cant variables). When examining meas-
urement invariance between the two sexes, thus whether a cognitive pro%le would %t equally well to males and 
females, we again found an acceptable but not excellent model %t already in the con%gural model (composition 
of the components), with further signi%cant decreases when it comes to mean and intercept invariances. While 
some %t values do not di"er from previous results obtained by Siedlecki et al.22, who interpreted a CFI value of 
0.941 as being acceptable, they are low as compared to other studies investigating measurement invariance in 
cognitive or psychological pro%les between, e.g. healthy adults and Alzheimer patients or using longitudinal 
models of sex di"erences over the whole  adulthood61,62. !ese di"erences in model %t to the aforementioned 
studies might be due to di"erences in neuropsychological tests used or di"erences in group characteristics. In 
the current sample, normal older adults were examined that were matched for age and sex, since both factors 
are well known to correlate with cognitive  performance24,63. !us, the sex-speci%c e"ects found in the current 
study regarding cognitive pro%les line up with previous studies showing that sex di"erences exist, and might be 
of special importance for our society, but are of rather small e"ect  size10.

A#er stratifying the current sample for sex, we again performed an ePCA and obtained di"erent component 
solutions for each group. While in the male group, three components were preferred (according to the Eigenvalue 
criterion), females’ cognitive performance was best described by a four-component solution. More importantly, 
the extracted components di"ered in their composition, i.e. cognitive tasks involved in the di"erent components. 
While for the whole group, the %rst component was composed of heterogeneous but consistently non-verbal 
functions, verbal as well as non-verbal functions belong to the same component in males, additionally includ-
ing &uency, memory, attention and executive functions. !e second male component contained visual working 
memory and executive functions and the third component consisted of verbal working memory and executive 
functions. Relating these results to the observations made regarding task speci%c di"erences in processing styles, 
i.e. global–local hypothesis of sex-di"erences11, one could argue that males’ holistic/global processing style to 
solve cognitive task, is in line with the current cognitive pro%le. Males show a quite holistic %rst component, 
including attention, executive functions, episodic memory and &uency tasks, hinting at higher interrelations 
between di"erent cognitive abilities. Furthermore, since executive functions and/or attention depict essential 
parts in all three components it could be assumed that these functions serve as a higher order executive-attention 
system that monitors cognitive  performance63–66. !us, this would mean that males rely strongly on their atten-
tional and executive functions, e.g. goal-directed planning, monitoring, mental &exibility, to process cognitive 
tasks belonging to di"erent cognitive domains. In terms of a global way of cognitive processing, males potentially 
manage cognitive processing using one superordinate system that links di"erent cognitive abilities. Likewise, if 
these functions decline, a decline of all other cognitive domains follow, as has been stated by theories, such as 
the frontal executive theory of  aging67. Investigating females only revealed a di"erent picture compared to both 
the whole group or males only. Females’ cognitive performance within the functions examined is best decom-
posed into four cognitive components. In contrast to the males’ %rst component which was quite heterogeneous 
including &uency, executive functions and attention, in the females’ cognitive pro%le visual-verbal &uency and 
executive functions—attention—built separate components; together with a component composed of visual 
(working) memory and executive functions and another component dominated by verbal functions including 
working memory and vocabulary. !us, females’ cognitive pro%les consist of more subsystems as compared to 
males, with systems including di"erent cognitive functions (i.e. [1] visual (working) memory/[2] &uency/[3] 
executive functions/[4] verbal (working) memory). Although these functions share covariances, they themselves 
represent distinct cognitive systems or modules. On the other hand, males might have a superordinate system, 
i.e. the attentional-executive-&uency-memory component, which includes several cognitive domains, thereby 
representing a stronger interplay of cognitive functions with a probably superordinate system (i.e. executive 
functions). Hence, this could be potentially related to a more global processing strategy during cognitive per-
formance, meaning that irrespective of the task (e.g. memory or &uency), males might activate similar cognitive 
processing strategies. In contrast to that, females would rather choose di"erent processing strategies, depending 
on the cognitive task, e.g. visual versus verbal working memory. Together, similarly to the global versus local 
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processing at single task  level11,12,15,18,68, cognitive pro%les derived from either males or females seem to be dif-
ferentially composed along the global vs. local processing dichotomy in the current study.

Furthermore, focussing on the cross-validation model %t values, an additional support for the existence 
of sex-related cognitive pro%les in line with these processing strategies became evident. While applying the 
female component solution to the female group reveals excellent %t values, the male component solution only 
reveals acceptable %t values when applied to the male group. !ese lower %t values might arise from the stronger 
interconnectedness of di"erent cognitive functions in the male group, which has been shown when compar-
ing correlation strength between males and females (cf Fig. 2). For example, interference is correlated to both, 
verbal &uency as well as visual spatial short-term memory, which in turn is correlated with %gural &uency. As a 
consequence, a clear division of cognitive functions into di"erent (independent) cognitive domains, might not be 
possible in the male group. !us, males’ cognitive abilities seem to be not fully suitable for a modular cognitive 
structure as compared to females. !is again, would be in accordance with global versus local processing styles.

Importantly, the current study investigated an older adult population to examine sex-speci%c cognitive pro-
%les. !is population is of special interest when examining sex di"erences in cognitive performance and cognitive 
pro%les since previous research has shown that %rst, sex-di"erences in cognitive functions remain stable until 
older ages, and second, pathological conditions with cognitive impairments di"er in prevalence between males 
and  females28,57. However, research so far, most o#en includes sex as a covariate of non-interest when assessing 
cognitive impairment.

Previous studies o#en showed steeper decline in general cognitive functions in  males1,69. Similarly, in 
pathological conditions, such as Parkinson’s disease, males were reported to show a faster decline in cognitive 
 functions28. However, when it comes to Alzheimer’s disease, females show a faster decline in memory scores as 
compared to  males29. !is observation might be related to distinct cognitive pro%les in older males and females. 
If, within the ‘global’ cognitive pro%le of males, the executive-attentional monitoring system breaks down this 
would lead to a global decline in cognitive functions. Especially for the aging process, theories such as the 
prefrontal-executive  theory67 as well as the processing speed  theory70 of aging, stating that decreasing executive 
functions and attention, respectively, predict cognitive decline in a diversity of cognitive functions belonging to 
di"erent  domains64. !us, in males these two theories that try to explain cognitive performance decline during 
the aging process, would be in line with the current results. On the other hand, if females’ cognitive pro%les 
are rather composed of di"erent cognitive subsystems or modules (thus ‘local’ cognitive pro%le), impairments 
within the executive-attentional component would not necessarily lead to an impairment in other cognitive 
components. Hence, this would rather result in function-speci%c cognitive decline, e.g. executive impairment. 
!ese di"erences in cognitive pro%les might thus serve as a possible explanation for why males show generally 
steeper decreases in overall cognitive abilities during  aging69.

Methodological considerations. !e current study has several advantages and disadvantages. While we 
were able to show that cognitive pro%les di"er, when investigating males and females independent of each other, 
it is important to mention that the e"ects of sex di"erences are rather of smaller sizes, which becomes obvious 
when focussing on the di"erences in terms of intercorrelations between di"erent cognitive tasks. Nevertheless, 
as stated by Zell et al.10, although e"ect sizes might be small, when investigating sex di"erences in cognitive per-
formance, these di"erences might be important to understand cognitive performance di"erences.

In addition, it has to be mentioned that the current study investigated these cognitive pro%les in a sample 
ranging from 55 to 85 years of age. It might be the case that with increasing age, cognitive pro%les change, espe-
cially when cognitive impairments arise, e.g. due to pathological conditions. Future studies should investigate 
this topic, especially using longitudinal data, to show whether cognitive pro%les change in the course of the aging 
process, potentially also with respect to pathological conditions.

Further, it has to be mentioned that the set-up of cognitive pro%les is not straightforward. We used a Princi-
pal Component Analysis with Varimax rotation method for extracting cognitive components in the two groups 
and extracted four factors for females and three factors for males, based on the Eigenvalue criterion (cut-o" 
for selection of components being an Eigenvalue > 1). Nevertheless, the fourth Eigenvalue is only slightly above 
one for females (1.02) and the fourth Eigenvalue is only slightly below 1 (0.97) for males, which both are very 
close to the cut-o" value. Further, the model re%nement highly depends on the input data (in this case the cog-
nitive tasks used). Until now, there is no gold standard in this respect. More research is needed to address this 
important topic.

Finally, the question that arises when observing these di"erences is which factors might be responsible for the 
development of sex di"erences. From previous studies it is known that males and females di"er in terms of brain 
structure and function, which might relate to di"erences in cognitive processing  strategies71,72. Furthermore, it 
has been shown that hormonal di"erences, but also genetic variations might be related to di"erences in cognitive 
and social behavior between the two  sexes73. Social factors, such as gender role models, signi%cantly in&uence 
di"erences in cognitive performance, which is less pronounced in countries that promote gender  equality74. 
Further studies are warranted to examine this question.

Conclusion
Conclusively, males and females show not only di"erences in speci%c cognitive tasks but generally in cogni-
tive pro%les across cognitive domains. Males are likely to use a more holistic way of processing, by integrating 
di"erent cognitive functions to solve speci%c tasks. !is could be, for example, a higher executive control and 
memory function in a verbal &uency task, which in turn, would result in larger clusters of the same category. 
Females, on the other hand are likely to process cognitive tasks in smaller, rather domain-speci%c subsystems. 
!e results showed that older males and females exhibit di"erent cognitive pro%les, that are likely to be related to 
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di"erences in cognitive decline across the aging process. !erefore, the current research stresses the importance 
to use sex-strati%ed analyses when assessing cognitive performance. Future research is warranted to extend the 
current results to pathological conditions, such as Alzheimer’s disease. Furthermore, di"erences in cognitive 
pro%les might not only be important in basic research but, might also impact clinical prevention programs, i.e. 
cognitive training.
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Abstract

Machine learning (ML) approaches are increasingly being applied to neuroimaging

data. Studies in neuroscience typically have to rely on a limited set of training data

which may impair the generalizability of ML models. However, it is still unclear which

kind of training sample is best suited to optimize generalization performance. In the

present study, we systematically investigated the generalization performance of sex

classification models trained on the parcelwise connectivity profile of either single

samples or compound samples of two different sizes. Generalization performance

was quantified in terms of mean across-sample classification accuracy and spatial

consistency of accurately classifying parcels. Our results indicate that the generaliza-

tion performance of parcelwise classifiers (pwCs) trained on single dataset samples is

dependent on the specific test samples. Certain datasets seem to “match” in the

sense that classifiers trained on a sample from one dataset achieved a high accuracy

when tested on the respected other one and vice versa. The pwCs trained on the

compound samples demonstrated overall highest generalization performance for all

test samples, including one derived from a dataset not included in building the train-

ing samples. Thus, our results indicate that both a large sample size and a heteroge-

neous data composition of a training sample have a central role in achieving

generalizable results.

K E YWORD S

big data, generalizability, machine learning, neuroimaging, resting-state functional connectivity,
sex classification

1 | INTRODUCTION

Machine learning (ML) is a powerful tool to relate neuroimaging data

to behavior and phenotypes (Genon et al., 2022; Varoquaux &

Thirion, 2014) and is therefore increasingly being employed in neuro-

science applications (Buch et al., 2018; Jollans et al., 2019; Kohoutova

et al., 2020; Varoquaux, 2018). Successful applications of ML

approaches include the decoding of mental states (Haynes &

Rees, 2006), classification of mental disorders (Chen et al., 2020;

Zhang et al., 2021), as well as the prediction of demographic and

behavioral phenotypes (More et al., 2023; Nostro et al., 2018;

Pläschke et al., 2020; Smith et al., 2015; Varikuti et al., 2018).

ML models learn the feature-target relationship given a training

sample. Subsequently, the model is applied to make predictions on

previously unseen data (Dhamala et al., 2023) and successful generali-

zation to independent data samples is the central goal in ML
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(Domingos, 2012; Varoquaux, 2018; Chung, 2018). For example, a

recent study (Weis et al., 2020) demonstrated successful generaliza-

tion of sex prediction models based on regionally specific functional

brain connectivity patterns, which were trained on the data of the

Human Connectome Project (HCP, Van Essen et al., 2012, Van Essen

et al., 2013). For this spatially specific approach, independent classi-

fiers were trained on the functional brain connectivity patterns of par-

cels covering the whole brain. In this case, assessing generalization

performance should not only consider the averaged across-sample

accuracy. Rather, if the classifiers generalize well, the same parcels

should achieve high classification accuracies during cross-validation

(CV) and across-sample testing.

Further sex classification studies (Menon & Krishnamurthy, 2019;

Smith, Vidaurre, et al., 2013; Zhang et al., 2018), as well as other appli-

cations of ML models employed the HCP dataset to predict pheno-

types such as task activation (Cohen et al., 2020), and individual

behavioral and demographic scores (Cui & Gong, 2018; Smith

et al., 2015) like age (Sanford et al., 2022). The HCP dataset is charac-

terized by high-quality multi-modal imaging data acquired from a large

group of healthy young adults. However, both the high quality of the

brain imaging data as well as the narrow age range is not typical of

other datasets, especially when dealing with clinical data

(Arslan, 2018; Jansma et al., 2020; Rutten & Ramsey, 2010). This

raises the question whether results based on the HCP data can be

generalized to other datasets with different characteristics. Weis et al.

(2020) demonstrated that sex classifiers trained on the HCP data gen-

eralized well to an independent subset of the HCP dataset as well as

to the 1000Brains dataset (Caspers et al., 2014). Additional evidence

from the application of such classifiers to data from datasets with

diverse characteristics would provide even stronger evidence of

model generalization.

Especially in neuroimaging, differences between datasets may

result from several different sources. On the one hand, participants

may differ with respect to demographic characteristics, such as age,

education, or economic status. On the other hand, data samples likely

differ with regard to the MRI acquisition parameters and data proces-

sing. Considering these differences, it is so far unresolved what kind

of training sample leads to good generalization performance across

multiple test samples.

