
Four Essays on Modeling and Analyzing Investor Interactions in Financial Markets,
Herding Behavior, and Speculative Bubbles

Inaugural-Dissertation

to obtain the academic degree of Doctor of Business Administration
(doctor rerum politicarum – Dr. rer. pol.)

submitted to the

Faculty of Business Administration and Economics
Heinrich Heine University Düsseldorf

presented by

John Henrik Stiebel, M.Sc.

Research Associate at the Chair of Business Administration,
esp. Financial Services,

Heinrich Heine University Düsseldorf
Universitätsstraße 1, 40225 Düsseldorf, Germany

Supervisor: Prof. Dr. Christoph J. Börner

Düsseldorf, November 6, 2024



Contents

Acknowledgements IV

List of Figures V

List of Tables VI

List of Abbreviations VII

List of Symbols X

1 Introduction 1
1.1 Market Efficiency and its Limitations . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Theoretical Base of EMH . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Empirical Base of EMH . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Theoretical challenges to the EMH . . . . . . . . . . . . . . . . . . . 7
1.1.4 Empirical challenges to the EMH . . . . . . . . . . . . . . . . . . . 10

1.2 Contribution within a Framework of Behavioral Finance Research . . . . . . 12

2 Ideal Agent System with Triplet States: Model Parameter Identification of Agent-
Field Interaction 17
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Canonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1.1 Trade Potential . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1.2 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1.3 Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.2 Microcanonical Ensemble . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.1 Procedure for Determining the Model Parameters – Experimental Setup 32
2.4.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2.1 Volatility 𝑇 – Temperature . . . . . . . . . . . . . . . . . . 34
2.4.2.2 Trade Potential �̄� pot – Magnetization . . . . . . . . . . . . 34
2.4.2.3 News Sentiment B – The Magnetic Field . . . . . . . . . . 35

2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.4 Concept for a One-Step-Ahead-Forecast . . . . . . . . . . . . . . . 42

I



2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6 Appendix – Table of Correspondence . . . . . . . . . . . . . . . . . . . . . 46
2.7 Declaration of (Co-)Authors and Record of Accomplishments . . . . . . . . . 47

3 Generalized Agent System with Triplet States: Model Parameter Identification
of Agent-Agent Interaction 48
3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.1 Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Mean-Field Approximation . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.3 Canonical Partition Function and Probability of Occupancy of the States 60
3.3.4 Model of the generalized agent system . . . . . . . . . . . . . . . . . 62
3.3.5 Realizable Macroscopic States . . . . . . . . . . . . . . . . . . . . . 64
3.3.6 Measurement Equations for Parameter 𝐽. . . . . . . . . . . . . . . . 65
3.3.7 Phase Transition and Critical Index . . . . . . . . . . . . . . . . . . 68

3.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.1 Determining the Model Parameter J – Experimental Set-up . . . . . . 71
3.4.2 Data and Transfer of the Model Parameters . . . . . . . . . . . . . . 71
3.4.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.4.4 Model Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.5 Model Predictions with Practical Relevance . . . . . . . . . . . . . . 79

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.6 Declaration of (Co-)Authors and Record of Accomplishments . . . . . . . . . 83

4 On the Connection Between Temperature and Volatility in Ideal Agent Systems 84
4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3 Definition of 𝑇 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Two-State Ideal Agent System . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Occupation Probabilities . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Distribution of the Trade Potential 𝑀 . . . . . . . . . . . . . . . . . 88

4.5 Stochastic Model of Market Capitalization . . . . . . . . . . . . . . . . . . . 88
4.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.8 Declaration of (Co-)Authors and Record of Accomplishments . . . . . . . . . 91

II



5 Beyond the Individual: Investigating the Interdependence of Speculative Bubbles
and Herding in Financial Markets 92
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.3 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3.1 Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1.2 Formation . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1.3 Empirical Methods . . . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Herding Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.2.2 Evidence for the US Stock Market . . . . . . . . . . . . . . 98
5.3.2.3 Empirical Methods . . . . . . . . . . . . . . . . . . . . . . 99

5.3.3 Bubbles due to Herding Behavior . . . . . . . . . . . . . . . . . . . 100
5.3.3.1 Theoretical Contributions . . . . . . . . . . . . . . . . . . 100
5.3.3.2 Empirical Evidence . . . . . . . . . . . . . . . . . . . . . 101

5.4 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.2 Detection of Herding Behavior . . . . . . . . . . . . . . . . . . . . . 105
5.4.3 Detection of Bubbles . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.4 Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.4.1 Baseline Analysis . . . . . . . . . . . . . . . . . . . . . . 112
5.4.4.2 Sub-period Analysis . . . . . . . . . . . . . . . . . . . . . 115
5.4.4.3 Long-term Analysis . . . . . . . . . . . . . . . . . . . . . 118
5.4.4.4 Industry Analysis . . . . . . . . . . . . . . . . . . . . . . 121
5.4.4.5 Company Size Analysis . . . . . . . . . . . . . . . . . . . 124

5.5 Robustness Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.7 Declaration of (Co-)Authors and Record of Accomplishments . . . . . . . . . 129

References 130

Statutory declaration 160

III



Acknowledgements

First and foremost, I would like to thank my doctoral advisor, Prof. Dr. Christoph J. Börner,
for his professional and personal support at all times during the preparation of this thesis.
I have considered it a privilege to be able to freely choose the topics for each project that
sparked my research interest.

I would also like to thank Prof. Dr. Ulrike Neyer for her co-supervision.

Moreover, I would like to thank my mentor and co-author Prof. Dr. Ingo Hoffmann for the
many engaging discussions, the fruitful collaboration, the honest feedback and the overall
trusting relationship.

During my time at the chair, I have had the opportunity to meet a number of colleagues who
have made this a remarkable period of time, which I have greatly enjoyed and during which I
have been able to grow personally. In particular, I would like to thank our last team, consisting
of Anne-Marie Ossig, Julia Schedrina, Lars M. Kürzinger, Philipp Stangor and Jonas Krettek,
for the many professional and personal conversations that helped to bring this to a successful
conclusion. I owe a special thanks to the latter, who, as my office mate, was an unfailing
support with a great sense of humor.

Last but not least, I would like to thank my family and friends for always believing in me and
supporting me in every way.

Düsseldorf in November 2024

IV



List of Figures

1 Chicago Board of Trade I by Gursky (1997). . . . . . . . . . . . . . . . . . . 1
2 Structure of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Original illustration of the behavioral finance research framework based on

Sharma and Kumar (2019). . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Trade Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6 Curie Volatility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7 Mean Attitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8 The herding measure ℎ𝑚𝑡 for the S&P 500 based on the state-space model

specified in Equations (61) and (62). . . . . . . . . . . . . . . . . . . . . . . 108
9 The price-dividend ratio (PDRt) with shaded areas indicating exuberant bub-

ble periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

V



List of Tables

1 Correlation analysis between sentiment scores based on different dictionaries
and market reactions (𝑝-values in parentheses). . . . . . . . . . . . . . . . . 38

2 Analyzed news and deduced key figures (𝑘 = 1 USD). . . . . . . . . . . . . . 39
3 Results for 𝜇 and 𝛼 along with the range of variation from the estimation. . . 41
4 Results of an (in-sample) one-step-ahead forecast using the 18 events from

Table 2 with benchmark approaches and four error indicators. . . . . . . . . . 43
5 Correspondence of physical model parameters in an econometric context,

substantiated with relevant literature. . . . . . . . . . . . . . . . . . . . . . . 46
6 Critical Points for (𝛼2, 𝛼3) = (+1, +1). . . . . . . . . . . . . . . . . . . . . . 67
7 Summary of the estimated parameters as well as details on the scattering in

terms of the bandwidths and the standard deviation 𝜎. Results for 𝜇 and 𝛼1

are taken from Börner et al. (2023b). . . . . . . . . . . . . . . . . . . . . . . 77
8 Descriptive statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9 Results of the state-space model. . . . . . . . . . . . . . . . . . . . . . . . . 108
10 Results of the baseline regressions. . . . . . . . . . . . . . . . . . . . . . . . 113
11 Logistic regression results for sub-periods. . . . . . . . . . . . . . . . . . . . 117
12 Logistic regression results for longer horizons in the future. . . . . . . . . . . 119
13 Logistic regression results for bubble persistence. . . . . . . . . . . . . . . . 120
14 General SIC code classifications based on first two digits. . . . . . . . . . . . 122
15 Logistic regression results by industry. . . . . . . . . . . . . . . . . . . . . . 123
16 Logistic regression results by company size. . . . . . . . . . . . . . . . . . . 125
17 Results of the robustness analysis. . . . . . . . . . . . . . . . . . . . . . . . 127

VI



List of Abbreviations

ADF Augmented Dickey-Fuller (test)
ARIMA Autoregressive integrated moving average
AR(𝑝) Autoregressive model of order 𝑝
BIC Bayesian information criterion
BIS Bank for International Settlements
BNTX UW Bloomberg code for company BioNTech SE
BSADF Backward SADF
CAPM Capital Asset Pricing Model
CCI Consumer Confidence Index
CEO Chief Executive Officer
cf. confer
Chap. Chapter
const. constant
Cont. Continued
Corp. Corporation
COVID-19 Coronavirus disease 2019
Crit. Criterion
CSAD Cross-sectional absolute deviation of returns
Dev. Deviation
DDM Dividend Discount Model
DJIA Dow Jones Industrial Average
econ. economical
e.g. exempli gratia
EMH Efficiency Market Hypothesis
EPU Economic policy uncertainty
Eq. Equation
et al. et alli/aliae/alia
etc. et cetera
EU European Union
FDA Food and Drug Administration
FED Federal Reserve System
GDP Gross domestic product
GFC Global Financial Crisis
GSADF Generalized SADF
HAC Heteroscedasticity and autocorrelation consistent (standard errors)

VII



HE Helium
HT High-tech
i.e. id est
i.i.d Independent and identically distributed
Inf. Information
JB Jarque-Bera (test)
LOCF Last observation carry forward
L.P. Limited Party
LSV Designation of the method according to Lakonishok et al. (1992)
MA Moving average
MAE Mean absolute error
MAPE Mean absolute percentage error
Max Maximum
Min Minimum
MSE Mean squared error
NASDAQ National Association of Securities Dealers Automated Quotations
Obs. Observations
OLS Ordinary least squares
p. page
PCM Portfolio Change Measure
phys. physical
PSY Designation of the method according to Phillips et al. (2015)
PWY Designation of the method according to Phillips et al. (2011)
resp. respectively
RMSE Root mean squared error
SADF Sup ADF
SARS-CoV-2 Severe acute respiratory syndrome coronavirus type 2
Sec. Section
Sep September
SIC Standard Industrial Classification
S&P Standard and Poor’s
Std Standard deviation
TS Time series
US United States
USD United States dollar
UTC Coordinated Universal Time

VIII



UK United Kingdom
VIX Volatility index of S&P 500
Vol. Volume
VOLQ Volatility index of NASDAQ 100
WHO World Health Organization
2SM Two-state model
3SM Three-state model

IX



List of Symbols

Latin symbols
𝐴 Abbreviation for mathematical term (auxiliary function)
B phys.: magnetic field, econ.: news sentiment
𝐵 Strength of news field (absolute value of B)
𝐵1 Effective message environments due to (non-)conforming adjoin-

ing agents
𝐵2 Effective message environments due to neutral adjoining agents
𝐵𝑡 Bubble dummy at time 𝑡
Binom(·) Binomial distribution
𝐵𝑆𝐴𝐷𝐹𝑡 BSADF test statistic at time 𝑡
𝐶𝐶𝑡 Sub-period specific dummy indicating the COVID-19 pandemic at

time 𝑡
𝐶𝑆𝐴𝐷𝑡 Cross-sectional absolute deviation of returns a time 𝑡
𝑐𝐵 phys.: (specific heat) capacity, econ.: overall system sensitivity
cosh(·) Cosinus hyperbolicus
𝐷 Region of parameter vector (𝛼2, 𝛼3)
𝐷𝐶𝑡 Sub-period specific dummy indicating the dot-com bubble at time 𝑡
𝑑 Index indicating daily data
𝐸 Internal energy
E𝑐 (·) Cross-sectional expected value
E𝑡 (·) Expected value at time 𝑡
E𝑏𝑡 (·) Biased expected value at time 𝑡
𝐸𝑃𝑈𝑡 Economic policy uncertainty at time 𝑡
exp(·) Exponential function
𝐹 Free Energy
F(·) Cumulative density function
𝐹𝐶𝑡 Sub-period specific dummy indicating the house price boom and sub-

sequent financial crisis at time 𝑡
𝑓 (·) Function
𝐺 (·) General function for Itos Lemma
𝑔(·) General boundary condition of region 𝐷
𝑔𝐶𝑅𝐺𝐷𝑃𝑡 Growth of credit as a ratio to GDP at time 𝑡
𝑔𝐺𝐷𝑃𝑡 GDP growth at time 𝑡
𝑔𝐼𝑃𝑡 Industrial production growth at time 𝑡
𝑔𝑀2𝑡 Growth of money supply M2 at time 𝑡

X



H Hamiltonian/Energy Functional
𝐻0 Null hypothesis
𝐻1 Alternative hypothesis
𝐻𝑚𝑡 Transformed herding parameter at time 𝑡
ℎ𝑚𝑡 Herding parameter at time 𝑡
𝑖 Counter or index for agents or assets
inf (·) Infimum
𝐽, 𝐽𝑖 𝑗 Coupling parameter
𝑗 Counter or index for agents or assets
𝐾𝑡 Concatenation factor at time 𝑡
𝑘 phys.: Boltzmann constant, econ.: scale/unit parameter

Lag order in the context of the bubble estimation method
ln(·), log(·) Natural logarithm
log3(·) Logarithm with base 3
𝑀 phys.: magnetization, econ.: purchase/sale potential

Supremum in the context of the Popoviciu (1935) equation
𝑚 Mean attitude of agents (non-)conforming

Infimum in the context of the Popoviciu (1935) equation
𝑚0 Mean attitude of agents in neutral position
𝑚𝑐0 Proportion of neutral positions at critical point
magnitude(·) Magnitude operator
𝑀𝑊 Number of words in a news message
N(·) Normal distribution
𝑁 phys.: number of particles, econ.: number of agents and shares
𝑁+ Number of agents conforming
𝑁− Number of agents non-conforming
𝑁0 Number of agents holding
�̄�0 Mean neutral position of the agent system
𝑁𝑡 Number of assets in the month 𝑡
𝑁pot Trade potential
�̄�pot Average trade potential
�̂�pot Estimated trade potential
ˆ̄𝑁pot Estimated average trade potential
𝑛! Permutation of 𝑛
𝑁𝑊 Negative words in sentiment score
O(·) Big 𝑂 notation

XI



𝑃𝑊 Positive words in sentiment score
𝑃𝑡 Price at time 𝑡
�̂�𝑡 Estimated price at time 𝑡
𝑃𝐷𝑅𝑡 Price-dividend ratio at time 𝑡
𝑝 p-Value
𝑝𝑖 Occupation probabilities
𝑝𝑡 Price at time 𝑡 in the detailed balanced condition
Prob(·) Probability
𝑝𝑣𝑡 Price volatility at time 𝑡
𝑃𝑆 Sentiment polarity score
𝑞 Number of states in a Potts model
R Real numbers
𝑅2 Coefficient of determination
𝑅𝑖𝑡 Return on asset 𝑖 at time 𝑡
𝑅𝑚𝑡 Return on market index at time 𝑡
𝑟0 Minimum window size
𝑟1 Start point of the rolling window
𝑟2 End point of the rolling window
𝑟𝑒 (Fractional) starting points of a bubble
𝑟 𝑓 (Fractional) ending points of a bubble
𝑟𝑡 Reference interest rate at time 𝑡
𝑟𝑤 Size of the rolling window
𝑟𝑒 Estimated (fractional) starting points of a bubble
𝑟 𝑓 Estimated (fractional) ending points of a bubble
𝑟𝑖𝑡 Excess return on asset 𝑖 at time 𝑡
𝑟𝑚𝑡 Excess return on the market at time 𝑡
𝑟𝑖𝑡𝑑 Daily excess return on asset 𝑖, month 𝑡
𝑟𝑚𝑡𝑑 Daily excess return on the market, month 𝑡
S Entropy
S̄ Average entropy
𝑆 Positioning in relation to the message field
𝑆𝑖 Positioning of agent 𝑖 in relation to the message field
𝑠𝑖 Generalized state for agent 𝑖
𝑠𝑐𝑣

𝛽𝑇
𝑟2 Critical value

𝑆𝐸𝑁𝑇𝑡 Consumer sentiment at time 𝑡
Std𝑐 (·) Cross-sectional standard deviation

XII



�Std𝑐 (·) Estimated cross-sectional standard deviation
sech(·) Secant hyperbolicus
sign(·) Signum function
sinh(·) Sinus hyperbolicus
sup(·) Supremum
T Finite period
𝑇 phys.: temperature, econ.: volatility

Total sample in the context of the bubble estimation method
𝑇15′ 15-minutes volatility
𝑇𝑐 phys.: critical/Curie temperature in Ising model, econ.: critical volatil-

ity in 2SM
𝑇𝑐 phys.: critical/Curie temperature in 3SM, econ.: critical volatil-

ity in 3SM
𝑡 Time
𝑡𝑣𝑡 Trade volume at time 𝑡
tanh(·) Hyperbolic tangent
U Gross utility
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1. Introduction

When thinking of a stock exchange in the traditional sense, numerous films and other
works have shaped many people’s associations. Traders are often depicted in large rooms,
communicating with cryptic signs and papers flying around, in ecstatic or highly intense
scenes. The high tension and intensity is created by the presence of individuals interacting
with each other, potentially imitating one another, and collectively sparking the mood in the
room. The photograph in Figure 1, entitled Chicago Board of Trade I by Andreas Gursky, is
an example of this. It depicts the crowded trading floor of the Board of Trade in Chicago, with
traders from various banks standing around monitors, and papers on the floor contributing to
the overall impression of frenzy and intensity. It is not about the individual situations of the
traders, but about the result created by the convergence of the traders, the space, and other
elements (Tate, 2024).

Figure 1: Chicago Board of Trade I by Gursky (1997). © Andreas Gursky, 2024. All rights reserved. Cre-
ative Commons license terms for re-use do not apply to this picture and further permission may be required
from the right holder.
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Although this image of financial markets is no longer found on trading floors due to
technological advances and the shift of significant parts of trading to digital exchanges, it
still serves as a metaphorical approach to thinking about phenomena in capital markets. In
such a hectic environment, emotions can spread quickly among traders, with euphoric or
panicked sentiments influencing others and leading to collective behavior such as herding
(Shiller, 2015). Moreover, the frenetic pace often limits information processing, leading
investors to rely more on the actions of others (Barberis and Thaler, 2003). Herding behavior
is a phenomenon, where investors imitate each other (Spyrou, 2013) and trade in the same
direction (Nofsinger and Sias, 1999). Although much of the trading no longer takes place on
trading floors as in Figure 1, trading rooms within banks or even the internet with platforms
and social media provide mechanisms through which imitation can take place (Olsen, 2011).
This behavior can potentially cause asset prices to diverge increasingly from their underlying
fundamental values due to imitation-driven purchases. One resulting phenomenon is a specu-
lative bubble in the stock market, which can lead to potentially significant economic damage
and crises (Jordà et al., 2015). Understanding these backgrounds and mechanisms is therefore
not only of academic interest, but also of practical importance for ensuring financial market
and economic stability (Phillips et al., 2015).

For this reason, this dissertation is dedicated to the study of investor interactions in
financial markets. The two distinct but related concepts of herd behavior and speculative
bubbles are central and are considered both separately and in combination. One of the central
research questions is how herding behavior can be modeled and how this modeling can be
applied in finance. The literature already contains numerous different modeling approaches,
as can be seen in the review articles by Spyrou (2013); Kallinterakis and Gregoriou (2017);
Komalasari et al. (2022). However, this dissertation explores the intersection between physics
and economics, specifically how models from statistical physics can be applied to describe
collective behavior in financial markets. Over the last half century, modeling approaches
from statistical physics based on the Ising model – originally introduced as a mathematical
model of ferromagnetism in statistical mechanics (Brush, 1967) – have increasingly found
their way into econometrics. These modeling approaches provide a framework for analyzing
interactions between investors (Sornette, 2014). Another key aspect that follows modeling and
can be seen as an intermediate step towards application is the question of the transferability of
variables from the physical to the economic or financial context. The transfer is challenging
as the systems are initially based on different principles (Sornette, 2014; Ausloos et al., 2016)
and the mathematical relationships between the variables have to be preserved. Related to this
is the calibration of the innovative modeling approach. As in applied physics, the question
arises in applied econometrics: How can the model parameters be determined on the basis

2



of data, e.g. from the capital market? Within the context of this modeling approach, another
question that arises is its applicability in forecasting price developments or in risk assessment.

As mentioned above, herding behavior is often cited as a trigger or driver of speculative
bubbles, see for example Scharfstein and Stein (1990); Lux (1995); Avery and Zemsky
(1998); DeMarzo et al. (2008); Scherbina and Schlusche (2014). Empirical studies have
already pointed to the potential link between herding behavior and returns (Nofsinger and
Sias, 1999; Wermers, 1999; Sias, 2004; Dasgupta et al., 2011; Singh, 2013; Brown et al.,
2014; Celiker et al., 2015). Therefore, this thesis also examines whether the theoretical link
between herding behavior and speculative bubbles can be observed empirically.

Due to the partly high level of abstraction of these questions and the specific research gaps
addressed by the studies, reference is made to the detailed explanations of the specific research
contributions of the individual studies as well as of the entire dissertation in Section 1.2.

In brief, this dissertation investigates collective phenomena in the capital market using
classical econometric methods from behavioral finance and econophysics, thus contributing
to a better understanding of market anomalies. Before elaborating on the contribution of the
thesis in detail, a theoretical background is provided to situate the studies. After discussing
the efficiency of capital markets, the current state of the behavioral finance literature, which
has emerged from the market efficiency debate, is presented. This framework will then be
used to contextualize the contributions of this thesis. Finally, the overall contribution of the
dissertation in the context of the market efficiency debate is described and the more detailed
contributions of the individual studies are presented.

1.1. Market Efficiency and its Limitations

In his contribution to the discussion of market efficiency and the introduction of behavioral
finance, Shleifer (2000) adopts an approach that will be followed here. Initially, the theoretical
and empirical arguments in favor of the efficiency market hypothesis (EMH) are presented,
followed by a juxtaposition of the theoretical and empirical challenges to the hypothesis. This
approach provides a nuanced perspective on the market efficiency debate and thus allows for
a better contextualization of the studies included in this dissertation.

1.1.1. Theoretical Base of EMH
The EMH is a central financial model that describes how financial markets work. It has

been the subject of much theoretical and empirical research and is at the heart of a long-
standing academic debate on market efficiency. Although the following discussion does not
follow the chronology of these studies, this perspective is also instructive. For a chronological
presentation, references such as Sewell (2011) and Ramiah et al. (2015) can be considered.
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Fama (1970) defines an efficient financial market as one in which asset prices always
fully reflect the available information. More specifically, his definition of an efficient market
involves active competition among many profit-maximizing and rational agents, each attempt-
ing to predict the future market values of individual securities using almost freely available
information. Investor rationality means that securities are valued on the basis of their funda-
mental value, i.e. according to the net present value of future cash flows, which are discounted
on a risk-adjusted basis (Shleifer, 2000). Competition among the many participants means
that the actual prices of individual securities at any given time already incorporate the effects
of both past and anticipated events. Due to uncertainty, it is not possible to precisely deter-
mine the intrinsic value of a security. Consequently, market participants may have different
expectations about the future performance of a security, potentially leading to discrepancies
between the actual price and the intrinsic value. If these discrepancies are systematic, com-
petition will eventually neutralize them. Therefore, in an efficient market, the current price
serves as the best estimate of the intrinsic value of a security. Fama (1965a,b) further deduces
that successive price adjustments occur independently of each other when (new) informa-
tion is immediately incorporated into market participants’ expectations of intrinsic value.
This reasoning underpins the random walk hypothesis, which states that stock returns are
unpredictable based on past returns, at least in the short run (Samuelson, 1965; Mandelbrot,
1966).

However, the EMH holds even without the strict assumption of investor rationality. In
many scenarios, markets are efficient even if not all investors are fully rational. For example,
if irrational investors trade randomly and their trading strategies are uncorrelated, they are
likely to cancel each other out and prices remain close to their fundamental values. The
assumption of uncorrelated strategies is, however, very restrictive (Shleifer, 2000). Yet, as
Friedman (1953) and Fama (1965b) show, the EMH also holds against the trading strategies
of irrational investors being correlated due to arbitrage, provided that the securities have
close substitutes. Arbitrage is defined as “the simultaneous purchase and sale of the same,
or essentially similar, security in two different markets at advantageously different prices”
(Sharpe et al., 1999). Suppose an asset is overvalued in the market relative to its fundamental
value due to correlated purchases by irrational investors. Arbitrageurs would then sell the
asset, or even short-sell it, while simultaneously buying other ‘essentially equivalent’ assets
to hedge their risk. If suitable substitutes, i.e., ‘essentially equivalent’ assets, are available
and tradable, arbitrageurs can thus make risk-less profits. By selling the asset, the price
approaches the fundamental value again. If arbitrage works quickly and effectively due to the
availability of substitute assets and arbitrageurs compete with each other for profits, the price
of an asset can never stray far from its fundamental value. The same applies to an undervalued
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asset. However, the prerequisite for both scenarios is the availability of suitable substitutes
(Shleifer, 2000).

Moreover, irrational investors who purchase overpriced assets generate lower returns than
passive investors and arbitrageurs. Therefore, Friedman (1953) points out that irrational
traders will lose money and become less wealthy until they eventually disappear from the
market. If arbitrage does not immediately neutralize the influence of irrational investors, their
wealth diminishes due to market forces. Hence, market efficiency can persist due to arbitrage
and competitive selection (Shleifer, 2000).

1.1.2. Empirical Base of EMH
The theoretical arguments in favor of the EMH were accompanied by empirical studies that

sought to test the predictions of the EMH. Shleifer (2000) divides these empirical predictions
into two broad categories. First, asset prices should react quickly and correctly when new
information about the value of an asset becomes available (Ramiah et al., 2015). This implies
that those who perceive the information late should not be able to benefit from it. Correctness
means that price adjustments in response to the news should, on average, be appropriate, i.e.
neither too large nor too small as a result of overreaction or underreaction. This excludes,
e.g., that neither trends nor price reversals take place after a novelty has initially been reflected
in the price. The second key prediction is that prices should not react in the absence of new
information. Both imply that stale information has no value or is not useful for making money,
as Fama (1970) points out.

However, the empirical verification of this statement requires a concretisation of what is
meant by ‘making money’ and ‘stale information’. In the financial context, making money
means generating a superior return taking into account the risk incurred. Generating a
positive cash flow on average exploiting ‘stale information’ is therefore not evidence for
market inefficiency. Instead, risk must be taken in order to achieve a return and the profit
realized could be fair market compensation for the corresponding risk-taking. However, the
problem with answering the question of whether it is fair compensation is that measuring the
risk of a particular investment (strategy) is difficult and a model of the relationship between
risk and return is needed (Shleifer, 2000). Various models exist for this purpose, such as the
dividend discount model (DDM) proposed by Gordon (1962), which measures the intrinsic
value of a company based on its underlying dividends. The capital asset pricing model
(CAPM) by Sharpe (1964), Lintner (1965) and Mossin (1966) is an equilibrium model that
focuses on the company-specific risk (beta) and the market risk premium as an indicator of
the expected return on an investment. The three-factor model proposed by Fama and French
(1992, 1996a,b) supplements the systematic risk factor beta in the CAPM with the factors size
and book-to-market ratio. The insight by Fama (1970), that most tests of market efficiency
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depend on a specific risk-return model, has significantly shaped the debate.
Defining what is meant by ‘stale information’ leads Fama (1970) to distinguish three types

of ‘stale information’, and thus three degrees of market efficiency. The weak form of market
efficiency exists when information consists of historical prices. Under the assumption of risk
neutrality, this form of market efficiency corresponds to the random walk hypothesis. In the
semi-strong form of EMH, information corresponds to all publicly available information. In
the strong form of information efficiency, it is not even possible to achieve superior profits
based on insider information, i.e., information that is not known to every market participant.
Most of the empirical evidence has focused on the weak and semi-strong forms of efficiency,
as the strong form of market efficiency may not be an accurate description of reality (Fama,
1970). Studies testing the weak form of efficiency largely draw on the random walk literature,
indicating that stock prices can indeed be approximated by random walks (Fama, 1965a, 1970).
The tests of semi-strong market efficiency aim to examine the adjustment of stock prices to
specific news events, such as announcements of annual earnings (Ball and Brown, 1968),
stock splits (Fama et al., 1969), discount rate changes (Waud, 1970), or takeover bids (Keown
and Pinkerton, 1981). The results of these so-called event studies are consistent with the
semi-strong form of market efficiency. Thus, the empirical evidence on weak and semi-strong
market efficiency has been largely confirmatory. The same is true for the second prediction of
the EMH that prices do not react in the absence of new information. Scholes (1972) employs
the event study methodology to examine how stock prices react to the announcement of large
investors selling a significant amount of a security. Arbitrage along efficient markets would
imply that no significant price changes occur because an investor’s sale does not affect the
fundamental value of the underlying stock. The author argues that security prices are set
relative to each other, as the expected returns of assets with the same risk profile are equal.
This means that the supply of stocks does not influence the price, or only very briefly, as
price differences due to block sales/purchases are swiftly arbitraged away. He refers to this
mechanism, where mere changes in demand for a stock should have only a minimal effect
on the price, as the substitution hypothesis. If arbitrage is necessary for market efficiency,
then individual securities must have close substitutes for arbitrage to work. Scholes findings
indicate relatively small price reactions to block sales, which are explained by the fact that
a large sale itself constitutes implicit information. Thus, this finding is consistent with his
substitutions hypothesis and, consequently, the second implication of the EMH, that prices
do not react to non-information (Shleifer, 2000).

After numerous empirical studies provided evidence in favor of market efficiency and
rejected opportunities for earning abnormal returns by attributing them to unaccounted risks,
both theoretical and empirical arguments challenging the EMH began to accumulate. Al-
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though these arguments were initially empirical in nature, similar to Shleifer (2000), for the
sake of simplicity, the theoretical problems will be presented first.

1.1.3. Theoretical challenges to the EMH
First, investors are not fully rational. In the economic literature, this insight is associated

with the concept of bounded rationality. This concept is used to describe human decision
making characterized by cognitive and informational limitations (Simon, 1955; Conlisk,
1996). In relation to the financial market, Black (1986) explains that many investors react to
irrelevant information that does not indicate changes in the actual value of an asset. He refers
to this non-information, and the market movements that result from trading on it, as noise. In
short, uninformed market participants too rarely follow passive investment strategies, which
they would be expected to do according to the EMH, and instead invest actively in individual
stocks, e.g., and are not sufficiently diversified (Shleifer, 2000).

Moreover, the deviations from rationality turn out to be widespread and systematic, as
explained in numerous articles (Tversky and Kahneman, 1974; Kahneman and Riepe, 1998;
Barberis and Thaler, 2003; Baker and Ricciardi, 2014). The following selection of behavioral
biases is based on the classification of Barberis and Thaler (2003) of psychological insights
into the human decision-making process that are particularly relevant to financial economics.
The categorization considers biases that arise when investors form beliefs on the one hand
and influence preferences on the other. In relation to belief formation, the following elements
are briefly discussed: overconfidence, optimism and wishful thinking, representativeness,
conservatism, belief perseverance, anchoring and availability biases. When forming their
expectations, investors suffer from overconfidence and tend to overestimate their abilities and
information (Ricciardi, 2008). From a practical point of view, this bias explains excessive
trading and low returns, as well as the mistake of not diversifying sufficiently (Baker and
Ricciardi, 2014). Another similar bias is that formed expectations tend to be optimistically
skewed. For instance, optimists overestimate their talents, underestimate the probabilities of
adverse events over which they have no control, and are prone to an illusion of control, where
the influence of chance is underestimated. The combination of optimism and overconfidence
leads people to underestimate risks, overestimate their knowledge, and overestimate their
control over events (Kahneman and Riepe, 1998). Representativeness is a heuristic in which
intuitive predictions are made based on the outcome that appears most representative or
similar to known outcomes. Ricciardi (2008) defines heuristics as: “simple and general rules
a person employs to solve a specific category of problems under conditions that involve a
high degree of risk-taking behavior and uncertainty.” This heuristic disrupts the logic of
statistical prediction and leads to the neglect of relevant information in the decision-making
process (Kahneman and Tversky, 1973; Tversky and Kahneman, 1974; Ricciardi, 2008).
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The conservatism bias refers to the tendency for beliefs to be updated in an orderly and
proportional manner according to true updated figures based on Bayes’ theorem, but not
to a sufficient extent when new information becomes available. In the financial context,
this leads to underreaction to corporate events, such as earnings announcements (Edwards,
1982; Hirshleifer, 2015). Belief perseverance refers to the persistence in maintaining a
belief even when new, contradictory information becomes available. This occurs partly
because individuals are inherently reluctant to seek out contradictory information and partly
because they approach perceived contradictory information with considerable skepticism. A
provocative example of belief perseverance in the financial market would be the maintenance
of belief in the EMH even after evidence to the contrary has been presented. When this effect
is even more pronounced, with contradictory information being misinterpreted to support false
beliefs, it is referred to as confirmation bias (Lord et al., 1979; Barberis and Thaler, 2003).
Anchoring, on the other hand, refers to the phenomenon whereby individuals’ estimates are
influenced by an initial reference point or anchor. When making estimates, individuals often
start from an initial value, which they then adjust to arrive at a final estimate. However,
different initial values lead to different estimates, indicating that the estimates are biased
towards the initial values and are insufficiently adjusted (Tversky and Kahneman, 1974). The
availability bias is a heuristic whereby events are evaluated based on immediate examples
that come to mind and are readily available. This can lead to distortions, as not all memories
are equally retrievable, and more recent events are perceived as more likely (Tversky and
Kahneman, 1974; Barberis and Thaler, 2003).

The second psychological pillar concerns investor preferences, which are a crucial as-
sumption in many economic and financial models. A typical assumption is that investors
make decisions under uncertainty according to the expected utility framework. The theo-
retical motivation for this dates back to von Neumann (2007), which was first published in
1944. According to this framework, preferences are rational and can be represented by the
expectation of a utility function if the axioms of completeness, transitivity, continuity, and
independence are satisfied. However, experimental studies show that people systematically
violate the expected utility theory in their decisions. A successful alternative explanatory
approach that reflects these experimental findings is the ‘Prospect Theory’. This approach is
not a normative theory but rather aims to represent people’s attitudes as simply as possible
(Barberis and Thaler, 2003). According to this theory, investors evaluate outcomes relative
to a reference point, which is often the status quo, and gains and losses are assessed relative
to this point. Another characteristic is loss aversion, where losses are felt more intensely
than gains of the same magnitude. In terms of probability weighting, people tend to weight
probabilities non-linearly, resulting in the tendency to overestimate small probabilities and
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underestimate large ones. This results in an S-shaped value function, which is concave (di-
minishing marginal utility) for gains and convex (increasing marginal disutility) for losses
(Kahneman and Tversky, 1979; Odean, 1998). As another example, ambiguity aversion refers
to the inconsistency of preferences, where known risks are preferred to unknown risks (Ells-
berg, 1961; Barberis and Thaler, 2003). There are many examples of investors behaving
differently from what is expected by normative economic models. When decisions are based
on heuristics rather than Bayesian rationality, this behavior is often referred to as ‘investor
sentiment’, ‘unsophisticated’ or ‘noise’ (Black, 1986; Shleifer, 2000).

The list of behavioral biases clearly shows that deviations from the maxim of economic
rationality are very likely to be systematic rather than random and therefore do not cancel each
other out. This is exacerbated by the phenomenon of herding behavior, whereby investors,
as social beings, tend to imitate each other and make similar buy or sell decisions as their
peers (Nofsinger and Sias, 1999; Spyrou, 2013). This applies not only to retail investors, but
also to professional investors. As human beings, they are themselves subject to these biases.
Moreover, in the management of third-party funds, their role as agents and the associated
delegation introduce further distortions that are likely to lead to deviations from rationality
(Scharfstein and Stein, 1990; Lakonishok et al., 1992).

Given that investors are neither fully rational nor able to offset their irrational trading
decisions due to the high systematic nature of human biases, the theoretical validity of the
EMH depends on the effectiveness of arbitrage. However, one central argument of behavioral
finance is that arbitrage is risky and thus limited. This is partly because ‘essentially equivalent’
assets, or close substitutes, are not always available. For derivative assets, this is typically not
a problem. However, arbitrage does not work, for example, when the price levels of stocks or
bonds are generally too high, as there are no substitute portfolios for these broad classes of
securities. Regarding an overall overvaluation of stocks as a class, for instance, the arbitrageur
could at most sell stocks or reduce exposure. However, this type of arbitrage is no longer
risk-free due to the high positive average returns of stocks. If the arbitrageur is risk-averse,
their interest in engaging in such arbitrage will be low (Shleifer, 2000). Even if individual
securities have better substitutes, there is a deterrent fundamental risk because the substitutes
are not necessarily perfect. For an arbitrageur, there is the risk that unexpectedly positive news
will emerge about a security he has shorted, or conversely that unexpectedly negative news
will emerge about a long position. Arbitrage with imperfect substitutes is therefore risky,
which is why it is called ‘risk arbitrage’. Even if a security has a perfect substitute, there is
another significant source of risk. This arises from the possibility that irrational traders can
drive prices further away from their fundamental value. Even if an arbitrageur identifies a
mispricing and takes a position, the behavior of noise traders can exacerbate the mispricing
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and increase the arbitrageur’s losses (de Long et al., 1990). If arbitrageurs are unable to
maintain positions due to rising losses, arbitrage is also limited for this reason. In addition,
the capital tied up in these positions, especially over longer periods, incurs opportunity costs.
Consequently, the arbitrage-based theoretical argument for the EMH is also limited, even
when close substitutes exist (Shleifer, 2000; Gromb and Vayanos, 2010).

By contrasting the theoretical arguments for market efficiency, it becomes clear that theory
does not necessarily lead to the conclusion that markets are efficient. Empirical challenges
are considered below to complete the picture.

