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Abstract

The heat exhaust constitutes one of the most critical operational limits in tokamak
fusion reactors. Unmitigated, the expected heat fluxes in future reactors will exceed
what is sustainable for known materials. The scrape-off layer connects the plasma
and reactor components. It plays a crucial role for limiting the heat fluxes to reactor
components while maintaining desirable plasma conditions in the confined region.
Accurate models of the scrape-off layer are required for the design and during the
operation of tokamak reactors.

Simplified analytical descriptions of the scrape-off layer lack the required predictive
capabilities due to a lack in the included physical processes. This often necessitates
a calibration against experimental measurements, which introduces uncertainties
for the planning of future larger reactors. While more complex simulations include
all necessary physical processes, these simulations are computationally expensive,
difficult to operate and suffer from numerical instabilities. This prevents their ap-
plication in rapid design studies, algorithmic optimization or integrated modeling.
A potential remedy comes in using machine learning models trained on simulations
for fast and easy to use predictions. This thesis is devoted to provide a proof-of-
concept of such a surrogate model and to provide recommendations for the methods
to construct it.

To this end, a large dataset of several thousand SOLPS-ITER simulations using
a reduced fidelity fluid neutral gas description was created. The dataset uses a
conformal size scaling to encompass cross-machine scenarios across an eight dimen-
sional parameter space. Besides the reactor size, the varied simulation parameters
include the input power, deuterium throughput, impurity seeding rate and strength
of anomalous cross-field transport. Analysis shows that the reduced fidelity pro-
cedure introduced some simulation artifacts, but all expected physical regimes and
trends are recovered.

Based on this dataset, a variation of machine learning models with differing ar-
chitectures and scopes are tested. Among these are different variants of Gradient
Boosted Regression Trees and fully connected feedforward neural networks. The
evaluation shows that the neural networks are the most accurate. Further, it has
no benefit to develop models for specific parts of the scrape-off layer, but the con-
ditions in the whole domain can be predicted at once. It is easier to achieve high
accuracy by employing independent models for different observables rather than by
using a combined model. For the tested models it is difficult to preserve the small
temperature gradients in low density regimes. This leads to drastic errors in heat
fluxes deduced from the surrogate predictions. Using independent models the heat
fluxes can be predicted accurately but the predictions are then not consistent with
the other plasma properties. So far it was not possible to create a model that pre-
dicts accurate heat fluxes self-consistent with all plasma quantities in all regimes.
Analysis shows that the surrogate model accuracy drops drastically when less than
1000 training simulations are available.



Using the developed surrogate model some potential applications are demonstrated
and the impurity concentrations necessary to achieve detachment are predicted for
multiple tokamaks. These predictions show similar functional relations as previous
scaling laws.

Finally, a small dataset of higher fidelity ITER simulations is used to train sur-
rogate models. The smaller scope of the dataset allows for achieving much more
accurate predictions. Further analysis shows that transfer learning from the previ-
ous surrogate model has no benefits over training a new model from scratch. But
due to the the small number of high fidelity test simulations, no final evaluation is
possible. Therefore, future efforts should focus on discovering the potential and the
methods for models utilizing simulations with mixtures of fidelity.



Zusammenfassung

Die Abwärme stellt eine der kritischsten Betriebsgrenzen in Tokamak-Fusionsreaktoren
dar. Ungehemmt werden die zu erwartenden Wärmeströme in zukünftigen Reak-
toren das für bekannte Materialien tragbare Maß überschreiten. Die Plasmarand-
schicht verbindet das Plasma und die Reaktorkomponenten. Sie spielt daher eine
entscheidende Rolle die Wärmeströme zu den Reaktorkomponenten zu begrenzen
und gleichzeitig die gewünschten Plasmabedingungen im eingeschlossenen Bereich
aufrechtzuerhalten. Genaue Modellvorhersagen der Plasmarandschicht sind erfor-
derlich für die Konstruktion und den erfolgreichen Betrieb von Tokamak-Reaktoren.

Vereinfachte analytische Beschreibungen der Plasmarandschicht haben aufgrund feh-
lender physikalischer Prozesse nicht die erforderlichen Vorhersagefähigkeiten. Dies
macht häufig eine Kalibrierung anhand von experimentellen Messungen erforderlich.
Dies Kalibrierung führt zu Unsicherheiten hinsichtlich der Anwendbarkeit für die
Planung künftiger größerer Reaktoren. Komplexere Simulationen enthalten zwar alle
erforderlichen physikalischen Prozesse, sind aber rechenintensiv, schwierig zu bedie-
nen und leiden unter numerischen Instabilitäten. Dies verhindert ihre Anwendung für
schnelle Designstudien, algorithmische Optimierung oder integrierte Modellierung.
Eine mögliche Lösung besteht in der Verwendung von Modellen des maschinellen
Lernens, die auf Simulationen trainiert werden, um schnelle und einfach zu handha-
bende Vorhersagen zu ermöglichen. In dieser Arbeit wird ein Konzeptnachweis für
ein solches Surrogatmodell erbracht und es werden Empfehlungen für Methoden zur
dessen Erstellung gegeben.

Zu diesem Zweck wurde ein großer Datensatz mit mehreren tausend SOLPS-ITER-
Simulationen erstellt, bei denen ein vereinfachtes Fluid Modell für das neutrale Gas
wurde. Der Datensatz verwendet eine konforme Größenskalierung, um Experiment
übergreifende Szenarien in einem achtdimensionalen Parameterraum zu erfassen. Zu
den variierten Simulationsparametern gehören neben der Reaktorgröße auch die Ein-
gangsleistung, der Deuteriumdurchsatz, die Stickstoffkonzentration und die Stärke
des anomalen Querfeldtransports. Die Analyse zeigt, dass das vereinfachte Simulati-
onsmodell zu einigen Simulationsartefakte führt, aber alle erwarteten physikalischen
Regime und Trends reproduziert werden.

Auf der Grundlage dieses Datensatzes werden verschiedene Modelle des maschinel-
len Lernens mit unterschiedlichen Architekturen und Anwendungsbereichen getestet.
Dazu gehören verschiedene Varianten von Regressionsbäumen und neuronalen Net-
zen. Die Auswertung zeigt, dass die neuronalen Netze am genauesten sind. Darüber
hinaus hat es keinen Vorteil, Modelle für bestimmte Teile der Plasmarandschicht
zu entwickeln, sondern die Bedingungen im gesamten Bereich können auf einmal
vorhergesagt werden. Eine hohe Genauigkeit lässt sich einfacher erreichen, indem
unabhängige Modelle für verschiedene Beobachtungsgrößen verwendet werden, an-
statt eines kombinierten Modells. Die getesteten Modelle zeigen Schwierigkeiten, die
kleinen Temperaturgradienten in Fällen mit niedriger Dichte korrekt zu erhalten.
Dies führt zu drastischen Fehlern bei den Wärmeströmen, die aus den Surrogatvor-
hersagen abgeleitet werden. Mit unabhängigen Modellen können die Wärmeströme



genau vorhergesagt werden, aber die Vorhersagen sind dann nicht mit den anderen
Plasmagrößen konsistent. Bisher war es nicht möglich ein Modell zu erstellen, das
genaue Wärmeströme vorhersagt, die mit allen Plasmagrößen in allen Regimen kon-
sistent sind. Die Analyse zeigt, dass die Genauigkeit des Surrogatmodells drastisch
abnimmt, wenn weniger als 1000 Simulationen zum Training zur Verfügung stehen.

Anhand des entwickelten Surrogatmodells werden einige potenzielle Anwendungen
demonstriert und die erforderlichen Verunreinigungskonzentrationen für mehrere To-
kamaks vorhergesagt. Diese Vorhersagen zeigen ähnliche funktionale Abhängigkeiten
wie frühere Skalierungsgesetze.

Schließlich wird ein kleiner Datensatz von ITER-Simulationen mit höherer Genauig-
keit verwendet, um Surrogatmodelle zu trainieren. Durch den geringeren Geltungs-
bereich des Datensatzes lassen sich wesentlich genauere Vorhersagen treffen. Eine
weitere Analyse zeigt, dass das Transfer-Lernen aus dem vorherigen Surrogatmo-
dell keine Vorteile gegenüber dem Training von Grund auf hat. Aber aufgrund der
geringen Anzahl von Simulationen ist keine endgültige Bewertung möglich. Daher
sollten sich künftige Bemühungen auf die Erforschung des Potenzials und der Metho-
den für Modelle konzentrieren, die Simulationen mit unterschiedlicher Genauigkeit
verwerten.
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Chapter 1

Introduction

Human caused climate change is one of the most pressing problems of society [3].
The energy sector is one of the leading contributors to global green house gas emis-
sions [4]. Projections indicate a further increase of the worlds energy demand in
the coming decades [5], [6]. The development of nuclear fusion power plants would
introduce a new source of energy with low emissions. Nuclear fusion has clear ad-
vantages compared to established forms of energy production. Nuclear fusion power
plants emit no greenhouses gases [7]. Compared to renewable power sources such
as wind, solar or hydro power, nuclear fusion requires much less space and can pro-
vide baseload energy production [8]. In contrast to existing (fission based) nuclear
power plants, fusion power is intrinsically safe due to the absence of runaway chain
reactions [8]. With the right reactor materials the amount of high-level radioactive
waste can be reduced [9], [10], [11], [12] and the required reacting elements as fuel
for fusion are widely available [13].

For readibility this introduction provides references only for particular details and
any information given without explicit citation can be found in standard textbooks
(such as [13], [14], [15], [16]).

1.1 Nuclear fusion and magnetic confinement
Two types of nuclear reactions can be distinguished: Fusion combines lighter isotopes
into heavier ones, and fission splits heavier nuclei into lighter ones. The reactions
are exothermic if the binding energy of the reaction results is higher than of the
inputs. This corresponds to a change of mass (E = mc2) in the system. Figure 1.1A
shows the binding energy per nucleon for different isotopes. Especially high energy
can be released from fusion reactions of the different hydrogen isotopes (11H, 2

1D,
3
1T ). Besides the individual energy gain a specific reaction is only viable for power
generation if it can be produced at high enough rate. The rate of fusion reactions
per volume can be expressed as r = n1n2 ⟨σv⟩. It depends on the densities of the
two reactants n1, n2, the reaction cross-section σ and the relative velocity of the
particles v. The cross-section and the velocity are averaged over the distribution of
particle velocities [13]. The relative particle velocities correspond to the energy of
particle collisions. Figure 1.1B depicts the reaction cross-sections of different possible
reactions over the energy of the collisions. It is apparent that the D-T reaction of
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field is perpendicular to the magnetic field. This causes another drift effect (E×B

drift), which leads to an acceleration of electrons and ions to the outside of the torus
[13]. This can be counteracted by introducing a poloidal field component (see Figure
1.2A). The full magnetic field has then a helical shape. Today, mainly two reactor
designs are investigated: the tokamak and the stellarator. Both designs differ in the
way they generate the poloidal field. Stellarators where initially envisioned to be
figure-8 shaped devices [26]. Modern stellarators are build in toroidal shape with
special magnetic field coils around the plasma torus. The field coils are specially
shaped to create both the toroidal and poloidal magnetic field components (Figure
1.2B). The resulting magnetic field is not toroidally symmetric. Most notable oper-
ating experiments today are Wendelstein 7-X [27] in Greifswald, Germany and the
LHD [28] in Toki, Japan. In contrast, a tokamak is toroidally symmetric, and the
poloidal magnetic field is created by an induced electric current in the plasma itself.
This requires a strong magnetic field coil as center column of the tokamak (Figure
1.2A). The tokamak functions like a transformer with the plasma acting as secondary
winding. Due to the laws of induction, a constant current in the plasma can only be
invoked if the current in this central solenoid is continuously increasing. Because the
current in the solenoid can not be increased indefinitely, tokamaks need to operate
in pulses. Stellarators can run continuously in steady-state. Some research projects
test specific external heating systems that produce additional currents in tokamaks
[29]. These currents increase the possible pulse duration and might make it possible
to run tokamaks in steady-state.

The following section highlights some of the key scientific challenges for tokamaks,
that are currently worked on.

1.2 Current tokamak research and challenges
The main objective for fusion research is the development of high performance plas-
mas with large Q values [30]. To achieve this, the confinement of the plasma needs
to be improved. In many experiments, an increase of external heating power leads
to a plasma regime with significantly increased energy confinement times [31]. In
this high confinement mode (H-mode), the pressure in the whole confined plasma
is elevated. But, the plasma density and temperature can not increase indefinitely.
Especially for the plasma density upper limits exist [32]. Exceeding these limits
invokes instabilities found in tokamak plasmas [13], [33], [34]. Such instabilities lead
frequently to disruptions, during which the confinement is lost. In a disruption the
entire energy stored in the plasma and its electric current is released rapidly onto the
reactor vessel walls [13]. For power plant scale reactors, these events can be so vio-
lent that mechanical damages would occur and disruptions need to be avoided [35].
With these limitations of the achievable plasma density, larger confinement times are
required to increase the triple product. Experimental scalings have demonstrated
that confinement times increase with reactor size and magnetic field strength [36].
To achieve higher confinement times, future experiments (ITER, DEMO) are larger
in size [37] or contain stronger magnetic fields [38]. Both increases the costs and the
engineering complexity of the reactors.
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The strongest magnetic fields can be generated with recently developed high tem-
perature superconductor (HTS) tapes [39], [40], [41]. On a power plant scale, these
magnets have to withstand extreme forces [42], [43]. Their construction is an engi-
neering challenge and an open field of research [44].

The high energy neutrons, which stem from the D-T reaction, are not affected by the
magnetic field and hit every part of the reactor wall. Due to their high energy, they
penetrate deep into the material. This affects the plasma facing and structural com-
ponents and possibly even the more sensitive magnets [45], [46]. Neutron radiation
has a strong impact on the mechanical and thermal properties of materials ([47] and
therein). Additionally, it leads to activation of the radiated parts. Current research
tests and develops new materials with high radiation resilience, longer lifetimes and
desired short-lived activation [30], [48], [49], [50].

The required deuterium for the D-T reaction can be extracted from regular wa-
ter. The amounts available on earth would last for millions of years of fusion energy
[13]. However, there is hardly any tritium naturally available on earth due to its
short half-life of 12.3 years [13]. The tritium available mostly comes from nuclear
fission based breeding reactors. The estimated available worldwide tritium reserves
would be consumed by a single fusion based power plant in a few years [51], [52].
To circumvent this bottleneck, nuclear fusion plants are planned to breed their own
tritium from lithium in breeding blankets [53], [54]. These blankets are build into
the reactor and produce tritium by using the neutrons from the D-T fusion in the
following reactions [13]:

6
3Li+

1
0n→ 3

1T + 4
2He+ 4.8MeV

7
3Li+

1
0n→ 3

1T + 4
2He+

1
0n− 2.5MeV

(1.4)

The estimated lithium reserves on earth could provide enough tritium to address
the global energy demand for centuries [13]. Each D-T reaction in Equation 1.1
creates only a single neutron, which itself can create only a single tritium nucleus. If
not all neutrons undergo this reaction, the tritium content in the reactor decreases
over time. The tritium breeding ratio (TBR) is the ratio of produced to consumed
tritium. For a tritium self-sufficient reactor it needs to be larger than 1. To reach
TBR ≥ 1 the breeding blanket needs to include elements like beryllium that can
increase the amount of available neutrons through additional reactions [55], [56].
But predicting the TBR for future reactors through modeling comes with large un-
certainties ([19] and therein).

Additionally to the aforementioned difficulties, a ”reliable solution to the problem
of heat exhaust [...] is one of the main challenges in realising magnetic confinement
fusion” [53]. Since the tokamak exhaust is the integral topic of this thesis, it is
adressed more extensively in the following section.
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steady state without damages to the divertor is around 10MW/m2 [58]. For power
plant scale reactors, like DEMO, the unmitigated heat flux could exceed 100MW/m2

[59]. Hence, the primary challenge of the tokamak heat exhaust is to reduce the heat
flux to the divertors to the sustainable level [59].

The divertor plate material needs to be resilient against high temperatures and
thermal stresses. Earlier tokamaks used divertors made from graphite. Graphite
is less suitable for actual power plants because the tritium tends to be retained in
the carbon [60], [61]. This leads to higher radiation of the reactor and difficulties
to control the amount of tritium present. For future reactors tungsten is foreseen
as divertor material [58]. The problem with tungsten is even if small amounts are
eroded and enter the plasma this leads to drastic cooling effects [62], [63], [64].
The erosion depends heavily on the type of impurity ions present inside the plasma
besides the hydrogen isotopes and helium (see Section 2.4). Considering a mix of
argon and neon impurities, the erosion of tungsten can be mitigated to acceptable
levels if the plasma temperature at the divertor targets is below 5 eV [24], [59].
The exact limit depends on the type of impurities and the necessary lifetime of the
divertor. The second requirement for the tokamak exhaust is, therefore, to reduce
the plasma temperatures at the divertor target low enough for an acceptable level
of target sputtering.

Besides managing the PWI, the SOL has the task to remove impurities deluting
the main plasma [16]. This concerns both the impurities caused by PWI as well
as the helium that is generated by the D-T fusion reaction. The helium removal
needs to be identical to the production otherwise the helium concentration in the
plasma would rise over time. In that case a larger fraction of the heating power
would be directed towards heating the unreactive helium nuclei, which lowers the
overall performance. This problem is called plasma dilution and should be avoided
[65]. At low temperatures in the divertor volume or at contact with the plate sur-
faces, the helium ions recombine with electrons to neutral atoms. The emerging
neutral gas can be removed by pumps placed in the vessel. The efficiency of such
pumps is tightly correlated with the pressure of the neutral gas. The exhaust needs
to enable enough neutral gas pressure such that the pumps can keep up with the
helium production rate [65].

Besides these requirements on the divertor side of the SOL, the SOL also acts as an
important boundary condition for the confined core plasma. To achieve the neces-
sary triple product for fusion energy production, future tokamaks are expected to
operate in H-Mode [35], [38], [58]. The exact physical mechanisms behind the regime
transition into H-mode are not fully understood [13]. Experimental scalings predict a
necessary minimum power crossing the separatrix into the SOL in combination with
certain plasma densities at the separatrix [66]. Despite the confinement advantages,
in H-mode operation plasma instabilities build up. The instabilities cause periodic
outbursts of heat and particles. These edge-localized-modes (ELM) lead to transient
heat loads at the divertor far greater than the already difficult steady-state load.
These transient heat loads pose a serious problem for power plant scale reactors
[59], [67]. However, new regimes and suppression mechanisms have been discovered
which can maintain the benefits of the H-mode while reducing the transient heat
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fluxes of ELMs [67], [68], [69]. The last requirement for the exhaust is therefore
to provide a plasma SOL that meets the requirements of suitable conditions at the
separatrix.

1.4 Shortcomings of current exhaust models
To achieve all the necessary plasma exhaust conditions (Section 1.3), it is imperti-
nent to understand and control the physical processes in the SOL. Specifically for
the design and control of tokamaks it is required to have suitable models that de-
scribe the phenomena accurately. Current modeling efforts rely to a large degree
either on simple analytical models (see Section 2.3) or empirical scaling relations
[57], [70], [71], [72], [73], [74]. But, also the analytical models require experimentally
fitted corrections to incorporate the complex physical effects. Such models are fast
to evaluate but not sufficiently precise for reactor design. Especially the validity of
models which rely on experiment specific correction factors is uncertain for larger
reactor sizes. While 1-dimensional (1D) simulations are able to capture more of the
physical effects self-consistently, an accurate representation of the plasma can only
be achieved by calibration against 2-dimensional (2D) simulations [75]. 2D simula-
tions of the tokamak scrape-off layer are necessary to include cross-field transport
effects sufficiently. Specifically for divertor design, the divertor shape and geometric
effects on the neutral gas need to be included in the model. Such 2D plasma exhaust
codes, like SOLPS-ITER (Section 2.7), simulate the multi-physics phenomena in the
SOL sufficiently well but come with three key problems [76], [77], [78]:

1. The stability of the simulations requires timesteps around 10−7 s [79]. With
macroscopic timescales on the order of 0.1−1 s in the SOL [80], the simulations
take exceedingly long compute times (on the order of weeks to months) [76],
[81].

2. Operating such simulations is a complicated task, which requires manual fine-
tuning and adjustments of numerical settings by experts [79], [82].

3. Each simulation yields only a result for a single very specific scenario. But
many different parameters and their interactions are relevant. Thus, the curse
of dimensionality (see e.g. [83]) leads to more scenarios than are testable by
simulation.

Identification of optimal design points for future tokamaks requires large sensitivity
studies, which scan across many parameters. Such an endeavour is severely botte-
necked by these properties of the simulations. Such studies are especially necessary,
because mechanisms of anomalous cross-field transport are not self-consistently in-
cluded in these models but are prescribed [84]. The strength of this transport is still
not fully known for future devices [30], [57] (Section 2.5). Additionally, the difficult
nature of these codes prohibits a tight integration with models for other plasma do-
mains. Of interest is a coupling to models of the confined plasma or PWI. Therefore,
it is current standard practice to run PWI codes (e.g. DIVIMP [85] or ERO2.0 [86])
as post-processing step on simulated plasma distributions, without a self-consistent
treatment of the eroded particles in the plasma. For fast design studies of future
devices, coupling to other codes, the integration in system codes or model based
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control systems, faster and more robust models of the SOL are needed.

Surrogate models are a possible candidate for such models. Surrogate models are
developed by applying machine learning techniques on datasets of simulations [87].
The surrogate is then capable of interpolating in the high dimensional parameter
space and provides fast results for previously untested scenarios. It acts as a re-
placement for the slow and difficult simulations. Besides fast evaluation speeds,
some surrogate models offer additional benefits. An example is the differentiability
of neural networks, which can be used in gradient based design optimizations. Sur-
rogate modeling is used in a vast number of fields, such as engineering [88], medicine
[89], neuroscience [90], plasma physics [91] and has also been tested for SOL simu-
lations [92], [93], [94]. The validity of surrogate models is coupled to the validity of
the underlying simulations. This comes with the drawback that only those physical
effects are included which are present also in the simulations. In comparison to de-
veloping models based on experimental data (as e.g. in [95]), surrogate models allow
for an extrapolation to future scenarios (as long as these can be simulated). Also
surrogate models are more free from hidden influences, which might occur only in
specific experiments. The development of surrogate models requires running many
of the simulations one aims to replace. Therefore, the key problem in surrogate
modeling is finding models and procedures that perform well with minimal amounts
of data.
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1.5 Aim of this thesis
The goal of this study is to develop a proof-of-concept of a surrogate model for the
scrape-off layer plasma. The model should be so broad in its scope that it can be
applied both to existing tokamak experiments as well as for planning future power
plant scale reactors. The main focus is not to develop just a single model but to
test and develop methods that allow the creation of such models. These findings
should allow consecutive studies to increase the models capabilities both in terms
of validity and scope. This involves creating a setup and strategies for the efficient
generation of a simulation database and finding suitable model architectures. In
principal a large and flexible enough model should be able to predict the whole
simulation domain without loss of accuracy, but achieving this in practice is not so
trivial as larger models might be more difficult to optimize. Therefore, this study
explicitly compares surrogates that model only specific parts of the scrape-off layer
against models for the whole domain and models for individual quantities against
models for all observables. Another important aspect is the evaluation of the number
of simulations which is necessary to develop such models. This is accompanied by
testing strategies for calibrating the models against fewer higher fidelity datapoints.
This should provide guidelines how this proof-of-concept can be expanded to a fully
capable scrape-off layer model.

The following chapter provides an overview of the relevant physics and models of
the scrape-off layer. This also introduces the SOLPS-ITER software, which is used
to perform the scrape-off layer simulations in this thesis. Basic machine learning
concepts and the specific methods used in this thesis are introduced in Chapter 3.
Chapter 4 presents the concepts and changes made to a SOLPS-ITER simulation
which allow it to be used for the generation of a cross machine simulation database.
Several preliminary tests were conducted to find a set of numerical parameters and
boundary conditions that yield stable simulations in varying conditions. The results
of these tests are presented in Chapter 5. Then Chapter 6 provides a short overview
of the final simulation setup and the procedures that are used to construct the sim-
ulation database used in all subsequent chapters. Chapter 7 performs an analysis
of this database to determine the validity of the simulations and the physical ef-
fects that are covered by it. Chapter 8 shows the development and evaluation of
many surrogate models based on different machine learning methods or with differ-
ent scopes. Some of the applications and results than can be obtained using these
developed models are demonstrated in Chapter 9. Chapter 10 extends the surro-
gate models developed here to include high fidelity simulations from a pre-existing
database. And finally Chapter 11 provides a summary of the central conclusions of
this thesis and an outlook into future research possibilities.



Chapter 2

The scrape-off layer: Physics and
modeling

Modeling is an integral part of the scientific process [96]. The scientific process to
answer a specific question can in its briefest form be described in 3 steps. First a
hypothesis is formed, which aims to explain the phenomena in question. In the most
natural sciences but particularly in physics, this hypothesis is often formulated as
a mathematical model in the form of a set of governing equations. The derivation
of such a mathematical model usually requires assumptions or constraints, which
restrict the applicability of the model. Yet such models usually attempt to general-
ize the rules behind phenomena that have been observed under specific conditions.
The second step in the scientific process is performing an experiment or a series
of experiments to test the hypothesis. The last step consists of an evaluation and
comparison between the hypothesis and the experimental findings. This should ei-
ther approve the validity of the hypothesis or discard the hypothesis. In the latter
case a new refined hypothesis is developed and the iterative process starts again. In
modern science the challenges in each of this three steps can be so difficult that they
require the effort of many people for several decades. Especially in nuclear fusion re-
search, experiments require the construction of dedicated facilities with hundreds to
thousands of involved scientists, years of planning and immense monetary costs [97].

To test a hypothesis, first testable predictions need to be derived. In nuclear fusion
research, but also in other domains, this can be a challenging task in itself. The
challenge arises because the initial formulation of a hypothesis is usually not directly
predictive but constructed as a set of governing equations. These governing equa-
tions need to be first solved to derive predictions for the behaviour of observables
that can be measured in experiments. In most cases the equations are so complicated
that they cannot be solved analytically. Instead the mathematical model needs to
be converted into a numerical model (also called simulation, computer model, ex-
ecutable model) which allows to derive predictions [98]. This in itself can involve
an interative process of making assumptions and performing tests to make the nu-
merical model confirm to the mathematical model. The comparison between the
numerical and mathematical model is termed ”verification” while the comparison
between the final predictions to experiment is called ”validation” [98]. Plasma ex-
haust simulations have multiple applications [84], but most important is their ability
to make predictions for settings which are not yet covered by existing experiments.

11
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Specifically for the design of future experiments and tokamak power plants, highly
validated and usable numerical models are required to test and compare different
configurations and scenarios. Especially the high cost and time required for toka-
maks experiments prohibits tests of all reasonable design ideas in practice.

This thesis is involved in creating replacements for the currently used numerical
models of the tokamak scrape-off layer. Therefore, this section gives an introduc-
tion into the current state of modeling for the scrape-off layer and the most relevant
physical effects and phenomena that occur.

This chapter follows mostly [13], [16]. Any information given in this chapter without
explicit citation can be found in one of the two textbooks.

2.1 Kinetic and fluid equations

Modeling a plasma requires a self-consistent description of the position and motion
of particles in the electromagnetic fields. In fusion plasmas the particle density is so
high that not all individual particle trajectories can be tracked but instead need to
be described in a statistical way. This can be expressed by the probability density
fa(x,v, t) of particles of type a in the six dimensional phase space (x,v) and time t.
For a single species plasma (meaning it contains only electrons and one type of ions)
the behaviour of this distribution function can be described by the kinetic equation
(Equation 2.1). The equation describes the particle motion, the influence of the
Lorentz force and particle collisions

(︁

∂fa
∂t

)︁

c
.

∂fa
∂t

+ v · ∇xfa +
qa
ma

(E+ v ×B) · ∇vfa =

(︃

∂fa
∂t

)︃

c

(2.1)

If the collision term is neglected, this corresponds to the Vlasov equation. Because
the plasma particles interact through their charge rather than through hard colli-
sions, the derivation of an appropriate collisional term needs to consider many small
angle collisions. The equation than takes the form of the Fokker-Planck equation.
However, in many parts of the plasma such as the SOL the collisionality is high
and the mean free path is low. In these cases not the full distribution function fa is
necesssary, but instead the plasma can be described through its moments (Equations
2.2-2.4). The moments are the fluid density na, fluid velocity ua and temperature Ta.
As is common in plasma physics the temperature implicitly contains the Boltzmann
constant (i.e. is a measure in units of energy).

na(x, t) =

∫︂

fa(x,v, t)dv (2.2)

ua(x, t) =
1

na

∫︂

vfa(x,v, t)dv (2.3)

Ta =
1

na

∫︂

ma

3
(v − ua)

2fa(x,v, t)dv (2.4)
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The dynamics of these moments can then be described by the Braginskii fluid equa-
tions [99]:

dn

dt
+ n∇ · u = Spar (2.5)

mn
du

dt
+∇p+∇π − nZe (E+ u×B) = Smom (2.6)

3

2
n
dT

dt
+ nT∇ · u+∇ · (π · u)−∇π +∇ · q = Sene (2.7)

with the substantive derivative d
dt

= ∂
∂t

+ u · ∇, the pressure p = nT and the
stress tensor π. The stress tensor contains the non-isotropic parts of the pressure
παβ =

∫︁

m (vα − uα) (vβ − uβ) f(x,v, t)dv−pδαβ. The momentum is also controlled
by the forces on the plasma particles with charge Ze in external electromagnetic
fields Ze (E+ u×B). The energy balance equation further relies on the conductive
heat flux q =

∫︁

m
2
(v − u)2 vf(x,v, t)dv. Spar, Smom, Sene are the sources for parti-

cles, momentum and energy. For a single species plasma with no external sources,
the particle sources vanish and the others come down to the effects of particle col-
lisions. It shows, the defining equation of each moment always requires the next
higher order moment. The particle continuity equation requires the velocities u,
the momentum balance requires the pressure nT and the energy balance equation
requires the heat flux q. Because this trend continues also to higher orders, there
are always less equations than unknowns. To make the system solvable, an assump-
tion about a higher order moment needs to be made. Usually this is an assumption
on the form of the heat flux q. Braginskii published a derivation of all relevant
terms for a single species plasma [99] and an extension to multispecies plasmas was
published by Zhdanov [100]. The latter defines the basic equations in SOLPS-ITER
(Section 2.7). Because the heat and particle transport is highly non-isotropic and
follows the magnetic field lines, the equations are usually decoupled into separate
equations for the parallel and perpendicular transport. Then for the parallel-to-B
conductive heat flux an assumption of the form q∥ ∝ T 5/2∇∥T is made [16].

The fluid approximation is only valid if the velocity distributions are Maxwellian.
This is only the case when the mean free path λmfp is short compared to the relevant
length scales. Regions of low collisionality require a different treatment. Such is the
case at the interfaces between the plasma and elements of the reactor wall. Here a
plasma sheath develops [16].

2.2 Plasma sheath
Assuming equal temperatures for electrons and ions leads to larger thermal velocities
of the electrons due their significantly lower mass. In the proximity of the surface
of solid materials, this leads to an accumulation of electrons at the surface and a
net negative charge. This inhibits the flux of electron and increases the flux of ions
to the surface, until a potential between plasma and surface emerges which leads to
an ambipolar flux. Due to the higher velocities of the electrons, this ambipolar flux
requires a region of increased ion density in front of the wall ni > ne. This region is
called the sheath, and it shields the remaining plasma from the wall potential due to
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Debye shielding. The characteristic length scale for the sheath is the Debye length.

λDebye =

√︃

ε0Te
nee2

(2.8)

A fluid description of the sheath plasma is not accurate as the condition λmfp <
λDebye is violated. Therefore, the fluid description of the SOL plasma ends at the
entrance to the sheath. Kinetic or analytical models of the sheath are required to
provide the boundary conditions for the fluid description at the entrance to the
sheath. Here the derivations for a single ion species plasma following [16] are pre-
sented. The shielding in the sheath is not perfect, and a small electric field extends
into the plasma, which accelerates the ions to achieve the ambipolar flux. In this
pre-sheath region still ni ≈ ne holds. It can be derived that the ion velocities at the
entrace to the sheath use must fulfill the Bohm criterion [101]:

use ≥ cs =

√︃

Te + γTi
mi

(2.9)

γ is the adiabatic coefficient in the sheath. For isothermal conditions γ = 1 holds
while for non isothermal conditions γ ∈

[︁

5
3
, 3
]︁

depending on the exact conditions in
the sheath.

With the simplifying assumption that the ion velocities follow a Maxwellian dis-
tribution with mean cs, it can be derived that both the ion and electron fluxes at
the solid wall are exactly the same as at sheath entrance Γise = Γiwall; Γ

e
se = Γewall.

The sheath does not only act as particle sink for the plasma ions but also as an
energy sink. Using the previous derivations and similar assumptions, the ion heat
fluxes entering the sheath can be written as:

qise =

(︃

5

2
Ti +

1

2
mic

2
s

)︃

Γse = γiTiΓse (2.10)

This includes the ion sheath heat transmission coefficient γi =
(︂

(5
2
+ γ

2
) + 1

2
Te
Ti

)︂

≈ 7
2
.

The heat flux for the electrons can be written as:

qese = γeTeΓse (2.11)

The electron sheath heat transmission coefficient γe = 2 + |eVwall|
Te

+
⃓

⃓eVpre-sheath
⃓

⃓

Te
≈ 5.5

contains the potential drop at the target Vwall and the potential across the pre-sheath
Vpre-sheath. Without any heat sources/sinks in the sheath the total heat flux at the
target surface is then qwall = qse = qise + qese.

