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A B S T R A C T

Objective: To investigate the use of deep learning (DL) T2-weighted turbo spin echo (TSE) imaging sequence with 
deep learning acceleration (T2DL) in prostate MRI regarding the necessity of hyoscine butylbromide (HBB) 
administration for high image quality.
Methods: One hundred twenty consecutive patients divided into four groups (30 for each group) were included in 
this study. All patients received a T2DL (version 2022/23) and a conventional T2 TSE (cT2) sequence on an 
implemented 3 T scanner and software system. Group A received cT2 with HBB compared to T2DL without HBB 
with a field of view (FOV) of 130 mm and group B with a FOV of 160 mm. Group C received both sequences with 
a FOV of 160 mm plus HBB and group D without HBB. Two radiologists independently evaluated all imaging 
datasets in a blinded reading regarding motion, sharpness, noise, and diagnostic confidence. Furthermore, we 
analyzed quantitative parameters by calculating edge rise distance (ERD), signal-to-noise-ratio (SNR), and 
contrast-to-noise-ratio (CNR). Friedman test was used for group comparisons.
Results: Baseline characteristics showed no significant differences between groups A-D. After HBB cT2 showed 
less motion artifacts, more sharpness, and a higher diagnostic confidence than T2DL, though DL sequences had 
significantly lower noise (p < 0.01). Quantitative analysis revealed higher SNR and CNR for T2DL sequences (p 
< 0.01), while edge rise distance (ERD) remained similar. Inter-reader agreement was good to excellent, with 
ICCs ranging from 0.84 to 0.93. T2DL acquisition time was significantly lower than for cT2.
Conclusions: In our study, cT2 sequences with HBB showed superior image quality and diagnostic confidence 
while the T2DL sequence offer promising potential for reducing MRI acquisition times and performed better in 
quantitative measures like SNR and CNR. Additional studies are required to evaluate further adjusted and 
developed DL applications for prostate MRI on upcoming scanner generations and to assess tumor detection 
rates.

Abbreviations: PC, Prostate cancer; DL, Deep Learning; mpMRI, Multiparametric magnetic resonance imaging; EAU, European Association of Urology; PSA, 
Prostate specific antigen; PSAD, Prostate specific antigen density; DCE, Dynamic contrast enhancement; DWI, Diffusion weighted imaging; PI-RADS, Prostate Imaging 
and Reporting Archiving Data System; SNR, Signal-to-noise-ratio; CNR, Contrast-to-noise-ratio; FOV, Field of view; ERD, Edge rise distance; TSE, Turbo spin echo; 
HBB, Hyoscine butylbromide.
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1. Introduction

In the detection and classification of prostate cancer (PC), multi- 
parametric magnetic resonance imaging (mp-MRI) of the prostate 
plays a crucial role in diagnostics [1–4]. Several studies indicate that 
mpMRI identifies more than 90 % of csPCa cases, reinforcing its role in 
targeted biopsy strategies [5]. MpMRI includes a combination of 
anatomical T2-weighted imaging in different orientations and two 
functional MRI sequences: diffusion-weighted imaging (DWI) and dy-
namic contrast-enhanced imaging (DCE). These sequences facilitate a 
standardized evaluation process, adhering to the well-established Pros-
tate Imaging Reporting and Data System (PIRADS v2.1) guidelines [6]. 
T2-weighted imaging (T2w) should be performed in axial, coronal, and 
sagittal planes with high spatial resolution, utilizing TSE sequences and 
a maximum slice thickness of 3 mm without gaps. This results in long 
examination times and makes diagnosis more difficult as it increases the 
risk of movement artifacts and insufficient image quality. Short exami-
nation times are of fundamental importance if MRI is to be widely used, 
for example for indications in screening on a populational level [7–11]. 
There are promising approaches to make T2w- sequences faster and 
endeavours to shorten the protocols in general [12,13]. The introduction 
of novel deep learning (DL) reconstruction methods shows promise in 
reducing examination times while maintaining high image quality and 
reducing motion artifacts [14,15].