1.1.4. Empirical challenges to the EMH
An early important empirical challenge is the excess volatility puzzle, discovered by

Shiller (1981, 1997) and LeRoy and Porter (1981). Puzzles refer to problems where empirical
observations do not match theoretical predictions (Sornette, 2014). This puzzle, related to
stock market volatility, basically concerns the fact that stock price volatility is too high to
be explained solely by the arrival of new information about future dividends. The study is
based on a simple model in which prices correspond to the expected net present value of
future dividends. The result has been interpreted by some as indicating that price changes
occur without any fundamental justification, but rather due to sunspots or mass psychology
(Shiller, 2003). This led to much criticism, suggesting that the fundamental value was
misspecified, for example due to a constant discount rate (Merton, 1987; Shiller, 2003).
Nevertheless, this finding was a catalyst for further criticism of the EMH. The weak form
of market efficiency was challenged by, among others, the work of De Bondt and Thaler
(1985). They constructed portfolios of past winners and losers and showed that past losers
had higher subsequent returns over the following 1-36 months, which could not be explained
by higher risk. One possible explanation is that investors extrapolate good and bad news,
leading to an over- or undervaluation of stocks. Since the portfolios were constructed solely
based on stale information, this calls into question the weak form of the EMH. The tendency
of securities to continue their past price movements in the short term is known as momentum
and has also been identified as a significant predictor (Jegadeesh and Titman, 1993). Even
Fama (1991) admits that stock returns are predictable based on past returns, contrary to the
conclusions of earlier studies. Subsequently, other variables have been identified that predict
future returns and challenge the semi-strong form of market efficiency, such as the market-
to-book ratio. This variable measures the ratio of the market value of a company’s equity to
its book value, with high values attributed to highly valued growth companies and low values
attributed to cheaply valued companies. High values could result from the extrapolation of
past good news, i.e. overreactions. Consistent with this, De Bondt and Thaler (1987); Fama
and French (1992); Lakonishok et al. (1994) find that portfolios with high book-to-market
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ratios have generated lower returns than portfolios with lower ratios. In addition, higher ratios
are associated with higher market risk (Lakonishok et al., 1994). Fama and French (1993,
1996a), however, interpret both market capitalization, i.e. the size of a company, and the book-
to-market ratio as measures of fundamental risk and include these two variables as factors in
the so-called three-factor model. This model posits that stocks of smaller firms or those with
low market-to-book ratios are inherently riskier, as reflected in their sensitivity to size and
market-to-book factors, and should therefore offer higher average returns. On the other hand,
larger stocks are considered safer and thus yield lower returns. Similarly, growth stocks with
high market-to-book ratios provide lower average returns because they act as hedges against
market-to-book risk. The higher returns of smaller firms and lower book-to-market ratios
are interpreted by Fama and French as proxies for compensated ‘distress risk’. However, this
interpretation is sharply criticized by Shleifer (2000), primarily due to the lack of evidence
supporting its validity.

Finally, there is also empirical evidence challenging the notion that prices do not react
to non-information. These findings are largely consistent with the evidence on the excess
volatility of stock returns. For example, Roll (1984) examined the impact of weather news on
orange futures prices and found that while there was a correlation, the variance explained by
weather was too small, despite his argument that weather was the main driver. In a second
study, Roll (1988) extended this idea to individual stocks and found that the variance in returns
explained by aggregate economic influences, returns of other companies in the same industry
and firm-specific news events was very low. The conclusion of both studies is that shocks other
than news appear to move stock prices. Another phenomenon mentioned by Shleifer (2000)
is the inclusion of companies in the S&P 500 Index during recomposition, as these events
trigger uninformed demand shifts in the affected stocks that are not neutralized by arbitrage.

Both Shleifer (2000) and Barberis and Thaler (2003) summarize that investor sentiment
and limited arbitrage are the two pillars of behavioral finance. In his review of the research,
Shiller (2003) points out that while the price movements of individual stocks can indeed be
explained by fundamentals, the aggregate market is less easily accounted for. Thus, market
efficiency should not be expected to be so fundamentally flawed that continuous profits
can be made by exploiting inefficiencies. However, insisting on market efficiency can lead to
misjudging events such as speculative bubbles. Therefore, the weaknesses of the EMH should
always be taken into account, especially when conducting research. Theoretical models such
as the EMH have their validity as descriptions of an ideal world, but they have limitations in
accurately describing real markets in their pure form. Shiller (2003) therefore suggests an
eclectic approach.
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1.2. Contribution within a Framework of Behavioral Finance Research

After elucidating the fundamental theoretical and empirical concepts of behavioral finance,
it is pertinent to examine the further development and differentiation of this research field.
The following discussion will therefore focus on the recent contributions and trends in the
behavioral finance literature, which have further deepened the understanding and application
of these theories.

Following the publication of numerous studies on human biases and empirical findings
on anomalies from the 1970s to the 1990s, as outlined above, the literature has become
increasingly integrated and more widely accepted in subsequent years. This is due to the
relevance of the scientific contributions and also to notable recognition, such as the Nobel
Prizes awarded to Daniel Kahneman in 2002 (The Nobel Prize, 2002) and Richard H. Thaler
in 2017 (The Nobel Prize, 2017). The insights from these studies have not only influenced
financial market theories (Barberis and Thaler, 2003), but are also of significant relevance in
several other fields such as public economics (Thaler and Sunstein, 2009), health economics
(Frank, 2004; Rice, 2013), labor economics (Fehr and Falk, 2002), consumer economics
(Thaler, 1980), environmental economics (Allcott, 2011), education (Bettinger and Slonim,
2007) and development economics (Banerjee and Duflo, 2011). This increasingly interdisci-
plinary orientation is also evident in the financial context, specifically through approaches in
neuroscience (Lo and Repin, 2002), sociology (Shiller, 2015), and physics (Sornette, 2014).
The integration and application of physical approaches to modeling economic relationships
are referred to in the literature as econophysics (Chakraborti et al., 2011a,b). Three of the
contributions in this dissertation fall within this area of research.

This cumulative thesis consists of four projects. The first three papers address an overarch-
ing project that focuses on modeling economic phenomena using approaches from statistical
physics. Traditional economic theory posits that individual agents, such as investors, make
rational and autonomous decisions in the capital market. However, as seen above, increasing
recognition of agent imperfections has significantly influenced economic research, leading
to analyses of behavioral economic factors like imitation effects (Bouchaud, 2013). Herding
behavior, a related phenomenon, can arise from imitation or more broadly from interactions
between different agents, and may instigate or accompany major risk events (Bekiros et al.,
2017). Within this context, the field of econophysics has gained prominence by applying
models from statistical physics to socioeconomic phenomena, as these models are particularly
adept at capturing interaction effects among system agents (Sornette, 2014). The Ising model
(Ising, 1925) is a standard model in this context, particularly due to its simplicity in repre-
senting the interaction between disorder-enhancing private information and order-enhancing
social imitation (Sornette, 2014). The core objective of this overarching project is the applica-
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tion of an improved version of the Ising model to the capital market, where the physical model
parameters and variables need to be appropriately matched to corresponding capital market
metrics. In addition, the model is empirically calibrated using econometric methods and
ultimately used for forecasting. The aim is to make both a theoretical and, more importantly,
a practical contribution. As the physical model is essentially composed of two components,
the endeavor is divided into the first two research projects to ensure a thorough treatment of
each component.

The first study focuses on the model component where agents or investors react to new
information independently, i.e., without interacting with each other. Since the overarching
goal of the study is calibration, that is, the empirical identification of parameters with capital
market data, a special situation in the capital market must be identified, through which the
corresponding parameters can be measured using measurement equations. This approach
is similar to the methodology of physical experiments, where special experimental setups
are designed to measure the relationships of interest. Unlike in physics, it is not possible
to construct experiments in the context of capital markets. Instead, specific time periods
that embody the desired effects must be analyzed. These cut-out experiments then allow the
parameters in question to be measured. The so-called cut-out experiment in this study models
the impact of sudden risk events or price jumps resulting from fundamental news. Additionally,
the underlying Ising model is extended to include a third state, allowing investors to buy,
sell, and hold stocks, thus better replicating the decision-making situation of real investors.
The central contribution is to show how the top-down model is empirically calibrated and
how this calibration is implemented. Moreover, its practical utility is demonstrated with a
forecast. While not calibrating a bottom-up model (classic agent-based models), the study
might contribute to the literature on model calibration, as the identified parameters might be
transferred to bottom-up approaches.

The second study focuses on the model dynamics arising from interactions between agents,
or investors in the capital market context. The three-state model is also used here, and it is
shown how the remaining model parameters can be calibrated on an empirical basis. The
empirical calibration is implemented using econometric methods. With the fully calibrated
model, it can be demonstrated how short-term herding behavior can emerge during phase
transitions of external state variables such as price volatility in the capital market. The model
phenomenology is shown and discussed in detail through simulations. This analysis provides
the insight that applying binary models to situations with three decision alternatives can result
in biased predictions.

The third project differs from the methodological contributions of the first two projects,
but is linked to the context of econophysical modeling and provides a theoretical contribution
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in terms of the transfer of variables from statistical physics to economics and financial markets.
The identified analogy between the state variable temperature in spin systems and volatility
in the capital market is often assumed to be proportional or is subject to ambiguity. However,
a common understanding of the meaning and possible measurability of the variables is
important, otherwise the practical applicability of the model is at risk. In the context of
the first two papers, this third project, which can also be classified as basic theoretical
research, thus ensures the interpretation and measurability of a central state variable, so that
the parameterisation of the overall model gains in validity. In this project, this proportionality
is derived theoretically and algebraically. The result is a derived measurement equation
that can be used for empirical applications. In short, papers one to three can be seen as
basic theoretical research focusing on the calibration and parameter identification of models
describing reactions to news (agent-field) and individual imitation (agent-agent) in the capital
market context.

The fourth study thematically builds upon the first three projects by investigating herding
behavior as a driver for speculative bubbles. Anomalies such as speculative bubbles have the
potential to cause significant economic damage, making it crucial to understand the factors
leading to such phenomena from both a theoretical and practical perspective. Building on the
few existing empirical studies investigating the driving factors of bubbles, the fourth study
focuses on herding behavior as a potential driving factor, which is hypothesized by theory.
However, this contribution methodologically distinguishes itself from the previous studies
as it exclusively employs economic and econometric methods and features methodological
objectivity in the empirical analysis by combining two established methods for calculating
the input variables in different regression specifications.

Dissertation

Econophysics Finance

Paper 1 Paper 2 Paper 3 Paper 4

Figure 2: Structure of the thesis.
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Contrary to the theoretical expectation that herding behavior contributes to the formation of
bubbles, the results indicate the opposite: the probability of bubbles occurring decreases when
herding behavior occurs in the market. However, when overreactions occur in subsets of the
overall market, the probability of bubbles increases. This insight has important implications
for market surveillance in the context of potential market crashes and crises following bubbles.

Figure 2 presents the structure of the thesis. The studies of the dissertation can be
methodologically classified using a framework for systematizing current behavioral finance
research. This framework, and the categorization of the individual contributions within it,
also makes the overall contribution of the thesis more tangible. The framework developed
by Sharma and Kumar (2019), shown in Figure 3, is based on two main areas: human
psychological studies, which examine how psychological biases affect investors, and empirical
studies, which focus on the role of investor behavior in market phenomena. Specifically, the
empirical studies emphasize market anomalies, excessive and asymmetric volatility, the role
of sentiment, the limits of arbitrage, and studies that integrate sentiment into a behavioral
asset pricing model. Furthermore, as a future direction for the literature, the integration of
these two categories is proposed, where primary and secondary data are combined.

Within this framework, all four papers in this dissertation can be classified as empirical
studies that focus on the influence of investor behaviour on the capital market at different
levels of abstraction. While investor biases are implicitly considered in this analysis, they are
not explicitly addressed or foregrounded. Instead, what is of interest here are the patterns
that emerge in the aggregate, allowing for possible inferences and explanations of market
anomalies. The investor sentiment expressed therein (e.g. in the form of herd behavior) is a
potential driver of price distortions, as introduced in Section 1.1. Addressing price distortions
also entails studying the consequences of limited arbitrage, without explicitly foregrounding
it. Thus, the two core elements of behavioral finance are implicitly addressed within the scope
of this dissertation.

In terms of the contribution of the studies to the discussion of market efficiency, the
econophysics studies clearly focus on modeling interactions and possibly subsequent herding
behavior. Although herding behavior can be rational, in the sense of imitating better informed
market participants, it is still classified as a potentially irrational phenomenon (Avery and
Zemsky, 1998; Litimi et al., 2016). Thus, this modeling approach addresses the softened
assumption of rationality among market participants, one pillar of behavioral finance (see
above). Moreover, herding behavior is a theoretically possible driver of capital market
anomalies such as speculative bubbles, where massive mispricing of assets can occur. Asset
prices can deviate from their intrinsic values due to successive trading decisions by different
investors, e.g. due to groupthink reinforced by the increasing interconnectedness of the internet
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(Olsen, 2011), or due to direct imitation of the same trading decisions (see later chapters).
The three econophysics studies do not directly address this form of anomaly but demonstrate
at a micro-level how herding behavior can emerge and be modeled in the market. The issue of
speculative bubbles as an anomaly and potential consequence of herding behavior is explored
in the fourth paper. The central analysis focuses on the theoretically assumed connection
that herding behavior drives bubbles. Thus, in an abstract sense, the dissertation addresses
market (in)efficiency at the level of anomalies and attempts to find explanations for them (cf.
Figure 3).

Behavioral Finance

Human Psychology studies Empirical studies

Study of psychological bi-
ases affecting investors

Study of role of investors’ be-
havior in market movement

Affecting Investor’s
Decision Making process
Anchoring bias, Hindsight

bias, Overconfidence
bias, Disappoint-
ment aversion etc.

Affecting Investor’s
Choice Clustering process

Narrow framing of problem and
Preferences dependent on the
context and reference points.

• Study of market anomalies and finding
explanation from behavioral finance

• Study of return volatility relationship and
market comovement thus linking the excess
and asymmetric volatility to investor
behavior

• Study of role of investor sentiment through
proxies and limits to arbitrage in market
return movement

• Studies attempting to come up with
behavioral asset pricing model
incorporating investor sentiment.

Future Direction for Behavioral Finance Studies would integrate psychological and empirical
studies by combining primary data with secondary data to understand market movements.

Figure 3: Original illustration of the behavioral finance research framework based on Sharma and Kumar
(2019).
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2. Ideal Agent System with Triplet States: Model Parameter Identification of Agent-
Field Interaction

2.1. Abstract

On the capital market, price movements of stock corporations can be observed indepen-
dent of overall market developments as a result of company-specific news, which suggests
the occurrence of a sudden risk event. In recent years, numerous concepts from statistical
physics have been transferred to econometrics to model these effects and other issues, e.g., in
socioeconomics. Like other studies, we extend the approaches based on the “buy” and “sell”
positions of agents (investors’ stance) with a third “hold” position. We develop the corre-
sponding theory within the framework of the microcanonical and canonical ensembles for an
ideal agent system and apply it to a capital market example. We thereby design a procedure
to estimate the required model parameters from time series on the capital market. The aim
is the appropriate modeling and the one-step-ahead assessment of the effect of a sudden risk
event. From a one-step-ahead performance comparison with selected benchmark approaches,
we infer that the model is well-specified and the model parameters are well determined.

Keywords: Agent System, Canonical Ensemble, Entropy, Partition Function, Risk Assess-
ment, Utility Function

JEL Classification: C10, C46, C51
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2.2. Introduction

Investors in individual stocks are sometimes confronted with sudden risk events that
can occur due to individual company information. In addition to leaked company-internal
information or (ad hoc) mandatory stock market announcements, the price-moving news can
also appear in the form of unanticipated scientific publications. A current example of the latter
is the shares of the pharmaceutical company BioNTech SE (ISIN US09075V1026). Political
decisions, scientific studies on the vaccine produced, news about novel SARS-CoV-2 variants,
and ad hoc statements from management make the price suddenly rise or fall, depending on
the intensity and content of the new information.

In the phase after the information has been disseminated, the prices of the securities
concerned show a dynamic that is largely decoupled from the overall market. The question
arises whether such dynamics can be modeled appropriately and whether the risk event, which
is a strong price movement or price jump (Föllmer, 1974; Cont and Tankov, 2004), can be
assessed one step ahead. From a practical perspective, these assessments allow statements to
be made about the price development depending on news that might occur. In this way, risk
events can be hedged ex ante.

The main focus of this study is on the empirical calibration of a top-down Ising-based
model for sudden risk events using the BioNTech SE share as an example. On the other hand,
there are bottom-up agent-based model approaches that also face the unsolved problem of
appropriate empirical parameter calibration (Sornette, 2014). When these models are applied
and tested on real data, empirical calibration, and validation is an issue that is widely discussed
in the literature on agent-based models (Werker and Brenner, 2004; LeBaron, 2006; Windrum
et al., 2007; Fagiolo et al., 2007; Chen et al., 2012; Iori and Porter, 2012; Fagiolo et al.,
2019). In particular, there is a need to explore how the models can be used in capital market
applications, given the difficulty of empirically calibrating the models or properly choosing
values for the parameters (Sornette, 2014). Although we cannot solve the problem in a
generalized way, we contribute by showing how to empirically measure the model parameters
of a top-down three-state model so that it can be used in practical applications. We show not
only that it is possible to parameterize such a model, but also how to do so, and that it has
practical utility in the application of forecasting. Thereby, we might help build the bridge
between both approaches because some of the identified parameter values could possibly be
used in bottom-up approaches. In addition, we develop the basic design for a forecasting
procedure and compare its performance to selected benchmark approaches.

The approaches from the field of statistical physics, which in recent years have increasingly
found their way into research in econometrics, appear to be a suitable framework for modeling
such problems of abrupt price movements and the corresponding risk. These observations
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in econometrics are reminiscent of phase transitions in dynamical systems due to changing
external variables. In physics, similar processes have been studied extensively and successfully
in theory and practice since the early 19th century (Isihara, 1971; Landau and Lifšic, 1980;
Greiner et al., 1995; Kardar, 2007), e.g., spontaneous magnetization of matter. The statistical
description of agent systems in econometrics as an image of a many-body system considered in
statistical physics has experienced a significant boom in recent years and emerged as a separate
strand of literature that can be traced back to the “Sociodynamics” research by (Weidlich, 1971)
and somewhat later to the “Sociophysics” framework of (Galam et al., 1982), among other
contributions. For an overview of the econophysics literature, see, e.g., Chakraborti et al.
(2011a,b); Bouchaud (2013); Sornette (2014); Schinckus (2016, 2018); Kutner et al. (2019).

The further developed methods in econometrics have been applied to a wide range of
problems and particularly targeted the effects of human interaction: decision-making, voting
behavior, capital market developments, etc. See, for example Kaizoji (2000), who modeled
the tendency of investors to be influenced by the investment attitude of other traders, which
led to regimes of bubbles and crashes. Michard and Bouchaud (2005) found imitations in
three different data sources: birth rates, sales of cell phones, and the decline of applause
in concert halls. Sornette and Zhou (2006) study a model in which interaction terms are
reassessed continuously in time as investors are able to learn from past experiences. Borghesi
and Bouchaud (2007) proposed a generic model for multiple-choice situations in the presence
of herding and compared it with data from a music market experiment. Oh and Jeon (2007)
studied membership dynamics in the open source software community with a spin model.
Vikram and Sinha (2011) studied a model in which interaction dynamics are mediated by
asset prices as a global variable accessible to every agent. Krause and Bornholdt (2012)
studied the process of investors’ opinion formation, and (Bouchaud, 2013) reviewed recent
studies on decision models. Zhang et al. (2015) studied the volatility of financial time series
with an Ising system, and Crescimanna and Di Persio (2016) proposed a variation of the
Ising model to study the characteristics of stock markets. Fernandez et al. (2016) studied a
three-state model and attempted to understand how social processes such as cooperation or
organization happen (this list is not intended to be complete). Furthermore, in Appendix 2.6,
the correspondence table (Table 5) can be used to trace in detail which sources guided us in
transferring the variables from physics to econometrics.

Depending on the application in physics, various thermodynamic potentials are defined
in statistical physics on the basis of partition functions, and all thermodynamic relations are
derived from the latter. The different thermodynamic potentials are linked to one another
via Legendre transformations, and the value of all partition functions are determined by
eigenvalues of a defined functional H (phys.: Hamiltonian), i.e., the microscopic structure
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of the system under consideration. Hence, the various alternatives for the description of the
state of the system under consideration are linked to one another. Statements that are derived
in one model frame must be consistently reflected in the other frames.

In econometrics, the canonical partition function 𝑍 and the free energy𝐹 – as the associated
thermodynamic potential – are usually considered for agent systems with binary decisions:
“buy” or “sell”; “follow” or “not follow”; and “elect” or “not elect” (phys.: Two-State
Spin-Systems) cf. Foley (1999); Marsili (1999); Bouchaud (2013) and the vast literature cited
therein. Applied to the stock market, this model approach describes the macroscopic behavior
of a system of 𝑁 agents (investors) who, through their binary decisions to “sell” or “buy”
a stock, influence the price of the stock, accounting for the overall market and a flow of
information. If instead a particular share and the acting agents are viewed as an isolated,
closed system, decoupled from the overall market, then the microcanonical partition function
Ω has to be evaluated, and the associated thermodynamic potential is the entropy S of the
system. In what follows, we add the latter consideration to the existing stream of literature in
econometrics. In addition, we tie in with existing approaches that extend the two states “buy”
and “sell” with a third state “hold”, such as Iori (1999); Cont and Bouchaud (2000); Takaishi
(2005); Sato (2007); Vikram and Sinha (2011); Takaishi (2013) among others. The analysis
of the microcanonical partition function then better reflects reality and allows for a deeper
insight into the underlying dynamics, the derivation of further parameters for the description
and classification of risks, and a suitable interpretation of the functional H .

It is often discussed thatH is related to the utility function𝑈 known in economics (Marsili,
1999; Foley, 1999; Bouchaud, 2013). However, the following question arises: which utility
for whom? One possible interpretation is to understand the utility from the perspective of a
market observer (market analyst, researcher, investor) and to measure it in monetary units.
The task of the market observer is then to describe the state of the market and to assess the
effects of new information: for example, with the aim of determining the parameters of a
predictive model and assessing the potential risk.

We specifically consider the ideal case in which new information reaches all agents
simultaneously and instantly in a very short time, and, thus, possible risk events suddenly
occur. Interactions between the agents play a subordinate role, and the system is therefore
regarded as an ideal agent system. This approach allows the basic model parameters to
be determined through empirical analysis. If the empirical setup is appropriate, the model
parameters are determined largely free of other disruptive influences. The calculated, basic
model parameters remain the same in all extended model concepts within statistical physics
such that they can serve as a starting point for further, more complex models; see, e.g., Foley
(1999); Marsili (1999); Anderson et al. (2001); Bouchaud (2009, 2013) for an overview.
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The most important extension in such models is the additional consideration of coupled
investor behaviors. Such dynamics components superpose on the ideal agent system studied
here and complicate the simultaneous determination of all model parameters. The essential
approach to determine the parameters appropriately is to choose special market phases in
which one part of the dynamics dominates. In this paper, we focus on the part of the dynamics
describing investor behavior depending on the news environment. Thus, appropriate market
phases are sought to determine the model parameters of this part of the dynamics.

The examination of the procedure, and how one obtains the parameters, especially in
the case of financial market problems, is not yet widespread in the literature. Experimental
physicists design an experiment, conceive the experimental setup, and measure the temporal
behavior of quantities of interest to determine the parameters of a theoretical model and
investigate physical properties. This is more difficult to realize in econometrics. In capital
market models, partial event sets can be split off from a large number of past events, described
by, e.g., price developments and general conditions, which can be assigned to the phenomenon
to be examined.

Therefore, in our contribution, on the one hand, we adhere to the extension of proven
models by introducing the “hold” position, i.e., investors’ stance to do nothing or not to change
an existing equity exposure, and on the other hand, we focus on the design of the method for
determining the model parameters, define the experimental setup and illustrate the method
using empirical examples. For the case of an ideal agent system, we propose a way to identify
this partial event set and how to determine the model parameters based on it. In addition, we
show how the estimated parameters can be used to set up a one-step-ahead forecast model to
assess abrupt risk events. The news field flows into the model as an external state variable and
shares both technical and economic proximity to sentiment in finance literature. Sentiment
is used in behavioral finance to predict asset prices (Sun et al., 2016; Gao and Yang, 2017;
Renault, 2017; Pan, 2020). Therefore, with our approach, we also show an innovative method
to use the sentiment scores generated from text analysis for prediction. We apply the forecast
and show its performance compared to selected benchmark approaches and deduce that the
model is well-specified and the model parameters well-determined. Furthermore, the ideal
agent system is included as a basic model in all known model extensions. Thus, the model
parameters play a fundamental role in all extensions. In this respect, our contribution in
the economic context can be viewed as fundamental research on which further analysis can
be built.

The remainder of the paper is structured as follows: Section 2.3 outlines the theoretical
model and defines risk indicators to describe immanent risks. In Section 2.4, we describe the
capital market data required to determine the external state variables. Using the external state
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variables, we can then estimate the model parameters. The model and key risk indicators can
then be used to assess sudden risk events. We formulate the idea of a one-step-ahead forecast
model and show the performance of the three-state model compared to basic benchmark
approaches and a two-state model. The last Section 2.5 summarizes our findings, discusses
the limitations of the concept, and presents some ideas on how to extend both the model and
the method for further research topics.

2.3. Method
We focus on the appropriate experimental design for the empirical determination of the

parameters of the thermodynamic model for describing sudden risk events in the stock market.
To this end, we consider the idealized, interaction-free theoretical model in which investors
react independently of one another to new information. The parameters determined in this
way are fundamental and, in accordance with the internal consistency of the thermodynamic
approach, remain the same even in more complex models, for example with interactions.

In the following, we use the usual notations for describing model access; cf., e.g., Bouchaud
(2009, 2013). Typically, investors are referred to as agents in generalized models. We consider
a system of 𝑁 stocks that can be traded by a collection of agents. The model parameters are
determined in Section 2.4 for a single financial asset on the basis of selected realizations in the
capital market that come closest to the ideal case elaborated here. This idealization is similar
to the case considered in Foley (1999, Section 6.1). Similarly, normalization also takes place
here, assuming that one asset is traded by one agent. In practice, each investor will generally
trade more than one stock per order. Thus, for the number of shares per trade per agent,
𝑀 ≥ 1 holds. The normalization above is an approximation and justified if the number of all
stocks, typically 𝑁 ≈ 108 and higher (e.g., BioNTech: 𝑁 ≈ 2.5 × 108), is much larger than
the individual traded position 𝑀 ≈ 102; see also the similar discussion of Weiss domains in
statistical physics (Weiss, 1907; Greiner et al., 1995).

In our transaction-based approach, each share can be bought, held, or sold. With the
“hold” position, we thus expand the alternative courses of action and, overall, expand the
existing model framework to include problems in the financial market. The three options
“buy”, “hold”, and “sell” are typically called states of an agent and refer to an investor’s
attitude towards a stock, i.e., how he positions himself towards it, and not to the existing
positions (past transactions) in his portfolio. This has the advantage that all reactions to a
new piece of information are modeled, and, thus, an instantaneous trading potential can be
derived for the next time step, cf. Section 2.4.4.

The three states are distinguished by the discrete variable 𝑠𝑖 = (−1, 0, +1) for each stock
𝑖 = 1, . . . , 𝑁 . A new message B with a basic sentiment sign(B) = (−1, 0, +1) – indicating
“bad”, “indifferent” and “good” news – and a strength 𝐵 = |B| affects the agents and thus
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the shares and ultimately the events in the capital market. We concentrate on the effects that
sudden new information B triggers, which ideally is available simultaneously to all market
participants, e.g., via Bloomberg L.P., Thomson Reuters Corp. or other competitors aggre-
gating financial and legal news. The processes by which the agents interact with one another
and diffusion processes, including trends and delays (Bouchaud, 2013) for the information,
are not considered here and are reserved for subsequent research on model extensions.

In the model framework considered here, each agent can be assigned a parameter 𝜇𝑖 that
evaluates the individual change 𝜖𝑖 of H depending on the action 𝑠𝑖 in the external information
field B. Depending on the application, 𝜇𝑖 has different names in the literature: willingness
to adopt, willingness to pay, or idiosyncratic judgment (Sornette and Zhou, 2006; Bouchaud,
2009, 2013; Crescimanna and Di Persio, 2016). In many studies, 𝜇 is chosen to be the same
for all agents. Distributions 𝜌(𝜇) of the parameter or individual settings 𝜇𝑖 are considered
in special extensions and applications, e.g., in sociophysics (Foley, 1999; Marsili, 1999;
Anderson et al., 2001; Castellano et al., 2009). In the ideal case considered here, we initially
set the parameter 𝜇 to be the same for all agents and thus follow the main stream of the
literature. The focus of our empirical analysis of time series from the financial market in
Section 2.4 is on the appropriate definition of the experimental setup and the determination
of parameter 𝜇.

As Bouchaud (2013) notes, the decision of the individual agent depends on personal
preferences, risk aversion, and framework conditions and is made given an individual utility
function. In these investigations, the parameter 𝜇 models the tendency of the binary decision
for or against an investment.

For a market analyst who does not know the individual circumstances of each agent and
studies the level of the overall market, another interpretation of 𝜇 comes to mind. For the
analyst, the parameter evaluates the change in utility that is inherent in a decision that conforms
to the message. Consider a simple descriptive model: If the company news is bad and the
agent decides to sell the stock, he or she behaves in accordance with the news, and the utility
of the analyst increases if 𝜇 > 0. The utility can thus be formulated from the perspective of
the market analyst and, due to the conformity of the observation, could be interpreted as a cost
reduction in the preparation of forecasts. How much the utility changes is then ascertained
with the absolute value of 𝜇. In this interpretation, 𝜇 can be understood as a parameter that
evaluates the conversion of new information into utility for the market analyst.

If all agents are considered, the change in the overall utility 𝑈 is calculated depending
on a functional H . This functional is pivotal in thermodynamics, where its minimum is
considered for special thermodynamic systems. Therefore, when considering a maximum
utility in econometrics, a change of sign must still be accounted for: 𝑈 = −H (Marsili, 1999).
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The functional H can be formulated based on the individual change 𝜖𝑖 triggered by an agent 𝑖:

H =

𝑁∑︁
𝑖=1

𝜖𝑖 . (1)

For the individual change 𝜖𝑖, a new discrete variable 𝑆𝑖 is introduced, which maps the fact
that the individual agent behaves in conformity with the basic sentiment on company news,
𝑆 = +1, or does not, 𝑆 = −1. In the present case, we consider a triplet state system, and
the position “hold” is also accounted for with 𝑆 = 0, so that an indifferent investor attitude
is included. The position “hold” causes a fraction 0 < 𝛼 < 1 of the individual changes of
the other two positions and is always rated positively regardless of the basic sentiment of the
news B. For the individual changes, we set

𝜖𝑖 = −𝜇𝐵𝑆𝑖 + 𝛼𝜇𝐵(1 − 𝑆2
𝑖 ) (2)

with 𝜇 > 0 and 𝐵 = |B|. For 𝑆𝑖 = +1, the agent conforms to the new message, e.g., “sell” in
the case of “bad” company news, and 𝜖𝑖 is negative and decreases H , i.e., increases the overall
utility for the analyst or similar entity trying to understand or explain the market. A non-
conforming decision (“sell” on “positive” news) increases H and decreases utility because the
position requires explanation and involves utility-decreasing effort. The hold position consis-
tently increases H , since deviation from conformity creates tension that requires explanation.
However, because the situation is not as difficult to explain as the non-conforming decision,
the reduction in utility may be proportionately smaller. Therefore, we expect the value range
for 𝛼 to be restricted between 0 and 1. The functional H depends on the set (𝑆1, . . . , 𝑆𝑁 ) and
is simply

H(𝑆1, . . . , 𝑆𝑁 ) = −𝜇𝐵
( 𝑁∑︁
𝑖=1

𝑆𝑖 − 𝛼(1 − 𝑆2
𝑖 )

)
= 𝜇𝐵

(
𝑁− + 𝛼𝑁0 − 𝑁+

)
. (3)

Here, 𝑁+ and 𝑁− are the number of agents who conform and do not conform to the company
messages, respectively, and 𝑁0 is the number of agents in the “hold” position. The following
applies to the occupation numbers of each state 0 ≤ 𝑁−, 𝑁0, 𝑁+ ≤ 𝑁 and 𝑁 = 𝑁− + 𝑁0 + 𝑁+.

The basic idea is to use the methods of statistical physics to derive a statistical model for
the configuration (𝑁−, 𝑁0, 𝑁+) that accounts for other macroscopic variables in addition to a
particular company news item and allows inferences to be made about the number of potential
buyers or sellers. The latter can then be used to estimate the impact on the price 𝑃 of a share.
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2.3.1. Canonical Ensemble
In the canonical ensemble, a subsystem is considered in thermal contact with an overall

system. The exchange quantity in physics is the temperature 𝑇 . In this case, one has
to calculate the canonical partition function 𝑍 . In finance, this means that a stock and its
investors are viewed as a subsystem embedded in an overall market. One strand of the literature
(Crescimanna and Di Persio, 2016) assumes that in econometrics, the role of temperature can
be assigned to volatility 𝜎. Thus, the volatility represents the exchange quantity in finance,
i.e., 𝑇 = 𝜎. We share this perspective and develop this approach further in Section 2.3.2.
It is customary to employ the inverse volatility (phys.: inverse temperature) 𝛽 = 1/𝑘𝑇 in the
equations with a suitably defined constant 𝑘 (Kaizoji, 2000; Oh and Jeon, 2007; Krause and
Bornholdt, 2012; Bouchaud, 2013). In Section 2.3.2, we present a suitable interpretation of
𝑘 in finance (phys.: Boltzmann constant).

In statistical physics, the canonical partition function is defined as the sum over all sets
(𝑆1, . . . , 𝑆𝑁 ):

𝑍 (𝑇, 𝐵, 𝑁) =
∑︁

(𝑆1,...,𝑆𝑁 )
exp (−𝛽H(𝑆1, . . . , 𝑆𝑁 )) . (4)

In Equation (4), we have a sum over so-called Boltzmann factors to evaluate the partition
function. In statistical physics, this approach leads to the Boltzmann–Gibbs distribution
specifying the probabilities of discrete states (Greiner et al., 1995; Kaizoji, 2000). There is
a broad discussion in choice theory about the use of this approach in finance or generally
in sociophysics or econophysics (Marsili, 1999; Kaizoji, 2000; Anderson et al., 2001). The
discussion in choice theory starts from the very mathematically convenient logit rule. This
rule is equivalent to the abovementioned Boltzmann–Gibbs distribution, so the well-known
results of statistical physics can be used (Bouchaud, 2013).

In the simple case of noninteracting agents with Hamiltonian Equation (3), in a first step
Equation (4) leads to:

𝑍 (𝑇, 𝐵, 𝑁) = [𝑍 (𝑇, 𝐵, 1)]𝑁 . (5)

Thus the canonical partition function is simply connected to the partition function for one
agent. The latter follows immediately for an agent that can be in three possible states given a
certain company news item:

𝑍 (𝑇, 𝐵, 1) = exp(−𝛽𝜇𝐵) + exp(−𝛽𝛼𝜇𝐵) + exp(+𝛽𝜇𝐵). (6)

Let 𝑥 = 𝛽𝜇𝐵. Then, with the partition function Equation (5), the probabilities for each state
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𝑆 = (−1, 0, +1) of the agent are:

𝑝1 = Prob(𝑆 = −1) = exp(−𝑥)
exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥)

𝑝2 = Prob(𝑆 = 0) = exp(−𝛼𝑥)
exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥) (7)

𝑝3 = Prob(𝑆 = +1) = exp(+𝑥)
exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥)

If we consider 𝑁 stocks, Equation (7) leads to the configuration:

𝑁− =
exp(−𝑥)

exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥) 𝑁

𝑁0 =
exp(−𝛼𝑥)

exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥) 𝑁 (8)

𝑁+ =
exp(+𝑥)

exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥) 𝑁

2.3.1.1 Trade Potential

With Equation (8), the average trade potential follows immediately:

�̄�pot = sign(B) 1
𝑁

(𝑁+ − 𝑁−)

= sign(B) exp(+𝑥) − exp(−𝑥)
exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥) (9)

The trade potential is the balance of buyers and sellers at the respective point in time and
represents the variable influencing the price. Note that if all agents sell on bad news �̄�pot = −1,
and if all agents buy on good news, �̄�pot = +1 holds. If B = 0 or volatility becomes infinite,
the trading potential is �̄�pot = 0. This describes the case in which the overall system has no
clear direction in terms of selling or buying.

At this point, the theoretical question arises, under which conditions does the three-state
system change into a two-state system? Specifically, what is the relationship between the
two models? If 𝑥 < ∞ and it is assumed that 𝛼 → ∞, then Equation (9) reduces to the
well-known relation for a two-state system: |�̄�pot | ∝ tanh(𝑥), cf., e.g., Greiner et al. (1995);
Bouchaud (2013). This describes the case, which is not considered further here, in which the
position “hold” would cause an infinitely large, negative effect related to utility. In this case,
the position “hold” would not be taken. The value of 𝛼 is expected to be between zero and
one, so this case will not occur.

Since 𝑥 = 1, i.e., 𝑘𝑇 = 𝜇𝐵, marks a special point, we approximate the trade potential
Equation (9) in an asymptotic expansion for large (𝑇 → 0 resp. 𝐵 → ∞) and a Taylor series
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for small (𝑇 → ∞ resp. 𝐵 → 0) values of 𝑥:

�̄�pot(𝑥) = sign(B)


2
3𝑥 +

2
9𝛼𝑥

2 − 1
27 (𝛼

2 + 3)𝑥3 + O(𝑥4) 𝑥 → 0

1 − 2
(
exp(−2𝑥) − exp(−4𝑥) + . . .

)
𝑥 → ∞

(10)

If we consider the leading order in the first line, the dependence of the trade potential
corresponds to the well-known law noted in Bouchaud (2013), albeit with an extra factor
of 2/3 that could have been guessed, because only 2 of 3 states are important for the trade
potential. The extra factor was formally derived from theory and is important when estimating
the true parameter 𝜇. This is because if the estimation �̂� of the parameter is based only on
a two-state system (“buy” and “sell”), the result is likely to be a significant underestimation
of the true parameter. Figure 4 shows the exact course of the trade potential, Equation (9),
and its approximations, Equation (10).
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Figure 4: The average trade potential depending on 𝑥. The figure shows the exact function Equation (9) and
the approximations Equation (10) for large and small 𝑥. Furthermore, the variation due to 𝛼 is shown. The
noted results (𝜇, 𝛼) correspond to the model parameters determined in Table 3 for the example under consider-
ation.
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2.3.1.2 Utility

In a similar way, we can express the average utility in terms of 𝑥 = 𝜇𝐵/𝑘𝑇. Substituting
Equation (8) into Equation (3) leads to:

�̄� = −𝜇𝐵 exp(−𝑥) + 𝛼 exp(−𝛼𝑥) − exp(+𝑥)
exp(−𝑥) + exp(−𝛼𝑥) + exp(+𝑥) . (11)

The Taylor expansion for small 𝑥 leads to the expression:

�̄� = −𝜇𝐵
(
𝛼

3
− 2

9
(𝛼2 + 3)𝑥 + 1

27
𝛼(𝛼2 − 9)𝑥2 + O(𝑥3)

)
. (12)

For 𝑥 = 0, a basic negative average utility �̄� = −𝜇𝐵 𝛼/3 can be observed, which results from
the fact that with high volatility and low message strength, the possible states are occupied
equally by the agents and the utility of conforming and not conforming to the news offset
one another.

2.3.1.3 Risk Measures

For 𝑥 ≪ 1, i.e., the strength of the news 𝐵 ≈ 0 and a (constant) finite volatility, we can
describe the behavior of the trade potential with small changes in the strength of the company
message:

Δ�̄�pot = 𝜒Δ𝐵 with 𝜒(𝑇, 𝐵) =
𝜕�̄�pot

𝜕𝐵
= sign(B) 2

3
𝜇

𝑘

1
𝑇
. (13)

The latter equation is the well-known Curie law 𝜒 ∝ 1/𝑇 noted in (Bouchaud, 2013, phys.:
magnetic susceptibility) but with the extra factor 2/3.

Similar to Equation (13), it is also possible to approximate the change in the trade potential
for small changes in volatility (phys.: thermal magnetic loss coefficient):

Δ�̄�pot = 𝜂Δ𝑇 with 𝜂(𝑇, 𝐵) =
𝜕�̄�pot

𝜕𝑇
= −sign(B)2

3
𝜇

𝑘

𝐵

𝑇2 = −2
3
𝜇

𝑘

B
𝑇2 . (14)

In the same way, for 𝑥 ≪ 1, we can express changes in utility with a small change in
volatility. Considering Equation (12) up to order O(𝑥) and 𝐵 = const., the change can be
described as follows:

Δ�̄� = 𝑐𝐵Δ𝑇 with 𝑐𝐵 (𝑇, 𝐵) =
𝜕�̄�

𝜕𝑇
= −𝑘 2

9
(𝛼2 + 3)

(
𝜇𝐵

𝑘𝑇

)2
. (15)

The coefficient 𝑐𝐵 is a kind of capacity (phys.: specific heat capacity). It describes the ability
of the agent system to react to changes in volatility in the form of changes in utility. Since
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𝑐𝐵 is always negative, every increase in volatility leads to a loss of utility. With increasing
volatility, however, the effect decreases, and the absolute change in utility becomes smaller.
In the high volatility limit, 𝑇 → ∞, no change in utility can be determined.