The previous derivations expect a target surface that is normal to the magnetic
field lines. In practice the target surfaces are usually strongly inclined compared to
the magnetic field to spread the heat flux across a larger area. This requires a more
complicated description, the Chodura Sheath [16], [102], which includes an addi-
tional magnetic pre-sheath between the ordinary pre-sheath and sheath. However,
in terms of the boundary condition for the SOL little changes, as the derivations
lead to a similar criterion for the ion velocity parallel to the magnetic field at sheath
entrance u∥B,se ≥ cs.
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2.3 Regimes in the scrape-off layer
It is generally accepted that the physics of the SOL and divertor can be differentiated
into three principal regimes [103]. The transitions between these regimes can be
fluent and there is no uniquely used criteria for defining these regimes. This section
gives an introduction to the principle physical mechanisms and characteristics of the
regimes in the scrape-off layer using simple analytical models. In this the section
follows mostly [16], [103]. Information given without explicit citation can be found
in either of the two publications.

2.3.1 The Sheath-Limited Regime
One of the key drivers behind changes in the SOL regime is the plasma density at the
boundary to the confined main plasma. It is a common assumption in simple SOL
models that all of the plasma particles and heat from the confined plasma enter the
SOL at one fixed position called upstream. For configurations with a single x-point
this upstream position is often chosen as the outer midplane (OMP, see Figure 1.3),
because most of the heat flux enters the SOL there [104]. The sheath-limited regime
occurs for the lowest upstream plasma densities nu. Here the plasma density at the
divertor target nt grows linearly with the upstream density. The electron and ion
temperatures are high and constant along a flux tube. This leads to relatively high
plasma temperatures at the divertor target Tt. Because no temperature gradients
(parallel to B) are present, the heat transport is mainly convective and almost no
heat conduction occurs. In this regime the only relevant source of particles and heat
is the transport into the SOL from the main plasma. Similarly the divertor targets
act as the only sink for particles and heat. The plasma ions hitting the solid divertor
material transfer their energy to the material and are emitted back as neutralized
atoms. The ionization of the neutral gas inside the SOL (called recycling) is low.
Because of the low plasma densities, the mean free path of the gas particles is
long, such that they already moved into the main plasma before they get ionized.
The fundamental property of this regime is the low plasma collisionality. Although
this makes a fluid treatment actually invalid, the key properties found in a fluid
approximation match more complete kinetic models [16]. With the assumptions
that the plasma particles enter the SOL with zero velocity and enter the sheath at
the target with exactly sound speed, it can be derived for an isothermal fluid:

Tt = Tu (2.12)

nt =
1

2
nu (2.13)

Γt =
1

2
nucs (2.14)

The plasma properties at the target always refer to the properties at entrance to the
sheath.

2.3.2 The Conduction-Limited Regime
With increasing upstream plasma density nu, the collisionality in the SOL rises. This
causes conduction to dominate over convection as main heat transport mechanism
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parallel to the magnetic field lines. Due to the finite heat conductivity this causes
the emergence of temperature gradients parallel to the field lines. These temperature
gradients allow for large temperature differences between the plasma upstream and
at the divertor target. Because of the dominance of conductive heat transport, this
regimes is called conduction-limited regime. With the higher collisionality, the mean
free-path of the neutral gas particles before ionization is reduced. The ionization
of these inside the SOL becomes a significant source of plasma particles close to
the divertor target. Therefore, the regime is also often described as high-recycling
regime. Using the assumption that the total pressure and energy are conserved inside
each individual flux tube (a flux tube is the plasma region along one magnetic field
line), the Two Point Model (2PM) can be derived [103]. The model equations infer
the plasma properties downstream at the divertor target in relation to the upstream
quantities. Using these assumption the following can be derived:

Tt ∝
q
10/7
∥,u

L4/7n2
u

(2.15)

nt ∝
n3
uL

6/7

q
8/7
∥,u

(2.16)

Γt ∝
n2
uL

4/7

q
3/7
∥,u

(2.17)

These equations show some of the properties that are used in experiments to diagnose
this regime. An increase of the plasma density at the divertor target, which is more
than quadratic with the upstream density, and a quadratic dependence of the ion
flux at the target. The relationship between the target temperature and upstream
plasma density is generally favorable because a high fusion output requires high
upstream densities, which will consequently cause low target temperatures. It is
also apparent that the plasma properties depend strongly on the upstream parallel
heat flux in the SOL q∥,u, which can only be partially controlled from outside, and
on the connection length L, which describes the distance following a magnetic field
line from upstream to the divertor.

2.3.3 Divertor Detachment
When the upstream density is increased even more, the plasma properties at the
target will divert at some point from the relations given in the Equations 2.15-2.17.
The plasma density and particle flux at the target will first stagnate and then
decrease with rising upstream density (not necessarily both at the same time) [105].
This phenomenon is called rollover and is caused by strong interactions with the
neutral gas particles. These neutral interactions cause significant sources and sinks
for the energy, momentum and particles of the plasma in the SOL. The plasma
regime after the rollover is referred to as detached, while all regimes before are
attached conditions. The 2PM model can be extended through empirical factors
to describe the losses in momentum fmom and power fpow between upstream and
target:

(1− fmom) ptot,u = ptot,t (2.18)
(1− fpow) q∥,uRu = q∥,tRt (2.19)
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Here ptot is the total pressure, which is the sum of static and dynamic pressure
for both electrons and ions, and Ru, Rt are values for the tokamak major radius
measured at upstream and target. With the assumptions of a purely hydrogenic
plasma, sound speed at the target and Ti = Te this leads to the following relations:

Tt ∝
[︄

q2∥,u
p2tot,u

]︄[︄

(1− fpow)
2

(1− fmom)
2

]︄[︄

(︃

Ru

Rt

)︃2
]︄

(2.20)

nt ∝
[︄

p3tot,u
q2∥,u

]︄[︄

(1− fmom)
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)︃2
]︄

(2.21)

Γt ∝
[︃

p2tot,u
q∥,u

]︃
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(1− fmom)
2

(1− fpow)
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[︃(︃

Rt

Ru

)︃]︃

(2.22)

To decrease the plasma temperature the power loss in the SOL needs to be maxi-
mized. But the sputtering of the divertor target Γsputtering = Y (Tt)Γt depends also
on the ion flux to the target Γt, which increases with the power loss. Therefore,
a balance between momentum and power loss needs to be controlled. The volume
power loss fpow stems from either line radiation or charge-exchange reactions with
the neutral particles. The momentum loss fmom is caused by the viscosity of the
plasma, collisions with the neutral particles and volume recombination of plasma
ions to neutral gas particles. Specifically volumetric recombination plays a strong
role in detachment and becomes a dominant contribution at plasma temperature
below 1 eV [16], [103], [106]. Any momentum or energy transferred from the plasma
to neutral particles is dissipated to a wider area because neutral particles are not
bound by the magnetic field. It is difficult to formulate analytical descriptions of
the loss factors fpow and fmom because these are controlled by complex non-linear
atomic and molecular processes. Therefore, it is necessary to estimate these through
experiments or simulation. The conditions for detachment can be reached in each
fluxtube independently. Often a divertor is called detached when the critical flux-
tube, which had the highest heat flux before detachment, is detached. Often the
term partial detachment describes situations where not all fluxtubes at the target
are detached. Generally it can be distinguished between three different types of
detachment, where not necessarily all appear simultaneously:

• Energy detachment - Significantly reduced plasma temperature and heat flux
at the divertor target

• Momentum detachment - Significant pressure loss in the SOL which leads to
a rollover in the ion flux to the target

• Particle detachment - Reduction in the plasma density at the target, usually
seen as a rollover

More strict definitions of detachment might require multiple or all of these condi-
tions [106].

Categorical phenomena as the existence of a rollover can only be seen in designated
density scans. Therefore, also different quantitative metrics are used to determine
detachment. For example, the degree of detachment (DOD) [105] measures the ratio
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between the ion flux to the target and the expected flux based on a quadratic scal-
ing with the upstream density. Other metrics set threshold values for the pressure
or power loss in the SOL [73], [106] while even simpler classifications set threshold
values for the electron temperature at the divertor [103]. These threshold values are
then either motivated due their implication on the strength of volume recombination
[103], sputtering yield [24] or other heuristics [68], [107]. Because the transition from
conduction-limited regime to detachment is gradual, both simple and more complex
metrics rely on somewhat arbitrary set threshold values for classification.

Because the detached regime offers the largest possible heat flux reduction, it is
foreseen as the operational regime for future fusion reactors and experiments. The
extended 2PM is not predictive in itself because it requires prior knowledge of the
volume loss terms fpow, fmom, the upstream heat flux q∥,u and particle density nu.
While nu is correlated to the plasma density in the confined plasma, their exact
coupling relation is in general unknown [103]. The upstream heat flux q∥,u strongly
depends on the power fall-off length λq (i.e. the width of the SOL) for which em-
pirical scalings exist [57], [73], [108]. But it is not known how transferable these
are to larger tokamaks [30]. Nevertheless, the equations of the extended 2PM offer
insights into mechanism for obtaining detachment and the important aspects that
need to be covered in divertor and SOL modeling:

• Power dissipation by line radiation and plasma-neutral interaction, which can
be aided through the addition of impurity gases (Section 2.4).

• Increases to the plasma density/pressure.

• The scrape-off layer width as it is determined by cross-field transport (Section
2.5).

• Increasing target radius or other divertor modifications (Section 2.6).

2.4 Impurities
The heat flux density towards the divertor can be reduced through line radiation as
the photons are not affected by the magnetic field and can distribute the energy on
a larger wall surface area. To increase the line radiation rate, additional impurity
gases can be inserted because these can radiate even when partially ionized (in con-
trast to hydrogen). The cooling rates for different impurity elements vary in their
temperature dependence. However, the cooling potential at high temperatures rises
for elements with higher atomic number Z. This has implications for the allowed
sputtering of divertor and reactor wall materials. In graphite walled devices, the
sputtered carbon atoms are an inherent source of impurities, which increase the
radiation. But with metallic walls, the influx of sputtered high-Z impurities needs
to be prevented because these would lead to significant cooling in the confined core
plasma, which reduces the possible fusion power and possibly leads to plasma insta-
bilities [16].

To increase line radiation in metallic devices, low-Z impurity gases are added which
radiate specifically strong in the divertor and SOL. Candidate gases are Nitrogen,
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Neon, Argon, Krypton, but most likely a combination of impurities will be used
in future reactors [78], [109]. The usage of nitrogen in actual power plants poses
a safety concern as it can form ammonia with the radioactive tritium, which leads
to higher tritium retention in the reactor and the gas pumping system [110], [111],
[112]. Therefore noble gases are preferred [30]. But also low-Z impurities can lead
to a reduction of fusion power due to dilution of the core plasma [16]. This is the
case when a major fraction of the electrons in the plasma stem not from hydrogen
but from the impurities. Furthermore, the impurities contribute dominantly to the
sputtering of wall materials, reducing the lifetime of reactor components and in-
troducing high-Z impurities in the plasma [113]. It is therefore no trivial task to
determine optimum impurity levels for reactor operation.

2.5 Cross-field transport
Another factor determining the heat flux at the divertor targets is the width of
the SOL, which is driven by the strength of plasma transport perpendicular to the
magnetic field lines. Several phenomena contribute to the cross-field plasma motion.
Single particle effects cause drifts of the gyromotion of ions around the magnetic
field due to electric fields (E × B), gradients in the magnetic field (∇B) and the
curvature of the magnetic field. Also collisions between particles of different kind
(e.g. ions and electrons or ions of different elements) lead to cross-field transport.
Beyond the classical diffusion also neoclassical effects that originate from particles
trapped in banana orbits need to be included. However, incorporating all these
effects leads to cross-field transport orders of magnitude weaker than estimated
from experiments. It is assumed that plasma turbulence is the largest contributor
to the cross-field transport although the underlying processes are not yet completely
understood. Simulations which treat the turbulence effects self-consistently suffer
from numerical complexity. Therefore, these rarely incorporate all heat dissipation
mechanisms in the SOL (geometry, impurities). On the other hand, transport codes
such as SOLPS-ITER (Section 2.7) assume a purely diffusive cross-field transport
for both the particles Γ⊥ and the heat q⊥.

Γ⊥ = −D⊥
dn

dr
(2.23)

q⊥ = −χ⊥n
dT

dr
(2.24)

This requires an empirical definition of the effective transport coefficientsD⊥ and χ⊥,
which can vary from case to case and depend on the position in the SOL (specifically
in edge transport barriers) [114].

2.6 Divertor shapes
An easy method to decrease the heat flux onto the divertor targets is to increase the
area over which the heat is spread. This plasma wetted area can be increased by
aligining the divertor at a sharp angle compared to the intersecting magnetic field
lines. In Super-X configurations the outer divertor is positioned more outwards such
that the larger major radius causes the heat to be dissipated on an increased area
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(see Equations 2.20-2.22). Also the geometric shape of the divertor targets (e.g.
vertical or horizontal), as well as how open or closed the divertor area is for the
flow of neutral gas particles can impact the dynamics in the SOL [115], [116], [117],
[118], [119], [120], [121]. More advanced geometries try to increase the plasma wetted
area and divertor volume by diverting the SOL plasma to multiple divertors either
at opposing reactor ends (e.g. double null) or through the introduction of higher
order x-points (e.g. snowflake). However, there are significantly fewer simulations or
experiments using these advanced configurations compared to the more traditional
single null divertor designs (which is shown in Figure 1.3). As a result, the impact
of these advanced designs is less understood, and they increase the engineering
complexity of the reactors [122], [123], [124].

2.7 SOLPS-ITER
SOLPS-ITER is a state-of-art simulation software for the scrape-off layer [80]. Ear-
lier versions played a vital part in the design of the ITER divertor [76]. It is used
in a wide area of applications: to model the SOL and design divertors [125], [126],
[127], to provide backgrounds for PWI [128], [129], for calibration of simpler models
[75], [130], [131] or to provide boundary conditions for pedestal models [132]. Using
its full capacity all relevant multi-physics phenomena (see the previous sections) are
sufficiently accounted for such that the transition between different SOL regimes
and detachment can be qualitatively modelled [78], [133]. To obtain quantitatively
accurate results, a calibration against experimental results is required. SOLPS-
ITER suffers from the drawbacks listed in Section 1.4, such as long computational
runtimes, that expert knowledge is required to use it, that each simulation pro-
vides only a results for one highly specific scenario and that some of the underlying
physical parameters are fundamentally unknown. There exists a variety of simu-
lation codes with similar applications, that all differ slightly in their capabilities
and benefits (e.g. UEDGE [134], SOLEDGE2D-EIRENE [135], EDGE2D-EIRENE
[136], EMC3-EIRENE [137],...). None is so widely used and extensively validated as
SOLPS-ITER [76]. Because this thesis uses SOLPS-ITER to generate the training
data, this section gives an overview and introduction of SOLPS-ITER simulations.
The level of detail will focus solely on the parts most relevant for this thesis. There-
fore, readers are recommended to the publications [80], [84] and the official docu-
mentation for further details. Any information about SOLPS-ITER which is given
in the following without explicit citation can be found in one of these three sources.

The SOLPS-ITER simulation software [80], [84] consists of the two main codes:
B2.5 and EIRENE. The B2.5 transport code [138], [139] assumes a toroidal symme-
try to solve 2D fluid conservation equations for multi-species plasma and neutral gas.
For the plasma these equations correspond to a variant of the Braginskii equations
[99]. For each plasma ion species a the code solves a particle (2.25) and momentum
(2.26) conservation equation together with one energy balance equation for electrons
(2.27) and one energy balance equation for ions (2.28).
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Here √g, hx, hy, hz are geometric factors stemming from the x, y coordinate system,
which is aligned to the local magnetic field, and bx = Bx/B is the relative strength
of the component of the magnetic field in the x-direction. The code uses toroidal
symmetry to solve these equations on a 2D cross-section of the torus. The coordi-
nate system follows the magnetic field lines, such that the x-direction always points
parallel and the y-direction perpendicular to the local magnetic field (inside the
torus cross-section). Because the plasma fluid flow is predominantly parallel to the
magnetic field lines, the simplification is made that all fluid velocities are expressed
as a scalar values ua with the direction parallel to the local magnetic field. Further,
na is the particle density of each ion species, Te the electron temperature and Ti
the ion temperature. An individual ion species can be ions of different atom types
(either different elements or isotopes) or different ionization levels of the same atom
(e.g. N+, N2+, ...). The electron density ne and average velocity are derived from
the conditions of quasi-neutrality ne =

∑︁ns−1
a=0 zana (where za denotes the charge of

the ion species) and ambipolarity. While the code can also solve the electric cur-
rent equation self-consistently, this is not used in this thesis but instead an electric
potential of Φ = 3.1Te/e is assumed everywhere. Because of the very large mass
difference between electrons and ions mi/me ≈ 2000, these fluids are not necessarily
equilibrated and therefore possess different temperatures. In contrast, the different
ion species share one common temperature Ti. In the Equations 2.25-2.28 the terms
Γ̃a, Γ

mom
a , q̃e, q̃i constitute fluxes and Sn, Smom, Se, Si sources of particles, momen-

tum or energy. Another key assumption is that the transport perpendicular to the
magnetic field is purely diffusive. Without drift or current effects, this yields the
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following relations for the fluxes:
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The heat conductivities contain both a classical and the anomalous part κe =
κCLe + χ⊥ne, κi = κCLi + χ⊥

∑︁ns−1
a=0 na. Parallel to the magnetic field the particle

and heat transport are dominated by the classical particle flow and heat conduction,
but perpendicular to the field only the anomalous parts play a role. Here D⊥ and
χ⊥ constitute effective anomalous transport coefficients (see Section 2.5), which are
usually chosen by testing various values and selecting those that yield similar plasma
properties as measured in experiments. The source terms contain effects stemming
from the interaction of particles from differing species and the surroundings. Among
these are: Ionization, recombination, collisions, charge-exchange reactions and radi-
ation. In these reactions the sources terms also capture the interaction between the
plasma and the neutral gas particles.

In most SOLPS-ITER simulations the EIRENE [140] code is used to solve the kinetic
Boltzmann equation for neutral gas particles. It is a fully 3D (in space) Monte-Carlo
code, which samples trajectories of neutral test particles on a fixed plasma back-
ground. The test particles are produced by recombination of ions on the solid reactor
surfaces and in the plasma volume or due to sputtering (physical or chemical ero-
sion of solid surfaces). Constant particle influx and absorption coefficients can be
specified on some surfaces to model gas puffing and pumping respectively. Various
physical processes are taken into account in great detail: charge-exchange, elastic
collisions, ionization, dissociation, as well as reflection from the walls. The usage
of EIRENE comes with two downsides. The Monte-Carlo nature of the algorithm
introduces stochastic noise into the source terms of the plasma equations. To reduce
the level of noise, a high number test particles is necessary, which requires longer
compute times. In this study a much simpler fluid description of the neutral gas
is used. It is implemented as the ”standard” fluid neutral model in B2.5. Details
of the neutral model implementation can be found in [84]. Running the code in
fluid neutral mode drastically lowers the compute time of a simulation [141]. While
the results are less realistic than with the kinetic neutrals, the general trends and
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physical regimes are recovered in a similar fashion [142]. In this neutral model sim-
ilar particle and momentum conservation equations as for the plasma are solved.
As defining difference to the plasma equations, the transport coefficients are deter-
mined by neutral instead of coloumb collisions, and the diffusive flux is not density
but pressure driven (e.g. Γ̃ay = −Dp,a

1
hy

∂pa
∂y

). In this simple model also the ion
temperature is shared between the neutrals and ions.

If the mean free path of neutral particles is short a fluid description of the neu-
tral gas becomes more approriate. But even in such conditions, the implementation
of the ”standard” fluid neutral model is not complex enough to cover all relevant as-
pects, which lead to the development of the ”Advanced Fluid Neutral” (AFN) model
[143], [144], [145] in B2.5. As the AFN model was not available during the course of
this thesis, the older ”standard” fluid neutral implementation is used. Nevertheless
most scenarios still require a kinetic neutral description [146], [147] for quantita-
tively accurate results.

In addition to the changes in neutral transport, the standard fluid neutral model
also neglects any molecular effects. For low plasma temperatures at the divertor tar-
gets (Te < 3 eV), plasma-molecule interactions play an important role for the power
and particle balance in the divertor [148]. Neglect or misrepresentation of these
effects has a strong influence on the macroscopic phenomena in detached divertor
conditions such as the particle flux rollover [149]. Therefore, significant deviations
between the fluid neutral simulations and experiments can be expected.

Both the plasma as well as the fluid neutral model use flux limiters to constrain
the appearing fluxes based on kinetic correction terms [84], [150].

The B2.5 equations are solved using a finite-volume numerical scheme on a discrete
computational grid [151]. The system of equations is solved using the standard SIM-
PLE solver with a LU matrix pre-conditioner [152]. This uses an implicit scheme to
evolve each equation forward in time. Because the implicit timestep is performed
for each equation individually, a self-consistent plasma evolution over time is only
possible by iterating over all equations multiple times during a single timestep or
selecting very small timesteps to ensure mutual consistency. Only then the resid-
ual of the implicit matrix solver will remain small during the time evolution. This
makes time-dependent simulations especially difficult and computationally expen-
sive. Nevertheless, SOLPS-ITER is used for such applications [84], [153], [154]. In
the majority of applications, such as in this thesis, SOLPS-ITER is not used to pro-
duce time-dependent results but rather to discover plasma states that are in steady
state with no temporal changes. To achieve this, the code performs a similar evolu-
tion forward in time until such a state with no temporal changes appears. In that
case the consistency of all equations and minimization of the solvers residuals is only
important in the final state but not necessary during the (pseudo-)temporal evolu-
tion. There is no universally approved criterion to determine whether convergence
to a steady state is reached, but a variety of metrics are used by researchers [80],
[82]. Certainty, that the found solution is really a valid steady-state result, can only
be ensured when the temporal changes and the solver residuals are minimized to the
levels of floating point number precision. Specifically with a kinetic neutral model
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artificial boundaries, which do not correspond to the actual reactor walls except at
the divertor targets. Therefore, proper boundary conditions need to be set not only
at the divertor targets but also at the boundaries of the computational grid in the
confined plasma, at the far-SOL and inside the PFR (see Figure 2.1). The bound-
ary conditions for the B2.5 equations are implemented by adding small boundary
cells around the computational grid so called guard cells. These cells are so nar-
row that the plasma flow between these guard cells is negligible. The boundary
conditions themselves are then implemented by enforcing predefined flow between
the guard cells and the actual neighbouring grid cells. There are many predefined
options in the SOLPS-ITER software which calculate the necessary fluxes based on
used defined choices for common boundary conditions. Table 2.1 summarizes those
boundary conditions that are used in the later parts of this thesis. When and how
these conditions are used in each case can be found in Chapters 4, 5 and 6.
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Name Formula Description
Con-
stant

ΓBC The flux is predetermined by the user.
Usually by specifying a total input of par-
ticles or power that is equally distributed
across the boundary area.

Feed-
back

ΓFeedback A feedback condition that adapts the flux
at the boundary to achieve a pre-defined
flux across a specified surface inside the
computational domain. In this thesis this
is only used to prescribe fluxes one row
inward from the actual boundary in the
confined plasma.

Weak ΓBC = h (θ − θBC) h determines the strength, θBC is the value
for some state variable that should be
obtained, θ is the state variable at the
boundary. For h → ∞ this corresponds
to a Dirichlet condition.

Leakage ΓBC
a = αcs,ana A leakage of particles out of the do-

main proportional to the local soundspeed
cs,a =

√︁

γTa/ma and density na.

Decay ΓBC
x = − 1

L
D⊥,ana

q̃e/i = − 1
L
χe/iTe/i

The length L is defined by the user. Usu-
ally used at the far-SOL and PFR bound-
aries to model an exponential decay.

Sheath
ΓBC
a = cs,avgna

q̃e = (γeTe + eΦ)Γe
q̃i =

∑︁

za ̸=0 γiTiΓa − q̃i,rec

The conditions at contact with the di-
vertor targets to emulate the plasma
sheath (see Section 2.2). The outflow
of ions occurs with sound speed cs,avg =
√︃

∑︁

za ̸=0 γTana
∑︁

za ̸=0mana
. It is usually assumed that

all ions recycle to neutral gas particles,
so an identical influx of neutrals occurs.
With the settings used in this thesis the
ions and neutrals share the same temper-
ature thus the heat flux is affected by the
recycling flux of neutrals q̃i,rec.

Table 2.1: A short summary of the boundary conditions used in SOLPS-ITER in this
thesis. Their exact occurances are given in Table 5.1 and Table 6.1. A complete de-
scription of all terms and their specific implementation can be found in the SOLPS-ITER
documentation.



Chapter 3

Introduction to Machine Learning

What is today commonly coined artificial intelligence (AI) is in its core Machine
learning (ML). Although the application of ML methods has seen rising popularity
in the natural sciences and applications for the general public, the fundamentals of
ML are not yet a standard constituent of the curriculum in university level physics
programs. This section should provide readers unfamiliar with ML an introduction
to the basic concepts of ML with an emphasis on the aspects used within this thesis.

This chapter relies in most parts on [157], any information given without explicit
citation can be found in this or similar standard textbooks (such as [83], [158], [159]).

3.1 General introduction

3.1.1 Conceptual background
ML focuses on the development of algorithms and models that enable computers to
learn from data and make predictions or decisions without explicit programming.
Unlike traditional rule-based programming, where explicit instructions are provided
to solve a specific task, machine learning systems learn patterns and relationships
directly from data. As introduced in Section 2, traditional modeling in the nat-
ural sciences involves constructing a mathematical and/or numerical model based
on assumptions about the underlying processes. The construction of these models
is difficult as it requires a deep understanding of the system being modeled and in
many cases it is a priori unclear which assumptions are valid or even useful, and
even simple assumptions can invoke complex unforeseen outcomes. In contrast, ma-
chine learning emphasizes data-driven modeling and pattern recognition. Instead of
explicitly encoding the rules or equations governing a system, machine learning al-
gorithms automatically extract patterns and relationships from data. This enables
the discovery of rules that might be challenging to articulate through traditional
modeling approaches. This is advantageous in situations where the underlying pro-
cesses are complex, nonlinear or not fully understood. For ML models the process
of learning from data is called training. During the training process an algorithm
modifies the values of free parameters in the ML model until this model shows the
desired results.

However, there are also disadvantages coming with machine learning in contrast

27
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to traditional modeling approaches. Many ML models, especially complex ones like
deep neural networks (Section 3.2), can be considered ”black boxes”. For such mod-
els it is often difficult or downright impossible to interpret or explain what patterns
or rules the models rely on. Therefore, it is more difficult to anticipate how such
a model might behave in changed situations. It is an ongoing research effort in
the field of ”Explainable AI” to develop ML model architectures and methods that
can deliver an introspection into the working principles of such models. While in
traditional modeling the modeler has fine control on the rules of the model, in ML
the modeler has generally less control on the patterns the models learn. This can
lead to problems when undesirable patterns are learned. Examples are patterns
which are only specific to the examples seen in the training data but which are
not general properties underlying the modeled phenomena. Another example are
patterns which reproduce unwanted biases present in the training data such as the
widely reported reproduction of discrimination based on ethnicity or gender [160].
Many well established (traditional) numerical algorithms (e.g. for solving differen-
tial equations) have known properties. For example, some algorithms are known
to preserve certain symmetries or conservation laws. Basic ML models rely on sta-
tistical principles therefore they can easily violate these laws. It is an object of
current research to design ML system that inherently preserve the intended physical
symmetries [161]. Finally, ML can only be applied in fields in which data exists
and the quality of the ML model is tightly coupled to the quality and quantity of
the underlying data. Therefore, classical ”thought experiments” that deliver new
insights through induction are not possible but instead data needs to be provided
either through experiments or simulations.

Even if a sufficient amount of high quality data is available, the success of a machine
learning system is not guaranteed. The ”No Free Lunch” (NFL) theorem suggests
that there is no single algorithm that excels in every conceivable scenario [157]. Dif-
ferent machine learning algorithms may perform well in certain problem domains
but not as effectively in others. While there is some debate whether this can be
universally proven [162], in practice it is certainly the case that different problems
require different models. It is the task of the scientist to make assumptions about
which models are likely to perform well for the specific problem and to test, compare
and improve these.

3.1.2 Common machine learning tasks
Generally machine learning algorithms can be categorized based on the type of su-
pervision they get during training [157].

In supervised learning, the algorithm undergoes training on a labeled dataset. This
means the data consists of pairs of input and output quantities. The objective is
to establish a mapping between inputs and outputs, which allows the algorithm to
make predictions for the output belonging to new unseen input data. A typical
task that can be solved using supervised learning is classification. The task for the
algorithm is to categorize input data into a fixed set of classes. Exemplary applica-
tions include spam detection or detecting objects on images. Another task that is
typically solved using supervised learning is regression. Here the task is to predict



3.1. GENERAL INTRODUCTION 29

a continuous target variable given the input data. Example applications are the
prediction of prices or measurement values. This thesis is working on a regression
problem using supervised learning methods.

Unsupervised learning entails training the algorithm on an unlabeled dataset where
input data lacks explicit desired outputs. The objective is to unveil patterns or
relationships within the data without predefined guidance. Typical tasks include
clustering, where similar data points are grouped together based on inherent sim-
ilarities, and dimensionality reduction, which aims to reduce the dimensionality
of data while preserving essential information. Applications are the detection of
anomalies/fraud or the visualization of high-dimensional data.

Reinforcement learning introduces an agent which interacts with an environment
and learns to make decisions through feedback in the form of rewards or penalties.
The goal of the agent is to acquire a strategy that maximizes cumulative reward
over time. In this pursuit it adapts its behavior through trial-and-error interactions
with the environment. Applications are the creation of controllers for robotics or
the magnetic control of tokamak plasmas [163].

3.1.3 Overfitting and Underfitting
In machine learning in general but most predominantly for supervised learning tasks,
the goal is to create models that incorporate generalized patterns. So although the
model is trained on a finite set of training examples, it should be equally accurate if
applied to different examples that follow similar rules. Two opposing problems can
occur: underfitting and overfitting. Underfitting happens when a model is too sim-
plistic such that it is failing to capture the underlying patterns. Overfitting occurs
when a model learns the training data too well, capturing noise and peculiarities
that do not generalize to new examples. To diagnose and mitigate these problems
ML researchers split their data into a training, validation and testing set. The
training set is used in the training algorithm to learn the model parameters. The
validation set serves as an independent dataset to diagnose potential overfitting or
underfitting. Overfitting can be easily recognized by a models excellent performance
on the training data but poor performance on the validation set. A sign of underfit-
ting is consistently low accuracy both on the training and validation set. The model
developer can then adjust the model architecture or the training procedure to cir-
cumvent both situations (see Section 3.1.4). Underfitting usually occurs with simple
models, thus it can be addressed by increasing model complexity or choosing more
powerful model architectures. Overfitting occurs for highly adaptable models, and
can be mitigated by constraining the adaptability of the model (called regulariza-
tion), simplifying the model or using more training data. To obtain a rough estimate
whether a model is more likely to over- or underfit, the number of free parameters
adaptable during training can be compared to the number of training data points.
Models with few parameters such as linear regression tend to underfit, while models
with many parameters like neural networks tend to overfit. Finding the right level
of model complexity is an optimization of the trade-off between different sources of
model error (known as bias-variance trade-off, e.g [83]). Taking the accuracy on the
validation data as guideline, the researcher might implicitly overfit the model also
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3.1.5 Pre-processing
Before data can be used to train a machine learning model, often some pre-processing
of the data is required. This is especially the case for experimental or real-world
data, which can include measurement errors or other sources of outliers or data in
different formats, units or from different sources. For our application only the aspect
of scaling is relevant. Most ML algorithms perform worse if the numerical data has
vastly different scales. Depending on the algorithm this can affect both the input
as well as the output quantities. For example, in regression tasks many algorithms
try to minimize a distance metric between the model predictions and actual results.
If the output values of the samples in the training data stretch across vastly differ-
ent scales, single extreme samples could outweigh the effect of the entire remaining
training data.

The most common types of scaling are min-max scaling (also called normaliza-
tion) or standardization. In min-max scaling the minimum value of the data is
substracted from each datapoint, which is then divided by the difference between
maximum and minimum value xi,normalized = xi−min(x)

max(x)−min(x)
. This scales the data to

values between 0 and 1. Here xi is one scalar value from all data samples x. In
standardization, the mean of the data is first subtracted and then the datapoints
are divided by the standard deviation of the data xi,standardized = xi−µ(x)

σ(x)
. The scaled

data has mean 0 and standard deviation 1. For vastly differing scales it can be
necessary to first apply a non linear function, such as the logarithm, to the data.
In this thesis instead a quantile transformation is used. This scaling procedure first
estimates the cumulative distribution function of the data F (x) and then applies
this to each datapoint to transform them to a scale between 0 and 1. Then to trans-
form these values to a normal distribution, the quantile function G−1 (inverse of the
cumulative distribution function G) of a standard normal distribution is applied.
Thus the scaled data points xi,scaled = G−1(F (xi)) follow almost exactly a normal
distribution. Because it is a rank based method, it is very robust against outliers
and works across large scales, but in the process correlations and distances between
datapoints are non-linearly distorted (see Section 8.1).

In a dataset, each entry might contain several properties. For example in an experi-
ment or simulation, for each trial multiple properties can be measured and recorded.
In machine learning, each trial can be viewed as an independent datapoint, that con-
sists of several data categories, so called features. If different features are different
physical properties with different units (e.g. densities and temperatures), they are
usually scaled independently. But for similar features with the same units (e.g. two
temperatures measured at different locations), it needs to be decided by the modeler
whether the statistics for scaling should be common across these features or calcu-
lated independently (see Section 8.1).

Because the scaling of the data already incorporates some information about the
data statistics, it is important to compute the statistics used in the scaling solely
across the training set and not the test set (see Section 3.1.3).
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The output xij of the neuron number j in the ith layer is computed as the result of
its activation function σij. This activation function receives as input the weighted
sum of the outputs of all neurons in the previous layer and the bias term bij. In
Figure 3.2 this is depicted by the connections between the neurons, and the bias
terms are the extra nodes in the hidden layers that do not receive inputs. If we
make the assumption that inside each layer the neurons have the same activation
function σij = σi (which usually is the case), then for the specific network from
Figure 3.2 a single output vector ŷ is computed from the input x0 according to
Equation 3.2.