Various characteristics of the training data can influence the gen-

eralization performance of ML models (Dhamala et al., 2023). For

instance, larger sample size is beneficial for generalization perfor-

mance (Cui & Gong, 2018; Domingos, 2012). Ensuring that the train-

ing data is representative of the target sample is another crucial factor

for achieving good generalization performance (Ishida, 2019; Yang

et al., 2020). Furthermore, data from different acquisition sites are

likely heterogeneous with respect to demographic characteristics,

data acquisition, and processing parameters. Due to the variability

across different datasets and sites, a ML model trained on a com-

pound of such data is more likely to capture the shared biological vari-

ability in all datasets while disregarding the variability resulting from

differences between the datasets. This distinction supports models

focusing solely on the biological variability independent of specific

dataset characteristics. Hence, such models are less likely to overfit

and more likely to generalize to new data. Thus, aggregating data from

multiple sites should be beneficial for improving generalization perfor-

mance. Indeed, this has been partially shown by studies concerning

clinical applications of ML approaches (Chang et al., 2018; Nielsen

et al., 2020; Willemink et al., 2020). These results suggest that training

ML models on diverse datasets covering a wide range of characteris-

tics may improve the overall generalization performance.

In the present study, we aimed to evaluate the generalization per-

formance of multiple sets of sex classification models derived from

different training samples. The different training samples were created

from four different datasets with varying demographic characteristics.

In addition, sex classifiers were trained on compound samples combin-

ing data from all datasets to obtain training samples with heteroge-

neous sample characteristics. Both compound samples comprise the

same ratios of datasets, sex and age distributions, but differ in sample

size to additionally assess the effect of training sample size. Following

the parcelwise approach by Weis et al. (2020), we trained indepen-

dent sex classifiers on the resting state (RS) connectivity patterns of

436 parcels covering the whole brain. For each parcel, a sex classifica-

tion model was built based on the individual connectivity profile,

resulting in one classification accuracy value per parcel. This was done

for each of the six training samples, resulting in six sets of parcelwise

classifiers (pwCs). These pwCs were applied to test samples from the

four original datasets and one dataset which was not part of the train-

ing samples. Then, accuracy maps, representing the spatial distribution

of classification accuracies for each parcel were generated for CV

(within-sample accuracy) and for application of the pwCs to the differ-

ent test samples (across-sample accuracy). The comparison of these

accuracy maps enabled us to evaluate generalization performance of

classifiers by (i) examining the mean accuracy of all pwCs across the

10% best classifying parcels and (ii) comparing the spatial location of

highly classifying parcels between CV and across-sample test. Good

generalization performance with regard to spatial consistency is char-

acterized by identical parcels performing well in CV and across-sample

testing. We hypothesized that the pwC trained on the compound

sample with a smaller sample size should outperform pwCs trained on

single samples due to the heterogeneous data composition, while the

compound sample with a higher sample size should achieve the over-

all best generalization performance (Chang et al., 2018; Cui &

Gong, 2018; Dhamala et al., 2023; Domingos, 2012; Nielsen

et al., 2020; Willemink et al., 2020).

2 | MATERIALS AND METHODS

2.1 | Data

We employed RS functional magnetic resonance imaging (fMRI) data

of subsets of four large datasets to train and test sex classification

models. For all datasets, we only included healthy subjects aged
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20 years or older. Within each training sample, we matched females

and males for age and included a similar number of women and men.

The first sample, taken from the HCP dataset (900 subjects data

release; Van Essen et al., 2012; Van Essen, 2013), comprised 878 sub-

jects with a mean age of 28.49 years (range: 22–37 years). The sec-

ond sample, taken from the Brain Genomics Superstructure Project

(GSP; Holmes et al., 2015) comprised 854 subjects with a mean age of

22.92 years (range: 21–35 years). The third sample was a subset from

the Rockland Sample of the Enhanced Nathan Klein Institute (eNKI;

Nooner et al., 2012), comprising 190 subjects with a mean age of

46.02 years (range: 20–83 years). The fourth sample, taken from the

1000Brains dataset (Caspers et al., 2014), comprised 1000 subjects

with a mean age of 61.18 years (range: 21–85 years). This sample was

included to examine generalization performance to an older sample. A

fifth sample (“compound854”) was constructed by combining subsam-

ples of the HCP, GSP, eNKI and 1000Brains samples, with a mean age

of 40.05 (range: 20–85), resulting in a sample size of 854 subjects.

This sample size is equal to the GSP sample, but larger than the eNKI

and lower than the HCP and 1000Brains samples, therefore repre-

senting an intermediate sample size compared to the other data sam-

ples. Another sixth sample (“compound2190”) was constructed by

combining 75% of the HCP, GSP, eNKI and 1000Brains samples

resulting in a sample size of 2190 subjects in total. The compound

2190 sample comprised a mean age of 40.10 years (range: 20–

85 years). Thus, both compound samples display a large difference in

sample size but ratios of dataset representation, sex and age distribu-

tion have been maintained. This allows us to evaluate the influence of

data composition compared to the sample size of a training sample on

the generalization performance of sex classification models.

RS fMRI data from an additional dataset was included to evaluate

classifiers on an additional independent sample. This sample com-

prised 370 subjects (214 females) with a mean age of 22.50 years

(range 20–26 years) from the AOMIC dataset (Snoek et al., 2021). It

was not additionally balanced for sex to maintain the maximum num-

ber of participants for evaluation. Data usage of the included datasets

was approved by the Ethics Committee of the Medical Faculty of the

Heinrich-Heine University Düsseldorf (4039, 5193, 2018-317-

RetroDEuA). All data was collected in research projects approved by a

local Review Board, for which all participants provided written

informed consent. All experiments were performed in accordance

with relevant guidelines and regulations.

2.2 | Data acquisition

2.2.1 | HCP

The RS fMRI data of the HCP dataset were acquired on a Siemens

Skyra 3 T MRI scanner with multiband echo-planar imaging with a

duration of 873 s and the following parameters: 72 slices; voxel size,

2 ! 2 ! 2 mm3; field of view (FOV), 208 ! 180 mm2; matrix,

104 ! 90; TR, 720 ms; TE, 33 ms; flip angle, 52" (https://www.

humanconnectome.org/storage/app/media/documentation/s1200/HCP_

S1200_Release_Reference_Manual.pdf). Participants were instructed to

lie in the scanner with eyes open, with a “relaxed” fixation on a white

cross on a dark background and think of nothing in particular, and to

not fall asleep (Smith, Beckmann, et al., 2013).

2.2.2 | GSP

RS data were acquired on a 3 T Tim Trio Scanner with a duration of

372 s and the following parameters: 47 slices; voxel size,

3 ! 3 ! 3 mm3; FOV, 216 mm; TR, 3 s; TE, 30 ms; flip angle, 85".

During data acquisition, participants were instructed to lay still, stay

awake, and keep eyes open while blinking normally (https://static1.

squarespace.com/static/5b58b6da7106992fb15f7d50/t/5b68650d8

a922db3bb807a90/1533568270847/GSP_README_140630.pdf,

Holmes et al., 2015).

2.2.3 | eNKI

Participants in the eNKI dataset were underwent RS scanning for

650 s in a Siemens Magnetom Trio Tim sygno MR scanner with the

following parameters: 38 slices; voxel size, 3 ! 3 ! 3 mm3, FOV,

256 ! 200mm2; TR, 2500 ms; TE, 30 ms; flip angle, 80". Participants

were instructed to keep their eyes closed, relax their minds and not to

move (Betzel et al., 2014).

2.2.4 | 1000Brains

Subjects were scanned for 660 s on a Siemens TRIO 3 T MRI scanner

with the following parameters: 36 slices; voxel size,

3.1 ! 3.1 ! 3.1 mm3; FOV, 200 ! 200 mm2; matrix, 64 ! 64,

TR = 2.2 s; TE = 30 ms; flip angle, 90". During RS data acquisition,

participants were instructed to keep their eyes closed and let the mind

wander without thinking of anything in particular (Caspers

et al., 2014).

2.2.5 | AOMIC

The AOMIC dataset includes two subsamples, PIOP1 and PIOP2,

comprising data of healthy university students scanned on a Philips

3 T scanner. Participants were instructed to keep their gaze fixated on

a fixation cross on the screen and let their thoughts run freely (Snoek

et al., 2021). Both samples were acquired with a voxel size of

3 ! 3 ! 3 mm3 and a matrix size of 80 ! 80. While PIOP1 was

acquired for 360 s with multi-slice acceleration, 480 volumes and a

0.75 TR, PIOP2 was acquired for 480 s without multi-slice accelera-

tion, 240 volumes and a 2 s TR (further details in https://www.nature.

com/articles/s41597-021-00870-6/tables/10).
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2.3 | Data preprocessing

2.3.1 | HCP

RS data from the ‘HCP S1200 Release’ analyzed here was fully prepro-

cessed and denoised via the Connectome Workbench software. In short,

data were corrected for spatial distortions, head motion, B0 distortions

and were registered to the T1-weighted structural image (Smith,

Beckmann, et al., 2013). Concatenating these transformations with the

structural-to-MNI nonlinear warp field resulted in a single warp per time

point, which was applied to the timeseries to achieve a single resampling

in the 2 mm isotropic MNI space. Afterwards, global intensity normaliza-

tion was applied and voxels that were not part of the brain were masked

out. Locally noisy voxels as measured by the coefficient of variation were

excluded and all the data were regularized with 2 mm Full width half

maximum (FWHM) surface smoothing (Glasser et al., 2013; Smith,

Beckmann, et al., 2013). The temporal preprocessing included corrections

and removal of physiological and movement artifacts by an independent

component analysis (ICA) of the FMRIB's X-noisifier (FIX, Salimi-

Khorshidi et al., 2014). This method decomposes data into independent

components and identifies noise components based on a variety of spa-

tial and temporal features through pattern classification.

2.3.2 | GSP, eNKI, 1000Brains

RS data of the GSP, eNKI and 1000Brains samples were preprocessed

in the same way. Initially, FSL was used for the removal of noise and

motion artifacts by applying the FIX-denoising procedure (Jenkinson

et al., 2012; Salimi-Khorshidi et al., 2014) using the appropriate pre-

trained dataset for noise classification. As FIX does not include nor-

malization to MNI space, denoised data were further preprocessed

with SPM12 (SPM12 v6685, Wellcome Centre for Human Neuroim-

aging, 2018; https://www.fil.ion.ucl.ac.uk/spm/software/spm12/)

using Matlab R2014a (Mathworks, Natick, MA). For each subject, the

first four echo-planar-imaging (EPI) volumes were discarded and

the remaining ones were corrected for head movement by an affine

registration with two steps: First, the images were aligned to the first

image. Second, the images were aligned to the mean of all volumes.

The mean EPI image was spatially normalized to the MNI152 template

(Holmes et al., 1998) using the “unified segmentation” approach

(Ashburner & Friston, 2005) and the resulting deformation was

applied to the FIX-denoised images and resampled to 2 mm3.

2.3.3 | AOMIC

Fully preprocessed data was used provided via OpenNeuro, where it

was preprocessed using Fmriprep version 1.4.1 (Esteban et al., 2019;

Esteban et al., 2020), a Nipype based tool for reproducible preproces-

sing in neuroimaging data (Gorgolewski et al., 2011). Data were

motion corrected using mcflirt (FSLv5.0.9, (Jenkinson et al., 2002)) fol-

lowed by distortion correction by co-registering the functional image

to the respective T1 weighted image with inverted intensity

(Huntenberg, 2014; Wang et al., 2017) with six degrees of freedom,

using bbregister (FreeSurfer v6.0.1). In a following step, motion cor-

rection transformations, field distortion correction warp, BOLD-to-

T1-weighted transformation and the warp from T1-weighted to MNI

were concatenated and applied using antsApplyTransforms (ANTs

v2.1.0.) using Lanczos interpolation (Snoek et al., 2021).

2.4 | Connectome extraction

Following the parcelwise approach by Weis et al. (2020), individual RS

connectomes were extracted based on 400 cortical parcels of the

Schaefer Atlas (Schaefer et al., 2018), and 36 subcortical parcels of

the Brainnetome Atlas (Fan et al., 2016). Each parcel's time series was

cleaned by excluding variance that could be explained by mean white

matter and cerebrospinal fluid signal (Satterthwaite et al., 2013). Data

was not further cleaned for motion related variance as this variance

was already removed during FIX preprocessing. For each of the

436 parcels, the activation time series was computed as the mean of

all voxel time courses within that parcel. Then, for each parcel, pair-

wise Pearson correlations were computed between the parcel's time

series and those of all other 435 remaining parcels, representing the

individual RS functional connectivity (RSFC) profile of the parcel.

2.5 | Parcelwise sex classification

Sex classification models were trained based on the individual multi-

variate RSFC profile of each parcel. Specifically, the connectivity

values between each parcel and the 435 remaining parcels were used

as features to train a sex classification model per parcel, resulting in a

set of 436 pwC (Weis et al., 2020). Since each model provides one

final accuracy value, one pwC provides an accuracy map covering the

entire brain. Training sex classification models based on the connec-

tivity profile of each parcel allows for a reduction of the feature

dimensionality for each model (1 ! 436) as compared to training one

model based on the overall connectivity profile (436 ! 436). Further-

more, using this parcelwise approach allows us to identify the highest

classifying brain regions. In the following steps, we evaluated generali-

zation performance in terms of classification accuracies and spatial

consistency of highly classifying parcels across the entire brain.

All models were built using support vector machine (SVM) classi-

fiers. SVM is a supervised ML method that separates the data into dis-

tinct classes with the widest possible gap between these classes

(Boser et al., 1992; Rafi & Shaikh, 2013; Vapnik, 1998; Zhang

et al., 2021). Based on its operational principles regarding a supervised

binary classification task and successful applications in previous sex

classification studies (Flint et al., 2020; Weis et al., 2020; Wiersch

et al., 2023), SVM is a suitable method for the present task. SVM

models were built in Julearn (Hamdan et al., 2023; https://juaml.

github.io/julearn/main/index.html) including a hyperparameter search

nested within a 10–fold CV with five repetitions. The parameter
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search included choice of kernel (linear vs. radial basis function (rbf)

kernel) as well as the hyperparameters gamma and C, which is used to

set the strength of regularization (https://scikit-learn.org/stable/auto_

examples/svm/plot_svm_scale_c.html). The SVM algorithm used in

the present study incorporates a squared L2 regularization. The regu-

larization parameter controls the trade-off between the model fit to

the training data and generalizable predictions beyond the training

data in order to avoid overfitting and to optimize model performance

and generalizability (https://scikit-learn.org/stable/modules/generat

ed/sklearn.svm.SVC.html).

Confounding effects of age were regressed out in a CV-consistent

manner by removing age-related variance before training the classifiers.

By estimating confound regression models only for training subsets and

applying them to training and test sets, leakage of information from test

to training data within the CV-process can be avoided (More

et al., 2021). The best performing combination of hyperparameters was

used for the final model for each individual parcel. Within-sample classifi-

cation accuracy for each individual parcel was determined by averaging

accuracies over CV folds and repetitions.