Administration of an anti-peristaltic drug prior to the examination 
helps to reduce motion-related artifacts due to movement in surround-
ing structures such as the bladder, rectum, and intestines, which can 
otherwise impair image quality and diagnostic accuracy [16]. Typically, 
hyoscine-N-butyl-bromide (also known as hyoscine butylbromide, HBB, 
scopolamine butylbromide, butylscopolamine) or glucagon are used for 
this purpose. The use of anti-peristaltic medication is recommended by 
several studies and is considered potentially beneficial according to the 
joint guidelines of the European Society of Urogenital Radiology 
(ESUR), the American College of Radiology (ACR), and the AdMeTech 
Foundation (PI-RADS Prostate Imaging – Reporting and Data System: 
2015, Version 2; PI-RADS v2) [6,17]. However, the disadvantages of the 
application must also be considered, in particular the risk of an allergic 
reaction. There are also certain contraindications that make the 
administration of HBB impossible, such as cardiac arrhythmia or an 
increase in intraocular pressure [18].

Therefore, the aim of this prospective study was to analyze whether 
the novel deep learning-accelerated T2 TSE sequence (T2DL) makes the 
administration of HBB superfluous due to its ability to reduce motion 
artifacts. We compared the new technique without anti-peristaltic drug 
to conventional T2 TSE sequences (cT2) in terms of qualitative and 
quantitative imaging parameters.

2. Materials and methods

2.1. Study design and sample

This prospective study was approved by the local institutional review 
board and written informed consent was obtained from all subjects. A 
total of 120 patients from February to October 2023 were included into 
the study and divided into four different groups. The group size of 30 
participants was based on the assumption that statistical differences 
between the groups could be detected in this way. Exclusion criteria 
were glaucoma, cardiac arrhythmia and/or ischemic heart disease, 
myasthenia gravis, known allergy against HBB, and active participation 
in public traffic (e.g. drivers). All participants were divided into four 
different groups. Group A received a T2 DL sequence with a FOV of 130 
mm followed by a HBB and a conventional T2 TSE with a FOV of 130 
mm. In group B, both sequences were acquired with a FOV of 160 mm. 
Group C compared the FOV 160 mm, whereby both sequences were 
measured after prior HBB application. Group D received the FOV 160 
mm without HBB. For groups A-C, 40 mg of HBB (Buscopan®; 

Boehringer, Ingelheim, Germany) were administered intravenously ac-
cording to the manufacturer’s protocol. Group A and B received the 
pharmaceutical on the MRI table. We conducted the second axial T2- 
weighted TSE- sequence after HBB administration according to the 
pharmacokinetic profile with a plasma half-life of HBB (t½α = 4 min).

The primary objective of the study was to determine, if T2DL se-
quences without HBB provides the same diagnostic accuracy compared 
to standard sequences with HBB injection. Secondary objectives were 
comparison of FOV 130 mm to FOV 160 mm and the effect of HBB in 
terms of qualitative and quantitative image quality.

2.2. MRI imaging

The MR imaging was conducted on 3 Tesla systems (MAGNETOM 
Prisma, Software version VE11C) using either a 60-channel phased- 
array surface coil. The imaging protocol followed PI-RADS v2.1 guide-
lines, including T2-weighted sequences in three orthogonal planes (axial 
measurements: 0.5 mm × 0.5 mm × 3.0 mm, field of view of 130 mm), 
diffusion sequences (utilizing both z-EPI and rs-EPI methodologies), and 
dynamic contrast sequences. Additionally, T2DL sequence (version 
2022/23) was acquired in axial orientation. All technical details 
regarding the acquired T2-weighted sequences can be found in Table 1. 
The method is a DL based k-space to image space reconstruction (mar-
keting name: Deep Resolve Boost). The technical details have been 
described previously [15,19]. An unrolled variational network was 
utilized for reconstruction. This trainable network alternated between 
data consistency steps and image regularization steps through a con-
volutional network. The network input comprised under sampled k- 
space data, coil sensitivity maps estimated from reference lines, and a 
normalization field for image homogenization. The reconstruction 
focused on enhancing the SNR without altering image contrast, ensuring 
that acquisition parameters like echo time, repetition time, and echo 
train length remained consistent with conventional reconstructions. 
Model parameters were determined through supervised training with 
approximately 10,000 slices from volunteer TSE acquisitions on various 
clinical 1.5 T and 3 T scanners. The loss function included an L1-norm 
and a multiscale version of the structural similarity index (SSIM) be-
tween network predictions and ground truth images.