ŷ = σ4 (b4 +W4σ3 (b3 +W3σ2 (b2 +W2σ1 (b1 +W1x0)))) (3.2)

Training the network to represent a desired target function now resolves to finding
the right values for the weight matrices Wi and bias vectors bi.

In this thesis, only fully connected layers (also called dense layers) are used. Each
neuron in such a layer receives input from all neurons in the previous layer. Such
networks are called fully connected networks, dense networks or Multi-Layer Per-
ceptron. Other network architectures can be achieved by putting restrictions on the
weight matrices Wi. Examples are setting some weights permanently to zero (spar-
sity) or using the same value at different positions in the matrix. The second can
be specifically used to implement desired symmetries in the network. Most notable
examples of this are convolutional networks, which have shown huge successes in
image related tasks due to their inherent translational invariance. Training a neural
network comes down to an iterative optimization of the network weights and biases
to minimize a predefined cost function. In practice, first the weights are randomly
initialized and then the network is used to make predictions on training examples.
These predictions are then evaluated using the cost function and the result is called
the loss. Given that the loss is calculated from the network predictions ŷ, the weights
of the network are updated using gradient descent.

wijk → wijk − α · ∂Loss
∂wijk

= wijk − α ·
(︃

∂Loss
∂ŷ

· ∂ŷ

∂wij

)︃

(3.3)

Equation 3.3 depicts this weight update with a learning rate α. This is only pos-
sible if the loss is a differentiable function of the network prediction. Using the
chain rule the derivative of the loss with respect to any network weight can be cal-
culated (see Equation 3.2). In common neural network software like TensorFlow or
PyTorch, this is done efficiently by calculating the gradients using automatic dif-
ferentiation, that performs the chain rule on low level operations so no analytical
calculations of the gradients are required. Nevertheless, for large networks the cal-
culation of the gradients can become enormous. Therefore, these software libraries
use the backpropagation algorithm, which progresses backwards through the neural
network and reuses the previously calculated derivatives for efficiency. Stochastic
gradient descent (SGD) is used to avoid getting stuck in local minima of the loss
function. Modern algorithms improve upon SGD, in this study we use the optimizer
Adam [164].

Given these equations one can already see a bunch of hyperparameters that are
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not learned by the model itself, but need to be prescribed. The number of neu-
rons in the input and the output layer are usually determined by the problem to be
solved (although different formulations of the problem can also allow for variations
in these, as is shown in Section 8.2). The number of neurons in the hidden layers
can be freely chosen. Similarly, also the number of hidden layers is a parameter
to choose.

Also the learning rate introduced above and the loss function used in the opti-
mization need to be prescribed. Examples of common loss functions are the Mean
Squared Error (MSE), Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE):

MSE =
1

N

N
∑︂

i=1

(yi − ŷi)
2 (3.4)

MAE =
1

N

N
∑︂

i=1

|yi − ŷi| (3.5)

MAPE =
100

N

N
∑︂

i=1

⃓

⃓

⃓

⃓

yi − ŷi
yi

⃓

⃓

⃓

⃓

(3.6)

Here yi are the actual outputs in the training examples and ŷi are the corresponding
network predictions. The MSE is very sensitive to large errors and penalizes large
outliers significantly more than the MAE. The MAPE mitigates scale dependency
but can be problematic with small values.

The training algorithm usually iterates several times through the whole dataset.
Each full pass through the dataset is called an epoch. While the losses and the
consecutive weight updates can be computed across a whole epoch, it is in practice
far more efficient to compute the loss on smaller batches and thus update the weight
multiple times during an epoch. Following this approach, the number of samples in
each Mini-Batch is another selectable hyperparameter.

The activation function of the neurons in the hidden layers needs to fulfill two key
requirements: differentiable and non-linear. As can be seen in Equation 3.2, besides
the activation functions the neural networks consists only out of linear operations.
If the activation functions were linear, the whole neural network could be reduced
down to a single linear matrix multiplication and loses its advanced non-linear mod-
eling capabilities. In this thesis three commonly used activation functions are tested:
Rectified Linear Unit (ReLU), Exponential Linear Unit (ELU) and Scaled Exponen-
tial Linear Unit (SELU).

ReLU(x) = max(0, x) (3.7)

ELU(x) =
{︄

x, if x > 0

α · (exp(x)− 1), if x ≤ 0
(3.8)

SELU(x, λ, α) = λ ·
{︄

x, if x > 0

α · (exp(x)− 1), if x ≤ 0
(3.9)

(3.10)
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ReLU replaces negative values with zero, allowing only positive values to pass
through. It is computationally efficient and helps mitigate the vanishing gradient
problem. However, it may suffer from the ”dying ReLU” problem, where neurons
become inactive during training. Although it is not differentiable at zero, this poses
not a problem in practice and ReLU has become the standard activation function.
ELU introduces a non-zero slope for negative inputs, which helps alleviate the dying
ReLU problem. It allows negative values to pass through, preventing neurons from
becoming inactive during training. The hyperparameter α controls the functions
behavior for negative inputs. SELU is an extension of ELU with a self-normalizing
property, promoting stable activations and mitigating the vanishing/exploding gra-
dient problem. The hyperparameters λ and α control the mean and standard devi-
ation of the activations. SELU has shown to be particularly useful in deep neural
networks. The reasoning behind the SELU loss function is that while in the first
hidden layer the neurons receive normalized input, deeper in the network the neu-
rons receive input that might follow a totally different distribution. Using the SELU
loss the mean and standard deviation of the input to each neuron in deeper layers
remains standardized, when the weights are initialized correctly [165]. Non-linear
activation functions can in general be used in both the hidden and the output layer,
but in this thesis the activation functions are only applied in the hidden layers.
Therefore, the neurons in the output layer perform only a weighted linear combina-
tion of the results from the last hidden layer.

Batch normalization [166] is another method frequently used in training deep
neural networks. Like the SELU activation function it has the goal to maintain
stable statistics for the inputs to the deeper layers in neural networks. It does this
by first rescaling the inputs to each neuron to mean 0 and standard deviation 1
and then applying a shift and rescaling to a finite mean and variance. This shift
and rescaling factor are learnable parameters that are optimized like the network
weights during training. The standardization happens across each Mini-Batch and
is therefore only an approximate to the true mean of the activations. Like in the
original paper [166], in this thesis Batch normalization is always applied before the
activation functions.

Deep neural networks consist of thousands or millions of trainable parameters and
can represent almost any function. They are therefore very prone to overfitting. To
counteract this, different strategies for regularization are commonly employed.

One of the most common strategies to avoid overfitting is using early stopping.
In this method the error of the networks predictions on the validation set is contin-
uously tracked during training, and the training is stopped once the network starts
to improve solely on the training set and not anymore on the validation set. This
check is usually done once per epoch, so once for every pass through the entire
training data. A hyperparameter that controls early stopping is the patience. It
determines the number of consecutive epochs in which the validation error does not
improve until the training is stopped. The model is then reset to the state of best
validation error. Since training with variants of stochastic gradient descent is noisy,
using too small patience values will lead to bad model accuracy and setting too large
values will lead to overfitting to the validation set. While early stopping prevents
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the generation of strongly overfitted models, it does not steer the network training
itself to avoid overfitting.

One class of techniques aiming to do exactly this modifies the loss function with
additional terms to restrict the adaptive freedom of the neural networks weights.
Most common are L1 and L2 regularization. In both approaches a norm of the
weight vector (containing all weights of the network) is added to the loss function:
Loss+λ ∥w∥1/2. The methods only differ in the type of norm used ∥w∥2 =

∑︁n
i=1w

2
i

(L2) or ∥w∥1 =
∑︁n

i=1 |wi| (L1), and both require a prescribed scaling factor λ that
determines the strength of this additional loss term in comparison to the traditional
cost function.

Another popular strategy to avoid overfitting in neural networks is called dropout
[167]. During training a random group of neurons in the network is disabled (output
set to zero), which effectively alters the network architecture at each iteration. This
forces the network to be less reliant on specific neurons and produce more robust
predictions. The technique is typically only applied to hidden layers. When the net-
work is finally used for predictions after training, all available neurons are used for
maximum precision but with rescaled weights to maintain the activation strengths.
As hyperparameter the dropout rate needs to be provided, which determines the
fraction of neurons that is disabled in each pass.

All these methods are already implemented in common deep learning software li-
braries such as PyTorch [168] or TensorFlow [169].
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3.3 Gradient Boosted Regression Trees

Besides neural networks, this thesis explores Gradient Boosted Regression Trees as
surrogate model architectures. Boosting belongs to the class of ensemble methods.
The fundamental idea of ensemble methods is to combine the predictions of many
models, which might not be particularly good on their own, into a combined far
better prediction. In Boosting predictors are trained sequentially, such that each
new predictor tries to correct its predecessors [157]. The two most common meth-
ods are AdaBoost [170] and Gradient Boosting [171]. In gradient boosting a base
model is trained on the training data and predictions on this data are made. The
following model is than trained to predict the residual errors of these predictions.
The final prediction is then computed by summing the predictions of all consecutive
models, but the impact of each following model generation is reduced by a learning
rate factor compared to the previous stage. Because the following models that are
added to the ensemble have smaller and smaller impact, gradient boosting is less
prone to overfitting, which makes it particularly suited for small datasets. But the
method only works if the base models used at each stage are rather weak. If the
early models already overfit the data, the consecutive models have no residuals to
improve upon. The most common base models in use are decision trees. This yields
the name Gradient Boosted Trees or Gradient Boosted Regression Trees (GBRT)
for regression tasks.

A decision tree model splits the data into different groups based on criteria evaluated
on the input values. The predicted values are formed by calculating the mean val-
ues between all training samples that where categorized into one group. Figure 3.3
shows an example of such a decision tree, which was trained to predict the electron
temperature at the separatrix at the outer divertor target. In this model the training
simulations are separated into several groups based on strengths of the deuterium
and nitrogen sources. New predictions for a set of input parameters are made by
categorizing it according to the splitting rules and assigning it the value of its final
group. As an example, the model in Figure 3.3 predicts for any simulation with an
deuterium ion influx ΓD+ of more than 1022 atoms/s an outer target temperature
of 381 eV. Training a decision tree corresponds to finding the optimal criteria for
splitting the training data. Finding the exact optimal tree is a computationally im-
possible task even for small datasets. Instead most algorithms which determine the
splitting criteria operate in a greedy fashion, by choosing each split independently
after another. Even then numerous different algorithms exist to approximate the
best splits. Although decision trees in itself can output multiple values, the GBRT
implementations used in this thesis (scikit-learn and XGBoost) can only deal with
scalar outputs. To predict multiple values, multiple GBRT models are constructed
in parallel. Other frameworks e.g. CatBoost offer also multioutput GBRT [172].

The hyperparameters of GBRT are either hyperparameters determining the shape of
the decision trees itself or controlling the boosting procedure. Similar as for neural
network, a loss function needs to be chosen to quantify the differences between the
model predictions and the training data. For regression the same loss functions as
introduced above (MSE or MAE) can be used. The learning rate determines the
relative impact of each decision tree on the final ensemble result. The optimal value





Chapter 4

Setup of a simulation case

To develop a surrogate model for the scrape-off layer in tokamaks, first a suitable
simulation database is necessary. While there are some existing SOLPS-ITER sim-
ulation databases, most are unsuitable for surrogate development as they contain
only simulations for very specific scenarios and no broad consistent parameter vari-
ations. Therefore, it is paramount for this study to create its own dataset.

This requires first a choice of the parameters which are to be varied in the dataset
and second a consistent simulation setup that allows for these variations. The for-
mer defines the scope of the surrogate model and its applications. The goal of this
thesis is to provide a proof-of-concept that is not particularly designed for only a
single application but which can be used in a variation of contexts. Because fusion
power plants need to be larger in size than current tokamak experiments [37], a
key requirement for the surrogate model is the possibility to vary the tokamak size.
This way the model can be validated against existing experiments, and be used in
design studies for future reactors. Another requirement is that all major physical
regimes are contained in the model. Because it is a priori entirely unclear how many
simulations are required to train such a SOL surrogate successfully, we focus only on
the most relevant parameters, and reduce the computational complexity to allow for
faster simulation runtimes. The parameters controlling a SOLPS-ITER simulation
can be broadly categorized into three groups (Table 4.1). The parameters determine
either the specifics of the machine or discharge that is modeled, the assumptions and
models used in the physics description or the specifics of the numerical implemen-
tation of these models. It is not intended to vary the numerical parameters of the

Machine or discharge Physics model Numerical model
• Reactor size and shape • Neutral transport models • Grid discretization
• Magnetic field strength • Anomalous cross-field transport • Initialization
• Plasma shaping • Sheath transmission models • Timestep
• Divertor geometry • Boundary conditions • Convergence metric
• Heating power ... ...
• Fueling rates
• Impurity seeding rates
• Pumping speed
...

Table 4.1: Exemplary selection of the parameters defining a SOLPS simulation.
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simulations as part of the surrogate model but rather a single setup should be found
that is suitable for all simulations. The difficulties associated with finding such a
setup are depicted in Chapter 5.

The following sections describe exactly which parameters were implemented in a
simulation setup to allow for consistent variations. Section 4.1 explains the approach
taken here to incorporate a cross machine size scaling in the simulation database.
Then section 4.2 gives a brief overview of the reference simulation that is altered
to create the simulation setup used here. In Section 4.3 the changes to the neutral
model and the respective choices for the fueling, seeding and pumping model are
explained. Finally, Section 4.4 describes the assumptions which are made regarding
the anomalous cross-field transport.

4.1 Size scaling
A surrogate model is only usable for reactor design if it allows variations in the
reactor size and shape. To allow for an extrapolation from present to future exper-
iments, both should be contained in the applicable range of the surrogate model,
which is determined by the extent of the underlying simulations.

The overall tokamak size is determined by the major radius of the torus. The
machine size is crucial for the dynamics in the scrape-off layer because it determines
the connection length along a magnetic field line L between the hot upstream con-
ditions at the confined core plasma and the downstream conditions at the divertor
targets [16]. This length scales linearly L ∝ R with the major radius of the tokamak
torus R. Just varying this length alone has a strong impact on the conditions at
the divertor targets (see Equations 2.15-2.17 in Section 2.3). The machine size is
highly correlated with the design and geometry of the underlying magnetic field.
So differently sized experiments also have differing magnetic topologies. To include
machine size variations in a simulation database, in principle two approaches are
possible. One is to use the geometries of existing or planned reactors with varying
sizes, such as Alcator C-MOD, ASDEX Upgrade (AUG), JET, JT60SA, ITER and
DEMO. The other approach is use one tokamak geometry and scale it up and down
in size. Both approaches have their specific advantages and drawbacks. In the first
approach, already existing simulation cases could be used, and the results of the final
surrogate will match the existing experiments. This means simulations of AUG size
would also have AUG geometry and simulations with JET size the JET geometry.
In the latter approach, the training simulations would resemble conceptual but not
existing tokamaks. This means simulations of AUG size would not have the exact
AUG geometry, which will make them less applicable and less comparable to the
existing experiment. However, the former approach has the large disadvantage that
parameters cannot be varied individually. As can be seen in Figure 4.1, changing
from one of these experimental tokamak designs to another, changes not only the
machine size in terms of major and minor radius, but also many properties of the
overall geometry (e.g. plasma triangularity, elongation, ...). In this approach it is
impossible to vary solely the size alone, which will make it impossible to determine
which of the effects stem from the changes in size and which originate due to the
changes in the other properties. This makes the predictions of the surrogate less
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magnetic fields are valid and could appear in a tokamak.

The magnetic field in tokamaks is determined by the vacuum magnetic field gener-
ated by the coils surrounding the tokamak and the electric current inside the plasma.
From the balance between the force upon the plasma by the magnetic field −→

j ×−→
B

and the pressure gradient inside the plasma ∇p, the Grad-Shafranov (GS) equa-
tion can be derived [13]. While solving the equation is complicated, simple analysis
shows that the shape of the magnetic field is invariant to some transformations. The
following summarizes the derivation of these properties made in [173].

The Grad-Shrafranov equation can be written as:

∂2ψ

∂R2
− 1

R

∂ψ

∂R
+
∂2ψ

∂Z2
= −µ0R

2 dp

dψ
− 1

2

dF 2

dψ
(4.1)

Here ψ is the flux function for the magnetic field, p the plasma pressure and F the
flux function for the current. R and Z are the radius and height coordinates in a
cylyndrical coordinate system and µ0 is the magnetic constant. We are interested in
solutions of the GS-Equation ψ that do not change in shape but only by a constant
scaling factor. This can be achieved by bringing the equation in a non-dimensional
form, using the major radius R0, the vacuum (toroidal) magnetic field at the mag-
netic axis B0 and the following definitions: R = r ·R0 Z = z ·R0 ψ = ψ ·ψ0 p =
p′ · B2
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p′ and f ′ are the non dimensional pressure and current flux function. Inserting these
definitions into the GS equation yields:
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Since ψ should not change its form, the right-hand side of Equation 4.2 should
remain unchanged under any transformation. Introduction of α2 =

R4
0

ψ2
0

B2
0 yields the

condition:
const = −r2α2dp

′

dψ
− 1

2
α2df

′2

dψ
(4.3)

The shape of the solution ψ is unchanged when α2 · p′ and α2 · f ′2 remain constant.
This can be achieved by keeping α, p′, f ′ constant independently, while changing the
real physical pressure p and current F . The toroidal Bt and poloidal Bp components
of the magnetic field are given by:

Bt = B0
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Using these it shows that the condition in Equation 4.3 allows for independent vari-
ation of the major radius and the toroidal magnetic field strength as long as the
aspect ratio R0

a
= const and the ratio of the poloidal to the toroidal magnetic field

(e.g. safety factor) Bt

Bp
= const remain constant during the transformation.
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Implementation of the size scaling requires multiplying all spatial coordinates of
the computational grid cells by a fixed scaling factor, and changing the magnetic
field strength requires multiplying the magnetic field vectors in each grid cell by a
fixed scaling factor. Both is already implemented as an option in the ”b2ag” pre-
processing routine of SOLPS-ITER.

This conformal size scaling allows us to run SOLPS-ITER simulations with vary-
ing tokamak sizes and magnetic field strengths and will be used in the following to
create a simulation database. The span of major radii in the simulation database
ranges from 1m to 10m (see Section 6). This way the database covers similar sizes
as in small tokamak experiments like ASDEX Upgrade up to the expected sizes
for future experiments like DEMO [37]. But this size scaling prohibits independent
changes to the divertor size and geometry or the overall plasma shape. Similarly the
safety factor remains unchangeable. Therefore, it is important to choose a suitable
reference simulation setup to use in this scaling.

4.2 Reference simulation setup
The size scaling procedure described in the previous section requires a single ref-
erence simulation setup, whose geometry is scaled up and down in size. Here a
SOLPS-ITER simulation of JET is chosen. The simulation is modeled after JET
shot number 85423 and has been validated against the experiment. The simulation
stems from a similarity study between AUG and JET that was presented in [174].
It models an H-Mode discharge with nitrogen seeding gas and tungsten divertor and
beryllium vessel walls. The magnetic equilibrium underlying this simulation was
created with EFIT [175]. This simulation setup was chosen for several reasons:

• It uses a single null divertor with vertical targets, which is the relevant con-
figuration for ITER and possibly DEMO.

• The aspect ratio and overall geometry is similar to AUG, ITER and possibly
DEMO.

• JET is an existing experiments so using this reference case will allow tests to
integrate experimental measurements into the surrogate.

• Compared to other tokamak experiments, it has the largest size so the extrap-
olation gap to ITER and DEMO is the smallest.

• A tungsten divertor and full metallic walls are used as foreseen for future
tokamaks.

• Nitrogen gas seeding was already studied extensively across several tokamak
experiments and SOLPS simulations [58], [74], [176], [177], [178], [179], which
allows for validation of the final surrogate model.

Besides these physical reasons, the simulation setup also offers an above average grid
resolution with 102x48 grid cells. Since the grid remains unchanged throughout the
scaling, it is paramount that the number of grid cells is sufficient for all sizes. It is
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assumed that this grid resolution is adequate for all later used tokamak sizes since
simulations with the used fluid neutrals (Section 4.3) are more resilient against low
grid resolutions [180].

At the inner boundary of the simulation grid in the region of closed field lines
(see e.g. Figure 4.1), a constant temperature and a constant flux of deuterium ions
are prescribed as boundary conditions. The temperature is prescribed identically
for the ions and electrons. The values of these boundary conditions will be varied
in the simulation dataset to model scenarios with varying heating power and core
fueling.

However, there are still some changes to be made to the simulation setup before
it can be used for generation of a dataset. First, the present simulation uses a
kinetic description of the neutral gas particles, which is more exact but requires
longer compute times compared to a simplified fluid description. To ensure that a
sufficient number of simulations can be generated, a change to the latter is needed.
The changes made are described in Section 4.3. Also this case uses an edge trans-
port barrier to create plasma profiles inside the separatrix which match an H-mode
discharge. While this is the foreseen operating scenario for future tokamaks, the con-
figuration of an edge transport barrier requires many parameters and for simplicity
it is therefore changed to a uniform transport assumption in Section 4.4.

4.3 Fluid neutral model compared to kinetic neu-
tral solution

Using the 2D standard fluid neutral model in the B2.5 transport code, instead of
coupling to an external kinetic neutral gas solver like EIRENE [140], [181], drasti-
cally lowers the compute time of a simulation by a factor of 10−100 [141]. But using
this model requires more tweaking of the boundary conditions to obtain physically
sound solutions [142]. There is no standard procedure for converting a simulation
case from kinetic to fluid neutral settings but some guidelines and recommendations
are provided in [142]. When changing the reference simulation described in the pre-
vious section from kinetic neutrals to fluid neutrals, it makes no sense to observe
the neutral properties directly, as there differences are bound to appear, but instead
settings should be found in which the plasma properties change as little as possible.

Although the standard neutral model is less precise than the kinetic neutral model
it offers the superior speed and should in general also show the same trends as the
kinetic neutral models [127], [142], [182], such that we can use this as a first step in
the development of surrogate models.

Linked to the neutral model is also the implementation of the gas puffs. In the
kinetic neutral model the gas puffs introduce molecular deuterium D2 and atomic
nitrogen N . In the fluid neutral model only atomic fluids are possible. The com-
putational domain of the kinetic neutral model extends beyond the grid of the fluid
plasma solver (which is the same for the fluid neutrals), and includes a large sub-
divertor area in the simulation chosen here (Figure 4.2). Both gas puffs are located
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inside the private-flux region, and the pump removing neutral gas particles from
the system is a dome like structure below the outer divertor target (Figure 4.2).
These structures are not present in the corresponding computational grid of the
fluid plasma solver. Because the grid cells need to be aligned with the magnetic
field lines and orthogonal to any wall boundaries, which is not the case in these sub-
divertor structures, these cannot be included in the standard fluid approach. Several
attempts were made to implement the gas puffs in the fluid neutral simulations as
boundary condition on the B2.5 grid boundary in the private-flux region (Figure
4.2). But in all these attempts large amounts of particle moved from this boundary
across the PFR into the region of confined field lines. There this leads to diverging
plasma densities and finally crashing simulations. Instead the approaches used in
[127], [141], [180], [182], [183] were followed by implementing both the deuterium
as well as the impurity gas puff as boundary condition at the far-SOL boundary of
the B2.5 grid (Figure 4.2). This gas puff boundary condition is a constant inflow
of neutral gas particles at the far-SOL boundary given as an absolute value, which
is equally distributed across the whole boundary. In addition, a leakage of parti-
cles is used as boundary condition in the PFR, which acts as particle pump. The
results of a simulation with this setup can be seen in Figures 4.3 and 4.4. Overall,
both the deuterium and nitrogen ion densities match fairly well in the whole domain
but there are still some deviations at the high field side, at the inner target, where
both densities are significantly higher in the fluid neutral simulation than in the
kinetic neutral setup (Figure 4.3). A similar pattern shows for the electron density
and reversed for the electron temperatures (Figure 4.4). Also in the PFR, the ki-
netic neutral case has higher nitrogen ion densities and lower electron temperatures.
These drastic changes at the inner target but also the reduced densities in the PFR
likely originate from the changes in gas puff location and neutral transport, which
ultimately changes the whole fueling efficiency. The changes in neutral transport
might be strongly influenced by the use of a 5-point stencil to calculate particle
fluxes in the fluid neutral model [184].

To get a better picture of the differences of the plasma between the neutral mod-
els, Figure 4.5 shows the profiles of electron density and temperature at the outer
midplane, outer divertor target and inner divertor target. At all three positions the
fluid neutral case has generally lower electron density than the kinetic neutral case,
although the general shapes of the density distributions are maintained. Similarly,
the shape of the electron temperature profile at the outer midplane is maintained,
and here the temperatures almost exactly match. While at the inner divertor the
temperatures do not match, they are on similarly low scales below 2 eV, showing that
in both cases this divertor is fully detached. At the outer target both simulations
obtain drastically differing temperatures with a drastically higher peak temperature
in the fluid neutral simulation. This might hint at a change in the power distribution
such that more heat flows to the outer divertor target and less to the inner.

Here the fluid neutral simulations and the kinetic neutral simulations use the same
value for the gas puffs. Due to the different neutral models but also due to the
changed position of the gas puffs, the efficiency of how many of these neutral gas
particles become ionized and drive the general plasma density or stay as neutral gas
particles is likely different. To get a better comparison between the simulations, one
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would need to rescale the gas puffs to match some specific key physical quantities
such as the upstream density or the neutral gas pressure in the divertor. But even
then it is questionable how much better the results can be aligned because ultimately
it is impossible to bring both neutral implementations to yield the same results in all
observables and optimizing one might increase the discrepancy at another place. For
example [185] showed that fluid neutral simulations lead to a particle flux rollover
at lower plasma densities. In our case, it is not necessary to find a gas puff scaling
to improve the one-to-one resemblance because the simulation will be anyway used
in a simulation farming procedure with varying gas puffs. As long as the gas puff
range in this farming procedure is large enough, such that all scenarios of interest
are included, the rescaling can be performed much easier later using the developed
surrogate models (see Chapter 10).

4.4 Cross-field transport
The cross-field transport is not computed self-consistently inside SOLPS-ITER (Sec-
tion 2.5) and needs to be prescribed through effective coefficients. These are usually
chosen by matching the resulting plasma profiles at the outer midplane to experi-
mental measurements. The strength of the cross-field transport can have a strong
impact on the heat flux and particle distribution seen at the divertor targets. While
there are some scaling relations for the SOL width [57], which defines the cross-field
transport, these come with large uncertainties (e.g. in the dependence on the major
radius). It is therefore much more suitable to treat these parameters as unknowns
and changeable input of the surrogate, which requires their variation in the SOLPS-
ITER dataset. In the reference simulation setup plasma drift effects are neglected
but an edge transport barrier is implemented to model H-Mode conditions. This
edge transport barrier is a reduction in the cross-field transport coefficients close
to the separatrix, that achieves higher plasma gradients at the separatrix as seen
in the plasma pedestal in H-Mode discharges [176], [178]. Although operating in
H-Mode is the anticipated scenario for future tokamaks, the implementation of the
edge transport barrier (coefficient inside, width, depth, coefficient outside) increases
the number of free parameters by a factor of 4 (see e.g. [114]) compared to the
simpler ansatz of a fixed coefficient for the whole domain. It is therefore chosen to
take this simpler approach and keep the cross-field transport coefficients constant
in the simulated domain and only vary one parameter for the particle transport of
all ions D⊥ ∈ [0.1, 2.0] m2/s and one parameter for both the electron and ion heat
equations χ⊥ ∈ [0.1, 2.0] m2/s. While this yields plasma profiles inside the closed-
field lines representing an L-Mode discharge, a similar approach was taken in almost
all SOLPS simulations designing the ITER divertor [58], [76].



Chapter 5

Improvements to the simulation
stability

The simulation case developed in the previous section now is completely setup to
be used in simulation farming with varying parameters. In total there are eight pa-
rameters setup for variation: The size and magnetic field strength, the temperature
and the deuterium ion flux at the core boundary, the deuterium and nitrogen gas
puff and the two cross-field transport coefficients. For each of these parameters min-
imum and maximum values were fixed and then 2560 random samples were drawn
from a uniform distribution. This procedure distributes the simulations uniformly
in the eight dimensional parameter space. However, of the 2560 started simulations
a majority crashed within less than 10,000 iterations. Figure 5.1 depicts the depen-
dence of the success rate of simulations against the input parameters. A simulation
crash occurs when the values of atleast one of the state variables diverge to extreme
values, causing SOLPS-ITER to stop the iteration prematurely. Hence a successful
simulation reaches the full 10,000 iterations. If no simulation would diverge Figure
5.1 would depict uniform distributions at 100%. Some level of diverging simulations
is anticipated, as seen in similar studies [141], and due to the random combination
of parameters, some scenarios might correspond to systems of coupled differential
equations that have no solution. But here, most predominantly the number of suc-
cessful simulations decreases with increasing major radius. While for the smallest
size over 80 percent of simulations do not diverge, above a major radius of 8 me-
ters there is almost no simulation that does work (Figure 5.1A). This is surprising
as given the scanned parameter ranges there should be reasonable scenarios also
for tokamaks of this size such that solutions to the system of equations should be
findable. The magnetic field strength, the core temperature or the ion flux at the
core boundary seem to have no strong influence on the success rate of simulations
(Figure 5.1B, C, D). A strong dependence is instead found with the deuterium gas
puff (Figure 5.1E). For low values the success rate is around 30 percent, which drops
between 1023 atoms/s and 1024 atoms/s dramatically and then rises again for higher
gas puff. Similarly for the nitrogen gas puff (Figure 5.1F), an abrupt decline in
successful simulations above 1021 atoms/s is seen. Also the cross-field heat trans-
port coefficient has a small impact on the failure rate of simulations (Figure 5.1H).
Increasing this coefficient increases the number of successful simulations.
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Especially the almost total lack of successful simulations with large major radius
is an intolerable behavior. With a lack of simulations for large tokamak sizes, a
surrogate model would be unable to provide reliable predictions in this range of
the parameter space, drastically lowering its applicability for future tokamaks like
ITER and DEMO, which lie in this size range. Since not all simulations fail but
only the ones with larger sizes, there seems to be some problem with the numerical
setup that is correlated with the machine size. To investigate the nature behind this
behaviour and more importantly to find a fix that allows simulations with increased
size, a series of parameter scans was performed with varying setups and objectives.
In total more than 40 parameter scans were conducted. The following sections only
describe those conducted parameter scans and tests that might be informative for
the scientific community.
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5.1 Timesteps
One of the central numerical parameters is the timestep that is employed in the
pseudo time-stepping routine to run the simulations [186]. While the parameter scan
in Figure 5.1 uses the same timestep as in the original kinetic neutral simulation
10−5s, this parameter scan was repeated with varying timesteps from 5 · 10−7 s to
1·10−4 s (Figure 5.2). Intuitively one would assume that lowering the timestep would
lead to a higher success rate but the results show the opposite. The overall success
rate is increased when going to larger timesteps. But the overall trends of simulation
failures with the major radius, the deuterium and nitrogen gas puff, and also the
anomalous cross-field heat transport still hold for any of the timesteps used. Since
the overall increase in the success rate with larger timesteps is small, the desired
improvement of achieving more simulations with larger sizes is not reached.
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5.2 Initializer

In the previous tests the simulations were restarted from the final state of the ref-
erence kinetic neutral simulation. It is a common procedure to start from such a
pre-converged state such that the plasma state is already close to the final converged
plasma state and will then converge faster. Here parameter scans were conducted
to test the influence of different initial plasma states. The most basic option is to
start from the default initial state, in which the plasma density and temperature is
uniform in the whole 2D fluid simulation domain. The same parameter scan is thus
started from constant densities ([nD, nD+ , nN , nNx+ ] = [1016, 1019, 1012, 1012] m−3)
and temperatures (Te = Ti = 100 eV) in the whole simulation domain. The parallel
velocities and all dependent plasma quantities (fluxes, etc.) are set to zero. As
before the simulations are started for 0.1 s and the results are depicted in Figure
5.3. Starting from this uniform state has drastically improved the overall number
of successful simulations. Although the number of successful simulations with very
low major radius around 1 meter has slightly decreased in comparison to before,
in the rest of the parameter range it is improved. While there is still the depen-
dency that the number of successful simulations decreases with major radius, the
trend is softened such that for any tokamak size the ratio of running simulations
to attempted simulations never falls below 30% (Figure 5.3A). The improvement in
stability with this initial state could be due to either the uniform state truly being
better or the initial densities and temperatures being reduced compared to the pre-
vious start state. To test whether just decreasing the densities and temperatures has
a similar effect, we started from the same pre-run initial state that was used before,
but reduced the densities and temperatures everywhere by a factor of 10. Running
the same parameter scan starting from this condition for 0.1 seconds, we find that
this has an extremely strong effect on the dependence of the simulation failure rate
with the major radius. Doing so there is no more tendency of increasing failure for
larger sizes and for any size the success rate is above 40% (Figure 5.3A). To exclude
the possibility that the lower failure rates are just achieved because it takes longer
too reach the point of divergence due to the lower starting densities, we restarted
both tests with uniform and reduced starting conditions and ran them for 1.0 s of
simulated time. Only this time the densities and temperatures are reduced by a
factor 100 in the reduced case. This longer run time has a dramatic effect on the
success rate of the pre-run state, which is now lowered to less than half of the value
observed in the test before in all parameter ranges (Figure 5.3A). For the uniform
initial state, the longer runtime also decreases the success rate but not to the same
extent. Also it shows a clear pattern that for small tokamak sizes the success rate
remains almost unchanged while for larger sizes it decreases. The dependencies of
the success rate on the simulation parameters are, however, different between the
pre-converged state with reduced temparatures and densities and the uniform state.
The success rate with the pre-run state has no strong dependence on the tokamak
size and the success rate even rises a bit for larger sizes. Instead starting from uni-
form conditions yields a drastic decrease in success rate for larger sizes. Because
the success rate for small sizes is a lot higher, the success rate for the largest sizes
still remains above 10% (Figure 5.3A). Concerning the nitrogen gas puff and core
temperature, both schemes lead to decreasing success rates for higher parameter
values (Figure 5.3C, F). Starting from a uniform distribution the success rate has
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no correlation with the deuterium ion influx (Figure 5.3D), while the success rate
decreases in the pre-run case for core ion influxes above 1023 (Figure 5.3D). Over the
whole parameter space starting from a uniform initial state leads to a success rate of
31% while the pre-run states with reduced properties yield only 21% successful runs.