For a cross-sample classification, single dataset pwCs were tested

on the respective other three samples, while pwC compound 854 and

pwC compound 2190 were tested on the remaining 25% of the HCP

(n = 220, mean age: 29.68, age range: 22–36), GSP (n = 214, mean

age: 22–72, age range: 21–31), eNKI (n = 48, mean age: 47.52, age

range: 20–75) and 1000Brains (n = 250, mean age: 52.08, age range:

22–80) sample. Here, for computing time reasons, we restricted the

choice of the SVM kernel to rbf (see Weis et al., 2020). Finally, gener-

alization performance of all six pwCs was assessed on the AOMIC

sample. All reported accuracies are balanced accuracies.

2.6 | Statistical analyses

2.6.1 | Across-sample classification accuracy

To statistically compare the classification accuracies of pwCs across

the different test samples, we employed independent t-tests between

the different across-sample accuracies over the respectively 10%

highest classifying parcels. Additional analyses using all 436 parcels

are reported in the supplements (Table S3 and below).

Significance levels were Bonferroni-corrected according to the

number of dependent tests (15 dependent tests for comparing across-

sample accuracies of all six pwCs on the AOMIC test sample,

10 dependent tests for comparing the across-sample accuracy of both

compound pwCs for the five test samples and for comparing pwC per-

formances against each other for each of the five test samples; six

dependent tests for all other comparisons).

2.6.2 | Consistency of highly classifying brain
regions

Previous studies have demonstrated that sex classification accuracies

for models trained on parcelwise RSFC patterns do not achieve

uniformly high performance across the whole brain (Weis et al., 2020;

Zhang et al., 2018). Thus, we assessed generalization performance of

the different pwCs by examining the consistency of highly classifying

brain regions during CV and across-sample testing. Consistency was

assessed by computing Dice coefficients (DSC) to evaluate the similar-

ity in spatial distribution of parcels achieving certain accuracies in

both CV and across-sample testing. This consistency was evaluated

for different accuracy thresholds above chance (0.5–0.7 at 0.02

steps). For each threshold, Dice coefficients were computed as the

number of common parcels achieving within- and across-sample accu-

racies above or equal to that threshold (p_com) multiplied by 2 and

divided by the total number of parcels achieving a within (p_tr) or

across-sample (p_te) accuracy above or equal to that accuracy level in

CV (Dice, 1945; Sorensen, 1948).

DSC¼ 2$p_com
p_trþp_te

To facilitate comparison of the dice score distributions between

the different pwCs and test samples, we summarized each contribu-

tion into one score by computing a weighted mean (wmDice) as the

average of each dice coefficient weighted by the accuracy threshold

for which the respective dice coefficient was calculated.

3 | RESULTS

The generalization performance of pwCs trained on each of the sin-

gle dataset samples (HCP, GSP, eNKI, & 1000Brains) and on both

compound samples were compared with respect to mean across-

sample accuracy averaged across the best 10% classifying parcels.

Additionally, we evaluated the consistency of the spatial distribu-

tion of accurately classifying parcels between CV and across-

sample testing to determine whether pwCs trained on compound

samples exhibit more generalizable results in contrast to pwCs

trained on single samples.

3.1 | Training and test classification accuracies

For the single samples pwCs, the mean within-sample performance

across the top 10% classifying parcels was at a similar level for pwC

GSP (66.8%), pwC eNKI (66.9%) and pwC 1000Brains (66.3%) and

ranged up to 73.5% for pwC HCP. The mean across-sample accuracies

averaged for the top 10% classifying parcels ranged between 58.4%

(for pwC HCP tested on AOMIC and pwC eNKI tested on 1000Brains)

and 65.8% (for pwC GSP tested on eNKI). Details for within- and

across-sample performance are reported in Table S1 and Figure 1

and Figure S1. Parcelwise within- and across-sample accuracies are

displayed as accuracy maps in Figure 1a and the distribution of test

accuracies is shown in Figure 3 (red boxplots). Here, accuracy maps

represent the spatial distribution of classification accuracies resulting

from the 436 individual ML models trained on the respective multivar-

iate RSFC profile of each parcel.

WIERSCH ET AL. 5 of 14

 10970193, 2024, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.26683 by Test, W
iley O

nline Library on [10/03/2025]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://scikit-learn.org/stable/auto_examples/svm/plot_svm_scale_c.html
https://scikit-learn.org/stable/auto_examples/svm/plot_svm_scale_c.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Accuracy maps for the different combinations of training and

test samples were compared using independent t-tests across the

top 10% classifying parcels in each prediction (details in Table S2).

First, we analyzed differences in classification accuracies between

test samples for each pwC (horizontal comparisons, Figure 1): For

pwC HCP, testing on 1000Brains achieved the highest mean classifi-

cation accuracy (59.8%). The averaged accuracy for this test sample

was descriptively higher than for the GSP and significantly higher

than for the eNKI and AOMIC test samples. PwC GSP achieved sig-

nificantly higher accuracies for the eNKI test sample (65.8%) than for

any other test sample, while pwC eNKI showed highest accuracies

for the GSP test sample (60.7%). This across-sample prediction

showed descriptively higher accuracies than pwC eNKI did for the

HCP test sample and significantly higher accuracies than for the

F IGURE 1 Accuracy maps and tile plots of mean accuracies of top 10% classifying parcels for parcelwise classifiers (pwCs) trained on single
samples. (a) Spatial distribution of parcelwise sex classification accuracies across the brain. Within-sample accuracies are depicted on and across-
sample accuracies off the diagonal. Only parcels with an accuracy of 0.5 or higher are displayed. (b) Mean accuracies averaged across the top 10%
classifying parcels for each cross-validation (CV) and across-sample prediction.
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AOMIC and 1000Brains samples. For pwC 1000Brains, testing on

the HCP showed significantly higher accuracies (64.8%) than testing

on the eNKI, GSP and AOMIC sample. Details of all statistical com-

parisons are given in Table S2.

PwC compound854 achieved a mean within-sample accuracy of

65.3% for the top 10% classifying parcels, while mean across-sample

accuracies of the highest classifying parcels ranged between 62.4%

(pwC compound854 tested on AOMIC) and 71.8% (pwC com-

pound854 tested on eNKI, further details in Table S1 and Figure 2,

Figure S2). PwC compound2190 achieved a mean within-sample

accuracy of 67.9% within the top 10% classifying parcels. The mean

across-sample accuracies averaged across the top 10% classifying par-

cels ranged between 65.5% (pwC compound2190 tested on AOMIC)

and 74.6% (pwC compound2190 tested on eNKI, details in Table S1

and Figure 2, Figure S2).

Contrasting the top 10% classifying parcels in the accuracy maps

of pwC compound854 and pwC compound2190 displayed peaks in

accuracies for the eNKI test sample (71.8% and 74.6%) resulting

in significantly higher accuracies than for the remaining test samples,

respectively (Figure 2 and Table S2). We also contrasted how the six

pwCs performed on each test sample by employing independent

t-tests: pwC compound 854 outperformed all pwCs trained on single

samples for all test samples, except for the AOMIC test sample,

where pwC GSP achieved higher accuracies within the best 10%

classifying parcels (Table S2). PwC compound 2190 outperformed all

other pwCs for the HCP, GSP, eNKI and AOMIC test sample with

regards to the top 10% classifying parcels in each across-sample pre-

diction (Figure 2). Details for all statistical comparisons are shown in

Table S2.

3.2 | Consistency of correctly classifying parcels

To evaluate the spatial consistency of accurately classifying parcels,

we calculated the dice coefficient between thresholded within- and

across-sample accuracy maps at different levels of accuracy. Here, a

high dice coefficient indicates a high overlap in highly classifying par-

cels between within and across-sample predictions at a given accuracy

level. The results are depicted in the blue bar plots in Figure 3.

Regarding spatial consistency within a given pwC (horizontal compari-

son in Figure 3), pwC HCP overall demonstrated relatively low spatial

consistency while it was highest for 1000Brains (wmDice = 0.1765,

all other wmDice <0.1112). Spatial consistency for pwC GSP was

highest for the eNKI sample (wm = 0.3103) and lowest for

1000Brains (wmDice = 0.1810) with spatial consistency for HCP

(wmDice = 0.2407) and AOMIC (wmDice = 0.2607) test samples

ranging in between. PwC eNKI showed overall low spatial consistency

for the HCP, 1000Brains and AOMIC sample (wmDice: 0.1244–

0.1523) and highest for the GSP sample (wmDice = 0.2072). Spatial

consistency of pwC 1000Brains was lower for the GSP, eNKI and

AOMIC test sample (wmDice: 0.1201–0.1853) but considerably

higher for the HCP test sample (wmDice = 0.3159). Spatial consis-

tency of pwC compound854 ranged between 0.2865–0.3221 for the

HCP, GSP, eNKI and 1000Brains sample and achieved 0.2546 for

the AOMIC sample. PwC compound2190 demonstrated a relatively

similar spatial consistency for HCP, GSP, eNKI and 1000Brains

(wmDice: 0.3641–0.4168) and lower spatial consistency with the

AOMIC sample (wmDice = 0.2960). Concerning the comparisons

within each test sample (vertical comparisons in Figure 3) pwC com-

pound854 demonstrated higher spatial consistency than single sample

F IGURE 2 Accuracy maps and tile plots of mean accuracies of top 10% classifying parcels for parcelwise classifiers (pwC) compound 854 and
pwC compound 2190. (a) Spatial distribution of parcelwise sex classification accuracies across the brain. Only parcels with an accuracy of 0.5 or
higher are displayed. (b) Mean accuracies averaged across the top 10% classifying parcels for the respective cross-validation (CV)- (first column)
and across-sample predictions.
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pwCs for the HCP, GSP and 1000Brains test samples and pwC com-

pound2190 demonstrated higher spatial consistency than the other

six pwCs. Dice coefficients for the top 10% classifying parcels are

reported in Figure S3.

4 | DISCUSSION

In the present study, we examined the generalization performance of

parcelwise sex classification models trained on different samples.

Here, we operationalized generalization performance in terms of both

mean classification accuracy of best classifying parcels during across-

sample testing as well as spatial consistency in highly classifying

parcels between CV and across-sample testing. Since not all parcels

are expected to achieve high classification accuracies (Weis

et al., 2020; Zhang et al., 2018), we mainly focused on the top 10%

classifying parcels. Overall, our results showed that classifiers trained

on single dataset samples generalized well only for certain test sam-

ples. In contrast, classifiers trained on the compound samples tend to

outperform classifiers trained on single dataset samples both in terms

of accuracy and consistency of accurately classifying parcels.

To evaluate generalization performance with respect to mean

classification accuracies of the top 10% classifying parcels, for each

pwC, we compared across-sample classification accuracies between

the different test samples. Results indicate that certain datasets seem

to “match” in the sense that classifiers trained on a sample from one

F IGURE 3 Spatial consistency of all parcelwise classifiers (pwCs). For each combination of training (rows) and test sample (columns), the right
side of each subplot (red boxplot) depicts the distribution of accuracies across all parcels (right y-axis). The left side of each subplot (blue barplot)
shows the dice coefficients (left y-axis), representing the overlap of accuracy maps between cross-validation (CV) and test predictions at different
accuracy levels (x-axis). For each accuracy-threshold, the respective dice coefficient was calculated as the number of similar parcels classifying
above a certain accuracy-threshold in both, respective CV and test prediction, in relation to the total number of parcels of both predictions
classifying at this level. For each combination of pwC and test sample, the weighted mean of the dice coefficients (wmDice) across accuracy levels
is displayed above the subplot to allow for a straightforward comparison between the distributions of dice coefficients.
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of the datasets achieved a high accuracy when tested on the respec-

tive other one and vice versa. This was the case for HCP and

1000Brains as well as for GSP and eNKI with the former matching the

results of a previous study (Weis et al., 2020). Based on the good

across-sample performance of sex classifiers trained on an HCP sam-

ple on a subsample of the 1000Brains, Weis et al. (2020) suggested

that parcelwise sex classification generalizes well between different

samples. No additional samples from other datasets were considered

in Weis et al. (2020). The present results extend the findings of the

previous study by showing that good generalization performance of

the HCP classifiers appears to be specific to the 1000Brains sample.

Generalization to samples from other datasets (GSP, eNKI and

AOMIC) is, however, rather poor. Thus, our study demonstrates that

the generalizability of pwCs trained on single dataset samples

depends on the train-test data combination, which is in line with a

previous study that employed sex classification based on regional

homogeneity of RS time series (Huf et al., 2014). The limited generali-

zation performance of the pwCs trained on single dataset samples to

the majority of test samples from other datasets might be attributed

to the homogeneity of each single dataset training sample arising due

to demographic factors such as the age range (Damoiseaux, 2017;

Damoiseaux et al., 2008; Scheinost et al., 2015) as well as technical

details such as fMRI acquisition parameters (Brown et al., 2011; Yu

et al., 2018). Homogeneous data characteristics within each dataset

will result in a homogeneity of the feature space on which ML models

are trained. Such homogeneous features might lead the ML model to

learn dataset-specific characteristics that are predictive of the target

variable, which might not translate to other test samples, resulting in

inaccurate across-sample predictions (Huf et al., 2014). Thus, training

ML models on a single, homogenous sample may not be ideal to

achieve a good generalization performance on diverse test samples

(Belur Nagaraj et al., 2020; Di Tanna et al., 2020; Huf et al., 2014;

Janssen et al., 2018). In contrast, training classifiers on a combination

of multiple datasets (pwC compound854 and pwC compound2190)

achieved significantly higher accuracies for all test samples, including

the sample from a dataset which was not included in the compound

training sample. We contrasted performances of both pwCs trained

on compound samples to evaluate potential sample size effects. Here,

pwC compound854 demonstrated higher accuracies and spatial con-

sistency in the majority of across-sample predictions compared to sin-

gle sample pwCs, but did not outperform pwC compound2190. These

results suggest that the sample size of the training sample is an impor-

tant factor in determining the generalization performance of ML ana-

lyses. These results align with the findings of several other studies

highlighting the importance of the sample size in ensuring accurate

ML results (Cui & Gong, 2018; Dhamala et al., 2023; Domingos, 2012;

Ishida, 2019; Yang et al., 2020). However, pwC compound854 still

predominantly demonstrated a higher generalization performance

compared to single sample pwCs with a similar or even higher sample

size. Thus, it is evident that the composition of a training sample is

crucial in ensuring generalizable ML results, as reported by previous

studies (Chang et al., 2018; Huf et al., 2014; Willemink et al., 2020).