Similar to the concept of duration, the coefficients 𝜒, 𝜂 and 𝑐𝐵 can be understood as
risk parameters if there are sudden minor changes in the news situation or in the volatility:
For small changes, they can be used to estimate the effect on the considered quantity (trade
potential or utility).

2.3.2. Microcanonical Ensemble
The calculation and evaluation of the microcanonical partition function Ω leads to the

entropy of the whole agent system (Greiner et al., 1995; Kaizoji, 2000):

S = 𝑘 lnΩ. (16)

Its similarity to Shannon’s term for information (Shannon, 1948) suggests that entropy should
be interpreted as the information deficit of the market analyst about the microstate, i.e., the
state of a single agent, associated with knowing the macroscopic variables, e.g., B and 𝑇 . The
greater the entropy, the less the market analyst knows about the microscopic state and the less
information he or she knows about the entire agent system. Shannon himself introduced 𝑘 as
a positive constant and assigned it the property of a unit of measurement (Shannon, 1948, p.
11). Considering the microcanonical partition function Ω in detail, we want to pursue this
idea further to gain a suitable interpretation of the constant 𝑘 in the finance field.

In finance, the partition function Ω counts the number of sets (𝑆1, . . . , 𝑆𝑁 ) that lead to
the same, pre-given utility𝑈. For the calculation, a small interval [𝑈 − 𝛿𝑈,𝑈] is defined, so
that only some configurations (𝑁−, 𝑁0, 𝑁+) according to Equation (3) lead to a utility within
the interval. If the maximum entropy principle (Jaynes, 1957; Foley, 1999) is employed, all
that remains is a single configuration that meets the utility specification. Then, the number Ω
of possible sets that create the configuration is counted. In the present case, with 𝛿𝑈 < 𝛼𝜇𝐵,
the number of sets is determined by the multinomial coefficient:

Ω =
𝑁!

𝑁−!𝑁0!𝑁+!
. (17)

Using Stirling’s formula, ln 𝑛! = 𝑛 ln 𝑛 − 𝑛, and norming with a factor 1/ln 3, the average
entropy is

S̄ = −𝑘
3∑︁
𝑖=1

𝑝𝑖 log3 𝑝𝑖 (18)
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with the probabilities 𝑝𝑖 defined in Equation (7). If 𝑘 = 1, then S̄ is the entropy in a ternary
numeral system with minimum S̄ = 0 and maximum S̄ = 1. If 𝑝𝑖 = 1/3, then the agents are
evenly distributed over all possible positions (“sell”, “hold”, and “buy”). Then, the entropy is
at its maximum, and a market analyst needs one trit (trinary digit, cf. Brusentsov and Alvarez
(2011)) of information to determine the exact setting of an individual agent. A similar
discussion is held for the two-state systems (“buy” and “sell”) with bits in Nadal et al. (1998).
An obvious interpretation would be to regard 𝑘 as the cost of obtaining the information.
The unit of measurement of 𝑘 would then be monetary units. If 𝑝𝑖 = 1 for some 𝑖, then
the entropy is zero, i.e., all agents are in the same state 𝑖, every microstate is thus the same,
the market analyst does not need any further information to make statements about the position
of an individual agent, and there are no costs for further information.

In this interpretation of 𝑘 , the entropy of the entire agent system would sum up the cost
of the uncertainty, i.e., the information deficit measured in trits. The constant 𝑘 is, therefore,
not a model parameter but defines the unit of measurement.

State Quantity 𝑇

In statistical physics, the temperature𝑇 is a state quantity that is independent of the amount
of matter considered in a thermodynamic system. Analyzing the microcanonical ensemble,
one finds a determining equation for the temperature. A similar approach was proposed
by Marsili (1999) to define the state quantity 𝑇 in agent systems. We will briefly retrace
the course.

According to its calculation, entropy S, Equation (16), is a function of utility𝑈 for a fixed
number of agents 𝑁 and given news strength 𝐵. If a Taylor expansion is implemented with
respect to 𝑈 and second- and higher-order terms are neglected, then Marsili (1999) finds the
following relationship in analogy to statistical physics:

1
𝑇

= −𝜕S
𝜕𝑈

�����
𝑈

(19)

Since Marsili (1999) neglects 𝑘 in the entropy, he comes to the interpretation that in economics,
the state quantity 𝑇 can be considered as the price of (negative) entropy. Furthermore, he
interprets that the parameter 𝑇 plays the role of an internal temperature of an agent, and it
measures its deviation from rational behavior, which is recovered as 𝑇 → 0. This can include,
for example, not behaving in conformity with the company news B, i.e., buy on bad news,
or changing positions quickly without any new information. For a stock price, this leads to
an observable volatility. Furthermore, based on the observation that in many capital market-
related applications, a proportionality between temperature and volatility is assumed 𝑇 ∝ 𝜎
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(de Mattos Neto et al., 2011; Bouchaud, 2013), it was recently shown for an Ising-based
two-state model that there is a fundamental relationship between temperature and trading
volatility (Börner et al., 2023c). Thus, in this interpretation, the volatility observable on the
capital market is the measurand for determining the internal temperature, and in the simplest
case, the measuring equation is 𝑇 = 𝜎. In the sense of the microcanonical view, a closed
stock/agent system has a volatility. If the system is considered embedded in the overall
market (canonical ensemble, Section 2.3.1), then the exchange quantity is the volatility, and
the individual system is influenced by the volatility of the overall market.

The main qualitative effects of a changing temperature can also be observed in terms
of volatility. If the volatility tends toward zero, decisions become easier even with weak
new news and are primarily based on the direction of the new news. The agent system
overall conforms to the company message (phys.: crystallization). If the volatility becomes
very high, decisions with the same information become more difficult; the direction fluctu-
ates and is not necessarily based on the new message. As in the physics of spin systems,
the increasing disorder can be observed in the agent system, and no direction dominates.
Galam et al. (1982) conducted a similar discussion in sociology when interpreting his model
of a strike, which is based on two states (“work state” and “strike state”).

If we continue to assume that the entropy and utility itself can be measured in monetary
units, then 𝑇 becomes a unitless quantity that mediates between small changes in entropy and
changes in utility in the following way: Δ𝑈 ∝ −𝑇ΔS, i.e., an increase in entropy interpreted
as costs for further information from the perspective of a market analyst decreases his or her
utility, and the greater the volatility is, the stronger the effect.

There can be the unlikely situation that if the news is bad, the agents are predominantly
in the “buy” position, or if the news is good, they are predominantly in the “sell” position.
In both cases, 𝑁+ − 𝑁− < 0. For the trade potential, Equation (9), �̄�pot > 0 (buyer surplus) is
calculated for bad news and �̄�pot < 0 (seller surplus) for good news. In any case, the entire
agent system does not behave in accordance with the news situation.

Such an inversion is known in statistical physics and leads to a negative temperature being
assigned to the inverse state. In general, these states are not stable, and the system relaxes
within a short time (Greiner et al., 1995).

The same is assumed for the agent system considered here. An inverse state, triggered,
for example, by two successive company messages with rapidly changing signs, should relax
within a short time. The transition from the “inverse” to the “normal” state generally takes
place via a sequence of nonequilibrium states, and methods from nonequilibrium thermody-
namics are to be used for modeling, cf., e.g., the propagation of partition functions depicted in
Isihara (1971). The just-described transition can only be modeled with the (suitably extended)
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methods described in this section if it is a sequence of quasi-steady state changes in the system.
In what follows, we are interested in a procedure to estimate the model parameters 𝜇, 𝛼

and examine the “normal” case, where the entire agent system behaves in accordance with the
news situation. This means that we will not further consider the above-described case of an
inversion of the agent system in the following.

2.4. Application

2.4.1. Procedure for Determining the Model Parameters – Experimental Setup
The model parameters 0 < 𝜇 and 0 < 𝛼 < 1 are to be determined on the basis of capital

market data. The idealized model presented in Section 2.3 focuses on mapping special risk
events for single financial assets. By construction, the model is not designed for the entire
dynamic but only for special components of the dynamic in which the parameters 𝜇 and 𝛼
essentially determine the dynamic. If there are temporary events in the capital market that
correspond to the idealized specifications, the model parameters can be determined in this
cut-out experiment. The following procedure is used to determine the parameters and takes
the idealized conditions into account.

1. Periods of low, constant volatility 𝑇 with sideways price movement are sought for the
single asset to be examined. Quantile specifications are used to search for such time
segments. In the ideal case, the time segments found correspond to dynamic equilibria.

2. The news situation is then examined for all the time segments found, and those time
segments are selected for further analysis in which a single central messageB dominates
the following period. The strength 𝐵 = |B| and direction sign(B) of the message
are determined.

3. We set the value of 𝑘 to one monetary unit, compare Section 2.3.2, and calculate 𝐵/𝑘𝑇.
This means that 𝜇 remains in 𝑥 = 𝜇𝐵/𝑘𝑇 as a variable that has yet to be determined.

4. Next, the seller or buyer surplus �̄�pot is determined from the shares traded. There are
several ways to estimate �̄�pot; we discuss three different approaches and suggest one for
further use. A pair of measured values (𝐵/𝑘𝑇, �̄�pot) is thus calculated for each examined
time segment.

5. All pairs of measured values (𝐵/𝑘𝑇, �̄�pot) are used to fit the curve shown in Figure 4
with Equation (9) and determine the model parameters 𝜇 and 𝛼.
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Figure 5: Sampled closing prices for BioNTech are in the upper panel. Trade potential and volatility are in
the lower panel. Time scale: UTC+2.
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2.4.2. Data
As an example, the shares of the pharmaceutical company BioNTech are examined in

detail. Bloomberg trading data for this company is available from the American Stock
Exchange NASDAQ for the period from 1 August 2021 to 31 January 2022 with a sample rate
of 1 min (Bloomberg code: BNTX UW). The dataset is analyzed for the market session and
the pre- and after-market sessions. The opening, closing, high, and low prices are available
for each minute. In addition, the sales volume, sales value, and number of ticks are attached
to the price data. An excerpt in Figure 5 (upper panel) shows the closing prices of the various
sessions divided into bid, ask and trade for 13 September 2021.

2.4.2.1 Volatility 𝑇 – Temperature

For the statistical model in Section 2.3, the external state variable𝑇 is required and must be
extracted from the capital market data. The state variable 𝑇 was interpreted as instantaneous
volatility, which is the volatility that market participants observe for the share at the moment
prior to becoming aware of the news B. This means that the volatility must be determined over
a period that is as short as possible to be measured as closely as possible to the event and to
include as few other effects as possible. The goal of volatility measured as close to an event as
possible is thwarted by a lower limit of data points used. The limit is given by the fact that the
statistical error is becoming more dominant. We successively examined shorter measurement
periods of 120, 60, 30, 15, 10, and 5 min and found that below 15 min, the statistical errors
dominate in determining the volatility. For the following analyses, the volatility, and, hence,
the state variable 𝑇 , are determined based on logarithmic returns over the shortest reasonable
time window of 15 min. Thus, the volatility at each time 𝑡 is determined continuously as the
standard deviation over 15 logarithmic returns (𝑡, 𝑡−1, . . . , 𝑡−14) in a rolling window.

2.4.2.2 Trade Potential �̄� pot – Magnetization

Another key variable required is the effective trading potential �̄�pot, which is calculated
from the buyer surplus or seller surplus excluding hold positions, cf. Equation (9). Different
approaches were examined to extract the trade potential from the market data. The attempt to
estimate trading potential based on the bid-ask difference in turnover volume failed because
the bid and ask volumes also include some older stop-loss orders, stop-buy limit orders or
other types of orders that are not necessarily related to the current event. A similar problem
prevents the direct use of trading volume as a proxy for the trade potential a step back in time.
In the case of a price jump, older limit specifications can be processed. As a result, the trade
potential attributable to the actual event may be inaccurate. If only one stock exchange is
examined, it is also unclear how 𝑁 is to be set in Equation (9). Thus, with the data and
especially the sales volume available to us, the trade potential cannot be determined with
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sufficient accuracy. Therefore, we use an indirect method to estimate the trade potential.
Thereby, the concatenation factors 𝐾𝑡 = 𝑃𝑡+1/𝑃𝑡 of the instant price movement at a certain point
in time 𝑡 are calculated. Then, the trade potential is estimated following Vikram and Sinha
(2011):

ˆ̄𝑁pot(𝑡) =
𝐾𝑡 − 1
𝐾𝑡 + 1

(20)

With the limit 𝑃𝑡+1 → ∞, the trade potential tends to +1 (all agents buy on good news),
and with 𝑃𝑡+1 → 0 the trade potential tends to −1 (all agents sell on bad news), given finite
price 𝑃𝑡 > 0. With Equation (20), the following equation is determined for the estimated
price at time 𝑡 + 1 given the price at time 𝑡 and the trade potential defined in Equation (9):

�̂�𝑡+1 =
1 + �̄�pot

1 − �̄�pot
𝑃𝑡 with �̄�pot = sign(B) 𝑁+ − 𝑁−

𝑁
. (21)

An excerpt in Figure 5 (lower panel) shows the estimated trade potential and the volatility for
13 September 2021.

Vikram and Sinha (2011) offer the left part of Equation (21) as an approximated price
function and find that the exact form is not critical to their results. One way to derive this
equation is to find a price 𝑝 of the asset in the time interval [𝑡, 𝑡 + 1], from which the
price 𝑝𝑡+1 = exp(�̄�pot)𝑝 ≈ (1 + �̄�pot)𝑝 is calculated in the forward direction and the price
𝑝𝑡 = exp(−�̄�pot)𝑝 ≈ (1 − �̄�pot)𝑝 in the backward direction.

The relation 𝑝′ = exp(�̄�pot)𝑝 is obtained for the expected path of the stochastic process
described in ((Börner et al., 2023a), Equation (5)) when �̄�pot is constant for the time interval
under consideration. If |�̄�pot | ≪ 1, then 𝑝′ = (1+ �̄�pot)𝑝 holds approximately. If the evolution
from 𝑝𝑡 to 𝑝𝑡+1 is performed over the intermediate price 𝑝, the equation proposed by (Vikram
and Sinha, 2011) is calculated. This equation has the property of shape invariance under time
reversal and is suitable to describe reversible processes, i.e., �̄�pot → −�̄�pot, in the context of
quasi-stationary state changes (Greiner et al., 1995).

2.4.2.3 News Sentiment B – The Magnetic Field

As described above, qualified messages must first be identified. These are characterized
by the fact that the price development of the company share associated with them is caused
exclusively and instantly by the news itself and is, therefore, largely independent of overall
market developments. If this is the case, we are closest to the case of the ideal agent system
under consideration.

A Bloomberg terminal is used to analyze the news situation. This allows us to view
all news at specific points in time. To ensure that the events are not distorted by another
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influencing variable, such as a macroeconomic shock or similar factor, we check the volatility
of the BioNTech share itself and the volatilities of two indices representative of the market
(S&P 500 and NASDAQ-100) in the 15 min before the events.

The idea is that the financial market “system” must be in a tranquil state, representing a
dynamic equilibrium, in each case before an event happens. In our view, the stock itself and
the indices are each in dynamic equilibrium or in a state of tranquility if the range of volatility
in the 15 min before the event is smaller than the 95% quantile of volatility in our overall
time period (August 2021 to January 2022) and does not change In experimental physics,
one would measure the following: The temperature of a spin-system is low and constant,
and the entire system is in dynamic equilibrium with the thermal bath (Isihara, 1971; Greiner
et al., 1995). In other words, the market is in dynamic equilibrium if it is not subject to large
fluctuations (negative delimitation).

Out of 24 potential events, there thus remains a sample of 18 carefully identified events,
where each event is enriched by some splitter messages that make the same statement as the
so-called lead headline, which is representative of the respective news package for an isolated
event at a specific point in time. Once the qualified events are identified, the empirical
challenge in determining B is to convert the qualitative information of a message into a
quantitative measure. In doing so, the strength 𝐵 = |B| on the one hand and the direction of
the information sign(B) on the other hand must be determined.

We resort to a textual analysis based on a linguistic approach to evaluate text fragments
and calculate sentiment scores. The approaches in the field of text analysis are manifold,
and the different methods offer their individual advantages, cf., e.g., Kearney and Liu (2014);
Loughran and McDonald (2016, 2020). In particular, two-dimensional approaches with
“positive” and “negative” sentiments are effective at capturing different contexts (such as
the economic context of business-related messages) or at dealing with linguistic peculiarities
(Stangor and Kuerzinger, 2021).

However, before the messages can be evaluated, a common problem in text analysis must
be considered by preprocessing the data. Since inflected words can deviate from their root
word, a matching algorithm might fail to correctly assign these variations to the root word.
Therefore, the words in the message must first be transformed. Linguists have proposed
several approaches to address this problem (Feinerer et al., 2008). Stemming, for example,
traces a word to its root by identifying and eliminating suffixes. Lemmatization, on the
other hand, groups inflected words into a single group. We first transform our data using the
lemmatization list (41,531 words) created by Mechura (2016), which can be accessed via the R
package “textstem” by Rinker (2018). In selecting a suitable linguistic approach, we included
several well-known dictionaries that are embeddable via the R package “SentimentAnalysis”

36



of Feuerriegel and Proellochs (2021). These include Henry’s Financial Dictionary (Henry,
2008), the Harvard-IV dictionary, the Loughran–McDonald Financial Dictionary (Loughran
and McDonald, 2011), and the QDAP dictionary from the R package “qdapDictionaries”
by Rinker (2013). The algorithm additionally performs preprocessing operations such as
removing stopwords and stemming. With each dictionary, lists of positive and negative words
are used, and the occurrences in the messages are counted. The sentiment scores are the netted
occurrences of positive, 𝑃𝑊 , and negative, 𝑁𝑊 , words, divided by the respective number
of words 𝑀𝑊 in a news package to control for messages of different lengths: B = 𝑃𝑊−𝑁𝑊

𝑀𝑊
.

According to this definition, news sentiment B is measured in fractions of unit one and takes
values between −1 and +1.

A major drawback of the scoring algorithm is that it does not account for negations (i.e.,
words such as “not”), resulting in potentially misidentified scores and sentiments. For example,
the algorithm would count the phrase “not successful” as +1 instead of −1 . For this reason,
we manually edit our data by multiplying the determined sentiment score of the words that
are negated by −1. We refrain from further text transformation at this point, such as smiley
recognition, since this level of sophistication is sufficient to analyze the mostly standardized
text messages in finance.

The sensitivity of the sentiment analysis can be further increased if the dictionaries are
supplemented with a few additional keywords appropriate to the problem. We motivate this
measure with the conclusion and result of Kearney and Liu (2014); Renault (2017) that more
field-specific dictionaries are needed. The addition of a few but salient keywords with high
relevance in the pharmaceutical (and financial) context shows that this measure is already
very effective, and there is no need to define a complete dictionary in the first approach. The
supplement of suitable keywords to dictionaries through human intervention is an established
procedure in machine translation. Human intervention can be found in the context of machine
translation when editing results and when creating or adapting dictionaries. In practice,
human intervention is used to increase the performance of machine translation (Kawasaki,
1993). The latter is driven by the fact that basic dictionaries may not be able to handle
specific – industry standard – terminologies. Kawasaki (1993) deduces an “add-and-delete”
strategy since, on the one hand, important words should be added to the dictionary, and on
the other hand, superfluous words that do not fit the context at hand should be removed to
avoid creating erroneous ambiguities. In our context of the BioNTech stock, we keep, e.g., the
basic financial context of the Loughran–McDonald dictionary but add (a few strictly selected)
words from the pharmaceutical (and financial) context (if they are not already included in the
respective dictionary): “approval”, “authorize”, “complete”, “gain”, “protect”, and “target”
as positive words and “tank” and “sink” as negative words. We proceeded in the same way
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with the other dictionaries.
The basis of our selection of a suitable lexicon for the textual analysis is a correlation

analysis between the sentiment scores based on the different dictionaries and the market
reactions of the respective news packages, as shown in Table 1. High correlations are
desirable, as they then suggest that the external information field is well proxied.

Even though some dictionaries are designed to cover a specific context, such as a financial
context, it is still necessary to work with fundamentally insufficient recognizability of context
by natural language processing (e.g., Loughran and McDonald (2016); Renault (2017)).
Consequently, a single message can be evaluated with a certain score, although the message
is to be understood in an opposite context, depending on the perspective to be adopted. This
leads to single news items being evaluated with sentiment scores that are contrary to the
direction of the market reaction. For this reason, we neutralize the signs for the correlation
analysis, cf. the second row of Table 1. Since the correlation between the (news package)
values neutralized by the signs and the market reactions is high, at least in two cases, we
conclude that the strength 𝐵 = |B| of a message can be well represented by a text analysis
algorithm. The second row in Table 1 complements the first row in that it provides better
insight into the extent to which 𝐵 = |B| can truly be represented by the sentiment score
because the correlation is not “distorted” by matching signs.

To validate our method, we draw on proven concepts in the industry. In the context of
annotations by humans, an acceleration of machine learning has been achieved, which is
called human-in-the-loop (Wu et al., 2021). Similarly, we validate the automated estimation
of the text analysis approach by an expert survey and adjust the “wrongly” detected signs at
individual news item level for consistency. The improved consistency of the data increases
the correlation at the news package level for all the dictionaries, cf. the third row of Table 1.
To calculate the parameters 𝜇 and 𝛼, however, it is critical that the signs are correct, i.e., that
they match the actual direction of the message. Therefore, the validation or adjustment of the
signs is performed, and the correlation is increased in all cases.
Table 1: Correlation analysis between sentiment scores based on different dictionaries and market reactions
(𝑝-values in parentheses).

Loughran-
McDonald Henry Harvard-IV QDAP

sign unmodified +0.31
(2.14 × 10−1)

+0.52
(2.64 × 10−2)

+0.26
(2.93 × 10−1)

+0.10
(6.93 × 10−1)

sign neutralized +0.58
(1.10 × 10−2)

−0.07
(7.97 × 10−1)

−0.07
(7.88 × 10−1)

+0.44
(6.82 × 10−2)

sign adjusted +0.87
(2.36 × 10−6)

+0.67
(2.17 × 10−3)

+0.68
(1.85 × 10−3)

+0.80
(7.73 × 10−5)
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The financial dictionary of Loughran and McDonald (2011) is particularly suitable for our
purposes from the wide range of methods, as shown by the comparatively high correlation
in Table 1, regardless of whether the signs were neutralized or adjusted. The dictionary is
specially designed for the analysis of financial text and is broadly used in economic research
(Chen et al., 2014; Da et al., 2015; Löffler et al., 2021; Stangor and Kuerzinger, 2021).

To assess how unambiguous a message is in each case, we use a sentiment polarity score,
𝑃𝑆, as proposed by Zhang and Skiena (2010) and used similarly by Li et al. (2014). Table 2
contains the measure of 𝑃𝑆 that ranges from−1 to +1 and is given by 𝑃𝑆 = 𝑃𝑊−𝑁𝑊

𝑃𝑊+𝑁𝑊 . The closer
the score is to −1 or +1, the clearer the message is.

Table 2: Analyzed news and deduced key figures (𝑘 = 1 USD).

Date Core Message

Analysis News Capital Market Risk-Measures
B 𝑃𝑆 𝑇15′ �̄�pot 𝜒 𝜂 𝑐𝐵 𝐵/𝑘𝑇

Units 10−2 10−1 10−4 10−3 10−2 10−1 10−5 100

USD

3 August 2021 F.D.A. Aims to Give Final Approval to Pfizer Vaccine by Early Next Month

+ 6 + 7 + 10 +11 +26 −161 − 46 + 62

6 August 2021 FDA expects to have COVID vaccine booster strategy early next month

0 NA + 11 +22 0 0 0 0

20 August 2021 FDA Approves Pfizer-Biontech COVID-19 Vaccine

+14 +10 + 13 +31 +20 −225 −149 +111

10 September 2021 Biontech to Seek Vaccine Approval for 5–11 year olds

+ 8 + 6 + 9 +11 +28 −235 − 86 + 84

13 September 2021 Covid Evidence doesn’t support broad Need for Boosters

− 3 −10 + 12 − 8 −22 + 51 − 7 − 24

16 September 2021 FDA Advisers Back a Narrower Authorization for Pfizer Booster

−10 − 6 + 13 − 9 −20 +157 − 73 − 77

23 September 2021 FDA Authorizes Booster Dose of Pfizer-BioNTech COVID-19 Vaccine for

Certain Populations

+ 8 +10 + 10 + 8 +25 −194 − 73 + 78

30 September 2021 Pfizer/BioNTech Vaccine Antibodies Disappear

− 3 − 3 + 14 −42 −18 + 43 − 7 − 24

18 October 2021 Pfizer And AstraZeneca Vaccines Were Effective As Prior Infection,

U.K. Study Finds

+12 +10 + 8 +23 +34 −510 −273 +150
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20 October 2021 CDC: Pfizer COVID-19 Vaccine Highly Protective in 12–18 Age Group

+ 6 + 5 + 7 +14 +40 −390 −117 + 98

4 November 2021 U.K. Regulator Is First to Approve Merck’s COVID-19 Pill

−13 −10 + 9 −26 −29 +407 −247 −143

5 November 2021 Update 2: Pfizer says antiviral pill cuts risk of severe COVID-19 by 89%

−18 −10 + 13 −63 −21 +293 −240 −141

26 November 2021 Vaccine Stocks Jump Premarket Amid New Variant Fears, EU Backing

+19 +10 + 12 +56 +21 −324 −282 +152

6 December 2021 Vaccine Stocks Slip as Street Weighs Omicron Variant Uncertainty

−14 −10 + 12 −38 −21 +243 −162 −115

10 December 2021 Researchers in South Africa have also found a drop-off in the level of antibody

protection from that vaccine versus the new strain

− 8 − 5 + 17 −35 −16 + 76 − 28 − 48

31 December 2021 Pfizer Vaccine Causes Myocarditis

− 8 −10 + 12 − 4 −22 +138 − 49 − 64

10 January 2022 Pfizer CEO: Developing Omicron Targeted Vaccine

+ 9 +10 +105 + 3 + 2 − 2 − 1 + 9

21 January 2022 Less-Threatening Omicron Lowers Covid Vaccine Sales Estimate

−10 −10 + 20 −13 −13 + 62 − 28 − 48

2.4.3. Results
Table 2 shows our sample of 18 events used to calculate 𝜇 and 𝛼. As mentioned above,

six other events were identified, but these could not be considered further for the calcula-
tion because either trading in the BioNTech shares was not in dynamic equilibrium (strong
changes in volatility indicated a transitional phase) or the overall market was not in dynamic
equilibrium. The latter was determined in the same way as described above based on the
volatilities of the leading indices (S&P 500, NASDAQ-100). To recap, the news headlines
listed in the table are representative of the news packages as so-called lead headlines, which
subsume other splitter news with the same statement. The entire database with 24 events,
including all headlines and splitter news, is available upon request.

In Table 2, noteworthy findings include that the measured message strengths are very
small, i.e., |B| ≪ 1, and the sometimes high value of the sentiment polarity score, |𝑃𝑆 | ⪅ 1,
indicating unique messages. The 15-minutes volatilities 𝑇15′ of BioNTech shares measured
shortly before the event are of O(10−3) and are within the 5% quantile of all volatilities
measured in the observation period. The average trading potential �̄�pot determined from the
market reaction using Equation (21) correlates highly (𝜌 = 0.87) with message B. The latter
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must be the requirement for a suitable experimental setting for evaluating Equation (10) in
linear approximation. For 𝑘 = 1 USD, 𝑇 = 𝑇15′ and 𝐵 = |B| the quotient 𝐵/𝑘𝑇 is calculated in
the last column. The calculated risk measures 𝜒, 𝜂, 𝑐𝐵 are suitable for describing the reaction
of certain output variables to small changes in input variables in a linear approximation;
see Equations (13)–(15). Assume, for example, a given volatility 𝑇 and news situation B.
The calculated susceptibility 𝜒 can then be used to estimate the market reaction if the news
situation becomes slightly worse (better). In a financial report on a specific market situation,
further assessments of the sensitivity of market participants could, therefore, be possible.
This aspect is not pursued further here. In the analyzed events, we observe a wide range of
market situations, measured by the level of sensitivity (𝜒, 𝜂 and 𝑐𝐵) to external conditions,
which are worth investigating in a separate line of research.

All pairs of measured values (𝐵/𝑘𝑇, �̄�pot) in Table 2 are used to fit the curve shown in
Figure 4 with Equation (9) and determine the model parameters 𝜇 and 𝛼.

Since one data point was always omitted for the calculation (jackknife resampling), 17
different estimates could be produced. The final result is the mean value over these estimates
(jackknife estimators of the parameters) and is displayed in Table 3 along with the range. We
refrain from calculating the variances here, as they would obscure the results, and instead
present the ranges as error indicators. The parameter 𝜇 can be determined with sufficient
accuracy. The parameter 𝛼, however, is difficult to estimate due to the small number of data
points and a missing entry with high trading potential �̄�pot and is therefore subject to high
estimation errors. This high sensitivity is reflected in the broad bandwidth. However, a very
high trading potential in the capital market can only be expected if a very strong information
field B, i.e., strong news, occurs or if the volatility 𝑇 is very low.

Considering Equations (13)–(15), it can be concluded that the risk measures 𝜒 and 𝜂 can
be determined with better accuracy than 𝑐𝐵. The risk measure 𝑐𝐵 can be determined less
precisely because of the direct dependency on the heavily errored variable 𝛼 and the error
superimposition of 𝜇 and 𝛼.

Table 3: Results for 𝜇 and 𝛼 along with the range of variation from the estimation.

Parameter Value Range

𝜇 (10−4 USD) 3.92 (3.51–4.21)
𝛼 0.75 (0.00–1.00)
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2.4.4. Concept for a One-Step-Ahead-Forecast
The method presented thus far focuses on modeling the dynamics that are to be expected as

a result of a new message. Thus, only sudden risk events are modeled, and the full dynamics
of a share/agent system are not mapped. As a result, the following prediction concept can only
make statements about the short-term price development of security that is to be expected as
a result of isolated news within the framework of the statistical models.

The central equations for the prediction are Equation (21) in conjunction with Equation (9).
If the parameters 𝜇 and 𝛼 have been determined – or are permanently determined and updated
as part of machine learning – the volatility𝑇 of the security must be determined continuously at
the same time. A constant volatility over a period of time indicates that the share/agent system
under consideration is in dynamic equilibrium. While determining the volatility, the news flow
must be tracked using suitable information sources. From this, the share-specific messages
are to be filtered and converted to a value B according to the method described above (Section
2.4.2.3). Then, 𝑥 = 𝜇 | B |/𝑘𝑇 is calculated and from this the trade potential �̄�pot according to
Equation (9). Equation (21) then supplies a prediction of a new price �̂�𝑡+1 based on the current
price 𝑃𝑡 .

The result is a predictor for the price one-step-ahead, and this predictor is itself subject
to uncertainty and obeys a probability distribution. Therefore, the predictor �̂� serves as an
indication for the price movement in the next time step. The forecast is not exact because of
the underlying distribution of the predictor. Hence, risk-free excess profits cannot be achieved.

We select several benchmark approaches to evaluate the prediction results of our three-
state model (3SM) in Table 4. In addition to regular prediction benchmark approaches, which
have the inherent disadvantage of not being able to process the news B as information in
the prediction, we also compare it with the two-state model (2SM). The regular benchmark
approaches include a naive approach that uses the last value before a message as the prediction
value (last observation carry forward, LOCF) and the moving average (MA) with five obser-
vations smoothing. In addition, we use an ARIMA model that is well suited for estimating the
next step (Siami-Namini et al., 2019). To incorporate a comparative model utilizing sentiment
as information in prediction, we additionally estimate a regression model with ARIMA errors
to account for the time series structure of the data (TS Regression). We employ the VOLQ,
the volatility index of the NASDAQ 100, as an exogenous sentiment variable. Similar to the
VIX, the volatility index of the S&P 500, is utilized as a sentiment measure and even for
predicting short-term returns (Feldman, 2010; Ding et al., 2021). We leverage the VOLQ for
the more narrowly focused NASDAQ 100, wherein BioNTech is included. Besides the fact
that the NASDAQ 100 volatility index is better suited to predict volatility than the VIX (Cor-
rado and Miller, 2005), the advantage is that the VOLQ is available at the same frequency
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as the BioNTech data, i.e., minute-by-minute, thus allowing for better comparability than,
for example, with the monthly Consumer Confidence Index. Each model is fitted with all
observations up to a news item and then used to predict the next value. The error indica-
tors used for comparability are standard and include the mean absolute error (MAE), mean
squared error (MSE), mean absolute percentage error (MAPE), and root mean squared error
(RMSE). Based on the prediction results, we conclude that our model is well-specified and
the model parameters are well-determined, as it performs better than all benchmark methods.
The Shapiro–Wilk test could not be rejected (𝑝-value = 0.9265), so a normally distributed
forecast error (MAPE) can be assumed with N(0.026, 0.0322). Thus, the forecast neither
overestimates nor underestimates systematically. In addition to theoretical arguments for the
use of a trinary agent system in Section 2.3.1.1, the comparison of the prediction performance
of the two-state and three-state models provides a nuanced indication that the three-state
model is marginally superior. However, despite the very similar performance of the 2SM and
3SM, the result confirms that our model calibration procedure works well. Fundamentally, it
can be argued that the approaches from statistical physics have a strong advantage over regular
prediction approaches in this application due to the processing of the news B.

Table 4: Results of an (in-sample) one-step-ahead forecast using the 18 events from Table 2 with benchmark
approaches and four error indicators.

MAE MSE MAPE RMSE

3SM 7.707 86.987 0.026 9.327

2SM 7.707 87.009 0.026 9.328

LOCF 11.079 217.087 0.036 14.734
MA 11.688 221.481 0.038 14.882
ARIMA 11.064 216.700 0.036 14.721
TS Regression 11.103 218.361 0.036 14.777

Depending on the new price, investor-internal reports can then be written and/or micro
hedges initiated. In the case of a machine learning implementation with a continuous learning
algorithm and a suitable loss function (Goodfellow et al., 2016), the process could be improved,
fully automated, and operate in subminute time ranges.

2.5. Conclusions

In recent decades, increasing numbers of models have been used in econometrics that
have been adopted from statistical physics. The development is well advanced, and complex
theoretical models are the subject of many simulative and numerical investigations. With all
models, there is always the question of how to determine the model parameters. In the case of
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models applied to securities, in particular, the concern is how the parameters can be estimated
on the basis of capital market data. We investigated this question and examined the basic model
of an ideal agent system in greater detail, and developed a procedure for parameter estimation.
The more complex models mentioned above, which incorporate social interactions between
agents, are based on this basic model, so the methods developed for parameter estimation are
also useable in advanced model approaches. In our analysis, we adhered to the extension of
the commonly used binary agent system to include the hold position to a trinary agent system
and derived corresponding equations to describe the dynamics, which serve as a starting point
for parameter estimation. In physics, special experiments are designed to determine model
parameters and to research phenomena of interest. In the field of finance, it will be difficult to
construct an experiment under laboratory conditions to implement a similar approach. Here
one is dependent on the abundance and correct use of data from the capital market. The art
of the financial experimenter is to find the data that most closely resemble the phenomenon
under study and then perform the modeling based on those data. Cut-out experiments must,
therefore, be defined in which the specific research question can be analyzed. For the case of the
ideal agent system with the three states “sell”, “hold”, and “buy”, we have shown a modeling
approach and paid special attention to the suitable selection of the central message for an event
influencing the price of a share. In addition, we have derived and reported key risk indicators
that characterize the sensitivity of the system at a specific operating point. We also examined
the question of a possible forecast concept and found a way to describe the price movement
triggered by a message as part of a short-term forecast. The performance comparison with
selected benchmark approaches shows that our calibrated three-state model provides better
predictions than regular benchmark approaches. In addition, we found nuanced advantages of
the three-state model over the two-state model, which we used as another benchmark approach.
Therefore, it can be concluded in principle that approaches from statistical physics have a
strong advantage over regular prediction approaches due to the processing of sudden news.
The use of algorithms from the field of machine learning could map the presented method and
thus generate warnings or risk reports in less than a minute in the event of a risk or suggest
microhedge strategies and cope with the shock of the sudden event. In connection with this,
the approach chosen here must be evaluated critically since various manual interventions had
to be accepted for the sake of more consistent results. Thus, our application mainly identifies
limitations in the analysis of the news situation and can be further improved in this direction.
These improvements depend, for example, on further developments in the field of linguistic
text analysis, in particular to more precisely and reliably recognize contexts and valences.
However, the results indicate that our calibration procedure works well and that the model
was correctly specified, and the model parameters were well determined. In a research project
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based on the results presented here, the question of a suitable calibration of generalized agent
systems with coupled dynamic components can be addressed and a procedure can be designed
how, on the basis of capital market data from special market phases, the required coupling
parameter can be estimated. Then, the complete set of model parameters of the generalized
agent system is available.
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2.6. Appendix – Table of Correspondence

Table 5: Correspondence of physical model parameters in an econometric context, substantiated with relevant
literature.

Model Parameters Econometrics Literature

Ex
te

rn
al

Pa
ra

m
et

er
s

B Magnetic
Field

News
Sentiment

Public Information that Affects all Agents; Investment
Environment; Preference Parameter: Bouchaud (2013);
Michard and Bouchaud (2005); Sornette and Zhou (2006);
Borghesi and Bouchaud (2007); Kaizoji (2000); Weidlich
(1971)

𝑇 Temperature Volatility Noise; Irrationality; Degree of Randomness in Agents’
Decisions; Collective Climate Parameter or Volatility:
Bouchaud (2013); Crescimanna and Di Persio (2016);
Kaizoji (2000); Oh and Jeon (2007); Krause and Bornholdt
(2012); Weidlich (1971); de Mattos Neto et al. (2011);
Börner et al. (2023c)

𝑁 Number of
Particles

Number of
Shares

Number of Traders in buying/selling Positions: Zhang et al.
(2015)

M
od

el
Pa

ra
m

et
er

s

𝜇 Magnetic
Moment

Willingness
to Trade

Willingness to adopt/buy; Idiosyncratic Judgment:
Bouchaud (2013); Michard and Bouchaud (2005); Sornette
and Zhou (2006); Borghesi and Bouchaud (2007); Cresci-
manna and Di Persio (2016)

𝑘 Boltzmann
Constant

Scale/Unit
Parameter

Unspecified in Literature (model endogenous) – mediates
between Entropy and Energy.