While the histograms in Figure 5.3 depict the single parameter correlations with
the success rate, it is apparent that not only a single parameter is responsible for
the simulation failure but higher order correlations are relevant. The most predom-
inant effect is seen for combinations of certain tokamak sizes and deuterium gas
puffs. Figure 5.4A depicts how the combination of both parameters affects the suc-
cess rate of the simulations started from the uniform state. It is apparent that the
reduced success rate for larger tokamaks sizes appears only for increased values of
deuterium gas puffs while for lower gas puffs a large major radius leads to running
simulations. When starting with the reduced pre-run setting (Figure 5.4B), the pic-
ture becomes more complicated. Only the simulations of the larger radii and with
low deuterium gas puff seem to run consistently, and smaller tokamak sizes will fail
unless the deuterium gas puff value is increased. Since the simulations were done
in both cases with exactly the same parameters and only the starting conditions
were changed, we can compare one-to-one which of the simulations failed in one
setup and worked in another. This is shown in Figure 5.4C. Overall the majority
of simulations diverged with either of the starting conditions. The largest group of
running simulations runs exclusively with the uniform starting conditions while also
a large fraction works with both starting conditions. The simulations that only run
when started from the pre-run state are almost exclusively located in the range of
major radius above 5 meters and deuterium gas puffs below 1022 atoms/s.

Because the uniform initial state yields the overall highest success rate yet, we
continue with this starting condition, but from the findings here it is apparent that
any choice of the initial state results in diverging simulations that might be suc-
cessful with other starting conditions. To have the highest turnout of non diverging
simulations it is advisable to use a selection of initial states such that simulations
failing with the uniform initial state are restarted using different starting conditions.
Also the analysis has so far only considered whether a simulation diverges or not. It
was not investigated whether the initial conditions have any influence on the final
state that is obtained once the simulations converge to a steady state.
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The increased stability with smaller timesteps in simulations starting from uniform
distributions might be intuitively understandable. Starting with uniform density
and temperature, no spatial gradients exist. A large timestep might lead to a too
rapid development of gradients, that become too large and lead to divergence. While
with smaller timesteps, the gradients can develop more slowly and strong gradients
do not lead to diverging transport so fast. But this is just a hypothesis as no in-depth
analysis into the mechanisms of the divergences is conducted here. Regardless of
the timestep value all tests were run for the same total number of timesteps. There-
fore, the simulations with smaller timesteps were run for shorter physical time. It
could be that starting from the state with uniform spatial distributions the smaller
timesteps only appear more stable because they have not been run long enough to
reach the point of divergence.

Since the increase in success rate with using the uniform initial state (Figure 5.3) is
higher than the effect seen when using larger timesteps (Figure 5.2) and both cannot
be reliably combined together, it is better to stick solely to the uniform initial state.
It appears that starting from this initial state a modification of the timestep for the
fluid neutral equations in comparison to the plasma equations has no added benefit
(Figure 5.6) and can be disregarded.

Even if larger timesteps were compatible with the uniform initializer, there is an
additional deficit observed when going to larger timesteps. All previous tests only
considered the stability of a simulation but the ultimate requirement is that some
converged state is reached. When the timestep is increased between 10−5s and
10−4 s, the simulation converges to the same final plasma properties, but oscilla-
tions are introdcued in some observed quantities. (Figure 5.7A, C, E). Similarly,
increasing the neutral timestep multipliers can increase the amplitude of oscillations
(Figure 5.7B, D, F). So while increasing the timesteps might benefit the stability of
simulations, the added noise should be avoided and might even prolong the runtimes
necessary to achieve convergence.
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5.4 ITER testcase

While starting from an initial state with spatially uniform temperatures and densi-
ties leads to some improvements, still almost all simulations for larger sizes and high
deuterium gas puff diverge (Figure 5.4A). Since none of the tests conducted so far
showed any significant improvement, the question remains whether this behaviour
can be tolerated or not. While the overall success rate of simulations is important
for the efficiency of the data generation process such that the most amount of results
is obtained for the number of started simulations, this is not the ultimate criterion.
More important is that all relevant physical regimes (Section 2.3) can be simulated,
so all are present in the simulation database. If this were not the case, the predic-
tive capabilities of the developed surrogate model would be strongly restricted. To
determine whether the present simulation setup is suitable, it remains to be checked
if all major SOL regimes are obtainable. It can be difficult to distinguish different
regimes in a distributed data set, when all tokamak parameters are randomly varied,
especially since it needs to be verified that the regimes are obtainable for physically
sensible scenarios and not only in rare extreme cases. Therefore to perform this test,
we fix most parameters to a specific scenario and only vary the density controlling
parameters because the change in plasma density is one of the main drivers of regime
transitions (Section 2.3).

Because the problems of excessive simulation failure occurs only for large sizes above
major radius 5m, an ITER-like scenario is chosen here because it falls in this do-
main. The chosen major radius is R = 6.2m, the toroidal magnetic field B = 5.3T
(defined on the magnetic axis), the transport coefficients take the values of the usual
assumptions for ITER SOL simulations D⊥ = 0.3m2/s, χ⊥ = 1.0m2/s [58]. The
boundary condition at the core boundary is changed from a fixed temperature con-
dition to a fixed input power flowing as heat flux into the domain (see Section 2.7).
Here two scenarios for the input power into the domain are chosen: Pin = 100MW
and Pin = 200MW. In both cases Pin is equally distributed among the electron and
ion heat balance equation. Here Pin refers to the power entering the domain mod-
eled by SOLPS-ITER. It includes also the expected power generated by fusion in
the core plasma. Only the deuterium ion inflow at the core and the deuterium and
nitrogen gas puff are varied as before. Although the upper limit for the deuterium
gas puff was reduced to 1024 atoms/s to yield a higher density of points in the tested
section of the parameter space. All simulations are started for 1 s of simulated time.

Figure 5.8 depicts the success rates of this ITER testcase depending on the value of
the three varied parameters. As expected the overall success rate of the simulations
is fairly low and almost vanishes for high deuterium ion influx and high deuterium
gas puff. This behaviour is similar in both the 100MW and 200MW scenario. The
100MW case has a generally higher success rate than the 200MW case for almost
all parameter values. The 200MW case fails almost entirely for nitrogen gas puffs
below 5 · 1020 atoms/s, while the 100MW case has no strong dependence on the
nitrogen gas puff.

To analyse which regimes are obtained, only the successful simulations can be used
because crashing simulations diverge to unreasonable values before being stopped
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5.5 New boundary conditions

The approach followed in the previous sections was to introduce as few changes in the
simulation settings as possible and incorporate those changes necessary to use the
fluid neutral model or to increase the simulation stability. The aim of this approach
was to facilitate a one-to-one correspondence between kinetic and fluid neutral sim-
ulations by consciously selecting and limiting the changes in the simulation setup
such that at a later stage simulations could be repeated with kinetic neutrals turned
on. While the original fluid neutral case does run, the setup apparently becomes
unstable in the more complex SOL regimes for larger tokamak sizes, which makes
the setup unsuitable. Because the tests in the previous sections provided no or only
little improvement of the situation, it is apparent that major changes to the simula-
tion setup are required. Instead of testing individual numerical parameters one after
another, we therefore change to a totally different set of numerical settings. The
only existing study that performed a remotely similar parameter scan using fluid
neutrals in SOLPS-ITER was conducted in [141]. Although this study was only
conducted with ITER specific parameters, included no size scaling and was focused
on comparing the effects of different impurity seeding gases, it is the most promising
choice for a numerical setup for fluid neutrals. The publication [141] in itself does
not provide a full report on the numerical settings used, but thankfully we were
granted access to the archive of the simulations to copy the numerical setup. Table
5.1 provides an overview of the settings that were copied and implemented in the
ITER-like testcase from Section 5.4.

Using these settings, the same parameterscan as in Section 5.4 was conducted.
Figure 5.10 shows the rate of successful simulations depending on the three var-
ied simulation parameters. It is obvious that the overall success rate both in the
100MW as in the 200MW case have improved drastically with an average success
rate of 62% compared to the previous 24% in Section 5.4. Also the correlations be-
tween the success rate and the input parameters have changed compared to Figure
5.8. For both the 100MW as well as the 200MW case, the success rate increases
with increasing deuterium influx (Figure 5.10A, B). The deuterium gas puff has
the strongest influence on the success rate. Using the old settings all simulations
failed above a certain deuterium gas puff value (Figure 5.8B), but now the trend
is opposite and the number of successful simulations even increases with increasing
deuterium gas puff (Figure 5.10B).

Figure 5.11 shows the physical results after one second of simulated time (so not
necessarily converged) similar to Figure 5.9. While in the previous setup there were
hardly any simulation with an upstream electron density above 1019 m−3 (Figure
5.9A), now the majority of simulations has upstream densities in the physically ex-
pected range between 1019 m−3 and 1020 m−3 (Figure 5.10A, B, C). Also there are
no more large gaps but densities are realized in a continuous range from very low
densities to more than 1020 m−3 (Figure 5.10A, B, C). Figure 5.11D again compares
outer target to outer midplane temperatures. Similar as before regimes are obtained
in which no heat mitigation takes place and target temperatures are identical to the
upstream temperatures and other regimes where the whole SOL is cooled down But
the major difference is the existence of a continuous spectrum of simulations with
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Additional changes to the numerics are:
Core timestep is multiplied by factor 1000 (previously 1)

Adiabatic coefficient γ is set to 5/3 (previously 1)
Viscosity of the ion fluids is set to 0 (previously 0.3)

Table 5.1: Summary of all the changes made to the boundary conditions and numerical
parameters between the old settings used in Section 5.4 and the new settings introduced
now. A full list of all boundary conditions used is given in Table 6.1. The definitions of
the relevant conditions can be found in Table 2.1. Acore is the size of the boundary surface
at the core boundary. Dcore is the deuterium fueling rate varied in the parameter scan.
The new boundary conditions are taken from the simulations in [141].







Chapter 6

Final simulation for dataset
generation

The prelimary tests conducted in the preceeding chapters made various changes to
the SOLPS-ITER simulation case. For clarification and as a reference, this chapter
shortly summarizes the final simulation setup and the procedures used to create the
final dataset of SOLPS-ITER simulations. Every analysis and model development
conducted in the following chapters will be based purely on this dataset generated
here (except for the additional ITER simulations used in Chapter 10).

All simulations are conducted on the same numerical grid from the reference JET
simulation characterized in Section 4.2 and with the fluid neutral model introduced
in Section 4.3. The boundary conditions are thus defined on the domain boundaries
as given in Figure 4.2. The settings used for all simulations in the database are
entirely identical except for eight varied parameters. The varied parameters are the
tokamak major radius R, toroidal magnetic field strength B, deuterium gas puff rate
Dpuff , nitrogen gas puff rate Npuff , deuterium core fueling rateDcore, input power Pin,
and the cross-field transport coefficients for the ion densities D⊥ and the anomalous
thermal diffusivity χ⊥. As only these parameters are varied, the analysis in the
following chapters will refer to these eight parameters as the simulation parameters.
The tokamak major radius R and magnetic field strength are defined at the mag-
netic axis. Changes to the tokamak major radius also change the size of the tokamak
cross-section as described in Section 4.1. In practice this mean that proportional to
the changes in the major radius also the horizontal and vertical coordinates of each
grid cell in the computational domain are changed. If the major radius is increased
by a factor x compared to the size in the reference JET simulation, the spatial coor-
dinates of each grid cell will be multiplied by the same factor x. So changing R not
only affects the connection length between the upstream plasma and the divertor
but also the width of the scrape-off layer and private-flux region that are covered
by the simulation. Therefore in simulations with small R, the far-SOL, PFR and
core boundaries of the simulation domain (see Figure 4.2) will be at a shorter dis-
tance to the separatrix than in simulations with larger R. Similarly, changes to the
toroidal magnetic field strength B invoke proportional changes to the poloidal mag-
netic field in every grid cell. So if B is increased by a factor x compared to value in
the reference JET simulation, all components of the magnetic field in each grid cell
are multiplied by the same factor x. The parameters Dpuff , Npuff , Dcore, Pin change
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Table 6.1: The boundary conditions used to generate the final dataset. The definitions
and formula of the different boundary conditions can be found in Section 2.7. The location
of the different boundaries are shown in Figure 4.2. Acore, Afar−SOL are the sizes of the
boundary surfaces at the core and far-SOL simulation boundary. Pin, Dcore, Dpuff and
Npuff are simulation parameters varied in the parameter scan.

the boundary conditions for the plasma simulations. Dpuff and Npuff prescribe an
influx of neutral deuterium and nitrogen atoms at the far-SOL boundary into the
computational domain. Dcore determines the influx of deuterium ions at the core
boundary into the computational domain. Pin determines the energy flow into the
computational domain at the core boundary. This heat flux is evenly distributed
to the electron and ion heat balance equations. For these simulations it is equiv-
alent whether in an experiment this power is generated solely by external heating
or as fusion power. All these boundary fluxes are uniformly distributed across the
surfaces of the respective boundaries. D⊥and χ⊥ are scalar parameters used inside
the solved equations. The parameters are constant in the whole simulation domain
(Section 4.4). The domain boundary in the private-flux region acts as pump for all
particles, with fixed pumping rates. The exact boundary conditions used at each
of the domain boundaries are given in Table 6.1. The definitions and formula as-
sociated with the names of these boundary conditions can be found in Table 2.1 in
Section 2.7.

The simulations contain eight plasma fluids, the deuterium ions (D+) and all ion-
ization stages of nitrogen N+...N7+ and two neutral fluids, atomic deuterium D and
nitrogen N . All simulations are started from an initial state with constant densi-
ties ([nD, nD+ , nN , nNx+ ] = [1016, 1019, 1012, 1012] m−3) and temperatures (Te = Ti =
100 eV) uniform in the whole simulation domain.
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Using these settings two large sets of simulations are generated. The first is meant
to acts as training data for the development of surrogate models and the second
as test set to evaluate the accuracy of the final models. In both sets the eight pa-
rameters for each simulation are varied inside the limits given in Table 6.2. These
parameter ranges are selected because they encompass many presently existing toka-
maks (AUG, JET, ITER) and possible future developments (DEMO) [11], [37]. Also
compact high-field tokamaks like SPARC [38] might be represented in this dataset,
due to the combination of high powers Pin with small sizes. Although the included
magnetic field strengths are slightly less than anticipated for these reactors (12.2T
[38]). But the magnetic topology of such high-field tokamaks might be to different
to the geometry here to allow for meaningful comparisons. The parameter values
for Dpuff , Npuff and Dcore are chosen from a logarithmic scale (base 10) between the
minimum and maximum values while all other parameters are uniformly distributed.
The ranges of the gas puff values are deliberately chosen extra large to ensure that
all regimes can be obtained also with the less known fueling behaviour in fluid neu-
tral simulations (see Section 4.3). For simulations in the training set the parameter
combinations are not chosen randomly inside the defined limits but according to
an eight dimensional Sobol sequence [189]. This low-discrepancy sequence covers
the parameter space more efficiently compared to random numbers or other such
sequences [190]. The sequence has the additional benefit that specific smaller sub-
sets of simulations can be taken from the training set which still cover the whole
parameter space evenly. This feature is used in Section 8.4. For the training set
8192 simulations are started. For the test set 2048 simulations are started but with
parameter values distributed pseudo-randomly in the parameter space according to
a uniform distribution.

The simulations are run for intervals of 1 s simulated time with a timestep of 10−5 s.
At the end of each 1 s period it is checked whether the simulation has either con-
verged to a steady state, shows stable oscillations or has been run for a total of
10 s. If either of the three conditions is met, the simulation is stopped. Simulations
are defined as steady state when the ratio between the maximum and the minimum
outer midplane electron separatrix density ne,omp in the last 0.1 s of the 1 s period
is less than 0.1%. A simulation counts as oscillating if the maximum and minimum
values of the outer midplane separatrix density ne,omp in the first 0.1 s of a 1 s pe-
riod are close to the values in the last 0.1 s of the same period. This closeness is
reached if the values (maximum and minimum) from the start and end of the period
differ by less than 0.5%. These convergence metrics are adapted from [141] and are
less strict than most commonly used. These metrics only determine whether some
form of stationarity of the plasma state is reached and do not consider the residuals
from the implicit equation solver. Strictly speaking it is not guaranteed whether the
simulation results generated by this procedure are actual true solutions to the un-
derlying system of equations. This relaxed approach is, however, necessary because
minimizing the residuals in all simulations would require enormous compute times,
probably necessity additional fine tuning of numerical parameters and might not
even be impossible in some cases due to the simple fluid neutral model that is used.
But for creating a surrogate model it is also not necessary to find a true solution
in every case as long as in most of the simulations the found solutions are close
to the actual result. Therefore, one focus of the analysis in the following chapter
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R B Dpuff Npuff Dcore Pin D⊥ χ⊥

min 1 1 1020 1018 1019 10 0.1 0.1
max 10 10 1024 1023 1024 200 2 2
units m T atoms/s atoms/s atoms/s MW m2/s m2/s
scale lin lin log log log lin lin lin

Table 6.2: Overview of the parameters varied in the final dataset. The datapoints are
distributed either uniformly over a linear scale (lin) or uniformly over a logarithmic scale
(log) between minimum and maximum values.

is to determine whether the results seen in the database are reasonable, follow the
expected trends and are free from overly strong influences invoked by the simulation
procedure.



Chapter 7

Analysis of the simulation dataset

Before the dataset created in Section 6 is used to train surrogate models, it is
paramount to first analyse the data. Just like in any machine learning task, a better
understanding of the dataset itself can help to train better models. However, here
another aspect is more important. Because the surrogate model is trained only on
the simulation data and has no experimental data, the validity of the simulation
data restricts the validity of the trained surrogate model. Therefore, it is vital to
check whether the procedure described in Section 6 provides a useful dataset, which
restrictions apply, which physical phenomena are seen and what kind of correlations
exist. The reduced fluid neutral model and the simplified convergence metrics which
are used, might reduce the validity of the results. Only by analysis of the data, it
can be identified whether some quirks are introduced by the surrogate model it-
self or already present in the underlying simulations. As a third motivation for the
analysis of the dataset, the dataset in itself might provide valueable physical insights.

Section 7.1 analyses the correlation between the varied simulation input parameters
and the statistics of the stopping conditions by which the simulations are halted.
Section 7.2 looks into the oscillations in the simulations and how they need to be
treated in the surrogate model. Section 7.3 describes investigates the influence the
selection of the maximum simulation runtime has on the results and what choices
are suitable for efficient data generation. Section 7.4 checks which physical regimes
are present in the dataset and finally Section 7.5 looks into the statistics and origin
of a temperature rise in the PFR seen in some simulations.
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7.1 Statistics of the stopping conditions

The efforts in the previous sections are centered around finding a simulation setup
that yields successful simulations across the whole parameter space. The first step
is, therefore, to confirm whether this is the case and whether there are some sys-
tematics behind the occurances of the different convergence metrics. The analysis
in this section is conducted solely on the simulations performed as training data,
but the statistics in the test data should be identical.

Of the 8192 started training simulations, 2436 diverged, while the other 70.2%
reached one of the three stopping conditions. Of these 5756 successful simulations,
2794 achieved the steady state condition, 2514 were stopped because of stable oscil-
lations and 448 reached the maximum runtime of 10 s (in the later called max. time).

Figure 7.1 depicts how the occurrence of these different stopping conditions de-
pends on the simulation parameters. It is clear that the new boundary conditions
(Section 5.5) drastically improved the success rate of the simulations, as compared
to Figure 5.1. Especially for none of the eight varied simulation parameters, a range
exists where all simulations diverge. For almost all parameters and all ranges, the
number of successful simulations (counting all three stopping conditions together)
is higher than the number of diverging simulations. The number of started simula-
tions is roughly uniform across all ranges of all parameters. Changes in the absolute
number of diverging simulations directly correspond to the failure rate. If a param-
eter has no influence on which stopping condition is reached, their rate should be
uniform across the whole parameter range. This is the case for the toroidal magnetic
field strength (Figure 7.1B). The strongest influences on the failure rate stem from
the major radius (Figure 7.1A), the input power (Figure 7.1C), the deuterium ion
influx (Figure 7.1D) and the heat transport coefficient (Figure 7.1H). The higher
failure rates for small tokamaks and large input powers seem plausible especially
when these occur in combination. In these situations the input powers might be
too large to be dissipated in the smaller tokamak volumes (volume scales with R3),
which results in diverging temperatures. Also the higher failure rate at low χ⊥ can
be an issue in simulations because then any cross-field transport can only occur
when exceedingly large gradients are present. That an increase in the simulation
failure rate is only seen for small χ⊥ and not D⊥, could partly stem from the tested
ranges. The heat transport coefficient usually has higher values than the density
transport coefficient. E.g. for ITER the default assumption is D⊥ = 0.3m2/s and
χ⊥ = 1.0m2/s. The minimum values tested here 0.1m2/s constitute a factor 10
reduction of heat transport and only a factor 3 reduction of particle transport Test-
ing even smaller values might also show a similar increase in the failure rate when
similarly strong relative decreases of D⊥ are reached. However, the increase in fail-
ure rate for χ⊥ starts already at high values around 1m2/s (Figure 7.1H), while the
failure rate shows almost no dependence on D⊥ (Figure 7.1G). Therefore, it is more
likely that the heat cross-field transport has a generally higher influence on simula-
tion divergence. The simulation failure rate also decreases with increasing deuterium
ion influx (Figure 7.1D) and deuterium gas puff (Figure 7.1E). For the ion input this
effect persists across the whole parameter range, while for deuterium gas puffs below
1022 atoms/s the failure rate is almost constant. The rate of simulations reaching
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the maximum simulation time is almost constant across all parameters except for
the deuterium and nitrogen gas puffs. For deuterium gas puffs above 1023 atoms/s,
the number of these simulations is slightly increased (Figure 7.1E). For nitrogen gas
puffs above 1021 atoms/s, the number of max. time simulations increases continu-
ously with rising gas puff and shows a spike at the highest gas puff values (Figure
7.1F). Concerning the number of simulations converging to a steady state or oscilla-
tions, two types of patterns are seen. If the parameter dependence of both is similar
and inverse to the failure rate, then the total number of converging simulations is
simply increased because less diverge. This is the case for the input power (Fig-
ure 7.1C) and the heat transport coefficient (Figure 7.1H). In both histograms the
simulations also split almost evenly into steady state and oscillatory cases, with a
slightly higher number of steady state cases. In other cases (Figure 7.1A, D, E, F)
the occurance of steady state and oscillatory simulations are inverse to one another.
Dcore, Dpuff and Npuff all have in common that for high values of these parameters
the number of simulations reaching steady state decreases significantly while the
number of simulations showing oscillations increases. For Npuff this pattern is al-
most across the whole parameter range (Figure 7.1F) while for Dcore and Dpuff this
pattern only starts around 1023 atoms/s (Figure 7.1D, E). Interestingly, the number
of steady state simulations also decreases for ion influx below 1020 atoms/s, which is
correlated with the increasing failure rate. But in that range the increasing failure
rate reduces only the steady state simulations, and the number of simulations in
both other groups remains stable (Figure 7.1D).

Figure 7.2 depicts the dependence of the obtained stopping conditions based on
pairwise combinations of simulation parameters. This confirms the expectation that
a higher diverging rate of simulations occurs for a combination of small tokamak
size and large input power (Figure 7.2B) although the trend is only small. More
pronounced is the increase of the failure rate for high input power and low Dpuff

(Figure 7.2F) and for a combination of low Dpuff and Dcore (Figure 7.2N). Other-
wise Figure 7.2 shows predominantly the single parameter influences already seen in
Figure 7.1 such as the increase of simulations ending in stable oscillations for high
deuterium gas puff values (Figure 7.2D, E, F).

In conclusion: The success rate of the simulations in the database is much higher
than in the previous parameter scans in Sections 5.1-5.4. Additionally there is no
part in the input parameter space that leads exclusively to divergence or only a sin-
gular convergence metric appearing. Nevertheless, the probability for a simulation
to diverge or to meet a specific convergence metric depends on the input parame-
ters of the simulations. Some of the correlations, which are found, seem physically
plausible. Also no hints were found that one of the convergence metrics is solely
associated with unrealistic scenarios.
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7.2 Oscillations

The previous section has shown that a significant part of the simulations is stopped
because they show oscillations or run for 10s without reaching convergence. This
section should provide a basic overview of how these runs look and how they should
be used in the process of developing a surrogate model.

Figure 7.3 shows the timetraces of the upstream electron density in the last 1 s
before the simulations were stopped by one of the three stopping conditions. The
examples are chosen to provide an overview of the different situations that are com-
monly appearing. It is apparent that the used convergence metrics provide not a
100% clear separation of the different situations. Some simulations reaching steady
state still show oscillations, but with a small enough amplitude that these still fall
inside the steady state metric (as in Figure 7.3D). Or because the metric to detect
oscillations only compares the start and end of 1 s intervals, misclassifications can
appear, where oscillations are not detected when the frequency of oscillations is low
(≈ 1Hz) as is the case in Figure 7.3L and Figure 7.3C. For data storage efficiency
only the 1 s time traces are stored. For cases like Figure 7.3H it is therefore not
possible to analyse whether the classification was correct in finding a very slow os-
cillation or whether actually some transient behaviour is ongoing. The examples in
Figure 7.3B, E, H, K demonstrate drastically differing oscillation frequencies and
some cases whow multiple intertwined oscillations. Some oscillations, as in Figure
7.3E, K, contain small transients. The oscillations in some simulations are clear
periodic patterns (Figure 7.3B), but other simulations show only noisy indistin-
guishable patterns (Figure 7.3E). The simulations stopped after 10 s runtime are
even more diverse (Figure 7.3C, F, I, L). The cases in Figure 7.3F, I might still
reach a steady state or stable oscillation with longer runtimes. Figure 7.3L shows
a very slow oscillation and in Figure 7.3C it is unclear whether it is a slow oscilla-
tion or transient behaviour. The example in Figure 7.3C hints at another type of
possible misclassifications, which is not seen in these examples. For very slow oscil-
lations, it is possible that the phase of constant upstream density coincides with the
last 0.1 s of the simulation run, which would be classified as steady state convergence.

Overall it is clear that the choice in the classification metrics is always a trade-off
between catching all cases and misclassifications. Here the detection of oscillations
was performed purely based on the electron density at the outer midplane separa-
trix as in [141], [191]. This is chosen because the upstream density is a significant
driver for regime transitions (see Section 2.3). Other metrics might consider differ-
ent quantities and locations or macroscopic measurements such as the total particle
content in the simulation domain.

With the settings used in SOLPS-ITER in this thesis, the time traces are not nec-
essarily some physically valid time-dependent behaviour but the goal of the simula-
tions is to obtain steady-state plasma properties corresponding to the given input
variables. Regarding the simulations, which do not reach a steady state, the most
critical question is: Which values should be taken as the final results of these sim-
ulations and what kind of errors or uncertainties are introduced because of these
dynamics. The most critical error would be if simulations are stuck in local min-





82 CHAPTER 7. ANALYSIS OF THE SIMULATION DATASET

ima for numerical reasons and do not achieve results that are close to the actual
steady state output. But it is unknown if this is the case, and it can not be easily
tested. Also the same can happen in principle also for the steady-state cases due
to the simple convergence metric. Figure 5.7 in Section 5.3 has shown that some
oscillations occur when the timestep is too large. Because the simulation database
covers different physical regimes, it is likely that the fixed timestep of 10−5 is too
large in some situations while it is sufficient in others. Nevertheless, oscillations in
the SOL with stationary boundary conditions have been seen both in experiments
and simulations, and physical mechanisms behind these have been derived [192],
[193], [194], [195]. Especially [191] analyses the oscillations in similar fluid neu-
tral simulations as used here and observes a cycle between pumping and radiation.
Without an extensive designated study into the origin of the oscillations, it can not
be determined which fraction of the oscillations in the database stems from numer-
ical artifacts or valid physical mechanisms. But Figure 5.7 shows that even in the
case where the oscillations are purely a numerical phenomena, the solutions oscil-
late closely around the true solution, which would have been found with different
settings. Therefore, we estimate that also the results of the oscillating simulations
are representative results for the simulation input parameters. To reduce oscillating
cases to a representative steady-state value, a straight forward approach would be
to take the mean value averaged over some time interval. But due to the drastically
differing oscillation frequencies, it is questionable what time interval is adequate.
Also calculating a time-average comes with practical difficulties. Not for all state
variables a time-dependent output is implemented in SOLPS-ITER and doing so
would require large hard drive space. For example, saving all 22 state variables on
the 104x50 grid every 10 timesteps for a time interval of 0.1s, results to 8.5 GiB
for each single simulation. For all training and test simulations this would result to
more than 85 TiB of storage just for these minimum quantities. It is much simpler
if the final values at the last timestep of each simulation are taken as proxy for the
simulation result.

Since large parts of the later analysis are concerned with the electron tempera-
ture at the outer divertor target, this quantity is used to assess the impact of the
variability in the oscillatory cases. To do so, the electron temperature at the outer
target is recorded every 10 timesteps for the last 0.1 s of simulation time. Then the
mean µTe,ot and standard deviation σTe,ot over time in each grid cell at the outer tar-
get are calculated. The ”error” when taking the final values Te,ot instead of the time
average µTe,ot can be quantified by calculating the median absolute error between the
two. This results to 0.003 eV for the oscillatory cases, 0.003 eV for the simulations
reaching the maximum simulation time and 0.006 eV for the cases converged to a
steady state. Compared to the variations in temperatures across several scales seen
in the simulation database (see Section 7.4), this difference between the final and the
time averaged value is minimal. Figure A.1 shows a graphical comparison between
the final and time averaged temperature profiles at the outer target. It is apparent
that in the majority of cases the variability due to the oscillations is negligible and
both the time averaged and the final plasma values provide similar plasma profiles.
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values experienced in the last timestep of each simulation. The level of noise this
introduces in the training data should impact the developed surrogate models only
slightly, so neither the oscillatory nor the max. time simulations are removed from
the dataset.
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7.3 Simulation runtime

Similar as in [141], we use a maximum time for which the simulations are run un-
til they are forcefully stopped. If the simulations are not stopped earlier because
they conform to either the convergence metric detecting steady states or stable os-
cillations, they are stopped at this maximum time regardless of any metric. Here
10 seconds are chosen as the maximum time span while [141] chose a much larger
time frame of 100 seconds. This maximum simulation time span is a free parameter
which needs to be selected by the model developer and has the potential to impose
strong influences on the dataset. Generally two questions arise around this issue:
What is the optimal value for the maximum simulation timespan and how should
the simulations be treated that exceed it? While it is beyond the possible scope
here to find general answers to these questions, this section discusses some of the
thoughts around this choice and analyses the present dataset to determine whether
the choices made here are reasonable.

Regarding the optimal choice of the maximum simulation time two aspects are in
conflict. If the simulations are stopped too early, many simulations will be stopped
while they still show some transient time evolution. The observed results in those
simulations would differ from the steady state behaviour and will be strongly in-
fluenced by the exact numerical settings and initial state of the simulations. This
would introduce systematic influences in the surrogate models trained with these
simulations and reduce their physical accuracy. But if simulations are simulated for
longer maximum time spans, this make the data generation process less efficient as
the efficiency is not only determined by the number of simulations needed to train
a model but also the compute time required to get each simulation result.

Increasing the maximum simulation time has only an effect on simulations that
are still in a transient phase. Figure 7.3 shows that several of the max. time cases
exhibit oscillations that are not captured in the oscillation metric. The higher the
maximum simulation time, the more likely it is that significant parts of the non
converged simulations exhibit uncaptured oscillations rather than very slow tran-
sients. Relaxing the metric which detects stable oscillations would likely reduce the
number of max. time simulations in favor of detecting oscillations but this would
also increase the amount of wrongfully classified and therefore prematurely stopped
simulations. Determining the best trade off between capturing all oscillations and
as few other cases as possible will require a designated study into oscillation metrics.

Figure 7.5A depicts the time it took until the simulations in the database were
stopped depending on the different condition that caused the simulation to stop.
The oscillations occur only in simulations stopped after 2 seconds because the de-
sign of the oscillation metric does not detect oscillations in the first 1 second segment.
The number of simulations which are stopped decreases continuously with increas-
ing simulation time, and only at 10 seconds it is increased drastically due to the
simulations that are forcefully stopped. Also after 10 seconds of simulated time,
some simulations still reach either of the two convergence metrics but the fraction is
a lot smaller compared to the simulations that were forcefully stopped. So increas-
ing the maximum allowed time beyond 10 s will increase the number of simulations
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imum ten second runtime. Excluding these simulations would exclude the majority
of the cold core cases and we expect the added information of these simulations to
outweigh the errors they might introduce due too lack of convergence. However, a
more thorough investigation, in particular in cases where more strict convergence
metrics are used, might conclude that another strategy is superior.
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7.4 Plasma regimes

The validity of the developed surrogate models is restricted by the validity of the
underlying simulations. Due to the fluid neutral model, the results of the simula-
tions will be less accurate than in higher fidelity simulations (Section 4.3). The goal
of this section is to determine which of the different physical regimes and effects are
covered by the developed database.