2.3. Image interpretation and data analysis

Two experienced radiologists (L.S. and M.B.), each with substantial 
tenure in prostate MRI interpretation (13 years and 6 years of reading 
mpMRI, respectively), reviewed the imaging datasets independently. 
Both readers were blinded to the sequence types. Prostate dimensions 
were ascertained using volumetric software (DynaCAD, Philips Health-
care), which also informed the calculation of PSAD by correlating serum 
PSA with prostate volume.

2.4. Qualitative analysis

The assessed categories included: 

Table 1 
Technical parameter.

cT2 FOV 130 cT2 FOV 160 T2DL FOV 
130

T2DL FOV 
160

TE 102 101 102 96
TR 3990 4060 3990 4240
averages 3 2 2 1

Resolution
0.5 × 0.5 ×
3.0

0.5 × 0.5 ×
3.0

0.5 × 0.5 ×
3.0

0.5 × 0.5 ×
3.0

SD 3 3 3 3
Matrix 256 × 256 320 × 320 256 × 256 320 × 320
Acquisition 

time
5:02 4:40 2:48 3:22
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• Motion: presence of motion artifacts due to bowel or bladder 
movement.

• Sharpness: clarity of prostate boundaries and lesions to periprostatic 
fat and surroundig tissue, capsule delineation

• Noise: presence of overall image noise in the different sequences, 
blurriness,

• Diagnostic confidence: overall impression of the image quality and 
confidence in PI-RADS scoring.

A five-point Likert scale was used to rate each category, and the re-
sults from both radiologists were averaged. A detailed description of the 
qualitative parameters is provided in supplementary Table 1 (Sup. 
Table 1).

2.5. Quantitative image analysis

Quantitative analysis involved calculating the apparent SNR and the 
apparent CNR. The SNR was determined by dividing the signal intensity 
in the whole prostate by the standard deviation (SD) of the bladder. The 
CNR was calculated by subtracting the signal intensity of the bladder 
from the signal intensity of the whole prostate and then dividing by the 
SD of the bladder. ERD was also measured as an indicator of image 
sharpness. This was derived from the signal intensity profile of a line 
drawn across the dorsal prostate capsule. The ERD was defined as the 
distance between the 10 % and 90 % signal intensity levels relative to 
the low- and high-signal intensity areas. A shorter ERD indicates sharper 
delineation of the transition between capsule and fat tissue. The signal 
intensity values were averaged within equal-sized regions of interest 
(25 mm2) in the bladder.

2.6. Statistical analysis

Statistics were performed using IBM SPSS® Statistics (Version 29, 
IBM Corp). P-values <0.05 were defined as statistically significant. 
Wilcoxon signed rank test was performed to compare continuous data; 
chi square test was performed to compare categorical data.

3. Results

3.1. Study population

A total of 120 participants with a median age of 64 years (inter-
quartile range (IQR) 57–70 years) were included in this study ranging 
from 34 to 85 years. The median prostate specific antigen (PSA) was 6,1 
ng/ml (IQR 4.5–9.2). 56 patients exhibited prostate volume below 50 ml 
while 16 had massively enlarged prostates with volumes above 100 ml. 
PSA- levels, PSAD and PI-RADS scores are shown in Table 2. 52 patients 

had a PI-RADS score of 4 or 5 and were therefore suspected of having PC. 
The extent to which a carcinoma was present was not part of the anal-
ysis. When comparing the different groups with their respective se-
quences, there was no significant difference in terms of the clinical data.