𝛼 Energy of
State 𝑛0

Energy Share of
“hold”-Position

T a
rg

et
Pa

ra
m

et
er

s

𝐸 Energy Investors’ “Utility” Utility Function: Bouchaud (2013)

S Entropy Entropy Measure of Uncertainty: Shannon (1948); Marsili (1999)

𝑀 Magnetization Purchase/Sale
Potential

Aggregate Demand; Average Opinion; Net-Demand:
Bouchaud (2013); Michard and Bouchaud (2005); Vikram
and Sinha (2011); Zhang et al. (2015)

𝑁pot − Trade
Potential

Active Agents: Fernandez et al. (2016)

𝜒 Susceptibility Overall System
Sensitivity

Depth parameter of the market which measures sensitiv-
ity of price fluctuation in response to changes in excess
demand: Zhang et al. (2015)

𝜂 Thermal loss
Coefficient

Overall System
Sensitivity

Unspecified in Literature. Parameter which measures sen-
sitivity of trade potential in response to changes in volatility

𝑐𝐵 Capacity Overall System
Sensitivity

Unspecified in Literature. Parameter which measures sen-
sitivity of utility in response to changes in volatility
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3. Generalized Agent System with Triplet States: Model Parameter Identification of
Agent-Agent Interaction

3.1. Abstract

Interactions between different agents of a system, such as social interactions between
investors in the capital market, have been studied for several years in econophysics research.
Researchers in this area are concerned with the appropriate description of couplings between
investors and the resulting macroscopic effects, such as herd behavior. We derive a model
from econometric considerations that is similar to the model of Blume et al. (1971), which
is well known in physics. We address the difficulty of empirically calibrating the parameters
and take a direct approach in contrast to indirect simulation-based calibration approaches in
agent-based models. A method is given that may be sufficient to determine some essential
parameters of bottom-up models as well, thereby eventually helping to bridge the micro-
macro problem. The model contains five parameters for which determination methods, e.g.,
by means of measurement equations, are presented and discussed. Empirical calibration
of the model by using the capital market allows us to examine the model phenomenology in
simulations as well as implications for practitioners. In addition to one-step-ahead statements,
our study provides the insight that applying binary models to situations with three decision
alternatives can lead to biased predictions.

Keywords: Agent System, Canonical Ensemble, Herding, Partition Function, Risk Assess-
ment, Utility Function

JEL Classification: C10, C46, C51
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3.2. Introduction

Traditional economic theory assumes that individual agents, as investors, make rational
and independent decisions in the capital market. However, knowledge about the imperfection
of agents has increasingly influenced economic research, so behavioral economic aspects
such as imitation effects has been analyzed (Bouchaud, 2013). Herd behavior is a related
phenomenon that can be triggered by imitations or, more generally, by couplings between
different agents and may initiate or accompany significant risk events, see, e.g., Bekiros et al.
(2017). In this context, one strand of literature – Econophysics – stands out in particular, in
which models from statistical physics are applied to socioeconomic phenomena, as they are
particularly suitable for modeling interaction effects between agents of a system (Sornette,
2014). The applicability of the models is versatile, and the specific design depends on
the contextual use. The empirical calibration of many of these models is a complicated
and unsolved problem (Sornette, 2014). Although we cannot resolve the methodological
problems in the calibration of (bottom-up) agent-based models, we contribute to this research
by showing how to estimate the model parameters of a three-state model based on the Ising
model so that it can be used in practical applications.

We apply a model in which agents can adopt three states with respect to their decision on
capital market concerns and show how the model parameters can be determined empirically.
Purely from econometric considerations and not by analogy to existing models in physics, a
model with rich dynamics is introduced that is suitable to model both essential characteristics
of investors and observations on the overall market. Our main findings are measurement
equations for the central model parameters, which are applied to capital market data of the
company BioNTech SE. Based on our measurements, we deduce ranges and distribution
parameters for the key parameters that might be used in other models as well. In addition,
we demonstrate the short-term herd behavior included in the model phenomenology, which
is equivalent to the abrupt alignment of the overall system at a critical point of an external
state variable. This critical point is reached at lower values of the external state variable
than a binary system may predict; this difference is due to the third state. The implication
is therefore that when binary models are applied to situations with three possible states, the
derived predictions are biased. Furthermore, we show how to set up a predictive model based
on the empirical estimates to assess the intensity of price shocks.

Ising’s model (1925), currently a well-studied standard model, has often been applied in
this context, particularly because of its simplicity in representing the interacting influences of
disorder enhancing private information and order enhancing social imitation (Sornette, 2014).
Its use to describe social interactions dates back to Weidlich (1971) and Galam et al. (1982)
and has since been applied in a wide variety of ways to socioeconomic issues, for example,
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in the field of tax evasion (Zaklan et al., 2008, 2009; Bazart et al., 2016; Giraldo-Barreto
and Restrepo, 2021) and particularly in finance (Chowdhury and Stauffer, 1999; Kaizoji,
2000; Bornholdt, 2001; Sornette and Zhou, 2006; Zhou and Sornette, 2007; Bouchaud, 2013;
Crescimanna and Di Persio, 2016). A variety of review articles provide an overview of the
econophysics literature strand in general and/or highlight primarily economic issues, e.g.,
Chakraborti et al. (2011a,b); Bouchaud (2013); Sornette (2014); Schinckus (2016); Kutner
et al. (2019); Zha et al. (2021).

We contribute to this strand of literature by adhering to the extension of the standard
Ising model to include a third state. Starting from econometric considerations of the utility
contribution of investor decisions, a model for a general agent system is constructed that is
similar to the physical model for the He3-He4 phase transition of Blume et al. (1971). However,
since multiple varieties of investors or multiple investment alternatives are not considered in
the present case, the model studied here does not include, for example, a chemical potential
that models the effect of particle number change in the Blume et al. (1971) model. In the
model considered here, agents can decide between three different states, where the labeling
of the states depends on the setting chosen. Within the scope of the paper, we show the
application to the financial market, where the focus is on the empirical determination of the
model parameter. Empirical analysis allows conclusions to be drawn not only about the value
of a single parameter but also about its range. The latter leads via inequalities to an indicative
determination of the variance. Thus, conclusions about a distribution for individual model
parameters are possible. Furthermore, we demonstrate the rich model phenomenology (first-
and second-order transitions) and thereby show how short-term herding behavior emerges and
how the basic construction of a one-step-ahead forecast can be implemented.

Three-state models have already been applied to the capital market, but we distinguish
ourselves from the literature because we do not use a bottom-up agent-based model but instead
estimate the model parameters empirically in the market and consider all possible interactions
between investors with different terms. The approaches that also use empirical data either
rely on indirect calibration methods or use data to compare the properties of their models with
those of real data.

In this context, a brief overview of related research directions is given below. The contents
of selected, central contributions are considered, and the contribution of the present paper to
the literature strand is described. Iori (1999) proposes an Ising-like model with heterogeneous
interacting agents that can take three discrete values to explain several stylized facts of the
financial markets. The trading activity of each agent is constrained by an initial capitalization
and depends on thresholds in a probabilistic manner. The price is a function of the ratio of
supply and demand, as well as the available quantity of securities. The outcomes of the model
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are numerically simulated with various parameter values. The model by Cont and Bouchaud
(2000), which is based on percolation phenomena, shows how herd behavior can reproduce
fat tails through communication between agents. Neighboring nodes form clusters based
on probability and make collective investment decisions, whereby the price is influenced by
excess demand. Chowdhury and Stauffer (1999) reformulate the model by Cont and Bouchaud
(2000) in a way that spin values are a measure for the number of investors represented by a
portfolio manager of an investment agency. The tendency of portfolio managers to influence
each other is thus modeled so that bubbles and the occurrence of fat tails can be explained.
Takaishi (2005, 2013) formulates a three-state model based on the Potts (1952) model, which
is a generalization of the standard Ising model with 𝑞 possible states. The agent-based model
extends the Bornholdt (2001) model and involves updating schemes for the agent states,
thereby showing the main stylized facts of financial markets. In the agent-based model of
Sato (2007), heterogeneous investors trade multiple currency pairs and can again choose
among three trading activities based on threshold specifications. The model allows inferences
about the empirical properties of the tick frequencies of currencies. Sieczka and Holyst (2008)
propose a model of interacting market participants based on a generalized Ising spin model and
define a price evolution as a function of the system magnetization. The model is also based on
a threshold specification, according to which investors are motivated to act only when a certain
magnetization in the system is overcome. Stylized facts such as the fat-tailed distribution of
returns, volatility clustering, and decay of autocorrelation of returns are replicated. Murota
and Inoue (2014) also extend the Ising model to a third state to explain economic crises from a
microscopic perspective. In addition to the interactions and exogenous information as terms,
an additional term for chemical potential is introduced, which controls how many investors
actually act. The result is an update model for central, so-called dynamic hyperparameters,
whose evolution is compared based on simulations and empirical data. Zubillaga et al. (2022)
propose a generalized form of an opinion formation model based on Vilela et al. (2019)
with three possible states in which heterogeneous agents, namely, noise traders and noise
contrarians (fundamental analysis-oriented investors), interact. Capital market data are used
here to test the goodness of the produced stylized properties of financial markets. Three-state
models such as the Blume et al. (1971) model are also implemented in sociophysical research
to study opinion formation in social networks with different characteristics (Yang, 2010; Ferri
et al., 2022).

Many of the above approaches start with modeling the agents in systems, thus attribut-
ing certain properties to them and creating heterogeneous objective functions at the agent
level. This is referred to in the literature as bottom-up agent-based modeling. Agents then
interact with each other in simulations, and ex ante unknown macro patterns are studied as
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market equilibria (Schinckus, 2016). As a result of increasingly differentiated agent-based
specifications, the models become very complex, and it is no longer possible to determine
which dynamics are caused by which model components. This difficulty of not knowing how
microlevel elements affect macrolevel equilibrium is referred to in the literature as the micro-
macro problem. Furthermore, when these models are applied and tested against real data,
empirical calibration and validation is an issue that is broadly discussed in the agent-based
model literature (Werker and Brenner, 2004; LeBaron, 2006; Windrum et al., 2007; Fagiolo
et al., 2007; Chen et al., 2012; Iori and Porter, 2012; Fagiolo et al., 2019). In particular,
research is needed on how to use the models in capital market applications, as the empirical
calibration of the models or the correct choice of values for the parameters is complicated
(Sornette, 2014). The difficulties in determining the parameters of a bottom-up constructed
model cannot be fully mitigated here. However, a way is shown that may be sufficient to
be able to determine some essential parameters of bottom-up models. In the present paper,
a top-down approach is taken, leading to a model from purely econometric considerations.
Some components of this model can also be found in the bottom-up models described above,
for example, the coupling term known from the standard Ising model. We thus address the re-
search gap of measuring the coupling parameter empirically raised by e.g., Chang (2014) in a
similar modeling exercise. If special market situations are considered, the approach examined
here can be used to infer the value of the parameters largely in isolation from other influences.
We show how such cut-out experiments can be designed and parameters determined.

Other three-state and agent-based models use an updating mechanism to mimic or replicate
a data-generating process (Axtell and Farmer, 2022). Our model, and this is how the baseline
model is intended from thermodynamics, is not a phase transition model, but an equilibrium
model that describes each “frame” – or each moment – of the market as a separate state. These
single “frames” of a system can be used to derive quantities that are similar to thermodynamic
potentials, which are well known in physics (Isihara, 1971; Greiner et al., 1995; Bouchaud,
2013). These quantities can then be applied to the capital market as a use case. Since we use
cut-out experiments to find quantities matching the thermodynamic potentials in real capital
market data, we can estimate the model parameters directly from the data (Sato, 2007) and
do not have to rely on indirect simulation-based approaches such as those proposed in the
agent-based models literature cited above. Once the parameters are determined, they can be
incorporated into a predictive model, for example, for the price of a stock. This dynamization
then corresponds to the updating mechanisms in agent-based approaches.

The model to be studied in this paper follows a top-down model from econometric
considerations. The approach is based on the considerations of Börner et al. (2023b), who
introduced an observer and formulated the utility of a certain constellation from the observers’
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point of view. Thus, we operationalize our model with a utility function in which a market
observer (market analyst, researcher, investor) derives utility from certain constellations of
investors or investor groups, for example, regarding the need to explain a certain configuration.
Basically, discrepancies between the trading decisions of neighboring investors require more
explanatory effort for the market observer, which reduces the utility. Thus, the explanatory
effort is equivalent to taking in information at a certain cost. Similarly, trading decisions
in the same direction increase utility since no difference needs to be explained. The utility
or disutility is expressed in monetary units. The result is a model that takes into account
the various interaction possibilities between the agents in an additive way so that the utility
is increased or decreased depending on the individual configurations. The state that the
market observer assesses already represents the decisions of all investors and thus implicitly
incorporates that neighboring agents have interacted with each other. An important model
component that evaluates these configurations in terms of utility is already included in the
standard Ising model and scales with the constant 𝐽. In this context, 𝐽 does not measure the
strength of the influence from one agent on a neighboring agent but rather what influence the
decisions of neighboring agents have for the utility calculus of the market observer. Thus, 𝐽
is not an evaluation metric for couplings but an evaluation metric for the configurations of
neighboring agents in utility calculus. The parameter is therefore important for evaluating an
individual configuration of investors and for describing the overall system. We show how 𝐽

and the other model parameters can be determined by using capital market data as part of the
empirical application in Section 3.4. We focus on the correct transfer and interpretation of
the parameters of the general model to the financial market, and since we follow up on Börner
et al. (2023b) here and entirely determine the model parameters, we can show the extensive
model dynamics by using simulations.

The remainder of the paper is structured as follows: Section 3.3 outlines the general model
as well as its limits and extensions. In Section 3.4, the model is applied to the capital market.
We thereby complete, on the one hand, the empirical analysis in which we empirically measure
the coupling parameter 𝐽, and, on the other hand, we show the rich phenomenology of the
model with numerical analyses. The last Section 3.5 summarizes our findings, and we present
some ideas on how to extend both the model and the method for further research topics.

3.3. Method

In the following, the model of a generalized agent system is developed. In this consider-
ation, the individual agents can adopt an inner attitude toward three different actions. When
using the example of a stock investor as an agent, these three actions are “buy”, “hold” and
“sell”. Therefore, a generalized agent system with a triple state is developed and investigated.
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The developed model is then used for the statistical description of the agent system with and
without interaction effects.

The basic idea for such approaches in econometrics goes back to the early works of
Weidlich (1971) and Galam et al. (1982) and has its origin in physics in the description of
Ising systems (Ising, 1925; Isihara, 1971; Greiner et al., 1995). The transfer of the modeling
approach from two state Ising systems to econometrics by analogy is currently standard
and well-studied, e.g., Kaizoji (2000); Oh and Jeon (2007); Krause and Bornholdt (2012);
Bouchaud (2013) and the extensive literature cited therein. The model approach selected here
incorporates a third – neutral – state. The following model approach extends and encompasses
the existing models. Recently, the model of an ideal agent system – i.e., without interaction
of the agents – with three states was analyzed by Börner et al. (2023b). This model approach
is used as a starting point and extended by considering interactions between the agents. As
an additional model extension, the interaction of two adjoined investors resulting from the
unequal states of the agents is also considered. For a better comparison and to clarify the
expansion, we adopt the notation used in Börner et al. (2023b).

In physics, three state models are known and well-studied, e.g., Costabile et al. (2014);
Butera and Pernici (2018), and are based on the initial, fundamental works of Blume (1966);
Capel (1966) and Blume et al. (1971). A further extension of the Ising models in physics is
represented by the Potts model class for 𝑞-states per node in a lattice (Potts, 1952). Here, the
interaction of two adjoined nodes in the lattice only counts if they have the same state. To the
best of our knowledge, the three-state econometric model needed here has no direct equivalent
in physics, and a simple transfer by analogy cannot be made. The model is therefore to be
developed from econometric considerations. The following construction of the econometric
model follows rules such as those used in quantum field theory when defining the Lagrangian
density, see, e.g., Peskin and Schroeder (1995) or in the definition of a Hamiltonian in statistical
physics for spin lattices (Isihara, 1971; Amit, 1978; Landau and Lifšic, 1980; Greiner et al.,
1995). This systematic conception leads to a model similar to the Blume et al. (1971) model.
An essential difference, however, is that no formalism similar to the chemical potential in
physics is considered, since here initially the number of investors or the number of shares and,
more generally, the number of agents does not change (phys.: constant number of particles).

3.3.1. Utility Function
The basis of the model is the definition of a suitable utility function𝑈. When transferring

approaches from physics to econometrics, the utility function is usually interpreted as the
negative of the Hamiltonian known from physics: 𝑈 = −H (Marsili, 1999; Bazart et al.,
2016). Since no Hamiltonian comparable to the econometric problem at hand was found in
physics, the appropriate utility function must be constructed. The starting point for this is
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the idea of formulating the utility function from the point of view of an observer (market
observer, market analyst, researcher, investor) as done by Börner et al. (2023b), who has, e.g.,
the goal of describing the market and deriving a model of action for a personal investment
decision as an investor (agent) in the generalized agent system. Positive utility thus results
from being able to capture the market situation with little effort. Accordingly, one possible
view is that the utility for the investor lies in how much or little effort in monetary units that
agent has to acquire information to describe a certain state. Thus, the approach is based on the
interpretation that a certain setting of the other agents (configuration) can mean an increase
or a reduction in utility.

We follow Börner et al. (2023b) and define a news environment B (phys.: field). For
example, the news environment for a stock investor could consist of company news on a specific
issue. A message environment B = sign(B)𝐵 has a basic sentiment sign(B) = (−1, 0, +1) –
indicating, e.g., “bad”, “indifferent” and “good” news – and a strength 𝐵 = |B| affecting the
agents. Furthermore, for each agent 𝑖 = 1, . . . , 𝑁 , a discrete variable 𝑆𝑖 is introduced, which
maps the fact that the individual agent behaves in conformity with basic sentiment, 𝑆 = +1, or
not in conformity, 𝑆 = −1. In the present case, we consider a triplet state system and a neutral
position – e.g., “hold” – is also taken into account with 𝑆 = 0, so that, e.g., an indifferent
investor attitude is included.

The construction of the utility function now includes all interactions that can affect utility.
On the one hand, there are interactions of the agents with the message environment (phys.:
particle-field interaction), and on the other hand, there are interactions of the agents among
themselves (phys.: particle-particle interaction). Depending on the respective configuration,
an increase or a reduction in utility must be considered. We stick to the interpretation from
Börner et al. (2023b) that an observer can be an investor and thus part of the overall system.
For example, if the message field for a stock is positive and investor 𝑗 buys the stock (𝑆 𝑗 = +1,
in conformity), the observer might be satisfied with the first reason as an explanation: Agent 𝑗
buys the stock because B is positive. If investor 𝑗 sells the stock (𝑆 𝑗 = −1, not in conformity),
further information must be obtained using resources to explain the observation. In the first
case, an increase in utility and, in the second case, a reduction in utility must be considered.
Regardless of the message environment, the utility increases when two neighboring agents 𝑖
and 𝑗 behave in the same way and decreases when they behave differently. In the first case,
the observer might be satisfied with the first reason for explanation: Investor 𝑖 buys the stock
because investor 𝑗 buys the stock (and vice versa). In case of a discrepancy, the investor
needs further information for the explanation, and the investor’s utility decreases due to the
observed configuration.
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Accordingly, we can write down the following expression for the utility function:

𝑈 = + 𝜇𝐵
∑
𝑖

𝑆𝑖 Term 1

− 𝛼1𝜇𝐵
∑
𝑖

(1 − 𝑆2
𝑖
) Term 2

+ 𝐽
∑
⟨𝑖 𝑗⟩
𝑆𝑖𝑆 𝑗 Term 3

+ 𝛼2𝐽
∑
⟨𝑖 𝑗⟩

(1 − 𝑆2
𝑖
) (1 − 𝑆2

𝑗
) Term 4

− 𝛼3𝐽
∑
⟨𝑖 𝑗⟩

(1 − 𝑆2
𝑖
)𝑆2

𝑗
Term 5

(22)

The sums in Equation (22) can be further evaluated. In doing so, the individual terms (1 to
5) merge. For a better back-interpretation, especially of the parameters, the terms are not
further summarized here, and Equation (22) is used as a starting point. Hence, the notation
⟨𝑖 𝑗⟩ denotes the summation over adjoining agents 𝑗 = 1, . . . , 𝑧 of an agent 𝑖 = 1, . . . , 𝑁
in the agent system, with 𝑧 ≤ 𝑁 , where 0 < 𝜇 measures the contribution of the status “in
conformity” or “not in conformity” to the utility in a given message environment. Depending
on the research area, 𝜇 has different names in the literature: willingness to adopt, willingness to
pay or idiosyncratic judgment (Sornette and Zhou, 2006; Bouchaud, 2009, 2013; Crescimanna
and Di Persio, 2016). In Term 2 in Equation (22), the neutral position – e.g., “hold” in a stock
investment process – is considered. In a given message environment, the neutral position
causes a fraction 0 ≤ 𝛼1 ≤ 1 of the effect of the other two positions and is always rated
negatively regardless of the basic sentiment, sign(B), of the news. Börner et al. (2023b)
describe a method of how parameters 𝜇 and 𝛼1 can be determined in the case of a stock
investment by using capital market data. They analyze the example of an investment in stocks
of the company BioNTech SE (ISIN US09075V1026) and find the values 𝜇 and 𝛼1 with ranges
shown in Table 7. The parameter 0 < 𝐽 measures the contribution of a configuration with the
same agent behavior to the utility, see, e.g., Bazart et al. (2016). A different valuation can
be considered for the neutral position (Term 4) with 0 ≤ 𝛼2. The configuration of a neutral
state to the other states is always considered with a negative contribution (Term 5), and the
contribution is also related to 𝐽 and scaled with 0 ≤ 𝛼3.

In econometric and sociological applications, the parameters 𝛼2 and 𝛼3 should be very
close to +1. Since symmetrical configurations in a system should deliver the same increase
in utility, 𝛼2 should be approximately +1. The same applies to asymmetrical configura-
tions. Each of these should cause about the same decrease in utility, and thus, 𝛼3 should
be approximately +1. In our further considerations, we concentrate on exactly this case
(𝛼2, 𝛼3) ≈ (+1, +1) and study the system in the vicinity of these parameter values but also
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provide an outlook on the dependency of the system description in the case of values that devi-
ate greatly from +1; see Section 3.3.6. The analysis of market data must provide information
on how far 𝛼2 and 𝛼3 deviate from +1 in practice; see Section 3.4.4.

Considering scaling with 𝛼2 and 𝛼3, the central parameter 𝐽 describes the contribution
of the various interactions to the utility. Parameter 𝐽 has different labels depending on the
research area, e.g., degree of willingness to adopt an attitude (Weidlich, 1971); willingness of
agents to align their actions (Cont and Bouchaud, 2000); social pressure or imitation effects
(Michard and Bouchaud, 2005; Borghesi and Bouchaud, 2007; Bouchaud, 2013); imitation
term (Sornette and Zhou, 2006; Crescimanna and Di Persio, 2016). In statistical physics, 𝐽
is the value of the so-called exchange integral, also known as the Ising constant or coupling
constant in some literature (Isihara, 1971; Greiner et al., 1995). Landau and Lifšic (1980,
§141 on p. 447) state that 𝐽 determines the energy of interaction of a pair of adjoining dipoles
in a lattice. This definition, transferred to econometrics, suggests the above interpretation of
measuring the contribution of a certain configuration to utility.

By adding the neutral state, Equation (22) expands the existing and well-studied model
framework in econometrics. With Terms 1 and 2, the ideal agent system from Börner et al.
(2023b) is taken into account, and Terms 1 and 3 include the standard Ising system with two
possible states, see, e.g., Bornholdt (2001); Sornette and Zhou (2006); Harras et al. (2012);
Bouchaud (2013); Vincenzo et al. (2014); Takaishi (2015); Bazart et al. (2016); Giraldo-
Barreto and Restrepo (2021). Existing approaches with three state models, e.g., Iori (1999) or
Murota and Inoue (2014), are also extended. In both cases, e.g., the interaction term between
the neutral position and the active positions is neglected but considered in our approach.
Moreover, our measured data in Sec. 3.4.2 do not suggest that we have a structure-variable
system, in the sense that the coupling parameter varies discretely, as in Murota and Inoue
(2014).

Limits and Extensions

Many extensions of the previously defined utility function Equation (22) are conceivable
and at the same time show the limitations of what is considered here.

In the present case, the mainstream literature is followed, and the parameter 𝜇 is set
the same for all agents. Distributions 𝜌(𝜇) of the parameter or individual settings 𝜇𝑖 are
considered in special extensions and applications, e.g., in sociophysics (Foley, 1999; Marsili,
1999; Anderson et al., 2001; Castellano et al., 2009). We focus here on the basic dynamics of
the generalized agent system and consider such extensions in later research.

The same applies to the parameter 𝐽. Again, we follow the mainstream and assume 𝐽
to be equal for all agents (Weidlich, 1971; Nadal et al., 2003; Laciana and Rovere, 2011;
Bazart et al., 2016). Distributions of the parameter or individual settings 𝐽𝑖 𝑗 (Durlauf, 1996;
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Crescimanna and Di Persio, 2016), e.g., for modeling asymmetric utility changes (phys.:
anisotropy) depending on which agent is in a certain configuration, can be considered in
later research.

We focus on a square lattice or, more generally, on hypercube structures to model the system
of agents, and the different configurations are set in single and binary form, e.g.,𝑈 ∼ 𝑆𝑖 (Term
1) or𝑈 ∼ 𝑆𝑖𝑆 𝑗 (Term 3). Hence, we follow the majority of the literature (Iori, 1999; Bornholdt,
2001; Takaishi, 2005; Sornette and Zhou, 2006; Sieczka and Holyst, 2008; Crescimanna and
Di Persio, 2016; Zubillaga et al., 2022). Higher-order model extensions, e.g., 𝑈 ∼ 𝑆𝑖𝑆 𝑗𝑆𝑘

for hexagonal lattice structures or more complex lattice structures 𝑈 ∼ 𝑆𝑖1𝑆𝑖2𝑆𝑖3 . . . 𝑆𝑖𝑛 , are
not considered here. Thus, the evaluation of such structures and configurations remains for
further research.

Finally, a sixth term 𝑈 ∼ 𝛼4𝐵
2 with a positive 𝛼4 could be considered (phys.: field-field

interaction). This extra term models the fact that a news environment already contributes
utility and that the utility increases the stronger the news is. Thus, when considering the
susceptibility (Bouchaud, 2013; Zhang and Li, 2015; Börner et al., 2023b), additional terms
𝜒 ∼ 𝛼4𝐵 should appear, and 𝛼4 should have to be estimated by using market data.

In addition, a constant utility𝑈0 cand be added (phys.: ground state energy) that evaluates
a specific reference state of the system of agents. In Section 3.3.3, we use Equation (28) to
consider Boltzmann-Gibbs distributions (Greiner et al., 1995; Marsili, 1999; Kaizoji, 2000;
Anderson et al., 2001; Bouchaud, 2013; Börner et al., 2023b) that can be interpreted as logit
rule (Bouchaud, 2013). For a given message environment, i.e., B = const., the additional
sixth term𝑈 ∼ 𝛼4𝐵

2, such as𝑈0, should be constant and should continue to cancel; therefore,
it is not considered further here. Research that focuses directly on utility function analysis
might consider such additional terms.

3.3.2. Mean-Field Approximation
The utility function Equation (22) cannot be evaluated in general for arbitrary underlying

network structures of agents (phys.: spin-lattice) with respect to macroscopic variables, e.g.,
the surplus of buyers in a stock investment (phys.: magnetization). Special solutions of
similar problems for one-dimensional (Ising, 1925) and two-dimensional (Onsager, 1944)
lattice structures are known from physics. As in physics, in econometrics, solutions to higher-
dimensional problems are usually determined by approximating a mean field around an agent
(Weidlich, 1971; Galam et al., 1982; Brock and Durlauf, 2001; Gordon et al., 2005; Nadal
et al., 2005; Michard and Bouchaud, 2005; Gordon et al., 2009; Bouchaud, 2013). The idea
goes back to Weiss (1907, phys.: molecular field approximation) and is now part of the
standard repertoire in physics (Isihara, 1971; Amit, 1978; Landau and Lifšic, 1980; Greiner
et al., 1995) and econometrics, see, e.g., the research papers just cited above. The main idea
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of the mean-field approximation is that the state of an agent is influenced by the mean field of
the states of its adjoining agents.

We follow Weiss (1907) in his original approach and apply the mean-field approximation
to Terms 3, 4 and 5 of the utility function Equation (22). Therefore, the mean field of the
states of the adjoining agents is approximated by the mean field of the whole agent system.
This results in surcharges or deductions for Terms 1 and 2, which we specify and interpret.

At the beginning, similar to Blume et al. (1971), with ⟨𝑥⟩ = 1
𝑁

∑𝑁
𝑖=1 𝑥𝑖, the following mean

values are introduced. In the system of agents, the mean attitude (“in conformity” or “not in
conformity”) of the agents is 𝑚 = ⟨𝑆⟩, with −1 ≤ 𝑚 ≤ +1, and the mean neutral position is
𝑚0 = 1 − ⟨𝑆2⟩, with 0 ≤ 𝑚0 ≤ +1. If 𝑧 denotes the average number of adjoining agents, then
the utility function Equation (22) can be written in mean-field approximation:

𝑈 = +𝜇𝐵1
∑︁
𝑖

𝑆𝑖 − 𝛼1𝜇𝐵2
∑︁
𝑖

(1 − 𝑆2
𝑖 ) (23)

With the following effective message environments (phys.: effective fields):

𝐵1 = 𝐵 + 1
2
𝐽

𝜇
𝑧 𝑚 (24)

𝐵2 = 𝐵 − 1
2
𝐽

𝜇
𝑧

(
𝛼2 + 𝛼3
𝛼1

𝑚0 −
𝛼3
𝛼1

)
(25)

If it is considered that all parameters (𝜇, 𝐽, 𝑧, 𝛼1, 𝛼2, 𝛼3) are positive, then according to
Equations (24) and (25), the following interpretation suggests itself.

A surplus of agents in the state “in conformity” (𝑚 > 0) acts as an additional message,
reinforcing the message environment for agents who are not in the neutral position. Depending
on the empirically determined fractions 𝛼1, 𝛼2 and 𝛼3, the average of the agents in the neutral
position 𝑚0 has a strengthening or weakening effect on the message environment for agents
who are in the neutral position.

Limits and Extensions

The number 𝑧 of adjoining agents (phys.: coordination number) turns out to be a significant
variable. Behind this, for example, when making an investment decision is the question of how
many other investors are consulted on average to secure or substantiate one’s own opinion. In
practice, this number should have a wide range 0 ≤ 𝑧 < O(102).

The question of how investor networks or, more generally, information networks are struc-
tured has increasingly become the focus of economic research (Emmert-Streib et al., 2017).
Some studies model the transmission of information between investors by means of direct
communication (Stein, 2008; Han and Yang, 2013; Andrei and Cujean, 2017). However, an
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empirical approach to the question is more complicated, as direct communication between
investors is rarely documented. Instead, indirect proxies, such as correlated transactions (Oz-
soylev et al., 2014; Baltakys et al., 2021), are used to make statements about the characteristics
of investor networks in the context of network theory (Ahern, 2017). Both small values for 𝑧
with six contacts on a three-dimensional square lattice (Guimaraes and Lima, 2021), e.g., in
the team of a smaller investment company, and numbers of contacts in the order of O(102)
via social media are realistic due to the high level of interconnectedness on the internet.
Thus, 𝑧 is not only an individually varying quantity but can also be modeled well by means
of distributions. The Empirical Investor Network based on 2005 data from the Istanbul Stock
Exchange corresponds to the order of O(102) with a median number of 159 links (Ozsoylev
et al., 2014). Studies on social networks that examine the average number of links arrive at
similar figures (Ugander et al., 2011; Hampton et al., 2011). Guimaraes and Lima (2021)
studied a three-dimensional Ising system in the context of the financial market and found that
modeling with multiple dimensions or a higher number of neighboring investors better corre-
sponds to the properties of empirical data. Investors with multiple connections are therefore
more representative. Nevertheless, to the best of our knowledge, precise investigations on the
magnitude of 𝑧 have not yet been carried out in econometrics. Thus, in the following, we use
our own estimate of 𝑧 = 12 to investigate the basic dynamics of the generalized agent system.
This estimate is based on the rarely found, nonrepresentative references to the size of invest-
ment committees. In Section 3.3.6, we see that the dynamics are essentially determined by the
product 𝐽𝑧. The latter can be determined empirically, i.e., the previously made assumption
does not affect the dynamics but rather the estimate of 𝐽, provided 𝑧 is large enough, as the
following suggests.

As a further extension, it is conceivable that the mean field of the states of the adjoining
agents effective per agent 𝑖 shows fluctuations and does not correspond to the mean field of
the entire agent system. Consequently, these fluctuations could be considered in the form
𝑚𝑖 = 𝑚 + 𝛿𝑚𝑖. It is known from physics that as the number 𝑧 increases, the mean-field
approximation rapidly improves and is already a very good approximation for 𝑧 ≥ 12 (Greiner
et al., 1995). The influence of fluctuations diminishes in the limit 𝑧 → ∞ and can ultimately
be ignored (Amit, 1978). However, if very small values of 𝑧 are to be taken into account,
discrepancies between theory and practice are likely to appear.

3.3.3. Canonical Partition Function and Probability of Occupancy of the States
The canonical partition function 𝑍 is to be applied and calculated if a system of agents is not

to be viewed in isolation but in interaction with an environment (Isihara, 1971; Huang, 1987;
Greiner et al., 1995). This is the case, for example, with investors in stocks of a company.
The stocks themselves are part of an overall market, and their development is influenced
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by this. The interaction described above is generally described by an exchange variable 𝑇
(phys.: temperature). In other strands of literature, 𝑇 is also referred to as amount of noise,
irrationality, degree of randomness in agents’ decisions, or collective climate parameter; see,
e.g., Weidlich (1971); Kaizoji (2000); Oh and Jeon (2007); Krause and Bornholdt (2012);
Bouchaud (2013); Crescimanna and Di Persio (2016). In the example of a stock, as part of
an overall market, most of the literature assumes that the volatility in the financial sector is
this exchange variable: 𝑇 = 𝜎 (Marsili, 1999). In the following, volatility is used as a generic
term for 𝑇 .

The introduction of the quantity 𝛽 = 1/𝑘𝑇 (phys.: inverse temperature) with a suitable
constant 𝑘 (phys.: Boltzmann constant) simplifies the representation of the partition function
𝑍 and scales the quantities in desired units (Kaizoji, 2000; Oh and Jeon, 2007; Krause and
Bornholdt, 2012; Bouchaud, 2013). The constant 𝑘 is not a model parameter but defines the
unit of measurement (Shannon, 1948) and is fixed as in Börner et al. (2023b) with 𝑘 = 1 USD
for the following analyses.

The canonical partition function is defined as the sum over all configurations (𝑆1, . . . , 𝑆𝑁 ):

𝑍 (𝑇, 𝐵, 𝑁) =
∑︁

(𝑆1,...,𝑆𝑁 )
exp (𝛽𝑈 (𝑆1, . . . , 𝑆𝑁 )) . (26)

In Equation (26), the Boltzmann factors that depend on the utility function are summed. The
utility function 𝑈 in turn depends on the configuration (𝑆1, . . . , 𝑆𝑁 ). The configurations are
functions of macroscopic variables, e.g., volatility 𝑇 , so that the canonical partition function
connects macroscopic quantities with microscopic states (Isihara, 1971). This approach
leads to the so-called Boltzmann-Gibbs distribution specifying the probabilities of discrete
configurations (Greiner et al., 1995; Marsili, 1999; Kaizoji, 2000; Anderson et al., 2001). In
econometrics, this distribution corresponds to the well-known logit rule (Bouchaud, 2013).

The mean-field approximation from Section 3.3.2 led to a system of 𝑁 noninteracting
agents, which are influenced by effective message environments 𝐵1 and 𝐵2. In the case of
noninteracting agents, the overall system can be viewed as an ideal agent system, and the
relationship 𝑍 (𝑇, 𝐵, 𝑁) = [𝑍 (𝑇, 𝐵, 1)]𝑁 can be used to determine the canonical partition
function (Börner et al., 2023b). Considering that each agent can be in three different states, it
follows that:

𝑍 (𝑇, 𝐵, 1) = exp(−𝛽𝜇𝐵1)︸         ︷︷         ︸
𝑆=−1

non-conform
to B

+ exp(−𝛽𝛼1𝜇𝐵2)︸             ︷︷             ︸
𝑆=0

neutral

+ exp(+𝛽𝜇𝐵1)︸         ︷︷         ︸
𝑆=+1

conform
to B

. (27)

The occupation probabilities (phys.: Boltzmann-Gibbs distribution) for the three states 𝑆 =
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(−1, 0, +1) follow immediately from this:

𝑝− =
exp(−𝛽𝜇𝐵1)

exp(−𝛽𝜇𝐵1) + exp(−𝛽𝛼1𝜇𝐵2) + exp(+𝛽𝜇𝐵1)

𝑝 0 =
exp(−𝛽𝛼1𝜇𝐵2)

exp(−𝛽𝜇𝐵1) + exp(−𝛽𝛼1𝜇𝐵2) + exp(+𝛽𝜇𝐵1)
(28)

𝑝+ =
exp(+𝛽𝜇𝐵1)

exp(−𝛽𝜇𝐵1) + exp(−𝛽𝛼1𝜇𝐵2) + exp(+𝛽𝜇𝐵1)

Hence, the occupation numbers are:

(𝑁− 𝑁0 𝑁+) = (𝑝− 𝑝0 𝑝+) × 𝑁 (29)

with 𝑁− resp. 𝑁+ being the number of agents nonconforming resp. conforming to the message
environment B and 𝑁0 being the number of agents in the neutral position.

3.3.4. Model of the generalized agent system
In Section 3.3.2, the mean attitude 𝑚 = ⟨𝑆⟩ and the mean neutral position 𝑚0 = 1 −

⟨𝑆2⟩ of the system of agents were introduced. With Equation (29), the macroscopic state
variables (𝑚, 𝑚0) can be expressed by the occupation numbers, Equation (29), and then, by
the occupation probabilities, Equation (28). For the mean attitude, this results in:

𝑚 =
𝑁+
𝑁

− 𝑁−
𝑁

= 𝑝+ − 𝑝−

=
exp(+𝛽𝜇𝐵1) − exp(−𝛽𝜇𝐵1)

exp(−𝛽𝜇𝐵1) + exp(−𝛽𝛼1𝜇𝐵2) + exp(+𝛽𝜇𝐵1)

=
2 sinh(+𝛽𝜇𝐵1)

2 cosh(+𝛽𝜇𝐵1) + exp(−𝛽𝛼1𝜇𝐵2)
. (30)

Similarly, for the neutral position with 𝑚0 = 𝑁0/𝑁 = 𝑝0:

𝑚0 =
exp(−𝛽𝛼1𝜇𝐵2)

2 cosh(+𝛽𝜇𝐵1) + exp(−𝛽𝛼1𝜇𝐵2)
. (31)

With the effective message environments 𝐵1 and 𝐵2 defined in Equations (24) and (25).

Findings, Limits and Extensions
In mean-field approximation, the model of the generalized agent system with three possible

states for each agent consists of the coupled, implicit system of Equations (30) and (31). If
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the model parameters 𝜇, 𝐽, 𝛼1, 𝛼2 and 𝛼3 in Equation (22) are known, the external variables
B and 𝑇 are specified, and the system of equations supplies the possible macroscopic state
variables 𝑚 and 𝑚0 as solutions. The model parameters are to be estimated for a concrete
problem based on a series of measurements. For the example of a stock investor, it was
recently shown by Börner et al. (2023b) how 𝛼1 and 𝜇 can be determined from capital market
data. In Section 3.4, by using the same example of a stock investment, it is shown how the
remaining parameter can also be determined from capital market data. With the restriction
that only the principle can be explained for 𝛼2 and 𝛼3 due to the small database.

In contrast to the standard Ising system with two possible states (Foley, 1999; Marsili,
1999; Bouchaud, 2013) and one implicit equation, an additional implicit equation must be
taken into account for three states. This raises the question, under what external conditions
does the solution presented here provide the solutions of the standard Ising system? This is
the case when Equation (31) returns the value𝑚0 = 0 as a solution. The latter can be achieved
when B or 𝛽 or both tend to infinity. In the case of a stock investment, this means an infinitely
strong news environment or the volatility of the stock becomes zero. Both are extreme cases
that are hardly observable in practice, so we can generally assume 𝑚0 > 0 if a third state is
possible for the agent.