Because in the simulation database multiple parameters are varied at once, it is
much more difficult to detect some features used for classifying the different divertor
regimes and especially detachment (e.g. rollover) than compared to a density scan
of a single tokamak scenario. Because the different SOL regimes are fundamentally
linked to the temperature gradients present (see Section 2.3), we categorize the simu-
lations solely by comparing the electron temperature in the first grid cell outside the
separatrix at the outer midplane against the electron temperature in the first grid cell
next to the separatrix at the outer divertor target (Figure 7.7A). This categorization
has the added benefit that the regimes align with the absolute temperature scales.
In 27% of the training simulations (Table 7.1) these temperatures differ by less than
20%, which suggests that these are in a sheath-limited regime (see Section 2.3). In
this case the only meaningful temperature gradient occurs in the sheath, which is
not modeled in these simulations (only as a boundary condition). Simulations with
larger temperature gradient and a electron temperature directly outside of the outer
target separatrix Te,ot above 5 eV are called ”attached” in the following while similar
simulations with a Te,ot < 5 eV are called ”detached”. By using such a broad distinc-
tion, not all cases labeled as detached will show all signs associated with detachment
but some simulations with Te,ot < 1 eV maintain upstream temperatures Te,omp of
around 100 eV (Figure 7.7A) demonstrating that significant heat mitigation takes
place and volume recombination is a relevant effect. With this distinction 38% of
the training simulations are attached and 20% are detached (Table 7.1). Although
these low detached target temperatures are present, it should be considered that
the simulations do not contain any molecular effects, which become highly relevant
for the particle and power balance at these temperature scales. Regardless of the
temperature gradients and target conditions all simulations with an outer midplane
separatrix temperature below 10 eV are categorized into the ”cold core” category.
This concerns 27% of the training simulations (Table 7.1). Figures 7.7B, C depict
the temperature statistics in the different regimes. For the sheath-limited cases the
temperature distributions are almost entirely identical at the outer midplane and
outer target. The detached and attached cases have very sharply peaked distribu-
tions for Te,omp with maximums at 123 eV and 179 eV, while the distributions at
the target are much more diverse. This small variation in upstream temperatures
with larger variation at the target is characteristic for the SOL both in experiments
and simulations (see e.g. [178], [196]). The developed surrogate models will have to
deal both with the different statistics at different domain locations as well as with
the overall large range of temperatures present, spanning several orders of magni-
tude. The test set to evaluate the developed models is created in similar fashion
as the training simulations and therefore follows similar statistics (not shown here).

Radiation plays an important role for the power balance as it is the main volu-
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appearing. Also noticeable is that for any level of nitrogen gas puff the radiation
occurring in the detached simulations is always higher than in the attached cases.
This also shows as a shift of the distribution of detached cases against the attached
cases in Figure 7.8B. The attached and detached scenarios for low nitrogen gas puff
contain high deuterium throughput (Figure 7.8D). Deuterium gas puff values larger
than 1023 atoms/s introduce some radiation, such that no sheath-limited simulations
are appearing. Yet even for the maximum gas puff values radiation levels below 20%
are observed. This depicts clearly that the simulations require the introduced nitro-
gen gas for significant enhancement of the radiation. In the cold core regime, the
power crossing the separatrix from the core plasma into the SOL is strongly dimin-
ished, due to the high amount of radiation in the core. This situation resembles an
x-point radiator (XPR) regime, which contains strong radiation inside the confined
plasma [197]. But unlike the cold core cases here, in XPR discharges the tempera-
ture at the outer midplane usually stays high and decreases on the closed field lines
only close to the x-point [198]. Obtaining such a clear spatial distribution using
the simple fluid neutral model is likely not possible. Therefore, it is questionable
whether the cold core simulations could be interpreted as XPR scenarios.

Figure 7.9 depicts the dependence of various quantities at the outer and inner di-
vertor target against the electron density at the outer midplane separatrix. In the
sheath-limited regime, the electron density at both targets is linearly correlated
with the upstream density although the density at the targets is lower (Figure 7.9A,
B). For low upstream densities only the sheath-limited regime is possible. In these
cases the densities at both targets are identical. The sheath-limited cases extend
to upstream densities of less than 1015 m−3. The attached and detached regimes
exist only for upstream densities higher than 1018 m−3. Here the plasma density
at both targets is increased and can be up to two orders of magnitude larger than
the upstream density. Most simulations in these regimes have upstream densities
between 1019 m−3 and 1021 m−3. At the outer target the detached cases tend to
have higher target densities than the attached cases (Figure 7.9A). At the inner
target both attached and detached cases have similar target densities (Figure 7.9B).
This is likely because the classification into detached and attached is done purely
based on the temperature gradients towards the outer target. For standard vertical
target configurations, the inner target usually has lower temperatures, so possibly
all attached cases show already signs of detachment at the inner target. Another
difference between the targets is that at the outer target the densities increase con-
tinuously from the sheath-limited cases while at the inner target the target density
jumps from one regime to the other with a visible gap, in which only few simulations
exist (Figure 7.9B). The outer target density in the detached simulations maintains
a positive correlation with the upstream density while for the inner target this corre-
lation is less clear. Going from the attached to the detached cases, no clear rollover
of the electron density can be observed at either of the targets although at the inner
target the electron densities are slightly lower in many detached cases than in the
attached scenarios (Figure 7.9A, B). The cold core cases show an entirely different
behaviour. While some show similar density relations as in the sheath-limited cases,
the majority lies around upstream densities of 1020 m−3 with exceptionally low tar-
get densities around 1015 m−3.







94 CHAPTER 7. ANALYSIS OF THE SIMULATION DATASET

As expected, the temperatures at the targets generally decrease with increasing
upstream density. This is seen as a linear trend in the sheath-limited cases, which
becomes non-linear for the attached and detached conditions (Figure 7.9C, D). For
the lowest densities, the target temperatures in the sheath-limited regimes reach val-
ues beyond 105 eV. This is only possible because the simulations do not consider the
erosion of the divertor targets self-consistently. In reality such high target tempera-
tures likely cause extreme levels of sputtering, and consequently the eroded divertor
material will enter the plasma and cool it drastically. It is highly unlikely that
under such conditions a stable plasma can be maintained. While these simulations
constitute valid solutions to the solved plasma equations, they are unphysical in the
larger picture. In the sheath-limited regime the temperatures at outer and inner
target are fairly similar (Figure 7.9C, D). Upon entering the attached regime, the
decrease in target temperatures at the outer target is continuous from the sheath-
limited regime as opposed to the inner target that exhibits a discrete jump of the
temperatures. This leads to the majority of attached cases having an inner target
temperature of less than 10 eV and only few cases with temperatures between 10 eV
and 100 eV. This jump in temperatures is consistent with the jump in densities seen
at the inner target (Figure 7.9B) but while the inner target detaches earlier this does
not explain the apparent lack of target temperatures in the 10 − 100 eV range. At
the outer target the separation between attached and detached regimes is by design
of the classification metric. The attached cases have slightly higher temperatures at
the inner target than the detached cases but both groups still show a large overlap.
The upstream densities at which regime transitions occur depend on many of the
parameters varied in the simulation database [71], [74], [199]. Therefore, it is clear
that in the density ranges where such transitions are expected (1019 − 1020 m−3) a
large variety of outer target temperatures appears because with similar upstream
density different simulations will be in different regimes (Figure 7.9C). The cold core
simulations generally have lower target temperatures than all other regimes (Figure
7.9C, D).

One usual diagnostic to determine detachment is a rollover in the hydrogen ion
flux towards the target, which can be measured in experiments using Langmuir
probes [105]. For a rollover the particle flux at the target would first increase with
increasing density and then start decreasing. This is not clearly visible across the
dataset here (Figure 7.9E, F). Here both detached and attached cases lie at similar
target fluxes, which are higher than in the sheath-limited simulations. Only the
cold core cases show a strong decrease in the deuterium ion flux to both targets
with high upstream densities. As mentioned earlier, these simulations might have
slight resemblance to an x-point radiator regime, which is distorted by the simple
fluid neutral model. Since the overall physical validity (or relevance) of these sim-
ulations is questionable, it is also questionable whether the reduction in target ion
flux should be considered a valid sign of detachment. Nevertheless, a particle flux
rollover is physically achievable also with high upstream temperatures. The fact
that this is not clearly seen in this analysis should not be taken as sign that it is
not included in the physics model of these simulations. The particle flux depends
on multiple parameters beside the upstream density and the deuterium ion fluxes to
the targets in attached and detached simulations stretch across almost three orders
of magnitude. Within this group of simulations there is plenty of room for a density
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these are not exactly half of the upstream density as predicted but rather a quarter
ne,ot =

1
4
ne,omp (Figure 7.10A). In the conduction-limited regime the two-point model

predicts a relation nt ∝ n3
u with additional modulating factors such as the connec-

tion length, which are also varied in this dataset. Instead of performing one-to-one
comparisons, Figure 7.10A depicts the nt ∝ n3

u trend scaled such that it matches the
target densities of the sheath-limited regime at ne,omp = 5 · 1018 m−3. It is clear that
at the onset of the attached regime, this trend is roughly followed (Figure 7.10A).
The highest density cases from both the attached and detached regimes deviate from
this scaling towards lower target densities, which is a sign that stronger volume losses
occur. For the target temperature in the conduction-limited regime, the two-point
model predicts a dependence Tt ∝ n−2

u . This relation is shown by the parallel lines
in Figure 7.10B. It is apparent that the scaling roughly matches the relation seen
for the attached simulations. The detached simulations deviate from this trend and
exhibit lower target temperatures, indicating that in these simulations additional
SOL losses become significant. From this analysis two thing can be concluded: The
simulation database includes effects that go beyond the capabilities of the basic two
point model, and the regime classification roughly matches the regime distinction
in the two-point model. For a more fine tuned comparison the simulation results
could be brought into ”2PM Formatting” [103], which allows comparison with the
analytical expressions (Equations 2.20,2.21,2.22) to identify the momentum fmom
and power fpow loss factors along the magnetic field lines.

As a next step it is investigated how the machine parameters influence the SOL
regimes. Again in this analysis one should be aware of the survivorship bias. Only
the trends in the non diverging simulations can be observed, therefore the findings
might change a bit if the numerical setup causes other sets of simulations to suc-
ceed. Also only trends different between the regimes are relevant as trends seen in all
regimes appear by the changes in the overall success rate of the simulations (see Sec-
tion 7.1). The dependence of the regimes on each simulation parameter individually
is visualized as histograms in Figure 7.11. The strength of the parameters influence
varies drastically across the different parameters. As expected the parameter with
the least influence is the toroidal magnetic field strength. The distribution of all
four regimes is almost uniform between minimum and maximum values of the mag-
netic field strength (Figure 7.11B). Another relatively weak influence stems from the
cross-field transport coefficients. The density transport coefficient D⊥ has almost
no influence besides a reduction of the number of sheath-limited cases for transport
coefficients between 0.4−1.2m2/s (Figure 7.11G). The heat transport coefficient has
a slightly stronger effect (Figure 7.11H). The amount of attached and sheath-limited
cases decreases for coefficients below 0.5m2/s but remains stable above. The number
of detached cases continuously increases with increasing this cross-field transport,
which matches the expectation because stronger cross-field transport broadens the
heat and temperature distribution in the SOL. The influence of the variations in
the major radius is slightly stronger (Figure 7.11A). Increasing major radius size,
the number of attached and sheath-limited simulations rises. Below four meters
the number of cold cores cases seems to rise while the number of detached cases
decreases. This does not have to be an effect of the major radius alone but because
the range of tested input powers is quite high for such small devices, the possible
heat dissipation might be not enough to reach detachment. But this explanation
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is in contradict to the increasing number of cold core cases for sizes below 4m as
these would also have to decrease for the same reason. A possible explanation for
this increase in cold core cases is that the distance between domain boundary at
which the gas puff is inserted and the core plasma is smaller in smaller devices (see
Section 4.1) and since the neutral transport is not restricted by the magnetic field it
might be easier for neutrals to enter and cool the confined plasma. For all regimes
except the attached regime, the number of simulations decreases with increasing
input power while in contrast the number of attached cases increases with a jump
at 80MW (Figure 7.11C). Interestingly the sheath-limited cases and the cold core
cases which are opposite ends of the temperature spectrum show similar dependence
on the input power. For the cold core cases its absolutely clear that smaller input
powers will lead to more cases as the input power might be too little compared to
the size or the cooling effects. For the sheath-limited cases the explanation is most
likely linked to the overall success rate of the simulations, which shows a similar
trend (Figure 7.1C). If increasing input power makes simulations with low density
less stable, this would result in only the attached and detached cases with higher
densities surviving. The number of attached cases is then rising, since with other-
wise equal heat mitigation an increase in the input power will lead to higher target
temperatures. By far the strongest influence on the regimes stems from the three
density controlling parameters Dcore, Dpuff , and Npuff . For all three parameters an
increase in particle influx leads to a decrease in the number of sheath-limited cases
and an increase in all other three regimes (Figure 7.11D, E, F). Interestingly the
breakdown of the sheath-limited cases is rather abrupt at fixed threshold values and
not a continuous decrease. This breakdown appears at similar values for both the
ion influx at the core as well as the deuterium gas puff while for the nitrogen gas
puff it is an order of magnitude lower. However, contrary to intuition the number of
sheath-limited cases is higher for ion core influx between 1019−1020 atoms/s than for
lower values (Figure 7.11D). For all three parameters an increase of the input fluxes
first increases the number of attached cases, which then decreases for higher fluxes
while the number of detached and cold core cases rise. The nitrogen gas puff values
has a much stronger influence on the appearance of cold core cases than either of
the deuterium influxes. The most cold core cases appear for nitrogen gas puff values
above 1022 atoms/s (Figure 7.11F). For the two deuterium controlling parameters
the number of detached simulations is always higher or similar than the number
of cold cases throughout the whole parameter range (Figure 7.11D, E). While for
increasing nitrogen gas puff the number of detached simulations also increases this
increase is far less pronounced than for the cold core cases (Figure 7.11F). Therefore,
the ratio of detached to cold core cases is in favor of the detached simulations for
low nitrogen gas puff, while beyond 1022 atoms/s this relation reverses.

Upon examining the second-order correlations (Figure 7.12), there are almost no
exclusive regions where only a single regime is solely present. One exemption is the
occurance of cold core cases. In the top left corner of Figure 7.12I, a region exclu-
sively occupied by cold core cases emerges for large nitrogen gas puff and low input
power. However, a significant number of cold core cases are distributed throughout
the entire domain for other values of input power and nitrogen gas puff. While
simulations of this regime appear anywhere in the parameter space, the majority
of such cases occurs at high nitrogen gas puff values (Figure 7.12I). Similar as in
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Figure 7.11 also here for all three density-controlling parameters (Dcore, Dpuff , Npuff)
threshold values can be seen below which simulations are mostly in sheath-limited
regimes and above it almost no sheath-limited cases exist (e.g. Figure 7.12J, N, O).
Further increase of any of the three parameters then leads to a shift from a majority
of attached cases to more predominantly detached situations. Both deuterium ion
influx as well as deuterium gas puff require the same value of 7 · 1022 atoms/s for
the transition out of the sheath-limited regime. Decreasing the core fueling below
1020 atoms/s will cause more simulation crashes and therefore a lower density of suc-
cessful simulations if neither of the gas puffs is high enough to lift the density out
of the sheath-limited regime (Figure 7.12N, O). In the cases where this is achieved
solely through a nitrogen gas puff, it is likely that the plasma will primarily consist
of nitrogen instead of deuterium ions.

The most important finding of this analysis is that the simulation setup produces
results in all plasma regimes. Specifically it is possible to achieve each regime for
all tokamak sizes, input powers and transport coefficients. The trends seen in these
regimes generally follow the expectations. For some simulations (e.g cold core or
very high temperature sheath-limited) it is questionable whether these provide phys-
ically reasonable results if factors beyond the solved fluid equations are taken into
account. Nevertheless, a surrogate model might still benefit from such cases as it
can learn which regions of the parameter space lead to unreasonable results. But
the majority of the simulations provide results in both a reasonable and relevant
regimes. So overall the database seems suitable for developing surrogate models.
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7.5 PFR temperature spike

The statistical analysis in the previous section has come to the conclusion that the
simulation database shows overall reasonable trends and is thus usable for surrogate
development. However, upon closer inspection of simulations with low target tem-
peratures it was found that some of these simulations exhibit temperature profiles
at the outer target with an odd shape. Specifically the temperature exhibits a peak
at the lower end of the outer target which is inside the PFR (see e.g. Figure 8.8).
Similar profile shapes are not usually seen whether in simulations or in experiment.
Because the PFR is magnetically isolated, the temperatures in the PFR are usu-
ally lower than in the SOL. Therefore, the question arises whether this is an actual
physically sound effect or an artifact of the simulation procedure. To find the cause
of this behaviour, it is necessary to determine how many cases are affected and to
find what these have in common or what distinguishes them from other simulations.

To determine whether such a peak is present the ratio between the electron tempera-
ture at the bottom corner in the PFR of the outer target TPFR

e,ot and the temperature
at the separatrix at the outer target T sep

e,ot can be calculated. Figure 7.13 depicts this
ratio against the temperature at the outer target separatrix T sep

e,ot. Disregarding the
cold core cases, where the relations are all over the place, a clear trend is visible.
With increasing temperature at the separatrix, the temperature at the PFR becomes
an increasingly smaller fraction. For target temperatures between 1− 30 eV, a split
emerges into two distinct groups. The first branch, below the separation line in Fig-
ure 7.13, follows the trend which is already present for higher target temperatures.
This trend leads to only slight temperature increases in the PFR such that these
reach 2 − 3 eV for a separatrix temperature of 1 eV. In the second branch, above
the separation line in Figure 7.13, the simulations with separatrix temperatures of
1 eV have temperatures at the PFR boundary of the target between 10 − 200 eV.
While the magnitude of this relative temperature increase is greatest for the lowest
temperature detached cases, the same mechanisms are also present at much higher
temperatures in the attached regime in this second branch of simulations.

To investigate the differences between the two branches of simulations, all cases
in the detached regime are sorted into either of two groups depending on which side
of the separating line they are one in Figure 7.13. The group ”below” exhibits no or
only small PFR temperature peak, while the group ”above” exhibits the large peak.
In a similar analysis as before, the dependence of the occurrence of these two groups
on the simulation input parameters is analysed. Here it is only important how these
two groups differ because common dependencies will match the trends for overall
detached cases in Figure 7.11. Overall the number of detached cases with this tem-
perature peak is higher (715 in total) than the number of cases without it (450 in
total). Similar as before, the magnetic field strength has no influence on the separa-
tion of these branches (Figure 7.14B) For all other parameters clear influences can
be seen. Simulations from the group ”below” tend to have larger tokamak sizes while
smaller sizes are more likely to be in the ”above” group (Figure 7.14A). Because the
computational grids of the tokamaks are scaled proportional to the major radius,
a smaller size also reduces the absolute distance between the domain boundary in
the PFR and the separatrix. This means in smaller tokamaks the PFR boundary
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conditions are closer to the separatrix, which could be a reason for the tempera-
ture spike. Concerning the input power both groups show qualitatively the same
behaviour but the distribution of the ”above” cases is shifted to slightly higher pow-
ers (Figure 7.14C). Also the three particle input parameters show clearly different
statistics between these two groups (Figure 7.14D, E, F). At high deuterium input
far more cases belong to the ”above” group while for high nitrogen gas puff most
simulations are in the ”below” group. Cases with a temperature peak in the PFR
also tend to have both higher particle and energy cross-field transport coefficients
(Figure 7.14G, H). However, not all of these correlations must stem from a causal
relationship but instead can stem simply from a correlation between the input pa-
rameters in detached simulations. Nevertheless, it seems that the deciding factor for
the development of this PFR temperature peak is by which mechanism the temper-
ature detachment is reached. In cases where this is achieved predominantly through
the nitrogen gas input, no peak appears. This is further substantiated by a compar-
ison of the statistics of the plasma properties. Cases which include this temperature
peak tend to have higher electron densities and lower nitrogen concentrations at the
outer midplane separatrix (Figure 7.15A, B). The nitrogen concentration is defined
as the sum of the density of all nitrogen particles (ions and neutrals) divided by the
number of deuterium ions inside one cell of the computational grid. The distribu-
tions seen in Figure 7.15A, B are not distinct, which means additional other factors
must contribute. Simulations which contain a majority of nitrogen are less relevant
for reactor operation because maximum fusion power is achieved at lowest impurity
concentrations [187], [200]. Although some of the simulations without the PFR tem-
perature peak contain plasmas with a majority of nitrogen (impurity concentrations
above 100%), it is important to notice that this is not exclusive (Figure 7.15B).
This demonstrates that also for reactor relevant nitrogen concentrations, detached
regimes are possible without exhibiting a strong PFR temperature peak. The differ-
ences in the upstream temperatures between simulations with or without this peak
are small but some simulations without this peak tend to have higher temperatures
at the outer midplane separatrix (Figure 7.15C). Figure 7.15D shows drastically how
the peak heat flux observed at the outer target changes in the presence of the PFR
temperature peak. The heat fluxes in the detached simulations without this peak
are almost entirely below the critical value of 10MW/m2. In simulations with this
peak the heatfluxes reach higher values. In these cases the peak heat flux occurs
at the divertor target boundary in the PFR (see Figure 7.16H). Figure 7.15E, F
further show that simulations with the PFR temperature peak tend to have lower
line radiation both in the core as well as in the SOL and divertor areas. This seems
plausible, given the lower nitrogen concentrations in these cases.

In addition to the statistical analysis two exemplary cases are compared in the
following. From each group a case is selected as marked by a black circle and black
square in Figure 7.13. The parameters of the two cases are shown in Table 7.2.
While these cases differ in machine size and input power, the case with the PFR
temperature peak has a lower nitrogen gas puff and stronger cross-field transport
coefficients. The cases were selected to exhibit similar upstream densities and im-
purity concentrations (Table 7.2). Figure 7.16 and Figure 7.17 compare the plasma
profiles and neutral densities between the two cases. The modelled extend of the
SOL in the below case is larger because of the larger tokamak size (Figure 7.16A).
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above below
R [m] 2.9 6.5
B [T] 3.5 2.3
Pin [MW] 3.3e+01 1.2e+02
Dpuff [atoms/s] 2.4e+22 1.5e+23
Npuff [atoms/s] 1.1e+21 2.1e+22
Dcore [atoms/s] 1.6e+23 2.6e+23
D⊥ [m2/s] 1.2 0.13
χ⊥ [m2/s] 1.7 0.97
ne,omp [m−3] 7.1e+19 6.1e+19
cN,omp 0.004 0.01

Table 7.2: Parameters of the two simulations marked in Figure 7.13. The simulation
”above” is marked by a black circle, the simulation ”below” by a black square.

The lower density transport coefficients in the ”below” case lead to higher gradients
at the outer midplane. This causes higher plasma densities inside the confined re-
gion but lower values in the SOL (Figure 7.16B). At the separatrix the conditions
are almost identical in both simulations. At the target both simulations have similar
temperatures in the SOL but large differences in the PFR (Figure 7.16C). In the
”above” case the temperature at the target increases at the PFR domain boundary
up to 50 eV while in the ”below” case the temperature inside the PFR stays below
10 eV and does not peak directly at the domain boundary. The plasma densities at
the target in both cases are very much alike (Figure 7.16D). Only due to the larger
extend of the simulation domain in the ”below” case the densities are lower at both
ends of the target. The neutral densities at the target show a sharp decrease at the
PFR boundary due to the pumping boundary condition (Figure 7.16E, F). In the
”above” case the decrease in neutral densities is continuous in the PFR while in the
”below” case the density performs a jump directly at the boundary. As expected
from the gas puffs values, the ”above” case has a higher deuterium neutral density
(Figure 7.16E) while the ”below” simulation has a higher nitrogen neutral density
in the SOL (Figure 7.16F). The neutral densities for both species show a sharp in-
crease at the outer side of the outer target because this is adjacent to the far-SOL
boundary where the gas puffs enter the domain. Outside of the separatrix, both the
deuterium ion flux as well as the heat flux to the target are almost identical (Figure
7.16G, H). Only inside the separatrix the ion flux in the ”above” case stays high,
and the heat flux increases close to the domain boundary in the PFR. So while both
cases have a similar heat flux outside of the separatrix, the peak value is far greater
in the ”above” case.

Figure 7.17 compares the simulations in the whole divertor area. In the ”above”
case the electron temperature profile is much broader and extends more into the
PFR (Figure 7.17A). In the ”below” case the plasma profile is much more con-
strained closer to the separatrix both inside the PFR and the SOL (Figure 7.17B).
The cause of this could lie in the drastically different cross-field transport strengths,
because these settings also effect the cross-field transport inside the PFR. While
both cases have a separatrix temperature below 5 eV at the outer target, a large
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part of this temperature decreases is only achieved directly at the target, where
the neutral density is increased due to the particle recycling. At the inner target a
stronger detachment is seen where the temperature reaches values below 1 eV at a
greater distance to the target (Figure 7.17A, B). Although the deuterium neutral
density at the targets and the far-SOL domain boundary is higher in the ”above”
case (Figure 7.17C), in the ”below” simulation it extends further towards the sep-
aratrix especially at the outer divertor side (Figure 7.17D). While both cases have
similar nitrogen densities directly at both targets, the ”below” case has a way higher
nitrogen density in the PFR (Figure 7.17E, F). The line radiation in the ”below”
case is strongly increased in the whole plasma in comparison to the ”above” case
(Figure 7.17G, H). The radiation is highest at the divertor targets and follows the
contours of the neutral densities. Such radiation patterns are common in fluid neu-
tral simulations [182], [183].

To summarize this analysis: It is not entirely clear what the root causes of the
high temperature tail in some simulations are. It has been seen that this occurs
predominantly for smaller tokamak sizes with high densities and high cross-field
transport. The influence of the tokamak size could be linked to the employed size
scaling, which decreases the width of the SOL and PFR with decreasing major ra-
dius. Then in small tokamaks the pumping boundary condition in the PFR might
be too close to the separatrix. Another key factor seems to be the nitrogen density in
the PFR. For higher nitrogen densities the temperature peak in the PFR vanishes.
But all these aspects are linked to the implementation of the reduced fidelity fluid
neutral model and consequently the implementation of the gas puffs. A different
neutral treatment or inserting the gas puff in the PFR instead of at the far-SOL
boundary might totally eradicate the correlation observed with the major radius.
Studies that use a similar fluid neutral implementation as here do not report the
shape of target temperature profiles [180], [183] or contain no gas puff and pump
[201], [202]. This prevents a comparison to determine whether this effect is unique
to the setup used here or generally a property arising in the neutral model. It has
to be noted that the neutral density distributions seen in Figure 7.17 are drastically
different than what is seen in simulations with kinetic neutrals or more advanced
fluid neutral implementations [184]. A more extensive study of these effects is likely
not worthwhile because the effects might vanish with more exact neutral represen-
tations. Although it is not shown here, it was also tested whether changes to the
strength of the pump in the private-flux region mitigate the effect but the results
remain inconclusive. The key requirement for this study is that the employed simu-
lations are able to achieve reasonable plasma profiles in all regimes and conditions.
The simulation database fulfills this requirement. In relevant plasma scenarios, de-
tachment can be achieved both with as without this high temperature tail (Figures
7.13,7.14, 7.15) and the overall statistics of the regimes follow the expected trends
(Figure 7.10).
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Chapter 8

Surrogate modeling

Finally this chapter uses the dataset from the previous chapter to develop surrogate
models. Because the main goal of this thesis is to compare different methods to
provide recommendations for future studies, many different models with different
architectures and scopes are created and compared. Section 8.1 explains the training
and optimization procedure that is used for model development in the following
sections. In Section 8.2 different models are developed and evaluated that predict
the electron temperatures at the 1D surface of the outer target. This is followed in
Section 8.3 by models that are capable of predicting the electron temperatures in the
whole 2D domain. Section 8.4 analyses how the accuracy of these surrogate models
depends on the number of training simulations that are available. Different modeling
approaches to include more plasma properties than just the electron temperature
are compared in Section 8.5. And lastly Section 8.6 compares strategies to deduce
additional derived quantities from the model predictions.

8.1 Workflow for model training and optimization
As explained in Section 3.1.5, for training a machine learning models and especially
neural networks it is helpful if the data is scaled to values close to zero. For the
eight simulation parameters this is done by applying a standardization as defined
in Section 3.1.5 to each of the parameters. Because the parameters Dpuff , Npuff

and Dcore are varied on a logarithmic scale, the standardization is applied on the
logarithm (base 10) of these values. The standardized simulation parameters then
constitute the input to the machine learning models.

The pre-processing of the plasma states requires more effort. Two factors have to be
considered: the large spatial variation of the plasma properties in the domain and
the large variation between different simulations. Figure 8.1A depicts the temper-
atures in the simulation domain averaged across all simulations in the training set.
It demonstrates (which is also known a priori) that the average temperature inside
the confined core plasma is several orders of magnitude larger than in the SOL and
divertor. Figure 8.1B further demonstrates that the statistics of temperatures occur-
ing at the outer midplane across simulations differ drastically from the statistics of
the temperatures at the outer target. Because of this, we expect a surrogate model
to achieve higher accuracy when the plasma properties are scaled independently for
each location. Fundamentally the machine learning model should predict whether
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the temperature at some location (e.g. the divertor) is high or low in comparison
to the temperature range that is expected at that location. Therefore, this posi-
tion dependent scaling takes some of the challenge away from the machine learning
model. If instead an identical scaling were used across the simulation domain, the
machine learning model would spend a lot more effort to first learn that tempera-
tures at the divertor are in most cases cooler than in the core plasma. But also at
a fixed location the temperatures across the different training simulations vary over
more than 10 orders of magnitude (Figure 8.1B). This clearly advocates the use of
a non-linear function to reduce this range such as applying a logarithm. Instead a
quantile transformation (Section 3.1.5) is used here, because with this transforma-
tion the parts of the temperature scale with the most simulations occupy a larger
fraction of the scaled temperature range. Because the number of simulations in the
reasonable temperature range is large than the number of simulations with extreme
temperatures (Figure 8.1B), this approach should benefit the surrogate accuracy
in the more relevant range. Because statistics for the quantile transformation are
calculated for each location in the simulation domain independently, the scaled tem-
peratures at each location resemble a standard normal distribution (Figure 8.1C).
To reverse these back to the original temperatures, of course for each location in the
domain a different inverse function is used.

Some preliminary tests (not shown here) hinted that indeed this approach increases
the model accuracies compared to other ways of pre-processing, but more rigorous
comparison studies are necessary to determine whether it is the ideal approach. Nev-
ertheless, this approach is applied in all consecutive model developments throughout
this thesis (except for the tests conducted in Appendix A.4).

As introduced in Section 3.1.4, machine learning models contain many hyperpa-
rameters that are not learned during training but are prescribed by the researcher.
Because the choice of hyperparameters can influence the performance of the model
drastically, it is worthwhile to optimize the hyperparameters by testing and compar-
ing many different configurations. To perform such optimizations during the model
development, first the general procedure of this optimization process needs to be
decided.

The first major decision is: Which metric is used to evaluate and rank the dif-
ferent model implementations? Preliminary tests showed that for the tasks here the
median absolute error is most suited. But one can also understand intuitively why
the median error is more suitable than the mean error. When using the models in
practice, a user is most commonly not interested in the mean error because this
measures the average error experienced when performing multiple predictions and
adding all errors up. Instead a user typically performs a single prediction and wants
to know how accurate that one is, in other words, which error can be commonly ex-
pected. This is quantified by the median error which provides the information that
in 50% of the predictions the error will be lower. Additionally, the mean is more
sensitive to outliers such that singular bad predictions outweigh many accurate ones.
Similarly, the absolute error is less influenced by extreme values than the squared
error. Because the plasma observables seen in the simulations stretch across vastly
different scales (Figure 8.1), it is advisable to measure the absolute error.
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To achieve best performance all of the available data should be used to train the
model, which requires avoidance of a designated holdout validation set. A common
way to avoid using a holdout validation set is using cross-validation (Section 3.1.4).
The cross-validation score (CV-score) that is used to compare different hyperparam-
eter configurations is thus the median absolute error on the validation sets averaged
over all 5 folds in the cross-validation. Since our primary goal is to find models
that provide accurate predictions on the actual physical scales, errors are always
assessed after back-transforming the model predictions to the original scales using
the quantile transformation.

A crucial question when using cross-validation to optimize a models hyperparam-
eters is how to construct the final model with the best hyperparameters. In the
following sections, the final models based on gradient boosting are retrained with
the best hyperparameters using all training simulations. For all neural network
based models, the final models are constructed by averaging the predictions of the 5
networks trained on the different folds of the training data. This approach is taken
for the neural networks because during the hyperparameter optimization early stop-
ping is used on the validation sets in each fold. This leaves it ambiguous for how
many iterations a final model an all training data needs to be trained to achieve
similar accuracy. In preliminary tests this approach provided more accurate models
than replacing early stopping by other forms of strong regularization like dropout.
These preliminary tests also found the mean absolute error (MAE) as optimal loss
function for training the neural networks. Therefore, this loss is used for all neural
networks in the following sections.
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8.2 Modeling the 1D divertor target
In theory it should be possible to train a surrogate model that predicts all properties
of the SOL plasma at once. However, in practice it is unclear a priori which model
architecture to choose and whether the highest levels of accuracy can be reached for
this complicated task. Therefore, we start by solving simpler problems to get some
intuition and as reference to see if in practice a model for ”everything” is similarly
good as models for specific aspects. In this section models are trained to predict
(only) the electron temperature profiles at the outer divertor target (the last row of
cells in the computational grid). For this task, two basic model concepts are com-
pared: Fully connected feedforward neural networks (NN, Section 3.2) and Gradient
Boosted Regression Trees (GBRT, Section 3.3). For each of the two model concepts,
two different variants are trained. In the first variant the models receive the eight
parameters of each simulation as input and are trained to output the whole tem-
perature profile at once. In the case of the neural network this requires an output
layer with 48 neurons (equal to the number of target grid cells in the simulation)
For the GBRT this requires training 48 models in parallel because each outputs
only a scalar quantity. The trained models thus represent functions of the form
f : R8 → R

48. These models will be called NN1D and GBRT in the following. In
the second variant, which will be called ”positional”, the models have only a single
scalar output which predicts the temperature in a predefined grid cell. The models
receive one additional input to the eight simulation parameters, which specifies the
index of the respective grid cell (1-48). The trained models thus represent functions
of the form f : R9 → R

1. These model will be called NNpos1D and GBRTpos in
the following. In the case of the NNpos1D, this network architecture is similar as
used in Physics Informed Neural Networks [203]. The idea behind the positional
variant is that the models might use the available training data more efficiently if
they are explicitly forced to include the location in the domain rather than treating
each location independently. Instead of seeing 5756 training samples, which each
have an output dimensionality of 48, these models see 5756× 48 = 276288 samples
of output dimensionality 1.