While a high sample size is beneficial to assure reliable and accurate

ML predictions (Dhamala et al., 2023), the heterogeneity and repre-

sentativeness of a composite sample led to significantly better results

than single sample pwCs with a higher sample size in the present ML

analyses. Thus, the high generalization performance of both com-

pound samples is not only attributable to the sample size but also to

the heterogeneity of data characteristics included in a training sample

created from various datasets. This heterogeneity likely enables the

model to learn patterns that do not rely on specific sample character-

istics, but actually capture the underlying relationship between fea-

tures and target, enabling the model to generalize better, even to data

from datasets that were not included in training. Therefore, the het-

erogeneity of a composite training sample is essential for generaliz-

able ML outcomes and may also serve to minimize sample-specific

biases (Li et al., 2022). Thus, training on a compound sample compris-

ing the variability of multiple datasets is preferable to training on sin-

gle dataset samples in order to achieve high generalization

performances (Chang et al., 2018; Huf et al., 2014; Willemink

et al., 2020).

While undesirable sources of variability, e.g. due to scanner dif-

ferences, may be accounted for by using data harmonization (Fortin

et al., 2017; Yu et al., 2018), in the present study we intentionally

refrained from using harmonization techniques. Here, we evaluated

the generalization performances of differently trained pwCs in order

to determine which may generalize best to unseen data. Harmoniza-

tion techniques such as ComBat are not suitable for this purpose

because they require a sufficient amount of data from each sample

and site (Orlhac et al., 2022).

The parcelwise classification approach allowed us to investigate

generalization performance not only in terms of accuracy but also

with respect to the spatial distribution of accurately classifying par-

cels. To quantify the overlap of accurately classifying parcels between

CV and across-sample testing, we computed dice coefficients

between within- and across sample accuracy maps at different accu-

racy thresholds. We observed a pattern similar to the one found for

classification accuracies, with the train-test pairing of HCP and

1000Brains and GSP and eNKI, respectively, showing highest spatial

consistency, relative to other combinations. Thus, also when consider-

ing spatial consistency, generalization performance depended on the

specific pairing of training and test datasets. For pwCs trained on sin-

gle samples, training sample characteristics appeared to be the most

important factor in driving generalization performance across test

samples. In contrast, pwC compound854 achieved superior spatial

consistency in most test samples and pwC compound2190 in all test

samples, as compared to pwCs trained on single samples. Thus, the

classifiers trained on the compound samples achieved both higher

classification accuracies as well as more consistency in accurately clas-

sifying parcels as opposed to the classifiers trained on single dataset

samples. Altogether, the high generalization performance for pwC

compound854 and pwC compound2190 can likely be attributed to

the data heterogeneity in the respective training samples which was

achieved by combining multiple samples for training. These findings

match results of previous studies (Chang et al., 2018; Huf et al., 2014;

Nielsen et al., 2020; Willemink et al., 2020).
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Overall, the aggregation of multiple samples in pwC com-

pound854 and pwC compound2190 for training sex classifiers

resulted in superior generalization performance compared to pwCs

trained on single samples. Firstly, the classification accuracies were

comparable between CV and the different across-sample test classifi-

cations. Secondly, highly classifying parcels overlapped to a large

degree between training and test. The overall high generalization per-

formance of pwC compound2190 across all test samples could be

attributed to several possible explanations: first, the compound2190

sample is more than twice as large as compared to any of the single

dataset samples. Such high sample size has been shown to be benefi-

cial for generalization (Cui & Gong, 2018; Domingos, 2012;

Ishida, 2019; Yang et al., 2020). However, sample size alone is likely

not sufficient to explain the high generalization performance. For

instance, the eNKI sample consists of only 190 participants, but the

classifiers trained on this sample achieved better generalization per-

formance than those trained on the HCP sample, which included

878 participants. In addition, analyses with pwC compound854 also

demonstrated a superior generalization performance with respect to

classification accuracies as well as spatial consistency compared

to single sample pwCs, despite the smaller sample size. A second

explanation for the good performance of both compound pwCs may

lie in the heterogeneous nature of its training sample as discussed

above. Having the different samples represented within the com-

pound sample may have allowed the classifiers to classify sex based

on sample-unspecific information. Another potential explanation is

that the training samples of pwC compound854 and pwC com-

pound2190 partially consist of data from datasets on which we evalu-

ated the test performance. In general, training on data that is

representative of the test data typically results in an increased gener-

alization performance (Chung et al., 2018). Here, both training sam-

ples for the compound pwCs composed data from four different

datasets. Although each dataset had a different sample size and thus a

different share in the respective compound training sample, the model

applications to the eNKI test sample showed highest accuracies for

the best 10% classifying parcels. This result stems from few parcels

classifying at a high level for the eNKI test data (up to 83%), resulting

in such a high mean accuracy for the top 10% parcels (Figure 2). Fur-

thermore, the mean accuracy averaged across all 436 parcels confirms

that there are only few parcels responsible for the high accuracy in

the top 10% parcels, as the eNKI dataset did not exhibit the overall

highest mean accuracy across all parcels.

In contrast to both compound pwCs, CV and across sample test

performances differed considerably for pwCs trained on single dataset

samples. This lack of generalization performance was especially appar-

ent for pwC HCP which showed a rather high performance during CV

in combination with the lowest generalization performance both with

respect to accuracy and spatial consistency. While homogeneity of a

data sample has been argued to lead to high CV classification accuracy

(Huf et al., 2014), sample characteristics such as the age range were

comparable between HCP and the GSP sample, with the latter outper-

forming HCP in generalization performance. Thus, the comparably

poor performance of classifiers trained on the HCP sample may be

partially attributed to sample homogeneity but also to other factors

such as the differences in preprocessing pipelines. For the HCP sam-

ple, connectome extraction was based on the FIX denoised prepro-

cessed version of the data. The eNKI, GSP and 1000Brains samples

were preprocessed using the same pipeline in FSL/SPM12 also includ-

ing FIX-denoising, while the AOMIC sample was preprocessed using

fMRIprep without FIX. Given that comparative performance evalua-

tion of fMRI data is sensitive to preprocessing decisions (Bhagwat

et al., 2021), it is likely that this difference in preprocessing may con-

tribute to the poor generalization performance of pwC HCP when

tested on the other single samples. Furthermore, the high within-

sample accuracy coupled with the lack of generalization performance

may also indicate an overfitting effect of pwC HCP during training

(Cui & Gong, 2018; Domingos, 2012).

The present study, however, does not primarily aim to build a

classifier attaining highest sex classification accuracies but rather to

evaluate the impact of the training sample in ML models, particularly

the size and composition of the training sample.

Altogether, our results highlight the importance of the sample size

and also a heterogeneous, diverse, and representative data composi-

tion for training ML models (Cui & Gong, 2018; Dhamala et al., 2023;

Domingos, 2012; Gong et al., 2019; Li et al., 2022), which can be

achieved by combining data from multiple sites and datasets (Chang

et al., 2018; Nielsen et al., 2020; Willemink et al., 2020). By minimizing

sample-specific biases, we can aim for maximizing the generalizability

of ML models.

4.1 | Limitations

The present results consistently demonstrated the superior generaliz-

ability of sex classifiers trained on compound samples as compared to

those trained on single dataset samples, but they come with some lim-

itations. First of all, the high spatial consistency of pwC com-

pound2190 might partially be attributed to the generally higher

accuracy of the across-sample predictions. Dice coefficients across

the top 10% classifying parcels showed a more differentiated pattern.

Here, pwC compound2190 did not always outperform pwCs trained

on single samples. Overall, the predominantly higher generalization

performance of pwC compound2190 can be attributed to the sample

size and sample composition of its training sample. However, an addi-

tional systematic study would be required to determine the exact

degree to which each factor contributes to high generalization

performance.

Another limitation in the present study is that, while we

accounted for age as a potential confound during training of the clas-

sifiers, there might be other confounds that were not considered. For

example, we did not control for structural variables such as brain size,

which have been reported to influence brain functions (Batista-Gar-

cia-Ramo & Fernandez-Verdecia, 2018) and RS brain connectivity in

particular (Zhang et al., 2018). Thus, in principle, different distributions

of brain size within the different samples might have influenced the

present results. However, Weis et al. (2020) demonstrated that at
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least with their training sample, classification based on RS connectiv-

ity was not systematically influenced by brain size. Still, there might

be other demographic variables which differ between samples and

might influence classification accuracies (Li et al., 2022; Mehrabi

et al., 2021; Sripada et al., 2021).

A further limitation of the present study is the potential impact of

different preprocessing approaches which may affect the outcomes in

ML analyses. In neuroimaging data, there can be various sources of

noise and artifacts. Prior to data analysis, it is necessary to preprocess

the data to mitigate these issues and enhance the data quality. How-

ever, the impact of preprocessing steps on the outcomes of fMRI ana-

lyses has been well documented. For instance, conceptually similar

preprocessing packages such as AFNI, FSL, or SPM can produce dif-

ferences in fMRI results (Bowring et al., 2019). Differences on the

level of preprocessing steps may also produce dissimilarities

(Carp, 2012). Even differences in the order of preprocessing steps can

lead to differences in the graph theoretical outcomes derived from RS

functional connectivity (Gargouri et al., 2018). Thus, it is plausible that

discrepancies in preprocessing pipelines may lead to differences in

classification outcomes. Indeed, one study that compared ML results

for patient and healthy control classification across different prepro-

cessing pipelines indicated differences in the classification accuracy

(Vergara et al., 2017). Overall, while different preprocessing

approaches may lead to differences in the fMRI and ML results, in the

present study these differences represent an additional source of vari-

ance that may occur when using data of various datasets. Despite var-

ious potential sources of variance within the training samples of the

compound pwCs, pwC compound854 and pwC compound2190 dem-

onstrate a comparatively good performance compared to the single

sample pwCs. While it is reasonable to anticipate that aligned prepro-

cessing approaches may improve predictions; however, conducting a

systematic evaluation on the effect of preprocessing pipelines is

beyond the scope of the present study and remains an important

open question for future research.

Another factor which has not been considered in the present ana-

lyses are fluctuating sex hormones, which have been shown to influ-

ence functional brain connectivity in RS (Arélin et al., 2015; Haraguchi

et al., 2021; Weis et al., 2019). These dynamic changes in female and

male connectivity patterns (Coenjaerts et al., 2023; Kogler

et al., 2016; McEwen & Milner, 2017) will likely influence overall sex

classification accuracies. However, unfortunately, most publicly avail-

able datasets do not provide information on hormone levels, making it

impossible to consider these variations in the analyses. Future large-

scale studies should include hormone levels in data acquisition,

enabling model training on a combination of multiple independent

datasets with well characterized phenotypes to achieve most accurate

results.

5 | CONCLUSION

The present results show that parcelwise sex classification models

generalize best when trained on a compound sample including data

with different demographic and data acquisition characteristics. Our

results demonstrate that a large and heterogeneous training sample

including multiple datasets is best suited to achieve accurate generali-

zation performance. This observation carries practical implications for

future neuroimaging studies employing ML models for generalizable

predictions.
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Accurate sex prediction 
of cisgender and transgender 
individuals without brain size bias
Lisa Wiersch 1,2, Sami Hamdan 1,2, Felix Hoffstaedter 1,2, Mikhail Votinov 3,4, Ute Habel 3,4, 
Benjamin Clemens 3,4, Birgit Derntl 5,6, Simon B. Eickhoff 1,2, Kaustubh R. Patil 1,2,7* & 
Susanne Weis 1,2,7*

The increasing use of machine learning approaches on neuroimaging data comes with the important 
concern of confounding variables which might lead to biased predictions and in turn spurious 
conclusions about the relationship between the features and the target. A prominent example is the 
brain size difference between women and men. This difference in total intracranial volume (TIV) can 
cause bias when employing machine learning approaches for the investigation of sex differences in 
brain morphology. A TIV‑biased model will not capture qualitative sex differences in brain organization 
but rather learn to classify an individual’s sex based on brain size differences, thus leading to spurious 
and misleading conclusions, for example when comparing brain morphology between cisgender‑ 
and transgender individuals. In this study, TIV bias in sex classification models applied to cis‑ and 
transgender individuals was systematically investigated by controlling for TIV either through 
featurewise confound removal or by matching the training samples for TIV. Our results provide strong 
evidence that models not biased by TIV can classify the sex of both cis‑ and transgender individuals 
with high accuracy, highlighting the importance of appropriate modeling to avoid bias in automated 
decision making.

Machine Learning (ML) approaches have become increasingly popular in medical imaging, especially for neu-
roimaging  data1–3. Previous studies applying ML approaches to neuroimaging data coming from individuals 
with mental and neurodegenerative disorders have provided valuable insights into the complex mechanisms 
underlying  psychopathology4–6. !e ability of ML models to make predictions about previously unseen individual 
subjects has expanded the "eld from population-based analyses to investigation of individualized  biomarkers5,6. 
However, it is important to ensure that predictions are not confounded by variables that are not part of the causal 
pathway of interest, but are associated with both the features the model was trained on and the  target6,7, as results 
from confounded analyses might potentially lead to inaccurate and spurious  conclusions8,9. Using brain size bias 
in sex classi"cation as an example, the present study examines which confound removal strategy is most suitable 
to achieve high classi"cation accuracy while e#ectively removing brain size  bias8–10.

ML approaches have been successfully applied to the study of sex di#erences in the brain by training a classi-
"er to predict sex based on features derived from structural brain imaging data, e.g. regional grey matter volume 
(GMV). Such a sex classi"er is expected to capture multivariate brain organizational patterns that di#er between 
the sexes. High classi"cation accuracies on out-of-sample  data11,12 are then taken as evidence for qualitative sex 
di#erences in the  brain13,14. So far, studies using sex classi"cation approaches based on structural brain imaging 
data achieved classi"cation accuracies ranging from 82 up to 94%11,12,15–17. However, a sex classi"er biased by 
brain size (measured as total intracranial volume,  TIV18,19) will result in predictions that are driven by TIV dif-
ferences rather than actual sex di#erences in brain  structure9,10,20. As a result, a TIV-biased model will classify 
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individuals with higher TIV as males and individuals with lower TIV as females, while making more mistakes 
for individuals with intermediate TIV.