3.2. Qualitative imaging parameters

For the HBB effect, the qualitative parameters showed a superiority 
of the conventional T2 sequence after HBB application compared to the 
DL sequence regarding image sharpness, motion artifacts and diagnostic 
confidence, while the noise in the accelerated sequence was significantly 
lower (p < 0.01) (Table 3). This observation applies to both the large 
FOV and the FOV 130 mm. In the DL accelerated sequence without HBB, 
the image quality was poor in four cases in the FOV 130 and in three 
cases in the FOV 160 that there was a score of 2 for diagnostic accuracy. 
For the conventional T2-sequence, all examinations showed at least 
moderate diagnostic quality with a score of 3 or higher. A comparison of 
the conventional T2 sequence with the DL-accelerated sequence without 
HBB effect showed similar results for both readers (Table 3). With HBB 
administration, both readers evaluated the T2 sequence better than the 
DL sequence in terms of diagnostic value (4.64 vs. 3.9; p < 0.01). The 
same observation could be made for the comparison without prior HBB 
before acquiring the two sequences (4.47 vs. 3.74; p < 0.01). The extent 
of movement artifacts was also lower for groups C and D in the con-
ventional T2 sequence than in the T2 DL sequence (0.9 vs. 2.0 and 1.32 
vs. 2.1 respectively; p < 0.01) (See Figs. 1-4).

3.3. Quantitative imaging parameters

Considering quantitative imaging parameters, DL showed signifi-
cantly higher SNR (prostate) and CNR than T2 for all compared groups 
(p < 0.01) (Table 4). The ERD did not differ significantly between both 
sequences for all comparisons.

3.4. FOV and HBB effect

In the qualitative analysis between FOV 130 and FOV 160 the T2 
with FOV 130 and HBB demonstrated fewer motion artifacts than the T2 
with FOV 160 and HBB (0.47 vs. 0.77; p = 0.011) while the other 
qualitative parameters showed no statistically significant difference.

Considering the effect of HBB administration on image quality, we 
could observe a significant reduction in motion artifacts for T2 with 
FOV160 and HBB compared to T2 with FOV160 and without HBB (0.90 
vs. 1.32; p = 0.027). Again, other qualitative parameters failed to reach 
clinical significance.

Table 2 
Clinical and MRI parameters.

All patients Group A 
FOV 130 +/−

Group B 
FOV 160 +/−

Group C 
FOV 160 +

Group D 
FOV 160 -

Patients (n) 120 30 30 30 30
Age in years; 

median (IQR)
64 
(57–70)

66 
(57–74)

63 
(57–70)

63 
(57–68)

66 
(57–70)

Prostate Volume in ml; 
Median (IQR)

52 
(36–77)

53 
(37–73)

48 
(33–85)

57.5 
(35–77)

51 
(37–77)

PSA in ng/ml; 
median (IQR)

6.1 
(4.5–9.2)

6.3 
(4.5–8.7)

5.3 
(3.7–7.8)

6.1 
(4.5–9.9)

7.2 
(5.1–10.7)

PSAD 
median (IQR)

0.12 
(0.08–0.17)

0.14 
(0.07–0.18)

0.09 
(0.07–0.13)

0.12 
(0.09–0.18)

0.13 
(0.11–0.19)

PI-RADS v2.1 (n)

1 0 0 0 0 0
2 35 8 12 6 9
3 33 7 7 8 11
4 37 10 7 12 8
5 15 5 4 4 2

PSA = prostate specific antigen; PSAD = prostate specific antigen density; IQR = interquartile range.
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3.5. Intraclass correlation

Intraclass correlation coefficients (ICC) between different readers 
demonstrated good to excellent agreement across all assessed qualitative 
categories, with values ranging from 0.84 to 0.93. Median qualitative 
scores and IQRs for ICC are displayed in Table 4 (Table 5).