To optimize the hyperparameters of each model, a random search with the 5-fold
cross-validation procedure explained in Section 8.1 is applied. Random search is
not the necessarily the fastest way to find the best possible model, but it is reliable

GBRT/GBRTpos
Trials 160

Tree depth [5,20]
Learning rate [10−3, 10−1]

Number of Estimators [200,1000]
Loss function {MAE,MSE}
Subsample [0.2,1.0]

Table 8.1: Hyperparameters varied in the hyperparameter searches for the GBRT and
GBRTpos models. [...] denote ranges in which parameters are varied, while {...} are
discrete sets. The learning rate is sampled in logarithmic domain. All other model hyper-
parameters remain at the default values set in scikit-learn.
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NN1D NNpos1D
Trials 160 54

Number of layers [1,15] [5,15]
Neurons per layer [100,2000] [100,2000]
Learning rate [10−5,5 · 10−3] [10−4,5 · 10−3]

L2 regularization [10−5, 10−2] [10−5, 10−2]
Activation {ReLU,ELU,SELU} {ReLU,ELU,SELU}

Mini-Batch size [20,200] [20,200]
Batch normalization {True,False} {True,False}

Loss function MAE MAE
Patience [Epochs] 50 50

Table 8.2: Hyperparameters varied in the hyperparameter searches for the NN1D and
NNpos1D models. [...] denote ranges in which parameters are varied, while {...} are discrete
sets. The learning rate and L2 regularization were sampled in logarithmic domain. Batch
normalization was only tested with ReLU and ELU activations. Each hidden layer has the
same number of neurons. All other model hyperparameters remain at the default values
set in TensorFlow.

in finding a good model and allows us to gain an intuition about suitable hyper-
parameter ranges. Table 8.1 lists the varied hyperparameters and their maximum
range for both GBRT and GBRTpos, while Table 8.2 lists the same for NN1D and
NNpos1D.

To assess the viability of a hyperparameter configuration the median absolute val-
idation error (averaged over the folds after backtransformation into eV-scale, see
Section 8.1) is used as cross-validation score. The best hyperparameter configura-
tions are those which achieve the lowest cross-validation score. Figure 8.2 depicts
the random search cross-validation scores for the NN1D model. Each point rep-
resents one tested configuration. Because the random search algorithm does not
optimize towards a specifically suitable architecture but tries random combinations
of hyperparameter values, many bad performing configurations with high scores are
tested. Of relevance are only the hyperparameters that lead to the best scores. The
Mini-Batch size has apparently no impact on the model accuracy (Figure 8.2C) and
can therefore be set to higher values for training efficiency. For both the number
of hidden layers and the number of neurons, lower limits of 7 hidden layers (Figure
8.2E) with each 500 neurons (Figure 8.2F) exist. With smaller networks the error
increases while larger networks have no added benefit. If the searched hyperparam-
eter space would be extended to include even higher number of layers and neurons,
it is likely that at some point the model error starts increasing again. Batch normal-
ization harms the model accuracy and should not be used (Figure 8.2B). Similarly
also the self-normalizing properties of the SELU activations offer no added benefit
beyond the plain ELU activation functions. However, both are slightly better than
ReLU activations (Figure 8.2A). The networks achieve more accurate predictions
when the regularization is minimal, which is the case for small values of the L2 reg-
ularizer (Figure 8.2D) and rather small learning rates between 1 · 10−4 and 6 · 10−4

(Figure 8.2G).
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always have an inherent smoothness. This is not always recovered by the models,
and the predicted profiles can have less natural shapes (Figure 8.8D, E). In these
examples the positional models perform better in that regard because their profiles
are often smoother. This property can be expected from these models because they
have to inherently integrate the correlations between the spatial locations.

Instead of evaluating the surrogate accuracy solely on a few examples, Figure 8.9
compares the predicted temperatures at all outer target locations in all test cases
against the simulations. The models are most accurate when the predicted tem-
peratures are close to the diagonal. For all four models the predicted temperatures
are highly correlated with the temperatures seen in the test simulations. For both
neural network models the predictions are generally closer to the simulations than
for the GBRT models. Below 1 eV the accuracy in all models seems to decrease and
more model predictions divert from the values seen in the ground truth simulations.
Nevertheless, also for some higher temperature cases the model predictions can be
orders of magnitude too high or too low. Interestingly, all four models show similar
patterns in some of their highest errors. When one searches for the widest devia-
tions from the optimal diagonal in Figure 8.9, multiple examples can be observed,
which show similar point patterns in all four subplots. This means in some cases
all four models make exactly the same mistakes. One possible explanation for this
effect is that there are ”bad” simulations in the test set. Such could be cases which
were stopped prematurely by one of convergence metrics while they were still in a
transient phase (see Section 7.2). In these situations the simulations results do not
correspond to the trends expected by the input parameters. When all four models
are correct in their prediction and only this specific test simulation is inaccurate, this
would lead to similar error patterns for the models. But this is only a hypothesis,
which can not be verified. Therefore, it can not be ruled out that all four models
make the same incorrect predictions in certain cases althought it seems less likely.
As discussed in Section 7.4, the simulations with the most extreme temperatures are
not physically reasonable or relevant for reactor design when effects outside of the
SOLPS-ITER simulations are considered. Figure 8.10 shows a close up of the results
in the more relevant temperature range 10−1 − 103 eV. Here it becomes clearly vis-
ible that the NN1D (Figure 8.10A) and NNpos1D (Figure 8.10B) models are more
accurate than the regression tree models because the predictions are more densely
grouped close to the optimal diagnal.

To provide a quantitative comparison between the different models, Table 8.3 sum-
marizes the median absolute errors and median relative errors on the test set. In
both metrics the neural network models perform better than the gradient boosted
models. Also the positional models are slightly worse than their regular counter-
parts. Therefore, the best model is the NN1D architecture with an overall median
absolute error of 1 eV and relative error of 13% (Table 8.3). While these results are
not perfect, it will be in most cases accurate enough for first scoping studies and
to validate general trends. Because even highly tuned SOLPS-ITER simulations
regularly reproduce experiments only qualitatively (see e.g. [133], [202], [204], [205],
[206]), the discrepancy between the model and the simulations is likely smaller than
the gap between the fluid neutral simulations and reality. However, this assessment
is based here solely on the median errrors. No guaranteed upper limit for the model
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all sheath-limited attached detached cold core

NN1D abs 1.0 1e+02 0.92 0.19 0.015
rel 0.13 0.1 0.12 0.12 0.75

NNpos1D abs 1.1 1e+02 0.93 0.18 0.014
rel 0.14 0.1 0.12 0.12 0.74

GBRT abs 1.6 2.3e+02 1.6 0.29 0.018
rel 0.27 0.25 0.23 0.19 0.91

GBRTpos abs 1.7 2.4e+02 1.8 0.35 0.026
rel 0.3 0.28 0.26 0.22 1.0

Table 8.3: Median absolute and relative errors on the test set, with the median calculated
either over the whole test set or only simulations in certain regimes (as defined in Section
7.4). The absolute errors are given in eV.

errors exists, so in rare cases the model predictions can be off by far more (Figure
8.9) or contain unphysical correlations. The data points in the test set are split
into regimes based on the criteria described in Section 7.4. This way the errors
of the surrogate models can be evaluated for each of these regimes independently
(Table 8.3). The absolute errors scale with the temperatures present in the dif-
ferent regimes. So in regimes with lower temperature the absolute errors tend to
be smaller while the relative errors become larger. The best median absolute error
under attached conditions is with 0.92 eV only slightly better than the error over
the whole test set. But the absolute errors in the detached regime are a lot smaller,
with the best median values obtained by the NNpos1D model at 0.18 eV. While
the cool core regime has diminishing absolute errors the relative errors explode due
to the small scales. For all other three regimes, the relative errors of each model
change only slightly between regimes. Apparently, it is not generally more difficult
to yield accurate predictions in one regime than in another. The neural network
based models (NN1D and NNpos1D) achieve very similar scores in all regimes and
are always significantly better than the boosted trees (GBRT and GBRTpos). The
small benefit of the NN1D model compared to the NNpos1D architecture might only
stem from the higher number of trials in the hyperparameter search (Table 8.2).

While the positional network NNpos1D is similar in accuracy, it takes much longer
to train than the NN1D model. The best NNpos1D model took 27 minutes to train
(on average for each fold) on a single Nvidia A100 GPU, while the NN1D model
took less than 2 minutes (on average for each fold). The GBRT model took 11
minutes to train on a single CPU, but since this trains 48 models independently
after another this can be trivially parallelized The GBRTpos model training which
cannot be parallelized took even longer 23 minutes. Overall the training times of
the individual models are tiny compared to the compute time it took to generate
the SOLPS database, but a faster trainable model allows for more trials in the hy-
perparameter optimization, which makes it easier to optimize further.

In conclusion, the results of this section can be summarized as follows: It is possible
to create a surrogate with acceptable prediction accuracy for the electron tempera-
ture at the outer divertor target. In this task, fully connected neural networks are
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more accurate than models based on Gradient Boosted Regression Trees. Both the
NN1D and the NNpos1D network architectures are equally accurate although the
former are faster to train. The best neural networks use SELU or ELU neurons, no
batch normalization, between 6-13 hidden layers, around 1000 neurons per hidden
layers, learning rates between 1 · 10−4 − 6 · 10−4 and L2 regularizers around 10−4.
The gradient boosted models are optimal at learning rates around 10−2 and max-
imum tree depths between 14 − 16. In the most relevant attached and detached
conditions, the best network model obtains a median relative prediction error of
12% on the independent test data. With median absolute test errors of 0.93 eV in
attached and 0.18 eV in detached cases, the discrepancy between the model and the
underlying simulations is probably smaller than between the simulations and actual
experiments.
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8.3 Modeling the 2D scrape-off layer

While the divertor targets are one of the most relevant areas, a full picture of the
SOL is necessary to gain an understanding of the physics leading to favorable target
conditions. In addition, also the plasma conditions at the separatrix need to fit con-
finement requirements, and different codes (e.g. ERO2.0 [86]) require the plasma
conditions in the whole SOL as background for their calculations. Therefore, this
section increases the problem complexity by testing models which are capable of
predicting the electron temperature in whole domain that is simulated by SOLPS-
ITER. SOLPS-ITER implements boundary conditions in artificial extra guard cells
around the computational grid (Section 2.7). Although the temperatures in these
cells have no physical meaning, the models in this section also predict the tempera-
tures in these cells. This way the model predictions can be used as initial states for
further SOLPS-ITER simulations without experiencing numerical restart artifacts
(see Sections 8.6 and 9.2).

Three different model types are tested. The first model is a fully connected neural
network (NN2D) which receives the eight simulation parameters as input and con-
tains an output layer of 5200 neurons (gridsize 104x50). This way the model outputs
the temperatures in the whole SOL in one pass. The second model is a positional
network (NNpos2D) with scalar output which receives the R and Z coordinates of
each simulation grid cell (the cell center is given by the average of the coordinates of
all 4 corners) as additional input together with the eight simulation parameters. The
third model is a positional Gradient Boosted Regression Tree model implemented
using XGBoost (XGBoost2D). Regular GBRT based architectures are not tested be-
cause with the implementations used here (scikit-learn/XGBoost) this would result
in training 5200 models independently as done before at the outer divertor target.
Therefore, the individual sub-models responsible for the target prediction in the 2D
model would be entirely identical to the GRBT sub-models from the 1D case and
no improvement is possible. Since the 1D GBRT models offered inferior prediction
accuracy (Table 8.3), it makes no sense to build a 2D model from these inferior
components. For all three model types, a hyperparameter random search is run
similarly as in the previous section. The details of the searches are given in Table
8.4 for the neural networks and Table 8.5 for XGBoost2D. Based on the same ar-
chitecture as the NN2D model, also an additional smaller hyperparameter search is
run (NN2D-small). In this search, sensible values found in the NN1D optimization
(Section 8.2) are selected for most of the hyperparameters and only the number of
hidden layers and neurons are varied.

For the NN2D model very similar hyperparameters are optimal as for the NN1D
model before (Figure 8.11). SELU and ELU activation perform better than ReLU
(Figure 8.11A), Batch normalization should be avoided (Figure 8.11B) and the Mini-
Batch size has no strong impact (Figure 8.11C). For the other hyperparameters the
results are similar to the NN1D model but slightly different. Best performance is
reached for L2 regularizers and learning rates below 10−4 (Figure 8.11D, G), which
were slightly higher in the 1D case. Since the best performing model is found at
the minimum of the tested learning rates, a better model could likely be found by
including even lower learning rates in the search (Figure 8.11G). The number of
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NN2D NNpos2D NN2D-small
Trials 320 64 208

Number of layers [1,15] [8,12] [1,15]
Neurons per layer [100,1500] [100,1500] [100,2000]
Learning rate [10−4,5 · 10−3] 5 · 10−4 3 · 10−4

L2 regularization [10−5, 10−2] 5 · 10−5 10−4

Activation {ReLU,ELU,SELU} ELU ELU
Mini-Batch size [20,200] 500 128

Batch normalization {True,False} False False
Loss function MAE MAE MAE

Patience 50 5 50

Table 8.4: Hyperparameters varied in the hyperparameter searches for the NN2D,
NNpos2D and NN2D-small models. [...] denote ranges in which parameters are varied,
while {...} are discrete sets. The learning rate and L2 regularization were sampled in log-
arithmic domain. Batch normalization was only tested with ReLU and ELU activations.
Each hidden layer has the same number of neurons. All other model hyperparameters
remain at the default values set in TensorFlow.

XGBoost2D
Trials 50

Tree depth [5,20]
Learning rate [10−3, 2 · 10−1]

Number of Estimators [200,1000]
Loss function {MAE,MSE}
Subsample [0.2,1.0]

Table 8.5: Hyperparameters varied in the hyperparameter search for the XGBoost2D
model. [...] denote ranges in which parameters are varied, while {...} are discrete sets.
The learning rate is sampled in logarithmic domain. All other model hyperparameters
remain at the default values set in XGBoost.
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might be attributed to the lower number of trials performed in the hyperparameter
optimization. The training times of the best NNpos2D model are with 34min dras-
tically higher than for the NN2D model with training times of 6min. The NN2D
model with the smaller hyperparameter search yields similar errors as with the wider
search. The XGBoost model obtains by far the worst test errors and also requires
10min to train. The same ranking of the models also holds true when computing
the median errors solely at the outer target (1D) or the outer midplane separatrix
(OMP). The NN2D model is most accurate whether with the full or the smaller
hyper parameter search (Table 8.6). The median errors of the NN2D model at the
1D target (1 eV and 12−13%) are identical to the best designated 1D model NN1D.
Splitting the analysis of the errors into the different SOL regimes (as done in Table
8.3 for the 1D models) reveals that in all regimes the NN2D model is similarly ac-
curate at the divertor target as the designated NN1D model (not shown here). The
NN2D model simultaneously maintains high level of accuracy at the OMP with a
median relative error of less than 5%.

To summarize the results of this section: It is possible to develop surrogate models
which predict the temperature in the whole SOL at once without compromising the
precision at the outer divertor target. Therefore, it can be recommeded to only de-
velop such full 2D models because they offer a wider range of applications without
any downsides compared to the target specific models. The best model architecture
found so far is a fully connected neural network with independent outputs for each
location in the 2D grid (NN2D). The optimal hyperparameters for such a model are
similar to the target specific 1D networks.



138 CHAPTER 8. SURROGATE MODELING

8.4 Influence of the training data size

In sections 8.2 and 8.3 over 5000 successful SOLPS-ITER simulations were used as
training data for the surrogate models. These simulations are spread in an exhaus-
tive 8 dimensional parameter space, which covers different machine parameters and
physical regimes. For this parameter space 5000 simulations are actually fairly few,
and similar projects with lower dimensional parameter spaces have used orders of
magnitude more simulations [94]. However, to obtain the results of several thousand
SOLPS-ITER simulations, it is required to reduce the complexity of the simulations,
which comes at the expensive of lowering the physical accuracy of the simulations.
In this thesis the complexity is reduced by using computationally faster fluid neu-
tral models and the neglect of plasma drift effects. But the biases and limitations of
the reduced physics description propagate into the trained surrogate models. Two
principle approaches are possible to tackle this issue: A surrogate models can be
trained on simulations with a mixture of fidelities. In this approach a high number
of fast simulations is used to explore the high dimensional parameter space suffi-
ciently dense, and some few slow and complex simulations are added to inform the
model about higher fidelity effects. One variant of such a procedure is explored in
Section 10. The other approach aims at finding model architectures which can be
trained with minimal amounts of training simulations. If the number of necessary
training simulations is sufficiently low, these models could be trained on a small
dataset consisting entirely of high fidelity simulations. Therefore, this section inves-
tigates how the models developed in the previous two sections perform given fewer
simulations as training data.

The training simulations are distributed according to a low-discrepancy Sobol se-
quence [189]. The datapoints in this sequence are not distributed randomly but
follow a specific pattern. The sequence is designed in such a way that the first 2N
points are distributed to explore the whole parameter space uniformly. Increasing
N leads to finer exploration of the parameter space but always maintains a uniform
distribution. This property can be used now by employing only the first 2N < 8192
training simulations as training data for the surrogate models. The selection based
on the Sobol sequence needs to be conducted on the started simulations to ensure the
uniform distribution across the parameter space. Because some of the simulations
diverge, a selection of 2N started simulations will yield a smaller number of actual
simulations with an output that can be used for training. Not only the surrogate
models themselves but also the data-preprocessing routines (standard scaling of in-
put parameters, quantile transformation of temperatures) are fitted to the training
data. To fully emulate the situation when only the finite amount of training data is
available, these routines also need to be refitted on the reduced number of training
simulations. Therefore, a comparison of the models trained with different numbers
of simulations is only possible after backtransformation into the eV-scale.

The optimal choice of hyperparameters for a model varies with the amount of train-
ing data which is available. Therefore, the same hyperparameter searches for all 1D
models (as given by Table 8.2 and 8.1) are repeated with varying amounts of train-
ing simulations. The only difference is the patience used in neural network training,
which is scaled such that the same number of weight updates are waited as in the
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87 179 352 719 1439 2874 5756
NN1D 0.71 0.65 0.48 0.34 0.24 0.18 0.13
NNpos1D 0.89 0.57 0.45 0.33 0.28 0.18 0.14
NN2D 0.8 0.63 0.45 0.34 0.24 0.19 0.13
NNpos2D 0.96 0.74 0.46 0.35 0.28 0.21 0.19
GBRT 0.79 0.75 0.5 0.38 0.36 0.29 0.27
GBRTpos 0.88 0.56 0.51 0.43 0.4 0.32 0.3

Table 8.8: Median relative errors of the predicted temperatures at the outer target on
the fixed test set for models trained with varying amount of training simulations. The
evaluation on the test set is always performed with the best hyperparameter configuration
for each model at the given number of training simulations. For comparison the test scores
of the 2D models are only evaluated at the outer target. The median absolute errors are
given in eV.

To compare the different models with optimal hyperparameters, their predictions aer
evaluated on the test set. The set of test simulations is the same as in the previous
sections, and independent of the training simulations all models are evaluated on the
same full test set. The median errors on the test set are shown in Figure 8.23 and
reported in Table 8.7 and Table 8.8. For comparison with the 1D models, the 2D
model errors are only evaluated at the outer target. For high number of simulations
the NN2D, NN1D and NNpos1D models are almost equally good in terms of the
median absolute and the relative errors. The NNpos2D, GBRT and GBRTpos mod-
els have very similar median absolute errors for high number of simulations, but the
NNpos2D model has lower relative errors. But all three models are worse than the
other neural network models. For 352 and 719 training simulations, the differences
between all models are smaller (Figure 8.23A). For all models the errors increase
with smaller number of training simulations. For less than 100 training simulations,
both NNpos1D and NNpos2D show distinctly higher absolute errors compared to
all other models and also the highest relative errors although there the difference to
the other models is less (Figure 8.23). For 87, 179 or 352 training simulations the
GBRT model achieves slightly lower absolute errors than all other models, but its
relative errors are still higher than that of the NN1D network.

Overall Figure 8.23 shows that going below 1000 simulations will decrease the model
accuracy drastically while the improvements above 1000 simulations are smaller.
All models would improve further if more training data is provided. However, the
GBRT, GBRTpos and NNpos2D models would benefit less because the gradient of
the median errors with regard to the training simulations is smaller than in the other
neural network models. Comparing 1D and 2D models, the 1D models show no ben-
efit for any level of training simulations. While the NN2D network is slightly worse
than the NN1D model for 87 training simulations, this small difference might vanish
when a more complete hyperparameter search is conducted for the 2D model. So
for low or high number of available training simulations, NN2D architecture seems
like a suitable choice. However, based purely on the median errors it is difficult to
determine how many simulations are enough. Especially because the required level
of accuracy can differ between different applications.
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To get a more intuitive impression of the changes in precision with varying number
of training simulations, Figure 8.24 and Figure 8.25 depict the NN2D predictions
at the outer midplane and at the outer target for examplary simulations from the
test set. The model trained with all available training simulations (Nsims = 5756) is
identical to the one from Figures 8.17 and 8.16. Clearly the predicted temperature
profiles at the outer midplane become more accurate the more training simulations
are used in model development (Figure 8.24). With 1439 or 5756 simulations, the
model predicts the correct shapes of temperature profiles in all examples and also
the absolute values are often correct. Nevertheless, an improvement from 1439 to
5756 simulations is clearly seen. While the model with 352 training simulations is
often closer to the simulation than the model trained on 87 simulations, both have
always clearly visible discrepancies to the simulations. The absolute deviations of
the profiles are far larger inside of the separatrix than in the SOL. At the outer
target the assessment shows similar findings as at the outer midplane. The models
trained with 87 and 352 simulations perform drastically worse than the other two
models (Figure 8.25). The temperature profiles predicted by the models trained
with 87 and 352 simulations often clearly differ from the simulations. However,
the improvement going from 87 to 352 simulations is more clear than at the outer
midplane. In several examples the model with 352 simulations produces profiles
which are atleast roughly similar to the simulations (all except B, E, H in Figure
8.25). The model based on 87 simulations does so only in the first example (Figure
8.25A). A clear difference between the predictions of the models with 1439 and 5756
simulations is only visible in three examples (Figure 8.25B, C, D). In all other cases
they predict roughly the same.

In summary: The surrogate model accuracy depends tightly on the number of
simulations available. Also for smaller number of training simulations, the neu-
ral networks with independent outputs for each simulation grid cell (NN1D/NN2D)
are the most accurate models. Only for less than 400 training simulations the gradi-
ent boosted model (GBRT) becomes comparably accurate. Clear trends regarding
the optimal model hyperparameters are visible. For lower number of simulations
stronger regularizers and larger learning rates are better. The model error on the
test set improves for all models drastically until 1000 training simulations and than
more slowly. Also for smaller training datasets, it is not worthwhile to train a model
only for the temperatures at the divertor target but the whole SOL can be pre-
dicted at once. Based on the comparison with some example profiles, the NN2D
model based on 1439 training simulations already offers a high enough precision to
be applicable for first scoping studies of different machine parameter combinations.
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8.5 Incorperation of several plasma properties

The models from the previous sections concentrate on predicting only the electron
temperature. For a complete description of the plasma processes in the SOL, many
more observables are necessary. Including more properties in the surrogate model
raises the same question as in the step of moving from 1D to 2D models: Is it better
to include everything into one model or split it into several distinct models? A single
model might preserve the correlations between observables better but can be more
difficult to train and optimize. Which of these factors outweighs the other is specific
to each problem. The goal of this section is to compare both approaches and find
out which strategy is better for the SOLPS-ITER dataset here.

In addition to the existing NN2D model for the electron temperature Te, three
additional networks with the same NN2D architecture are trained independently for
the electron density ne, deuterium neutral gas density nD and nitrogen neutral gas
density nN . For each of these networks a full hyperparameter search is conducted
with the same procedure as in Section 8.3. Many more observables are relevant
in the SOL, but these four are selected as proxies to test the approaches. Later
a full model for all quantities of interest can be build (Section 8.6). As compari-
son, two networks are trained which each predict all four quantities Te, ne, nD, nN
in the whole 2D domain at once. These networks are also of the NN2D type but
the sizes of the last layers are changed to accommodate for the higher number of
outputs. In the first network (NN2D-all-in-one) only the size of the output layer is
increased to 4x5400 neurons. Because the output layer has no activation function
itself, the outputs are weighted linear combinations of the neuron outputs in the
last hidden layer. Because the number of neurons in the hidden layers is drastically
lower than in the output layer, this last step corresponds to a decompression of a
lower dimensional representation of the plasma state to the final high dimensional
result. If this decompression can only be poorly represented by the linear operation
in the last layer, this sudden change in number of neurons could bottleneck the
network performance. Therefore, the second network (NN2D-all-in-one-2) has an
increased size of 4x5400 neurons in the last two layers. Also for these two networks
a hyperparameter search is conducted as in Section 8.3. Additionally, a network
of the NNpos2D architecture is trained which also includes all four observables in
one. This network (NNpos2D-all-in-one) has in principle the same architecture as
the NNpos2D in Section 8.3, but instead of a single scalar output it has four scalar
outputs, one for each observable. The hyperparameters of this network are not opti-
mized but prescribed. The network contains 10 hidden layers with each 300 neurons
and a batch size of 4096 and a 10 epochs patience in the early stopping. All other
hyperparameters are identical to the NNpos2D in Table 8.4. Like in the previous
sections, the plasma observables are scaled using quantile transformations indepen-
dently for each observable and each grid location, and the tokamak parameters use
the regular standardization.

In order not to make the analysis unnecessarily lengthy, only the model predic-
tions at the outer midplane are compared and evaluated in this section. However,
the conclusions drawn from this analysis are the same if the models are compared
in the whole SOL or at the outer divertor target. The figures and tables comparing
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OMP
Te ne nD nN pe

NN2D-all-in-one abs 8.5 9.5e+17 5.4e+13 4.8e+11 3.1e+01
rel 0.046 0.065 0.11 0.077 0.062

NN2D-all-in-one-2 abs 9.0 1e+18 5.8e+13 4.3e+11 3.1e+01
rel 0.054 0.073 0.14 0.082 0.068

NN2D-separated abs 7.1 7.6e+17 4.3e+13 3.9e+11 2.9e+01
rel 0.043 0.062 0.1 0.058 0.06

NNpos2D-all-in-one abs 8.4 7.7e+17 4.4e+13 3.6e+11 2.8e+01
rel 0.048 0.054 0.1 0.065 0.058

Table 8.9: Median absolute and relative errors on the test set of the model predictions
at the outer midplane separatrix. The absolute errors are given in the units [Te] = eV,
[ne] = [nD] = [nN ] = m−3,[pe] = Pa. The models do not predict the pressure pe directly
but it is computed as pe = neTe.

the models at these different locations are shown in Appendix A.3. In addition to
the four predicted quantities, the comparisons of the model predictions include also
the static plasma pressure pe = ne · Te. The pressure is derived from the electron
temperatures and densities which are predicted by the models. This is introduced
to test whether the combined models capture the correlations between ne and Te
more accurately than the separate models. In that case the combined models would
deliver more precise predictions for pe.

Table 8.9 depicts the median errors on the test of the final trained models (with
optimized hyperparameters). The median errors are calculated only for the first
grid cell outside the separatrix at the outer midplane. For almost all observables
the NN2D-all-in-one-2 network achieves the worst results. So the anticipated bot-
tleneck in the NN2D-all-in-one architecture poses not a problem. The second worst
results are obtained by the NN2D-all-in-one model, which is surpassed by both
the NN2D-separated and the NNpos2D-all-in-one model in all metrics. Also for the
plasma pressure the NN2D model with the separated networks obtains slightly lower
test errors than the NN2D-all-in-one model, although the differences are small. The
NN2D-separated and the NNpos2D-all-in-one model are very similar in the median
errors on all three densities and the plasma pressure. But concerning the electron
temperature, the NN2D-separated model is slightly more accurate. For all four mod-
els the median relative errors of the predicted temperatures are lower than for the
other quantities. This hints that the temperature might be easier to predict than
the particle densities.

For all models, except NN2D-all-in-one-2, the predictions at the outer midplane
separatrix are shown in Figure 8.26. In this visualization none of the three models
appears more accurate than another. All models share a pattern of incorrect predic-
tions for nitrogen densities of 1010 m−3 (Figure 8.26J, K, L). This values was set as
the numerical lower limit for the nitrogen density in any grid cell in the simulations.
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Also comparing the predicted plasma pressure profiles at the outer midplane (Figure
8.27) shows that all three models are equally capable of predicting accurate plasma
pressures. Similar visualizations for the other observables can be found Appendix
A.3.

Relying on the median errors, the NN2D-separated model is the most accurate
model by a tight margin. To include even more observables, the NN2D-all-in-one
model needs to be retrained with an even larger output layer in the network. As the
current increase in network output size has slightly decreased the model accuracy, it
is likely that a further size increase would further decrease the model accuracy. In
contrast, adding more observables to the NN2D-separated model is trivial. This sim-
ply requires the training of additional networks, without any impact on the already
existing. The accuracy in the temperature prediction of the NNpos2D-all-in-one has
decreased compared to the positional network that predicted solely the temperature
(comparing Table 8.9 to Table 8.6). Therefore, also for the NNpos2D-all-in-one
model the accuracy would likely decrease further in a model containing more ob-
servables. This might be counteracted by a hyperparameter optimization, but the
longer training times of the positional architecture make extensive hyperparameter
optimizations computationally expensive.

One of the theoretical benefits of the NN2D-separated model is that the hyperparam-
eters of each of the independent networks can be tailored to the specific observable.
Interestingly this does not occur, but instead all networks in the NN2D-separated
model have similar hyperparameters. Table 8.10 shows the hyperparameters of the
five best networks found in the hyperparameter searches for each of the observables.
All of them use either the SELU or ELU activation function and similar values for
the number of hidden layers, L2 regularizer and learning rate. A higher variation
is found in the number of neurons per layer and the batch size used during train-
ing. But these two parameters are less relevant for the model performance and
can be arbitrarily chosen inside some sensible ranges (see Figure 8.11). Therefore,
the values which appear in the best hyperparameter configurations are just random.

In conclusion: To predict more plasma properties besides the electron tempera-
ture, all can be included in a singular neural network or in separate networks for
each quantity. Both approaches obtain similar levels of accuracy, but using separate
networks can be trivially scaled to include even more observables. Additionally, the
separate networks all use a similar set of optimal hyperparameters. Therefore, it
is not necessary to run new hyperparameter optimizations for each new observable,
but the same hyperparameters can be reused in each separate network.
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CV
score Activation Batch

size L2 Hidden
Layers

Number of
neurons

Learning
rate

Te

3.9e+0 SELU 37 3.4e-5 9 1427 1.0e-4
3.9e+0 SELU 50 8.7e-5 11 1057 1.0e-4
4.1e+0 ELU 106 5.2e-5 8 464 1.4e-4
4.2e+0 SELU 61 1.4e-4 11 1205 1.1e-4
4.2e+0 SELU 47 3.8e-5 11 944 2.7e-4

ne

1.6e+18 SELU 86 1.0e-4 11 965 2.8e-4
1.6e+18 ELU 115 2.1e-5 10 1097 1.6e-4
1.7e+18 SELU 195 1.0e-4 10 1478 3.2e-4
1.7e+18 SELU 197 8.3e-5 8 772 3.7e-4
1.7e+18 SELU 192 4.8e-5 15 1023 4.e-4

nD

5.0e+14 SELU 192 8.7e-5 10 1238 1.5e-4
5.1e+14 ELU 96 1.1e-4 15 1291 1.7e-4
5.3e+14 SELU 119 9.8e-5 11 918 2.6e-4
5.4e+14 ELU 77 2.5e-4 12 861 1.0e-4
5.4e+14 SELU 176 4.5e-5 14 1139 2.5e-4

nN

5.5e+12 ELU 127 6.0e-5 12 1254 1.3e-4
5.6e+12 ELU 151 3.9e-5 9 1020 2.1e-4
6.0e+12 SELU 118 3.4e-5 15 536 1.1e-4
6.2e+12 ELU 89 7.8e-5 13 317 1.6e-4
6.3e+12 SELU 181 1.5e-5 12 641 1.2e-4

Table 8.10: The hyperparameters of the five best network architectures found for each
observable in the NN2D-separated model. None of the models use Batch normalization,
therefore the column was removed in this overview. A hyperparameter configuration is
better when it has a smaller CV score.
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8.6 SOLPS-ITER in the loop

The goal of this section is to go forward and build a surrogate model for all plasma
quantities. Based on the findings in the previous section, each quantity is predicted
by a separate NN2D network with a fixed network architecture (10 hidden layers
with each 1000 SELU neurons, learning rate 10−4, L2 regularizer 10−4, batch size
64). For each independent network, the output quantities are scaled using a quantile
transformation. This approach can lead to predicting the wrong sign for plasma ve-
locities, but also more complicated setups mitigate this error source only slightly in
comparison to a plain NN2D model with quantile transformations (Appendix A.4).

A list of all quantities of interest (QoI) in the SOL can become quite extensive
because different applications require different things. For exhaust control the heat
and particle fluxes at the divertor are relevant, coupling to pedestal models requires
densities and temperatures at the separatrix, comparison with experiment might
require radiation profiles or line integrated quantities, etc. Training independent
models to predict all of these QoI can become exhaustive. This would require users
with very specialized applications to train their own models from scratch based on
the simulation database. Instead of predicting all QoI directly, another approach is
to predict all independent state variables of the SOLPS-ITER simulations because
from these all other plasma quantities can be derived. This section compares the
two approaches by predicting: the power crossing the separatrix PSOL, the peak heat
flux at the outer divertor target qpeak,ot and the integrated deuterium ion flux at the
outer divertor target ΓD+,ot.