!e use of such a TIV-biased sex classi"er is particularly problematic when analyzing data of individuals for 
whom local and global brain structural alterations have been reported, such as those with "gender incongru-
ence," where a person’s sex and gender identity  di#er21. In the present paper, following the linguistic guidelines 
provided by the Professional Association of Transgender  Health22, the term “sex” is used to refer to the sex that 
a person was assigned at birth based on their anatomical sexual characteristics, whereas the term “gender (iden-
tity)” is used to denote the subjective identi"cation of an individual as female, male, or one of the other gender 
identities which might be also %uid or non-binary. While the coherence of sex and gender is termed cisgender 
for cisgender men and women (CM, CW), gender incongruent individuals are denoted as transgender men and 
women (TM, TW,21).

To date, it is not yet fully understood if and to which extent local and global brain organization of transgen-
der individuals is driven by factors matching their gender identity on top of those matching their sex. So far, 
studies contrasting groups of cisgender and transgender individuals reported regional GMV di#erences in the 
 putamen23,  insula16 as well as in surface areas, cortical and subcortical brain  volumes24. Additionally, transgender 
individuals undergoing cross-sex hormone treatment (CHT) were reported to show structural alterations in the 
hypothalamus and the third  ventricle25. !us, there is some evidence indicating that transgender individuals 
display local brain volume  di#erences24,26–28. Extending the results of group studies contrasting cisgender and 
transgender individuals, sex classi"cation approaches—building a classi"er on cisgender individuals’ data and 
then applying it to transgender individuals—have reported reduced sex classi"cation accuracies for transgender 
compared to cisgender samples (76.2% vs. 82.6%17; 61.5% vs. 93.2–94.9%16). Higher rates of misclassi"cation of 
sex in transgender as opposed to cisgender individuals have been taken to indicate that transgender brains might 
di#er from those typical for their sex, implying an interaction between sex and gender at the neuroanatomical 
 level16,17,29. However, before such conclusions can be drawn, biases that can in%uence a sex classi"er must be 
taken into account, particularly those related to  TIV18,19. It is crucial to be aware of the impact of local and global 
structural brain alterations that can lead to increases or decreases of TIV resulting in the TIV of transgender 
individuals falling between TIV of cisgender women and  men25. Consequently, the predictions of a TIV-biased 
classi"er might erroneously be interpreted as evidence for transgender brain organization to align with gender 
identity as has been reported  before16,29.

Here, we investigate the impact of TIV bias by examining two approaches to control for confounding e#ects 
of  TIV10 in sex classi"cation to evaluate which approach is most suited to account for TIV bias in the present sex 
classi"cation analysis. We compare two statistically di#erent approaches of controlling for TIV bias in comparison 
to a baseline model that does not account for the in%uence of TIV. For the "rst approach, we built debiased mod-
els through featurewise confound control by removing confounding e#ects of TIV during training (Fig. 1,20,30). 
In the second approach, we trained models on a strati"ed sample where women and men were matched for TIV. 
Model performance and TIV bias were assessed on hold-out samples of cisgender individuals to compare per-
formance of the biased to the debiased models. We hypothesized that a TIV-biased model should achieve high 
performance but also exhibit a biased output pattern. In contrast, a model not biased by TIV will likely exhibit 
a drop in classi"cation accuracy. However, importantly, misclassi"cations of such a model should be largely 
independent of TIV. In the "nal step, the debiased models were applied to application samples comprising both 
cisgender and transgender individuals to examine whether models without a TIV bias provide any evidence for 
an interaction of sex and gender in%uences on structural brain organization, as previously  suggested17.

Results
Classi"ers employing Support Vector Machine (SVM) models with radial basis function kernel (rbf) were trained 
on whole-brain voxelwise GMV data of two large, non-overlapping cisgender samples to classify sex assigned at 
birth. In the "rst sample, women and men were matched for age (AM sample) to create a sample with a natural 
occurring TIV-distribution (Fig. S1 and Table S1). As a baseline, we trained the "rst model on this sample with-
out any control for TIV bias (AM model), following the methodology of a previous  study16. We then compared 
the baseline model to other models, which integrated two di#erent approaches for confound control in order to 
assess which approach successfully removes TIV bias while accurately classifying sex. For the "rst approach, a 
ML model was also trained on the AM sample, but additionally controlled for TIV bias by featurewise confound 
removal (AM+cr model), while the third model comprised strati"cation for TIV by training the model on a 
sample of women and men who were matched for both age and TIV (ATM; see Fig. S1 and Table S1 for demo-
graphic details and TIV distribution of the samples). While the third model was trained on the ATM sample 
without additional TIV-control (ATM model) to evaluate strati"cation in itself, the fourth model employed a 
combination of both approaches to assess whether the addition of featurewise confound removal might further 
improve results (AM+cr model, Fig. 1). Subsequently, all models were calibrated to ensure that the prediction 
probabilities of the models match the respective class label (Figs. S2 and S3, Supplementary Results, https:// 
scikit- learn. org/ stable/ modul es/ calib ration. html# calib ration). To evaluate model performance on hold-out data, 
each sample (AM and ATM) was split into a training sample (80%) and a hold-out sample (20%). As the two 
approaches—featurewise confound removal and strati"cation by matching—might exhibit di#erences in model 
performance since they are based on di#erent statistical  processes8, all four models were evaluated on both AM 
and ATM hold-out samples. !is allowed for a thorough understanding of model behavior and evaluation of 
whether both approaches successfully remove TIV bias. Assessing model performance on the "rst sample (AM 
hold-out sample), which exhibits a naturally occurring TIV-distribution among women and men, enables a real-
istic evaluation of the model’s e#ectiveness in broader populations beyond those included in the present study. 
In turn, the ATM hold-out sample enables a more in-depth evaluation of the model performance, as it displays 

https://scikit-learn.org/stable/modules/calibration.html#calibration
https://scikit-learn.org/stable/modules/calibration.html#calibration
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no signi"cant di#erence in TIV between women and men. Consequently, an accurate model performance for 
the ATM hold-out sample indicates a non-TIV-biased model behavior as the model classi"es a person’s sex based 
on other features than TIV, providing a “confound-free accuracy”31. Additionally, the models were tested on two 
independent application samples comprising transgender and cisgender individuals (sample A, sample B, see 
Fig. S1 and Table S1 for demographic details and TIV distribution of the samples).

Evidence for TIV bias in the AM model. !e application of the AM model to the AM hold-out sample 
resulted in a high classi"cation accuracy of 96.89% (Table 1, Table S2, and Fig. 2). Accordingly, the assigned 
probability of being classi"ed as male (prediction probability) was higher for men than for women (Fig. 3a). !e 
comparison of TIV distributions revealed that men who were classi"ed congruently with their sex as male had a 
signi"cantly higher TIV than incongruently classi"ed men (Fig. 3b). Similarly, women classi"ed incongruently 
with their sex as male on average had a higher TIV than congruently classi"ed women, even though this di#er-
ence was not signi"cant (details in Table 2).

When applied to the ATM hold-out sample, the AM model resulted in a much lower classi"cation accuracy of 
79.19% (Tables 1 and S2), presumably as the model could not rely on TIV for classifying in the ATM sample. Still, 
we observed a similar pattern as above, with men having a higher prediction probability than women (Fig. 3c), 
signi"cantly higher TIV in sex congruently as opposed to incongruently classi"ed men, and signi"cantly lower 

Figure 1.  Analysis pipeline. Work%ow of the sex classi"cation analysis.
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TIV in sex congruently as opposed to incongruently classi"ed women (Fig. 3d and Table 2). Altogether, across 
both hold-out samples, this model tended to classify subjects with higher TIV as male and those with lower TIV 
as female, clearly indicating a brain size bias inherent in this model.

Reducing TIV bias by confound removal. Featurewise control for TIV in the AM+ cr model resulted 
in decreased classi"cation accuracies both for the AM (61.80%) and the ATM (72.98%; further details in Fig. 2, 
Table 1 and Table S2) hold-out samples. In comparison to the AM model with no TIV control (Fig. 3a) predic-
tion probability displayed a much larger overlap between women and men (Fig. 3e, g). Further evaluation did 
not reveal any evidence for a TIV bias—i.e. neither did sex congruently classi"ed men show higher TIV than 

Table 1.  Model performance of all models applied to the hold-out and application samples (* Balanced 
Accuracy). Model performance of all models applied to the hold-out and application samples.

AM model AM+cr model ATM model AM+cr model
Model performance for the AM hold-out sample
 Recall: 0.9503 0.7329 0.8820 0.8571
 Speci"city: 0.9876 0.5031 0.8509 0.8571
 F1: 0.9684 0.6574 0.8685 0.8571
 BA*: 0.9689 0.6180 0.8665 0.8571
Model performance for the ATM hold-out sample
 Recall: 0.7453 0.8323 0.9255 0.9193
 Speci"city: 0.8385 0.6273 0.9255 0.9317
 F1: 0.7818 0.7549 0.9255 0.9250
 BA*: 0.7919 0.7298 0.9255 0.9255
Model performance for sample A
 Recall: 0.9474 0.7895 1 0.9474
 Speci"city: 0.8276 0.7241 0.8276 0.8448
 F1: 0.8926 0.7627 0.9194 0.9000
 BA*: 0.8875 0.7568 0.9138 0.8961
Model performance for sample B
 Recall: 0.8889 0.8333 0.9722 0.8889
 Speci"city: 0.9608 0.5882 0.9020 0.9020
 F1: 0.9143 0.6897 0.9211 0.8767
 BA*: 0.9248 0.7108 0.9371 0.8954

Figure 2.  Sex classi"cation accuracy. Accuracy values of the four di#erent models for the cross validation (CV)-
folds and applied to the AM and ATM hold-out sample.
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Figure 3.  Association between prediction probability and TIV. Prediction probability (a, c, e, g, i, k, m, o) and 
TIV distribution (b, d, f, h, j, l, n, p) of sex congruently and incongruently classi"ed women (red) and men 
(blue) of all four models applied to the AM and ATM hold-out sample. (W/f: women classi"ed as female; W/m: 
women classi"ed as male; M/m: men classi"ed as male; M/f: men classi"ed as female).

Table 2.  Wilcoxon rank sum tests of the hold-out samples. Comparison of individuals classi"ed as female 
versus male (Wilcoxon rank sum tests) for the AM and ATM sample.

TIV women classified as female versus classified as male
TIV men classified as male  versus classified as 
female

AM hold-out sample
 AM model T = 12,722, z = & 2.3885, p = 0.0169, η2 = 0.0354 T = 12,829, z = 3.3879, p < 0.001, η2 = 0.0713
 AM+cr model T = 7514, z = 3.2204, p = 0.0013, η2 = 0.0644 T = 8858, z = & 2.6727, p = 0.0075, η2 = 0.0444
 ATM model T = 11,004, z = & 0.4390, p = 0.6606, η2 = 0.0012 T = 11,507, z = 0.0236, p = 0.9812, η2 < 0.001
 AM+cr model T = 11,236, z = 0.2778, p = 0.7812, η2 < 0.001 T = 11,284, z = 0.5097, p = 0.6103, η2 = 0.0016
ATM hold-out sample
 AM model T = 9908, z = & 4.7156, p < 0.001, η2 = 0.1381 T = 11,325, z = 6.2257, p < 0.001, η2 = 0.2407
 AM+cr model T = 8425, z = 0.8513, p = 0.3946, η2 = 0.0045 T = 10,341, z = & 2.3190, p = 0.0204, η2 = 0.0334
 ATM model T = 12,284, z = 1.3806, p = 0.1674, η2 = 0.0118 T = 12,239, z = 1.0910, p = 0.2753, η2 = 0.0074
 AM+cr model T = 12,403, z = 1.6918, p = 0.0907, η2 = 0.0178 T = 12,130, z = 0.8780, p = 0.3800, η2 = 0.0048
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incongruently classi"ed men nor did sex congruently classi"ed women show lower TIV than incongruently clas-
si"ed women in both the AM (Fig. 3f) and the ATM (Fig. 3h and Table 2) hold-out samples.

Reducing bias by matching the training sample for TIV. !e application of the two models built 
using TIV matched data with and without featurewise TIV control (ATM and ATM+cr model, respectively) to 
the AM hold-out sample resulted in similarly high classi"cation accuracy (86.65% for ATM, 85.71% for ATM+cr 
model, details in Tables 1 and S2), performing between accuracies achieved by the AM and the AM+cr model. 
!us, for the ATM models, additional featurewise TIV control did not result in decreased model performance. 
!is is further re%ected in similar prediction probability distributions (Fig. 3i, m), which were higher for men 
than for women. Likewise, the TIV of sex congruently and incongruently classi"ed individuals did not di#er 
signi"cantly from each other both for women and for men (Fig. 3j, n and Table 2). Application of these models 
to the ATM hold-out sample (details in Tables 1 and S2), displayed better performance (92.55%) than for the AM 
hold-out sample. Furthermore, prediction probability distributions showed a comparable (Fig. 3k, o) but more 
pronounced pattern for the ATM hold-out sample. Again, when testing on the ATM hold-out sample, there was 
no di#erence between TIV of sex congruently and incongruently classi"ed individuals both for the model with-
out (Fig. 3l and Table 2) and with additional confound removal (Fig. 3p and Table 2).

Overall, the AM model achieved highest classi"cation accuracy, but evaluation of the model output identi"ed 
clear evidence for a TIV bias of the model. Reducing TIV-related variance by featurewise confound removal in 
the AM+cr model resulted in a less biased model, which also displayed a pronounced decrease in model perfor-
mance, especially for the AM hold-out sample. Both models trained on the TIV balanced sample (ATM, ATM+cr 
model) did not show evidence of a TIV bias while still retaining high classi"cation performance and appropriate 
calibration curves (Figs. S2 and S3), indicating that—at least for the present classi"cation problem—training 
on a matched sample is more appropriate than featurewise confound removal. !us, in the following, we will 
focus on comparing the performance of the biased AM model and the nonbiased ATM model on cisgender and 
transgender individuals in the application samples (sample A, sample B). Results for the AM+cr and ATM+cr 
models are provided in the Supplementary Results and Fig. S4.