4. Discussion

Prostate MRI offers a non-invasive way to detect clinically significant 
PC at an early stage and at the same time reduce the number of un-
necessary biopsies for clinically insignificant carcinomas. However, the 
growing demand is offset by the limiting factor of long examination 
times. A promising approach is the use of DL-accelerated sequences. 
These innovative sequences enable image acquisition in less time and 
also promise better image quality and fewer artifacts. One question 
regarding DL-accelerated sequences was whether, due to artifact sup-
pression, they make the administration of HBB unnecessary, which is 
still recommended to suppress intestinal activity in order to optimize the 
image quality. Our results suggest that HBB is able to improve image 
quality by reducing motion artifacts and that the T2-DL sequence in 
version and on the scanner platform used alone do not achieve this 
artifact reduction at the same level. Clear visualization of the relevant 
anatomical structures forms the foundation for accurate diagnostics and 
aids in tumor detection.

Previous studies have shown that DL sequences not only significantly 
shorten the examination time but can also lead to an improvement in 
image quality and reduce motion artifacts [14]. Motion artifacts are also 
reduced by the application of HBB [16].

In this comparative study, we acquired conventional T2 sequences 
with intravenous HBB application and T2-weighted DL-accelerated se-
quences without HBB and assessed qualitative and quantitative image 
parameters. In contrast to previous studies, the conventional T2 
sequence proved to be superior to the DL sequence in our study, which 

Table 3 
Qualitative imaging Parameters.

Group A 
FOV 130 +/−

Group B 
FOV 160 +/−

Group C 
FOV 160 +

Group D 
FOV 160 -

cT2 + T2DL - P cT2 + T2DL - P cT2 + T2DL + P cT2 - T2DL - p

Patients (n) 30 30 30 30
Motion 

Mean (SD)
0.47 
(±0.72)

2.17 
(±0.85)

<0.01 0.77 
(±0.79)

1.67 
(±0.90)

<0.01 0.9 
(±1.02)

2.0 (±0.84) <0.01 1.32 
(±1.10)

2.1 
(±0.80)

<0.01

Sharpness 
Mean (SD)

4.57 
(±0.59)

3.03 
(±0.61) <0.01

4.32 
(±0.72)

3.50 
(±0.70) <0.01

4.5 
(±0.60)

3.48 
(±0.72) <0.01

4.23 
(±0.79)

3.5 
(±0.70) <0.01

Noise 
Mean (SD)

2.18 
(±0.65)

1.03 
(±0.32) <0.01

1.78 
(±0.61)

0.97 
(±0.41) <0.01

2.47 
(±0.79)

1.55 
(±0.72) <0.01

2.15 
(±0.66)

1.55 
(±0.62) <0.01

Diagnostic 
confidence 
Mean (SD)

4.75 
(±0.44)

3.30 
(±0.70) <0.01

4.53 
(±0.65)

3.75 
(±0.68) <0.01

4.63 
(±0.58) 3.9 (±0.82) <0.01

4.47 
(±0.75)

3.73 
(±0.69) <0.01

FOV = field-of-view in mm; T2 = T2-weighted-sequence; DL = deep learning accelerated T2-weighted sequence.

Fig. 1. Example of group A: cT2 with FOV 130 and HBB compared to T2DL 
with FOV 130 and without HBB.

Fig. 2. Example of group B: cT2 with HBB and T2DL without HBB, each with 
FOV 160.

Fig. 3. Example of group C: cT2 and T2DL with FOV 160 and HBB.

Fig. 4. Example of group D: cT2 and T2DL with FOV 160 without HBB.
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underlines the importance of HBB. These results are consistent with the 
findings of Ullrich et al. and other studies, who demonstrated an 
improvement in image quality by reducing artifacts and improving 
anatomical delineation [16,20–22].