For 0 < 𝑚0 ≤ 1 Equation (31) can be rearranged, and the following relationship is
calculated:

exp(−𝛽𝛼1𝜇𝐵2) = 2
𝑚0

1 − 𝑚0
cosh(+𝛽𝜇𝐵1). (32)

Equation (32) inserted into Equation (30) results in:

𝑚 = (1 − 𝑚0) tanh(+𝛽𝜇𝐵1). (33)

where 𝐵1 is the effective message environment defined in Equation (24). Except for the
factor (1 − 𝑚0), this equation is identical to the equation of the standard Ising system, see,
e.g., Greiner et al. (1995, §18, Eq. (18.24)). This also shows that in the limit case 𝑚0 → 0
described above, the solutions of the standard Ising system with two possible states for the
agents are described with the model presented here. For a three-state system modeled with
a two-state model, this has the dramatic consequence that predictions may be inaccurate or
wrong. In Section 3.3.6, we identify and investigate a discrepancy as such an inaccuracy.
Therefore, if, in practice, a third, neutral state – an investor’s “hold” position – is possible for
the agents, then the two-state model is presumably not suitable for description in general.

This conclusion was obtained by using the econometric model in the mean-field approx-
imation. As an extension, it remains to be checked whether this conclusion also applies
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to investigations that do not take approximations into account or whether there are further
consequences that are not recognizable in the context of the mean-field approximation.

3.3.5. Realizable Macroscopic States
Depending on constant external variables B and 𝑇 , the coupled, implicit system of Equa-

tions (30) and (31) in some cases provide a sheaf of solutions for the macroscopic variables
𝑚 and 𝑚0. This raises the question of which solutions are realized and observable in practice.

A standard procedure in physics for evaluating possible solutions is the analysis of the
free energy 𝐹 = 𝐸 − 𝑇S. Here, 𝐸 can be calculated with the Hamiltonian H for a specific
configuration and reflects the (internal) energy of the physical system under consideration.
Furthermore, the free energy depends on the temperature 𝑇 and entropy S of the system. In
a very simplified way, the following can be summarized: In a physical system left to itself,
internal processes take place under constant external conditions and in exchange with a heat
bath until the free energy is minimal. More directly: The system simultaneously tries to
minimize its energy and maximize its entropy. For a more precise specification in physics,
see Landau and Lifšic (1980); Huang (1987); Greiner et al. (1995), for example.

In econometrics, the negative utility function corresponds to energy and the volatility to
temperature in physics (Marsili, 1999; Bazart et al., 2016). In the present case, the entropy of
the generalized agent system is simply

S̄ = −𝑘
3∑︁
𝑖=1

𝑝𝑖 log3 𝑝𝑖 (34)

with the probabilities defined in Equation (28), see, e.g., Börner et al. (2023b) and the unit
of measurement 𝑘 (Shannon, 1948). Here, entropy measures, on average, the uncertainty
about an agent’s state in trit (trinary digit, cf. Brusentsov and Alvarez (2011)) as units of
information needed to specify the agent’s state.

In this way, a quantity equivalent to the free energy in physics, the gross utility per agent
Ū = �̄� + 𝑇S̄, can be analyzed in econometrics, where �̄� corresponds to the average (net)
utility per agent: 𝑈 = 𝑁�̄�. Conjecturally, an econometric system tends toward a state with
maximum gross utility. In Section 3.4.4, we examine and evaluate the solutions of the coupled,
implicit system of Equations (30) and (31). Therefore, we also consider the gross utility. The
results suggest that in practice, under constant external conditions, those macroscopic states
can be observed where maximum utility and maximum entropy can be determined. Hence, a
maximum of Ū.
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3.3.6. Measurement Equations for Parameter 𝐽.
Börner et al. (2023b) uses the example of an investment in stocks of a company to show

how the parameters 𝜇 and 𝛼1 can be determined by using time series of price developments.
In this section, equations are derived for the empirical determination of the remaining model
parameters: 𝐽, 𝛼2 and 𝛼3. This means that the interaction Terms 3, 4 and 5 in Equation (22)
must be examined more closely. For this purpose, the limiting case is considered where the
news environment tends toward zero from positive values: B → 0+. Thus, the strength of the
message environment becomes immeasurably small, |B| = 𝐵 ≈ 0, and the only information
that remains is the direction, here positive: sign(B) = +1. In this consideration, the three
states of the agents (“conform”, “neutral” and “nonconform”) can still be distinguished. Let
us note that the consideration defined thus far can be carried out in the same way for the limit
B → 0−.

To simplify the equations, a volatility 𝑇𝑐 = 𝐽𝑧
2𝑘 (phys.: Curie temperature) is introduced

for convenience, and with 𝐵 = 0, 𝑚0 > 0 and 𝑥 = 𝑇𝑐
𝑇
𝑚, it follows from Equation (33):

1
1 − 𝑚0

𝑇

𝑇𝑐
𝑥 = tanh(𝑥). (35)

As long as the prefactor 1
1−𝑚0

𝑇
𝑇𝑐

is greater than 1, 𝑥 = 0 is determined as the solution of
Equation (35), i.e., 𝑚 = 0. If the prefactor is less than 1, several solutions are determined
depending on the volatility 𝑇 and the proportion of neutral positions 𝑚0. If the volatility
𝑇 ≫ 𝑇𝑐 is successively reduced, a critical point (phys.: Curie point) is exceeded, and the
prefactor becomes 1, at which the macroscopic state variable 𝑚 of the agent system changes
spontaneously (phys.: spontaneous magnetization). This critical point is described by a
critical volatility 𝑇𝑐. At the critical point, a transition from 𝑚 = 0 to 𝑚 ≠ 0 takes place (phys.:
phase transition). Depending on 𝛼2 and 𝛼3, a defined proportion of neutral positions 𝑚𝑐0 is
observable at this critical point. From the condition that the prefactor in Equation (35) is
equal to 1, the following relationship can then be established:

𝑇𝑐 = (1 − 𝑚𝑐0)𝑇𝑐 . (36)

With 𝑚𝑐0 > 0, the critical point is shifted to lower volatilities 𝑇𝑐 compared to those of the
standard Ising system. In the latter, the critical point is described by 𝑇𝑐 and not by 𝑇𝑐. This
means that in a system with the neutral position as a possible third state for the agents, the
phase transition from 𝑚 = 0 to 𝑚 ≠ 0 should in practice only be observable with smaller
volatilities. This suggests that the agents in the neutral position have a braking effect on the
overall system with respect to the occurrence of the phase transition (phys.: supercooling). If
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the model of a two-state system is incorrectly used for a three-state system, this effect cannot
be observed, and the dynamics can be misinterpreted.

With Equation (36), similar to the equations for the standard Ising system in physics
(Greiner et al., 1995; Kittel and McEuen, 1996), the measurement equation for 𝐽 or the
product 𝐽𝑧 in econometrics can be defined:

𝐽 =
2𝑘𝑇𝑐

𝑧(1 − 𝑚𝑐0)
. (37)

The proportion of neutral positions 𝑚𝑐0 is specified shortly. If this proportion is known, the
parameter 𝐽 can be determined by measuring the critical volatility𝑇𝑐 with 𝑧 known or guessed.
Section 2.4 shows an example of how this can be done.

In the case considered here with 𝐵 = 0, the condition 𝑚 = 0 applies at the critical point
with 𝑇 = 𝑇𝑐. According to Equation (24), it follows that 𝐵1 = 0 and thus cosh(0) = 1 in
Equation (31). Finally, with Equation (36) inserted in Equation (31) and after some algebraic
transformations, the implicit equation for 𝑚𝑐0 follows:

𝑚𝑐0 =
1

1 + 2 exp
(
𝐴(𝑚𝑐0, 𝛼2, 𝛼3)

) . (38)

With the abbreviation:

𝐴(𝑚𝑐0, 𝛼2, 𝛼3) =
𝛼3 − (𝛼2 + 𝛼3)𝑚𝑐0

1 − 𝑚𝑐0
. (39)

If the parameters 𝛼2 and 𝛼3 are known, e.g., from fundamental considerations of the utility
function Equation (22), then the proportion of neutral positions 𝑚𝑐0 at the critical point 𝑇 = 𝑇𝑐

is determined as the solution to the implicit Equation (38).
Depending on𝛼2 and𝛼3, the implicit Equation (38) has up to three solutions. This points to

the possibility of three phase transitions of the generalized agent system under consideration.
Knowing 𝑚𝑐0, Equation (36) can then be used to calculate the volatility 𝑇𝑐 at the critical point.

It is easy to see that for 𝛼2 ≥ 0, Equation (38) always has at least the solution 𝑚𝑐0 = 1 with
this the critical volatility 𝑇𝑐 = 0 follows. For 𝛼2 = 0, there is a second solution depending on
𝛼3, i.e., 𝑚𝑐0 = (1 + 2 exp(𝛼3))−1. Specifically, for 𝛼3 = 0, this leads to 𝑚𝑐0 = 1

3 and 𝑇𝑐 = 1
3𝑇𝑐.

A variation of the parameters in the region𝐷 = [0.00, 2.00]2 ⊂ R2 shows that – apart from
𝑚𝑐0 = 1 – further solutions for 𝑚𝑐0 do not exist for all parameter combinations (𝛼2, 𝛼3) ∈ 𝐷.
However, the analyses also reveal that in subset 𝐷′ = [0.00, 1.35] × [0.65, 2.00] ⊂ R2 around
(𝛼2, 𝛼3) = (+1, +1), three solutions 𝑚𝑐0 can always be found. For the special case 𝛼2 = 1,
considered in Section 3.4, even down to the lower limit �̄�3 = 1 − ln(2) = 0.3068528 . . ., with
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𝑚𝑐0 = 0.5 (multiplicity two) and 𝑇𝑐 = 1
2𝑇𝑐. Let us note that the general boundary condition

�̄�3 = 𝑔(�̄�2) for domain 𝐷′ is nonlinear and leads to different values of 1
3 < 𝑚𝑐0 <

3
5 with

multiplicity two as solutions.
For choice (𝛼2, 𝛼3) = (+1, +1) as the anchor point for further studies, Table 6 summarizes

all solutions 𝑚𝑐0 of Equation (38) and gives the corresponding factors for Equation (36) to
determine the critical volatility 𝑇𝑐.

Number 𝑚𝑐
0 1 − 𝑚𝑐

0

1 1.0 0.0
2 0.7281387 . . . 0.2718612 . . .
3 0.1882859 . . . 0.8117141 . . .

Table 6: Critical Points for (𝛼2, 𝛼3) = (+1, +1).

An example with the phase transitions noted in Table 6 is considered in Section 3.4.4.
Figure 7 shows phase transition numbers 2 and 3 as a pitchfork bifurcation at the various
critical volatilities in the upper image. Phase transition number 1 is at 𝑇 = 0 and cannot be
resolved graphically any further.

A potential decision criterion as to which phase transition can be observed in practice
may be the gross utility Ū introduced in Section 3.3.5. In Section 3.4.4, this is discussed in
more detail.

In Section 3.3.7, the phase transitions for 𝑚𝑐0 ≠ 1 are analyzed in more detail, and the
question of how the parameters 𝛼2 and 𝛼3 can in principle be estimated from measured data
is also addressed.

Findings, Limits and Extensions
In general, 𝛼2 and𝛼3 are intrinsic parameters of the generalized agent system and reflect the

relative evaluation of configurations, one of which is the neutral position, versus configurations
consisting only of active positions, compare Equation (22). Thus, the parameters depend on
the specific application and must be examined more closely in their context.

For investigations in other fields of application, the assumption (𝛼2, 𝛼3) ≈ (+1, +1)
can serve as a starting point, and the behavior described in the following sections can be
observed. However, if the parameters deviate significantly from +1, the system behaves
completely differently. As an example, the cases 𝛼2 = 1 and 𝛼3 → 0 were examined in
more detail in preliminary studies. As 𝛼3 approaches the limit �̄�3 = 0.3068528, the distance
between the pitchfork bifurcations shown in Figure 7 decreases, and they push together.
For 𝛼3 = 0.50 ± 0.01, the curvature behavior of the right bifurcation changes significantly
and is inverted. If 𝛼3 = �̄�3, both bifurcations lie indistinguishably on top of each other

67



and form a vertex. If 𝛼3 is further reduced, the vertex dissolves, and the system can show
a sudden noncontinuous increase in the macroscopic state variable 𝑚, indicating a phase
transition of order one. Whether this behavior can actually be observed in practice must be
clarified in individual cases by means of comprehensive, systematic investigations. For the
first indication, the gross utility can also be examined here.

The identification of states that can be realized in practice and the deeper meaning of the
parameters (𝛼2, 𝛼3) is revealed from the context of the application and cannot be specified
here for all conceivable cases. This and a comprehensive analysis of what the previously
found limits mean in each individual case is not examined further here and is reserved for
subsequent studies.

3.3.7. Phase Transition and Critical Index
As before, B → 0+ is assumed below, and the phase transition at the critical point 𝑇 = 𝑇𝑐

for 𝑚𝑐0 ≠ 1 and (𝛼2, 𝛼3) ≈ (+1, +1) is examined in more detail. To do this, Equation (36) is
substituted into Equation (35):

1 − 𝑚𝑐0
1 − 𝑚0

𝑇

𝑇𝑐
𝑥 = tanh(𝑥). (40)

At the critical point, 𝑚 ≈ 0 holds. The right-hand side of Equation (40) can thus be expanded
in the vicinity of 𝑥 ≈ 0 (Greiner et al., 1995): tanh(𝑥) = 𝑥− 1

3𝑥
3+ 2

15𝑥
5+ . . .. After rearranging

and factoring out the Taylor series up to the cubic order, the following expression is calculated:

0 = 𝑥

(
1 −

1 − 𝑚𝑐0
1 − 𝑚0

𝑇

𝑇𝑐
− 1

3
𝑥2

)
︸                        ︷︷                        ︸

!
=0

(41)

If 𝑚0 ≈ 𝑚𝑐𝑜, the following Taylor series can be determined:

1 − 𝑚𝑐0
1 − 𝑚0

= 1 +
𝑚0 − 𝑚𝑐0
1 − 𝑚𝑐0

+
(𝑚0 − 𝑚𝑐0)

2

(1 − 𝑚𝑐0)2 + . . . (42)

At the critical point, Δ𝑚0 = 𝑚0 −𝑚𝑐0 is very small, and the 0th order Taylor expansion can be
used in the brackets of Equation (41). If 𝑥 =

𝑇𝑐
𝑇
𝑚 is back-substituted, the behavior of 𝑚 for

𝑇 → 𝑇−
𝑐 is described by the approximate equation

|𝑚 | = (1 − 𝑚𝑐0)
√

3
𝑇

𝑇𝑐

����1 − 𝑇

𝑇𝑐

���� 1
2

. (43)
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From data collected near the critical point reflecting the behavior𝑚(𝑇), both𝑇𝑐 and𝑚𝑐0 can be
estimated by using Equation (43). Apart from the prefactor (1 − 𝑚𝑐0), Equation (43) describing
the behavior near the critical point is identical to the corresponding equation of the standard
Ising system, see, e.g., Greiner et al. (1995, §18, Equation (18.28)). The critical index can be
read from Equation (43) and is equal to 1

2 , which is also equal to the corresponding index of
the standard Ising system (Isihara, 1971). Since the macroscopic variable 𝑚 is continuously
changing at 𝑇 = 𝑇𝑐, the phase transition is of order 2, similar to the standard Ising system
(Greiner et al., 1995). Let us note that Equation (43) applies to both phase transitions specified
with numbers 2 and 3 in Table 6.

Limits and Extensions

If Equation (43) is used to estimate 𝑇𝑐 and 𝑚𝑐0 from the data and one parameter 𝛼2 or 𝛼3

is known, then the implicit Equation (38) can be used to calculate the other parameter, which
also compares the discussions given in Section 3.3.6 and Section 3.4.4.

One way to determine both parameters 𝛼2 and 𝛼3 at the same time is to consider the
curvatures of 𝑚(𝑇) near the critical point in more detail and compare Figures 6 and 7 for
B = 0 as an illustration of the curvature near the critical point. For this purpose, the 1st order
is also considered in Equation (42) in the Taylor series. Then, from the implicit Equation (31)
for B = 0, an approximation equation for Δ𝑚0 depending on the volatility 𝑇 is determined.
Both can be used in Equation (41). After transformation, an additional factor (not shown
here) is calculated in Equation (43), which explicitly depends on 𝛼2 and 𝛼3. Thus, the values
𝑇𝑐, 𝑚

𝑐
0, 𝛼2 and 𝛼3 can then be estimated from data (𝑇𝑖, 𝑚𝑖) with 𝑖 = 1, . . . , 𝑀 collected near

the critical point.
How well the two model parameters 𝛼2 and 𝛼3 can be determined from data with this

outlined procedure is not investigated further and is the subject of subsequent research. The
empirical investigation in Section 3.4 shows that despite a large dataset, with 𝑀 ∼ O(105),
only a few data points indicate a spontaneous transition𝑚 ≠ 0; see Figure 6. Furthermore, the
curvature behavior cannot be reliably determined and evaluated due to scattering. Thus, in
practice, the curvature behavior in the vicinity of the critical point can probably be modeled
only with significantly larger datasets.

With very large amounts of data, which reflect the curvature behavior near the critical
point in great detail, Equation (43) can also be used to detect possible deviations from the
critical index 1

2 if this is considered a free fitting parameter. Such investigations correspond
to analyses in physics that, e.g., focus on the detection of model inaccuracies due to the
mean-field approximation, compare, e.g., Amit (1978); Greiner et al. (1995).

A further limit to the applicability of Equation (43) can be seen in the following. If the
parameters 𝛼2 and 𝛼3 deviate significantly from +1, the curvature near the critical point may
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not be correctly modeled by Equation (43). For example, for (𝛼2, 𝛼3) = (+1, +0.3068528),
the right pitchfork bifurcation in Figure 7 inverts and is not described by Equation (43) due
to the constraint 𝑇 → 𝑇−

𝑐 . Thus, in this individual case, e.g., an extended analysis based on
the overall model Equation (30) and (31) is required to describe the phase transition more
precisely.

3.4. Application

The theoretical model from Section 3.3 is applicable to empirical examples in which a
large number of involved agents can each individually choose among three alternatives. As
an application, in this section, we consider the example of the financial market where 𝑁
shares of a single firm can be traded by a collection of agents or investors. As in Börner
et al. (2023b), we normalize that investors trade one share per transaction. Each investor has
the opportunity to choose among three trading options: to buy a share, to sell it or to hold
it. The different states of the investors as well as the configurations of neighboring investors
each influence the utility calculus of the market observer, who derives positive utility from
explaining the market without additional cost or effort (cf. Section 3.3.1). As described in
Section 3.3.1, the market observer can also be the investor, which is assumed for the sake of
simplicity in the following. In this application, the utility is measured in USD for investors
as a nonincurred cost for more information explaining a specific configuration. The unitless
numbers of different configurations are included in the utility function Equation (22), so that
the prefactors 𝜇 and 𝐽 in the utility function have the unit USD. The application of a general
model to a concrete example requires the correct transfer of all model variables. Since a
procedure is used in the following to estimate the model parameters empirically, the transfer
is not merely abstract but shows how the variables are to be determined using capital market
data. At the same time, this example provides possible guidance on how to determine model
parameters in other applications. With the results and findings of Börner et al. (2023b),
the experimental setup presented here to determine the parameter 𝐽 is the completion of the
empirical application of the overall model to the capital market.

In Börner et al. (2023b), the model parameters 𝛼1 and 𝜇 are identified by using a design
in which the couplings between agents do not operate. If the coupling parameter 𝐽 contained
in Terms 3, 4 and 5 is to be measured, Terms 1 and 2 from Equation (22) must be “switched
off” as the idiosyncratic part of the model.

After the coupling parameter 𝐽 is determined, the phenomenology of the model is presented
by using simulations. In addition, the practical applicability of the model is discussed, showing
how risk assessments can be performed with the model, for example, by estimating one-step-
ahead price losses.
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3.4.1. Determining the Model Parameter J – Experimental Set-up
Before the empirical setup and the data are presented in detail in the following, the

empirical strategy is briefly outlined. If market situations are found where no unique message
exists, i.e., B ≈ 0, then Terms 1 and 2 of Equation (22) become zero. Furthermore, if the
capital market is still in dynamic equilibrium, i.e., volatility 𝑇 ≈ const., for a time period,
then conditions are found that allow an empirical determination of 𝐽. With these market
conditions, the volatility 𝑇 , critical volatility 𝑇c and trade potential 𝑚 must be measured so
that the measurement Equation (37) can be used to determine the parameter 𝐽.

The critical volatility𝑇c must be determined under idealized specifications by using capital
market data. With the following procedure, these conditions are considered and implemented:

1. Periods of constant volatility 𝑇 , when the market is in dynamic equilibrium, are identi-
fied by specifications regarding the rate of change of volatility. The assumption is that
in dynamic equilibrium, no fundamental information leads to sharp price movements,
so that B ≈ 0+.

2. Next, the mean attitude 𝑚 from Equation (33) is introduced as the trading potential
�̄�pot, with the message field B indicating whether it is a buy or sell potential. Since
B ≈ 0+ is assumed, �̄�pot = 𝑚 (buyer surplus). The empirical trading potential �̄�pot is
calculated as in Vikram and Sinha (2011).

3. Given the market conditions just described, 𝑇 and 𝑚 are determined. The goal is to
find the bifurcation point in Figure 6, evaluate it, and perform the parameterization of
the model from Section 3.3.

4. A recursive procedure with rolling windows is used to extract the optimal section of
data points around the bifurcation point that contains the maximum bandwidth of trade
potential 𝑚 and at the same time has the smallest window width. The average of the
volatility contained in this window is identified as the critical volatility 𝑇c (phys.: Curie
temperature).

5. The critical volatility 𝑇c is used to calculate the parameter 𝐽 according to the measure-
ment Equation (37).

3.4.2. Data and Transfer of the Model Parameters
To complete the empirical research, the same example is studied as in Börner et al. (2023b).

Thus, we also use the stock of the pharmaceutical company BioNTech SE as an example,
accessing minute data from the American Stock Exchange NASDAQ via a Bloomberg terminal
for the period from 2021-08-01 to 2022-09-30 (Bloomberg code: BNTX UW). In addition,
we use minute data on the S&P 500 and NASDAQ 100 stock indices, also via the Bloomberg
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terminal and for the same period, to control for overall market trends. This results in a total
of 91848 data points for each security.

News Sentiment B
As described in Section 3.3.1, there is an external message field, or news sentiment B,

to which investors’ decisions or states 𝑆 are aligned. This news sentiment can be company-
related news that has price-influencing potential. In principle, it is possible for B to take
values between −1 and +1 (Börner et al., 2023b), but in this section, we focus on a special
case and assume that no unique message exists; therefore, the strength of the message field is
positive but immeasurably small and very close to 0, i.e., |B| = 𝐵 ≈ 0 and sign(B) = +1. For
example, observing a persistent, tiny positive trend in a stock might be viewed as minimally
positive news. This means that the three states of an agent, “nonconform” or “conform” to
the message environment and the “neutral” position, remain distinguishable. In this setting,
e.g., the agent’s “conform” state means that the investor is potentially buying the stock. Thus,
in our example with B ≈ 0+, the conforming state 𝑆 = +1 corresponds to buying the stock.
Similarly, 𝑆 = −1 corresponds to selling and 𝑆 = 0 to holding the stock. The consequence of
this assumption is that Terms 1 and 2 of Equation (22) become zero, leaving Terms 3, 4, and
5 with the coupling parameter 𝐽 and the scaling factors 𝛼2 and 𝛼3. This already outlines how
the cut-out experiment (Börner et al., 2023b) is to be designed so that the remaining model
parameters 𝐽, 𝛼2 and 𝛼3 can be determined.

In general, the strength and direction of the news environment B can be determined
by using lexical text analysis when applying the model for a generalized agent system to
the example of a stock investment, see, e.g., Börner et al. (2023b). The lexical analysis
of the news by using the approach of Loughran and McDonald (2011) has proven to be
advantageous (Börner et al., 2023b), which provides the normalized strength of the news
environment between −1 and +1 for a stock investment. In Section 3.4.4, the evaluation of the
model is based on this lexical analysis concept but is focused on the solution sets for B ≥ 0.
For B < 0, the solution sets are determined analogously.

Scaling Factors 𝛼2 and 𝛼3

Furthermore, Section 3.3.7 explains how 𝛼2 and 𝛼3 in Equation (22) can be measured.
The 𝛼-factors scale the contribution of a given configuration of neighboring agents to the
market observer’s utility calculus, provided an investor with a holding position is involved.
The prerequisite for the measurement is that there are enough data points at the critical point
𝑇c to measure the curvature of the bifurcation. Since, as seen in Figure 6, this is not the case
even for the large datasets under consideration here, a fundamental derivation for the size of
the alphas must suffice at this point.
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Based on the model operationalization when using the utility of a market observer, it is
necessary to consider how the configurations of Terms 4 and 5 in Equation (22) contribute
to the utility, scaled by 𝛼2 and 𝛼3, respectively. Term 4 describes the situation where two
adjacent investors are both in the hold position. Apart from the fact that both hold positions
in themselves reduce the benefit, if B ≠ 0, there is no discrepancy between the two investors’
positions that requires explanation. In this respect, it is appropriate that the utility is increased
by two equal adjacent positions. From the observer’s point of view, it should make no
difference which same positions are involved in a configuration. Thus, 𝛼2 = 1 should be
implied in the capital market so that the configurations in Terms 3 and 4 contribute equally
to utility.

The same reasoning is applicable to Term 5. If one of two neighboring investors in Term 3
is in the buy position and the other in the sell position, this discrepancy, which is inherent in
the configuration, reduces the utility by 𝐽. If Term 5, which exclusively maps configurations
with discrepancies, namely, between a hold position and a buy or sell position, then it is
consistent to assume that the contributions to utility are equal to those measured with Term 3.
Thus, 𝛼3 = 1 also holds.

The fundamental considerations above suggest that for the factors, (𝛼2, 𝛼3) ≈ (+1, +1)
holds in practice. With a much larger amount of data, more precise measurements of the
curvature behavior near the bifurcation point can be made (cf. Section 3.3.7) and thus provide
information about the actual values of the 𝛼-factors implicit in the capital market.

Volatility 𝑇

A key external state variable in physics is the temperature𝑇 , as introduced in Section 3.3.3,
which in the financial context can be interpreted as instantaneous volatility and is observed by
investors in the market, see, e.g., Börner et al. (2023b,c). Before explaining how the variable
is empirically identified, intuition is needed to understand how volatility affects investors’
decisions. For a given message field, volatility acts as a disturbance variable under which
unambiguous decision-making becomes more difficult for investors. If volatility increases,
fewer investors align themselves according to the news field. Conversely, when volatility is low
or decreases, an investor’s decision is subject to less uncertainty (Bouchaud, 2013; Sornette,
2014). In the situation described above with a minimal but positive news field, investors then
may find it difficult to decide on a direction when volatility is high because uncertainty is
high in addition to the weak news situation, and with a small group of investors, a pronounced
distribution across all three possible decisions should already be observable. However, if
volatility in this situation successively decreases and reaches a critical value 𝑇c, significant
price movements may occur, as investors interpret even the smallest positive news elements as
a buy signal. With the observation that an adjoining investor also buys, the effect intensifies,
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and at this microscopic level, a coupling of the attitudes of the investors takes place. The
resulting phenomenon at the macroscopic level is a spontaneous, market-effective coupling of
a larger number of investors’ attitudes in one direction (phys.: spontaneous magnetization, cf.
Section 3.3.6), which can be interpreted as (short-term) herd behavior in the financial market.

To calculate the parameter 𝐽, the critical volatility 𝑇c must be identified empirically. As in
Börner et al. (2023b), we measure the state variable 𝑇 by using log returns over a 15-minute
time window. To isolate the terms containing the parameter 𝐽 in the overall model Equation
(22), the experimental setup must be designed in such a way that the front idiosyncratic part
of the model containing the ideal agent system is “switched off”. This condition is reached
when B ≈ 0+ for the information field holds. Furthermore, for the empirical approach,
market phases in which the market is in dynamic equilibrium must be identified (phys.:
thermodynamic equilibrium). This is the case when no major price changes have occurred
over a certain period of time and volatility remains relatively constant. Thus, it can be assumed
that no fundamentally important information is present. If, at the same time, the volatility of
the market index is largely constant, a momentary influence of the market volatility on the
volatility of the stock under consideration can be excluded, and it can then be concluded that
the system is in dynamic equilibrium. Let us note that the level of 𝑇 can be arbitrary, but it is
important that very small volatilities are also included in the containment because only then
is the effect of spontaneous coupling of investors’ attitudes observable.

To find market phases with constant volatility, we determine the 15-minute volatilities 𝑇15′

for the entire sample of the BioNTech stock and the market indices (S&P 500, NASDAQ 100)
according to Börner et al. (2023b). From the rate of change of these 15-minute volatilities,
we determine the standard deviation 𝜎 as the range of variation. Finally, we use only the
data points whose 15 previous data points fall within this 𝜎-band of the rate of change. Next,
the goal is to extract the critical volatility 𝑇c from the data. To do this, the data belonging to
the bifurcation, if the data contain one, must be separated from the rest of the data scattering
around the 𝑇-axis from the filtered sample (𝑇, 𝑚). We use a rolling window-based search
procedure to find the bifurcation as well as the associated outgoing branches, as shown in
Figure 6, and we take the smallest possible vertical window that includes the maximum
bandwidth of the trade potential 𝑚. If no bifurcation is found, the smallest measurable value
can be taken as an estimate for 𝑇c. This approach has the advantage of objectively extracting
a cloud of points from which 𝑇c can be obtained as the average of the included volatilities, see
Figure 6. This selective extraction of a cloud of points neglects some points, also scattering
along the 𝑚-axis, which could be relevant for the determination of 𝑇c. To account for this
potential error, we specify a bandwidth for 𝑇c. The lower bound of the range is reflected by
the minimum volatility, and the upper bound of the range is reflected by the same distance
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between 𝑇c and minimum volatility, but as a markup on 𝑇c. In our application, the measured
𝑇c = 1.33384𝑒 − 3 and the specified bandwidth are shown in Table 7.
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Figure 6: The trade potential and the respective volatilities prefiltered with the conditions are plotted. The
figure shows the bifurcation around the 𝑇-axis, which can also be seen in the simulations in Figure 7. The
peak of the bifurcation is identified as the critical volatility 𝑇c.

Mean Attitude 𝑚 and Neutral Positions 𝑚0

As introduced in Section 3.3.4, 𝑚 and 𝑚0 as macroscopic variables indicate the mean
attitude and the quantity of neutral positions, respectively. In the context of the financial mar-
ket, these quantities of the system are central, as they can be interpreted as price-influencing
trade potential (Börner et al., 2023b). Since the macroscopic variable 𝑚 does not specify a
direction, it must be specified via the message field B. Based on Equation (30), this results in
the average trade potential �̄�pot with

�̄�pot = sign(B) 2 sinh(+𝛽𝜇𝐵1)
2 cosh(+𝛽𝜇𝐵1) + exp(−𝛽𝛼1𝜇𝐵2)

= sign(B)𝑚. (44)
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Given B > 0, �̄�pot = 𝑚 holds, and the trade potential is a buying potential provided𝑚 > 0. In
empirical application, the hold positions 𝑚0 can be calculated only with the coupled implicit
Equations (30) and (31) if 𝛼2 and 𝛼3 are known. Assuming 𝛼2 = 𝛼3 = 1, there exists a
fixed quantity 𝑚𝑐0 = 0.1882859... at the critical point 𝑇c, which can be calculated by using
Equations (38) and (39).

For the empirical identification of the quantity �̄�pot, we follow Börner et al. (2023b) and
compute �̄�pot as the balance of buyer and seller potential. The number of hold positions 𝑚0

can be disregarded at this point since they have no effect on price changes in the system. To
extract the trade potential �̄�pot from the market data, we use an indirect method. We calculate
the concatenation factors 𝐾𝑡 = 𝑃𝑡+1/𝑃𝑡 of the instant price movements at all time points 𝑡. Then,
the trade potential is calculated according to Vikram and Sinha (2011) and later Börner et al.
(2023b):

ˆ̄𝑁pot(𝑡) =
𝐾𝑡 − 1
𝐾𝑡 + 1

. (45)

The trade potential ˆ̄𝑁pot is plotted together with the corresponding volatilities 𝑇 in Figure 6.

Coupling Parameter 𝐽

By using Equation (37), the parameter 𝐽 is calculated if 𝑇𝑐 can be obtained from the data.
The remaining quantities have already been discussed. Thus, 𝑧 = 12 was assumed for the
ordinal number that indicates the average number of connected investors, 𝑚𝑐0 = 0.1882859 . . .
results from the solution of the implicit Equations (38) and (39), given that 𝛼2 = 𝛼3 = 1,
and 𝑘 = 1 USD is set in our application since it was introduced as a measure of cost. For
𝑇c = 1.33384𝑒 − 3 according to Figure 6 we obtain 𝐽 = 2.738731𝑒 − 4 USD. A bandwidth
and a deduced standard deviation are given in Table 7.

3.4.3. Summary of Results
We determine bandwidths for our estimated parameter values to account for potential

estimation errors. These can be used to construct standard deviations according to 𝜎 ≤
1
2 (𝑀 − 𝑚) given by Popoviciu (1935), where 𝑀 and 𝑚 are the supremum and infimum of
the support of the underlying distribution. The sample yields a bandwidth whose limits can
be used as an initial indication of the supremum or infimum. Thus, a first estimate for 𝜎 is
possible. The values and error ranges are summarized in Table 7.
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Parameter Value Range Std. Dev. 𝜎

𝜇 (10−4 USD) 3.92 (3.51 − 4.21) 0.35
𝛼1 0.75 (0.00 − 1.00) 0.50

𝑇c (10−3) 1.33 (0.26 − 2.41) 1.07
𝐽 (10−4 USD) 2.74 (0.53 − 4.95) 2.21
𝛼2 1.00 (0.00 − 2.00) –
𝛼3 1.00 (0.00 − 2.00) –

Table 7: Summary of the estimated parameters as well as details on the scattering in terms of the bandwidths
and the standard deviation 𝜎. Results for 𝜇 and 𝛼1 are taken from Börner et al. (2023b).

In addition to the modeling approach shown here, there are strands of research that deal
with similar models but assume distributions of the parameters, e.g., cf. Bouchaud (2013);
Crescimanna and Di Persio (2016). By specifying a value and the possible distribution
of a model parameter, it might be possible to parameterize the distribution-based models
mentioned above as well.

3.4.4. Model Phenomenology
With the parameters identified thus far, the solution set of Equations (30) and (31) was

determined numerically as a function of the external conditions 𝑇 and B. The volatility 𝑇
varied within an interval from 0 to slightly above 𝑇𝑐, and the news environment B varied
within an interval from 0 to 1.

Figure 7 shows the numerically determined solution sets. The slightly gray graphs show
the solution sets for the hold positions �̄�0 as a proportion of the whole. The hold positions
correspond to the neutral positions in the generalized agent system and the following applies:
�̄�0 = 𝑚0. The black lines show the solution sets for the mean attitude 𝑚 in the generalized
agent system and correspond here to the buyer or seller surplus. With sign(𝐵) = +1, the trade
potential is �̄�pot = 𝑚. The bold black lines in the lower part of the upper graphic reflect the
gross utility Ū determined for each solution set. Its value can be read on the right axis.

First, there are several solution sets for the same external conditions B = const. depending
on the setting 𝑇 = const. The solution that can be actually observed in practice, i.e., the
macroscopic state of the system, can be deduced from fundamental econometric considera-
tions. The analyses showed that this realized macroscopic state corresponds to a maximum
of gross utility Ū, as assumed in Section 3.3.5.

We describe the solution set for decreasing volatilities 𝑇 → 0 using the upper graphic in
Figure 7. The case where B = 0+ is thus described in detail. If the volatility falls below 𝑇𝑐,
there is hardly any change in the system that can be observed macroscopically based on the
price change of the stock. The proportion of hold positions �̄�0 is falling, but the increasing
proportions of buyers and sellers neutralize each other overall; thus, �̄�pot = 0. The critical

77



point in the standard Ising system (two-state model) is connected to 𝑇𝑐, and a macroscopically
relevant phase transition is expected in this model framework; see also Section 3.3.6. However,
this phase transition occurs only at a lower volatility, specifically for 𝑇 = 𝑇𝑐. One possible
interpretation is that the presence of investors in position “hold” (the third possible state) leads
to a moderating effect. In the sense that the density of positions “holds” must first continue
to decrease before an increased adjustment (herding) of buying behavior or selling behavior
takes place, a macroscopic effect can be observed.

At point 𝑇 = 𝑇𝑐, we observe a pitchfork bifurcation. Then, the trade potential for 𝑇 = 𝑇−
𝑐

can have three different values: �̄�pot < 0, �̄�pot = 0 and �̄�pot > 0. In addition, the proportion
of holding positions �̄�0 can have two values. The larger value belongs to �̄�pot = 0 and the
smaller one to the other two values �̄�pot ≠ 0. The latter two configurations are the ones
observed in practice. In the literature, the configuration with �̄�pot = 0 is referred to as a
configuration that is not observable in econometrics and is unstable (Bouchaud, 2013). The
other configurations with �̄�pot ≠ 0 are stable and observable in practice. This observation can
be explained more precisely using the gross utility Ū: The gross utility is at its maximum for
the two configurations �̄�pot ≠ 0, as the lower part of the upper graphic shows.

Phase transitions may occur again as volatility 𝑇 decreases further. According to Table
6, two further phase transitions could take place at 𝑇𝑐 = 0.2718612 · 𝑇𝑐 and 𝑇𝑐 = 0 · 𝑇𝑐.
In Figure 7 (upper graph), the second phase transition at 𝑇𝑐 ≈ 0.45 · 10−3 is shown as the
second pitchfork bifurcation. The third phase transition at 𝑇𝑐 = 0 cannot be further resolved
graphically. However, the second phase transitions should not be observable in practice if the
assumption of the maximum of the gross utility applies to observable configurations. The
third phase transition can only be observed under very special conditions, as the following
analysis shows.

For 𝑇 = 0+, an interesting case can be analyzed, namely, when �̄�0 tends toward +1 (upper
branch of the slightly gray graph at the top left). For this case, i.e., (�̄�pot, �̄�0) = (0, +1),
the gross utility Ū is also at its maximum and equal to the other two configurations with
(�̄�pot, �̄�0) = (±1, 0). Thus, for 𝑇 = 0, the system can exist in three possible pure states:
All investors sell, all investors hold, or all investors buy the stock. This result may have
been guessed but is derived here from theory. We show shortly that this result is a direct
consequence of the assumption 𝛼2 = 1 and supports the latter.

The gross utility is analyzed more precisely for 𝑇 = 0. With 𝑇 = 0, Ū = �̄� immediately
applies. With B = 0 it is calculated from Equation (23) for the configurations (�̄�pot, �̄�0) =
(±1, 0) the gross utility Ū = 1

2𝐽𝑧. For the configuration (�̄�pot, �̄�0) = (0, +1) the gross
utility is Ū = 1

2𝛼2𝐽𝑧. Both gross utilities are only equal if 𝛼2 = 1. Thus, if all three pure
states are possible from an econometric point of view at 𝑇 = 0, then 𝛼2 = 1 is mandatory
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in this application. In this case, the maximum gross utility is Ū = 1.6432 · 10−3 USD and
corresponds to the numerical limit value in the lower part of the upper graphic (upper bold
black line on the left).