Biased performance of the AM model for cisgender and transgender individuals. !e appli-
cation of the TIV-biased AM model resulted in an overall high performance of 88.70% for sample A, with an 
accuracy of 81.63% for cisgender and 93.43% for transgender individuals (detailed measures in Tables 1 and S3). 
Likewise, for sample B, the model achieved high overall accuracy of 93.10% (Tables 1 and S3) with an accuracy 
of 90.24% for cisgender individuals and 95.65% for transgender individuals. Matching the high accuracies, the 
prediction probability showed a sex congruent pattern with higher prediction probabilities for CM and TW 
(assigned male at birth) than for CW and TM (assigned female at birth) in both sample A (Fig. 4a, c) and sample 
B (Fig. 4e, g). A comparison of probability distributions of cis- and transgender individuals with the same sex 
revealed a trend for higher prediction probability for CW than for TM in sample A (t = 1.98, p = 0.0527, Cohen´s 
d = 0.53), which was signi"cant in sample B (t = 3.58, p < 0.001, Cohen´s d = 1.01), matching the TIV-distribu-
tions showing higher TIV for CW than TM (Fig. S1).

!e comparison of prediction probabilities for CM versus TW was not signi"cant in both samples (Sample 
A: t = & 0.55, p = 0.5820, Cohen´s d = & 0.15; Sample B: t = 1.07, p = 0.2922, Cohen´s d = 0.36), while the e#ect size 
indicated a trend of lower prediction probability for TW than CM. While TIV-distributions for sex congruently 
and incongruently classi"ed individuals did not di#er signi"cantly (Table 3), sex congruently classi"ed CW and 
TM had a lower TIV than those classi"ed in a sex incongruent manner. Sex congruently classi"ed CM and TW 
had a higher TIV than those classi"ed sex incongruently (Fig. 4b, d, f, h), indicating a similar bias of this model 
for both cisgender and transgender individuals.

Nonbiased ATM model: similar performances for cisgender and transgender individuals. !e 
application of the ATM model to sample A displayed a high overall sex classi"cation accuracy of 91.30% (91.84% 
for cisgender and 90.01% for transgender individuals). !is model also performed accurately on sample B with 
an overall accuracy of 93.10% (92.68% for cisgender and 93.48% for transgender individuals, details in Table 1 
and S3). In both samples, the ATM model yielded sex congruent prediction probabilities for all four groups 
(Fig. 4i, k, m, o). As opposed to the biased model, here, TM showed a trend of higher prediction probability than 
CW in Sample B (CW vs TM: t = & 1.27, p = 0.2093, Cohen´s d = & 0.36; Sample A: t = 0–0.47, p = 0.6425, Cohen´s 
d = & 0.12;). !is gender congruent trend was not observed for TW (CM vs. TW: Sample A: t = 0.31, p = 0.7577, 
Cohen´s d = 0.08; Sample B: t = & 2.02, p = 0.0510, Cohen´s d = & 0.68). !e comparison of TIV distributions 
between sex congruently and incongruently classi"ed individuals (Fig. 4 j, l, n, p) did not reveal any signi"cant 
di#erences (Table 3), neither for cisgender nor for transgender individuals, thus displaying no evidence for a 
TIV bias of this model.

Discussion
In this work, we systematically compared two confound removal approaches, featurewise confound removal 
and sample strati"cation, with the aim to train accurate sex classi"cation models without a TIV bias. In order to 
directly compare our "ndings to those of a previous study, we implemented a ML pipeline that has demonstrated 
high levels of sex classi"cation  accuracy16. !is pipeline consisted of principal component analysis (PCA) for 
dimensionality reduction, followed by an SVM model with rbf kernel for learning, but did not report any con-
sideration of the confounding e#ects of TIV.

Consistent with previous results, the baseline AM model which does not consider confounding e#ects of 
TIV achieved near-perfect classi"cation accuracy on the AM hold-out sample by accurately classifying men with 



7

Vol.:(0123456789)

Scientific Reports |        (2023) 13:13868  |  https://doi.org/10.1038/s41598-023-37508-z

www.nature.com/scientificreports/

high TIV as male and women with low TIV as  female11,12,16,17, but relied on TIV as a proxy for sex, indicating a 
pronounced TIV bias (Fig. 3b). !e TIV bias was even more pronounced when the model was applied on the 
ATM hold-out sample presumably as the AM model was more likely to make mistakes for men with relatively 
lower TIV and women with relatively higher TIV. !e pronounced TIV bias observed here is especially inter-
esting, since the GMV data had already been scaled for TIV during preprocessing. !us, our results align with 
previous claims that while the absolute amount of tissue is corrected for individual TIV, such scaling does not 
fully remove TIV-related variance (32, http:// www. neuro. uni- jena. de/ cat12/ CAT12- Manual. pdf).

For the AM+cr model, where a featurewise removal of TIV was performed on the AM data, the misclassi"ca-
tions of both women and men were not systematically related to TIV di#erences, indicating that this model was 
not biased by TIV. !is suggests that the AM+cr model based its classi"cations on di#erent information than the 
AM model did. Our results match the "ndings of previous  studies20,30,33,34, reporting a decrease in accuracy for sex 
classi"cation models controlling for TIV in contrast to TIV-biased models. !is decrease is likely related to the 

Figure 4.  Association between prediction probability and TIV for the AM and ATM models in the two 
application samples. !e upper row (a–h) shows the prediction probability (a, c, e, g) and TIV distribution 
(b, d, f, h) of sex congruently and incongruently classi"ed CM, CW, TM and TW in the AM model in sample A 
and B. !e bottom row (i–p) shows the prediction probability (i, k, m, o) and TIV distribution (j, l, n, p) of sex 
congruently and incongruently classi"ed CM, CW, TM and TW in the ATM model in sample A and B. (CW/f: 
CW classi"ed as female; CW/m: CW classi"ed as male; CM/m: CM classi"ed as male; CM/f: CM classi"ed as 
female; TM/f: TM classi"ed as female; TM/m: TM classi"ed as male; TW/m: TW classi"ed as male; TW/f: TW 
classi"ed as female).

http://www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf
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removal of TIV-related variance during featurewise confound removal, which might have decreased the overall 
amount of information available for the AM+cr model in contrast to the AM  model20,30,33,34. !is observation 
is in line with the results of a previous study suggesting that TIV alone contains enough information to classify 
sex at a similar level of accuracy as TIV-uncorrected  GMV34. Considering that features in the AM sample can 
be assumed to contain more TIV-related variance than the ATM sample presumably explains why the drop in 
accuracy between the AM and the ATM+cr is less pronounced for the ATM hold-out sample than for the AM 
sample. Altogether, featurewise confound removal reduced TIV bias at the cost of classi"cation accuracy. While 
a lack of bias in a model is desirable, so is high accuracy, suggesting that featurewise confound removal might 
not be the ideal approach to reduce TIV bias in structural sex classi"cation.

In contrast to the models trained on the AM sample, both ATM trained models resulted in high and unbiased 
model performance for the AM as well as the ATM hold-out samples. !e slightly higher accuracy for the ATM 
hold-out sample is likely due to the ATM hold-out sample better matching the characteristics of the ATM train-
ing sample, in particular with respect to TIV distribution, which is highly related to the target variable  sex30. !e 
better performance of the ATM and ATM+cr model on the ATM hold-out samples also supports the relevance of 
stratifying training and hold-out samples with respect to relevant variables that may interact with the  target35,36.

!e comparison of TIV of sex congruently and incongruently classi"ed women and men did not indicate 
a TIV bias, which is in line with a study proposing beforehand matching to be a more e(cient approach than 
feature-wise confound removal in the statistical  analysis9. However, another study argued against the match-
ing of data, arguing that matching for speci"c characteristics creates a sample that is not representative of the 
whole  population20. While we agree that the ATM sample does not strictly represent the TIV distribution of 
the population by rather comprising men with relatively low and women with relatively high TIV, the ensuing 
models achieved high classi"cation accuracies, even when applied to the AM hold-out sample which re%ects the 
natural TIV distribution. !is indicates that the models themselves are not biased by training sample charac-
teristics, especially the restricted TIV range. In fact, the models appear to correctly capture sex di#erences in a 
generalizable manner as exempli"ed by their performance on the two hold-out samples. However, we would like 
to emphasize that both confound removal approaches employed in the present study rely on di#erent statistical 
operations which are anticipated to result in di#erent outcomes and model  performances8. !us, high model 
performance of one approach does not imply the other one to behave in a similar manner. For this reason, test-
ing which approach is most suited for an individual ML-problem is crucial. !e present results demonstrated 
that matching women and men for TIV in the training sample provides an appropriate approach for creating 
unbiased and accurate sex classi"cation models.

In contrast to previous  studies16,17, we observed similarly high classi"cation accuracies for cis- and transgender 
individuals regardless of whether the models were debiased or not. !is discrepancy may partly be explained by 
the fact that TIV of the transgender individuals in the present samples matched TIV of cisgender subjects of the 
same sex rather than aligning with gender identity (Fig. S1). !us, even a biased classi"er could accurately clas-
sify transgender individuals. However, in samples where the TIV values for transgender individuals indeed fall 
in-between those of cisgender men and women, as reported  previously25 TIV-biased models would misclassify 
transgender individuals in accordance with their gender identity, which could explain prior  "ndings16. Future 

Table 3.  Wilcoxon rank sum tests of the application samples. Comparison of individuals classi"ed as female 
versus male (Wilcoxon rank sum tests) for application sample A (a) and sample (b).

a) TIV CW classified as female versus classified as 
male TIV CM classified as male versus classified as female

AM model T = 203, z = & 1.8459, p = 0.0649, η2 = 0.1363 T = 286, z = 1.0967, p = 0.2728, η2 = 0.0501
AM+cr model T = 249, z = 0.8776, p = 0.3802, η2 = 0.0308 T = 236, z = & 1.0457, p = 0.2957, η2 = 0.0456
ATM model T = 268, z = & 0.3336, p = 0.7387, η2 = 0.0045 no CM classified as female
AM+cr model T = 268, z = & 0.3336, p = 0.7387, η2 = 0.0045 T = 294, z = 0.8668, p = 0.3861, η2 = 0.0313

TIV TM classi"ed as female versus classi"ed as male TIV TW classi"ed as male versus classi"ed as female
AM model T = 472, z = & 2.3483, p = 0.0189, η2 = 0.1671 T = 558, z = 1.4178, p = 0.1563, η2 = 0.0609
AM+cr model T = 477, z = 2.7689, p = 0.0056, η2 = 0.2323 T = 442, z = 0.6931, p = 0.4882, η2 = 0.0146
ATM model T = 499, z = 1.8437, p = 0.0652, η2 = 0.1030 no TW classified as female
AM+cr model T = 506, z = 1.4812, p = 0.1386, η2 = 0.0665 T = 532, z = 0.3395, p = 0.7342, η2 = 0.0035
b) TIV CW classi"ed as female versus classi"ed as male TIV CM classi"ed as male versus classi"ed as female
AM model T = 224, z = & 0.6281, p = 0.5299, η2 = 0.0179 T = 186, z = 2.0591, p = 0.0395, η2 = 0.2231
AM+cr model T = 199, z = 1.8328, p = 0.0668, η2 = 0.1527 T = 159, z = & 1.3948, p = 0.1631, η2 = 0.1024
ATM model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 178, z = & 0.2739, p = 0.7842, η2 = 0.0039
AM+cr model T = 237, z = 0.7424, p = 0.4579, η2 = 0.0250 T = 138, z = & 1.1500, p = 0.2501, η2 = 0.0696

TIV TM classi"ed as female versus classi"ed as male TIV TW classi"ed as male versus classi"ed as female
AM model no TM classified as male T = 145, z = 1.4162, p = 0.1567, η2 = 0.1180
AM+cr model T = 289, z = 2.7714, p = 0.0056, η2 = 0.2648 T = 115, z = & 0.1698, p = 0.8651, η2 = 0.0017
ATM model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female
AM+cr model T = 411, z = 1.4680, p = 0.1421, η2 = 0.0743 no TW classified as female
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studies should apply TIV-debiased models to additional datasets to help disentangle the complex interaction of 
sex, gender and the brain. It would be particularly interesting to apply our debiased models, which are available 
to other researchers (https:// github. com/ juaml/ sex_ predi ction_ vbm) to those datasets for which a reduction of 
sex classi"cation accuracy for transgender participants has previously been  reported16,29. Another explanation 
for the discrepancy between present and previous  results16,29, might be that our classi"ers learnt fundamentally 
di#erent models, e.g. employing di#erent feature weights than those in previous studies, which in turn might 
be caused by di#erences in characteristics of the training samples and in turn di#erent parameters learnt during 
model optimization. Beside the di#erences due to di#erent training samples, other factors a#ecting ML models 
and respective results might relate to di#erences in age-distribution. Here, we not only balanced for sex but 
also employed an exact matching of men and women with regards to age which might have reduced variance 
in comparison to the training-samples of other  studies16,29 leading to di#erences in the fundamental model and 
results. In addition to age in the training sample, the age distribution of the application sample could also play a 
role, due to age-related GMV decline. !us, older TW could be misclassi"ed due to age-related GMV changes.

!e present models were trained on a diverse collection of samples, ensuring a heterogeneity in several 
variables, such as age, scanning characteristics, and nationality. Likewise, as application samples we used two 
completely independent datasets comprising TW and TM. To our knowledge, previous studies have focused 
on test samples only comprising TW when applying a sex classi"er trained on structural data of cisgender 
individuals to transgender  individuals16,29, limiting conclusions to TW rather than transgender individuals in 
general. Notably, one study employing data of both TW and TM did not report signi"cantly lower classi"cation 
accuracy for transgender  data17, which is in line with the present results. While we did not observe decreased sex 
classi"cation accuracy for transgender individuals, this cannot be taken as a proof of absence of such structural 
brain di#erences, which might be revealed by the investigation of di#erent sets of brain features or di#erent 
analysis approaches.

Future studies can bene"t by incorporating confound control approaches within interpretable ML pipelines 
that can provide insight into how many and which brain regions are most relevant for sex di#erences. !ose 
insights can shed further light on which features are more common in men, women or both, thereby carrying 
implications for hypotheses as the mosaic of the human  brain37, which exceeds the scope of the current study 
design. Methodologically sound studies, including both sex and gender aspects, are needed to improve our 
understanding of sex and gender-related di#erences in behavior and prevalence rates of mental disorders to 
advance development of sex-speci"c  treatments38,39. Viewing patients through the lens of sex and gender is an 
essential step towards personalized care and individualized  medicine6,40. !erefore, to achieve the ultimate goal 
of neuroimaging-based precision medicine, the present study takes a "rst step towards exploring appropriate 
confound removal in ML-based sex  classi"cation41. Although each ML analysis must consider confounds speci"c 
to the research question at hand, TIV is an important confound to consider in neuroimaging data in general, as 
also shown by  others9,18,33,34,42. In addition to its application in sex classi"cation analyses, as demonstrated here, 
appropriate confound control should also be considered for other ML applications. We, therefore, recommend 
that researchers should investigate which confound removal method is appropriate for their ML analysis.