Interestingly, our direct comparison between conventional T2 and 
DL sequences, where both were acquired with or without HBB admin-
istration, also showed a superiority of the conventional T2 sequence 
regarding qualitative parameters, while DL outperformed the conven-
tional T2 in terms of quantitative values as SNR and CNR. These results 
contradict the studies by Bischoff et al., Oerther et al., and Gassenmeier 
et al. which showed both a significant shortening of MRI protocols and 
an improvement in image quality with DL sequences [14,15,23]. The 
reason for DL sequence being superior regarding quantitative parame-
ters as SNR and CNR is explainable, as these DL sequences rely on 
optimized image reconstruction methods and data-driven models. First, 
there is noise reduction through DL algorithms. DL models are particu-
larly adept at identifying and suppressing noise in image data by using 
information from neighboring pixels and sequences and thereby in-
crease the SNR. Second, DL-based reconstruction methods allow the use 
of fewer measurement data (reduced acquisition) while reconstructing 
the image with high quality. Through intelligent interpolation and 
reconstruction, more detailed images with better CNR can be produced 
without needing additional measurement data. Many DL algorithms 
leverage known features of image data (e.g., anatomical structures or 
typical noise characteristics) from training datasets to improve image 
reconstruction. Nevertheless, the conventional T2 sequence is superior 
in the other qualitative parameters except image noise. This is also un-
derstandable. By acquiring more image data, the conventional image 
appears significantly more detailed and sharper. Even the smallest 
structures can be clearly delineated, whereas the DL image is sometimes 
washed out and blurry and smaller image details are simply lost. While 
the softer appearance of the DL sequence led to a reduction in image 
noise as expected, this was at the expense of image detail, which led to 
poorer performance in the other qualitative parameters. The high 
interrater reliability of >0.9 supports the validity of our results. At this 

point, however, it must also be pointed out that the standard T2 
sequence used here has been maximally optimized and had an excep-
tionally small FOV and therefore offers a very high resolution and good 
image quality. In contrast, the new DL sequence used was out of the box 
in development version for a scanner software platform available for 
some time (VE11C) and has not undergone an optimization process over 
time/years. A small FOV is generally more sensitive to convolutions. A 
compromise must be found between acceleration with corresponding 
SNR loss and sufficient image information. Excessive acceleration can 
lead to insufficient SNR/image information being measured. This 
missing information cannot be recovered by DL denoising. Sequence 
optimization is necessary when using new sequences and they should 
not simply be used without meticulous adjustments. The extent to which 
a similar image quality can be achieved through this process should be 
evaluated on upcoming scanner systems and further improved 
sequences.

The comparison of groups C and D showed that the movement arti-
facts were less pronounced in the conventional T2w sequence than in the 
T2DL. This may seem surprising at first, but there is a simple reason for 
this. Due to the examination protocol, the T2DL sequence was acquired 
immediately after HBB administration while cT2 was acquired with 
some delay. The effect of the HBB seems greater in the later course of the 
examination and the movement artifacts were less pronounced here. It is 
therefore not possible to conclusively assess whether the T2DL sequence 
contains less movement under the same conditions. To answer this 
question, the protocol would have to be changed, and the sequences 
analyzed under the same conditions.

DL methods, particularly convolutional neural networks (CNNs), 
have been widely utilized in prostate mpMRI, primarily for cancer 
diagnosis [24–26]. Other research areas in prostate MRI include the 
analysis of tumor aggressiveness [27]. Despite these promising studies 
highlighting potential DL applications, commercially available products 
remain limited. As mentioned initially, there is a need to shorten 
acquisition times due to the high demand for investigations. DL-based 
approaches offer a very good opportunity here. However, this should 
not be at the expense of image quality. Our study did not aim to 
investigate whether the tumor detection rates differ significantly be-
tween the different sequences. The differences in diagnostic value do 
indicate that both readers in the collective analyzed here were more 
certain regarding their diagnosis in the conventional T2 sequence. 
However, the extent to which this results in differences in the PI-RADS 
score or implies other diagnostic steps (biopsy/follow-up) cannot be 
answered with the design presented here. Further studies are needed to 
answer that question.