In the simulation setup in this thesis, the state variables are the electron temperature
Te, ion temperature Ti, densities of all ion and neutral particles (nD, nD+, nN , nN+, ..., nN7+)
and the parallel velocities of all ions and neutral particles (uD, uD+, uN , uN+, ..., uN7+).
The electron density follows from quasineutrality and the potential equation is not
solved but a potential of 3.1Te/e is assumed. For each of these 22 state variables
a NN2D network is trained with fixed hyperparameters. To calculate all derived
quantities and extra outputs from the state variables, SOLPS-ITER can be used
(NN2D+SOLPS). Thus, the outputs of these networks are written into input files
for SOLPS-ITER (all other fields in the input files are set to zero). Instead of us-
ing own implementations for calculating the derived quantities, using SOLPS-ITER
ensures that the same assumptions are used in all derivations as in the underlying
simulations. But depending on the exact SOLPS-ITER version, one has to be care-
ful that all dependent quantities are recalculated from scratch instead of using the
wrong values in the input file. The procedure that is used here is given in Chapter
13. This workflow is slower than predicting the QoI directly, but since the code has
to compute only the auxiliary outputs this is still orders of magnitudes faster than
actually running a simulation over many iterations (seconds instead of days).

To predict the three QoI directly, a network is trained for each of them. The net-
works hyperparameters are optimized like the NN1D network in Table 8.2. The
only difference is that the output of each of the three networks is only a single scalar
which corresponds to the respective QoI.
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all sheath-limited attached detached cold core

D
ire

ct

PSOL
abs 0.51 0.38 0.51 0.61 1.3
rel 0.0076 0.0048 0.0057 0.0096 0.46

qpeak,ot
abs 0.98 0.71 1.7 1.9 5e-05
rel 0.13 0.055 0.092 0.34 0.98

ΓD+,ot
abs 6.5e+22 5.4e+20 2.1e+23 2.5e+23 3.6e+19
rel 0.15 0.15 0.085 0.15 6.7

N
N
2D

PSOL
abs 1.1e+01 1.7e+01 1.1e+01 9.3 0.77
rel 0.19 0.24 0.13 0.16 0.72

qpeak,ot
abs 1.1e+01 4.4e+01 8.7 2.5 0.00076
rel 1.7 3.1 0.43 0.41 1.5e+02

ΓD+,ot
abs 7.1e+22 4.4e+20 1.9e+23 2.5e+23 2.3e+19
rel 0.15 0.13 0.089 0.16 1.0

N
N
po

s2
D

PSOL
abs 9.4 1.4e+01 1e+01 7.8 0.86
rel 0.15 0.18 0.12 0.13 0.49

qpeak,ot
abs 9.8 1.6e+01 1.7e+01 2.7 0.025
rel 0.91 0.98 0.6 0.49 3.4e+03

ΓD+,ot
abs 7e+22 5e+20 3e+23 3.1e+23 2.1e+19
rel 0.17 0.12 0.13 0.18 1.0

N
N
2D

+
10

00 PSOL
abs 0.39 1.4 0.14 0.19 0.53
rel 0.011 0.023 0.0016 0.0033 0.24

qpeak,ot
abs 0.79 0.75 1.4 2.3 3.6e-05
rel 0.12 0.046 0.074 0.23 0.99

ΓD+,ot
abs 7e+22 3.2e+20 2.1e+23 2e+23 7e+18
rel 0.12 0.08 0.084 0.12 1.3

Table 8.11: Median absolute and relative errors on the test set of the three model
predicted QoI. For the NN2D, NNpos2D and NN2D+1000 models the quantities are not
predicted directly but computed by inserting the model predicted plasma state variables
into SOLPS-ITER. The errors are evaluated either on the whole test set or only those
simulations in certain regimes (as defined in Section 7.4). The absolute errors are given
in the units [PSOL] = MW, [qpeak,ot] = MW/m2,

[︁

ΓD+,ot

]︁

= atoms/s.
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Table 8.11 reports the median test errors for all three QoI in both the NN2D+SOLPS
approach and the direct prediction. Both approaches achieve comparable errors in
the predicted particle flux ΓD+,ot in all regimes. The direct approach is able to pre-
dict PSOL excellently and obtains median relative errors of less than 1% in almost
all regimes. This can be expected as on of the inputs to the model is the input
power Pin into the simulation domain at the core boundary, which is highly corre-
lated with PSOL. Strong differences between Pin and PSOL are only expected when
the radiation inside the confined region becomes strong. This is the case in the cold
core regime, which explains why the accuracy in predicting PSOL is so much lower
there. The NN2D+SOLPS predictions of PSOL are less accurate and achieve only
median relative errors of more than 10% in all regimes. In the direct approach the
predictions for PSOL in the sheath-limited regime are slightly more accurate than
in attached and detached cases. However, NN2D+SOLPS approach is less accurate
in the sheath-limited regime than in the attached and detached. A similar pattern
but a lot more extreme is found in the errors of the peak target heat flux qpeak,ot.
The direct approach is much more accurate in the sheath-limited regime than in
either the attached or detached cases. In the NN2D+SOLPS approach, it is the
other way around and the accuracy is far lower in the sheath-limited regime. The
NN2D+SOLPS approach yields a median relative error of 310% for qpeak,ot in the
sheath-limited regime. In the attached regime, the NN2D+SOLPS solution still has
higher errors than the direct prediction but the differences are smaller than in the
sheath-limited regime. In the detached regime the accuracy of both approaches is
similar. In the cold core regime the median error of the NN2D+SOLPS approach
is drastically increased. But because the heat fluxes in this regime are almost non
existent, even small absolute errors can cause these drastic relative deviations.

Figure 8.28 visualizes the predicted QoI against the simulation values in the test
simulations, such that for a perfect prediction all points would lie on the diagonal.
In the direct approach the predictions of all three QoI lie very close to the values
in the simulations, with the highest accuracy for PSOL (Figure 8.28A, B, C). For
PSOL the predictions of the NN2D+SOLPS approach follow the results from the
simulations loosely but with higher deviations than in the direct approach (Figure
8.28D). The ion flux ΓD+,ot is predicted similarly precise as in the direct approach
(Figure 8.28F). For the peak target heat flux qpeak,ot, the predictions in the detached
simulations follow the expected values, but for all sheath-limited and some of the
attached cases a systematic shift towards higher values is observed (Figure 8.28E).
In the range between 1− 100MW/m2, the NN2D+SOLPS approach predicts peak
heat fluxes systematically too large by a factor ≈ 4. But only sheath-limited and
some attached cases are affected by this because in the same range the predictions
for detached simulations are accurate. This observation explains, why the median
errors of the peak heat fluxes predicted by the NN2D+SOLPS model in Table 8.11
are so much higher in the sheath-limited regime.

To identify the root causes behind these systematic errors in the sheath-limited
regime, many simulations and their predictions in the NN2D+SOLPS approach
have been inspected in-depth. This allowed the detection of a common property
in the erroneous predictions, which is not found in the correct predictions. Figure
8.29 illustrates this property. Figures 8.29A, B, C depict the conditions in a de-
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tached simulation, for which the NN2D+SOLPS approach predicts the correct peak
heatflux. Like in all detached simulations, this case exhibits strong temperature
gradients along the magnetic field lines towards the target. Consequently, there is a
visible difference between the temperature profiles in the last (102) and second last
poloidal row (101) of grid cells in front of the outer divertor target (Figure 8.29A).
The NN2D model predicts the temperatures in both rows of grid cells accurately.
For both the temperatures in the simulation and the temperatures predicted by the
NN2D model, the poloidal temperature differences between the last and second last
row of grid cells are calculated. While the model predicted temperature profiles
are not perfect, they are accurate enough that the poloidal temperature differences
are similar in the model predictions (Figure 8.29C) as in the simulations (Figure
8.29B). Because the temperature gradients are one of the key defining factors for
the poloidal heat fluxes, also the resulting electron heat flux distributions resulting
from the model predictions (Figure 8.29C) are alike the simulation (Figure 8.29B) in
shape and magnitude. Figures 8.29D, E, F depict the conditions in a sheath-limited
case, for which the NN2D+SOLPS approach predicts the peak heatflux too high.
In this simulation the poloidal temperature gradients are so small that the temper-
ature profiles in the two last rows of grid cells are almost identical (Figure 8.29D).
Even though the temperature differences between the rows of grid cells are almost
non existent, the overall high temperatures still yield a non-vanishing heat flux to-
wards the target (Figure 8.29E). While the temperatures predicted by the NN2D
network are accurate (Figure 8.29D), the poloidal temperature differences between
the rows of grid cells are orders of magnitude higher than in the simulation and fol-
low a random pattern (Figure 8.29F). One can see that the resulting electron heat
fluxes always point in the direction of the temperature gradients and therefore ran-
domly point towards or away from the target at the differing radial locations (Figure
8.29F). Because the absolute values of the temperature differences are drastically
higher than in the simulations, also the heat fluxes in the NN2D+SOLPS approach
have drastically increased magnitudes. These random patterns in the temperature
gradients occur because the NN2D architecture predicts temperatures for each grid
cell independently. As long as the errors in the predicted temperatures are far lower
than the local temperature differences, this will automatically get the temperature
gradients correct. Because the temperature gradients are large in the detached
regime, the NN2D+SOLPS approach yields the correct heatfluxes in this regime.
But in the sheath-limited regime, which has almost no temperature gradients, the
local temperature differences between neighboring grid cells are tiny compared to
the absolute temperature values present (here ≈ 0.001 eV/103 eV = 10−4%). Be-
cause these temperature differences are far lower than the accuracy of the network
predictions (≈ 12%, see Table 8.6), the random errors in network predictions will
lead to random directions and magnitudes of the temperature gradients and result-
ing heat fluxes. While the examples in Figure 8.29 demonstrate this phenomenon at
the outer target, this behaviour occurs anywhere in the domain. The fact that the
predictions of PSOL in the NN2D-SOLPS scheme are less impaired by this behaviour
has two reasons. Mainly because the radial temperature differences across the sepa-
ratrix are larger and secondly because PSOL is an integrated quantity, which allows
for parts of the errors to average out. The peak heat flux qpeak,ot, which is defined
as the maximum heat flux at any target location, will be systematically increased
by the large random heatflux spikes.
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Even if qpeak,ot were less affected, it is clear that the random heat flux patterns
will cause problems for applications which require accurate heat flux profiles at the
target, e.g. to calculate the sputtering of divertor target materials. Therefore, dif-
ferent approaches are tested in the following to reduce the random errors in the heat
flux profiles.

One potential remedy lies in using a network model based on the NNpos2D ar-
chitecture. The flaw of the NN2D model is that it does not necessarily conserve the
spatial correlations between temperatures. In contrast the NNpos2D architecture
is forced by its to design to learn a representation of spatial patterns. Therefore,
similarly as in Section 8.5 a NNpos2D model is trained with multiple outputs. Here
network contains 22 scalar outputs for all necessary SOLPS state variables. The
model predictions are then used in the same procedure with SOLPS-ITER to cre-
ate the auxiliary outputs (NNpos2D+SOLPS). The predictions on the test set for
the three QoI are shown in Table 8.11 and Figure 8.28G, H, I. Compared to the
NN2D+SOLPS procedure, the NNpos2D model leads to slightly lower median er-
rors for PSOL and also some improvement in the errors of qpeak,ot in the sheath-limited
regime. But the NNpos2D+SOLPS model leads to slightly higher errors for qpeak,ot
in attached and detached conditions. Also in Figure 8.28H it appears that the heat
fluxes in attached and detached conditions are less accurately predicted than with
the NN2D model in Figure 8.28E. Importantly, Figure 8.28H still shows a systematic
shift of the predicted peak heat fluxes in sheath-limited and some attached simula-
tions. Additionally, the heat fluxes in the sheath-limited regime are sometimes also
predicted to low by the NNpos2D+SOLPS approach. Figure 8.30 depicts the same
examples as Figure 8.29 but with the predictions by the NNpos2D model. Clearly
the positional model removed the unnatural random spike patterns from the tem-
perature differences (Figure 8.30F), but because the temperature predictions are
slightly less accurate, the absolute magnitudes of temperature differences and heat
fluxes are still wrong. So while the idea behind the positional model works, the low
accuracy negates the effects such that this model does not pose an effective alterna-
tive.

Another idea is to use SOLPS-ITER itself to smooth out the mistakes in the temper-
ature gradients. For this the NN2D predictions from the example in Figure 8.29D
are taken, and instead of computing only the depending quantities, the SOLPS-
ITER simulation is started from the network prediction for several timesteps. In
this example the poloidal temperature differences at the outer target are only exactly
recovered after progressing the SOLPS-ITER state for 0.1 s, although the target heat
flux profile is already approaching the ground truth simulation results after 0.01 s
(Figure 8.31). Therefore, this scheme is applied to the whole test set by iterating
the NN2D predictions for 1000 timesteps of size 10−5 s (NN2D+1000xSOLPS). This
approach has the disadvantage that it takes more computational time and given the
many necessary iterations 4% of the simulations diverged before reaching this num-
ber of timesteps. In these cases the results from the NN2D+SOLPS model without
forward progression in time are used as a fallback. The results of this approach
on the test set are summarized in Table 8.11 and Figures 8.28J, K, L. Using this
procedure, the errors for all three observables have improved compared to the plain



8.6. SOLPS-ITER IN THE LOOP 159

NN2D+SOLPS model. Specifically for the predictions of qpeak,ot this approach yields
the highest accuracy in all regimes, even surpassing the direct network predictions.
So while this approach serves as a usable remedy it is also partly cheating, because it
requires running SOLPS for extensive periods of times. While the iterations required
are still far lower than what is needed to arrive at the SOLPS-ITER solutions from
scratch, it is unclear how many iterations are required for similar surrogate models
constructed on a different SOLPS-ITER datasets with different numerical settings.

In conclusion: Deriving fluxes from the SOLPS-ITER state variables which are
predicted by a surrogate, leads to mixed results. For the target particle flux this
approach yields similar accuracy as when predicting the particle fluxes directly by
a neural network. In contrast, the heat fluxes derived from model predictions are
often drastically less accurate then the heat fluxes predicted directly by a network.
Especially in the sheath-limited regime, the peak target heat flux is predicted sys-
tematically too large. These errors occur because the local temperature differences
in the simulations are smaller than the accuracy of the network. In detached con-
ditions with stronger temperature gradients, the derived fluxes are more precise.
To derive the fluxes from the surrogate predictions, the SOLPS-ITER code can be
used. Running SOLPS-ITER for multiple iterations starting from the surrogate pre-
dictions provides the most accurate predictions. But this comes with a decrease in
the computational advantage gained by the surrogate model.
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8.7 Towards Physics Informed Neural Networks
Another idea to increase the reliability of the temperature gradients in the neural
network predictions is to train a network to explicitly conserve them. This can be
achieved by adding additional terms in the loss function during network training.
The NN2D model is trained solely with the mean absolute error as loss (Equation
8.1). This loss (but also all other standard loss functions) forces the network to
predict temperatures close to the temperatures in the simulations. But for the loss
the predictions errors are calculated independently for each location, so it is indiffer-
ent to any spatial correlations in the temperatures. The loss function can be easily
modified to include additional terms (Equation 8.2). This modified loss contains
two extra terms which correspond to the mean absolute error between the predicted
and simulated temperature differences between neighbouring grid cells. Two scaling
factors are included, which can be chosen freely to modify the strength of these ad-
ditional loss terms in comparison to the mean absolute error. α scales the influence
of the poloidal temperature differences and β the strength of the radial tempera-
ture differences. Equation 8.2 is meant to highlight the idea behind these extra
loss terms. In practice the implementation of this loss is slightly more complicated,
because in the complex SOLPS-ITER grid geometry the i-th and i+1-th row of grid
cells are not always adjacent. So the implementation of the loss needs to perform
the correct jumps at the correct places, such that the temperature differences are
always calculated between neighbouring grid cells.

Another concern arises because the temperatures are scaled with the quantile trans-
formation functions independently in each grid cell prior to training. Since the
loss is applied on the scaled temperatures, it will force the network to preserve the
temperature differences in this scaled space. Because the backtransformation to
eV-scale is non-linear and different for each grid cell, the temperature gradients are
not necessarily conserved after this transformation. But inspection of the quantile
transformation functions for neighbouring grid cells shows that these are similar
because neighbouring grid cells have similar temperature statistics. So even though
the backtransformation to eV-scale might distort the temperature gradients a little,
the modified loss might still work sufficiently well.
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Therefore, several versions of the NN2D network model were trained with the mod-
ified loss function (Equation 8.2) to predict the temperatures. The versions differ
in the chosen values for α and β, the chosen learning rates and the initial network
weights. In half of the attempts, the network training is started from scratch and
in the other half from a version of the NN2D network pretrained solely with the
standard MAE (Equation 8.1) loss. But none of these attempts brought the hoped
improvements. Figure 8.32 depicts the mean absolute errors of the poloidal tem-
perature difference and of the temperature at the outer target separatrix. For low





Chapter 9

Applications of the surrogate
model

The focus in this thesis lies in exploring and developing methods for the creation of
surrogate models of the SOL. While the developed surrogate models are primarily
proof-of-concepts, compared with the alternative SOL models which are currently
available (Section 1.4) already these surrogate models could prove useful. Therefore,
the aim of this chapter is to showcase and test some of the applications of this
surrogate model. This includes specifically an analysis what physical predictions
are made by this model, which will answer the question which effects are included
in the fluid neutral dataset.

9.1 Inverse application
As introduced in Section 2.5, the strength of cross-field transport is not treated
self-consistently in SOL transport simulations but values for effective transport co-
efficients need to be provided by the modeler. In SOL modeling the most common
approach is to take experimental measurements of the plasma at the outer midplane
and then vary the transport coefficients until the simulation results match the ex-
perimental profiles [84]. Solving this inverse problem can be drastically simplified
with a surrogate model as developed here. Because the surrogate model takes the
transport coefficients as input and provides the resulting plasma profiles orders of
magnitudes faster than simulations, it is possible to try out many combinations of
values for the transport coefficients. Especially since the neural network can be exe-
cuted on a GPU which allows processing of many inputs at once. Alternatively since
neural networks are end-to-end differentiable and build on frameworks with auto-
matic differentiation (e.g. PyTorch, TensorFlow, JAX), one can use any gradient
based optimization algorithm to optimize the transport coefficients. The optimiza-
tion algorithm can then be tasked to find the transport coefficients which minimize
the difference between the model output and a predefined profile.

To demonstrate these two approaches the developed surrogate model for the tem-
perature (NN2D-Te) was used to make a prediction for the temperature profile at
the outer midplane. Then both approaches are applied to try and recover the trans-
port coefficients used in this initial prediction. In both approaches this comes down
to finding the transport coefficients that minimize the mean absolute error between
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9.2 Surrogate initializer
The analysis in Section 8.4 has shown that the accuracy of the surrogate model
could be further increased by an inclusion of more simulations. Especially for future
surrogate models that include more computationally expensive higher fidelity simu-
lations it would be beneficial if the compute time of each additional simulation could
be minimized. Since SOLPS-ITER simulations iterate over a (pseudo-)timestep un-
til a convergence of the plasma properties is reached, the simulation runtime could
potentially be reduced if the surrogate model prediction is used as the initial plasma
state in the simulations. But given the findings in Section 5 that apparently ”closer”
initial plasma states lead to a higher likelihood of simulations to diverge, it is not
guaranteed that using the surrogate prediction as initial state leads to shorter simu-
lation runtimes. In Section 8.6 SOLPS-ITER was started from surrogate predictions
and it appeared that the simulations approach the converged results faster than was
initially necessary for these simulations.

To test this procedure further 512 points are randomly distributed in the same
8 dimensional input parameter space as the training data (see Section 6). For each
parameter configuration two simulations are started for a maximum of 105 timesteps.
One from the default initial state with uniform densities and temperatures in the
whole domain and one from the prediction by the NN2D surrogate models that
include all state variables (Section 8.6). As expected this leads to mixed results.
Figure 9.2 shows the temporal progression of electron density at the outer midplane
separatrix in four examplary cases, that depict the possible outcomes. In Figure
9.2A the predicted density by the surrogate model is very close to the final density
that is approached by the simulation starting from the uniform state. But the simu-
lation started from the surrogate prediction diverges and yields no result. In Figure
9.2B both simulations converge to the same upstream density. Since the surrogate
prediction was already very close to this density, this is reached much faster than in
the simulation started from the uniform state. In Figure 9.2C only the simulation
started from the surrogate prediction obtains a result, while the simulation started
from the uniform state diverges. In Figure 9.2D both simulations seem to approach
converged conditions (the actual convergence metrics are not yet fulfilled) but with
different upstream densities. It is likely that with more strict convergence metrics
only one of the solutions proves valid or that both will converge to a common so-
lution provided more runtime. More testing and analysis is required to determine
what properties a surrogate based initial state needs to fulfill such that it leads to
consistently faster SOLPS-ITER simulations.
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AUG JET ITER DEMO
R 1.6m 2.9m 6.2m 9.1m
B 2.5T 2.5T 5.3T 5.7T
Pin 10.7MW 14MW 100MW 154.7MW
nGW 1.44 · 1020 1/m3 9.82 · 1019 1/m3 1.19 · 1020 1/m3 7.39 · 1019 1/m3

Table 9.1: Input parameters of the surrogate model R, B and Pin used to represent the
four tokamaks in the parameter scan. Thes parameter values as well as the Greenwald
densities nGW [32] are taken from Table 2 in [73]. Pin describes the expected power
entering the domain modeled in SOLPS-ITER and the surrogate model.

Surrogate predictions are performed for all possible combinations of the two gas
puffs values, which results to 40000 scenarios for each tokamak.

The results of these parameter scans are summarized in Figures 9.3 (AUG), 9.4
(JET), 9.5 (ITER), 9.6 (DEMO). The key upstream plasma quantities are the elec-
tron density ne,omp and nitrogen concentration cN,omp at the outer midplane separa-
trix because these are the limiting condition what can be tolerated for the confined
plasma. The nitrogen impurity concentration is calculated by dividing the summed
up densities of all nitrogen ions and neutral gas particles by the deuterium ion den-
sity cN =

nN+n
N++...+n

N7+

n
D+

. To assess which criteria for detachment and safe divertor
operation are fulfilled at the outer target, the electron temperature outside the sep-
aratrix Te,ot, the peak heat flux qpeak,ot and the integrated deuterium ion flux ΓD+,ot

are inspected.

For all tokamaks the parameter scans show similar patterns. In all four tokamaks
a large part of the parameter space in the bottom left corner, which corresponds
to low gas puff values, is in the sheath-limited regime. There the plasma density is
low (Figures 9.3-9.6A) and the temperatures at the outer target very high (Figures
9.3-9.6C). The orange and red lines in Figures 9.3-9.6A-E highlight the transition
into the sheath-limited and cold core regimes based on the classification introduced
in Section 7.4. As indicated by the lines, only a narrow band of gas puff values
lies in the attached or detached conditions. For ITER and DEMO, the criterion
for separating sheath-limited from attached cases shows that some gas puff values
inside the otherwise sheath-limited domain show strong enough temperature gradi-
ents that the classification would rule them as attached although the outer target
temperatures are still above 1000 eV (bottom left in Figures 9.5,9.6C). Therefore,
it is likely that a stricter criterion (e.g. Te,ot/Te,omp < 0.6) would provide a more
accurate split of these two regimes. For AUG and JET, either a very high deuterium
gas puff or a high nitrogen gas puff are enough to bring the SOL into the cold core
regime, which is seen as large area above and to the right of the red line in Figures
9.3,9.4A-E. For ITER and DEMO, the same can expected but necessary deuterium
gas puffs to achieve the cold core regime are beyond the tested range. Therefore, the
cold core regime is only obtained in ITER for a slim region of very high nitrogen gas
puffs > 8 · 1022 atoms/s and in the top right corner where both gas puffs are large
(Figure 9.5A-E). In DEMO the regime is only obtained in this top right corner with
large gas puffs (Figure 9.6A-E). The attached and detached scenarios lie in a narrow
band that stretches from the bottom right to the top left (Figures 9.3-9.6A-E).
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But in this band only the lower right part constitute desirable plasma scenarios as in
the top left section the plasma contains more nitrogen particles than deuterium ions
cN > 1. For ITER the expected tolerable nitrogen concentration at the separatrix
to obtain the design goal of Q > 10 lies below 1% (assuming a beryllium first wall)
[200]. But a complete assessment of allowed impurity concentrations needs to con-
sider the sputtering effects of the impurities at the divertor and wall materials [207].
To highlight the reasonable range of impurity concentrations, in Figures 9.3-9.6A-E
the scenarios with upstream nitrogen concentrations of 0.1% and 5% are marked by
grey and black points. It shows that scenarios with similar nitrogen concentration
lie on almost diagonal lines. Moving from one scenario to another on such a line
corresponds to changes in the plasma density or neutral particle content. Another
common feature between all tokamaks is that inside the band of attached and de-
tached scenarios the target electron temperature rises at the top right corner where
the transition from a primarily deuterium plasma to a nitrogen dominated plasma
occurs (Figures 9.3-9.6C).

From these parameter scans, scenarios with constant upstream nitrogen concen-
tration can be extracted. These constitute density scans controlled by the gas puff
values. The extracted scans only consider scenarios with Te,ot/Te,omp < 0.6 and
Te,omp > 10 eV to stay solely in the attached and detached regimes. The resulting
scans for each tokamak are shown in the Figures 9.3-9.6F-J. For all tokamaks a clear
rollover of the ion particle flux to the outer target is seen (Figures 9.3-9.6F). Across
all tokamaks the upstream density at which the rollover occurs decreases with in-
creasing impurity concentration. For a given impurity concentration the rollover
occurs in each tokamak at a different plasma density. The obtained decrease in
deuterium ion flux after the rollover is different for each tokamak. In AUG and JET
also for the lowest impurity concentration shown here cN,omp = 0.1% the deuterium
ion flux to the outer target can be decreased to less than 10% of its maximum
value (Figures 9.3-9.4F), while for ITER and DEMO the reduction at the maximum
density only reaches ≈ 80% of the maximum value (Figures 9.5-9.6F). It is very
likely that a higher reduction would be achieved at higher plasma densities. These
densities are not seen for ITER and DEMO because the attached/detached regimes
at low impurity concentration extend beyond the tested maximum deuterium gas
puff of 1024 atoms/s (Figures 9.5-9.6B). Therefore, the tested density range could
be extended for ITER and DEMO, while for AUG and JET the maximum density
is given at all impurity concentrations by the transition into the cold core regime.
The predictions for all tokamaks have in common that at some point the upstream
density stagnates and does not further increase with increasing gas puffs. At some
point the upstream density then even starts to decrease. This phenomena is seen
also in other SOLPS simulations [131], [200]. For JET, ITER and DEMO this stag-
nation only occurs in deeper detachment after the ion flux rollover. For ITER and
DEMO it can thus only be seen in the scenarios with higher impurity concentration.
Interestingly, this stagnation of the upstream density happens in AUG directly af-
ter the rollover (Figure 9.3F). For cN,omp = 0.1% and cN,omp = 0.2% there is thus
only a small period of increasing density after the maximum target ion flux before
the density stagnates. But for higher impurity concentrations the rollover occurs as
a roll backwards. Once the maximum target ion flux is reached, the density first
decreases a little and then stagnates until at a later stage it starts to decrease again.
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Such a behaviour is not normally seen and further analysis is necessary to explore
the mechanisms behind it.

For all tokamaks, the peak heat flux at the outer target qpeak,ot stays constant at
first and then decreases after the rollover of the target ion flux (Figures 9.3-9.4G).
For AUG and ITER the safe level of 10MW/m2 can be reached for all displayed im-
purity concentrations (Figures 9.3G, 9.5G). For lower impurity concentrations this
requires higher densities. For JET the target heat fluxes are always below the safe
level (Figures 9.4G). In all cases except for JET, the heat fluxes decrease rather
monotonously after the rollover. For lower nitrogen concentrations in JET, the heat
fluxes decrease directly after the rollover, but afterwards remain constant and even
slightly increase for a range of densities (e.g blue and orange curves in Figures 9.4G).
This occurs because in these cases the location of the peak heat flux changes from
slightly outside the separatrix to the lower edge of the target in the PFR (see Section
7.5). It is questionable whether the heat flux values at this boundary are reliable,
but since these are the peak values anywhere on the target in these simulations, the
simulations remain below the safe limit. For DEMO this limit is only achieved for
nitrogen concentrations above 2% (Figure 9.6G). For lower impurity concentrations
this can likely be achieved if the deuterium gas puff would be increased beyond the
range tested here.

For all tokamaks, the temperatures at the outer target and the outer midplane
decrease with increasing the upstream density and later in deep detachment also
with decreasing plasma density (Figures 9.3-9.6H, I). In all tokamaks, the func-
tional dependence between the plasma temperature at the target on the upstream
density changes strongly at the point of particle flux rollover. After the rollover,
the target temperature decreases with a higher gradient than before the rollover.
In AUG the functional relation of the temperatures at the outer midplane and the
outer target on the density are very similar (Figure 9.3H, I). Therefore, the decrease
in target temperature is likely stemming majorly from the decrease in upstream
temperatures. Both in AUG as in JET, the power crossing the separatrix stays
only constant until the particle flux rollover occurs (Figures 9.3-9.4J). After that
PSOL decreases continuously down to less than 15% of the initial values. For ITER
and DEMO (Figures 9.5-9.6J), the power crossing the separatrix shows a similar
dependence, but the decrease is a lot less significant and PSOL stays above 90% of
the initial values. Only when the deep detachment is reached, where the upstream
densities decrease, also PSOL decreases strongly.

In contrast to other reduced models, the observations characterizing the plasma
states in the previous figures are not just scalar values, but behind each one is a
full 2D prediction of the corresponding plasma state in the SOL. Figure 9.7 de-
picts the SOL plasma profiles of the JET density scan with cN,omp = 0.1% and
Dcore = 1020 atoms/s. Each row depicts the plasma profiles corresponding to the
marked position in the density scan on the left. At low upstream density, the plasma
density in the whole domain is low and consequently the plasma temperature is high.
As expected, the inner target detaches earlier. At maximum deuterium ion flux to
the outer target, the temperature in the SOL close to the inner target has already
decreased and the electron density in front of the inner target is elevated.
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At the far-SOL boundary above the inner target the nitrogen concentration is in-
creased. While the neutral gas densities increase close to the target, the deuterium
neutral density inside the confined flux tubes has decreased compared to the low
density case. Increasing the plasma density further beyond the rollover leads to
further decreases in the plasma temperature in the SOL, most notably close to the
targets. Also the neutral density increases and extends further towards the separa-
trix. Due to the unphysical behaviour of the fluid neutrals to stick to the flux tubes,
the detachment of the electron temperatures starts at the outside of the divertor
target and grows inwards, while in experiments it is usually the other way around.
At the maximum upstream electron density, the neutral densities on the open field
lines are high but inside the confined core region still at minimum values. Only
in the final steps when the electron density starts to decrease, the neutral gas also
enters the confined plasma.

In Figures 9.3-9.6 the minimal value for the deuterium ion input at the core bound-
ary was chosen. The same analysis was repeated with high deuterium core fueling.
To select appropriate values for each tokamak, the parameter scans are searched
for the lowest deuterium gas puff that by itself (Npuff = 1018 atoms/s) reaches the
condition Te,ot/Te,omp < 0.6. These values (marked as stars on the x-axis in Figures
9.3-9.6A) are taken for the high ion influx Dcore. Figures which summarize the model
results with high core fueling are given in Appendix A.5.

The results of the gas puff scans both with low and high core fueling are now used
to deduce the minimum upstream impurity concentrations and densities which are
necessary to achieve rollover. Here the rollover is defined as the maximum integrated
deuterium ion flux towards the outer target. This definition does not take into ac-
count whether the target heat flux or temperature fulfill any safety constraints. The
results are presented in Figure 9.8. It shows also an identical parameter scan with
50% increased input power compared to the values provided in Table 9.1. In all toka-
maks, the difference between low or high core fueling is small. The jump towards
higher densities for high impurity concentrations in ITER and DEMO is caused by
a flat top phase experienced in these tokamaks at rollover (see Figures A.15F and
A.16F). In this phase the ion flux to the outer target stays constant at a high value,
before it starts to decrease at higher densities. Because these flat top phases often
contain a small positive gradient, the maximum target ion flux is often reached at
higher densities at the end of these flat top phases. Thus the rollover detected by
the metric used here is seen at higher densities. Using another metric such as the de-
gree of detachment (DOD) [105], which compares the target ion flux to a quadratic
scaling, the rollover would be detected already at the start of the flat top phase. For
JET a comparison with the experimental fit cN,div = 1.245

(︁ ne,omp

10−19 m−3

)︁−2.43 from [74]
is presented as a reference. The fit is only shown inside the range of densities seen
in the experimental shots underlying this fit (2.2 − 3.5) · 1019 m−3. The empirical
impurity concentration needs to be scaled by a factor 0.15 to match the results of
the surrogate model. This can be partially because the empirical scaling predicts
the impurity concentration in the divertor and not at the outer midplane. Never-
theless, similar discrepancies between existing scaling laws or simulations and the
experimental results are common [74].
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In conclusion, this section demonstrates how the developed surrogate models can be
employed to model the conditions in the scrape-off layer across several tokamaks.
With these models it was simple to derive operational constraints for the different
tokamaks in the form of the necessary upstream density and nitrogen concentration.
Doing the same by simulations would have required extensive simulations studies.
Although the models are based on reduced fidelity simulations, the predicted nitro-
gen concentrations show the same functional trends as seen in experimental mea-
surements. The discrepancy is on a similar level as predictions made by analytical
scaling laws. But in comparison to simple analytical derivations, the surrogate mod-
els offer the full two dimensional output, which allows for more applications.
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Chapter 10

Transfer learning

The models constructed in the previous sections relied on an extensive database of
reduced fidelity simulations (Section 6). The validity of these models is constrained
by the validity of these underlying simulations. In this section we compare the
model to higher fidelity simulations, assess its deviations and try methods to miti-
gate those. For simplicity this relies again only on the model part for the electron
temperature because with the modular model setup all other plasma properties can
be included later.