Conclusion
Our "ndings demonstrate that strati"cation via TIV-matching e#ectively eliminates TIV bias while achieving 
high levels of classi"cation accuracy in a sex classi"cation analysis using structural brain imaging features. 
Contrary to previous  results16, our sex classi"cation model demonstrated comparable levels of classi"cation 
accuracy for both cisgender and transgender individuals. Our study emphasizes the importance of removing 
TIV bias appropriately in sex classi"cation tasks to prevent incorrect interpretations. In general, confounding 
is a common issue in many ML-based modeling tasks, albeit with varying confounds and levels of confounding 
e#ects. !erefore, future studies utilizing ML approaches on brain imaging data should diligently examine for 
biases and implement appropriate confound control measures.

Materials and methods
Data. Data pool for model training and evaluation. To ensure a heterogeneous sample for training the clas-
si"ers, we combined data from 10 large cohorts into one data pool of structural magnetic resonance imaging 
(MRI) images from subjects di#ering in nationality, imaging parameters and age range. Supplementary Table S4 
gives further details on the composition of the data pool, and details of the MRI data acquisition parameters 
can be found in the Supplementary Material. We only included subjects aged between 18 and 65 years with 
no indication of any psychiatric disorder, resulting in a total N of 5557 subjects. It is important to note, that 
the majority of large datasets, which have been employed for sex classi"cation studies so far, likely report sex 
based on “presented sex”, i.e. the name and outer appearance of participants or on self-reported sex without 
explicitly collecting information on gender identity. We assume that among subjects not describing themselves 
as transgender, self-reported gender identity is equivalent to sex assigned at birth, while acknowledging that this 
match may neither be perfect nor binary.

Sixteen subjects whose TIV values di#ered more than three standard deviations from the mean TIV of the 
data pool were excluded as outliers. !en, two non-overlapping samples were extracted from the data pool. In 
the "rst sample (AM), women and men were matched for age to control for age-related GMV  decline43–46. In the 
second sample (ATM), women and men were additionally matched for TIV. Possible di#erences between samples 
and sites in scanning acquisition were controlled for by including similar numbers of subjects from the di#erent 
samples in the AM and ATM-sample respectively. Both the AM and ATM sample comprised 276 subjects from 
1000 Brains, 146 subjects from Cam-CAN, 168 subjects from CoRR, 50 subjects from DLBS, 94 subjects from 

https://github.com/juaml/sex_prediction_vbm
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eNKI, 192 subjects from GOBS, 396 subjects from HCP, 96 subjects from IXI, 76 subjects from OASIS3, and 120 
subjects from PNC. Each sample was split into a training (80%) and a hold-out sample (20%).

Age-matched (AM) sample. For the AM sample (N = 1614, 807 women), women and men were matched for 
age within each site (including multiple sites within one sample) by including a male counterpart from the 
same site whose age di#ered by no more than one year for each female subject. !e age range in this sample was 
18–65 years (M = 37.96, SD = 15.28). Further detailed information can be found in Table S1, and a plot of the TIV 
distribution of women and men is displayed in Fig. S1. !ere was no signi"cant di#erence in age between women 
and men (t = 0.01, p = 0.99); however, the sexes di#ered signi"cantly with respect to TIV (t = & 61.06, p < 0.001). 
Splitting the sample into training (80%) and hold-out samples (20%) resulted in 1292 subjects (646 women) for 
training and 322 subjects (161 women) for testing. !e training and hold-out samples did not di#er with respect 
to age (t = 0.98, p = 0.33) or TIV (t = & 0.11, p = 0.91). !e age di#erence between sexes remained nonsigni"cant 
within both the training (t = & 0.00, p = 0.99) and the hold-out sample (t = 0.03, p = 0.97), whereas the TIV di#er-
ence was signi"cant for both samples (training: t = & 54.79, p < 0.001, hold-out: t = & 26.90, p < 0.001).

Age-TIV-matched (ATM) sample. For the ATM sample (N = 1614, 807 women), women and men were matched 
for age and TIV within each site. For each female subject, a male counterpart was included whose age di#ered 
by no more than one year and whose TIV di#ered by no more than 3%. !e age range in this sample comprised 
18–65 years (M = 38.15, SD = 15.35). More detailed information is displayed in Table S1, and the distribution 
of TIV for women and men in this sample is shown in Fig. S1. In this sample, women and men did not di#er 
signi"cantly in age (t = 0.01, p = 0.99), or in TIV (t = & 1.25, p = 0.21). !e ATM sample was also divided into 80% 
for training and 20% hold-out for testing, again resulting in 1292 subjects (646 women) for training and 322 
subjects (161 women) for testing. !e training and hold-out samples did not di#er with respect to age (t = 0.02, 
p = 0.98) or TIV (t = & 0.53, p = 0.60). Additionally, there was no signi"cant di#erence between women and men 
in age or TIV in the training (age: t = 0.01, p = 0.99; TIV: t = & 0.99, p = 0.32) or hold-out sample (age: t = & 0.01, 
p = 0.99; TIV: t = & 0.83, p = 0.41).

Application samples. !e "rst application sample (Sample A) was acquired in Aachen (Germany). !is data 
set consisted of 115 individuals (24 CM, 25 CW, 33 TM, 33 TW). All cisgender participants were recruited via 
a public announcement around Aachen, whereas TM and TW were recruited in self-help groups and at the 
Department of Gynaecological Endocrinology and Reproductive Medicine of the RWTH Aachen University 
Hospital, Germany. All cisgender and transgender subjects in this sample reported no presence of neurologi-
cal disorders, other medical conditions a#ecting the brain metabolism or "rst-degree relatives with a history of 
mental disorders. !e Ethics Committee of the Medical Faculty of the RWTH Aachen University approved the 
study (EK 088/09,23). At the time of MRI measurement, 15 TM and 16 TW each were receiving hormone treat-
ment. !e age of the participants ranged from 18 to 61 years (M = 30.38, SD = 11.03). More detailed demographic 
information can be found in Table S1 and Fig. S1.

!e second application sample (Sample B) consisted of an open-source dataset acquired in Barcelona, avail-
able via (https:// data. mende ley. com/ datas ets/ hjmfr v6vmg/2,47–49). !e data set contained 87 subjects (19 CM, 22 
CW, 29 TM, 17 TW) with an age range of 17 to 39 years (M = 22.23, SD = 4.97). More detailed information related 
to age and TIV in all four groups can be found in Table S1 and Fig. S1, though no information were available 
regarding the status of potential hormone treatment.

Model applications were evaluated on both application samples separately to further understand the model 
behavior on samples with di#ering characteristics (Table S1).

!e data usage of the second application sample as well as the data for the AM and ATM-sample was approved 
by the Ethics Committee of the Medical Faculty of the Heinrich-Heine University Düsseldorf (2018-317, 4039, 
4096, 5193). All subjects were participants in research projects approved by a local Institutional Review Board 
and provided written informed consent and all experiments were performed in accordance with relevant guide-
lines and regulations.

Preprocessing of structural data. Structural T1-weighted MR images of all datasets were preprocessed 
using the Computational Anatomy Toolbox (CAT12.5 r1363, http:// www. neuro. uni- jena. de/ cat12/) in SPM 
(r6685) running under Matlab 9.0. A)er initial denoising (spatial-adaptive Non-Local Means), the pipeline 
included spatial registration, bias-correction, skull-striping and segmentation by an adaptive maximum a poste-
riori  approach50 with using a partial volume  model51. Subsequently, an optimized version of the Geodesic Shoot-
ing  Algorithm52 was applied for normalization to MNI space and the resulting Jacobians were used  for non-
linear only modulation of grey matter segments, before "nal resampling to a 3 * 3 * 3 mm resolution via FSL. 
!e non-linear only modulated images (m0wp1) were globally scaled for TIV internally with an approximation 
of TIV, i.e. every voxel was scaled by the relative linear transformation to the MNI152 template. Consequently, 
while TIV-related variance was likely not fully removed from the data, the GMV data included in the analyses 
were not fully TIV-naive.

Predictive modelling. Whole-brain voxelwise GMV were used as features for training the classi"ers, 
resulting in 77779 brain features (voxels) per subject. For each of the AM and the ATM training samples, classi-
"ers were trained to predict sex with and without featurewise removal of TIV-related variance, resulting in the 
four di#erent models: AM, AM+cr, ATM and AM+cr model (Fig. 1). For all four models, we employed a SVM 
classi"er with rbf  kernel53 using Julearn (https:// juaml. github. io/ julea rn). Before training the classi"er, PCA was 
performed to reduce the dimensionality of the  data16. !e maximum number of components (n = 1292, num-

https://data.mendeley.com/datasets/hjmfrv6vmg/2
http://www.neuro.uni-jena.de/cat12/
https://juaml.github.io/julearn
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ber of subjects in the training sample) was retained. Where applicable, for featurewise TIV control TIV-related 
variance was removed a)er dimensionality reduction by subtracting the "tted values of each feature in a cross-
validation (CV)-consistent manner to avoid data  leakage20,30. Strati"ed tenfold CV was performed to assess gen-
eralization performance. !e two hyperparameters, C (1 &  1e8, log-uniform) and gamma  (1e-7 & 1, log-uniform), 
were tuned via Bayesian Hyperparameter Optimization with 250 iterations within a "vefold CV inner loop fol-
lowing the analysis employed in a previous  study16. !e best performing combination of hyperparameters from 
the Bayesian Hyperparameter Optimization was used to train the "nal model on the full sample (details depicted 
in Supplementary Material).

!e four "nal models were used to obtain predictions for the AM and ATM hold-out samples and both appli-
cation samples (Fig. 1). Before application of the models to the hold-out samples, we ensured that the models 
were calibrated (https:// scikit- learn. org/ stable/ modul es/ calib ration. html# calib ration) by assessing probabilities 
of classifying an individual into a respective class in relation to the actual labels of the individuals (Supplementary 
Figs. S2 and S3, Supplementary Results). !ese calibrations allow for checking whether the models gave accurate 
estimates of class probabilities and support probability predictions. To distinguish between the predicted and 
actual label of the sex a person identi"es with, we refer to the terms “male” and “female” as predicted labels of an 
ML model whereas we refer to “men” and “women” as actual (true) label of an individual.

To further explore model behaviour, we compared the TIV-distributions of individuals classi"ed in accord-
ance with their sex and those who were not, by use of violin  plots54 and by Wilcoxon rank sum tests. Due to the 
amount of comparisons conducted here, we chose a conservative signi"cance level of + = 0.005 with e#ect sizes 
estimated  accordingly55. To examine whether models were confounded by total GMV, we "rst tested whether 
GMV di#ered between the sexes in the two samples. In the AM sample, similarly to TIV, sexes exhibited signi"-
cant di#erences in total GMV (two-sample t-test; t = & 31.21, p < 0.001). However, matching for TIV in the ATM 
sample also resulted in a non-signi"cant di#erence in total GMV (t = 0.85, p = 0.40), indicating that matching 
on TIV was e#ective also for GMV. We then compared the GMV distributions of individuals classi"ed correctly 
in accordance with their sex and those who were misclassi"ed (Tables S5 and S6) with the same conservative 
signi"cance level as for TIV-di#erences of + = 0.005. Further details can be found in the Supplementary Results 
and Tables S5 and S6. To assess potential di#erences between cis- and transgender individuals in prediction 
probabilities, we statistically compared probabilities of CM and TW as well as CW and TM. A power-analysis 
for these comparisons was conducted using G*Power to compute sample size required for e#ect sizes as found 
in previous work with a +–level of 0.05 and power-level of 0.829,56,57.

Data availability
!e data used in the study are available via open-source datasets, for which access information is provided in the 
supplementary information "les together with the structural scanning parameter. Code is available on GitHub: 
https:// github. com/ juaml/ sex_ predi ction_ vbm.
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6 Discussion 
The present work highlights multivariate statistical approaches as useful tools to offer new 

and holistic insights into the complex characteristics introduced by the phenotype sex in 

brain and cognition. The commentary outlines the overall importance of multivariate 

statistical methods in investigating complex patterns of sex-related variability. In subsequent 

studies, sex-related variability in cognitive and brain imaging data was examined utilizing 

different multivariate statistical methods. Using a CFA, study 1 demonstrated sex differences 

in cognitive profiles as captured by different component solutions for males and females. 

The studies 2 and 3 examined sex differences in functional and structural brain organization 

using ML models while also focusing on methodological considerations in sex classification 

analyses. The former focused on the influence of the training sample on the generalization 

performance and the latter demonstrated the relevance of appropriate control of confounding 

variables. 

6.1 Addressing methodological considerations in multivariate 

analyses of sex differences 

 
Choice of dataset 
One important factor that affects the generalization performance in terms of exhibiting 

differences between models is the choice of the sample on which the ML models are trained. 

In study 2, we systematically compared four different samples based on single datasets and 

two compound samples containing data from four different datasets with varying sample 

characteristics. All samples were used for training sex classification models, followed by an 

evaluation of the generalization performance when tested across multiple test samples. The 

results of study 2 demonstrated that models trained on single samples did not generalize well 

across all test samples, which is in line with the findings of a previous study [107]. Compared 

to models trained on single samples, both sets of models trained on compound samples 

demonstrated superior generalization performance. These findings indicate that training ML 

models on a compound sample may better generalize, as a compound training sample is more 

heterogeneous and more representative of the test data, as proposed by other studies [93, 97, 

104, 128]. Furthermore, the larger compound sample outperformed the smaller compound 

sample, demonstrating that sample size affects generalization performance, which is 
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consistent with the results of previous studies [88, 93, 104-106]. Overall, the results of study 

2 demonstrated that both the sample size and data composition of the training sample are 

crucial factors in achieving generalizable results when investigating sex differences using 

multivariate statistical analyses.  

 

In line with these insights, a large and heterogeneous dataset was used in study 1 to obtain a 

representative sample that is also more likely to provide generalizable results. This study 

utilized a sample derived from the 1000Brains dataset, which is based on a population-based 

epidemiological cohort study. The 1000Brains dataset comprises more than 1000 subjects, a 

sample size comparable to previous large-scale neuroimaging studies acquired in Europe 

and the US [127, 129-131]. The 1000Brains dataset aims to represent the variability within 

the aging process of the human brain and therefore acquired a large cohort of elderly subjects 

from the general population [127]. As it was the objective of study 1 to study cognitive 

profiles in an older population, the 1000Brains sample was ideal for the research question at 

hand. Considering that this sample is representative of the general population, it is very likely 

that the results of study 1 could be replicated in other samples. However, future studies will 

be valuable to determine whether these results can actually be replicated with regard to the 

different component solutions for males and females in their cognitive profiles. 