If not only 𝑇𝑐 can be determined from the data but also an estimator for 𝑚𝑐0 can be
determined from the curvature behavior at 𝑇𝑐 by using Equation (43), then, with 𝛼2 = 1,
𝛼3 can be calculated by using the implicit Equation (38). Hence, statements may be made
about how the market participants implicitly assess the loss of utility through asymmetric
configurations if one position in the configuration is the holding position, compare Term 5
in Equation (22). Unfortunately, modeling of the curvature behavior is not possible with the
available data. Thus, the parameter 𝛼3 cannot be estimated here. The bifurcation on the
left side that can be seen in Figure 6 does not allow any conclusions to be drawn about an
inversion of the curvature near the critical point. It can therefore be assumed that 𝛼3 > 0.5,
as in Section 3.3.6. For the simulations, it was assumed that 𝛼3 = 1.

Examples of solution sets for B > 0 are shown in the lower graphic in Figure 7 and
should be interpreted analogously. Here, in practice, the state �̄�pot > 0 is always realized. A
maximum of Ū could also be calculated for these solutions (not shown here). There is no
phase transition for the critical points observed in the case of B = 0. The trade potential �̄�pot

continuously changes its value with decreasing volatility. However, compared to the standard
Ising system, a slower behavior can also be observed, with the same B ≠ 0 and the same
volatility, and the trade potential is lower in comparison.

3.4.5. Model Predictions with Practical Relevance
Up to this point, we have been concerned with how models that basically replicate the

properties of complex systems can be applied in practice. The necessary step of calibrating
the model parameters to the underlying empirical system has been shown. The following
describes a concept of how the parameterized model can be used in practice. The application
concerns a one-step ahead forecast, which can be used, e.g., for short-term price forecasts.

With continuous measurements of the external state variablesB and𝑇 , the trading potential
𝑚 and 𝑚0 can be calculated via Equations (30) and (31). The sign of the message field B
provides the necessary information to interpret the trading potential as buyer or seller potential.
By using Equation (45) from Vikram and Sinha (2011) and later Börner et al. (2023b), the
following equation is determined for the estimated price at time 𝑡 + 1 given the price at time 𝑡
and the trade potential defined in Equation (44):

�̂�𝑡+1 =
1 + �̄�pot

1 − �̄�pot
𝑃𝑡 with �̄�pot = sign(B) 𝑁+ − 𝑁−

𝑁
. (46)

79



Thus, the trading potential can be used to formulate an estimator for the price in the next
moment, depending on the external conditions 𝑇 and B. This prediction is not completely
accurate but gives an initial indication of the direction of the price movement and the approx-
imate magnitude of the possible price change. In the event of negative news, this can form
the basis of a risk assessment and serve as preparation for countermeasures.

3.5. Conclusion
In the last 50 years or so, several strands of research have opened up econometrics that

deal with models in a strong analogy to the statistical physics of many-particle systems. While
in physics, special experiments are designed and built to parameterize models, this possibility
does not exist in econometrics in general. For almost all of these models, the question of
parameterization arises, e.g., determining the parameters by using capital market data. The
question of how to estimate parameters directly rather than indirectly in bottom-up agent-
based models was addressed in this paper, and a solution for the appropriate parameterization
was given. A stock investment as an example showed the practical application.

Frequently, models are found in the literature where two possible decision states (e.g.,
buy, sell) are considered. For many applications, however, three states (e.g., buy, hold,
sell) are more appropriate. Therefore, all interaction possibilities between agents (investors)
are considered and influence a utility maximizer calculus in the context of the model op-
erationalization, where the market is explained by incurring information costs. As a main
contribution, it was shown how to parameterize the developed three-state model in special
cut-out experiments. Capital market data were analyzed to empirically determine the model
parameters.

As part of the empirical parametrization, the variables of the general model were first
transferred to the application context of the capital market. In a second step, measurement
equations derived from the general model were used to specify concrete parameter values,
which, in addition to the bandwidths and distribution parameters, represent key findings. In
simulations when using the estimated parameter values for the shares of BioNTech SE, first-
and second-order transitions were identified within the rich model phenomenology that can be
used to explain short-term herd behavior in capital markets. This short-term herding behavior
occurs at a critical point of volatility. Another important result in this context is that the
critical point in the three-state model under consideration is reached at lower volatilities than
in a binary system. Thus, predictions with binary models over three-state systems lead to
biased results. Furthermore, it was shown how to implement a forecast model over short-term
price changes with a one-step-ahead forecast.

Many extensions of the presented three-state model are conceivable, and a selection of
extensions were discussed. All of them have in common that the parameters of the basic
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model determined in cut-out experiments can be used for the extensions. Even if distributions
of parameters are considered in extensions, a first indication for the values of the distribution
parameters can be given by the presented concept. For this purpose, a way was shown how
this can be implemented. At this point, the integration and investigation of the presented
model and its parameterization procedure in more complex applications, e.g., influence of
social interactions in higher model degrees or the modeling of multiasset systems, is left to
following, subsequent research.
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Figure 7: Simulation of the generalized agent system for different news environments and different volatilities
for the example of a stock investment (see text for further explanations).
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4. On the Connection Between Temperature and Volatility in Ideal Agent Systems

4.1. Abstract

Models for spin systems known from statistical physics are applied by analogy in econo-
metrics in the form of agent-based models. Researchers suggest that the state variable
temperature 𝑇 corresponds to volatility 𝜎 in capital market theory problems. To the best of
our knowledge, this has not yet been theoretically derived, for example, for an ideal agent
system. In the present paper, we derive the exact algebraic relation between 𝑇 and 𝜎 for an
ideal agent system and discuss implications and limitations.

Keywords: Agent System, Econophysics, Temperature, Volatility

JEL Classification: C10, C46, C51
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4.2. Introduction

In the context of econophysics, methods from statistical physics are used to model the
behavior of investors (so-called agents), for example, to draw conclusions about the price
movement of a stock and arrive at a one-step ahead forecast model; see, e.g., Vikram and
Sinha (2011). Starting with the work of Weidlich (1971) and Galam et al. (1982), the research
field of econophysics utilizing spin systems has steadily developed and branched out; see, e.g.,
Bouchaud (2013); Sornette (2014) for a review. The models of econophysics, based on the
analogy with spin systems from statistical physics, depend on a state variable 𝑇 that describes
the system and is called temperature in statistical physics. For temperature in statistical
physics, see, e.g., Isihara (1971); Landau and Lifšic (1980); Greiner et al. (1995); Kardar
(2007). In econophysics, the state variable 𝑇 is referred to differently in various applications:
noise, irrationality, degree of randomness in agents’ decisions, the collective climate parameter
or volatility; see, e.g., Weidlich (1971); Kaizoji (2000); Kozuki and Fuchikami (2003); Oh
and Jeon (2007); Kleinert and Chen (2007); Kozaki and Sato (2008); Krause and Bornholdt
(2012); Bouchaud (2013); Crescimanna and Di Persio (2016). In models for capital markets
in which temperature 𝑇 is identified with volatility 𝜎, e.g., of a stock, various relationships
are assumed: 𝑇 ∝ 𝜎2 (Kozuki and Fuchikami, 2003), 𝑇 = 𝜎√

2
(Kleinert and Chen, 2007),

𝑇 ∝ 𝜎 (de Mattos Neto et al., 2011).
To the best of our knowledge, the relationship 𝑇 ∝ 𝜎 is predominantly used in capital

market theory applications (de Mattos Neto et al., 2011; Bouchaud, 2013; Börner et al.,
2023b), but the exact algebraic relation does not appear to have been theoretically derived,
even for an ideal agent system. This contribution is dedicated to this precise question and
is intended to close the research gap reflected in the variety of algebraic equations adopted
and proposed (Kozuki and Fuchikami, 2003; Kleinert and Chen, 2007; de Mattos Neto et al.,
2011). The function 𝑓 : 𝜎 → 𝑇 is derived from theory. Implications are examined, and the
limits that need to be considered are identified. For the simple, ideally designed example
of a two-state agent system (Bouchaud, 2013) the equation 𝑇 = 𝑓 (𝜎) is derived and further
analyzed.

This study is structured as follows. In the next section, temperature is defined as state
variable𝑇 . In Section 4.4, the example of a two-state ideal agent system is introduced. Section
4.5 is devoted to determining the central equation for deriving measurement equations. An
application to the ideal agent system and a conclusion follow.

4.3. Definition of 𝑇

In physics, since the revision of the international system of units, temperature 𝑇 has been
linked to thermal energy using the Boltzmann constant 𝑘 (International Bureau of Weights
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and Measure, 2019, p. 133). If the internal energy 𝐸 = 𝐸 (𝑆,X) is described as a function
of the entropy 𝑆 and possibly other state variables X and the entropy is calculated from the
microcanonical partition function Ω using the equation 𝑆 = 𝑘 lnΩ, then

𝑇 :=
𝜕𝐸

𝜕𝑆

����
X=const.

(47)

is the definition of temperature in statistical physics; see, e.g., Greiner et al. (1995).
Analogy considerations establish a connection between energy and utility in econometrics.

While phyiscal systems minimize their energy, utility maximization is assumed in economet-
rics. Accordingly, as a first starting point for further calculations, the relation 𝐸 = −𝑈 is often
found in the literature (Marsili, 1999; Sornette, 2014; Börner et al., 2023b).

With the relation 𝐸 = −𝑈, Marsili (1999) arrives at the definition of the state variable 𝑇
in econometrics:

𝑇 := − 𝜕𝑈

𝜕𝑆

����
X=const.

(48)

Where X summarizes other variables, for example, the message environment B in the ideal
agent system (Bouchaud, 2013; Börner et al., 2023b).

If finite changes are considered with constant X, then Equation (48) leads to the simple
relation Δ𝑈 ∝ −𝑇Δ𝑆. That is, with fixed 𝑇 and increasing entropy, utility decreases. Mar-
sili (1999, p. 13) concluded that state variable 𝑇 “[. . .] can be considered as the price of
(negative) entropy”.

If and only if the definition of Equation (48) is used in econophysics, a consistent theory can
be constructed based on the methods of statistical physics. The state variable𝑇 is initially used
as a parameter in all equations and must be identified based on the specific circumstances of
the application under consideration. This is specifically shown for the example of a two-state
ideal agent system.

The relationship between energy and utility, as well as Equation (48), provides a theoretical
framework that offers one way in which the state variable𝑇 can be interpreted in econometrics.
The calculations shown in the following sections to determine 𝑇 = 𝑓 (𝜎) focus on a simple,
idealized example of a two-state agent system and are consistent with the theoretical framework
(Bouchaud, 2013). Therefore, systems with interactions between the agents and more complex
systems, which e.g. show segregations (Schelling, 1971, 1978) and make the analogy 𝐸 = −𝑈
questionable when considering an additional individual utility (Grauwin et al., 2009; Lemoy
et al., 2011; Bouchaud, 2013), are not discussed here and are left to further research.
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4.4. Two-State Ideal Agent System

A number 𝑁 of stock investors will be considered as an example of a system of agents. A
news situation −1 ≤ B ≤ +1 is given and influences the investors. For the sake of simplicity,
it is assumed that each investor only acts based on the news situation B and only buys or sells
one share at a time. Agreements or alliances between investors are excluded, so each investor
acts in isolation and is uninfluenced by other investors. These systems can be referred to as
systems without interactions or ideal agent systems; see, e.g., Bouchaud (2013); Börner et al.
(2023b).

In the following, w.l.o.g., a positive, constant news situation with strength |B| = 𝐵 is
assumed. Investors can act in “conformity” to the news, i.e., buy if the news is positive, or
in “non-conformity”, i.e., sell if the news is positive. The state of an investor 𝑖 = 1, . . . , 𝑁
is described with 𝑠𝑖 = +1 (conform) or 𝑠𝑖 = −1 (non-conform). If a dynamic equilibrium
is established, then there is a number 𝑁+ of “conform” and a number 𝑁− of “non-conform”
investors, with 𝑁 = 𝑁+ + 𝑁−. If an inversion of the agent system is ruled out, i.e., the
overall system acts in accordance with the positive news, the difference 𝑁+ − 𝑁− is positive
and corresponds to a buyer surplus. In econometric applications, the normalized variable
𝑀 = 1

𝑁
(𝑁+ − 𝑁−) = 1

𝑁

∑
𝑖 𝑠𝑖 can be referred to as trade potential (phys.: ∝ magnetization),

see, e.g., Börner et al. (2023b), and can be used, e.g., for one-step ahead forecast models
(Vikram and Sinha, 2011).

4.4.1. Occupation Probabilities
For the two states, occupation probabilities can be specified with the help of the logit

rule (Bouchaud, 2013), which corresponds to the Boltzmann-Gibbs distribution in statistical
physics (Landau and Lifšic, 1980; Greiner et al., 1995).

Let 𝑥 = 𝑇0
𝑇

, and 𝑇0 is calculated from all constant system parameters and constant external
conditions (e.g., the constant news 𝐵); see, e.g., Bouchaud (2013); Börner et al. (2023b).
Then, the probabilities for each state 𝑠 = (−1, +1) of the agent are:

𝑃− = Prob(𝑠 = −1) = exp(−𝑥)
exp(−𝑥) + exp(+𝑥)

(49)
𝑃+ = Prob(𝑠 = +1) = exp(+𝑥)

exp(−𝑥) + exp(+𝑥)

with 𝑃− + 𝑃+ = 1. A similar representation of the occupation probabilities can be found in,
e.g., Bouchaud (2013). Equation (49) can be derived within the framework of econophysics
and is consistent with the definition given in Equation (48). Accordingly, 𝑇 is initially only a
parameter, and the question of whether 𝑇 is related to the volatility of the stock remains open.
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4.4.2. Distribution of the Trade Potential 𝑀
For a finite number 𝑁 < ∞ of isolated investors (ideal agents), the occupation numbers

𝑁− and 𝑁+ are stochastically dependent random variables, and thus the trade potential 𝑀 is
also a random variable. If all investors are lined up for illustration, it becomes clear that both
𝑁− and 𝑁+ follow a binomial distribution: Binom(𝑁−; 𝑁, 𝑃−) and Binom(𝑁+; 𝑁, 𝑃+); for a
definition, see, e.g., Abramowitz (2014). This allows the expected value 𝜇𝑀 = 𝑃+ − 𝑃− and
the variance 𝜎2

𝑀
= 4

𝑁
𝑃+𝑃− to be calculated for the random variable 𝑀 . The derivation is

almost identical to the calculation in Fließbach (2018, Chap. 2), with the difference being that
the normalized variable 𝑀 is considered here. For large 𝑁 , the above binomial distributions
can be approximated by normal distributions (Kendall and Stuart, 1977). This means that
the distribution of the random variable 𝑀 can also be described by a normal distribution:
𝑀 ∼ N(𝜇𝑀 , 𝜎𝑀). The variance is proportional to 1

𝑁
, so for large 𝑁 , the relative width of the

distribution tends to zero and is thus sharply localized around 𝜇𝑀 , i.e., fluctuations in 𝑀 are
almost no longer observed; see Fließbach (2018), and also compare Greiner et al. (1995).

4.5. Stochastic Model of Market Capitalization

Let the news situation B > 0 be constant for a finite period T. If this period is broken
down into finite subperiods Δ𝑡, then in each subperiod [𝑡, 𝑡 + Δ𝑡] there is a number 𝑁+ of
buyers and a number 𝑁− of sellers. At the beginning of the period, the last quoted price of the
stock 𝑝𝑡 is known, and the potential rate of change in market capitalization (𝑉𝑡 = 𝑁𝑝𝑡) that
will take effect at the end of the subperiod can be inferred:

Δ𝑉𝑡 = 𝑝𝑡 (𝑁+ − 𝑁−)Δ𝑡
= 𝑉𝑡𝑀𝑡Δ𝑡 (50)

with 𝑀𝑡 ∼ N(𝜇𝑀 , 𝜎𝑀) in each subperiod. Thus, the change Δ𝑉𝑡 is a random variable and
changes in each subperiod. The time-discrete representation of a stochastic process becomes
observable. Such processes are described by stochastic differential equations; see, e.g., Hull
(2018). Following technics described in Wilmott (1998, Chap. 3) and Hull (2018, Chap. 14),
a stochastic differential equation with drift term (∝ 𝜇𝑀) and diffusion term (∝ 𝜎𝑀) for the
stochastic process can be written:

d𝑉𝑡 = 𝑉𝑡𝜇𝑀 d𝑡 +𝑉𝑡𝜎𝑀 d𝑊𝑡 , (51)

where 𝑊𝑡 denotes a Wiener process. The transformation 𝑋𝑡 = 𝐺 (𝑉𝑡 , 𝑡) = ln(𝑉𝑡) − ln(𝑁)
transforms to the logarithmic price 𝑋𝑡 of the stock. Using Itō’s lemma with the partial
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derivatives 𝜕𝑉𝐺 = 1
𝑉

, 𝜕𝑉𝑉𝐺 = − 1
𝑉2 and 𝜕𝑡𝐺 = 0, it follows that:

d𝑋𝑡 =

(
𝜇𝑀 −

𝜎2
𝑀

2

)
d𝑡 + 𝜎𝑀 d𝑊𝑡 . (52)

Only one price is quoted on the capital market at a time. This means that there is only one
logarithmic price at a time. The stochastic process for logarithmic returns (Hull, 2018, Eq.
14.17) and the process defined with Equation (52) must therefore be identical. A comparison
of coefficients then provides the following relationship:

𝜇𝑋 = 𝜇𝑀 and 𝜎𝑋 = 𝜎𝑀 . (53)

Where 𝜇𝑋 is the expected value of the logarithmic returns and 𝜎𝑋 is the standard deviation.
The latter is therefore the volatility of the stock under consideration.

Note that it was assumed that the positive news situation B is constant for the period T.
In practice, this will only happen for a short period (a few minutes) of a daily trading session.
The relationships described in Equation (53) should therefore only be observable in practice
for short periods of time. If the focus is on one-step-ahead forecasts, mean values and sample
variances calculated over short periods of time are to be preferred as estimators for 𝜇 and 𝜎.
Furthermore, note that Equation (52) does not capture contributions to expected value and
volatility due to changes in news flow B.

Section 4.4.2 showed that 𝜎𝑀 ∝ 1√
𝑁

. With Equation (53), this also applies to 𝜎𝑋 for short
periods of time with a constant news situation. The latter means that the volatility that can be
observed over short periods of time decreases as the number of investors 𝑁 increases and in
the limiting case of an infinite number of investors approaches zero. A similar phenomenon
was described by Bouchaud (2013) in the context of socioeconomic issues. There, however, it
related to noise levels that influence decision-making situations and scale with 1√

𝑁
depending

on the population size.
Equation (53) provides a very general connection between the capital market quantities

and the distribution parameters of the trade potential 𝑀 . However, |𝑀 | ≤ 1 is limited and
thus also 𝜎𝑀 . The validity of 𝜎𝑋 = 𝜎𝑀 must always be checked for large volatilities 𝜎𝑋 , in
particular whether strongly fluctuating messages or high-frequency message changes could
be the reason for the high volatility.
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4.6. Application

In the following, the central equation 𝜎𝑋 = 𝜎𝑀 for the example of the two-state ideal agent
system from Section 4.4 is used to establish the connection between 𝑇 and the volatility 𝜎𝑋 :

𝜎𝑋 = 𝜎𝑀

=

√︂
4
𝑁
𝑃+𝑃−

=

√︄
4
𝑁

1
4 cosh2(𝑥)

=
1
√
𝑁

sech(𝑥). (54)

With 𝑥 = 𝑇0
𝑇

, the measurement equation follows:

𝑇 =
𝑇0

sech−1(
√
𝑁𝜎𝑋)

. (55)

Where sech−1(𝑢) is the inverse hyperbolic secant function, and 𝜎𝑋 as the volatility of the
logarithmic returns is now the observable that can be measured on the capital market. Equation
(55) indirectly measures the state variable 𝑇 . For the two-state ideal agent system, it is the
state variable that is consistent according to Equation (48). In further state equations for the
system, this state variable determined in this way must be used to maintain consistency within
the theory.

4.7. Conclusion

The highly simplified example of a two-state ideal agent system was studied in detail,
and the relationship between the volatility 𝜎𝑋 and the state variable 𝑇 was established. Even
this simplest conceivable example shows that the relationship between 𝜎𝑋 and 𝑇 can be
nonlinear. It can be assumed that this is also the case in other applications. This consideration
is not exhaustive; Equation (55) is a special measurement equation for the example, and
in individual cases, the measurement equation 𝑇 = 𝑓 (𝜎𝑋) must always be derived. This
allows for the indirect and theory-conforming determination of the state variable 𝑇 from the
measured volatility 𝜎𝑋 . If a linear relationship𝑇 = 𝑎𝜎𝑋 +𝑏 is required, then the measurement
equation can be linearized around an operating point 𝜎0

𝑋
, i.e., considering a Taylor series up

to the linear term. In practice, questions about the validity of the approximation (keyword:
measuring range) then have to be answered.
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5. Beyond the Individual: Investigating the Interdependence of Speculative Bubbles
and Herding in Financial Markets

5.1. Abstract

Speculative bubbles have the potential to cause significant economic damage. It is there-
fore important to better understand the driving factors. This study empirically examines
herding behavior as a theoretically known driver of speculative bubbles for the United States
(US) stock market. First, the results suggest the presence of speculative bubbles and herding
behavior within the S&P 500 stock market index. Second, it is discovered that herding be-
havior significantly reduces the probability of a bubble occurring. The negative influence of
herding behavior can be observed for both the rate of change and for the absolute level. Anal-
ysis of the interaction effect shows that the absolute level of the herding variable moderates
the rate of change. The examination of sub-hypotheses indicates that the relationship remains
consistent across different industries, company sizes, sub-periods, and various time horizons,
confirming the existence of the general relationship.

Keywords: Anomalies, Speculative Bubbles, Herding Behavior, Financial Markets, Behav-
ioral Finance

JEL Classification: G10, G40, G41

92



5.2. Introduction

Anomalies such as speculative bubbles are widely documented capital market phenomena.
They have the potential to cause significant economic damage (Jordà et al., 2015). Examples
include the French stock market bubble of 1881–82, the US stock market bubble of 1928–29
followed by the Great Depression, and the Japanese stock market bubble of 1985–2003, all
of which were followed by recessions (Brunnermeier and Schnabel, 2015). Regulators and
central banks stabilize financial markets and are interested in anticipating exuberance and
its driving factors (Phillips et al., 2015). The prevention of bubbles and the effectiveness
of different policies in achieving this goal have been the subject of a long-standing debate
(Brunnermeier and Schnabel, 2015). Moreover, investors and risk managers are exposed
to potential misallocations through price distortions. Understanding the factors that lead
to bubbles is therefore beneficial not only from a theoretical perspective but also from a
practical one.

The existing literature addressing this question primarily examines speculative bubbles
from a theoretical, often model-theoretical, perspective. There are few empirical studies
investigating the driving factors behind bubbles, e.g. Wang and Chen (2019); Pan (2020);
Maghyereh and Abdoh (2022). This study also addresses this research question and aims to
gain a better empirical understanding of the driving factors by focusing on new variables in
the analysis.

Theory suggests that herding behavior is a potential driver of asset mispricing. Empirically,
herding behavior has been shown to affect asset prices in general. Several studies suggest
a potential link between herding behavior and returns (Nofsinger and Sias, 1999; Wermers,
1999; Sias, 2004; Dasgupta et al., 2011; Singh, 2013; Brown et al., 2014; Celiker et al., 2015).
However, herding behavior has not been empirically studied as a factor driving bubbles.
Therefore, the second link is whether there is a relationship between bubbles and herding
behavior as predicted by theory.

The study aims to empirically examine whether herding behavior affects stock market
bubbles. This requires the identification of both variables, bubbles and herding behavior,
initially. First, stock market bubbles are detected using a widely used recursive unit root
test proposed by Phillips et al. (2015). Second, a dynamic herding measure proxied by
market-wide herding behavior proposed by Hwang and Salmon (2004) is computed. The
relationship between these input variables is then examined using various model specifications
of multivariate logistic and linear regressions. Variations in the relationship across specific
sub-periods, different industries, company sizes and time horizons are also considered.

The contribution of this study is the empirical examination of a theoretical hypothesis
to better understand the factors driving bubbles, which is essential given the potential risks
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associated with bubbles. Furthermore, the empirical framework employed is innovative
in its methodological objectivity, integrating two well-established methods into a logistic
regression. Both methods are widely recognized and largely robust. This approach avoids
the inclusion of arbitrary bubble periods as dummy variables. In addition, the use of a
time-varying herd measure allows for deeper insights into the underlying herding dynamics.

The main results of the study are briefly presented. First, there is evidence of both
speculative bubbles and herding behavior in the US S&P 500 stock market index over the
period from 1990 to 2022. Second, it is discovered that market-wide herding behavior towards
the market has a significant negative impact on the probability of a bubble occurrence. This
contradicts expectations based on theoretical models but aligns with findings from other
studies (Bekiros et al., 2017; Haykir and Yagli, 2022). With adverse or negative herding
behavior, investors act against the market consensus rather than in its direction. This leads
to systematically higher returns for subsets of the overall market than would be rationally
expected. The negative influence of herding behavior is evident in both the rate of change of
the variable and its absolute level. Negative rates of change, as well as negative absolute levels,
favor the emergence of speculative bubbles. In addition, the examination of the interaction
effect shows that the absolute level of the herding variable acts as a moderator on the rate of
change. The analysis of sub-periods reveals that the relationship holds true irrespective of
specific periods. Examining different industries indicates that the relationship manifests with
varying degrees of significance across all sectors, thereby not highlighting clear systematic
sector-specific differences. However, the most pronounced manifestations are observed in
the service sector and the finance, insurance, and real estate sector. The analysis based on
company size reveals that contrary to expectations, the relationship is more pronounced in
larger companies. However, it is noteworthy that the relationship exists in both larger and
smaller companies and that the difference is not statistically significant. Furthermore, the
examination of longer time horizons indicates that herding behavior has predictive value for
the probability of a bubble occurring in the medium to long term. This holds true even after a
bubble has occurred, with a significant negative relationship persisting up to six months after
the event.

The remainder of the paper is structured as follows: Section 5.3 establishes the theoretical
foundations, introducing the concepts of bubbles and herding behavior along with the related
literature. Additionally, the working hypothesis is derived from theoretical models and
empirical evidence for the relationship between these two concepts. In Section 5.4, the
empirical framework and results are presented and discussed. This includes the introduction
of methods used to measure bubbles and herding behavior, along with an overview of the
dataset. Section 5.5 tests the robustness of the main results, and finally Section 5.6 concludes.
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5.3. Theoretical Background

5.3.1. Bubbles
5.3.1.1 Definition

A clear definition of the term speculative bubble is problematic, as the phenomenon of
a speculative bubble is the subject of a long-standing controversy in the academic literature
(O’Hara, 2008; Wöckl, 2019; Quinn and Turner, 2020). Aliber et al. (2015) take a technical
perspective, according to which a bubble is characterized primarily by unsustainable patterns
of price changes or cash flows. Specifically, their definition is that a bubble consists of a
prolonged, between 15 and 40 months, price increase that subsequently collapses. Garber
(2000) conceives of the term as a fuzzy concept that is not based on an operational definition.
According to him, bubbles are the part of a price development that cannot be explained on
the basis of the underlying fundamentals. Nevertheless, history shows that asset prices can
be inexplicable relative to their theoretical underlying values (Brunnermeier and Oehmke,
2013; Quinn and Turner, 2020). Moreover, these phenomena are often accompanied by high
price volatilities (Scheinkman and Xiong, 2003). Most of the academic research on bubbles
assumes that asset prices should be linked to a true or fundamental value (O’Hara, 2008).

Therefore, in this study, a (speculative) bubble is defined as a persistent and significant
deviation of the price of an asset from its fundamental value, defined as the risk-adjusted
present value of all expected future cash flows (Tirole, 1985; Brooks and Katsaris, 2005;
Wöckl, 2019). Additionally, the attribute “explosive” serves as a means to characterize the
trajectory of bubbles. In this context, it implies that the coefficients of an autoregressive
process temporarily exceed unity, as discussed in more detail in Section 5.4.3. This scenario
is also referred to as having a temporarily explosive root (Phillips et al., 2015; Balcombe
and Fraser, 2017). Adhering to this definition, the emergence of negative price bubbles is
also feasible, signifying instances where prices fall below their theoretically justified levels
(Yan et al., 2012; Scherbina and Schlusche, 2014). For instance, the loss of the illusion of
control triggered by an event could lead to a panicked response among investors (Samuelson
and Zeckhauser, 1988; Bracha and Weber, 2012). The illusion of control refers to the human
tendency to believe that the outcome of certain events is influenced by them, even when
those events are subject to chance (Langer, 1975). This response might result in market
overreaction, akin to that driven by overconfidence (Daniel et al., 1998), causing prices to fall
below their fundamental value.

5.3.1.2 Formation

Bubbles are relevant from both a research and a practical perspective because prices guide
the allocation of resources in an economy, so price distortions can lead to potential incorrect
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investment incentives. Real estate price bubbles, e.g., could lead to inefficient new construc-
tion. In addition, the balance sheets of companies, financial institutions, and households
may suffer when a bubble bursts, thus fostering an economic downturn (Brunnermeier and
Oehmke, 2013). A look at historical examples also shows how bubbles can lead to economic
crises, depending on the configuration of external and internal circumstances of a market
or economy. See, e.g., Brunnermeier and Schnabel (2015), whose selection is based on a
technical definition similar to Aliber et al. (2015). Because of the potential impact on the real
economy, it is important to understand how and under which circumstances bubbles occur.
The literature on bubbles is very broad and offers numerous approaches to explain the for-
mation. Gürkaynak (2008) as well as Brunnermeier and Oehmke (2013) provide noteworthy
literature reviews. Scherbina and Schlusche (2014) also survey bubble formation models
and focus on behavioral models as well as rational models with incentive problems, market
frictions, and non-traditional preferences. The recent survey by Wöckl (2019) categorizes
bubble models broadly in rational and irrational, or behavioral models. In rational bubble
models, agents are assumed to be perfectly rational with respect to expected future dividends
and markets are assumed to be predominantly efficient. Most rational bubble models are built
on the present value model, according to which the price of an asset consists of discounted
future expected dividends. The bubble is thereby supplemented by an additional term that
reflects the price development that is not justified by fundamental data (Gürkaynak, 2008).
Well-known studies in this tradition include, e.g., Flood and Garber (1980); Blanchard and
Watson (1982); Tirole (1985); Diba and Grossman (1988); Froot and Obstfeld (1991) among
others. One implication of these models is that prices rise explosively in the build-up phase.
This property is also exploited in empirical studies to identify bubbles, as discussed in more
detail in Section 5.4.3. In addition to rational bubble models, there are other approaches that
incorporate behavioral economic aspects into the modeling and thus soften the strong assump-
tion of rational agents. Wöckl (2019) distinguishes between four behavioral economic models
based on the fact that investors are driven by different opinions on the one hand and influenced
by psychological biases on the other. In addition, Scherbina and Schlusche (2014) suggest
that herding behavior is an important mechanism that can reinforce or promote bubbles.

5.3.1.3 Empirical Methods

The goal of bubble identification methods is to accurately determine when bubbles form
and end using quantitative measures. The challenge is that fundamental values of securities
are not observable and therefore, the determination of prices is not unambiguous. Various
methods are known in the literature, for reviews see, e.g., Gürkaynak (2008); Wöckl (2019).
Some types of tests are also explained below. The Variance bound test belongs to the early
empirical methods and was initially designed by Shiller (1981) to criticize the EMH. Only
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in later applications the results of the tests were interpreted as possible bubbles (Blanchard
and Watson, 1982). The test implements an upper bound for the variance of observed
prices. The problem with this test is its model-related nature: testing for bubbles under
the assumption that prices are adequately represented by a present value model are two
hypotheses, so that the test suffers from the joint hypothesis problem. West (1987) proposed
the Two-Step Test, which avoids the joint hypothesis problem by testing the model and bubble
hypothesis sequentially. Another category of tests are based on statistical properties such
as stationarity and cointegration. In an exemplary application of such a test, the security
prices must be stationary after difference formation, if fundamentals are stationary after
difference formation, under the assumption that there is no bubble (Diba and Grossman,
1988). Regime-switching tests, or Markov-switching tests, are further developments of the
standard tests based on stationarity and cointegration. The advantage of these tests is that
the dynamics of a bubble are not restricted to a linear process. In other words, these tests
consider the periodically collapsing nature of bubbles by modeling two or more different
Markov regimes. A security price can discretely switch between these regimes with certain
transition probabilities (Hamilton, 1989). Similar to these tests, recursive unit root tests are
also further developments of the stationarity and cointegration based tests and work with the
assumption that security prices can be modeled as random walks and consequently have a unit
root. Recursive means that the tests are applied sequentially to sub-samples. The approach
by Phillips et al. (2011) (hereafter PWY) uses a so-called sup ADF test (SADF) based on a
forward recursive series of right-sided ADF unit root tests to check a time series for bubbles.
In addition, a dating strategy using a backward-looking regression technique identifies the
times at which a bubble originates and ends. The approach is consistent as long as there is
only one bubble in the data. If there are multiple bubbles in the sample, this procedure suffers
from lower quality and can lead to inconsistent results. To address the problem of periodically
collapsing bubbles, the refined version of Phillips et al. (2015) (hereafter PSY) uses flexible
sub-sample sizes in the implementation of the recursive tests as an extension of the PWY
approach. This improved version of the test is applied and presented in detail in Section 5.4.3.

5.3.2. Herding Behavior
5.3.2.1 Definition

Herding behavior describes the phenomenon of individuals imitating the actions of other
individuals or aligning their decisions with those of others (Spyrou, 2013). On the capital
market, investors subsequently trade in the same direction (Nofsinger and Sias, 1999) and
disregard private information to follow the current trend instead (Avery and Zemsky, 1998).
Although herding behavior is widely recognized as irrational behavior that impairs market
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efficiency, situations exist in which herding behavior is at least similar to rational decision-
making. As Litimi et al. (2016) point out, herding behavior as such cannot be strictly
classified as a bias, whereas other biases, such as conformity (Hirshleifer, 2001), home bias
(Feng and Seasholes, 2004), or availability bias (Kuran and Sunstein, 1999), can contribute to
herding tendencies. Two general forms can be distinguished. Intentional herding means that
investors choose to suppress prior judgments and instead copy actions of others. This type of
imitation may be motivated by the expectation of positive externalities or “payoffs”. These
payoffs may be informational and driven by the expectation about asymmetrically distributed
information, so that investors ignore private information either because other agents might be
better informed or have better information processing capabilities (Devenow and Welch, 1996).
Thus, by imitation, agents can gain an informational advantage in information-based models.
Such behavior may foster the development of information cascades and lead to inefficient
equilibria (Banerjee, 1992; Bikhchandani et al., 1992), e.g., capital market anomalies such as
bubbles and collapses, increasing systemic risk. Professional payoffs are also subject to herd
incentives and can be categorized into two types of models. Reputation-based models explain
herd incentives in terms of the relative performance of fund managers compared to their
peers (Scharfstein and Stein, 1990; Froot et al., 1992; Graham, 1999). In compensation-based
models, managers participate in herding behavior as they are often compensated relative to a
benchmark (Chevalier and Ellison, 1999; Graham, 1999; Maug and Naik, 2011). Spurious or
unintentional herding occurs when investors react independently to the same set of information
(Gębka and Wohar, 2013; Galariotis et al., 2015; Bekiros et al., 2017). Similar investment
strategies due to similarities between investment professionals and investment styles are
drivers of spurious herding behavior (Kallinterakis and Gregoriou, 2017; Kyriazis, 2020).
However, as noted earlier, herding behavior is perceived as an irrational phenomenon, in part
because of its potential to reduce market efficiency and induce capital market anomalies such
as speculative bubbles (Lux, 1995; Olsen, 2011; Scherbina and Schlusche, 2014; Bekiros
et al., 2017). Refer to literature surveys, e.g., by Hirshleifer and Hong Teoh (2003); Fenzl
and Pelzmann (2012); Spyrou (2013); Kallinterakis and Gregoriou (2017); Komalasari et al.
(2022) for more details about the different forms of herding behavior.

5.3.2.2 Evidence for the US Stock Market

Regardless of the methods discussed in Sections 5.3.2.3 and 5.4.2, there are various
findings in the literature. Since this study is focused on the US market, the overview of
empirical findings is limited to the American market. Lakonishok et al. (1992) examined the
fund positions of 769 tax-exempt American funds and found no evidence of herding behavior
or positive feedback trading. A similar result is reported by Grinblatt et al. (1995), who
also analyzed transaction data of American investment funds and could not identify herding
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behavior. The studies conducted by Chang et al. (2000) and Chiang and Zheng (2010)
investigated herding behavior in international financial markets but could not establish its
presence in the American market. Methodologically, both studies were based on a variation
of the approach introduced by Christie and Huang (1995) and confirmed their results for the
American market. On the contrary, Hwang and Salmon (2004) identified herding behavior in
the S&P 500 using their own methodology, both in rising and falling markets. Their findings
suggest that market stress and crises contribute to restoring market equilibrium, potentially
enhancing market efficiency. The studies by Sias (2004) and Choi and Sias (2009) indicate
that institutional investors in the US tend to follow each other in herding behavior to derive
information from previous transactions. Furthermore, Messis and Zapranis (2014) found
evidence of herding behavior in the American S&P 500 and observed that herding behavior is
triggered by shocks in macroeconomic variables. Finally, Bekiros et al. (2017) examined the
American indices S&P 100 and DJIA and detected herding behavior in both markets. Their
analysis of sub-periods revealed that herding behavior was insignificant during the global
financial crisis (GFC) but prevailed in the post-crisis period. The accumulation of these
studies highlights the ambiguity of the results, even within a single market. This highlights
the need to re-examine the US market with a new sample and also opens up the perspective
of considering herding behavior as a subject of study in the context of stock market bubbles.

5.3.2.3 Empirical Methods

The empirical literature knows several measures to identify herding behavior in market
data. For review articles, see, e.g., Spyrou (2013); Kallinterakis and Gregoriou (2017). A
distinction can be made between a micro level and a macro level or aggregate view.

The former uses, e.g., trading data from investors on their accounts, portfolios and trans-
actions. An early measure of the first category is based on the LSV model of Lakonishok
et al. (1992) which focuses on the micro level of investor behavior. Institutional fund data
is used to identify the degree of correlation between the trading positions of different fund
managers to test for herding behavior. The test statistic measures the average tendency of
(pension) funds to trade (buy or sell) a respective stock at the same time. The portfolio
change measure (PCM) of Grinblatt et al. (1995) is methodologically in the same vein, but
additionally differentiates whether the transaction is a purchase or a sale in each case. Sias
(2004) further developed this approach by testing directly for inter-temporal dependence of
cross-sectional institutional demand.

At the macro level, the methods are primarily based on easily accessible market data,
such as prices and trading volumes (Kallinterakis and Gregoriou, 2017). Christie and Huang
(1995) proposed a model based on the relationship between cross-sectional dispersion of
returns and extreme market returns. Thus, they measure herding behavior towards the market
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under the assumption that investors are more likely to neglect their own information in favor
of market opinion in times of market stress. When herding takes place, the dispersion of
individual asset returns is smaller than a rational asset price model would predict. Therefore,
a negative coefficient indicates herding behavior when the dispersion measure is regressed on
extreme market returns. The approach of Chang et al. (2000) is similar, but in addition to the
linear relationship between the cross-sectional return dispersion and the market return, non-
linearities are considered in the regression specification. Hwang and Salmon (2004) measure
herding behavior using the deviation of the observed cross-sectional dispersion of the factor
sensitivities of individual assets from the equilibrium beliefs derived from the capital asset
pricing model (CAPM). This approach is implemented and discussed in detail in Section
5.4.2.