Our study has several limitations. Based on our study design, no 
conclusions can be drawn about tumor detection. Further studies are 
required to evaluate the detection of PC using DL sequences. For the 
evaluation of the HBB effect, we compared two different patient groups 
either with or without HBB. Considering the wide anatomical 

Table 4 
Quantitative imaging parameters.

Group A 
FOV 130 +/−

Group B 
FOV 160 +/−

Group C 
FOV 160 +

Group D 
FOV 160 -

cT2 + T2DL - P cT2 + T2DL - P cT2 + T2DL + P cT2 - T2DL - p

Patients (n) 30 30 30 30
SNR Prostate 

Mean (SD)
2.16 2.57 <0.01 2.22 2.53 <0.01 2.21 2.56 <0.01 2.18 2.48 <0.01

SNR Bladder 
Mean (SD) 54.62 56.27 0.988 63.28 42.22 <0.01 59.53 42.46 <0.01 57.41 46.40 <0.01

CNR 
Mean (SD) 0.55 0.83 <0.01 0.61 0.98 <0.01 0.52 0.91 <0.01 0.58 0.95 <0.01

ERD 
Mean (SD)

1.75 1.33 0.438 1.30 1.87 0.164 1.76 1.47 0.068 1.33 1.50 0.53

FOV = field-of-view in mm; T2 = T2-weighted-sequence; DL = deep learning accelerated T2-weighted sequence; SNR = signal-to-noise ratio; CNR = contrast-to-noise 
ratio; ERD = edge rise distance.

Table 5 
Intraclass Correlation between both Readers.

ICC cT2 T2DL

Motion 
Median (IQR)

0.93 
(0.90–0.95)

0.87 
(0.90–0.91)

Sharpness 
Median (IQR)

0.90 
(0.85–0.93)

0.86 
(0.80–0.90)

Noise 
Median (IQR)

0.85 
(0.79–0.90)

0.93 
(0.90–0.95)

Diagnostic confidence 
Median (IQR)

0.87 
(0.81–0.91)

0.85 
(0.79–0.90)

ICC = intraclass correlation; T2 = T2-weighted-sequence; DL = deep learning 
accelerated T2-weighted sequence.
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variability, as well as the differing amounts of intraluminal gas and 
filling, an intra-individual comparison conducted within a single MRI 
examination in consecutive order would provide a more reliable study 
design. Finally, the DL sequence used in this study was set in the 
development stage at the time of the study and on a longtime imple-
mented scanner and software system. Newer further developed se-
quences and scanner/software generation might perform different. The 
applied DL is a k-space to image space reconstruction (marketing name: 
Deep Resolve Boost). Recently, DL based super resolution (Deep Resolve 
Sharp) is available, which typically increases the image sharpness, 
especially in cases where the DL reconstruction leads to slightly blurred 
sharpness. Typically, both algorithms are used in combination. Still, the 
first publications on TSE DL also used DL without super resolution.

5. Conclusion

Deep learning-accelerated sequences offer promising potential for 
reducing MRI acquisition times, but in our study, conventional T2 se-
quences with HBB showed superior image quality and diagnostic con-
fidence compared to DL sequences on the development stage used. 
While DL sequences performed better in quantitative measures like SNR 
and CNR, they lacked the detail and sharpness provided by conventional 
sequences. HBB remains important for reducing motion artifacts and 
optimizing image quality. Sequence adjustment and optimization is 
essential when using new (deep learning) sequences. Further develop-
ment and scanner plus examination specific customization of advanced 
techniques for upcoming scanner software generations seems very likely 
improve image quality with simultaneously reduced acquisition time.
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editing, Visualization, Validation, Supervision, Resources, Project 
administration, Methodology, Investigation, Formal analysis, Data 
curation, Conceptualization.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.mri.2025.110358.

References

[1] Drost F-JH, Osses DF, Nieboer D, et al. Prostate MRI, with or without MRI-targeted 
biopsy, and systematic biopsy for detecting prostate cancer. Cochrane Database 
Syst Rev 2019;4(4):CD012663.
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