A group of existing Q=10 baseline neon-seeded simulations from the ITER IMAS
database was selected as higher fidelity simulations. These simulations were already
presented in [58], [131], [200] and are called ITER simulations in the following. The
shot numbers in the IMAS database of all the ITER simulations used here can be
found in the Appendix in Table A.4. These ITER simulations differ in many ways
from the simulation setup used in the fluid neutral database here. While the de-
veloped simulation database contains cases of ITER-like major radius, these rely
on JET wall and magnetic field geometry. The ITER simulations have the correct
ITER F57 wall geometry [125] and magnetic equilibrium with a full tungsten diver-
tor and beryllium as first wall material. It was assumed that the divertor is fully
covered in eroded beryllium, therefore the targets are treated as beryllium. The
wall materials affect only the boundary conditions as no erosion was considered in
the simulations. Additionally, the ITER simulations were conducted with a kinetic
neutral model and corresponding implementation of gas puffs and particle pumps,
follow stricter convergence metrics, use neon instead of nitrogen as impurity seeding
and contain helium ions in the plasma. In the ITER simulations only three scalar
parameters are independently varied: the input power, the deuterium gas puff and
the neon gas puff. While the helium ion inflow is also varied it is perfectly correlated
with the input power. As can be seen in Table 1 of [131], these simulations cover a
variation of neon concentrations at 100MW input power and a variation of power
at fixed neon concentration. Although the ITER baseline scenario is an H-mode,
these simulations contain no H-Mode pedestal but instead assume spatially constant
anomalous transport (D⊥ = 0.3m2/s, χ⊥ = 1.0m2/s).

If we assume the neon puffing rate can be translated one-to-one to a nitrogen puffing
rate, then all ITER simulations lie inside the parameter space covered by the models
trained on the fluid neutral dataset. Therefore, the previously trained NN2D model
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can be used to make predictions for the ITER scenario. Figure 10.1A depicts the
predicted electron temperatures at the outer target at the separatrix for the parame-
ters of the ITER simulations (R = 6.2m, B = 5.3T, D⊥ = 0.3m2/s, χ⊥ = 1.0m2/s,
Dcore = 9.1 · 1021 atoms/s, Pin = 100MW) and all possible combinations of deu-
terium and nitrogen gas puff. For comparison the corresponding temperatures in
the ITER simulations at 100MW input power are depicted as markers on top (ni-
trogen puffing rate equal to neon puffing rate). It is apparent that in all cases the
surrogate model predicts target temperatures higher than in the ITER simulations.
Figure 10.1B compares the model predictions to the ITER simulations for varying
deuterium gas puff and fixed nitrogen/neon puff of 1020 atoms/s. For low deuterium
gas puff, the surrogate predicts a sheath-limited regime with target temperatures
identical to the outer midplane. For high gas puffs, the upstream temperature stays
relatively constant between 100−200 eV while the target temperature drops first to
10 eV and then further decreases. In all cases the temperatures at the target in the
corresponding ITER simulations are lower, but it appears that these temperature
deviations are mostly a shift of the same patterns to lower gas puff values.

The high fidelity simulations have a different neutral model, gas puff implemen-
tation and neon instead of nitrogen. To reduce the deviations the gas puff values
which are used as inputs in the surrogate model can be determined by an effective
scaling. This effective scaling tries to compensate not only the change in impurity
species but the combined effect of all the changes. Similar approaches are used
when comparing results from different simulation codes [208]. To do this, the ITER
simulations are randomly split into a set of 62 training simulations and 16 test
simulations. Different scaling factors for the gas puffs are tested and the optimal
values found by minimizing the median absolute error of the temperatures at the
outer target separatrix on the training set. The optimal scaling is found to be
ΓD,surr = 100.9ΓD,ITER ΓN,surr = 100.3ΓNe,ITER. Applying these scaling factors cor-
responds to shifting the surrogate predictions in the gas puff space as depicted in
Figure 10.1C. There the gas puff values given on the axis describe the values of the
ITER simulations. Outside of the dashed lines the surrogate model is extrapolating
because the input gas puffs to the neural network are larger than the maximum val-
ues seen in the fluid neutral dataset. But this does not seem to cause any problems
and the agreement between the surrogate prediction and the ITER simulations has
drastically improved (Figure 10.1D). But such a simple correction cannot address
all differences, and including more observables (e.g. ion densities) besides the tem-
perature would show that one cannot find a consistent scaling which matches all
observables.

Even considering just the electron temperature, it is impossible to find a gas puff
scaling that achieves agreement everywhere in the domain at once, but rather only
key locations can be optimized. Figure 10.2A depicts the electron temperatures in
one ITER simulation from the test set. The corresponding temperature prediction
by the surrogate with the applied gas puff scaling relies on the JET geometry (Figure
10.2B) but can be reshaped into the correct ITER geometry with simple geometric
transformations (Figure 10.2C). Comparing Figure 10.2A to Figure 10.2C demon-
strates that although the gas puff rescaling reduced the discrepancies at the divertor
targets there are still large discrepancies at other locations in the domain. Due to
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ing procedure and train NN2D models from scratch. For the NN2D models trained
from scratch the hyperparameters are optimized via random searches similar as in
Table 8.4. Using all available training simulations both approaches produce accu-
rate temperature predictions at the outer target for cases from the test set across
varying degrees of detachment (Figure 10.3A-D). Using only five training simula-
tions both approaches still manage to capture the changes in target profiles with
varying degrees of detachment but the deviations to the simulations have visibly
increased (Figure 10.3E-H). Using the same fixed test set, the median errors of the
two approaches are computed. Similar as in Section 8.4 the test errors continuously
decrease with increasing number of training simulations (Figure 10.4). It appears
that for higher number of training simulations the model trained from scratch is
slightly more accurate but the differences are small. What is definitely not seen
is that the transfer learning approach allows a reduction in the number of training
simulations. However, it has to be considered that the test set is rather small so the
error estimates come with larger uncertainties. The median absolute test errors ob-
tained here are far lower than that obtained with any number of simulations on the
fluid neutral dataset (Section 8.4). This is possible because the ITER simulations
cover a much smaller parameter space with only little variations in the resulting
temperatures. While the NN2D networks trained on the fluid neutral dataset in
Section 8.3 required more than eight hidden layers, the best network trained from
scratch on these ITER simulations uses only two hidden layers (see Figure A.17).
This is another indication how much ”easier” it is to learn the relations in the small
ITER dataset.

The model trained from scratch has only three input parameters (Pin,ΓD,ΓNe) be-
cause only these three parameters are varied in the ITER simulations. The transfer
learned model, however, still has the same eight input parameters which were varied
in the fluid neutral dataset. In principle the transfer learned model can still respond
to variations in all of these eight parameters. While the model response to variations
in Pin,ΓD,ΓNe is largely overwritten by the new data (as seen in Figure 10.1), it is
unclear how this affects the model response to the other five input parameters. Be-
cause no high fidelity simulations are available for such variations, there exists not
test data to verify the model predictions but they can only be checked for plausibility.

As an example application, this capability of the transfer learned model is used
here to determine how an uncertainty in the assumptions of the cross-field trans-
port coefficients affects to the temperatures at the outer target. For this 100
pairs of cross-field transport coefficients are sampled from normal distributions with
means µD⊥

= 0.3m2/s, µχ⊥
= 1.0m2/s and 5% standard deviation. These are

then used to run the same deuterium gas puff scan as in Figure 10.1F with fixed
ΓNe = 1020 atoms/s. Figure 10.5 shows the impacts this has on the temperatures at
the outer target and the outer midplane. At the outer midplane this changes mostly
the temperatures inside the core plasma while the temperatures at the separatrix
are only slightly affected. At the outer target the effects are greatest in the range
ΓD ∈ [0.5, 1.0] · 1023 atoms/s where this causes variations in the peak temperature
at the target by more than 5 eV. For more detached conditions the effect on the
absolute temperature values at the target is a lot smaller. This behaviour seems
plausible because in detached conditions the temperature at the target is mainly
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Conclusions

This thesis explored the possibility to develop a surrogate model for the tokamak
scrape-off layer plasma.

To this end, a database of SOLPS-ITER simulations with a reduced fidelity fluid
neutral model was created. The database varied eight tokamak parameters spanning
several reactors and physical regimes. Crucially the dataset contains a size scaling
to encompass scenarios mimicking existing as well as future larger tokamaks. It was
discovered that the key difficulty in creating such a dataset lies in finding a suitable
numerical configuration that yields stable simulations across the whole parameter
space. For the simulation case in this study, an acceptable level of stability in the
simulations was reached and recommendations for the choice of certain numerical
settings can be made. But these recommendations are entirely based on trial and
error regarding the simulation setup at hand. It remains unknown to which degree
these recommendations still hold for SOLPS-ITER simulations with different un-
derlying physics models. It has shown that it is unlikely that one ideal numerical
configuration can be found. Future studies should employ adaptive numerical con-
figurations which change according to the variations in the input parameters and the
plasma conditions inside the simulations. Although the fluid neutral model intro-
duces some artifacts not seen in simulations with kinetic neutrals, the dataset still
reproduces general trends and effects across all scrape-off layer regimes including a
rollover of the particle flux at the divertor targets.

Based on this data, Gradient Boosted Regression Tree and neural network based
models have been trained and evaluated. While both machine learning methods
were able to reproduce the results obtained in the simulations, the neural network
models achieved higher accuracies in all tasks and are hence a better candidate
for a surrogate model. Two general neural network types based on the fully con-
nected feedforward architecture were evaluated. The usual setup where the output
layer contains a separate neuron for each location and neural network architectures
which treat the location as additional input and provide scalar outputs. The latter
is similar in design to the networks employed in physics-informed neural networks.
While predicting only the temperatures at the one dimensional divertor target, both
network types are able to obtain similar levels of accuracy. When tasked with provid-
ing an output for the whole two dimensional simulation domain, the latter network
type showed inferior accuracy. However, this might come from the smaller hyperpa-
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rameter optimization conducted for these networks as they have drastically higher
training times. Training the former neural network type to output the electron
temperature either solely at the divertor target or in the whole simulation domain,
obtains similar levels of accuracy. A similar comparison was made between a surro-
gate model constructed of independent networks for different plasma properties and
a model that relies on a single network for plasma temperatures and particle den-
sities. Here the model with multiple independent networks obtained slightly higher
accuracy. Although the differences are small and more advanced or fine tuned net-
work architectures might make both solutions comparable. Nevertheless, the current
recommendation for a surrogate model is to train independent networks which each
predict one plasma property in the whole simulation domain.

For each of the independent networks, which are trained to predict only one plasma
parameter, very similar network hyperparameters are optimal. The fully connected
networks consist of around 10 hidden layers with each around 1000 neurons with
SELU activations. The networks use no batch normalization and are trained with
small learning rates (≤ 10−4) and small L2 regularization (10−5 − 10−4). Similar
hyperparameters were also the optimum for the networks trained to predict the elec-
tron temperature only at the divertor target. The optimal network hyperparameters
change when smaller numbers of simulations are used as training data. For smaller
datasets the networks with higher L2 regularizer and learning rate achieve the best
possibly accuracy. When a neural network was trained on a small separate dataset
of higher fidelity simulations from the ITER database that span a much smaller pa-
rameter space, the highest accuracy could be achieved with a neural network with
only 2 hidden layers. This shows that the optimal neural network architecture and
hyperparameters depend less on the considered plasma observable or output dimen-
sionality. More important are the dimensionality of the input parameter space, the
variability in the results and the number of training simulations.

Tests where conducted in training surrogate models with varying number of train-
ing simulations both on the fluid neutral SOLPS-ITER dataset as well as the set
of higher fidelity simulations from the ITER database. It was found that the ex-
tend of the parameter space and the variability of the simulation results drastically
determine the maximum accuracy that is achievable with a surrogate model for a
given number of training simulations. On the fluid neutral dataset the accuracy
decreased drastically below 1000 training simulations. Above 1000 simulations the
median errors estimated on the test set of the predicted temperatures at the outer
target are 1.6 eV and 24% which decrease using all available training simulations to
1.0 eV and 13%. Models trained on the smaller ITER simulations are able to obtain
median test errors of less than 0.1 eV and 5% at the outer target already with only
60 simulations as training data. This shows that for designated applications it is
likely worthwhile to decrease the scope of the developed surrogate models in favor
of higher accuracy. Transfer learning from the surrogate model trained on the fluid
neutral dataset to the ITER dataset has shown to yield no improvements compared
to developing a model on the ITER dataset from scratch. This might change when
more complex higher fidelity datasets or more advanced neural network architec-
tures are used.
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The developed surrogate models struggle with preserving the spatial gradients of
plasma temperatures. This affects only regimes where the spatial temperature differ-
ences are small in comparison to the overall scale of values. Deriving heat fluxes from
the surrogate outputs in such cases leads to wrong directions and an overestimation
of the absolute values of the heat fluxes. This concerns mostly low density simu-
lations in which the temperature values are beyond the physically possible range.
But also scenarios with reasonably high temperature attached divertor conditions
can be affected. So far no satisfactory solution to this issue has been found. The
usage of designated models, which are trained to predict the heat fluxes themselves,
avoids these errors. However, in that case the heat fluxes are not consistent with the
temperatures and other plasma properties predicted by the surrogate model. The
derived particle fluxes in all regimes and the derived heat fluxes in simulations in
detached conditions are less affected by this issue.

Nevertheless, it was demonstrated that the developed surrogate models can be em-
ployed to make predictions for the conditions in the scrape-off layer across several
tokamaks. This was used to predict the plasma density and impurity concentrations
necessary for detachment in ASDEX Upgrade, JET, ITER and DEMO. Comparison
with experimental results from JET shows that correct functional relations can be
recovered but the estimated impurity concentrations are almost an order of magni-
tude too low. This discrepancy is on a similar level as predictions made by analytical
scaling laws. Thus the surrogate models can already be employed in fast scoping
studies to determine possible operating spaces for future reactors like DEMO or
SPARC.

The key to bring surrogate models of the tokamak scrape-off layer towards state-
of-the-art accuracy and validity lies in decreasing the necessary number of training
simulations and accelerating each individual simulation.

Specifically suited to reduce the number of necessary training simulations are tech-
niques from the class of active learning [157]. Such approaches iterate between
training the surrogate and generating new simulation data, while the parameters
of new simulations are chosen based on an estimated improvement of the surrogate
error [87], [209]. The work done in this thesis can act as a benchmark for such
studies because sophisticated active learning schemes are only worthwhile if they
can decrease the necessary number of simulations significantly.

Besides trying to reduce the overall number of training simulations, one can also
employ mixed fidelity approaches which train a model on a mixture of simulations
with varying physical and computational complexity. The goal is to decrease the
number of computationally demanding simulations while still providing a sufficient
exploration of the parameter space through the faster simulations. Candidate levels
of complexity are variations in the neutral models (”Advanced Fluid Neutral” [143],
[144], [145], fully kinetic EIRENE neutrals [140]) and inclusion of plasma cross-field
drifts. But also simpler one dimensional models like the DIV1D code [75] could prove
useful. The main challenge is finding, training and optimizing network architectures



190 CHAPTER 11. CONCLUSIONS

that are able to leverage and balance the diverse set of training data generated by
the different fidelity simulations. These mixed fidelity approaches should ultimately
go beyond just simulation data and include experimental data. While this can be
seen as highest level of fidelity, it comes with uncertainties in the measurements,
hidden biases and sparsity of the available measured signals.

To aid the process of creating a database of scrape-off layer simulations, more re-
search should be conducted to find adaptive algorithms that change the numerical
parameters of a simulation automatically. This should also include more research
into how the already developed surrogate can be used to provide initial plasma states
for consecutive simulations.

Going even further a surrogate model could be developed without running any sim-
ulations in the first place by using Physics Informed Neural Networks (PINN) [210].
In these models the governing equations (here the Braginskii equations) are included
in the loss function of the network. During training the networks try to find an ap-
proximate solution to the equations. But training such models comes with its own
technical challenges [203], [211].

In conclusion, this thesis has opened several pathways for following research to
bring surrogate models for the scrape-off layer to their full capabilities.



Chapter 12

Acknowledgements

This work has been carried out within the framework of the EUROfusion Con-
sortium, funded by the European Union via the Euratom Research and Training
Programme (Grant Agreement No 101052200 — EUROfusion). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Commission. Neither the European
Union nor the European Commission can be held responsible for them.

The author gratefully acknowledges computing time on the supercomputer JURECA
[212] at Forschungszentrum Jülich under grant no. solsur.

Although this PhD thesis is the product of a single author, it owes its existence to
the enduring support of my colleagues at the Forschungszentrum Jülich, to whom I
owe my sincerest appreciation.

Most of all, I want to thank my supervisor Sven Wiesen for the possibility to con-
duct this project, your constant availability, the motivating spirit and your never
ending willingness to put every available lever into motion for me. Of course my
gratitude goes also to Yunfeng Liang and Sebastijan Brezinsek, for their good advice
and enduring patience, without whom this thesis would not be possible.

I want to express my eternal gratitude to my parents, who have played a pivotal role
in shaping the person I am today. I extend my heartfelt appreciation for their unwa-
vering support, understanding and endless patience through my busiest moments.
Finally, I am grateful to Maja for her love, encouragement and backing throughout
these recent years.

191



192 CHAPTER 12. ACKNOWLEDGEMENTS



Chapter 13

Hardware and software

All simulations are conducted on the batch nodes of JURECA DC [212] with SOLPS-
ITER version 3.0.6 [80], [84]. The analysis and surrogate training is done with
Python version 3.8.5 and the packages numpy 1.18.5 [213], scipy 1.5.2 [214], pandas
1.1.3 [215], [216], matplotlib 3.3.1 [217], scikit-learn 0.23.2 [218] and tensorflow 2.3.1
[169].

To use SOLPS-ITER to compute auxiliary outputs based on surrogate predictions
(as done in Section 8.6) some specific modifications are necessary. While starting
SOLPS-ITER with the option ntim=0 should do so, it was found that for the setup
here the heat fluxes are not recomputed but instead the wrong values are read from
the inputfile. Starting SOLPS-ITER for one timestep ntim=1 had the problem that
the code read the particle fluxes from the inputfile instead of recomputing them. As
workaround therefore with SOLPS-ITER version 3.0.6 the simulation needs to be
first started with ntim=0 and the surrogate provided inputfile and then the resulting
b2fstate can be used as new inputfile to start with ntim=1 and a tiny timestep e.g.
dtim=10−10. Users need to be aware which quantities in the SOLPS-ITER initial
state are actually used by the code and which can be set to zero and to provide all
required quantities via the surrogate. Additionally users should increase the num-
ber of digits used to represent the plasma fields in b2fstati and b2fstate. Only then
smooth restarts and proper computation of auxiliary quantities is achievable. This
can be done by setting ifmt=0 in the B2.5 source code file cfwure.F.

Generative AI models have been used in writing parts of this thesis. For large parts
of the results the first drafts of the text were created by recording an audio dicta-
tion by the author, which was then transcribed using Whisper by OpenAI. In most
parts these first drafts were largely rewritten manually by the author. Additionally
ChatGPT by OpenAI was used for creating text snippets based on keywords and
short texts by the author. These pieces of text have been revised, restructured and
combined with the authors own text passages. Nevertheless, individual sentences in
this work are also unchanged as suggested by ChatGPT. This applies predominantly
to chapter 3 but to a lesser degree also to other chapters.
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Appendix A

Appendix

This appendix contains additional text, Figures and Tables in support of the conclu-
sions drawn in the main text. The material is provided for the sake of completeness
and as reference for the interested reader. All major results are drawn in the main
text, readers are therefore referred to the corresponding sections in the main text.
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A.3 Incorporation of several plasma properties

2D
Te ne nD nN pe

NN2D-all-in-one abs 3.7 1.2e+18 4.4e+14 6.5e+12 1.5e+01
rel 0.07 0.11 0.16 0.14 0.11

NN2D-all-in-one-2 abs 4.3 1.3e+18 5.3e+14 7.3e+12 1.6e+01
rel 0.088 0.13 0.2 0.17 0.13

NN2D-separated abs 3.3 1.1e+18 3.8e+14 5.7e+12 1.4e+01
rel 0.065 0.11 0.15 0.12 0.12

NNpos2D-all-in-one abs 3.7 1.1e+18 4.9e+14 7.6e+12 1.3e+01
rel 0.069 0.11 0.16 0.15 0.11

Table A.1: Median absolute and relative errors of the model predictions on the test
set across the whole 2D domain. The absolute errors are given in the units [Te] = eV,
[ne] = [nD] = [nN ] = m−3,[pe] = Pa.

1D
Te ne nD nN pe

NN2D-all-in-one abs 0.96 3.4e+18 2.1e+18 6.7e+15 6.5
rel 0.13 0.2 0.18 0.28 0.2

NN2D-all-in-one-2 abs 1.2 3.8e+18 2.6e+18 8.3e+15 7.8
rel 0.17 0.26 0.25 0.36 0.25

NN2D-separated abs 0.97 4e+18 2.1e+18 6.3e+15 7.9
rel 0.12 0.25 0.19 0.27 0.24

NNpos2D-all-in-one abs 1.2 4e+18 4.6e+18 1.4e+16 8.4
rel 0.15 0.26 0.33 0.49 0.25

Table A.2: Median absolute and relative errors of the model predictions on the test set
at the 1D outer target. The absolute errors are given in the units [Te] = eV, [ne] = [nD] =
[nN ] = m−3,[pe] = Pa.
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A.4 Predicting the fluid velocities
While the analysis in Section 8.5 showed, that it is beneficial to predict each plasma
property by independent networks of similar architecture, the plasma properties this
analysis was based on have in common that they are strictly positive scalar num-
bers. But beside the densities and the temperatures also also the fluid velocities
are definining variables of the plasma in SOLPS. These velocities can assume either
positive or negative values depending on whether the fluid flow points in the direc-
tion of the magnetic field or in the opposite direction. This allows the network to
make errors not only in the absolute value of the velocity but also in its sign. These
errors should be inspected independently, as summed up in a median absolute error
rate these sign errors might constitute only minor errors ( 200%) compared to the
variation across several orders of magnitude present in the simulations. Addition-
ally the quantile preprocessor might be less suited for the velocities. Therefore tests
were conducted by training NN2D networks for the fluid velocities with varying pre-
processing routines. None describes using the velocities as they are without any
scaling. Quantile uses the standard quantile transformation as explained in Sec-
tion 3.1.5. Symlog applies ui,symlog = sign(ui) · log(1+ |ui|) to each velocity at each
location ui to reduce the scale of the velocity. Symlog2 applies first the same trans-
formation as the Symlog scaling but then additionally applies the standard scaler
(Section 3.1.5) on top ui,symlog2 = (ui,symlog − µ(usymlog))/σ(usymlog). Here the mean
µ and standard deviation σ are calculated independently for each velocity and each
location in the simulation grid. In addition to these tests also an entirely different
approach was taken were one NN2D network was trained to predict the absolute
value of the velocity (of one ion species) while a different network was trained to
predict the signs of the velocities. This network also follows the NN2D architecture
but the last layer is composed of neurons with sigmoid activation functions and is
trained with a binary crossentropy loss. Figure A.12 and Table A.3 compare the
predicted velocities for the deuterium ions on the test set between the different mod-
els. It is clear that the best model in terms of the rate of incorrect signs and the
median absolute errors, is the model that employs to distinct networks for the sign
and the absolute value of the velocity. But the standard NN2D model with quantile
preprocessor is only slightly worse in all metrics. Using either of the symlog based
preprocessors or none at all will yield poorer model accuracy. For simplicity there-
fore the standard NN2D architecture with the quantile transformation is used for
the prediction of velocities in Section 8.6.
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A.5 Detachment scaling
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Database Reference Workflow Date
Pulse Run

122317 3 ITER F57-100-Ne_0.4%-Be0,D_tpt=1.85e23,Ne_tpt=2.20e20 SOLPS4.3 2022-06-10
122318 1 ITER F57-80-Ne_0.4%-Be0,D_tpt=8.65e22,Ne_tpt=6.00e19 SOLPS4.3 2022-06-10
122319 1 ITER F57-80-NF-Ne-Be0,D_tpt=1.20e23,Ne_tpt=9.50e19 SOLPS4.3 2022-06-10
122321 3 ITER F57-120-Ne_0.4%-Be0,D_tpt=5.47e22,Ne_tpt=3.70e19 SOLPS4.3 2022-06-10
122332 3 ITER F57-100-Ne_0.8%-Be0,D_tpt=8.20e22,Ne_tpt=1.20e20 SOLPS4.3 2022-06-10
122388 3 ITER F57-60-Ne_0.4%-Be0,D_tpt=1.45e22,Ne_tpt=3.50e19 SOLPS4.3 2022-06-10
122389 1 ITER F57-60-Ne_0.4%-Be0,D_tpt=1.91e22,Ne_tpt=3.50e19 SOLPS4.3 2022-06-10
122390 1 ITER F57-60-0.4%_Ne-Be0,D_tpt=3.40e22,Ne_tpt=4.00e19 SOLPS4.3 2022-06-10
122391 3 ITER F57-60-Ne_0.4%-Be0,D_tpt=6.10e22,Ne_tpt=5.00e19 SOLPS4.3 2022-06-10
122392 1 ITER F57-60-Ne_0.4%-Be0,D_tpt=8.45e22,Ne_tpt=6.50e19 SOLPS4.3 2022-06-10
122393 1 ITER F57-60-Ne_0.4%-Be0,D_tpt=1.15e23,Ne_tpt=9.00e19 SOLPS4.3 2022-06-10
122394 1 ITER F57-60-Ne_0.4%-Be0,D_tpt=1.59e23,Ne_tpt=1.10e20 SOLPS4.3 2022-06-10
122395 1 ITER F57-120-Ne_0.4%-Be0,D_tpt=2.30e23,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122396 3 ITER F57-100-Ne_0.6%-Be0,D_tpt=1.05e22,Ne_tpt=6.00e19 SOLPS4.3 2022-06-10
122397 3 ITER F57-100-Ne_0.6%-Be0,D_tpt=1.76e22,Ne_tpt=7.00e19 SOLPS4.3 2022-06-10
122398 3 ITER F57-100-Ne_0.6%-Be0,D_tpt=3.10e22,Ne_tpt=7.00e19 SOLPS4.3 2022-06-10
122399 3 ITER F57-100-Ne_0.6%-Be0,D_tpt=4.90e22,Ne_tpt=1.00e20 SOLPS4.3 2022-06-10
122400 6 ITER F57-100-Ne_0.6%-Be0,D_tpt=7.70e22,Ne_tpt=1.00e20 SOLPS-ITER 2022-06-10
122401 6 ITER F57-100-Ne_0.6%-Be0,D_tpt=1.20e23,Ne_tpt=1.20e20 SOLPS-ITER 2022-06-10
122402 3 ITER F57-100-Ne_0.6%-Be0,D_tpt=1.40e23,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122403 3 ITER F57-100-Ne_0.6%-Be0,D_tpt=1.67e23,Ne_tpt=1.20e20 SOLPS4.3 2022-06-10
122404 6 ITER F57-100-Ne_0.6%-Be0,D_tpt=2.10e23,Ne_tpt=2.00e20 SOLPS-ITER 2022-06-10
122405 1 ITER F57-60-Ne_0.4%-Be0,D_tpt=1.00e23,Ne_tpt=9.00e19 SOLPS4.3 2022-06-10
122407 3 ITER F57-100-Ne_0.8%-Be0,D_tpt=4.77e22,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122408 3 ITER F57-100-Ne_0.8%-Be0,D_tpt=1.76e22,Ne_tpt=8.00e19 SOLPS4.3 2022-06-10
122409 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=1.32e23,Ne_tpt=6.50e19 SOLPS4.3 2022-06-10
122410 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=7.50e22,Ne_tpt=5.50e19 SOLPS4.3 2022-06-10
122411 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=6.50e22,Ne_tpt=5.50e19 SOLPS4.3 2022-06-10
122412 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=4.45e22,Ne_tpt=3.00e19 SOLPS4.3 2022-06-10
122413 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=3.40e22,Ne_tpt=4.50e19 SOLPS4.3 2022-06-10
122414 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=2.45e22,Ne_tpt=4.00e19 SOLPS4.3 2022-06-10
122415 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=1.95e23,Ne_tpt=1.00e20 SOLPS4.3 2022-06-10
122416 3 ITER F57-100-Ne_0.3%-Be0,D_tpt=2.60e23,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122419 1 ITER F57-60-Ne_0.4%-Be0,D_tpt=7.48e21,Ne_tpt=3.00e19 SOLPS4.3 2022-06-10
122437 1 ITER F57-080-Ne_0.4%-Be0,D_tpt=1.62e23,Ne_tpt=1.20e20 SOLPS4.3 2022-06-10
122438 1 ITER F57-080-Ne_0.4%-Be0,D_tpt=2.15e23,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122439 3 ITER F57-100-Ne_0.4%-Be0,D_tpt=9.00e22,Ne_tpt=7.00e19 SOLPS4.3 2022-06-10
122463 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=1.21e23,Ne_tpt=2.80e20 SOLPS4.3 2022-06-10
122467 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=2.77e23,Ne_tpt=6.00e20 SOLPS4.3 2022-06-10
122468 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=1.87e23,Ne_tpt=3.50e20 SOLPS4.3 2022-06-10
122469 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=1.38e23,Ne_tpt=3.00e20 SOLPS4.3 2022-06-10
122470 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=9.00e22,Ne_tpt=2.50e20 SOLPS4.3 2022-06-10
122471 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=6.40e22,Ne_tpt=2.20e20 SOLPS4.3 2022-06-10
122472 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=3.75e22,Ne_tpt=2.00e20 SOLPS4.3 2022-06-10
122476 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=2.44e22,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122477 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=1.16e22,Ne_tpt=1.20e20 SOLPS4.3 2022-06-10
122478 3 ITER F57-100-Ne_1.2%-Be0,D_tpt=5.50e21,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122481 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=1.03e23,Ne_tpt=4.40e20 SOLPS4.3 2022-06-10
122483 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=7.80e22,Ne_tpt=4.00e20 SOLPS4.3 2022-06-10
122484 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=1.21e23,Ne_tpt=5.50e20 SOLPS4.3 2022-06-10
122485 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=1.81e23,Ne_tpt=6.00e20 SOLPS4.3 2022-06-10
122496 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=5.54e22,Ne_tpt=3.50e20 SOLPS4.3 2022-06-10
122497 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=3.64e22,Ne_tpt=3.00e20 SOLPS4.3 2022-06-10
122498 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=2.48e22,Ne_tpt=2.5e20 SOLPS4.3 2022-06-10
122506 3 ITER F57-080-Ne_1.2%-Be0,D_tpt=5.90e22,Ne_tpt=2.00e20 SOLPS4.3 2022-06-10
122507 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=2.82e22,Ne_tpt=1.80e20 SOLPS4.3 2022-06-10
122508 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=1.68e22,Ne_tpt=1.70e20 SOLPS4.3 2022-06-10
122509 3 ITER F57-100-Ne_1.8%-Be0,D_tpt=7.50e21,Ne_tpt=1.20e20 SOLPS4.3 2022-06-10
122512 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=4.20e22,Ne_tpt=2.30e20 SOLPS4.3 2022-06-10
122513 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=6.63e22,Ne_tpt=2.70e20 SOLPS4.3 2022-06-10
122514 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=4.00e22,Ne_tpt=1.50e20 SOLPS4.3 2022-06-10
122515 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=2.50e22,Ne_tpt=1.30e20 SOLPS4.3 2022-06-10
122518 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=1.50e22,Ne_tpt=8.00e19 SOLPS4.3 2022-06-10
122519 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=9.50e22,Ne_tpt=3.00e20 SOLPS4.3 2022-06-10
122520 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=1.25e23,Ne_tpt=3.80e20 SOLPS4.3 2022-06-10
122521 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=1.65e23,Ne_tpt=4.00e20 SOLPS4.3 2022-06-10
122522 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=7.50e21,Ne_tpt=1.00e20 SOLPS4.3 2022-06-10
122523 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=3.50e21,Ne_tpt=1.00e20 SOLPS4.3 2022-06-10
122524 1 ITER F57-060-Ne_1.2%-Be0,D_tpt=3.25e22,Ne_tpt=1.10e20 SOLPS4.3 2022-06-10
122535 1 ITER F57-060-Ne_1.2%-Be0,D_tpt=1.90e22,Ne_tpt=1.00e20 SOLPS4.3 2022-06-10
122546 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=3.50e22,Ne_tpt=0.00 SOLPS4.3 2022-06-10
122547 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=8.50e21,Ne_tpt=1.20e20 SOLPS4.3 2022-06-10
122548 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=8.50e22,Ne_tpt=2.20e20 SOLPS4.3 2022-06-10
122549 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=1.12e23,Ne_tpt=2.50e20 SOLPS4.3 2022-06-10
122560 1 ITER F57-060-Ne_1.2%-Be0,D_tpt=1.20e22,Ne_tpt=7.00e19 SOLPS4.3 2022-06-10
122576 1 ITER F57-120-Ne_1.2%-Be0,D_tpt=2.00e23,Ne_tpt=5.60e20 SOLPS4.3 2022-06-10
122584 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=1.47e23,Ne_tpt=2.5e20 SOLPS4.3 2022-06-10
122585 1 ITER F57-080-Ne_1.2%-Be0,D_tpt=1.72e23,Ne_tpt=3.0e20 SOLPS4.3 2022-06-10

Table A.4: Overview of all ITER simulations from the IMAS database used in Chapter
10. In cases where multiple SOLPS runs for a given Pulse number were present on the
ITER file system at the time of retrieval, it cannot be guaranteed that always the run
number given in this table is used but instead potentially older run versions might have
been used.
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