5.3.3. Bubbles due to Herding Behavior
5.3.3.1 Theoretical Contributions

Numerous models and studies exist which show how herding behavior can lead to price
distortions. Avery and Zemsky (1998) propose a model that takes several dimensions of
uncertainty in the financial market into account. There is uncertainty about the future value
of an asset and uncertainty about the information of other market participants. The authors
show that herding behavior can occur and lead to bubbles when uncertainty is high and the
information of market participants is not perfect. Scherbina and Schlusche (2014) list several
incentives for why money managers participate in herding behavior. For example, managers
may be forced to invest in high-sentiment stocks, thereby perpetuating bubbles, knowing that
mutual fund investors will move their money into the best-performing funds, as suggested by
Frazzini and Lamont (2008). Managers therefore have incentives to follow their peers when
their performance lags behind. Shiller (2002) argues that money managers’ limited resources
imply that not every investment opportunity can be conclusively evaluated. Observing peers’
trading decisions might lead to the assumption that it was made on the basis of more extensive
assessments so that managers may decide to imitate. In the model of Scharfstein and Stein
(1990), competing agents of two different types behave in a manner consistent with Keynes’
assertion that “it is better to fail conventionally than to succeed unconventionally” (Keynes,
1936). Under certain circumstances, the decisions of the first mover are adapted irrespective
of private information, since the feared reputational damage is greater if they fail alone. In
addition, the fact that money managers are often evaluated based on their relative performance
to an appropriate benchmark and compensated accordingly reinforces the case to follow other
managers (Lux, 1995). DeMarzo et al. (2008) show that retail investors, like professional
investors, are also affected by incentives to imitate. In their model, agents’ utility depends on
their relative wealth compared to other agents. Therefore, they choose to invest in bubbles
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to avoid falling behind the relative wealth of peers when prices rise. The price distortion
thereby grows over time and increases the incentive to herd. The authors identify herding
behavior as a key component in driving bubbles and thus characterize bubbles as a social
phenomenon. Bikhchandani et al. (1992) explain localized herding behavior in a general
environment with sequential decisions and social contagion, where individuals stochastically
choose to adopt a prior decision of other investors. Chang (2014) supposes a model with
heterogeneous interacting agents and finds that herding behavior arises naturally when there
are strong social interactions among investors. Moreover, a bubble can be perpetuated by
herding behavior in the presence of strong exogenous social interactions. Steiger and Pelster
(2020) use an experimental test to show that social interaction increases the likelihood of
bubbles occurring. Interestingly, the effect is stronger in natural face-to-face situations than in
typical social media-like interactions. The agent-based model by Harras and Sornette (2011)
shows how bubbles can arise due to a social feedback mechanism that transforms a streak of
positive news into a transient collective herding regime. Schaal and Taschereau-Dumouchel
(2023) propose a herding model in which technology-driven boom-bust cycles arise due to
investors’ overoptimism. Thoma (2013) shows that the likelihood of a bubble occurring is
higher when the herding propensity of heterogeneous agents increases due to bad advice.
Hott (2009) proposes a model in which herding behavior leads to bubbles without investors
being exposed to speculative incentives. Instead, market participants follow so-called mood
investors who overestimate the level of information in the market. The positive feedback
effect ultimately results in price distortions.

5.3.3.2 Empirical Evidence

The theoretical contributions suggest quite clearly that herding behavior, among other
factors, can trigger and drive financial market bubbles. The empirical evidence is less clear.
First, studies show that asset returns are influenced by herding behavior, cf. e.g., Nofsinger
and Sias (1999); Sias (2004); Singh (2013); Celiker et al. (2015). Chen and Demirer (2018)
study the Taiwanese stock market using different herding measures and find that a high level
of herding yields higher subsequent returns. The findings indicate that the level of herding
could act as a systematic driver of returns. Other studies demonstrate the relationship between
volatility and herding behavior. Hoitash and Krishnan (2008) argue that herding behavior
might lead to excessive volatility. Venezia et al. (2011) find in a four-year data set of customer
transactions of an Israeli bank a tendency toward herding behavior among both professional
and amateur investors, although it is more pronounced among the latter. Moreover, they
observe that herding behavior correlates with stock price volatility and even conditions it in
terms of Granger causality. Tan et al. (2008) find that herding behavior is more pronounced
in a rising market and also relate this to high trading volume and excessive volatility. Other
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studies have also commented on this, but some go further by exploring the link between
herding behavior and bubbles. Litimi et al. (2016) argue that excessive trading volume can
thus further drive herding behavior and lead to potential abnormal price increases. They
study the US stock market during four major periods of turbulence using dummy variables in
a modified version of the regression model by Chang et al. (2000), the Black Monday (1987),
the dot-com bubble (1997–2000), the downturn afterwards (2002) and the GFC (2008). The
Granger causality test results suggest that herding behaviour and trading volume have an
inhibitory effect on overall market volatility in large markets which is contrasted with other
research that focuses on more concentrated markets. Moreover, the study shows that herding
behavior is a crucial factor in the formation of bubbles in some sectors, but not all. This
confirms the theoretical prediction that growing bubbles incentivise temporary collective
herding behavior. Singh (2013) studies the trading behavior of institutional investors during
the internet bubble and crash of 1998-2001. The study shows that institutional herding
is associated with positive abnormal returns, while negative abnormal returns occur when
herding behavior ceases. This suggests that institutional herding may have caused temporary
price pressure and contributed to a price bubble. Bekiros et al. (2017) employ a cross-sectional
absolute deviation approach in the spirit of Chang et al. (2000) and quantile regressions in
US markets over varying time periods. They examine the impact of the GFC (2007–2009)
on herding behavior and find a dynamic pattern in which herding behavior was strong and
significant in the pre-crisis period, i.e. the build-up phase of the housing bubble. During
and after the crisis, the intensity increasingly weakened. The authors also find a positive
and significant correlation between herding behavior and market volatility. Chmura et al.
(2022) study herding behavior in an experimental financial market with a feature reminiscent
of social trading platforms. Thereby, the trading decisions of investors who have the largest
wealth gains on a scoreboard are imitated. In this particular setting, the authors find that
herding behavior is associated with less asset mispricing. Haykir and Yagli (2022) examine
the cryptocurrency market for bubbles using the identification method of Phillips et al. (2015)
during 15 months of the COVID-19 period. In addition, they investigate whether herding
behavior occurs during bubbles by including dummies for bubbles of each cryptocurrency in
the regression model of Chang et al. (2000). They find that herding behavior in the overall
market declines when a particular cryptocurrency has a bubble, suggesting that bubbles cannot
be explained by herding behavior. In addition, they calculate herding dummies using a time-
varying measure based on 30-day rolling window regressions according to Bouri et al. (2019).
Examining the reverse relationship, they find in a logistic regression that only bubbles in a
few cryptocurrencies have an impact on herding behavior.

The mixed empirical results necessitate further research that takes a different methodolog-
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ical approach while aiming at a general investigation of the relationship between bubbles and
herding behavior. In contrast to other studies, this study aims at methodological objectivity
by combining two well-established methods in logistic and other multivariate regressions
which are accepted in the literature and largely robust. This approach avoids the arbitrary
inclusion of bubble periods as dummy variables. In addition, unlike the studies conducted
with Chang et al. (2000), a time-varying measure is used, providing a deeper insight into
herding dynamics. Based on the theoretical starting point, the relationship is examined. This
is based on the following working hypothesis:

𝐻0: Bubbles are not driven or triggered by herding behavior.

5.4. Empirical Analysis

5.4.1. Data
The daily stock market variables for all constituents of the S&P 500 stock index, including

closing prices, market capitalizations, dividend yields, and trading volumes, representing the
US market from 1990-01-01 to 2022-12-31 are obtained from Refinitiv Eikon. Changes in
index composition are taken into account on an annual basis to avoid survivorship bias. A
market capitalization-weighted market index is calculated to ensure greater consistency when
comparing herding behaviour with the occurrence of bubbles.

Trade volume and return volatility are included as control variables as the theoretical
models of Scheinkman and Xiong (2003) and Mei et al. (2009) provide evidence that bubbles
are associated with increasing trading volume and higher volatility, while Wang and Chen
(2019) empirically confirm these variables as drivers of bubbles. Wang and Chen (2019)
additionally note that monetary policy and credit have an impact, so the growth rate of
money supply M2, a reference interest rate and the growth of credit relative to GDP are
included. The interest rate, proxied by the 3-month US government bond yield, reflects the
macroeconomic situation and influences both the cost of borrowing and investment behaviors
(Pan, 2020). As bubbles are often accompanied by economic expansion (Scherbina and
Schlusche, 2014), economic growth is additionally included depicting the macroeconomic
situation. The variable is proxied by the growth of industrial production (Pan, 2020) and GDP.
Pan (2020) also shows that investor sentiment can be used to predict bubble probabilities,
highlighting the importance of investor sentiment in explaining bubbles. For this reason, a
sentiment variable proxied by the survey-based US Consumer Confidence Index (CCI) by
the Conference Board is included. Moreover, Bouri et al. (2019) demonstrate that economic
uncertainty significantly increases the probability of herding in cryptocurrencies using a
probit model. Enoksen et al. (2020) find that the occurrence of bubbles can also be explained
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by economic uncertainty. Therefore, uncertainty is also included here, measured by the
news-based economic policy uncertainty (𝐸𝑃𝑈𝑡) index of the US by Baker et al. (2016).
This complements the consideration of return volatility, as volatility can also be seen as an
indicator of uncertainty and bubbles can be accompanied by higher volatility (Avery and
Zemsky, 1998).

Most of the control variables are also obtained from Refinitiv Eikon, such as trade volume
(𝑡𝑣𝑡), economic growth (𝑔𝐺𝐷𝑃𝑡), industrial production growth (𝑔𝐼𝑃𝑡), growth of money
supply M2 (𝑔𝑀2𝑡), the reference interest rate (𝑟𝑡), consumer sentiment (𝑆𝐸𝑁𝑇𝑡) and the
price-dividend ratio (𝑃𝐷𝑅𝑡). The growth of credit as a ratio to GDP (𝑔𝐶𝑅𝐺𝐷𝑃𝑡) is from the
Bank for International Settlements (BIS) data base. Monthly volatility (𝑝𝑣𝑡) is calculated as
standard deviation over daily log returns of the market index for each month. Most variables
are available in monthly frequency, except for 𝑔𝐺𝐷𝑃𝑡 and 𝑔𝐶𝑅𝐺𝐷𝑃𝑡 . However, as outlined
in Section 5.4.2, the main drawback of the method utilized subsequently, which was proposed
by Hwang and Salmon (2004), is the reduction in data points compared to the methodologies
introduced by Christie and Huang (1995) and Chang et al. (2000). Therefore, quarterly control
variables are converted to monthly data when feasible to avoid losing even more observations
in the subsequent regression analysis. The quarterly GDP data are transformed from quarterly
to monthly data using the R package “tempdisagg” proposed by Sax and Steiner (2013) for
temporal disaggregation of time series. In this case, the standard Denton-Cholette method
(Dagum and Cholette, 2006) applies a simple interpolation that satisfies the temporal additivity
constraint, which makes sense here since the quarterly values of GDP are split between the
individual months, as the quarterly values of GDP are a sum of the monthly output generated.
The quarterly data for credit relative to GDP are in turn transformed using linear interpolation,
since the level of credit or money supply remains at the quarterly level each month.

Table 8 summarizes the descriptive statistics of the main variables. As can be seen, the
results of the Jarque-Bera (JB) test suggest that all variables are significantly different from
a normal distribution. The results of the augmented Dickey-Fuller (ADF) test indicate that
six of the variables are stationary, while trading volume, interest rate, and sentiment become
stationary after taking the first-order differences. The variable ℎ𝑚𝑡 calculated in Section 5.4.2
fluctuates around 0 in the long run and therefore has no drift and no trend as suggested by
Hwang and Salmon (2004). Thus, the ADF test specification excludes trend and drift for ℎ𝑚𝑡 .
This is important because the power of the ADF test suffers when irrelevant parameters are
included in the specification (Enders, 2015). In addition, a correlation analysis indicated that
there are no multicollinearity problems. All variance inflation factors are below 2.5. The
results are available upon request.
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Table 8: Descriptive statistics.

Mean Std Max Min JB test ADF test

ℎ𝑚𝑡 0.045 0.290 0.692 −0.747 10.312∗∗∗ −2.888∗∗∗
𝑝𝑣𝑡 0.015 0.009 0.063 0.003 421.34∗∗∗ −3.954∗∗
𝑡𝑣𝑡 15662.51 10978.68 54458.48 0.000 53.153∗∗∗ −2.295
𝑔𝐺𝐷𝑃𝑡 0.002 0.005 0.049 −0.054 58155∗∗∗ −8.295∗∗∗
𝑔𝐼𝑃𝑡 0.001 0.011 0.063 −0.144 129380∗∗∗ −6.658∗∗∗
𝑔𝑀2𝑡 0.005 0.007 0.063 −0.015 3144.8∗∗∗ −4.541∗∗∗
𝑔𝐶𝑅𝐺𝐷𝑃𝑡 0.001 0.003 0.013 −0.009 158.31∗∗∗ −3.450∗∗
𝑟𝑡 (%) 2.583 2.272 8.094 −0.010 31.365∗∗∗ −2.754
𝑆𝐸𝑁𝑇𝑡 95.166 26.523 1.447 25.300 12.543∗∗∗ −1.916
𝐸𝑃𝑈𝑡 126.276 60.251 503.963 44.783 1224.9∗∗∗ −3.810∗∗

Note: Descriptive statistics for all variables relevant to the subsequent regression analysis. Significance levels
of 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

5.4.2. Detection of Herding Behavior
In the subsequent analysis of the relationship between bubbles and herding behavior in

Section 5.4.4, where both variables are merged as inputs, it is preferable, for the sake of
consistency, to calculate both input variables on a common data base. Therefore, a market-
wide measure of herding is more suitable here than a transaction-based one. The advantage
of the method by Hwang and Salmon (2004) is that it provides a visual and continuous
measure that can be used as an explanatory variable in regression. Moreover, in the realm
of market-wide herding measures, Demirer et al. (2010) confirm that the method of Hwang
and Salmon (2004) is equally effective as the method of Chang et al. (2000). For these
reasons, herding behavior is calculated using the approach by Hwang and Salmon (2004) for
the following analysis.

The CAPM (Sharpe, 1964; Lintner, 1965; Mossin, 1966) is used to define the risk-return
equilibrium relationship of equities and is expressed as:

E𝑡 (𝑟𝑖𝑡) = 𝛽𝑖𝑚𝑡E𝑡 (𝑟𝑚𝑡), (56)

where 𝑟𝑖𝑡 and 𝑟𝑚𝑡 are the excess returns on asset 𝑖 and the market at time 𝑡, respectively. 𝛽𝑖𝑚𝑡
is the systematic risk measure, and E𝑡 (·) is conditional expectation at time 𝑡. The concept
of market-wide herding behavior differs from the common definition of investors following
each other by imitating trading activities, because here investors follow market views about
a market index, for example. Both notions of herding behavior are important because both
potentially lead to mispricing of individual assets as equilibrium beliefs are suppressed. It is
assumed that investors first form expectations of market returns and then, conditional on these,
consider the value of an individual asset. In this view, herding behavior leads to a distorted
risk-return relationship, so that CAPM betas for individual assets deviate from their unbiased
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equilibrium values. The conditional expectation on the excess return of asset 𝑖 and its beta at
time 𝑡 are denoted by E𝑏𝑡 (𝑟𝑖𝑡) and 𝛽𝑏

𝑖𝑚𝑡
, respectively. According to the CAPM, if the market

rises significantly, then for an asset with 𝛽𝑖𝑚𝑡 > 1, E𝑡 (𝑟𝑖𝑡) > E𝑡 (𝑟𝑚𝑡). Herding behavior in the
direction of the market performance, however, leads to selling of the asset, which causes the
price to fall, so that 0 < E𝑏𝑡 (𝑟𝑖𝑡) < E𝑡 (𝑟𝑖𝑡) and correspondingly 1 < 𝛽𝑏

𝑖𝑚𝑡
< 𝛽𝑖𝑚𝑡 . When the

market falls significantly, E𝑡 (𝑟𝑖𝑡) < E𝑡 (𝑟𝑚𝑡) holds for the same asset according to the CAPM.
Here, however, herding behavior in the direction of the market performance causes the asset to
be bought and the price to rise, so that E𝑡 (𝑟𝑖𝑡) < E𝑏𝑡 (𝑟𝑖𝑡) < 0 and accordingly 1 < 𝛽𝑏

𝑖𝑚𝑡
< 𝛽𝑖𝑚𝑡 .

For an asset with 𝛽𝑖𝑚𝑡 < 1, the inverse relationship holds such that 1 > 𝛽𝑏
𝑖𝑚𝑡

> 𝛽𝑖𝑚𝑡 . An
asset with 𝛽𝑖𝑚𝑡 = 1 is immune to herding behavior. Consequently, herding behavior towards
the performance of the market portfolio reduces the cross-sectional dispersion of individual
betas. In the extreme case where the expected returns of all assets become equal to the
expected return of the market portfolio, all individual betas would be equal to one and the
cross-sectional dispersion would be zero. The opposite form of herding behavior exists as
well, adverse herding behavior, where betas > 1 become even larger and betas < 1 become
even smaller. Individual returns are then more sensitive to stocks with high betas and less
sensitive to stocks with low betas. Adverse herding behavior represents mean reversion and
must exist because there must be a systematic mechanism by which the long-run equilibrium
beta can be regained.

Therefore, instead of the equilibrium relationship in Equation (56), in the presence of
herding Hwang and Salmon (2004) assume the following relationship:

E𝑏𝑡 (𝑟𝑖𝑡)
E𝑡 (𝑟𝑚𝑡)

= 𝛽𝑏𝑖𝑚𝑡 = 𝛽𝑖𝑚𝑡 − ℎ𝑚𝑡 (𝛽𝑖𝑚𝑡 − 1), (57)

where ℎ𝑚𝑡 is a latent herding parameter that changes over time. If ℎ𝑚𝑡 = 0, then no herding
behavior exists and 𝛽𝑖𝑚𝑡 = 𝛽𝑏𝑖𝑚𝑡 . On the other hand, if ℎ𝑚𝑡 = 1, then 𝛽𝑏

𝑖𝑚𝑡
= 1, which is the beta

of the market portfolio, so the expected excess return of the asset will be equal to that of the
market portfolio. In general, if 0 < ℎ𝑚𝑡 < 1, there exists a degree of herding behavior whose
magnitude is given by ℎ𝑚𝑡 . As described, adverse herding behavior also exists, so ℎ𝑚𝑡 < 0 is
allowed. The level of herding behavior is calculated across all assets, as market-wide herding
behavior is examined here, thus eliminating idiosyncratic effects in any individual 𝛽𝑏

𝑖𝑚𝑡
. It is

assumed that Equation (57) holds for all assets in the market. Therefore, the cross-sectional
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standard deviation is calculated according to

Std𝑐 (𝛽𝑏𝑖𝑚𝑡) =
√︃

E𝑐 ((𝛽𝑖𝑚𝑡 − ℎ𝑚𝑡 (𝛽𝑖𝑚𝑡 − 1) − 1)2) (58)

=

√︃
E𝑐 ((𝛽𝑖𝑚𝑡 − 1)2) (1 − ℎ𝑚𝑡)

= Std𝑐 (𝛽𝑖𝑚𝑡) (1 − ℎ𝑚𝑡),

where E𝑐 (·) and Std𝑐 (·) are the cross-sectional expectation and standard deviation, respec-
tively. The impact of idiosyncratic changes in 𝛽𝑖𝑚𝑡 is minimized by calculating Std𝑐 (𝛽𝑖𝑚𝑡)
using a large number of assets, while Std𝑐 (𝛽𝑖𝑚𝑡) is allowed to be stochastic to monitor move-
ments in the equilibrium beta. It is assumed that Std𝑐 (𝛽𝑖𝑚𝑡) does not change significantly, so
that systematic movements in Std𝑐 (𝛽𝑏𝑖𝑚𝑡) can be explained by changes in ℎ𝑚𝑡 . By taking the
logarithm of Equation (58), ℎ𝑚𝑡 can be extracted in the following:

log[Std𝑐 (𝛽𝑏𝑖𝑚𝑡)] = log[Std𝑐 (𝛽𝑖𝑚𝑡)] + log(1 − ℎ𝑚𝑡). (59)

Defining 𝜇𝑚 = E(log[Std𝑐 (𝛽𝑖𝑚𝑡)]), the above assumption on Std𝑐 (𝛽𝑖𝑚𝑡) yields:

log[Std𝑐 (𝛽𝑖𝑚𝑡)] = 𝜇𝑚 + 𝑣𝑚𝑡 , (60)

where 𝑣𝑚𝑡 ∼ 𝑖.𝑖.𝑑.(0, 𝜎2
𝑚𝑣) is assumed. The parameter 𝐻𝑚𝑡 is assumed to be dynamic and

modeled as an AR(1) process:

log[Std𝑐 (𝛽𝑏𝑖𝑚𝑡)] = 𝜇𝑚 + 𝐻𝑚𝑡 + 𝑣𝑚𝑡 , (61)

𝐻𝑚𝑡 = 𝜙𝑚𝐻𝑚𝑡−1 + 𝜂𝑚𝑡 , (62)

where 𝐻𝑚𝑡 = log(1 − ℎ𝑚𝑡) and 𝜂𝑚𝑡 ∼ 𝑖.𝑖.𝑑.(0, 𝜎2
𝑚𝜂). This results in a state-space model that

can be estimated with a Kalman filter, where Equations (61) and (62) are the measurement
equation and state equation. The focus is on the process of the latent variable 𝐻𝑚𝑡 . If
𝜎2
𝑚𝜂 = 0 there is no herding behavior and 𝐻𝑚𝑡 = 0 for all 𝑡. In contrast, a significant value

for 𝜎2
𝑚𝜂 indicates the existence of herding behavior while this interpretation is supported by a

significant 𝜙. Since 𝐻𝑚𝑡 is assumed to be stationary, |𝜙𝑚 | ≤ 1 is required.
To calculate Std𝑐 (𝛽𝑏𝑖𝑚𝑡), first the market model betas are estimated over monthly intervals

with daily return data using OLS according to:

𝑟𝑖𝑡𝑑 = 𝛼𝑏𝑖𝑡 + 𝛽𝑏𝑖𝑚𝑡𝑟𝑚𝑡𝑑 + 𝜖𝑖𝑡𝑑 , (63)
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where 𝑡𝑑 indicates daily data 𝑑 for the given month 𝑡. Using the estimated betas for each
sample stock 𝑖 and month 𝑡, 𝛽𝑏

𝑖𝑚𝑡
, the monthly time-series of cross-sectional standard deviation

of the betas is calculated as follows:

�Std𝑐 (𝛽𝑏𝑖𝑚𝑡) =

√√√√√ 𝑁𝑡∑
𝑖=1

(𝛽𝑏
𝑖𝑚𝑡

− 𝛽𝑏
𝑖𝑚𝑡

)2

𝑁𝑡
, (64)

where 𝛽𝑏
𝑖𝑚𝑡

= 1
𝑁𝑡

𝑁𝑡∑
𝑖=1
𝛽𝑏
𝑖𝑚𝑡

and 𝑁𝑡 is the number of assets in the month 𝑡.

Table 9: Results of the state-space model.

𝜇𝑚 𝜎𝑚𝑣 𝜙𝑚 𝜎𝑚𝜂

S&P 500 −0.751∗∗∗ 0.0564∗∗∗ 0.978∗∗∗ 0.005∗∗∗
(0.162) (0.005) (0.010) (0.001)

Note: The table shows the results of estimating the state-space model from Equation (61). Standard errors
are given in parentheses. Significance levels of 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

Results for the state-space model estimation are displayed in Table 9. The variable 𝐻𝑚𝑡
exhibits strong persistence with a high and statistically significant 𝜙𝑚. Additionally, 𝜎2

𝑚𝜂 is
highly significant at the 1% level, indicating the presence of herding behavior towards the
S&P 500 market index. The herding measure ℎ𝑚𝑡 = 1 − exp(𝐻𝑚𝑡) is displayed in Figure 8

Figure 8: The herding measure ℎ𝑚𝑡 for the S&P 500 based on the state-space model specified in Equations
(61) and (62).
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for the US market. Initially, the highest values of ℎ𝑚𝑡 are less than 1, reaching a maximum
of 0.69 in the positive range and −0.75 in the negative range. Overall, ℎ𝑚𝑡 moves around its
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long-term average value of zero, similar to Hwang and Salmon (2004). In 1995, however,
there is a significant drop in its level, which causes ℎ𝑚𝑡 to hover around zero in 1996, with
minor fluctuations. Between 2000 and 2015, a significant downward movement is observed,
marking the beginning of various cycles of herding and adverse herding behavior towards
the market portfolio, some of which have strong characteristics. From 2016 to 2018, ℎ𝑚𝑡
experiences a sharp decline, characterized by a period of adverse herding behavior. Towards
the end of the sample period, around 2020, ℎ𝑚𝑡 shows an upward trend, reaching higher levels
by 2022.

5.4.3. Detection of Bubbles
The method of PWY (2011) and the refined version of PSY (2015) offer a widely acknowl-

edged generalized sup ADF (GSADF) test that has been used multiple times and is considered
as largely robust, cf. e.g., Phillips et al. (2015); Cheung et al. (2015); Escobari et al. (2017);
Corbet et al. (2018); Gomez-Gonzalez et al. (2018); Hu and Oxley (2018a,b); Pan (2020);
Hudepohl et al. (2021). Therefore, the improved test is utilized to identify bubbles in the US
stock market. However, for the application of the PSY (2015) test procedure, the GSADF
test statistic must first be explained. The GSADF test takes repeated ADF test regressions
on sub-samples of the data while varying the start and end points of the sub-samples. The
sample of a rolling regression starts at 𝑟1 and ends at 𝑟2, where 𝑟1 and 𝑟2 are each fractions of
the total sample 𝑇 and 𝑟𝑤 indicates the size of the window, since 𝑟2 = 𝑟1 + 𝑟𝑤 and 𝑟𝑤 > 0. The
start points 𝑟1 vary in the range from 0 to 𝑟2 − 𝑟0, and the end points 𝑟2 vary from 𝑟0 to 1. The
GSADF statistic is the largest ADF statistic over all feasible sub-samples and is specified by:

𝐺𝑆𝐴𝐷𝐹 (𝑟0) = sup
𝑟2∈[0,𝑟1];𝑟1∈[0,𝑟2−𝑟0]

{𝐴𝐷𝐹𝑟2𝑟1 }. (65)

The following regression is used to perform the test:

𝑦𝑡 = 𝛼𝑟1,𝑟2 + 𝛽𝑟1,𝑟2𝑦𝑡−1 +
𝑘∑︁
𝑖=1

𝜓𝑖𝑟1,𝑟2Δ𝑦𝑡−𝑖 + 𝜀𝑡 , (66)

where 𝑦𝑡 is the variable of interest at time 𝑡, 𝑘 indicates the lag order, and Δ is the difference
operator. For the error term 𝜀𝑡 ∼ 𝑖.𝑖.𝑑.(0, 𝜎2) is assumed. If the null hypothesis is rejected
because the test statistic exceeds a critical value, this is considered an indicator of explosive
behavior, which is interpreted as a bubble. The null and alternative hypotheses of the test are:

𝐻0 : 𝛽𝑟1,𝑟2 = 1 (no bubble)
𝐻1 : 𝛽𝑟1,𝑟2 > 1 (explosive bubble).
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To determine the period of a bubble, the backward SADF (BSADF) method of PSY (2015)
is used. Right-tailed ADF tests are applied to the backward expanding sample sequences using

𝐵𝑆𝐴𝐷𝐹𝑟2 (𝑟0) = sup
𝑟1∈[0,𝑟2−𝑟0]

{𝐴𝐷𝐹𝑟2 (𝑟1)}. (67)

The (fractional) starting and ending points (i.e., 𝑟𝑒 and 𝑟 𝑓 ) of a bubble are the first chronological
observation whose BSADF test statistic exceeds a corresponding critical value, and the first
observation of the BSADF test statistic that falls below the critical value after ⌊𝑇𝑟𝑒⌋+𝛿 log(𝑇),
respectively. The parameter 𝛿 is determined based on the frequency of the data. The effect
of this specification is that the duration of bubbles should exceed a minimum period to avoid
interpreting short-lived outliers as bubbles. Formally, the points are given by:

𝑟𝑒 = inf
𝑟2∈[𝑟0,1]

{𝑟2 : 𝐵𝑆𝐴𝐷𝐹𝑟2 (𝑟0) > 𝑠𝑐𝑣𝛽𝑇𝑟2 }, (68)

𝑟 𝑓 = inf
𝑟2∈[𝑟𝑒+𝛿 log(𝑇)/𝑇,1]

{𝑟2 : 𝐵𝑆𝐴𝐷𝐹𝑟2 (𝑟0) < 𝑠𝑐𝑣𝛽𝑇𝑟2 }, (69)

where 𝑠𝑐𝑣𝛽𝑇𝑟2 is the 100(1 − 𝛽𝑇 )% critical value of the sup ADF statistic based on ⌊𝑇𝑟2⌋
observations. The minimum sub-sample size 𝑟0 is recommended to follow 𝑟0 = 0.01+ 1.8

√
𝑇

so that sufficient observations are used for initial calculation. In addition, a bootstrapping
procedure following Phillips and Shi (2020) is implemented to mitigate the potential influence
of conditional heteroskedasticity in asset returns (Harvey et al., 2016) and to address the
multiplicity issue in recursive testing (Shi et al., 2020).

The procedure is applied to the price-dividend ratio of the market index and the optimal
lag 𝑘 length is selected based on the Bayesian information criterion (BIC) with a maximum
lag order of six. The result is a dummy variable, indicating a bubble at time 𝑡 with a value of
1, so that:

𝐵𝑡 =


1, if 𝐵𝑆𝐴𝐷𝐹𝑡 ≥ 𝑠𝑐𝑣

𝛽𝑇
𝑟2

0, if 𝐵𝑆𝐴𝐷𝐹𝑡 ≤ 𝑠𝑐𝑣
𝛽𝑇
𝑟2

(70)

Figure 9 shows the identified explosive periods for the S&P 500 (shaded areas), as well as
the path of the price-dividend ratio. The explosive market phases encompass bubble and crisis
periods, depending on whether there is an overall increase or decrease in the price-dividend
ratio (Phillips et al., 2015). In the context of the analysis, we consider both of these explosive
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Figure 9: The price-dividend ratio (PDRt) with shaded areas indicating exuberant bubble periods.
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phases as bubbles, as a sharp decline in the price-dividend ratio leads to undervaluation,
which can be interpreted as a negative bubble (Yan et al., 2012; Scherbina and Schlusche,
2014).

Three significant bubble periods have been identified using the method proposed by
Phillips et al. (2015). The first and longest bubble period commences in January 1996 and, with
the exception of two brief interruptions, extends until February 2001. This period coincides
with the dot-com period and pertains to the late 1990s stock market boom, during which
numerous internet companies were founded. Both private and institutional investors invested
heavily in technology stocks, encouraged by media coverage of the boom and expectations
of strong productivity improvements due to technological progress (Kindleberger, 2005;
Brunnermeier and Schnabel, 2015). The second explosive phase in the sample spans seven
months, from September 2008 to April 2009, marking the collapse of the accumulated house
price boom, coinciding with the insolvency of investment bank Lehman Brothers in the same
month, which triggered the GFC Brunnermeier and Schnabel (2015). This explosive period
is not a classic bubble but rather a negative bubble due to the undervaluations caused by the
collapse. The third period runs from January 2021 to February 2022, coinciding with the
time of the COVID-19 pandemic. As the COVID-19 virus rapidly spread globally and the
S&P 500 lost over 30% of its value in March 2020, the Federal Reserve (FED), like other
central banks, implemented loose monetary policies. Monetary (and fiscal) instruments to
support the US economy, such as lowering the federal funds rate, reviving quantitative easing
programs, among others (Haas et al., 2020), may have contributed to the rapid recovery of the
financial markets, thus causing the third explosive period in this sample.
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5.4.4. Regression Analysis
5.4.4.1 Baseline Analysis

To analyze the influence of herding on bubbles the following binary regression specifica-
tions are employed:

Prob(𝐵𝑡 = 1) = F(𝑌𝑡𝛽) (71)

where Prob(·) represents the probability of a bubble at time 𝑡. F(·) is the cumulative density
function, and 𝑌𝑡 is the parameter vector containing predictors, including the herding measure
and control variables, described in Section 5.4.1. For the logit model, F(·) is the cumulative
density function of the logistic distribution, and for the probit model, F(·) is the cumula-
tive density function of the standard normal distribution. Additionally, a linear regression
specification based on the BSADF test statistic is included as it provides guidance to which
variables are statistically significant (Cameron and Trivedi, 2005, p. 471) and offers a more
comfortable interpretation of the estimated coefficients as predicted probabilities.

Table 10 displays the results of the baseline regressions to test 𝐻0. The variable ℎ𝑚𝑡 is
included as a rate of change, as this makes it more responsive. The results in columns (1), (3)
and (5) demonstrate a significant negative influence of the change of herding denoted as Δℎ𝑚𝑡
on the probability of speculative bubbles to occur. The coefficient’s significance level varies
based on the selected model specification, being observed at the 10% significance level in the
logit and probit model specification and at the 5% level in the OLS specification.

Notably, the negative coefficient sign for Δℎ𝑚𝑡 raises curiosity, suggesting that herding
towards markets may not inherently contribute to bubble formation, which is contrary to theory
or educated expectation. Instead, this negative correlation implies that adverse herding could
serve as a predictive factor for the emergence of speculative bubbles or exuberant behavior.
Since ℎ𝑚𝑡 has been included as a differentiated variable in the regression and is therefore more
sensitive, the probability of bubble occurrence decreases as herding behavior increases, and
conversely, the probability of bubble occurrence increases as herding behavior decreases.

If ℎ𝑚𝑡 decreases from a positive level towards zero, then adverse herding behavior will
occur to restore the long term equilibrium. If ℎ𝑚𝑡 is absolutely negative, this is also adverse
herding, and the effect from there back to equilibrium should then be normal herding towards
the market. However, the same mechanical process always occurs with adverse herding
behavior: the betas develop away from the market instead of aligning with it. In the positive
absolute range of herding behavior (ℎ𝑚𝑡 > 0) this means that equilibrium is restored, whereas
in the negative absolute range (ℎ𝑚𝑡 < 0) the magnitudes become even stronger, beyond
equilibrium (Hwang and Salmon, 2004).
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Table 10: Results of the baseline regressions.

𝐵𝑡 𝐵𝑡 𝐵𝑆𝐴𝐷𝐹𝑡

Logit Probit OLS
(1) (2) (3) (4) (5) (6)

Δℎ𝑚𝑡 −5.938∗ −8.862∗∗∗ −3.301∗ −4.974∗∗∗ −3.452∗∗ −5.453∗∗∗
(3.411) (3.090) (1.869) (1.682) (1.506) (1.172)

magnitude(ℎ𝑚𝑡 ) −0.296∗ −0.174∗∗ −0.156∗∗
(0.158) (0.086) (0.070)

Δℎ𝑚𝑡 × magnitude(ℎ𝑚𝑡 ) −1.428∗∗∗ −0.817∗∗∗ −0.750∗∗∗
(0.454) (0.242) (0.222)

log(𝑝𝑣𝑡 ) 1.767∗∗ 2.612∗∗∗ 1.018∗∗ 1.496∗∗∗ 1.142∗∗∗ 1.587∗∗∗
(0.792) (0.893) (0.445) (0.495) (0.377) (0.304)

Δ log(𝑡𝑣𝑡 ) 0.615∗∗∗ 0.597∗∗∗ 0.348∗∗∗ 0.336∗∗∗ 0.149∗∗ 0.119∗
(0.151) (0.173) (0.087) (0.094) (0.063) (0.067)

𝑔𝐺𝐷𝑃𝑡 89.492∗∗∗ 100.815∗∗∗ 54.592∗∗∗ 60.982∗∗∗ 48.876∗∗∗ 48.582∗∗∗
(20.363) (30.480) (12.857) (18.958) (17.510) (17.790)

𝐼𝑃𝑡 −9.394 −3.043 −5.954 −2.806 −3.635 −2.218
(15.687) (23.463) (8.815) (13.489) (6.159) (4.483)

𝑔𝑀2𝑡 82.028∗∗∗ 75.175∗∗ 45.621∗∗∗ 41.467∗∗ 28.644∗∗ 28.073∗∗
(22.207) (36.714) (12.745) (20.577) (12.729) (12.714)

𝑔𝐶𝑅𝐺𝐷𝑃𝑡 −93.222 −118.404 −55.992 −69.754 18.174 10.411
(184.768) (184.031) (106.505) (105.806) (93.567) (85.729)

Δ𝑟𝑡 (%) −0.333 −0.099 −0.227 −0.114 −0.249 −0.122
(0.848) (0.836) (0.490) (0.478) (0.445) (0.403)

Δ𝑆𝐸𝑁𝑇𝑡 −0.001 0.001 −0.002 −0.00004 0.001 0.001
(0.015) (0.021) (0.008) (0.011) (0.006) (0.007)

log(𝐸𝑃𝑈𝑡 ) −1.862∗∗ −2.495∗∗ −1.042∗∗ −1.392∗∗∗ −0.741 −0.987∗∗
(0.818) (0.975) (0.458) (0.536) (0.450) (0.431)

Constant 14.548∗∗ 21.129∗∗∗ 8.227∗∗ 11.911∗∗∗ 8.325∗∗ 11.409∗∗∗
(6.585) (7.766) (3.730) (4.310) (3.395) (2.964)

Observations 337 337 337 337 337 337
Log Likelihood −142.140 −135.886 −141.893 −135.835
Akaike Inf. Crit. 306.28 297.77 305.79 297.67
R2 0.160 0.197 0.162 0.197 0.221 0.262
F Statistic 9.218∗∗∗ 9.529∗∗∗

Note: Results of the baseline regressions with heteroscedasticity and autocorrelation consistent (HAC)
standard errors, given in parentheses among other regression statistics. Columns (1), (3) and (5) investigate
the relationship with Δℎ𝑚𝑡 only. Columns (2), (4) and (6) additionally include the magnitude of ℎ𝑚𝑡 , denoted
by magnitude(ℎ𝑚𝑡 ), as well as the interaction term. Significance levels of 1%, 5% and 10% are indicated by
∗∗∗, ∗∗ and ∗, respectively..
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This circumstance of adverse herding potentially reflects a shift in investor sentiments,
favoring a prevailing perspective or a specific subset of assets. Consequently, this dynamic
could lead to pronounced price fluctuations, surpassing the equilibrium threshold, thereby
accentuating the dispersion in market returns (Bekiros et al., 2017). This interpretation gains
relevance within the sample context, notably during the dot-com bubble when the exaggerated
market behavior primarily affected technology firms – an identifiable subgroup within the
S&P 500 index – so that the returns on these shares have risen more than in equilibrium. To
rigorously validate this assumption, a more nuanced investigation involving sub-periods and
industry affiliations becomes imperative.

Thus, the interpretation of the baseline regression initially suggests that adverse herd-
ing behavior increases the probability of bubbles occurring, which makes sense given the
mechanics of the method, regardless of the level. Therefore, the next question pertains to
whether the level of ℎ𝑚𝑡 has an impact, meaning whether a high value of ℎ𝑚𝑡 exerts a stronger
influence. Furthermore, the interaction is of interest, specifically whether decreasing herding
behavior in the positive (ℎ𝑚𝑡 > 0) or negative (ℎ𝑚𝑡 < 0) range has a more pronounced effect.