The findings of study 2 were also integrated into the study design of study 3 in selecting an 

appropriate training sample for the ML analysis. A sample with a high sample size and 

heterogenous sample characteristics was constructed by combining data from 10 large 

cohorts, including subjects who differ in nationality, age range, and neuroimaging 

acquisition. Using a large and heterogeneous sample enabled study 3 to achieve accurate and 

generalizable results.  

Taken together, all three studies incorporate the methodological consideration of the choice 

of dataset: For study 1, a large-scale sample was selected that is based on the general 

population. In study 2, the effect of the training sample was directly evaluated, demonstrating 

the combination of a large and heterogeneous sample leading to accurate and generalizable 

results. The results of study 3 confirmed this finding by showing accurate and generalizable 

sex classification results by training on a combination of large-scale datasets. 

 

Confounding variables 
It is crucial to ensure that accurate and generalizable results can actually be attributed to the 

feature-target relationship and are not a consequence of other confounding variables. Study 
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3 examined the example of TIV as a confounding variable in structural sex classification 

analyses based on GMV features. Here, the model that did not control for TIV as a 

confounder demonstrated a very high classification accuracy (up to 97%). However, study 3 

also demonstrated that this high classification accuracy relates to a bias in the model, which 

classifies subjects with a high TIV as males and subjects with a low TIV as females (Figure 

3 in study 3). When controlling for TIV by featurewise confound removal during the ML 

analysis, classification accuracies decreased to 62-73%. This finding aligns with previous 

studies reporting decreased sex classification accuracies when controlling for TIV [123, 125, 

126]. In addition to featurewise confound removal, study 3 also investigated the effects of 

stratifying for TIV by matching as an approach to remove TIV-confounding information. 

The TIV-stratified models showed both an unbiased model behavior and a high level of 

accuracy (86-93%). Consequently, the matching approach is a more favorable approach to 

appropriately analyze for TIV bias in sex classification analyses based on GMV. In 

summary, study 3 demonstrates the importance of appropriately controlling for confounding 

variables in order to avoid biased predictions and misleading conclusions, as well as ensuring 

accurate interpretations about feature-target relationships. 

 

The methodological consideration of confounding variables was also addressed in studies 1 

and 2: For study 2, all samples were matched for sex and age. As a result, a similar number 

of males and females were enrolled in the study and the potential confounding influence of 

age on the RSFC was controlled for, as several studies reported age-related changes in 

functional connectivity [132-134]. In turn, study 1 controlled for the effects of age and 

education by matching males and females for these two variables, as both variables are 

reported to show effects on cognitive performance [135-138]. Overall, it is important to 

consider which variables may have a confounding influence in a given study design and how 

to appropriately control for these variables. All three studies in the present work included a 

control for potentially confounding variables in order to obtain accurate and unbiased results. 

6.2 Sex differences in cognition and the brain: Insights from 

multivariate analyses 

Beyond the methodological aspects presented in the studies 2 and 3, the results of both 

studies also demonstrated differences between males and females through the respective sex 

classification accuracies based on the functional and structural brain organization. Study 3 
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demonstrated high structural sex classification accuracies based on GMV (62-93%) that are 

consistent with the results found in previous sex classification studies [76, 101-103]. Thus, 

the sex differences in structural brain organization are as pronounced as to allow for accurate 

predictions of a person's sex in sex classification analyses. In addition, study 2 employed 

functional brain imaging data following a parcelwise approach to address topographic 

interference in RSFC by identifying spatially specific effects resulting from the highest 

classifying parcels. The results showed varying accuracies depending on the location and the 

dataset used in training the model ranging from 45-83%. Previous studies have also reported 

varying accuracy levels of up to 87% [51, 98-100]. In light of the results of study 2, a 

subsequent step would be to determine which parcels are capable of classifying on a high 

level, independent of the dataset used to train the sex classification models. It will be 

interesting to examine whether these parcels correspond to functional sex classification 

studies [51, 100] that reported highly classifying parcels located within the DMN [56, 139], 

aligning with other studies reporting sex differences in the DMN [60, 61, 140, 141]. 

Consistently highly classifying parcels across different datasets may indicate parcels that 

reflect differences in these functional connectivity patterns between males and females, 

independent of the respective dataset used to train the sex classification models. 

 

By investigating differences between males and females in cognition, study 1 provides 

complementary insights to the findings of sex differences in structural and functional brain 

organization provided by studies 2 and 3. Specifically, study 1 assessed sex differences in 

cognitive profiles of older males and females, including attention, memory, language, and 

executive functions. The results of study 1 demonstrated sex differences in single domains, 

i.e. males to perform better in tasks related to visual-spatial attention, and females to perform 

better in tasks related to verbal abilities. These results match previous findings in the 

literature reporting sex differences in domains such as language, visual-spatial abilities, and 

memory [18, 23-25, 27, 28]. Moreover, study 1 demonstrated sex differences in the cognitive 

processing styles, indicating a rather decomposed (local) cognitive profile in females and a 

more holistic (global) profile in males, which is consistent with findings in previous literature 

[142-145]. 

 

Collectively, the studies in the present work highlight the insights provided by multivariate 

approaches that do not rely on the previously defined assumption of a sexual dimorphism. 

Instead, the three studies and the commentary demonstrate the advantages of using 
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multivariate approaches to study sex differences in brain and cognition on a holistic level 

covering multiple variables rather than focusing on single variables alone. In the literature, 

there has been a controversy regarding differences versus similarities between males and 

females that cannot be resolved without incorporating the wide range of variation between 

individuals across multiple variables. Ultimately, the question is whether, despite the general 

variability that can be attributed to various factors, sex also contributes a significant amount 

to this variability. The present data-driven approaches allowed us to examine sex-related 

variability in relation to the overall variability rather than to confirm or refute the hypothesis 

of a sexual dimorphism with regard to a single variable. In study 1, a PCA and CFA allowed 

us to identify whether males and females exhibit different factor structures in their cognitive 

profiles. In studies 2 and 3, the accuracy of the sex classification analyses allowed us to 

assess the extent of information available to classify the sex of a person based on functional 

or structural neuroimaging data. The results of the present work demonstrated distinct 

cognitive processing styles for males and females (study 1) and that sex differences in the 

functional (study 2) and structural (study 3) brain organization were so pronounced to allow 

for predictions of a person’s sex according to these features. Thus, the phenotype sex 

contributes to a fundamental part of variability between individuals, at least to the extent that 

we can detect sex differences in cognition and brain organization. Overall, based on the 

multivariate approaches and the respective methodological considerations presented here, it 

is possible to evaluate the variability introduced by sex and also other phenotypes, allowing 

for appropriate conclusions regarding differences and similarities between the sexes. 

6.3 Univariate and Multivariate statistical approaches 

Taken together, the three studies in the present work demonstrate the value of multivariate 

statistical approaches to investigate sex differences in cognition and the brain. Single 

univariate group comparisons may indicate a significant sex difference in the behavioral and 

functional processing for a specific task, such as language [18-22], visual-spatial attention 

[18, 23-26, 33, 34] memory [23, 24, 27-30, 34, 35], and executive functioning [31], as well 

as single regions in the brain [12, 32]. However, several group comparisons do not 

necessarily reflect whether there are fundamental differences in the cognitive profile or brain 

organization. As opposed to univariate group comparisons contrasting males and females 

with regard to a specific variable, multivariate methods allow us to identify potential sex 

differences while taking into account multiple variables. Consequently, it is possible to 
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examine whether there are fundamental sex differences in the overall cognitive profile (study 

1), and the functional (study 2) or structural (study 3) brain organization rather than 

identifying differences in individual cognitive functions or brain regions. In addition, 

localized approaches, such as parcelwise approaches, can be used to identify the specific 

brain regions that exhibit the greatest differences and thus the highest predictive variance. 

By using targeted group comparisons to analyze single variables, it is possible to further 

examine the direction and extent of differences identified by multivariate approaches. The 

combined use of multivariate and univariate approaches can therefore be complementary to 

one another to address questions on different levels. 

 

Altogether, multivariate statistical methods provide a more holistic approach to analyze 

variability associated with the phenotype sex by considering multiple variables, enabling the 

identification of sex differences in the underlying constructs of the respective variables and 

features [80]. As such, multivariate approaches serve as a valuable complement to univariate 

analyses, which may address different types of questions, respectively. Overall, the findings 

of the present studies demonstrate the relevance of using multivariate statistical methods to 

investigate sex-related variability. In combination with large neuroimaging datasets, we can 

study parts of the complex nature of sex differences in brain and behavior.  

6.4 Factors modulating sex-related variability 

In general, the sex of a person is a prominent phenotype causing variability between 

individuals. Nonetheless, the variability in brain and cognition is not only modulated by sex 

alone, but several other factors might influence or even modulate the sex-related variability. 

Gender identity is one such modulating factor, as previous research has demonstrated an 

interaction of sex and gender indicated by differences in the brain structure when contrasting 

cis- and transgender individuals [73-78, 146]. Also, studies using multivariate methods 

reported indications for an interaction of sex and gender [76, 147]. In the present work, 

gender identity was examined in a multivariate approach in study 3, using structural sex 

classification models trained to classify sex assigned at birth to data from both cis- and 

transgender individuals. There have been previous studies that have also applied this 

methodology to transgender data, which reported a reduction in classification accuracy, 

indicating differences in the neuroanatomical structure between cis- and transgender 

individuals [76, 147]. Contrary to previous studies, the results in study 3 did not show such 
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a reduction in accuracy for transgender individuals compared to cisgender individuals 

assigned to the same sex at birth. However, these findings do not indicate that there are no 

differences between cis- and transgender individuals in the structural brain organization at 

all. The discrepancy with the previous studies may be explained by different TIV-

distributions in the samples or by fundamentally different models being trained due to 

variations in feature weights, sample characteristics, and types of confound removal. 

Nevertheless, it is important to note that study 3 provides an accurate framework to detect 

and control for a TIV-biased model behavior, enabling the classifiers to accurately identify 

the sex assigned at birth based on GMV features for both cisgender and transgender 

individuals. Overall, study 3 provides the methodological framework for future 

investigations that will allow us to examine the interaction between sex and gender both in 

terms of structural and functional brain organization without relying on brain size alone to 

complement previous research [76, 147-149]. Future studies that incorporate both cis- and 

transgender data may provide more insights into the interaction of the entwined variables of 

sex and gender [150] and how both variables contribute to different clinical manifestations 

and outcomes of diseases [16]. 

 

Furthermore, dynamic changes in sex hormones may also influence sex differences in the 

brain [151-153]. In particular, hormonal levels in women fluctuating throughout the 

menstrual cycle [154-160], reproductive stage [161], or in response to oral contraceptives 

[162-164] may modulate sex-related variability in the brain. To gain a better understanding 

of the relationship between sex hormones and sex differences in the brain, large-scale and 

longitudinal studies should acquire and consider hormone levels in conjunction with well-

characterized phenotypes. 

 

Another important variable that may influence sex-related variability and modulate sex 

differences in the brain is age. Numerous studies have demonstrated an interaction of age 

for sex differences in cognition [165, 166], as well as structural and functional brain imaging 

data [61, 166-168]. In addition, other variables relating to socio-demographics might also 

influence sex-related variability, such as the level of education, ethnicity, and socio-

economic status [169-171]. Consequently, it is necessary to consider other variables that 

may interact with sex-related variability to avoid confounding effects and ensure 

generalizable results of the present analyses [172].  
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6.5 Outlook 

Future studies will benefit from using multivariate statistical approaches to further 

investigate individual variability in the brain and behavior that is related to a person’s sex 

and other phenotypes. By combining the insights of all three studies in the present work, 

future studies may focus on integrating multiple modalities to examine sex differences in 

cognition, brain structure, and function using multivariate analysis approaches. Linking the 

three modalities can help to decode the complex interplay of variability in the brain and 

behavior on multiple levels. Generally, further investigations of individual variability, and 

especially sex-related variability, are needed to improve our understanding of sex differences 

with respect to different neuropsychological and neuropsychiatric disorders. The sex of a 

person is a crucial variable in the heterogeneity of several diseases, such as Depression, 

Anxiety, ADHD, Parkinson’s, and Alzheimer’s disease [15-17]. Thus, it is essential to 

include sex-related aspects in the investigation of mental disorders. Decoding sex-related 

variability in health- and disease-related conditions may help examining sex differences in 

the prevalence of neuropsychiatric disorders [13, 14]. Developing sex-specific treatments 

and prevention strategies is a crucial step towards a personalized medicine approach that 

aims to adapt therapeutic methods to meet individual needs. For this reason, multivariate 

approaches are important for future investigations as they provide crucial insights into the 

underlying biological mechanisms of diseases and disorders, thereby facilitating our 

understanding of their complexity [40, 42, 87]. 

 

The use of multivariate analyses has the potential to decode not only the variance associated 

with sex, but also the variance associated with phenotypes such as age, gender identity, and 

other demographic characteristics [46, 49, 50, 149]. There are several domains of 

sociodemographic characteristics [172] that should be considered when conducting a 

personalized analysis, as well as the interactions between each phenotype. Overall, 

integrating phenotypic information into multivariate analyses is essential for moving toward 

precision medicine. 

6.6 Conclusion 

In sum, the results of the present studies demonstrate the value of multivariate methods for 

understanding complex patterns in the variability of cognition and brain organization. In 

contrast to univariate group comparisons, multivariate approaches allow for studying sex-
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related variability beyond single cognitive tasks or single brain regions. Instead, multivariate 

statistical methods offer a holistic framework to study differences between males and 

females from a broader perspective. Using SEM and ML, the present work highlights 

applications of multivariate approaches to study differences between males and females in 

cognitive processing as well as in structural and functional brain organization. Moreover, 

the present studies provide methodological recommendations to ensure accurate and 

generalizable results in sex classification analyses. Future studies may extend the findings 

of the present work to advance the understanding of how sex differences in brain and 

behavior translate into daily life and clinical applications. The present findings and 

methodological considerations are not limited to sex-related variability but can be extended 

to other variables that may also interact with sex, some of which may even dynamically 

change over time (e.g., aging and hormonal effects). In general, multivariate statistical 

approaches provide a comprehensive and holistic approach to study a large number of 

variables, enabling the modeling of complex relationships and the generalization of 

predictions to unknown data. 
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