Columns (2), (4) and (6) in Table 10 underscore the significance of the negative coefficient
Δℎ𝑚𝑡 . Moreover, the significance of Δℎ𝑚𝑡 is robust to the amount of lags 𝑘 considered in
calculating the bubble periods. In terms of odds, if Δℎ𝑚𝑡 decreases by 10% points, the odds of
a bubble increase by factor 2.462 for the coefficient in column (2) of Table 10. Additionally,
the variable magnitude(ℎ𝑚𝑡) has been introduced to approximate the magnitude of the herding
parameter. This numerical variable is centered around zero and spans from −1 to +1 in tenths,
covering the entire spectrum of ℎ𝑚𝑡 . When choosing the step size, steps smaller than 0.1
appear overly detailed, whereas steps larger than 0.2 are too coarse. However, the results
are robust for step sizes of 0.1 or 0.2. The negative coefficient of magnitude(ℎ𝑚𝑡) suggests
that positive values of ℎ𝑚𝑡 do not contribute to the probability of bubble occurrences; quite
the opposite, negative absolute values are again conducive to the emergence of bubbles. The
significant interaction term reinforces this interpretation in all specifications, but also reveals
complex dynamics. The interaction term Δℎ𝑚𝑡 × magnitude(ℎ𝑚𝑡) additionally suggests that
the main effect of Δℎ𝑚𝑡 also depends on the specific absolute level of the herding parameter.
For instance, the effect ofΔℎ𝑚𝑡 on the probability of bubble occurrence is stronger at very high
positive absolute values of magnitude(ℎ𝑚𝑡) compared to high negative values. Specifically,
the odds of a bubble occurring increase by a factor of 1.030 for a 10%-point reduction in Δℎ𝑚𝑡

at a high negative absolute level (magnitude(ℎ𝑚𝑡) = −6). At a high positive absolute level
(magnitude(ℎ𝑚𝑡) = +6), the odds for bubbles increase by a factor of 5.715 for a 10%-point
reduction in Δℎ𝑚𝑡 . For this reason, magnitude(ℎ𝑚𝑡) serves as a moderating variable, as the
effect of Δℎ𝑚𝑡 varies depending on specific values of magnitude(ℎ𝑚𝑡). However, on one
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hand, the decrease in herding behavior (adverse herding) promotes the occurrence of bubbles,
and on the other hand, a negative absolute level also contributes to their emergence, as the
main effect of magnitude(ℎ𝑚𝑡) is negative as well. As a result, bubbles do not emerge when
investors follow the market but rather when exaggerations occur in certain assets within the
overall market. In response to 𝐻0, it can be stated that herd behavior towards the market
does not contribute to the formation of bubbles. On the other hand, the reversion process and
absolute negative or adverse herding increase the probability.

Although the overall approach is methodologically objective, careful econometric choices
have to be made, e.g. when the monthly market index is calculated by aggregating daily data.
During this aggregation process, the question arises as to which value best represents the
monthly observation. Possible options are the closing value and the average value within
a month. An analysis of the regression results based on both alternatives has shown the
robustness of the results to this arbitrary choice, with no significant effect observed. Detailed
results are available upon request.

In addition, the interpretation of the control variables is also of interest. Both volatility
and trading volume exhibit a positive and significant influence on the probability of bubble
occurrence. These findings align with theoretical models suggesting that bubbles are often
accompanied by high trading volumes and occur in periods of elevated volatility (Scheinkman
and Xiong, 2003; Mei et al., 2009). The positive coefficient for 𝑔𝐺𝐷𝑃𝑡 further confirms
that bubbles tend to emerge during economic expansions, consistent with Scherbina and
Schlusche (2014). Similarly, the positive coefficient for 𝑔𝑀2𝑡 suggests that looser monetary
policy contributes to a higher likelihood of bubble occurrences, in line with the findings of
Wang and Chen (2019). The present findings on economic uncertainty contrast with those of
Enoksen et al. (2020), who studied bubbles in cryptocurrencies. In this context, the negative
and significant coefficient implies that bubbles are more likely to occur in economically stable
environments.

5.4.4.2 Sub-period Analysis

As motivated above, the presumption arises that a subset of the S&P 500, such as technol-
ogy companies during the dot-com bubble, exhibited higher returns than the overall average.
Therefore, the next step is to examine whether the herding parameter shows any particular-
ities during the sub-periods. The sample includes three different characteristic periods with
exuberant periods. Two of them have a positive bubble, while the period surrounding the
GFC is a negative bubble. As described above, the negative sign of the coefficient on Δℎ𝑚𝑡

seems quite reasonable, especially in the context of the dot-com bubble, as the technology
stocks included in the S&P 500 experienced a significant boom and achieved higher returns
than the market average. The sample exhibits a limited number of bubble periods, prompting
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the need for a careful consideration of sub-periods. To ensure that the unique characteristics
of each period are adequately captured, the sub-periods are implemented as dummies and
categorized as follows: The first sub-period corresponds to the dot-com period, spanning
from 1995 to 2001 according to Brunnermeier and Schnabel (2015). The second sub-period
encompasses the house price boom and the GFC, extending from 2003 to 2010, as defined
by Brunnermeier and Schnabel (2015). The final period covers the exuberance during the
COVID-19 pandemic, from March 2020 to 2022, as the World Health Organization (WHO)
declared a global health emergency and classified the outbreak of the virus as a pandemic on
11 March 2020 (World Health Organization, 2023).

Table 11 provides further insight into the sub-periods. In column (1), all three dummies
for the sub-periods are included, whereas columns (2) to (4) each include only one sub-
period. The interactions of the sub-periods with the herding parameter exhibit ambiguous
significances depending on the respective model specification. Only the third sub-period,
inclusive of COVID-19, shows a significant difference at least at a 10% significance level.
In the context of the dot-com bubble, for example, it could be that individual assets initially
benefited from higher returns, but subsequently, the enthusiasm spilled over into the overall
market. Anderson et al. (2010) support this conjecture by showing that the dot-com bubble
was widespread in the US stock market and affected other sectors besides the technology
sector. Hatipoglu and Uyar (2012) provide similar evidence of bubble contagion between
the US stock market and emerging markets. However, the conclusion of this analysis is
that no clear sub-period-specific characteristics can be identified. It can be inferred that the
relationship is not specific to sub-periods but is universally applicable and remains more or
less constant. This, on one hand, reinforces the overall relationship identified earlier. On the
other hand, this analysis does not provide clear evidence as to whether the assumption that
subsets of the overall market with above-average returns are actually driving the relationship,
or whether it is indeed a phenomenon that applies to the overall market.
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Table 11: Logistic regression results for sub-periods.

𝐵𝑡

Combined Dot-com GFC COVID-19
(1) (2) (3) (4)

Δℎ𝑚𝑡 −15.670∗∗ −8.382 −8.487∗∗∗ −12.025∗∗∗
(7.595) (7.160) (3.060) (2.133)

magnitude(ℎ𝑚𝑡 ) −0.634∗∗ −0.503∗∗ −0.484∗∗∗ −0.323∗∗
(0.305) (0.213) (0.179) (0.160)

Δℎ𝑚𝑡 × magnitude(ℎ𝑚𝑡 ) −3.233∗ −1.178 −1.369∗∗ −1.730∗∗∗
(1.824) (0.948) (0.591) (0.539)

𝐷𝐶𝑡 21.057∗∗∗ 4.450∗∗∗
(1.346) (1.247)

𝐹𝐶𝑡 16.409∗∗∗ −2.950∗∗∗
(0.360) (1.003)

𝐶𝐶𝑡 20.359∗∗∗ 3.148∗∗∗
(1.018) (1.076)

Δℎ𝑚𝑡 × 𝐷𝐶𝑡 15.812 9.481
(11.936) (6.292)

Δℎ𝑚𝑡 × 𝐹𝐶𝑡 −8.634 −13.225∗∗∗
(7.141) (4.518)

Δℎ𝑚𝑡 × 𝐶𝐶𝑡 13.465∗ 7.041∗∗
(7.261) (2.947)

log(𝑝𝑣𝑡 ) 2.814∗∗∗ 2.369∗∗ 3.302∗∗∗ 3.098∗∗∗
(0.861) (1.045) (0.976) (0.706)

Δ log(𝑡𝑣𝑡 ) 0.499∗∗ 0.494∗∗∗ 0.529∗∗∗ 0.643∗∗∗
(0.231) (0.182) (0.106) (0.214)

𝑔𝐺𝐷𝑃𝑡 56.855 91.202∗ 97.565∗∗ 84.132∗∗∗
(56.975) (52.286) (38.704) (28.506)

𝑔𝐼𝑃𝑡 −10.749 −18.437 −7.780 −3.616
(23.904) (36.072) (23.317) (12.353)

𝑔𝑀2𝑡 59.630 61.322 66.790∗∗ 67.424∗∗
(40.018) (41.773) (30.654) (32.174)

𝑔𝐶𝑅𝐺𝐷𝑃𝑡 −340.644∗∗ −429.492∗∗∗ −157.893 −73.565
(140.250) (133.298) (179.003) (163.556)
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Δ𝑟𝑡 (%) 0.036 1.575 −0.562 −0.936
(1.196) (0.984) (1.094) (0.934)

Δ𝑆𝐸𝑁𝑇𝑡 −0.024 −0.018 −0.012 −0.003
(0.042) (0.024) (0.030) (0.025)

log(𝐸𝑃𝑈𝑡 ) −3.174∗∗ −1.134 −3.531∗∗∗ −3.979∗∗∗
(1.561) (1.447) (1.045) (1.053)

Constant 6.412 11.972 29.540∗∗∗ 29.830∗∗∗
(9.642) (10.206) (8.274) (6.672)

Observations 337 337 337 337
Log Likelihood −72.150 −90.297 −117.058 −124.407
Akaike Inf. Crit. 182.3 210.59 264.12 278.81
R2 0.574 0.467 0.308 0.265

Note: Results of the logistic regression with heteroscedasticity and autocorrelation consistent (HAC) standard
errors, given in parentheses. Columns (1) to (4) show the results of the sub-period analysis, where (1) includes
all sup-period-specific dummies. Columns (1) to (3) each include only one sup-period-specific dummy. 𝐷𝐶𝑡 ,
𝐹𝐶𝑡 and 𝐶𝐶𝑡 represent the dot-com bubble, the house price boom and subsequent financial crisis as well as
the COVID-19 pandemic. Significance levels of 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

5.4.4.3 Long-term Analysis

Given that bubbles are typically not short-term phenomena and instead can develop over
an extended period, an investigation into the extent to which herding behavior can be utilized
for the long-term prediction of bubbles presents itself as an interesting question. As can be
seen in Table 12, the coefficient of Δℎ𝑚𝑡 is significant for the next three months as well as the
sixth month in the future, indicating that herding behavior predicts the medium- to long-term
probability of a bubble occurring. The interaction with the absolute level of herding behavior
also points in the same direction as in the baseline regression and is significant even in the
fourth month. The perspective on what happens after a bubble has occurred is also interesting
in the context of this horizon analysis. For instance, it could be the case that months after a
bubble has occurred, herding behavior remains at a low level. As shown in Table 13, adverse
herding behavior remains consistently significant six months after a bubble has occurred. This
applies to both the rate of change Δℎ𝑚𝑡 and the level of herding behavior magnitude(ℎ𝑚𝑡). In
terms of the level, this means that herding behavior tends to remain medium- to long-term
negative after a bubble has occurred.
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Table 12: Logistic regression results for longer horizons in the future.

𝐵𝑡+1 𝐵𝑡+2 𝐵𝑡+3 𝐵𝑡+4 𝐵𝑡+5 𝐵𝑡+6

(1) (2) (3) (4) (5) (6)

Δℎ𝑚𝑡 −8.493∗∗∗ −9.570∗∗∗ −8.221∗∗∗ −5.702∗ −3.503 −5.944∗∗
(2.864) (2.315) (2.828) (3.360) (2.709) (3.023)

magnitude(ℎ𝑚𝑡 ) −0.217 −0.175 −0.152 −0.115 −0.101 −0.132
(0.149) (0.148) (0.162) (0.160) (0.163) (0.173)

Δℎ𝑚𝑡 × magnitude(ℎ𝑚𝑡 ) −1.453∗∗∗ −1.916∗∗∗ −2.051∗∗∗ −1.382∗∗ −0.308 −0.751
(0.452) (0.494) (0.697) (0.606) (0.699) (0.733)

log(𝑝𝑣𝑡 ) 2.100∗∗ 1.949∗∗ 1.910∗∗ 1.700∗ 1.591∗ 1.871∗∗
(0.876) (0.860) (0.974) (0.954) (0.903) (0.916)

Δ log(𝑡𝑣𝑡 ) 0.358∗∗∗ 0.386∗∗∗ 0.311∗∗ 0.195 0.256 0.371∗∗∗
(0.134) (0.133) (0.142) (0.186) (0.164) (0.129)

𝑔𝐺𝐷𝑃𝑡 91.462∗∗∗ 75.716∗∗ 66.405∗ 70.042∗ 104.861∗∗ 253.989∗∗∗
(33.085) (33.863) (40.354) (38.653) (49.936) (74.502)

𝑔𝐼𝑃𝑡 −3.194 3.494 8.136 9.681 9.814 −7.712
(17.915) (16.677) (14.799) (19.986) (21.713) (26.652)

𝑔𝑀2𝑡 82.319∗∗∗ 76.507∗∗∗ 64.429∗∗ 50.432∗ 42.206∗ 61.498∗∗∗
(27.062) (29.153) (26.702) (26.037) (25.029) (22.849)

𝑔𝐶𝑅𝐺𝐷𝑃𝑡 −95.577 −36.953 1.411 26.075 42.036 58.257
(163.941) (152.426) (147.293) (138.967) (142.079) (144.580)

Δ𝑟𝑡 (%) −0.175 0.086 −0.113 −0.054 −0.050 0.438
(0.863) (1.013) (0.817) (0.818) (0.919) (1.158)

Δ𝑆𝐸𝑁𝑇𝑡 0.001 0.013 0.016 0.015 0.006 0.019
(0.020) (0.017) (0.016) (0.013) (0.016) (0.014)

log(𝐸𝑃𝑈𝑡 ) −2.157∗∗ −1.803∗∗ −1.742∗ −1.592 −1.708 −1.832
(0.942) (0.897) (1.056) (1.159) (1.284) (1.383)

Constant 17.316∗∗ 15.037∗∗ 14.640∗ 13.084 13.088 14.370
(7.449) (7.041) (8.227) (8.539) (8.849) (9.288)

Observations 338 338 338 337 336 336
Log Likelihood −142.331 −145.066 −146.507 −149.712 −148.191 −137.016
Akaike Inf. Crit. 310.66 316.13 319.01 325.42 322.38 300.03
R2 0.160 0.144 0.136 0.115 0.123 0.189

Note: Results of the logistic regression with heteroscedasticity and autocorrelation consistent (HAC) standard
errors, given in parentheses. Columns (1) through (6) respectively indicate the results for predictive capability
when the bubble occurs in one to six months. Significance levels of 1%, 5% and 10% are indicated by ∗∗∗, ∗∗
and ∗, respectively.
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Table 13: Logistic regression results for bubble persistence.

𝐵𝑡−1 𝐵𝑡−2 𝐵𝑡−3 𝐵𝑡−4 𝐵𝑡−5 𝐵𝑡−6

(1) (2) (3) (4) (5) (6)

Δℎ𝑚𝑡 −7.036∗∗ −10.490∗∗∗ −10.609∗∗ −8.830∗∗ −6.784∗ −7.290∗
(3.046) (3.260) (4.584) (3.616) (3.686) (3.741)

magnitude(ℎ𝑚𝑡 ) −0.310∗∗ −0.380∗∗ −0.399∗∗ −0.423∗∗∗ −0.420∗∗∗ −0.433∗∗∗
(0.148) (0.152) (0.156) (0.153) (0.153) (0.161)

Δℎ𝑚𝑡 × magnitude(ℎ𝑚𝑡 ) −0.763 −1.451∗∗ −1.346∗∗ −1.027∗ −1.102 −0.720
(0.792) (0.702) (0.626) (0.556) (0.732) (0.538)

log(𝑝𝑣𝑡 ) 2.664∗∗∗ 3.085∗∗∗ 3.001∗∗∗ 2.992∗∗∗ 2.989∗∗∗ 3.125∗∗∗
(0.831) (0.913) (1.037) (0.908) (0.923) (0.999)

Δ log(𝑡𝑣𝑡 ) 0.317∗∗∗ 0.390∗ 0.438∗∗∗ 0.058 −0.003 −0.075
(0.107) (0.209) (0.153) (0.107) (0.134) (0.099)

𝑔𝐺𝐷𝑃𝑡 89.715∗∗∗ 90.412∗∗ 86.960∗∗ 61.567 55.144 57.822
(29.927) (38.882) (42.589) (40.266) (36.834) (37.640)

𝑔𝐼𝑃𝑡 9.799 15.239 13.447 27.082∗ 28.264 31.389
(27.280) (21.815) (18.244) (15.754) (21.352) (25.677)

𝑔𝑀2𝑡 68.001∗∗ 84.081∗∗∗ 37.048 −21.089 4.884 −7.812
(27.675) (24.530) (23.469) (23.219) (16.435) (17.369)

𝑔𝐶𝑅𝐺𝐷𝑃𝑡 −105.902 −73.758 −25.879 25.845 40.684 36.124
(185.058) (208.843) (192.254) (181.628) (177.060) (175.568)

Δ𝑟𝑡 (%) −0.129 0.878 0.818 0.628 0.849 0.802
(0.653) (1.044) (0.794) (0.777) (0.755) (0.783)

Δ𝑆𝐸𝑁𝑇𝑡 0.013 0.037 −0.005 −0.012 −0.001 0.006
(0.020) (0.027) (0.028) (0.027) (0.031) (0.035)

log(𝐸𝑃𝑈𝑡 ) −2.534∗∗∗ −2.615∗∗∗ −2.444∗∗∗ −2.115∗∗ −2.062∗∗ −1.962∗∗
(0.850) (0.821) (0.913) (0.895) (0.892) (0.917)

Constant 21.566∗∗∗ 23.607∗∗∗ 22.676∗∗∗ 21.377∗∗∗ 21.024∗∗∗ 21.223∗∗∗
(6.829) (6.748) (7.905) (7.218) (7.123) (7.584)

Observations 336 335 334 333 332 331
Log Likelihood −136.270 −129.309 −133.023 −135.262 −135.923 −135.526
Akaike Inf. Crit. 298.54 284.62 292.05 296.52 297.85 297.05
R2 0.194 0.234 0.211 0.196 0.198 0.205

Note: Results of the logistic regression with heteroscedasticity and autocorrelation consistent (HAC) standard
errors, given in parentheses. Columns (1) through (6) respectively indicate the results for the persistence of
herding behavior when a bubble has occurred one to six months earlier. Significance levels of 1%, 5% and
10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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5.4.4.4 Industry Analysis

Herding behavior also varies across sectors and industries, as various studies have shown.
Consequently, the relationship between bubbles and herding behavior may also vary signif-
icantly within different sectors. Analogous to the findings of Voronkova and Bohl (2005),
it is plausible to assume that this relationship is more pronounced in certain sectors, e.g.
those characterized by a higher degree of uncertainty about earnings and future cash flows.
Again, existing studies are based on different methodologies. Therefore, a brief reference
to the methods mentioned in Section 5.3.2.3 will be made at this point. Through a micro
level transaction-based analysis of the Polish market, Voronkova and Bohl (2005) showed that
herding behavior is more pronounced in sectors such as computer services, banking and metal
production. Similarly, Zhou and Lai (2009) employed a transaction-based herding measure
and discovered that herding behavior is less prevalent in sectors such as industrial goods,
information technology, properties and construction, and utilities. Demirer et al. (2010) apply
macro level market-wide herding measures by Chang et al. (2000) and Hwang and Salmon
(2004) and find herding in all investigated sectors. Gavriilidis et al. (2013) conducted an
investigation into transaction-based institutional herding behavior. They found that Spanish
fund managers engaged in significant herding in industries like consumer services and indus-
trials. Conversely, they found less evidence of herding in industries such as basic materials,
financials and consumer goods. Gębka and Wohar (2013) employed market-wide herding
measures and discovered herding behavior in sector-specific indices across countries. No-
tably, they found evidence of herding in sectors such as basic materials, consumer services,
and oil and gas. Surprisingly, the patterns of herding were less pronounced in industries
with high information asymmetries like information technology and financials. This finding
aligns with the results from Zhou and Lai (2009). Celiker et al. (2015) also identified institu-
tional investors engaging in herding within specific industries. However, they argued that this
behavior does not significantly deviate industry valuations from their fundamental values.

To examine whether there are sector-specific differences in the relationship between bub-
bles and herding behavior, it is necessary to construct sector-specific sub-indices of the S&P
500. The sectoral classification is based on the first two digits of the SIC industry classi-
fication, as shown in Table 14. Initially, it was suspected that during the dot-com bubble,
higher returns were associated with a subset of technology companies in the S&P 500. As
no distinct period-specific characteristics could be identified, industry analysis might provide
more insights. The industry analysis is therefore extended to include a high-tech (HT) cat-
egory. Following the approach of Ljungqvist and Wilhelm (2003) and Loughran and Ritter
(2004), this category is composed of companies with SIC codes 3571, 3572, 3575, 3577,
3578 (computer hardware), 3661, 3663, 3669 (communication equipment), 3674 (electron-
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ics), 3812 (navigational equipment), 3823, 3825, 3826, 3827, 3829 (measuring and control
equipment), 4899 (communication services) and 7370, 7371, 7372, 7373, 7374, 7375, 7378
and 7379 (software).

Table 14: General SIC code classifications based on first two digits.

Division Title Major Group

A Agriculture, Forestry, Fishing 01-09
B Mining 10-14
C Construction 15-17
D Manufacturing 20-39
E Transportation & Public Utilities 40-49
F Wholesale Trade 50-51
G Retail Trade 52-59
H Finance, Insurance, Real Estate 60-67
I Services 70-89
J Public Administration 91-99

The herding parameters themselves for industries Mining, Transportation & Public Utili-
ties and Finance, Insurance and Real Estate are significant at the 1% level, for the industries
High-Tech, Manufacturing, Retail Trade and Services at the 5% level, and insignificant for
the remaining industries. The examination of the constructive relationship between bubbles
and herding behavior is conducted solely for those industries in which the herding parameter
is significant. The corresponding industries are marked in bold in Table 14. The results are
presented in Table 15.

The analysis of industries reveals that the relationship between bubbles and herding
behavior is present in all industries, with varying magnitudes and significance levels in
the growth rate, level or interaction of both of the parameters affiliated with ℎ𝑚𝑡 . The
results are, therefore, mixed and not straightforward to interpret. Nevertheless, based on the
(inverted) odds ratios and average marginal effects, it can be highlighted that the association
is most pronounced in the Services industry when considering Δℎ𝑚𝑡 . The strongest effect
in terms of magnitude(ℎ𝑚𝑡) is observed in the sector Finance, Insurance and Real Estate,
confirming previous findings. Once again, it is noteworthy that concerning the high-tech
industry, only the interaction effect is significant, and the main parameters are not. This is
consistent with the finding that no particular specifics were identified for the dot-com period
compared to the baseline. This suggests that spill-over effects ensured that not only individual
assets but the entire market was affected during the dot-com bubble. However, due to the
varying significances regarding the herding-related parameters, it can be concluded that no
clear systematic sector-specific differences were found, strengthening the significance of the
relationship across the baseline.
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Table 15: Logistic regression results by industry.

𝐵HT
𝑡 𝐵B

𝑡 𝐵D
𝑡 𝐵E

𝑡 𝐵G
𝑡 𝐵H

𝑡 𝐵I
𝑡

(1) (2) (3) (4) (5) (6) (7)

Δℎ𝑚𝑡 −3.836 −3.908∗∗∗ −5.205∗ −8.938∗∗∗ −7.525∗∗ 83.817 −14.521∗
(3.287) (1.090) (2.944) (2.359) (3.742) (113.196) (7.448)

magnitude(ℎ𝑚𝑡 ) −0.064 −0.108 0.107 −0.112 −0.274 −1.639∗∗∗ −0.050
(0.229) (0.151) (0.419) (0.123) (0.231) (0.506) (0.146)

Δℎ𝑚𝑡 × magnitude(ℎ𝑚𝑡 ) −1.739∗∗ −0.502∗∗ −0.155 −0.346 1.093 −15.911 −1.553
(0.848) (0.236) (1.264) (0.676) (1.642) (17.576) (1.514)

log(𝑝𝑣𝑡 ) 1.906∗∗ 0.706 2.609∗∗∗ 1.715∗∗∗ 3.183∗∗∗ 2.560∗∗∗ 1.697∗
(0.772) (0.909) (0.755) (0.479) (0.845) (0.490) (0.910)

Δ log(𝑡𝑣𝑡 ) 0.175 0.477∗∗∗ 0.370∗∗ 0.343 0.252 0.276 0.280∗∗
(0.165) (0.164) (0.160) (0.479) (0.211) (0.316) (0.116)

𝑔𝐺𝐷𝑃𝑡 205.872∗∗∗ 30.441 98.442∗∗∗ 100.404∗∗∗ 155.054∗∗∗ −42.245 240.185∗∗∗
(76.276) (49.701) (35.152) (20.753) (40.417) (68.077) (78.944)

𝑔𝐼𝑃𝑡 40.132 47.505 26.983 −0.125 15.695 34.319 18.139
(40.182) (35.087) (21.031) (18.390) (29.272) (26.859) (28.638)

𝑔𝑀2𝑡 31.676 −1.063 76.059∗∗∗ 51.903∗ 68.712∗∗∗ 48.073∗ 17.645
(28.538) (32.589) (27.254) (31.415) (18.888) (25.733) (31.117)

𝑔𝐶𝑅𝐺𝐷𝑃𝑡 −34.162 152.443 −181.547 503.651∗∗∗ 126.383 129.944 −36.326
(125.589) (196.283) (162.856) (104.865) (116.677) (180.641) (119.419)

Δ𝑟𝑡 (%) 0.290 0.471 0.003 1.067 −1.196 0.165 −0.059
(0.971) (2.073) (0.889) (1.924) (1.220) (1.213) (0.814)

Δ𝑆𝐸𝑁𝑇𝑡 0.014 0.004 0.002 0.033 0.044 −0.039 0.005
(0.015) (0.025) (0.020) (0.049) (0.029) (0.059) (0.015)

log(𝐸𝑃𝑈𝑡 ) −1.230 −3.663∗∗∗ −3.285∗∗∗ −2.030∗∗∗ 0.018 −3.234∗∗∗ −1.182
(1.030) (0.988) (0.925) (0.600) (0.888) (0.770) (1.105)

Constant 12.149∗ 16.958∗∗∗ 25.423∗∗∗ 11.619∗∗∗ 10.864∗ 33.469∗∗∗ 11.340
(6.594) (6.529) (5.628) (3.549) (6.581) (7.665) (8.328)

Observations 337 337 337 337 337 337 337
Log Likelihood −147.284 −85.064 −127.326 −30.579 −87.672 −48.656 −168.184
Akaike Inf. Crit. 320.57 196.13 280.65 87.159 201.34 123.31 362.37
R2 0.201 0.242 0.271 0.191 0.308 0.277 0.147

Note: Results of the logistic regression with heteroscedasticity and autocorrelation consistent (HAC) standard
errors, given in parentheses. The columns (1) through (7) display results for the High-Tech (HT) industry
and other industries as listed in Table 14, each corresponding to the superscripts of the bubble dummies.
Significance levels of 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.
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5.4.4.5 Company Size Analysis

Another recurring theme in the literature is the influence of firm size on the intensity of
herding behavior. Therefore, in this research context, it is explored whether a company’s size
influences the relationship between bubbles and herding behavior. The underlying theory
suggests that due to higher information risks associated with small-capitalization stocks,
observing the trading behavior of other investors can be informative. Hence, herding behavior
might be more pronounced in smaller companies (Ferreruela et al., 2022).

For instance, Wermers (1999) examines the trading behavior of institutional investors
based on transaction data and found that mutual funds tend to exhibit more herding behavior
in small-capitalized stocks. Sias (2004), Wylie (2005) and Hung et al. (2010) also find that
institutional investors are more likely to herd in smaller capitalization securities. Chang et al.
(2000) conduct market capitalization-based portfolio tests to measure herding behavior and
find that it is present for all sizes of companies, not just large or small capitalization stocks.
Using a market-wide herding measure, Benkraiem et al. (2021) find that herding behavior
is more prevalent among small- and medium-sized companies in normal times than in crisis
periods. This phenomenon is attributed to the assumption that during crises all investors face
the same information problems and are less likely to engage in herding behavior because it is
assumed that no one has superior information.

To examine the relationship of interest among firms of different sizes, it is essential to
divide the overall index into indices consisting of large and small companies. The size of
the companies is proxied by market capitalization. The large-cap index comprises companies
from the S&P 500 whose market capitalization falls within the upper quartile (75th percentile).
Similarly, the small-cap index includes companies whose market capitalization falls within
the lower quartile (25th percentile). Both size-based indices are re-weighted annually. This
approach has been used in a similar context by Jacobs et al. (2010).

The herding parameters themselves for both large and small companies are significant at
the 1% level in both cases, as seen in Table 9 for the overall index. Table 16 shows the results
of the analysis of company size in the context of the relationship between herding behavior
and bubbles. The coefficients in column (4) pertaining to small companies, while considering
the absolute magnitude of ℎ𝑚𝑡 , are notably more significant than the coefficients for large
enterprises in column (2). The average marginal effects and the marginal effects at the mean
for the coefficients associated with herding behavior are absolutely greater (larger negative
magnitude) for large companies compared to small ones. They imply that the probability
of bubbles occurring due to adverse herding behavior is higher for large companies than for
small companies. The same conclusions can be drawn from a comparison with the directly
interpretable coefficients of a linear regression. The marginal effects and linear regression
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Table 16: Logistic regression results by company size.

𝐵
Large
𝑡 𝐵Small

𝑡

(1) (2) (3) (4)

Δℎ𝑚𝑡 −6.047∗∗ −5.560∗ −2.701∗∗ −4.539∗∗∗
(2.409) (2.910) (1.172) (1.429)

magnitude(ℎ𝑚𝑡 ) −0.361∗ −0.367∗∗∗
(0.190) (0.099)

Δℎ𝑚𝑡 × magnitude(ℎ𝑚𝑡 ) −0.383 −0.415∗∗
(0.815) (0.202)

log(𝑝𝑣𝑡 ) 1.860∗∗ 2.435∗∗∗ 0.340 2.174∗∗
(0.809) (0.876) (0.742) (0.917)

Δ log(𝑡𝑣𝑡 ) 0.426∗∗ 0.356∗ 0.101 0.279
(0.179) (0.190) (0.536) (0.591)

𝑔𝐺𝐷𝑃𝑡 94.008∗∗ 103.343∗∗ −78.551∗ −94.532∗∗
(43.713) (51.986) (41.051) (42.495)

𝑔𝐼𝑃𝑡 7.533 11.377 4.493 0.780
(20.097) (20.432) (26.710) (18.451)

𝑔𝑀2𝑡 72.240∗∗ 74.529∗∗ −16.890 −26.404
(28.405) (33.166) (32.179) (45.604)

𝑔𝐶𝑅𝐺𝐷𝑃𝑡 −79.793 −38.761 −216.580 −263.124∗∗
(119.037) (121.912) (151.823) (125.129)

Δ𝑟𝑡 (%) −0.088 0.105 −1.709∗∗∗ −1.220
(0.961) (0.926) (0.638) (0.830)

Δ𝑆𝐸𝑁𝑇𝑡 0.013 0.006 −0.078∗∗ −0.085∗
(0.014) (0.020) (0.034) (0.046)

log(𝐸𝑃𝑈𝑡 ) −1.694 −1.905 −1.595∗ −3.116∗∗∗
(1.258) (1.295) (0.896) (0.757)

Constant 14.680∗ 18.036∗∗ 6.453∗ 20.512∗∗∗
(8.604) (9.184) (3.482) (4.600)

Observations 337 337 337 337
Log Likelihood −155.840 −149.230 −74.935 −64.115
Akaike Inf. Crit. 333.68 324.46 171.87 154.23
R2 0.170 0.206 0.107 0.236

Note: Results of the logistic regression with heteroscedasticity and autocorrelation consistent (HAC) standard
errors, given in parentheses. Columns (1) and (2) represent the large companies and are proxied by the upper
quartile of market capitalization, re-weighted annually. Columns (3) and (4) represent the small companies
and are proxied by the lower quartile of market capitalization, re-weighted annually. The superscripts of the
bubble dummies indicate the company size indices. Significance levels of 1%, 5% and 10% are indicated by
∗∗∗, ∗∗ and ∗, respectively.
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results are available on request. A consideration of inverted odds of all parameters associated
with herding behavior leads to the same conclusion. For example, the odds of a bubble
occurring increases by a factor of 1.744 if Δℎ𝑚𝑡 falls by 10% points for large firms, while
the analogous change in odds for small firms is only 1.574, based on columns (2) and (4)
in Table 16. Only the inverse odds for magnitude(ℎ𝑚𝑡) are slightly higher for small firms.
However, when comparing the confidence intervals of the coefficients, the differences are not
significant. Interpretatively, they are so close that the effect of the degree of adverse herding
on the occurrence of bubbles is roughly the same for large and small firms. The results,
therefore, suggest that both large and small companies can contribute to the emergence of
bubbles through adverse herding behavior, even though it is surprising that the relationship is
not more pronounced for small companies. Conversely, there are also studies demonstrating
investor herding behavior towards larger stocks (Wylie, 2005; Kremer and Nautz, 2013). An
explanation for this phenomenon is offered by Walter and Moritz Weber (2006), who argue
that institutional investors have incentives to mirror changes in the composition of a typically
blue-chip benchmark index within their portfolios to minimize tracking error. They refer to
this type of herding behavior as “benchmark herding”.

5.5. Robustness Analysis

Given that different methods of measuring herding behavior, as outlined in Section 5.3,
can produce divergent or inconclusive results, the literature is followed and another widely
used measure is implemented at this point. The method proposed by Chang et al. (2000) has
already been mentioned in Section 5.3.2.3 and in the context of other empirical studies. Its
main advantage is that no data points are lost in the estimation of monthly factors.

Chang et al. (2000) generalise the approach of Christie and Huang (1995) and also build
on the CAPM, so that linearity between the individual stock returns and the market return is
assumed. However, if the relationship is non-linear and the individual stock returns converge
to the market, this is interpreted as evidence for the existence of herding behavior. The model
is defined as

𝐶𝑆𝐴𝐷𝑡 = 𝛼 + 𝛾1 |𝑅𝑚𝑡 | + 𝛾2𝑅
2
𝑚𝑡 + 𝜖𝑡 , (72)

where 𝑅𝑚𝑡 is the return of the market index at time 𝑡. The dispersion of returns is proxied by
the cross-sectional absolute deviation of returns (CSAD) and is defined as:

𝐶𝑆𝐴𝐷𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑅𝑖𝑡 − 𝑅𝑚𝑡 |, (73)
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where 𝑅𝑖𝑡 are the individual stock returns at time 𝑡 and 𝑁 is the number of assets at time
𝑡. The non-linearity is represented by the coefficient 𝛾2. If the coefficient is negative and
significant, then there is herding behavior towards the market, i.e. the CSAD is lower than a
rational asset-pricing model would imply. If the coefficient is positive and significant, this
indicates adverse herding behavior, which means that the CSAD has risen above the rationally
expected level (Gębka and Wohar, 2013; Klein, 2013; Bekiros et al., 2017). In addition, as in
Haykir and Yagli (2022), the bubble dummy 𝐵𝑡 is included in the model in Equation (72) to
examine the relationship between herding behavior and bubbles:

𝐶𝑆𝐴𝐷𝑡 = 𝛼 + 𝛾1 |𝑅𝑚𝑡 | + 𝛾2𝑅
2
𝑚𝑡 + 𝛾3𝐵𝑡 + 𝛾4𝑅

2
𝑚𝑡 × 𝐵𝑡 + 𝜖𝑡 . (74)

The results of the robustness check are shown in Table 17. The significant and positive
coefficient for 𝑅2

𝑚𝑡 suggests adverse herding behavior in the sample. This initially confirms
the finding in the main part that herding behavior exists in the sample. The positive coefficient
for 𝐵𝑡 indicates that the CSAD are higher during bubbles. In other words, this suggests that
higher returns occur during bubbles, supporting the main finding that subsets of the market
benefit from adverse herding behavior. The significant interaction term also suggests that
a different regime applies during bubbles compared to when no bubble exists. Due to the
negative sign, there is less adverse herding behavior during a bubble.

Table 17: Results of the robustness analysis.

Model Constant |𝑅𝑚𝑡 | 𝑅2
𝑚𝑡 𝐵𝑡 𝑅2

𝑚𝑡 × 𝐵𝑡 Obs. R2

(1) 0.009∗∗∗ 0.467∗∗∗ 2.225∗∗∗ 8574 0.635
(0.0002) (0.028) (0.589)

(2) 0.009∗∗∗ 0.432∗∗∗ 2.905∗∗∗ 0.002∗∗∗ −3.023∗∗∗ 8319 0.629
(0.0002) (0.024) (0.498) (0.0005) (0.477)

Note: Results of the linear regression with heteroscedasticity and autocorrelation consistent (HAC) standard
errors, given in parentheses. Row (1) and (2) represent the models from Equations (72) and (74) respectively.
Significance levels of 1%, 5% and 10% are indicated by ∗∗∗, ∗∗ and ∗, respectively.

5.6. Conclusion

The aim was to empirically investigate the relationship between speculative bubbles and
herding behavior. To achieve this, the two variables had to be measured separately at first.
To this end, a number of different approaches were presented, from which the methods
ultimately used were selected. Using the method proposed by Hwang and Salmon (2004),
based on the cross-sectional standard deviation of betas, herding behavior was identified in
the American stock market for the period from 1990 to 2022. By employing the recursive
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unit root test by Phillips et al. (2015), three bubble periods were identified within this sample.
The relationship between the two variables was then examined in different specifications of
mainly binary regression models.

Contrary to the initial assumption that herding behavior towards the market favors the
emergence of speculative bubbles, the results suggest the opposite. In this respect, the results
would confirm the findings of Haykir and Yagli (2022), who found that herding decreases
during bubbles in cryptocurrencies. However, the results of this paper go further, as the
adverse process of herding behavior increases the probability of bubbles to occur. Looking
at the mechanism of the herding approach used when adverse herding behavior occurs, it
is found that the cross-sectional standard deviation of the factor sensitivities exceeds the
standard deviation in the CAPM equilibrium. This implies that bubbles are more likely to
occur when subsets of the overall market systematically generate higher returns than would
be rationally expected. The negative influence of herding behavior is evident in both the rate
of change and the absolute level. In addition, the interaction effect between the two variables
indicates that the rate of change is moderated by the absolute level, i.e. the effect of the rate of
change varies in strength at different absolute levels. The examination of the sub-hypotheses
revealed that the relationship holds regardless of industry, company size, sub-periods and
different time horizons, as no clear differences were found. Although isolated differences can
be identified, such as slightly larger absolute coefficients for larger companies, the results of
these sub-hypotheses can be interpreted as confirming the existence of the general relationship.

However, the study also needs to be critically reflected upon. As described in Section
5.3.2.2, the empirical evidence on herding behavior in the American market is inconclusive,
which is also related to the diversity of methods. A robustness check was conducted to address
the issue that the relationship holds regardless of the method. The alternative method confirms
the results of the main analysis, showing that adverse herding behavior continues to exist in
the US market. Additionally, cross-sectional absolute deviations are higher during bubbles.
Nevertheless, investigating the relationship with additional methods could be a possible
subject for further research. However, the empirical approach chosen here is characterized by
methodological objectivity, as the methods themselves do not require arbitrary calibrations.
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